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ABSTRACf 

In the last few years the rapidly expanding application of computer 

technology has brought the problems of software production increasingly to 

the fore, and it is widely accepted that current software development tech­

niques are unable to produce high quality software at the rate required to 

keep pace with this. To try to improve this imbalance, the fte1d of Software 

Engineering has been advanced as a possible solution, attempting to apply the 

formal methods of an engineering discipline to software design and implemen­

tation. One of the most promising areas to be developed in this fte1d is that 

of Integrated Project Support Environments (IPSE's), which attempt to 

spread the focus of attention during software development from the coding 

stage to embrace the whole development cycle, from initial requirements 

speciftcation through to operational maintenance. These environments hope to 

improve prodUction efficiency and quality by providing a complete set of sup­

port tools to help with each stage of software development, and to supply the 

necessary tool integration to ensure a smooth transition of use between these 

tools. 

This thesis examines the services provided as part of an IPSE which 

allow users and tools to interact in a meaningful way throughout the life of 

a project. In particular, a view mechanism is seen as a vital component of 

these services allowing indiVidual external views of the facilities to be deftned 

which suit different users' needs. A model of a view mechanism for an IPSE 

is developed, and within a particular implementation of an IPSE, a view 

mechanism is formally deftned and implemented. Finally, the view mechan­

ism is analysed and discussed before concluding with some directions for 

future research. 
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Software Engineering is concerned with investigating the problems of 

how to develop large, complex software systems to a strict time-scale, and 

produce a finished product of high enough quality that it can be used in 

life-critical situations such as aircraft control and industrial process control. 

However, efforts at producing such systems have all too frequently been poor, 

with many systems known to be inefficient, badly maintained, and difficult to 

use.Som8S Indeed, it has been suggestedBoe81, DeM82 that 

at least fifteen percent of all software projects never deliver anything; 

that is, they fail utterly to achieve their established goals. 

overruns of one hundred and two hundred percent are common in 

software projects. 

the cost of maintaining a software system is typically more than twice 

the original development cost. 

In addition to the existing inadequacies in software development, the 

trend is for software to be used in more and more diverse applications, 

driven by awareness of new situations in which computer technology can be 

applied, together with the continuing dramatic fall in the cost of hardware. 

This has led to a need for building even larger and more complex software 

systems. For example, from the initial attempts in the 1960's at automating 

Air Traffic Control (ATC) systems in the United States, estimates of the 

present computerised ATC system are that it now totals more than two mil­

lion lines of code.Hun87 

In the past the main thrust of attempts to improve efficiency and 

quality of software has been in the development of individual techniques and 

automated tools to help with one or more of the development activities, 
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speeding up that task, and ensuring its correctness. This has resulted in a 

large number of software development methodologies being defined, with 

automated tools which help in the application of the methods. However, con­

structing an environment in which the complete life-cycle of a large software 

system is supported by grouping together a set of ad hoc tools causes a 

number of problems. In particular, co-operation and integration between the 

tools must be actively supported to avoid inconsistencies and duplication of 

effort between the tools. An Integrated Project Support Environment (IPSE) 

attempts to provide an environment in which large software systems can be 

developed by integrating a set of tools which support a development metho­

dology within an infrastructure that allows tools to communicate and co­

operate in a controlled way. The IPSE infrastructure provides a set of com­

mon services appropriate to software development which can be used by the 

tools. Such services may include facilities for structured data storing and 

manipulation, for the application of user-defined rules to constrain and control 

data instances, and for the definition of external views of the services 

appropriate to different external users. 

1.1. Thesis Aims 

The main aims of this thesis are 

to investigate past and current trends of software development support, 

with particularly emphasis on the history and development of IPSE 

technology. 
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to analyse the characteristics of a software engineering database used 

as the central component of an IPSE. 

to look in detail at the need for, and characteristics of a view 

mechanism as an integral component of an IPSE infrastructure. 

to formally defrne and implement an IPSE view mechanism as part of 

a larger IPSE project, and to analyse its use. 

1.2. Thesis Outline 

The thesis is organised as follows. 

Following the short introduction given in this chapter, chapter two 

describes the basic architecture and components of IPSE's in general, and looks 

at their development over the past few years to the point at which standardi­

sation on an IPSE tool interface is currently proposed. 

Chapter three then looks in detail at the requirements and characteris­

tics of a database for an IPSE, asking why we use a database at all, and 

why a commercial database without enhancements is unsuitable for the task. 

Finally, the database faCilities which add to the semantic capture of a data­

base are discussed with particular emphasis on their use in a software 

engineering database. 

Chapter four introduces the notion of views of an IPSE, examining 

view mechanisms in programming languages and commercial database systems, 

analysing the requirements of an IPSE view mechanism, and looking at related 

wor k following Similar aims. 

Chapter frve describes a model of an IPSE view mechanism building 

from a simple notion of a view to a mechanism capable of supporting the 
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requirements defined in chapter four. Using the model some of the problems 

associated with views, such as updating through a view, are discussed. 

Chapter six is a short introduction to the ASPECT project. The 

ASPECT project was set up to investigate and develop a prototype IPSE, and 

much of the work reported in this thesis was carried out as part of that pro­

ject. The chapter provides the wider context of IPSE facilities in which the 

work was developed, looking only at those parts of the ASPECT project 

which interact with the view mechanism and influence its design and imple­

mentation. 

Chapter seven is a summary of a formal definition of a view mechan­

ism for an IPSE using the speCification language Z. The complete speciftcation 

is given elsewhere,Rob87c and is summarised in chapter seven to allow the 

reader to follow the significant details of the specification without getting too 

enmeshed with the details. 

Chapter eight describes the implementation of an IPSE view mechanism 

as part of the ASPECT project. In particular, the operators which allow a 

user to create and use view objects are described, together with the underly­

ing structures which support these operations. 

Chapter nine provides an analysis of the view mechanism by means of 

a set of appropriate examples to which the mechanism has been applied. 

Through these examples we can extrapolate as to its use within a large sys­

tem development project. 

Chapter ten reviews the aims of the thesis, discusses possible develop­

ments of the work reported here, and concludes with some final observations. 
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When a software system is designed and implemented, automated sup­

port for the development process is required. Where the software can be 

written by one person in a few weeks, the amount of support required may 

be small. For example, individual tools for program editing, compiling, and 

debugging may be all that are required. However, the current trend is for 

the use of computer technology in increasingly diverse and complicated appli­

cations, leading to the development of larger and more complex software sys­

tems. These systems typically reqUire a large group of people to develop 

them, and may take many months to complete. For example, it is not 

uncommon for software systems development to involve more than a hundred 

people over a period of a number of years and produce in excess of a million 

lines of source code.Row83, Gla82 With this vast difference in scale, at least the 

following points may be noted: 

no one person may be fully familiar with the complete system, so it 

is vital that the separate pools of knowledge can be integrated. 

the finished product may not exist as one single definitive version, but 

as a set of related versions to suit different user requirements. 

errors will be found in a large system, and hence maintenance of the 

running system will be an on-going problem. 
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it is no longer economically viable to throwaway the system and re­

implement when operating conditions, or user requirements change. 

Therefore, the software must evolve over time. 

the management of a software project becomes much more difficult, in 

particular to control the development and maintenance process and to 

ensure its continued progress. 

Therefore, if we hope to provide automated support for large scale 

software production, we must provide facilities to deal with these problems, 

and so support the complete software life-cycle, from reqUirements definition 

to operational maintenance, provide recognised paths of communication and 

co-ordination between the software developers involved in a project, and allow 

managers to exert control over the development and maintenance process and 

to accurately monitor its progress. Systems which attempt to provide such 

support are most often known as Integrated Project Support Environments 

(IPSE's). 

2.2. The Problems in a Non-IPSE Environment 

Research into different software development techniques and methodolo­

gies has been quickly followed by the production of indiVidual software tools 

which support a method by automating some aspect of the use or application 

of the method. The tools may provide different levels of support, from sim­

ple clerical assistance by recording information in a computer's fr1e store, to 

extensive checking of this information according to the rules defrned by the 

method,McD84 Hence, traditional environments in which software is developed 

consist of a machine operating system and frling system, together with an ad 

hoc collection of development tools which cover some part of the development 
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life-cyc1e, supporting some set of preferred development methods. A software 

product is progressed by application of the development tools to the data 

which is generated. This situation is summarised in figure 2.1. 

< 

Operating System Interface 

fIardvvare Interface 

Fig 2.1 Typical Connection of Tools in a 
Traditional Development Environment. 

In figure 2.1 tools access machine facilities through the operating sys­

tem interface, recording data in the file store it maintains. The principle way 

in which tools are allowed to interact is through some commonly understood 

communication protocols embedded within the tools themselves. However, as 

the tools are often written without knowledge of the other tools with which 

they may interact, the use of individual tools within a larger development 

context can result in difficulties. The following problems are often experi­

enced: 
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different development tools often overlap in their roles and duplicate 

effort. 

tools designed to fit different development methods can often interfere 

with each other, produce inconsistent results, or are totally incompati­

ble. 

the complex relationships and dependencies which exist between data 

items are often lost, or difficult to determine as these properties are 

created within the tools themselves and hidden within the data for­

mats they produce as output. 

there is no integrating structure which controls both the ways in 

which tools are allowed to interact with the data, and the tools which 

individual users are given access to invoke. As a result, maintaining 

the integrity of the data is difficult. 

current practice relies heavily on manual co-operation and co:rp.munica­

tion to ensure that project members can work independently and yet 

as a team. Such problems are compounded in large, distributed pro­

jects. 

2.2.1. An Example 

To illustrate the problems which exist in traditional development 

environments, and the need for tools to be integrated in their use of data, 

consider how the UNIX tool MAKEFe179 records information about inter­

dependencies of program modules. 

Figure 2.2 represents diagrammatically how a simple software system 

may have been constructed, using an example adapted fromFe179 and developed 

in.Hit87b 
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In figure 2.2, a simple compiler is constructed by processing a parser 

gram mer to produce a parser object module, and then compiling this module 

to produce a relocatable binary version of the parser. This is loaded with the 

binary produced by compiling a code generation module to produce a running 

program. 

To record the dependencies shown in figure 2.2, the MAKE tool relies 

on a file called a "makefile" which holds these relationships in a special tex­

tual form. In figure 2.3, we show how a makefile may look for this exam­

ple. 
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program: libl cOOegen. abj pl.I'SElI'. abj 
load libl cOOegen. abj pl.I'SElI'. abj 

cOOegen.abj: cOOegen.src defsl 
compile dafsl cOOegen.src 

pu'SeI' . abj : pu'SeI' . src dafsl 
compile defsl pl.I'SElI'. src 

pu'SeI' . src: pu'SeI' . gram 
pu'SeI'-gen pl.I'SElI'. gram 

Fig 2.3 Makefile for Simple Compiler. 
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It consists of a set of pairs of lines where the first line of a pair 

defines a dependency, for example, that the module "program" is dependent on 

"libl", "codegen.obJ', and "parser.obJ' modules, while the second line is a com­

mand which will generate the derived module from its constituent parts. For 

example, "program" is created by executing the command "load lib! codegen.obj 

parser.obJ'. Hence, by reference to a makefile the MAKE tool can automati­

cally generate derived modules from their constituent parts without a user 

having to remember how each module is created. 

In isolation, the MAKE tool can be used to great effect for program 

generation and maintenance. However, as part of a larger development 

environment in which we would like to provide support for all phases of a 

software project, there are a number of problems with such a tool. Firstly, 

the relationships between modules are buried within a makefile in a special 

form which is specific to the tool. If we now want to use that information 

within some other tool, for example if we want to analyse the impact of 

changing a particular module and had such a tool available, then this new 

tool would need to read in the makefile and decode the relationships which 

exist, before it can perform its function. No doubt the information it obtains 

will again be written out in some special form to a file, and if we now 

wanted to run a report generator with that information, it too would have to 



A View Mechanism for an IPSE Chapter 2 

Page 23 

interpret the data and convert it to a form it recognised. This not only 

results in duplication of effort within different tools, having to re-interpret 

the structured information each time, but is also a source of problems when 

changes to the data format take place. It is not now possible to make any 

changes to the way data is stored without changing all the tools which access 

the data. 

A second consequence of this approach is that maintenance of makeftles 

for large systems is a particularly difficult task. This is because the complex­

ity of the system is reflected in the complexity of the makeftle, and as a 

result it is difficult to assess how the makeftle should be amended to reflect 

changes in the way a system is built. If the structures and relationships hid­

den within a makeftle were to be held explicitly in some appropriate form, it 

would then be easier to alter this information when changes are needed. 

Finally, if we now wanted to apply some form of constraints on how 

systems are built, for example to apply project standards for system building, 

then with the makeftle approach we would ftnd this particularly difficult to 

achieve as it is not clear at what point such rules could be applied. This is 

because integrity checking of the data is carried out in an ad hoc manner 

within individual tools themselves. If we could remove the task of integrity 

maintenance of data from each of the separate tools, record the rules in an 

accessible form, and apply the checks to the data at a central pOint, then we 

would have a mechanism which gave us much more conftdence in the correct­

ness of the data. 
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A partial solution employed by many existing development systems is 

to tightly couple sets of tools into families which share a common pool of 

knowledge, as shown in figure 2.4. 

~ / \ 

/ 
Operating System Interface 

fIardvvare Interface 

Fig 2.4 Grouping of Tools into Families. 

Recognising the need for co-operation and integration between tools, one 

approach has been to build families of tools which can work in concert to 

support some part of the development or maintenance process.Row83, Do176 

These tool families share a common data format and operating conventions 

which allows them to interact in a meaningful way. A typical example is 

the set of UNIX tools which make up a documenter's workbench.AT&84 This 
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allows, for example, a single document to contain tables, equations, and 

diagrams, and to be processed by passing the document through a sequence of 

appropriate tools which share a formatting style and a set of formatting con­

ventions. 

However, the conventions on which a set of tools are based are still 

embedded within the tools themselves, and, for example, to add a new tool to 

a development environment would involve understanding the communication 

and data conventions of the tool sets with which you would expect the new 

tool to interact. This would involve re-implementing all the checks and 

structuring operations which already exist within the other tools. Also, if 

you tried to use the new tool with tools built on different conventions, then 

the results would not be as expected. 

2.3. The IPSE Approach 

Having recognised the problems of integrating a set of individual tools 

to support the complete life-cycle of a large software project, researchers then 

began to focus their attention on the means of integration within a support 

environment, rather than on the individual tools themselves. By providing 

integrated support for software development, it was hoped that much more 

control could be maintained over the development process, while at the same 

time easing the transition of a software product from one development phase 

to the next. 

The basiS of providing integrated support has been through attempting 

to remove from the indiVidual tools many of the data structuring and control 

facilities which typically are duplicated in each tool, and to maintain them at 

a central point which allows them to be more easily amended and 
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consistently applied.Bro87 This has been coupled with an increasing recognition 

that effective support for software development can only be achieved if the 

tools work together within an effective development process. 

Tool I I Tool 

~/ 
Project Level Interface 

Operating System Interface 

Hardware Interf ace 

Fig 2.5 Tool Interaction in an IPSE. 

In figure 2.5 we can see that the tools communicate by interacting at 

a higher abstract level than the operating system interface. The interface at 

which tools and users interact has been raised so that it is closer to the 

actual problem domain, being concerned with project level objects such as 

users, their roles within the software development process, and the tasks they 

carry out, rather that the operating system concepts of files and program 

processes. We can think of this more abstract level as a project level 
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inter/ace, as through this interface facilities and services are available which 

help control software development at the project level. Typically, the facili­

ties offered are for recording structured data using a database, and for the 

controlled sharing of data between users at the level of documents and pro­

grams. 

Examining environments which provide integrated support for software 

development, we can divide systems into two approaches based on the expo­

sure given to the project level interface, and consequently the ease with 

which new tools can be added to the environment to support new methods 

and techniques. 

2.3.1. Closed IPSE's 

In the first approach, which provides what we can call closed environ­

ments, steps towards fully integrated environments have been taken by pro­

viding a set of tools for supporting the life-cycle of a project within a pre­

ferred model of the software development process. Typical of this approach 

is the Perspective IPSE.Sys84 In a Perspective environment, tools communicate 

mainly via a database, which records all relevant information about a 

software project throughout its life cycle. The database is structured in a 

way which allows meaningful relationships between data items to be main­

tained, for example, the relationship between a specification document and its 

implementation in a programming language. The tools provided form a fixed 

set supporting a single method of project development. In this case, a set of 

tools support the MASCOT design notation,Jac83 with automatic translation of 

validated MASCOT designs into an extended form of the Pascal programming 

language. Additional tools then allow compilation and debugging of programs 

written in this extended form of Pascal. Further facilities exist to allow 
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communication between project members while controlling the sharing of data 

between them through the use of versioned· data items. 

A large number of closed IPSE's have been built in the last decade, 

each supporting some preferred set of software development techniques. An 

early examples was TOPD,Hen76 which supported a top-down approach to pro­

gram design which translated into COBOL code. Later examples include 

TOOLPACK,Ost83 which is specifically designed to support small-scale develop­

ment of mathematical software implemented in FORTRAN, and 

ARCTURUS,Sta84 which supports the use of Ada as a command, design, and 

programming language. Many more such systems are described in.Hau82 

The important features of a closed IPSE are that although tightly cou­

pled support is provided by the IPSE for a designated development methodol­

ogy, no mechanisms are available for the IPSE user to add new tools to sup­

port a different development approach, and very limited facilities to tailor the 

IPSE to suit a particular organisation's needs. Consequently, a closed IPSE 

may provide excellent automated support if the development techniques sup­

ported mirror closely an organisation's existing development strategy, and are 

well suited to the application system under development, but otherwise may 

involve the organisation in a large amount of re-Iearning, or may not be 

directly applicable to some systems. Similarly, as ideas and opinions concern­

ing software development continue to evolve, support for new methods and 

techniques will also be reqUired. With many closed IPSE's it is not easy to 

add support for such techniques without a conSiderable amount of re­

implementation of the IPSE itself by the IPSE vendor. The additional project 

level services which are available in an IPSE, such as the improved data 

structuring facilities of a project database, are not made accessible to the end 

users who may want to customise the IPSE to suit individual project needs. 
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Recognising the problems of inflexibility which are evident with closed 

IPSE's, some of the more recent work in IPSE development has led to the 

creation of what can be called open environments.Ste87 In this approach the 

role of the IPSE is seen as the provision of an infrastructure into which tools 

can be embedded. The IPSE provides control of all data developed during the 

life-time of a project by providing a set of facilities accessible through a more 

appropriately structured interface than is conventionally available in a simple 

tool and operating systems environment. So, for example, facilities aVailable 

at this interface may include support for the structuring and storing of infor­

mation such as documents and program modules, for configuration and version 

control of data items, and for the sharing of information between groups of 

users. As this provides the lowest level at which any of the IPSE services 

may be accessed, and is therefore the interface at which tools are written, 

this interface is known as the Public Tool Interface CPT!) for the IPSE.Lyo86 

The reqUired openness of the IPSE is achieved by making the PT! extensible 

in order to support new methods and tools, and configurab1e, so that a project 

can impose particular methods of working if desired. 

One of the first IPSE's to begin to recognise the advantages of provid­

ing an open environment was CADESMcG80 which was specifically built to 

support the development of ICL's VME/B operating system. Although origi­

nally configured with a fixed set of tools, a form of PTI was made available 

to allow new tools to be integrated within a CADES system.Rob87b 
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The architecture of open IPSE systems has been initially gUided by 

work carried out to defrne requirements for an Ada Programming Support 

Environment (APSE), reported in the STONEMAN document.Bux80 Here, to 

support the development of large programs written in Ada, the need for 

automated support of the program development process led to the defrnition of 

a set of requirements which outline the basic architectural components of an 

APSE. To summarise the report, the basis of any APSE must be a database 

which records data items and their relationships in a structured and accessible 

form. The database provides the integrating factor for tools which communi­

cate through this structured repository for data. A Kernel Ada Programming 

Support Environment (KAPSE) is then defrned as the database together with 

communication and run-time support to allow a set of Ada programs to be 

executed. With the addition of a minimal set of tools to support the creation 

and maintenance of Ada programs, a Minimal Ada Programming Support 

EnVironment (MAPSE) is envisaged. Finally, an Ada Programming Support 

Environment (APSE) is constructed by extending the MAPSE to provide sup­

port for different programming methodologies and techniques. This architec­

ture is summarised in frgure 2.6. 

An important feature of the architecture shown in frgure 2.6 is the 

interface between the KAPSE and MAPSE facilities. Essentially, this interface 

provides access to the set of services provided by the KAPSE to the tools 

implemented as part of the MAPSE and APSE. In this way it is equivalent 

to what we have called a PT!. 
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Fig 2.6 Basic Architecture of an APSE. 
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The approach advocated in STONEMAN has gained a wide measure of 

acceptance over the last few years, and a number of efforts have been made 

following similar principles. Here we briefly summarise the direction of this 

work. 

In the United States, mainly funded by the Department of Defense 

(DOD), work has been concentrated on implementations of APSE's following 

the guidelines of STONEMAN. In Europe, and in particular the UK, with 

funding from both the Alvey and ESPRIT programmes, IPSE work has been 

much more diverse in nature. While the ESPRIT work has been mainly con­

centrating on the tools which will be needed to populate IPSES's and a single 

framework through which they can interact, the Alvey programme has funded 
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three concurrent projects which are investigating IPSE design and construction. 

The first of these is the ASPECT project.Ha185 Following many of the prinCi­

ples established in STONEMAN, ASPECT has been working over the past 

three years on research into, and prototype development of, an open, extensi­

ble IPSE. Much of this work is reported in detail later in the thesis. The 

second project, ECLIPSE, is much more concerned with intercepting current 

proven technology and constructing a production-standard IPSE to support 

both Alvey and ESPRIT funded tool producers.Ald85 This is primarily a set of 

tools written to the interface provided by an implementation of the Portable 

Common Tool Environment (PCTE), which is a PTI defined within the 

ESPRIT programme as the interface to which all of its tool writers can work. 

The third, and much more ambitious project, called IPSE 2.5, is attempting to 

extrapolate from current technology to define the direction of future IPSE 

research in the next decade.war86 In particular, it is concentrating on support 

for formal methods of software development. Its name comes from the 

Alvey deftnition of a set of existing tools linked by a file system as a first 

generation IPSE, those built on a database as second generation, and those 

built on knowledge-based techniques as third generation.Mor87, Mai86 According 

to these deftnitions, while ASPECT and ECLIPSE are second generation IPSE's, 

this project is attempting to establish a path between second and third genera­

tion systems. However, as the project was begun much more recently than 

the other two it is still very much in an exploratory phase. 

Work in industry is Similarly moving in the direction of open IPSE's, 

most notably perhaps with recent work at IBM aimed at deftning the architec­

ture of a software engineering support facility.Hum85, Hof85 The architecture 

proposed emphasises the need for a set of Common Tool Services (CTS) 

accessed by tools through a Common Tool Interface (CTI), analogous to a PTI. 

It will be interesting to see how this work develops and how it influences 
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Early work in this area was motivated by the United States Depart­

ment of Defense (DOD), whose analysis of their massive spending on com­

puter software determined that a great deal of their resources were being 

spent on re-writing software in different languages to suit different operating 

conditions. This led to the design and development of the Ada language, and 

the recognition that the environment in which Ada programs were developed 

would itself have to be defmed. Initial observations and requirements for 

Ada programming Support Environments (APSE's) were outlined in the 

STONEMAN document.Bux80 When a number of concurrent projects were 

underway to develop APSE systems along the lines suggested in the STONE­

MAN report, the US DOD soon realised that the problems experienced by 

implementing software in many different languages would soon exist for tool 

writers who would not know which APSE interface to use when implement­

ing tools. Potentially, tool writers would spend much of their time porting 

tools to work in different APSE systems. Hence, at the beginning of 1982, 

work began on defming a set of APSE standards for use within the US DOD 

which would permit the sharing of tools and other software between US DOD 

supported APSE's. In 1985 a proposed Military Standard Common APSE 

Interface Set (CAIS) was released for eva1uationYS.85a Leading on from this 

work a set of requirements for a more advanced APSE interface set has been 

deve10ped,uS.85b and work is currently underway to enhance the first version 

of the CAIS to meet those requirements. 

Motivated by a similar need for a common interface for tools, though 

for programs written in a variety of languages, not just Ada, the European 
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ESPRIT programme has provided funds for the definition of a Portable Com­

mon Tool Environment (PCTE) which can be used throughout the ESPRIT 

community.Bu18S, Sys87 All tool writers funded by the ESPRIT programme will 

write tools to this public interface, which will facilitate the integration of 

tools within a common framework. Implementations of the PCTE are now 

aVailable, and many more are expected in the near future. 

