
A Methodology for the Requirements

Analysis of Critical Real-Time Systems

Rogerio de Lemos

Ph.D. Thesis

November 1994

NEWCASTLE UNIVERSITY LIBRARY

094 05430 8

University of Newcastle upon Tyne

Department of Computing Science

Abstract

This thesis describes a methodology for the requirements analysis of critical real-time

systems. The methodology is based on formal methods, and provides a systematic way

in which requirements can be analysed and specifications produced. The proposed

methodology consists of a framework with distinct phases of analysis, a set oftechniques

appropriate for the issues to be analysed at each phase of the framework, a hierarchical

structure of the specifications obtained from the process of analysis, and techniques to

perform quality assessment of the specifications.

The phases of the framework, which are abstraction levels for the analysis of the

requirements, follow directly from a general structure adopted for critical real-time

systems. The intention is to define abstraction levels, or domains, in which the analysis

of requirements can be performed in terms of specific properties of the system, thus

reducing the inherent complexity of the analysis.

Depending on the issues to be analysed in each domain, the choice of the appropriate

formalism is determined by the set of features, related to that domain, that a formalism

should possess. In this work, instead of proposing new formalisms we concentrate on

identifying and enumerating those features that a formalism should have.

The specifications produced at each phase of the framework are organised by means of

a specification hierarchy, which facilitates our assessment of the quality of the

requirements specifications, and their traceability. Such an assessment should be

performed by qualitative and quantitative means in order to obtain high confidence

(assurance) that the level of safety is acceptable.

In order to exemplify the proposed methodology for the requirements analysis of critical

real-time systems we discuss a case study based on a crossing of two rail tracks (in a

model railway), which raises safety issues that are similar to those found at a traditional

level crossing (i.e. rail-road).

II

Acknowledgements

"Procuro unir as pontas meio rotas atraves do

Tempo real ou inventado enquanto fico me

perguntando 0 que isto tudo tem a ver. .. "

Lygia Fagundes Telles, As Horas Nuas.

It is my pleasure to thank firstly my supervisor Professor Tom Anderson for his

constructive criticism of my research work, and for his many helpful comments upon the

contents of this thesis. I would also like to thank Dr C R Snow and Dr N Speirs for their

help in the early years of my research.

My special thanks go to my colleagues Dr Paul Ezhi1chelvan, for our short but productive

co-operation in the area of group membership for distributed real-time systems, and

Dr Amer Saeed, for his immense patience to endure me for so long while we have

conducted the research work in the area of requirements analysis for safety-critical

systems. I would also like to extend my thanks to all my colleagues of the department of

Computing Science, and my special thanks go to my colleagues in the CSR, who made

my tenure at this department more pleasant.

My studies at the University of Newcastle were made possible through the financial

support of CAPES/Ministry of Education (Brazil) for which I am sincerely grateful.

III

Table of Contents

Chapter 1 0 •••••••••••••••••• " " ••••••••••••••••••••••••••• II • • • • 1

Introduction 0 •••••••••••••••• 0 •••••••••••••••••• II • • • • • • • • • • • • • • • • 1

