
NEWCASTLE UNIVERSITY LIBRARY
-------- _._-­.... - - -- ---- -- - ----

087 07060 4
----_._- -- ---_ -- - -- -_ _ - -_ --

.. ,

l -:.

A View Mechanism For

An Integrated Project Support Environment

by

Alan W. Brown

PhD Thesis

Computing Laboratory
The University of Newcastle upon Tyne

January 1988

A View Mechanism for an IPSE Prelim.

Page 1

ABSTRACf

In the last few years the rapidly expanding application of computer

technology has brought the problems of software production increasingly to

the fore, and it is widely accepted that current software development tech­

niques are unable to produce high quality software at the rate required to

keep pace with this. To try to improve this imbalance, the fte1d of Software

Engineering has been advanced as a possible solution, attempting to apply the

formal methods of an engineering discipline to software design and implemen­

tation. One of the most promising areas to be developed in this fte1d is that

of Integrated Project Support Environments (IPSE's), which attempt to

spread the focus of attention during software development from the coding

stage to embrace the whole development cycle, from initial requirements

speciftcation through to operational maintenance. These environments hope to

improve prodUction efficiency and quality by providing a complete set of sup­

port tools to help with each stage of software development, and to supply the

necessary tool integration to ensure a smooth transition of use between these

tools.

This thesis examines the services provided as part of an IPSE which

allow users and tools to interact in a meaningful way throughout the life of

a project. In particular, a view mechanism is seen as a vital component of

these services allowing indiVidual external views of the facilities to be deftned

which suit different users' needs. A model of a view mechanism for an IPSE

is developed, and within a particular implementation of an IPSE, a view

mechanism is formally deftned and implemented. Finally, the view mechan­

ism is analysed and discussed before concluding with some directions for

future research.

A View Mechanism for an IPSE Prelim.

Page 2

A View Mechanism for an IPSE Prelim.

Page 3

ACKNOWLEDGEl\1ENTS

Many people have influenced the work reported in this thesis, and it is

my pleasure and privilege to acknowledge their contributions.

Firstly, I am indebted to my supervisor, Peter Hitchcock, who has

helped to form many of the ideas reported in this thesis, and encouraged me

throughout their development.

I have also been fortunate· enough to work with, and receive help

from, a number of people in the ASPECT project. In particular, Ray Weedon

was a constant source of advice and assistance throughout his time here at

Newcastle, Ant Earl encouraged and commented on many of the ideas, and

Anthony Hall and Dave Robinson provided guidance to keep me on the

straight and narrow. Other ASPECT members also played a part, including

Ben Dillistone, Ann Petrie, and Roger Took.

In addition, the contents and presentation of this thesis have been

much improved by Brian Randell, who has commented on a number of earlier

papers and drafts of this thesis.

Finally, special thanks are due to Moira for her total support

throughout the course of this work. Without her encouragement this thesis

would never have happened.

Financial support for the ASPECT project has been provided by the

Science and Engineering Research Council (SERC) through the Alvey Software

Engineering Directorate.

A View Mechanism for an IPSE Prelim.

Page 4

A View Mechanism for an IPSE

CONTENTS

ABSTRACf

ACKNOWLEDGEMENTS

CHAPTER 1 INTRODUCfION

1.1 Thesis Aims

1.2 Thesis Outline

1.3 Acknowledgements

CHAPTER 2 INTEGRATED PROJECT SUPPORT ENVIRONMENTS

2.1

2.2

2.2.1

2.2.2

2.3

2.3.1

2.3.2

2.3.2.1

2.3.2.2

2.3.2.3

2.4

In trod uction

The Problems in a Non-IPSE Environment

An Example

Tool Families

The IPSE Approach

Closed IPSE's

Open IPSE's

Basic Architecture

Further Developments

Standardisation on a PTI

Support Environments for Non-Software Design Activities

Prelim.

Page 5

A View Mechanism for an IPSE

2.5 Summary

CHAPTER 3 SOFlW ARE ENGINEERING DATABASES

3.1

3.2

3.2.1

3.2.2

3.2.2.1

3.2.2.2

3.2.2.3

3.2.2.4

3.2.2.5

3.3

3.3.1

3.3.1.1

3.3.1.2

3.3.2

3.3.2.1

3.3.2.2

3.3.3

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

3.4.1.4

3.5

Introduction

Why use a Database for Software Engineering?

A View of the Software Process

Advantages of using a Database

Red ucing Redundancy

A voiding Inconsistencies

Enforcing Standards

Maintaining Integrity

Enhancing Data Independence

Why not use an Existing Database ?

The Nature of Design Data

Complex Objects

Version Control and Configuration Management

Transactions

Concurrency Control

Integrity

Summary

The Importance of Semantics Capture

Mechanisms for Capturing Semantics

Data Modelling

Rules

Views

Transactions

Summary

Prelim.

Page 6

A View Mechanism for an IPSE

CHAPTER 4 VIEWS

4.1

4.2

4.2.1

4.2.2

4.2.3

4.3

4.3.1

4.3.2

4.4

4.4.1

4.4.2

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.5.1

4.5.5.2

4.5.5.3

4.6

In trod uction

Abstraction, Views, and Abstract Data Types

Abstraction in Programming Languages

Database Views

Summary

Project-Level Abstraction in an IPSE

An IPSE as a Extended Programming Language

An IPSE as an Extended DBMS

Support for Abstraction in an IPSE

A Comparison of Views and ADT's

Features of an Abstraction Mechanism for an IPSE

Related Work

Combining Programming Languages and Databases

Abstract Data Types in Databases

Garlan's Views

Wiederhold's View-Objects

View mechanisms in IPSE's

UNIX Tool Sets

PCTE's Working Schemas

ISTAR's Workbenches

Summary

CHAPTER 5 A MODEL OF AN IPSE VIEW MECHANISM

5.1 The Aims of the Model

5.2 A Basic View Model

Prelim.

Page 7

A View Mechanism for an IPSE Prelim.

Page 8

5.3 Two Simple Extensions

5.3.1 Expressions

5.3.2 Nesting

5.4 Applying the Basic Model

5.4.1 SYSTEM Rand Ingres

5.5 Update Through Views

5.6 Extending the Model

5.6.1 Effect on the Model

5.6.2 Abstract Environments CAE's)

5.6.2.1 An Example

5.7 Summary

CHAPTER 6 THE ASPECT PROJECT

6.1 Introduction

6.2 An Overview of the ASPECT Architecture

6.3 The ASPECT Information Base

6.3.1 The Data Model

6.3.1.1 Entities and Entity types

6.3.1.2 Entity Classification

6.3.1.3 The Catalog

6.3.1.4 Relational Basis

6.3.1.5 Extended Operators

6.3.2 Activities

6.3.2.1 Activity Definition

6.3.2.2 Activity Execution

6.3.3 Rules

6.3.3.1 Classification of Rules

A View Mechanism for an IPSE Prelim.

Page 9

6.3.3.2 Consistency of Rules

6.3.3.3 Application of Rules

6.3.3.4 Rules and Activities

6.3.4 Views

6.3.5 Shared Objects

6.4 Summary

CHAPTER 7 SPECIFICATION OF AN IPSE VIEW l\1ECHANISM

7.1 Introduction

7.2 Specification

7.2.1 An Introduction to the Z Specification Language

7.2.1.1 The Z Notation

7.2.1.2 Relationship with Implementation

7.2.2 Overview of the Formal Specification of the View Mechanism

7.2.2.1 Abstract EnVironments

7.2.2.2 Initialising the model

7.2.2.3 Operations on the Model

7.2.2.4 Evaluating an Object

7.2.2.5 Tools and AE Objects

7.2.2.6 Publishing AE Objects

7.3 Summary

CHAPTER 8 IMPLEl\1ENTATION OF AN IPSE VIEW l\1ECHANISM

8.1 Introduction

8.2 Constraints on the Implementation

8.3 Details of the Implementation

A View Mechanism for an IPSE

8.3.1

8.3.2

8.3.2.1

8.3.2.2

8.3.3

8.3.3.1

8.3.3.2

8.3.3.3

8.3.3.4

8.4

8.4.1

8.4.2

8.4.3

8.5

8.6

Underlying Structures

Expressions

First Prototype

Second Prototype

Operators at the ASPECT PTI

A Note on Error Handling

Creating and Linking AE's

Adding Objects to an AE

Displaying Objects in an AE

Accessing ASPECT Through a View

Providing the Correct Objects

Evaluating View Objects

Invoking Tool Objects

Physical Characteristics of the Implementation

Summary

Prelim.

Page 10

CHAPTER 9 EXAMPLES, ANALYSIS, AND EVALUATION OF THE VIEW

MECHANISM

9.1 Introduction

9.2 An Example

9.2.1 The ASPECT Approach

9.2.2 Summary

9.3 Tool Interfaces

9.3.1 The ASPECT Open Tool Interface (OT!)

9.3.2 An Example

9.4 Other IPSE Interfaces

9.4.1 The PCTE as a View of ASPECT

A View Mechanism for an IPSE

9.4.1.1

9.4.1.2

9.5

The Object Management System of PCTE

Embedding a PCTE Tool in ASPECT

Summary

CHAPTER 10 CONCLUDING REMARKS

10.1 Introduction

10.2 Review of W or k

10.3 Future Work

APPENDIX A Z CONVENTIONS USED IN THIS THESIS

A.1 A List of Z Symbols

APPENDIX B TREES FOR ASPECT

B.1 The Basic Types

B.2 Labelled and Ordered Graphs

B.3 Operations on Graphs and Trees

APPENDIX C REFERENCES

Prelim.

Page 11

A View Mechanism for an IPSE

CHAPTER 1

INTRODUCfION

Chapter 1

Page 12

Software Engineering is concerned with investigating the problems of

how to develop large, complex software systems to a strict time-scale, and

produce a finished product of high enough quality that it can be used in

life-critical situations such as aircraft control and industrial process control.

However, efforts at producing such systems have all too frequently been poor,

with many systems known to be inefficient, badly maintained, and difficult to

use.Som8S Indeed, it has been suggestedBoe81, DeM82 that

at least fifteen percent of all software projects never deliver anything;

that is, they fail utterly to achieve their established goals.

overruns of one hundred and two hundred percent are common in

software projects.

the cost of maintaining a software system is typically more than twice

the original development cost.

In addition to the existing inadequacies in software development, the

trend is for software to be used in more and more diverse applications,

driven by awareness of new situations in which computer technology can be

applied, together with the continuing dramatic fall in the cost of hardware.

This has led to a need for building even larger and more complex software

systems. For example, from the initial attempts in the 1960's at automating

Air Traffic Control (ATC) systems in the United States, estimates of the

present computerised ATC system are that it now totals more than two mil­

lion lines of code.Hun87

In the past the main thrust of attempts to improve efficiency and

quality of software has been in the development of individual techniques and

automated tools to help with one or more of the development activities,

A View Mechanism for an IPSE Chapter 1

Page 13

speeding up that task, and ensuring its correctness. This has resulted in a

large number of software development methodologies being defined, with

automated tools which help in the application of the methods. However, con­

structing an environment in which the complete life-cycle of a large software

system is supported by grouping together a set of ad hoc tools causes a

number of problems. In particular, co-operation and integration between the

tools must be actively supported to avoid inconsistencies and duplication of

effort between the tools. An Integrated Project Support Environment (IPSE)

attempts to provide an environment in which large software systems can be

developed by integrating a set of tools which support a development metho­

dology within an infrastructure that allows tools to communicate and co­

operate in a controlled way. The IPSE infrastructure provides a set of com­

mon services appropriate to software development which can be used by the

tools. Such services may include facilities for structured data storing and

manipulation, for the application of user-defined rules to constrain and control

data instances, and for the definition of external views of the services

appropriate to different external users.

1.1. Thesis Aims

The main aims of this thesis are

to investigate past and current trends of software development support,

with particularly emphasis on the history and development of IPSE

technology.

A View Mechanism for an IPSE Chapter 1

Page 14

to analyse the characteristics of a software engineering database used

as the central component of an IPSE.

to look in detail at the need for, and characteristics of a view

mechanism as an integral component of an IPSE infrastructure.

to formally defrne and implement an IPSE view mechanism as part of

a larger IPSE project, and to analyse its use.

1.2. Thesis Outline

The thesis is organised as follows.

Following the short introduction given in this chapter, chapter two

describes the basic architecture and components of IPSE's in general, and looks

at their development over the past few years to the point at which standardi­

sation on an IPSE tool interface is currently proposed.

Chapter three then looks in detail at the requirements and characteris­

tics of a database for an IPSE, asking why we use a database at all, and

why a commercial database without enhancements is unsuitable for the task.

Finally, the database faCilities which add to the semantic capture of a data­

base are discussed with particular emphasis on their use in a software

engineering database.

Chapter four introduces the notion of views of an IPSE, examining

view mechanisms in programming languages and commercial database systems,

analysing the requirements of an IPSE view mechanism, and looking at related

wor k following Similar aims.

Chapter frve describes a model of an IPSE view mechanism building

from a simple notion of a view to a mechanism capable of supporting the

A View Mechanism for an IPSE Chapter 1

Page 15

requirements defined in chapter four. Using the model some of the problems

associated with views, such as updating through a view, are discussed.

Chapter six is a short introduction to the ASPECT project. The

ASPECT project was set up to investigate and develop a prototype IPSE, and

much of the work reported in this thesis was carried out as part of that pro­

ject. The chapter provides the wider context of IPSE facilities in which the

work was developed, looking only at those parts of the ASPECT project

which interact with the view mechanism and influence its design and imple­

mentation.

Chapter seven is a summary of a formal definition of a view mechan­

ism for an IPSE using the speCification language Z. The complete speciftcation

is given elsewhere,Rob87c and is summarised in chapter seven to allow the

reader to follow the significant details of the specification without getting too

enmeshed with the details.

Chapter eight describes the implementation of an IPSE view mechanism

as part of the ASPECT project. In particular, the operators which allow a

user to create and use view objects are described, together with the underly­

ing structures which support these operations.

Chapter nine provides an analysis of the view mechanism by means of

a set of appropriate examples to which the mechanism has been applied.

Through these examples we can extrapolate as to its use within a large sys­

tem development project.

Chapter ten reviews the aims of the thesis, discusses possible develop­

ments of the work reported here, and concludes with some final observations.

A View Mechanism for an IPSE

1.3. Acknowledgements

Chapter 1

Page 16

As the work on which this thesis is based took place as part of a

larger project, it is appropriate at this point to acknowledge that chapter six

reports work carried out in conjunction with a number of other project

members, and that the specification of trees given in Appendix B is a shor­

tened version of a paper by Anthony Hall.Rob87c

Apart from the above stated exceptions, all other work reported in this

thesis has been the sole responsibility of the author.

A View Mechanism for an IPSE

CHAPTER 2

INTEGRATED PROJECT SUPPORT ENVIRONMENTS

2.1. Introouction

Chapter 2

Page 17

When a software system is designed and implemented, automated sup­

port for the development process is required. Where the software can be

written by one person in a few weeks, the amount of support required may

be small. For example, individual tools for program editing, compiling, and

debugging may be all that are required. However, the current trend is for

the use of computer technology in increasingly diverse and complicated appli­

cations, leading to the development of larger and more complex software sys­

tems. These systems typically reqUire a large group of people to develop

them, and may take many months to complete. For example, it is not

uncommon for software systems development to involve more than a hundred

people over a period of a number of years and produce in excess of a million

lines of source code.Row83, Gla82 With this vast difference in scale, at least the

following points may be noted:

no one person may be fully familiar with the complete system, so it

is vital that the separate pools of knowledge can be integrated.

the finished product may not exist as one single definitive version, but

as a set of related versions to suit different user requirements.

errors will be found in a large system, and hence maintenance of the

running system will be an on-going problem.

A View Mechanism for an IPSE Chapter 2

Page 18

it is no longer economically viable to throwaway the system and re­

implement when operating conditions, or user requirements change.

Therefore, the software must evolve over time.

the management of a software project becomes much more difficult, in

particular to control the development and maintenance process and to

ensure its continued progress.

Therefore, if we hope to provide automated support for large scale

software production, we must provide facilities to deal with these problems,

and so support the complete software life-cycle, from reqUirements definition

to operational maintenance, provide recognised paths of communication and

co-ordination between the software developers involved in a project, and allow

managers to exert control over the development and maintenance process and

to accurately monitor its progress. Systems which attempt to provide such

support are most often known as Integrated Project Support Environments

(IPSE's).

2.2. The Problems in a Non-IPSE Environment

Research into different software development techniques and methodolo­

gies has been quickly followed by the production of indiVidual software tools

which support a method by automating some aspect of the use or application

of the method. The tools may provide different levels of support, from sim­

ple clerical assistance by recording information in a computer's fr1e store, to

extensive checking of this information according to the rules defrned by the

method,McD84 Hence, traditional environments in which software is developed

consist of a machine operating system and frling system, together with an ad

hoc collection of development tools which cover some part of the development

A View Mechanism for an IPSE Chapter 2

Page 19

life-cyc1e, supporting some set of preferred development methods. A software

product is progressed by application of the development tools to the data

which is generated. This situation is summarised in figure 2.1.

<

Operating System Interface

fIardvvare Interface

Fig 2.1 Typical Connection of Tools in a
Traditional Development Environment.

In figure 2.1 tools access machine facilities through the operating sys­

tem interface, recording data in the file store it maintains. The principle way

in which tools are allowed to interact is through some commonly understood

communication protocols embedded within the tools themselves. However, as

the tools are often written without knowledge of the other tools with which

they may interact, the use of individual tools within a larger development

context can result in difficulties. The following problems are often experi­

enced:

A View Mechanism for an IPSE Chapter 2

Page 20

different development tools often overlap in their roles and duplicate

effort.

tools designed to fit different development methods can often interfere

with each other, produce inconsistent results, or are totally incompati­

ble.

the complex relationships and dependencies which exist between data

items are often lost, or difficult to determine as these properties are

created within the tools themselves and hidden within the data for­

mats they produce as output.

there is no integrating structure which controls both the ways in

which tools are allowed to interact with the data, and the tools which

individual users are given access to invoke. As a result, maintaining

the integrity of the data is difficult.

current practice relies heavily on manual co-operation and co:rp.munica­

tion to ensure that project members can work independently and yet

as a team. Such problems are compounded in large, distributed pro­

jects.

2.2.1. An Example

To illustrate the problems which exist in traditional development

environments, and the need for tools to be integrated in their use of data,

consider how the UNIX tool MAKEFe179 records information about inter­

dependencies of program modules.

Figure 2.2 represents diagrammatically how a simple software system

may have been constructed, using an example adapted fromFe179 and developed

in.Hit87b

A View Mechanism for an IPSE

parser.obj codegen.obj

program

Fig 2.2 Data Flow for a Simple Compiler.

Chapter 2

Page 21

In figure 2.2, a simple compiler is constructed by processing a parser

gram mer to produce a parser object module, and then compiling this module

to produce a relocatable binary version of the parser. This is loaded with the

binary produced by compiling a code generation module to produce a running

program.

To record the dependencies shown in figure 2.2, the MAKE tool relies

on a file called a "makefile" which holds these relationships in a special tex­

tual form. In figure 2.3, we show how a makefile may look for this exam­

ple.

A View Mechanism for an IPSE

program: libl cOOegen. abj pl.I'SElI'. abj
load libl cOOegen. abj pl.I'SElI'. abj

cOOegen.abj: cOOegen.src defsl
compile dafsl cOOegen.src

pu'SeI' . abj : pu'SeI' . src dafsl
compile defsl pl.I'SElI'. src

pu'SeI' . src: pu'SeI' . gram
pu'SeI'-gen pl.I'SElI'. gram

Fig 2.3 Makefile for Simple Compiler.

Chapter 2

Page 22

It consists of a set of pairs of lines where the first line of a pair

defines a dependency, for example, that the module "program" is dependent on

"libl", "codegen.obJ', and "parser.obJ' modules, while the second line is a com­

mand which will generate the derived module from its constituent parts. For

example, "program" is created by executing the command "load lib! codegen.obj

parser.obJ'. Hence, by reference to a makefile the MAKE tool can automati­

cally generate derived modules from their constituent parts without a user

having to remember how each module is created.

In isolation, the MAKE tool can be used to great effect for program

generation and maintenance. However, as part of a larger development

environment in which we would like to provide support for all phases of a

software project, there are a number of problems with such a tool. Firstly,

the relationships between modules are buried within a makefile in a special

form which is specific to the tool. If we now want to use that information

within some other tool, for example if we want to analyse the impact of

changing a particular module and had such a tool available, then this new

tool would need to read in the makefile and decode the relationships which

exist, before it can perform its function. No doubt the information it obtains

will again be written out in some special form to a file, and if we now

wanted to run a report generator with that information, it too would have to

A View Mechanism for an IPSE Chapter 2

Page 23

interpret the data and convert it to a form it recognised. This not only

results in duplication of effort within different tools, having to re-interpret

the structured information each time, but is also a source of problems when

changes to the data format take place. It is not now possible to make any

changes to the way data is stored without changing all the tools which access

the data.

A second consequence of this approach is that maintenance of makeftles

for large systems is a particularly difficult task. This is because the complex­

ity of the system is reflected in the complexity of the makeftle, and as a

result it is difficult to assess how the makeftle should be amended to reflect

changes in the way a system is built. If the structures and relationships hid­

den within a makeftle were to be held explicitly in some appropriate form, it

would then be easier to alter this information when changes are needed.

Finally, if we now wanted to apply some form of constraints on how

systems are built, for example to apply project standards for system building,

then with the makeftle approach we would ftnd this particularly difficult to

achieve as it is not clear at what point such rules could be applied. This is

because integrity checking of the data is carried out in an ad hoc manner

within individual tools themselves. If we could remove the task of integrity

maintenance of data from each of the separate tools, record the rules in an

accessible form, and apply the checks to the data at a central pOint, then we

would have a mechanism which gave us much more conftdence in the correct­

ness of the data.

A View Mechanism for an IPSE

2.2.2. Tool Families

Chapter 2

Page 24

A partial solution employed by many existing development systems is

to tightly couple sets of tools into families which share a common pool of

knowledge, as shown in figure 2.4.

~ / \

/
Operating System Interface

fIardvvare Interface

Fig 2.4 Grouping of Tools into Families.

Recognising the need for co-operation and integration between tools, one

approach has been to build families of tools which can work in concert to

support some part of the development or maintenance process.Row83, Do176

These tool families share a common data format and operating conventions

which allows them to interact in a meaningful way. A typical example is

the set of UNIX tools which make up a documenter's workbench.AT&84 This

A View Mechanism for an IPSE Chapter 2

Page 25

allows, for example, a single document to contain tables, equations, and

diagrams, and to be processed by passing the document through a sequence of

appropriate tools which share a formatting style and a set of formatting con­

ventions.

However, the conventions on which a set of tools are based are still

embedded within the tools themselves, and, for example, to add a new tool to

a development environment would involve understanding the communication

and data conventions of the tool sets with which you would expect the new

tool to interact. This would involve re-implementing all the checks and

structuring operations which already exist within the other tools. Also, if

you tried to use the new tool with tools built on different conventions, then

the results would not be as expected.

2.3. The IPSE Approach

Having recognised the problems of integrating a set of individual tools

to support the complete life-cycle of a large software project, researchers then

began to focus their attention on the means of integration within a support

environment, rather than on the individual tools themselves. By providing

integrated support for software development, it was hoped that much more

control could be maintained over the development process, while at the same

time easing the transition of a software product from one development phase

to the next.

The basiS of providing integrated support has been through attempting

to remove from the indiVidual tools many of the data structuring and control

facilities which typically are duplicated in each tool, and to maintain them at

a central point which allows them to be more easily amended and

A View Mechanism for an IPSE Chapter 2

Page 26

consistently applied.Bro87 This has been coupled with an increasing recognition

that effective support for software development can only be achieved if the

tools work together within an effective development process.

Tool I I Tool

~/
Project Level Interface

Operating System Interface

Hardware Interf ace

Fig 2.5 Tool Interaction in an IPSE.

In figure 2.5 we can see that the tools communicate by interacting at

a higher abstract level than the operating system interface. The interface at

which tools and users interact has been raised so that it is closer to the

actual problem domain, being concerned with project level objects such as

users, their roles within the software development process, and the tasks they

carry out, rather that the operating system concepts of files and program

processes. We can think of this more abstract level as a project level

A View Mechanism for an IPSE Chapter 2

Page 27

inter/ace, as through this interface facilities and services are available which

help control software development at the project level. Typically, the facili­

ties offered are for recording structured data using a database, and for the

controlled sharing of data between users at the level of documents and pro­

grams.

Examining environments which provide integrated support for software

development, we can divide systems into two approaches based on the expo­

sure given to the project level interface, and consequently the ease with

which new tools can be added to the environment to support new methods

and techniques.

2.3.1. Closed IPSE's

In the first approach, which provides what we can call closed environ­

ments, steps towards fully integrated environments have been taken by pro­

viding a set of tools for supporting the life-cycle of a project within a pre­

ferred model of the software development process. Typical of this approach

is the Perspective IPSE.Sys84 In a Perspective environment, tools communicate

mainly via a database, which records all relevant information about a

software project throughout its life cycle. The database is structured in a

way which allows meaningful relationships between data items to be main­

tained, for example, the relationship between a specification document and its

implementation in a programming language. The tools provided form a fixed

set supporting a single method of project development. In this case, a set of

tools support the MASCOT design notation,Jac83 with automatic translation of

validated MASCOT designs into an extended form of the Pascal programming

language. Additional tools then allow compilation and debugging of programs

written in this extended form of Pascal. Further facilities exist to allow

A View Mechanism for an IPSE Chapter 2

Page 28

communication between project members while controlling the sharing of data

between them through the use of versioned· data items.

A large number of closed IPSE's have been built in the last decade,

each supporting some preferred set of software development techniques. An

early examples was TOPD,Hen76 which supported a top-down approach to pro­

gram design which translated into COBOL code. Later examples include

TOOLPACK,Ost83 which is specifically designed to support small-scale develop­

ment of mathematical software implemented in FORTRAN, and

ARCTURUS,Sta84 which supports the use of Ada as a command, design, and

programming language. Many more such systems are described in.Hau82

The important features of a closed IPSE are that although tightly cou­

pled support is provided by the IPSE for a designated development methodol­

ogy, no mechanisms are available for the IPSE user to add new tools to sup­

port a different development approach, and very limited facilities to tailor the

IPSE to suit a particular organisation's needs. Consequently, a closed IPSE

may provide excellent automated support if the development techniques sup­

ported mirror closely an organisation's existing development strategy, and are

well suited to the application system under development, but otherwise may

involve the organisation in a large amount of re-Iearning, or may not be

directly applicable to some systems. Similarly, as ideas and opinions concern­

ing software development continue to evolve, support for new methods and

techniques will also be reqUired. With many closed IPSE's it is not easy to

add support for such techniques without a conSiderable amount of re­

implementation of the IPSE itself by the IPSE vendor. The additional project

level services which are available in an IPSE, such as the improved data

structuring facilities of a project database, are not made accessible to the end

users who may want to customise the IPSE to suit individual project needs.

A View Mechanism for an IPSE

2.3.2. Open IPSE's

Chapter 2

Page 29

Recognising the problems of inflexibility which are evident with closed

IPSE's, some of the more recent work in IPSE development has led to the

creation of what can be called open environments.Ste87 In this approach the

role of the IPSE is seen as the provision of an infrastructure into which tools

can be embedded. The IPSE provides control of all data developed during the

life-time of a project by providing a set of facilities accessible through a more

appropriately structured interface than is conventionally available in a simple

tool and operating systems environment. So, for example, facilities aVailable

at this interface may include support for the structuring and storing of infor­

mation such as documents and program modules, for configuration and version

control of data items, and for the sharing of information between groups of

users. As this provides the lowest level at which any of the IPSE services

may be accessed, and is therefore the interface at which tools are written,

this interface is known as the Public Tool Interface CPT!) for the IPSE.Lyo86

The reqUired openness of the IPSE is achieved by making the PT! extensible

in order to support new methods and tools, and configurab1e, so that a project

can impose particular methods of working if desired.

