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Abstract 

This thesis describes a methodology for the requirements analysis of critical real-time 

systems. The methodology is based on formal methods, and provides a systematic way 

in which requirements can be analysed and specifications produced. The proposed 

methodology consists of a framework with distinct phases of analysis, a set oftechniques 

appropriate for the issues to be analysed at each phase of the framework, a hierarchical 

structure of the specifications obtained from the process of analysis, and techniques to 

perform quality assessment of the specifications. 

The phases of the framework, which are abstraction levels for the analysis of the 

requirements, follow directly from a general structure adopted for critical real-time 

systems. The intention is to define abstraction levels, or domains, in which the analysis 

of requirements can be performed in terms of specific properties of the system, thus 

reducing the inherent complexity of the analysis. 

Depending on the issues to be analysed in each domain, the choice of the appropriate 

formalism is determined by the set of features, related to that domain, that a formalism 

should possess. In this work, instead of proposing new formalisms we concentrate on 

identifying and enumerating those features that a formalism should have. 

The specifications produced at each phase of the framework are organised by means of 

a specification hierarchy, which facilitates our assessment of the quality of the 

requirements specifications, and their traceability. Such an assessment should be 

performed by qualitative and quantitative means in order to obtain high confidence 

(assurance) that the level of safety is acceptable. 

In order to exemplify the proposed methodology for the requirements analysis of critical 

real-time systems we discuss a case study based on a crossing of two rail tracks (in a 

model railway), which raises safety issues that are similar to those found at a traditional 

level crossing (i.e. rail-road). 
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Chapter 1 

Introduction 

A critical real-time system is a real-time system for which there exists at least one 

failure that can be adjudged to cause an accident (e.g. loss oflife) /PDCS 901. (We employ 

the term "critical real-time system", instead of "safety-critical system", in order to 

emphasize the real-time characteristics of the type of systems that we are concerned 

with; it can be the case that a safety-critical system might not have any timing 

characteristics at all.) The development of such systems is usually controlled by 

regulatory authorities, specific to the area of application, such as transportation, 

aerospace, energy industry, medicine, and defence. These regulatory boards impose 

certification criteria, in accordance with the safety standards established for the different 

sectors, which must be satisfied before the system can be put into service. 

As the use of computers increases in critical applications and the level of criticality of the 

roles performed by the computers also increases, currently available methods have been 

proven inadequate for the development of critical real-time systems because they do 

not provide the required level of confidence ILeveson 91b/. Hence there is a need to 

search for new methods for the development of software for such systems. Within the 

context of software development this thesis is essentially concerned with the 

requirements phase, where we adopt the usual practice of dividing the development 

process into requirements, design, and implementation. Furthermore, we are only 

concerned with issues related to "software safety", although "safety" is an attribute of the 

system rather than just software. The requirements phase is characterised by intensive 

communication between the customer, or a group of experts, and the analyst. It 

comprises the elicitation of the requirements (i.e. acquisition and expression of the 

customer requirements), the analysis of the requirements (i.e. checking for ambiguities, 

contradictions, and incompleteness of the requirements), and the explicit definition of 
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the requirements (i.e. the construction of the requirements specification). Experience 

has shown that faults in the requirements specification can corrupt later stages of 

software development, introducing faults into the final system which can subsequently 

cause an accident !Ericsson 81/. Furthermore, the longer it takes (in terms of system 

development) to identify a fault, the more expensive it will be to nUllify the effects ofthe 

fault /Boehm 81/. 

One approach that has been advocated for achieving an improvement in the 

dependability of critical real-time systems is the utilization of formal methods IMoD 

91a, Moser 901. The potential advantages of using formal methods, apart from 

contributing to improving the understanding of the requirements specification, include 

unambiguity, refinement consistency, and the opportunity to check for completeness 

(with respect to a key set of questions and inferences based on the information specified 

IJaffe 19911). However, the utilization of formal methods has its limitations in the sense 

that faults cannot be completely eliminated. A first limitation concerns those faults that 

can arise during the process of formalising the requirements, either due to 

misunderstandings of the user needs or when expressing those needs. A second 

limitation is related to the assumptions that are usually made in order, for instance, to 

obtain a mathematical model of the real world; although these assumptions are useful 

(or even essential) in simplifying the analysis process, they may also introduce 

imperfections into the model. Finally, a third limitation arises from observing past 

experience in the utilization of formal methods which shows that a formal verification 

may itself contain faults. To maximise the benefits that can be obtained from the 

application of a formal method, a set of guide-lines should be provided in order to advise 

the user of the circumstances under which the method can and should be applied, as well 

as how it can be applied most effectively /Wing 901. Although there are a great number 

of formal methods, they can be roughly classified into a few broad types in accordance 

with their expressive power IPnueli 86, Wing 901. The utilization in a development of 

more than one type of formal method has become increasingly common because of their 

different characteristics and expressive power, which enables the representation and 
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analysis of complementary views of a system, with each formal method working to its own 

strengths /Pnueli 86, Olderog 91/. 

With respect to the requirements phase, the motivation for the application of formal 

methods is to locate and remove faults introduced during this phase, before proceeding 

to any subsequent phase of development. Within the requirements phase, our concern 

is specifically with the analysis of the requirements, a multidisciplinary activity where 

there is a need to analyse certain views ofthe system which have different, and sometimes 

unrelated, characteristics. Employing a multi-formalism approach, we are able to 

choose appropriate formalisms in order to analyse each view in terms of its specific 

characteristics. In our proposed methodology, a set of formal methods are employed in 

accordance with the characteristics of the system, and the type of analysis to be 

performed. 

As a general structure for critical real-time systems, in particular process control 

systems, we adopt a commonly accepted structure of partitioning the system into three 

different components: the operator, the controller, and the physical process (or plant) 

/Saeed 91/. Apart from these, we also identify the componentsplant inteiface and operator 

inteiface which contain those components of the controller that support the interface to 

the plant and the operator, respectively. The entire system has an external environment, 

which is that part of the rest of the world which may affect, or be affected by, the system. 

The contents of this chapter are organized as follows. The next section presents a set of 

definitions which are basic for the rest ofthe thesis. In section 2 we outline the proposed 

methodology within the context of the above general structure for critical real-time 

systems. Section 3 presents a survey of current techniques for requirements analysis. 

Section 4 summarises the technical contributions of this work, and section 5 provides an 

outline of the subsequent chapters of the thesis. 
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1.1. Basic Definitions 

Our basic concern is to ensure that an accident (an unintended event or sequence of 

events that causes death, injury, environmental or material damage) does not occur. 

However, we encounter the problem that we cannot directly influence all of the factors 

that could conceivably lead to an accident. To deal with this problem the notion of a 

hazard (a physical situation or state, expressed as a system condition) is typically used to 

describe a circumstance from which an accident could ensue, even though it might be 

prevented by the controller. While a system is in a hazard state, whether an accident 

might ensue or not, might depend on issues which are outside the scope ofthe controller 

/Leveson 91b/. Thus, to ensure safety, we strive to identify all of the hazards and then 

apply techniques to reduce the probability of the system getting into a hazard state. The 

effort that should be employed to prevent a hazard depends on the risk associated with 

that hazard. The risk of a hazard is related to the likelihood of the system entering that 

hazard state, the likelihood that the hazard will actually lead to an accident, and the 

expected potential loss associated with such an accident, i.e. the accident severity 

/Leveson 86/. 

An initiating event (analogous to an erroneous transition /Lee 90/) is an event to which 

a subsequent hazard state could be attributed /MoD 91b/. An unsafe state is a state which 

could lead to a hazard, in the absence of corrective action by the safety controller and/or 

safety operator and in the absence of any subsequent initiating events. If a state is not 

an unsafe state then it is said to be safe. These definitions ensure if a system is in a safe 

state then it will not subsequently enter a hazard state unless an initiating event occurs. 

1.2. A Methodology for Requirements Analysis 

The methodology for the software requirements analysis for critical real-time systems 

presented here is based on establishing a clear separation of the mission and the safety 

requirements. The mission requirements focus on what the system is supposed to achieve 

in terms of function and timeliness requirements, and the safety requirements focus on 
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the elimination and control of hazards and on the limitation of damage in the case of an 

accident. The benefits of making this distinction, which is essentially logical rather than 

physical, during requirements analysis are: resolution of potential conflicts, detection of 

omissions and inconsistencies between the mission and safety issues, the ability to focus 

on the safety-critical issues, and simplification of safety certification. 

In the following we discuss a methodology, based on formal methods, which provides a 

systematic way in which the safety requirements for critical real -time systems can be 

analysed. The proposed methodology consists of a framework with distinct phases of 

analysis, a set of techniques appropriate for the issues to be analysed at each phase of 

the framework, a hierarchical structure of the specifications obtained from the process 

of analysis, and techniques to perform the quality assessment of the safety specifications. 

The phases of the framework correspond to the domains of analysis which follow directly 

from a general structure adopted for critical real-time systems. The intention is to 

define domains of analysis in which the analysis of requirements can be performed in 

terms of specific issues of the system, thus reducing the inherent complexity of the 

analysis. In the conceptual domain we specify the role that the system has in its 

environment, and identify those failure behaviours of the system that constitute 

accidents. In the plant domain we identify the state variables representing the physical 

state of the plant, the properties of the physical process, namely the physical laws, rules 

of operation, and hazards, together with the conditions over the physical process which 

prevent the system from entering into a hazard state. In the plant inteiface domain we 

identify the properties of sensors and actuators, such as their failure rates and the 

imperfections that are introduced while monitoring and controlling the variables of the 

plant. Finally, in the controller domain the properties of the controller are identified, such 

as the top level organization of the components of the controller and the failure rates of 

these components. 

An advantage in performing requirements analysis in different domains of analysis is 

that, depending on the issues to be analysed in each domain, an appropriate formalism 
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can be selected. By applying the appropriate formal method, we are able to emphasize 

specific characteristics of the domain in which the analysis is performed. An 

inconvenience of an approach based on more than one formalism is the need to find a 

common formal framework which can be used to link the different formalisms, a 

problem which does not exist when only a single formalism is adopted. However, such 

"single-minded" approaches, for instance durational calculuslRavn 93/, do not provide 

the required notational flexibility for the whole task of requirements analysis and, 

moreover, attempts to overcome this limitation necessarily increase the complexity of 

the single formalism. Clearly, there exists a tradeoff between these two approaches. In 

the single formalism approach, a formal verification is more easily obtained; on the other 

hand, in the multi - formalism approach we are able to perform requirements analysis 

in a more thorough manner. However, the number of approaches which make use of 

multi -formalisms, by combining the benefits that each individually can provide, is 

increasing /Barroca 92, Fidge 92, He 90, Morasca 89/; this could be taken as an indication 

that current limitations might soon be overcome. 

In this work, instead of proposing new formalisms we concentrate on identifying the 

features that a formalism should have in order to be applied in the requirements analysis 

of a specific domain. There were two reasons for taking this approach. First, there are 

already enough formalisms that could fulfil the set of features that are required in order 

to perform the analysis in each domain, and second, not very much is known concerning 

the application of formal methods in the requirement analysis of critical real-time 

systems. In other words, the usual practice has been to identify, for a given formalism, 

the features which justify its application to requirements analysis /Ravn 93, Scholefield 

92/, rather than the opposite approach of identifying the salient features that a formalism 

should possess to be suitable for requirements analysis. Within this thesis, the formalisms 

adopted for each of the domains of analysis, identified above, were selected solely to 

illustrate the fundamentals of our approach to requirements analysis. 
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Now we proceed to introduce, briefly, some of the features that formalisms should have 

for each of the domains of analysis. For the conceptual domain, we seek notations which 

allow the reasoning about and the representation of a very high level description of the 

preferred behaviour of the system within its enclosing environment. A formalism for this 

domain should support the representation of causal relationships between states of the 

system and environment. For the plant domain, we have to analyse systems which contain 

both continuous and discrete variables. Hence it is necessary during this phase to employ 

both differential equations and discrete mathematics. For this domain, a descriptive 

formalism that enables behaviour to be specified in terms of axioms over a model of the 

system is most appropriate. Such formalisms allow specifications to have a conjunctive 

nature, in the sense that new requirements can be added without the need to reconstruct 

the full specification. For the plant interface domain, we are concerned with modelling 

the properties of sensors and actuators. The specifications obtained from the plant 

domain are re-written in terms of the imperfections of sensors and actuators. For this 

analysis we need formalisms which have the same characteristics as the formalisms 

specified for the plant domain. For the controller domain, we have to analyse the high 

level architectural design of the controller, modelling the interactions between its 

components and the operations that must be performed by these components. To 

perform this analysis we need a formalism which explicitly embodies concurrency and 

non -determinism. 

The utilization of more than one formalism for requirements analysis has another 

drawback, apart from those already mentioned, which is the need to work with different 

notations. In order to handle this, we introduced the event/action model (E/A Model), 

which is based on primitive concepts such as events, states and actions, and which allows 

the discrete behaviour of systems to be described in terms of a set of variables 

representing the state of the system. The aim is to employ these primitive concepts as 

abstract notions when using different formalisms. To formally express the primitive 

concepts of the E/ A model and to facilitate the formal analysis, we employ the predicate 
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event/action notation (PEA notation). In this notation, the primitive functions are 

related to predicates over system variables. 

The specifications produced at each phase of the framework are located and organised 

by means of a specification hierarchy, which facilitates assessment of the quality of the 

requirements specifications and their traceability. Such an assessment should be 

performed by both qualitative and quantitative means in order to obtain high confidence 

(assurance) that the level of safety is acceptable. The qualitative approach to assurance 

is based on formal and informal analyses of the specifications, which are performed by 

applying verification and validation techniques, respectively. The quantitative approach 

to assurance either measures or estimates the probability that the system will enter in 

hazard state both due to the violation of assumptions made when constructing 

mathematical models of the plant, and as a consequence of the measured or predicted 

failure rate of sensors, actuators and controller components. 

A general characteristic of the methodology discussed in this thesis is the utilization of 

formal methods from as early a stage as possible during requirements analysis. We 

achieve this by formalising the properties of the physical process, namely the rules of 

operation, physical laws and hazards, and subsequently obtaining the other 

requirements specifications by successive formal refinements. By adopting this approach 

we aim to facilitate the qualitative assessment of the requirements specifications by 

minimizing the validation process (checking the correctness of a formal specification 

against an informal one), and maximizing the verification process (checking the 

correctness between two formal specifications); the latter process can (in principle) be 

performed mechanically with the help of proof checkers, such as HOL/Gordon 88/ and 

EHDM /Rushby 91/. The proposed utilization of formal methods differs from existing 

approaches in that the usual practice is to obtain first the informal specification of the 

complete system, and then formalise only that part of the specification which is related 

to the controller /Dauchy 91/. 
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1.3. Current Requirements Analysis Techniques 

In this section, we present an overview of some related work. 

The approach suggested in this thesis, of dividing the requirements analysis into domains 

of analysis, and using the appropriate notation for the different tasks and domains of 

analysis, has not previously been investigated. What has usually been presented is the 

utilization of a single formalism such as Invariants /Bishop 86/, Temporal Logic IGorski 

86/, Petri nets ILeveson 87/, and THL ISaeed 901. However, there are two approaches 

in the literature which use more than one formalism for requirements analysis 11ahanian 

88/, IOstroff 901. These papers are primarily concerned with the analysis of timeliness 

requirements; they do not seek to establish a methodology for the analysis of the whole 

set of safety requirements of critical real- time systems. 

In 11 ahanian 88/, the specification of the system is realized in terms of Real- Time Logic 

(RTL) and Modecharts; Modecharts produce a decision procedure for classes of 

properties expressed as RTL formulas. The system properties are verified using 

Computation Graphs, obtained from the Modecharts, to check if the corresponding RTL 

formulas comply with the Modecharts. 

In IOstroff 901 a methodology is presented for the specification and verification of 

real-time systems; this makes use of multiple formal methods, for different domains of 

analysis. A Timed Transition Model (TIM), with an extension to finite state machines, 

is used to model "plant-controller processes", whereas Real Time Temporal Logic 

(RTIL) is used for specifying properties over the trajectories of a TIM. A weakness of 

this approach is that a TIM specification of a system must be constructed before RTIL 

formulae can be stated; this causes difficulties in validation since the initial formalization 

step is large, and the ability to develop a descriptive specification is lost. 

The Formal Requirements Specification Techniques (FOREST) ICunningham 86, 

Goldsack 91/ were developed to support requirements engineering for real-time 

systems; the approach consists of a methodology called Structured Common Sense 
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(SCS), based upon a number of existing techniques such as CORE and JSD, and a formal 

method called Modal Action Logic (MAL), based upon a many-sorted first order logic. 

The FOREST approach is noteworthy since it placed emphasis on an overall 

methodology and allows modelling of the operational environment. 

In terms of analysis procedures for localizing faults in requirements specifications, a 

general correctness criteria which must be satisfied by process control systems was 

presented in /Jaffe 91/. However, the application of this set of criterion is more a 

technique to validate requirements specifications than a methodology to produce them, 

because issues such as how the specifications are obtained and what methods are 

employed are not addressed. The same observation could be applied to the work by 

Parnas & Madey /Parnas 91/, where a systematic way of producing documentation in the 

development of computer systems is discussed. Comparing with our approach, although 

both approaches adopt very similar domains of analysis in which requirements 

specifications are produced, the cited publications only discuss how the specifications 

should be represented for documentation purposes, and say little or nothing about the 

methods which should be employed to obtain the specifications. 

The ProCos project (Provably Correct Systems) has conducted research in the area of 

specifying and verifying system requirements /Ravn 93/. The aim of this work is to specify 

requirements and verify the system design using mathematical models. There is no 

treatment of the issues that arise during analysis of the requirements. Although the 

approach identifies domains of analysis, in terms of the physical process and controller, 

a single formal method, Durational Calculus, is employed. 

Instead of employing formal methods, tools based on rigorous approaches have been 

employed for the production of requirements specifications; STATEMATE /Hare! 90/ 

is such a tool. In STATEMATE, requirements specifications are produced from three 

perspectives: the functional view as data flow diagrams, the behavioural view as 

statecharts, and the structural view as module charts. One of the most powerful features 

of STATEMATE is its simulation capability. 

10 



1.4. Contribution of the Thesis 

In the following, we outline the main contributions of this thesis; references to work 

already published by the author are provided. 

The essential contribution of this thesis is the proposal of a methodology for the 

requirements analysis of critical real-time systems. For this methodology we introduced 

a framework in which the analysis is performed in domains with the aim of simplifying 

the analysis and thereby leading to more accurate specifications. These domains of 

analysis are associated with the components of the system, and for each domain, 

depending on the perspective being considered !Finkelstein 92/, we can perform 

different types of analysis. For each domain, depending on the issues to be analysed, we 

defined a set of features that a formal method should possess. The bases of the 

framework were introduced in /Saeed 91a/, and elaborated for use in the requirements 

analysis of a train set crossing case study Ide Lemos 92b/. The overall methodology, 

including a revised version of the framework, was presented in /Anderson 93/. 

Another contribution is related to the approach taken in performing the quality 

assessment ofthe requirements specifications. Essentially, the hierarchical way in which 

the specifications are structured, facilitates how the qualitative and the quantitative 

analysis are performed in an integrated manner /Saeed 92/. The former, by applying 

verification and validation techniques, and the latter, by measuring the probability of a 

hazard occurring due to the impact of violations of the assumptions and the failure rates 

of sensors and actuators. 

For temporal analysis, we introduced the event/action model (E/ A model) based on work 

by J ahanian & Mok /J ahanian 86/, with some additional features that make it applicable 

to requirements analysis; specifically, the model is now flexible enough to support both 

discrete and dense time structures, and can depict timing analysis graphically Ide Lemos 

92a/. In a further development, the role ofthe E/A model was extended by using its basic 

concepts (events, states and actions) to describe the behaviour of systems within the 
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different domains of analysis. In order to support this wider role of the E/A model, we 

also introduced the predicate event/action notation (PEA notation) which provides a 

compact notation and facilitates formal analysis of the system behaviour /Anderson 93/. 

In this thesis we present another version of the PEA notation which allows temporal 

analysis to be performed in both qualitative (ordering of events) and quantitative (time 

of event occurrence) terms. 

Two other contributions should be mentioned (although not directly related to the 

requirements methodology) because of the influence they had on the main research 

work. The first of these dealt with the issue of value inconsistencies resulting from time 

uncertainties in distributed real- time systems. The aim was to identify the influence that 

time inconsistencies within the system had on the value domain of a system variable, and 

to define the minimum conditions, depending on whether we are dealing with continuous 

or discrete variables, which should be imposed on the time domain in order to obtain 

consistency in the value domain Ide Lemos 91/. In the second contribution, we extended 

the framework for requirements analysis to the next stage in software development by 

performing the link between requirements and design of real-time software Ide Lemos 

92c/. In the approach, which was object-based, we employed Petri nets with Objects 

(PNO) /Sibertin 85/ for the controller analysis, and for design we employed an 

object-based notation that offers support for active objects /Shrivastava 91/. Also in this 

work we introduced an approach for the interface analysis, based on the specification of 

standard, exceptional and failure behaviours for the sensors and actuators; this served 

as a basis for the interface analysis which is presented in this thesis. 

Apart from the above, but less directly related to the subject of requirements analysis, 

is another contribution which relates to research work conducted in the area of 

distributed real-time systems Ide Lemos 90, Ezhilchelvan 90/. The problem addressed 

in these papers is that of how to maintain a consistent and timely knowledge of the group 

of non - faulty processors by those processors which are members of the group. 
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Compared with the solution initially proposed IKopetz 89/, our group membership 

algorithm was much simpler and could tolerate a greater number of processor failures. 

As can be seen from the bibliographical references made to other publications, part of 

the work discussed in this thesis arises from joint work with colleagues from the 

department of Computing Science. Work on distributed real-time systems (which was 

not elaborated in this thesis) was conducted jointly with Paul Ezhilchelvan. In the area 

of requirements analysis for critical real-time systems, the work has benefitted greatly 

from interaction with Arner Saeed, who was responsible for sowing the first seeds in this 

area of research in this department ISaeed 90b/, most notably by developing the 

formalism Timed History Logic (THL) which we have used extensively in this thesis. 

1.5. Outline of the Thesis 

The rest of the thesis is organized as follows. 

Chapter 2 introduces process control systems as the type of critical real-time systems 

with which we are concerned. As a general structure, we partition critical real- time 

systems into three distinct components: the operator, the controller and the physical 

process (or plant). This structure is further decomposed to reflect the decision to 

separate the mission and safety issues. The roles of each of these components are then 

described. 

In Chapter 3 we provide the basis from which the analysis of timeliness requirements is 

performed. Initially, we discuss how the flow of time can be modelled, by defining two 

types of time structures which will be used in the framework. Finally, we discuss the issue 

of value inconsistencies due to timing uncertainties in the context of distributed 

real-time systems design, and provide the conditions to be imposed on the time domain 

in order to obtain consistency in the value domain. 

In Chapter 4 we introduce the event/action model (EfA model) which describes the 

behaviour of systems at the various domains of analysis in terms of primitive concepts 
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such as events, actions and states, and the concept of a timeline. The utilization of these 

concepts provides considerable flexibility, enabling descriptions of system behaviour to 

be expressed ranging from the activities of the physical entities of the plant to the 

temporal ordering of the computational tasks of the controller. However, to formally 

express the primitive concepts of the E/ A model and to facilitate the formal analysis, we 

employ the PEA notation. The concepts of the E/A model are then formalised in terms 

of THL and PrT nets. 

Chapter 5 presents a framework for requirements analysis and a hierarchical structure 

for the safety specifications. The framework is presented in terms of phases of analysis 

which correspond to the domains of analysis which follow directly from the general 

structure adopted for critical real- time systems. For each phase of the framework we 

discuss the appropriate formalism to be employed, the time structure which should be 

used, and what the E/A model should represent. 

Chapter 6 discusses how the quality of the safety specifications can be assessed 

qualitatively and quantitatively in order to obtain high confidence (assurance) that the 

level of risk is acceptable. The qualitative approach to assurance is based on formal and 

informal analysis ofthe specifications, whereas the quantitative approach is based on an 

evaluation of the probability that the system will enter a hazard state (because of faulty 

assumptions about the behaviour of the physical process, or failures of the components 

of the interface and controller). 

In order to exemplify our methodology for the requirements analysis of critical 

real-time systems, in Chapter 7 we discuss a case study based on a train set crossing, 

which raises safety issues that are similar to those found at the traditional level crossing 

(i.e. rail-road). 

Finally, in Chapter 8 we summarise the main issues presented in this thesis, and suggest 

directions for future investigation. 
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2.1. Introduction 

Chapter 2 

General Structure of 
Critical Real-Time Systems 

The adoption of a general structure for a critical real-time system will be a useful guide 

for their requirements analysis, since it establishes the domains in which different 

methods and techniques for the analysis can be applied. In this chapter we present such 

a general structure, identifying the basic components of the system and describing their 

respective role within the system. The type of systems under consideration are process 

control systems, also known as embedded systems !Leveson 91b, Ostroff 87/. A process 

control system has been defined as an arrangement of components interconnected in 

such a way as to maintain, or to affect in a prescribed manner, some physical quantity or 

condition of the process !Lowe 71/. 

The restrictive view that we have taken in considering only process control systems, 

instead of adopting a more general approach which could also include information 

processing systems /Shrivastava 90/, has two essential motivations: the first is to exploit 

existing dissimilarities between the structures of process control and information 

processing systems in terms of the role (or behaviour) that the components of these 

structures might have in the respective systems, and the second is that we would like to 

use the knowledge already available, and which has been successfully applied, in 

developing process control systems /Astrom 85, Parnas 91/. 

The contents of this chapter are organized as follows. In the next section we present a 

short historical evolution of the application of computers in process control systems. 

Section 3 describes the basic components of a critical real-time system. In section 4 we 

justify the roles of the mission and safety components. Finally, we present some 

concluding remarks on the issues presented in this chapter. 
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2.2. Evolution of Critical Real-Time Systems 

In this section we present a historical overview of the utilization of computers in process 

control systems. The aim is to present the application domain that we are concerned 

with, and to confirm that computers have been applied for some time in process control 

systems. The major difference between the earlier applications and those only now 

emerging, which we label in this thesis as "critical", is the higher risk of occurrence of an 

accident associated with the latter. 

The so-called real-time computing systems which initially appeared were utilised in 

large commercial applications, usually transaction - based, such as airline booking 

systems, bank automation and information systems for stock trading. These systems were 

based on large centralized computer configurations where the software had a relatively 

minor role, resulting in very complex systems with low reliability /Stankovic 89/. The 

essential feature of these systems was the delivery of the required service within a 

predictable and acceptable interval of time. However, issues like reliability, high 

performance and functionality were limited or impossible to achieve because of the lack 

of development methods and design disciplines. The consequences of a system failure 

were never catastrophic because non-computer based systems were invariably 

available as back-ups. 

Apart from transaction - based systems, another application area from which real-time 

systems also emerged was that of process control systems: the automation of applications 

such as petro-chemical plants, electrical power generation and distribution, pulp and 

paper industries, manufacturing systems, mining, and aircraft systems. The utilization of 

computers in these applications started in the mid fifties with the development of a 

digital computer for a military aeroplane, firstly, for supervisory control, and later for 

automatic flight and weapon control. 

Computer systems in commercial applications of process control were introduced more 

as a result of pressure from the computer industries in order to expand their markets 
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rather than due to any initiative from the process and manufacturing industries; the first 

commercial control computer was installed, in 1959, in a oil refinery at Texas, by TRW 

(the aerospace company that lost the contract for the military aeroplane mentioned 

above) /Williams 84/. In addition to monitoring the plant, the digital computer was also 

responsible for the closed - loop control of some of the plant's functions. The computers 

used in this period, called the pioneering period /Astrom 85/, were very large, slow and 

unreliable. Because the computers were so unreliable, they had to be used in supervisory 

control only, while conventional analog controllers were used for the primary control 

functions. One of the aims of this period was to gain acceptance of the new techniques 

by the plant's personnel. 

The next period, the centralized period, was characterized by the replacement of analog 

instrumentation, so that the computer could directly access the plant - direct digital 

control (DDC). The installation of the first DDC systems was achieved, independently, 

in the year 1962 by ICI at a soda ash plant in England, and the Monsanto company at an 

ethylane plant in Texas /Williams 84/. The results obtained from early DDC installations 

generated a great deal of interest which gave a major impetus to the development and 

further utilization of the minicomputer in the field of computerized process control. 

Many of the drawbacks of the computer systems used in DDC, in terms of reliability and 

processing time, were due to limitations of the available technology at that time. The 

standard solution was the design of much larger and faster computer systems, with the 

high costs of these systems justified by the incorporation of all computer functions, both 

supervisory and DDC, in one centrally located computer. This period was characterized 

by two features: first, the vast communication system, needed to bring signals from the 

plant to the centralized computer and to return control signals back to the plant, was very 

expensive and prone to electrical noise problems which were a major cause of 

unreliability; second, depending on the level of criticality of the application, there was 

the need to have a complete analog system, redundant to the DDC, in order to improve 

the reliability of the overall system. 
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The evolution of computerized process control and the corresponding increase in the 

number of applications was made possible by progress in understanding physical 

processes, and by advances in computer and control technology. The third period, the 

microcomputer and distributed control period, was characterized by the introduction of 

microprocessors and local area networks. The advent of the microprocessor meant that 

computers were smaller and relatively inexpensive, influencing drastically, in terms of 

size, performance and cost, the control equipment, and enabling the same system to 

embody both control (DDC) and logic (PLC) functions. (PLC stands for "programmable 

logic controller": special purpose computers which execute the logic and sequence 

control functions, originally performed by separate relay systems.) Local area networks 

were first introduced to provide high speed data links enabling data to be exchanged 

between the many small and distributed computers, each one controlling just one or a 

few loops of the physical process. The development of distributed control resulted in 

architectures incorporating hierarchical control systems with different levels of control: 

the upper system levels depending on the lower levels for the physical process data, and 

the lower system levels in turn depending on the higher levels for more sophisticated 

control functions. This type of configuration, which is physically dispersed but logically 

central, has been used in most process control applications, particularly manufacturing 

systems /Chintamaneni 88/. 

Recent years have seen increasing deployment of computers in process control 

applications considered safety-critical, where the consequences of failure may entail 

danger to human life, property, and the environment. Examples of such applications 

include control of commercial aircraft /Rouquet 86, Traverse 89/, air traffic control 

systems /Avizienis 87/, emergency shut down systems for nuclear reactors /Sayet 90/, 

railway signalling systems /Hachiga 92/, and medical systems ILeveson 93/. 

2.3. Structure of the System 

A system is any identifiable mechanism which maintains a pattern of behaviour at an 

interface between the mechanism and its environment, where an interface is a place of 
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interaction between two systems /Lee 90/. Hence the environment of a system is another 

system tha tin teracts at an interface with the given system. From the structural viewpoint, 

a system is a set of components bound together in order to interact. Recursively, a 

component of a system is another system /Laprie 89/. 

For applications referred to as process control systems, the primary focus of this thesis, 

a commonly accepted structure is to partition the system into three distinct components: 

the operator, the controller, and the physical process (or plant) !Kopetz 89, Saeed 91/. The 

system has an environment, which is that part of the rest of the world which may affect, 

or be affected by, the system. Within this structure the controller, for example, might be 

a computer based system which has a distributed architecture. 

Within this structure for critical real-time systems, as shown in figure 2.1, we identify 

two interfaces: the interface between the operator and the controller, and the interface 

between the plant and the controller. The former is the place of interaction between the 

operator and the controller, and the latter is the place of interaction between the plant 

and the controller. This structure can be considered a simplified version because the 

subsystems within the controller which are dedicated to providing support for operations 

at the controller interfaces have not (yet) been separately identified. Refining the 

structure of the controller we identify three distinct components: the operator inteiface, 

the plant inteiface and the controlling system (in the sequel, we sometimes reuse the term 

"controller" instead of "controlling system"). The plant interface contains those 

components of the controller that supports the interface between the controlling system 

and the plant, namely sensors and actuators, and the operator interface contains those 

components of the controlling system that supports the interface between the controlling 

system and the operator, such as consoles and dials. Another simplification introduced 

in this model, is the absence of an interface between the operator and the physical 

process. It might be the case that the operator has to have direct control over some 

variables of the physical process which the controller might not have any influence. We 

have adopted this simplification because of the current tendency in computer based 

19 



process control systems of forcing all the interactions between the operator and the plant 

to pass through the controlling system ffraverse 89/. This allows to check whether the 

attitudes of the operator do not violate any pre-established operational envelop; a 

reason for this measure is to avoid possible human errors in the control of the system. 

I Operator 

~ 

, 

I Controller 

,~ 

, 

~ Physical Process or Plant 

System 

Environment 

Figure 2.1. General structure for critical real-time system. 

The interaction between the operator, controller and plant can be described as follows. 

The controller receives data from the physical process, through the sensors, and 

setpoints fixed by the operator - the latter are inputs, such as parameters and conditions, 

which establish how the system should operate. This data is processed by the controller, 

and the results are output, through the actuators, to the physical process. The outputs of 

the controller could influence the behaviour of the physical process in such a way that 

changes can be observed by the controller through the sensors - thus closing the loop. 

For correct behaviour from a critical real- time system, it is extremely important to avoid 

inconsistencies between the states of these three components. The states of the 

components are: the "real" state of the physical process, the state of the model (adopted 
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in the controller) which represents the physical process, and finally, the state of the 

physical process as perceived by the operator (in another model) via the information 

produced by the controller. 

Now we proceed to describe each of these three main components of a critical real-time 

system, together with the plant interface (the operator interface is outside the scope of 

the present work). 

2.3.1. Physical Process or Plant 

The physical process or plant is the component within the general structure whose 

behaviour is to be either monitored or controlled. The wide range of relevant physical 

processes can be classified according to the dynamics that their physical variables 

present, which can be either continuous or discrete. Continuous or analog variables are 

those variables whose changes in the value domain are always continuous, such as 

temperature, velocity and pressure. For these variables, from a known state it is possible 

to predict other future states (values) of the variable. Discrete van·ables are those 

variables whose changes in the value domain are in terms of discontinuities, such as the 

position of a switch. For these variables, knowing the current state, it does not help in 

predicting subsequent states of the variable. 

Systems whose variables are continuous are known as continuous variable dynamic 

systems (CVDS) and systems whose variables are discrete are known as discrete event 

dynamic systems (DEDS) /Ostroff 86, Ho 89/. However, it is worth noting that there is 

a third category of physical processes, which includes combinations of these two types 

of systems, in various forms. Such systems, containing both continuous and discrete 

variables, are known as hybrid systems /Maler 92, Nerode 93/. When analysing a system, 

it is important to identify which parts are CVDS and DEDS because of the different 

techniques that have to be employed in their development. In the following, we present 

some of the features that distinguish the two type of systems. 
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2.3.1.1. Continuous Variable Dynamic Systems 

The behaviour of continuous variable dynamic systems (CVDS) can be described by 

ordinary and partial differential equations which express the physical laws, that is the 

essential dynamic features of the physical process. These systems can tolerate brief state 

inconsistencies (of limited magnitude) between the actual state of the physical process 

and the state of the model by which the controller represents the physical process. After 

resuming from some disruption which has generated an inconsistency of states, the 

system is able to recover to a consistent state because the controller can determine an 

estimate ofthe state ofthe physical process while the system was disrupted. On the other 

hand, if the system suffers a long duration disruption then the states of the controller and 

the physical process might become inconsistent, impairing a timely and useful recovery 

of the state of the controller. The following example illustrates how CVDS deal with state 

inconsistencies. If the controller of a train misses a reading of the speed of the train, the 

controller can either simply continue to use the previous reading of the speed or estimate 

a new value based on a sequence of past readings - this is possible because the train's 

speed is a continuous variable and thus its behaviour can be predicted within known 

margins of confidence. In this example, the safety of the train should not be affected so 

long as the model ofthe physical process and confidence margins are properly employed. 

However, the safety of the system could be affected if the controller fails to obtain 

updated readings for sequence of values of the speed, since the state of the controller 

might start to diverge substantially (become inconsistent) from the actual state of the 

physical process. Other examples of CVDS systems are chemical plants /Wilkie 90/ and 

commercial aeroplanes !Traverse 89/. 

2.3.1.2. Discrete Event Dynamic Systems 

The behaviour of discrete event dynamic systems (DEDS) can be modelled by automata 

ILeveson 88/ or discrete mathematics /lahanian 86/. Since DEDS are invariably 

man -made systems, there are no physical laws which constrain the system configuration 

other than natural limits of material and ergonomics, which are the rules of operation. 
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These systems do not necessarily tolerate momentary state inconsistencies between the 

actual state of the physical process and the state maintained by the controller. The system 

cannot then recover to a consistent state after a disruption because the controller is not 

able to estimate any state changes that might have occurred in the physical process while 

the system was disrupted. However, long disruptions in the system can sometimes be 

tolerated, mainly when the system remains in a state which is considered to be safe. The 

following example illustrates how DEDS deal with state inconsistencies. If the controller 

of a train misses the reading of a track-side signal, the controller will not be able to 

maintain its representation of the physical process to be consistent with reality. In this 

situation the safety of the train could be severely affected. But if the state inconsistency 

can be detected (or anticipated), the usual practice is to disrupt the operation of the 

system completely by forcing the system into a safe state (e.g. stop the train), in order to 

avoid the system getting into some arbitrary but undesirable state whose consequences 

might be catastrophic. Other examples of such systems are manufacturing systems 

/Cassidy 85/, rail and road crossings Ide Lemos 92/, and high -voltage power substations 

/CIGRE 83/. 