1.1. Basic Definitions ... 4

1.2. A Methodology for Requirements Analysis 4

1.3. Current Requirements Analysis Techniques 9

1.4. Contribution of the Thesis. 11

1.5. Outline of the Thesis .. 13

Chapter 2 .. :.............. 15

General Structure of Critical Real-Time Systems 15

2.1. Introduction ... 15

2.2. Evolution of Critical Real- Time Systems. 16

2.3. Structure of the System .. 18

2.3.1. Physical Process or Plant 21

2.3.1.1. Continuous Variable Dynamic Systems. 22

2.3.1.2. Discrete Event Dynamic Systems 22

2.3.2. Controller ... 23

2.3.3. Operator .. 24

2.3.4. Plant Interface. 25

2.4. System Variables. 26

2.5. Mission and Safety Subcomponents . 28

2.6. Concluding Remarks .. 29

Chapter 3 ... 31

Time Domain in Critical Real-Time Systems. 31

3.1. Introduction ... 31

3.2. General Model of Time . 32

3.2.1. Time Structures . 33

iv

3.2.2. Relationships Between Time Structures. 36

3.2.3. Time Intervals 37

3.3. Uncertainties in the Time Domain

3.3.1. System Model ~

37

39

3.3.2. Uncertainties in measuring Value and Time 40

3.3.3. Value Uncertainties due to Time Uncertainties 43

3.3.4. Value Inconsistencies due to Time Uncertainties 44

3.3.5. Continuous and Discrete Variables. 46

3.4. Concluding Remarks .. 47

Chapter 4 ... 49

Behaviour Description in Critical Real-Time Systems 49

4.1. Introduction ... 49

4.2. An Event/Action Model (E/A Model) 50

4.2.1. Definition of the E/A Model. 51

4.2.1.1. Syntax of the E/A Model 52

4.2.1.2. Semantics of the E/A Model 55

4.2.2. Primitive Functions of the E/A Model 56

4.2.2.1. Point Function. 57

4.2.2.2. Interval Function 59

4.2.2.3. Utility Function 61

4.2.3. Event/Action Model and Time Structures. 65

4.3. Predicate Event/Action Notation (PEA Notation) . 67

4.3.1. Primitive Predicates of the PEA Notation 67

4.3.1.1. Point Predicate. 67

4.3.1.2. Interval Predicate 68

4.3.1.3. Utility Predicate. 69

4.3.2. Operators of the PEA Notation 70

4.3.3. Examples .. 72

v

4.4. Formalisation of the E/A Model. 74

4.4.1. E/A Model in THL '" 74

4.4.2. E/A Model in PrT Nets 75

4.5. Extract of a Case Study .. 80

4.5.1. The Case Study from the PEA Notation Perspective 81

4.5.2. The Case Study from the THL Perspective 82

4.5.2.1. Physical Process. 82

4.5.2.2. Safety Controller . 83

4.5.3. The Case Study from the PrT Nets Perspective. 84

4.6. Comparison of the PEA Notation with similar Models 84

4.7. Concluding Remarks .. 87

Chapter 5 ... 89

A Methodology for Requirements Analysis. 89

5.1. Introduction ... 89

5.2. Separation between the Mission and the Safety Requirements 91

5.3. Formal Methods for the Framework 92

5.4. Framework for the Requirements Analysis. 95

5.4.1. Conceptual Analysis 97

5.4.2. Safety Plant Analysis 98

5.4.2.1. Proposed Formalism 99

5.4.2.2. Proposed Time Structure 99

5.4.2.3. The E/A Model in the Safety Plant Analysis 100

5.4.3. Safety Plant Interface Analysis 100

5.4.3.1. Behaviour of Sensors and Actuators 101

5.4.4. Safety Controller Analysis 103

5.4.4.1. Proposed Formalism 103

5.4.4.2. Proposed Time Structure 104

5.4.4.3. The E/A Model in the Safety Controller Analysis 104

vi

5.4.4.4. Animation .. 105

5.5. Safety Specification Graph 105

5.5.1. Structure of SSG. .. 106

5.5.2. Relationships of SSG 106

5.5.3. Role of SSG .. " 107

5.6. Quality Analysis of Safety Specifications .. 108

5.6.1. Qualitative Risk Analysis : 110

5.6.1.1. Preliminary Analysis 110

5.6.1.2. Vulnerability Analysis. .. 111

5.6.2. Quantitative Risk Analysis. .. 113

5.6.3. Risk Assessment .. 115

5.7. Mission and Safety Analysis 117

5.8. Concluding Remarks .. 118

Chapter 6 ... 120

Case Study: Train Set Example ... 120

6.1. Introduction ... 120

6.2. Conceptual Analysis. .. 121

6.3. Safety Plant Analysis .. 122

6.3.1. Collision of Trains of Same Type .. 125

6.3.2. Collision of Trains of Different Type 128

6.4. Safety Interface Analysis. .. 140

6.5. Safety Controller Analysis. .. 147

6.5.1. Collision of Trains of the Same Type. .. 148

6.5.2. Collision of Trains of Different Type ~........................ 152

6.6. Safety Specification Hierarchy 159

6.7. Quantitative Risk Analysis of Safety Specifications 162

6.8. Concluding Remarks .. 165

Chapter 7 ... 167

Conclusions ... 167

7.1. Achievements and Limitations 168

7.2. The Current State of the Work. .. 171

7.2.1. System Structure and Refinement Process. 172

vii

7.2.2. Perspectives and Domains of Analysis 173

7.2.3. Frameworks .. " 174

7.2.4. Techniques for the Analysis 175