One of the first IPSE's to begin to recognise the advantages of provid­

ing an open environment was CADESMcG80 which was specifically built to

support the development of ICL's VME/B operating system. Although origi­

nally configured with a fixed set of tools, a form of PTI was made available

to allow new tools to be integrated within a CADES system.Rob87b

A View Mechanism for an IPSE

2.3.2.1. Basic Architecture

Chapter 2

Page 30

The architecture of open IPSE systems has been initially gUided by

work carried out to defrne requirements for an Ada Programming Support

Environment (APSE), reported in the STONEMAN document.Bux80 Here, to

support the development of large programs written in Ada, the need for

automated support of the program development process led to the defrnition of

a set of requirements which outline the basic architectural components of an

APSE. To summarise the report, the basis of any APSE must be a database

which records data items and their relationships in a structured and accessible

form. The database provides the integrating factor for tools which communi­

cate through this structured repository for data. A Kernel Ada Programming

Support Environment (KAPSE) is then defrned as the database together with

communication and run-time support to allow a set of Ada programs to be

executed. With the addition of a minimal set of tools to support the creation

and maintenance of Ada programs, a Minimal Ada Programming Support

EnVironment (MAPSE) is envisaged. Finally, an Ada Programming Support

Environment (APSE) is constructed by extending the MAPSE to provide sup­

port for different programming methodologies and techniques. This architec­

ture is summarised in frgure 2.6.

An important feature of the architecture shown in frgure 2.6 is the

interface between the KAPSE and MAPSE facilities. Essentially, this interface

provides access to the set of services provided by the KAPSE to the tools

implemented as part of the MAPSE and APSE. In this way it is equivalent

to what we have called a PT!.

A View Mechanism for an IPSE

APSE

database
and

operating
system

other tools

Fig 2.6 Basic Architecture of an APSE.

2.3.2.2. Further Developments

Chapter 2

Page 31

The approach advocated in STONEMAN has gained a wide measure of

acceptance over the last few years, and a number of efforts have been made

following similar principles. Here we briefly summarise the direction of this

work.

In the United States, mainly funded by the Department of Defense

(DOD), work has been concentrated on implementations of APSE's following

the guidelines of STONEMAN. In Europe, and in particular the UK, with

funding from both the Alvey and ESPRIT programmes, IPSE work has been

much more diverse in nature. While the ESPRIT work has been mainly con­

centrating on the tools which will be needed to populate IPSES's and a single

framework through which they can interact, the Alvey programme has funded

A View Mechanism for an IPSE Chapter 2

Page 32

three concurrent projects which are investigating IPSE design and construction.

The first of these is the ASPECT project.Ha185 Following many of the prinCi­

ples established in STONEMAN, ASPECT has been working over the past

three years on research into, and prototype development of, an open, extensi­

ble IPSE. Much of this work is reported in detail later in the thesis. The

second project, ECLIPSE, is much more concerned with intercepting current

proven technology and constructing a production-standard IPSE to support

both Alvey and ESPRIT funded tool producers.Ald85 This is primarily a set of

tools written to the interface provided by an implementation of the Portable

Common Tool Environment (PCTE), which is a PTI defined within the

ESPRIT programme as the interface to which all of its tool writers can work.

The third, and much more ambitious project, called IPSE 2.5, is attempting to

extrapolate from current technology to define the direction of future IPSE

research in the next decade.war86 In particular, it is concentrating on support

for formal methods of software development. Its name comes from the

Alvey deftnition of a set of existing tools linked by a file system as a first

generation IPSE, those built on a database as second generation, and those

built on knowledge-based techniques as third generation.Mor87, Mai86 According

to these deftnitions, while ASPECT and ECLIPSE are second generation IPSE's,

this project is attempting to establish a path between second and third genera­

tion systems. However, as the project was begun much more recently than

the other two it is still very much in an exploratory phase.

Work in industry is Similarly moving in the direction of open IPSE's,

most notably perhaps with recent work at IBM aimed at deftning the architec­

ture of a software engineering support facility.Hum85, Hof85 The architecture

proposed emphasises the need for a set of Common Tool Services (CTS)

accessed by tools through a Common Tool Interface (CTI), analogous to a PTI.

It will be interesting to see how this work develops and how it influences

A View Mechanism for an IPSE

other commercial IPSE builders.

2.3.2.3. Standardisation on a PTI

Chapter 2

Page 33

Early work in this area was motivated by the United States Depart­

ment of Defense (DOD), whose analysis of their massive spending on com­

puter software determined that a great deal of their resources were being

spent on re-writing software in different languages to suit different operating

conditions. This led to the design and development of the Ada language, and

the recognition that the environment in which Ada programs were developed

would itself have to be defmed. Initial observations and requirements for

Ada programming Support Environments (APSE's) were outlined in the

STONEMAN document.Bux80 When a number of concurrent projects were

underway to develop APSE systems along the lines suggested in the STONE­

MAN report, the US DOD soon realised that the problems experienced by

implementing software in many different languages would soon exist for tool

writers who would not know which APSE interface to use when implement­

ing tools. Potentially, tool writers would spend much of their time porting

tools to work in different APSE systems. Hence, at the beginning of 1982,

work began on defming a set of APSE standards for use within the US DOD

which would permit the sharing of tools and other software between US DOD

supported APSE's. In 1985 a proposed Military Standard Common APSE

Interface Set (CAIS) was released for eva1uationYS.85a Leading on from this

work a set of requirements for a more advanced APSE interface set has been

deve10ped,uS.85b and work is currently underway to enhance the first version

of the CAIS to meet those requirements.

Motivated by a similar need for a common interface for tools, though

for programs written in a variety of languages, not just Ada, the European

A View Mechanism for an IPSE Chapter 2

Page 34

ESPRIT programme has provided funds for the definition of a Portable Com­

mon Tool Environment (PCTE) which can be used throughout the ESPRIT

community.Bu18S, Sys87 All tool writers funded by the ESPRIT programme will

write tools to this public interface, which will facilitate the integration of

tools within a common framework. Implementations of the PCTE are now

aVailable, and many more are expected in the near future.

Hence, at present, support for a standard PTI is diVided between those

who advocate the CArS, and in particular its enhancements to provide

extended support, and those who support use of the PCTE. Both technical

and political arguments abound in this debate, with many people desperate for

standardisation as soon as possible, including tool developers who are trying

to avoid unnecessary re-writing of their tools to suit different IPSE interfaces.

However, many IPSE researchers favour a more cautious approach to standar­

disation, recognising that experience of using IPSE systems is remarkably thin

on the ground. It remains to be seen how these arguments will develop.

2.4. Support Environments for Non-Software Design Activities

The process of software development shares a number of characteristics

with other development activities, most notably Very Large Scale Integration

(VLSI) circuit design, architectural deSign, and aerospace design. These activi­

ties can be grouped collectively under the title of "Engineering Design". It is

interesting, then, to examine the approaches taken to provide computerised

support in these related areas and compare them with the IPSE technology

described above.

Computer-Aided Design (CAD) systems have been available for a

number of years, and it has been recognised that in the past there have been

A View Mechanism for an IPSE Chapter 2

Page 35

more attempts to provide automated support in design activities such as VLSI

circuit design than for software design.Stu83 What is interesting, however, is

to note that the development history of support environments for non­

software design activities has very closely followed that described above for

software. In particular, the abundance of individual tools supporting some

part of a particular design method are now giving way to integrated tool sets

supporting more of the design process.Kat83 Indeed, in parallel with the work

in IPSE's for software development support, attention in non-software design

activities is now turning from individual tools towards controlled tool interac­

tion through the use of a design database.Enc82, Ket87, Buc84

Analysis of the characteristics of design data have revealed a number

of problems with applying conventional database technology in the design

environment.Kat83 In the next chapter we perform a similar analysis for

software engineering data, and it is interesting to note how closely the results

equate to Similar analyses of VLSI circuit design data.

Cross-fertilisation of ideas between different design activities is

currently underway in some areas, most notably in the support for long-lived

design transactions and complex data objects.Kim85, Kat84, Lor81 It is clear,

however, that continued collaboration will be of benefit to all concerned, with

the result that the design process itself may be better understood, and the

designer's needs more adequately supported.

A View Mechanism for an IPSE

2.5. Summary

Chapter 2

Page 36

The need to provide automated support to aid the process of complex

software systems design, implementation, and maintenance, led to the produc­

tion of indiVidual tools to support individual development methods and tech­

niques. Integration of the various facilities provided has been necessary to

ensure that the complete project life-cyc1e is supported in a convenient, flexi­

ble manner within a model of the development process. This chapter has

briefly examined the motivation and objectives of this work, with particular

emphasis on the key aims of openness and integration upon which an IPSE is

founded.

In the next chapter we look in detail at the support required at the

heart of an IPSE: the mechanisms for data capture, analysis, and control.

A View Mechanism for an IPSE

CHAPTER 3

SOFIW ARE ENGINEERING DATABASES

3.1. Introduction

Chapter 3

Page 37

From the earliest attempts to provide integrated support for the

software process, the use of a database as the central repository for all infor­

mation associated with a project was seen as a key element.Bux80, Ost81 This

was driven by the fact that centralised control of data had been achieved in

other application areas as a direct consequence of the use of the rapidly

advancing database technology. In particular, through explicitly recording the

data in a structured form it can be controlled, queried, and manipulated giv­

ing a higher degree of integrity than is usually the case using a simple flling

system as the basis for a perSistent data store.

In this chapter we examine the importance of using a database as a

structured repository for all project development data, and look in detail at

the special reqUirements of a database designed to control software engineering

data.

We conclude this chapter by examining some of the facilities which

could be used as part of the superstructure of a software engineering database

to control and maintain the integrity of the data. In particular, rules, tran­

saction, and view mechanisms are needed to further control user interaction

with a database.

A View Mechanism for an IPSE

3.2. Why use a Database for Software Engineering ?

Chapter 3

Page 38

Having recognised the need for providing automated support for the

software development process, it is important to realise that underlying the

active support provided by a set of tools must be the basic mechanisms for

capture, control, and analysis of the data generated during the lifetime of a

software project. This basic principle is further examined below.

3.2.1. A View of the Software Process

There are many ways to view the role of an IPSE in the task of

software development, but perhaps one of the most fundamental is to see an

IPSE as providing the infrastructure for supporting a complex decision-making

process. From this perspective, the development of a software project is seen

as the manipulation of a set of complex objects governed by past experience,

and directed by a plan for the future. In this way, at any point in a

project's development we are attempting to verify that the present state of

the system is consistent with past experience, while ensuring that we have a

complete, integrated plan for the product's future development. This must be

achieved within the context of changing project reqUirements, the existence of

errors and inconsistencies, and a myriad of organisational constraints, all of

which are an inherent part of any large project.

Seen in this way, software development is a complicated exercise in

information control and manipulation. Any environment designed to support

this process must be fundamentally based on mechanisms for data capture,

analysis, manipulation, and contro1.

A View Mechanism for an IPSE

3.2.2. Advantages of using a Database

Chapter 3

Page 39

The main attraction of using a database for any application is that it

provides centralised control of its operational dataDat86 (where operational data

is the term used to describe the information of interest to an organisation

which is recorded within the database). For software engineering applications,

the operational data will include all the information generated during software

development. In particular, requirements analysis, systems specificatiOns,

design documents, source and object code units, and testing and error reports

must all be recorded. In addition to data concerning the software product,

details of the project development process itself must be recorded such as

which developers are responsible for each program unit and how each of the

project activities are related.

We now re-evaluate the advantages generally associated with the use

of a database, emphasising the particular needs of software engineering applica­

tions.

3.2.2.1. Reducing Redundancy

One of the consequences of central control of data is that the redun­

dancy of stored data can be considerably reduced and controlled. In most

cases a single centrally controlled copy of a data item can be maintained,

which is sharable both by a number of different applications, and by many

different users. In the development of large software projects, control of

redundant data is a vital function for the following reasons.

A View Mechanism for an IPSE

3.2.2.2. Avoiding Inconsistencies

Chapter 3

Page 40

Reducing redundancy is a great help in removing inconsistencies in the

data. For example, if an error is found in a program unit, then when the

unit is amended the same change must be made to all copies of that unit,

and all larger components that have been built using the unit must be

notified and rebuilt. This property of change propagation is much easier in a

centrally controlled environment, especially using a database that not only

stores the data items themselves, but also explicitly records the relationships

between those items, such as where each item is used.

3.2.2.3. Enforcing Standards

One of the problems in software engineering is that there are so many

different ideas about how software should be designed and impleme1?-ted. In

an uncontrolled environment, this leads to incompatibility and inconsistencies

between data developed using different methods. Maintaining central control

of all development data is an important method of enforcing a set of

development standards, providing a central point at which all design data

entering the database can be validated before it is stored.

3.2.2.4. Maintaining Integrity

There are two aspects to integrity. The first is that access to data can

be monitored, so that confidential information can be strictly controlled.

Using a database this notion can be expanded so that each user is presented

with an individual subset of the complete data, by using a view mechanism.

This allows the user to get on with his/her work without distraction from

irrelevant data, and provides a mechanism for restricting access to privileged

A View Mechanism for an IPSE

information. Ke185

Chapter 3

Page 41

The second type of integrity is that of ensuring that the data recorded

is accurate and conforms to constraints we may wish to impose on it. This

is partly covered by reducing redundancy, but additional data validation is

possible by defming a central set of validation procedures, or integrity con­

straints, which can be applied to data before entry to the database.Laf79 In

this way, we remove the need for validation and consistency checks to be

embedded redundantly in each indiVidual application program accessing the

data. Now we are able to control these constraints centrally, apply them

consistently, and allow them to be updated without affecting the applications

themselves.

3.2.2.5. Enhancing Data Independence

In most simple frling systems, inherent in each data application is a

knowledge of how the data is recorded in secondary storage. For example,

when data is stored as frIes, many tools which access those frIes must know

how the data is structured within a frle. This means that if there was some

change made to the data format, then all of -those tools would need to be

re-written. With a database, however, tools work with a virtual interface, so

that if the underlying storage structures were to change, the applications using

the data would be insulated from this and could usually continue to be used.

However, the database itself would need to be amended to change the map­

ping between the virtual interface and the physical storage structures. (This

is a major topic of database design, and is dealt with in greater detail inDat86,

U1l80).

A View Mechanism for an IPSE

3.3. Why not use an Existing Database ?

Chapter 3

Page 42

In general, database development has been geared towards commercial

applications, to hold such information as personnel details and bank records.

This has led to the development of techniques which make databases highly

efficient in a commercial environment, but not necessarily so sUitable for other

application areas whose characteristics differ greatly from the usual environ­

ment. Table 3.1 is a summary of the main differences between the require­

ments for a commercial database, and a database to record software engineer­

ing data.

We now look in more detail at the requirements for a software

engineering database by comparing the mechanisms used in commercial data­

bases with those required to support software engineering applications.

3.3.1. The Nature of Design Data

In commercial databases the data held is usually fixed length and sim­

ple, consisting of values such as salaries, bank account numbers, and employee

names and addresses. In contrast, data in a software engineering database

will be complex, variable length, and could even be graphical. For example,

the design of a software component may be recorded as an interconnection of

smaller component designs, and these dependencies are an important part of

the design data. They could be recorded in some graphical form, in a

number of related versions, or be only partially complete. All this informa­

tion must be recorded along with the design itself.

A View Mechanism for an IPSE

Commercial Database

Most information is static and can
be described a priori, so the schema
is also static and compiled.

Update to the schema is infrequent,
and controlled by a group of
Database Administrators.

Data stored is atomic and fixed-
length (eg. strings and numbers).

Small number of entity types,
with large number of instances of
each type. Often only simple,
fixed relationships between entity
types exist.

Initially loaded with large amount
of data. Slow, constant rate of
data growth.

Single-valued data items, which are
updated in place.

Transactions are short, atomic, and
can be used as the basis for
concurrent data access.

Chapter 3

Page 43

Software Engineering Database

Continuous evolution of
information - data about the
environment itself (tools, methods,
etc.), and the products being
developed.

Change to the schema is expected
and frequent. Many users will
need to change the schema.

Data stored is atomic, but also
structured. Could be graphical
data, design documents, programs,
and so on. Also, data items may
be large and complex, and of
variable length.

Many entity types, with fewer
Instances of each type. Complex
relationships may exist between
entity types, and new relationships
may be created.

Less data initially loaded. Rapid
growth of database (both of
structure and contents), which
slows down after completion of
design phase and increases sharply
during implementation and testing.

Versions of data items are vital.
Dependence on versions, and
relationships between versions must
be explicitly recorded.

Long-lived transactiOns (>hours)
which may leave the database
inconsistent for long periods.
Cannot be conveniently used as
locking units.

Table 3.1 Comparison of Commercial and
Software Engineering Databases.

A View Mechanism for an IPSE

3.3.1.1. Complex Objects

Chapter 3

Page 44

In an application such as VLSI design, a typical object is represented

by a large collection of records that belong to different record types.Kim85

Unlike commercial databases, accessing and manipulation of this data is often

based on high level object-based notions, so that the granularity of a database

object need no longer be just a few records of similar type. There must be

some method to control database operations at much higher levels of abstrac­

tion.

The above is also true in software design; a typical software object is

constructed from many smaller components, and such an object hierarchy is

important in maintaining control of the development process.Bro85a, Bro85b

3.3.1.2. Version Control and Confi.guration Management

The design process is both tentative and iterative. This has a pro­

found effect on the growth of a design database, as it is necessary to record

amendments to a data object as new versions of that object. Hence, in a

design database it is important to control the dependencies between objects, so

that a request for a data item obtains the correct version. IPSE's now typi­

cally contain version control and configuration management facilities as an

integral part of their architecture.Ost83, Leb84

A View Mechanism for an IPSE

3.3.2. Transactions

Chapter 3

Page 45

If a transaction is considered to be the unit of database consistency

and concurrency, then a typical transaction in a commercial application, such

as removing money from one bank account and placing it into another, is of

short duration, reqUires only a few database records, and occurs atomically in

the sense that the complete transaction takes place, or it fails and the data is

unchanged. For a design activity the notion of a transaction is very different,

and has the following characteristics:

conversational, requiring frequent interaction with the system before

com pletion.

may last many hours, especially as the complete design may be con­

sidered as one long database transaction.

may use many records, as the objects accessed may be complex and

highly inter-related.

the concept of atomicity is not very applicable, as undoing a transac­

tion in this environment may remove many hours of work.

These characteristics have a number of important implications, most

notably in the areas of concurrency control and maintenance of integrity.

3.3.2.1. Concurrency Control

Whenever concurrent multiple access to shared data is possible, some

form of concurrency control must be implemented to prevent data corruption

by interference. In a commercial database the control technique most com­

monly used is known as locking, whereby a request for a data object sets a

locking flag to say that the object is in use. Conflicting requests for that

object are then denied until the lock holder releases the object by resetting

A View Mechanism for an IPSE

the locking flag.

Chapter 3

Page 46

However, this simple technique is of little use in a design application

as the object to be locked could be large and the length of time the lock is

required may not make it sensible for other designers to wait for the object

to be released before proceeding. Other methods must therefore be used, tak­

ing advantage of the fact that most design objects are developed in isolation,

and are shared at controlled times though a version mechanism.Kat84 For

example, in Perspective interaction with IPSE data is restricted to the creation,

amendment, and controlled sharing of document versions.Sys84

3.3.2.2. Integrity

The tentative and iterative nature of the design process leads to a

conversational style of database interaction. Integrity rules have a much more

important role in this environment, and can be used to verify a design

throughout this interaction, and hence influence a design's development. Thus,

in addition to the static form of integrity checking provided through data

typing, dynamic integrity checking must be applied at project-related points in

the development of a software product.

For example, consider the design of some software component in a

large software system. An initial design attempt could be an abstract descrip­

tion of the component using a high-level design language, or some graphical

notation. At this point it is useful to perform some basic form of con­

sistency checking to validate the overall deSign, as early detection of design

faults is a vital service. The feedback from these checks will help decide

how to continue the design and where to focus attention, promoting a struc­

tured approach to the design process by encouraging incremental development.

In this way the design continues, slowly being developed and validated until

A View Mechanism for an IPSE Chapter 3

Page 47

a fInal design is produced which can be more rigorously checked before allow­

ing others to make use of it.

The importance of integrity rules is clear, but it is not obVious what

to do when any of the rules is violated. The choice lies between:

rejecting the offending data and only allow it to be recorded in the

database when it is amended to pass the checks.

allowing the data to stand, but having some form of warning to let

other users know that the data has not been fully validated.

As there will be occasions when the integrity rules will need to be

violated, usually when a design is incomplete, it is useful to be able to apply

each of these methods when necessary.

3.3.3. Summary

The use of a database at the heart of an IPSE is based on the sound

principle of the need for control of software development data. However, as

has been shown above, using a database in a software engineering context

places a whole new set of requirements on the database and its associated

management system, and conventional database technology may not be easily

applicable or appropriate in some areas.

In the next section we continue the examination of the use of a data­

base for recording software development data by looking at the ways in

which a database allows us not only to record data in a useful form, but

also to provide more meaningful user interaction with the data. This is seen

as essential in an application such as software engineering where the data

recorded is highly inter-related, and accessed by tools outside the direct con­

trol of the database.

A View Mechanism for an IPSE

3.4. The Importance of Semantics Capture

Chapter 3

Page 48

Although it is true to say that the function of a database is to store

information in structures that permit easy retrieval and manipulation, it is

also possible to give a higher-level interpretation to the role of a database.

At this more abstract level, a database may be seen as providing a model of

some portion of a real world system. The database schema is now a formal

description of that model, while the data values recorded in the database

represent the state of the real world system at some point in time.

Seen in this way, it is important to ensure that the data values which

can be stored in the database are restricted to the subset which reflect possible

actual values in the real world. We can call this set the "meaningful" set of

data values. Clearly, it should be the goal of any database system to be able

to specify (in some formal way) the set of meaningful data values, and to

provide mechanisms for their capture and subsequent manipulation. This

work often comes under the title of "Semantic Data Modelling", as we are

attempting to capture more of the semantics of the data rather than treating

data as a set of static values. In particular, it is important to record the

relationships and dependencies between data items, as well as the value a data

item may have. By holding such information, we are able to constrain the

set of values a data item may hold, and even to control when update opera­

tions (insert, amend, and delete) are permitted on a data item.

A more pragmatiC reason for ensuring the accuracy of data concerns

the propagation of erroneous data. In any system using a database, one of

the consequences of applications sharing data is that many other applicatiOns

may potentially retrieve, amend, or delete that data. As a result, any errors

made by one application, such as changing a data item to an inappropriate

value, can quickly affect other applicatiOns. In this way, it is very easy for

a small amount of incorrect data to cause great problems in a shared

A View Mechanism for an IPSE Chapter 3

Page 49

database. By capturing more of the meaning of the data structures which

make up the database, and constraining the allowable values that such struc­

tures may hold, the possibility of such errors occurring can be reduced.

For Software Engineering applications, the need for enhanced semantics

capture is apparent, as we are dealing with highly structured data items

which exist in a complex network of inter-relationships. Not only that, but

. the tools and applications which access the data are often written by external

agencies, and therefore not subject to direct control by the database adminis­

trators. This implies that we have no control over the integrity checks per­

formed by such tools, and cannot rely on them leaving the database in a con­

sistent state. In the following sub-sections we describe a few of the mechan­

isms which have been used to help add more meaning to the data stored in a

database, and hence improve support for maintaining a consistent database.

3.4.1. Mechanisms for Capturing Semantics

A number of mechanisms are aVailable within a database system to

capture and control the semantics of the data recorded.

3.4.1.1. Data Modelling

A data model provides the formal framework for a database within

which data can be represented and manipu1ated.Dat83 There should be a clear

and direct mapping between the representation of the real world as given by

the model, and the real world elements themselves.

We can reduce a data model to three basic components:

A View Mechanism for an IPSE

a set of object types

a set of operators on instances of those types

a set of general integrity rules

Chapter 3

Page 50

To model some part of the real world that is of interest, we attempt

to identify common object types and relationships which exist. These are

then represented in the model. By examining the behaviour of these objects

in the real world, we can construct a set of operators to manipulate instances

of these object types, and can also draw up a set of general rules which

govern the possible states of the objects.

The aim in recent years has been the development of data models

which reflect more of the structure of the real world entities that are being

modelled. This is a way of capturing more of the meaning of the data being

recorded, and hence more adequately constraining the model to resemble the

real world system. For example, the relational model uses the single data

structure of a relation to represent the existence of an entity, properties ass0-

ciated with an entity, and to record relationships between entities. However,

later data models,Ham81, My180, Cod79 have a much richer set of object types,

which allow them to distinguish between different classes of object, supporting

each one with appropriate structures, operators and integrity rules.

A View Mechanism for an IPSE

3.4.1.2. Rules

Chapter 3

Page 51

Although it has been stated that integrity constraints can be supported

implicitly through the structure of the database schema, and indeed. it has

been saldSch84 that the quality of a data model is directly related to its abil­

ity to do so, it is clear that this can apply only to generally applicable con­

straints on the data objects. For example, a general integrity constraint sup­

ported by a data model could be that when two entities are related via an

association, then the existence of the association implies the existence of the

two entities themselves (this is known as a referential integrity rule). We

can claim this to be a general rule of the model, independent of the particu­

lar application data that is being modelled. On the other hand, for a particu­

lar application of a database, there will be certain instances of the data object

types that conform to the general integrity constraints, but are invalid for

this application. For example, in a personnel database, we may wish to

impose the constraint that the "marriage" relationship that associates two enti­

ties of type "person" can never exist between two people of the same sex.

Such an assOCiation, however, would not Violate the referential integrity con­

straint given above.

A separate mechanism to deal with the definition and enforcement of

application-specific rules is required to support these integrity constraints.

Although there have been a number of papers discussing the need. for such

systems,Dat81 and even proposed designs for systems,Wi180, Li184 most DBMS

include only very primitive rule mechanisms, or no rule systems at all. Here

we note a number of issues which need. to be addressed in implementing a

more complicated rule system.

A View Mechanism for an IPSE Chapter 3

Page 52

Defining a Rule. There must be a language in which the rules can be

conveniently expressed, together with some means of checking that the

rules so defined are valid.

Checking a Rule. The process of checking a rule against a database

state can be very complicated to implement. Typically, a triggering

mechanism is used, whereby rules are enforced whenever some action

takes place. An example might be creating a instance of an object

type, at which point rules constraining valid instances of the object

type could be applied.

Violation of Rules. If a rule is Violated by some operation, then it is

not obVious what action should be taken. Three possibilities are:

rejecting the operation by returning to a state immediately before its

execution, accepting the operation but issuing a warning message, and

attempting to amend the operation to conform with the rule.

3.4.1.3. Views

One of the consequences of maintaining data in a shared database is

that all applications which access the data must work with a single,

predefined set of data structures and operators. However, in some database

applications, and particularly Software Engineering, a large and diverse group

of users and applications will wish to make use of the data. For example, it

is expected that a complete IPSE would be used by project managers, quality

assurance groups, clerical and administrative staff, as well as software

engineers and programmers. If the database consists of a single, globally

aVailable set of data structures and operators, then the follOWing problems

may occur:

A View Mechanism for an IPSE Chapter 3

Page 53

data structures and operators suited to one application, or class of

user, may be inefficient, unnatural, and time-consuming to other users.

the level at which database interaction occurs may be too abstract for

some users (eg. programmers), while too low-level for others (eg. pro­

ject managers). The working requirements of these users are very

different.

there will be some data which is of relevance to only a subset of

users, and we may want to restrict the access to such data by other

users so that they are not confused by this unnecessary information.

often databases contain sensitive information which we may not wish

to be generally available. Many different levels of security may exist,

and we need a mechanism to control access to data at different

levelspen86 Typical examples are personnel data such as salary details,

and strategic information which is embedded in software applications

such as radar and defence systems.

for similar reasons, we may want to restrict the operatiOns different

classes of user are allowed to perform on data. For example, at the

lowest level, a user may be given read-only access to certain informa­

tion.

Early in the development of database systems the need for such func­

tions was apparent, and a mechanism which was often used to tackle some or

all of these problems was the notion of a view.Tsi78

A view mechanism allows the creation of abstract interfaces to a data­

base. Each interface can be tailored to a particular class of users needs, at

an abstract level suited to those user's style of interaction. The view map­

ping, which defines the interface in terms of the underlying database, fi.lters

out unnecessary or sensitive data, and may derive new abstract data and

operators.

A View Mechanism for an IPSE Chapter 3

Page 54

In a Software Engineering application, the necessity and importance of

such a views mechanism is investigated in this thesis. Clearly tools which

access the data will interact with the database at different abstract levels

which can be supported by a view mechanism. More importantly, it is

expected that existing tools will be ported to new IPSE's, potentially requiring

a great deal of re-writing. A view mechanism, however, could be used to

defme abstract interfaces to the database which require a minimum amount of

change to the tool to allow it to run in the new environment. A method of

providing such a mechanism is a major aim of this thesis.

3.4.1.4. Transactions

Interaction with the database is usually through the execution of a

sequence of database operations which we wish to be considered as a single

atomic unit. For example, the operation of reserving a seat on an airplane in

an Airline Reservation System may consist of two smaller operations of

checking a seat is aVailable, and then making a booking for the seat. ObVi­

ously, these two operations must be bound together to be treated as a single

operation. This unit of interaction is known as a database transaction, and is

supported by a transaction mechanism. Typical functions of a transaction

mechanism are to prevent other users from accessing data which is currently

being amended, and to undo partially completed transactions in the face of

failure or user activated transaction abort. Traditional approaches to these

problems rely on locking of all information which is to be used in a transac­

tion until the transaction either terminates successfully, or the information is

released without change.