2.3.2. Controller 

The controller is designed to generate appropriate signals which make the plant behave 

in the desired manner by ordering the operations in the plant and regulating the values 

of the physical variables. If the controller is computer based we do not make any 

restriction as to whether the architecture is centralized or distributed. The 

implementation of the controller can either be analog or digital. Typical examples of 

controller sub - components are proportional- integral- derivative controllers to 

implement the control algorithms, and programmable logic controllers to implement the 

sequencing of events. 

The control algorithms to be implemented by the controller can use feedback and/or 

feedforward techniques. Feedback techniques cause the outputs of the plant to follow 

a desired path accurately, in spite of external disturbances or internal parameter 
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changes, by monitoring the plant variables to be controlled and applying the required 

adjustments. On the other hand, feedforward techniques measure and estimate the 

external disturbances (inputs that do not participate in feedback control) and try to 

predict their effect on the plant. Corrective actions are taken by adjusting the control 

signals generated by the controller. In feedback control, unknown "outputs" are 

measured and compared with known (desired) inputs to generate control signals. In 

feedforward control, unknown "inputs" are measured and that information, along with 

the desired inputs, is used to generate control signals that can reduce errors due to these 

unknown inputs or variations in them Ide Silva 89/. 

The activity of modern controllers is not limited to maintaining and regulating the 

variables in a plant, but also includes supervision and planning by means of scheduling 

the operations in the plant /J affe 91/. 

2.3.3. Operator 

The operator is responsible for any human actions to be applied on the physical process 

or controller. These actions include the initialisation of parameters, plant operation and 

maintenance. Within the adopted general structure we consider only those activities 

concerned with the normal operation of the system, ignoring maintenance issues, and 

furthermore, we assume that the greater the role of computing systems in all levels of 

control, the less is the influence that operators can have on the physical process; this 

tendency is confirmed by the latest developments in airborne systems IRouquet 86/. 

Thus, in our structure the operator only has direct access to the controller in order to set 

its initial parameters, and to operate the physical process. 

Although the details of the interaction between the operator and the controller are 

dependent on the type of application under consideration, two general features can be 

outlined. The first of these concerns the asynchronous nature of the interactions between 

the two components, and the second concerns the long time duration between successive 

activities from the operator on the controller, in relation to the number of activities 
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performed by the controller over this period. This latter feature derives from the fact that 

in automatic critical real-time systems the influence of the operator is minimal; the 

operator only interferes when the behaviour of the physical process starts to deviate from 

the required behaviour. Examples of such applications, which seldom require the 

interference of an human operator, are (usually) physically large plants, such as 

manufacturing production lines, petrochemical plants and nuclear power plants. In these 

applications the operator activities are normally restricted to handling emergency 

situations, and the initial and final steps in the operation of these physical processes. 

2.3.4. Plant Interface 

The plant interface is made up of sensors and actuators Ide Silva 89/. Refining the 

controller of figure 2.1, in order to incorporate explicitly the plant interface, we obtain 

the schematic layout of figure 2.2. Sensors are devices used to monitor the behaviour of 
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I 
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~ Physical Process or Plant 
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Figure 2.2. Structure of the plant interface. 

the plant: strain gauges, thermocouples, thermistors, and tachometers are examples of 

sensors. Actuators are devices that can influence the behaviour of the plant: solenoids, 

valves, relays, and DC motors are examples of actuators. 
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The selection of sensors and actuators to be deployed in the plant interface depends on 

which variables of the plant it is important to control. Moreover, the selection must also 

consider which variables can physically be measured and which variables can be 

controlled, respectively, for sensors and actuators. Other factors that can influence the 

choice of sensors and actuators are !Franklin 86/: technology, functional performance, 

quality factors and cost. 

2.4. System Variables 

In the general structure of a critical real- time system, for each level of abstraction a 

state space, in terms of state variables, is defined. At the level of abstraction of the plant, 

the state variables represent the physical state of the plant; at the level of abstraction of 

the plant interface, the state space of the plant is reduced to those state variables which 

are monitored and controlled by the sensors and actuators; at the level of abstraction of 

the controller, the state variables represent the state that the model of the controller has 

of the physical process; at the level of abstraction of the operator, the state variables 

represent the physical state of the operator; at the level of abstraction of the operator 

interface, the state variables represent the state of the components of the operator 

interface. 

From the system structure shown in figure 2.2, we define the following variables. The set 

of variables of the system - system variables (V), consists of the variables of the physical 

process - physical variables (Vp), the variables of the plant interface - plant interface 

variables (VPJ), the variables of the controller - controller variables (Ve), and the 

variables of the operator - operator variables (Va). In the following, we will not 

considered the operator as a component of the system, and thus we are only concerned 

with the physical variables, the plant interface variables and the controller variables 

(Vp U VPJ U Ve !: V). 

The variables of the physical process can be partitioned into the set of monitored variables 

(VPM ) and the set of controlled variables (Vpc). The monitored variables are those 
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physical variables whose values are measured by the controller, and the controlled 

variables are those physical variables whose values the controller intends to modify. 

Some physical variables can be both monitored and controlled. The variables which are 

neither monitored nor controlled, i.e. those which are irrelevant for the controller are , 

not considered in this model. The union of the monitored and controlled variables is a 

subset of the physical variables (VPM U Vpc ~ Vp). 

The variables ofthe controller can be partitioned into the set of input variables (VCI) and 

the set of output variables (Vco). The input variables are those controller variables which 

correspond to the monitored variables, and the output variables are those controller 

variables which correspond to the controlled variables. The variables which are neither 

input nor output, i.e. those which are not related to the model that the controller has of 

the physical process, are not considered in this model. The union of the input and output 

variables is a subset of the controller variables (VCI U Vco ~ Vc)· 

The variables of the plant interface are a subset of the plant and controller variables. For 

instance, not all the variables of the physical process are read by the sensors of the plant 

interface; it might be the case that it is unfeasible to build a sensor which measures the 

value of a particular physical variable. 

Each variable (Vi) of the set of system variables (V= {VI, v2, v3, ... }) can be represented 

as a function which maps the timeline (1) into the range of values of the variable (RVv), 

thus we have vdt): T ---+ RVv;" This range, or set, of values is the collection of values that 

a system variable can assume, and it is partitioned into two subsets, the anticipated values 

(RV~) and the unanticipated values (RV~): RVVi= RV~i U RV~;" The anticipated values of 

a variable are those values which are expected to occur, and the unanticipated ones are 

the rest. The concept of unanticipated values is similar to that of noncode value errors 

presented and discussed in !powell 92/. 

27 



GE 
liNG 

IN 
I IN L 



be satisfied at run-time by preventing the mission controller from issuing any control 

commands to the safety controller; it is then up to the safety controller to monitor the 

operating conditions of the mission controller and, on the basis of its own observations , 

to issue the appropriate control commands to the mission controller. Thus, the mission 

controller can influence the safety controller only via the observations made by the safety 

controller (either over the state of the physical process or mission controller). The safety 

controller must assume sole control of the system, that is, it must override the mission 

controller, whenever the system enters into an unsafe state. Also, the safety controller 

endeavours to prevent the occurrence of hazardous states, and, in the worst case, if an 

accident becomes inevitable, must minimize the amount of damage that will be caused 

to the system and the environment. On the other hand, the role of the safety operator 

is to set up the safety limits of the safety controller and the plant, and to interfere in the 

operation of the plant whenever it enters into an unsafe state which the safety controller 

was not able to handle. 

With reference to figure 2.3, it would be preferable to have two totally independent 

controllers, with separate sensors and actuators at the plant interface, to avoid the risk 

of any common failures of both the mission and the safety controller. Two fully 

independent subsystems can be utilized in those situations, for example, where such a 

separation is already enforced at the physical process level/Sayet 90/. Unfortunately, for 

some applications this ideal structure is difficult to obtain due to limitations found in the 

physical process, or restrictions imposed by the design of the system. Figure 2.3 depicts 

this latter situation where the safety controller makes (possibly restricted) use of the 

sensors and actuators of the mission controller. 

2.6. Concluding Remarks 

In this chapter we have introduced process control systems as the type of critical 

real-time systems that we are concerned with. The approach proposed in this thesis for 

conducting requirements analysis of critical real-time systems is based on the structure 

of a system in order to identify the levels of abstraction, or domains of analysis, in which 
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the analysis is to be conducted. From the structure of a system, and the relations between 

the components of the system, we define the domains of analysis and the sequential order 

of the domains in which the analysis is to be conducted. In the study presented in this 

chapter, we have identified, for an initial level of abstraction in which a system should 

be analysed, the plant, operator and controller, as being the main components of a 

critical real-time system from which the requirements analysis should be conducted. 

The issues related to the requirements analysis will be discussed in more detail in 

Chapter 5. Within the scope of this thesis, we restrict the overall analysis of the system 

to the specification of the safety controller, taking into consideration the restrictions 

imposed by the activities to be performed by the operator, the physical laws and/or rules 

of operation of the physical process, and the particular characteristics of the 

environment of the system. 
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3.1. Introduction 

Chapter 3 

Time Domain in 
Critical Real-Time Systems 

The service delivered by a system can be defined in terms of the value or information 

content of the service, and the time or instant of delivery of the service !Powell 92/. 

Moreover, the service can be described with respect to a set of system variables which 

are defined in terms of a value domain and a time domain. In order to model the "flow 

of time" in a time domain, we define a time structure which is based on temporal entities 

connected by relations. As temporal entities, we can consider points (instants, moments 

that imply no duration), periods (stretches of time that imply duration) and events 

(composite entities, usually associated with linguistic constructs, which describe an 

activity)1, and for each of these entities we associate different relations, such as identity 

and precedence, in order to define a time structure Ivan Benthem 901. (Periods as 

temporal entities should not be confused with intervals, the former implies duration 

however there are no defined boundaries, i.e. points (they are obtained by maximal nests 

of periods !Whitehead 291), while the latter is referred as a time stretch between two time 

points.) The choice of which temporal entity should be regarded as most suitable as the 

basis for a time structure is a controversial issue IAllen 84, Newton-Smith 81, van 

Benthem 901. A representative of a time structure based on points as temporal entities 

is the "physical time" which is the time as employed by physicists to represent their 

theories. The "physical time" is considered to be isomorphic to the Euclidean line, in the 

sense that the points in time have the same order, as well as the same topological and 

metrical properties as the points on straight line. Time structures which make use of 

1. This is a very broad definition, which is used, in the context of this thesis, to present the different 
temporal entities which represent the passage of time; in the next chapter, 'events' will be redefined 
as temporal entities of no duration. 
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periods as temporal entities have been used in knowledge representation of temporal 

information /Allen 83/. Finally, the usage of events as temporal entities is more rare to 

represent the passage of time, perhaps due to their compositional nature, i.e. events are 

spatio-temporal entities whose logical analysis cannot remain purely temporal /van 

Benthem 90/. 

In order to show the necessity of completely specifying (during requirements analysis) 

the time domain of system variables, we also present in this chapter a study relating the 

consequences that uncertainties in the time domain of a system variable can have on its 

value domain. This study of the analysis and synthesis of time uncertainties is presented 

in the context of distributed real-time systems. 

The contents of this chapter are organized as follows. In the next section we present a 

general model of time which will serve as a basis for the analysis of timeliness 

requirements. In section 3, we present a study of the consequences that uncertainties in 

the time domain can have on the value domain of system variables. Finally, the last 

section briefly reviews this chapter. 

3.2. General Model of Time 

Two classes of temporal relationships are distinguished for real-time systems, m 

accordance with the causal relationships between events IKoymans 88/: 

qualitative temporal relationships are only concerned with the ordering of even ts 

in time, which means that there is no explicit time reference for the occurrence 

of an event; 

quantitative temporal relationships, referred to in this thesis as timing 

constraints, are concerned with event occurrences where explicitly time appears 

as a parameter. 

Timing constraints can be further subdivided into timeliness requirements and 

peiformance requirements. Timeliness requirements are intervals of time which dictate 
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the response time of the system to stimuli (either physical or logical). Performance 

requirements are the amount of processing that a system performs within an interval of 

time. (In this work we are only concerned with timeliness requirements.) A timeliness 

requirement concerning a sequence of events can be specified in one of the following 

forms: 

an absolute time representation, associated with one of the events in the 

sequence; 

a relative time representation, stipulating a limit on the elapsed time between the 

occurrence of two events in the sequence. 

For our general model of time we assume that time (in an abstract sense) is a single and 

absolute phenomenon, and that Newtonian time (rather than of relativistic time) is 

sufficient to model the flow of time in the type of systems with which we are concerned. 

For the formal definition of time we adopt the concept of point structures, instead of 

period structures, since they are more widespread in their usage and more convenient, 

in mathematical terms, for modelling the physics of the real-world. Supplementing 

from the definition of time structures for the general model of time, we also define the 

concept of an interval in terms of a time structure, and a containment relation between 

time structures. 

3.2.1. Time Structures 

In this section, two traditional time structures are defined in terms of time points ordered 

by a relation of precedence ( <, less than). This relation generates a temporal ordering 

of the type "earlier than" or "before" between time points of the structure Ivan Benthem 

901. 

Apoint strncture ry is an ordered couple (T, <) of a non -empty set T of time points with 

a binary relation < on T 
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In order to define a time structure, the following conditions should be imposed on the 

point structure defined above. The transitivity condition stipulates the formal aspect of 

the flow of time, and irreflexivity stipulates the absence of stops in the modelling of the 

flow of time. 

Transitivity 

For any three time points t1, t2, t3 in T, if t1 precedes t2 and t2 precedes t3 then t1 precedes 

t3· 

Irreflexivity 

A time point in T cannot precede itself. 

'<It ET: .,(t<t). 

A point structure satisfying the transitivity and irreflexivity conditions is a strict partial 

order. However, if time has to flow in a single stream instead of multiple (or branching) 

streams, then a linearity condition should also be imposed on the point structure. 

Linearity 

For any two time points in T, either one precedes the other or they are the same point. 

A point structure satisfying the transitivity, irreflexivity and linearity conditions is a strict 

total order (or irreflexive total order IGoswami 921). Thus the set of time points T can 

be referred to as a timeline, an abstract concept which captures the passage (or flow) of 

time. The next condition stipulates that there is a continual succession of time points 

towards the past and the future of a timeline. 

Succession 

For any time point, there is always a point that precedes it and another that succeeds it. 
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W1 E T: 3t2 E T: t1 < t2, 

W1 E T: 3t2 E T: t2 < t1. 

Rather than defining an endless succession of points, we could alternatively define a 

begin and an end of a timeline. 

3t1 E T: .,3t2 E T: t2 < t1, 

3t1 E T: .,3t2 E T: t1 < t2. 

The next step is to establish how dense are the points on the timeline. There are two 

alternatives, either to adopt "infinite divisibility" in which case the timeline is dense, or 

adopt "step-wise succession" in which case the timeline is discrete. These two 

conditions are defined as follows. 

Denseness 

Between any two time points there is an intermediate time point. 

Discreteness 

Every time point has an adjacent timepoint; between two adjacent time points no 

intermediate time point exists. 

W1, t2 E T: (t1 <t2 ~ 3t3 E T:( t1 <t3 /\ .,3t4 E T: t1 < t4 < t3)) !\ 

W1, t2 E T: ( t1 <t2 ~ 3t3 E T:( t3 <t2 /\ .,3t4 E T: t3 < t4 < t2))· 

From the conditions, defined above, imposed on a point structure, we are able to identify 

two types of time structure, namely, discrete and dense. However, before that we 

introduce the concept of a time strncture as being a tuple c:r = (~, + ), where ~ is a point 

structure, and + the addition operation on T 

A dense time strncture is defined as a tuple c:r DE= (~, +), which satisfies the conditions 

of transitivity, irrefle.xivity, linearity, succession, and denseness. Either the Real numbers 

35 



(R) or the Rational numbers (Q) can be used to model dense time structures. Time 

structures that are isomorphic to the reals are known as continuous time structures. 

A discrete time structure is defined as a tuple cr m= (<3', +), which satisfies the conditions 

of transitivity, irreflexivity, linearity, succession, and discreteness. In order to establish the 

notion of distance between two adjacent points of a timeline, we introduce the concept 

of a time grid which is a set of equidistant points on the timeline; each point on the time 

grid is referred as a tick, and the distance between any two adjacent points is the 

granulm1ty (~) of the time grid. For discrete time structures the granularity is greater than 

zero (~ > 0) and allows to quantify the discreteness of the time grid. The ~-distance 

is another condition that can be added to the definition of a discrete timeline to denote 

the distance that separates two adjacent time points. 

~ -distance 

There exists a time point t3 that lies between two other time points t1, t2 in T, if and only 

if t1 precedes t2 by more than ~. 

Instead of a tuple, we can define a discrete time structure as a triple c:r m= (<3',~, +), with 

~>O, and satisfying the same conditions as before. A discrete time structure becomes 

isomorphic to the integers (I) when ~= 1. A discrete time structure may be realized by 

a physical clock, to which we associate exactly one time grid. We assume the existence 

of an abstract (and hypothetical) reference clock which has a sufficiently fine granularity 

to enable the measurement (in principle) of the duration between ticks of any other 

clock. 

3.2.2. Relationships Between Time Structures 

The relationship between time structures is captured through the containment relation. 

This condition is important when passing information between time structures in order 

to assess the amount of information that might be lost. 
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A time structure <T 2 contains another time structure <T 1 (denoted by <T 2 con <T 1) iff T(<T 1), 

the set of time points of <T 1, is a subset of T(<T 2), the set of time points of <T 2. 

This relation of containment is only applied to discrete time structures since dense time 

structures are already at the finest granularity, which implies that the set of time points 

of any other time structure must be (isomorphic to) a subset of the time points of a dense 

time structure. 

3.2.3. Time Intervals 

An interval implies duration and refers to what lies between two time points, and is 

defined as a subset of the point set Tof a time structure. We define two sorts of intervals. 

A convex interval (lnt) is a subset of T that represents an uninterrupted stretch of time. 

A non -COllVex interval (Nlnt) is a union of disjoint convex intervals. 

From now on, the terms convex interval and interval are interchangeable. 

3.3. Uncertainties in the Time Domain 

In this section, we present a study, in the context of distributed real- time systems, which 

relates inconsistencies in the value domain with the time uncertainties that exist within 

the components of a system or between the system and its environment. (In the following, 

the use of the term "system" will refer to "control system" of the system structure, 

previously presented.) After performing the analysis, in order to identify the causes of 

the value inconsistencies, we present the conditions which should be imposed on the 

system in order to avoid these inconsistencies. 
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A characteristic of a real-time system is that the service to be delivered by the system 

must satisfy requirements in both the value and time domains if the system is not to be 

judged as having failed. This implies that a real-time system must operate properly 

despite the presence of possible uncertainties in both these domains. Uncertainties in 

the value domain do not present any new problems; for example, it is common practice 

to account for the imperfections of an instrument (or measuring device) through 

standard performance parameters. However, uncertainties in the time domain do 

present a new set offundamental problems in distributed real-time systems, due to the 

time uncertainties that exist between the timelines of the system and the environment 

and, within the system, between the timelines of its components /Kopetz 90/. The source 

of these latter time uncertainties is the clock synchronization imperfections that exist 

between the various system components. For example, when two system components 

attempt to measure the same physical variable at a specific time, they may in fact (as a 

result of these time uncertainties) measure the variable at two different times, leading 

to value discrepancies. 

The rest of this section discusses the conditions under which two values (which can be 

either a real world value and a system value, or two system values) representing the same 

physical variable are considered to be mutually consistent, given that the time instants 

at which these values can be obtained lie within a known bound. In /Kopetz 90/ a 

condition for mutual consistency was discussed in terms of the maximum rate of change 

of the value domain. Here, we extend that work to include a condition in terms of the 

time domain which is sufficient to guarantee consistency between the two values. 

The analysis performed is restricted to the case of value uncertainties which arise when 

components of a system read the value of a physical variable from the system 

environment; however, the analysis can easily be adapted to the case where the system 

components output control signals to the environment. 
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3.3.1. System Model 

As a model of time, we assume a discrete time structure, as already defined. With each 

component in the distributed real-time system we associate a local clock which has its 

own time grid. All of these local clocks are assumed to be synchronised by implementing 

a synchronised time grid /Kopetz 87/, which permits us to interpret all system -wide 

timestamps. This ensures that the timestamps of any two nodes, related to the occurrence 

of the same event, are at most one tick apart on the synchronised time grid, implying that 

the order in time of any two events can be deduced consistently at all nodes if the events 

occur at least two ticks apart. We assume the existence of a reference clock which enables 

us to quantify the duration between ticks of any other clock. 

Within a distributed real-time system we consider two components, Ca and Cb, 

interconnected by a communication network, as shown in figure 3.1. (Only two 

components are necessary for the pairwise analysis of uncertainties presented here.) 

These two components are part of the system/environment interface. They represent 

sensors which measure the same physical variable, and exchange these measured values 

with each other. 

The following notation will be used to model uncertainties in both value and time 

domains, which may exist in any measurement: 

System Environment 

Vet) 

Figure 3.1. Model of the system. 
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x - represents the subscript of a system component, x E {a, b}; 

t, £X - timelines of the environment and ex respectively; 

t(i), £X (i) - the ith tick on the timelines of the environment and Cx 

respectively; 

r(t(i)), r(£x(i)) - the ith tick on the timelines of the environment and Cx 

respectively, as timed by the reference clock; 

Vet) - the function that describes the behaviour of variable V of the 

environment; 

Vx(tx) - functions that describes the behaviour of variable Vas measured by 

Cx; 

c - represents the error factor in the measurements which is either 

systematic or random, c E {s, r}; 

r - represents uncertainty in the time domain; 

rt - represents uncertainty in the time domain, for Cx and error factor c; 

v- represents uncertainty in the value domain; 

v~- represents uncertainty in the value domain, for Cx and error factor c. 

3.3.2. Uncertainties in measuring Value and Time 

Uncertainties represent errors in the knowledge of the actual value of a physical variable 

obtained by a measurement. That is, errors are algebraic differences between a 

measurement of a value and the actual value of the corresponding physical variable Ide 

Silva 89/. The actual value is considered to be defined with respect to a precise reference 

scale of measurement, known as a standard, which is based on an arbitrary chosen 

reference of suitable magnitude that is assumed to be unvarying. 
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Measurement errors are typically decomposed into two factors: systematic and random. 

The former can be characterised as a mean error - the difference between the actual 

value and the mean value of a set of test measurements - and the latter by a confidence 

interval around the mean value where a specific percentage of all test measurements lie 

(commonly expressed in terms of the standard deviation). Accuracy and precision, 

respectively, are the two terms usually employed to express the extent of systematic and 

random errors of a measuring component (instrument), and they may be defined as 

follows: 

Accuracy is the conformity of a measured value to an actual value, or 

standard value; 

Precision is the maximum difference between any two measured values of the 

same actual value. 

Accuracy and precision are properties of a measuring component (instrument)2, and 

they influence any measurement performed by that instrument. 

The concepts of accuracy and precision will be employed in this section as a basis for the 

analysis to be performed on the type of uncertainties that may arise either in measuring 

time or the values of physical variables, in distributed real- time systems. In fact, the 

expression "measuring time" actually means measurement of the value of a physical 

variable which represents the passage of time. 

As mentioned before, the discrepancies that can arise in measuring the value of a 

physical variable, at a particular point in time, stem from the limitations of accuracy and 

precision associated with the instruments employed in the measurement of time and 

value. In order to examine relationships related to the tolerances in measuring time and 

value, we consider the two functions Va (ta) and Vb (tb) which represent two system values 

2. Other properties may be associated with a measuring instrument which are not considered here, 
such as resolution, repeatability and reproducibility. 
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of the same physical variable. (The same analysis can be modified to cover the case of 

a real world value Vet) and a system value Va (ta).) 

In the following, we present the four types of discrepancies, in the time and value 

domains, that can arise when two system components measure the value of a physical 

variable, at a particular point in time. 

a. No uncertainties in either time or value measurements, hence the 

variables Va (ta) and Vb(tb) can be considered identical: 

Vi: r(ta(i» = r(tb(i) /\ Va(ta(i» = Vb(tb(i»; 

b. Uncertainty in value measurement, but not in time measurement: 

Remark: In the above two cases the timelines ta and tb are considered to be exactly 

synchronous. 

c. Uncertainty in time measurement, but not in value measurement: 

d. Uncertainty in both value and time measurements: 

Vi: Ir(ta(i» - r(tb(i» I <r /\ I Va (ta (i» - Vb(tb(i» I <v. 

In this study we are concerned with those cases that are represented by relationship c, 

where value uncertainties arise solely because of time uncertainties that may exist 

between the clocks of the measuring instruments. That is, we assume that the 

measurement of the value of a physical variable is not subject to errors, but we cannot 

guarantee that two corresponding measurements are made at exactly the same time. 

Because the value of the physical variable can change, the two values obtained from the 

measurements could be different. 
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3.3.3. Value Uncertainties due to Time Uncertainties 

The analysis of value uncertainties due to time uncertainties will be realised in two parts: 

firstly, in terms ofthe individual system components, and secondly, in terms ofthe whole 

system, by combining the uncertainties of the system components. 

The time measurement performed by a component concerns the basic operation of 

reading the value of its own local clock at specific time intervals corresponding to the 

granularity of the synchronised time grid. The time uncertainties that can exist at each 

component are caused by the time differences between the occurrence of the ticks of the 

local clock and the corresponding ticks of the synchronised grid. These time 

uncertainties are due to skews in the components' local clocks, and the limitations of the 

process used to synchronise the clocks of the system; for each tick of the synchronised 

time grid the time uncertainty varies. 

In the following, we initially identify, in terms of a component, how the systematic and 

random errors in measuring time can affect the measurement of the value. After 

combining the two errors, we present how value discrepancies can occur, between 

measurements performed by two system components, because of the time uncertainties 

that exist between the components. 

In terms of a system component, the systematic timing error, which is obtained from the 

mean value t::(iJ for a set of time measurements performed by 4, may be represented 

as follows: 

(r(t(i» - r( t::(i») = r; I V(t(i» - Vx(t::(i» I <~. 

The same applies to the random error which may be represented as follows: 

The notation tx -(i) and tx +(i) represents the extreme values of the confidence interval 

around the mean value of the readings of the components' local clocks. 
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The total time uncertainties (r) of a component may be expressed in terms of the 

systematic error G' and the random error r;.: 

r= IG'I +r,./2. 

The total value uncertainty (v~) is constrained by the maximum absolute rate of change 

(K =max I dV/dt I) in value of the physical variable being measured 

v=Kr. 

For a component Cx, the value uncertainty due to time uncertainty, associated with the 

measurement by Cx of a physical variable, is bounded as follows: 

Ir(t(i)) - r(tx(i)) I < rX I V(t(i)) - Vx(tx(i)) I < v. 

An upper limit for the value uncertainty (v) and the time uncertainty (r) are determined 

by: 

v=Kr. 

The value uncertainty between the components Ca and Cb due to the time uncertainty 

between the two components, is bounded as follows: 

(*) 

In the above analysis we have not taken into account the clock synchronization 

mechanism; this will bring the times of the clocks of the components closer together, 

reducing r. In fact, clock synchronization must ensure that r is less than the granularity 

g of the synchronized grid. 

3.3.4. Value Inconsistencies due to Time Uncertainties 

Two values of the same physical variable are said to be mutually consistent if their 

uncertainties in time and value are within known and bounded ranges. 
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One approach to determining a bound on the difference between two values 

representing the measurement of the same physical variable, is to establish a maximum 

value uncertainty in terms of the maximum time uncertainty, which in our case refers to 

the granularity of the synchronised time grid. This notion was called the. 

timestamp - inconsistency of an observation in !Kopetz 90/. This approach was employed 

in the previous section in order to calculate the maximum value uncertainty due to time 

uncertainty. Although it is necessary to have such a condition on the value domain, this 

is not sufficient because it does not guarantee that the signal of the original variable is 

correctly reconstructed from the measurements (samplings) performed by the 

components. A condition should also be imposed over the time domain, in terms of the 

rate of measurements performed by a component. 

For continuous variables, an appropriate condition can be defined as a ratio of the 

highest frequency of the signal of the physical variable, or the Nyquist frequency (fN), 

being measured. For instance, we could apply the sampling theorem, also known as the 

Shannon theorem, which states that a sampled variable may be reconstructed from its 

samples only ifthe frequency of the variable is lower than half ofthe sampling frequency. 

However, in practice, the Shannon theorem does not give a condition which enables us 

to maintain the consistency of two values representing the same measured physical 

variable; it is rather difficult to formulate a uniform method for the selection of an 

appropriate measuring rate. For instance, there are some applications which require a 

measuring (sampling) rate ten times the highest frequency of the physical variable. In 

terms of the model of the distributed system under consideration, the frequency of ticks 

(the inverse of the granularity) of the synchronised time grid should be at least twice the 

sampling frequency (fs) of the signal of the continuous variable being measured. 

For discrete variables, a condition on the time domain to achieve mutual consistency 

between two values can be formulated as a dual ofthe condition for continuous variables. 

The condition can be defined in terms of the smallest time period in which the discrete 

variable being measured is stable at a value. To allow the sampled variable to be 
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reconstructed from its samples, the period between samplings should be smaller than 

half of the stable time period of the discrete variable. Stating this in terms of the model 

of the distributed system under consideration, the granularity of the synchronised time 

grid should be at least half of the sampling period (ts) of the signal of the discrete variable 

being measured. 

From the above analysis, for both continuous and discrete variables, we deduce that the 

time uncertainty, recalling equation (*), may be expressed as: 

r< g < 1 / ( 2 Is ). 

The granularity of the synchronised time grid must be at least half the rate of the 

sampling interval, because we can only deduce the order of two events if their occurrence 

is at least two ticks apart. 

3.3.5. Continuous and Discrete Variables 

Here we consider separately the mutual consistency of continuous and discrete 

variables. The separation is necessary because of the different dynamic characteristics 

of both types of variables. For continuous variables the change in value is bounded by 

a certain rate which is related to the Nyquist frequency of the physical variable, whereas 

for discrete variables the change in value is (ideally) instantaneous. For the purpose of 

checking for consistency, these differences impose two distinct approaches: in the 

former, we are concerned with approximate equalities with bounded errors, and in the 

latter, with strict equalities /Kopetz 90/. In the following we analyse both cases, giving 

conditions which enable consistency to be checked; these conditions are obtained from 

equation (*). 

For continuous variables, any two measured values representing the same physical 

variable are mutually consistent (F::1) at the ith tick if and only if both measures, realised 

within the time uncertainty i, are within the value uncertainty v. This may be expressed 

as follows: 
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Remark: For continuous variables, if the frequency of the synchronised clock is much 

greater than the sampling frequency, the value uncertainty due to time uncertainty 

ceases to be significant. 

For discrete variables, any two measured values representing the same physical variable 

are mutually consistent (R::j) at the ith tick if and only if both measures, realised within 

the time uncertainty r, are equal. This may be expressed as follows: 

The time uncertainty parameter (r), in the case of discrete variables, assumes a slightly 

different meaning; instead of being related to the highest frequency of the physical 

variable, it is related to the smallest time period in which the discrete variable is stable. 

This arises from the fact that an instantaneous change in state implies a whole range of 

frequencies up to infinity, which means that no measuring rate that satisfies the Shannon 

theorem can be found. 

Concluding, to achieve mutual consistency between the values of the two components, 

for continuous variables we have to establish the rate of measurement performed by a 

component as a ratio of the highest frequency of the physical variable being measured, 

and for discrete variables we have to establish the rate of measurement performed by a 

component in the smallest time period in which the discrete variable is stable. For 

instance, in the case of continuous variables, if we apply the ratio proposed by Shannon, 

then the frequency of ticks (the inverse of the granularity) of the synchronised time grid 

should be at least four times the highest frequency of the signal of the physical variable 

being measured. 

3.4. Concluding Remarks 

In the first part of this Chapter, we have presented a general model of time, in which a 

point-based structure was adopted to represent the passage of time. A time structure 
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was defined in terms of a set of logical conditions, which enable us to define dense and 

discrete time structures. These time structures provide a basis for a framework for 

analysing timeliness requirements to be discussed on following two chapters. The result 

of the study presented in this Chapter provided the basis from which we could argue that 

the choice of a time structure should rely essentially on the subject and the type of 

analysis to be conducted, rather than on the technique that has to be employed to conduct 

the analysis. Although this seems a trivial conclusion to arrive, there are still technical 

works which suggest the technique to be employed, without providing the choice of the 

time structure to be used for the analysis. 

In the second part ofthis chapter, we presented the conditions to be imposed on a system 

in order to avoid value inconsistencies in the system variables, due to time uncertainties 

that exist in the system Ide Lemos 91/. These conditions depend on whether the system 

variables are continuous or discrete. 
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Chapter 4 

Behaviour Description in Critical 
Real-Time Systems 

4.1. Introduction 

The aim of this chapter is to define a model, based on simple concepts, which enables 

us to describe the behaviour of critical real- time systems. The model should be 

sufficiently general in order to allow the behavioural description not only of the software 

functions, but also of the activities performed at other levels of abstraction of the system. 

The model proposed here was originally discussed within the context of an analysis of 

timeliness requirements /de Lemos 92a/, and was intended to provide the means by 

which informal analysis could be performed (for example, by depicting the timing 

constraints in terms of graphics), before starting to formalise system requirements. This 

would enable a more accurate analysis to be performed, from which we could obtain 

specifications which were unambiguous and consistent. In this chapter we extend that 

initial work by elaborating the basic model - leading to the event/action model (E/A 

model) - and by proposing a formal notation for the concepts developed for the basic 

model - the predicate event/action notation (PEA notation). 

The purpose of our work is not merely to propose a new formalism for describing the type 

of systems that we are concerned with; instead, we aim to define a set of basic concepts 

which can be incorporated by other formalisms. The choice of the type the formalism to 

be employed, apart from other possible factors, will depend essentially on the type of 

application and the analysis to be performed. This approach is consistent with with the 

broad notions introduced in the first chapter, concerning the utilization of formal 

methods in the requirements analysis of critical real-time systems. 
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At this stage of our work, although we are advocating the utilization of more than one 

formal method to perform the formal analysis of the requirements, we are not concerned 

with how the different formalisms should be (formally) linked. Instead, as already 

mentioned, our major objective is to characterise, for the type of system with which we 

are concerned, the concepts that are most appropriate adequate for the description of 

system behaviour at the different levels of analysis, and which can be employed across 

a range of different formalisms. The model proposed to describe the behaviour of 

systems relies on events, actions, states and their associated time uncertainties, and is 

based on similar models presented in the literature/Heninger 80, lahanian 86/; however, 

it contains some considerable differences which will be discussed at the end of this 

chapter. In order to show the flexibility of the concepts adopted in our model we show 

how they can be incorporated in logic formalisms such as Timed History Logic (THL) 

/Saeed 90/, and net formalisms such as Predicate Transition nets (PrT nets) IGenrich 81/. 

The contents of this chapter are organized as follows. In the following two sections we 

present, respectively, the E/A model and the PEA notation. In section 4, the E/A model 

is formalised in terms of two different formalisms, THL and PrT nets, with the aim of 

showing the flexibility of its concepts. In section 5, in order to clarify some concepts 

introduced in the previous sections we apply those concepts to an example based on a 

simplified nuclear reactor control system. Section 6 compares the PEA notation with 

some related models. Finally, the last section presents concluding remarks for this 

chapter. 

4.2. An Event/Action Model (E/A Model) 

In order to describe the behaviour of real -time safety-critical systems, which exhibit 

both continuous and discrete behaviours, we introduce the event/action model (E/A 

model). The E/A model provides a set of primitive concepts which enable system 

behaviour to be modelled in terms of system predicates (predicates over system 

variables). In the approach taken, those variables which are continuous have their 
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behaviour discretised according to imposed thresholds and the discontinuities that they 

are subject to. 

The E/A model is based on primitive concepts such as events, actions and states, and the 

concept of a time structure (or timeline). The state of a system is the information that, 

together with the system input, determines the behaviour of the system. A transition 

represents a transformation in the system state. The system state is modified by the 

occurrence of events and the execution of actions. An event is a temporal marker of no 

duration which causes or marks a transition. (Instead of the broad definition given in the 

previous chapter for an event, here, an event has a more restrictive intepretation: it 

marks a point in time which is of significance in describing an activity.) An action is the 

basic unit of activity which implies duration. The duratioll of an interval is the distance 

in time between the two events that define the interval. (An interval, as already defined, 

is a time stretch between two time points.) Apart from events, actions and states which 

describe the behaviour of process control systems, the E/ A model also takes into account 

the timing uncertainties associated with them. 

The motivation for selecting these primitive concepts is twofold: they have been used as 

primitives in several real-time specification languages /Henninger 80, J ahanian 86/, and 

they have meaningful interpretations at different levels of abstraction. These concepts 

provide flexibility, enabling descriptions to be given of system behaviour ranging from 

the activities of the physical entities of the plant to the temporal ordering of the 

computational tasks of the control system. The key features of the E/A model are: 

• the primitive concepts can be expressed in different classes of formalisms, 

• both discrete and dense time structures are supported, and 

• timing constraints can be depicted graphically. 

4.2.1. Definition of the E/A Model 

The E/A model is defined in terms of an extended first order logic that includes variables 

and predicates that are interpreted as functions from a time domain. The predicates of 
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the extended first order logic are also referred to as state predicates and those predicates 

that are used to specify a transition (i.e. mark a time point) referred to as transition 

predicates. In the following we present the syntax and semantics of the E/A model. 

4.2.1.1. Syntax of the E/A Model 

The underlying model consists of a time independent and a time dependent part. The 

time independent part consists of a set of variable names, a set of predicate names and 

a set of function names. Each variable name denotes a value from an associated type, 

each predicate name a predicate with a fixed arity n and associated domain, and each 

function name a function with a fixed arity n and the associated domain and range. The 

time dependent part consists of a set of time dependent variables and a set of time 

dependent predicates. Each variable name denotes a function from the time domain to 

a type, each predicate name denotes a function from the time domain to a predicate. The 

passage of time (time domain) is represented by a time structure Twhich is isomorphic 

to the non - negative reals or a subset of them (e.g. natural numbers). 