7.2.5. Analysis of Safety Requirements for Process Control Systems 176

7.2.6. Overview of the Approach. .. 180

7.3. Future Work ... 181

References II ••• " •••••••••••••• II 187

A. Timed History Logic (THL)••....•.•.........•......•...•• 202

B. Petri Nets•.•...............••...... 204

B.l. Introduction. .. 204

B.2. Petri Net Model .. 204

B.3. Predicate-Transition Nets (PrT Nets) 205

B.4. Petri Nets and the Modelling of Time. .. 206

B.4.l. Timed Petri Nets. .. 206

B.4.2. Time Petri Nets .. 206

B.5. High - Level Nets and the Modelling of Time 207

B.S.1. Time ER Nets ... 207

B.S.2. Time PrT Nets 208

C. Fault Tree Analysis (FTA) 211

D. Operators for the PEA notation 213

D.l. Standard Logical Operators. .. 213

D.1.l. Value domain - Point predicate 213

D.l.2. Time domain - Point predicate. .. 213

D.l.3. Value domain - Interval predicate. .. 213

D.l.4. Time domain - Interval predicate 214

D.2. Interval Operators. .. 214

D.2.l. Value domain. .. 214

D.2.2. Time domain .. 215

viii

Chapter 1

Introduction

A critical real-time system is a real-time system for which there exists at least one

failure that can be adjudged to cause an accident (e.g. loss oflife) /PDCS 901. (We employ

the term "critical real-time system", instead of "safety-critical system", in order to

emphasize the real-time characteristics of the type of systems that we are concerned

with; it can be the case that a safety-critical system might not have any timing

characteristics at all.) The development of such systems is usually controlled by

regulatory authorities, specific to the area of application, such as transportation,

aerospace, energy industry, medicine, and defence. These regulatory boards impose

certification criteria, in accordance with the safety standards established for the different

sectors, which must be satisfied before the system can be put into service.

As the use of computers increases in critical applications and the level of criticality of the

roles performed by the computers also increases, currently available methods have been

proven inadequate for the development of critical real-time systems because they do

not provide the required level of confidence ILeveson 91b/. Hence there is a need to

search for new methods for the development of software for such systems. Within the

context of software development this thesis is essentially concerned with the

requirements phase, where we adopt the usual practice of dividing the development

process into requirements, design, and implementation. Furthermore, we are only

concerned with issues related to "software safety", although "safety" is an attribute of the

system rather than just software. The requirements phase is characterised by intensive

communication between the customer, or a group of experts, and the analyst. It

comprises the elicitation of the requirements (i.e. acquisition and expression of the

customer requirements), the analysis of the requirements (i.e. checking for ambiguities,

contradictions, and incompleteness of the requirements), and the explicit definition of

1

the requirements (i.e. the construction of the requirements specification). Experience

has shown that faults in the requirements specification can corrupt later stages of

software development, introducing faults into the final system which can subsequently

cause an accident !Ericsson 81/. Furthermore, the longer it takes (in terms of system

development) to identify a fault, the more expensive it will be to nUllify the effects ofthe

fault /Boehm 81/.

One approach that has been advocated for achieving an improvement in the

dependability of critical real-time systems is the utilization of formal methods IMoD

91a, Moser 901. The potential advantages of using formal methods, apart from

contributing to improving the understanding of the requirements specification, include

unambiguity, refinement consistency, and the opportunity to check for completeness

(with respect to a key set of questions and inferences based on the information specified

IJaffe 19911). However, the utilization of formal methods has its limitations in the sense

that faults cannot be completely eliminated. A first limitation concerns those faults that

can arise during the process of formalising the requirements, either due to

misunderstandings of the user needs or when expressing those needs. A second

limitation is related to the assumptions that are usually made in order, for instance, to

obtain a mathematical model of the real world; although these assumptions are useful