A View Mechanism for an IPSE Chapter 3

Page 55

In more recent database applications, most notably in design applica­

tions such as Computer-Aided Design, VLSI design, and indeed Software

Engineering, the traditional notion of a transaction must be extended to deal

with the more conversational style of interaction which exists. Transaction

mechanisms for database systems have been adapted to cope with this, mainly

founded on the principle that most design data exists as a set of related ver­

sions, and that the traditional "update-in-place" found in commercial database

systems rarely occurs. It is more common that a document is developed in

isolation, and made available to other users at controlled points using a ver­

sion mechanism. Hence, access to design data will generally be for reading

purposes only, with the possibility that . further versions of the item are

developed. This is an active area of research which is currently receiving a

great deal of attention.Kat84, Kat83', Lor8l

3.5. Summary

Having examined in detail the advantages of using a database for

software engineering data, an analysis of the requirements for a software

engineering database has revealed a number of problems with the application

of traditional database technology. In summary we can say that traditional

database technology is inappropriate for this application because:

the highly structured nature of design data and its complex inter­

relationships are not easily represented with traditional data models.

In particular, support for user deftned rules may be needed to main­

tain the integrity of the data.

A View Mechanism for an IPSE Chapter 3

Page 56

user interaction with the data cannot be adequately modelled using the

traditional notion of a database transaction. A particular problem is

the use of a transaction as the unit of database concurrency.

allowing data interaction at different abstract levels is vital within a

software engineering database. The traditional database notion of a

view falls well short of the support that is required for this.

Providing database support for software engineering data is an active

area of current research, as shown by a recent bibliography.Ber87 However, the

remainder of this thesis is concerned with examining one of the mechanisms

seen as important for a database system, and which has received little atten­

tion in the context of software engineering databases - the use of a view

mechanism. We begin by looking at some of the principles behind such a

mechanism, before defining and implementing a view mechanism for use in a

particular IPSE system.

A View Mechanism for an IPSE

4.1. Introduction

CHAPTER 4

VIEWS

Chapter 4

Page 57

Common to a number of areas in computing science is the notion of

providing different abstract interfaces, or views, of data and operations at a

fixed level. In investigating the advantages of providing a mechanism to sup­

port such a process as part of an IPSE, we can examine these other areas to

give a gUide as to how an IPSE view mechanism should be designed, imple­

mented, and used. In this chapter we discuss the use of views in program­

ming languages and databases, and from these areas establish some of the

principles which govern the later work on the design and implementation of a

view mechanism for an IPSE.

4.2. Abstraction, Views, and Abstract Data Types

Human beings understand the world and solve the problems it poses

by means of a process called abstraction. For example, when trying to

understand how a car works in order to be able to fix it, we need to know

something about engines, gears and the things we can do to them. However,

when learning to drive a car, we abstract from our knowledge of how the

car works and concentrate on manipulating the steering wheel, depressing the

accelerator, and so on. These are alternative ways to view the same objects,

with emphasis being placed on their different functional roles.

A View Mechanism for an IPSE Chapter 4

Page 58

Similarly, it has been recognised that since computer systems are writ­

ten to model real-world problems, they are more likely to be correct, adapt­

able, and maintainable, the more closely the data structures and operations

they use mirror those embodied in the problem being tackled.

To facilitate this, it has been necessary to build into programming

languages various mechanisms to define and manipulate the data structures

being modelled at different levels of abstraction.Sha84, Bis86 In the last few

years, work in both programming language development, and Database

Management Systems (DBMS's) has taken note of the need to provide mechan­

isms for abstraction.

4.2.1. Abstraction in Programming Languages

Most modern programming languages provide facilities to combine the

primitive operators of the language into higher level or more abstract opera­

tions which are called procedures. By making it possible to call one pro­

cedure from within another, they have effectively provided a way of extend­

ing the primitives of the language, and define operators which are increasingly

abstract.

Programming languages also contain a set of primitive data types such

as "integer", "character", and "real". However, programmers seldom wish to

work with such low level types. For example, if a problem involves complex

numbers, it would obviously be helpful if the language offered such a type

together with the operations with which to manipulate instances of that type.

Since it is not possible to provide, as a primitive data type, all the possible

types which programmers might require, modern languages such as Ada pro­

Vide a mechanism for defining new data types derived from existing types.

A View Mechanism for an IPSE Chapter 4

Page 59

Again, by allowing one abstract data type to be derived from another, a

hierarchy of such types can be defined, each at an increasingly abstract level.

However, a data type is normally considered to comprise not only the

data structure itself but also the operations which manipUlate it. For exam­

ple, the data type, "integer" in Pascal, incorporates not only the structure for

containing all integers in the range of the machine being used, but also the

operations, add, subtract, etc., for manipulating instances of this type. There­

fore, a language such as Ada makes it possible to associate a set of operators

with a particular data type as part of its definition, and forbids access to the

underlying representation of that data type except through such operators.

Such a type, with its associated operators, is usually called an Abstract Data

Type (ADT).

Some important points concerning ADT's are as follows:

If new ADT's can be defined in terms of existing ADT's as well as

primitive data types, the new mechanism provides a very powerful

means of extending the data types that can be worked with.

Procedural abstraction is vital to the mechanism of ADT's, since it

provides the power to create operators which manipulate the new data

type.

Inherent in the ADT mechanism is the concept of enforcing the new

type. This means that only the operations defined with the type can

be used to manipulate it. However, in Pascal, for example, although

one can simulate the creation of a new data type (eg. using a linked

list to simulate a first-in-Iast-out queue), it is not possible to enforce

the type as a true ADT since there is nothing to stop the queue being

accessed as though it were a linked list.

A View Mechanism for an IPSE Chapter 4

Page 60

The ADT mechanism also provides an appropriate degree of "informa­

tion hiding" in the sense that if we have defined a queue ADT, the

users of that ADT can only see the data structure as a queue and

know nothing about how it is implemented (e.g whether as an array

or a linked list or whatever). This allows the writer of an ADT and

its users to be independent, with a controlled interface between them

for communication. This in turn greatly facilitates decomposition of a

program into separate tasks, which may be carried out by different

people.

4.2.2. Database Views

The database community has long realised the need for providing

mechanisms to support access to data at different abstract levels. Indeed, it

has been said that "the main reason for the existence of DBMS's is to provide

independence between the physical representation of data and a user's view of

it".Tsi82

A database records information in a machine dependent way on secon­

dary storage. This is often called the internal level view of data. However,

not only will this internal representation of data differ from one implementa­

tion to another, it is also expected that it will need to be amended as the

volume of data recorded increases, and storage organisation and access methods

need to be tuned. It is clearly desirable to shield users of the database from

these changes, and particularly to ensure that end-user application programs

are not affected when such low-level changes take place. The property of

insulation from changes to. the internal level of a database is often called

physical data independence, and can be defined as the immunity of

A View Mechanism for an IPSE Chapter 4

Page 61

applications to change in the storage structure and access strategy of data,oat86

This implies that we have a logical definition of the data, independent

of the data's physical implementation. This logical data description, often

called the conceptual schema, provides the basis on which the data can be

analysed and discussed independent of the method of physical storage. In

this way, the logical level can be seen as an abstraction from the internal

level in the same way that a data type such as "integer" in the programming

language Pascal is an abstraction from a machine's particular binary represen­

tation for integers.

However, the conceptual schema too can be expected to change over

the lifetime of a database. There are two main reasons for this. Firstly, the

data structures within the database will evolve over time as the needs and

expectations of the organisation maintaining the database themselves evolve.

Secondly, the schema will grow and be added to as new types of d.ata need

to be recorded, and additional properties of existing data types are recognised.

Again, it is desirable to shield end-users from such change so that

applications have to be amended as little as possible. The property of insula­

tion from changes to the conceptual schema is often referred to as logical

data independence.

Hence, a further level of abstraction is required, to a level at which

applicatiOns can be written. This is most often known as the external level,

and while there is a single physical view of the database, and a single con­

ceptual view, it is possible for each application to hold its own external view,

suited to the application's needs. This three level architecture of databases is

summarised in figure 4.1 below.Tsi78

A typical example of the need for multiple external views of the same

data can be seen in a database maintaining information about program

specification and design documents. It would be quite feasible for one

A View Mechanism for an IPSE

External
View

External
View

Conceptual
View

Physical
View

External
View

Fig 4.1 Three Level Architecture of a Database.

Chapter 4

Page 62

application to require full details of a particular speciftcation document, while

another may be only interested in whether the document has been frnished or

not, and who was the last person to change it. The ability to provide multi­

ple concurrent views of the same underlying information is vital to the use­

fulness of a DBMS, and means that applications can be written to a view of

the data that is suited to that application's particular needs. This makes the

applications easier to write, understand, and maintain.

A View Mechanism for an IPSE

4.2.3. Summary

Chapter 4

Page 63

In conclusion we can say that the need to support the abstraction pro­

cess which is so vital to a user's perception and understanding of a problem

has naturally led to the development of mechanisms within both programming

languages and databases which attempt to support it. While the underlying

goals are the same, the approaches taken differ in a number of ways. These

differences are discussed later in the chapter.

4.3. Project-Level Abstraction in an IPSE

Having seen the need for supporting different abstract views of data in

programming languages and DBMS's, we can now examine The importance of a

view mechanism for an IPSE.

4.3.1. An IPSE as a Extended Programming Language

One way in which we could view an IPSE is to say that it is an

extended programming language in which we have shifted emphasis from the

programming level alone, concerned with only a small part of the complete

life-cycle of a project, to the project level, where issues such as requirements

analysis, specification of design, and post-implementation maintenance, as well

as management control of the development process, become important. Hence,

while a programming language provides operators to manipulate fme-grain data

items such as "integers" and "reals", an IPSE requires operators to manipulate

much more coarse-grained items such as speciftcation documents, programs, and

management reports.

A View Mechanism for an IPSE Chapter 4

Page 64

A project-level system will consist of a set of data types, and opera­

tors to manipulate instances of those types, both at a predefIned abstract

level. For example, we may have specification documents as one of our

types, of which there may be many instances corresponding to particular ver­

sions of documents. Operators must be provided to create a new specification

document, edit an existing document, display a document, and so on.

However, in the same way that applications in a programming language

require different abstract views of the basic data types and operators, we also

need to provide these at a project-level within an IPSE. Indeed, the need

may be greater because of the diversity of users accessing the information

contained in an IPSE. For example, a designer will want to see detailed

information about the specification document he/she is designing, and have

operators aVailable to create a new document, change an existing document,

analyse and check the consistency of a speCification document, and so on. A

manager, on the other hand, would only be interested in finding out which

documents have been completed, and which are outstanding, and perhaps hav­

ing summaries of their contents.

As one of the principal objectives of an IPSE is to reduce the amount

of redundantly stored information in order to maintain the consistency of the

information, it is inappropriate to maintain multiple copies of the same data

at different abstract levels to suit each user's needs. It is much more desir­

able that where possible data is held in a single canonical form, with different

views provided to suit each end-user's needs. Similarly, to ensure integrity

of the operatiOns on the data, it is deSirable that new abstract operators on

the data are defined in terms of those at a lower abstract level, in a similar

fashion to procedural abstraction in a programming language.

One of the main aims of this thesis is to describe how we can provide

a mechanism to support project-level abstraction within an IPSE to

A View Mechanism for an IPSE Chapter 4

Page 65

accommodate the diverse set of users who will make use of the IPSE, while

preserving the integrity and consistency of the data.

4.3.2. An IPSE as an Extended DBMS

An alternative way to view an IPSE is to focus on the data that is

recorded in the IPSE, and in particular on the relationships and interdependen­

cies that exist between data items.

For most programming languages, the only way in which they can

interact with data that persists across program invocations is at the frle level.

As a result, application programs often spend a great deal of their time read­

ing in the data from frIes, re-creating the structured information which has

been written away in these frIes, and writing structured information back out

to frIes in a flattened, unstructured form. This is not only wasted effort on

behalf of the program, but must also be duplicated in many other application

programs which want to see the data in a structured form, with the inherent

consistency problems that this implies. This has naturally led to the use of

persistent, structured repositories from within programming languages for

recording data in the form of a database Was79a, Row79 (see section 4.5 for an

overview of the techniques which have been tried). Hence we have fme­

grained control of data and the explicit recording of relationships between the

data. This work has taken place within the context of providing a perSistent,

structured repository for data at a programming level, without regard for the

Wider issues of software development and the support that is needed in these

areas. We briefly review some of this work below, with particular emphasis

on the mechanisms they provide for supporting multiple concurrent views of

the data at different abstract levels.

A View Mechanism for an IPSE Chapter 4

Page 66

Recent work in IPSE development has also led to the use of a data­

base as a structured repository for the data generated throughout the complete

life-cyc1e of a software project. What is interesting, then, is to see how the

notion of views, which was seen as so important in commercial database sys­

tems, can be used in an IPSE built around a database. In particular, we wish

to extend the commercial database notion of a view to support the many

different abstract levels of interaction which the diverse user base of an IPSE

will reqUire.

4.4. Support for Abstraction in an IPSE

Having examined in some detail how the process of abstraction has

been supported in both programming languages and databases, we can now

draw together the features of ADT's and views which we see as important

within an abstraction mechanism for an IPSE.

4.4.1. A Comparison of Views and ADT's

To summarise the above discussion, it will be useful to directly com­

pare the programming language notion of an ADT with the traditional data­

base notion of a view. From this we may draw out those features which we

consider to be necessary in an abstraction mechanism for an IPSE.

We can note at least the following points of comparison:

A View Mechanism for an IPSE Chapter 4

Page 67

both mechanisms are designed for a similar purpose: to provide better

support for the user by allowing him/her access to information at an

abstract level suited to his/her particular needs. In this way the user

is more likely to understand the process which is being modelled, and

hence errors are less likely.

In relational database systems, a view is defined by a relational query

written against underlying relations and views. The result is a single

relation which acts as a type deftning properties of its instances. An

ADT definition consists of a set of type deftnitions derived from lower

level types, together with a set of permitted operations on instances of

those types.

The deftnition of a view determines which update operations are

allowed on the view. For example, with views involving a join of

two relations, it is often the case that no view update operations are

permitted because the effect of the view update on the constituent

relations is not clear. The ADT approach is much more flexible in

that any operation on a data type may be deftned as an integral part

of the ADT. This allows much greater control of the method and

extent of data access.

A basic difference between the mechanisms is one of persistence. Data­

bases, and hence views of them, persist between program invocations

allowing indiVidual view object instances to persist between database

accesses. For ADT's to use a perSistent store, they normally have to

do so at the file level requiring a manual conversion of the ADT

instances to and from a file representation.

A View Mechanism for an IPSE

4.4.2. Features of an Abstraction Mechanism for an IPSE

Chapter 4

Page 68

Examining the mechanisms provided to support abstraction in both pro­

gramming languages and databases, it can be seen that for an IPSE it would

be desirable to combine certain features from both systems. In particular, we

would like to have the flexibility of defming arbitrary abstract operators on a

data type as provided in ADT's, together with the structured, persistent repo­

sitory which is provided by a database. This would allow us to deftne

abstract interfaces to IPSE information which consisted of operators suited to

a class of user's needs, while maintaining the advantages of a single, underly­

ing structured representation of data, shared between different groups of user.

The rest of this thesis examines the design issues in building such a

mechanism, and goes on to design, specify, and implement a mechanism within

the context of the ASPECT IPSE.

4.5. Related Work

We now briefly discuss related work with particular emphasis on how

multiple, concurrent access to data can be prOVided.

We first of all look at how attempts have been made to combine pro­

gramming languages with a database of perSistent objects, then look at how

databases are currently being extended with the ability to deftne ADT's as

new domains from which values in the database can be drawn. We then dis­

cuss work in structured programming environments to present views of the

single, canonical program representation maintained in a database of program

structures at which tools can be directed. Then, we look at a recent proposal

to combine a database with an object-oriented programming system to obtain a

A View Mechanism for an IPSE Chapter 4

Page 69

persistent object store. This is built on the notion of a "view-object".

Finally, we see how existing IPSE's have allowed their facilities to be

tailored to suit indiVidual users' needs by examining three representative sys­

tems.

4.5.1. Combining Programming Languages and Databases

One of the problems with many programming languages which deal

with data as complex objects is that there are no facilities in the language to

record the objects in a data store that persists between program invocations

other than at the granularity of a nle.Atk78 As a result, much time and effort

is spent within application programs converting from structured, object format

to flat, unstructured nle format. Attempts to address this problem have pro­

gressed in three ways:

the addition of new constructs in an existing programming language in

order to support a database model. For example, the addition of rela­

tional constructs into the programming language Pascal.Sch77

design of programming languages specincally to interact with data in a

persistent store. For example, the languages PLAINWas79b and

RIGELRow79 are specifrcally designed for the construction of database

applicatiOns.

developing techniques to support persistent data which use the con­

structs already available in an exising programming language. PS-Algol

is an example of such an approach,Atk81 with the PISA projectAtk87

continuing the work to investigate machine architectures capable of

supporting a persistent language approach.

A View Mechanism for an IPSE Chapter 4

Page 70

This work is only interested in accessing a database at an individual

program level, and does not concern itself with providing multiple, concurrent

views of the underlying data, nor the problems of sharing this data between

users. Hence, very little use is made of views in any of these languages,

though RIGEL does have facilities for creating view modules which resemble

the "packages" which can be deftned for ADT's in Ada.

4.5.2. Abstract Data Types in Databases

The trend in the last few years has been to use databases for an

increasingly varied range of applications. This has greatly influenced current

work in the area, with many researchers proposing new database architectures

and mechanisms better suited to a particular application.Lor8l, Buc84 One propo­

sal has been to add abstract data type (ADT) facilities to a relational

database.Osb86, Ong79, Row87, Kem86 Such a mechanism allows users to create

their own domains consisting of abstract data types which can be deftned in

terms of the lower level existing types. In this way, the complex data

objects which are commonly found in design applications can be more closely

modelled. For example, types can be deftned to represent geometric shapes,

polar and cartesian co-ordinates, and so on. The user can now deftne opera­

tors on these types by writing functions which perform the desired actions on

the underlying data types. Finally, relations can be created which have attri­

butes whose values are drawn from these abstract types. Now, queries on

the relation can use the abstract operators to select those instances reqUired.

For example, in the extension to INGRES which allows abstract data

types for domains,Ong79 we can deftne a relation "ComplexNums" to have a

single attribute (fteld) which is of type "complex". This is a user-deftned type

A View Mechanism for an IPSE Chapter 4

Page 71

which contains two integers to represent the real and imaginary parts of a

complex number. If we have defined an operator "Magnitude" which, given a

complex number as a parameter, returns its magnitude, then we can write a

query to retrieve all complex numbers recorded in the relation whose magni­

tude is greater than the magnitude of the complex number 3+4i as:

RANGE OF C IS ComplexNums

RETRIEVE (C.field 1)

WHERE Magnitude C.fieldl > Magnitude "3,4"

In many ways this work resembles closely the kind of mechanism we

would require for an IPSE. However, by allowing just the attributes of a

relation to be abstracted we have only improved the way in which individual

relations can model real-world entities. This mechanism can be seen as very

much complementary to the kind of mechanism we would like for an IPSE,

where we are also interested in providing multiple views of data objects and

the controlled definition of view operators.

4.5.3. Garlan's Views

Interesting work is being carried out by Garlan as an extension to the

programming support environment GANDALF.Gar83 This system integrates a

set of co-operating program development tools on a uniform structure database

containing programs in the form of abstract syntax trees. However, although

many of the tools wish to access a program in some structured form, as held

in the database, it has been found that a structure appropriate to one tool

may be inappropriate for another.

A View Mechanism for an IPSE Chapter 4

Page 72

Garlan's solution is to generate abstract views of the database structure

which are suited to the needs of individual tools. This provides each tool

with a suitable view of a program, while maintaining consistency between the

various representations.

It is clear, then, that the requirements within an IPSE context have

been Similarly recognised within a structured programming environment con­

text, and indeed, the solutions offered by Gar1an mirror closely those investi­

gated in this thesis.

4.5.4. Wiederhold's View-Gbjects

In a recent paper by Wiederho1d,Wie86 an analysis is made of the

problems of adding a perSistent store to object-oriented programming systems,

and an architecture is proposed which exploits the commonality of objects in

programming languages and views in databases. The aims of this work are

very closely related to those presented in this thesis.

The proposed architecture consists of three basic components. Firstly,

a set of base relations serve as the perSistent database for applications, con­

taining all the data needed to create specified objects. Then, a set of view­

object generators extract the data from the base relatiOns in relational form,

and convert it into sets of objects. The fmal component will be a view­

update-generator, which will commit updates made against view-objects by

performing their equivalent updates against the base relations.

Many of the ideas presented in this paper appear to be very appealing

as regards the needs of an IPSE view mechanism. Unfortunately, it is

difficult to make much comment on its suitability as only outline details of a

proposed architecture are presented, without any information on how such a

A View Mechanism for an IPSE Chapter 4

Page 73

mechanism can be implemented as part of a larger development environment.

It will be interesting to see how this work develops in the future.

4.5.5. View mechanisms in IPSE's

It has been recognised from the original development of IPSE's that

there was a pressing need for tailorability and adaptability of the facilities

provided. Support for abstraction in IPSE's has been varied, but we now

illustrate the mechanisms used by examining three different systems.

Firstly, we look at an example of what has been called a first genera­

tion IPSE,Mai86 the UNIX development environment, and examine the way in

which tailored access to data is possible through fleXible mechanisms for tool

creation and integration. Then, we examine the PCTE notion of a working

schema to restrict individual tool access to subsets of the total schema.

Finally, we look at the ISTAR mechanism of workbenches, which allow a set

of tools to be selected by a user to carry out a particular unit of work.

4.5.5.1. UNIX Tool Sets

One of the strengths of the UNIX development environmentDo176, KerBl

lies in the ability to create and integrate new tools in a fleXible, convenient

way. Then, through appropriate access controls, individual or groups of users

can be given access to these tools. This in itself is not unique. What is

important, however, is the way in which a user can make use of a tool

within his/her defined workspace. FaCilities are provided to:

A View Mechanism for an IPSE Chapter 4

Page 74

make access to tools easier through path name lists, which provide a

list of directories to be searched whenever a tool is called.

allow new tools to be easily created by the availability of an inter­

preted shell language which provides a simple interface to the pre­

defined UNIX tools.

embed the UNIX system calls into C programs by defining the system

calls as a set of C language functions.

be able to connect together· tools by redirecting input and output of

tools, and the creation of "pipelines" of tools. This is made possible

through the single format used for all data communication - a file

com posed from a simple byte stream of characters.

Many IPSE's build on the simple, yet powerful facilities provided by

the UNIX system, in particular by improving the facilities for security and

control of data access, and by the addition of a database as a structured

repository for development data.

4.5.5.2. PcrE's Working Schemas

Recognising that individual users and tools will only wish to access

subsets of the information available in an IPSE, the Portable Common Tool

Environment (PCTE) associates each process with a working schema to provide

the context in which that process can execute.Bul85, Sys87 Then, the process can

access the underlying information through the working schema, which acts in

an analogous way to a subschema definition in CODASYL databases,Kay75 res­

tricting access to some parts of the database.

Each data object is defined in a Schema Definition Set (SDS), and these

are grouped together to form working schemas. In this way, data can be

shared between processes by two working schema importing the same SDS.

A View Mechanism for an IPSE Chapter 4

Page 75

Although the PCTE addresses the problems of data sharing and con­

current access through these mechanisms, only very limited facilities are aVail­

able to tailor the environment to suit indiVidual users needs, particularly

with regard to the operations they are allowed to perform.

4.5.5.3. ISTAR's Workbenches

Illustrative of more recent work in IPSE's, the 1ST AR IPSE is built

around a model of the software process in which specific units of work, or

"contracts", are deftned and co-ordinated to simulate the controlled decomposi­

tion of a complex software project, and maintained within contract

databasespow86, Ste86 Within an 1ST AR IPSE, tools are grouped together into

meaningful sets (eg. Pascal tool set, VDM tool set, and so on) called work­

benches, and an ISTAR user invokes a selected workbench to work on a par­

ticular con tract.

The workbench idea allows a limited amount of tailorability of an

1ST AR environment to suit the particular task at hand. This facility is

further enhanced by including a set of tool building and tool integration tools

as part of an initial 1ST AR workbench. In particular, certain classes of

foreign tools (ie. not written speciftcally to run in 1ST AR) can be integrated

into an 1ST AR workbench through the use of an 1ST AR tool that packages

foreign tools in an "envelope". Then, the packaged tools interact with the

user and the contract database via the envelope, which converts input and

output expected by the tool to that supported within the 1ST AR environment.

Certainly, the facilities offered in ISTAR go a long way towards

achieving the aims of an abstraction mechanism for an IPSE, by allowing

users to select a suitable set of tools when carrying out a piece of work.

What we would like, however, is to extend these facilities to enable users to

A View Mechanism for an IPSE Chapter 4

Page 76

augment and tailor their own environments under controlled conditions, and

to try to move these facilities away from being hidden within tools, to being

controlled and co-ordinated at a finer grain within the IPSE itself.

4.6. Summary

Views within database systems, and ADT's in programming languages,

are important mechanisms for organising and controlling the complexity

inherent in large software systems. The main difference of approach can be

seen as one of scale. In particular, programming languages are concerned with

manipulation in main memory of fine-grained objects, while sharing perSistent

data at the large-grained file level. Database systems, on the other hand,

allow complex objects to be manipulated in main memory, and to be shared

via persistent store. We have examined other systems which attempt to

transfer the object-based perSistent store to a programming language, or to add

the fine-grained manipulation capabilities of a programming language to a data­

base system. For an IPSE based on a database, the data structuring capabili­

ties of a database view mechanism are vital to the integration of services pro­

vided, and hence an IPSE view mechanism must be built using these. How­

ever, the addition of ADT -like facilities to such a system will provide many

useful capabilities, particularly the ability to define abstract operators. The

next chapter examines how an IPSE view mechanism can be designed to take

advantage of both of these approaches.

A View Mechanism for an IPSE Chapter 4

Page 77

A View Mechanism for an IPSE

CHAPTER 5

A MODEL OF AN IPSE VIEW MECHANISM

5.1. The Aims of the Model

Chapter 5

Page 78

Earlier in this thesis particular problems and requirements of an

abstraction mechanism for an IPSE were identified and discussed. We now

describe a model of a mechanism designed specifically to support project level

abstraction within an IPSE. In particular, the model we define is designed

with the following explicit aims in mind:

to be a flexible mechanism capable of supporting user and tool interac­

tion with IPSE data at different abstract levels suited to individual

user's needs, and hence make such interaction more meaningful,

sim pIer, and less error prone.

to provide facilities for a user to carry out a task in a working

environment which that user can tailor and adapt in a controlled

fashion to suit his/her individual style of interaction.

to be able to use the mechanism as a management technique for con­

trolling access to data by restricting the data that each user can access,

and by explicitly defining the operations on that data which users can

perform.

to use the model to investigate the possibilities of using such a

mechanism to aid with the integration of tools foreign to that IPSE

environment by providing abstract interfaces through which such tools

can access IPSE data. This can be achieved by providing an abstrac­

tion of the IPSE which closely mirrors a foreign tool's native environ­

ment, and so minimises the changes necessary to the tool to enable it

A View Mechanism for an IPSE

to operate in the IPSE environment.

Chapter 5

Page 79

to integrate such a mechanism within the Wider context of facilities

offered by an IPSE. In particular, an IPSE will be concerned with

controlled sharing of data between users, maintaining the integrity of

the recorded data, and controlling allocation and execution of indiVi­

dual tasks in the development of a software project.

We now develop a simple model of view mechanisms in their most

general form, examine two existing database view mechanisms using this

model, and then extend the model to suit the stated needs of an IPSE

abstraction mechanism.

5.2. A Basic View Model

We start with the basic definition of a view as a subset of a set of

pre-existing objects, which we shall call "base objects". For our basic model

we limit the base objects to data so that the view mechanism is only allowed

to view data items. In this way we can think of the base objects as a col­

lection of flIes, a set of relations, and so on.

For example, consider a set of base objects consisting of the items

shown in fLgure 5.1.

A View Mechanism for an IPSE

Base Objects

A
B
C
D
E

Fig 5.1 A Set of Base Objects.

Chapter 5

Page 80

In figure 5.1, the base objects consist of a set of data objects which

we may think of as relations recorded in a relational database, but they

could equally well be different versions of source programs, speciftcation docu­

ments, management reports, or any other object we may wish to record. We

can say that the base objects are each given an identifter unique within the

set of base objects.