Hence, at present, support for a standard PTI is diVided between those 

who advocate the CArS, and in particular its enhancements to provide 

extended support, and those who support use of the PCTE. Both technical 

and political arguments abound in this debate, with many people desperate for 

standardisation as soon as possible, including tool developers who are trying 

to avoid unnecessary re-writing of their tools to suit different IPSE interfaces. 

However, many IPSE researchers favour a more cautious approach to standar­

disation, recognising that experience of using IPSE systems is remarkably thin 

on the ground. It remains to be seen how these arguments will develop. 

2.4. Support Environments for Non-Software Design Activities 

The process of software development shares a number of characteristics 

with other development activities, most notably Very Large Scale Integration 

(VLSI) circuit design, architectural deSign, and aerospace design. These activi­

ties can be grouped collectively under the title of "Engineering Design". It is 

interesting, then, to examine the approaches taken to provide computerised 

support in these related areas and compare them with the IPSE technology 

described above. 

Computer-Aided Design (CAD) systems have been available for a 

number of years, and it has been recognised that in the past there have been 
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more attempts to provide automated support in design activities such as VLSI 

circuit design than for software design.Stu83 What is interesting, however, is 

to note that the development history of support environments for non­

software design activities has very closely followed that described above for 

software. In particular, the abundance of individual tools supporting some 

part of a particular design method are now giving way to integrated tool sets 

supporting more of the design process.Kat83 Indeed, in parallel with the work 

in IPSE's for software development support, attention in non-software design 

activities is now turning from individual tools towards controlled tool interac­

tion through the use of a design database.Enc82, Ket87, Buc84 

Analysis of the characteristics of design data have revealed a number 

of problems with applying conventional database technology in the design 

environment.Kat83 In the next chapter we perform a similar analysis for 

software engineering data, and it is interesting to note how closely the results 

equate to Similar analyses of VLSI circuit design data. 

Cross-fertilisation of ideas between different design activities is 

currently underway in some areas, most notably in the support for long-lived 

design transactions and complex data objects.Kim85, Kat84, Lor81 It is clear, 

however, that continued collaboration will be of benefit to all concerned, with 

the result that the design process itself may be better understood, and the 

designer's needs more adequately supported. 



A View Mechanism for an IPSE 

2.5. Summary 

Chapter 2 

Page 36 

The need to provide automated support to aid the process of complex 

software systems design, implementation, and maintenance, led to the produc­

tion of indiVidual tools to support individual development methods and tech­

niques. Integration of the various facilities provided has been necessary to 

ensure that the complete project life-cyc1e is supported in a convenient, flexi­

ble manner within a model of the development process. This chapter has 

briefly examined the motivation and objectives of this work, with particular 

emphasis on the key aims of openness and integration upon which an IPSE is 

founded. 

In the next chapter we look in detail at the support required at the 

heart of an IPSE: the mechanisms for data capture, analysis, and control. 



A View Mechanism for an IPSE 

CHAPTER 3 

SOFIW ARE ENGINEERING DATABASES 

3.1. Introduction 

Chapter 3 

Page 37 

From the earliest attempts to provide integrated support for the 

software process, the use of a database as the central repository for all infor­

mation associated with a project was seen as a key element.Bux80, Ost81 This 

was driven by the fact that centralised control of data had been achieved in 

other application areas as a direct consequence of the use of the rapidly 

advancing database technology. In particular, through explicitly recording the 

data in a structured form it can be controlled, queried, and manipulated giv­

ing a higher degree of integrity than is usually the case using a simple flling 

system as the basis for a perSistent data store. 

In this chapter we examine the importance of using a database as a 

structured repository for all project development data, and look in detail at 

the special reqUirements of a database designed to control software engineering 

data. 

We conclude this chapter by examining some of the facilities which 

could be used as part of the superstructure of a software engineering database 

to control and maintain the integrity of the data. In particular, rules, tran­

saction, and view mechanisms are needed to further control user interaction 

with a database. 
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Having recognised the need for providing automated support for the 

software development process, it is important to realise that underlying the 

active support provided by a set of tools must be the basic mechanisms for 

capture, control, and analysis of the data generated during the lifetime of a 

software project. This basic principle is further examined below. 

3.2.1. A View of the Software Process 

There are many ways to view the role of an IPSE in the task of 

software development, but perhaps one of the most fundamental is to see an 

IPSE as providing the infrastructure for supporting a complex decision-making 

process. From this perspective, the development of a software project is seen 

as the manipulation of a set of complex objects governed by past experience, 

and directed by a plan for the future. In this way, at any point in a 

project's development we are attempting to verify that the present state of 

the system is consistent with past experience, while ensuring that we have a 

complete, integrated plan for the product's future development. This must be 

achieved within the context of changing project reqUirements, the existence of 

errors and inconsistencies, and a myriad of organisational constraints, all of 

which are an inherent part of any large project. 

Seen in this way, software development is a complicated exercise in 

information control and manipulation. Any environment designed to support 

this process must be fundamentally based on mechanisms for data capture, 

analysis, manipulation, and contro1. 
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The main attraction of using a database for any application is that it 

provides centralised control of its operational dataDat86 (where operational data 

is the term used to describe the information of interest to an organisation 

which is recorded within the database). For software engineering applications, 

the operational data will include all the information generated during software 

development. In particular, requirements analysis, systems specificatiOns, 

design documents, source and object code units, and testing and error reports 

must all be recorded. In addition to data concerning the software product, 

details of the project development process itself must be recorded such as 

which developers are responsible for each program unit and how each of the 

project activities are related. 

We now re-evaluate the advantages generally associated with the use 

of a database, emphasising the particular needs of software engineering applica­

tions. 

3.2.2.1. Reducing Redundancy 

One of the consequences of central control of data is that the redun­

dancy of stored data can be considerably reduced and controlled. In most 

cases a single centrally controlled copy of a data item can be maintained, 

which is sharable both by a number of different applications, and by many 

different users. In the development of large software projects, control of 

redundant data is a vital function for the following reasons. 
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Reducing redundancy is a great help in removing inconsistencies in the 

data. For example, if an error is found in a program unit, then when the 

unit is amended the same change must be made to all copies of that unit, 

and all larger components that have been built using the unit must be 

notified and rebuilt. This property of change propagation is much easier in a 

centrally controlled environment, especially using a database that not only 

stores the data items themselves, but also explicitly records the relationships 

between those items, such as where each item is used. 

3.2.2.3. Enforcing Standards 

One of the problems in software engineering is that there are so many 

different ideas about how software should be designed and impleme1?-ted. In 

an uncontrolled environment, this leads to incompatibility and inconsistencies 

between data developed using different methods. Maintaining central control 

of all development data is an important method of enforcing a set of 

development standards, providing a central point at which all design data 

entering the database can be validated before it is stored. 

3.2.2.4. Maintaining Integrity 

There are two aspects to integrity. The first is that access to data can 

be monitored, so that confidential information can be strictly controlled. 

Using a database this notion can be expanded so that each user is presented 

with an individual subset of the complete data, by using a view mechanism. 

This allows the user to get on with his/her work without distraction from 

irrelevant data, and provides a mechanism for restricting access to privileged 
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The second type of integrity is that of ensuring that the data recorded 

is accurate and conforms to constraints we may wish to impose on it. This 

is partly covered by reducing redundancy, but additional data validation is 

possible by defming a central set of validation procedures, or integrity con­

straints, which can be applied to data before entry to the database.Laf79 In 

this way, we remove the need for validation and consistency checks to be 

embedded redundantly in each indiVidual application program accessing the 

data. Now we are able to control these constraints centrally, apply them 

consistently, and allow them to be updated without affecting the applications 

themselves. 

3.2.2.5. Enhancing Data Independence 

In most simple frling systems, inherent in each data application is a 

knowledge of how the data is recorded in secondary storage. For example, 

when data is stored as frIes, many tools which access those frIes must know 

how the data is structured within a frle. This means that if there was some 

change made to the data format, then all of -those tools would need to be 

re-written. With a database, however, tools work with a virtual interface, so 

that if the underlying storage structures were to change, the applications using 

the data would be insulated from this and could usually continue to be used. 

However, the database itself would need to be amended to change the map­

ping between the virtual interface and the physical storage structures. (This 

is a major topic of database design, and is dealt with in greater detail inDat86, 

U1l80 ). 



A View Mechanism for an IPSE 

3.3. Why not use an Existing Database ? 

Chapter 3 

Page 42 

In general, database development has been geared towards commercial 

applications, to hold such information as personnel details and bank records. 

This has led to the development of techniques which make databases highly 

efficient in a commercial environment, but not necessarily so sUitable for other 

application areas whose characteristics differ greatly from the usual environ­

ment. Table 3.1 is a summary of the main differences between the require­

ments for a commercial database, and a database to record software engineer­

ing data. 

We now look in more detail at the requirements for a software 

engineering database by comparing the mechanisms used in commercial data­

bases with those required to support software engineering applications. 

3.3.1. The Nature of Design Data 

In commercial databases the data held is usually fixed length and sim­

ple, consisting of values such as salaries, bank account numbers, and employee 

names and addresses. In contrast, data in a software engineering database 

will be complex, variable length, and could even be graphical. For example, 

the design of a software component may be recorded as an interconnection of 

smaller component designs, and these dependencies are an important part of 

the design data. They could be recorded in some graphical form, in a 

number of related versions, or be only partially complete. All this informa­

tion must be recorded along with the design itself. 
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Commercial Database 

Most information is static and can 
be described a priori, so the schema 
is also static and compiled. 

Update to the schema is infrequent, 
and controlled by a group of 
Database Administrators. 

Data stored is atomic and fixed-
length (eg. strings and numbers). 

Small number of entity types, 
with large number of instances of 
each type. Often only simple, 
fixed relationships between entity 
types exist. 

Initially loaded with large amount 
of data. Slow, constant rate of 
data growth. 

Single-valued data items, which are 
updated in place. 

Transactions are short, atomic, and 
can be used as the basis for 
concurrent data access. 
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Software Engineering Database 

Continuous evolution of 
information - data about the 
environment itself (tools, methods, 
etc.), and the products being 
developed. 

Change to the schema is expected 
and frequent. Many users will 
need to change the schema. 

Data stored is atomic, but also 
structured. Could be graphical 
data, design documents, programs, 
and so on. Also, data items may 
be large and complex, and of 
variable length. 

Many entity types, with fewer 
Instances of each type. Complex 
relationships may exist between 
entity types, and new relationships 
may be created. 

Less data initially loaded. Rapid 
growth of database (both of 
structure and contents), which 
slows down after completion of 
design phase and increases sharply 
during implementation and testing. 

Versions of data items are vital. 
Dependence on versions, and 
relationships between versions must 
be explicitly recorded. 

Long-lived transactiOns (>hours) 
which may leave the database 
inconsistent for long periods. 
Cannot be conveniently used as 
locking units. 

Table 3.1 Comparison of Commercial and 
Software Engineering Databases. 
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In an application such as VLSI design, a typical object is represented 

by a large collection of records that belong to different record types.Kim85 

Unlike commercial databases, accessing and manipulation of this data is often 

based on high level object-based notions, so that the granularity of a database 

object need no longer be just a few records of similar type. There must be 

some method to control database operations at much higher levels of abstrac­

tion. 

The above is also true in software design; a typical software object is 

constructed from many smaller components, and such an object hierarchy is 

important in maintaining control of the development process.Bro85a, Bro85b 

3.3.1.2. Version Control and Confi.guration Management 

The design process is both tentative and iterative. This has a pro­

found effect on the growth of a design database, as it is necessary to record 

amendments to a data object as new versions of that object. Hence, in a 

design database it is important to control the dependencies between objects, so 

that a request for a data item obtains the correct version. IPSE's now typi­

cally contain version control and configuration management facilities as an 

integral part of their architecture.Ost83, Leb84 
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If a transaction is considered to be the unit of database consistency 

and concurrency, then a typical transaction in a commercial application, such 

as removing money from one bank account and placing it into another, is of 

short duration, reqUires only a few database records, and occurs atomically in 

the sense that the complete transaction takes place, or it fails and the data is 

unchanged. For a design activity the notion of a transaction is very different, 

and has the following characteristics: 

conversational, requiring frequent interaction with the system before 

com pletion. 

may last many hours, especially as the complete design may be con­

sidered as one long database transaction. 

may use many records, as the objects accessed may be complex and 

highly inter-related. 

the concept of atomicity is not very applicable, as undoing a transac­

tion in this environment may remove many hours of work. 

These characteristics have a number of important implications, most 

notably in the areas of concurrency control and maintenance of integrity. 

3.3.2.1. Concurrency Control 

Whenever concurrent multiple access to shared data is possible, some 

form of concurrency control must be implemented to prevent data corruption 

by interference. In a commercial database the control technique most com­

monly used is known as locking, whereby a request for a data object sets a 

locking flag to say that the object is in use. Conflicting requests for that 

object are then denied until the lock holder releases the object by resetting 
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However, this simple technique is of little use in a design application 

as the object to be locked could be large and the length of time the lock is 

required may not make it sensible for other designers to wait for the object 

to be released before proceeding. Other methods must therefore be used, tak­

ing advantage of the fact that most design objects are developed in isolation, 

and are shared at controlled times though a version mechanism.Kat84 For 

example, in Perspective interaction with IPSE data is restricted to the creation, 

amendment, and controlled sharing of document versions.Sys84 

3.3.2.2. Integrity 

The tentative and iterative nature of the design process leads to a 

conversational style of database interaction. Integrity rules have a much more 

important role in this environment, and can be used to verify a design 

throughout this interaction, and hence influence a design's development. Thus, 

in addition to the static form of integrity checking provided through data 

typing, dynamic integrity checking must be applied at project-related points in 

the development of a software product. 

For example, consider the design of some software component in a 

large software system. An initial design attempt could be an abstract descrip­

tion of the component using a high-level design language, or some graphical 

notation. At this point it is useful to perform some basic form of con­

sistency checking to validate the overall deSign, as early detection of design 

faults is a vital service. The feedback from these checks will help decide 

how to continue the design and where to focus attention, promoting a struc­

tured approach to the design process by encouraging incremental development. 

In this way the design continues, slowly being developed and validated until 



A View Mechanism for an IPSE Chapter 3 

Page 47 

a fInal design is produced which can be more rigorously checked before allow­

ing others to make use of it. 

The importance of integrity rules is clear, but it is not obVious what 

to do when any of the rules is violated. The choice lies between: 

rejecting the offending data and only allow it to be recorded in the 

database when it is amended to pass the checks. 

allowing the data to stand, but having some form of warning to let 

other users know that the data has not been fully validated. 

As there will be occasions when the integrity rules will need to be 

violated, usually when a design is incomplete, it is useful to be able to apply 

each of these methods when necessary. 

3.3.3. Summary 

The use of a database at the heart of an IPSE is based on the sound 

principle of the need for control of software development data. However, as 

has been shown above, using a database in a software engineering context 

places a whole new set of requirements on the database and its associated 

management system, and conventional database technology may not be easily 

applicable or appropriate in some areas. 

In the next section we continue the examination of the use of a data­

base for recording software development data by looking at the ways in 

which a database allows us not only to record data in a useful form, but 

also to provide more meaningful user interaction with the data. This is seen 

as essential in an application such as software engineering where the data 

recorded is highly inter-related, and accessed by tools outside the direct con­

trol of the database. 
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Although it is true to say that the function of a database is to store 

information in structures that permit easy retrieval and manipulation, it is 

also possible to give a higher-level interpretation to the role of a database. 

At this more abstract level, a database may be seen as providing a model of 

some portion of a real world system. The database schema is now a formal 

description of that model, while the data values recorded in the database 

represent the state of the real world system at some point in time. 

Seen in this way, it is important to ensure that the data values which 

can be stored in the database are restricted to the subset which reflect possible 

actual values in the real world. We can call this set the "meaningful" set of 

data values. Clearly, it should be the goal of any database system to be able 

to specify (in some formal way) the set of meaningful data values, and to 

provide mechanisms for their capture and subsequent manipulation. This 

work often comes under the title of "Semantic Data Modelling", as we are 

attempting to capture more of the semantics of the data rather than treating 

data as a set of static values. In particular, it is important to record the 

relationships and dependencies between data items, as well as the value a data 

item may have. By holding such information, we are able to constrain the 

set of values a data item may hold, and even to control when update opera­

tions (insert, amend, and delete) are permitted on a data item. 

A more pragmatiC reason for ensuring the accuracy of data concerns 

the propagation of erroneous data. In any system using a database, one of 

the consequences of applications sharing data is that many other applicatiOns 

may potentially retrieve, amend, or delete that data. As a result, any errors 

made by one application, such as changing a data item to an inappropriate 

value, can quickly affect other applicatiOns. In this way, it is very easy for 

a small amount of incorrect data to cause great problems in a shared 
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database. By capturing more of the meaning of the data structures which 

make up the database, and constraining the allowable values that such struc­

tures may hold, the possibility of such errors occurring can be reduced. 

For Software Engineering applications, the need for enhanced semantics 

capture is apparent, as we are dealing with highly structured data items 

which exist in a complex network of inter-relationships. Not only that, but 

. the tools and applications which access the data are often written by external 

agencies, and therefore not subject to direct control by the database adminis­

trators. This implies that we have no control over the integrity checks per­

formed by such tools, and cannot rely on them leaving the database in a con­

sistent state. In the following sub-sections we describe a few of the mechan­

isms which have been used to help add more meaning to the data stored in a 

database, and hence improve support for maintaining a consistent database. 

3.4.1. Mechanisms for Capturing Semantics 

A number of mechanisms are aVailable within a database system to 

capture and control the semantics of the data recorded. 

3.4.1.1. Data Modelling 

A data model provides the formal framework for a database within 

which data can be represented and manipu1ated.Dat83 There should be a clear 

and direct mapping between the representation of the real world as given by 

the model, and the real world elements themselves. 

We can reduce a data model to three basic components: 
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To model some part of the real world that is of interest, we attempt 

to identify common object types and relationships which exist. These are 

then represented in the model. By examining the behaviour of these objects 

in the real world, we can construct a set of operators to manipulate instances 

of these object types, and can also draw up a set of general rules which 

govern the possible states of the objects. 

The aim in recent years has been the development of data models 

which reflect more of the structure of the real world entities that are being 

modelled. This is a way of capturing more of the meaning of the data being 

recorded, and hence more adequately constraining the model to resemble the 

real world system. For example, the relational model uses the single data 

structure of a relation to represent the existence of an entity, properties ass0-

ciated with an entity, and to record relationships between entities. However, 

later data models,Ham81, My180, Cod79 have a much richer set of object types, 

which allow them to distinguish between different classes of object, supporting 

each one with appropriate structures, operators and integrity rules. 
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Although it has been stated that integrity constraints can be supported 

implicitly through the structure of the database schema, and indeed. it has 

been saldSch84 that the quality of a data model is directly related to its abil­

ity to do so, it is clear that this can apply only to generally applicable con­

straints on the data objects. For example, a general integrity constraint sup­

ported by a data model could be that when two entities are related via an 

association, then the existence of the association implies the existence of the 

two entities themselves (this is known as a referential integrity rule). We 

can claim this to be a general rule of the model, independent of the particu­

lar application data that is being modelled. On the other hand, for a particu­

lar application of a database, there will be certain instances of the data object 

types that conform to the general integrity constraints, but are invalid for 

this application. For example, in a personnel database, we may wish to 

impose the constraint that the "marriage" relationship that associates two enti­

ties of type "person" can never exist between two people of the same sex. 

Such an assOCiation, however, would not Violate the referential integrity con­

straint given above. 

A separate mechanism to deal with the definition and enforcement of 

application-specific rules is required to support these integrity constraints. 

Although there have been a number of papers discussing the need. for such 

systems,Dat81 and even proposed designs for systems,Wi180, Li184 most DBMS 

include only very primitive rule mechanisms, or no rule systems at all. Here 

we note a number of issues which need. to be addressed in implementing a 

more complicated rule system. 
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Defining a Rule. There must be a language in which the rules can be 

conveniently expressed, together with some means of checking that the 

rules so defined are valid. 

Checking a Rule. The process of checking a rule against a database 

state can be very complicated to implement. Typically, a triggering 

mechanism is used, whereby rules are enforced whenever some action 

takes place. An example might be creating a instance of an object 

type, at which point rules constraining valid instances of the object 

type could be applied. 

Violation of Rules. If a rule is Violated by some operation, then it is 

not obVious what action should be taken. Three possibilities are: 

rejecting the operation by returning to a state immediately before its 

execution, accepting the operation but issuing a warning message, and 

attempting to amend the operation to conform with the rule. 

3.4.1.3. Views 

One of the consequences of maintaining data in a shared database is 

that all applications which access the data must work with a single, 

predefined set of data structures and operators. However, in some database 

applications, and particularly Software Engineering, a large and diverse group 

of users and applications will wish to make use of the data. For example, it 

is expected that a complete IPSE would be used by project managers, quality 

assurance groups, clerical and administrative staff, as well as software 

engineers and programmers. If the database consists of a single, globally 

aVailable set of data structures and operators, then the follOWing problems 

may occur: 
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data structures and operators suited to one application, or class of 

user, may be inefficient, unnatural, and time-consuming to other users. 

the level at which database interaction occurs may be too abstract for 

some users (eg. programmers), while too low-level for others (eg. pro­

ject managers). The working requirements of these users are very 

different. 

there will be some data which is of relevance to only a subset of 

users, and we may want to restrict the access to such data by other 

users so that they are not confused by this unnecessary information. 

often databases contain sensitive information which we may not wish 

to be generally available. Many different levels of security may exist, 

and we need a mechanism to control access to data at different 

levelspen86 Typical examples are personnel data such as salary details, 

and strategic information which is embedded in software applications 

such as radar and defence systems. 

for similar reasons, we may want to restrict the operatiOns different 

classes of user are allowed to perform on data. For example, at the 

lowest level, a user may be given read-only access to certain informa­

tion. 

Early in the development of database systems the need for such func­

tions was apparent, and a mechanism which was often used to tackle some or 

all of these problems was the notion of a view.Tsi78 

A view mechanism allows the creation of abstract interfaces to a data­

base. Each interface can be tailored to a particular class of users needs, at 

an abstract level suited to those user's style of interaction. The view map­

ping, which defines the interface in terms of the underlying database, fi.lters 

out unnecessary or sensitive data, and may derive new abstract data and 

operators. 
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In a Software Engineering application, the necessity and importance of 

such a views mechanism is investigated in this thesis. Clearly tools which 

access the data will interact with the database at different abstract levels 

which can be supported by a view mechanism. More importantly, it is 

expected that existing tools will be ported to new IPSE's, potentially requiring 

a great deal of re-writing. A view mechanism, however, could be used to 

defme abstract interfaces to the database which require a minimum amount of 

change to the tool to allow it to run in the new environment. A method of 

providing such a mechanism is a major aim of this thesis. 

3.4.1.4. Transactions 

Interaction with the database is usually through the execution of a 

sequence of database operations which we wish to be considered as a single 

atomic unit. For example, the operation of reserving a seat on an airplane in 

an Airline Reservation System may consist of two smaller operations of 

checking a seat is aVailable, and then making a booking for the seat. ObVi­

ously, these two operations must be bound together to be treated as a single 

operation. This unit of interaction is known as a database transaction, and is 

supported by a transaction mechanism. Typical functions of a transaction 

mechanism are to prevent other users from accessing data which is currently 

being amended, and to undo partially completed transactions in the face of 

failure or user activated transaction abort. Traditional approaches to these 

problems rely on locking of all information which is to be used in a transac­

tion until the transaction either terminates successfully, or the information is 

released without change. 
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In more recent database applications, most notably in design applica­

tions such as Computer-Aided Design, VLSI design, and indeed Software 

Engineering, the traditional notion of a transaction must be extended to deal 

with the more conversational style of interaction which exists. Transaction 

mechanisms for database systems have been adapted to cope with this, mainly 

founded on the principle that most design data exists as a set of related ver­

sions, and that the traditional "update-in-place" found in commercial database 

systems rarely occurs. It is more common that a document is developed in 

isolation, and made available to other users at controlled points using a ver­

sion mechanism. Hence, access to design data will generally be for reading 

purposes only, with the possibility that . further versions of the item are 

developed. This is an active area of research which is currently receiving a 

great deal of attention.Kat84, Kat83', Lor8l 

3.5. Summary 

Having examined in detail the advantages of using a database for 

software engineering data, an analysis of the requirements for a software 

engineering database has revealed a number of problems with the application 

of traditional database technology. In summary we can say that traditional 

database technology is inappropriate for this application because: 

the highly structured nature of design data and its complex inter­

relationships are not easily represented with traditional data models. 