For the the above model, a term is either a variable or a n-ary function evaluated over 

n terms, and a predicate is defined inductively as: 

1. A well- defined expression over Il terms using the relational operators (e.g. < 

and =:;), a time independent predicate or a time dependent predicate is an atomic 

predicate. 

2. If p and q are predicates, so are ""p and p 1\ q. 

3. If p is a predicate and x is a time independent variable of type Vx, \:Ix E Vx: p is a 

predicate. 

All time dependent variables and predicates are piecewise continuous (i.e. there are a 

finite number of discontinuities and limits exist from both the left and right at each 

discontinuity). Predicates satisfy the fillite variability property, since a predicate can only 

change at a discontinuity. 
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We associate instance number to a predicate to specify the number of times for which the 

predicate has been true. Instance numbers are a convenient way for describing the 

behaviour of discrete variables, or continuous variables that have been discretised , 

because references to the past and future behaviours of predicates are allowed. In order 

to express the instance number of a state predicate we introduce the following 

notationsp(t)i, where sp(t) is a state predicate and the superscript index i is the instance 

number. 

A state predicate holds true for the first time at a particular time point t (the first instance 

of a state predicate) when it never holds true before a time point t1 and holds true since 

then until time point t (inclusive). The first instance of a state predicate is defined as 

follows: 

Vt E T. [sp(t)1 ~ sp(t) A (3t1 E T: t1:5.t A 

(Vt2 E T. t2<t1 => -,sp(ti)) A 

(Vt3 E T. t 1:5. t3:5.t => sP(t3)))]. 

A state predicate holds true for the ith time at a particular time point t (the ith instance 

of a state predicate) when it holds true for the (i-1)th time between t1 and t2, it holds 

false between t2 and t3, and it holds true between t3 and time point t (inclusive). The ith 

instance of a state predicate, represented by the superscript index i (i> 1), is defined as 

follows: 

Vi E J+: i > 1=> 

Vt E T. [ sp(t)i~ sp(t) A 3t1, t2, t3E T. t 1 < t2< t3 <t A 

Vt
4 

E T. t1:5.t4 <t2=> sp(t4)i-1 A Vts E T. t2:5.tS<t3=> -,sp(ts) A 

Vt6 E T. t3:5. t6:5.t => sP(t6)]' 

In order to capture a transition predicate we introduce the bar operator" I". Figure 4.1 

depicts four diagrams that represent the possible transition predicates that can be 

obtained from a state predicate when the predicate is either true or false for the first or 

53 



last time. Clockwise direction, starting from the diagram on the top left corner, the four 

cases are: true for the first time, false for the last time, true for the last time and false 

for the first time. In the diagrams the following conventions were adopted: full circle 

represents a predicate that is true at time t, and the empty circle represents a predicate 

that is false at time t. 

T ..-- T 9--
IC(sp(t») I o(sp(t)) 

F 
. I 

----0 F ~ 
t 

T -9 T ~ 
Ic( ...... sp(t» I IO( ...... sp(t» 

F 
I 

F 
I --- 0-----

t t 

Figure 4.1. Transitions over the state predicates sp(t) and..., sp(t). 

By applying the operator" IC" to a state predicate we capture the first point in time at 

which a state predicate becomes true (or false). This transition, known as a closed 

transition, is defined as follows: 

Vt E T. [Ic (sp(t)) ¢> sp(t) 1\ 

(30 E T. Vt l E T. t-o < tl <t ==:> ""sp(t l ) 1\ 

Vt2 E T: t<t2< t+o ==:>sp(t~)]. 

The value of 0 is defined between the time separation (distance) between two 

consecutive observations (or samplings) of the value of the variables, used to construct 

the predicate. For continuous variables, 0 has to be defined as a factor of the highest 

frequency of the variable (or the Nyquist frequency), and for discrete variables, 0 has to 

be defined in terms of the smallest time period for which the variable remains stable Ide 

Lemos 91/. 

By applying the operator" I u" to a state predicate we capture the last point in time just 

before a predicate becomes true (or false). This transition, known as an open transition, 

is defined as follows: 
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Vt E T. [l°(Sp(t» ~ ~sp(t) 1\ 

(30 E T: Vt 1 E T. t-o < t1 <t ==:> ~sp(t1) 1\ 

Vt2 E T:t<t2< t+o ==:>sp(tz»]. 

In order to capture the instance number of a transition, we introduce the bar operator 

with a subscript index i added to it " 1/'. The first instance of a closed transition is defined 

as follows: 

The ith instance of a closed transition, represented by the index i (i> 1), is defined as 

follows: 

Vt E T. Vi E J+: [i> 1 ==:> I~(sp(t» ~ IC(sp(t» 1\ 

(3t1 E T. t1<t 1\ 1~-I(Sp(t1» 1\ (Vt2 E T. t1<t2<t==:> ~ IC(sp(tz»»]. 

The definition of the bar operator for the open transition is similar to the one for the 

closed transition. In the sequel, unless otherwise mentioned, a bar operator without a 

superscript will refer to a closed transition. For example, the transition I (sp(t)) captures 

the point in time when sp(t) becomes true for the first time. 

4.2.1.2. Semantics of the E/A Model 

For the time independent part, the valuation functions £Y, ~ and g: are respectively 

defined for the variables, predicates and functions in the traditional way as for a 

first-order logic. For the time dependent part the valuation functions err Gj and ~Gj are 

defined for the variables and predicates as follows: 

for a predicate Pi with range Vj for term try, c.PGj(Pi(trl, ... , tr,l»: T - VI X ... 

X Vn-B. 
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The interpretation 9 for the underlying model is defined by the structure (0/: ~ g:: ~ t:T\ ) , , , c:r, J'c:r , 
and is defined pointwise. 

The interpretation of a term tr is defined as follows: 

9(tr)(t) = Cf[(tr), if tr is a time independent variable 

9(tr)(t) = Cf[ c:r(tr)(t), if tr is a time dependent variable 

9(tr)(t) = CJ(fi) (9 (trJ ) (t), ... , 9(tljl)(t», if tr is a functionJi(trJ, ... , trn). 

The interpretation of the basic predicates is defined as follows: 

9(p(trj, ... , tljl»(t) = 'fP(P) (9 (trJ ) (t), ... , 9(trn)(t»,ifp is a time independent 

predicate 

9(p(trJ, ... , tljl) )(t) =~c:r(P )(t)(9 (trJ )(t), ... , 9 (tljl )(t», if p is a time dependent 

predicate. 

For a given interpretation 9, each predicate p is evaluated by the function 9(P): T- B. 

9( -'p )(t) =true iff 9 (p )(t) =false 

9(p A q)(t)=true iff 9(P)(t)=true and 9(q)(t)=true 

9(V'x E Vx: p)(t)=true iff 9'(P)(t)=true 

for every 9' that has the same valuation functions as 9 except for Cf[' (y) which 

is the same as Cf[(y) for every time independent variable not equal to x. 

4.2.2. Primitive Functions of the E/A Model 

The primitive concepts of the E/A model are related to the timeline by two types of 

primitive function: point and interval. A point junction is a temporal marker of no 

duration, represented as a cut in the timeline, which models events. An intelVal ju.nction 

denotes a duration, represented as a contiguous section of the timeline, which models 

states and actions. The timing uncertainties associated with point and interval functions 

can be represented in terms of a utility junction. The primitive functions have time and 

instance number as parameters. 
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In the definition of the primitive functions, conditions (state and transition predicates) 

capture the value domain properties of the functions, and time points capture the time 

domain properties of the functions. In order to distinguish the value domain from the 

time domain definitions, the subscript "V" or "T", respectively, is added to the name of 

the function. The definitions of the primitive functions, in the value domain, will be made 

only in terms of closed transitions (although the open transition could have been used 

instead). As a consequence, the lower and upper boundaries of a time interval will be 

respectively closed ("[") and open (")"). Other combinations could be obtained by 

employing a different usage of the transitions. 

4.2.2.1. Point Function 

Apoint junction E(t, i) is a function which maps the timeline (T the set of all of its points) 

and the number of instances of an event ([+ the set of nonnegative integers) into a 

Boolean (B = {true, false}). 

In the value domain, the definition of the point function is in terms of the ith instance 

of a condition (state predicate SPE(t)) which is specified by a transition predicate: 

Ev(t,i): T X [+ ~ B 

Vt E T. Vi E [+: [Ev(t,i) <=> IlsPE(t»]. 

In the time domain, the definition of the point function is in terms of the time point 

constants t~ which mark the ith instance of the event: 

ET(t,i): T X [+ ~ B 

Vt E T. Vi E [+: [ET(t,i) <=> t = t~] 

Instead ofthe notation (t~), the occurrence function (@(E,i»fromRTLcouldhavebeen 

employed /J ahanian 86/. 

The value and time domain definitions of a point function are alternative forms for 

describing the occurrence of the same event: 
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Vt E T. Vi E [+: [Ev(t,i) ¢:> ET(t, i)]. 

A relative time represen ta tion of the timeliness requirements of a sequence of events can 

impose one of two basic types of timing constraint /Dasarathy 85/: 

minimum - no less than t time units must elapse between the occurrence of two 

events; 

maximum - no more than t time units must elapse between the occurrence of 

two events; 

A third basic timing constraint presented in /Dasarathy 85/ is the durational timing 

constraint which states that an activity must occur for t amount of time. However, an 

activity which has duration can be represented by two events which mark the begining 

and end ofthe activity (i.e. an interval function which the topic ofthe next section). Thus 

the durational timing constraint could alternatively be stated as exactly t time units must 

elapse between two events, which is just an application of the other two basic timing 

constraints. 

In a similar way as is presented for RTL/lahanian 86/, we state below two monotonicity 

properties which are associated with the point function: 

uniqueness property - at most one time point can be associated with each 

occurrence of an event, i.e. the same instance number of an event cannot happen 

at two distinct time points: 

Vt, t ' E T: Vi E [+: [E(t,i) 1\ E(t',i) => t = t']. 

ordering property - if the ith occurrence of an event happens, then the previous 

occurrences of same event must have happened earlier, hence two distinct 

occurrences of the same event must happen at different time points: 

Vt, t ' E T. Vi,j E [+: [E(t,i) 1\ E(t'J) 1\ i < j => t < t']. 
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For discrete time lines, in order to observe the occurrence of all instances of any 

particular event in the 'real-world' (assuming to be a dense timeline), the 

granularity of the discrete timeline should be smaller than the smallest time 

interval between the occurrence of any two events in the 'real-world'. If any 

event occurs more than once between two ticks of the discrete timeline, only one 

of the occurrences will be observed. 

4.2.2.2. Interval Function 

An intelVai jU1lction A(t,i) is a function which maps the timeline and the number of 

instances of an action (or a state) into a Boolean. (In the following, the definition of the 

interval function will be restricted to the execution of an action, however, it could be 

extended to represent the time interval in which a system state holds true (or false).) An 

action is manifested in the system by its associated events: the start event that marks the 

initiation of an action, and the finish event that marks the completion of an action. 

In the value domain, the interval function is defined in terms of the transition predicates 

corresponding to the start (sPtA(t») and finish (sP~A(t») conditions, and the state 

predicate corresponding to the invariant condition (sPIN,)t»). This is represented as 

follows: 

Av(t): T~ B 

'tit E T. [Av(t) <=> 3t1, t2 E T. l1 ~ t < l2 /\ (I(SPtA(t1») /\ I(sP~A(t2)) /\ 

'tIt3 E T.t1 ~ l3 < t2=:> sPIN,)t) /\ (-'SP~A(t))]. 

The first instance of an interval function is defined as follows: 

Av(t,l):TXI+~B 

'tit E T. [Av(t, 1) <=> Av(t) /\ (3t 1 E T. t 1 ~ t) /\ 

('tIl z E T. tZ<t1 =:> -'Av(t0)/\('tIt3 E T. tl~t3~t=:>Av(t3))]· 

The ith instance of an interval function is defined as follows: 
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Av(t,i): T X [+ -+ B 

Vi E [+: i > I==> 

Vt E T. [Av(t,i) -=Av(t) A 3t1, t2J t3E T. t1 < t2 < t3<t A 

V t 4 E T. t 1:::; t 4 < t 2 ==> Av( t 4> i -1) A V t 5 E T. t 2 :S; t 5 < t 3 ==> -,Av( t 5) A 

Vt6 E T. t3:::; t6:::;t ==>AV(t6)]. 

In the value domain, the start and finish events are defined, respectively, as the start 

condition and the finish condition. The start condition for an action A defines the 

condition that triggers the execution of an action; it is denoted by tAv(t,i) and defined 

as follows: 

tAv(t,i): Tx [+ -+ B 

Vt E T. [tAv(t,i) -= I(Av(t,i»]. 

The finish condition defines the condition in which an action A terminates its execution; 

it is denoted by lAv(t,i) and defined as follows: 

lAv(t,i): Tx [+ -+ B 

Vt E T. [lAv(t,i) -= I( -'Av(t,i»]. 

In the time domain, the start and finish events are defined as temporal markers, 

respectively, the start time and the finish time. The definition of the start and finish times 

follows directly from the time domain definition of the point function. They are defined 

in terms of time point constants of the form t~A and t~ at which the respective events 

tAT(t,i) and lAT(t,i) have occurred for the ith time. 

In the time domain, the interval functionAT(t, i) is defined, as follows, in terms of the start 

and finish times of an action: 

AT(t,i): T X [+ -+ B 

Vt E T. Vi E [+: [AT(t,i) -= t~A :S; t < t~]. 
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The start time refers to the time point at which the start event of an action occurs: 

tAT(t,i): T X 1+ -- B 

Vt E T. Vi E [+: [tAT(t,i) ¢:> t = t~A] ti E T - {t1 t2 } fA fA - fA' fA' ... . 

The finish time refers to the time point at which the finish event of an action occurs: 

.lAT(t,i): T X [+ -- B 

Vt E T. Vi E [+: [.lAT(t,i) ¢:> t = t~] t~ E T LA = {t~, t~, .. .}. 

Similar to the point function definition, the value and time domain definitions of an 

interval function are alternative forms for describing the execution of the same action: 

Vt E T. Vi E [+: [Av(t,i) ¢:> AT(t, i)]. 

The execution time of an action is the duration of the interval during which the action is 

executed. 

We now state two properties that are associated with the interval function: 

duration property - the finish event of an action cannot precede the start event 

of the action: 

Vt, t' E T. Vi E [+: [.lA(t,i) ~ tA(t',i) /\ t > t']. 

If the start and finish events occur at the same time point, implying a 

durationless action, then the action is modelled by a point function. 

ordering property - two instances of the same action cannot be executed at the 

same time: 

Vt, t' E T. Vi,j E [+: [.lA(t,i) /\ tA(t',j) /\ i < j ~ t < t']. 

4.2.2.3. Utility Function 

The specification of time uncertainties for the two functions defined above can be 

represented by means of a utility function U(t,i), or "value" function (in the sense of 

monetary value) /Jensen 85/. We are concerned with the class of utility functions which 
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are typically applicable to critical real- time systems - discrete or critical utility functions. 

In these systems the utility, or usefulness, can only assume two values, either maximal 

or minimal - hence U(t,i) is a Boolean function. 

The utility function U E(t, i) associated with the point function E(t,i) which models the 

occurrence of an event, maps the timeline and the instance number of an event into the 

usefulness of its occurrence. The maximal usefulness, in time domain, in the occurrence 

of an event is established by the time interval defined by the following two times: 

earliest occunillg time (eat) - the first point in time at or after which an event can 

occur; 

latest occuning time (lot) - the last point in time before which the event can 

occur. 

If an event occurs either its usefulness is maximal if it occurs during the interval of time 

defined by these two time points, or minimal if the event occurs outside the time interval. 

A utility function representing the usefulness of the occurrence of an event can be 

defined as follows: 

UE(t, i): T X [+ - B 

Vt E T. Vi E [+: [U E(t, i) <==> (tEi ~ t < tEi )] 
tul lUI 

tEi E T E = {tEl ,t~ , .. .} 
1'01 eol eol eol 

tEi E T E = {t 1 ,t~ , ... }. 
lUI lor lot lot 

The utility function U A (t, i) associated with the interval function, which models the 

execution of an action, maps the timeline and the instance number of an action into the 

usefulness of its execution. In order to define the maximal usefulness in the execution 

of an action, in the time domain, we have to consider the start and finish events of that 

action and associate utility functions to these events. The time attributes of the utility 

function associated with the execution of an action are the following: 
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earliest starling time (est) - the first point in time at or after which an action can 

start its execution; 

latest starting time (1st) - the last point in time before which an action can start 

its execution; 

earliest finishing time (eft) - the first point in time at or after which an action can 

finish its execution; 

latest finishing time (1ft) - the last point in time before which an action can finish 

its execution. 

The time attributes est and 1ft are often referred to as "delay" and "deadline", 

respectively. When plotting an utility function that represents these time attributes, they 

are expressed by step utility functions, respectively positive and negative step functions, 

as it was depicted in figure 4.1. 

A utility function representing the usefulness of the execution of an action is defined as 

follows, in terms of the utility functions of the start and finish events of the action: 

UtA(t',i): T X [+ ~ B 

Vt ' E T: Vi E [+: [UtA(t',i) ~ (t~",:S; t' < t~J] 

tA
i E TA = {tAl ,tA

2 
, ... } 

~sl l'l" est est 

tA
i ETA = {t 1 ,t~ , .. .}; 

bl lal lst lst 

U!A(t",i): T X [+ ---+ B 

Vt" E T: Vi E [+: [U'A(t",i) ~ (t~ :s; til < t~ )] 
~ eft 1ft 

. I 2 } tA' E TA = {tA ,tA , ... 
eft eft eft eft 

tA
i ETA = {t 1 ' t~ , ... }; 

/jI 1ft 1ft 1ft 

UA(t,i): T X [+ ---+ B 

Vt, t', til E T: Vi E J+: [UA(t,i) ~ UtA(t',i) A U!A(t",i)]. 
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In the following, we present an example, illustrated in figure 4.2, which shows how the 

functions defined above are interrelated in the specification of timeliness requirements 

associated with the execution of an action. Taking as a reference point the occurrence 

of an event at time tl, depicted by function E(t,i), and knowing beforehand the earliest 

time (min) and the latest time (max) for an action, of duration dur, to start its execution, 

we are able to construct the utility function UA(t,i) associated with the execution of the 

action. This utility function represents the time uncertainties associated with the 

execution of the action which were derived from the given basic timing relations. Finally, 

one of the possible executions of the action is represented by the function A (t,i) , which 

is executed within the timing constraints imposed by the utility function. 

E(t,i) 

min : : dur I -- - -- ------~~ -- - .- - - - - - - -~ 
I max , dur , , 

- - - - - - - - - - - r - - -~- - - - - - - r - - -~ 

A(t,i) 

Figure 4.2. E/A model in the specification of timeliness requirements. 

If two or more utility functions represent either the occurrence of an event or the 

execution of an action, then the resulting utility function should embody the timing 

constraints of all of the utility functions. Below we present a lemma which allows us to 

define a utility function when there exists more than one utility function associated with 

an action. (The lemma can also be applied for the occurrence of events.) 

Lemma 4.1 

When there exists more than one utility function representing the usefulness of executing 

the same action, the resulting utility function reflects the following timing constraints on 

the start time and finish time of an action: 
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tA E {t I max(t~ 1 ... , t~ ) <t< min(tAI , ... , tAn )}. 
ala ~s ul lsI 1.11' 

tA E {t I max(t~ ..... , t~ )<t<min(t~ ...... , tAn n. 
~ ~ ~ ~ ~ 

Sketch of the Proof: If the start and finish events of the action to be executed have the 

respective time occurrences of fA and fA ,then for these two events we associate their 
sla fin 

respective utility functions that correspond to the various utility functions representing 

the usefulness of executing the action. Ifwe consider, for instance, only tA•,a (the analysis 

for tA is identical) then the time attributes of the resulting utility function should not 
~ 

violate of the time attributes of any of the utility functions. For this condition to be 

satisfied the resulting utility function must have its t A", the maximum of all the t A",'s of 

the utility functions, and its tAlsl the minimum of all the tAIsI'S of the utility functions. 

An example of having more than one utility function representing the usefulness in the 

execution of an action, is the situation where the same exception handler is used to treat 

two or more exceptions which impose different timing constraints upon the execution of 

the handler. In practical terms this could represent the occurrence of two different 

alarms which are treated by the same action. 

4.2.3. Event/Action Model and Time Structures 

One ofthe characteristics ofthe E/A model is that it can support both dense and discrete 

time structures. However, depending on the time structure there are some dissimilarities 

on how the occurrence of an event is observed. We say that an event is observed when 

a point on the timeline is associated with its occurrence. 

In dense time structures the occurrence and observation of an event is always 

simultaneous. Thus, for distinct events we associate distinct time points, except for the 

case where events occur simultaneously. In discrete time structures the occurrence and 

observation of an event is not simultaneous. In discrete time structures, once an event 

occurs, it is not possible to observe an event itself, only its consequence(s) may be 
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observed. The observation instants are restricted to the time points of the timeline. 

Hence an event cannot be observed between any two time points on the timeline; the 

time point we associate with the observation of an event might not be coincident with the 

actual occurrence of the event. 

Depending on the granularity of a discrete time structure, an action might be represented 

either by a point function or an interval function. If we consider, for example, a time 

structure g-'2 which contains another time structure g-' b as shown in figure 4.3, then an 

actionA(t, 1) when measured in g-' 2 has a duration ofless than ~(g-' t), but when measured 

in g-'l it becomes duration less. However, for another instance of the same action -

A(t, 2), we can have a different situation, as shown in figure 4.3. In summary, an action 

of fixed duration in one time structure (<j 2) may have different duration in another time 

structure (g-'l) with a coarser granularity - ~(g-'1) > ~(<j 2), depending on the time points 

associated with the respective starting and finishing events of the action. (In order to 

maintain compatibility with the closed/open interval being employed, we have opted to 

"observe" the occurrence of an event at the time point before its occurrence. The reason 

for this is that in order to establish an closed/open interval, the left point of the interval 

should be observable. Whether the observation of an event is at time point before or after 

the actual occurrence of the event is irrelevant because in both cases the same inevitable 

imprecisions are introduced.) 

'3"1 
I A(t,l) A(t,2) 

A(t,l) 

I I I I I 

A(t,2) 

I I I I. 

Figure 4.3. E/A model and the granularity of discrete time structures. 

Apart from the above mentioned time uncertainties which are inherent in the utilization 

of discrete time structures with different time granularities, there are those time 

uncertainties related to the refinement of the timeline to which a specification of a timing 
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constraint was originally made fCorsetti 91/. These time uncertainties can easily lead to 

the following type of ambiguity. If we state that a predicate holds at time t1 of a coarser 

timeline T1, then we assume that the same predicate also holds in a subset ofthe interval 

corresponding to t1 in a finer timeline T2; this subset might correspond to the whole 

interval, or a single instant, or even a scattered sequence of smaller intervals. For 

example, this can be the case for a specification which merely states that two trains, while 

in motion, must be kept at least 10 minutes apart from each other; this specification does 

not say anything about the time uncertainty around the time point which defines the end 

ofthe interval of" 1 0 minutes", if, for instance, the timing constraint was to be considered 

in terms of a microsecond timeline of the controller of the system. 

4.3. Predicate Event/Action Notation (PEA Notation) 

The concern in the E/A model was to identify a set of primitive concepts and define a 

set of primitive functions tha t formalise these concepts. In order to express the primitive 

concepts of the EfA model concisely and to facilitate formal analysis of the system 

behaviour, we introduce the Predicate Event/Action notation (PEA notation). In the 

following, the primitive functions of the E/A model will be defined as primitive 

predicates of the PEA notation. 

4.3.1. Primitive Predicates of the PEA Notation 

4.3.1.1. Point Predicate 

For the value domain definition of the point predicate the notation "E(i)" is introduced 

to denote the ith instance (i.e. occurrence) of an event E. The point predicateE(i) is true 

iff there exists a time point t at which the point function Ev(t,i) holds true: 

Vi E [+: [E(i) ~ 3t E T. Ev(t,i)]. 

For the time domain definition ofthe point predicate the notation "E(i)@t" is introduced 

to denote that the ith instance of an event E occurs at time point t. The point predicate 

E(i)@t is true iff at the time point t the event E has occurred for the ith time: 
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Vt E T. Vi E [+: [E(i)@t ¢> ET(t, i)]. 

From the above definition, an observation that could be made is that the notationE(i)@t 

is just an alternative for the notation ET(t,i). 

4.3.1.2. Interval Predicate 

For the value domain definition ofthe interval predicate the notation ';4(i)(tA,AINv,-!A)" 

is introduced to denote the ith execution of actionA. The start condition "tA' and finish 

condition" -!A" are transition predicates, and the invariant condition ';4INY" is a state 

predicate. An action is executed between" tA" and" !A" while ';4INY" holds true. The 

conditions associated with an interval predicate are defined as follows: 

The interval predicate A (i)(tA,AINv,-!A) is true iff for all time points between ttA and t~A 

the interval function Ay(t,i) holds true. The interval predicate is defined in the value 

domain as follows: 

Vi E [+: [A(i)(tA,AJ,w,-!A) ¢> 

3ttA, tLA E T. "It E T: (ttA ~ t < tLA ¢> Av(t,i))]. 

For the time domain definition of the interval predicate the notation ';4(i)@(tfA't ~A)" is 

introduced to denote the ith execution of an actionA between the time points ttA and 

t~A. These time points represent the times at which the events associated with actionA 

have occurred: the start event at time ttA and the finish event at time t LA· The two events 

are respectively defined as follows, in terms of the point function: 
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Vt~A E T. Vi E [+: [.lA(i)@t~A ¢::> .lAT(t~A'i)]. 

The interval predicate is true iff for all time points between t fA and t ~A the interval 

function AT(t,i) holds true. The interval predicate is defined in the time domain as 

follows: 

4.3.1.3. Utility Predicate 

In the following we define the utility predicates that will be employed in reasoning about 

time uncertainties. 

The utility predicate "VE(i)@(teor,tloc)" is introduced to denote the time uncertainty 

associated with the ith occurrence of event E. The utility predicate is true iff for all time 

points between teot and tlot the utility function V E(t, i) holds true. The utility predicate 

representing the usefulness of the occurrence of an event is represented as: 

Vt E T. (teot ~ t < tlot ¢::> U~t,i))]. 

For the utility predicate of an action A, the notation" VA(i)@(t fA ,t fA ,tlA ,tlA )" is 
est lst'" eft '" 1ft 

introduced to denote the time uncertainty associated with the ith execution ofthe action. 

The utility predicate is true iff for all time points between t fA ", and t fAls, the utility 

function UfA(t',i) holds true, and for all time points between t!A'ft and t!Alj) the utility 

function V!A (t", i) holds true. The utility predicate representing the usefulness in the 

execution of an action is represented as: 
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'itfA.s/,tfAls"t~A,ft,t~Aljl E T. 'ii E [+: [ VA(i)@(tfAest,tfAls/~A.ft,t~Aljl) ¢::. 

'it' E T. (tfA,Sf ::::; t' < ffA
Is

, ¢::. VfA(t',i» 1\ 

'it" E T. (tiA ::::; t" < tlA ¢::. VIA (t",i»]. 
~ ,ft ~ /fl ~ 

4.3.2. Operators of the PEA Notation 

In order to compose point and interval predicates of the PEA notation, a set of logical 

operators are defined in both value and time domains. In the following, we define some 

of the PEA notation operators in terms of the functions of the E/ A model; the full range 

of operators is defined in Appendix D. 

From two standard logical operators, negation (-,) and conjunction (/\), the other 

logical operators can be defined, such as disjunction (v), implication (~) and 

equivalence (¢::.). As an example of these standard logical operators, we define, in the 

value domain, the conjunction of two interval predicates as follows: 

'ii,j E [+: A (i)(fA,A/NvdA) /\ B(j)(fB,BINv,!B) ~3tE T. Av(t,i) /\ Bv(tj). 

Four additional logical (binary) operators are defined over the interval predicates ofthe 

PEA notation: choice ( + ) when either one of the predicates can become true ( or false), 

meet ( < ) when a predicate becomes true (or false) at the same time point that other 

predicate becomes true (or false), overlap (II) when two predicates are true (or false) at 

the same time point, and disjoint (V) when two predicates neither meet nor overlap. 

These operators are very convinient in composing primitive predicates in order to 

describing the operational behaviour of systems. As an example of these additional 

logical operators, we define, in both value and time domains, the meet and overlap 

operators. 

The meet operator «): 

'ii,jE [+:A(i)(fA,AINv,lA) <B(j)(fB,BINv,!B) (~ 

A (i)(fA,A/Nv,lA ) /\ BU)(f B,B/tvv,!B) /\ lA(i)¢::.f B(j); 
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'v't fA , t~, tflP t!BET. 'v'i,jE I+:A(i)@(tfA,t~}<.B(j)@(tflPt!B} 1:1 

A(i)@(t fA,t~} 1\ B(j)@(tflPt!B} 1\ (t ~ = t fB)' 

The overlap operator (II): 

'v'i,j E J+: A (i)(tA,AINv,-lA }IIB(j)(t B,BINv,~B} (I:! 

A(i)(tA,AINv,-lA) 1\ B(j)(tB,BINv,~B} 1\ 

tA (i) ==:>B(j) ( t B ,BINV, ~B} V t B(j)==:>A (i)( tA,AINv,-lA}; 

'v't fA , t~, tfIP t!BET. 'v'i,jE I+:A(i)@(tfA,t~}IIB(j)@(tfB,t!B} 1:1 

(A(i)@(t fA,t~) 1\ B(j)@(tflPt!B}) 1\ «t fB::; t fA < t !B) V (t fA::; t fB < t ~». 

Apart from the above two sets of logical operators, we now define an algebraic operator 

that is only applicable to the time domain; the duration operator (or 0 -operator) 

measures the time distance between two time points (associated with the occurrence of 

events). The duration between the occurrence of the events E(i)@tE and F(i)@tF is 

given, as follows, by the duration operator whose arguments are tE and tF: 

o (t,l) : TxT ~ T 

The minimum and maximum durations between the occurrence of two events is obtained 

from their respective utility predicates, by using the following two variants of the 

duration operator: 

omin. T X T~ T 
(t,t) . 

omax. T X T~ T 
(t,t) . 

If the two time points of the duration operator refer to the time of occurrence of the start 

and finish events of an action, then the notation 0A(") can be used instead of o(ti ti )" 
I IA'IA 
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4.3.3. Examples 

In order to exemplify the concepts and the notation introduced so far we now present two 

examples based on the timing templates given in /lahanian 86/. 

For the first example, let us consider a sporadic timing constraint in which after the 

occurrence of an event EV, an actionAC must be executed with the deadline of 60 ms' , 

between the occurrence oftwo consecutive events a minimum separation of 100 ms must 

be imposed. In figure 4.4 we depict this situation in terms ofthe functions defined for the 

E/A model. The top diagram of figure 4.4 represents the point function EV(t,i) and the 

utility function UEv(t,i) for the eventEV; they are respectively represented by an uparrow 

and the shaded area. The time point constants tkvand tkV, on the time axis, are related 

to theith and (i+ l)th occurrence of the eventEV, and tkt:
ol 

is the earliest occurrence time 

for the (i+ l)th occurrence of event EV. The bottom diagram of figure 4.4 depicts the 

utility function UAc(t,i) of the action AC(t,i) that has to be executed whenever an event 

EVoccurs. The timing equations below the two diagrams represent the timing relations 

that have to be satisfied. 

This sporadic timing constraint is formalised into the following logic assertions: 

For the second example, let us consider a periodic timing constraint in which while the 

state predicate SP is true at least for 200 ms, an actionAC must be executed periodically 

every 200 ms with a completion deadline of 100 ms. In figure 4.5 we depict this situation 

in terms of the functions defined for the E/A model. The top diagram represents the 

interval function SP(tj) related to the state SPwhich becomes true for thejth time at the 

time point t! . The bottom diagram depicts the utility function UAcCt,i) of the action 
fSP 

AC(t,i) that has to be executed periodically. 
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EV (t,WU EV( t,;) 1 , , 
t I 
tkv 

, 
titl 

E,Veo' 

-

tkt~, tkv + 100 

t~c = tkv est 

t~c = tkv + 60 
If. 

, 

t UEv(t,i+l) 

t i+1 
EV , 

UAc(t,i+l) I 
t i + 1 

ACes, 

Figure 4.4. EfA model of a sporadic timing constraint. 

SP(t,j) 1 
I SP(t,i) 
, 

t~sp , 

UAC(t,;J1 

D D 
t i ~ t i + 200 * i 

ACes, ISP 

t~c < tis + 200 * i + 100 
If' I P 

Figure 4.5. EfA model of a periodic timing constraint. 

~ 

t 

t 

~ 

~ 

This periodic timing constraint is formalised into the following logic assertion: 

Vi,j E [+: VttSP' t!SP E T. [SP(j)@(ttSp,t!Sp) 1\ 

t1SP > ttSP+ 200*i ~ UA6i)@(ttSp+200*i, -, -,ttSp+200*i+ 100)]. 
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The purpose of these examples was to show that the PEA notation can represent the 

same timing templates that are used by RTL/lahanian 86/ in a much compact form which 

is more adequate for conducting the requirements analysis. The same comparison 

cannot be made in terms of the value domain because RTL only handles uninterpreted 

predicates. 

4.4. Formalisation of the E/A Model 

The E/A model has introduced a set of concepts which are flexible enough in order to 

be incorporated by different formalisms. In this section, we illustrate how the primitive 

concepts of the E/A model can be incorporated other into existing formalisms. The 

general approach adopted is to define the primitive functions in terms of the primitives 

of the formalisms, and then impose restrictions over these primitives to capture the basic 

properties of the point and interval functions. We do not aim to provide automatic 

transformation rules, or formal linking, between the different formalisms; our aim is to 

show how different primitives of the E/A model can be expressed in other formalisms. 

This approach to formalisation is applied to the classes of formalisms identified in this 

paper: descriptive and operational. To do so, we employ, respectively, THL/Saeed 90a! 

and PrT nets /Genrich 87/. 

4.4.1. E/A Model in THL 

In this section we present how the primitive functions of the E/A model can be 

incorporated into THL /Saeed 90a/. (The basics of THL are described in Appendix A.) 

The THL description of an E/ A model of a system is obtained by extending the THL state 

space r, in terms of the primitive functions. That is, for a system with q point functions 

and r interval functions the state vector is extended by the following variables: 

The above functions are of the form E(t): T --B xI+. However, to be consistent with the 

E/A model the following convention is adopted to introduce the parameter "i": 
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VH E rH: Vt E T. Vi E [+: [HE(t,i) == HE(t)=(true,i)]. 

Axioms are then introduced into the THL description, to ensure that the uniqueness and 

ordering properties of point functions and the duration and ordering properties of interval 

functions are satisfied for all well- defined histories. For example, we say that a history 

His well- defined for a point function E if and only if: 

Vt, t ' E T. Vi E [+: [HE(t,i) A HE(t',i) ==> t = t'l. 

The bar operator" Ie" of the E/A model is defined in THL as the following history 

relation: 

Vt E T. I\sp(t» -= 

VTl E T. (Tl =t A Sp(Tl) A 3t 1 E T: Vt2 E T. t 1 < t2 < Tl ==> -'sp(tz». 

4.4.2. E/ A Model in PrT Nets 

In the following we present the primitive functions of the E/A model, in terms of 

Predicate-Transition nets (PrT nets) /Genrich 87/. PrTnets is a form of high-level Petri 

net which is mainly used for the modelling and analysis of discrete-event systems which 

are concurrent, asynchronous, and non -deterministic. The use of high -level nets, 

instead of (Time) Petri nets ILeveson 87/, adds to the modelling power of the latter the 

formal treatment of individuals (i.e. the notion of token identity) and their changing 

properties and relations. (The basics of PrT nets are described in Appendix B.) 

The representation of the E/A model using PrT nets, and the implicit timed firing rule, 

is straight forward because of the similarity between the firing rules of a transition and 

the properties associated with the occurrence of events and execution of actions. The 

timing constraints to be modelled are expressed as relational expressions which must be 

satisfied for a transition to become enabled. To allow the complete representation of the 

E/A model in terms ofPrT nets, we assume a Weak Time Semantics (WTS) rather than 

a Strong Time Semantics (STS) for the firing of the transitions which means that a 
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transition does not have to fire when its maximum firing time has been reached; if it does 

fire it does so within the time interval specified by the time condition /Ghezzi 91/. 

The occurrence of an event in the E/A model (i.e. a cut in the timeline when a condition 

becomes true) corresponds in PrT nets to the instantaneous time that a transition takes 

to fire. If an explicit reference to time is made, by considering an event as a temporal 

marker, then the definition of PrT nets has to be modified in order to incorporate the 

notion of the passage of time. (To represent the passage of time in PrT nets we adopt the 

approach described in Appendix B; alternative approaches, such as Time ER nets 

/Ghezzi 91/, could also have been employed.) From the underlying model of time, when 

a transition is fired a timestamp is associated with the tuple (or token), representing the 

time that the tuple was produced. Figure 4.6 shows the concept of an event in terms of 

PrT nets. When transition tr fires the tuple tup is removed from predicate P1 and placed 

in P2 with a timestamp tstp(P2) corresponding to the time that the transition had fired. 

The variable tstamp, whose value is of numerical type, is associated with the labels of the 

net and represents the timestamp of the tuple. The utility predicate of an event is 

represented by the timing relation associated with transition tr, in other words, once 

transition tr is enabled, it is allowed to fire only within the time interval established by 

the timing relation associated with the transition. 