Now, we can define view objects to be data objects with identifters

distinct from those used for base objects. An example of this is given in

figure 5.2.

View Objects

FRED
JANE
JOE

Fig 5.2 A Set of View Objects.

In figure 5.2, the view objects have been given different identifters to

those used for base objects.

We can now define the basis of a view mechanism as the recording of

a mapping relating a view object to a base object. So, for the above example,

the view mappings could be recorded in a table as in figure 5.3.

A View Mechanism for an IPSE

View Mapping Table

View Objects Base Objects
FRED A
JANE C
JOE D

Fig 5.3 A Simple View Mechanism.

Chapter 5

Page 81

From figure 5.3, we can see that the mapping table relates each view

object to a base object. More strictly, we can say that all the view objects

have an entry in the left-hand column of the mapping table, while the

objects in the right-hand column will be a subset of the base objects. This is

consistent with our definition of a view as a subset of the base objects, and

allows for the use of local view identifiers for base data objects.

We can say that when an entry is made in the view mapping table,

recording the view object together with its associated base object, then we

have defined that view object. Then, when reference is made to a view

object, the mapping table is checked, and the corresponding base object can be

accessed.

Using this simple model, any number of views of the parent system

can be created, where each one will map a view object to a base object. A

view mapping table entry must be constructed for each view in order to con­

vert the local view object into a base object. Remember, it is only the base

objects that physically exist; views of them are only private abstractions

created to help a user in his/her work.

Hence, we have a basiC model of a view which allows the creation of

local abstractions of a global set of data. It is important, however, to under­

stand that the basiS of the model for any view mechanism is the creation of

a simple mapping table relating view objects to their underlying base objects.

A View Mechanism for an IPSE

5.3. Two Simple Extensions

Chapter 5

Page 82

As the model stands, we only have a renaming facility for base

objects. This may appear to be of little use, but there are many commercial

database view mechanisms which can be modelled in this simple way, pro­

vided we add two simple extensions to the model.

5.3.1. Expressions

The first extension we must allow to the model is to remove the res­

triction that view objects must correspond to exactly one base object. In

other words, we allow the creation of abstract objects which may be combina­

tions of more that one base object.

If we consider our data objects to be relations, then, we can envisage

the need to create abstract relations as the combination of a number of parent

relations. (In SYSTEM R,Ast76 the parent relations are called "base tables",

and the abstract relations are called "derived tables").

To do this we must allow the entry in the right-hand column of the

mapping table to be an expression rather than a single object identifier. We

say that when the entry is made in the mapping table, the new view object

is associated with an expression deftning how the view object is derived from

the base objects. Then, whenever a reference is made to the view object, we

must evaluate the expression to create a new value for the abstract object.

In the case when the data objects are relations, we can allow the expression

to be any statement of the corresponding relational algebra (or relational cal­

culus) as this will create a new relation which can be used without distinc­

tion from the original relations. As the relational algebra provides a con­

venient and powerful way to manipulate relations, we have available an

A View Mechanism for an IPSE Chapter 5

Page 83

elegant method for providing view objects as arbitrary combinations of base

relations.

If the data objects are not relations, for example they could be files,

then we must have some other way of expressing a combination of base

objects as a view object. An interesting example is provided when we con­

sider the objects to be programs, or program fragments. We can then

envisage the expression resembling some form of UNIX "makefile", which we

can think of as a recipe for constructing a larger program unit.

Note that we must extend the simple notion of a view as a subset of

a set of base object to allow the use of operators for combining and manipu­

lating base objects to produce a new abstract view object. In addition, we

say that the operators form a closed algebra in that any view objects which

are derived are of the same type as the base objects.

5.3.2. Nesting

The other important notion to add to the model is the idea of nesting.

So far we have only talked about a view of base objects as a one-level

mechanism - ie. a single parent system, with a number of views of that sys­

tem. However, this simple mechanism will allow views to be nested to any

level. This is possible because we have now defined a view object to be

created within a closed algebra, so it will have the same characteristics as the

base objects, and can hence be used as the parent for some further abstrac-

tion.

This situation can be considered analogous to the defining of types in a

programming language such as Pascal.

type is a restriction of the parent type.

For example, a declaration of a sub­

However, it is still possible to apply

A View Mechanism for an IPSE Chapter 5

Page 84

the rules and operations of the parent to the subtype, as the parents proper­

ties have been inherited.

Now, if an operation takes place on a view object, we may have to

follow a number of mappings as in figure 5.4.

View Mapping 2 View mapping I
View 2 View I View 1 Base Objects

SID e(FRED) FRED A
DAVE eUANE,JOE) JANE C

JOE D

Fig 5.4 An Example of Nested Views.

In figure 5.4, view objects have been defined at two levels, referred to

as "VIEW 1" and "VIEW 2". For clarity, these have been recorded in two

separate view mapping tables, one for each level. The objects at level 2 are

defined as expressions involving the objects at level I using the notation

"e(FRED)" to mean an expression involving the object FRED. Now, an opera­

tion referring to a view object would involve finding the object in the correct

view mapping table, evaluating the expression associated with the object, and

performing these steps recursively for each of the lower-level objects in the

expression. Eventually, an expression involving base objects only will be

obtained, and can be evaluated to derive the deSired view object.

Although, in the simple example we have used above we have care­

fully separated the objects at two different abstract levels, in most existing

database view mechanisms no such split occurs, and view objects can be

defined which involve any other existing view object or base object. We

maintain the distinction between abstract levels to more closely model the

programming language concept of abstraction.

A View Mechanism for an IPSE

5.4. Applying the Basic Model

Chapter 5

Page 85

It is useful at this point to examine the model that has been

developed thus far. This seems to be a good place to review the model as

the facilities that have been described are quite sufficient to illustrate the

view mechanisms of many existing database systems. The additions to the

model that are described later in the paper can be thought of as enhancements

to the basic view model.

We now examine two existing database systems - SYSTEM RAst76 and

IngresSto86 - to see how they have implemented a view mechanism. This is

followed by a discussion on the problems of updating through views, leading

to the extensions proposed for a view mechanism for an IPSE.

5.4.1. SYSTEM R and Ingres

Both SYSTEM R and Ingres take the same approach to providing a

view mechanism, which can easily be modelled by the basic view mechanism

that has just been described.

A view is deftned to be a single derived table constructed from one or

more base tables by an expression in the available relational calculus.t In both

systems, any derivable table can be defined as a view. In fact, in these sys­

tems a view can be thought of as a "named query", as the result of any rela­

tional calculus query is a derived table. This is consistent with the model

we have deftned, as we have the ability to insert expressions into the view

mapping table, where the expression can be anything that will produce a valid

We shall use the terms "derived table" and "base table", as in SYSTEM R, where
Ingres uses the terms "virtual relation" and "actual relation",

A View Mechanism for an IPSE

view object.

Chapter 5

Page 86

Also, as a derived table can be considered to be of the same type as a

base table, it is possible to deftne a view in terms of other views, to create

an arbitrary nesting of views. Again, we have allowed for this in the basic

model, . as we can relate operations on view objects to operations on actual

data by reference to more than one mapping table.

The view objects that are deftned act as additional abstract objects

which can be manipulated along with the lower level objects. There is no

concept of data hiding in either system; a user can see all objects at all

times.

5.5. Update Through Views

One of the problems that exists with view mechanisms is that,

although we have allowed any derivable table to be deftned as a view, it is

not possible to allow update operations on every derived table. We can best

explain this by considering an example.

Assume that a database contains information about suppliers, parts, and

the cities in which suppliers are located. Suppliers are instances of the rela­

tion S, parts are instances of the relation P, and the information that a par­

ticular supplier supplies a particular part is held as an instance of the associa­

tive relation SP. We could deftne a view which gives each part number, P#,

together with the location, CITY, in which the supplier, S#, of such a part

lives. This is illustrated in ftgure 5.5.

A View Mechanism for an IPSE

DEFINE VIEW PART_CITY AS

SELECT P#, CITY
FROM SP, S
WHERE SP.S# = S.S#

P#

PI
P2
P3
PI

CITY

PARIS
ROME

LONDON
ROME

Fig 5.5 An Example of a View P ART_CITY.

Chapter 5

Page 87

In figure 5.5, a view PART_CITY has been defined in SQL, and along­

side it is the derived table that is produced at some point in time when the

view expression is evaluated. There are no problems in using the view in

data definition statements, but it is not possible to perform any update opera­

tions on the view. For example, if we wanted to add a new tuple to say

that PI is also supplied in London, we would just give the values involved,

PI and LONDON. However, as this is a derived relation, we must define a

mapping that tells us what to do to the underlying base tables to reflect this

change. Do we create a new supplier who is located in London? Do we use

an existing supplier? If so, which one, there may be qUite a few?

In summary, as is clear from this example, the problem of updating

through a view is quite a complicated one. For a more detailed discussion of

the problems of updating through a view see.Ban79

A View Mechanism for an IPSE

5.6. Extending the Model

Chapter 5

Page 88

To overcome the update through views problem, we can envisage three

different approaches:

1. No view updates are allowed. ObViously, this will be the easi­

est method to implement, but severely restricts the use of a

view mechanism.

2. View updates are only allowed when the update operations can

be automatically and unambiguously converted to operatiOns on

the parent objects. An update translation algorithm must be

available to do this (eg. SYSTEM R, and Ingres).

3. View updates may be allowed in all cases, and the view definer

must explicitly define the operations to be performed on the

parent objects for each view update operation

In terms of our existing model of the view mechanism, we can give

each of the above methods an intuitive interpretation.

For the first alternative, clearly the model can remain unaltered, with

the interpretation that whenever an expression is used in the right-hand

column of the mapping table, then the corresponding view object cannot be

updated. This interpretation will allow updates to take place if the view

object is no more than a renaming of a parent object, as the object identifier

will appear in the table, not an expression.

The second alternative does not have a particularly obVious interpreta­

tion in our model. The best we can say is that when a view object is

mapped to an expression, the expression must be examined to see if it is

sufficiently simple to allow update operations on the view. In SYSTEM R,

for example, the expression can only involve one base table, and a restricted

set of operators on that table (ie. There must be a one-to-one mapping

A View Mechanism for an IPSE

between view tuples and base table tuples).

Chapter 5

Page 89

The final alternative can be interpreted in the model by considering

the addition of operator objects, as well as data objects, as components of a

view. Hence, defining a view will involve defining both data and operator

objects in terms of expressions involving parent objectsye183

When the decision between the alternatives was made for a view

mechanism for an IPSE, the first alternative, not allowing updates through

views, was rejected as this severely restricts the attraction of providing such

a mechanism, and as a starting point we at least wanted to investigate how

we could provide within an IPSE support for more than just read-only views

of the underlying data.

The second alternative, automatic conversion of updates against the

view to updates on the underlying data, is the method employed in most

existing commercial database systems. We rejected this option, however, due

to both the inherent problems that exist with this approach in existing sys­

tems, and the additional reqUirement which exist in an IPSE context. Existing

view mechanisms using this approach have found that defining and implement­

ing a general algorithm for translating updates against a view to the

corresponding updates against base relations is a non-trivial task. Methods

vary from defining a simple algorithm,Cha75 which forbids updates to many

views for which valid translations are theoretically possible, to defining a

complex algorithm,Ke185 which is much more difficult to implement and debug,

but which permits many more updates. Also, users often find it difficult to

determine a priori whether updates specified against a view are permitted,

especially where the translation algorithm is complex. Sometimes the only

option is to attempt the update and see if the translation takes place or

notpat86

A View Mechanism for an IPSE Chapter 5

Page 90

In addition, within an IPSE we would like to extend the notion of a

view from the existing database concept of a single derived relation, to

encompass the idea of an environment in which a user can work with a

tailored set of facilities a110wing multiple, concurrent access to project data.

This led to us adopting the third alternative, which we can ca11 the "abstract

data type approach", in which each abstract data object is· defined together

with those operators which are permitted on that object. These operators

could be for both manipulation and update of those data objects, and are

defined by specifying exactly their effect on the parent data objects from

which this data object was derived. Although the lack of an automatic

update translation algorithm will reqUire that the user must do more work

when specifying a new view, we believe that this additional overhead to the

user wi11 be accepted due to the increase in control that is gained. We make

the fo11owing observations on this approach:

a view definer has much greater control over the operations permitted

through a view, when the derived data objects are accompanied by the

operations which can be performed on them. In particular, if a read­

only view is required, then data objects will be defined with no

update operators for those objects.

update operators are no longer limited to the simple "insert", "update",

and "delete" operations which are usua11y found in database systems.

Abstract update operations can be defined using the same mechanisms.

For example, in an IPSE database containing information about pro­

grammers and their asSignments to carry out change requests, a partic­

ular view could contain a data object showing a11 change requests with

status "completed", and an update operator "delete_a11" could archive

this information by deleting the appropriate entries, and adding them

to a suitable archive relation. A user of this view would see nothing

A View Mechanism for an IPSE Chapter 5

Page 91

of the underlying operations, being aware of the system only at the

abstract level of completed change requests and their deletion.

both manipulation and update operations are defined using the same

mechanism. In the same way that the "delete_all" operation was

define above, manipulative operators can be defined. For example, we

could define an operator to return the number of completed change

requests by writing a sUitable operator that returns an integer result.

the analogy between this mechanism and ADT's in programming

languages is a close one. This not only means that we are using a

mechanism with which many users are already familiar, but we are

also easing the transition between the programming level of a project,

interested in indiVidual users and providing facilities for manipulating

data local to that user, and the project level, where we are concerned

with interaction between users and their sharing of resources.

5.6.1. Effect on the Model

As a result of the above decision, we now need to adapt the existing

model to include the notion of view operators as an intrinsiC part of a view.

We do this in two steps. Firstly, we expand our notion of an expression

from being simply a statement in the relational algebra, to the much more

powerful notion of a statement in a programming language in which the rela­

tional algebra has been embedded. As discussed in,Hit76 this not only gives

us the power of sequence and iteration of statements, but also gives us the

extensive manipulation facilities which will enable us to define general opera­

tors. The second step is to allow the left-hand side of a view mapping table

to contain operator definitions, as well as data object identifiers. Now, for

A View Mechanism for an IPSE Chapter 5

Page 92

example, we can consider the left-hand side of the mapping table as the

defining expression for an operator, giving the operator name and the types of

its parameters, and the right-hand side as the describing expression which is

the sequence of operations which implements the operator.

As an example, consider the situation in figure 5.6 below, in which we

have added the notion of operators as possible view objects. In this example,

we have such operators, "opl" and "op2", where the notation "opl(tl,t2):t3"

represents an operator "opl" with parameters of types tl and t2, returning a

result of type t3.

View Mapping Table

View Objects Base Objects

FRED A
JANE C
JOE D

XO:t2 e(opl)
Y(tl,t2):t3 e(opl,op2)

Base Objects

A
B
C
D
E

opl(tl):t3
op2(tl,t2):t3

Fig 5.6 An Example of Operators as View Objects.

In figure 5.6, abstract operators "X" and "Y" have been defined to

accompany the abstract data objects which already exist. It is possible to

define such operators with any number of parameters, and to indicate this,

operator "X" has been given no parameters, and operator "Y" parameters of

A View Mechanism for an IPSE Chapter 5

Page 93

types t1 and t2. In reality, such parameters will be formal arguments

representing their types, analogous to the way in which functions .. and pro­

cedures are deftned in a programming language.

AssOCiated with each abstract operator in the view mapping table is an

expression involving base objects. Hence, when an abstract operator such as

"Y" is executed, the actual parameters of the call bind to the formal one in

. the deftnition, and the expression associated with the operator in the mapping

table will be evaluated. This process is recursively applied until an expres­

sion exists involving base objects only. This resultant expression can then be

evaluated to achieve the desired operation against the view. A more detailed

examination of this process is deferred until later in this thesis, when a for­

mal specmcation of the process is given.

5.6.2. Abstract Environments (AE's)

The ftnal component of the model is to associate particular meaningful

sets of data and operator objects together into an enforcible unit which we

call an Abstract Environment (AE). We can consider an AE as an abstract

interface to the base objects composed of a set of data and operator objects

which can act as a user environment. This closely mirrors the ADT concept

of packages and modules in programming languages such as ADA and

MODULA-2. We can relate AE's through a hierarchy, or more strictly a con­

nected acyclic graph, with the base objects, which we call the Base Environ­

ment (BE), as the root node of the graph. Hence, all the objects available in

one AE will be deftned purely in terms of the objects in its parent AE's in

the graph. The lowest level AE at the root of the graph being the BE, while

each AE which is created to extend the graph provides an interface to the

A View Mechanism for an IPSE Chapter 5

Page 94

base objects at an increasingly abstract level. The objects in an AE will have

been explicitly inherited from one of the parent AE's, or will be a combina­

tion of existing parent objects.

5.6.2.1. An Example

To illustrate the AE concept, consider the simple example given below.

Suppose we were interested in information concerning programmers,

change requests for software components, and assignments of programmers to

carry out these change requests. Represented in simple relational terms, at

some point in time we may have the following data:

PROGRAMMERS

PROG ID NAME AGE
pI fred 32
p2 joe 21

p3 jane 26

CHANGE REQUESTS

CR ID DESCRIPTION REPORT DATE STATUS

crl fault in output 12-10-85 outstanding

cr2 crashes on input 8-11-85 completed

cr3 update documentation 23-6-86 outstanding

cr4 add new option 15-7-86 outstanding

A View Mechanism for an IPSE

ASSIGNMENTS
PROG_ID CR_ID DEADLINE
pI cr1 18-3-86
p2 cr2 20-8-86
p2 cr4 7-10-86

Chapter 5
Page 95

Coupled with this data will be a set of operators to insert, delete, and

update indiVidual tuples of each relation.

This lowest level view, or Base Environment (BE), will be used by

the project controller who is responsible for all project data, and for initially

setting up the AE hierarchy. For example, the project controller may wish to

define an AE for the chief programmer which shows all assigned change

requests with the programmers assigned to them, and also an operator to

change the status of a change request to "completed" when the change has

been carried out by junior programmers.

To do this, the project controller, who is working within the Base

Environment, will define the data objects and operators necessary for the chief

programmer in terms of the data and operators available in the Base Environ­

ment. When the chief programmer works in this AE, it may contain the fol­

lowing data :

CR ID DESCRIPTION REPORT DATE STATUS NAME DEADLINE

cr1 fault in output 12-10-85 outstanding fred 18-3-86

cr2 crashes on input 8-11-85 completed joe 20-8-86

cr4 add new option 15-7-86 outstanding joe 7-10-86

Also, an operator "change-status" will be aVailable, which, given the

identifter of a change request in the data object, will change the status of

that request from "outstanding" to "completed". This operator will have been

A View Mechanism for an IPSE Chapter 5

Page 96

deftned by the project controller as a sequence of lower level operations to

insert, delete, and update individual tuples of relations using the operators

provided in the BE.

Now suppose the chief programmer Wishes to deftne an AE in which a

junior programmer can work that only allows that programmer to see his/her

own outstanding change requests, and not be given any operators to amend

them. The chief programmer would do this by deftning the AE in terms of

the data and operators he/she has aVailable in his/her own AE. In effect, the

newly deftned AE would be a further abstraction on what he/she has aVail­

able. For example, this may result in the data shown below, with no opera­

tors being deftned to manipulate or update this data :

CR ID DESCRIPTION DEADLINE

cr4 add new option 7-10-86

The ftnal result, then, will be a simple hierarchy of AE's with the

Base Environment at the root, and the chief programmer and junior program­

mer AE's at subsequent levels.

Clearly. this is an over-simp lifted example to give a flavour of the

view mechanism in operation. Without much difficulty, it is possible to

envisage how this example could be extended to support a much larger pro­

ject.

A View Mechanism for an IPSE

5.7. Summary

Chapter 5

Page 97

We have developed from a very simple model of a view mechanism to

a much more sophisticated architecture which we hope is able to attain the

aims stated at the beginning of this chapter.

After a brief description of the wider facilities of an IPSE developed

as part of the Alvey-funded ASPECT project, we continue by examining a

formal specification and implementation of a view mechanism based on the

ideas of this chapter within the context of the ASPECT IPSE.

A View Mechanism for an IPSE

CHAPTER 6

THE ASPECf PROJECf

6.1. Introduction

Chapter 6

Page 98

Having described a model for an IPSE view mechanism in the previous

chapter, and before we can discuss the specification and implementation of

such a mechanism, we must describe the wider context of IPSE facilities

within which the view mechanism must be integrated. In this chapter we

describe the work of the ASPECT project, which is attempting to define and

implement IPSE facilities based on the principles discussed earlier. We later

go on to define and implement a view mechanism which can be used as part

of this system.

6.2. An Overview of the ASPECf Architecture

ASPECT is an Alvey-funded project aimed at research into, and proto­

type development of a distributed host, multi-target IPSE.Hal85 Its work has

been directed towards two principle objectives: firstly, to provide an open

environment in which new tools, methods, and techniques can be easily sup­

ported, and secondly, that the services provided should be integrated to pro­

Vide consistent, secure transition between the many tasks performed in the

development of a large software project.

As a result, an ASPECT IPSE offers to tools a powerful set of com­

mon services for structuring, storing, and manipulating information, for com­

munication between users and tools, and for manipulating remote targets.

Access to all of these facilities is offered through the ASPECT Public Tool

A View Mechanism for an IPSE Chapter 6

Page 99

Interface CPTI) which provides a set of primitive operators to enable tool

writers to make use of ASPECT services. This architecture is summarised in

figure 6.1.

Sun
Workstations

Hcr Public Tool Interface
Target

J--:================:::::"-lInterface

ASPECT Information Base

unIX unlX umx unlX

VA V VAX VAX

E'net

Fig 6.1 The ASPECT Architecture.

Remote
Targets

Here, we look in some detail at the facilities available for recording

and controlling data which has been generated during the life-time of a

software project. Details of other parts of the ASPECT architecture can be

found elsewhere.Too86, Hut87

A View Mechanism for an IPSE

6.3. The ASPECf Information Base

Chapter 6

Page 100

Central to ASPECT is the information base, and it is the information

base which achieves the integration between tools by providing a central,

structured repository for all the information they manipu1ate.Bro86b, Bro86c

The information base is a database but contains in addition:

Its own defmition. A data dictionary of the structures maintained in

the database is held as an integral part of the database, and this

structural information can be accessed via the PTI in the same way as

any other information.

A rules mechanism. These support not only the integrity constraints

of the basic data model, but also user-defined rules which may, for

example, be the rules governing the use of a particular development

method.

Built-in structures to sllpport software engineering. In keeping with the

aim of integration, many of the structures (for example version

identification and sharing of data) supporting development in the large

are provided at the information base level.

We now examine the information base facilities in more detail.

6.3.1. The Data Model

Due to the enhanced semantic capabilities provided, the conceptual

model for the ASPECT database was defined using the Extended Relational

Model (RM/T).cod79, Dat83 We briefly describe the RM/T formalism with par­

ticular emphasis on the feature which made its use fundamental to ASPECT.

A View Mechanism for an IPSE

6.3.1.1. Entities and Entity types

Chapter 6

Page 101

In RMIT a database is considered to consist of a set of entities

representing entities of interest in the real world. Every entity in the data­

base is an instance of at least one entity type, with all entities of a type

sharing the common properties of that type. An entity can be an instance of

more than one type as types are related through a type hierarchy, and an

instance of one type also inherits all the properties of its supertypes. For

example, a programmer may be an instance of the programmer-type, but also

inherit properties of the engineer and employee types which are superior types

in the hierarchy. Associated with every entity is a unique, system-generated

identifier called a surrogate. This can always be used within the database to

uniquely identify the entity, although a separate mechanism exists for associ­

ating external names to entities.Hit85

6.3.1.2. Entity Classiftcation

All entity types are classifted to be one of either kernel, associative, or

characteristic, and each type may be designative in addition. Through this

classification integrity constraints can be applied over and above those nor­

mally enforced in the pure relational model, and as a result there is greater

control over what constitutes a valid instance of a particular type. Looking

at the classiftcation in more detail, an entity can be classed as:

Associative. An associcaion is a potentially many-to-many relationship

between two otherwise independent entities. For example, an assign­

ment of a programmer to a project can be an associative entity. Asso­

ciative integrity says that an asSOCiation can exist only if all the enti­

ties participating in the association also exist. Cle. we could not assign

a programmer to a non-existent project).

A View Mechanism for an IPSE Chapter 6

Page 102

Characteristic. The function of a characteristic entity is to describe

some other entity. The characteristic entity is existence-dependent

upon the superior entity. For example, individual commands which

must be executed to keep a target object up-to-date can be considered

characteristic of the target they recreate. Characteristic integrity says

that a characteristic entity can only exist if the entity it describes also

exists. Cle. a command line could not be characteristic of a non­

existent target object).

Kernel. A kernel entity is one which is neither characteristic, nor

associative. For example, programmer and department may be kernel

entities. These are the basiC, independent objects of interest.

Designative. A designative entity is a potentially many-to-one relation­

ship between two otherwise independent entities. For example, a pro­

grammer who can belong to only one department is said to designate

that department. Designative integrity says that a designative entity

can only exist if all the entities it designates also exist. (ie. a pro­

grammer could not designate a non-existent department).

More complete descriptions of RM/T are available elsewhere,Cod79, Dat83

however, the following subsections describe some of the facilities of RMiT

which were considered important in choosing RM/T for use in ASPECT.

A View Mechanism for an IPSE

6.3.1.3. The Catalog

Chapter 6

Page 103

One of the most important features of RMIT is that an integral part

of the model is a form of data-dictionary defining the internal structure of

the database, known as the catalog. This meta-data is held in the same way

as all other data, and can therefore be queried and manipulated using the

same mechanisms. For example, queries can be posed concerning which entity

types exist, and what properties are associated with an entity type.

6.3.1.4. Relational Basis

Although at a conceptual level RMIT deals with the more semantic

notion of entities and entity types, at a lower level the model can be

represented in terms of the pure relational model, with the mapping between

the two having been defined. This has the advantage that the relational view

of data is simple, well defined and understood, and is supported by a power­

ful general query language.

6.3.1.5. Extended Operators

With the relational query language available at one level, additional

operators have also been defined at the entity level which extend the algebra

of operations. For example, create, update, and delete are aVailable at the

entity level rather than at the relational level. Hence, it is not possible to

by-pass the more semantic entity model to manipulate the data in its under­

lying relational form.

In addition, further data manipulation operators are available with

RMIT. In particular, transitive closure of a directed graph relation is possible

using the "close" operator which greatly eases querying of data in parent-child

A View Mechanism for an IPSE

relationships.

6.3.2. Acti vi ties

Chapter 6

Page 104

The development of a software engineering product is usually through

the incremental refinement and implementation of a set of project plans.

Typically, a project plan develops from an informal abstract description

through to a detailed collection of inter-related specification documents, which

can then be implemented. It is important to recognise that product develop­

ment is as much about the coordination and monitoring of these activities as

it is about the technical development of the system which these activities

identify. In order to control this process, ASPECT supports the concept of an

Activity as a unit of work that can be defined and executed.

Through supporting this process we not only have a method for

recording product development as a series of related refinements, we are also

able to monitor the complete life-cyc1e of a product as a natural progression

of Activity definitions and executions. This provides a convenient and accu­

rate way to model the state of a project from both the high-level manage­

ment view, and for the indiVidual project members.

A View Mechanism for an IPSE

6.3.2.1. Activity Definition

Chapter 6

Page 105

The only way to change the state of an ASPECT System is through

the definition, and subsequent execution, of an Activity (ie. an ASPECT

Activity is the software engineering database equivalent of a commercial data­

base transaction). An Activity definition is essentially a set of rules govern­

ing the execution of a sequence of operations on the information base. Hence,

by ensuring that all operations on the information base are carried out within

the bounds of an Activity definition, we are able to restrict the allowable

changes to the state of the information base to only those that are considered

to be semantically correct.

We introduce the notion of constraining an Activity definition to deal

with the situation where an Activity is decomposed into a sequence of smaller

sub-Activities. This is to allow for the common mode of project development

whereby a number of distinguishable areas of work within an Activity can be

diVided into separate smaller Activities, each with its own definition. In this

way, a tree of Activity definitions is created in classical top-down develop­

ment style.

Once this basic structure has been modelled, we can then introduce a

number of special cases of Activity constraint. The most important of these

is notion of refinement, when an Activity definition is constrained by a single

more detailed Activity definition.