In particular, support for user deftned rules may be needed to main­

tain the integrity of the data. 
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user interaction with the data cannot be adequately modelled using the 

traditional notion of a database transaction. A particular problem is 

the use of a transaction as the unit of database concurrency. 

allowing data interaction at different abstract levels is vital within a 

software engineering database. The traditional database notion of a 

view falls well short of the support that is required for this. 

Providing database support for software engineering data is an active 

area of current research, as shown by a recent bibliography.Ber87 However, the 

remainder of this thesis is concerned with examining one of the mechanisms 

seen as important for a database system, and which has received little atten­

tion in the context of software engineering databases - the use of a view 

mechanism. We begin by looking at some of the principles behind such a 

mechanism, before defining and implementing a view mechanism for use in a 

particular IPSE system. 



A View Mechanism for an IPSE 

4.1. Introduction 

CHAPTER 4 

VIEWS 

Chapter 4 

Page 57 

Common to a number of areas in computing science is the notion of 

providing different abstract interfaces, or views, of data and operations at a 

fixed level. In investigating the advantages of providing a mechanism to sup­

port such a process as part of an IPSE, we can examine these other areas to 

give a gUide as to how an IPSE view mechanism should be designed, imple­

mented, and used. In this chapter we discuss the use of views in program­

ming languages and databases, and from these areas establish some of the 

principles which govern the later work on the design and implementation of a 

view mechanism for an IPSE. 

4.2. Abstraction, Views, and Abstract Data Types 

Human beings understand the world and solve the problems it poses 

by means of a process called abstraction. For example, when trying to 

understand how a car works in order to be able to fix it, we need to know 

something about engines, gears and the things we can do to them. However, 

when learning to drive a car, we abstract from our knowledge of how the 

car works and concentrate on manipulating the steering wheel, depressing the 

accelerator, and so on. These are alternative ways to view the same objects, 

with emphasis being placed on their different functional roles. 
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Similarly, it has been recognised that since computer systems are writ­

ten to model real-world problems, they are more likely to be correct, adapt­

able, and maintainable, the more closely the data structures and operations 

they use mirror those embodied in the problem being tackled. 

To facilitate this, it has been necessary to build into programming 

languages various mechanisms to define and manipulate the data structures 

being modelled at different levels of abstraction.Sha84, Bis86 In the last few 

years, work in both programming language development, and Database 

Management Systems (DBMS's) has taken note of the need to provide mechan­

isms for abstraction. 

4.2.1. Abstraction in Programming Languages 

Most modern programming languages provide facilities to combine the 

primitive operators of the language into higher level or more abstract opera­

tions which are called procedures. By making it possible to call one pro­

cedure from within another, they have effectively provided a way of extend­

ing the primitives of the language, and define operators which are increasingly 

abstract. 

Programming languages also contain a set of primitive data types such 

as "integer", "character", and "real". However, programmers seldom wish to 

work with such low level types. For example, if a problem involves complex 

numbers, it would obviously be helpful if the language offered such a type 

together with the operations with which to manipulate instances of that type. 

Since it is not possible to provide, as a primitive data type, all the possible 

types which programmers might require, modern languages such as Ada pro­

Vide a mechanism for defining new data types derived from existing types. 
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Again, by allowing one abstract data type to be derived from another, a 

hierarchy of such types can be defined, each at an increasingly abstract level. 

However, a data type is normally considered to comprise not only the 

data structure itself but also the operations which manipUlate it. For exam­

ple, the data type, "integer" in Pascal, incorporates not only the structure for 

containing all integers in the range of the machine being used, but also the 

operations, add, subtract, etc., for manipulating instances of this type. There­

fore, a language such as Ada makes it possible to associate a set of operators 

with a particular data type as part of its definition, and forbids access to the 

underlying representation of that data type except through such operators. 

Such a type, with its associated operators, is usually called an Abstract Data 

Type (ADT). 

Some important points concerning ADT's are as follows: 

If new ADT's can be defined in terms of existing ADT's as well as 

primitive data types, the new mechanism provides a very powerful 

means of extending the data types that can be worked with. 

Procedural abstraction is vital to the mechanism of ADT's, since it 

provides the power to create operators which manipulate the new data 

type. 

Inherent in the ADT mechanism is the concept of enforcing the new 

type. This means that only the operations defined with the type can 

be used to manipulate it. However, in Pascal, for example, although 

one can simulate the creation of a new data type (eg. using a linked 

list to simulate a first-in-Iast-out queue), it is not possible to enforce 

the type as a true ADT since there is nothing to stop the queue being 

accessed as though it were a linked list. 
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The ADT mechanism also provides an appropriate degree of "informa­

tion hiding" in the sense that if we have defined a queue ADT, the 

users of that ADT can only see the data structure as a queue and 

know nothing about how it is implemented (e.g whether as an array 

or a linked list or whatever). This allows the writer of an ADT and 

its users to be independent, with a controlled interface between them 

for communication. This in turn greatly facilitates decomposition of a 

program into separate tasks, which may be carried out by different 

people. 

4.2.2. Database Views 

The database community has long realised the need for providing 

mechanisms to support access to data at different abstract levels. Indeed, it 

has been said that "the main reason for the existence of DBMS's is to provide 

independence between the physical representation of data and a user's view of 

it".Tsi82 

A database records information in a machine dependent way on secon­

dary storage. This is often called the internal level view of data. However, 

not only will this internal representation of data differ from one implementa­

tion to another, it is also expected that it will need to be amended as the 

volume of data recorded increases, and storage organisation and access methods 

need to be tuned. It is clearly desirable to shield users of the database from 

these changes, and particularly to ensure that end-user application programs 

are not affected when such low-level changes take place. The property of 

insulation from changes to. the internal level of a database is often called 

physical data independence, and can be defined as the immunity of 
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applications to change in the storage structure and access strategy of data,oat86 

This implies that we have a logical definition of the data, independent 

of the data's physical implementation. This logical data description, often 

called the conceptual schema, provides the basis on which the data can be 

analysed and discussed independent of the method of physical storage. In 

this way, the logical level can be seen as an abstraction from the internal 

level in the same way that a data type such as "integer" in the programming 

language Pascal is an abstraction from a machine's particular binary represen­

tation for integers. 

However, the conceptual schema too can be expected to change over 

the lifetime of a database. There are two main reasons for this. Firstly, the 

data structures within the database will evolve over time as the needs and 

expectations of the organisation maintaining the database themselves evolve. 

Secondly, the schema will grow and be added to as new types of d.ata need 

to be recorded, and additional properties of existing data types are recognised. 

Again, it is desirable to shield end-users from such change so that 

applications have to be amended as little as possible. The property of insula­

tion from changes to the conceptual schema is often referred to as logical 

data independence. 

Hence, a further level of abstraction is required, to a level at which 

applicatiOns can be written. This is most often known as the external level, 

and while there is a single physical view of the database, and a single con­

ceptual view, it is possible for each application to hold its own external view, 

suited to the application's needs. This three level architecture of databases is 

summarised in figure 4.1 below.Tsi78 

A typical example of the need for multiple external views of the same 

data can be seen in a database maintaining information about program 

specification and design documents. It would be quite feasible for one 
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application to require full details of a particular speciftcation document, while 

another may be only interested in whether the document has been frnished or 

not, and who was the last person to change it. The ability to provide multi­

ple concurrent views of the same underlying information is vital to the use­

fulness of a DBMS, and means that applications can be written to a view of 

the data that is suited to that application's particular needs. This makes the 

applications easier to write, understand, and maintain. 
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In conclusion we can say that the need to support the abstraction pro­

cess which is so vital to a user's perception and understanding of a problem 

has naturally led to the development of mechanisms within both programming 

languages and databases which attempt to support it. While the underlying 

goals are the same, the approaches taken differ in a number of ways. These 

differences are discussed later in the chapter. 

4.3. Project-Level Abstraction in an IPSE 

Having seen the need for supporting different abstract views of data in 

programming languages and DBMS's, we can now examine The importance of a 

view mechanism for an IPSE. 

4.3.1. An IPSE as a Extended Programming Language 

One way in which we could view an IPSE is to say that it is an 

extended programming language in which we have shifted emphasis from the 

programming level alone, concerned with only a small part of the complete 

life-cycle of a project, to the project level, where issues such as requirements 

analysis, specification of design, and post-implementation maintenance, as well 

as management control of the development process, become important. Hence, 

while a programming language provides operators to manipulate fme-grain data 

items such as "integers" and "reals", an IPSE requires operators to manipulate 

much more coarse-grained items such as speciftcation documents, programs, and 

management reports. 
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A project-level system will consist of a set of data types, and opera­

tors to manipulate instances of those types, both at a predefIned abstract 

level. For example, we may have specification documents as one of our 

types, of which there may be many instances corresponding to particular ver­

sions of documents. Operators must be provided to create a new specification 

document, edit an existing document, display a document, and so on. 

However, in the same way that applications in a programming language 

require different abstract views of the basic data types and operators, we also 

need to provide these at a project-level within an IPSE. Indeed, the need 

may be greater because of the diversity of users accessing the information 

contained in an IPSE. For example, a designer will want to see detailed 

information about the specification document he/she is designing, and have 

operators aVailable to create a new document, change an existing document, 

analyse and check the consistency of a speCification document, and so on. A 

manager, on the other hand, would only be interested in finding out which 

documents have been completed, and which are outstanding, and perhaps hav­

ing summaries of their contents. 

As one of the principal objectives of an IPSE is to reduce the amount 

of redundantly stored information in order to maintain the consistency of the 

information, it is inappropriate to maintain multiple copies of the same data 

at different abstract levels to suit each user's needs. It is much more desir­

able that where possible data is held in a single canonical form, with different 

views provided to suit each end-user's needs. Similarly, to ensure integrity 

of the operatiOns on the data, it is deSirable that new abstract operators on 

the data are defined in terms of those at a lower abstract level, in a similar 

fashion to procedural abstraction in a programming language. 

One of the main aims of this thesis is to describe how we can provide 

a mechanism to support project-level abstraction within an IPSE to 
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accommodate the diverse set of users who will make use of the IPSE, while 

preserving the integrity and consistency of the data. 

4.3.2. An IPSE as an Extended DBMS 

An alternative way to view an IPSE is to focus on the data that is 

recorded in the IPSE, and in particular on the relationships and interdependen­

cies that exist between data items. 

For most programming languages, the only way in which they can 

interact with data that persists across program invocations is at the frle level. 

As a result, application programs often spend a great deal of their time read­

ing in the data from frIes, re-creating the structured information which has 

been written away in these frIes, and writing structured information back out 

to frIes in a flattened, unstructured form. This is not only wasted effort on 

behalf of the program, but must also be duplicated in many other application 

programs which want to see the data in a structured form, with the inherent 

consistency problems that this implies. This has naturally led to the use of 

persistent, structured repositories from within programming languages for 

recording data in the form of a database Was79a, Row79 (see section 4.5 for an 

overview of the techniques which have been tried). Hence we have fme­

grained control of data and the explicit recording of relationships between the 

data. This work has taken place within the context of providing a perSistent, 

structured repository for data at a programming level, without regard for the 

Wider issues of software development and the support that is needed in these 

areas. We briefly review some of this work below, with particular emphasis 

on the mechanisms they provide for supporting multiple concurrent views of 

the data at different abstract levels. 
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Recent work in IPSE development has also led to the use of a data­

base as a structured repository for the data generated throughout the complete 

life-cyc1e of a software project. What is interesting, then, is to see how the 

notion of views, which was seen as so important in commercial database sys­

tems, can be used in an IPSE built around a database. In particular, we wish 

to extend the commercial database notion of a view to support the many 

different abstract levels of interaction which the diverse user base of an IPSE 

will reqUire. 

4.4. Support for Abstraction in an IPSE 

Having examined in some detail how the process of abstraction has 

been supported in both programming languages and databases, we can now 

draw together the features of ADT's and views which we see as important 

within an abstraction mechanism for an IPSE. 

4.4.1. A Comparison of Views and ADT's 

To summarise the above discussion, it will be useful to directly com­

pare the programming language notion of an ADT with the traditional data­

base notion of a view. From this we may draw out those features which we 

consider to be necessary in an abstraction mechanism for an IPSE. 

We can note at least the following points of comparison: 
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both mechanisms are designed for a similar purpose: to provide better 

support for the user by allowing him/her access to information at an 

abstract level suited to his/her particular needs. In this way the user 

is more likely to understand the process which is being modelled, and 

hence errors are less likely. 

In relational database systems, a view is defined by a relational query 

written against underlying relations and views. The result is a single 

relation which acts as a type deftning properties of its instances. An 

ADT definition consists of a set of type deftnitions derived from lower 

level types, together with a set of permitted operations on instances of 

those types. 

The deftnition of a view determines which update operations are 

allowed on the view. For example, with views involving a join of 

two relations, it is often the case that no view update operations are 

permitted because the effect of the view update on the constituent 

relations is not clear. The ADT approach is much more flexible in 

that any operation on a data type may be deftned as an integral part 

of the ADT. This allows much greater control of the method and 

extent of data access. 

A basic difference between the mechanisms is one of persistence. Data­

bases, and hence views of them, persist between program invocations 

allowing indiVidual view object instances to persist between database 

accesses. For ADT's to use a perSistent store, they normally have to 

do so at the file level requiring a manual conversion of the ADT 

instances to and from a file representation. 
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Examining the mechanisms provided to support abstraction in both pro­

gramming languages and databases, it can be seen that for an IPSE it would 

be desirable to combine certain features from both systems. In particular, we 

would like to have the flexibility of defming arbitrary abstract operators on a 

data type as provided in ADT's, together with the structured, persistent repo­

sitory which is provided by a database. This would allow us to deftne 

abstract interfaces to IPSE information which consisted of operators suited to 

a class of user's needs, while maintaining the advantages of a single, underly­

ing structured representation of data, shared between different groups of user. 

The rest of this thesis examines the design issues in building such a 

mechanism, and goes on to design, specify, and implement a mechanism within 

the context of the ASPECT IPSE. 

4.5. Related Work 

We now briefly discuss related work with particular emphasis on how 

multiple, concurrent access to data can be prOVided. 

We first of all look at how attempts have been made to combine pro­

gramming languages with a database of perSistent objects, then look at how 

databases are currently being extended with the ability to deftne ADT's as 

new domains from which values in the database can be drawn. We then dis­

cuss work in structured programming environments to present views of the 

single, canonical program representation maintained in a database of program 

structures at which tools can be directed. Then, we look at a recent proposal 

to combine a database with an object-oriented programming system to obtain a 
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persistent object store. This is built on the notion of a "view-object". 

Finally, we see how existing IPSE's have allowed their facilities to be 

tailored to suit indiVidual users' needs by examining three representative sys­

tems. 

4.5.1. Combining Programming Languages and Databases 

One of the problems with many programming languages which deal 

with data as complex objects is that there are no facilities in the language to 

record the objects in a data store that persists between program invocations 

other than at the granularity of a nle.Atk78 As a result, much time and effort 

is spent within application programs converting from structured, object format 

to flat, unstructured nle format. Attempts to address this problem have pro­

gressed in three ways: 

the addition of new constructs in an existing programming language in 

order to support a database model. For example, the addition of rela­

tional constructs into the programming language Pascal.Sch77 

design of programming languages specincally to interact with data in a 

persistent store. For example, the languages PLAINWas79b and 

RIGELRow79 are specifrcally designed for the construction of database 

applicatiOns. 

developing techniques to support persistent data which use the con­

structs already available in an exising programming language. PS-Algol 

is an example of such an approach,Atk81 with the PISA projectAtk87 

continuing the work to investigate machine architectures capable of 

supporting a persistent language approach. 
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This work is only interested in accessing a database at an individual 

program level, and does not concern itself with providing multiple, concurrent 

views of the underlying data, nor the problems of sharing this data between 

users. Hence, very little use is made of views in any of these languages, 

though RIGEL does have facilities for creating view modules which resemble 

the "packages" which can be deftned for ADT's in Ada. 

4.5.2. Abstract Data Types in Databases 

The trend in the last few years has been to use databases for an 

increasingly varied range of applications. This has greatly influenced current 

work in the area, with many researchers proposing new database architectures 

and mechanisms better suited to a particular application.Lor8l, Buc84 One propo­

sal has been to add abstract data type (ADT) facilities to a relational 

database.Osb86, Ong79, Row87, Kem86 Such a mechanism allows users to create 

their own domains consisting of abstract data types which can be deftned in 

terms of the lower level existing types. In this way, the complex data 

objects which are commonly found in design applications can be more closely 

modelled. For example, types can be deftned to represent geometric shapes, 

polar and cartesian co-ordinates, and so on. The user can now deftne opera­

tors on these types by writing functions which perform the desired actions on 

the underlying data types. Finally, relations can be created which have attri­

butes whose values are drawn from these abstract types. Now, queries on 

the relation can use the abstract operators to select those instances reqUired. 

For example, in the extension to INGRES which allows abstract data 

types for domains,Ong79 we can deftne a relation "ComplexNums" to have a 

single attribute (fteld) which is of type "complex". This is a user-deftned type 
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which contains two integers to represent the real and imaginary parts of a 

complex number. If we have defined an operator "Magnitude" which, given a 

complex number as a parameter, returns its magnitude, then we can write a 

query to retrieve all complex numbers recorded in the relation whose magni­

tude is greater than the magnitude of the complex number 3+4i as: 

RANGE OF C IS ComplexNums 

RETRIEVE (C.field 1) 

WHERE Magnitude C.fieldl > Magnitude "3,4" 

In many ways this work resembles closely the kind of mechanism we 

would require for an IPSE. However, by allowing just the attributes of a 

relation to be abstracted we have only improved the way in which individual 

relations can model real-world entities. This mechanism can be seen as very 

much complementary to the kind of mechanism we would like for an IPSE, 

where we are also interested in providing multiple views of data objects and 

the controlled definition of view operators. 

4.5.3. Garlan's Views 

Interesting work is being carried out by Garlan as an extension to the 

programming support environment GANDALF.Gar83 This system integrates a 

set of co-operating program development tools on a uniform structure database 

containing programs in the form of abstract syntax trees. However, although 

many of the tools wish to access a program in some structured form, as held 

in the database, it has been found that a structure appropriate to one tool 

may be inappropriate for another. 
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Garlan's solution is to generate abstract views of the database structure 

which are suited to the needs of individual tools. This provides each tool 

with a suitable view of a program, while maintaining consistency between the 

various representations. 

It is clear, then, that the requirements within an IPSE context have 

been Similarly recognised within a structured programming environment con­

text, and indeed, the solutions offered by Gar1an mirror closely those investi­

gated in this thesis. 

4.5.4. Wiederhold's View-Gbjects 

In a recent paper by Wiederho1d,Wie86 an analysis is made of the 

problems of adding a perSistent store to object-oriented programming systems, 

and an architecture is proposed which exploits the commonality of objects in 

programming languages and views in databases. The aims of this work are 

very closely related to those presented in this thesis. 

The proposed architecture consists of three basic components. Firstly, 

a set of base relations serve as the perSistent database for applications, con­

taining all the data needed to create specified objects. Then, a set of view­

object generators extract the data from the base relatiOns in relational form, 

and convert it into sets of objects. The fmal component will be a view­

update-generator, which will commit updates made against view-objects by 

performing their equivalent updates against the base relations. 

Many of the ideas presented in this paper appear to be very appealing 

as regards the needs of an IPSE view mechanism. Unfortunately, it is 

difficult to make much comment on its suitability as only outline details of a 

proposed architecture are presented, without any information on how such a 
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mechanism can be implemented as part of a larger development environment. 

It will be interesting to see how this work develops in the future. 

4.5.5. View mechanisms in IPSE's 

It has been recognised from the original development of IPSE's that 

there was a pressing need for tailorability and adaptability of the facilities 

provided. Support for abstraction in IPSE's has been varied, but we now 

illustrate the mechanisms used by examining three different systems. 

Firstly, we look at an example of what has been called a first genera­

tion IPSE,Mai86 the UNIX development environment, and examine the way in 

which tailored access to data is possible through fleXible mechanisms for tool 

creation and integration. Then, we examine the PCTE notion of a working 

schema to restrict individual tool access to subsets of the total schema. 

Finally, we look at the ISTAR mechanism of workbenches, which allow a set 

of tools to be selected by a user to carry out a particular unit of work. 

4.5.5.1. UNIX Tool Sets 

One of the strengths of the UNIX development environmentDo176, KerBl 

lies in the ability to create and integrate new tools in a fleXible, convenient 

way. Then, through appropriate access controls, individual or groups of users 

can be given access to these tools. This in itself is not unique. What is 

important, however, is the way in which a user can make use of a tool 

within his/her defined workspace. FaCilities are provided to: 
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make access to tools easier through path name lists, which provide a 

list of directories to be searched whenever a tool is called. 

allow new tools to be easily created by the availability of an inter­

preted shell language which provides a simple interface to the pre­

defined UNIX tools. 

embed the UNIX system calls into C programs by defining the system 

calls as a set of C language functions. 

be able to connect together· tools by redirecting input and output of 

tools, and the creation of "pipelines" of tools. This is made possible 

through the single format used for all data communication - a file 

com posed from a simple byte stream of characters. 

Many IPSE's build on the simple, yet powerful facilities provided by 

the UNIX system, in particular by improving the facilities for security and 

control of data access, and by the addition of a database as a structured 

repository for development data. 

4.5.5.2. PcrE's Working Schemas 

Recognising that individual users and tools will only wish to access 

subsets of the information available in an IPSE, the Portable Common Tool 

Environment (PCTE) associates each process with a working schema to provide 

the context in which that process can execute.Bul85, Sys87 Then, the process can 

access the underlying information through the working schema, which acts in 

an analogous way to a subschema definition in CODASYL databases,Kay75 res­

tricting access to some parts of the database. 

Each data object is defined in a Schema Definition Set (SDS), and these 

are grouped together to form working schemas. In this way, data can be 

shared between processes by two working schema importing the same SDS. 



A View Mechanism for an IPSE Chapter 4 

Page 75 

Although the PCTE addresses the problems of data sharing and con­

current access through these mechanisms, only very limited facilities are aVail­

able to tailor the environment to suit indiVidual users needs, particularly 

with regard to the operations they are allowed to perform. 

4.5.5.3. ISTAR's Workbenches 

Illustrative of more recent work in IPSE's, the 1ST AR IPSE is built 

around a model of the software process in which specific units of work, or 

"contracts", are deftned and co-ordinated to simulate the controlled decomposi­

tion of a complex software project, and maintained within contract 

databasespow86, Ste86 Within an 1ST AR IPSE, tools are grouped together into 

meaningful sets (eg. Pascal tool set, VDM tool set, and so on) called work­

benches, and an ISTAR user invokes a selected workbench to work on a par­

ticular con tract. 

The workbench idea allows a limited amount of tailorability of an 

1ST AR environment to suit the particular task at hand. This facility is 

further enhanced by including a set of tool building and tool integration tools 

as part of an initial 1ST AR workbench. In particular, certain classes of 

foreign tools (ie. not written speciftcally to run in 1ST AR) can be integrated 

into an 1ST AR workbench through the use of an 1ST AR tool that packages 

foreign tools in an "envelope". Then, the packaged tools interact with the 

user and the contract database via the envelope, which converts input and 

output expected by the tool to that supported within the 1ST AR environment. 

Certainly, the facilities offered in ISTAR go a long way towards 

achieving the aims of an abstraction mechanism for an IPSE, by allowing 

users to select a suitable set of tools when carrying out a piece of work. 

What we would like, however, is to extend these facilities to enable users to 
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augment and tailor their own environments under controlled conditions, and 

to try to move these facilities away from being hidden within tools, to being 

controlled and co-ordinated at a finer grain within the IPSE itself. 