The execution of an action in the E/A model implies a time interval between the 

occurrence of the two events associated with the action: the start and finish events. In PrT 

nets (corresponding to the representation of an event) an action is denoted by two 

tr 

tr: tstp(P I) + IE<ol :5 tstp(P 2) < tstp(P I) + tEIOI 

Figure 4.6. The occurrence of an event in PrT nets. 
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transitions representing the two events, and a predicate representing the execution ofthe 

action. The precondition and postcondition of an action are expressed by first order logic 

formula annotating the transitions. Figure 4.7 shows the concept of an action in terms 

of PrT nets. When transition trl fires, the variable tstamp is updated with the time that 

the tuple was produced, which corresponds to the start time of the action. While the tuple 

tup is at predicate P2 this means that the action is being executed, until transition tr2 fires, 

corresponding the finish event of an action. The annotations in transitions trl and tr2 

represent the time uncertainties associated, respectively, with the start and finish events 

of an action, that is, they represent the utility function associated with the execution of 

an action. 

Apart from specifying the normal behaviour of the system in terms of the timing 

constraints that have to be met, it might also be important to specify the abnormal 

behaviour of the system for the case when timing constraints are violated ICristian 89, 

de Lemos 92c/. For violations of the timing constraints which can be anticipated we 

specify the exceptional behaviour of the system. The PrT net of the model presented in 

figure 4.8 is an extension of the model of figure 4.7, in the sense that we also consider the 

tup = (tstp(Pt}) 

tr I : tstp(P I) + tA"'1 ::; tstp(P 2) < tstp(P I) + t AIS1 

tr2: tstp(P2) + tAdl ::; tstp(P,) < tstp(P2) + tAIfI 

Figure 4.7. The execution of an action in PrT nets. 
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specification of the exceptional behaviour for the case when the basic time attributes 

associated with the execution of an action are violated. If we consider, for example, the 

state in which an action is about to start its execution (PI), then either an action starts 

its execution within the timing attributes associated with its respective utility function 

(trI), or exceptions are raised. These exceptions are associated with the cases when an 

action starts its execution earlier than specified (tr3), and when an action does not start 

its execution within the specified time interval (tr4)' The exception handlers associated 

with these two exceptions are represented by the net predicates Pest and Plst, respectively. 

The same PrT net structure is also applied to the case when an action is about to finish 

its execution, as shown in figure 4.8. 

tr, : tstp(P ,) + tAosl :5 tstp(P z) < tstp(P ,) + t AISI 

tr 3 : tstp(P ,) :5 tstp(P oS!) < tstp(P ,) + tAosl 

tr 4: tstp(P ,) + tA :5 tstp(P ISI ) < 00 
lSi 

trz : tstp(Pz) + tAdl :5 tstp(p)) < tstp(Pz) + tAll! 

tr 5 : tstp(P z) :5 tstp(P eft) < tstp(P 2) + tAdl 

trf, : tstp(P Z) + tAw :5 tstp(P lf,) < 00 

Figure 4.8. Timing exceptions in PrT nets. 
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In the following, we present the two examples of section 4.3.5 in terms of PrT nets. The 

first example, shown in figure 4.9, represents a sporadic timing constraint. The event EV 

is represented by transition tr1, and the action AC is represented by transitions tr3 and 

tr4, and the net predicate P3. The event EVis only allowed to occur at intervals of 100 

ms; this timing constraint is imposed by the relational expression of transition tr1. Once 

EVoccurs, actionAC has to be executed within a deadline of 60 ms. The timing relation 

of transition tr2 shows that there are no time uncertainties associated with the occurrence 

of the start event of actionAC; the deadline for the execution ofthe action is represented 

by the timing relation of transition tr3. We assume that the value of the timestamp in the 

initial marking tstp(P1 ) =tstp(P4) =0. 

tUPtO = (tstp(Pt)} 

tupzo = (tstp(P 4)) 

(tstamp) 

tr 1 : tstp(P 1) + 100 ~ tstp(P 2) < 00 

tr 1 : tstp(P 2) ~ tstp(P3) < tstp(P 2) 

tr 3 : tstp(P 3) ~ tstp(P 4) < tstp(P 2) + 60 

Figure 4.9. A sporadic timing constraint in PrT nets. 

In figure 4.10, we present (in terms ofPrTnets) the second example of section 4.3.5 which 

involves a periodic timing constraint. The state predicate SP is represented by transitions 

tr1 and tr2, and the net predicate P2, and the action AC is represented by transitions tr3 

and tr4, and the net predicate P3. Once the state SP holds true for at least 200 ms, action 

AC may start its execution periodically at every 200 ms and with a deadline of lOOms; the 

periodicity ofAC is imposed by the timing relation of transition tr3, and the deadline by 

79 



the timing relation of transition tr4· We assume that the value of the timestamps in the 

initial marking tstp(P2) =tstp(P3) =0. 

tUPIO = (tstp(Pz)) 

tupzO = (tstp(P3)) 

tr I : tstp(P I) < tstp(P 2) < 00 

tr2 : tstp(P2) + 200 < tstp(P 1) < 00 

tr 3 : tstp(P 2) :$ tstp(P 3) < 00 

tr 4 : tstp(P 3) + 100 < tstp(P 4) < tstp(P 3) + 100 

Figure 4.10. A periodic timing constraint in PrT nets. 

4.5. Extract of a Case Study 

To clarify some concepts introduced so far, an extract of a case study based on a simplified 

nuclear reactor control system was selected as an example /Saeed 93a/. Specifically, the 

example will serve to illustrate how the concepts of the E/A model can be incorporated 

within different classes of formalisms in order to describe system behaviour. 

The example involves a system used to control the temperature of a nuclear reactor, the 

rods of the reactor have to be moved down when the temperature reaches the 

pre-defined threshold (SOOOK). The activity of moving down the rods takes 20 time 

units, and the start of consecutive movements of the rods should be at least 30 time units 

apart. To simplify the concepts, we make the (strong) assumption that the movement of 

the rods is not constrained by any physical limitation. 
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4.5.1. The Case Study from the PEA Notation Perspective 

In a very simplified form, the nuclear plant can be defined, in the PEA notation, as the 

parallel composition of the actions describing the physical process and safety controller. 

(A(i)() andA(i)@( ) are abbreviations for the notation previously introduced.) 

Vi EI+: Nuclear _Plant(i)( ) ~ Physical_Process(iJ ( ) II Safety _ Controller(iJ( ). 

The physical process is defined by the sequential composition of actions representing the 

down movement of the rods (PDMovRods(iJ() and no movement of the rods 

(PNDMovRods(iJ( ). 

ViEI+: Physical_Process(i) ( ) ~ PNDMovRods(i) ( ) <PDMovRods(iJ(). 

In order to capture the timing requirements imposed on the actions the C)-operator can 

be employed to specify that the execution of PDMovRods(iJ( ) should take exactly 20 

units of time, and consecutive executions should be at least 30 units of time apart: 

Vi EI+: 0 PDMovRods(i) = 20. 

ViEI+:o~in (;+1 )=30. 
tPDMovRoti ... • fPDMuvRods 

The safety controller is defined by sequential composition of actions representing the 

down movement ofthe rods (CoDMovRods(iJ( ), no movement (CoNDMovRods(i)( ), 

and a wait action on the down movement of the rods (CoWMovRods(iJ( ). 

ViEI+: Safety_COlztroller(iJ() ~ 

CoNDMovRods(iJ( ) < CoDMovRods(iJ( ) < CoWMovRods(iJ( ). 

In the next two sections we show how the PEA notation specifications can be used as 

templates for specifying the behaviour in a descriptive formalism (THL) and an 

operational formalism (PrT nets). 
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4.5.2. The Case Study from the THL Perspective 

The behaviour of the nuclear plant is specified in THL by imposing invariant and history 

relations over the start and finish conditions of the actions of the physical process and 

safety controller. 

4.5.2.1. Physical Process 

prj. The initial condition of the physical process is that PNDMovRods holds true. 

'VT1 E T. PNDMovRods(1)(T1) <=> (T1 =0). 

Pr2. The rods must start to move down if and only if the temperature (PTemp) is 

above the threshold (SOOOK) and 30 time units have elapsed since the previous 

time the rods started to move down, the execution of the action should take 

exactly 20 time units. 

'VT1 E T. fPDMovRods(1)(T1) <=> 

(PTemp>SOOO)(T1) 1\ 'VtE T. t< T1=> -, (PTemp>SOOO)(t). 

'VT1 E T. 'ViEI+: i>l => fPDMovRods(i)(T1) <=> 

(PTemp>SOOO)(T1) 1\ 3t1 E T: (tl:::; T1 -30 1\ fPDMovRods(i-1)(tl) 1\ 

'VtE T. t 1 +30:::; t < Tl=> -, (PTemp>SOOO)(t». 

'VT1 E T. 'ViEI+: lPDMovRods(i)(Tl +20) <=> fPDMovRods(i)(T1)· 

Pr3. PNDMovRods immediately follows the action PDMovRods, as specified by the 

sequential composition of the actions in the PEA notation description of 

Physical_Process. 

'ViEI+: fPNDMovRods(i+ 1) <=> lPDMovRods(i). 

'ViEI+: lPNDMovRods(i) <=> fPDMovRods(i). 
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4.5.2.2. Safety Controller 

In this example, we assume that provided the reactor temperature (PTemp) is within its 

anticipated range then it is equal to the thermometer reading (CiTemp). 

Crl. The initial condition of the safety controller is that CoNDMovRods holds true. 

VTl E T. CoNDMovRods(l)(Tl)¢> (Tl =0). 

Cr2. The safety controller must start to move the rods down at the instant the 

tempera ture (CiTemp) rises above the threshold (5000K) and 30 time units have 

elapsed since the previous time the rods started to move down, the execution of 

the action CoDMovRods should take exactly 20 time units. 

VT1 E T. tCoDMovRods(l)(Tl) ¢> 

(CiTemp>5000)(Tl) 1\ VtE T. t< Tl~ -, (CiTemp>5000)(t). 

VTl E T. Vi EI+: i> 1 ~ tCoDMovRods(i)(Tl) ¢> 

(CiTemp>5000)(Tl) 1\ 3t 1 E T. (t 1::::; T1-30 1\ tCoDMovRods(i-l)(t 1) 1\ 

VtE T. t 1+30::::;t < Tl~ -, (CiTemp>5000)(t». 

VTl E T. Vi EI+: tCoDMovRods(i)(Tl + 20) ¢> tCoDMovRods(i)(Tl)· 

Cr3. CoWMovRods immediately follows action CoDMovRods, and is of duration 

exactly 10 time units. 

ViEI+: tCoWMovRods(i) ¢> tCoDMovRods(i). 

VTl E T. ViEI+: tCoWMovRods(i)(Tl + 10) ¢> tCoWMovRods(i)(Tl). 

Cr4. CoNDMovRods must immediately follow CoWMovRods and precede 

CoDMovRods, as specified by the sequential composition of the actions in the 

PEA notation description of Safety_Controller. 
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'ViEI+: fCoNDMovRods(i+l) ~ ~CoU'M"ovRods(i). 

'Vi EI+: ~CoNDMovRods(i) ~ fCoDMovRods(i). 

4.5.3. The Case Study from the PrT Nets Perspective 

In order to exemplify the utilization of the E/A model primitive functions as modelling 

concepts for an operational formalism, in the following, we discuss the PrT net model 

of the movement of the rods to control the temperature of a nuclear reactor. The PrT 

net model is shown in figure 4.11 and includes models of the physical process and the 

safety controller. The name and the role of the places of the PrT net correspond to the 

actions specified by the descriptive formalism, presented in the previous section. The 

relations associated with the transitions of the PrT net are defined in figure 4.11, and 

correspond to the conditions of the actions defined in THL. In the PrT net model, the 

place CiTemp contains the last measurement of the reactor temperature which is 

periodically updated from the simulated values contained in PSimTemp. The sub net 

containing PDMovRods and PNDMovRods is obtained from the PEA notation formula 

that defines the sequence of actions that are associated with the rods; the subnet 

containing CoDMovRods, CoWDMovRods and CoNDMovRods is obtained from the 

PEA notation formula that defines the sequence of actions that have to be performed 

by the safety controller in order to meet the requirements imposed on the movement of 

the rods depending on the temperature of the reactor; the places ActDMovRods and 

ActNDMovRods represent the outputs of the (logical) actuator that moves the rods. The 

predicates associated with the transitions T3, T4 and T5 are derived from the start and 

finish conditions defined for the actions to be executed by the safety controller. 

4.6. Comparison of the PEA Notation with similar Models 

The fundamental notions adopted for the PEA notation were based on the event- action 

model initially proposed by lahanian & Mok /lahanian 86/. This model attempted to 

capture the temporal ordering of computational actions, and was based on the following 
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Although some of the notions adopted for the PEA notation are similar to those 

presented in 11ahanian 86/, there are some differences which makes the former model 

more suitable for the type of behavioural representations needed for requirements 

analysis. An essential difference between the two models is the fact that the PEA 

notation considers time as an independent variable. (In more recent work 11 ahanian 88a! 

the occurrence function "@", which had time as dependent variable, is replaced by the 

(Boolean) occurrence relation "<I>" which has time as a parameter.) The PEA notation 

approach allows events, actions and states, and their respective utility functions, to be 

easily depicted as graphics, which is consistent with the techniques usually employed in 

process control engineering. Another difference between the two models concerns the 

expressiveness of their notations. In the 1ahanian & Mok approach, by restricting its 

expressiveness, emphasis was given to a notation that would simplify the mechanical 

analysis of the specifications, while in the PEA notation an attempt was made to identify 

and clearly represent each of the concepts defined. Another issue that shows the 

flexibility of the PEA notation, by comparision with the 1ahanian & Mok approach, is 

that while the former model supports both dense and discrete time structures, the latter 

only supports discrete time structures. As far as similarities between the models are 

concerned, the logic assertions of the PEA notation can also be transformed into a set 

of formulas in Real-Time Logic, in a similar way to that performed for the 1 ahanian & 

Mok event-action model /lahanian 86/. 

Another feature of the PEA notation, which has no equivalent in the 1ahanian & Mok 

event-action model /lahanian 86/, is that in the PEA notation we are also able to 

describe the behaviour of a system, and its components, by abstracting from their timing 

properties, in a similar way that of ISL IGoswami 92/. Interval Specification Logic (ISL) 

is a first order linear-time temporal logic which is used for specifying the properties of 

programs in execution intervals which are sequence of states. In ISL a timed description 

of the system behaviour can be developed, by refinement, from an untimed description. 
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The PEA notation can also be compared with two other similar techniques, TRIO 

/Ghezzi 90/ and VVSL /Middleburg 89/. TRIO is a first-order temporal logic language 

for specifying and verifying timing requirements; its proof theory and its executability 

have been mathematically defined. The language provides operators that allow to check 

the truth or falsity of a proposition at particular time instants. TRIO can accommodate 

either dense or discrete time structures. However, TRIO does not provide mechanisms 

for modularizing complex specifications, and it is hard to read and understand. VVSL 

defines operations in terms of temporal predicates over state variables; in addition to the 

pre-condition and post-condition of VDM /Jones 86/, VVSL introduces an 

inter-condition which imposes constraints during execution (i.e. acts as a 

state-invariant). However, unlike the PEA notation, VVSL does not permit 

quantitative timing analysis. 

With respect to the timing constraints of the PEA notation, instead of adopting an 

exhaustive list of all possible timing relations IDasarathy 85/, we have only considered 

those that are essential for representing events, actions and states, and their associated 

time uncertainties. 

In comparision with other models mentioned above, the PEA notation is more flexible 

in its application to requirements analysis because its features allows different issues in 

the behaviour of the system, and its components, to be modelled from different 

perspectives of the analysis. 

4.7. Concluding Remarks 

The aim of this chapter was to introduce the E/A model, which is based on a set of 

concepts that allow us to describe the behaviour of systems at different levels of 

abstraction, and using different formalisms. On top of the E/A model we proposed the 

PEA notation in order to provide a compact notation for the E/A model, and to capture 

the behaviour of critical real-time systems in terms of predicates over state variables. 

Apart from proposing the PEA notation we also formalised the E/A model in terms of 
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TIlL and PrT nets with the aim of demonstrating the flexibility of the concepts being 

employed. 

However, there are some important issues which need to be resolved in order to obtain 

a complete model from which we would be able to perform a formal analysis of system 

timeliness requirements, the theme which was given more emphasis in this chapter. One 

of these issues is how to obtain confidence that the specifications performed in terms of 

the E/A model are complete; a possible way to tackle this issue is to provide a set of 

criteria similar to the work done by Jaffe et aI/Jaffe 91/. Another issue is to justify 

formally the extension proposed for PrT nets, which would allow the modelling and 

analysis of timing constraints. A final issue, which is related to the approach of using THL 

and PrT nets to perform a formal analysis of the requirements, is the need to provide 

some means by which the verification of the PrT net model could be checked against the 

original specification in THL. A hint to be followed up is to try to extract from the 

simulation of the PrT net model its E/ A model, and to verify this E/ A model against the 

initial E/A model specified using TIlL. 
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Chapter 5 

A Methodology for Requirements Analysis 

5.1. Introduction 

In this chapter we describe a methodology, based on formal techniques, for the 

requirements analysis of critical real- time systems. The approach, which provides a 

systematic way in which safety requirements can be analysed, consists of a framework 

with distinct phases of analysis, a set of techniques appropriate for the issues to be 

analysed at each phase of the framework, a graph to record the safety specifications 

obtained from the process of analysis, and a set of techniques for conducting a quality 

analysis of the safety specifications. 

The proposed approach for the requirements analysis of critical real- time systems is 

based on five key principles: 

• Focus on safety. The approach is based on maintaining a separation between the 

mission and the safety requirements. (Safety requirements focus on the elimination 

and control of hazards, and on the limitation of damage in an accident.) For a 

particular system, the extent to which safety features can be separated from the 

mission implementation will depend on the trade-offs that can be made between 

maintaining safe behaviour and optimising the system's ability to fulfil its mission. 

These trade-offs will take account of the risks associated with the system hazards 

and the benefits gained from the mission. 

• Techniques for the analysis. The techniques to be employed for a specific domain 

of analysis are selected in accordance with the characteristics of the properties of 

interest of that domain (and the perspective adopted). This leads to the utilization 

of a range of specialized informal and formal techniques. The problem of linking 
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specifications obtained from different techniques is tackled by employing a 

primitive set of modelling concepts that are appropriate for the properties being 

analysed. 

• Framework for the analysis. A systematic approach is provided by deriving a 

framework from a system structure that is general for an application domain. This 

framework partitions the requirements analysis into phases, and defines 

dependencies between the phases. Each phase focuses on a specific domain of 

analysis, providing partial knowledge of the overall system. During the analysis, a 

domain is viewed from different perspectives; each perspective captures a specific 

description of the domain. 

• Formal record of the requirements specifications. The safety specifications obtained 

from the requirements analysis are recorded in terms of a directed graph, in which 

nodes represent the specifications, and edges denote the relationships between the 

specifications. The graph provides a succinct representation which is amenable to 

formal analysis. 

• Quality analysis. The key quality factor for critical real- time systems is the risk to 

which the environment is subjected by the system. To obtain confidence that the 

risks associated with the requirements specifications are acceptable, quality 

analysis techniques are included in the proposed approach. The quality of the 

requirements specifications is confirmed by: firstly, applying verification and 

validation techniques to ensure that the specifications are consistent and maintain 

safe behaviour, and secondly, conducting a risk analysis of the requirements 

specifications. The approach enables the integration of formal techniques with 

traditional safety techniques to yield a coherent method for risk analysis. 

The contents of the chapter are organised as follows. The next section justifies the 

adopted separation between mission and safety issues of systems, specifically, during 

requirements analysis. Then the role of different techniques during requirements 

analysis is discussed in section 3, emphasising the contribution of formal techniques. In 
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section 4 we describe in more detail the phases of the framework for requirements 

analysis, covering the issues to be analysed, the techniques to be employed, and the time 

bases to be used. Section 5 presents the graph in which the requirements specifications 

are organised. In section 6 we present how the quality analysis of requirements 

specifications is conducted by qualitative and quantitative means. Finally, we present 

some concluding remarks on the methodology presented in this chapter. 

5.2. Separation between the Mission and the Safety Requirements 

The methodology presented here for software requirements analysis for critical 

real-time systems is based on establishing a clear separation of the mission and the 

safety requirements. On the one hand, the mission requirements focus on what the 

system is supposed to achieve in terms of function, timeliness and some dependability 

requirements - namely the attributes of reliability, availability and security lLaprie 90/. 

On the other hand, the safety requirements focus on the elimination and control of 

hazards, and the limitation of damage in the case of an accident; in other words, they 

address what the system should not do lLeveson 86/, and are thus related to the safety 

attribute of dependability. 

This separation at the requirements level is essentially logical rather than physical; 

moreover, we do not have any intention to force a particular structure on the 

implementation. The benefits of making this distinction during requirements analysis 

are: the ability to focus on the safety-critical issues, the simplification of safety 

certification, the resolution of potential conflicts, and detection of omissions and 

inconsistencies between the mission and safety issues. 

Although logical at the requirements analysis phase, this separation between the mission 

and safety can, when appropriate, be enforced - at the plant domain, as exemplified by 

the shut down systems of nuclear reactors, and at the controller domain, by 

implementing separate controllers for mission and safety as is done in interlocking 

systems for railways /Chandra 91/, or by the application of design techniques, such as 
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"firewalls", which are intended to prevent the mission factors from interfering with the 

safety factors once the controller is implemented. Whether it is feasible to separate 

completely the mission from the safety requirements for a particular critical real-time 

system depends on the ease with which a distinction can be drawn between safe and 

unsafe states. The mission controller is concerned with system behaviour while the 

system is in a safe state, and the safety controller when the system is in an unsafe state. 

Furthermore, the aims of the two controllers can be considered to be complementary. 

The mission controller seeks to ensure that the mission is accomplished - this will also 

require that the system does not enter into an unsafe state. The safety controller is 

concerned with avoiding hazardous states by explicitly dealing with the unsafe states that 

precede these states. 

5.3. Formal Methods for the Framework 

As already mentioned in the Introduction, although there are potential advantages in 

employing formal methods, there are also a number of limitations concerning their 

applicability in the requirements analysis of critical real-time systems. In this section, 

we enumerate the goals that should to be pursued in order to make the application of 

formal methods feasible, and the features that a formalism should possess in order to be 

applied effectively in the context of the framework. But first, we define what we mean 

by a "formal method". 

Formal is a term applied to a notation or technique if it is amenable to mechanical 

manipulation according to some calculus. A method is a set of procedures and guidelines 

for the application of a notation or technique to system development. When the notation 

or technique is formal, the method is referred to as a formal method. 

In the following, we describe the demands that have to be considered when applying 

formal methods to the process of software development /Anderson 93, Tsai 92/. 

• During requirements analysis the objective is to capture the main ideas of the 

system being developed rather than represent minute details of the system. Hence, 
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it is necessary to employ techniques which can improve the comprehension and 

assimilation of the specifications. This can be achieved by employing techniques 

that are accessible and suitable. Accessibility of a technique refers to the 

experience and easiness that an analyst has when employing the technique, and to 

the usefulness of the resulting documentation (produced by applying the 

technique) as a means of communication between the analyst and the client. 

Suitability refers to the appropriateness of a specific technique in performing a 

particular aspect of analysis at the relevant stage of requirements analysis. 

• The utilization of a technique during requirements analysis should be disassociated 

from a prescribed specific method because the method might restrict the possible 

implementation choices. In the sense that while a method should be tailored for 

the subject and type of analysis to be conducted, a technique should be sufficiently 

flexible in order to be used across different subjects and types of analysis. 

• Formal techniques, apart from allowing verification to be performed, should also 

enable specifications to be validated either by testing /Dauchy 91/ or by symbolic 

execution /Harel 90/. 

• Consistency has to be achieved between emerging techniques and those currently 

adopted in practice, fundamentally, those techniques that are related to plant 

analysis, such as Hazard and Operability Studies (HAZOPS) /Lawley 73/. Safety 

is essentially an attribute ofthe system rather than just software, which implies that 

the requirements analysis of critical real- time systems should always consider the 

system in which the software is to be embedded. 

• The formal method should support traceability in order to control any changes 

applied to the product during its development, and to relate these changes back to 

the relevant requirements. This is particularly important when conducting safety 

certification. 

• The formal method should also allow the system to be structured into subsystems 

which can be dealt with separately from each other. This structuring can be in terms 
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of levels of abstraction, where higher levels are associated with the early stages of 

requirements analysis, thus reducing complexity. 

Formal support for the range of different activities concerning the framework for 

requirements analysis demands the utilisation of a set offormal methods, whose features 

and expressive power should match the characteristics of the different activities. 

Selecting an appropriate formal technique for an individual activity allows emphasis to 

be placed on pertinent characteristics of the system, enabling a technique to work to its 

own strengths. In the proposed approach we employ formal techniques in accordance 

with the characteristics of the system to be analysed, during the different phases of the 

framework, and define the linkage between the different techniques, resulting in a 

coherent approach. 

Although formal methods have been classified in a different number of ways Ide Roever 

91, Olderog 91, Pnueli 86, Wing 901, for the purpose of the framework we identify two 

kinds of formalisms: descriptive and operational. 

When using descriptive formalisms, system behaviour is specified in terms of system 

properties that have to be satisfied. The specification is axiomatic, hence it should have 

a conjunctive nature, which thus allows new requirements to be added while performing 

the analysis, without the need to modify or reconstruct the entire specification. In order 

not to restrict the set of possible implementations which can be obtained from a 

specification, the specification should not state more than the necessary minimal 

constraints on the system behaviour. In the context of the framework, as an example of 

descriptive formalisms, we will only be considering logical formalisms, such as Temporal 

Logic IGorski 86/, Real- Time Logic (RTL) IJ ahanian 86/, Real- Time Temporal Logic 

(RTTL) IOstroff 87/, and Timed History Logic (THL) ISaeed 901. 

When using operational formalisms, system behaviour is specified by constructing a 

model of the system in terms of mathematical structures such as tuples, relations, 

functions, sets and sequences. Another feature of this class of formalisms is that they 
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should be able to explicitly specify concurrency and non - determinism, in order to model 

the interaction between specifications. In the context of the framework, as an example 

of operational formalisms, we will only be considering graphical formalisms, such as 

Petri nets /Murata 89/, Extended State Machines (ESM) /Ostroff 87/, Statecharts !Harel 

87/, and Modecharts /Jahanian 88/. Also, algebraic formalisms that have constructs 

supporting non - determinism and concurrency can be employed, such as CSP !Hoare 85/ 

and CCS /Milner 83/. 

In order to facilitate the description of system behaviour using different formal methods, 

we adopt the E/A model as a common foundation for the models of system behaviour. 

These basic concepts of the E/A models (events, actions and states) are sufficiently 

general that they may be expressed either in descriptive or operational formalisms. In 

other words, the basic concepts of the E/A model will be used to model the behaviour 

of the system being analysed by employing the proposed formalisms. 

5.4. Framework for the Requirements Analysis 

When developing critical real- time systems, a key concern is to ensure that accidents 

do not occur. The usual practice for ensuring safety is to strive to identify all of the 

hazards and then apply techniques which reduce the probability of these hazards 

occurring. The level of effort that should be employed to handle a hazard depends on 

the risk associated with that hazard. 

In order to facilitate systematic analysis, for each level of abstraction of the system we 

derive the phases of a framework from the components of that level, and their 

interactions: the components define the domains of analysis and the interactions 

between the components define the dependencies that exist between the domains. The 

organization of the frameworks, in terms of the phases and their ordering, follows 

(respectively) from the domains of analysis and their dependencies. 

Our general framework for the requirements analysis of critical real- time systems is 

shown in Figure 5.1. This is obtained by, first, splitting the mission requirements from 
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the safety requirements, and second, subdividing the analysis of the safety requirements 

into a sequence of phases. The phases are convenient notions when describing the 

framework and serve to show that the level of abstraction decreases from descriptive to 

operational as the analysis proceeds. The results of a phase can, of course, be influenced 

by feedback from subsequent phases, since these take additional information into 

account. For example, the plant interface analysis can take into account limitations of 

sensors and actuators which may enforce changes to the specifications produced at the 

plant level. The proposed framework forces safety specifications to be formal from the 

initial stages of requirements analysis. This has the benefit that, once the essential 

requirements of the system are formalised (e.g. hazards) the subsequent safety 

specifications and designs can be obtained by formal refinement. 

Mission Requirements Safety Requirements 

Safety Plant 
Specification 

I 
Safety Plant Interface 

Specification 

Figure 5.1. A framework for requirements analysis. 
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According to figure 5.1, in order to conduct the requirements analysis, the ordering in 

the phases analysis will be as follows. The initial phase, Conceptual Analysis, produces 

a statement of the aim and purpose of the system and determines those failure 

behaviours of the system which constitute accidents. The second phase, Safety Plant 

Analysis, identifies the plant properties relevant to the safety requirements, such as the 

physical laws and rules of operation that govern plant behaviour. The third phase, Safety 

Plant Inteiface Analysis, delineates the interface between the plant and controller, and 

specifies the behaviour that must be exhibited at that interface. The final phase, Safety 

Controller Analysis, establishes a top level organization for the controller in terms of the 

properties of its components and their interactions. (On its own animation is not 

considered a phase of analysis, is part of the Safety Controller Analysis. Animation was 

given a certain distinction in the framework of the figure 5.1 because of its importance 

in the validation of the requirements specifications.) 

In the following, we describe in more detail each of the identified phases by identifying 

the formalisms to be employed for the analysis, the time structure in which the analysis 

is more likely to be conducted, and how the concepts of the EIA model will be applied 

in order to facilitate the modelling of the behaviour of the system. 

5.4.1. Conceptual Analysis 

The objective of this phase is to produce an initial, informal statement of the aim and 

purpose ofthe system, with particular emphasis on what the impact the environment can 

have on the system and what can be the consequences of the behaviour of the system on 

the environment. During this phase what is meant by "safety" for the system is also 

determined (i.e. the failure behaviours of the system which constitute accidents are 

identified). As a product (i.e. output) of the Conceptual Analysis we obtain the Safety 

Requirements, enumerating the potential accidents (an unintended event or sequence 

of events that causes death, injury, environmental or material damage). Identification 

of the possible accidents a system could cause would be conducted using standard 

techniques, such as Comparative Methods lICE 85/. The identification of the accidents 
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provides a basis from which a distinction between the mission and safety issues of the 

system can be obtained. Another activity to be performed during this phase is the 

identification of the primary modes of operation of the physical process; these modes are 

classes of states which group together related functions. 

At the conceptual level, we are looking for notations which would allow the 

representation of, and reasoning about, a very high level description of the preferred 

behaviour of the system within its enclosing environment. A formal notation which 

allows the representation of causality seems the most adequate because at this level of 

description there is no intention in conducting a qualitative analysis of the activities of 

the system. Currently, we describe system behaviour in terms of interpreted predicate 

symbols in the PEA notation. This enables causality to be modelled in terms of temporal 

ordering and modes of operation to be defined as actions or states, and also has the 

advantage of allowing us to specify the main state transitions and activities ofthe system 

at a high level, providing a link to the more detailed analysis at the plant level. 

5.4.2. Safety Plant Analysis 

The objective of this phase is to identify those properties of the physical process which 

are relevant to the Safety Requirements. An essential starting point for the formal 

analysis of a critical real- time system is to identify the physical entities that make up the 

plant, and to construct a formal model of the physical process which captures its 

characteristics as dictated by physical laws and rules of operation. We assume that a 

model of the plant can be obtained that accurately represents the behaviour of the plant 

necessary to conduct the requirements analysis of the software to be embedded in the 

system (i.e. the safety controller). The plant analysis must also support the identification 

of hazards (a condition over the physical process describing states from which an accident 

might ensue). As the product of the plant analysis we obtain the Safety Plant 

Specification which contains the safety constraints (a safety constraint is a condition 

imposed on the physical process: usually the negation of a hazard modified to 

incorporate safety margins) and the safety strategies (a safety strategy is a way of 
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maintaining a safety constraint, and is defined as a set of conditions, in terms of 

controllable factors, over the physical process). The conjunction of all of the safety 

constraints of a system characterises the specified safe behaviour for that system. 

5.4.2.1. Proposed Formalism 

At the plant level, we have to analyse both continuous variable and discrete event 

dynamic systems. Hence it is necessary to employ both differential equations and 

discrete mathematics at this level. After the analysis of continuous systems is performed, 

and the appropriate safety thresholds of the plant behaviour defined, we need a 

descriptive formalism in order to specify behaviour in terms of axioms over a model of 

the system. In this thesis, as a descriptive formalism, we use THL during the Safety Plant 

Analysis, primarily because the behaviour of systems expressed in THL is defined by 

imposing constraints over the set of all sequences of states that the system can exhibit. 

This property gives THL formulae a conjunctive nature. Hence, by using THL, the Safety 

Plant Specification can be constructed by considering each safety constraint and safety 

strategy separately. 

5.4.2.2. Proposed Time Structure 

We propose the use of a dense time structure during the Safety Plant Analysis which is 

compatible with THL, the formalism being proposed for this phase of analysis. Several 

other formalisms use a dense time structure; these include extensions to Temporal Logic 

IPnueli 88/, CSP /Reed 86/ and CCS /Milner 83/. Some justification for selecting a dense 

time structure for the Safety Plant Analysis is presented below. 

Physical laws govern the properties of the environment in which a system works, and 

therefore impinge directly on the behaviour of the system. To perform a thorough 

analysis of system behaviour these laws must be expressed and their impact on the system 

analysed. Many of these physical laws are defined in terms of formalisms that assume a 

(continuous) physical time, e.g. the distance travelled by a train for a duration of time 
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is given by an integral over the velocity ofthe train. Hence, a dense representation oftime 

is more suitable for the plant analysis. 

The plant time structure is a dense time structure (defined as a tuple cr DE= (<P, +») 

isomorphic to the reals (R). 

5.4.2.3. The E/A Model in the Safety Plant Analysis 

During the Safety Plant Analysis, after the physical entities of the plant are identified, 

we define, by employing the E/A model, the activities associated with the physical 

entities and the relationships that might exist between these entities. From the 

behavioural analysis of the entities, in terms of their discrete and continuous variables, 

we identify their respective thresholds in terms of both value and time domains. From 

these thresholds, which correspond to transitions in the continuous state of the system, 

we define the behaviour to be associated with the physical entities in terms of the basic 

concepts of the E/A model. In other words, by using the E/A model to describe the 

behaviour of the plant we are discretizing its behaviour with the aim of facilitating 

specification of the safety strategies and their subsequent verification. In terms of the 

E/A model the actions associated with a particular physical entity are exhaustive and 

exclusive, i.e. at any time point the physical entity must be performing exactly one action 

or be at the transition point between two consecu tive actions. Another feature of the E/ A 

model is that it facilitates timing analysis by providing formal and informal means to 

capture the behaviour exhibited by the physical entities in terms of the timing 

relationships between the occurrence of events. 

5.4.3. Safety Plant Interface Analysis 

The objective of this phase is to delineate the plant interface, and to specify the 

behaviour that must be observed at the identified interface. This involves stipulating the 

properties of the required sensors and actuators, including their failure rates, in order 

to determine the limitations (constraints) which these components impose on an "ideal" 

100 



implementation of the safety strategies by the controller. We perform an analysis of the 

safety strategies to determine their robustness in the presence of failures in the 

components ofthe plant interface, i.e. failures of sensors and actuators. This phase leads 

to the production of the Safety Plant Interface Specification, which contains the robust 

safety strategies (a robust safety strategy is a modification of a safety strategy 

incorporating the limitations of the sensors and actuators to be deployed). 

5.4.3.1. Behaviour of Sensors and Actuators 

In this section we are concerned with the analysis ofthose sensor or actuator failures that 

have an adverse affect on the safety of the system. For that the behaviour of sensors and 

actuators is specified in terms of their standard, exceptional and failure behaviours. The 

motivation for adopting such a partition is to attempt to characterise the complete 

behavioural space of sensors and actuators. The different categories of behaviour can be 

obtained by employing appropriate techniques. By specifying the failure behaviour of 

the sensors and actuators we are also able to establish how the system can be made more 

robust in the presence failures of these components. The specification ofthe exceptional 

behaviour of a sensor or actuator takes into account those situations when it becomes 

impossible for them to deliver the specified standard behaviour. A sensor or actuator 

instead of failing to provide any predictable service, notifies another component of the 

system by raising an exception. 

The specification of the complete behavioural space of sensors and actuators involves 

specifying the anticipated values (RV~) and unanticipated values (RV~) of system 

variables, in terms of their ranges, and stipulating the standard, exceptional, and failure 

behaviour of the sensors and actuators. In order to sketch a model for the behaviour of 

any such component (either a sensor or an actuator) we define vi as the input variable 

and vo as the output variable of the component. The model follows an approach adopted 

for specifying the standard and exceptional behaviour of software components /Cristian 

89/. 
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For component CMlet RVyj= RV~jU RV~jbe the set of values that may be inputs for CM 

and RVyo be the set of values returned by CM. The behaviour of CM is defined in terms 

of partial relations over RV~jX RV~o. The standard behaviour is defined by relation 

SS(CM): 

SS(CM) = {(vi,vo) I vi E RV~j /\ vo is an intended outcome for vi}. 

For component CM we specify the set of exceptions as E. For each exception e E Ewe 

specify the exceptional behaviour for CM by the relation ESe (CM): 

ESe(CM) = {(vi,vo) I vi E RV~j /\ vo is an intended outcome for vi for e}. 