A View Mechanism for an IPSE

6.3.2.2. Activity Execution

Chapter 6

Page 106

The interface to the ASPECT system contains a collection of primitive

operators and a mechanism for combining primitive operators and previously

defined Activities to form new Activities. In this way, each execution of an

Activity definition is said to form an atomic information base operation, and

can be recorded as an Activity execution. However, because an Activity

definition will usually be an element of an Activity definition hierarchy,

represented in ASPECT by a tree of Activity definitions, we will also have

the notion of an Activity execution hierarchy, which ASPECT models as a

tree of Activity executions. The Activity execution tree can be used as the

basis for recovery management following failure. In this way, we can have

many instantiations of the same Activity definition by having a number of

nodes in the Activity execution tree for each instantiation, and recording links

between nodes in both trees.

After defining an Activity, we can say that each execution of the

definition can be in one of three states:

1. Started. (ie. an Activity execution node exists).

2. Dormant. (ie. an Activity execution node exists but is currently not

flagged as active).

3. Completed. (ie. the Activity execution node is flagged as complete).

By recording the execution of Activities in this way, and identifying

the three possible execution states, we have a method for representing, con­

trolling and monitoring all changes to the information base, relating Activity

executions to their definitions, and for keeping a historical record of work

that has been carried out.

In summary we can say that of key importance to ASPECT is the

ability to monitor and control the development and maintenance of a software

A View Mechanism for an IPSE Chapter 6

Page 107

product. It is also equally vital to maintain the semantic integrity of the

information base by only allowing controlled operations to take place. The

ASPECT Activity mechanism takes care of both of these reqUirements through

the separation of the Activity definition and its execution, and with the abil­

ity to record Activity interdependencies in a fleXible and convenient way.

6.3.3. Rules

In addition to supporting general integrity of an information base sys­

tem by virtue of the modelling formalism adopted, an ASPECT IPSE will

support the definition of rules which are specific to either an Activity, a pro­

ject, or an organisation.

Typically, any operation which takes place in an ASPECT system does

so under the control of a set of rules which govern the allowable states of

the information base. These rules can be used in a number of ways: to

constrain the operations a user is allowed to perform, to enforce an organisa­

tional policy, to conform to a particular development methodology, and so on.

6.3.3.1. Classiftcation of Rules

Within an ASPECT system, a rule is defined to be one of two types:

Static. A static rule is a function which maps all possible states of

the information base to "True" or "False".

Transition. A transition rule is a function which maps all possible

transitions between two states of the information base to "True" or

"False".

A View Mechanism for an IPSE Chapter 6

Page 108

For example, in an information base containing data about program­

mers, a static rule could be that a programmer cannot have a salary greater

than 50,(XX) pounds, while a transition rule could be that a salary increase

for a programmer cannot exceed 20% of his/her former salary.

6.3.3.2. Consistency of Rules

Rules are organised into sets which are to be applied at particular

points in time. For both static and transition rules the notion of a set of

consistent rules is important. For a set of static (transition) rules, a con­

sistent set is defined to be one for which a possible state of the information

base (transition between states of the information base) exists for which all

the rules of the set map to "True".

Hence, when a set of rules is defined, it must be a consistent set for

its application to be meaningful. As the problem of deciding if a set of rules

is consistent is semi-decidable, this process can only be applied to certain

classes of rule.

6.3.3.3. Application of Rules

Rules are applied, or invoked, at particular points in time, to ensure

that the state of the information base satisfies those rules (ie. they all evalu­

ate to "True"). Two separate mechanisms are available in ASPECT to do this.

Firstly, a manual mechanism allows a user to apply a set of rules at any

time, and these will be checked against the current information base state and

return the value "True" or "False". The second mechanism is automatic, and

occurs on every relevant change of state of the information base. The rules

applied consist of a set of global rules, which have been defined on

A View Mechanism for an IPSE Chapter 6

Page 109

configuring an ASPECT system to always be applied, together with a set of

applicable rules which are associated with the particular Activity that is

currently being executed.

6.3.3.4. Rules and Activities

When defining an Activity, a user is able to specify:

a set of pre-conditions (ie. a set of static rules) which must be

satisfied before the Activity can commence.

a set of post-conditions (ie. a set of static and/or transition rules)

which must be satisfied before the Activity can terminate successfully.

a set of applicable rules (both static and transition) which must be

enforced during changes which take place within the Activity.

For example, conSider a high level Activity that has been defined with

rules as mentioned above. The Activity could be to write an overall design

from an agreed reqUirements document, with a pre-condition that an approved

reqUirements document exists, and a post-condition that some quality control

authority must have approved the design. A set of rules may also be defined

to apply during execution of this Activity.

We now chart briefly how the rules system will operate when such an

Activity takes place. Firstly, before the Activity is started, the information

base must conform to the set of global rules of the ASPECT system. Then,

in addition to the global rules, the pre-conditions of the Activity must be

met before the Activity can start. Once the Activity has started, the applica­

ble rules to be enforced on the information base while the Activity lasts

become those specified in the Activity definition and not those globally appli­

cable outside the Activity. This allows for the situation within an Activity

when the information base is temporarily inconsistent with respect to the

A View Mechanism for an IPSE Chapter 6

Page 110

global rules. Finally, before the Activity can end successfully, the new state

of the information base must conform to the post-condition of the Activity,

in addition to the global rules which come back into force once the Activity

is complete.

Therefore, using this mechanism, we have a way of controlling changes

to the data at an Activity level, and the ability to apply constraints to the

information base state at particular points in a project's development.

6.3.4. Views

This work is reported in the next chapter.

6.3.5. Shared Objects

Unlike conventional commercial applications, in an IPSE it is rare that

objects are updated once they reach a stable state. Instead, new versions of

objects are created. Examples are program sources and objects, management

reports, and design documents, to name but a few. Typically, a single user

is responsible for developing an object, and once in an acceptable state, the

object is shared between a group of users.

This situation, coupled with the need for supporting long-lived transac­

tions, has led to the development of a mechanism for sharing of objects in

ASPECT in which each user is allowed to develop objects independently

within their own work space. Then, when other users require access to an

object, a "publish" operation is invoked which freezes the current state of the

object, and provides read-only access to that object for those users. Each user

must then "acquire" the object to be able to access it.

A View Mechanism for an IPSE Chapter 6

Page 111

If for some reason the object later needs to be amended, for example

due to error in the original, then a new version of the object is developed,

and this again is "published" to the necessary users, perhaps accompanied by

"withdrawing" the original version. The effect of the "withdraw" operation is

to prevent other users from "acquiring" the object, and to indicate to those

who have acquired the object that a new version is available. The users of

the object can "dispose" of the old version before "acquiring" the new one.

The action of "disposing" prevents the user from further access to the object.

This situation has many advantages as far as the database is con­

cerned. If objects being changed are never shared, they can be locked into

very lengthy transactions without penalty. This will also make recovery and

distribution easier. We can afford to follow this update model because the

rate of change of data objects will be slow compared with that of a commer­

cial database, a positive feature of long transactions.

Ensuring that the correct versions of objects are chosen when a system

is being built, or when a delivered system is being reconstituted, is known as

conftguration control. This will be built into an ASPECT IPSE together with

the ability to define the version model that will be used. Clearly, the view

mechanism could play an important part in giving users the versions required

and in screening them from the underlying complexity of the version model.

Investigating such issues is an important goal of the ASPECT project.

A View Mechanism for an IPSE

6.4. Summary

Chapter 6

Page 112

To provide a context for the work that is to follow, we have

described in some detail the information base facilities of an ASPECT IPSE.

We now go on to discuss the specifIcation and implementation of a view

mechanism to integrate with this system, and to analyse its use as a com­

ponent of a larger development environment.

A View Mechanism for an IPSE

CHAPTER 7

SPECIFICATION OF AN IPSE VIEW MECHANISM

7.1. Introduction

Chapter 7

Page 113

Following the model that has been described informally in chapter 5,

the next step is to specify the model in a formal notation before attempting a

particular implementation. In this chapter, we begin by briefly describing the

specification language used, the notation Z, before providing a fairly detailed

summary of the formal specification itself. This is a shortened version of the

full specification of the view mechanism given in.Rob87c For those readers

unfamiliar with the Z notation, as well as the short introduction to Z given

below, a summary of Z symbols and conventions used within this document

is provided as Appendix A, and Appendix B contains a theory of trees, both

as a self-contained example of the use of Z, and because a number of graph

and tree structures are used as part of the specification of the view mechan-

ism.

7.2. Speciftcation

An important decision within the ASPECT project was that all

ASPECT services should be specified in the formal notation Z, a specification

language developed by the Programming Research Group (PRG) at the Univer­

sity of Oxford.Abr82. Suf85. Fli87 Therefore, the view model has been developed,

and is described below, using that notation. Indeed, the use of Z had a pro­

found influence on the project, its ways of working, and its deliverables. In

A View Mechanism for an IPSE Chapter 7

Page 114

particular, the clarity and precision encouraged by the use of a formal

language led to the identification of errors, inconsistencies, and omissions

which may otherwise have been undetected.

In the next section, we briefly describe the principles behind the Z

notation, before summarising the formal specification of the view mechanism

which has been developed for the ASPECT system.

7.2.1. An Introduction to the Z Specifi.cation Language

The Z notation consists of a mixture of English description and formal

text. Because the formal parts of the specification may be inaccessible to

many readers, the English text of the document is readable on its own as an

informal definition of the facilities aVailable and what they do. This descrip­

tion is supplemented by the formal text which gives precise and unambiguous

meaning to each of the operatiOns (where operation is the name given to the

Z form of' a facility).

Using a formal notation, rather than, for example, Ada package

definitiOns, is preferable for at least the follOWing reasons:

The formal text defines the semantics of each operation, not just the

syntactical conventions for its use.

The formal text is independent of any implementation language and

can be used as a specification of implementations in any programming

language. This is particularly important within ASPECT which pro­

vides a set of services for tools which could be implemented on a

number of different machines in a number of different programming

languages. We will therefore not inadvertently build in to ASPECT

restrictiOns based on the constructs of anyone particular programming

language.

A View Mechanism for an IPSE Chapter 7

Page 115

The formal text uses abstract notions which define a system at a high

level, free of implementation detail. It therefore imposes precision at

this abstract level, rather than leaving decisions at this level to be

made by the implementor.

For a more detailed discussion of the benefits of this style of

specification see.Mey85

7.2.1.1. The Z Notation

The formal language of Z should be readable by anyone with a

knowledge of elementary set theory and first order predicate calculus. These

two form the basis of the mathematical language embedded in Z. Also

included within Z is a notation for manipulating pieces of this mathematical

text; this is known as the schema calculus.

The basic method of specification is as follows:

A system is considered to have, at anyone time, a certain state. The

components of this state are described using set theory based on certain

"given" sets: users, entities and devices, for example. The state components

then consist of objects composed from the given sets: subsets, relations

between them, functions and so on. The state also has certain invariants:

predicates which are always true. Such a state can be expressed in a schema.

For example, we may define a particularly simple database as below.

A View Mechanism for an IPSE

[E]

DB ______________________________________ ~

contents : 1F E
relationships E..... E

dom relationships !: contents
rng relationships !: contents

Chapter 7

Page 116

First of all this introduces a set E. The structure of this set is not

defmed - it may be fmite or infmite and we know nothing about its members.

We are going to use it to represent the set of all possible entities. It is

analogous to the Ada definition

type E is private;

Then we introduce a schema called DB. This can be thought of as represent­

ing the state of a database.

Following the schema name there are two parts to a schema. The

first part, the Signature part, defines the components, or objects, by giving the

Signature of each: that is, its name and type. The name can of course be

anything; the type is expressed in terms of sets already known. So in this

example the database has two components. The first one is called "contents"

(we are using it to represent the set of all entities known about in the data­

base), and it consists of a finite set of entities - that is, a finite subset of the

set E of all possible entities. The second component in the example is called

"relationships" and its type is a relation between entities. We can use it to

represent the relationships between entities stored in the database. (Now we

see how simple this model is in that it only allows a single relation between

A View Mechanism for an IPSE

two entities).

Chapter 7

Page 117

The second part of the schema is the predicate part: it contains a

statement of facts which are true about the objects in the schema. In the

case of a schema representing a state, this predicate is an "invariant" - it

represents facts which are true about any instance of the state. In the exam­

ple, two facts are true about the database. The first line of the predicate

says that any entity which is related to another entity must be in contents:

that is it must be known about in the database. The second line says the

same for any entity which has other entities related to it.

The meaning of such a schema is important to the two classes of

reader. The tool writer can absolutely rely on the fact that there are con­

tents and relationships in the database, and that any entity which appears in

"relationships" is also in "contents". The implementor is obliged to implement

all operatiOns including the initial state of the database in such a way that

the invariant can never be Violated. He/She is free, on the other hand, to

choose ANY representation of contents and relationships that is conSidered

SUitable.

Having defrned a state, usually by a schema, we can then specify the

operatiOns aVailable in terms of their effects on the state. To do this we

introduce a schema for the operation. This schema includes a schema for the

state before the operation and a schema for the state after. (By convention

unprimed names refer to the state before and primed names refer to the state

after). The operation schema also includes Signatures for any inputs and out­

puts of the operation. The predicate part of an operation schema states the

semantics of the operation by stating things which are true about it. These

may be preconditions - things which must be true before the operation is car­

ried out; or postconditions - facts which define the results of the operation.

Postconditions may simply be predicates about the final state (including

A View Mechanism for an IPSE Chapter 7

Page 118

outputs) or may involve the relationship between the final state and the ini­

tial state and inputs.

For example, consider the operation to create a relationship:

create_RELA TIONSHIP _______________ --.

DB
DB'

el?, e2? E

el? E contents
e2? E contents
(el?, e2?) e: relationships

contents' = contents
relationships' = relationships U (el?,e2?)

This states that creating a relationship takes an initial state of the

database (DB) and turns it into a new state (DB'). It takes two input

parameters, the first and second entity in the relationship to be created (el?,

e2?), where we use the convention that all input parameters are tagged with

a question mark.

The first part of the predicate is the three preconditions for the opera­

tion: el? and e2? must both already be known in the database, and the rela­

tionship between them must not already exist. The second part of the predi­

cate defines the meaning of the operation: after it has been carried out "con­

tents" in the new state is the same as it was in the old, while "relationships"

is the same as before but with a new relationship between el? and e2? added.

A more detailed introduction to the Z language has been developed

in,Bro86d while a collection of case studies are given in.Fli87

A View Mechanism for an IPSE

7.2.1.2. Relationship with Implementation

Chapter 7

Page 119

To implement facilities which have been specified in Z, it is obviously

necessary to give concrete form to the operations in some programming

language. This is straightforwardly done by defining concrete types to

represent all the parameters of the operations and prOviding a procedure or

function for each operation. In some cases generic subprograms may be pro­

vided. To continue the simplified example, the concrete form in Ada of

create_RELATIONSHIP might be:

package DB is

type E is private;

procedure CREATE_RELATIONSHIP (E1, E2 in E);

The full Public Tool Interface for the Aspect system was specified in the

language Z, and can be found in.Rob87c The role of this specification was as a

formal communication tool for the project members and as a precise way of

describing their ideas. It gUided the subsequent implementation, but there was

no formal refinement from specification to implementation.

We now give an overview of the formal specification of the view

mechanism as the complete specification is rather lengthy and interwoven with

the other parts of the definition. The objective of this is to give an overall

flavour of the approach that has been taken. For a full understanding of the

details of the specification refer to.Rob87c

A View Mechanism for an IPSE Chapter 7

Page 120

7.2.2. Overview of the Formal Speciftcation of the View Mechanism

There are a number of inter-related elements of the model, all of

which must be specified. We begin the formal specification by defining the

relationships between Abstract EnVironments CAE's) as a graph structure, con­

trolling the relationships between defined views of the Information Base. We

then continue by specifying how each AE in the graph is constructed and

controlled. Finally we move on to define operations to both manipulate the

graph structure, and the AE's which are the nodes of the graph. Of particu­

lar importance is the operation to evaluate an AE object, which performs the

changes of state defined by that object.

It can be seen in the specification that separate operations are given for

the cases when the object in an AE is a data item, and when it is an opera­

tor. Strictly, these two could have been coerced and manipulated with single

operations, but for reasons of clarity within the specification, and because a

user of an AE may indeed want to distinguish the two types of object, we

have not done so.

The concept of a tool is also important. Through an AE a user has

available a set of tools which he/she may invoke. We specify operations to

register and invoke a tool, and to allow an existing tool to be made available

to an AB.

A View Mechanism for an IPSE

7.2.2.1. Abstract Environments

Chapter 7

Page 121

The first thing we do is define the basic structure which controls the

relationship between AE's. To allow complete flexibility, this is a connected

acyclic graph structure (CAG). This implies that a node in the graph can

have multiple parents, but that there is a distinguished node called the "root"

from which all other nodes in the graph can be reached by traversing the

parent/child arcs.

We distinguish the root of the graph as being the base environment

(BE) from which all other AE's are derived, containing a set of base objects.

Note that the structures and operators for defining and manipulating graphs

and trees are specified separately inRob87c and summarised in Appendix B.

Within the specification of AE's we make use of these structures and opera­

tors.

So, we define the set of all possible AE's to be AB_ENV, and define a

connected acyclic graph (CAG) whose nodes are elements of this set.

A View Mechanism for an IPSE

AB_ENV_GRAPH ______________________________ ~

CAG [AB_ENV]

base_env AB_ENV

known_AEs IF AB_ENV

Chapter 7

Page 122

a_env.1a the single root of the graph is the base environment.

a_env.1b all the nodes of the graph come from the set of known AE's.

Once we have the basic structure, we define a function which maps

each AE to the set of mappings which define the objects of the AE. To

allow for the definition of operator objects in the AE, we say that a mapping

relates an expression which describes the object, to another expression that is

its definition. For example, a simple addition operator for integers could have

a mapping of the form

+(a, b) <=> ... exp ...

We will call the left-hand side expression the declaration expression

and the right-hand side expression the deftning expression.

We can see a mapping as similar to the definition of a "procedure" in

a programming language such as Pascal. The declaration expression acts as the

A View Mechanism for an IPSE Chapter 7

Page 123

procedure declaration, with the name of the procedure and the types of the

operands to that procedure (where the formal arguments are acting as

representatives of the types). The defining expression acts as the procedure

body; a description of the operations performed by the procedure. Within the

body of the procedure, use of the formal arguments will be made.

The predicates of the schema ensure that these mapping entries are of

. the correct form. In particular, the declaration expression for operator objects

will be a two-level tree (operator name and parameters), while for data

objects it will be a single object name only.

Note that the specification of expressions is to be found in a separate

document.Bro86a In this we find the specification of the set of expressions,

EXP, the elements of an expression, OBJ, and the subsets of expression ele­

ments which are operator objects, OP _OBJ, or leaf objects, LEAF _OBJ. The

functions "e_op" and "e_1eaf" map an expression element, OBJ, to an operator

object, OP _OBJ. or leaf object. LEAF _OBJ. respectively. We make use of

these specifications below.

A View Mechanism for an IPSE

MAPPING ,;. EXP ~ EXP

AB_ENV_GRAPH. ______________________________ ~

Vel: EXP; 01: OBJ; ae:AB_ENV;
I el E dome env _to_map(ae))

{oil = e1.roots
• ((e1.nodes = e1.roots U e1.leaves)

1\ (e_op(ol) E OP _OBJ))
v

((e1.nodes = {ol}) 1\ (e_leaf(ol) E LEAF _OBJ))

Chapter 7

Page 124

a_env.2a every node has an entry in env _to_map - including the base

environment.

a_env.2b the left-hand side of mapping entries consist of a root node and

children for operators, or a root node only, for data objects.

We now specify some additional functions which are auxiliary to the

model, and are used to help with the predicates that are needed to constrain

the model. These auxiliary functions are :

A View Mechanism for an IPSE Chapter 7

Page 125

1. env _to_objs. For each environment, this gives the set of

objects which are aVailable to the environment user (ie. have

been declared in the environment). These will be the roots of

the declaration expressions for objects.

2. env _to_uses. For each environment, this gives the set of

objects which are used in defining the environment objects.

In addition, we need a function that maps some objects to tools, as

later in the specification we need to determine which objects are associated

with a tool, and be able to invoke that tool. The set of all possible tools in

an ASPECT system is the set TOOLS, defined in another section of the full

ASPECT Specification.

A View Mechanism for an IPSE

env _to_objs :
env_to_uses

AB_ENV ~ :IF OBJ
AB_ENV ~ :IF OBJ

EXP ~ TOOLS

base_objs ::IF OBJ

V ae1, ae2 : AB_ENV; e1,e2 : EXP
I e1 E dom(env _to_map(ael))

e1 E dom(env_to_map(ae2))
• (e1,e2) E env _to_map(ael)

=> ((e1 = e2) 1\

(ae1,ae2) E parent)

V ae: AB_ENV; es: :IF EXP
I ae E nodes 1\

es = dome env _to_map(ae)) •

env _to_objs(ae) = { 01:0BJ; ex:EXP
I ex E es 1\

{ol} = ex. roots
• 01}

env_to_uses(ae) = { e:OBJ; ex:EXP
I ex E rng(env _to_map(ae)) 1\

e E ex. nodes • e}

Chapter 7

Page 126

A View Mechanism for an IPSE

a_env.3a all environments use objects in their definition.

a_env.3b all environments have an associated set of objects.

Chapter 7

Page 127

a_env.3c the same expression appears on the lhs of two AE's only if we

are inheriting that expression from one of its parent AE's. In

such cases, the mapping is to itself.

a_env.3d the objects defined for each environment are those for which a

mapping exists.

a_env.3e the objects used by an environment consist of those objects that

have been used in object definitions.

7.2.2.2. Initialising the model

The first thing to do is to define the initial state of the model. This

will be when there is a base environment and base objects only, and no other

environments have yet been defined. Note that the set ET represents the set

of all possible entity types in an ASPECT system,· and the set "entity_types"

are those that exist in an initial ASPECT system.

A View Mechanism for an IPSE

imt_AB_ENV_GRAPH ______________________________ ~

V m : MAPPING; e : EXP
I (e,e) E m

e.roots s: base_objs

init.1

lillt.2

• env _to_map' = { (base_env ~ m) }
env_to_uses' = { (base_env ~ base_obj)

imt.3
parent' = {}
nodes' = {base_env}
known_AEs = base_env

obLreturns' = obj_returns EB
lillt.4

{ s:P LEAF _OBJ; b:OBJ; 1:LEAF _OBJ
I b E base_obj

e_1eaf(b) = 1
1 E s

• (b ~ s) }

op_expects' = op_expects EB

{ s:seq Jl> LEAF _OBJ; b:OBJ;
I b E base_obj

b E dom(e_op)
• (b ~ s) }

data_obj_map' = { o:OBJ; ets:JF ET I ° e dom(e_op)
° E base_objs
ets = {et}

lillt.5

et E entity_types
• (0 ~ ets) }

I entity _types I = I data_obLmap' I

Chapter 7

Page 128

A View Mechanism for an IPSE Chapter 7

Page 129

init.1

init.2

init.3

init.4

init.S

the initial set of objects is the set "base_obj"'.

the initial set of mappings is for the base enVironment, which has

all the base objects mapping to themselves. The initial uses set is

the base_objs.

the AE graph is initialised to the base_env only.

all base objects have entries in "obLreturns" giving the type of

object they return, and all operators have an entry in Mop_expects"

giving the types of the parameters expected by the operator.

the function data_obj_map records the mapping between all view

objects and the entity types from which they are eventually

derived. The initial state of data_obLmap has all base data objects

mapping to a known ET. All known ET's will have entries in the

function.

7.2.2.3. Operations on the Model

The basic operations on the model are specified in order to be able to

manipulate the graph of environments. For example, this includes defining a

new environment, and adding a new object to an environment. Those

specified form the minimum set of operations required to manipulate the

model.

The full set of operators on the model allow new AE's to be created

and deleted, data and operator objects to be added to, and removed from an

AE, and for the definition of a data or operator object to be amended. Here,

we only give the operations to add an object to an AE, al}d to create a new

AE as these provide the models on which the other specifications have been

based. The full set of operators are specified in,Rob87c and are informally

A View Mechanism for an IPSE

described in terms of their implementation in chapter 8.

7.2.2.3.1. Adding an Object to an Environment

Chapter 7

Page 130

We have two separate add operators, one for operator objects, and the

other for data objects. This is necessary because we need to record extra

information, and do a little more work when we add operator objects than

for the others.·

Data Objects

Given an environment, an expression to define the object, and the type

returned by the object, then the object is added to the environment, and the

left-hand mapping expression returned.

A View Mechanism for an IPSE

add_DATA_OBJ ______________________________ ~

env?

exp? EXP

ret?

EXP

en v? E nodes - roots

exp?nodes ~ U (env _to_objs Qparent(env?)D)

env_to_map' = env_to_map EB

V rl: OBJ

teeny? 1-+ (env_to_map (env?) EB
{(ret_exp! 1-+ exp?)}))}

add_D. Ie

I ret_exp!.roots = {rl}
• obLreturns' = obLreturns EB {(rl 1-+ ret?)}

add_D.1f
V rl: OBJ; s : 1F ET;

I ret_exp!.roots = {rl}
s = LJ (data_obLmapQ exp?nodes D)

• data_obLmap' = data_obLmap EB {(rl I-+s)}

Chapter 7

Page 131

add_D.la the given environment is one of the environments in the graph

(not including the root).

A View Mechanism for an IPSE

add_D.1b the object to be added is not already in an environment.

Chapter 7

Page 132

add_D.1c all objects in the expression to be added must come from the

parent environments.

add_D.1d the definition of the new object is added to the mapping table.

add_D.le the new data object is added to "obj_returns".

add_D.1f the entry in data_obj_map is from the new data object to the

collection of ET's held for each of the objects in the defining

expression.

Operator Objects

Given an environment, an expression to define the operator, the type of

object returned by the operator, and the type of the operator's parameters,

then the object is added to the environment, and the left-hand mapping

expression is returned.

A View Mechanism for an IPSE

env? AB ENV -

exp? EXP

ret? JP> LEAF _OBJ

params? seq JP> LEAF _ OBJ

ret_exp! EXP

en v? E nodes - roots

exp?nodes S;;; U (env _to_objs aparent(env?)D)

env _to_map' = env _to_map E9

{(env? 1-+ (env_to_map (env?) E9
{(ret_exp! 1-+ exp?)}))}

add_O.le
V r: OBJ I {r} = ret_exp!.roots •

obLreturns' = obj_returns E9 {(r 1-+ ret?)}

Chapter 7

Page 133

add_O.la the given environment is one of the environments in the graph

(not including the root).

add_O.lb the object to be added is not already in an environment.

A View Mechanism for an IPSE Chapter 7

Page 134

add_O.lc all objects in the expression to be added must come from the

parent environments.

add_O.ld the definition of the new object is added to the mapping table.

add_O.le the type of the returned object, and of the parameters, are

recorded in "obj_returns" and op_expects".

7.2.2.3.2. Create a New Environment

There are two steps to creating a new environment. First of all, we

add a new environment to the set of known AE's, then, given the new

environment, and the parent enVironments, we must put this new environ­

ment in the graph with a link to each of the parents.

cr~te_AB_ENV ______________________________________ ,

~ AB_ENV _GRAPH

new_env?

create. 1

cr~te.2

cr~te.l the new AE is not in the known set of AE's.

A View Mechanism for an IPSE

create. 2 add the new AE to the known set of AE'S.

link_AB_ENV __________________________________ ~

Cc_env? t nodes) 1\ Cc_env? E known_AEs)
V Cc_env? E nodes)

parent' = parent U {p: AB_ENV I P E p_env?

link.l

link.2

link. 3

• Cc_env? 1-+ p)}
nodes' = nodes U {c_env?}
Cc_env? t nodes) 1\ Cenv _to_map' = env _to_map

EB {Cc_env? 1-+ {})})

link.l the parent environments already exist in the graph.

Chapter 7

. Page 135

link.2 the new environment does not exist in the graph, but is a known

AE; or it is an existing node on the graph.

link. 3 add a new node to the graph in the correct place, and make a new

null entry in the env_to_map function. Note that if the node

already exists in the graph, then this operator allows us to add new

links to other parents.

A View Mechanism for an IPSE Chapter 7

Page 136

7.2.2.4. Evaluating an Object

The process of evaluating an AE object is the response that occurs

when a user or tool within an AE asks for the AE operator to be invoked,

or the AE data object to be materialised. Whenever this happens, we must

go through two distinct steps:

a compilation step. The AE object is defmed as an expression involv­

ing other AE objects. We must map this expression to an equivalent

one involving base environment objects only. Remember, the base

objects are the only ones that we can invoke to carry out some action,

or are the only "real" pieces of data that exist in the system.

an invocation step. Once we have an expression involving base objects,

we must then obtain from this expression the sequence of operations

that we are to perform and actually carry them out, executing the

state changes that they imply.

In the speciftcation we make these steps explicit, combining them in the

final operation.

It can be seen from the full specificationRob87c that the Z specification

for this operation is complicated. and difficult. However, we can summarise

what the Z is specifying in simple terms with the following informal descrip-

tion.