4.6. Summary 

Views within database systems, and ADT's in programming languages, 

are important mechanisms for organising and controlling the complexity 

inherent in large software systems. The main difference of approach can be 

seen as one of scale. In particular, programming languages are concerned with 

manipulation in main memory of fine-grained objects, while sharing perSistent 

data at the large-grained file level. Database systems, on the other hand, 

allow complex objects to be manipulated in main memory, and to be shared 

via persistent store. We have examined other systems which attempt to 

transfer the object-based perSistent store to a programming language, or to add 

the fine-grained manipulation capabilities of a programming language to a data­

base system. For an IPSE based on a database, the data structuring capabili­

ties of a database view mechanism are vital to the integration of services pro­

vided, and hence an IPSE view mechanism must be built using these. How­

ever, the addition of ADT -like facilities to such a system will provide many 

useful capabilities, particularly the ability to define abstract operators. The 

next chapter examines how an IPSE view mechanism can be designed to take 

advantage of both of these approaches. 



A View Mechanism for an IPSE Chapter 4 

Page 77 



A View Mechanism for an IPSE 

CHAPTER 5 

A MODEL OF AN IPSE VIEW MECHANISM 

5.1. The Aims of the Model 
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Earlier in this thesis particular problems and requirements of an 

abstraction mechanism for an IPSE were identified and discussed. We now 

describe a model of a mechanism designed specifically to support project level 

abstraction within an IPSE. In particular, the model we define is designed 

with the following explicit aims in mind: 

to be a flexible mechanism capable of supporting user and tool interac­

tion with IPSE data at different abstract levels suited to individual 

user's needs, and hence make such interaction more meaningful, 

sim pIer, and less error prone. 

to provide facilities for a user to carry out a task in a working 

environment which that user can tailor and adapt in a controlled 

fashion to suit his/her individual style of interaction. 

to be able to use the mechanism as a management technique for con­

trolling access to data by restricting the data that each user can access, 

and by explicitly defining the operations on that data which users can 

perform. 

to use the model to investigate the possibilities of using such a 

mechanism to aid with the integration of tools foreign to that IPSE 

environment by providing abstract interfaces through which such tools 

can access IPSE data. This can be achieved by providing an abstrac­

tion of the IPSE which closely mirrors a foreign tool's native environ­

ment, and so minimises the changes necessary to the tool to enable it 
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to integrate such a mechanism within the Wider context of facilities 

offered by an IPSE. In particular, an IPSE will be concerned with 

controlled sharing of data between users, maintaining the integrity of 

the recorded data, and controlling allocation and execution of indiVi­

dual tasks in the development of a software project. 

We now develop a simple model of view mechanisms in their most 

general form, examine two existing database view mechanisms using this 

model, and then extend the model to suit the stated needs of an IPSE 

abstraction mechanism. 

5.2. A Basic View Model 

We start with the basic definition of a view as a subset of a set of 

pre-existing objects, which we shall call "base objects". For our basic model 

we limit the base objects to data so that the view mechanism is only allowed 

to view data items. In this way we can think of the base objects as a col­

lection of flIes, a set of relations, and so on. 

For example, consider a set of base objects consisting of the items 

shown in fLgure 5.1. 
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Base Objects 

A 
B 
C 
D 
E 

Fig 5.1 A Set of Base Objects. 
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In figure 5.1, the base objects consist of a set of data objects which 

we may think of as relations recorded in a relational database, but they 

could equally well be different versions of source programs, speciftcation docu­

ments, management reports, or any other object we may wish to record. We 

can say that the base objects are each given an identifter unique within the 

set of base objects. 

Now, we can define view objects to be data objects with identifters 

distinct from those used for base objects. An example of this is given in 

figure 5.2. 

View Objects 

FRED 
JANE 
JOE 

Fig 5.2 A Set of View Objects. 

In figure 5.2, the view objects have been given different identifters to 

those used for base objects. 

We can now define the basis of a view mechanism as the recording of 

a mapping relating a view object to a base object. So, for the above example, 

the view mappings could be recorded in a table as in figure 5.3. 
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View Mapping Table 

View Objects Base Objects 
FRED A 
JANE C 
JOE D 

Fig 5.3 A Simple View Mechanism. 
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From figure 5.3, we can see that the mapping table relates each view 

object to a base object. More strictly, we can say that all the view objects 

have an entry in the left-hand column of the mapping table, while the 

objects in the right-hand column will be a subset of the base objects. This is 

consistent with our definition of a view as a subset of the base objects, and 

allows for the use of local view identifiers for base data objects. 

We can say that when an entry is made in the view mapping table, 

recording the view object together with its associated base object, then we 

have defined that view object. Then, when reference is made to a view 

object, the mapping table is checked, and the corresponding base object can be 

accessed. 

Using this simple model, any number of views of the parent system 

can be created, where each one will map a view object to a base object. A 

view mapping table entry must be constructed for each view in order to con­

vert the local view object into a base object. Remember, it is only the base 

objects that physically exist; views of them are only private abstractions 

created to help a user in his/her work. 

Hence, we have a basiC model of a view which allows the creation of 

local abstractions of a global set of data. It is important, however, to under­

stand that the basiS of the model for any view mechanism is the creation of 

a simple mapping table relating view objects to their underlying base objects. 
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As the model stands, we only have a renaming facility for base 

objects. This may appear to be of little use, but there are many commercial 

database view mechanisms which can be modelled in this simple way, pro­

vided we add two simple extensions to the model. 

5.3.1. Expressions 

The first extension we must allow to the model is to remove the res­

triction that view objects must correspond to exactly one base object. In 

other words, we allow the creation of abstract objects which may be combina­

tions of more that one base object. 

If we consider our data objects to be relations, then, we can envisage 

the need to create abstract relations as the combination of a number of parent 

relations. (In SYSTEM R,Ast76 the parent relations are called "base tables", 

and the abstract relations are called "derived tables"). 

To do this we must allow the entry in the right-hand column of the 

mapping table to be an expression rather than a single object identifier. We 

say that when the entry is made in the mapping table, the new view object 

is associated with an expression deftning how the view object is derived from 

the base objects. Then, whenever a reference is made to the view object, we 

must evaluate the expression to create a new value for the abstract object. 

In the case when the data objects are relations, we can allow the expression 

to be any statement of the corresponding relational algebra (or relational cal­

culus) as this will create a new relation which can be used without distinc­

tion from the original relations. As the relational algebra provides a con­

venient and powerful way to manipulate relations, we have available an 
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elegant method for providing view objects as arbitrary combinations of base 

relations. 

If the data objects are not relations, for example they could be files, 

then we must have some other way of expressing a combination of base 

objects as a view object. An interesting example is provided when we con­

sider the objects to be programs, or program fragments. We can then 

envisage the expression resembling some form of UNIX "makefile", which we 

can think of as a recipe for constructing a larger program unit. 

Note that we must extend the simple notion of a view as a subset of 

a set of base object to allow the use of operators for combining and manipu­

lating base objects to produce a new abstract view object. In addition, we 

say that the operators form a closed algebra in that any view objects which 

are derived are of the same type as the base objects. 

5.3.2. Nesting 

The other important notion to add to the model is the idea of nesting. 

So far we have only talked about a view of base objects as a one-level 

mechanism - ie. a single parent system, with a number of views of that sys­

tem. However, this simple mechanism will allow views to be nested to any 

level. This is possible because we have now defined a view object to be 

created within a closed algebra, so it will have the same characteristics as the 

base objects, and can hence be used as the parent for some further abstrac-

tion. 

This situation can be considered analogous to the defining of types in a 

programming language such as Pascal. 

type is a restriction of the parent type. 

For example, a declaration of a sub­

However, it is still possible to apply 
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the rules and operations of the parent to the subtype, as the parents proper­

ties have been inherited. 

Now, if an operation takes place on a view object, we may have to 

follow a number of mappings as in figure 5.4. 

View Mapping 2 View mapping I 
View 2 View I View 1 Base Objects 

SID e(FRED) FRED A 
DAVE eUANE,JOE) JANE C 

JOE D 

Fig 5.4 An Example of Nested Views. 

In figure 5.4, view objects have been defined at two levels, referred to 

as "VIEW 1" and "VIEW 2". For clarity, these have been recorded in two 

separate view mapping tables, one for each level. The objects at level 2 are 

defined as expressions involving the objects at level I using the notation 

"e(FRED)" to mean an expression involving the object FRED. Now, an opera­

tion referring to a view object would involve finding the object in the correct 

view mapping table, evaluating the expression associated with the object, and 

performing these steps recursively for each of the lower-level objects in the 

expression. Eventually, an expression involving base objects only will be 

obtained, and can be evaluated to derive the deSired view object. 

Although, in the simple example we have used above we have care­

fully separated the objects at two different abstract levels, in most existing 

database view mechanisms no such split occurs, and view objects can be 

defined which involve any other existing view object or base object. We 

maintain the distinction between abstract levels to more closely model the 

programming language concept of abstraction. 
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It is useful at this point to examine the model that has been 

developed thus far. This seems to be a good place to review the model as 

the facilities that have been described are quite sufficient to illustrate the 

view mechanisms of many existing database systems. The additions to the 

model that are described later in the paper can be thought of as enhancements 

to the basic view model. 

We now examine two existing database systems - SYSTEM RAst76 and 

IngresSto86 - to see how they have implemented a view mechanism. This is 

followed by a discussion on the problems of updating through views, leading 

to the extensions proposed for a view mechanism for an IPSE. 

5.4.1. SYSTEM R and Ingres 

Both SYSTEM R and Ingres take the same approach to providing a 

view mechanism, which can easily be modelled by the basic view mechanism 

that has just been described. 

A view is deftned to be a single derived table constructed from one or 

more base tables by an expression in the available relational calculus.t In both 

systems, any derivable table can be defined as a view. In fact, in these sys­

tems a view can be thought of as a "named query", as the result of any rela­

tional calculus query is a derived table. This is consistent with the model 

we have deftned, as we have the ability to insert expressions into the view 

mapping table, where the expression can be anything that will produce a valid 

We shall use the terms "derived table" and "base table", as in SYSTEM R, where 
Ingres uses the terms "virtual relation" and "actual relation", 
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Also, as a derived table can be considered to be of the same type as a 

base table, it is possible to deftne a view in terms of other views, to create 

an arbitrary nesting of views. Again, we have allowed for this in the basic 

model, . as we can relate operations on view objects to operations on actual 

data by reference to more than one mapping table. 

The view objects that are deftned act as additional abstract objects 

which can be manipulated along with the lower level objects. There is no 

concept of data hiding in either system; a user can see all objects at all 

times. 

5.5. Update Through Views 

One of the problems that exists with view mechanisms is that, 

although we have allowed any derivable table to be deftned as a view, it is 

not possible to allow update operations on every derived table. We can best 

explain this by considering an example. 

Assume that a database contains information about suppliers, parts, and 

the cities in which suppliers are located. Suppliers are instances of the rela­

tion S, parts are instances of the relation P, and the information that a par­

ticular supplier supplies a particular part is held as an instance of the associa­

tive relation SP. We could deftne a view which gives each part number, P#, 

together with the location, CITY, in which the supplier, S#, of such a part 

lives. This is illustrated in ftgure 5.5. 
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DEFINE VIEW PART_CITY AS 

SELECT P#, CITY 
FROM SP, S 
WHERE SP.S# = S.S# 

P# 

PI 
P2 
P3 
PI 

CITY 

PARIS 
ROME 

LONDON 
ROME 

Fig 5.5 An Example of a View P ART_CITY. 
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In figure 5.5, a view PART_CITY has been defined in SQL, and along­

side it is the derived table that is produced at some point in time when the 

view expression is evaluated. There are no problems in using the view in 

data definition statements, but it is not possible to perform any update opera­

tions on the view. For example, if we wanted to add a new tuple to say 

that PI is also supplied in London, we would just give the values involved, 

PI and LONDON. However, as this is a derived relation, we must define a 

mapping that tells us what to do to the underlying base tables to reflect this 

change. Do we create a new supplier who is located in London? Do we use 

an existing supplier? If so, which one, there may be qUite a few? 

In summary, as is clear from this example, the problem of updating 

through a view is quite a complicated one. For a more detailed discussion of 

the problems of updating through a view see.Ban79 
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To overcome the update through views problem, we can envisage three 

different approaches: 

1. No view updates are allowed. ObViously, this will be the easi­

est method to implement, but severely restricts the use of a 

view mechanism. 

2. View updates are only allowed when the update operations can 

be automatically and unambiguously converted to operatiOns on 

the parent objects. An update translation algorithm must be 

available to do this (eg. SYSTEM R, and Ingres). 

3. View updates may be allowed in all cases, and the view definer 

must explicitly define the operations to be performed on the 

parent objects for each view update operation 

In terms of our existing model of the view mechanism, we can give 

each of the above methods an intuitive interpretation. 

For the first alternative, clearly the model can remain unaltered, with 

the interpretation that whenever an expression is used in the right-hand 

column of the mapping table, then the corresponding view object cannot be 

updated. This interpretation will allow updates to take place if the view 

object is no more than a renaming of a parent object, as the object identifier 

will appear in the table, not an expression. 

The second alternative does not have a particularly obVious interpreta­

tion in our model. The best we can say is that when a view object is 

mapped to an expression, the expression must be examined to see if it is 

sufficiently simple to allow update operations on the view. In SYSTEM R, 

for example, the expression can only involve one base table, and a restricted 

set of operators on that table (ie. There must be a one-to-one mapping 
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The final alternative can be interpreted in the model by considering 

the addition of operator objects, as well as data objects, as components of a 

view. Hence, defining a view will involve defining both data and operator 

objects in terms of expressions involving parent objectsye183 

When the decision between the alternatives was made for a view 

mechanism for an IPSE, the first alternative, not allowing updates through 

views, was rejected as this severely restricts the attraction of providing such 

a mechanism, and as a starting point we at least wanted to investigate how 

we could provide within an IPSE support for more than just read-only views 

of the underlying data. 

The second alternative, automatic conversion of updates against the 

view to updates on the underlying data, is the method employed in most 

existing commercial database systems. We rejected this option, however, due 

to both the inherent problems that exist with this approach in existing sys­

tems, and the additional reqUirement which exist in an IPSE context. Existing 

view mechanisms using this approach have found that defining and implement­

ing a general algorithm for translating updates against a view to the 

corresponding updates against base relations is a non-trivial task. Methods 

vary from defining a simple algorithm,Cha75 which forbids updates to many 

views for which valid translations are theoretically possible, to defining a 

complex algorithm,Ke185 which is much more difficult to implement and debug, 

but which permits many more updates. Also, users often find it difficult to 

determine a priori whether updates specified against a view are permitted, 

especially where the translation algorithm is complex. Sometimes the only 

option is to attempt the update and see if the translation takes place or 

notpat86 
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In addition, within an IPSE we would like to extend the notion of a 

view from the existing database concept of a single derived relation, to 

encompass the idea of an environment in which a user can work with a 

tailored set of facilities a110wing multiple, concurrent access to project data. 

This led to us adopting the third alternative, which we can ca11 the "abstract 

data type approach", in which each abstract data object is· defined together 

with those operators which are permitted on that object. These operators 

could be for both manipulation and update of those data objects, and are 

defined by specifying exactly their effect on the parent data objects from 

which this data object was derived. Although the lack of an automatic 

update translation algorithm will reqUire that the user must do more work 

when specifying a new view, we believe that this additional overhead to the 

user wi11 be accepted due to the increase in control that is gained. We make 

the fo11owing observations on this approach: 

a view definer has much greater control over the operations permitted 

through a view, when the derived data objects are accompanied by the 

operations which can be performed on them. In particular, if a read­

only view is required, then data objects will be defined with no 

update operators for those objects. 

update operators are no longer limited to the simple "insert", "update", 

and "delete" operations which are usua11y found in database systems. 

Abstract update operations can be defined using the same mechanisms. 

For example, in an IPSE database containing information about pro­

grammers and their asSignments to carry out change requests, a partic­

ular view could contain a data object showing a11 change requests with 

status "completed", and an update operator "delete_a11" could archive 

this information by deleting the appropriate entries, and adding them 

to a suitable archive relation. A user of this view would see nothing 



A View Mechanism for an IPSE Chapter 5 

Page 91 

of the underlying operations, being aware of the system only at the 

abstract level of completed change requests and their deletion. 

both manipulation and update operations are defined using the same 

mechanism. In the same way that the "delete_all" operation was 

define above, manipulative operators can be defined. For example, we 

could define an operator to return the number of completed change 

requests by writing a sUitable operator that returns an integer result. 

the analogy between this mechanism and ADT's in programming 

languages is a close one. This not only means that we are using a 

mechanism with which many users are already familiar, but we are 

also easing the transition between the programming level of a project, 

interested in indiVidual users and providing facilities for manipulating 

data local to that user, and the project level, where we are concerned 

with interaction between users and their sharing of resources. 

5.6.1. Effect on the Model 

As a result of the above decision, we now need to adapt the existing 

model to include the notion of view operators as an intrinsiC part of a view. 

We do this in two steps. Firstly, we expand our notion of an expression 

from being simply a statement in the relational algebra, to the much more 

powerful notion of a statement in a programming language in which the rela­

tional algebra has been embedded. As discussed in,Hit76 this not only gives 

us the power of sequence and iteration of statements, but also gives us the 

extensive manipulation facilities which will enable us to define general opera­

tors. The second step is to allow the left-hand side of a view mapping table 

to contain operator definitions, as well as data object identifiers. Now, for 
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example, we can consider the left-hand side of the mapping table as the 

defining expression for an operator, giving the operator name and the types of 

its parameters, and the right-hand side as the describing expression which is 

the sequence of operations which implements the operator. 

As an example, consider the situation in figure 5.6 below, in which we 

have added the notion of operators as possible view objects. In this example, 

we have such operators, "opl" and "op2", where the notation "opl(tl,t2):t3" 

represents an operator "opl" with parameters of types tl and t2, returning a 

result of type t3. 

View Mapping Table 

View Objects Base Objects 

FRED A 
JANE C 
JOE D 

XO:t2 e(opl) 
Y(tl,t2):t3 e(opl,op2) 

Base Objects 

A 
B 
C 
D 
E 

opl(tl):t3 
op2( tl,t2):t3 

Fig 5.6 An Example of Operators as View Objects. 

In figure 5.6, abstract operators "X" and "Y" have been defined to 

accompany the abstract data objects which already exist. It is possible to 

define such operators with any number of parameters, and to indicate this, 

operator "X" has been given no parameters, and operator "Y" parameters of 
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types t1 and t2. In reality, such parameters will be formal arguments 

representing their types, analogous to the way in which functions .. and pro­

cedures are deftned in a programming language. 

AssOCiated with each abstract operator in the view mapping table is an 

expression involving base objects. Hence, when an abstract operator such as 

"Y" is executed, the actual parameters of the call bind to the formal one in 

. the deftnition, and the expression associated with the operator in the mapping 

table will be evaluated. This process is recursively applied until an expres­

sion exists involving base objects only. This resultant expression can then be 

evaluated to achieve the desired operation against the view. A more detailed 

examination of this process is deferred until later in this thesis, when a for­

mal specmcation of the process is given. 

5.6.2. Abstract Environments (AE's) 

The ftnal component of the model is to associate particular meaningful 

sets of data and operator objects together into an enforcible unit which we 

call an Abstract Environment (AE). We can consider an AE as an abstract 

interface to the base objects composed of a set of data and operator objects 

which can act as a user environment. This closely mirrors the ADT concept 

of packages and modules in programming languages such as ADA and 

MODULA-2. We can relate AE's through a hierarchy, or more strictly a con­

nected acyclic graph, with the base objects, which we call the Base Environ­

ment (BE), as the root node of the graph. Hence, all the objects available in 

one AE will be deftned purely in terms of the objects in its parent AE's in 

the graph. The lowest level AE at the root of the graph being the BE, while 

each AE which is created to extend the graph provides an interface to the 
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base objects at an increasingly abstract level. The objects in an AE will have 

been explicitly inherited from one of the parent AE's, or will be a combina­

tion of existing parent objects. 

5.6.2.1. An Example 

To illustrate the AE concept, consider the simple example given below. 

Suppose we were interested in information concerning programmers, 

change requests for software components, and assignments of programmers to 

carry out these change requests. Represented in simple relational terms, at 

some point in time we may have the following data: 

PROGRAMMERS 

PROG ID NAME AGE 
pI fred 32 
p2 joe 21 

p3 jane 26 

CHANGE REQUESTS 

CR ID DESCRIPTION REPORT DATE STATUS 

crl fault in output 12-10-85 outstanding 

cr2 crashes on input 8-11-85 completed 

cr3 update documentation 23-6-86 outstanding 

cr4 add new option 15-7-86 outstanding 
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ASSIGNMENTS 
PROG_ID CR_ID DEADLINE 
pI cr1 18-3-86 
p2 cr2 20-8-86 
p2 cr4 7-10-86 
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Coupled with this data will be a set of operators to insert, delete, and 

update indiVidual tuples of each relation. 

This lowest level view, or Base Environment (BE), will be used by 

the project controller who is responsible for all project data, and for initially 

setting up the AE hierarchy. For example, the project controller may wish to 

define an AE for the chief programmer which shows all assigned change 

requests with the programmers assigned to them, and also an operator to 

change the status of a change request to "completed" when the change has 

been carried out by junior programmers. 

To do this, the project controller, who is working within the Base 

Environment, will define the data objects and operators necessary for the chief 

programmer in terms of the data and operators available in the Base Environ­

ment. When the chief programmer works in this AE, it may contain the fol­

lowing data : 

CR ID DESCRIPTION REPORT DATE STATUS NAME DEADLINE 

cr1 fault in output 12-10-85 outstanding fred 18-3-86 

cr2 crashes on input 8-11-85 completed joe 20-8-86 

cr4 add new option 15-7-86 outstanding joe 7-10-86 

Also, an operator "change-status" will be aVailable, which, given the 

identifter of a change request in the data object, will change the status of 

that request from "outstanding" to "completed". This operator will have been 
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deftned by the project controller as a sequence of lower level operations to 

insert, delete, and update individual tuples of relations using the operators 

provided in the BE. 

Now suppose the chief programmer Wishes to deftne an AE in which a 

junior programmer can work that only allows that programmer to see his/her 

own outstanding change requests, and not be given any operators to amend 

them. The chief programmer would do this by deftning the AE in terms of 

the data and operators he/she has aVailable in his/her own AE. In effect, the 

newly deftned AE would be a further abstraction on what he/she has aVail­

able. For example, this may result in the data shown below, with no opera­

tors being deftned to manipulate or update this data : 

CR ID DESCRIPTION DEADLINE 

cr4 add new option 7-10-86 

The ftnal result, then, will be a simple hierarchy of AE's with the 

Base Environment at the root, and the chief programmer and junior program­

mer AE's at subsequent levels. 

Clearly. this is an over-simp lifted example to give a flavour of the 

view mechanism in operation. Without much difficulty, it is possible to 

envisage how this example could be extended to support a much larger pro­

ject. 
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We have developed from a very simple model of a view mechanism to 

a much more sophisticated architecture which we hope is able to attain the 

aims stated at the beginning of this chapter. 

After a brief description of the wider facilities of an IPSE developed 

as part of the Alvey-funded ASPECT project, we continue by examining a 

formal specification and implementation of a view mechanism based on the 

ideas of this chapter within the context of the ASPECT IPSE. 
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Having described a model for an IPSE view mechanism in the previous 

chapter, and before we can discuss the specification and implementation of 

such a mechanism, we must describe the wider context of IPSE facilities 

within which the view mechanism must be integrated. In this chapter we 

describe the work of the ASPECT project, which is attempting to define and 

implement IPSE facilities based on the principles discussed earlier. We later 

go on to define and implement a view mechanism which can be used as part 

of this system. 

6.2. An Overview of the ASPECf Architecture 

ASPECT is an Alvey-funded project aimed at research into, and proto­

type development of a distributed host, multi-target IPSE.Hal85 Its work has 

been directed towards two principle objectives: firstly, to provide an open 

environment in which new tools, methods, and techniques can be easily sup­

ported, and secondly, that the services provided should be integrated to pro­

Vide consistent, secure transition between the many tasks performed in the 

development of a large software project. 

As a result, an ASPECT IPSE offers to tools a powerful set of com­

mon services for structuring, storing, and manipulating information, for com­

munication between users and tools, and for manipulating remote targets. 

Access to all of these facilities is offered through the ASPECT Public Tool 
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Interface CPTI) which provides a set of primitive operators to enable tool 

writers to make use of ASPECT services. This architecture is summarised in 

figure 6.1. 

Sun 
Workstations 

Hcr Public Tool Interface 
Target 

J--:================:::::"-lInterface 

ASPECT Information Base 

unIX unlX umx unlX 

VA V VAX VAX 

E'net 

Fig 6.1 The ASPECT Architecture. 