We will say that component CM has failed if its behaviour is not contained within the 

relation SSe CM) or a relation ESc (CM). The failure behaviour is specified by the relation 

FS(CM): 

FS(CM) = {(vi,vo) I vi E RV~j /\ (vi,vo) $. SS(CM) /\ 

'TIe E E: (vi,vo) $. ESe (CM)}. 

The failure behaviour of a component is identified by conducting a failure modes and 

effect analysis (FMEA). A FMEA is used to analyse all component failure modes and 

to identify the resulting affect on the system /Wells 80/. We denote the set of anticipated 

failure modes as FM; and for each failure mode at E FM, we specify the failure 

behaviour by the relation FSaj(CM): 

FSaj(CM) = {(vi,vo) I vi E RV~j /\ VO is an outcome for vi in aft· 

The anticipated failure behaviour will be a subset of the failure behaviour: 

U af E FM FSaj(CM) ~ FS(CM). 

In the above definitions, we have concentrated on relationships in the value domain. 

However, for many practical systems it will be necessary to extend the specification to 

incorporate the relationships that exist in the time domain !powell 92/. 
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At the interface level, we are concerned with modelling the properties of sensors and 

actuators, the impact of failures occurring in either the physical process or controller, 

and their ability to maintain safe behaviour. Again, to perform this analysis we need a 

descriptive formalism in order to specify the behaviour of a component in isolation, 

either by using pre/post-conditions or relations. 

5.4.4. Safety Controller Analysis 

During this phase the specifications from the previous phase, namely the robust safety 

strategies, are analysed in terms of the properties of the controller, such as the top level 

organization of the controller components and their failure rate. This phase leads to the 

production of the Safety Controller Specification, containing the safety controller 

strategies (a safety controller strategy is a refinement of a robust safety strategy 

incorporating some of the components of the controller). The Safety Controller 

Specification is the main product of the requirements analysis, and provides the basis for 

subsequent development of the system. 

5.4.4.1. Proposed Formalism 

The general features which are required for a formalism to be appropriate for this phase 

are the following: the specification should be able to represent the architectural design 

of the controller, modelling the interactions between its components, and the operations 

that must be performed by these components. To perform this we need an operational 

formalism which explicitly specifies concurrency and non -determinism. In this thesis, 

as an operational formalism, we use Predicate-Transition nets (PrT nets) /Genrich 87/, 

a form of high -level Petri net, during the Safety Controller Analysis. Pet~i nets are 

mainly used for the modelling and analysis of discrete-event systems which are 

concurrent, asynchronous, and non -deterministic. The use of PrT nets, instead of 

(Timed) Petri nets /Leveson 87/, adds to the modelling power of the latter the formal 

treatment of individuals (i.e. the notion of token identity) and their changing properties 

and relations. 
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5.4.4.2. Proposed Time Structure 

For the analysis of timeliness requirements during the Safety Controller Analysis we 

propose the use of a discrete time structure. The choice of using a discrete time structure 

seems natural, in the sense that it is the most convenient and expressive model of time 

for discrete computation. The timeliness analysis to be performed at this phase is 

essentially related to the safety requirements of the safety controller. 

The controller behaviour can be viewed through a sequence of conceptual layers (or 

levels of abstraction) in which the passage of time is represented by discrete time 

structures with different granularities. The granularity of each layer is dictated by the 

timing constraints associated with the occurrence of events ofthat layer. The relationship 

between discrete time structures with different granuralities is discussed in section 3.2.2. 

The safety controller time structure is a discrete time structure (defined as a tuple CJ" 01= 

(CP, + » isomorphic to the Integers (I). 

5.4.4.3. The E/A Model in the Safety Controller Analysis 

In terms of timeliness requirements, during the Safety Plant Analysis, the E/A model was 

employed with the aim of understanding the temporal behaviour ofthe physical process, 

in terms of quantitative relationships, and to identify those timing thresholds which will 

be part of the safety strategy. The application of the E/A model during the Safety 

Controller Analysis has the purpose of capturing the behaviour of the components of the 

controller in terms of the tasks (actions) that they have to execute. The E/A model 

behaviour of the component is obtained by successively refining the safety plant interface 

specifications. In terms of the time domain, the behaviour ofthe components should take 

into account the timing thresholds defined during the Safety Plant Analysis, and the time 

uncertainties introduced by the sensors and actuators. 

For every component, together with the specification of its standard behaviour, the 

component's failure behaviour should also be specified. (This failure behaviour might 
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be characterized by the component failing to execute an action within the specified 

timing constraints.) Once the failure behaviour of the component is known, error 

handling mechanisms, such as exception handling, can be incorporated with the 

component, in order to allow corrective measures to be taken whenever a error is 

detected. The advantage of considering such error handling mechanisms at this early 

stage is that these mechanisms can be specified and verified within the context of the 

safety controller strategies, instead of implementing ad hoc approaches to handle errors 

during the later phases of system development. 

5.4.4.4. Animation 

At this stage of the analysis, we can conduct the Animation of the Safety Controller 

Specification which enables the user of the system to check if the safety controller 

strategies do indeed capture the intended behaviour, and are consistent with the mission 

requirements. In our approach this is achieved by simulating the PrT net models of the 

physical process, plant interface, and safety controller. The animation provides a 

concrete manifestation of the abstract models, thus enabling the user to exercise the 

specifications in defined scenarios, and visualize different options in the refinement of 

the specifications. It is certainly possible to envisage a requirements validation system 

which would support and facilitate user interaction with the formally expressed 

requirements specification by presenting a user friendly graphical interpretation of an 

operational formalism. 

5.5. Safety Specification Graph 

The specifications produced during requirements analysis are recorded in a formal 

structure, referred to as a Safety Specification Graph (SSG). An SSG is a linear graph, 

in which a node represents a specification and an edge denotes a relationship between a 

pair of specifications. Since the analysis is by repeated refinement, an SSG is directed 

and acyclic. For those systems whose behaviour is described in terms of modes of 

operation, a separate SSG is constructed for each mode. 
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5.5.1. Structure of SSG 

By examining how the specifications are obtained from the framework for requirements 

analysis, structural properties of an SSG can be deduced. 

• Distinct component graphs. The derivation of the safety specifications starts from 

the identification of the potential accidents, hence each accident represents a root 

from which other safety specifications are derived. This is reflected in the SSG by 

the construction of a distinct component graph for each accident. 

• Evolutionary graph. Each component graph is an evolutionary graph (a graph 

whose nodes and edges are formed by addition or removal !Marshall 71/), in which 

the evolution is related to the phases of the framework. At each phase, a set of 

nodes (representing the specifications produced) is added to the graph of the 

previous phase, and edges are introduced connecting the additional nodes to what 

were the terminal nodes of the graph. 

• Layered graph. A component graph organizes the safety specifications into layers. 

From the framework presented in section 5.4, a six layered graph is envisaged. The 

top most layer, relating to the environment level, represents an accident (AC). 

Layers two, three and four, relating to the plant level, represent hazards (HZ), 

safety constraints (SC) and safety strategies (SS), respectively. The fifth layer, 

relating to the plant interface level, represents the robust safety strategies (RSS). 

The bottom layer, relating to the control system level, represents the safety 

controller strategies (SCS). 

5.5.2. Relationships of SSG 

The SSG encodes and records the relationship between safety specifications at 

consecutive layers of component graphs; three sorts of relationships are identified: the 

absence of all of the hazards associated with an accident should ensure that the accident 

does not occur; a safety constraint should imply the negation of the hazards which it 
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addresses; and a strategy is intended to maintain the specifications (of the previous layer) 

to which it is linked. 

When more than one strategy is related to a specification in a previous layer, then either 

the strategies are exclusive alternatives and a choice will have to be made in later phases 

of development to select and refine a single strategy, or the strategies complement each 

other and all are needed to attain sufficient confidence that the risks are acceptable. 

These two situations are distinguished by annotating the edges with a "EB" in the 

exclusive case, and a "0" in the complementary case. The general structure of an 

example SSG is given in figure 5.2. 

Tl T2 

AA 
ssr1 sT,2 ~ SSj,2,l SSj,2,2 

RSSfl,l,1 RTL21 

SCSi,l,l,l,l SCSi,l,2,l,l 

Hlq{j)-l 

SCi,q(i)-l 

Hrq{j) 

T{j) 

A 

ACp 

RSS' (") 1 1 RSSi,q(i),1,2 

A 
SCSi,q(i),l,l,l SCSi,q(i),l,l,2 

Figure 5.2 Example 9f a safety specification graph. 

5.5.3. Role of SSG 

The structured record of the safety specifications embodied in an SSG will provide 

assistance for subsequent certification and maintenance activities. The SSG can also 

assist in a number of specific tasks. 
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• Qualitative Analysis. Support is provided by establishing the relationships (which 

follow from the edges of the component graphs) that must be confirmed to ensure 

that the specifications maintain safe behaviour. 

• Modification. A key concern when strategies are modified is traceability, that is the 

ability to trace back from a specification to its origins and to trace forwards to the 

specifications which are derived from it. Support for traceability is provided by 

constructing reach ability matrices and adjacency matrices of an SSG, determining 

respectively the set of safety specifications reachable and adjacent to a given safety 

specification. This enables the localization of the side-effects of a modification 

and the identification of relationships that must be reconfirmed, thereby increasing 

the assurance that when changes are necessary they will be complete and 

consistent. 

• Analysis of Assumptions. The structure embodied in the SSG can be used to record 

the dependencies of the relationships on the assumptions over the domains. This 

record of dependencies can also be used to trace the consequences of establishing 

specifications based upon discredited assumptions (i.e. those to which subsequent 

analysis associates low confidence), such as the need to reconfirm conditions or 

re-evaluate identified options. 

5.6. Quality Analysis of Safety Specifications 

One important aspect of determining the quality of the specifications for critical 

real -time systems is the risk analysis of the safety specifications; this aims to determine 

if the contribution of the software to the overall system risk is acceptable. In order to 

achieve this aim, a bridge has to be established between the risk analysis of the system 

and the software. In the context of the methodology described here, this bridge is 

established through the SSG by formal links between the system requirements and the 

software requirements. To perform the risk analysis, those circumstances which can 

violate a specification, and thereby cause the system to enter into a hazard state, have 
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to be identified and their probability of occurring calculated. Once the risk is quantified 

we are able to judge whether the risk associated with a specification is acceptable or not 

(risk assessment). If not, the specification has to be modified or combined with other 

specifications in order to reduce the risk. As a result, we obtain a more robust safety 

specification, a specification that can be violated only within an acceptable level of risk. 

It should be noted that the risk analysis presented in this section does not take into 

account the consequences of an accident, and thus all accidents are considered to be of 

equal severity. 

During the operation of the system, the occurrence of an initiating event (an event which 

can lead the system into a hazard state) of an accident sequence !MoD 91/ distinguishes 

two kinds of system state: safe and unsafe states. The definition of an initiating event 

ensures that a hazard cannot occur subsequent to a safe state if no initiating event occurs. 

In terms of the requirements specifications, the concept of an initiating event thus refers 

to those circumstances which can initiate and lead to the violation of a safety 

specification. 

The quality analysis of the requirements, in each domain of analysis, is performed from 

two different perspectives: qualitative and quantitative. The purpose of the qualitative 

analysis is to identify those circumstances which can lead to a specification being 

violated, and analyse the impact of these violations upon the safety of the system. Such 

circumstances must entail either the violation of the assumptions upon which a 

specification is based or the violation of safe states which are related to a particular 

specification. The quantitative analysis complements the qualitative analysis by 

attaching occurrence probabilities to these circumstances. In order to ensure that 

essential system behaviour is not precluded, the restrictions that a safety specification 

will impose on the mission of the system must also be considered. 
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5.6.1. Qualitative Risk Analysis 

At each level of abstraction, analysis is conducted over safety specifications (descriptions 

of safe behaviour at the level) and assumptions (properties assumed at the level). In the 

proposed approach the qualitative analysis is conducted in two stages; firstly we perform 

a preliminary analysis based on verification and validation, and secondly we conduct a 

vulnerability analysis of the safety specifications. 

5.6.1.1. Preliminary Analysis 

Preliminary analysis aims to confirm the quality of the safety specifications by the 

verification and validation of the SSG. Verification is the process of checking that the 

safety specifications are internally consistent (i.e. the requirements captured by the 

specifications are not contradictory), and that they conform to the specifications 

stipulated at the previous layer. Validation is the process of checking that a safety 

specification accurately reflects the requirements and constraints imposed on the system 

by the user, or some other authority, and does not conflict with the mission requirements. 

Thus, the use of these terms conforms to the increasingly common interpretation: 

verification refers to checking that "the system is built right" whereas validation refers 

to checking that "the right system has been built". 

A result of the preliminary analysis is that consistency conditions and safety conditions 

are confirmed. The consistency conditions are those conditions that must be established 

at each layer of the SSG to confirm that the safety specifications (which relate to the 

system in a particular mode) are not in conflict with each other (horizontal checks). The 

safety conditions are those conditions that must be established between different layers 

of the SSG to confirm that safety (absence of hazards) is maintained down the SSG 

(vertical checks); the actual relationships that need to be confirmed, to ensure 

compliance between the layers, are determined from the edges of the SSG. 

At each layer, any assumptions required to confirm the relationships depicted by the 

edges of the SSG are recorded. As an example of the safety conditions that must be 
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verified, we examine the edge (from the SSG in figure 5.2) that connects the safety 

constraint SCi,l to the safety strategy SSi,!,l' Let us suppose that the strategy is based 

upon assumption A (a property of the physical process); the relationship to be confirmed 

is then: 

A A SSi 1 1 ~ SCi 1 , , , /1 

A result of the preliminary analysis is that the circumstances under which safe behaviour 

is maintained are clearly scoped and organised to reflect their contribution to safe 

behaviour at the different levels of abstraction. This activity ensures that the knowledge 

gained during the development and validation/verification of the safety specifications 

can be applied effectively during the subsequent risk analysis. 

5.6.1.2. Vulnerability Analysis 

After performing the preliminary analysis of the safety specifications, the second aspect 

of the qualitative risk analysis consists of performing a vulnerability analysis of the 

specifications; this probes each safety specification, and its associated assumptions, to 

identify any circumstances under which the specification is unable to maintain safe 

behaviour, i.e. the violation of that specification. Once these circumstances are 

identified, the safety specifications can be modified to become more robust against 

possible violations. An initial step in the vulnerability analysis is to negate the 

relationships obtained during the preliminary analysis and to identify any system states 

which can lead to occurrence of these circumstances. 

For the relationship /1, the logical assertion is negated and those plant states (PS) which 

can lead to the violation of SCi,! are identified: 

.., SCi,! ~ ( .., SSi,l,l A PS) V ( .., A A PS ) 12 

For this relationship, which is associated with the plant level, the subsequent 

vulnerability analysis of the safety strategy SSi,l,l will identify those conditions that can 

lead to the violation of SQ,l. 
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Although logical formulae are useful in obtaining a high -level view of the relationship 

between the specifications and assumptions, such formulae provide limited support for 

a failure analysis. A suitable representation, for such an analysis, is one which supports 

the identification of possible failure behaviours that can lead to the identified hazardous 

states. In this thesis, to perform the vulnerability analysis ofthe safety specifications, we 

employ fault tree analysis (FrA) Nesely 81/ which has been used extensively in the 

analysis of system safety and more recently in the analysis of software safety ILeveson 91/. 

A key feature of fault tree analysis which makes it suitable is that the analysis is restricted 

to the identification of system components and conditions that lead to one particular 

undesired system state. 

To construct a fault tree for the relationshipj2, the initial step is to identify the undesired 

state, in this case the negation of the safety constraint SCi,l, and then to determine the 

set of possible causes which can lead to the undesired state (refer to figure 5.3). For the 

logical formulaj2, we identify the violation of the assumption and the violation of the 

safety strategy SSi,l,l. The latter has to be further refined in order to identify its primary 

events. 

Figure 5.3. Fault tree for relationship f2. 

Qualitative risk analysis provides a basis for obtaining more robust safety specifications 

which will lead to a risk abatement of the overall system. In the approach adopted, the 
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analysis is performed by employing both formal analysis and fault tree analysis in order 

to determine the weaknesses of the safety specifications. Once these weaknesses are 

identified the safety specifications can be modified to incorporate mechanisms which 

aim to reduce their vulnerability. 

5.6.2. Quantitative Risk Analysis 

In this section we discuss how a quantitative analysis can complement the qualitative 

analysis by introducing a measurement of confidence in the quality of the safety 

specifications. While the latter analysis identifies circumstances which can lead to the 

violation of the specifications, the former associates probabilities to these 

circumstances. 

Although the qualitative approach strives to achieve total assurance for the safety 

specifications, there are three basic limitations which indicate that this aim may not be 

realised. A first limitation stems from the process of capturing user requirements: some 

faults introduced during the requirements stage may not be removed during the 

verification process, nor can it be guaranteed that all such faults will be removed during 

validation. A second limitation arises from observing past experience in the utilization 

of formal techniques, which shows that a formal verification may itself contain faults 

/Miller 90/. The third limitation is related to the confidence that can be placed on the 

assumptions upon which a specification is based. From these limitations we infer that 

even after performing the qualitative analysis we are still faced with uncertainties 

concerning the quality of the safety specifications, and hence it is still necessary to 

quantify these uncertainties in order to obtain a measurement of confidence in the 

quality of the safety specifications. In other words, the aim is to obtain an early prediction 

of the contribution of the software to the risk of the system. 

The quantitative approach proposed here will not address the first two limitations 

mentioned above, which have been treated elsewhere /Ramamoorthy 85/. Instead, our 

concern is with the assumptions that are usually made in obtaining a mathematical model 
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of the real world. For example, for applications such as process control systems, if an 

assumption about the behaviour of the physical process is violated, the probability of a 

hazard occurring could very easily increase when the actual behaviour of the physical 

process starts to deviate from the behaviour expected on the basis of the defective 

assumption. 

In this thesis, in order to perform the quantitative evaluation of the safety specifications 

we employ fault tree analysis techniques Nesely 81/. Although fault tree analysis is 

mainly considered to be a technique for qualitative analysis, it is nevertheless often used 

for quantitative evaluations. In the qualitative approach, an undesired state (hazard 

state) is specified, and the system is analysed in terms of its requirements and its 

environment in order to find all possible ways that the undesired state can be reached. 

The quantitative approach calculates the probability that the system will enter an 

undesired state based on probabilistic information about the occurrence of primary 

events (events that have not been further refined, and for which probabilities have to be 

supplied). Once the minimal cut sets (the smallest combination of primary events which, 

if they all occur, will lead to an undesired state) are obtained the quantification of the 

fault tree is straightforward. 

Fault tree analysis techniques have been employed in the various development stages of 

safety-critical software /Leveson 91b/. In this work fault tree analysis techniques were 

used in the quantitative evaluation of the safety specifications, however, other 

alternative methods, such as Markov models and stochastic Petri nets, could have been 

used. Another remark concerns the fact that, the type of quantitative evaluation 

performed on the safety specifications differs from other evaluations more usually 

performed on software, such as the use of reliability growth models to predict the 

reliability of software /Laprie 91/, in the sense that, our basic intention is to obtain a 

higher confidence in the quality of the safety specifications before proceeding to other 

phases of software development. However, only recently has some work been performed 
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in estimating the reliability of software at the early stages of the development IWohlin 

92/. 

To associate occurrence probabilities to those circumstances which can lead to the 

violation of the specification, such as plant states and violation of assumptions, might not 

be a difficult task. On the other hand, associating occurrence probabilities to the 

violation of certain conditions which depend on a software implementation is more 

problematic because during the requirements phase of software development sufficient 

design and implementation information is not yet available. Instead of estimating the 

probability of a condition to be violated, target probabilities demanded from the higher 

level safety specifications such as hazards, can be used. However, once a specification 

is sufficiently detailed, currently available techniques which attempt to make early 

predictions of the software reliability can be used, such as: metrics /Ramamoorthy 85/, 

product-in-a-process ILaprie 92/, and execution of the specifications IWohlin 92/. 

In the following we describe an approach to conduct the qualitative analysis of the safety 

specifications which matches the framework for requirements analysis. During the first 

phase, the Safety Plant Analysis, the assumptions associated with the safety strategies are 

identified and quantified in terms of the probability of being violated. At this level of 

abstraction, these assumptions, which are the physical laws and the rules of operation, 

are violated when they cease to represent the actual behaviour of the plant. In the second 

phase, the Safety Plant Interface Analysis, the quantitative approach to assurance is 

performed in terms of the properties of sensors and actuators, such as the uncertainties 

in value and domain, and their probability of failure. In the third phase, the Safety 

Controller Analysis is performed in terms of the properties of the components of the 

system, and their probability of failure. 

5.6.3. Risk Assessment 

Another stage of the quality (risk) analysis is to perform the risk assessment of the safety 

specifications. This is ajudgement based on the estimated risk which provides guidance 
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for high level decisions, usually associated with the process of requirements analysis. The 

results obtained from the quantitative analysis should be considered as a relative 

measurement of how effective a given strategy is in reducing the risk of a hazard, 

compared to the results obtained for alternative strategies. Hence it is most useful in 

determining which strategy or combination of strategies is most suitable for the risks 

involved (the choice of a strategy might also be influenced by constraints imposed by the 

implementation, e.g. availability of sensors and actuators with the required properties). 

Also, ifthe utilization of more than one strategy is required, this preliminary risk analysis 

facilitates the search for a suitable combination of the available strategies in order to 

avoid common mode failures. 

By performing a quantitative assessment of the requirements specifications, we are able 

to analyse the feasibility of further development of the software. The feasibility analysis 

of a software specification represents the study performed to determine if the production 

of software that implements the software specification should proceed, or not. The 

primary concerns are mainly in terms of economic factors, such as whether the 

development costs will be recuperated from the service provided, and do the benefits 

outweigh the risks, as well as technical factors, such as system complexity and system 

novelty. The feasibility analysis of the software specification is based on: 

a. the level of confidence, or the evaluation of effectiveness /Leveson 90/, 

of the formal and informal analysis of the safety requirements; 

b. a prediction of the achievable and certifiable system reliability. 

As far as the first issue is concerned, little work has been done until now; the challenge 

here is to find metrics which would allow a probabilistic measure to be derived from the 

approaches employed in the qualitative assessment of the safety requirements, so that 

we can quantify the level of confidence that can be placed on the qualitative assessment. 

The second issue is closely related to the application of software reliability models to the 

phase of requirement analysis; however, two major concerns may be raised /Musa 90/: 
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a. how accurate are the reliability predictions made at this time? 

b. is the effort of modelling the reliability at this stage worth it? 

For the first concern, new approaches have been proposed /Laprie 92/ which could allow 

the evaluation of software to levels above what can be attained using current methods; 

these new approaches include product-in-a-process assessment which incorporates 

information concerning the development process, and also utilises historical 

information from previous products when there is a gradual evolution in the products. 

For the second concern, a significant benefit obtained by performing a reliability 

assessment at the requirements stage is that it provides an early prediction of the 

attainable reliability for the system, which can be used as an early warning mechanism 

for the detection of difficult (and high risk) systems. The high cost of critical real-time 

systems and the risk associated with the production of the software for such systems 

provide support for the suggested use of reliability assessment at the requirements stage. 

5.7. Mission and Safety Analysis 

The primary aim of the quality analysis presented in this thesis is to reduce the system 

risk. However, it is usually impossible to maintain a complete dichotomy between the 

mission and safety aspects, and it would be futile to impose safety requirements which 

were so stringent that the system could not satisfy its mission. To complement the risk 

analysis, the impact of the safety specifications on the mission of the system must also 

be considered. Such an analysis involves relating the different safety specifications to the 

mission requirements that can be affected by them. If analysis of the mission 

requirements follows the framework described in section 5.3, leading to the construction 

of a Missioll Specification Graph (MSG), a comparison between the safety specifications 

and mission specifications (requirements specifications for the mission) is made 

possible. During the development of a robust safety specification it would be possible to 

identify the mission specifications that may be influenced by that specification by 

inspecting the variables that it constraints and relating these variables to the mission 
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specifications at the same level of abstraction. Once the relevant mission specifications 

have been identified an informal analysis of the restrictions that the safety specification 

imposes on the mission can be conducted. An example of such an analysis is presented 

elsewhere Ide Lemos 92b/. 

5.8. Concluding Remarks 

In conclusion, the aim of this chapter was to present a methodology for the requirements 

analysis of critical real-time systems, based on the application of formal techniques. 

The framework of the methodology is divided into domains of analysis, where for each 

domain we identify the activities to be performed. The general approach adopted for the 

methodology attempts to follow closely the usual practices in system engineering, 

specifically for process control systems. For each domain the analysis of different views 

of the requirements can be performed independently, by applying the most appropriate 

method. 

Also in this chapter we have described the means which allow us to assess, qualitatively 

and quantitatively, the quality of the safety specifications. The qualitative analysis aims 

to verify and validate the safety specifications, and the quantitative evaluation aims to 

measure the probability of a hazard occurring due to the impact of violations of the 

assumptions, and the failure rates of sensors and actuators and controller components. 

The adoption of a framework for requirements analysis and a hierarchical structure for 

the safety specifications facilitates this quality assessment, by enabling the analysis to be 

performed in clearly defined stages. The approach to the quality assessment of safety 

specifications presented in this chapter either provides evidence that the safety 

specifications cannot achieve the quality that is required, or increases confidence that 

the required quality has been attained. 

The general methodology has been shown to be feasible and practical by applying it to 

a set of case studies, such as a train set Ide Lemos 92b/, a chemical batch processing plant 
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/Anderson 93/, and a nuclear power reactor /Saeed 93/. In the next chapter the case study 

of the train set will be discussed in detail. 
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6.1. Introduction 

Chapter 6 

Case Study: lrain Set Example 

In this chapter, the aim is to exemplify some of the concepts of the methodology for the 

requirements analysis of critical real-time systems, by means of a case study. The 

adopted case study is that of a train set crossing, which raises safety-critical issues that 

are similar to those found at the traditional level crossing (i.e. road - rail) /Gorski 86, 

Leveson 87/. The main reason for choosing this case study is the availability in the 

Department of Computing Science of a large train set /Conner 90/ which permits the 

implementation of the requirements specifications produced from the analysis 

conducted. Another obvious benefit from using a train set instead of a real railway system 

is that safety specifications can be analysed and implemented without endangering the 

travelling public. Apart from the train set crossing, the methodology has also been 

applied to the requirements analysis of other case studies. In / Anderson 93/ we presented 

two case studies which showed how the methodology can applied to hybrid systems: the 

theoretical "cat and mouse" example /Maler 92/, and a chemical batch processing plant 

/Saeed 90/. In another paper, we discuss the usefulness of applying formal methods in the 

requirements analysis of a nuclear reactor /Saeed 93/. 

In this case study we intend to illustrate the following features of the methodology. In the 

next four sections, we present, in terms of the train set crossing, the activities that have 

to be performed in the different phases of the framework, together with the qualitative 

analysis; whenever temporal analysis is required we employed the concepts of the E/A 

model. In section 6, the requirements analysis is summed up by presenting the safety 

specification hierarchy of the case study. In section 7, the quantitative assessment of the 

safety strategy of the crossing section is presented. Finally, in section 8, we present 

concluding remarks. 
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6.2. Conceptual Analysis 

The physical process of the example case study consists of two track circuits Cp and Cs, 

and two types of trains - primary (Trp) and secondary (Trs). The circuits are divided into 

sections (numbered in a clockwise direction) and there are two separate crossing 

sections CC(c,a) and CC(c,b) at which the circuits intersect (i.e. a section that is part of 

both circuits). Trains of type Trp travel around circuit Cp and trains of type Trs travel 

around circuit Cs. Both types of train travel in one direction (clockwise) only, hence 

trains cannot reverse around the circuits. The longest train is shorter than the smallest 

section. A crossing section is that part of the track which consists of the sections (one from 

each circuit) at which the two circuits intersect. The circuits Cp, Cs and the crossing 

sections CC(c,a) and CC(c,b) are illustrated in figure 6.1. 

CC(C,b)~ Cs 

CP/~ " 
(( l' 
\,~J 

CC(c,a) 

Figure 6.1. The train set circuits and crossing section. 

As far as the safety requirements are concerned, several accidents are possible with this 

system, but we only consider the following two accidents: 

a. trains of the same type collide; 

b. trains of different type collide. 

The mission requirements for the train set have to ensure that all trains complete their 

journeys, while allowing all (legitimate) concurrent movements of the trains. This 

mission is in fact a special case of the Merlin - Randell problem /Merlin 78/, which is 
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concerned with train journeys on arbitrary tracks. This problem has been heavily studied, 

and involves a complex analysis of synchronization strategies /Koutny 86/. A special case 

of synchronization is that the primary trains must always take priority over the secondary 

trains at the crossing sections - that is, a primary train must not be made to wait for a 

secondary train (c.f. priority of trains over road vehicles at a level crossing). Although 

in this work we are primarily concerned with the analysis of the safety requirements, the 

above priority mission requirement for priority of trains will be considered in detail in 

order to show how the analysis of timeliness requirements is performed in the proposed 

framework. 

For the train set, one of the main advantages in separating the mission requirements 

from the safety requirements is that synchronization issues can be ignored in the analysis 

of the safety controller. As a result issues involving problems of optimal use of the 

sections of the tracks, routes of the trains, and to start moving stopped trains can be 

ignored during the analysis of the safety requirements. By focusing on the safety issues 

only, a thorough verification of the safety controller specification becomes practical. 

However, as will be shown later, the mission requirements must still be considered in 

order to ensure that any safety specifications do not lead to inconsistencies with the 

mission requirements. 

6.3. Safety Plant Analysis 

The Safety Plant Analysis is concerned with the identification of hazards, safety 

constraints, and the definition of safety strategies. We consider each potential disaster 

separately. 

General Model 

The type of circuit is denoted by c E L, L = {p, s}, the crossing section by r E R, R = {a, 

b}, the trains which run on Cc are denoted by x,y E Trc = {I, ... ,Ntc} (Ntc is the number 

oftrains in a circuit), the sections of Cc are denoted by i;j, k, m, II ESc, Sc = {a, ... ,Nsc} 

(Nsc is the number of sections in a circuit), and the velocity of a train is denoted by u, v 
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E V, v = {u E RIO < u < Vm} (Vm is the maximum velocity of a train). Addition ffi 

and subtraction e on circuit section numbers are performed modulo the number of 

sections of the circuit. The danger zone on circuit Ce for CC(e,r) is defined as: DZ(e,r) 

= {CC(e,r) , CC(e,r)ffi 1}. The danger zones DZ(p,r) and DZ(s,r) for a crossing section 

CC(e,r) are illustrated in figure 6.1. We define two functions dmax(e,ij) and dmin(e,ij) 

which give the maximum and minimum distance that a train in section i must travel to 

enter sectionj on circuit Ce. That is,dmax(e,ij) gives the distance to sectionjwhen a train 

is at the start of section i, and dmin(e,ij) the distance when a train is at the end of section 

i. The behaviour of the system is captured by three state variables Ptrain, Rtrain and 

Vtrain (a continuous variable) described below. 

No. Name Range Comments 

Pl Ptrain SpN1PXSsN1S The position of each train expressed as a section number, 
that is, the section containing the front of a train. 

P2 Rtrain RpNrp X RsNrs The reservation sets of the trains, where Rc = 'P(Sc). 

P3 Vtraill 0 Nrp+Nrs) The velocity of the trains. 

The behaviour of trains is captured by the state variable Ptrain(e.,x) which denotes the 

position of train x on circuit Ce. In the general model of the train set it is assumed that 

the position of the front of the trains is known at any time point during the system lifetime 

(captured by Ptrain ). Hence, at the start of the system lifetime the fronts of the trains are 

positioned in specified known sections. 

At this stage we introduce the notion of a "reserved section", which is a section that is 

reserved by a train, implying that other trains cannot either enter or reserve it. The notion 

of reserved sections of a train is captured by the state variable Rtrain(e.,x) which denotes 

the reservation set of train x on circuit Ce. The velocity of a train is captured by the state 

variable Vtrain(e.,x) which denotes the velocity of train x on circuit Ce. rH is the set of 

all functions H: T- SpNtp X SsNts X RpNtp x RsNts x 0 Ntp+Nts); these functions define an 

history, that is a mapping from each time point in the system lifetime to a system state. 

A history from rH satisfies a safety specification, if and only if the system (respectively 
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history) predicates that describe what are invariant (respectively history) relations for 

that history. 

For the train set we identify two rules of operation: 

a. trains oftype Trp travel around circuit Cp and trains of type Trs travel around circuit Cs; 

b. both types of trains travel in one direction (clockwise) and only advance one section at 

a time. 

As an example, we present the formalization of rule of operation b, as a history predicate. 

For any interval [To, T1] if the position of a train x at time point T1 does not equal the 

position of the train at time point To there must be a time point t in [To, T1] such that the 

position of train x at t is equal to the section that immediately follows the position at time 

point To. 

Hr1. "Ie E L: "Ix E Tre:[ Ptrain(e,x)(To) ;c Ptrain (e,x) (T1 ) ~ 

3t E [To, T1]: Ptrain(e,x)(t) = Ptrain(e,x)(To)E91]. 

The following assumptions are made regarding the behaviour of the trains on the 

circuits: 

a. a train will stop within a section (that is when a train is requested to stop at the 

beginning of a section, the train stops before it reaches the end of the section); 

b. the longest train is shorter than the smallest section; 

c. the average velocity of a moving trainx that travels through a section on circuit Ce has a 

lower bound of Vmin(e,x) and an upper bound of Vmax(e,x). 

The hazardous states for the collision of trains of the same type are identified by 

considering the relative positions of the trains on a circuit; a collision can only occur if 

some part of two trains are in the same section. Hence, since the longest train is smaller 

than the smallest section, a state is deemed to be hazardous if the front of one train is 

in the same, or adjacent, section as the front of another train. 
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The hazardous states for the collision of trains of different type are identified by 

considering the relative positions of the primary and secondary trains at a crossing 

section. A collision involving a primary train and a secondary train can occur only when 

both trains are in the same crossing section. Since the length of a train is less than a 

section, a train can only be in a crossing section if the front of that train is in the crossing 

section or the section that follows the crossing section. To express the hazard associated 

with a crossing section, for each circuit we introduce the notion of danger zones (one for 

each crossing section) as the set of sections in which the front of a train can be while that 

train is in a crossing section. We conclude that the hazardous states for the collision of 

trains of different type are those in which the front of a primary train and the front of a 

secondary train are in the danger zones of the same crossing section. The danger zones 

DZ(p,r) and DZ(s,r) of a crossing section CC(e,r) are illustrated in figure 6.1. 

6.3.1. Collision of Trains of Same lYpe 

Circuit Safety Constraint 

The hazardous states (HZI,I) for the collision of trains of the same type on a circuit Ce 

can be expressed, in the general model, by the system predicate: 

'tic E L: 3x,y E Trc: [x 7:- y 1\ Ptrain(c.;x) E {Ptrain(cJl)81,Ptrain(cJl)}]. 

Thus we deduce that a safety constraint of the form "for any two trains there must be at 

least one section between the sections containing the fronts of the trains" will, if 

maintained on circuit Ce, prevent the occurrence of these hazardous states on Ce. This 

safety constraint SCI,I is expressed in terms of a system predicate: 

'tic E L: 'tIx,y E Tre: [x 7:- y ~ 

Ptrain(c.;x) $. {Ptrain(eJl)81, Ptrain(c,y), Ptrain(cJl)E91}]. 

If each train has to reserve at most three sections, as a consequence we can deduce a limit 

on the number of trains in terms of the sections: Nse > 3Trc (for each circuit). 
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Circuit Safety Strategy 

Once the safety constraint SCI, 1 is specified, we have to devise a safety strategy which 

maintains SC1,1. The safety strategy SSl,l,l which we propose for a circuit Cc is based on 

a reservation scheme, and can be formalized as two system predicates: 

ssa. for any train, the current section (i.e. the position of the front of the train) and the 

section behind the current section must always be reserved for that train; 

Vc E L: Vx E Trc: [{Ptrain(c,x)81, Ptrain(c,x)} C Rtrain(c,x)]; and 

ssb. no section can be reserved by more than one train. 

Vc E L: Vx,y E Tre: [x ~ y => Rtrain(c,x) n Rtrain(c;y) = 0]. 

We say that a history H from rH satisfies safety strategy SSl,l,l if and only if rules ssa and 

ssb are invariant relations (i.e. they are satisfied at all time points in T) for that history. 

Lemma 6.1. 

A history H that satisfies the safety strategy SSl,1,l must satisfy safety constraint SC1,1. 

Proof. (By contradiction.) 

Assume 3H E rH: H sat SSl,1,1 1\ 3t E T. [H sat (Ve E L: 3x,y E Tre: 

x ~ y 1\ Ptrain(e,x) E {Ptrain(e;y) 8 1, Ptraill(c;y), Ptrain(c;y)E9l} )@t]. 

Then from rule ssa of SSl 11: , , 

H sat ({Ptrain(c,x)81, Ptrain(c,x)} ~ Rtrain(c,x) 1\ 

{Ptrain(c,y)81, Ptrain(c;y)} ~ Rtrain(c;y) )@t, 

hence H sat (Rtraill(c,x) n Rtrain(c;y) ~ 0)@t. But this contradicts rule ssb of SSl,l,l' 

Therefore VH E rH: H sat SSl,1,1 => H sat SC1,1· 

Corollary 6.2. 

A history H that satisfies the safety strategy SSl,l,l for both circuits must satisfy the safety 

constraints SCl,1 of the respective circuits. 
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Proof. Immediately from lemma 6.1. 