Evaluating an AE object consists of the following three operations:

1. compile_AE_OBJ. Takes an expression defining an AE object within

any AE, and returns an equivalent expression which contains base

objects only.

A View Mechanism for an IPSE Chapter 7

Page 137

2. map_to_OPS. Takes an expression involving base objects only, and

returns an equivalent sequence of PTI operations that can be invoked

(a tool execution), or a single PTI operation that can be called.

3. execute_OP. Takes a tool or single PTI operation as input, and per­

forms the state changes that are implied, recording the individual

operations in the execution tree. (The operations to "invoke" a tool,

and to "call" a PTI operation, are defined in the "Activities" section of

the full ASPECT Speciftcation).

So, we combine the steps of compilation, mapping to operations, and

execution to form the complete evaluate operation. This is the operation that

will be aVailable at the PTI. Note that the operation " ; » " is described as

forward relational composition with piping, and has the effect of both of the

individual operations.

evaluate_AE_OBJ A compile_AE_OBJ

; » map_to_OPS

; » execute_OP

A View Mechanism for an IPSE

7.2.2.5. Tools and AE Objects

Chapter 7

Page 138

When a user is working within an AE, he/she has aVailable a set of

objects which defrne the operations and data that can be accessed. However,

we want the AE to be extensible in the sense that we allow a user to add

new objects to their AE, which we call "tool objects". In many ways this is

similar to the way in which the original objects have been added to the AB,

but with a number of differences. Firstly, it is not possible for a user to use

the add operators for objects, as these require the user to know about objects

in the parent AE's as well as their own. We want the new object to be a

combination of existing objects in the AB. Secondly, the step of evaluation

which is necessary for the primitive operators of an AE will not be used for

tools. We can think of tools as being compiled once, and then for invocation

direct access can be made to this compiled version. Finally, the way in

which we record tool invocation is different from the way in which primitive

operators are recorded. Tools are tracked separately from PTI calls, so that,

for example, recovery can be handled differently.

So, the frrst operator we need is to allow us to create a new tool

object that is accessible within the AE in which it is defrned. This operation

is referred to as "registering a tool". As part of this operator we need to

associate the new tool object with a member of the set TOOLS, which

represents all possible tools. We are not able to say which particular tool is

associated with the tool object, only that there must be such an association.

A View Mechanism for an IPSE

register_ TOOL_OBJ _______________ -:--_

env? AB _ENV

tool? EXP

ret?]p> LEAF _OBJ

params? seq]P> LEAF _ OBJ

ret_exp! EXP

env? E nodes

ret_exp!.root n U env _to_objs 0 nodes D = {}

env_to_map' = env_to_map EB

{Cenv? H Cenv_to_map (env?) EB
{(ret_exp! H tool?)}))}

V r: OBJ I {r} = ret_exp!.roots •
obLreturns' = obLreturns EB {(r H ret?)}

.3 t : TOOLS
• tool_map' = tool_map EB {(tool? H t)}

reg. 1

reg.2

reg.3

reg.4

reg.5

reg.6

Chapter ·7

Page 139

reg. 1 the given environment is one of the environments in the graph.

A View Mechanism for an IPSE

reg.2 the object to be added is not already in an environment.

. Chapter 7

Page 140

reg.3 all objects in the tool object to be added must come from the

current AE.

reg.4 the definition of the new object is added to the mapping table.

reg.5 the type of the returned object, and of the parameters, are recorded

in "obj_returns" and op_expects".

reg.6 the tool object is associated with an element of the TOOLS set.

7.2.2.5.1. Invoking a tool

When a user Wishes to invoke a tool object from within an AE, we

must first check that the tool is accessible from the AE, and then we can

ftnd the instance of the TOOLS set associated with the object and call the

operator "invoke_tool" which performs the state change expected of the tool,

and records that the execution of the tool has taken place. The operation

"invoke_tool" is specifted as part of the "Activities" section of the full

ASPECT Speciftcation.

A View Mechanism for an IPSE

check_TOOL_OBJ _________________ -.

to01_obj?: EXP

tool! TOOLS

chk_too1.1 the tool object must be in the given AB.

return the tool associated with the tool object.

Chapter 7

Page 141

We now specify "invoke_TooL_OBJ" as the composition of -the

"check_TOOL" and "invoke_tool" operators.

invoke TOOL OBJ ;, check TOOL; » invoke_tool - - -

A View Mechanism for an IPSE

7.2.2.6. Publishing AE Objects

Chapter 7

Page 142

When a user is working within an ASPECT system, that user will

have available a set of data objects, and a set of operators which manipulate

instances of those objects. The view mechanism is responsible for defming the

objects and operators aVailable, while the instances of the objects that can be

accessed are determined by the ASPECT notions of ownership and Publication.

Because an ASPECT system will be used by many classes of user, each

with different AE's, we want to enable users to be able to share information

between AE's. Broadly speaking, we could allow a user of one AE to permit

users in other AE's to:

see data objects that they have aVailable.

execute operators and invoke tools that they can use.

see particular instances of data objects that are common to both AE's.

The first two of these options involve adding new objects to the

receiving AE which defme the data objects, operators, or tools that are now

available, while the third will mean that underlying instances of entity types

will be published from one AE to another. It is expected that the latter

operation will be carried out much more frequently than the former ones.

Underlying the notion of AE's, ASPECT has the concept of a Domain

as a mechanism beneath the ASPECT PTI to control fine-grained data sharing

between different users. Operators are provided to Publish entities between

Domains. However, as we do not want users to be aware of the existence of

Domains at the PTI level, we re-cast the operators provided for Publication

between Domains as operators which publish AE object instances between

AE's.

To allow us to specify the Publishing of instances -of AE objects, we

define an operation called "ae_to_dom_mapl" that takes the object instance,

A View Mechanism for an IPSE Chapter 7

Page 143

its type. and the AE's which are involved, and returns the corresponding

entity and Domain to call the lower-level "publish_ENTITY" operator. We

also specify a very Similar operation called "ae_to_dom_map2" that takes the

instance, its type, and the single AE involved, and returns the entity and

Domain to pass to "acquire_ENTITY", "withdraw_ENTITY" , and

"dispose_ENTITY" operators.

We now define the AE publication operators as the composition of the

mapping operators with the lower-level publication operators that operate on a

single entity between two Domains. The new operations will be the ones that

are available at the ASPECT PTI.

Note that we do not need any additional predicates on these operations

as these have been specified at the lower-level, and will be checked there.

For example, "acquire_ENTITY" checks that the Domain doing the acquiring

has previously had that entity published to it.

A View Mechanism for an IPSE

7.3. Summary

Chapter ·7

Page 144

In this chapter we have given an implementation independent descrip­

tion of the view mechanism for ASPECT by developing the model using the

formal specification language Z. We now discuss a particular implementation

based on this specification, before analysing how the mechanism integrates

within the Wider context of facilities provided in the ASPECT prototype.

A View Mechanism for an IPSE

CHAPTER 8

Irv1PLErvtENT ATION OF AN IPSE VIEW rvtECHANISM

8.1. Introduction

Chapter 8

Page 145

Although the above specification has defined an IPSE views mechanism

independent from consideration of other IPSE facilities, for implementation of

the mechanism it is vital that it is seen as a component of a larger system,

and fits in with that system's needs.

From this, and earlier discussion of the expectations of a view mechan-

ism, we can define the following aims of the implementation:

to provide a set of primitives at the ASPECT Public Tool Interface

CPTI) which allow Abstract Environments CAE's) to be created, added

to, manipulated, and so on.

to control individual users' access to data, operators, and tools, and

hence aid integrity of the system.

to allow tailored in terf aces for both users and tools to access the IPSE

facilities at an abstract level suited to their particular needs.

to integrate these facilities within the wider ASPECT concepts for con­

trol and co-ordination of software development in a large project.

A View Mechanism for an IPSE

8.2. Constraints on the Implementation

Chapter 8

Page 146

As part of a larger project, the implementation of the IPSE view

mechanism was built on, and integrated with, a number of existing software

systems. A simplified implementation architecture is given in figure 8.1.

User Interfaces

Views Evaluation

Views I Act I RUle, Pub I CM

PTI

RM/T

db++

UNIX

Fig 8.1 A Simplified Implementation Architecture.

At the lowest level of the implementation is the UNIX operating sys­

tem, running on a SUN workstation. On top of this we use a commercially

aVailable Database Management System (DBMS) called db++Con84 as the inter­

nal, or physical representation of the conceptual model of the ASPECT Infor­

mation Base. The reasons for choosing this DBMS as opposed to the many

others aVailable were mainly pragmatic: it is specifically written to interface

well with both the UNIX operating system environment, and the C program-
-

ming language in which it is implemented. (The decision for us to use the C

A View Mechanism for an IPSE Chapter 8

Page 147

programming language to implement the ASPECT prototype was taken early

on in the project). However, it is also a fairly pure implementation of the

Relational Model, accessible through a well-defined relational algebra, and this

too makes it an attractive system for our needs.

Above this, the conceptual level of the Information Base, the Extended

Relational Model (RMIT), was implemented. This is often referred to within

ASPECT as the Information Base Engine (IBE). As discussed earlier, this pro­

vides not only an extended algebra of operations to the services built above

it, but also provides enhanced semantic integrity through the entity interface

that it supports. As far as we are aware, this is one of the first major

implementations of RMIT that has been attempted.

The facilities and services provided above the RM/T interface, collec­

tively known as the Information Base Superstructure (IBS), provide a set of

primitive operators which together make up the ASPECT Public Tool Interface

(PTI). This is the lowest level at which any user can gain access to the ser­

vices provided by an ASPECT IPSE. Therefore, part of the IBS will be a set

of operators which allow users to create and manipulate views of the PTI, as

well as for Activity management, rule creation and enforcement, sharing of

information, and version identification and control. A major part of the view

mechanism implementation is to provide the relevant primitive operators at

the PT!.

However, the view mechanism differs from the other IBS components

in that all interaction with a user to an ASPECT Information Base must take

place through a view. Therefore, a separate component of the view mechan­

ism is to provide, above the level of the PTI, the necessary facilities to accept

a user request to perform an operation on some data items, and to not only

validate that the operation requested, and the data to be accessed are available

to the user through the particular view of the ASPECT system which he/she

A View Mechanism for an IPSE Chapter 8

Page 148

has, but also to then translate the request to a series of lower level PTI

operations which when executed will implement the request. This is a

further important component of the view mechanism implementation.

8.3. Details of the Implementation

We now look in detail at some of the issues which arose during the

implementation of the view mechanism.

8.3.1. Underlying Structures

In providing a set of operators as part of the ASPECT PTI, structures

must be defined within the IDE to contain information that can be queried

and manipulated when these operations take place. These will, necessarily, be

in the form of entities and entity types, and be manipulated using the RMIT

operators provided by the RMIT implementation. A representation of the

entity types used to contain view mechanism information is given as figure

8.2.

In figure 8.2 the boxes represent entity types, each of which is given a

name. Also within the box is a letter to represent the classification type of

the entity type. This will be one of kernel (K), associative (A), or charac­

teristic (C), and may be designative (D) in addition. Where one box is con­

tained within another box, the entity type represented by the inner box is a

subtype of the entity type represented by the outer box. In fact, a box

enclosing the whole diagram has been omitted for clarity; this would

represent the fact that all er:tity types in an ASPECT system are subtypes of

a root entity type. To represent the relationships between types, an arc is

A View Mechanism for an IPSE

K 01

Chapter 8

Page 149

KD

K K

K OPERATIONS

~
~

Fig 8.2 Entity Types Used to Represent

View Mechanism Information.

drawn between entity types which are associated, and a name is given to that

associative attribute. Similarly, a solid arrow is drawn between a designative

entity type and its designated type, with the name of the designation labelling

the arrow. The dashed arrow represents a characteristic link between two

entity types.

Interpreting the contents of the diagram, we can say that all Abstract

Environments CAE's) are represented as entities in the entity type "AE", and

are related in a graph structure through the entity type "AE_TREE". Each

AE is associated through "AE_OBJ_MAP" with a set of view objects held in

NOBf'. The view objects are c1assifted as data, operator, and tool objects

A View Mechanism for an IPSE .Chapter 8

Page 150

through the subtypes "DATA_PRIM", "OP _PRIM", and "TOOL_OBJ" respec­

tively. Data objects are further associated through "DATA_OBJ_MAP" to the

particular entity types from which they are eventually derived. Operator and

tool objects, on the other hand, designate an "OPERATION" entity through the

subtypes "OP _SET" and "TOOL_SET", and each operation is characterised by a

set of parameters held in "P ARAMS".

In figure 8.3, each of the entity types is given with the properties

associated with that type, where the notation

A[pled!), p2(d2)]

defines an entity type "A" whose instances have properties "pI" and "p2"

drawn from the domains "dl" and "d2" respectively. Each property is named,

and the domain for values of the property is given, where "etype" is the

domain of all possible surrogate values. In addition to the properties shown

here, every entity type has a property known as the "e-attribute". For each

entity instance this hold the unique surrogate value for the entity drawn

from the etype domain. Note that any entity can be assOCiated with a name

Within a particular namespace through a separate naming scheme.

8.3.2. Expressions

An important concept in the previous discussions about an IPSE view

mechanism, and within the specification, is that of an expression. Even

though we have formally specified in Z what is meant by an expression, with

a particular refinement to specify the special case of RMff expressions, it is

at an abstract level such that a number of possibilities exist with regard to

its implementation. Here we discuss some of the possibilities, and examine

A View Mechanism for an IPSE

AE[aeJib(f1le)]

AE...-"mEE[~ae(~), p!.!'Emt_ae(~)]

AE...-OBJjW>[aeJap(~), abjJIap(~)]

OBJ[de£rLsrc(f1le) , def'LLexec(f1le), I'6t_ty}:e(strillg)]

~mIM[]

OP_mIM[op_des(~)]

~OBJ[too:Ldes(e"tyfe)]

OPERATIrns []

OP--.SET[]

'Ia:l4....SET []

PARAMS[posit1an(int), p:L!'allLty}:e(strillg), p:L!'allLop(e"tyfe)]

~OBJJfAP[datcunap(e"tyfe), etJap(e"tyfe)]

Chapter 8

Page 151

Fig 8.3 View Mechanism Entity types with their Properties.

the consequences of the decisions made.

8.3.2.1. First Prototype

A view mapping is specifred to be a function from one expression to

another. The left-hand mapping expression defi.ning the view object, while the

right-hand mapping expression describes the lower level operations which are

executed to implement the view object. However, in the specifrcation of

expressions we specify a general expression to consist of a set of data and a

set of operator objects related in a graph, without saying any more about

what those objects might be. The decision to leave the specifrcation at such

an abstract level was made to ensure that a single specifrcajion could be made

use of throughout the ASPECT project. A particular refinement of the

A View Mechanism for an IPSE Chapter 8

Page 152

speciftcation is made for the special case where we have an expression in the

extended relational algebra of RM/T.

For a preliminary prototype implementation of the view mechanism, it

was decided to interpret an expression as equivalent to an RM/T expression,

and to investigate the advantages and limitations of this approach. These are

summarised below:

a view object was defined using the extended relational operators of

RMlT. This provided all the operators of the relational model (select,

project, jOin, and so on), together with some additional operators (close,

apply, ptuple, and so on).Cod79

the relational operators implemented formed a closed algebra (ie. the

result of any relational operation is itself a relation), and hence the

only objects that could be defined in a view were data objects of type

relation.

as data objects only could be defined, an AE was defined to consist of

those data objects speciftcally assigned to the AE, together with the

full set of PTI query operators which we assumed were inherited by

each AE.

the describing expression for a view object was read in as a text

string, parsed to check its validity, and recorded in string form ready

for evaluation when required.

evaluation of a view object in this context had an obvious interpreta­

tion. The describing expression associated with the view object was

mapped to the lower level objects by the act of textual substitution of

the describing expressions of each of the constituent components. For

example, if we define "A" to have the describing ~xpression "+(B,C)",

where this is the expression with root operator "+" and leaves "B" and

"C', and "B" and "C' themselves have describing expressions "-(X,Y)"

A View Mechanism for an IPSE Chapter 8

Page 153

and "*(X,Y)" respectively, then evaluation of the view object "A" will

lead, via textual substitution, to the expression "+(-(X,Y),*(X,Y))".

This process can be recursively applied to obtain an expression involv­

ing base objects and operators only, which can then be executed.

it is not obViOUS how this implementation of an expression can be

easily extended to allow both data objects of different types, and

operator objects, to be defined as part of an AE.

8.3.2.2. Second Prototype

Aware of the limitations of the first prototype implementation, in par­

ticular the inability to define operator objects as components of an AE, it was

decided that the second prototype implementation should take a much wider

view of an expression. Indeed, it was recognised that the only way to obtain

the expressive power required was to use the RMIT algebra embedded within

a programming 1anguage.Hit76 In this way, not only are we able to access the

data restructuring primitives which are vital to the success of the mechanism

for data objects, but we can also make use of the comprehensive control

faCilities available in a programming language, together with the ability to

combine the update operations for data with the arithmetic operators of a

programming language.

For example, if we wanted to define an operator which updated the

salary property of an entity by 10% of its current value, then we need the

arithmetic operators, and the control and sequencing operations of a program­

ming language to express the operation, together with the update operators of

RMIT. In the first attempt, not only were we unable to access the update

operators (as they are not considered to be part of the _extended relational

algebra), but we were also unable to perform arithmetic operations on data

A View Mechanism for an IPSE

values, nor to carry out sequences of operations.

Chapter 8

Page 154

The decision made was to use the C programming language, and allow

the describing expressions of a view object to be equivalent to a C langUage

function. This seemed the most appropriate choice given that all other imple­

mentation work was to use this language, and that the RMIT operations were

specincally written as a C library of functions to be linked in with other C

routines.

We now discuss the details of how each of the operators at the PTI

for the view mechanism were implemented, and then deal with some of the

problems that we encountered, some of which are directly related to the deci­

sions made concerning expressions.

8.3.3. Operators at the ASPECf PTI

The operators for the view mechanism which are available at the

ASPECT PTI have been implemented as a library of C programming language

functions which a user of the PTI, an ASPECT tool writer, would link in to

a main program which he/she was developing. This would make available all

the operators implemented.

Although a summary of the specincation in Z of the operators aVail­

able at the PTI has been given in the previous chapter, here we briefly

describe each of the primitive operators implemented with particular emphasis

on their implementation, the decisions and problems involved, and their rela­

tionship to the formal specincation.

Note that the full set of operators have not been implemented for this

prototype. It was felt that the functionality of the mechanism would not be

impaired by omitting certain secondary operations which are- required for com­

pleteness of the model, but which otherwise serve no research purpose. In

A View Mechanism for an IPSE . Chapter 8

Page 155

particular, these are the operators to delete an AE, remove an object from an

AE, and to modify an AE object.

8.3.3.1. A Note on Error Handling

Within each of the operators offered at the ASPECT PTI, the con­

straints and integrity checks defined in the specification are implemented as

part of the operator. Therefore, when an operator is executed, if any of

these checks fail, then the operator returns a null value to indicate failure,

and the predicate in the specification which has been invalidated is recorded

within an error variable. A user of the operators can now examine this vari­

able and can relate the error precisely to some point in the specification docu­

ment. This direct correlation between implementation and specification will

clearly be a major benefit to the system's use, and is a prime example of the

advantages of formally specifying software before implementation.

8.3.3.2. Creating and Linking AE's

The basiC framework for the creation and control of an AE graph was

simple enough to implement; each AE is represented as an instance of the

entity type "AE", and can then be linked in the AE graph to existing AE's

using the "link_ae_obj" operator.

A View Mechanism for an IPSE
Chapter 8

Page 156

Creates a new AE, and returns the surrogate of the new AE. A sin­

gle entity of type "AE" is created.

Given a set of parent AE's which already exist in the AE graph, a

link is made between these parents and the given child AE. For each link,

an instance in the "AE_ TREE" entity type is created.

8.3.3.3. Adding Objects to an AE

To add an object to an AE, a set of operators are available. The

chOice of which one to use depends on whether the object is a data, operator,

or tool object, and on whether it is a new object or an existing one. In all

cases we associate an object entity with an AE entity, but for new objects

the object entity must first be created.

8.3.3.3.1. add_data_obj

Adds a new data object definition to an existingAE. The describing

expression of the object is contained in a file as the compiled form of a C

function implementing the expression. A new surrogate is generated to

represent the defining expression for the new data object.

To assist in type checking, and as a display aid, the return type of

the object, and a list of the lower level objects used in the describing expres­

sion, are given as text strings. Each of the lower level objects used in the

describing expression is then checked to ensure that it is a valid object, and it

A View Mechanism for an IPSE Chapter 8

Page 157

is an object aVailable in a parent of the AE to which this object is being

added.

This is similar to the previous operator in that a compiled C function

implements the operator, but an additional set of parameters must be given

which specify the parameters to the operator. This is no more than a set of

text strings containing the types of the parameters.

In addition to making the association between an AB and the new

object, a new operator entity is created, and a set of parameter entities

characterise that operator. The new object then designates the operator entity.

This is similar to the previous operator, except that all objects used in

the describing expression must come from the AB in which the object is being

made available, not from its parents.

8.3.3.3.4. inherit_ae_obj

If a view object already exists, and is associated with an existing AB,

then a child of that AB can inherit the object using this operator. On giving

the operator to be inherited, a check is made that this object is available to a

parent of this AB, and if so a new association to this AB is then made.

A View Mechanism for an IPSE

8.3.3.3.5. inherit_t001_obj

Chapter 8

Page 158

A tool object can also be inherited in an analogous way to the previ­

ous operator.

8.3.3.4. Displaying Objects in an AE

To enable users to determine what is accessible within an AE, display

operators are available to show them. A separate operator exists for data and

operator objects.

8.3.3.4.1. show _data_objs

For a given AE, a list of surrogates of data objects aVailable through

that AE is returned, together with the types of each object. This is imple­

mented by querying the view mechanism structures to find which objects are

associated with an AE, see which ones are data objects, and to return them

with their types.

8.3.3.4.2. show _op_objs

This is similar in all respects to the previous operator, but in addition

the parameters expected by a view operator object are also returned.

A View Mechanism for an IPSE Chapter 8

Page 159

As in the previous operator, all tool objects of an AE can be displayed

together with the expected types of parameters.

8.4. Accessing ASPECf Through a View

A second component of the ASPECT view mechanism, over and above

the set of operators provided at the ASPECT PT!, must deal with the interac­

tions between users and view objects.

When a user accesses the ASPECT services, it must always be to carry

out a given Activity. In logging into this Activity, the user is then given a

particular view of the ASPECT services through an AE which provides the set

of data, operator, and tool objects which enable the user to perform the task

in hand. Through the view mechanism, we must ensure that a user working

within an AE is only able to access the facilities through that AE, and that

when a view operator is executed, for example, then the correct sequence of

lower level operations take place to implement the operation.

8.4.1. Providing the Correct Objects

The problem of ensuring that the users of an AE are only given access

to the specifted objects for the AE can be handled in a number of ways.

One of the most obviOUS solutions is to insist that a parameter of every view

object is the AE from which the object is being accessed. Then, a command

shell around all operations can accept a request to perform an operation on

certain data items, and can immediately check that the given AE has access to

both the operator and data objects specifted. The identifter of the AE need

A View Mechanism for an IPSE Chapter 8

Page 160

not be explicitly given for each operation, but can be bound into a users

environment on logging in to the Activity (in UNIX systems through

"environment variables").

So, the front line to any user command is a simple command shell

which accepts the requested operation, determines which AE is making the

request, and queries the view mechanism structures in the information base to

ensure that the operator and data items accessed are aVailable to that AE.

8.4.2. Evaluating View Objects

In the speciftcation of the view mechanism, and in the preliminary

prototype implementation discussed earlier, the process of evaluating a view

object was described as an interpretive process; when a request for a view

object is made, either for a data object or execution of an operator object (we

deal with tool objects later), then the describing expression for the object was

found, and evaluated by replacing all the objects within that expression by

their describing expressions, and repeating this process recursively until an

expression involving base objects only remains. This base object expression

can then be directly executed using the operators and data objects of the

ASPECT PTI.

However, one of the consequences of the decision to implement expres­

sions as RMIT operators embedded within a compiled form of C language

function, is that we now have view objects as pre-compiled units which can

be directly executed by instantiating the function with suitable parameters.

This approach has obvious performance advantages, as the time taken to

evaluate a view object is much less for a compiled object against an inter­

preted one, but has the disadvantage that changes in lower -level view objects

are not automatically reflected in higher level objects derived from them.

A View Mechanism for an IPSE
Chapter 8

Page 161

The higher level objects must be re-compiled. As a result, we lose some of

the data independence properties which we found attractive in this mechanism.

For this prototype implementation, though, we accept this shortcoming,

but note that if we were to implement view objects as RM/T operations

within an interpreted language such as Lisp or Prolog, then we may well

alleviate these problems. Similarly, we could devise a scheme which deter­

mines Which objects are affected when another object - is amended, and

automatically re-compile such objects. This has not been attempted for this

implementation.

8.4.3. Invoking Tool Objects

The process of invoking a tool object is considered separately from

evaluating data or operator objects for two main reasons.

Firstly, the concept of a tool differs from other view objects in a

number of ways. In scope, for example, it differs because a user can register

a tool object in an AE in which they are currently working, 'but cannot add

new data or operator objects to that AE. Tools also differ in their construc­

tion, as it is expected that they will be written in a programming language as

a separate program, and then compiled. It is this compiled program object

that can be inherited by child AE's.

The second way is through the Activities mechanism which controls

and co--ordinates operations on the information base. Within the Activity

mechanism, tool invocations are tracked as recoverable atomic operations.

Hence, it should be possible to abort the invocation of a tool and the system

will automatically roll-back changes that have been made by that tool invoca­

tion. View operator objects,' on the other hand, are treat~ as atomic (they

either complete or do nothing) but are not recorded by the Activities

A View Mechanism for an IPSE

mechanism.

Chapter 8

Page 162

Hence, a separate operator available in an AE will be to invoke a tool

object. This will, ftrst of all, check that the tool object invoked is accessible

through this AE, before calling an operator implemented as part of the Activi­

ties mechanism which records the start of the tool as a node in an execution

tree, and forks a new process Cin the UNIX sense) to invoke the tool.

8.5. Physical Characteristics of the Implementation

As a prototype for further experimentation and analysis, the imple­

mentation of the view mechanism described above has been developed with

the aim of assessing the functionality of the mechanism without particular

regard for performance issues. However, for completeness, it is appropriate at

this point to make a brief comment on the physical characteristics of the

view mechanism implementation.

The software was developed on a SUN Workstation running UNIX 4.2

BSD, and the view operators were written in the C language as a set of C

functions maintained in a library. The current version of this library occu­

pies 75K bytes of memory.

Due to the layered architecture of the ASPECT system shown in ftgure

8.1, the performance of the view operators is dependent on the underlying

RMIT implementation, which itself has been developed as a test vehicle for

ideas rather than for high performance. As a result, execution times for the

view operators range from 3 seconds elapsed time to create a new AB, to

over 30 seconds elapsed time to show the operators in an AB. The issue of

performance is discussed further in the "Future Work" secti~n of chapter 10.

A View Mechanism for an IPSE

8.6. Summary

Chapter 8

Page 163

In this chapter, we have taken the specification of a view mechanism

given in chapter 7, and refined this to an implementation integrated with the

other facilities provided by the ASPECT IPSE. The main emphasis of this

discussion has been the implementation problems that existed, the choices made

to resolve these problems, and analysis of the relationship between the imple­

mentation and the formal Z specification. In the next chapter we examine,

through examples and discussion, how this mechanism performs within the

wider context of IPSE facilities, and see how the stated aims for ASPECT of

integration and openness have been achieved through this mechanism.

A View Mechanism for an IPSE

CHAPTER 9

Chapter 9

Page 164

EXAMPLES, ANALYSIS, AND EVALUATION OF THE VIEW MECHANISM

9.1. Introduction

To illustrate how the view mechanism can be used within an ASPECT

IPSE to support the process of large software systems development, the ideal

would be to allow an ASPECT IPSE to be used in a project of realistic size

and complexity, and to investigate its performance in terms of its ease of use,

physical performance statistics, and so on. In trying to achieve this, we are

faced with at least the following problems:

the aim of ASPECT is to provide an infrastructure for users and tools.

The evaluation of services provided by an ASPECT IPSE can only take

place when the IPSE has been populated with tools, and customised to

support a large project. This work will be costly and time consuming

to carry out.

for an organisation to invest time and resources into moving its

software development to an ASPECT IPSE, there must be some proven

record of success before such a commitment will be made. This prob­

lem, experienced by IPSE vendors in general, and only recently being

aided by the aVailability of metrics and statistics for IPSE perfor­

mance, is particularly applicable to a research project such as ASPECT,

producing a prototype implementation as a test vehicle for ideas rather

than for rigorous testing.