Remote 
Targets 

Here, we look in some detail at the facilities available for recording 

and controlling data which has been generated during the life-time of a 

software project. Details of other parts of the ASPECT architecture can be 

found elsewhere.Too86, Hut87 
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Central to ASPECT is the information base, and it is the information 

base which achieves the integration between tools by providing a central, 

structured repository for all the information they manipu1ate.Bro86b, Bro86c 

The information base is a database but contains in addition: 

Its own defmition. A data dictionary of the structures maintained in 

the database is held as an integral part of the database, and this 

structural information can be accessed via the PTI in the same way as 

any other information. 

A rules mechanism. These support not only the integrity constraints 

of the basic data model, but also user-defined rules which may, for 

example, be the rules governing the use of a particular development 

method. 

Built-in structures to sllpport software engineering. In keeping with the 

aim of integration, many of the structures (for example version 

identification and sharing of data) supporting development in the large 

are provided at the information base level. 

We now examine the information base facilities in more detail. 

6.3.1. The Data Model 

Due to the enhanced semantic capabilities provided, the conceptual 

model for the ASPECT database was defined using the Extended Relational 

Model (RM/T).cod79, Dat83 We briefly describe the RM/T formalism with par­

ticular emphasis on the feature which made its use fundamental to ASPECT. 
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In RMIT a database is considered to consist of a set of entities 

representing entities of interest in the real world. Every entity in the data­

base is an instance of at least one entity type, with all entities of a type 

sharing the common properties of that type. An entity can be an instance of 

more than one type as types are related through a type hierarchy, and an 

instance of one type also inherits all the properties of its supertypes. For 

example, a programmer may be an instance of the programmer-type, but also 

inherit properties of the engineer and employee types which are superior types 

in the hierarchy. Associated with every entity is a unique, system-generated 

identifier called a surrogate. This can always be used within the database to 

uniquely identify the entity, although a separate mechanism exists for associ­

ating external names to entities.Hit85 

6.3.1.2. Entity Classiftcation 

All entity types are classifted to be one of either kernel, associative, or 

characteristic, and each type may be designative in addition. Through this 

classification integrity constraints can be applied over and above those nor­

mally enforced in the pure relational model, and as a result there is greater 

control over what constitutes a valid instance of a particular type. Looking 

at the classiftcation in more detail, an entity can be classed as: 

Associative. An associcaion is a potentially many-to-many relationship 

between two otherwise independent entities. For example, an assign­

ment of a programmer to a project can be an associative entity. Asso­

ciative integrity says that an asSOCiation can exist only if all the enti­

ties participating in the association also exist. Cle. we could not assign 

a programmer to a non-existent project). 
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Characteristic. The function of a characteristic entity is to describe 

some other entity. The characteristic entity is existence-dependent 

upon the superior entity. For example, individual commands which 

must be executed to keep a target object up-to-date can be considered 

characteristic of the target they recreate. Characteristic integrity says 

that a characteristic entity can only exist if the entity it describes also 

exists. Cle. a command line could not be characteristic of a non­

existent target object). 

Kernel. A kernel entity is one which is neither characteristic, nor 

associative. For example, programmer and department may be kernel 

entities. These are the basiC, independent objects of interest. 

Designative. A designative entity is a potentially many-to-one relation­

ship between two otherwise independent entities. For example, a pro­

grammer who can belong to only one department is said to designate 

that department. Designative integrity says that a designative entity 

can only exist if all the entities it designates also exist. (ie. a pro­

grammer could not designate a non-existent department). 

More complete descriptions of RM/T are available elsewhere,Cod79, Dat83 

however, the following subsections describe some of the facilities of RMiT 

which were considered important in choosing RM/T for use in ASPECT. 
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One of the most important features of RMIT is that an integral part 

of the model is a form of data-dictionary defining the internal structure of 

the database, known as the catalog. This meta-data is held in the same way 

as all other data, and can therefore be queried and manipulated using the 

same mechanisms. For example, queries can be posed concerning which entity 

types exist, and what properties are associated with an entity type. 

6.3.1.4. Relational Basis 

Although at a conceptual level RMIT deals with the more semantic 

notion of entities and entity types, at a lower level the model can be 

represented in terms of the pure relational model, with the mapping between 

the two having been defined. This has the advantage that the relational view 

of data is simple, well defined and understood, and is supported by a power­

ful general query language. 

6.3.1.5. Extended Operators 

With the relational query language available at one level, additional 

operators have also been defined at the entity level which extend the algebra 

of operations. For example, create, update, and delete are aVailable at the 

entity level rather than at the relational level. Hence, it is not possible to 

by-pass the more semantic entity model to manipulate the data in its under­

lying relational form. 

In addition, further data manipulation operators are available with 

RMIT. In particular, transitive closure of a directed graph relation is possible 

using the "close" operator which greatly eases querying of data in parent-child 



A View Mechanism for an IPSE 

relationships. 

6.3.2. Acti vi ties 

Chapter 6 

Page 104 

The development of a software engineering product is usually through 

the incremental refinement and implementation of a set of project plans. 

Typically, a project plan develops from an informal abstract description 

through to a detailed collection of inter-related specification documents, which 

can then be implemented. It is important to recognise that product develop­

ment is as much about the coordination and monitoring of these activities as 

it is about the technical development of the system which these activities 

identify. In order to control this process, ASPECT supports the concept of an 

Activity as a unit of work that can be defined and executed. 

Through supporting this process we not only have a method for 

recording product development as a series of related refinements, we are also 

able to monitor the complete life-cyc1e of a product as a natural progression 

of Activity definitions and executions. This provides a convenient and accu­

rate way to model the state of a project from both the high-level manage­

ment view, and for the indiVidual project members. 



A View Mechanism for an IPSE 

6.3.2.1. Activity Definition 

Chapter 6 

Page 105 

The only way to change the state of an ASPECT System is through 

the definition, and subsequent execution, of an Activity (ie. an ASPECT 

Activity is the software engineering database equivalent of a commercial data­

base transaction). An Activity definition is essentially a set of rules govern­

ing the execution of a sequence of operations on the information base. Hence, 

by ensuring that all operations on the information base are carried out within 

the bounds of an Activity definition, we are able to restrict the allowable 

changes to the state of the information base to only those that are considered 

to be semantically correct. 

We introduce the notion of constraining an Activity definition to deal 

with the situation where an Activity is decomposed into a sequence of smaller 

sub-Activities. This is to allow for the common mode of project development 

whereby a number of distinguishable areas of work within an Activity can be 

diVided into separate smaller Activities, each with its own definition. In this 

way, a tree of Activity definitions is created in classical top-down develop­

ment style. 

Once this basic structure has been modelled, we can then introduce a 

number of special cases of Activity constraint. The most important of these 

is notion of refinement, when an Activity definition is constrained by a single 

more detailed Activity definition. 
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The interface to the ASPECT system contains a collection of primitive 

operators and a mechanism for combining primitive operators and previously 

defined Activities to form new Activities. In this way, each execution of an 

Activity definition is said to form an atomic information base operation, and 

can be recorded as an Activity execution. However, because an Activity 

definition will usually be an element of an Activity definition hierarchy, 

represented in ASPECT by a tree of Activity definitions, we will also have 

the notion of an Activity execution hierarchy, which ASPECT models as a 

tree of Activity executions. The Activity execution tree can be used as the 

basis for recovery management following failure. In this way, we can have 

many instantiations of the same Activity definition by having a number of 

nodes in the Activity execution tree for each instantiation, and recording links 

between nodes in both trees. 

After defining an Activity, we can say that each execution of the 

definition can be in one of three states: 

1. Started. (ie. an Activity execution node exists). 

2. Dormant. (ie. an Activity execution node exists but is currently not 

flagged as active). 

3. Completed. (ie. the Activity execution node is flagged as complete). 

By recording the execution of Activities in this way, and identifying 

the three possible execution states, we have a method for representing, con­

trolling and monitoring all changes to the information base, relating Activity 

executions to their definitions, and for keeping a historical record of work 

that has been carried out. 

In summary we can say that of key importance to ASPECT is the 

ability to monitor and control the development and maintenance of a software 
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product. It is also equally vital to maintain the semantic integrity of the 

information base by only allowing controlled operations to take place. The 

ASPECT Activity mechanism takes care of both of these reqUirements through 

the separation of the Activity definition and its execution, and with the abil­

ity to record Activity interdependencies in a fleXible and convenient way. 

6.3.3. Rules 

In addition to supporting general integrity of an information base sys­

tem by virtue of the modelling formalism adopted, an ASPECT IPSE will 

support the definition of rules which are specific to either an Activity, a pro­

ject, or an organisation. 

Typically, any operation which takes place in an ASPECT system does 

so under the control of a set of rules which govern the allowable states of 

the information base. These rules can be used in a number of ways: to 

constrain the operations a user is allowed to perform, to enforce an organisa­

tional policy, to conform to a particular development methodology, and so on. 

6.3.3.1. Classiftcation of Rules 

Within an ASPECT system, a rule is defined to be one of two types: 

Static. A static rule is a function which maps all possible states of 

the information base to "True" or "False". 

Transition. A transition rule is a function which maps all possible 

transitions between two states of the information base to "True" or 

"False". 



A View Mechanism for an IPSE Chapter 6 

Page 108 

For example, in an information base containing data about program­

mers, a static rule could be that a programmer cannot have a salary greater 

than 50,(XX) pounds, while a transition rule could be that a salary increase 

for a programmer cannot exceed 20% of his/her former salary. 

6.3.3.2. Consistency of Rules 

Rules are organised into sets which are to be applied at particular 

points in time. For both static and transition rules the notion of a set of 

consistent rules is important. For a set of static (transition) rules, a con­

sistent set is defined to be one for which a possible state of the information 

base (transition between states of the information base) exists for which all 

the rules of the set map to "True". 

Hence, when a set of rules is defined, it must be a consistent set for 

its application to be meaningful. As the problem of deciding if a set of rules 

is consistent is semi-decidable, this process can only be applied to certain 

classes of rule. 

6.3.3.3. Application of Rules 

Rules are applied, or invoked, at particular points in time, to ensure 

that the state of the information base satisfies those rules (ie. they all evalu­

ate to "True"). Two separate mechanisms are available in ASPECT to do this. 

Firstly, a manual mechanism allows a user to apply a set of rules at any 

time, and these will be checked against the current information base state and 

return the value "True" or "False". The second mechanism is automatic, and 

occurs on every relevant change of state of the information base. The rules 

applied consist of a set of global rules, which have been defined on 
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configuring an ASPECT system to always be applied, together with a set of 

applicable rules which are associated with the particular Activity that is 

currently being executed. 

6.3.3.4. Rules and Activities 

When defining an Activity, a user is able to specify: 

a set of pre-conditions (ie. a set of static rules) which must be 

satisfied before the Activity can commence. 

a set of post-conditions (ie. a set of static and/or transition rules) 

which must be satisfied before the Activity can terminate successfully. 

a set of applicable rules (both static and transition) which must be 

enforced during changes which take place within the Activity. 

For example, conSider a high level Activity that has been defined with 

rules as mentioned above. The Activity could be to write an overall design 

from an agreed reqUirements document, with a pre-condition that an approved 

reqUirements document exists, and a post-condition that some quality control 

authority must have approved the design. A set of rules may also be defined 

to apply during execution of this Activity. 

We now chart briefly how the rules system will operate when such an 

Activity takes place. Firstly, before the Activity is started, the information 

base must conform to the set of global rules of the ASPECT system. Then, 

in addition to the global rules, the pre-conditions of the Activity must be 

met before the Activity can start. Once the Activity has started, the applica­

ble rules to be enforced on the information base while the Activity lasts 

become those specified in the Activity definition and not those globally appli­

cable outside the Activity. This allows for the situation within an Activity 

when the information base is temporarily inconsistent with respect to the 
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global rules. Finally, before the Activity can end successfully, the new state 

of the information base must conform to the post-condition of the Activity, 

in addition to the global rules which come back into force once the Activity 

is complete. 

Therefore, using this mechanism, we have a way of controlling changes 

to the data at an Activity level, and the ability to apply constraints to the 

information base state at particular points in a project's development. 

6.3.4. Views 

This work is reported in the next chapter. 

6.3.5. Shared Objects 

Unlike conventional commercial applications, in an IPSE it is rare that 

objects are updated once they reach a stable state. Instead, new versions of 

objects are created. Examples are program sources and objects, management 

reports, and design documents, to name but a few. Typically, a single user 

is responsible for developing an object, and once in an acceptable state, the 

object is shared between a group of users. 

This situation, coupled with the need for supporting long-lived transac­

tions, has led to the development of a mechanism for sharing of objects in 

ASPECT in which each user is allowed to develop objects independently 

within their own work space. Then, when other users require access to an 

object, a "publish" operation is invoked which freezes the current state of the 

object, and provides read-only access to that object for those users. Each user 

must then "acquire" the object to be able to access it. 
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If for some reason the object later needs to be amended, for example 

due to error in the original, then a new version of the object is developed, 

and this again is "published" to the necessary users, perhaps accompanied by 

"withdrawing" the original version. The effect of the "withdraw" operation is 

to prevent other users from "acquiring" the object, and to indicate to those 

who have acquired the object that a new version is available. The users of 

the object can "dispose" of the old version before "acquiring" the new one. 

The action of "disposing" prevents the user from further access to the object. 

This situation has many advantages as far as the database is con­

cerned. If objects being changed are never shared, they can be locked into 

very lengthy transactions without penalty. This will also make recovery and 

distribution easier. We can afford to follow this update model because the 

rate of change of data objects will be slow compared with that of a commer­

cial database, a positive feature of long transactions. 

Ensuring that the correct versions of objects are chosen when a system 

is being built, or when a delivered system is being reconstituted, is known as 

conftguration control. This will be built into an ASPECT IPSE together with 

the ability to define the version model that will be used. Clearly, the view 

mechanism could play an important part in giving users the versions required 

and in screening them from the underlying complexity of the version model. 

Investigating such issues is an important goal of the ASPECT project. 
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To provide a context for the work that is to follow, we have 

described in some detail the information base facilities of an ASPECT IPSE. 

We now go on to discuss the specifIcation and implementation of a view 

mechanism to integrate with this system, and to analyse its use as a com­

ponent of a larger development environment. 
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Following the model that has been described informally in chapter 5, 

the next step is to specify the model in a formal notation before attempting a 

particular implementation. In this chapter, we begin by briefly describing the 

specification language used, the notation Z, before providing a fairly detailed 

summary of the formal specification itself. This is a shortened version of the 

full specification of the view mechanism given in.Rob87c For those readers 

unfamiliar with the Z notation, as well as the short introduction to Z given 

below, a summary of Z symbols and conventions used within this document 

is provided as Appendix A, and Appendix B contains a theory of trees, both 

as a self-contained example of the use of Z, and because a number of graph 

and tree structures are used as part of the specification of the view mechan-

ism. 

7.2. Speciftcation 

An important decision within the ASPECT project was that all 

ASPECT services should be specified in the formal notation Z, a specification 

language developed by the Programming Research Group (PRG) at the Univer­

sity of Oxford.Abr82. Suf85. Fli87 Therefore, the view model has been developed, 

and is described below, using that notation. Indeed, the use of Z had a pro­

found influence on the project, its ways of working, and its deliverables. In 
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particular, the clarity and precision encouraged by the use of a formal 

language led to the identification of errors, inconsistencies, and omissions 

which may otherwise have been undetected. 

In the next section, we briefly describe the principles behind the Z 

notation, before summarising the formal specification of the view mechanism 

which has been developed for the ASPECT system. 

7.2.1. An Introduction to the Z Specifi.cation Language 

The Z notation consists of a mixture of English description and formal 

text. Because the formal parts of the specification may be inaccessible to 

many readers, the English text of the document is readable on its own as an 

informal definition of the facilities aVailable and what they do. This descrip­

tion is supplemented by the formal text which gives precise and unambiguous 

meaning to each of the operatiOns (where operation is the name given to the 

Z form of' a facility). 

Using a formal notation, rather than, for example, Ada package 

definitiOns, is preferable for at least the follOWing reasons: 

The formal text defines the semantics of each operation, not just the 

syntactical conventions for its use. 

The formal text is independent of any implementation language and 

can be used as a specification of implementations in any programming 

language. This is particularly important within ASPECT which pro­

vides a set of services for tools which could be implemented on a 

number of different machines in a number of different programming 

languages. We will therefore not inadvertently build in to ASPECT 

restrictiOns based on the constructs of anyone particular programming 

language. 
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The formal text uses abstract notions which define a system at a high 

level, free of implementation detail. It therefore imposes precision at 

this abstract level, rather than leaving decisions at this level to be 

made by the implementor. 

For a more detailed discussion of the benefits of this style of 

specification see.Mey85 

7.2.1.1. The Z Notation 

The formal language of Z should be readable by anyone with a 

knowledge of elementary set theory and first order predicate calculus. These 

two form the basis of the mathematical language embedded in Z. Also 

included within Z is a notation for manipulating pieces of this mathematical 

text; this is known as the schema calculus. 

The basic method of specification is as follows: 

A system is considered to have, at anyone time, a certain state. The 

components of this state are described using set theory based on certain 

"given" sets: users, entities and devices, for example. The state components 

then consist of objects composed from the given sets: subsets, relations 

between them, functions and so on. The state also has certain invariants: 

predicates which are always true. Such a state can be expressed in a schema. 

For example, we may define a particularly simple database as below. 
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[E] 

DB ______________________________________ ~ 

contents : 1F E 
relationships E..... E 

dom relationships !: contents 
rng relationships !: contents 
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First of all this introduces a set E. The structure of this set is not 

defmed - it may be fmite or infmite and we know nothing about its members. 

We are going to use it to represent the set of all possible entities. It is 

analogous to the Ada definition 

type E is private; 

Then we introduce a schema called DB. This can be thought of as represent­

ing the state of a database. 

Following the schema name there are two parts to a schema. The 

first part, the Signature part, defines the components, or objects, by giving the 

Signature of each: that is, its name and type. The name can of course be 

anything; the type is expressed in terms of sets already known. So in this 

example the database has two components. The first one is called "contents" 

(we are using it to represent the set of all entities known about in the data­

base), and it consists of a finite set of entities - that is, a finite subset of the 

set E of all possible entities. The second component in the example is called 

"relationships" and its type is a relation between entities. We can use it to 

represent the relationships between entities stored in the database. (Now we 

see how simple this model is in that it only allows a single relation between 
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two entities). 
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The second part of the schema is the predicate part: it contains a 

statement of facts which are true about the objects in the schema. In the 

case of a schema representing a state, this predicate is an "invariant" - it 

represents facts which are true about any instance of the state. In the exam­

ple, two facts are true about the database. The first line of the predicate 

says that any entity which is related to another entity must be in contents: 

that is it must be known about in the database. The second line says the 

same for any entity which has other entities related to it. 

The meaning of such a schema is important to the two classes of 

reader. The tool writer can absolutely rely on the fact that there are con­

tents and relationships in the database, and that any entity which appears in 

"relationships" is also in "contents". The implementor is obliged to implement 

all operatiOns including the initial state of the database in such a way that 

the invariant can never be Violated. He/She is free, on the other hand, to 

choose ANY representation of contents and relationships that is conSidered 

SUitable. 

Having defrned a state, usually by a schema, we can then specify the 

operatiOns aVailable in terms of their effects on the state. To do this we 

introduce a schema for the operation. This schema includes a schema for the 

state before the operation and a schema for the state after. (By convention 

unprimed names refer to the state before and primed names refer to the state 

after). The operation schema also includes Signatures for any inputs and out­

puts of the operation. The predicate part of an operation schema states the 

semantics of the operation by stating things which are true about it. These 

may be preconditions - things which must be true before the operation is car­

ried out; or postconditions - facts which define the results of the operation. 

Postconditions may simply be predicates about the final state (including 
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outputs) or may involve the relationship between the final state and the ini­

tial state and inputs. 

For example, consider the operation to create a relationship: 

create_RELA TIONSHIP _______________ --. 

DB 
DB' 

el?, e2? E 

el? E contents 
e2? E contents 
(el?, e2?) e: relationships 

contents' = contents 
relationships' = relationships U (el?,e2?) 

This states that creating a relationship takes an initial state of the 

database (DB) and turns it into a new state (DB'). It takes two input 

parameters, the first and second entity in the relationship to be created (el?, 

e2?), where we use the convention that all input parameters are tagged with 

a question mark. 

The first part of the predicate is the three preconditions for the opera­

tion: el? and e2? must both already be known in the database, and the rela­

tionship between them must not already exist. The second part of the predi­

cate defines the meaning of the operation: after it has been carried out "con­

tents" in the new state is the same as it was in the old, while "relationships" 

is the same as before but with a new relationship between el? and e2? added. 

A more detailed introduction to the Z language has been developed 

in,Bro86d while a collection of case studies are given in.Fli87 
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7.2.1.2. Relationship with Implementation 
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To implement facilities which have been specified in Z, it is obviously 

necessary to give concrete form to the operations in some programming 

language. This is straightforwardly done by defining concrete types to 

represent all the parameters of the operations and prOviding a procedure or 

function for each operation. In some cases generic subprograms may be pro­

vided. To continue the simplified example, the concrete form in Ada of 

create_RELATIONSHIP might be: 

package DB is 

type E is private; 

procedure CREATE_RELATIONSHIP ( E1, E2 in E ); 

The full Public Tool Interface for the Aspect system was specified in the 

language Z, and can be found in.Rob87c The role of this specification was as a 

formal communication tool for the project members and as a precise way of 

describing their ideas. It gUided the subsequent implementation, but there was 

no formal refinement from specification to implementation. 

We now give an overview of the formal specification of the view 

mechanism as the complete specification is rather lengthy and interwoven with 

the other parts of the definition. The objective of this is to give an overall 

flavour of the approach that has been taken. For a full understanding of the 

details of the specification refer to.Rob87c 
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7.2.2. Overview of the Formal Speciftcation of the View Mechanism 

There are a number of inter-related elements of the model, all of 

which must be specified. We begin the formal specification by defining the 

relationships between Abstract EnVironments CAE's) as a graph structure, con­

trolling the relationships between defined views of the Information Base. We 

then continue by specifying how each AE in the graph is constructed and 

controlled. Finally we move on to define operations to both manipulate the 

graph structure, and the AE's which are the nodes of the graph. Of particu­

lar importance is the operation to evaluate an AE object, which performs the 

changes of state defined by that object. 

It can be seen in the specification that separate operations are given for 

the cases when the object in an AE is a data item, and when it is an opera­

tor. Strictly, these two could have been coerced and manipulated with single 

operations, but for reasons of clarity within the specification, and because a 

user of an AE may indeed want to distinguish the two types of object, we 

have not done so. 

The concept of a tool is also important. Through an AE a user has 

available a set of tools which he/she may invoke. We specify operations to 

register and invoke a tool, and to allow an existing tool to be made available 

to an AB. 
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7.2.2.1. Abstract Environments 
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The first thing we do is define the basic structure which controls the 

relationship between AE's. To allow complete flexibility, this is a connected 

acyclic graph structure (CAG). This implies that a node in the graph can 

have multiple parents, but that there is a distinguished node called the "root" 

from which all other nodes in the graph can be reached by traversing the 

parent/child arcs. 

We distinguish the root of the graph as being the base environment 

(BE) from which all other AE's are derived, containing a set of base objects. 

Note that the structures and operators for defining and manipulating graphs 

and trees are specified separately inRob87c and summarised in Appendix B. 

Within the specification of AE's we make use of these structures and opera­

tors. 

So, we define the set of all possible AE's to be AB_ENV, and define a 

connected acyclic graph (CAG) whose nodes are elements of this set. 
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AB_ENV_GRAPH ______________________________ ~ 

CAG [AB_ENV] 

base_env AB_ENV 

known_AEs IF AB_ENV 
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a_env.1a the single root of the graph is the base environment. 

a_env.1b all the nodes of the graph come from the set of known AE's. 

Once we have the basic structure, we define a function which maps 

each AE to the set of mappings which define the objects of the AE. To 

allow for the definition of operator objects in the AE, we say that a mapping 

relates an expression which describes the object, to another expression that is 

its definition. For example, a simple addition operator for integers could have 

a mapping of the form 

+(a, b) <=> ... exp ... 

We will call the left-hand side expression the declaration expression 

and the right-hand side expression the deftning expression. 

We can see a mapping as similar to the definition of a "procedure" in 

a programming language such as Pascal. The declaration expression acts as the 
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procedure declaration, with the name of the procedure and the types of the 

operands to that procedure (where the formal arguments are acting as 

representatives of the types). The defining expression acts as the procedure 

body; a description of the operations performed by the procedure. Within the 

body of the procedure, use of the formal arguments will be made. 