Circuit Safety Strategy and Mission Requirements 

The aim of the framework is to restrict the requirements analysis of safety-critical 

software to the safety issues of the system. However, it is usually impossible to maintain 

a complete dichotomy between the mission and safety requirements, because it would 

be futile to impose safety requirements which were so stringent that the system could not 

satisfy its mission. Here we consider the impact of safety strategy SSl,l,l on the mission 

requirements ofthe train set. More specifically, our aim is to check that SS111 does not , , 

lead to the definition of an over restrictive safety controller strategy; the safety controller 

should not impose restrictions on the movement of trains in addition to those imposed 

by the mission controller (except when the system enters an unsafe state). The 

restrictions imposed on the movement of trains can be stated in terms of the reserved 

sections; the upper bound in the number of sections that have to be reserved by the safety 

controller for a train should be less than the lower bound in the number of sections that 

have to be reserved by the mission controller. 

To determine the upper bound of the reservation set of the safety controller we consider 

how the reservation set of a trainx is modified as the train travels around the circuit Ce. 

Firstly, while a train is travelling in a section, the current section and the previous section 

are reserved. Secondly, we make the observation that before trainx enters a new section 

it must reserve that section, i.e. the sections Ptrain(c.,x) 81, Ptrain(c.,x) and Ptrain(c.,x) EB 1 

must be reserved. Thirdly, immediately after the front of trainx enters a new section the 

position of the train is updated, hence sections Ptrain(c.,x) 82, Ptrain(c.,x)81 and 

Ptrain(c.,x) are reserved. Therefore, in order for the safety controller not to affect the 

mission controller, an upper bound for the reservation set is: {Ptrain(c.,x) 82, 

Ptrain(e;x) 8 1, Ptrain(c,x), Ptrain(c;x)EB I}. 

From the above analysis we can conclude that the safety strategy is not too restrictive on 

the movement oftrains if the lower bound of the reservation set of the mission controller, 
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is at least {Ptrain(c.,x)82, Ptrain(c.,x)81, Ptrain(c.,x), Ptrain(c.,x)E9l}. If this condition 

could not be satisfied then the mission requirements would have to be modified or a new 

safety strategy devised. 

Here we construct a modified version of SS1,1,1, denoted by SSI,I,1 *, that includes the 

upper bound on the size of the reservation set; the two rules for SSI,I,1 * are given below: 

ssa*. 'tic E L: 'tIx E Trc: [{Ptrain(e.,x) 8 1, Ptrain(e.,x)} ~ Rtrain(e.,x) 1\ 

Rtrain(e.,x) c {Ptrain(e.,x) 82, Pf;-ain(e.,x) 8 1, Ptrain(e.,x), Ptrain(e.,x)E9l}]; 

ssb*. 'tie E L: 'tIx,y E Tre: [x ~ y =:.Rtrain(e.,x) n Rtrain(eJl) = 0]. 

Lemma 6.3. 

A history that satisfies the safety strategy SSI,I,1 * must satisfy safety constraint SCl,I' 

Proof. Follows directly from lemma 6.1, and the fact that SSI,I,1 is a consequent of 

SSI,I,1 *. 

Corollary 6.4. 

A history that satisfies the safety strategy SSI,I,1 * for both circuits must satisfy safety 

constraints SCl,l for the respective circuits. 

Proof. Immediately from lemma 6.3. 

6.3.2. Collision of Trains of Different 1Ype 

The following analysis can be applied to both crossing sections provided they are 

sufficiently far apart. That is, on both circuits there must be at least one section between 

the two crossing sections (which will ensure that the danger zones do not overlap). 

Crossing Section Safety Constraint 

Let CC(p,r) (resp. CC(s,r)) denote the number ofthe section of Cp (resp. Cs) that is part 

of CC(e,r). The danger zone for CC(e,r) is defined as: DZ(e,r) = {CC(c,r), CC(e,r)E9l}. 
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The hazardous states HZ2,1 for the crossing section CC(e,r) says that some part of a 

primary or secondary train are in the danger zoneDZ(e,r), which can be expressed by the 

system predicate: 

\;Ie E L: 3x E Tre: [Ptraill(e,x) E DZ(e,r)]. 

Thus we deduce that a safety constraint of the form "either the front of no primary train 

is in the danger zone DZ(p,r) or the front of no secondary train is in the danger zone 

DZ(s,r)" will, if maintained, prevent the occurrence of any hazardous state. This safety 

constraint SC2,1 can be expressed in terms of a system predicate: 

3e E L: \;Ix E Tre: [Ptraill(e,x) $: DZ(e,r)]. 

Assuming that we wish to have at least one train on each circuit we can deduce that Nsp 

2': 3 /\ Nss :2: 3. 

Crossing Section Safety Strategy 

The safety strategy SS2,1,1 we propose for the crossing sections is based on a modification 

of the reservation scheme. The two basic rules are formalized as two system predicates: 

ssa. if any train x on circuit e is in a danger zone then the crossing section contained within 

that danger zone is reserved for that train; 

\;Ie E L: \;Ix E Tre: [Ptrain(e,x) E DZ(e,r) ~ CC(e,r) E Rtrain(e,x)]; 

ssb. section CC(p,r) and section CC(s,r) cannot both be reserved. 

3e E L: [\;Ix E Trc: CC(e,r) $: Rtrain(e,x)]. 

We will say that a history H from rH satisfies this safety strategy if and only if system 

predicates ssa and ssb are invariant relations for that history. 

Lemma 6.5. 

A history that satisfies the safety strategy SS2,1,1 for the crossing section must satisfy 

safety constraint SC2,l. 
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Proof. (By contradiction.) 

Assume 3H E rH: H sat SS2,l,l /\ 3t E T. 

[H sat (3x E Trp:Ptrain(p,x) E DZ(p,r) /\ 3y E Trs: Ptrain(s,y) E DZ(s,r))@t]. 

Then from rule ssa of SS2 1 1: , , 

H sat (CC(P,r) E Rtrain(p,x) /\ CC(s,r) E Rtrain(s,y»@t. 

But this contradicts rulessb of SS2,1,1. Therefore VH E rH: H sat SS2,1,1 => H sat SC2,1. 

Corollary 6.6. 

A history that satisfies the safety strategy SS2,1,1 for both crossing sections must satisfy 

safety constraint SC2,1 for each crossing section. 

Proof. Immediately from lemma 6.5. 

Combination of Safety Strategies 

In terms of the two circuits and the two crossing sections the safety controller must 

implement the safety strategies for circuits Cp and Cs and for the crossing sections 

CC(c,a) and CC(c,b). Here we analyse the relationship between these safety strategies 

and the restrictions imposed on the size of the circuits and the number of trains. 

By inspecting the rules of the safety strategies we can deduce that the following three 

rules are equivalent to the conjunction of the safety strategies for the two circuits and the 

two crossing sections: 

a. Vc E L: Vx E Trc: [{Ptrain(c,x) 8 1, Ptraill(c,x)} ~ Rtrain(c,x) /\ 

Rtrain(c,x) ~ {Ptrain(c,x) 82, Ptrain(c,x)81, Ptrain(c,x), Ptrain(c,x)EBl}]; 

b. Vc E L: Vx,y E Trc: [x ¢ y => Rtraill(c,x) n Rtrain(c,y) = 0]; 

c. Vr E R: 3c E L: [Vx E Trc: CC(c,r) f/:: Rtrain(c,x)]. 

Rule a is concerned with the reservation of sections (i.e. maintaining the reservation sets) 

and rules band c impose mutual exclusion conditions over the reservation sets. We must 
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confirm that the above three rules are not in conflict. The set of states which satisfy the 

three rules are characterized by the following conditions over the relative position of the 

trains: 

\;fc E L: \;fx,y E Trc: [Ptrain(c,x) E {Ptrain(c,y) 8 1, Ptrain(c,y)} A 

\;fr E R: 3c E L: \;fx E Trc: Ptrain(c,x) ft. DZ(c,r)]. 

These states are those that satisfy the circuit and crossing section safety constraints, 

hence the restrictions on the circuit size are obtained by examining the restrictions for 

the safety constraints: Nsp ;;::: max(2Trp, 3) A Nss ;;::: max(2Trs, 3). 

The above restrictions are minimal constraints on the circuit size. For practical purposes, 

issues others than the satisfaction ofthe safety strategies must be considered, such as the 

ability of the safety controller to implement the safety strategies in the identified states 

and properties of the physical process. For example, the conditions given above do not 

preclude the possibility of a deadlock in the physical process. To prevent this situation, 

the conditions on the circuit sizes should be strengthened to strict inequalities. 

Inspection of the three rules above also gives insight into the implementation of the 

safety strategies. More specifically, the reservation sets must be maintained for each 

circuit, and mutual exclusion must be achieved for reserved sections for the sections of 

each circuit and the sections CC(p,r) and CC(s,r) (i.e. the sections that form CC(e,r». 

Crossing Section Safety Strategy and Mission Requirements 

Although safety strategy SS2,1,1 is sufficient to prevent collisions involving primary and 

secondary trains, it takes no account of the mission requirement that trains on the 

primary circuit have priority over secondary trains; there is no mechanism which 

establishes that primary trains should pass first. The priority requirement between the 

primary and secondary trains is similar to the requirement of maintaining a safe distance 

(minimal separation) between trains where the notion of sections of constant length is 

inappropriate. A typical example is the control of underground trains where the 

utilization of tracks must be optimized. The approach taken to satisfy the priority 
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requirement will be based on a comparison of the relative velocities of the primary and 

secondary trains as they approach and cross the crossing section. In the following we 

consider how the E/ A model can be used to analyse this priority requirement. To perform 

the requirements analysis the physical laws involving the velocity of the trains must be 

captured in terms of the THL model. 

Physical Laws 

In the following we present the laws (as history predicates) which capture the relevant 

relationships involving the velocity of the trains. Hr1 captures the relationship between 

intervals, the velocity and position of trains. Hr2 captures the relationship between the 

velocity of a train and the functions Vmax(c,x) and Vmin(c,x) (both of which are 

non -zero) that give the maximum and minimum average velocity of train x on circuit 

Cc. 

Hr1 - For any train, if during any interval [To, T1] the train travels more than the 

maximum distance between the section it occupies at To and section i, then the train must 

occupy section i at some time point in [To, T1]; and if the train travels less than the 

minimum distance between the section it occupies at To and section i, then the train is 

never in section i during [To, T1]' 

Vc E L: Vx E Trc: Vi ESc: 

Tl 

f Vtrain(c,x)(t)dt ~ dmax(c,Ptrain(c,x)(To),i) ~ 
To 

3t E [To, T1 ]: Ptrain(c,x)(t) = i /\ 

Tl 

f Vtrain(c,x)(t)dt < dmin(c,Ptrain(c,x)(To),i) ~ 
TO 

Vt E [To, T1]: Ptrain(c,x)(t) ;r:i. 
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Hr2 - If any train x on circuit Ce travels a distance of M (the length of the smallest 

section) during an interval [To, T1] without stopping then the average velocity 

(U/(T1- To» during [To, T1] is bounded by the functions Vrnax(e,x) and Vrnin(e,x). 

Tl 

Ve E L: Vx E Tre: J Vtrain(e,x)(t)dt = M 1\ 

TO 

Vt E [To, T1]: Vtrain(e,x)(t) ~O ~ Vrnax(e,x) :5 M/(T1- To) :5 Vrnin(e,x). 

The above laws must be validated as properties of the system, in this case by comparison 

with the behaviour of the train set; Hr1 follows from the physics of the system (and the 

definitions of drnax and drnin) and Hr2 depends on the observed minimum and maximum 

velocity ofthe trains. During the subsequent analysis these laws are treated as axioms of 

the model of the system. More precisely, henceforth we consider only those histories of 

fH for which Hr1 and Hr2 are history relations. 

E/A Model in the Safety Plant Analysis 

By inspection of rules ssa and ssb of SS2,1,1, the priority requirement can be stated in 

terms of the reservation scheme as: the section CC(s,r) cannot be reserved by a secondary 

train if any primary train may need to reserve section CC(p,r) before the secondary train 

releases section CC(s,r). 

The actions for the secondary trains and primary trains are identified by examining the 

relationship between the reservation of CC(e,r) and the position of the trains. We 

identify the following actions: 

APp(t,i) - a primary train approaches DZ(p,r) after a secondary train has entered 

CC(s,r) 8 1 (i.e. the primary train may attempt to reserve CC(p,r) before the secondary 

train will release CC(s,r». 

APs(t,i) - a secondary train approaches DZ(s,r) after it has entered CC(s,r)81 (i.e. 

CC(s,r) may need to be reserved by the train). 
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STc(t,i) - a train of type Trc has stopped in section CC(c,r) 8 1 (Le. the train was not 

allowed to reserve CC(c,r». 

CZc(t,i) - a train of type Trc is crossing the danger zone DZ(c,r) (i.e. the train must have 

reserved CC(c,r». 

The timing constraints must ensure that a secondary train cannot perform the action 

CZs(t,i) if a primary train will need to perform the action CZp(t,i) before completion 

of the action CZs(t,i). To analyse this situation in the E/A model, we describe the utility 

functions UTrp(t,i) for actions APp(t,i) and CZp(t,i), and UTrs(t,i) for actions APs(t,i), 

STs(t,i) and CZs(t,i), as illustrated by the graphs in figure 6.2. These graphs depict 

a. the case when a secondary train does not stop when approaching DZ(s,r) (Le. the train 

is allowed to reserve CC(s,r», and 

b. the case when a secondary train must stop (Le. the train is not allowed to reserve 

CC(s,r» immediately after entering CC(s,r) 8 1. 

The duration of the utility function of action ACc(t,i) for train x on circuit Cc is 

abbreviated to <5 ACc(x)' For example, <5 APs(x) denotes the duration of action APs(t,i) for 

train x on circuit Cs. 

From Hr1 and Hr2 we can infer the following bounds on the duration of action APs(t,i): 

<5~~(x)=O and <5~;;(x)= dmax(s,CC(s,r)81,CC(s,r»/Vmin(s,x). 

The duration for the actionAPs(t,i) has an upper and a lower bound since the action may 

be aborted: the minimum duration is zero since CC(s,r) 8 1 immediately precedes 

DZ(s,r), and the maximum duration occurs in the case when a train crosses the entire 

section CC(s,r)e1 at minimum velocity. 

Bounds on the duration for action APp(t,i) (assuming the train does not stop) starting at 

time point t, can be derived from Hr1 and Hr2: 
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b. A secondary train must stop at a crossing section. 

Figure 6.2. The EfA model of the priority requirement. 

o~~~(y)(t) = dmin (p,Ptrain (PJl ) (t),CC(p,r) )fVmax(pJl); and 
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0A;;(v)(t)= dmax(p,Ptrain(PJl)(t),CC(p,r»/Vmin(pJl). 

The duration for the action APp(t,i) has an upper and a lower bound since the controller 

knows that the train is somewhere in section Ptrain(PJl), but does not know exactly where 

and the velocity of the train is unknown. 

Similarly, we can infer the following bounds on the duration of action CZc(t,i) (under the 

assumption that a train does not stop in the danger zone): 

O~t:(x)= dmax(c,CC(c,r),CC(c,r)ffi2)/Vmax(c,x); and 

O~Zc(x)= dmax(c,CC(c,r),CC(c,r)ffi2)/Vmin(c,x). 

For the action CZc(t,i), since a train always travels a fixed distance related to the size of 

the sections, uncertainties in the duration of the action are entirely due to the 

uncertainties in the velocity of the train. 

Ifwe consider the behaviour of a secondary train x which is approaching the danger zone 

DZ(s,r) with respect to a sequence of primary trains approaching the danger zone 

DZ(p,r), we observe that trainx may cross the danger zone DZ(s,r) if it will cross DZ(s,r) 

before the nearest primary train y (i.e. the train that must travel the shortest distance) 

reaches DZ(p,r), which can be expressed in terms of the durations of the actions: 

Omax + omax < omm APs(x) CZs(x) APp(v)" 

In order to use the E/A model to analyse the timing constraints associated with the three 

actions of the equation above, we must analyse the parallel composition of the utility 

functions for the secondary and primary trains (i.e. Un-s(t,i) II Unp(t,i». In the following 

we identify the PEA notation for UTrs(t,i) and Unp(t,i), as depicted in figure 6.2. 

a. A secondary train does not have to stop at a crossing section: 
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b. A secondary must stop at a crossing section: 

UTrs(i)@( ) <=> UAPs(i)@( ) < USTs(i)@( ) < UAps(i+ l)@( ) < UCZs(i)@( ); 

By examination of the graphs we conclude that the action CZs(t,i) for any train x follows 

the actionAPs(t,i) for train x only if the earliest finishing time ofAPp(t,i) for all primary 

trains is greater than the latest finishing time of CZs(t,i). 

We specify the priority constraint as a history predicate that describes the conditions in 

which a secondary train cannot reserve the section CC(s,r); we say that a history satisfies 

the priority constraint if the history predicate that describes it is a history relation for that 

history. To complete the safety strategy SS2,1,1 for the crossing section we therefore add 

the priority constraint (rule sse) to the rules ssa and ssb: 

sse. For any interval [To, T]], for any secondary trainx, if CC(s,r) is not reserved by train 

x at To and during [To, T]] the maximum duration for all parts of train x to approach and 

pass the danger zone DZ(s,r) from section CC(s,r) 8 1 (when it is moving) is at least the 

minimum duration for any primary train y to approach DZ(p,r) or the current section is 

not CC(s,r) 8 1, then the section CC(s,r) cannot be reserved by train x during [To, T]]. 

't/r E R: 't/x E Trs: [CC(s,r) $. Rtrain(s,x)(To) 1\ 

't/t E [To, T]]: 3y E Trp: o~p:(x) + ocf:(x) > o~~~(y) V 

Ptrain(s,x)(t) -:;r: CC(s,r) 8 1 => 't/t E [To, T]]: CC(s,r) $. Rtrain(s,x)(t)]. 

Alternatively, this rule could be expressed in terms of the PEA notation. The timing 

constraints are then captured by the following formula, which represents a third rule sse 

for SS2 11: , , 
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VH E rH: Vx E Trs: Vi E N: Vt1r., t20 E T. 

[H sat UAPs(i)@(t1.t2,t3,t4)< UcZs(i)@(t5,t6h,ts) => 

3j E N:Vy E Trp: HsatUAPp O)@(t9ho,t11,t12) 1\ ts < t11]. 

To confirm that rule sse captures the priority requirement, we state and sketch the proof 

of the following lemma. 

Lemma 6.7 

Provided sse is satisfied, even if the primary trains never stop, the safety constraint SC2 1 , 

is maintained. This can be formally stated as: sse 1\ Vy E Trp: Vtrain(eJl) ~ 0 => SC21. , 

Proof. (By contradiction). 

Assuming that there exists a time point t in which SC2,1 is violated, this implies that the 

actions CZs(t,i) and CZp(t,i) are superimposed, which can be stated in terms ofthe utility 

functions as follows: 

3t5, t6,t7,ts,t]3,t]4,t15, t16 E T. 3x E Trs: 3y E Trp: 3i,j EN: 

[UCZs(i)@(t5,t6h,ts) 1\ UCZp O)@(t]3,t]4h5h6) 1\ 

«(t5 :::; t]3 1\ ts ~ t]3) V (t]3 :::; ts 1\ t16 ~ ts»]. 

But this contradicts rulessc. The only condition assumed over the velocity of the primary 

trains in ssc is that they are bounded by Vmax(pJl) (i.e. the earliest finishing time for 

APp(t,i) is bounded), which is consistent with the constraint that primary trains never 

stop. 

Combination of the Safety Strategy Rules 

To implement the safety strategy SS2,1,1 the safety controller must establish the rules ssa, 

ssb and ssc. We have already shown that the rules ssa and ssb are sufficient to maintain 

SC2,1, and are not in conflict, provided the number of sections of the the circuits satisfy 

certain constraints. Now we have formulated the rule ssc to maintain the priority 

requirement, therefore the conjunction of the three rules is sufficient for both SC2,1 and 
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the priority requirement provided the three rules do not conflict. Rule sse imposes 

constraints only on secondary trains; specifically it identifies those intervals during which 

a secondary train cannot reserve a crossing section. For a secondary train x in section 

CC(s,r) 8 1 to reserve the crossing section CC(s,r) under rule sse, the minimum duration 

of APp(t,i) for any primary train y must be greater than the sum of the maximum 

durations of APs(t,i) and CZs(t,i) for the train x. The definitions of actions APp(t,i), 

APs(t,i) and CZs(t,i) can be used to derive conditions under which a secondary train x is 

allowed to reserve CC(s,r) when the nearest primary trainy is in section i: 

dmin(p,i,CC(p,r»/Vmax(pJl) > dmax(s,CC(s,r) 8 1,CC(s,r)E£l2)/Vmin(s, x). 

In general, we may have any secondary trainx and primary trainy, therefore for the above 

condition to be satisfied for any pair of trains we identify the following general condition 

over the train set which says that between any pair of primary and secondary trains, the 

secondary train is allowed to reserve the CC(s,r) when from their relative positions, the 

maximum time it takes for a secondary train to approach and cross its danger zone, is less 

than the minimum time it takes for a primary train to approach its danger zone: 

3i ESp: \Ix E Trs: \ly E TIp: 

dmin(p,i,CC(p,r))/Vmax(pJl) > dmax(s,CC(s,r) 8 1,CC(s,r)E£l2)/Vmin(s,x). 

By imposing the above general condition on the train set, in addition to the constraints 

on the number of sections established for rulesssa and ssb, it is possible to satisfy all three 

rules. These would be minimal constraints on the physical process of the train set. For 

practical purposes, issues other than the satisfaction of safety strategy SS2,1,1 must be 

considered, such as the ability of the safety controller to implement the safety strategy 

in the allowed states and the impact of safety strategy SSl,1,l derived to avoid collisions 

on the circuits for which the number of trains on the circuits must be taken into , 

considera tion. 
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6.4. Safety Interface Analysis 

After establishing the safety strategies during the Safety Plant Analysis, the Safety 

Interface Analysis phase investigates how these are to be implemented by the 

components of the interface as robust safety strategies. In this section, we will restrict the 

analysis to the crossing section because of the similarity in the type of analysis that has 

to be performed in order to obtain the other robust safety strategies. 

In the physical model train set, at the beginning of every section there is a sensor that 

detects the presence of a train, and for each train there is an actuator that can stop the 

train within any section. A first step in the analysis is to identify the initiating event 

related with SS2,1,1 (the analysis for SS1,1,1 is similar to the analysis performed in the 

following).The initiating event occurs for a train x on circuit Cc for crossing section 

CC(c,r) when the train is in section CC(c,r) 8 1 and section CC(c,r) is not reserved by the 

train. 

Vr E R: Vc E L: Vx E Trc: [IE2,1,1(c,x,r) ~ 

Ptrain(c,x) = CC(c,r)81 /\ CC(e,r) t/:. Rtrain(c,x)]. 

The behaviour of the sensors and actuators is represented by two state variables SeIlS and 

Act, the observations recorded by the safety controller are held in the variable Pos, and 

the set of sections reserved by each train is recorded in the variable Res. The universal 

history set of the physical process must be extended to include these state variables. 

No. Name Range Comments 

P4 SeIlS BNsp+l XBNss+l The state of each sensor expressed as a truth value. 

P5 Act BNsp+l XBNss+l The state of each actuator expressed as a truth value. 

P6 Pos SpNtpxSsNts The position of each train as recorded by the safety 
controller. 

P7 Res RpNtp X RsNts The reservation sets of each of the trains as recorded by 
the safety controller. 

In the following we present a set of assumptions, expressed in THL, over the properties 

of the sensors and actuators and the behaviour of the physical process. 
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Sensor and Actuator Relations 

The sensor Sens(e,i) returns the value true iff a train is in section i on circuit Ce. 

Irl· 'Ve E L: 'Vi ESe: [Sens(e,i) ~ 3x E Tre: Ptrain(c,x) =i]. 

IfAct(c,x) is set throughout any interval [To, T] ], then for every time point in [To, T]] the 

position of the front of train x is the same as its position at time point To. 

Hrl. 'Vc E L: 'Vx E Tre:[ ('ift E [To, T] ]:Act(c,x)(t» ~ 

'Vt E [To, T]]: Ptrain(c,x)(t) =Ptrain(c,x)(To)]. 

Trains on the circuits are modelled as moving in steps of one section in a clockwise 

direction. 

Hr2. 'Vc E L: 'Vx E Trc: 3k ESc: [Ptrain(c,x)(T]) = Ptrain(c,x)(To)ffik 1\ 

'Vi E {a, ... , k}: 3t E [To, T]]: Ptrain(e,x)(t) = Ptrain(c,x)(To)ffii]. 

Assuming perfect sensors (Irl), and the above restriction on the movement of trains 

(Hr2) the position of trains as recorded by the safety controller is identical to the actual 

position of the trains. 

Ir2. 'Vc E L: [ 'Vx E Tre: Pos(e,x) = Ptrain(c,x) ]. 

Ir3. 'Vc E L: ['Vx E Trc: Res(e,x) = Rtrain(c,x) ]. 

In this ideal case the rules of the safety strategies and the initiating events can be 

rewritten in terms of Pos and Res by simply substituting Pos(c,x) for Ptrain(e,x), and 

Res(c,x) for Rtrain(e,x) , respectively. 

Connection between Initiating Events and Actuators 

While a trainx on circuit Cc is approaching section CC(e,r) and CC(e,r) is not reserved 

the actuator on train x must remain set. 
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Ir4· 'tIr E R: 'tic E L: 'tIx E Trc: [IE2,1,1(c,x,r) =:> Act(c,x) ]. 

Properties of the Reservation Scheme and Physical Process 

If CC(c,r) is reserved for train x on circuit Cc and the front of train x is in section 

CC(c,r) 8 1 then CC(c,r) must remain reserved for the train until it leaves danger zone 

DZ(c,r). 

Hr3· 'tIr E R: 'tic E L: 'tIx E Trc: 'tit E [To, T1]: [ CC(c,r) E Rtrain(c,x)(To) A 

Ptrain(c,x)(To) = CC(c,r) 8 1 A 

Ptrain(c,x)(t) E {CC(c,r) 8 1} U DZ(c,r) =:> 

'tit E [To, T1]: CC(c,r) E Rtrain (c,x) (t)]. 

In the initial state of the system there is no train in a danger zone or a section that 

immediately precedes a danger zone. 

Hr4. To = S(1) =:> 'tIr E R: 'tic E L: 'tIx E Trc: 

[Ptrain(c,x)(To) $. {CC(c,r) 8 1 U DZ(c,r)}]. 

The lemma below shows that the initial state of the system is a safe state, by proving that 

safety constraint SC2,1 cannot be violated subsequent to the initial state if the initiating 

event does not occur. 

Lemma 6.8 

UHrl, Hr2, Hr3 and Hr4 are history relations for a history which satisfies rulessb of safety 

strategy SS2,1,1 and during that history IE2,1,1(c,x,r) is never satisfied, then SC2,1 is 

satisfied during that history. 

Proof. (By contradiction) 

Assume 3t E T. 3r E R: 3x E Trp: 3y E Trs: 

[H sat (Ptrain(p,x) E DZ(p,r) A Ptrain(s,y) E DZ(s,r»@t]. 

From rule ssb of SS2 11 we conclude: 3t E T. 3r E R: 3c E L: 3x E Trc: , , 
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[H sat (Ptrain(crt) E DZ(c,r) 1\ CC(c,r) $. Rtrain(crt»@t]. 

From Hr2, Hr3 and Hr4 we conclude: 3t, t' E T. 3r E R: 3c E L: 3x E Trc: 

[t' < t 1\ H sat (Ptrain(crt) = CC(c,r)81 1\ CC(c,r) $. Rtrain(c,x»@t']. 

But this contradicts the assumption that 'tIr E R: 'tic E L: 'tIx E Trc: 

[H sat --,IE2,1,I(Crt,r)]. 

The lemma below shows that if the system enters an unsafe state, corrective action by 

the safety controller (specifically setting an actuator) will maintain safety constraint 

Se21· , 

Lemma 6.9 

If Hrl is a history relation for a history and during that history Act(c,x) is set whenever 

IE2,1,1(Crt,r) holds, then SC2,1 will be maintained. 

Proof. From Hrl we conclude: 'tIr E R: 'tic E L: 'tIx E Trc: 

[H sat IE2,1,1(c,x,r)@To 1\ H satAct(c,x)@[To, T1] ===> 

H satPtrain(crt) $. DZ(c,r)@[To, T1 ]]. 

Sensor and Actuator Failures 

A sensor may fail permanently and not detect the presence of a train - "miss a train", 

or detect the presence of a train that does not exist - a "ghost train", or fail 

intermittently. An actuator may fail permanently and never stop a train when required, 

or stop a train inadvertently, or fail to stop the train within the required distance, or fail 

intermittently. 

We consider only the case of sensor failures that "miss a train"; specifically we suppose 

that there can be at most m sensor failures in a sequence of sensors. To capture this failure 

assumption the relationship between the sensors and the position of the trains must be 

modified. For any mEe1 consecutive sections, i, ... , iEem, at least one of the sensors will 

still be working in the way described by Irl and if a sensor detects a train there must be 
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a train in that section, in other words, we assume the nonexistence of sensor failures that 

detect "ghost trains". 

Irs. 'tic E L: 'tIi ESc: [( 3j E N:j <m 1\ Sens(c,iffij) ~ 

3x E Trc: Ptrain(c,x)=iffij) 1\ Sens(c,i) ~ Ptrain(c,x) =i]. 

The relationship between Pos and Ptrain must also be modified to reflect the limitations 

of the sensors. If m consecutive sensors "miss a train" Pos will be m sections behind 

Ptrain. Hence, to allow for faulty sensors (Irs), the relationship between Pos and Ptrain 

must incorporate the uncertainty in position of the trains. 

Ir6. 'tic E L: 'tIx E Trc: [Ptrain(c,x) E {Pos(c,x), ... ,Pos(c,x)EBm} ]. 

Moving on to consider actuator failures, note that we cannot handle the situation when 

an actuator fails to stop a train without introducing redundant actuators. Instead, we 

examine the case of actuator failures that result in a train requiring more than one section 

to stop. More specifically, we assume that if an actuator on a train fails, then the train 

will still be stopped but may need nEB1 sections (at most) to do so (n;::: 0). 

Hrs. 'tic E L: 'tIx E Trc: ['tit E [To, T1]: Act(c,x)(t) ~ 

Ptrain(c,x)(t) E {Ptrain(c,x)(To), ... ,Ptrain(c,x)(To)ffin}]. 

The initiating event for RSS2,1,1 (IE2,1,1 Ff) is a modification of IE2,1,1 that takes into 

account the limitations of the sensors and actuators. 

'tIr E R: 'tic E L: 'tIx E Trc: [IE2,1,1(c,x,r)Ff ~ 

Pos(c,x) E {CC(c,r)8(m+n+ 1), ... , CC(c,r)ffi 1} 1\ CC(c,r) f/:. Res(c,x)]. 

Properties of the ReseIVation Scheme and Physical Process 

The reservation scheme and the condition over the initial state of the physical process 

must be strengthened to allow the safety controller to tolerate failures in the sensors and 

actuators. 
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If CC(e,r) is reserved for train x on circuit Ce and the front of train x is in the sections 

{CC(e,r)8(m+n+1), ... , CC(e,r)ffil} then CC(e,r) must remain reserved for the train 

until it leaves danger zone DZ(e,r). 

Hr6· 'tIr E R: 'tic E L: 'tIx E Tre: [CC(e,r) E Res(e,x)(To) A 

Pos(e,x)(To) E {CC(e,r)8(m+n+1), ... , CC(e,r)ffil} A 

'tit E [To, T]): Pos(e,x) E {CC(e,r)8(m+n+ 1), ... , CC(e,r)EB l} U 

DZ(e,r) ==> 'tit E [To, T]): CC(e,r) E Res(e,x)(t»). 

The initial state of the system must be such that there is no train in an extended danger 

zone or the n ffi 1 sections that immediately precede a danger zone. 

Hr7. To = SeT) ==> 'tIr E R: 'tic E L: 'tIx E Tre: 

[Pos(e,x)(To) f/:. {CC(e,r)8(m+n+1), ... , CC(e,r)ffil} U DZ(e,r»). 

We define a robust safety strategy RSS2,1,1 which compensates for failures of the sensors 

and actuators, by extension of the danger zones (i.e. by employing spatial redundancy) 

to ensure that whenever any part of a train is in a crossing section, the crossing section 

is reserved for that train despite sensor/actuator failures. RSS2,1,1 is described by the 

following two rules: 

rssa. if the recorded position of train x on circuit Ce is in an extended danger zone then 

the crossing section contained within that danger zone is reserved (on circuit Ce); 

'tIr E R: 'tic E L: 'tIx E Tre: 

[Pos(e,x) E DZ(e,r)FT => CC(e,r) E Res(e,x) ]; 

where DZ(e,r)FT = {CC(e,r)8(m+n+ 1), ... , CC(e,r)ffil}; 

rssb. sections CC(p,r) and section CC(s,r) cannot both be reserved; 

't:fr E R: 3e E L: ['t:fx E Tre: CC(e,r) $. Res(e,x) ]. 
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Lemma 6.10 

A history for which Irs is an invariant relation, and which satisfies the robust safety 

strategy RSS2,I,b must satisfy the safety strategy SS2,1,1. 

Proof. This proof follows directly from Ir4 and the definitions of DZ(e,r)Ff and DZ(e,r). 

The two lemmas below show that the initial state is safe and the safety controller can take 

corrective action (c.f. lemma 6.8 and lemma 6.10). 

Lemma 6.11 

If Ir6 and Hr2, Hr3, Hr4, Hr6 are relations for a history which satisfies rule ssb of the 

robust safety strategy RSS2,1,1 and IE2,1,1 (e,x,r)Ff is never satisfied,then SC2,1 is satisfied 

during that history. 

Proof. (By contradiction) 

Assume 3t E T: 3r E R: 3x E Trp: 3y E Trs: 

[H sat (Ptrain(p,x) E DZ(p,r) A Ptraill(s;y) E DZ(s,r»@t]. 

From lemma 6.8 we have: 3t, t' E T: 3e E L: 3x E Tre: 3r E R: 

[t' < t A H sat IE2,1,1(e,x,r)@t']. 

From IE2,1,1(C,x,r) A Irs we conclude: 

[H sat (Pos(e,x) E {CC(e,r)8(m+ 1), ... , CC(e,r)E\3l} )@t']. 

Together with Hr6 this contradicts the assumption that \:;fe E L: \:;fx E Tre: \:;fr E R: 

H sat -,IE2,1,I(e,x,r)n: 

Lemma 6.12 

If Ir6 and Hr7 are relations for a history and during that history Aet(e,x) is set whenever 

IE2,l,1(e,x,r)Ff holds, then SC2,1 will be maintained during that history. 

Proof. 

From IE2,1,I(e,x,r)F[, Ir6 and Hr6 we conclude that at the instant at which IE2,1,I(e,x,r)Ff 

occurs 

Ptrain(e,x) E {CC(e,r) 8 (m+ll+ 1), ... , CC(e,r)E\3(n+ I)}. 

Hence, from Hrs we conclude: \:;fe E L: \:;fx E Tre: \:;fr E R: 
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H sat IE2,1,1(C,x,r)IT@To 1\ H satAct(c,x)@[To, T1] ~ 

H sat Ptrain(c,x) f/:. DZ(c,r)@[To, T1]' 

From the analysis we conclude that the basic effect of the sensor and actuator failures 

considered here is that a block of sections must be treated as if they were a single section. 

The size of this block depends on the failure assumptions (i.e. values of m and n) and on 

the extent to which tolerance is to be provided for sensor and actuator failures. 

6.5. Safety Controller Analysis 

After establishing the robust safety strategies during the Safety Plant Analysis, the safety 

controller analysis phase investigates how these strategies are to be implemented by the 

safety controller as safety controller strategies; these are formed by mapping the robust 

safety strategies onto the system components. However, in presenting this case study, in 

order to simplify the analysis, the derivation of the safety controller strategies will ignore 

the results of the Safety Interface Analysis presented in the previous section; instead we 

will work directly from the safety specifications obtained in section 6.3 from the Safety 

Plant Analysis. In Ide Lemos 92/, for the same example, the Safety Controller Analysis 

is conducted using the robust safety strategies obtained from Safety Interface Analysis. 

The analysis to be performed entails modelling the relationship between the 

components of the safety controller, the physical process, and the interface between 

them (which includes sensors and actuators). The general approach followed in 

modelling the system is to maintain a clear separation between models of the physical 

process and the safety controller, even though they must cooperate whenever an action 

is to be performed. The advantage of adopting this approach is that both models can be 

independently developed and modified, and the state of the physical process can be seen 

to correspond to the sequence of control commands issued by the safety controller 

ICombacau 901. 

The analysis will be divided into two parts, corresponding to the safety strategies 

established during the Safety Plant Analysis. First, we model the safety strategy which 
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prevents the collision of trains of the same type, and second, we model the safety strategy 

which prevents the collision of trains of different types. 

6.5.1. Collision of Trains of the Same lYpe 

To illustrate modelling the behaviour of trains in a circuit, we assume that each circuit 

contains seven sections (Ns=6) and two trains (Nt = 2). For simplicity, the modelling and 

analysis is performed for just one circuit. The PrT model is shown in figure 6.3 (because 

of the flexibility of the model it is possible to modify the number of sections and trains 

without affecting the structure of the model of the safety controller). An outline 

definition of PrT nets is presented in Appendix B. 

The predicates of the PrT net model of a train set circuit are the following: 

SOx to S6x - train x occupies a section of the circuit; 

ICPxj - train x is allowed to enter sectionj; 

IPCxj - train x has entered sectionj; 

FSn - section n is not reserved by the safety controller; 

RSlxm - train x has reserved section m; 

RS2xk+xj - train x has (temporarily) reserved sections k andj. 