A View Mechanism for an IPSE
Chapter 9

Page 165

as a prototype implementation, many of the development decisions

taken within the ASPECT project have resulted in an implementation

which allows analysis at a functional level, at the expense of areas

such as performance optimisation, robustness, and error recovery. Con­

sequently, a certain amount of re-engineering would be needed to bring

the implementation to production standard.

Having said this, however, work is progressing in three areas which, in

the long term, will help in the analysis and evaluation of the work reported

here.

Firstly, under the Alvey Software Engineering Programme, a project is

currently underway speciftcally aimed at a practical evaluation of the ASPECT

IPSE.Sef86 A collaborative project between British Aerospace and Lancashire

Polytechnic, the work is designed to follow three routes:

evaluation and assessment of the ASPECT project through reading and

commenting on the working papers and reports produced by the pro-

ject.

applying the prototype ASPECT IPSE to sUitable practical examples.

examining the training requirements for organisations which would

wish to introduce ASPECT-type IPSE's into their software development

strategy.

This is an on-going project, which will take many more months of

work before presenting the results of its evaluation.

Secondly, work on the ASPECT project itself has been extended with

the particular aim of consolidating the results achieved thus far. Amongst

other things, this involves applying the ASPECT IPSE to a number of

simplifted examples. In analysing its performance for these_cases we can infer

how an ASPECT IPSE might handle a larger, more complex situation. It is

A View Mechanism for an IPSE

this work that forms the bulk of this chapter.

Chapter 9

Page 166

Finally, some of the fundamental principles of ASPECT were derived

from an IPSE product called Perspective, produced by the company Systems

Designers (SD). These ideas formed the basis of the work carried out on

ASPECT and, of course, brought the project quantifiable results showing how

productivity gains of up to 600% can be achieved, as well as a 90% reduction

in errors, using IPSE technology.Pri87 As the project's ideas developed a

number of these have been taken up by SD and incorporated in their develop­

ment of Perspective currently known as Perspective Kernel (PKJ. Product

development is continuing by incorporating more of the ideas in planned

future releases. It will be interesting to see how this IPSE develops, and

how it performs in forthcoming projects.

So, as a precursor to the more stringent analyses which are to be car­

ried out in the near future, the analysis and evaluation of the ASPECT view

mechanism reported here rests on its use in a number of simplified examples.

We examine how an ASPECT system could deal with these examples, discuss

an implementation in practice, and suggest how we can extrapolate from this

work to use an ASPECT IPSE for large scale software development.

9.2. An Example

Of the many problems which arise throughout the lifetime of a large

software project, one of the most complex and time consuming is that of

maintaining the finished product. We therefore select a realistic example of

the particular operations and tasks which occur at this phase, and then exam­

ine one way in which an ASPECT IPSE could be used to support these activi­

ties.

A View Mechanism for an IPSE Chapter 9

Page 167

For a typical scenario of the maintenance phase of a large software

project we can envisage a situation in which a project manager receives error

reports from users of software. When the manager evaluates these reports,

he/she may decide that changes to the released versions of software are

needed and can formulate change requests which are approved by a designer

before being assigned to programmers, and subsequently carried out to effect

the change. For one particular change request, the course of events will typi­

cally proceed as follows.

Firstly, the manager will create the new change request, describing the

fault that has occurred and the software modules involved. This request will

then be issued to the designer for approval before being passed on to a pro­

grammer who is instructed to deal with the problem. Now the programmer

can carry out the change by creating amended versions of some of the

software modules involved, and testing the new components to ensure the

changes are effective.

Once this unit testing has been completed, the new software will be

passed on to the quality control department, who will then run rigorous sys­

tem testing with the new software before approving a new release for custo-

mers.

A View Mechanism for an IPSE

9.2.1. The ASPECT Approach

Chapter 9

Page 168

Consider the use of an ASPECT IPSE to support the development of a

large scale software project, and the maintenance phase of the development in

particular. Part of the data in the Information Base may concern change

requests to amend released versions of program modules, and we would like

to record the assignment of programmers to attend to these change requests,

and to monitor the status of the requests. This is typical of the problems

which are encountered in developing large software systems, and in most cases

very poor ad hoc solutions exist. Let us consider how we might support the

maintenance process of a project as outlined above through the use of an

ASPECT IPSE, with particular emphasis on the use made of the view mechan­

ism.

Suppose that structures are defined in the Information Base to record

the necessary data, as shown in figure 9.1 using the notation described in

chapter 8.

In figure 9.1 change request entities are recorded as instances of the

"Change_Request" entity type, and programmers as instances of the "Program­

mer" entity type. Assignments of indiVidual programmers to work on partic­

ular change requests are represented by instances of the associative entity type

"Assignment". Each change request is associated with an initial source code

file through the entity type "Change_Request_Old", and when dealt with, will

also be associated with a new version of the source code through the entity

type "Change_Request_New". The contents of a file are classifted as either

Ada source or Ada object through the entity types "Ada_Src" and " Ada_Obj",

which are subtypes of the entity type "File". The information about which

programmers can access each file is represented in the entity type "Permis­

sions". Finally, the particular tools used to create the files -are represented by

the entity type "operation", which associates a file with the tool that was

A View Mechanism for an IPSE

I K Ad._S~ I
K

perm 11.

Chapter 9

Page 169

B
File

G IK~mpll.r I

K Tool

Fig 9.1 Entity Diagram for Simplified Example.

used to create it.

Each of the entity types shown will have a number of properties

appropriate to the information in which we are interested. For example, file

entities may be recorded with their size, owner, and the date they were last

changed. Hence, by recording the data in a form which allows arbitrary

queries to be defined we are able to easily extract the information of interest.

To illustrate how an ASPECT IPSE can be used to help maintain con­

trol, let us consider the creation of a new change request, its assignment to a

programmer, and the subsequent creation of an amended version of the code

to effect the change.

A View Mechanism for an IPSE Chapter 9

Page 170

We can envisage a manager who is responsible for creating and assign­

ing new change requests from error reports which have been submitted from

customers. When the manager has evaluated an error report, and decided

that a new change request needs to be created, then he/she will log in to the

existing "CREATE NEW CR" activity to carry out this task. This activity

will already have been defrned for the purpose of allowing new change

requests to be created and assigned. It will consist of a set of pre-conditions

which defrne when it is valid to create a new change request, a set of post­

conditions which defrne when the task has completed satisfactorily, and a set

of rules which govern all operations which form part of the execution of the

activity. When the activity was created, it was associated with a user who

is allowed to carry out the activity, in this case the manager, and an

Abstract Environment CAE) which defrned how the user executing the activity

views the Information Base in terms of the data he/she can access, the opera­

tors that can be executed, and the tools that can be invoked. For example,

for this activity, the AE may allow access to programmer, change request,

and assignment information, provide operators to create a new change request

and assign a change request to a programmer through the "publish" operator.

A View Mechanism for an IPSE

Fig 9.3 Screen Display on Entering the ASPECT System.

Chapter 9

Page 171

Quit

In figure 9.3 we see the screen display from an implementation of this

example using the graphical interface facilities to an ASPECT IPSE built using

the facilities of the ASPECT HC! services, collectively known as The

Presenter.Too86 The display shows the state of the system when a user enters

the ASPECT system, with four named regions along the top of the screen.

Each region refers to an available Activity which the user can attempt to log

into to carry out some work. So, for example, by selecting the left-most

region the user can attempt to log into the Activity to create a new change

request "CREATE NEW CR".

A View Mechanism for an IPSE

D
"L II

I

'" YES

LOGI" {conl1nua~10nl: Cnect H,at ac", " lSo not c.o.pletea? ,.

[.lATA QUIT

Fig 9.4 Screen Display on Logging into
the "CREATE NEW CR" Activity.

Chapter 9
Page 172

Quit

In figure 9.4, the manager has logged into the Activity to create a new

change request. The region on the lower left of the screen contains trace

information which indicates to the user which actions are taking place, reports

errors and illegal actions, and so on. On logging into this Activity, a number

of regions have been displayed on the right of the screen which show the

different operations that the user is allowed to perform within this Activity.

These are obtained by querying the ASPECT Information Base to determine

which AB has been linked with this Activity, and then displaying a region

for each of the operators within that AB. So, for example, one operator

aVailable is to create a new change request, "create_new _cr_obj", and is

A View Mechanism for an IPSE Chapter 9

Page 173

defined, perhaps unknown to the user of the operator, as a sequence of lower

level operations to create a change request instance with appropriate property

values.

Also available within this Activity are a set of data objects shown on

the left of the screen which the user can display at any time. These may

have been explicitly inherited from a parent AE, such as

"Change_Request_obj", or be abstract data objects such as "pro&-.cr_obJ' which

is a combination of lower level objects. In this case the object contains all

change requestS together with the programmers assigned to carry them out.

For all the data objects available, only the entities which are owned by that

user, or have been explicitly published to, and acquired by that user, are

displayed.

Now let us suppose that the manager executes the operators to create a

new change request and publishes that request to the designer to approve the

request. If the programmer, impatient to carry out his/her work, attempts to

login to the Activity to implement the change request, "IMPLEMENT CR", as

shown in figure 9.5, then the login operation fails because the pre-conditions

associated with the Activity have not been met. In this case, one of the

pre-conditions set for the Activity was that the programmer could not start

the Activity until a designer approved change request was available. As this

is not yet the case, the request to initiate the Activity has failed.

A View Mechanism for an IPSE

.... yES

LOGIN (r,E'III): Cneck the Pre Rules

t>. Now chec~ tne.

c. They'rE FAl.SEII
- ... ,olatlon o<f prec'tdte starCexeCllllth_oe-.?

Fig 9.5 Screen Display on Attempting to
Login to the "IMPLEMENT CR" Activity.

Chapter 9
Page 174

QUIt

So, in a similar fashion, the designer could log into the "DESIGNER

APPROVE CR" Activity, and approve the change request, publishing it to the

programmer. The programmer in turn can log into the Activity "IMPLE­

MENT CR" and will have available the data and operators necessary for the

task. Most probably, besides the software modules involved in the changes,

this will include the error report itself, a designer's summary of the problem,

and the initial speciftcation document for the modules. Tools and operators

will also be aVailable within the Activity such as editors, compilers,

debuggers, and so on.

A View Mechanism for an IPSE
Chapter 9

Page 175

When the programmer has made the changes he/she thinks are neces­

sary, and performed testing on the modules in question, the latest software

will then be published to the quality control department, which will have an

on-going activity to fully test amended versions of software published to it,

"TEST CR". On receiving the new software, the quality control department

will apply the test suite to the fully built system and analyse the results.

If unsatisfactory, then a report of the problems would be sent to the pro­

grammer, who will then continue with his/her work. If, on the other hand,

the tests are successful, then an acknowledgement will be sent to the pro­

grammer who is now able to terminate his/her activity. The manager will

also be informed, and can update the status of the change request to "com­

pleted".

9.2.2. Summary

In this section we have discussed in detail a simple example, with

reference to an implementation of the example built using the ASPECT HCI

services. Without too much difficulty we can extrapolate from this example

problem to envisage a larger system in which a similar process of the creation

of Activities linked to AE's provides the mechanism for the controlled imple­

mentation of a task. In addition, part of an AE for an Activity may well

be the operators for creating new Activities and AE's, and for assigning them

to users. In this way the hierarchical nature of many software tasks can be

modelled and controlled in a convenient and flexible way, allowing Activities

to be created and decomposed to mirror the development process.

A View Mechanism for an IPSE

9.3. Tool Interfaces

Chapter 9

Page 176

One of the stated goals for the ASPECT view mechanism was to

investigate the ease with which we could embed existing tools into an

ASPECT IPSE with minimum changes to the tools themselves. The way in

which we do this is to define a view of the Information Base, through an

AE, which mirrors a tool's native operating environment. The tools can then

run in this view without change, while the integrity and consistency of the

Information Base is not compromised by any attempt to by-pass the enhanced

semantic controls applied at the ASPECT PTI.

To illustrate how this mechanism could be applied in practice, we

examine one particular example of the inclusion of tools foreign to ASPECT

which is of particular importance, and suggest how we might use the view

mechanism to facilitate their use in an ASPECT IPSE.

9.3.1. The ASPECI' Open Tool Interface (OT!)

An important set of tools which we would like to be able to make

use of in an ASPECT IPSE will be those available in UNIX systems. The

ease with which new tools can be added to a UNIX system, coupled with the

popularity of the UNIX operating system itself, has led to a particularly rich

set of tools and utilities which operate in a UNIX environment. Naturally,

where these tools have already been implemented it would be desirable to

import them in to an ASPECT IPSE and not only save a great deal of time

and effort in duplicating the implementation of existing tools, but also to pro­

Vide access to ASPECT data through tools which are familiar to many users.

Of course, we have a simple solution to include UNIX tools in an

ASPECT IPSE - because ASPECT is hosted on the UNIX operating system, we

could allow UNIX tools to access data directly through this interface, by-

A View Mechanism for an IPSE Chapter 9

Page 177

passing the higher-level ASPECT PT! which has been built above it. How­

ever, there are a number of reasons why this approach would be undesirable.

Firstly, from a security and integrity viewpoint, having constructed a highly

semantic interface to data access, in which users view data as collections of

entities, or as relations, it would mean that we now allow them to break' the

constraints that exist at that level and deal with the underlying nle represen­

tation itself. Maintaining data integrity in this environment would be

signincantly more complex. Additionally, taking this approach is dependent

upon this particular implementation of ASPECT. If we were to re-implement

ASPECT on another operating system, for example, then this solution would

no longer be appropriate. A further reason for not adopting this solution is

that although we have overcome the problem for these particular tools, we

face a similar set of problems for importing tools built to other interfaces,

and a uniform solution to the problem would clearly be desirable.

The approach taken in ASPECT is to provide a view of the ASPECT

Information Base which supports the UNIX System Call Interface, and hence

allows integration of the UNIX tools in a uniform way, without compromising

the integrity provided at the ASPECT PT!. This approach is the uniform

mechanism used to support integration of any foreign tool into an ASPECT

IPSE.

A View Mechanism for an IPSE

9.3.2. An Example

Chapter 9

Page 178

As an example, consider a UNIX tool which, as part of its operation,

opens a UNIX file, writes to the file, and then closes the file. One of the

predefined types of ASPECT is the file type, and any entity can have an

attribute whose value is drawn from the file type. Therefore, at the ASPECT

PTI there are operations for opening, closing, reading, and writing of ASPECT

files. So, for example, to support the UNIX file open operation, a mapping

would be defined in the form of an operator within an Abstract Environment

CAE) which converts the UNIX file open into an ASPECT file open. Typi­

cally, a UNIX operation to open a file "fred" would result in an ASPECT

operation to open the file attribute assOCiated with the ASPECT entity whose

name is "fred". In a similar way it is expected that many of the UNIX Sys­

tem Call Interface operations could be supported in ASPECT, and consequently

many of the UNIX tools could be used within an ASPECT IPSE.

Clearly, having established and demonstrated the principles behind the

mechanism, practical issues such as performance would need to be examined.

At this point we choose not to address these issues, other than making the

observation that in a full production standard ASPECT IPSE the overhead

involved in accessing UNIX operations in this way could be reduced through

exploiting optimised software implementation techniques, and if necessary

through the use of specialised hardware.

A View Mechanism for an IPSE

9.4. Other IPSE Interfaces

Chapter 9

Page 179

The IPSE field is still in a state of flux, and a number of approaches

to IPSE design and philosophy are at present under consideration in an

attempt to define the way forward in IPSE research. As a result, a number

of IPSE's have been implemented over the past few years. (A discussion of

some of these is presented in Chapter 2 of this thesis). Hence, work such as

has been carried out within the ASPECT project must be fully aware of the

wider context of IPSE development if it is to avoid becoming classed as

irrelevant as both political and technical forces advance the field. In particu­

lar, work in providing an IPSE framework, as attempted by ASPECT, in

which a tool writer can embed tools for use throughout the software develop­

ment life-cycle, is likely to be directed towards a standard tool writer's inter­

face, driven by the need for portability of tools between different IPSE's.

Until this occurs, in the near or distant future, the ASPECT approach to tool

integration will be particularly useful for allowing an ASPECT IPSE not only

to allow tools to be added which have been specially written to the ASPECT

PTI, but also to allow the addition of tools written to other IPSE PTI's.

This use of the view mechanism makes the ASPECT system particularly

attractive in the quickly changing field of IPSE development.

Here, we look at how an interface to data based on the entity­

relationship approach to data modelling, as supported by the PCTE, could be

offered as a view of the ASPECT Information Base through the creation of a

suitable AB.

A View Mechanism for an IPSE

9.4.1. The PCTE as a View of ASPECT

Chapter 9

Page 180

The PCTE, in a similar way to ASPECT, is designed to be the basis

for the construction of IPSE's which support a particular project 1ife-cycle

model through an integrated collection of tools and services.Bul8S, Sys87 The

tools access PCTE services through a common Public Tool Interface (PT!)

which prOVides a set of primitive operations that allow controlled interaction

with the PCTE facilities. Hence, the basic philosophy of PCTE and ASPECT

can be conSidered to be the same. What is Significantly different, however, is

the way in which each system attempts to provide the necessary support for

meaningful tool interaction.

As in ASPECT, the services provided in PCTE are grouped into a

number of areas, and for this work we concentrate on the Object Management

System (OMS) of PCTE, which can be seen as analogous to the Information

Base of ASPECT.

9.4.1.1. The Object Management System of PCTE

To record and manipulate the data generated during a project life­

cycle, the PCTE contains an Object Management System (OMS) which records

data items as objects which are involved in relationships with other

Objects.Gal86 Where as the ASPECT Information Base uses RMIT to defrne the

conceptual model of data, the PCTE OMS is based on its own particular

derivation of the Entity-Relationship (ER) model in which PCTE objects

resemble the entities of the ER mode1.Che76

In many ways the RMIT approach of ASPECT and the ER-based

model of PCTE can be considered very similar at the conceptual leve1.Hit87a

Where they differ greatly is .in the representation of the niodel they employ,

and in particular the data deftnition and manipulation languages they use.

A View Mechanism for an IPSE

The main ditr erences can be summarised as:

Chapter 9

Page 181

in PCTE two distinct types of object exist, objects and links, and

separate operators exist for each type. For example, there is one

operator to create an object, and another to create a link. A link is a

uni-directional association between two objects, while a pair of links

between two objects can be bound together to form a relationship

between the objects. In ASPECT everything is considered to be an

entity, which will be classed as one of kernel, associative, or charac­

teristic, and in addition may be designative. A single set of operators

are aVailable for all entities.

in PCTE a network-based implementation is used in which users navi­

gate from one object to another via the relationships and links. In

contrast, ASPECT employs a relational set-oriented approach with data

manipulation via a relational algebra.

in PCTE objects and links are identified by pathnames, as a direct

extension of naming facilities in UNIX. ASPECT, on the other hand,

identifies each entity with a unique system generated identifier, and

allows the user the flexibility of defining the specific naming scheme

required for a particular project or task.

the meta-data describing, for example, which types of object exist,

what their attributes are, and so on, is accessed in PCTE through a

fixed set of operators. The structures containing meta-data information

are not exposed, and hence user-defined queries on this data are not

supported. In particular the query tools which manipulate user data

cannot be applied to the meta-data. In ASPECT, however, the model

is self-referential in the sense that all meta-data is held in the same

form as user defined data, and can be accessed in the same way, using

the same set of relational algebra operators.

A View Mechanism for an IPSE

9.4.1.2. Embedding a PCTE Tool in ASPECT

Chapter 9

Page 182

Having given an indication of the kinds of differences which exist in

the information storage and manipulation facilities of PCTE and ASPECT, we

now look at how we might approach the task of taking an existing PCTE tool

which accesses and manipulates data, and supporting it within an ASPECT

IPSE.

We begin by looking at an example of how we could support opera­

tions on a particular set of data structures already within ASPECT, before

considering the more general case where any PCTE tool could be supported in

ASPECT.

9.4.1.2.1. A PCTE View of Existing Structures

Given an ASPECT system in which the data schema has been defined,

one of the actions we may wish to take could be to import an existing PCTE

tool which makes access to those structures. To support the new tool we

would define a view of the ASPECT PTI by creating a sUitable Abstract

EnVironment CAE) which supports the operations carried out by the tool.

These operations would be mapped down to their interactions with ASPECT

data using ASPECT PTI operations.

To illustrate how this could be achieved, consider the example

described earlier in which the ASPECT Information Base is used to record

information about programmers and their assignments to carry out change

requests on program modules, shown in figure 9.3. Also, consider a PCTE

tool which, amongst other things, creates new change requests and assignment

instances. Following the C language interface to PCTE,Bu185 particular calls to

the operators to create objects and relationships could be

A View Mechanism for an IPSE Chapter 9

Page 183

crobj("mypathname", " change_requestl " , Change_Request, 01);

crlink("fred", "link1", "change_requestl");

which creates a new change request named "change_requestl" within the con­

text of "mypathname", and creates an assignment of the new change request

to programmer "fred", giving the assignment the name "link1". Default initial

attribute values will be assigned to the new object and link, which can be

re-defmed with calls to the operator "setattr" for an object, and "setlattr" for

a link.

In order to support these operations within an AE, sUitable AE opera­

tors would need to be defined which map these PCTE operations into their

equivalent ASPECT operations. For example, the operation to create a new

object could be defmed as in figure 9.6.

1nt crobj(~, abjJlBllS, abj_type, IOCX:le)
cba.r *~, *abjJlalre, *abLtype;
short zocx:'ie ;
{

}

surrogate s~, s_type, new--.surg;

/* oorM3I't ~ ani abjJlBllS to SllI'I'Ogates * /

s~ = SllI'I'Ogate_of(~, :ill1t1aJ ~);
s_tY.I:e = SllI'I'Ogate_of(abLtype, sJlBlISS!R09);

/ * create an 1nsta;coe of abLtype * /

new....surg = create_entity(s_type, attIrap);

/* give nazre abjJlBllS to new entity */

nmrELentity(new--.surg, abjJlBllS, sJlBlISS!R09);

return(CK) ;

Fig 9.6 ASPECT Implementation of "crob]"".

A View Mechanism for an IPSE
Chapter 9

Page 184

In figure 9.6, a simplified description of the PCTE "crobJ' operation in

terms of its underlying ASPECT operations has been given. From this exam­

ple we can see that a correspondence exists between a PCTE object and an

ASPECT entity, and that through the operations "surrogate_of", which returns

the surrogate of a name within a namespace, and "name_entity", which gives

a name to an entity within a particular namespace, we can create a mapping

between PCTE names and ASPECT surrogates. In a Similar way we could

define a mapping for the PCTE "crlink" operator.

9.4.1.2.2. Providing Support for any PcrE Tools

The simple example in the above section shows how the PCTE opera­

tors for creating objects and links could be supported in ASPECT. To enable

any PCTE tool to be supported in ASPECT, an ASPECT AB would have to be

defined in which all of the operators which are available at the PCTE PTI

were aVailable and had their expected functionality. It would clearly be a

non-trivial task to define and implement such an AB, particularly with the

major differences in data manipulation operations offered by the two systems.

However, the way in which this could be achieved would be to define these

mappings though analysing the operators of PCTE and producing a schema for

the meta-data of the OMS in terms of RMIT entities. This schema could

then be recorded within ASPECT, and the PCTE operators defined in terms of

their RMIT operations on this meta-data, in an analogous approach to the

way in which the RM/T catalog is used by the RMIT operators. Indeed, a

first attempt at the definition of a meta-schema for PCTE has been

madeRob87a and the step of recording this information in ASPECT and defining

the appropriate operators is currently under consideratiQn. Once this is

achieved, it would be possible to support any of the PCTE operators, and

A View Mechanism for an IPSE

hence any PCTE-based tool, within an ASPECT system.

Chapter 9

Page 185

Again, practical issues such as the performance of supported PCTE

tools will be important in a production standard ASPECT IPSE. Steps

currently being taken towards addressing these issues are discussed in the next

chapter.

9.5. Summary

In this chapter we have shown through a number of simple examples

how a view mechanism can be used as a component of an IPSE to support

the creation and use of external views of the ASPECT services to suit indiVi­

dual users and tools. Clearly, more work is required in this area to fully

evaluate the mechanisms provided, and the means by which this is to be

achieved have been outlined. Given the current state of of IPSE research,

with a Significant degree of uncertainty as to the best way to provide IPSE

support through a PTI, the ASPECT approach of including within an IPSE the

facilities for its own customisation to suit indiVidual users and tools, and

hence a number of IPSE PTI interfaces, should prove particularly useful as a

vehicle for the experimentation and further study which is certainly needed.

A View Mechanism for an IPSE

CHAPTER 10

CONCLUDING REMARKS

10.1. Introduction

Chapter 10

Page 186

In the final chapter of this thesis we review the work that has been

carried out, and discuss the areas in which it may continue in the future.

10.2. Review of Work

The original aims of this thesis, outlined in chapter 1, were to examine

past and current methods for constructing IPSE systems, to evaluate software

engineering databases as the central component of an IPSE, and to specify and

implement a view mechanism as an integral feature of an IPSE infrastructure.

In this section we review the work reported in this thesis with particular

em phasis on these aims.

The early stages of the thesis were an analysis of IPSE components

through examining the development of IPSE technology from the original

development environments for software which consisted of a set of ad hoc

tools supporting different stages of the development life-cyc1e. From this

analysis, the importance of open IPSE's was advanced, providing flexible sup­

port for the integration of tools through a Public Tool Interface (PTI).

At the heart of an IPSE is a structured repository for recording all

development data. We continued by analysing the advantages of using a

database as this central component, and looking in detail at how a software

engineering database exhibits particular requirements for which conventional

A View Mechanism for an IPSE

database technology is not always readily applicable.

Chapter 10

Page 187

One of the mechanisms generally aVailable within a commercial data­

base system allows multiple external views of the database to be defmed.

Such a view mechanism allows different abstract interfaces to the data to be

defmed, appropriate to different users needs. Within an IPSE system there is

a Similar need for supporting interaction with IPSE data at different abstract

levels. However, the nature of IPSE use, accessed by a particularly diverse

set of users from programmers to high-level managers, coupled with the need

to support tool' interaction with data where the tools may have been written

to many different interfaces, provides additional requirements for an IPSE

view mechanism. Indeed, by examining the abstraction mechanisms used

within programming languages to support similar aims, we were able to defme

a model of a view mechanism for use in an IPSE which is much more

powerful than those generally available in existing conventional database sys­

tems.

Having defmed a view model, we then specifted an IPSE view mechan­

ism using the formal speciftcation language Z This provided a formal

description of the model which was then used as the basis for a subsequent

implementation within the constraints of a larger IPSE project.

FollOWing a discussion of the implementation issues which needed to be

addressed, an analysis of the mechanism was given by considering a realistiC

example on which the' view mechanism, in conjunction with the other IPSE

facilities, was used. From this example, the ways in which the view mechan­

ism could be applied to other examples were discussed.

A View Mechanism for an IPSE

10.3. Future Work

Chapter 10

Page 188

FollOWing on from the work reported in this thesis, there is scope for

continued research in a number of directiOns. This work can be diVided into

three main areas.

Firstly, improvements to the implementation of the view mechanism

will need to be made as a precursor to further analysis of its use. In partic­

ular, the time taken to perform some of the operations, for example, to link

an Activity with an AE and a user, would at present not permit the realistic

use of these mechanisms within a "live" system. The indiVidual view

mechanism operators themselves could be optimised, but the more fundamental

reason for the performance problems lies in the use of a commercial database

system, db++, as the internal level on which the conceptual base of ASPECT,

RM/T, has been implemented. As a result, each RM/T query or update

operation on an entity executed by a view operator performs a number of

underlying db++ operations on relations. These in turn are mapped to under­

lying UNIX operations on files. This results, for example, in an execution

time of the order of a second each time a name is converted to a surrogate,

or vice-versa. As a typical view mechanism operator will require the conver­

sion of names to surrogates many times in a single execution, we have a

severe bottleneck on performance. Work currently under consideration is to

re-implement RMIT directly on top of the UNIX operating system, by-passing

one of the most time consuming layers in the implementation architecture.

This would Significantly improve execution times of view operators.

Secondly, there is Wide scope for further investigation and analysis of

the view mechanism in a number of areas. Most importantly, there is a need

for continuing the initial evaluation of the ASPECT services for supporting

large scale software development, in particular the role of -the view mechan­

ism in that process. This is seen as the most appropriate area for continued

A View Mechanism for an IPSE

ASPECT research, and is currently under investigation.

Chapter 10

Page 189

However, a wider analysis of the view mechanism is also possible.