The predicates of the schema ensure that these mapping entries are of 

. the correct form. In particular, the declaration expression for operator objects 

will be a two-level tree (operator name and parameters), while for data 

objects it will be a single object name only. 

Note that the specification of expressions is to be found in a separate 

document.Bro86a In this we find the specification of the set of expressions, 

EXP, the elements of an expression, OBJ, and the subsets of expression ele­

ments which are operator objects, OP _OBJ, or leaf objects, LEAF _OBJ. The 

functions "e_op" and "e_1eaf" map an expression element, OBJ, to an operator 

object, OP _OBJ. or leaf object. LEAF _OBJ. respectively. We make use of 

these specifications below. 
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MAPPING ,;. EXP ~ EXP 

AB_ENV_GRAPH. ______________________________ ~ 

Vel: EXP; 01: OBJ; ae:AB_ENV; 
I el E dome env _to_map(ae) ) 

{oil = e1.roots 
• ((e1.nodes = e1.roots U e1.leaves) 

1\ (e_op(ol) E OP _OBJ)) 
v 

((e1.nodes = {ol}) 1\ (e_leaf(ol) E LEAF _OBJ) ) 
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a_env.2a every node has an entry in env _to_map - including the base 

environment. 

a_env.2b the left-hand side of mapping entries consist of a root node and 

children for operators, or a root node only, for data objects. 

We now specify some additional functions which are auxiliary to the 

model, and are used to help with the predicates that are needed to constrain 

the model. These auxiliary functions are : 
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1. env _to_objs. For each environment, this gives the set of 

objects which are aVailable to the environment user (ie. have 

been declared in the environment). These will be the roots of 

the declaration expressions for objects. 

2. env _to_uses. For each environment, this gives the set of 

objects which are used in defining the environment objects. 

In addition, we need a function that maps some objects to tools, as 

later in the specification we need to determine which objects are associated 

with a tool, and be able to invoke that tool. The set of all possible tools in 

an ASPECT system is the set TOOLS, defined in another section of the full 

ASPECT Specification. 
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env _to_objs : 
env_to_uses 

AB_ENV ~ :IF OBJ 
AB_ENV ~ :IF OBJ 

EXP ~ TOOLS 

base_objs ::IF OBJ 

V ae1, ae2 : AB_ENV; e1,e2 : EXP 
I e1 E dom(env _to_map(ael)) 

e1 E dom(env_to_map(ae2)) 
• (e1,e2) E env _to_map(ael) 

=> ( (e1 = e2) 1\ 

(ae1,ae2) E parent ) 

V ae: AB_ENV; es: :IF EXP 
I ae E nodes 1\ 

es = dome env _to_map(ae)) • 

env _to_objs(ae) = { 01:0BJ; ex:EXP 
I ex E es 1\ 

{ol} = ex. roots 
• 01} 

env_to_uses(ae) = { e:OBJ; ex:EXP 
I ex E rng(env _to_map(ae)) 1\ 

e E ex. nodes • e} 
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a_env.3a all environments use objects in their definition. 

a_env.3b all environments have an associated set of objects. 

Chapter 7 

Page 127 

a_env.3c the same expression appears on the lhs of two AE's only if we 

are inheriting that expression from one of its parent AE's. In 

such cases, the mapping is to itself. 

a_env.3d the objects defined for each environment are those for which a 

mapping exists. 

a_env.3e the objects used by an environment consist of those objects that 

have been used in object definitions. 

7.2.2.2. Initialising the model 

The first thing to do is to define the initial state of the model. This 

will be when there is a base environment and base objects only, and no other 

environments have yet been defined. Note that the set ET represents the set 

of all possible entity types in an ASPECT system,· and the set "entity_types" 

are those that exist in an initial ASPECT system. 



A View Mechanism for an IPSE 

imt_AB_ENV_GRAPH ______________________________ ~ 

V m : MAPPING; e : EXP 
I (e,e) E m 

e.roots s: base_objs 

init.1 

lillt.2 

• env _to_map' = { (base_env ~ m) } 
env_to_uses' = { (base_env ~ base_obj) 

imt.3 
parent' = {} 
nodes' = {base_env} 
known_AEs = base_env 

obLreturns' = obj_returns EB 
lillt.4 

{ s:P LEAF _OBJ; b:OBJ; 1:LEAF _OBJ 
I b E base_obj 

e_1eaf(b) = 1 
1 E s 

• (b ~ s) } 

op_expects' = op_expects EB 

{ s:seq Jl> LEAF _OBJ; b:OBJ; 
I b E base_obj 

b E dom(e_op) 
• (b ~ s) } 

data_obj_map' = { o:OBJ; ets:JF ET I ° e dom(e_op) 
° E base_objs 
ets = {et} 

lillt.5 

et E entity_types 
• (0 ~ ets) } 

I entity _types I = I data_obLmap' I 
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init.1 

init.2 

init.3 

init.4 

init.S 

the initial set of objects is the set "base_obj"'. 

the initial set of mappings is for the base enVironment, which has 

all the base objects mapping to themselves. The initial uses set is 

the base_objs. 

the AE graph is initialised to the base_env only. 

all base objects have entries in "obLreturns" giving the type of 

object they return, and all operators have an entry in Mop_expects" 

giving the types of the parameters expected by the operator. 

the function data_obj_map records the mapping between all view 

objects and the entity types from which they are eventually 

derived. The initial state of data_obLmap has all base data objects 

mapping to a known ET. All known ET's will have entries in the 

function. 

7.2.2.3. Operations on the Model 

The basic operations on the model are specified in order to be able to 

manipulate the graph of environments. For example, this includes defining a 

new environment, and adding a new object to an environment. Those 

specified form the minimum set of operations required to manipulate the 

model. 

The full set of operators on the model allow new AE's to be created 

and deleted, data and operator objects to be added to, and removed from an 

AE, and for the definition of a data or operator object to be amended. Here, 

we only give the operations to add an object to an AE, al}d to create a new 

AE as these provide the models on which the other specifications have been 

based. The full set of operators are specified in,Rob87c and are informally 
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described in terms of their implementation in chapter 8. 

7.2.2.3.1. Adding an Object to an Environment 
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We have two separate add operators, one for operator objects, and the 

other for data objects. This is necessary because we need to record extra 

information, and do a little more work when we add operator objects than 

for the others.· 

Data Objects 

Given an environment, an expression to define the object, and the type 

returned by the object, then the object is added to the environment, and the 

left-hand mapping expression returned. 
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add_DATA_OBJ ______________________________ ~ 

env? 

exp? EXP 

ret? 

EXP 

en v? E nodes - roots 

exp?nodes ~ U (env _to_objs Qparent(env?)D ) 

env_to_map' = env_to_map EB 

V rl: OBJ 

teeny? 1-+ (env_to_map (env?) EB 
{(ret_exp! 1-+ exp?)}))} 

add_D. Ie 

I ret_exp!.roots = {rl} 
• obLreturns' = obLreturns EB {(rl 1-+ ret?)} 

add_D.1f 
V rl: OBJ; s : 1F ET; 

I ret_exp!.roots = {rl} 
s = LJ ( data_obLmapQ exp?nodes D ) 

• data_obLmap' = data_obLmap EB {(rl I-+s)} 

Chapter 7 

Page 131 

add_D.la the given environment is one of the environments in the graph 

(not including the root). 
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add_D.1b the object to be added is not already in an environment. 
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add_D.1c all objects in the expression to be added must come from the 

parent environments. 

add_D.1d the definition of the new object is added to the mapping table. 

add_D.le the new data object is added to "obj_returns". 

add_D.1f the entry in data_obj_map is from the new data object to the 

collection of ET's held for each of the objects in the defining 

expression. 

Operator Objects 

Given an environment, an expression to define the operator, the type of 

object returned by the operator, and the type of the operator's parameters, 

then the object is added to the environment, and the left-hand mapping 

expression is returned. 
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env? AB ENV -

exp? EXP 

ret? JP> LEAF _OBJ 

params? seq JP> LEAF _ OBJ 

ret_exp! EXP 

en v? E nodes - roots 

exp?nodes S;;; U (env _to_objs aparent(env?)D ) 

env _to_map' = env _to_map E9 

{(env? 1-+ (env_to_map (env?) E9 
{(ret_exp! 1-+ exp?)}))} 

add_O.le 
V r: OBJ I {r} = ret_exp!.roots • 

obLreturns' = obj_returns E9 {(r 1-+ ret?)} 
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add_O.la the given environment is one of the environments in the graph 

(not including the root). 

add_O.lb the object to be added is not already in an environment. 
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add_O.lc all objects in the expression to be added must come from the 

parent environments. 

add_O.ld the definition of the new object is added to the mapping table. 

add_O.le the type of the returned object, and of the parameters, are 

recorded in "obj_returns" and op_expects". 

7.2.2.3.2. Create a New Environment 

There are two steps to creating a new environment. First of all, we 

add a new environment to the set of known AE's, then, given the new 

environment, and the parent enVironments, we must put this new environ­

ment in the graph with a link to each of the parents. 

cr~te_AB_ENV ______________________________________ , 

~ AB_ENV _GRAPH 

new_env? 

create. 1 

cr~te.2 

cr~te.l the new AE is not in the known set of AE's. 
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create. 2 add the new AE to the known set of AE'S. 

link_AB_ENV __________________________________ ~ 

Cc_env? t nodes) 1\ Cc_env? E known_AEs) 
V Cc_env? E nodes) 

parent' = parent U {p: AB_ENV I P E p_env? 

link.l 

link.2 

link. 3 

• Cc_env? 1-+ p)} 
nodes' = nodes U {c_env?} 
Cc_env? t nodes) 1\ Cenv _to_map' = env _to_map 

EB {Cc_env? 1-+ {})}) 

link.l the parent environments already exist in the graph. 
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link.2 the new environment does not exist in the graph, but is a known 

AE; or it is an existing node on the graph. 

link. 3 add a new node to the graph in the correct place, and make a new 

null entry in the env_to_map function. Note that if the node 

already exists in the graph, then this operator allows us to add new 

links to other parents. 
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7.2.2.4. Evaluating an Object 

The process of evaluating an AE object is the response that occurs 

when a user or tool within an AE asks for the AE operator to be invoked, 

or the AE data object to be materialised. Whenever this happens, we must 

go through two distinct steps: 

a compilation step. The AE object is defmed as an expression involv­

ing other AE objects. We must map this expression to an equivalent 

one involving base environment objects only. Remember, the base 

objects are the only ones that we can invoke to carry out some action, 

or are the only "real" pieces of data that exist in the system. 

an invocation step. Once we have an expression involving base objects, 

we must then obtain from this expression the sequence of operations 

that we are to perform and actually carry them out, executing the 

state changes that they imply. 

In the speciftcation we make these steps explicit, combining them in the 

final operation. 

It can be seen from the full specificationRob87c that the Z specification 

for this operation is complicated. and difficult. However, we can summarise 

what the Z is specifying in simple terms with the following informal descrip-

tion. 

Evaluating an AE object consists of the following three operations: 

1. compile_AE_OBJ. Takes an expression defining an AE object within 

any AE, and returns an equivalent expression which contains base 

objects only. 
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2. map_to_OPS. Takes an expression involving base objects only, and 

returns an equivalent sequence of PTI operations that can be invoked 

(a tool execution), or a single PTI operation that can be called. 

3. execute_OP. Takes a tool or single PTI operation as input, and per­

forms the state changes that are implied, recording the individual 

operations in the execution tree. (The operations to "invoke" a tool, 

and to "call" a PTI operation, are defined in the "Activities" section of 

the full ASPECT Speciftcation). 

So, we combine the steps of compilation, mapping to operations, and 

execution to form the complete evaluate operation. This is the operation that 

will be aVailable at the PTI. Note that the operation " ; » " is described as 

forward relational composition with piping, and has the effect of both of the 

individual operations. 

evaluate_AE_OBJ A compile_AE_OBJ 

; » map_to_OPS 

; » execute_OP 
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7.2.2.5. Tools and AE Objects 
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When a user is working within an AE, he/she has aVailable a set of 

objects which defrne the operations and data that can be accessed. However, 

we want the AE to be extensible in the sense that we allow a user to add 

new objects to their AE, which we call "tool objects". In many ways this is 

similar to the way in which the original objects have been added to the AB, 

but with a number of differences. Firstly, it is not possible for a user to use 

the add operators for objects, as these require the user to know about objects 

in the parent AE's as well as their own. We want the new object to be a 

combination of existing objects in the AB. Secondly, the step of evaluation 

which is necessary for the primitive operators of an AE will not be used for 

tools. We can think of tools as being compiled once, and then for invocation 

direct access can be made to this compiled version. Finally, the way in 

which we record tool invocation is different from the way in which primitive 

operators are recorded. Tools are tracked separately from PTI calls, so that, 

for example, recovery can be handled differently. 

So, the frrst operator we need is to allow us to create a new tool 

object that is accessible within the AE in which it is defrned. This operation 

is referred to as "registering a tool". As part of this operator we need to 

associate the new tool object with a member of the set TOOLS, which 

represents all possible tools. We are not able to say which particular tool is 

associated with the tool object, only that there must be such an association. 
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register_ TOOL_OBJ _______________ -:--_ 

env? AB _ENV 

tool? EXP 

ret? ]p> LEAF _OBJ 

params? seq ]P> LEAF _ OBJ 

ret_exp! EXP 

env? E nodes 

ret_exp!.root n U env _to_objs 0 nodes D = {} 

env_to_map' = env_to_map EB 

{Cenv? H Cenv_to_map (env?) EB 
{(ret_exp! H tool?)}))} 

V r: OBJ I {r} = ret_exp!.roots • 
obLreturns' = obLreturns EB {(r H ret?)} 

.3 t : TOOLS 
• tool_map' = tool_map EB {(tool? H t)} 

reg. 1 

reg.2 

reg.3 

reg.4 

reg.5 

reg.6 
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reg. 1 the given environment is one of the environments in the graph. 
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reg.2 the object to be added is not already in an environment. 
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reg.3 all objects in the tool object to be added must come from the 

current AE. 

reg.4 the definition of the new object is added to the mapping table. 

reg.5 the type of the returned object, and of the parameters, are recorded 

in "obj_returns" and op_expects". 

reg.6 the tool object is associated with an element of the TOOLS set. 

7.2.2.5.1. Invoking a tool 

When a user Wishes to invoke a tool object from within an AE, we 

must first check that the tool is accessible from the AE, and then we can 

ftnd the instance of the TOOLS set associated with the object and call the 

operator "invoke_tool" which performs the state change expected of the tool, 

and records that the execution of the tool has taken place. The operation 

"invoke_tool" is specifted as part of the "Activities" section of the full 

ASPECT Speciftcation. 
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check_TOOL_OBJ _________________ -. 

to01_obj?: EXP 

tool! TOOLS 

chk_too1.1 the tool object must be in the given AB. 

return the tool associated with the tool object. 
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We now specify "invoke_TooL_OBJ" as the composition of -the 

"check_TOOL" and "invoke_tool" operators. 

invoke TOOL OBJ ;, check TOOL; » invoke_tool - - -
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When a user is working within an ASPECT system, that user will 

have available a set of data objects, and a set of operators which manipulate 

instances of those objects. The view mechanism is responsible for defming the 

objects and operators aVailable, while the instances of the objects that can be 

accessed are determined by the ASPECT notions of ownership and Publication. 

Because an ASPECT system will be used by many classes of user, each 

with different AE's, we want to enable users to be able to share information 

between AE's. Broadly speaking, we could allow a user of one AE to permit 

users in other AE's to: 

see data objects that they have aVailable. 

execute operators and invoke tools that they can use. 

see particular instances of data objects that are common to both AE's. 

The first two of these options involve adding new objects to the 

receiving AE which defme the data objects, operators, or tools that are now 

available, while the third will mean that underlying instances of entity types 

will be published from one AE to another. It is expected that the latter 

operation will be carried out much more frequently than the former ones. 

Underlying the notion of AE's, ASPECT has the concept of a Domain 

as a mechanism beneath the ASPECT PTI to control fine-grained data sharing 

between different users. Operators are provided to Publish entities between 

Domains. However, as we do not want users to be aware of the existence of 

Domains at the PTI level, we re-cast the operators provided for Publication 

between Domains as operators which publish AE object instances between 

AE's. 

To allow us to specify the Publishing of instances -of AE objects, we 

define an operation called "ae_to_dom_mapl" that takes the object instance, 
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its type. and the AE's which are involved, and returns the corresponding 

entity and Domain to call the lower-level "publish_ENTITY" operator. We 

also specify a very Similar operation called "ae_to_dom_map2" that takes the 

instance, its type, and the single AE involved, and returns the entity and 

Domain to pass to "acquire_ENTITY", "withdraw_ENTITY" , and 

"dispose_ENTITY" operators. 

We now define the AE publication operators as the composition of the 

mapping operators with the lower-level publication operators that operate on a 

single entity between two Domains. The new operations will be the ones that 

are available at the ASPECT PTI. 

Note that we do not need any additional predicates on these operations 

as these have been specified at the lower-level, and will be checked there. 

For example, "acquire_ENTITY" checks that the Domain doing the acquiring 

has previously had that entity published to it. 
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In this chapter we have given an implementation independent descrip­

tion of the view mechanism for ASPECT by developing the model using the 

formal specification language Z. We now discuss a particular implementation 

based on this specification, before analysing how the mechanism integrates 

within the Wider context of facilities provided in the ASPECT prototype. 
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Although the above specification has defined an IPSE views mechanism 

independent from consideration of other IPSE facilities, for implementation of 

the mechanism it is vital that it is seen as a component of a larger system, 

and fits in with that system's needs. 

From this, and earlier discussion of the expectations of a view mechan-

ism, we can define the following aims of the implementation: 

to provide a set of primitives at the ASPECT Public Tool Interface 

CPTI) which allow Abstract Environments CAE's) to be created, added 

to, manipulated, and so on. 

to control individual users' access to data, operators, and tools, and 

hence aid integrity of the system. 

to allow tailored in terf aces for both users and tools to access the IPSE 

facilities at an abstract level suited to their particular needs. 

to integrate these facilities within the wider ASPECT concepts for con­

trol and co-ordination of software development in a large project. 
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As part of a larger project, the implementation of the IPSE view 

mechanism was built on, and integrated with, a number of existing software 

systems. A simplified implementation architecture is given in figure 8.1. 

User Interfaces 

Views Evaluation 

Views I Act I RUle, Pub I CM 

PTI 

RM/T 

db++ 

UNIX 

Fig 8.1 A Simplified Implementation Architecture. 

At the lowest level of the implementation is the UNIX operating sys­

tem, running on a SUN workstation. On top of this we use a commercially 

aVailable Database Management System (DBMS) called db++Con84 as the inter­

nal, or physical representation of the conceptual model of the ASPECT Infor­

mation Base. The reasons for choosing this DBMS as opposed to the many 

others aVailable were mainly pragmatic: it is specifically written to interface 

well with both the UNIX operating system environment, and the C program-
-

ming language in which it is implemented. (The decision for us to use the C 
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programming language to implement the ASPECT prototype was taken early 

on in the project). However, it is also a fairly pure implementation of the 

Relational Model, accessible through a well-defined relational algebra, and this 

too makes it an attractive system for our needs. 

Above this, the conceptual level of the Information Base, the Extended 

Relational Model (RMIT), was implemented. This is often referred to within 

ASPECT as the Information Base Engine (IBE). As discussed earlier, this pro­

vides not only an extended algebra of operations to the services built above 

it, but also provides enhanced semantic integrity through the entity interface 

that it supports. As far as we are aware, this is one of the first major 

implementations of RMIT that has been attempted. 

The facilities and services provided above the RM/T interface, collec­

tively known as the Information Base Superstructure (IBS), provide a set of 

primitive operators which together make up the ASPECT Public Tool Interface 

(PTI). This is the lowest level at which any user can gain access to the ser­

vices provided by an ASPECT IPSE. Therefore, part of the IBS will be a set 

of operators which allow users to create and manipulate views of the PTI, as 

well as for Activity management, rule creation and enforcement, sharing of 

information, and version identification and control. A major part of the view 

mechanism implementation is to provide the relevant primitive operators at 

the PT!. 

However, the view mechanism differs from the other IBS components 

in that all interaction with a user to an ASPECT Information Base must take 

place through a view. Therefore, a separate component of the view mechan­

ism is to provide, above the level of the PTI, the necessary facilities to accept 

a user request to perform an operation on some data items, and to not only 

validate that the operation requested, and the data to be accessed are available 

to the user through the particular view of the ASPECT system which he/she 
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has, but also to then translate the request to a series of lower level PTI 

operations which when executed will implement the request. This is a 

further important component of the view mechanism implementation. 

8.3. Details of the Implementation 

We now look in detail at some of the issues which arose during the 

implementation of the view mechanism. 

8.3.1. Underlying Structures 

In providing a set of operators as part of the ASPECT PTI, structures 

must be defined within the IDE to contain information that can be queried 

and manipulated when these operations take place. These will, necessarily, be 

in the form of entities and entity types, and be manipulated using the RMIT 

operators provided by the RMIT implementation. A representation of the 

entity types used to contain view mechanism information is given as figure 

8.2. 

In figure 8.2 the boxes represent entity types, each of which is given a 

name. Also within the box is a letter to represent the classification type of 

the entity type. This will be one of kernel (K), associative (A), or charac­

teristic (C), and may be designative (D) in addition. Where one box is con­

tained within another box, the entity type represented by the inner box is a 

subtype of the entity type represented by the outer box. In fact, a box 

enclosing the whole diagram has been omitted for clarity; this would 

represent the fact that all er:tity types in an ASPECT system are subtypes of 

a root entity type. To represent the relationships between types, an arc is 
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KD 

K K 

K OPERATIONS 

~ 
~ 

Fig 8.2 Entity Types Used to Represent 

View Mechanism Information. 

drawn between entity types which are associated, and a name is given to that 

associative attribute. Similarly, a solid arrow is drawn between a designative 

entity type and its designated type, with the name of the designation labelling 

the arrow. The dashed arrow represents a characteristic link between two 

entity types. 

Interpreting the contents of the diagram, we can say that all Abstract 

Environments CAE's) are represented as entities in the entity type "AE", and 

are related in a graph structure through the entity type "AE_TREE". Each 

AE is associated through "AE_OBJ_MAP" with a set of view objects held in 

NOBf'. The view objects are c1assifted as data, operator, and tool objects 
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through the subtypes "DATA_PRIM", "OP _PRIM", and "TOOL_OBJ" respec­

tively. Data objects are further associated through "DATA_OBJ_MAP" to the 

particular entity types from which they are eventually derived. Operator and 

tool objects, on the other hand, designate an "OPERATION" entity through the 

subtypes "OP _SET" and "TOOL_SET", and each operation is characterised by a 

set of parameters held in "P ARAMS". 

In figure 8.3, each of the entity types is given with the properties 

associated with that type, where the notation 

A[ pled!), p2(d2) ] 

defines an entity type "A" whose instances have properties "pI" and "p2" 

drawn from the domains "dl" and "d2" respectively. Each property is named, 

and the domain for values of the property is given, where "etype" is the 

domain of all possible surrogate values. In addition to the properties shown 

here, every entity type has a property known as the "e-attribute". For each 

entity instance this hold the unique surrogate value for the entity drawn 

from the etype domain. Note that any entity can be assOCiated with a name 

Within a particular namespace through a separate naming scheme. 

8.3.2. Expressions 

An important concept in the previous discussions about an IPSE view 

mechanism, and within the specification, is that of an expression. Even 

though we have formally specified in Z what is meant by an expression, with 

a particular refinement to specify the special case of RMff expressions, it is 

at an abstract level such that a number of possibilities exist with regard to 

its implementation. Here we discuss some of the possibilities, and examine 
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AE[ aeJib(f1le) ] 

AE...-"mEE[ ~ae(~), p!.!'Emt_ae(~) ] 

AE...-OBJjW>[ aeJap(~), abjJIap(~) ] 

OBJ[ de£rLsrc(f1le) , def'LLexec(f1le), I'6t_ty}:e(strillg) ] 

~mIM[ ] 

OP_mIM[ op_des(~) ] 

~OBJ[ too:Ldes(e"tyfe) ] 

OPERATIrns [ ] 

OP--.SET[ ] 

'Ia:l4....SET [ ] 

PARAMS[ posit1an(int), p:L!'allLty}:e(strillg), p:L!'allLop(e"tyfe) ] 

~OBJJfAP[ datcunap(e"tyfe), etJap(e"tyfe) ] 
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Fig 8.3 View Mechanism Entity types with their Properties. 

the consequences of the decisions made. 