To obtain the structural properties of the PrT net model of the circuit, we derive the 

S-invariants of the net; these are integer equation invariants which are obtained from 

the projection of the predicates IGenrich 87/. In order to simplify the calculation of the 

S- invariants of the PrT net model of figure 6.3, the predicates representing the circuit 

sections ofthe model ofthe physical process were folded into one predicate (Sxj - train 

x occupies sectionj). 

The S-invariants of the PrT net model of the safety controller strategies of the circuit 

are: 

IRS212 + 21RSll2 = 8; 

IIPCI + IICPI + IFSI = 3; 
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Figure 6.3. The PrT net model of the train set circuit. 

IRS11 - IFSI = 1; 

IRS21 + 21FSI = 6. 

(si3) 

(si4) 

The number of tuples in the predicate Sxj is constant and is established by the initial 

marking. 

Lemma 6.13 

The PrT net of the train set circuit shown in figure 6.3 is contact-free and 

deadlock-free. (Contact-freeness means that even under the weak transition rule 

allowing multi -sets on places there is no marking reachable that puts the same tuple on 
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a place more than once. Deadlock-freeness means that there is no forward reachable 

marking at which no transition is enabled.) 

Proof: 

To confirm that a PrT net is contact-free, we must show that there is no marking that 

puts the same tuple at the same predicate more than once. For the PrT net of figure 6.3, 

this follows immediately from equations (sil) and (si2). 

To confirm that a PrT net is deadlock-free, we must show that there is no forward 

reachable marking at which all transitions are disabled. By inspecting the PrT net of 

figure 6.3, we show that if both t2 and t3 are disabled then t1 must be enabled. Firstly, 

we consider the case when t2 is disabled, and secondly when t3 is disabled. 

a. Ift2 is disabled, this implies that the tuples <;X,m) in RS1 and (n) in FS are not sufficient 

to satisfy the transition selector of t2. This condition can be confirmed from (si3), from 

which we obtain IRS11 =2 and IFS 1= 1. Hence, from (si1) we have IRS212=4 and from 

(si2) we have I fPC I + I fCP I = 2, which leads to two possible cases: if I fPC I :;60 then t3 

would be enabled, however I fPC I =0 implies that t1 is enabled. 

b. If t3 is disabled, this implies that there are no tuples in the predicates RS2 and fPC, 

that is, there is neither <;X,j) in IPC nor <;X,k) + <;x j) in RS2. If there are no tuples in RS2 

and fPC then it follows from (sil) and (si3) that the number of tuples in RS1 and FS are 

identical to those in the initial marking, and it can be easily shown that t2 is enabled. If 

there are no tuples in RS2 then it follows from (si2) and (si4) that IIPC! + IICPI =0 

implying that there are also no tuples in IPC, in which case the number of tuples in RS1 

andFS are identical to the previous case. If there are no tuples inIPCthen it follows from 

(si2) that IICP 1+ IFS I =3 which leads to two possible cases: if IFS I =3 then 

IICPI = IRS21 =0 in which case the number of tuples in RS1 and FS are identical to the 

initial marking, but if I FS 1:;63 then I ICP I :;60 implies that t1 must be enabled. 

Verification of Circuit Safety Controller Strategy 
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The safety controller strategy defined by the PrT net model of figure 6.3 is verified by 

proving that the safety strategy SSl,1,1 is a property of the PrT net model. To verify this, 

a link must be identified between the THL and PrT net models of the train set system. 

This link can be established in terms of system predicates of the THL model and the 

predicates of the PrT net model, as follows: 

Vc E L: Vx E Trc: Vi ESc: [Ptrain(c,r) = i ~ Sxi]; 

Vc E L: Vx E Trc: Vi ESc: [i E Rtrain(c,r) ~ RSlxi V RS2xi]. 

The two rules of SSl,l,1 can be expressed in terms of the PrT net model, as logical 

formulae (lfl and lf2) over the predicates of the PrT net model, by substituting the 

equivalent predicates of the PrT net model for the THL predicates: 

!fl. If any train x is in section i, then sections i and i 8 1 are reserved by train x. 

Vx E Trc: Vi ESc: [Sxi ==> (RSlxi V RS2xi) 1\ (RSlxi81 V RS2xi81)]. 

/f2. Any section i is reserved by at most one train. 

VXJ' E Trc: Vi E Sc: [x~y ==> 

(-.RSlxi 1\ -.RS2xi) V (-.RSlyi 1\ -.RS2yi)]. 

Lemma 6.14. 

The formulae Ifl and lf2 are logical invariants (i.e. they hold on all reachable markings) 

of the PrT net model 

Proof: A sketch of a proof is given below by analysing the transitions of the PrT net 

model. In the initial marking Ifl holds then both trains have reserved the current and 

previous sections: 

(1,0) E S ==> {(I,D), (1,6)} ~ RSI U RS2; 

(2,3) E S ==> {(2,3), (2,2)} ~ RSI U RS2. 

We show that the firing of the three transitions cannot violate Ifl. Transition tl can fire 

with (x,i) only when (xj) is in ICP (j =i EB 1), therefore this can only happen after t2 fires, 
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producing (x,j) in ICP and RS2. Prior to the firing of tl, {{x,i), (x,i8 I)} ~ RSI U RS2' , 

after tl fires, {{x,j), (x,i)} C RSI U RS2 (since (x,j) must remain in RS2 until IPC fires 

producing (x,j». Firing t2 adds (x,j) to RSI U RS2, therefore t2 cannot violate ifl. Firing 

t3 removes (xl<) from RSI U RS2 only when there is (x,j) in S, this is obtained from the 

transition selector of t3 (k = j82), therefore t3 cannot violate If 1. 

In the initial marking lf2 holds; no section is reserved by more than one train: RSI U RS2 

= {(1,0), (1,6), (2,3), (2,2)}. Firing tl does not change the markings on RSI or RS2. Firing 

t2 removes (x,m) from RSI and adds (xl<> + (x,j) to RS2, where k=m andj=mE92. The 

only change inRSl U RS2 is the addition of{x,j). From the transition selector oft2,j (=n) 

is a free section, hence prior to t2 being fired -, (3y) (y,j) E (RSI U RS2). Therefore t2 

cannot violate lf2. Firing t3 removes (x,k) from RSI U RS2, and therefore t3 cannot 

violate 1f2. 

6.5.2. Collision of Trains of Different 'lYpe 

For simplicity, the modelling and analysis of the behaviour of trains in a crossing section 

is performed for just one crossing section, and we assume that each circuit contains four 

sections (Ns=3) and one train (Nt = 1), as shown in figure 6.4. In the PrT net model of 

the physical process we have folded the models of the primary and the secondary circuits 

into one net; the danger zone (DZ) of each circuit is represented by the predicates CCcx 

(crossing section) and SOcx, and the predicate S2cx represents the section which 

immediately preceds CCcx. 

The predicates of the PrT net model of the crossing section are the following: 

SOcx, Slcx, S2cx - a section of the circuit c is occupied by train x; 

CCcx - the crossing section of circuit c is occupied by train x; 

ICPcxj - trainx in circuit c is allowed to enter sectionj; 

IPCcxj - train x in circuit c has entered sectionj; 

APcxj - train x in circuit c is in sectionj =2 (i.e. x is about to enter DZ); 
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A={(P,l); (s,l)} 

Figure 6.4. The PrT net model of the crossing section. 

ZDcxj - train x in circuit c has access to sectionj (= 3, the crossing section); 

ME - either primary or secondary trains allowed to enter the crossing section. 

To obtain the structural properties of the PrT net model of the crossing section, we derive 

the S-invariants of the net, which are: 

so + S1 + S2 + CC = 2; (sil) 

ME + IZD I = 1; (si2) 

S1 + 2S2 - 21ICPI3 - IIPCh - IAPh + IZDi3 = 2; (si3) 

SO - S2 + CC + 2IICPi3 + IIPCi3 + IAPi3 - IZDI3 = 0; (si4) 

2S0 + S1 + 2CC + 2IICPi3 + IIPCl3 + IAPi3 - IZDi3 = 2. (si5) 

Lemma 6.14. 

The PrT net model of the train set crossing section shown in figure 6.4 is contact-free 

and deadlock-free. 

Proof: 

The contact-freeness of the PrT net model of the crossing section is shown through 

inspection of (sil), (si2), (si4) and (si5). From (sil) we know that the number of tuples 
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in the net model of the physical process remains constant and equal to the initial marking. 

From (si2) we know that the number of tokens in the predicates ME and ZD do not 

increase. Finally, from (si4) and (siS) we know that ICp, IPC andAP are contact-free, 

implying that the number of tuples in the whole PrT net model remains constant. 

To confirm that the PrT net model of the crossing section (in figure 6.4) is deadlock-free 

we show that if t1, t2, t3, t5, t6 and t7 are disabled then t4 must be enabled. The approach 

followed here is to consider each of the transitions which we assume to be disabled 

individually and show that t4 is enabled, implying deadlock-freeness. 

If t1 is disabled, it means that there are no tuples in Cc. From (sil) it follows that if SO 

or S1 have tuples, then transitions t2 or t3 must be enabled. However, if the two tuples 

are in S2 then (si4) is reduced to 21 ICP 13 + I IPC 13 + lAP 13 - I ZD 13 = 2. From this 

equation, if IZD I =Othen there are no tuples inICP (reasoning from the PrTnet model) 

and the two tuples must either be in IPC or Ap, implying that at least t5 or t6 are enabled; 

if I ZD I #0 then t6 is disabled, one of the tuples is in either IPC or AP, implying that t5 

or t6, respectively, are enabled, and the other tuple is in ICp, implying that t4 is enabled. 

Similar reasoning can be applied for each of the other transitions that we assume to be 

disabled, and in each case we can show that t4 will be enabled. 

Verification of Crossing Section Safety Controller Strategy 

The safety controller strategy defined by the PrT net model of figure 6.4 is verified by 

proving that the safety strategy SS2,1,1 is a property of the PrT net model. 

The THL predicates and the predicates of the PrT net model correspond as follows: 

\lc E L: \Ix E Trc: [Ptrain(c,x) E DZ(c,r) ¢:;> CCcx v SOcx]; 

\lc E L: \Ix E Trc: \lj ESc: [CC(c,r) E Rtrain(c,x) ¢:;> ZDcxj]. 

The two rules of SS2,1,1 can be expressed in terms of the PrT net model as logical 

formulae (lf3 and If4) over the predicates of the PrT net model, by substituting the 

equivalent predicates of the PrT net model for the THL predicates. 
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if3. If any train is in a danger zone then the crossing section is reserved by that train. 

\::Ix E Trc: \::Ii ESc: \::Ir E R: [CCcx V SOcx ==> ZDcxj]. 

if4. A crossing section cannot be reserved for both the primary circuit and the secondary 

circuit. 

\::Ix E Trc: \::Ii ESc: \::Ir E R: [-'ZDcxj]. 

Lemma 6.15 

The formulae lf3 and If4 are logical invariants (i.e. they hold on all reachable markings) 

of the PrT net model. 

Proof: A sketch of a proof is given by analysing the transitions and S-invariants of the 

PrT net model. 

In the initial marking lf3 holds, since the sections CC and SO are empty: (CC USa) = 

0. Firstly, we make the observation that tuples can be added to the set CC U SO only by 

transition t4 and removed only by transition t2. In the following we argue that (c,xj) E 

ZD before t4 adds (c,x) to CC U SO and until t2 removes (c,x) from CC U SO. Transition 

t4 can fire with (c,x) only if (c,xj) is in ICp, therefore after t6 fires with (c,xj). Hence, 

before t4 fires we have (c,xi) E ZD. Now (c,xi) can be removed from ZD only when t7 

fires with (c,xj); this transition can fire only when (c,xj) E ICP Therefore t7 can fire with 

(c,xj) only after t2 has fired with (c,xJ">- Hence (c,xj) E ZD, at least until t2 fires. 

The fact that lf3 is a logical invariant for the PrT net model follows from S-invariant 

(si2). 

Crossing Section Safety Controller Strategy and Mission Requirements 

Similar to the analysis conducted in Section 6.3, in the following we extend the safety 

controller strategy SCS2,1,1,1 in order to consider the mission requirements established 

for the train set model which says that trains on the primary circuit have priority over 

trains on the secondary circuit. To illustrate the modelling oftrains in the crossing section 
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oftwo circuits, we assume that: the two circuits cross only once, each circuit contains five 

sections (Nse=5), and one train runs on each circuit (Ntp=1). To simplify the analysis 

we ignore the safety strategy for avoiding collisions of trains of the same type; thus we 

implicitly assume that each circuit has a safety controller strategy as developed 

previously. 

The safety controller strategy must maintain the three rules of the safety strategy: rules 

ssa and ssb which say that no part of a primary or a secondary train can be in their 

respective danger zones at the same time, and rule sse which says that a primary train 

must not be made to wait for a secondary train at a crossing section. In terms of the 

analysis of timeliness requirements, this can be represented by constructing the EfA 

model of the timing thresholds obtained from the Safety Plant Analysis, such as the 

example shown in figure 6.5. The names adopted for the actions and the events are 

equivalent to those adopted in the Safety Plant Analysis. This EfA model will be used 

as a reference for the construction of the PrT net model of the safety controller strategy. 

For every subsequent refinement of the PrT net model we should first construct the 

corresponding Ef A model. 

UTrs(t,i) 

1 APs< CZs 
.. 

, , t 
APs(t,i) < CZs(t,i) t1 

o~p$lmax + o;U1max 
t2 , , 

'. .,' , , 

UT,,(t,i) 1 
APp 

• 
, , t 

APp(t,i) t~ t4 
o~PI'ln.n 

, 
, , ,. ., 

Figure 6.5. The EfA model for the priority requirement. 
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The PrT net model of the physical process and the safety controller which implements 

these rules is shown in figure 6.6. (In order to simplify the representation of the relational 

expressions associated with the transitions, we adopt the following notation for the 

duration of the actions of the safety strategy: Os = o-jPs I max + o.fZs I max and 

op = o1PP(t) I min') From the net model we notice that a primary train is never made to 

wait for a secondary train if the duration of key actions remains within known bounds: 

minimum time for a primary train to approach the crossing section, the maximum time 

for a secondary train to approach the crossing section, and the maximum time it takes 

for a secondary train to cross the danger zone. Whenever the duration of one of these 

key actions is no longer within the stipulated bounds, access to the crossing section is 

controlled by the mutual exclusion technique, which ignores the priority constraint. 

The predica tes of the PrT net model of the crossing section in figure 6.6 are the following 

(the names of the predicates follow the ones already defined in Section 6.3 during the 

Safety Plant Analysis): 

SOcx, Slcx, S2cx, S3cx - a section of circuit c is occupied by trainx; 

S4cx (CCcx) - the crossing section of circuit c is occupied by train x; 

ICP(j)cx - train x in circuit c is allowed to enter sectionj (= 4, the crossing section); 

IPC(j)cx - train x in circuit c has entered section j; 

APPxj~ - a primary train x is in sectionj =3 (i.e. x is about to enter DZ(p,r» , and the 

duration of the approach action APp(t,i) will take ~; 

APSxjCs - a secondary trainx is in sectionj =3 (i.e.x is about to enter DZ(s,r» , and the 

duration of the approach action APs(t,i) and crossing danger zone action CZs(t,i) will 

take cs ; 

FPTpxi~ - the next primary trainx approaching the danger zone is in sectionj, and will 

take ~ to approach it; 

ME - either primary or secondary trains allowed to enter the crossing section; 

ECcx - safety controller allows trainx in circuit c to enter DZ(c,r); 

PPpxi~ - trainx in circuitp is in section i and the approach action APp(t,i) will take~. 
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Physical Process Safety Controller 

transSj: (dmax(cj81j)/Vmax(c,x)) < tstamp(Sj) < (dmax(cj81j)/Vmin(c,x)), for j = 0 to 4 

SlO={ (p, 1,1); (s, 1,1)}; ppo= {(P, 1,1)} 

Figure 6.6. The PrT net model of the crossing section. 

The time intervals associated with the transitions ofthe model of the physical process are 

intended to model the movement of a train, in accordance with the physical laws 

established during the Safety Plant Analysis. Further refinements in the PrT net model 

of the safety controller will consist of introducing the timing constraints imposed on the 

exchange of information between the physical process and the safety controller; for 

instance, the time delays associated with the sensors and actuators, and the estimated 

execution time of the safety controller actions that form part of the control loop. 
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6.6. Safety Specification Hierarchy 

Here we present some of the accidents, hazards, safety constraints, robust safety 

strategies and safety strategies associated with the train set case study. From the various 

accidents possible on the train set, we consider only two. The (extremely simple) safety 

specification hierarchy for the train set example is shown in figure 6.7. 

ACI AC2 

I I 
HZI,I HZ2,1 

I I 
SCI,I SC2,1 

I I 
SSI,I,I SS2,l,l 

I I 
RSSI,I,I RSS2,l,l 

I I 
SCSI,I,I,I SCS2,l,l,l 

Figure 6.7. Safety specification hierarchy of the train set example. 

Accidents 

ACl - trains of the same type collide; 

AC2 - trains of different type collide. 

Hazards 

HZl,1 - some part of any two trains are in the same section. 

HZ2,l - some part of a primary train and a secondary train are in the danger zone. 

Safety Constraint 

SCl,1 - for any two trains on a circuit there must be at least one section between the 

sections containing the fronts of the trains: 

Vc E L: Vx,y E Trc: [x#y ~ 

Ptrain(c,x) $. {Ptrain( c.Jl) e 1, Ptrain( c.Jl), Ptrain(c.Jl) ffi 1}]. 
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SC2,1 - either the front of no primary train is in a danger zone DZ(P,r) or the front of 

no secondary train is in the danger zone DZ(s,r): 

Vr E R: 3c E L: Vx E Tre: [Ptraill(e.,x) f/;. DZ(e,r) ]. 

Safety Strategy 

SSlll - the safety strategy is based on a reservation scheme. The two essential rules , , 

which impose the safety strategy are as follows: 

ssa. ReselVatioll Constraint 

If any train x on circuit e is in a danger zone then the crossing section contained 

within that danger zone is reserved for that train. 

Ve E L: Vx E Tre: [{Ptrain(e.,x) 8 1, Ptrain(e.,x)} ~ Rtraill(e.,x) 1\ 

Rtrain(e.,x) c {Ptrain(e.,x) 82, Ptrain(e.,x) 8 1, Ptrain(e.,x), Ptrain(e.,x)ffi 1}]; 

ssb. Exclusion Constraint 

No section can be reserved by more than one train; 

Ve E L: VX,y E Tre: [x ~ y => Rtrain(e.,x) n Rtrain(e,y) = 0 ]. 

SS2,1,1 - the safety strategy is based on a reservation scheme. The two essential rules 

which impose the safety strategy are as follows: 

ssa. ReselVation Constraint 

For any train the current section (i.e. the position of the train) and the section 

behind the current section must always be reserved: 

Vr E R: Ve E L: Vx E Tre: [Ptrain(e.,x) E DZ(e,r) => 

CC(e,r) E Rtrain(e.,x) ]; 

ssb. Exclusion Constraint 

Section CC(p,r) and section CC(s,r) cannot both be reserved at the same time: 
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Vr E R: 3e E L: [ Vx E Tre: CC(e,r) f/:. Rtrain(e,x) ]. 

sse. Priority Constraint 

For any interval [To, T1], for any secondary train x, if CC(s,r) is not reserved by 

train x at To and during [To, T1] the maximum duration for all parts of train x to 

approach and pass the danger zone DZ(s,r) from section CC(s,r)81 (when it is 

moving) is at least the minimum duration for any primary train y to approach 

DZ(p,r) or the current section is not CC(s,r) 8 1, then the section CC(s,r) cannot 

be reserved by train x during [To, T1]. 

Vr E R: Vx E Trs: [CC(s,r) f/:. Rtrain(s,x)(To) 1\ 

Vt E [To, T1]: 3y E Trp: 01ps 1 max + of'2.\·1 max> 01pP(t) 1 min V 

Ptrain(s,x)(t)~CC(s,r)81 ~ Vt E [To, TI]: CC(s,r) f/:. Rtrain(s,x)(t)]. 

Robust Safety Strategy 

RSS1,1,1 - the robust safety strategy compensates for (consecutive) failures of the 

sensors (m) and actuators (n) by extending the number of sections that have to be 

reserved by a train. The two essential rules which impose the robust safety strategy for 

the circuit are as follows: 

rssa. For any train, the current section as observed by the controller and the 

m+n+ 1 sections behind this current section must always be reserved; 

Ve E L: Vx E Tre: [{Pos(e,x)8(m+n+ 1), ... , Pos(e,x)} ~ Res(e,x)]; 

rssb. No section can be reserved by more than one train; 

Ve E L: Vx,y E Tre: [x -::j:. y ~ Res(e,x) n Res(eJl) = 0 ]. 

RSS2,1,1 - the robust safety strategy compensates for failures of the sensors and 

actuators by extension of the danger zone. The two essential rules which impose the 

robust safety strategy for the crossing section are as follows: 
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rssa. If the recorded posi tion of trainx on circuit Ce is in an extended danger zone 

then the crossing section contained within that danger zone is reserved (on 

circuit Ce); 

Vr E R: "Ie E L: "Ix E Tre: 

[Pos(e,x) E DZ(e,r)FT => CC(e,r) E Res(e,x) ]; 

where DZ(e,r)FT = {CC(e,r)8(m+n+ 1), ... , CC(e,r)EB1}; 

rssb. Sections CC(p,r) and section CC(s,r) cannot both be reserved at the same 

time; 

Vr E R: 3e E L: ["Ix E Tre: CC(e,r) $. Res(e,x) ]. 

Safety Controller Strategy 

The safety controller strategies for a circuit (SCSl,l,l,l) and a crossing section (SCS2,1,1,1) 

are the PrT net models of the safety controllers of figures 6.3 and 6.6, respectively. 

6.7. Quantitative Risk Analysis of Safety Specifications 

In this section, we exemplify how quantitative evaluation of a safety specification should 

be performed. As already mentioned, this assessment completes the qualitative analysis 

performed in the previous sections, in the sense that it provides more confidence that the 

level of risk for a certain safety specification is acceptable. Although the quantitative 

evaluation performed in this section is restricted to a safety strategy, a similar analysis, 

using different criteria, could be performed for other safety specifications. For example, 

the quantitative evaluation of a robust safety strategy would consider the failure rates of 

sensors and actuators. 

To perform the quantitative evaluation of the crossing section safety strategies we 

employ fault tree techniques. For the fault tree analysis of safety strategy SS2,1,b 

presented in figure 6.8, we only consider those faults that can affect the behaviour of 

primary trains (Trp). Note that the refinement of rectangles I and F is symmetric to that 
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of rectangles Hand G, respectively. The undesired state of the fault tree of SS2,1,1 is the 

negation of SC2,1. For this undesired state to occur, one of the rules of SS2,1,1 must be 

violated: either at least one train does not reserve the crossing section while it is in its 

danger zone, or the crossing section is reserved by both trains. (In figure 6.S, RS stands 

for Reservation Scheme, and includes both rules of the safety strategy SS2,1,I-) 

The quantitative evaluation of the fault tree is obtained from the minimal cut sets by 

assigning probabilities to the primary events of the tree. Because the probability of each 

individual minimal cut set should be low, we use the rare event approximation equation 

Nesely S1/ to obtain the minimal cut set expression for the fault tree of SS2,1,1: 

A=j-H7-M+H8-H7-M+j-H4-HS+L-17-M+I8-17-M+L-I4-IS+ 

j-K-L-M+j-G1-H7+L-P1-17. 

In the following, in order to perform the quantitative evaluation of the safety strategy 

SS2,1,h we present estimates of the probabilities for the primary events. Some of these 

probabilities are related to the physical construction of the train set (P[H7], P[I7], P[K], 

P[M], P[HS], P[IS], P[H4], P[I4], P[G 1] and P[Hl]); these are the ratio of the length of 

a section, or set of sections, to the total length of the circu it Ce (for example, P[ H7] is the 

ratio of the length of section CCce1 (CCe is the short form for CC(e,r)) to the total 

length of the circuit Ce). Other probabilities are related to experiments conducted on the 

physical process (P[H8] and P[I8]), and to assumptions about expected failure rates of 

the components of the controller (P[J] and P[L D. 

Primary Events Probabilities 

P[J], P[L] 0.001 

P[H8], P[I8] 0.1 

P[H7], P[I7] 0.128 

P[K], P[M] 0.144 

P[HS], P[IS] 0.016 

P[H4], P[I4] 0.128 

P[Gl], P[H1] 0.144 
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Figure 6.8. Fault Tree of SS2,1,1· 

The probabilities associated with the nine minimal cut sets are calculated as the product 

of the appropriate primary event failure probabilities (assuming failures to be 

independent). In the table below, we also take into account the relative quantitative 
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importance of the various minimal cut sets. This is done by calculating the ratio of the 

minimal cut set probability to the total undesired state probability. 

Minimal Cut Set Probability Importance (%) 
p[JeH7eM] 1.84xlO =-s 0.49 

p[HSeH7eM] 1.84xlO ·3 48.9 

p[JeH4eH5] 2.05xlO -6 0.05 

p[LeJ7eM] 1.84xlO -5 0.49 

p[ISeJ7eM] 1.84xlO -3 48.9 

p[LeJ4eI5] 2.05xlO :0 0.05 

p[JeKeLeM] 2.07xlO 7 5.5xlO 4 

p[JeGleH7] 1.84xlO 5 0.49 

p[LePleI7] 1.84xlO -5 0.49 

The probability of the undesired state ( negation of SC2,1) occurring is the sum of all of 

the minimal cut set probabilities: 

P[A] ~ 3.76xlO-3. 

From the relative quantitative importance of each minimal cut set, we are able to analyse 

how the violation of an assumption may contribute to a hazard occurring. For instance, 

dubious assumptions (those with a high probability of being violated) should not be part 

of those minimal cut sets which have a high relative importance. This analysis allows us 

to select, from a set of safety strategies, the most adequate strategy in terms of the trade 

off between the safety requirements and the constraints imposed by the physical process. 

This can be seen in the example, where the minimal cut sets which have the assumption 

that a train is able to stop within one section as a primary event, have a higher relative 

quantitative importance. This leads us to conclude that we should not have high 

confidence in this safety strategy, unless we can modify it in order to guarantee that, when 

requested, a train always stops (within one section) before entering the crossing section. 

6.8. Concluding Remarks 

In this chapter, we showed how the requirements methodology could be applied to the 

analysis of a train set crossing. One of the benefits in applying the proposed methodology 
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was the identification of small domains of analysis in which a systematic approach to the 

analysis could be performed, in terms of the specific issues of the system, and employing 

the most appropriate formal method. However, we noticed that there are still some 

issues that have to be improved. One of these issues is the need to find an operational 

formalism which would enables the representation and analysis of systems which contain 

both discrete and continuous variables. Another issue is to find a formal linkage between 

the different formal methods employed in the analysis, which would facilitate the 

verification of the specifications obtained at different levels of abstraction. 
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Chapter 7 

Conclusions 

From both structural and behavioural perspectives, software within a system is just 

another component of the system. As the role of software has become more and more 

crucial in the struggle to obtaining more efficient and less costly systems, the complexity 

of software has increased without the (necessary) provision of means which would 

provide confidence that required levels of software quality can be attained. In respect 

of critical real- time systems, this is reflected by a lack of methods and techniques for 

effectively facilitating software development, or to adequately assess software quality 

while it is being developed. 

In this thesis, we were particularly concerned with the phase of requirements analysis, 

which lately has received more emphasis due to increased recognition of its importance 

within the whole software development life cycle. Instead of proposing a general 

approach for requirements analysis which could be applied across a wide range of 

applications, we have restricted our approach to the class of systems known as process 

control systems. The advantages of having approaches for requirements analysis specific 

for a particular application domain have already been discussed in /Garlan 93/. One of 

the characteristics of process control systems is that high levels of dependability are 

associated with many of the application domains for this class of systems - for instance, 

transport systems, chemical plants and nuclear reactors. With the replacement of 

traditional technologies, such as hydraulic and analogue electronics, by computer based 

systems, the challenge has been for computer based systems, especially software, to 

achieve the same levels of dependability as the traditional techniques. 

Essentially, the aim of the thesis is to propose an approach which systematizes the 

process of requirements analysis and provides confidence that the required quality of the 
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resulting requirements specifications can be attained. In the following, we present the 

achievements reported in this thesis by summarising its contents, and discuss how the 

proposed approach could be extended. 

7.1. Achievements and Limitations 

In this thesis we propose a methodology for the requirements analysis of critical 

real-time systems. The methodology deals with a range of issues which aim to provide 

confidence that the level of risk, in terms of safety, associated with the requirements 

specifications is acceptable. The issues that are dealt with in the methodology include: 

a framework with distinct phases of analysis, a graph that depicts the relationship 

between a set of safety specifications produced during the analysis, a set of formal 

techniques appropriate for the issues to be analysed at each phase, and a set of 

procedures for the risk (or safety) analysis of the safety specifications. 

Instead of dealing with the whole range of system requirements, the analysis presented 

here was restricted to the safety requirements of the system; however, the methodology 

could be generalised to cover mission requirements. For the mission requirements, 

instead of adopting a formal approach, widely used rigorous methods, such as SADT and 

PSL/PSA, could be employed during the analysis. Separating and distinguishing the 

mission and the safety requirements (which is essentially a logical distinction) has the 

major benefit of allowing the system analyst to concentrate on what the system should 

not do. 

The basis of the whole approach is the hypothetical system structure discussed in chapter 

2. This structure captures the three fundamental components that are present in any 

system that has to be controlled: the plant, the operator and the controller. As already 

pointed out, each of these components has its own specific role in a system. However, 

depending on the level of abstraction being considered and the viewpoint adopted in the 

analysis of a system, other system structures could be found where the components might 

assume different roles. 
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Modelling of the passage of time, in terms of time structures, was discussed in chapter 

3. Although the result of the study might look trivial, the study was nevertheless 

important because it provided a better understanding of time structures. However, more 

work needs to be done, mainly on the relationships between different time structures , 

perhaps in the direction of the work by Corsetti et aI/Corsetti 91/. This would be of 

considerable benefit if analysis had to be performed for different time granularities. 

Another issue discussed in chapter 3 was the effects that uncertainties in the time domain 

can have upon the value domain, in particular on those systems which are based on 

synchronised clocks. 

For the class of systems under consideration, process control systems, the techniques to 

be employed in requirements analysis need to have certain characteristics that are 

unique to the type of application involved. One of these characteristics is that the 

techniques employed have to handle both continuous and discrete variables -

consequently, we have to combine algebraic and logical analysis within the same 

approach INerode 93/. In the approach presented in chapter 4, we adopted a slightly 

more conservative approach by making discrete the behaviour of continuous variables, 

and performing all of the analysis by using discrete mathematics. This is the role of the 

E/A model: to describe the behaviour of systems by employing a restricted set of 

primitive concepts, with first order logic as the underlying semantics. This set of concepts 

can be incorporated in existing formal techniques, such as THL and PrT nets, or can form 

core of new techniques, such as the PEA notation (which is not yet fully developed). 

Another issue that has to be tackled is the need to provide a proper and unified semantics 

for the techniques employed in the analysis, in order to facilitate the verification process 

of the formal specifications. However, this is not enough; because of the high degree of 

complexity of the requirements specifications, we need mechanical assistance (ideally 

theorem provers) to perform the verification ofthe specifications. Neither ofthese issues 

were discussed in the thesis. 
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A methodology for the analysis of safety requirements was presented in chapter 5. In the 

following, we summarise the four key issues on which the methodology is based. The first 

is the framework for requirements analysis, which provides a systematic approach to 

conduct analysis. This framework partitions the requirements analysis into phases, and 

defines dependencies between the phases. Each phase focuses on a specific domain of 

analysis, which is obtained from the system structure, providing partial knowledge of the 

overall system. During the analysis, a domain is viewed from different perspectives; each 

perspective captures a specific description of the domain. The second issue is the directed 

graph which records the safety specifications obtained from the requirements analysis; 

nodes represent the specifications and edges denote the relationships between the 

specifications. The graph provides a succinct representation which is amenable to formal 

analysis. The third issue is the set of techniques to be employed for a specific domain of 

analysis; from this set a technique is selected according to the properties of interest of 

that domain (and the perspective adopted). This leads to the utilization of a range of 

specialized informal and formal techniques. The problem of linking specifications 

obtained from different techniques is tackled by providing a primitive set of modelling 

concepts that are appropriate for the properties under analysis. The fourth issue is a 

framework for the safety analysis of the safety specifications which provides the 

confidence that the risk associated with the requirements specifications is acceptable. 

The quality of the requirements specifications is confirmed by firstly, applying 

verification and validation techniques to increase confidence that the specifications are 

consistent and maintain safe behaviour, and secondly, conducting a safety analysis (or 

risk analysis) of the requirements specifications. The approach enables the integration 

of formal techniques with traditional safety techniques to yield a coherent method for 

risk analysis. 

The feasibility of the whole approach was demonstrated by applying the methodology to 

the train set case study, presented in chapter 6. Although the train set can be considered 

a "toy" example, the experience obtained from the application of the proposed 

methodology in other case studies / Anderson 93, de Lemos 93, Saeed 93a/, some of them 
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real systems, has shown that the complexity of the analysis depends on the assumptions 

made about the behaviour of the system. Usually, in order to reduce the complexity, the 

tendency has been to make strong assumptions about the behaviour of systems. In the 

train set case study, we have attempted to reduce the number of assumptions to those 

that are essential. 

At the current stage ofthe proposed approach, a question that could be asked is whether 

the provision of tools to implement the different issues of the methodology is envisaged? 

It is still too soon to go this way, and one reason is that there are plenty ofrequirements 

tools available on the market that fall short of their objectives. Our aim is still to obtain 

a complete understanding of the process of requirements analysis - essentially, to search 

for improved abstraction concepts that can be used in the effective modelling and 

analysis of software requirements. 

7.2. The Current State of the Work 

In the following, we propose an approach which makes systematic the analysis of 

software requirements for application - specific domains, for the class of process control 

systems. From a generic system structure, common to an application domain, we obtain 

frameworks that guide analysts in the production and assessment of requirements 

specifications. The general approach is illustrated by presenting a framework for the 

analysis of safety requirements. By repeating some of the contents of the previous 

chapters, we seek to give a unified view of the future direction of the methodology for 

the requirements analysis of critical real- time systems proposed in this thesis. 

Within the class of process control systems, the various types of applications can be 

grouped into application domains, such as chemical, aerospace, nuclear and railways, 

whose system structures, defined in terms of system components and interactions 

between components, have a great degree of similarity. In terms of requirements 

analysis, perhaps the main advantage, amongst several others, of grouping related 

systems into application domains is that to perform the requirements analysis for a 
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specific system should be easier, since the analysis will be based on a pre-defined set 

of simple abstractions IGarlan 93/. 

The proposed approach systematizes the requirements analysis of process control 

systems that are within the same application domain. The approach relies on obtaining 

application - specific frameworks for requirements analysis that enhance the visibility of 

the requirements process, and guide the analysts in the production and assessment of the 

requirements specifications. The phases of these frameworks and their ordering, 

correspond, respectively, to the domains of analysis and their interactions, which are 

obtained by performing successive refinements on a generic system structure. The 

components identified at each refinement step provide the domains of analysis from 

which the requirements analysis is performed through multiple perspectives 

/Easterbrook 93, Finkelstein 92, Leite 91/. In other words, while a domain of analysis 

determines the scope of the system to be analysed, a perspective of analysis determines 

the scope of analysis to be performed on the domain. Both the domain and perspective 

of analysis have the aim of dividing up the task of requirements analysis of the whole 

system into manageable parts. 

Although the tendency in system development has been the re-utilization of 

specifications from other similar systems, in the approach presented we propose the 

re- utilization of the same framework for the requirements analysis of systems within the 

same application domain. In order to exemplify the feasibility of the general approach 

for requirements analysis being proposed, we discuss in the following a framework for 

the analysis of safety requirements in critical real-time systems Ide Lemos 93, Saeed 

93b/. 

7.2.1. System Structure and Refinement Process 

The grouping of systems into application domains enables systems with common 

structures to be identified. In order to obtain a structure for a system, successive 

refinements are performed to the system and its components (recursively, a component 
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can be considered to be another system). These refinements are stopped when the 

components are considered as being atomic ILee 901. With each step in the refinement 

process we associate a level of abstraction which represents a particular view of the 

system structure, suppressing detail that is irrelevant to that view, but enabling the 

components of the system and their interactions to be identified. The components ofthe 

system are what make the system do what it does, and the interactions between the 

components prescribe the ways in which the components are connected. A detailed 

description of the interaction between components consists of the definition of the 

interface between the components (structural part) and the behaviour observed at that 

interface (dynamic part). To model the behaviour of a system, and its components, the 

following variables are introduced: input variables (vu ) and output variables (Vy) which 

describe the external behaviour of the system, and state variables (vx ) which describe the 

state of the system. A variable is represented by a function which maps time (1) into a 

set of values (Vv) of the variable, that is, viet): T - VV( 

7.2.2. Perspectives and Domains of Analysis 

In our approach, the process of requirements analysis is partitioned in terms of 

perspectives and domains of analysis. A perspective of analysis is a set of facts observed 

and modelled according to a particular modelling aspect. Perspectives capture a partial 

description of the system (or domain) without prescribing the components of those 

descriptions. The integration of a set of perspectives is called a view, which is obtained 

by a view-constructing process !Leite 91/. A domain of analysis is established from the 

components, or set of components, obtained from the structure of the system. The 

analysis performed in a domain, identifies the entities of that domain, the properties 

associated with these entities in terms of their standard, exceptional and failure 

behaviour, and the interactions between the entities. The entities identified for a domain 

of analysis, related to a particular level of abstraction, are considered to be the 

components of the next refinement level. 
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The different perspectives, from which a system is viewed, can establish different 

domains of analysis. Depending on the perspective of analysis adopted a system will 

present a different partial structure. However, by combining all the perspectives from 

which the analysis of the system is performed we obtain the complete structure of the 

system. 