For example, there is currently a great deal of work going on in the area of

Object-Oriented Programming Systems (OOPS). In this approach, a program­

ming process is considered to be a set of objects, which can can be classed

into object types. Each object type is related through a hierarchy, and has an

associated set of methods which are operations that can - be performed on

instances of the type. Messages are passed between object instances instruct­

ing them to execute particular methods, and hence carry out actions. It is

interesting, then, to compare the OOPS notion of an object with the ASPECT

notion of an entity, where entities are members of an entity type, controlled

through a type hierarchy, and through the view mechanism we associate par­

ticular operators with a set of entities. A much more detailed investigation

of these issues may prove particularly instructive for the further understand­

ing of IPSE systems.

Finally, the view mechanism facilities are made available through a set

of C language functions held in a library, which a user must link into a

main program to use. Clearly there is a need for tools to be built on top of

this primitive interface which allow a user to define and use AE's in a much

more convenient and natural way. The graphical interface to ASPECT built

for the example in chapter 9 has given some indication as to the forms this

can take, but much more work could be carried out in this area.

A View Mechanism for an IPSE

APPENDIX A

Z CONVENTIONS USED IN THIS THESIS

Throughout this thesis we use the following conventions:

Appendix A

Page 190

For any schema S , II S represents the conjunction of a before-state S

and an after-state S'. Formally:

II S ,;, S 1\ S'

Further, for any schema S, :a S represents the schema in which the before

and after states are identical. Formally:

:a S ,;, II SIS' = S

We also use the notion of a framing schema. This is used to represent a

change of state in which we wish to state some changes explicitly and say

"everything else remains the same". We cannot define a framing schema in a

context-free way: our use will always be in the context of some other

schema. In general it is used as follows:

T __ ~

ell S

other declarations and schemas

Predicate

Suppose S contains a set of variables V, of which a subset VI are

mentioned in the predicates of T or the other schemas and the remainder V2

are not. Then the above is to be read as:

A View Mechanism for an IPSE

T ____________________________________ _

other declarations and schemas

Predicate

V2' = V2

Appendix A

Page 191

For operations we always decorate input variables with "?" and outputs

with "I".

We use the following case conventions:

Names entirely in upper case are global types or state schemas- for

exam pIe "USER", "IB".

Names entirely in lower case are relations or names local to a schema

- for example "subtree", "attributes".

Names in mixed case are operation schemas - for example "init_IB".

A.1. A List of Z Symbols

A Syntactically equivalent to =

¢ not equals

~ less than or equal to

~ greater than or equal to

/\ logical and (conjunction)

A View Mechanism for an IPSE

]

D

x

n
A

U

.3

V

• ,
1F

z
-1

E

bijection

sequence catenaction

close bag bracket

closing image bracket

cartesian product

Distributed set intersection

Schema state change

Distributed set union

domain restriction

domain subtraction

there exists (existential quantiftcation)

for all (universal quantiftcation)

forward relational composition

Finite subset

total function

function over-riding

if and only if (equivalence)

implies

is implied by

injection

the set of all negative, a and positive integers

function inverse

lambda

set membership

map1et

Appendix A

Page 192

i

~

A View Mechanism for an IPSE

..,

+

[

a
v

partitions

»

o

++

*

mu

Natural Numbers

Negation operator

not set membership

non-reflexive transitive closure

not set and

left bag bracket

opening image bracket

logical or (disjunction)

partition

partial unite function

partial fi.nite injection

partial fLnite surjection

partial function

phi

partial injection

Pipeline

Positive natural numbers

Power set

partial surjection

relational composition

relation

range restriction

range subtraction

reflexive transitive closure

Appendix A

Page 193

A View Mechanism for an IPSE

n set intersection

set difference

!: set inclusion

U set union

sequence restriction

sequence range restriction

c strict set inclusion

~> total surjection

e theta

I- theorem

F universally valid

a Schema no change

Appendix A

Page 194

A View Mechanism for an IPSE
Appendix B

Page 195

APPENDIX B

TREES FOR ASPECT'

This appendix provides a generic theory of trees, and other types of

graph, for reference from within the thesis. It is a subset of the definition of

trees and graphs for ASPECT that is defined in ASPECT's specification of the

public tool interface.Rob87c

First, we build up the underlying data types using schema calculus.

B.l. The Basic Types

We start with a general directed graph which is generic in its node

type, N.

[N]

DG------------------------------------1

read

nodes : JP N
parent : N - N

dom parent U rng parent ~ nodes

In this and subsequent definitions, the name of the relation should be

So its domain is the set of all children, its range the set as "has parent".

of all parents.

A View Mechanism for an IPSE
Appendix B

Page 1%

This is the basic defmition, but it is useful to extend it with some

auxiliary relations:

children which is obviously the inverse of parent

ancestors which relates a node to everything reachable via the parent

relation

descendants which is all the nodes reachable from a given node via

the children relation

family which is all the descendants of a node plus the node itself.

We also define two subsets of the nodes :

leaves which are all the nodes with no children

roots which are all the nodes with no parents

We define a relation leavesof which yields all the leaves in the family

of a given node.

DG __ ~

DG

children,ancestors,descendants,family N +-+ N

leaves, roots :]PI N

leavesof : N +-+ N

children = parent-1

ancestors = parent+
descendants = children+
family = children*
leaves = nodes - rng parent
roots = nodes - dom parent
leavesof = family t> leaves

A View Mechanism for an IPSE
Appendix B

Page 197

We next denne acyclic directed graphs, which are those that contain no loops
in the parent relation.

AG ______________________________________ ~

DG

ancestors n Id N { }

We can also, independently, defrne connected graphs which are those for
which there is some node of which all other nodes are descendants.

CG __ --,

DG

3 n nodes. nodes = family anD

A connected acyclic graph has the obViOUS dennition. The UNIX directory
structure is an example.

Each node in a tree has at most one parent. More generally, an acyclic graph
in which this is true is a forest, and a connected forest is a tree.

A View Mechanism for an IPSE

FO~T __________________________________ ~

AG

parent E N ~ N

I~OREST . CAG

B.2. Labelled and Ordered Graphs

Appendix B

Page 198

As we have a generic node type, we do not need to consider properties

of nodes. However, it is useful to consider graphs whose links are labelled.

For our purposes, we treat labelling in terms of sets of labels on the links to

the children of each node.

The most general labelled graph is:

A View Mechanism for an IPSE

[L]

LG ____________________________________ ~

DO
labels

V n N

V n N

rng labels n !: children Q n D

Clabe1s n}-l E N ~ L

Appendix B

Page 199

We can now also consider other particular forms of labelled graph

such as:

DLG Distinctly labelled graph, in which all links of a node are labelled,

or none are.

CLG Connected labelled graph, which have all links labelled.

OG Ordered graphs, a special kind of DLG in which the labels are the

positive integers.

COG Completely ordered graphs, which are CLG's with ordering.

COCAG Completely ordered connected acyclic graph, includes all of the

above, and must be acyclic.

We can also add the notions of labels and ordering to trees.

A View Mechanism for an IPSE

B.3. Operations on Graphs and Trees

•
Appendix B

Page 200

A large number of graph operations are required. These must be

specified for both labelled and non-labelled graphs. This is not pursued here.

A View Mechanism for an IPSE

APPENDIX C

REFERENCES

Appendix C

Page 201

Abr82. Abrial, J.-R., "The Speciftcation Language Z: Basic Library," Internal

Report, Oxford University Computing Laboratory, PRG (1982).

A1d85. Alderson, A., Bott, M.F., and Falla, M.E., "An Overview of the Eclipse

Project," pp. 100-113 in Integrated Project Support Environments, ed. J.

McDermid, Peter Peregrinus (1985).

Ast76. Astrahan, M.M. and others, "System R: Relational Approach to Data­

base Management," ACM TODS 1(2)(June 1976).

Atk78. Atkinson, M.P., "Database Systems and Programming Languages,"

Proceedings of 4th VLDB Conference, pp. 408-419 (September 1978).

Atk8!. Atkinson, M.P., Chisholm, K., and Cockshott, P., "PS-A1go1: an Algol

with a Persistent Heap," CSR-94-81, University of Edinburgh

(December 1981).

Atk87. Atkinson, M.P., Morrison, R., and Pratten, G., "PISA - a Persistent

Information Space Architecture," ICL Technical Journal 5(3) pp. 477-491

(May 1987).

AT&84. AT&T, UNIX System V Documenter's Workbench Introduction and

Reference Manual. April 1984 .
•

Ban79. Bancilhon, F., "Supporting View Updates in Relational Databases," in

Database Architectures, ed. BraCCi, North Holland (1979).

A View Mechanism for an IPSE Appendix C

Page 202

Ber87. Bernstein, P.A., "Database System Support for Software Engineering,"

pp. 166-179 in Proceedings of the 9th International Conference on

Software Engineering, (March 1987).

Bis86. Bishop, J., Data Abstraction in Programming Languages, Addison-Wesley

(1986).

Boe81. Boehm, B.W., Software Engineering Economics, Prentice-Hall (1981).

Br085a. Brown, A. W., "Software Configuration Managemenf in a Programming

Support EnVironment," SRM/403, University of Newcastle upon Tyne

(Sept 1985).

Br085b. Brown, A. W., "The Problems of Software Configuration Manage­

ment," SRM/402, University of Newcastle upon Tyne (August 1985).

Bro86a. Brown, A. W., Earl, A. N., and Weedon, R., "Specification of Expres-

sions," aspect/wb/pub/sr/ibs/exprlspec.1.0, ASPECT Report (August

1986).

Bro86b. Brown, A.W., Earl, A.N., Hitchcock, P., Weedon, R., and Whittington,

R.P., "The Use of Databases for Software Engineering," pp. 55-70 in

Proceedings of the Fifth British National Conference on Databases

(BNCODS) , ed. B.A. Oxborrow, 04th - 16th July 1986).

Bro86c. Brown, A.W., Robinson, D.S., and Weedon, R.A., "Managing Software

Development," pp. 197-235 in Software Engineering '86, ed. P. Brown,

Peter Peregrinus (986).

Br086d. Brown, A.W. and Weedon, R., "An Informal Introduction to the

Specification Language Z," SRMl435 , University of Newcastle upon

Tyne (July 1986).

A View Mechanism for an IPSE Appendix C

Page 203

Bro87. Brown, A.W., "A View Mechanism for an Integrated Project Support

Environment," in Proceedings of a Conference on Automating Systems

Development" Leicester Polytechnic (April 1987).

Buc84. Buchmann, A. P., "Current Trends in CAD Databases," Computer-Aided

Design 16(May 1984).

Bu185. Bull, ICL, Nixdorf, Olivetti, and Siemens, PeTE: A Basis for a Portable

Common Tool Environment - C Functional Specification. - 1985.

Bux80. Buxton, J. N., Requirements for APSE - STONEMAN, US Department of

Defence (February 1980).

Cha75. Chamberlin, D.D., Gray, J.N., and Traiger, I.L., "Views, Authorisation,

and Locking in Relational Database Systems," Proceedings of NCC

44(May 1975).

Che76. Chen, P. P., "The Entity-Relationship Model - Toward a Unified View

of Data," ACM Transactions on Database Systems 1(0 pp. 9-36 Mas­

sachusetts Institute of Technology, (March 1976).

Cod79. Codd, E. F., "Extending the Database Relational Model to Capture

More Meaning," ACM Transactions on Database Systems 4(4) pp. 397-

434 (December 1979).

Con84. Concept_Asa, A User's Guide to the db++- Relational Database Manage­

ment System (First Edition). 1984.

Dat81. Date, C. J., "Referential Integrity," in Proceedings of IEEE 7th Confer­

ence on Very Large Databases, (1980.

Dat83. Date, C.J., An Introduction to Database Systems - Volume II, Addlson­

Wesley (1983).

A View Mechanism for an IPSE
Appendix C

Page 204

Dat86. Date, C.J., An Introduction to Database Systems - Volume I, Addison­

Wesley (1986).

DeM82. DeMarco, T., ControUing Software Projects, Yourdon Press (1982).

Den86. Denning, D.E., Akl, S.G., Morgenstern, M., Neumann, P.G., Schell, R.R.,

and Heckman, M., "Views for Multilevel Database Security," pp. 156-

172 in Proceedings 1986 Symposium on Security and Privacy, (April

1986).

00176. Do10tta, D. A. and Mashey, J. R., "An Introduction to the

Programmer's Workbench," pp. 164-168 in Proceedings of 2nd Interna­

tional Conference on Software Engineering, San Francisco, (October

1976).

Oow86. Oowson, M., "1ST AR - An Integrated Project Support EnVironment,"

Proceedings of 2nd SIGSOFTISIGPLAN Symposium on Practical Software

Development Environments, pp. 27-33 (December 1986).

Enc82. Encamacao, J. and Krause, F. L., File Structures and Databases for

CAD, North-Holland (1982).

Fe179. Feldman, S. I., "Make - A program for Maintaining Computer Pro­

grams," Software Practice and Experience 9 pp. 255-265 (April 1979).

Fli87. Flinn, B., Gimson, R., Hayes, I., Morgan, c., Sorensen, I.H., and Sufrin,

B., Specification Case Studies, Prentice-Ha1l International (1987).

Ga186. Gallo, F., Minot, R., and Thomas, I., "The Object Management System

of PCTE as a Software Engineering Database Management System,"

Proceedings of 2nd SIGSOFTISIGPLAN Symposium on Practical Software

Development Environments, pp. 12-15 (December 1986).

A View Mechanism for an IPSE Appendix C

Page 205

Gar83. Garlan, D.B., "Views for Tools in Software Development Environ­

ments," Ph.D Thesis Proposal, (May 1983).

Gla82. Glass, R.L., Modem Programming Practices - A Report from Industry,

Prentice-Hall (1982).

Ha185. Hall, J. A., Hitchcock, P., and Took, R., "An overview of the ASPECT

Architecture," pp. 86-99 in Integrated Project Support Environments, ed.

J.McDermid, Peter Peregrinus Ltd. Cl985).

Ham8!. Hammer, M. and McLeod, D., "Database Description with SDM: A

Semantic Database Model," ACM TODS 6(3) pp. 351-386 Cl981).

Hau82. Hausen, H-L. and Mullerburg, M., "Conspectus of Software Engineering

EnVironments," pp. 462-476 in Tutorial: Software Development Environ­

ments, ed. A.!, Wasserman, Cl982).

Hay85. Hayes, I., "Specifying the CICS Application Programmer's Interface,"

Technical Monograph PRG-47, Oxford University Computing Labora­

tory, PRG (July 1985).

Hen76. Henderson, P., "The TOPD System," Technical Report No. 77, Univer­

sity of Newcastle upon Tyne (September 1976).

Hit76. Hitchcock, P., "User ExtensiOns to the Peterlee Relational Test Vehicle,"

pp. 169-180 in Systems for Large Databases - Proceedings of the 2nd

Very Large Database Conference, North-Holland Cl976).

Hit85. Hitchcock, P., Whittington, R.P., and Robinson, D.S., "Modelling Primi­

tives for a Software Engineering Database," in Proc. of 4th British

National Conference on Databases (BNCOD4), ed. A.F. Grundy, Cam­

bridge University Press ClOth-12th July 1985).

A View Mechanism for an IPSE Appendix C

Page 206

Hit87a. Hitchcock, P., "A Database View of ASPECT and the PCTE," in

Software Engineering Environments, ed. P. Brereton, Ellis Horwood

(1987).

Hit87b. Hitchcock, P., "An Introduction to Integrated Project Support Environ­

ments," Information and Software Technology 29(0 pp. lS-20 CJan/Feb

1987).

Hof8S. Hoffnagle, G.F. and Beregi, W.E., "Automating the -Software Develop­

ment Process," IBM Systems Jaurnal 24(3) pp. 102-120 (198S).

Hum8S. Humphrey, W.S., "The IDM Large-Systems Software Development Pro­

cess: Objectives and Direction," IBM Systems Jaurnal 24(2) pp. 76-78

(198S).

Hun87. Hunt, V.R. and Zellweger, A., "Strategies for Future Air Traffic Con­

trol Systems," IEEE Computer 20(2) pp. 19-32 (February 1987).

Hut87. Hutcheon, A.D. and Wellings, A.J., "ADA for Distributed Systems,"

Computer Standards and Interfaces 6(0(1987).

Jac83. Jackson, K., "MASCOT," Systems Designers Plc. Internal Paper, (1983).

Kat83. Katz, R.H., "Managing the Chip Design Database," IEEE Computer, pp.

26-36 (December 1983).

Kat84. Katz, R. H., "Transaction Management in the Design EnVironment.," in

New Applications of Databases, ed. Garadin and Gelenbe, AcademiC Press

(1984).

Kay7S. Kay, M. H., "An Assessment of the Codasy1 DDL for use with a

Relational Subschema," pp. 199-214 in Data Base Description, ed. B. C.

M. Douque and G. M Nijssen, North Holland, University of Cam-

bridge (197S).

A View Mechanism for an IPSE Appendix C

Page 207

Ke185. Keller, A. M., "Updating Relational Databases Through Views," Ph.D

Thesis, Stanford University (Feb 1985).

Kem86. Kemper, A., "Abstract Data Types in CIM Databases," 4/86, Univer­

sity of Karlsruhe (March 1986).

Ker8!. Kernighan, B.W. and Mashey, J.R., "The UNIX Programming Environ­

ment," IEEE Computer 14(4) pp. 12-22 (April 1981).

Ket87. Ketabchi, M.A. and Berzins, V., "Modeling and Managing CAD Data­

bases," IEEE Computer 20(2) pp. 93-102 (February 1987).

Kim85. Kim, W. and Batory, D. S., "Modeling Concepts for VLSI CAD

Objects," ACM Transactions on Database Systems 10(September 1985).

Laf79. Lafue, G. M., "An Approach to Automatic Checking of Integrity in a

Design Database.," Ph.D Thesis, Carnegie-Mellon University (1979).

Leb84. Leblang, D. B. and Chase, R. P., "Computer-Aided Software Engineering

in a Distributed Workstation Enviroment," Sigplan Notices, (19th May

1984).

Lil84. Lilien, L. and Bhargava, B., "A scheme for batch verification of

integrity assertions in. a database system," IEEE Transactions on

Software Engineering 10(6) pp. 664-680 (November 1984).

Lor8!. Lorie, R. A., Issues in Databases for Design Applications, IBM Research

Report (1981).

Ly086. Lyons, T.G.L., "The Public Tool Interface in Software Engineering

Environments," Software Engineering Journal 1(6) pp. 254-258

(November 1986).

Mai86. Mair, P., Integrated Project Support Environments - State of the Art

Report, NeC Publications (1986).

A View Mechanism for an IPSE
Appendix C

Page 208

McD84. McDermid, J. and Ripken, K., Life-cYCle Support in the Ada Environ­

ment, Cambridge University Press (1984).

McG80. McGuffin, R.W., Elliston, A.E., Tranter, B.R., and Westmacott, P.N.,

"CADES Sof - tware Engineering in Practice," ICL Technical Journal

2(1) pp. 13-28 (May 1980).

Mey85. Meyer, B., "On Formalism in Specifications," IEEE Software 2(1) pp ..

6-26 (January 1985).

Mor87. Morgan, D., "The Imminent IPSE," Datamation 33(7) pp. 60-68 (April

1987).

My180. Mylopoulos, J. and Wong, H. K. T., "Some Features of the TAXIS

data model," pp. 399-410 in Proc. 6th Int. Conf. Very Large nata Bases,

(1980).

Ong79. Ong, J., Fogg, D., and Stonebraker, M., "Implementation of Abstraction

in the Relational Database INORES," ACM. SIGMOn 14(1) pp. 1-14

(1979).

Osb86. Osborn, S.L. and Heaven, T.E., "The Design of a Relational Database

System with Abstract Data Types for Domains," ACM TOnS 11(3) pp.

357-373 (September 1986).

Ost81. Osterweil, L., "Software Environment Research: Directions for the Next

Five Years," IEEE Computer 14(4) pp. 35-43 (April 1981).

Ost83. Osterweil, L. J. and Cornell, W. R., "The ToolpacklIST Programming

EnVironment," in IEEE Softfair, (July 1983).

Pri87. Price, C., SAFRA - A Debrief Report, NCC Publications (1987).

Rob87a. Robinson, D.S., Private Communication. October 1987.

A View Mechanism for an IPSE

Rob87b. Robinson, D.S., Private Communication. December 1987.

Appendix C

Page 209

Rob87c. Robinson(ed.), D.S., "ASPECT - Specincation of the Public Tool Inter­

face," aspectlwb/pub/ptilZspec3.1, Systems Designers PLC. (August

1987).

Row87. Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," pp. 83-

% in Proc. the 13th Int. Conf. on Very Large Data Bases, (1987).

Row79. Rowe, L. A. and Shoens, K. A., "Data Abstraction, Views and Updates

in RIGEL," ACM. SIGMOD, (1979).

Row83. Rowland, B. R. and Welsch, R. J., "Software Development System,"

BeU Systems Technical Journal 62(l)CJanuary 1983).

Sch84. Schiel, U., "A Semantic Data Model and its Mapping to an Internal

Relational Model," pp. 373-400 in Databases - Role and Structure, ed.

P.M. Stocker and Others, Cambridge University Press (1984).

Sch77. Schmidt, J.W., "Some High-Level Language Constructs for Data of

Type Relation," ACM TODS 2(3) pp. 247-261 (September 1977).

Sef86. Sefton, E., "A Proposal for the Evaluation of the ASPECT IPSE,"

BAe-WAA-R-RES-SWE-182, British Aerospace PIc. (March 1986).

Sha84. Shaw, M., "Abstraction Techniques in Modern Programming Languages,"

IEEE Software, pp. 10-26 (October 1984).

Som85. Sommerville, I., Software Engineering (2nd Edition), Addison-Wesley

(1985).

Sta84. Standish, T. A. and Taylor, R. N., "Arcturus: A Prototype Advanced

Ada Programming EnVironment," ACM SIGPLAN Notices 19(5) pp. 57-

64 (May 1984).

A View Mechanism for an IPSE
Appendix C

Page 210

Ste86. Stenning, V., "An Introduction to ISTAR," pp. 1-22 in Software

Engineering EnVironments, ed. I. Sommerville, Peter Peregrinus Ltd.

(1986).

Ste87. Stenning, V., "On the Role of an Environment," pp. 30-35 in Proceed­

ings of the 9th International Conference on Software Engineering,

(March 1987).

St086. Stonebraker, M., The INGRES Papers, Addison-Wesley (1986).

Stu83. Stucki, L.G., "What about CADICAM for Software ? - The ARGUS

Concept," SOFTFAIR '83, pp. 129-144 IEEE, (1983).

Suf85. Sufrin, B., Morgan, c., Sorensen, I., and Hayes, I., Notes for a Z Hand­

boolc Part 1 - Mathematical Language. July 1985.

Sys84. Systems_Designers,

November 1984.

DEeIV AX Perspective Technical Overview.

Sys87. Systems_Designers, PeTE: A Basis for a Portable Common Tool Environ­

ment - Ada Functional Specification. 1987.

Too86. Took, R., "The Presenter - a Formal Design for an Autonomous

Display Manager for an IPSE," pp. 151-169 in Software Engineering

Environments, ed. I. Sommerville, Peter Peregrinus Ltd. (1986).

Tsi78. Tsichritzis, D.C. and Klug, A., "The ANSVX3/SPARC DBMS Frame­

work Report of the Study Group on Database Management Systems,"

Information Systems 3 pp. 173-191 (1978).

Tsi82. Tsichritzis, D. C. and Lochovsky, F. H., Data Models, Prentice-Hall

(1982).

U1l80. Ullman, J. D., Principles of Database Systems, Computer Science Press

(980).

A View Mechanism for an IPSE Appendix C

Page 211

US.85a. US.DOD, "Common APSE Interface Set (CAIS)," Proposed MIL-SID­

CAIS (January 1985).

US.85b. US.DOD, Requirements and Design Criteria for the Common APSE Inter­

face Set (RAC). September·1985.

Vel83. Veloso, P.A.S. and Furtado, A.L., "View Constructs For the

Speciftcation and Design of External Schemas," pp. 637~50 in Entity­

Relationship Approach to Software Engineering, ed. C.G. Davis, S.

Jajodia, P.A. Ng, and R.T. Yeh, North-Holland (1983).

War86. Warboys, B.C., "IPSE 2.5," pp. 221-230 in Proc. Joint IBM/University

of Newcastle upon Tyne Seminar, (2nd-5th September 1986).

Was79a. Wasserman, A. I., "USE: a Methodology for the Design and Develop­

ment of Interactive Information systems," pp. 31-50 in Formal models

and Practical Tools for Information systems design, ed. H. J. Schneider,

North Holland, University of California, San Francisco (1979).

Was79b. Wasserman, A.I., "The Data Management Facilities of PLAIN,"

Proceedings of ACM SIGMOn International Conference on the Manage­

ment of Data, (1979).

Wie86. Wiederhold, G., "Views, Objects, and Databases," IEEE Computer, pp.

37-44 (December 1986).

Wil80. Wilson, G.A., "A Conceptual Model for Semantic Integrity Checking,"

pp. 111-125 in Proceedings of 6th Conference on Very Large Databases,

(1980).

	380748_0001
	380748_0002
	380748_0003
	380748_0004
	380748_0005
	380748_0006
	380748_0007
	380748_0008
	380748_0009
	380748_0010
	380748_0011
	380748_0012
	380748_0013
	380748_0014
	380748_0015
	380748_0016
	380748_0017
	380748_0018
	380748_0019
	380748_0020
	380748_0021
	380748_0022
	380748_0023
	380748_0024
	380748_0025
	380748_0026
	380748_0027
	380748_0028
	380748_0029
	380748_0030
	380748_0031
	380748_0032
	380748_0033
	380748_0034
	380748_0035
	380748_0036
	380748_0037
	380748_0038
	380748_0039
	380748_0040
	380748_0041
	380748_0042
	380748_0043
	380748_0044
	380748_0045
	380748_0046
	380748_0047
	380748_0048
	380748_0049
	380748_0050
	380748_0051
	380748_0052
	380748_0053
	380748_0054
	380748_0055
	380748_0056
	380748_0057
	380748_0058
	380748_0059
	380748_0060
	380748_0061
	380748_0062
	380748_0063
	380748_0064
	380748_0065
	380748_0066
	380748_0067
	380748_0068
	380748_0069
	380748_0070
	380748_0071
	380748_0072
	380748_0073
	380748_0074
	380748_0075
	380748_0076
	380748_0077
	380748_0078
	380748_0079
	380748_0080
	380748_0081
	380748_0082
	380748_0083
	380748_0084
	380748_0085
	380748_0086
	380748_0087
	380748_0088
	380748_0089
	380748_0090
	380748_0091
	380748_0092
	380748_0093
	380748_0094
	380748_0095
	380748_0096
	380748_0097
	380748_0098
	380748_0099
	380748_0100
	380748_0101
	380748_0102
	380748_0103
	380748_0104
	380748_0105
	380748_0106
	380748_0107
	380748_0108
	380748_0109
	380748_0110
	380748_0111
	380748_0112
	380748_0113
	380748_0114
	380748_0115
	380748_0116
	380748_0117
	380748_0118
	380748_0119
	380748_0120
	380748_0121
	380748_0122
	380748_0123
	380748_0124
	380748_0125
	380748_0126
	380748_0127
	380748_0128
	380748_0129
	380748_0130
	380748_0131
	380748_0132
	380748_0133
	380748_0134
	380748_0135
	380748_0136
	380748_0137
	380748_0138
	380748_0139
	380748_0140
	380748_0141
	380748_0142
	380748_0143
	380748_0144
	380748_0145
	380748_0146
	380748_0147
	380748_0148
	380748_0149
	380748_0150
	380748_0151
	380748_0152
	380748_0153
	380748_0154
	380748_0155
	380748_0156
	380748_0157
	380748_0158
	380748_0159
	380748_0160
	380748_0161
	380748_0162
	380748_0163
	380748_0164
	380748_0165
	380748_0166
	380748_0167
	380748_0168
	380748_0169
	380748_0170
	380748_0171
	380748_0172
	380748_0173
	380748_0174
	380748_0175
	380748_0176
	380748_0177
	380748_0178
	380748_0179
	380748_0180
	380748_0181
	380748_0182
	380748_0183
	380748_0184
	380748_0185
	380748_0186
	380748_0187
	380748_0188
	380748_0189
	380748_0190
	380748_0191
	380748_0192
	380748_0193
	380748_0194
	380748_0195
	380748_0196
	380748_0197
	380748_0198
	380748_0199
	380748_0200
	380748_0201
	380748_0202
	380748_0203
	380748_0204
	380748_0205
	380748_0206
	380748_0207
	380748_0208
	380748_0209
	380748_0210
	380748_0211
	380748_0212