8.3.2.1. First Prototype 

A view mapping is specifred to be a function from one expression to 

another. The left-hand mapping expression defi.ning the view object, while the 

right-hand mapping expression describes the lower level operations which are 

executed to implement the view object. However, in the specifrcation of 

expressions we specify a general expression to consist of a set of data and a 

set of operator objects related in a graph, without saying any more about 

what those objects might be. The decision to leave the specifrcation at such 

an abstract level was made to ensure that a single specifrcajion could be made 

use of throughout the ASPECT project. A particular refinement of the 
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speciftcation is made for the special case where we have an expression in the 

extended relational algebra of RM/T. 

For a preliminary prototype implementation of the view mechanism, it 

was decided to interpret an expression as equivalent to an RM/T expression, 

and to investigate the advantages and limitations of this approach. These are 

summarised below: 

a view object was defined using the extended relational operators of 

RMlT. This provided all the operators of the relational model (select, 

project, jOin, and so on), together with some additional operators (close, 

apply, ptuple, and so on).Cod79 

the relational operators implemented formed a closed algebra (ie. the 

result of any relational operation is itself a relation), and hence the 

only objects that could be defined in a view were data objects of type 

relation. 

as data objects only could be defined, an AE was defined to consist of 

those data objects speciftcally assigned to the AE, together with the 

full set of PTI query operators which we assumed were inherited by 

each AE. 

the describing expression for a view object was read in as a text 

string, parsed to check its validity, and recorded in string form ready 

for evaluation when required. 

evaluation of a view object in this context had an obvious interpreta­

tion. The describing expression associated with the view object was 

mapped to the lower level objects by the act of textual substitution of 

the describing expressions of each of the constituent components. For 

example, if we define "A" to have the describing ~xpression "+(B,C)", 

where this is the expression with root operator "+" and leaves "B" and 

"C', and "B" and "C' themselves have describing expressions "-(X,Y)" 
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and "*(X,Y)" respectively, then evaluation of the view object "A" will 

lead, via textual substitution, to the expression "+(-(X,Y),*(X,Y))". 

This process can be recursively applied to obtain an expression involv­

ing base objects and operators only, which can then be executed. 

it is not obViOUS how this implementation of an expression can be 

easily extended to allow both data objects of different types, and 

operator objects, to be defined as part of an AE. 

8.3.2.2. Second Prototype 

Aware of the limitations of the first prototype implementation, in par­

ticular the inability to define operator objects as components of an AE, it was 

decided that the second prototype implementation should take a much wider 

view of an expression. Indeed, it was recognised that the only way to obtain 

the expressive power required was to use the RMIT algebra embedded within 

a programming 1anguage.Hit76 In this way, not only are we able to access the 

data restructuring primitives which are vital to the success of the mechanism 

for data objects, but we can also make use of the comprehensive control 

faCilities available in a programming language, together with the ability to 

combine the update operations for data with the arithmetic operators of a 

programming language. 

For example, if we wanted to define an operator which updated the 

salary property of an entity by 10% of its current value, then we need the 

arithmetic operators, and the control and sequencing operations of a program­

ming language to express the operation, together with the update operators of 

RMIT. In the first attempt, not only were we unable to access the update 

operators (as they are not considered to be part of the _extended relational 

algebra), but we were also unable to perform arithmetic operations on data 
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The decision made was to use the C programming language, and allow 

the describing expressions of a view object to be equivalent to a C langUage 

function. This seemed the most appropriate choice given that all other imple­

mentation work was to use this language, and that the RMIT operations were 

specincally written as a C library of functions to be linked in with other C 

routines. 

We now discuss the details of how each of the operators at the PTI 

for the view mechanism were implemented, and then deal with some of the 

problems that we encountered, some of which are directly related to the deci­

sions made concerning expressions. 

8.3.3. Operators at the ASPECf PTI 

The operators for the view mechanism which are available at the 

ASPECT PTI have been implemented as a library of C programming language 

functions which a user of the PTI, an ASPECT tool writer, would link in to 

a main program which he/she was developing. This would make available all 

the operators implemented. 

Although a summary of the specincation in Z of the operators aVail­

able at the PTI has been given in the previous chapter, here we briefly 

describe each of the primitive operators implemented with particular emphasis 

on their implementation, the decisions and problems involved, and their rela­

tionship to the formal specincation. 

Note that the full set of operators have not been implemented for this 

prototype. It was felt that the functionality of the mechanism would not be 

impaired by omitting certain secondary operations which are- required for com­

pleteness of the model, but which otherwise serve no research purpose. In 
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particular, these are the operators to delete an AE, remove an object from an 

AE, and to modify an AE object. 

8.3.3.1. A Note on Error Handling 

Within each of the operators offered at the ASPECT PTI, the con­

straints and integrity checks defined in the specification are implemented as 

part of the operator. Therefore, when an operator is executed, if any of 

these checks fail, then the operator returns a null value to indicate failure, 

and the predicate in the specification which has been invalidated is recorded 

within an error variable. A user of the operators can now examine this vari­

able and can relate the error precisely to some point in the specification docu­

ment. This direct correlation between implementation and specification will 

clearly be a major benefit to the system's use, and is a prime example of the 

advantages of formally specifying software before implementation. 

8.3.3.2. Creating and Linking AE's 

The basiC framework for the creation and control of an AE graph was 

simple enough to implement; each AE is represented as an instance of the 

entity type "AE", and can then be linked in the AE graph to existing AE's 

using the "link_ae_obj" operator. 
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Creates a new AE, and returns the surrogate of the new AE. A sin­

gle entity of type "AE" is created. 

Given a set of parent AE's which already exist in the AE graph, a 

link is made between these parents and the given child AE. For each link, 

an instance in the "AE_ TREE" entity type is created. 

8.3.3.3. Adding Objects to an AE 

To add an object to an AE, a set of operators are available. The 

chOice of which one to use depends on whether the object is a data, operator, 

or tool object, and on whether it is a new object or an existing one. In all 

cases we associate an object entity with an AE entity, but for new objects 

the object entity must first be created. 

8.3.3.3.1. add_data_obj 

Adds a new data object definition to an existingAE. The describing 

expression of the object is contained in a file as the compiled form of a C 

function implementing the expression. A new surrogate is generated to 

represent the defining expression for the new data object. 

To assist in type checking, and as a display aid, the return type of 

the object, and a list of the lower level objects used in the describing expres­

sion, are given as text strings. Each of the lower level objects used in the 

describing expression is then checked to ensure that it is a valid object, and it 
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is an object aVailable in a parent of the AE to which this object is being 

added. 

This is similar to the previous operator in that a compiled C function 

implements the operator, but an additional set of parameters must be given 

which specify the parameters to the operator. This is no more than a set of 

text strings containing the types of the parameters. 

In addition to making the association between an AB and the new 

object, a new operator entity is created, and a set of parameter entities 

characterise that operator. The new object then designates the operator entity. 

This is similar to the previous operator, except that all objects used in 

the describing expression must come from the AB in which the object is being 

made available, not from its parents. 

8.3.3.3.4. inherit_ae_obj 

If a view object already exists, and is associated with an existing AB, 

then a child of that AB can inherit the object using this operator. On giving 

the operator to be inherited, a check is made that this object is available to a 

parent of this AB, and if so a new association to this AB is then made. 
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A tool object can also be inherited in an analogous way to the previ­

ous operator. 

8.3.3.4. Displaying Objects in an AE 

To enable users to determine what is accessible within an AE, display 

operators are available to show them. A separate operator exists for data and 

operator objects. 

8.3.3.4.1. show _data_objs 

For a given AE, a list of surrogates of data objects aVailable through 

that AE is returned, together with the types of each object. This is imple­

mented by querying the view mechanism structures to find which objects are 

associated with an AE, see which ones are data objects, and to return them 

with their types. 

8.3.3.4.2. show _op_objs 

This is similar in all respects to the previous operator, but in addition 

the parameters expected by a view operator object are also returned. 
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As in the previous operator, all tool objects of an AE can be displayed 

together with the expected types of parameters. 

8.4. Accessing ASPECf Through a View 

A second component of the ASPECT view mechanism, over and above 

the set of operators provided at the ASPECT PT!, must deal with the interac­

tions between users and view objects. 

When a user accesses the ASPECT services, it must always be to carry 

out a given Activity. In logging into this Activity, the user is then given a 

particular view of the ASPECT services through an AE which provides the set 

of data, operator, and tool objects which enable the user to perform the task 

in hand. Through the view mechanism, we must ensure that a user working 

within an AE is only able to access the facilities through that AE, and that 

when a view operator is executed, for example, then the correct sequence of 

lower level operations take place to implement the operation. 

8.4.1. Providing the Correct Objects 

The problem of ensuring that the users of an AE are only given access 

to the specifted objects for the AE can be handled in a number of ways. 

One of the most obviOUS solutions is to insist that a parameter of every view 

object is the AE from which the object is being accessed. Then, a command 

shell around all operations can accept a request to perform an operation on 

certain data items, and can immediately check that the given AE has access to 

both the operator and data objects specifted. The identifter of the AE need 
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not be explicitly given for each operation, but can be bound into a users 

environment on logging in to the Activity (in UNIX systems through 

"environment variables"). 

So, the front line to any user command is a simple command shell 

which accepts the requested operation, determines which AE is making the 

request, and queries the view mechanism structures in the information base to 

ensure that the operator and data items accessed are aVailable to that AE. 

8.4.2. Evaluating View Objects 

In the speciftcation of the view mechanism, and in the preliminary 

prototype implementation discussed earlier, the process of evaluating a view 

object was described as an interpretive process; when a request for a view 

object is made, either for a data object or execution of an operator object (we 

deal with tool objects later), then the describing expression for the object was 

found, and evaluated by replacing all the objects within that expression by 

their describing expressions, and repeating this process recursively until an 

expression involving base objects only remains. This base object expression 

can then be directly executed using the operators and data objects of the 

ASPECT PTI. 

However, one of the consequences of the decision to implement expres­

sions as RMIT operators embedded within a compiled form of C language 

function, is that we now have view objects as pre-compiled units which can 

be directly executed by instantiating the function with suitable parameters. 

This approach has obvious performance advantages, as the time taken to 

evaluate a view object is much less for a compiled object against an inter­

preted one, but has the disadvantage that changes in lower -level view objects 

are not automatically reflected in higher level objects derived from them. 
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The higher level objects must be re-compiled. As a result, we lose some of 

the data independence properties which we found attractive in this mechanism. 

For this prototype implementation, though, we accept this shortcoming, 

but note that if we were to implement view objects as RM/T operations 

within an interpreted language such as Lisp or Prolog, then we may well 

alleviate these problems. Similarly, we could devise a scheme which deter­

mines Which objects are affected when another object - is amended, and 

automatically re-compile such objects. This has not been attempted for this 

implementation. 

8.4.3. Invoking Tool Objects 

The process of invoking a tool object is considered separately from 

evaluating data or operator objects for two main reasons. 

Firstly, the concept of a tool differs from other view objects in a 

number of ways. In scope, for example, it differs because a user can register 

a tool object in an AE in which they are currently working, 'but cannot add 

new data or operator objects to that AE. Tools also differ in their construc­

tion, as it is expected that they will be written in a programming language as 

a separate program, and then compiled. It is this compiled program object 

that can be inherited by child AE's. 

The second way is through the Activities mechanism which controls 

and co--ordinates operations on the information base. Within the Activity 

mechanism, tool invocations are tracked as recoverable atomic operations. 

Hence, it should be possible to abort the invocation of a tool and the system 

will automatically roll-back changes that have been made by that tool invoca­

tion. View operator objects,' on the other hand, are treat~ as atomic (they 

either complete or do nothing) but are not recorded by the Activities 
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Hence, a separate operator available in an AE will be to invoke a tool 

object. This will, ftrst of all, check that the tool object invoked is accessible 

through this AE, before calling an operator implemented as part of the Activi­

ties mechanism which records the start of the tool as a node in an execution 

tree, and forks a new process Cin the UNIX sense) to invoke the tool. 

8.5. Physical Characteristics of the Implementation 

As a prototype for further experimentation and analysis, the imple­

mentation of the view mechanism described above has been developed with 

the aim of assessing the functionality of the mechanism without particular 

regard for performance issues. However, for completeness, it is appropriate at 

this point to make a brief comment on the physical characteristics of the 

view mechanism implementation. 

The software was developed on a SUN Workstation running UNIX 4.2 

BSD, and the view operators were written in the C language as a set of C 

functions maintained in a library. The current version of this library occu­

pies 75K bytes of memory. 

Due to the layered architecture of the ASPECT system shown in ftgure 

8.1, the performance of the view operators is dependent on the underlying 

RMIT implementation, which itself has been developed as a test vehicle for 

ideas rather than for high performance. As a result, execution times for the 

view operators range from 3 seconds elapsed time to create a new AB, to 

over 30 seconds elapsed time to show the operators in an AB. The issue of 

performance is discussed further in the "Future Work" secti~n of chapter 10. 
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In this chapter, we have taken the specification of a view mechanism 

given in chapter 7, and refined this to an implementation integrated with the 

other facilities provided by the ASPECT IPSE. The main emphasis of this 

discussion has been the implementation problems that existed, the choices made 

to resolve these problems, and analysis of the relationship between the imple­

mentation and the formal Z specification. In the next chapter we examine, 

through examples and discussion, how this mechanism performs within the 

wider context of IPSE facilities, and see how the stated aims for ASPECT of 

integration and openness have been achieved through this mechanism. 
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EXAMPLES, ANALYSIS, AND EVALUATION OF THE VIEW MECHANISM 

9.1. Introduction 

To illustrate how the view mechanism can be used within an ASPECT 

IPSE to support the process of large software systems development, the ideal 

would be to allow an ASPECT IPSE to be used in a project of realistic size 

and complexity, and to investigate its performance in terms of its ease of use, 

physical performance statistics, and so on. In trying to achieve this, we are 

faced with at least the following problems: 

the aim of ASPECT is to provide an infrastructure for users and tools. 

The evaluation of services provided by an ASPECT IPSE can only take 

place when the IPSE has been populated with tools, and customised to 

support a large project. This work will be costly and time consuming 

to carry out. 

for an organisation to invest time and resources into moving its 

software development to an ASPECT IPSE, there must be some proven 

record of success before such a commitment will be made. This prob­

lem, experienced by IPSE vendors in general, and only recently being 

aided by the aVailability of metrics and statistics for IPSE perfor­

mance, is particularly applicable to a research project such as ASPECT, 

producing a prototype implementation as a test vehicle for ideas rather 

than for rigorous testing. 
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as a prototype implementation, many of the development decisions 

taken within the ASPECT project have resulted in an implementation 

which allows analysis at a functional level, at the expense of areas 

such as performance optimisation, robustness, and error recovery. Con­

sequently, a certain amount of re-engineering would be needed to bring 

the implementation to production standard. 

Having said this, however, work is progressing in three areas which, in 

the long term, will help in the analysis and evaluation of the work reported 

here. 

Firstly, under the Alvey Software Engineering Programme, a project is 

currently underway speciftcally aimed at a practical evaluation of the ASPECT 

IPSE.Sef86 A collaborative project between British Aerospace and Lancashire 

Polytechnic, the work is designed to follow three routes: 

evaluation and assessment of the ASPECT project through reading and 

commenting on the working papers and reports produced by the pro-

ject. 

applying the prototype ASPECT IPSE to sUitable practical examples. 

examining the training requirements for organisations which would 

wish to introduce ASPECT-type IPSE's into their software development 

strategy. 

This is an on-going project, which will take many more months of 

work before presenting the results of its evaluation. 

Secondly, work on the ASPECT project itself has been extended with 

the particular aim of consolidating the results achieved thus far. Amongst 

other things, this involves applying the ASPECT IPSE to a number of 

simplifted examples. In analysing its performance for these_cases we can infer 

how an ASPECT IPSE might handle a larger, more complex situation. It is 
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Finally, some of the fundamental principles of ASPECT were derived 

from an IPSE product called Perspective, produced by the company Systems 

Designers (SD). These ideas formed the basis of the work carried out on 

ASPECT and, of course, brought the project quantifiable results showing how 

productivity gains of up to 600% can be achieved, as well as a 90% reduction 

in errors, using IPSE technology.Pri87 As the project's ideas developed a 

number of these have been taken up by SD and incorporated in their develop­

ment of Perspective currently known as Perspective Kernel (PKJ. Product 

development is continuing by incorporating more of the ideas in planned 

future releases. It will be interesting to see how this IPSE develops, and 

how it performs in forthcoming projects. 

So, as a precursor to the more stringent analyses which are to be car­

ried out in the near future, the analysis and evaluation of the ASPECT view 

mechanism reported here rests on its use in a number of simplified examples. 

We examine how an ASPECT system could deal with these examples, discuss 

an implementation in practice, and suggest how we can extrapolate from this 

work to use an ASPECT IPSE for large scale software development. 

9.2. An Example 

Of the many problems which arise throughout the lifetime of a large 

software project, one of the most complex and time consuming is that of 

maintaining the finished product. We therefore select a realistic example of 

the particular operations and tasks which occur at this phase, and then exam­

ine one way in which an ASPECT IPSE could be used to support these activi­

ties. 
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For a typical scenario of the maintenance phase of a large software 

project we can envisage a situation in which a project manager receives error 

reports from users of software. When the manager evaluates these reports, 

he/she may decide that changes to the released versions of software are 

needed and can formulate change requests which are approved by a designer 

before being assigned to programmers, and subsequently carried out to effect 

the change. For one particular change request, the course of events will typi­

cally proceed as follows. 

Firstly, the manager will create the new change request, describing the 

fault that has occurred and the software modules involved. This request will 

then be issued to the designer for approval before being passed on to a pro­

grammer who is instructed to deal with the problem. Now the programmer 

can carry out the change by creating amended versions of some of the 

software modules involved, and testing the new components to ensure the 

changes are effective. 

Once this unit testing has been completed, the new software will be 

passed on to the quality control department, who will then run rigorous sys­

tem testing with the new software before approving a new release for custo-

mers. 
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Consider the use of an ASPECT IPSE to support the development of a 

large scale software project, and the maintenance phase of the development in 

particular. Part of the data in the Information Base may concern change 

requests to amend released versions of program modules, and we would like 

to record the assignment of programmers to attend to these change requests, 

and to monitor the status of the requests. This is typical of the problems 

which are encountered in developing large software systems, and in most cases 

very poor ad hoc solutions exist. Let us consider how we might support the 

maintenance process of a project as outlined above through the use of an 

ASPECT IPSE, with particular emphasis on the use made of the view mechan­

ism. 

Suppose that structures are defined in the Information Base to record 

the necessary data, as shown in figure 9.1 using the notation described in 

chapter 8. 

In figure 9.1 change request entities are recorded as instances of the 

"Change_Request" entity type, and programmers as instances of the "Program­

mer" entity type. Assignments of indiVidual programmers to work on partic­

ular change requests are represented by instances of the associative entity type 

"Assignment". Each change request is associated with an initial source code 

file through the entity type "Change_Request_Old", and when dealt with, will 

also be associated with a new version of the source code through the entity 

type "Change_Request_New". The contents of a file are classifted as either 

Ada source or Ada object through the entity types "Ada_Src" and " Ada_Obj", 

which are subtypes of the entity type "File". The information about which 

programmers can access each file is represented in the entity type "Permis­

sions". Finally, the particular tools used to create the files -are represented by 

the entity type "operation", which associates a file with the tool that was 
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Fig 9.1 Entity Diagram for Simplified Example. 

used to create it. 

Each of the entity types shown will have a number of properties 

appropriate to the information in which we are interested. For example, file 

entities may be recorded with their size, owner, and the date they were last 

changed. Hence, by recording the data in a form which allows arbitrary 

queries to be defined we are able to easily extract the information of interest. 

To illustrate how an ASPECT IPSE can be used to help maintain con­

trol, let us consider the creation of a new change request, its assignment to a 

programmer, and the subsequent creation of an amended version of the code 

to effect the change. 
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We can envisage a manager who is responsible for creating and assign­

ing new change requests from error reports which have been submitted from 

customers. When the manager has evaluated an error report, and decided 

that a new change request needs to be created, then he/she will log in to the 

existing "CREATE NEW CR" activity to carry out this task. This activity 

will already have been defrned for the purpose of allowing new change 

requests to be created and assigned. It will consist of a set of pre-conditions 

which defrne when it is valid to create a new change request, a set of post­

conditions which defrne when the task has completed satisfactorily, and a set 

of rules which govern all operations which form part of the execution of the 

activity. When the activity was created, it was associated with a user who 

is allowed to carry out the activity, in this case the manager, and an 

Abstract Environment CAE) which defrned how the user executing the activity 

views the Information Base in terms of the data he/she can access, the opera­

tors that can be executed, and the tools that can be invoked. For example, 

for this activity, the AE may allow access to programmer, change request, 

and assignment information, provide operators to create a new change request 

and assign a change request to a programmer through the "publish" operator. 



A View Mechanism for an IPSE 

Fig 9.3 Screen Display on Entering the ASPECT System. 

Chapter 9 

Page 171 

Quit 

In figure 9.3 we see the screen display from an implementation of this 

example using the graphical interface facilities to an ASPECT IPSE built using 

the facilities of the ASPECT HC! services, collectively known as The 

Presenter.Too86 The display shows the state of the system when a user enters 

the ASPECT system, with four named regions along the top of the screen. 

Each region refers to an available Activity which the user can attempt to log 

into to carry out some work. So, for example, by selecting the left-most 

region the user can attempt to log into the Activity to create a new change 

request "CREATE NEW CR". 
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In figure 9.4, the manager has logged into the Activity to create a new 

change request. The region on the lower left of the screen contains trace 

information which indicates to the user which actions are taking place, reports 

errors and illegal actions, and so on. On logging into this Activity, a number 

of regions have been displayed on the right of the screen which show the 

different operations that the user is allowed to perform within this Activity. 

These are obtained by querying the ASPECT Information Base to determine 

which AB has been linked with this Activity, and then displaying a region 

for each of the operators within that AB. So, for example, one operator 

aVailable is to create a new change request, "create_new _cr_obj", and is 
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defined, perhaps unknown to the user of the operator, as a sequence of lower 

level operations to create a change request instance with appropriate property 

values. 

Also available within this Activity are a set of data objects shown on 

the left of the screen which the user can display at any time. These may 

have been explicitly inherited from a parent AE, such as 

"Change_Request_obj", or be abstract data objects such as "pro&-.cr_obJ' which 

is a combination of lower level objects. In this case the object contains all 

change requestS together with the programmers assigned to carry them out. 

For all the data objects available, only the entities which are owned by that 

user, or have been explicitly published to, and acquired by that user, are 

displayed. 

Now let us suppose that the manager executes the operators to create a 

new change request and publishes that request to the designer to approve the 

request. If the programmer, impatient to carry out his/her work, attempts to 

login to the Activity to implement the change request, "IMPLEMENT CR", as 

shown in figure 9.5, then the login operation fails because the pre-conditions 

associated with the Activity have not been met. In this case, one of the 

pre-conditions set for the Activity was that the programmer could not start 

the Activity until a designer approved change request was available. As this 

is not yet the case, the request to initiate the Activity has failed. 
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So, in a similar fashion, the designer could log into the "DESIGNER 

APPROVE CR" Activity, and approve the change request, publishing it to the 

programmer. The programmer in turn can log into the Activity "IMPLE­

MENT CR" and will have available the data and operators necessary for the 

task. Most probably, besides the software modules involved in the changes, 

this will include the error report itself, a designer's summary of the problem, 

and the initial speciftcation document for the modules. Tools and operators 

will also be aVailable within the Activity such as editors, compilers, 

debuggers, and so on. 



A View Mechanism for an IPSE 
Chapter 9 

Page 175 

When the programmer has made the changes he/she thinks are neces­

sary, and performed testing on the modules in question, the latest software 

will then be published to the quality control department, which will have an 

on-going activity to fully test amended versions of software published to it, 

"TEST CR". On receiving the new software, the quality control department 

will apply the test suite to the fully built system and analyse the results. 

If unsatisfactory, then a report of the problems would be sent to the pro­

grammer, who will then continue with his/her work. If, on the other hand, 

the tests are successful, then an acknowledgement will be sent to the pro­

grammer who is now able to terminate his/her activity. The manager will 

also be informed, and can update the status of the change request to "com­

pleted". 