(or even essential) in simplifying the analysis process, they may also introduce

imperfections into the model. Finally, a third limitation arises from observing past

experience in the utilization of formal methods which shows that a formal verification

may itself contain faults. To maximise the benefits that can be obtained from the

application of a formal method, a set of guide-lines should be provided in order to advise

the user of the circumstances under which the method can and should be applied, as well

as how it can be applied most effectively /Wing 901. Although there are a great number

of formal methods, they can be roughly classified into a few broad types in accordance

with their expressive power IPnueli 86, Wing 901. The utilization in a development of

more than one type of formal method has become increasingly common because of their

different characteristics and expressive power, which enables the representation and

2

analysis of complementary views of a system, with each formal method working to its own

strengths /Pnueli 86, Olderog 91/.

With respect to the requirements phase, the motivation for the application of formal

methods is to locate and remove faults introduced during this phase, before proceeding

to any subsequent phase of development. Within the requirements phase, our concern

is specifically with the analysis of the requirements, a multidisciplinary activity where

there is a need to analyse certain views ofthe system which have different, and sometimes

unrelated, characteristics. Employing a multi-formalism approach, we are able to

choose appropriate formalisms in order to analyse each view in terms of its specific

characteristics. In our proposed methodology, a set of formal methods are employed in

accordance with the characteristics of the system, and the type of analysis to be

performed.

As a general structure for critical real-time systems, in particular process control

systems, we adopt a commonly accepted structure of partitioning the system into three

different components: the operator, the controller, and the physical process (or plant)

/Saeed 91/. Apart from these, we also identify the componentsplant inteiface and operator

inteiface which contain those components of the controller that support the interface to

the plant and the operator, respectively. The entire system has an external environment,

which is that part of the rest of the world which may affect, or be affected by, the system.

The contents of this chapter are organized as follows. The next section presents a set of

definitions which are basic for the rest ofthe thesis. In section 2 we outline the proposed

methodology within the context of the above general structure for critical real-time

systems. Section 3 presents a survey of current techniques for requirements analysis.

Section 4 summarises the technical contributions of this work, and section 5 provides an

outline of the subsequent chapters of the thesis.

3

1.1. Basic Definitions

Our basic concern is to ensure that an accident (an unintended event or sequence of

events that causes death, injury, environmental or material damage) does not occur.

However, we encounter the problem that we cannot directly influence all of the factors

that could conceivably lead to an accident. To deal with this problem the notion of a

hazard (a physical situation or state, expressed as a system condition) is typically used to

describe a circumstance from which an accident could ensue, even though it might be

prevented by the controller. While a system is in a hazard state, whether an accident

might ensue or not, might depend on issues which are outside the scope ofthe controller

/Leveson 91b/. Thus, to ensure safety, we strive to identify all of the hazards and then

apply techniques to reduce the probability of the system getting into a hazard state. The

effort that should be employed to prevent a hazard depends on the risk associated with

that hazard. The risk of a hazard is related to the likelihood of the system entering that

hazard state, the likelihood that the hazard will actually lead to an accident, and the

expected potential loss associated with such an accident, i.e. the accident severity

/Leveson 86/.

An initiating event (analogous to an erroneous transition /Lee 90/) is an event to which

a subsequent hazard state could be attributed /MoD 91b/. An unsafe state is a state which

could lead to a hazard, in the absence of corrective action by the safety controller and/or

safety operator and in the absence of any subsequent initiating events. If a state is not

an unsafe state then it is said to be safe. These definitions ensure if a system is in a safe

state then it will not subsequently enter a hazard state unless an initiating event occurs.

1.2. A Methodology for Requirements Analysis

The methodology for the software requirements analysis for critical real-time systems

presented here is based on establishing a clear separation of the mission and the safety

requirements. The mission requirements focus on what the system is supposed to achieve

in terms of function and timeliness requirements, and the safety requirements focus on

4

the elimination and control of hazards and on the limitation of damage in the case of an

accident. The benefits of making this distinction, which is essentially logical rather than

physical, during requirements analysis are: resolution of potential conflicts, detection of

omissions and inconsistencies between the mission and safety issues, the ability to focus

on the safety-critical issues, and simplification of safety certification.