7.2.3. Frameworks 

Fundamental for the definition of a framework for the requirements analysis, for a 

specific application domain, are the components and their interactions which describe 

a common system structure. The components define the domain of analysis for a system, 

and the interactions between the components define the dependencies that exist 

between the domains of analysis. A framework for requirements analysis is defined in 

terms of a set of phases of analysis and an ordering relation between these phases. Each 

phase corresponds to a domain of analysis and the ordering relations follow from the 

dependencies that exist between the domains of analysis. Each phase of analysis consists 

of the following notions. 

• Input specifications - the specifications produced from previous phases of the 

framework and the requirements imposed on the entities of the domain that are 

used as the basis for analysing those entities. 

• Support models - the models that are constructed to support the analysis in order 

to identify the entities of the domain, capture their assumed behaviour and 

describe their interactions. 

• Output specifications - specifications produced during this phase that describe the 

required behaviour of the entities of the domain. 

A framework systematizes the requirements analysis of an application domain, by 

organizing the analysis of the requirements into smaller domains of analysis with clearly 

delineated relationships. This enables analysts to systematically consider the 

174 



requirements imposed over the different domains of analysis, and guides the analysis of 

interactions between the requirements of related domains. Although the phases of a 

framework are obtained from the system structure, it is also valid to say that the structure 

of the system is refined as a result of the analysis performed at each phase of the 

framework. 

As part of the methodology, also there exists another framework to conduct the risk (in 

terms of safety) analysis in parallel with each phase of requirements analysis, and this has 

the aim of ensuring that the risk associated with the safety specifications produced during 

each phase is acceptable. In the case where the risk associated with a safety specification 

is not deemed acceptable the safety specification must be modified. The overall 

approach to safety analysis considers both qualitative analysis and quantitative analysis 

/Saeed 93b/. The safety analysis to be performed for each phase of the process of 

requirements analysis is restricted to the information scoped by the level of abstraction 

ofthat phase, thereby limiting the effort required during in the safety analysis. The safety 

analysis for safety specifications, apart from analysing the normal behaviour must 

examine the failure behaviours of the safety specifications to determine their impact on 

safe behaviour. Our concern is with devising a systematic approach to examine failure 

behaviours of safety specifications, based on the principles that underpin traditional 

safety analysis techniques. 

7.2.4. Techniques for the Analysis 

The different activities performed during requirements analysis demand the utilization 

of a set of techniques whose features and expressive power match the characteristics of 

the activities. Selecting an appropriate technique for a specific activity allows emphasis 

to be placed on pertinent characteristics of the domain and enables the technique to 

work to its own strengths. The phases of analysis defined by the frameworks facilitate the 

selection of the most appropriate techniques. By examining the characteristics of the 

support models and output specifications, the properties that appropriate techniques 

must provide can be determined. As an example of identifying appropriate techniques, 

175 



we consider the role of formal support during requirements analysis. Formal support 

consists of formal techniques (or notations) that are used to represent and reason about 

the behaviour of the entities of the domain. In the context of our work, two classes of 

formalisms are identified: property-oriented and operational. Property-oriented 

formalisms specify behaviour in terms of the properties that are exhibited by an entity. 

Operational formalisms specify behaviour by constructing an executable model of the 

domain in terms of mathematical structures such as tuples, relations, functions, sets and 

sequences. For each phase of analysis, the properties of the entities and the interactions 

between entities must be determined. This suggests, respectively, the use of both 

property- oriented and operational formalisms. In general, the degree of utilization of 

one class of formalism rather than the other is related to the level of abstraction being 

considered. At higher levels of abstraction there is a great tendency to use 

property-oriented formalisms, whereas for lower levels the tendency is reversed. 

7.2.5. Analysis of Safety Requirements for Process Control Systems 

In the following, we discuss the concepts presented in the previous sections in the context 

of an approach for the analysis of safety requirements for process control systems. To 

facilitate the presentation we adopt a system structure that is typically used for the class 

of systems under consideration. First, we identify the levels of abstraction associated with 

the adopted system structure, then we discuss the relationship between the domains of 

analysis and the structure of a system, and finally, we discuss a framework obtained from 

the adopted system structure. 

The initial step is to enumerate the levels of abstraction identified for the adopted system 

structure, shown in figure 7.1. At the highest level of abstraction - the environment level, 

the system is identified within its environment, that is, the interactions between the 

system and its environment are stipulated. At the next level of abstraction - the system 

level, the components of the system and their interactions are identified. The adopted 

system structure defines three basic components: the physical process or plant, the 

controller, and the operator. At the next level of abstraction - the components level, the 
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following levels of abstraction are obtained from the components previously defined: the 

plant level, the controller level, and the operator level. For each of these levels of 

abstraction, other components are identified and recursively refined. For example, at the 

controller level, apart from the controlling system, which can be a computer based system, 

we identify those components of the controller that support the interfaces of the 

controller with the plant and the operator, which are referred to, respectively, as the 

plant interface and the operator interface. The levels of abstraction associated with these 

components are the plant inteiface level and the operator inteiface level. Figure 7.1 shows 

a partial system structure obtained through successive refinements. The boxes represent 

the components of the system, and the arrows represent the interactions between the 

components (that is, the inputs and outputs of the components). 

At the level of abstraction of the environment the entity of analysis is the system, the 

behaviour of the system is described in terms of its input/output variables which are the 

state variables of the environment. At the level of abstraction of the system the entities 

of analysis are the plant, operator and the controller, and the input/output variables of 

these components (or sub-systems) are the state variables of the system. The same 

principle of refinement is applied to the other levels of abstraction; once the entities of 

a particular domain of analysis are defined these become domains of analysis for the next 
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Figure 7.1. Levels of abstraction in process control systems. 
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level of abstraction. For instance, from figure 7.1 we notice that the components of the 

controller: the plant interface, operator interface and the controlling system - are to be 

considered the domains of analysis in the next level of abstraction. 

Figure 7.2 illustrates a framework for the requirements analysis of process control 

systems, obtained by adopting the perspective of safety. The boxes represent the phases 

of the framework, and the arrows represent the information flows and ordering relation 

between the phases. The aim of the framework is to obtain the safety requirements 

specifications of the controlling system (a component of the controller), hence the need 

to perform the controller analysis from the perspectives of the plant and operator. This 

is stipulated in figure 7.2, by having as input specifications to the phase of controller 

analysis, the specifications output from the phases of plant analysis and operator 

analysis. 

The specifications produced at the different phases of the requirements analysis are 

organized into a Safety Specification Graph (SSG). The structure embodied in modes of 

operation can be reflected in the organization of the requirements specifications by 

constructing a separate SSG for each mode. An SSG is a directed acyclic graph, in which 

the vertices represent the safety specifications and the edges denotes relationships 

between the specifications. For a mode of operation with p accidents, the SSG consists 

ofp component graphs. 

A safety specification is composed of the following elements: a safety strategy, a set of 

assumptions (hypotheses on the behaviour of the system at the level of abstraction being 

considered), and system states deemed unsafe for the level of abstraction being 

considered. The safety strategies are justified in terms of the assumptions which should 

hold for the strategy to be valid, and the system states in which the strategy is expected 

to be satisfied. A safety integrity level is associated with each safety specification, which 

must be inherited by related safety specifications at a lower level of abstraction /MoD 

91/. Relative weights can be associated with the safety specifications of the Same layer 

in order to provide a notion of relative risk associated with alternative safety 
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Figure 7.2. A framework for the analysis of the safety requirements. 

specifications. However, the relative weights do not give the necessary assurance that a 

particular safety specification, or set of safety specifications, are able to attain the 

required safety integrity level. 

The SSG encodes the relationships between safety specifications at consecutive layers 

of component graphs that must be confirmed to ensure that the specifications maintain 

safe behaviour. A relationship consists of the following elements: constraints 

(restrictions imposed on the safety specifications from guide-lines and standards, i.e. 

requirements that are not negotiable), and evidence (claim limits that are associated 
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with the techniques employed to perform the refinement of the safety specifications) to 

show that the techniques are effective in preserving the safety integrity levels associated 

with the safety specifications. This evidence is obtained by applying, for instance, formal 

proofs or rigorous analysis depending on the safety integrity levels demanded. The 

formal refinement process should not be used as the only evidence that a safety 

specification is able to preserve the safety integrity levels dictated from the safety 

specifications above. Additional analysis must be conducted in order to show that a safety 

specification does not violate the safe behaviour of the system by influencing hazards 

from which it is not derived. 

When more than one safety specification is related to a specification in a previous layer, 

then either the safety specifications are exclusive alternatives and a choice will have to 

be made in later phases of development to select and refine a single strategy, or the 

strategies complement each other and all are needed to attain sufficient confidence that 

the risks are acceptable. These situations are distinguished by annotating the edges with 

a" ED" in the exclusive case, and a "0" in the complementary case. The SSG of a system 

provides support in conducting the risk analysis of safety specifications, provides the 

basis for a systematic approach to modifying the specifications, and facilitates the 

analysis of dependencies of the specifications on the assumptions. 

7.2.6. Overview of the Approach 

In the following we summarise how a framework for the requirements analysis can be 

obtained from the system structure while performing the requirement analysis of the 

system. Once a framework is obtained, it can be employed in the requirements analysis 

of process control systems that are in the same application domain. 

Within a generic system structure, for a specific application domain, the levels of 

abstraction provide the means from which the system components and their interactions 

are identified. From the system components, domains are established from which the 

analysis is performed from different perspectives (e.g. mission and safety), and from the 

180 



interactions between the components the interactions between the domains of analysis 

are identified. Depending on the perspective adopted during the analysis of a domain, 

different system structures can be obtained (e.g. mission and safety controller). From the 

domains of analysis and their interactions, we define, respectively, the phases of a 

framework and their ordering. A framework enables a more systematic approach to be 

followed for the requirements analysis of other systems in the same application domain. 

For each phase of the framework the entities of analysis are identified from the analysis 

performed on the specifications obtained from previous phases ofthe framework and the 

requirements imposed on the domain. As a result of the analysis we specify the 

properties of the entities and the interactions between the entities. 

7.3. Future Work 

In the short and medium term, requirements analysis for critical real-time systems will 

require currently available solutions (in terms of methods and techniques) that are 

already tailored for a particular subject and type of analysis to be conducted; an example 

of such a solution is the approach proposed in this thesis, which exploits a set of different 

methods and techniques. However, in the long term, alternative solutions should be 

envisaged in order to provide a common approach that is independent ofthe subject and 

type of analysis to be conducted, in a similar way to the pivotal role that differential and 

integral calculus has in conducting different kinds of analysis for different systems across 

a range of fields of engineering. Although this aim might not be achieved for a wide 

spectrum of problems, we believe that solutions can be found for specific topics, such as 

the methods and techniques for conducting safety analysis in both application and 

software domains. In the following we describe, in the context of our work, the activities 

that will be conducted in the future, in order for software development (and in particular, 

requirements analysis) to become more like an engineering discipline. 

Our methodology for requirements analysis of critical real-time systems aimed to 

provide an approach in which requirements analysis could be conducted in a more 

systematic and effective way. The purpose was not so much to present a solution to the 
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whole problem, but to concentrate on a set of issues that appeared to be most relevant 

for producing of the requirements specifications for process control systems. For this 

reason, the work described in this thesis could be expanded in several distinct ways, 

depending on the focus to be given. However, instead of describing future work in terms 

of issues that are needed to obtain a complete approach for requirements analysis, we 

have chosen to concentrate on those issues that can be tailored for the type of analysis 

to be conducted and for the class of systems under consideration. 

The issues discussed in this thesis can be summarized as the following list of topics. 

• The modelling of the system and its environment. 

• An approach to conducting the requirements analysis which consists of: a method 

for conducting the analysis through different domains, a process of analysis that 

establishes the steps that should be followed at each domain, and a set of 

techniques which are employed (depending on the domain and the type of analysis 

to be performed). 

• An approach for conducting safety analysis which is conducted in parallel with the 

requirements analysis and which aims to increase assurance that the level of risk 

associated with a requirements specification is acceptable. 

• A documentation scheme which provides a concise and organized means for 

documenting the product of the requirements analysis, and provides the means by 

which the safety analysis is conducted. 

In the following we present the future work that will be conducted in each of these topics. 

The activity of domain modelling is concerned with the description of the structure and 

behaviour of a particular domain (a scope of analysis). One of the important issues in 

domain modelling is the provision of appropriate modelling abstractions that support the 

analysis of both behaviour and structure of a domain. In the proposed approach, the 

modelling abstractions being used depend on the methods and techniques being 
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employed. This causes difficulties, fundamentally, when there is a need to share 

information between the different analyses which are conducted when employing 

methods and techniques which are based on different modelling abstractions. A solution 

that we currently envisage is the utilization of a modelling abstraction based on objects. 

However, the principles involving the utilization of objects at the requirements analysis 

phase should be distinct from those applicable in the design (object-oriented design) 

and implementation (e.g. C+ + ) phases. A reason for this distinction is that while during 

design and implementation the concern is with computational objects and the activities 

associated with each object, during requirements the concern is essentially with the 

physical objects and the identification of properties associated with those objects. The 

work to be conducted in this topic should initially consider how objects, as a modelling 

abstraction, can be exploited in domain modelling for the purpose for conducting 

requirements analysis. Furthermore, the work should also consider the provision of 

means which can facilitate the linkages, in terms of domain modelling, between the 

requirements analysis and the other phases of development. 

In terms ofrequirements analysis for critical real- time systems, there are several topics 

for future research. In order to control and manage the complexity of the requirements 

analysis process, we can make use of the viewpoint analysis mechanism to determine the 

scope of the system to be analysed, and partition the analysis of the system into 

manageable parts. The mechanism of viewpoint analysis has been shown to be useful in 

general information processing systems /Easterbrook 93, Finkelstein 92, Leite 91/, 

however, nothing very concrete has been done in process con trol systems to demonstrate 

its effectiveness. 

A major problem that we currently encounter when applying the proposed process for 

the requirements analysis is the identification of the appropriate levels of abstraction 

from which the analysis should be conducted. These levels of abstraction are established 

from an analysis of the system structure in terms of its components. In order to assist the 

analyst in the task of identifying the appropriate levels of abstraction, we envisage the 
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possibility of using knowledge based systems to provide support in identifying the 

relevant components of a particular level of abstraction of the system. Such knowledge 

based systems would need to be adequately embedded in the process of conducting 

requirements analysis. 

In the approach proposed in this thesis, the method for conducting the requirements 

analysis, which leads to production of software for the controller of the system, has only 

considered the plant and the interface between the plant and the controller. However, 

this approach needs to be extended in order also to consider the operator and the 

operator interface, and will need to embrace an understanding of human error and the 

formulation of human error tolerance requirements, so as to ensure that safety is 

preserved in the presence of human errors. A challenging issue is how to incorporate 

established methods and techniques employed in the analysis of human factors within 

the methodology presented here. Recent work has already been performed on this topic, 

with some promising results. 

During the presentation of our approach to conduct requirements analysis, we have only 

identified the phases in which the analysis should be conducted, whereas the individual 

stages in which the analysis is to be conducted during each phase were not fully described. 

Although the entities of analysis are distinct from phase to phase, there are certain 

activities that are common to every phase. For the future, the aim should be to identify 

and model (by using, for example, SADT diagrams /Ross 801) the process of analysis to 

be associated with every phase of analysis, which should consist of: the input and output 

specifications, the activities to be conducted, and the interactions between the activities. 

The intent behind the modelling of the method and process for conducting the 

requirements is to obtain a systematic approach from which requirements analysis can 

be conducted. Instead of having a "product-oriented" approach for conducting the 

requirements analysis, we aim to establish a "process-oriented" approach which can be 

employed for many different systems within the same application domain. The ultimate 

objective is twofold; apart from being able to re-use the proposed approach (more 

184 



specifically the framework) to conduct the analysis of safety requirements across 

different systems within the same application domain, we also aim to be able to reuse 

some of the safety specifications that are produced during requirements analysis. In our 

understanding, whether these aims can be achieved will depend on the degree of 

modularity that can be obtained when establishing the levels of abstraction which are 

employed during the analysis. 

The migration of traditional safety analysis techniques into software development has 

the potential to provide a good basis for an integrated approach to the overall safety 

analysis of both the application domain and the software domain. However, the 

application of traditional techniques tends to be less effective, and more complex, when 

applied to software because of the necessary parameterization or customization of the 

techniques. A more fundamental approach would be first to understand the basic 

(semantic) notions of the safety analysis techniques, and then investigate how such 

notions can be combined with the formal methods currently employed in the software 

domain. A more radical theme is to devise safety analysis techniques based on novel 

abstraction notions, such as object-oriented methods, that are appropriate for both the 

application and software domains. 

Concerning documentation of the requirements specifications, although we have 

proposed a safety specification graph in which the specifications are recorded in a 

structured form, not much has been discussed about how such structure could be fully 

exploited in order to achieve a high degree of traceability between the specifications. The 

fact that all the safety specifications are formally recorded can be exploited in order to 

obtain a degree of semantic traceability for the specifications - a major advance on the 

more commonly found syntactic traceability. (Syntactic traceability is based on links 

established between the labels used to identify the elements of the specifications, while 

semantic traceability is based on the relationships - or transformation functions -

established between the information contained within the specifications.) However, it 

will be an almost impossible task to achieve full semantic traceability between the safety 
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specifications produced at different levels of abstraction and perhaps written in different 

notations. A more pragmatic approach is to aim for a "quasi-semantic" traceability 

which would entail establishing some form of semantic relationship between a subset of 

the information contained within the specifications. 

An important aspect that should be emphasized in future reviews of the proposed 

methodology is the provision of means that would allow the requirements for software 

to be expressed and analysed while the system in which it is to be embedded is still being 

designed. This reflects the fact that software has become ubiquitous in process control 

systems, which implies that the design of such systems should embody the software 

perspective. This requires a more integrated approach to system design, with the 

necessity of sharing information generated from different engineering domains. In order 

to achieve this aim, information models should be provided to allow the exchange of 

information produced by different methods and techniques that are specific for each of 

the engineering domains. However, mechanisms should also be provided to restrict the 

access to the information that is relevant for the analysis to be conducted. The ultimate 

aim of having an integrated approach for requirements analysis of critical real-time 

systems might only be achieved with the availability of tools that would guide the process 

of conducting the analysis. 

In our judgement, some of the issues within the approach proposed here for the analysis 

ofthe safety requirement of a critical real-time system, could equally be applied to the 

broader activities of requirements analysis that were not discussed in this thesis, or even 

applied to later phases of software development. 
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Appendix A 

Timed History Logic (THL) 

THL is a formalism based on a dense time structure and consists of three main concepts: 

histories which are the underlying semantics of the model, relations which are constructs 

used to capture properties that are invariant over histories, and modes which are used to 

structure specifications expressed by the model. Here we present an overview of histories 

and relations; a more detailed description of the model is given elsewhere /Saeed 90/. 

For a system with n state variables we have the state vector: SV =(VI, V2, ... , vn ) The set of 

possible values of a state variable (say, Vi) is defined by its variable range (Vv ). The state 

space of a system (r) is defined as the cross product of the variable ranges in the state vector 

Sv. The system lifetime (T) is an interval which represents the operational lifetime of the 

system. A history H of a system is a function of the form H: T -+ r. The set of all "possible" 

histories of a system are defined as the universal history set rHo For a history H the sequence 

of values taken by a variable Vi of SV is denoted by the function H V( T --+ Vvr Over any 

interval the following functions are defined: start point s(Int) - the earliest time point in 

Int; end point e(Int) - the latest time point in Int; and interval set SI(Int) - the set of all 

intervals contained within Int. 

Specifications are expressed by restricting the set of histories by two sorts of relations: 

invariant and history relations. 

Invariant relations are used to express relationships over the state variables which hold at 

every time point within T, these are formulated as system predicates. A system predicate is 

a predicate built using 11 free value variables VI, ... , VIl of types VVI , ••• , Vvn • No other free 

variables may be used. A tuple of values V =(xI, ... , xll ), where Xi is of type Vv;, satisfies a 

system predicate P if and only if substitution of each Xi for Vi within P(XI, ... , xn) evaluates 

to true. This is denoted by: P(V). We will denote P(HVI(t), ... , Hv,dt)) by H satP@t. A 

history H satisfies an invariant relation P iff: 'V t E T. H sat P@t. 
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History relations are used to express relationships over the state variables which hold during 

every interval included within T, these are formulated as history predicates. A history 

predicate is a predicate built using two free time variables To, Tl (To and TI should be 

interpreted as being universally quantified over T) and Il free function variables Vb ... , Vn . 

No other free variables may be used. A history H satisfies a history predicate HP for an 

interval lnt if and only if the expression resulting from substituting: (i) s(lnt) for To, (ii) 

e(lnt) for TI, and (iii) H. Vi for Vi for all i, evaluates to true. This is denoted by: H satHP@lnt. 

A history H satisfies an history relation HP iff: 'if Int E SI(T): H sat HP@lnt. 
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Appendix B 

Petri Nets 

B.l. Introduction 

B.2. Petri Net Model 

Let S, T, F be finite sets. The triple N=(S, T, F, W) is called a net structure if and only if the 

following conditions hold: 

S n T= 0; 

S U T ~ 0; 

F c (S x T) U (T x S); 

W:F-N,and 

domain (F) U codomain (F) = S U T. 

For a given net N=(S, T, F, W), S is the set of places of N, T is the set of transitions of N, F 

is the flow relation containing the arcs of N, and W the weight function. 

For all xES U T the preset lex) and the postset O(x) are defined as follows: 

lex) = {y E S UTI (y,x) E F}, and 

O(x) = {y E S UTI (x,y) E F}. 

A Petri net is a net structure with a given initial marking (Mo), and is denoted as PN = (N, 

Mo). A marking M of a Petri net is a mapping of the set of places S in to N (M: S ---+ N), the 

set of natural numbers. With I S I =m, a marking M is represented by vector M E Nm; its 

ith component is denoted by M(sj). 

A transition t E T is enabled in marking M if and only if'Vs E let): M(s) ~ w(s, t), where 

w(s, t) is the weight of arc from s to t. A firing occurrence produces a new marking M' from 
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M by choosing an enabled transition t in M. The new marking M' is defined as follows: 'Vs 

E I(t): M'(s)=M(s)-w(s,t), 'Vs E OCt): M'(s)=M(s)+w(t,s), andM'(s)=M(s) for all other 

places. A finite sequence of transitions is called a firing sequence if transition t· 1 < . < 
I, - l _ n, 

is enabled in marking ~-1 and its firing produces the marking~, starting from Mo. 

B.3. Predicate-'fransition Nets (PrT Nets) 

Predicate - Transi tion nets (PrT nets) IGenrich 871 is a form of high -level Petri net which 

is mainly used for the modelling and analysis of discrete-event systems which are 

concurrent, asynchronous, and non - deterministic. 

A PrT net consists of the following constituents: 

(1) a net structure (S, T, F) where, S is the set of predicates, and T is the set of 

transitions; 

(2) predicates are variable relations amongst individuals ("first-order" places); 

(3) the transitions are schemes of elementary changes of markings representing 

the actions carried out by the system; 

(4) an arc label specifies a variable extension of a predicate to which the arc is 

connected; 

(5) a marking is a mapping that assigns to each predicate formal sums of 

n - tuples of individual symbols, also called tuples. 

The graphical representation of a PrT net is obtained by representing a predicate by a circle, 

a transition by a box, an element of Fn(S xT) by a directed arc from a circle to a box, and 

an element ofFn(TxS) by a directed arc from a box to a circle. 

For the analysis of the PrT net model we have employed the S- invariant method IGenrich 

87/. The S-invariants are obtained from the projection of the entries of the incidence 
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matrix C of the net. The projection along the j-th position of the tuple (I u) introduces a 

kind of partial cardinal number, by ignoring information at position j in the tuple. As a 

consequence every solution of ICiT lil=O whose entries do not contain individual variables 

determines a family of S- invariants. 

B.4. Petri Nets and the Modelling of Time 

The concept of time is not explicitly given in the original definition of Petri nets. However, 

for performance evaluation and scheduling problems of dynamic systems, it is (at present) 

necessary and useful to introduce time delays associated with transitions and/or places in 

the net models. Such a Petri net model is known as a (deterministic) time(d) net if the timing 

constraints are deterministically given, or as a stochastic net if the delays are 

probabilistically specified. Only the former one is discussed in this appendix. 

B.4.1. Timed Petri Nets 

A Timed Petri Net /Ramchandani 74/ is a couple (PN, t) where PN is a Petri net and t is a 

function assigning a non -negative real number to each ti E T called the firing time of 

transition ti. The firing of a transition is carried out in three steps. In the first step, the 

transition starts firing as soon as it is enabled, removing the enabling tokens from its input 

places: \;Is E S: M' (s) = M(s) - w(s, li). In the second step, for a duration given by the firing 

time associated with the transition, the firing is in progress. In the third step, the firing 

terminates by producing tokens in the output places of the transitions: \;Is E S: Mil (s) = 

M' (s) + W(ti, s). Mil (s) is the marking of place s obtained after the firing of ti. When a 

transition is enabled a firing is initiated unless the firing of another transition disables the 

first one. 

B.4.2. Time Petri Nets 

A Time Petri Net /Merlin 76/ is a couple (PN, 8) where PN is a Petri net and 8 is a function 

assigning a closed interval [dmill , dmax ] to each transition ti E T, called the static firing 
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interval of transition tj, which is interpreted as the interval of t' . h' h th .. Ime III w IC e transition 

must fire. The first value gives the minimal time the transition, after being enabled, must 

wait before it can fire. The second value gives the maximal time before which the transition 

must fire if it is still enabled. Thus, for a transition to fire between dnlin and dmax , it must 

stay enabled between dmin and dmax , and if the transition has not been fired before dmax and 

if it is still enabled then it fires at dmax . The firing of a transition is instantaneous as in Petri 

nets. No restrictions to the lower and upper bound of the interval is implied, except thatdmin 

must be greater or equal than dmax . 

B.S. High - Level Nets and the Modelling of Time 

As far as the modelling of time in Petri nets is concerned, the comparison of using Time( d) 

Petri nets or high -level nets was already thoroughly discussed elsewhere IGhezzi 91/. The 

basic difference between the two types of nets is related to the fact that in higher level nets 

tokens may have an identity. The property of tokens having an unique identity allows 

timestamps to be associated with tokens, representing the time point at which a token has 

been produced. When using timestamps the concern is not just with the ordering of events 

(firing of transitions) in time, but also with the explicit time reference in which the event 

has occurred. However, timestamps can only be employed if the "flow of time" is correctly 

modelled by the net. 

B.S.1. Time ER Nets 

ER nets IGhezzi 91/ are high -level Petri nets where tokens are environments, i.e. functions 

associating values to variables. Furthermore, an action is associated with each transition, 

describing which input tokens can participate in a firing and which possible tokens are 

produced by the firing. 

Time is introduced in ER nets by adding to each environment a variable chronos, whose 

value is of numerical type, representing the timestamp of the token, in other words, the 

timestamp represents the time point at which the token was produced. The intuitive concept 
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of time is captured by three axioms which can be satisfied by constraining the relationships 

associated with the transitions. 

Axiom 1: Local monotonocity. For any firing, the value of chronos in the environments 

produced by the firing cannot be less than the value of chronos in any environment removed 

by the firing. 

Axiom 2: Constraints on timestamps. For any firing, the value of the chronos in the 

environments produced by the firing are the same, called the time of the firing. 

Axiom 3: Firing sequence monotonicity. For any firing sequence, the times of the firings 

should be monotonically non decreasing with respect to their occurrence in firing sequence. 

It is shown that, the three axioms are mutually independent, and once Axiom 1 and 2 are 

satisfied by an ER net, every firing sequence is equivalent to one that satisfies Axiom 3, 

which allows all observable behaviours of the net to match the intuitive notion of time. 

Time ER net (abbreviated TER net) is defined as an ER net where all environments contain 

a variable chronos and where Axioms 1 and 2 are satisfied. 

B.S.2. Time PrT Nets 

When the flow of time is being modelled in nets, for a transition to fire it is not sufficient 

for the transition to be enabled; the timing relationships associated with the transition, 

which are the timing constraints to be modelled, must also be satisfied. A timed firing nile 

must capture the conditions necessary for a transition to fire, together with the model ofthe 

flow of time associated with the net. The flow of time can either be explicitly modelled, 

imposing timing relationships to the transitions of a net, or implicitly, by associating with 

the firing of a transition an underling clock. 

Definition 4.1: In the explicit timed firing rule the concept of time is captured by the 

relationships associated with the transitions. 

Definition 4.2: In the implicit timed firing rule the firing of a transition is restricted by the 

properties of the underlying time structure. 
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The concept associated with the explicit timed firing rule is similar to the one employed in 

TER nets IGhezzi 91/. To each tuple we associate a timestamp which represents the time 

when the tuple was produced, which depends on the relational expression associated to a 

transition. However, a disadvantage ofthis approach is that to capture the flow of time the 

relationships associated with any transition must include the basic conditions of the flow of 

time, in addition to the timing constraints of the system being modelled. Another 

disadvantage of the time model of TER nets is that we are not able to distinguish 

concurrency from non - determinism if we describe the behaviour of a net model as a 

transition sequence, as it is shown in figure 2. 

a 

a. Timestamping concurrent events. 

a 

b 

b. Timestamping sequential events after a choice 

Figure 2. Discriminating concurrency and non - determinism. 

In the implicit timed firing rule the modelling of time in high level nets becomes 

transparent; we do not need to express explicitly, in the relationships of the transitions, the 
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basic conditions associated with the flow of time. This is achieved by associating with the 

net two types of clocks: a reference clock, and a net clock which has a different granularity 

for each level of abstraction being considered for the system. We assume that at each tick 

of the reference clock at most one transition fires, producing a token whose timestamp is 

given by the net clock. With this scheme for modelling the flow of time, the relationships 

associated with the transitions will only need to express the timing constraints of the system 

being modelled. Also, we are able to distinguish concurrency from non-determinism for 

the case in which the behaviour of a net model is described as a transition sequence: the 

timestamps of the tokens produced by the firing of two concurrent transitions may in this 

scheme assume the same value. 

The timing constraints to be modelled are expressed as relational expressions which must 

be satisfied for a transition to become enabled. We assume a Weak Time Semantics (WTS) 

rather than a Strong Time Semantics (STS), which means that a transition does not have 

to fire when its maximum firing time has been reached; if it does fire it does so within the 

time interval specified by the time condition IGhezzi 91/. 

For the verification of a PrT net model which incorporates the implicit timed firing rule, the 

main analysis method consists of executing specifications, as suggested for TER nets 

IGhezzi 91/. However, if we ignore the timestamps of the tokens, and the timing relations 

associated with the transitions, known techniques for the analysis of PrT nets, such as the 

S-invariant method IGenrich 87/, may be also employed to check the properties of a PrT 

net model, such as the liveness property. 
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Appendix C 

Fault lree Analysis (FTA) 

Fault tree analysis (FTA) is a "top down" analysis which delineates the logical relationships 

between component malfunctions and the designated undesired event. During system 

analysis, there are often a number of undesired events identified by techniques such as 

Preliminary Hazard Analysis, which are considered by separate fault trees. 

In a fault tree the undesired event appears as the top event, and this is linked to more basic 

fault events by event statements and logic events. The mains advantage of FTA comparing 

with other techniques such as FMEA is that the analysis is restricted only to the 

identification of the system elements and events that lead to one particular undesired 

failure or accident. In the following, we describe the basic building blocks of fault trees 

!Henley 92, Veseley 81/. 

There are two types of building blocks: gate symbols and event symbols. Gate symbols 

connect events according to their causal relations. A gate may have one or more input 

events but only one output event. The OR gate is used to show that the output event occurs 

only if one or more of the input events occur. Causality never passes through a OR gate, or 

alternatively, the inputs to an OR gate are never the causes to an output event. Inputs to an 

OR gate are considered a refinement of the output. On the other hand, the AND gate 

specifies a causal relationship between inputs and outputs, that is the input events 

collectively represent the cause of the output event. The more important event gates are 

the rectangle, diamond and circle. A rectangle indicates an event which must be analysed 

further. A diamond indicates a specific event that is not further developed either because 

it is of insufficient consequence or because information is unavailable. A circle indicates a 

basic fault requiring no further development. 

Both the qualitative and quantitative evaluation of a fault tree can be performed in straight 

forward manner by using minimal cut sets. Minimal cut sets define the "failure modes" of 
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the top event and are usually obtained when a fault tree is evaluated. A minimal cut set is 

the smallest combination of component failures which, if all occur, will cause the top event 

to occur, or alternatively, is a combination of primary events sufficient for the top event to 

occur. The minimal cut set (~) expression for the top event (1) is the following: 

T=M1 + ... +~ + ... + Mk· 
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Appendix D 

Operators for the PEA notation 

D.l. Standard Logical Operators 

In the following the standard logical operators are defined over the point and interval 

predicates, in the value and time domains. The operators are defined in terms of the 

functions of the E/ A model. 

D.l.l. Value domain - Point predicate 

Negation ( -, ) 

Vi E ]+: -'E(i) dgVtE T: -'Ev(t,i) 

Conjunction ( /\ ) 

Vi,jE ]+:E(i)/\F(j) (,:/ 3tET:Ev(t,i)/\ Fv(tj) 

D.l.2. Time domain - Point predicate 

Negation ( -, ) 

Conjunction ( /\ ) 

VtET: Vi,jE ]+: E(i)@t /\F(j)@t dgET(t, i) /\ FT(tj) 

D.l.3. Value domain - Interval predicate 

Negation ( -, ) 
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'Vi E [+: -'A(i)(tA,AINv,JA) d:f 'Vt E T. -'Av(t, i) 

Conjunction ( A ) 

'Vi,jE [+:A(i)(tA,AINv.JA) AB{j)(tB,BINv.lB) '!13tET.AV(t,i) A Bv(tJ). 

D.I.4. Time domain - Interval predicate 

Negation ( -. ) 

'Vt fA' t JA E T. 'Vi E [+: -,A(i)@(tfA,t LA ) d:f 

3tE T. (tfA ::; t < t ~A A -,AT(t,i» v ( (ttA > t ~ t ~A AAT(t,i» 

Conjunction ( A ) 

'Vt fA , t JA' t f19 t ~BE T. 'Vi,j E [+: A(i)@(ttA,tJA) A B{j)@(t tE,t ~B) d:f 

'Vt E T. (t fA ::; t < t ~A<=>AT(t,i» A 'VtE T. (t tB::; t < t ~B <=>BT(tj» A 

max( tfA,t fB) < mine t ~A,t ~B) 

D.2. Interval Operators 

Four additional logical operators are introduced over the interval predicates of the PEA 

notation. 

D.2.I. Value domain 

Choice Operator ( + ) 

'Vi,jE [+:A(i)(tA,AINv.JA)+B{j)(tB,BINv.lB) d:f 

(A(i)(tA,AINv.JA) A -.B{j)(tB,BINv,lB) V 

(-'A(i)(tA,AINv,JA) AB{j)(tB,BINv,lB) 

Meet Operator ( < ) 
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Vi,j E [+: A(i)(tA,AJNv,JA) -<B(j)(tB,BINv,~B) '!:! 

A(i)(tA,AINv,~} A B(j)(t B,BINv.~B) A JA(i)~t B(j). 

Overlap Operator (II) 

Vi,j E [+: A(i)(tA,AINv.JA )11B(j)(t B,BINv.~B) '!:! 

A(i)(tA,AINv.~) AB(j)(tB,BINv.~B) A 

tA(i)=>B(j)(t B ,BINv. ~B) V t B(j)=>A (i)( tA,AINv.~). 

Disjoint Operator (V) 

Vi,jE I+:A(i)(tA,AINv.~)VB(j)(tB,BINv.~B) '!:! 

-, (A(i)(tA,AINv.~)IIB(j)(tB,BINv.~B) A 

-, (A(i)(tA,AINv.~) -<B(j)(tB,BINv.~B) A 

-, (B(j)(tB,BINv.~B) -<A (i) (tA,AINv.lA). 

D.2.2. Time domain 

Choice Operator ( + ) 

Vt tA, t!A' ttiP t~BET. Vi,jE [+:A(i)@(ttA,t!A)+B(j)@(ttB,t~B) d:;[ 

(A(i)@(ttA,t!A) A -, B(j)@(t tB,t ~B) V ( -'A(i)@(ttA,t!A) A B(j)@(t tiPt ~B)' 

Meet Operator ( -< ) 

Vt tA, t!A' ttiP t~BET. Vi,jE [+:A(i)@(ttA,t!A)-<B(j)@(ttB,t~B) d:;[ 

A(i)@(ttA,t!A) A B(j)@(t tB,t ~B) A (t!A = t tB)' 

Overlap Operator (II) 

Vt tA, t!A' ttiP t~BET. Vi,jE [+:A(i)@(ttA,t!A)IIB(j)@(ttB,t~B) '!:! 

(A(i)@(ttA,t!A) AB(j)@(ttiPt ~B) A «(ttBS; t tA < tJ,B) V (ttA S; ttB< t!A»' 
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Disjoint Operator ( - ) 

'v'ttA' t JA, ttIP t~BET. 'v'i,jE 1+:A(i)@(ttA,tJA)VB(j)@(ttIPt~B) d:f 

-, (A(i)@(tfA,tJA)IIB(j)@(t tB>t ~B)) A 

-, (A(i)@(tfA,tJA)<.B(j)@(ttB,tlB)) A 

-, (B(j)@(ttIPtlB) <.A(i)@(ttA,tJA))' 
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