9.2.2. Summary 

In this section we have discussed in detail a simple example, with 

reference to an implementation of the example built using the ASPECT HCI 

services. Without too much difficulty we can extrapolate from this example 

problem to envisage a larger system in which a similar process of the creation 

of Activities linked to AE's provides the mechanism for the controlled imple­

mentation of a task. In addition, part of an AE for an Activity may well 

be the operators for creating new Activities and AE's, and for assigning them 

to users. In this way the hierarchical nature of many software tasks can be 

modelled and controlled in a convenient and flexible way, allowing Activities 

to be created and decomposed to mirror the development process. 
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One of the stated goals for the ASPECT view mechanism was to 

investigate the ease with which we could embed existing tools into an 

ASPECT IPSE with minimum changes to the tools themselves. The way in 

which we do this is to define a view of the Information Base, through an 

AE, which mirrors a tool's native operating environment. The tools can then 

run in this view without change, while the integrity and consistency of the 

Information Base is not compromised by any attempt to by-pass the enhanced 

semantic controls applied at the ASPECT PTI. 

To illustrate how this mechanism could be applied in practice, we 

examine one particular example of the inclusion of tools foreign to ASPECT 

which is of particular importance, and suggest how we might use the view 

mechanism to facilitate their use in an ASPECT IPSE. 

9.3.1. The ASPECI' Open Tool Interface (OT!) 

An important set of tools which we would like to be able to make 

use of in an ASPECT IPSE will be those available in UNIX systems. The 

ease with which new tools can be added to a UNIX system, coupled with the 

popularity of the UNIX operating system itself, has led to a particularly rich 

set of tools and utilities which operate in a UNIX environment. Naturally, 

where these tools have already been implemented it would be desirable to 

import them in to an ASPECT IPSE and not only save a great deal of time 

and effort in duplicating the implementation of existing tools, but also to pro­

Vide access to ASPECT data through tools which are familiar to many users. 

Of course, we have a simple solution to include UNIX tools in an 

ASPECT IPSE - because ASPECT is hosted on the UNIX operating system, we 

could allow UNIX tools to access data directly through this interface, by-
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passing the higher-level ASPECT PT! which has been built above it. How­

ever, there are a number of reasons why this approach would be undesirable. 

Firstly, from a security and integrity viewpoint, having constructed a highly 

semantic interface to data access, in which users view data as collections of 

entities, or as relations, it would mean that we now allow them to break' the 

constraints that exist at that level and deal with the underlying nle represen­

tation itself. Maintaining data integrity in this environment would be 

signincantly more complex. Additionally, taking this approach is dependent 

upon this particular implementation of ASPECT. If we were to re-implement 

ASPECT on another operating system, for example, then this solution would 

no longer be appropriate. A further reason for not adopting this solution is 

that although we have overcome the problem for these particular tools, we 

face a similar set of problems for importing tools built to other interfaces, 

and a uniform solution to the problem would clearly be desirable. 

The approach taken in ASPECT is to provide a view of the ASPECT 

Information Base which supports the UNIX System Call Interface, and hence 

allows integration of the UNIX tools in a uniform way, without compromising 

the integrity provided at the ASPECT PT!. This approach is the uniform 

mechanism used to support integration of any foreign tool into an ASPECT 

IPSE. 
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As an example, consider a UNIX tool which, as part of its operation, 

opens a UNIX file, writes to the file, and then closes the file. One of the 

predefined types of ASPECT is the file type, and any entity can have an 

attribute whose value is drawn from the file type. Therefore, at the ASPECT 

PTI there are operations for opening, closing, reading, and writing of ASPECT 

files. So, for example, to support the UNIX file open operation, a mapping 

would be defined in the form of an operator within an Abstract Environment 

CAE) which converts the UNIX file open into an ASPECT file open. Typi­

cally, a UNIX operation to open a file "fred" would result in an ASPECT 

operation to open the file attribute assOCiated with the ASPECT entity whose 

name is "fred". In a similar way it is expected that many of the UNIX Sys­

tem Call Interface operations could be supported in ASPECT, and consequently 

many of the UNIX tools could be used within an ASPECT IPSE. 

Clearly, having established and demonstrated the principles behind the 

mechanism, practical issues such as performance would need to be examined. 

At this point we choose not to address these issues, other than making the 

observation that in a full production standard ASPECT IPSE the overhead 

involved in accessing UNIX operations in this way could be reduced through 

exploiting optimised software implementation techniques, and if necessary 

through the use of specialised hardware. 
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The IPSE field is still in a state of flux, and a number of approaches 

to IPSE design and philosophy are at present under consideration in an 

attempt to define the way forward in IPSE research. As a result, a number 

of IPSE's have been implemented over the past few years. (A discussion of 

some of these is presented in Chapter 2 of this thesis). Hence, work such as 

has been carried out within the ASPECT project must be fully aware of the 

wider context of IPSE development if it is to avoid becoming classed as 

irrelevant as both political and technical forces advance the field. In particu­

lar, work in providing an IPSE framework, as attempted by ASPECT, in 

which a tool writer can embed tools for use throughout the software develop­

ment life-cycle, is likely to be directed towards a standard tool writer's inter­

face, driven by the need for portability of tools between different IPSE's. 

Until this occurs, in the near or distant future, the ASPECT approach to tool 

integration will be particularly useful for allowing an ASPECT IPSE not only 

to allow tools to be added which have been specially written to the ASPECT 

PTI, but also to allow the addition of tools written to other IPSE PTI's. 

This use of the view mechanism makes the ASPECT system particularly 

attractive in the quickly changing field of IPSE development. 

Here, we look at how an interface to data based on the entity­

relationship approach to data modelling, as supported by the PCTE, could be 

offered as a view of the ASPECT Information Base through the creation of a 

suitable AB. 
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The PCTE, in a similar way to ASPECT, is designed to be the basis 

for the construction of IPSE's which support a particular project 1ife-cycle 

model through an integrated collection of tools and services.Bul8S, Sys87 The 

tools access PCTE services through a common Public Tool Interface (PT!) 

which prOVides a set of primitive operations that allow controlled interaction 

with the PCTE facilities. Hence, the basic philosophy of PCTE and ASPECT 

can be conSidered to be the same. What is Significantly different, however, is 

the way in which each system attempts to provide the necessary support for 

meaningful tool interaction. 

As in ASPECT, the services provided in PCTE are grouped into a 

number of areas, and for this work we concentrate on the Object Management 

System (OMS) of PCTE, which can be seen as analogous to the Information 

Base of ASPECT. 

9.4.1.1. The Object Management System of PCTE 

To record and manipulate the data generated during a project life­

cycle, the PCTE contains an Object Management System (OMS) which records 

data items as objects which are involved in relationships with other 

Objects.Gal86 Where as the ASPECT Information Base uses RMIT to defrne the 

conceptual model of data, the PCTE OMS is based on its own particular 

derivation of the Entity-Relationship (ER) model in which PCTE objects 

resemble the entities of the ER mode1.Che76 

In many ways the RMIT approach of ASPECT and the ER-based 

model of PCTE can be considered very similar at the conceptual leve1.Hit87a 

Where they differ greatly is .in the representation of the niodel they employ, 

and in particular the data deftnition and manipulation languages they use. 
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in PCTE two distinct types of object exist, objects and links, and 

separate operators exist for each type. For example, there is one 

operator to create an object, and another to create a link. A link is a 

uni-directional association between two objects, while a pair of links 

between two objects can be bound together to form a relationship 

between the objects. In ASPECT everything is considered to be an 

entity, which will be classed as one of kernel, associative, or charac­

teristic, and in addition may be designative. A single set of operators 

are aVailable for all entities. 

in PCTE a network-based implementation is used in which users navi­

gate from one object to another via the relationships and links. In 

contrast, ASPECT employs a relational set-oriented approach with data 

manipulation via a relational algebra. 

in PCTE objects and links are identified by pathnames, as a direct 

extension of naming facilities in UNIX. ASPECT, on the other hand, 

identifies each entity with a unique system generated identifier, and 

allows the user the flexibility of defining the specific naming scheme 

required for a particular project or task. 

the meta-data describing, for example, which types of object exist, 

what their attributes are, and so on, is accessed in PCTE through a 

fixed set of operators. The structures containing meta-data information 

are not exposed, and hence user-defined queries on this data are not 

supported. In particular the query tools which manipulate user data 

cannot be applied to the meta-data. In ASPECT, however, the model 

is self-referential in the sense that all meta-data is held in the same 

form as user defined data, and can be accessed in the same way, using 

the same set of relational algebra operators. 
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Having given an indication of the kinds of differences which exist in 

the information storage and manipulation facilities of PCTE and ASPECT, we 

now look at how we might approach the task of taking an existing PCTE tool 

which accesses and manipulates data, and supporting it within an ASPECT 

IPSE. 

We begin by looking at an example of how we could support opera­

tions on a particular set of data structures already within ASPECT, before 

considering the more general case where any PCTE tool could be supported in 

ASPECT. 

9.4.1.2.1. A PCTE View of Existing Structures 

Given an ASPECT system in which the data schema has been defined, 

one of the actions we may wish to take could be to import an existing PCTE 

tool which makes access to those structures. To support the new tool we 

would define a view of the ASPECT PTI by creating a sUitable Abstract 

EnVironment CAE) which supports the operations carried out by the tool. 

These operations would be mapped down to their interactions with ASPECT 

data using ASPECT PTI operations. 

To illustrate how this could be achieved, consider the example 

described earlier in which the ASPECT Information Base is used to record 

information about programmers and their assignments to carry out change 

requests on program modules, shown in figure 9.3. Also, consider a PCTE 

tool which, amongst other things, creates new change requests and assignment 

instances. Following the C language interface to PCTE,Bu185 particular calls to 

the operators to create objects and relationships could be 
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crobj( "mypathname", " change_requestl " , Change_Request, 01 ); 

crlink( "fred", "link1", "change_requestl" ); 

which creates a new change request named "change_requestl" within the con­

text of "mypathname", and creates an assignment of the new change request 

to programmer "fred", giving the assignment the name "link1". Default initial 

attribute values will be assigned to the new object and link, which can be 

re-defmed with calls to the operator "setattr" for an object, and "setlattr" for 

a link. 

In order to support these operations within an AE, sUitable AE opera­

tors would need to be defined which map these PCTE operations into their 

equivalent ASPECT operations. For example, the operation to create a new 

object could be defmed as in figure 9.6. 

1nt crobj( ~, abjJlBllS, abj_type, IOCX:le ) 
cba.r *~, *abjJlalre, *abLtype; 
short zocx:'ie ; 
{ 

} 

surrogate s~, s_type, new--.surg; 

/* oorM3I't ~ ani abjJlBllS to SllI'I'Ogates * / 

s~ = SllI'I'Ogate_of(~, :ill1t1aJ ~); 
s_tY.I:e = SllI'I'Ogate_of( abLtype, sJlBlISS!R09 ); 

/ * create an 1nsta;coe of abLtype * / 

new....surg = create_entity( s_type, attIrap ); 

/* give nazre abjJlBllS to new entity */ 

nmrELentity( new--.surg, abjJlBllS, sJlBlISS!R09 ); 

return(CK) ; 

Fig 9.6 ASPECT Implementation of "crob]"". 
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In figure 9.6, a simplified description of the PCTE "crobJ' operation in 

terms of its underlying ASPECT operations has been given. From this exam­

ple we can see that a correspondence exists between a PCTE object and an 

ASPECT entity, and that through the operations "surrogate_of", which returns 

the surrogate of a name within a namespace, and "name_entity", which gives 

a name to an entity within a particular namespace, we can create a mapping 

between PCTE names and ASPECT surrogates. In a Similar way we could 

define a mapping for the PCTE "crlink" operator. 

9.4.1.2.2. Providing Support for any PcrE Tools 

The simple example in the above section shows how the PCTE opera­

tors for creating objects and links could be supported in ASPECT. To enable 

any PCTE tool to be supported in ASPECT, an ASPECT AB would have to be 

defined in which all of the operators which are available at the PCTE PTI 

were aVailable and had their expected functionality. It would clearly be a 

non-trivial task to define and implement such an AB, particularly with the 

major differences in data manipulation operations offered by the two systems. 

However, the way in which this could be achieved would be to define these 

mappings though analysing the operators of PCTE and producing a schema for 

the meta-data of the OMS in terms of RMIT entities. This schema could 

then be recorded within ASPECT, and the PCTE operators defined in terms of 

their RMIT operations on this meta-data, in an analogous approach to the 

way in which the RM/T catalog is used by the RMIT operators. Indeed, a 

first attempt at the definition of a meta-schema for PCTE has been 

madeRob87a and the step of recording this information in ASPECT and defining 

the appropriate operators is currently under consideratiQn. Once this is 

achieved, it would be possible to support any of the PCTE operators, and 
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Again, practical issues such as the performance of supported PCTE 

tools will be important in a production standard ASPECT IPSE. Steps 

currently being taken towards addressing these issues are discussed in the next 

chapter. 

9.5. Summary 

In this chapter we have shown through a number of simple examples 

how a view mechanism can be used as a component of an IPSE to support 

the creation and use of external views of the ASPECT services to suit indiVi­

dual users and tools. Clearly, more work is required in this area to fully 

evaluate the mechanisms provided, and the means by which this is to be 

achieved have been outlined. Given the current state of of IPSE research, 

with a Significant degree of uncertainty as to the best way to provide IPSE 

support through a PTI, the ASPECT approach of including within an IPSE the 

facilities for its own customisation to suit indiVidual users and tools, and 

hence a number of IPSE PTI interfaces, should prove particularly useful as a 

vehicle for the experimentation and further study which is certainly needed. 
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CHAPTER 10 

CONCLUDING REMARKS 

10.1. Introduction 

Chapter 10 
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In the final chapter of this thesis we review the work that has been 

carried out, and discuss the areas in which it may continue in the future. 

10.2. Review of Work 

The original aims of this thesis, outlined in chapter 1, were to examine 

past and current methods for constructing IPSE systems, to evaluate software 

engineering databases as the central component of an IPSE, and to specify and 

implement a view mechanism as an integral feature of an IPSE infrastructure. 

In this section we review the work reported in this thesis with particular 

em phasis on these aims. 

The early stages of the thesis were an analysis of IPSE components 

through examining the development of IPSE technology from the original 

development environments for software which consisted of a set of ad hoc 

tools supporting different stages of the development life-cyc1e. From this 

analysis, the importance of open IPSE's was advanced, providing flexible sup­

port for the integration of tools through a Public Tool Interface (PTI). 

At the heart of an IPSE is a structured repository for recording all 

development data. We continued by analysing the advantages of using a 

database as this central component, and looking in detail at how a software 

engineering database exhibits particular requirements for which conventional 
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database technology is not always readily applicable. 
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One of the mechanisms generally aVailable within a commercial data­

base system allows multiple external views of the database to be defmed. 

Such a view mechanism allows different abstract interfaces to the data to be 

defmed, appropriate to different users needs. Within an IPSE system there is 

a Similar need for supporting interaction with IPSE data at different abstract 

levels. However, the nature of IPSE use, accessed by a particularly diverse 

set of users from programmers to high-level managers, coupled with the need 

to support tool' interaction with data where the tools may have been written 

to many different interfaces, provides additional requirements for an IPSE 

view mechanism. Indeed, by examining the abstraction mechanisms used 

within programming languages to support similar aims, we were able to defme 

a model of a view mechanism for use in an IPSE which is much more 

powerful than those generally available in existing conventional database sys­

tems. 

Having defmed a view model, we then specifted an IPSE view mechan­

ism using the formal speciftcation language Z This provided a formal 

description of the model which was then used as the basis for a subsequent 

implementation within the constraints of a larger IPSE project. 

FollOWing a discussion of the implementation issues which needed to be 

addressed, an analysis of the mechanism was given by considering a realistiC 

example on which the' view mechanism, in conjunction with the other IPSE 

facilities, was used. From this example, the ways in which the view mechan­

ism could be applied to other examples were discussed. 
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10.3. Future Work 
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FollOWing on from the work reported in this thesis, there is scope for 

continued research in a number of directiOns. This work can be diVided into 

three main areas. 

Firstly, improvements to the implementation of the view mechanism 

will need to be made as a precursor to further analysis of its use. In partic­

ular, the time taken to perform some of the operations, for example, to link 

an Activity with an AE and a user, would at present not permit the realistic 

use of these mechanisms within a "live" system. The indiVidual view 

mechanism operators themselves could be optimised, but the more fundamental 

reason for the performance problems lies in the use of a commercial database 

system, db++, as the internal level on which the conceptual base of ASPECT, 

RM/T, has been implemented. As a result, each RM/T query or update 

operation on an entity executed by a view operator performs a number of 

underlying db++ operations on relations. These in turn are mapped to under­

lying UNIX operations on files. This results, for example, in an execution 

time of the order of a second each time a name is converted to a surrogate, 

or vice-versa. As a typical view mechanism operator will require the conver­

sion of names to surrogates many times in a single execution, we have a 

severe bottleneck on performance. Work currently under consideration is to 

re-implement RMIT directly on top of the UNIX operating system, by-passing 

one of the most time consuming layers in the implementation architecture. 

This would Significantly improve execution times of view operators. 

Secondly, there is Wide scope for further investigation and analysis of 

the view mechanism in a number of areas. Most importantly, there is a need 

for continuing the initial evaluation of the ASPECT services for supporting 

large scale software development, in particular the role of -the view mechan­

ism in that process. This is seen as the most appropriate area for continued 



A View Mechanism for an IPSE 

ASPECT research, and is currently under investigation. 
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However, a wider analysis of the view mechanism is also possible. 

For example, there is currently a great deal of work going on in the area of 

Object-Oriented Programming Systems (OOPS). In this approach, a program­

ming process is considered to be a set of objects, which can can be classed 

into object types. Each object type is related through a hierarchy, and has an 

associated set of methods which are operations that can - be performed on 

instances of the type. Messages are passed between object instances instruct­

ing them to execute particular methods, and hence carry out actions. It is 

interesting, then, to compare the OOPS notion of an object with the ASPECT 

notion of an entity, where entities are members of an entity type, controlled 

through a type hierarchy, and through the view mechanism we associate par­

ticular operators with a set of entities. A much more detailed investigation 

of these issues may prove particularly instructive for the further understand­

ing of IPSE systems. 

Finally, the view mechanism facilities are made available through a set 

of C language functions held in a library, which a user must link into a 

main program to use. Clearly there is a need for tools to be built on top of 

this primitive interface which allow a user to define and use AE's in a much 

more convenient and natural way. The graphical interface to ASPECT built 

for the example in chapter 9 has given some indication as to the forms this 

can take, but much more work could be carried out in this area. 
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Z CONVENTIONS USED IN THIS THESIS 

Throughout this thesis we use the following conventions: 
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For any schema S , II S represents the conjunction of a before-state S 

and an after-state S'. Formally: 

II S ,;, S 1\ S' 

Further, for any schema S, :a S represents the schema in which the before 

and after states are identical. Formally: 

:a S ,;, II SIS' = S 

We also use the notion of a framing schema. This is used to represent a 

change of state in which we wish to state some changes explicitly and say 

"everything else remains the same". We cannot define a framing schema in a 

context-free way: our use will always be in the context of some other 

schema. In general it is used as follows: 

T __________________________________________ ~ 

ell S 

other declarations and schemas 

Predicate 

Suppose S contains a set of variables V, of which a subset VI are 

mentioned in the predicates of T or the other schemas and the remainder V2 

are not. Then the above is to be read as: 
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T ____________________________________ _ 

other declarations and schemas 

Predicate 

V2' = V2 
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For operations we always decorate input variables with "?" and outputs 

with "I". 

We use the following case conventions: 

Names entirely in upper case are global types or state schemas- for 

exam pIe "USER", "IB". 

Names entirely in lower case are relations or names local to a schema 

- for example "subtree", "attributes". 

Names in mixed case are operation schemas - for example "init_IB". 

A.1. A List of Z Symbols 

A Syntactically equivalent to = 

¢ not equals 

~ less than or equal to 

~ greater than or equal to 

/\ logical and (conjunction) 
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] 

D 

x 

n 
A 

U 

.3 

V 

• , 
1F 

z 
-1 

E 

bijection 

sequence catenaction 

close bag bracket 

closing image bracket 

cartesian product 

Distributed set intersection 

Schema state change 

Distributed set union 

domain restriction 

domain subtraction 

there exists (existential quantiftcation) 

for all (universal quantiftcation) 

forward relational composition 

Finite subset 

total function 

function over-riding 

if and only if (equivalence) 

implies 

is implied by 

injection 

the set of all negative, a and positive integers 

function inverse 

lambda 

set membership 

map1et 
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.., 

+ 

[ 

a 
v 

partitions 

» 

o 

++ 

* 

mu 

Natural Numbers 

Negation operator 

not set membership 

non-reflexive transitive closure 

not set and 

left bag bracket 

opening image bracket 

logical or (disjunction) 

partition 

partial unite function 

partial fi.nite injection 

partial fLnite surjection 

partial function 

phi 

partial injection 

Pipeline 

Positive natural numbers 

Power set 

partial surjection 

relational composition 

relation 

range restriction 

range subtraction 

reflexive transitive closure 
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n set intersection 

set difference 

!: set inclusion 

U set union 

sequence restriction 

sequence range restriction 

c strict set inclusion 

~> total surjection 

e theta 

I- theorem 

F universally valid 

a Schema no change 
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APPENDIX B 

TREES FOR ASPECT' 

This appendix provides a generic theory of trees, and other types of 

graph, for reference from within the thesis. It is a subset of the definition of 

trees and graphs for ASPECT that is defined in ASPECT's specification of the 

public tool interface.Rob87c 

First, we build up the underlying data types using schema calculus. 

B.l. The Basic Types 

We start with a general directed graph which is generic in its node 

type, N. 

[N] 

DG------------------------------------1 

read 

nodes : JP N 
parent : N - N 

dom parent U rng parent ~ nodes 

In this and subsequent definitions, the name of the relation should be 

So its domain is the set of all children, its range the set as "has parent". 

of all parents. 
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This is the basic defmition, but it is useful to extend it with some 

auxiliary relations: 

children which is obviously the inverse of parent 

ancestors which relates a node to everything reachable via the parent 

relation 

descendants which is all the nodes reachable from a given node via 

the children relation 

family which is all the descendants of a node plus the node itself. 

We also define two subsets of the nodes : 

leaves which are all the nodes with no children 

roots which are all the nodes with no parents 

We define a relation leavesof which yields all the leaves in the family 

of a given node. 

DG ________________________________________ ~ 

DG 

children,ancestors,descendants,family N +-+ N 

leaves, roots : ]PI N 

leavesof : N +-+ N 

children = parent-1 

ancestors = parent+ 
descendants = children+ 
family = children* 
leaves = nodes - rng parent 
roots = nodes - dom parent 
leavesof = family t> leaves 
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We next denne acyclic directed graphs, which are those that contain no loops 
in the parent relation. 

AG ______________________________________ ~ 

DG 

ancestors n Id N { } 

We can also, independently, defrne connected graphs which are those for 
which there is some node of which all other nodes are descendants. 

CG __________________________________________ --, 

DG 

3 n nodes. nodes = family anD 

A connected acyclic graph has the obViOUS dennition. The UNIX directory 
structure is an example. 

Each node in a tree has at most one parent. More generally, an acyclic graph 
in which this is true is a forest, and a connected forest is a tree. 
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FO~T __________________________________ ~ 

AG 

parent E N ~ N 

I~OREST . CAG 

B.2. Labelled and Ordered Graphs 
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As we have a generic node type, we do not need to consider properties 

of nodes. However, it is useful to consider graphs whose links are labelled. 

For our purposes, we treat labelling in terms of sets of labels on the links to 

the children of each node. 

The most general labelled graph is: 
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[L] 

LG ____________________________________ ~ 

DO 
labels 

V n N 

V n N 

rng labels n !: children Q n D 

Clabe1s n}-l E N ~ L 
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We can now also consider other particular forms of labelled graph 

such as: 

DLG Distinctly labelled graph, in which all links of a node are labelled, 

or none are. 

CLG Connected labelled graph, which have all links labelled. 

OG Ordered graphs, a special kind of DLG in which the labels are the 

positive integers. 

COG Completely ordered graphs, which are CLG's with ordering. 

COCAG Completely ordered connected acyclic graph, includes all of the 

above, and must be acyclic. 

We can also add the notions of labels and ordering to trees. 
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B.3. Operations on Graphs and Trees 

• 
Appendix B 
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A large number of graph operations are required. These must be 

specified for both labelled and non-labelled graphs. This is not pursued here. 
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