In the following we discuss a methodology, based on formal methods, which provides a

systematic way in which the safety requirements for critical real -time systems can be

analysed. The proposed methodology consists of a framework with distinct phases of

analysis, a set of techniques appropriate for the issues to be analysed at each phase of

the framework, a hierarchical structure of the specifications obtained from the process

of analysis, and techniques to perform the quality assessment of the safety specifications.

The phases of the framework correspond to the domains of analysis which follow directly

from a general structure adopted for critical real-time systems. The intention is to

define domains of analysis in which the analysis of requirements can be performed in

terms of specific issues of the system, thus reducing the inherent complexity of the

analysis. In the conceptual domain we specify the role that the system has in its

environment, and identify those failure behaviours of the system that constitute

accidents. In the plant domain we identify the state variables representing the physical

state of the plant, the properties of the physical process, namely the physical laws, rules

of operation, and hazards, together with the conditions over the physical process which

prevent the system from entering into a hazard state. In the plant inteiface domain we

identify the properties of sensors and actuators, such as their failure rates and the

imperfections that are introduced while monitoring and controlling the variables of the

plant. Finally, in the controller domain the properties of the controller are identified, such

as the top level organization of the components of the controller and the failure rates of

these components.

An advantage in performing requirements analysis in different domains of analysis is

that, depending on the issues to be analysed in each domain, an appropriate formalism

5

can be selected. By applying the appropriate formal method, we are able to emphasize

specific characteristics of the domain in which the analysis is performed. An

inconvenience of an approach based on more than one formalism is the need to find a

common formal framework which can be used to link the different formalisms, a

problem which does not exist when only a single formalism is adopted. However, such

"single-minded" approaches, for instance durational calculuslRavn 93/, do not provide

the required notational flexibility for the whole task of requirements analysis and,

moreover, attempts to overcome this limitation necessarily increase the complexity of

the single formalism. Clearly, there exists a tradeoff between these two approaches. In

the single formalism approach, a formal verification is more easily obtained; on the other

hand, in the multi - formalism approach we are able to perform requirements analysis

in a more thorough manner. However, the number of approaches which make use of

multi -formalisms, by combining the benefits that each individually can provide, is

increasing /Barroca 92, Fidge 92, He 90, Morasca 89/; this could be taken as an indication

that current limitations might soon be overcome.

In this work, instead of proposing new formalisms we concentrate on identifying the

features that a formalism should have in order to be applied in the requirements analysis

of a specific domain. There were two reasons for taking this approach. First, there are

already enough formalisms that could fulfil the set of features that are required in order

to perform the analysis in each domain, and second, not very much is known concerning

the application of formal methods in the requirement analysis of critical real-time

systems. In other words, the usual practice has been to identify, for a given formalism,

the features which justify its application to requirements analysis /Ravn 93, Scholefield

92/, rather than the opposite approach of identifying the salient features that a formalism

should possess to be suitable for requirements analysis. Within this thesis, the formalisms

adopted for each of the domains of analysis, identified above, were selected solely to

illustrate the fundamentals of our approach to requirements analysis.

6

Now we proceed to introduce, briefly, some of the features that formalisms should have

for each of the domains of analysis. For the conceptual domain, we seek notations which

allow the reasoning about and the representation of a very high level description of the

preferred behaviour of the system within its enclosing environment. A formalism for this

domain should support the representation of causal relationships between states of the

system and environment. For the plant domain, we have to analyse systems which contain

both continuous and discrete variables. Hence it is necessary during this phase to employ

both differential equations and discrete mathematics. For this domain, a descriptive

formalism that enables behaviour to be specified in terms of axioms over a model of the

system is most appropriate. Such formalisms allow specifications to have a conjunctive

nature, in the sense that new requirements can be added without the need to reconstruct

the full specification. For the plant interface domain, we are concerned with modelling

the properties of sensors and actuators. The specifications obtained from the plant

domain are re-written in terms of the imperfections of sensors and actuators. For this

analysis we need formalisms which have the same characteristics as the formalisms

specified for the plant domain. For the controller domain, we have to analyse the high

level architectural design of the controller, modelling the interactions between its

components and the operations that must be performed by these components. To

perform this analysis we need a formalism which explicitly embodies concurrency and

non -determinism.

The utilization of more than one formalism for requirements analysis has another

drawback, apart from those already mentioned, which is the need to work with different

notations. In order to handle this, we introduced the event/action model (E/A Model),

which is based on primitive concepts such as events, states and actions, and which allows

the discrete behaviour of systems to be described in terms of a set of variables

representing the state of the system. The aim is to employ these primitive concepts as

abstract notions when using different formalisms. To formally express the primitive

concepts of the E/ A model and to facilitate the formal analysis, we employ the predicate

7

event/action notation (PEA notation). In this notation, the primitive functions are

related to predicates over system variables.

The specifications produced at each phase of the framework are located and organised

by means of a specification hierarchy, which facilitates assessment of the quality of the

requirements specifications and their traceability. Such an assessment should be

performed by both qualitative and quantitative means in order to obtain high confidence

(assurance) that the level of safety is acceptable. The qualitative approach to assurance

is based on formal and informal analyses of the specifications, which are performed by

applying verification and validation techniques, respectively. The quantitative approach

to assurance either measures or estimates the probability that the system will enter in

hazard state both due to the violation of assumptions made when constructing

mathematical models of the plant, and as a consequence of the measured or predicted

failure rate of sensors, actuators and controller components.

A general characteristic of the methodology discussed in this thesis is the utilization of

formal methods from as early a stage as possible during requirements analysis. We

achieve this by formalising the properties of the physical process, namely the rules of

operation, physical laws and hazards, and subsequently obtaining the other

requirements specifications by successive formal refinements. By adopting this approach

we aim to facilitate the qualitative assessment of the requirements specifications by

minimizing the validation process (checking the correctness of a formal specification

against an informal one), and maximizing the verification process (checking the

correctness between two formal specifications); the latter process can (in principle) be

performed mechanically with the help of proof checkers, such as HOL/Gordon 88/ and

EHDM /Rushby 91/. The proposed utilization of formal methods differs from existing

approaches in that the usual practice is to obtain first the informal specification of the

complete system, and then formalise only that part of the specification which is related

to the controller /Dauchy 91/.

8

1.3. Current Requirements Analysis Techniques

In this section, we present an overview of some related work.

The approach suggested in this thesis, of dividing the requirements analysis into domains

of analysis, and using the appropriate notation for the different tasks and domains of

analysis, has not previously been investigated. What has usually been presented is the

utilization of a single formalism such as Invariants /Bishop 86/, Temporal Logic IGorski

86/, Petri nets ILeveson 87/, and THL ISaeed 901. However, there are two approaches

in the literature which use more than one formalism for requirements analysis 11ahanian

88/, IOstroff 901. These papers are primarily concerned with the analysis of timeliness

requirements; they do not seek to establish a methodology for the analysis of the whole

set of safety requirements of critical real- time systems.

In 11 ahanian 88/, the specification of the system is realized in terms of Real- Time Logic

(RTL) and Modecharts; Modecharts produce a decision procedure for classes of

properties expressed as RTL formulas. The system properties are verified using

Computation Graphs, obtained from the Modecharts, to check if the corresponding RTL

formulas comply with the Modecharts.

In IOstroff 901 a methodology is presented for the specification and verification of

real-time systems; this makes use of multiple formal methods, for different domains of

analysis. A Timed Transition Model (TIM), with an extension to finite state machines,

is used to model "plant-controller processes", whereas Real Time Temporal Logic

(RTIL) is used for specifying properties over the trajectories of a TIM. A weakness of

this approach is that a TIM specification of a system must be constructed before RTIL

formulae can be stated; this causes difficulties in validation since the initial formalization

step is large, and the ability to develop a descriptive specification is lost.

The Formal Requirements Specification Techniques (FOREST) ICunningham 86,

Goldsack 91/ were developed to support requirements engineering for real-time

systems; the approach consists of a methodology called Structured Common Sense

9

(SCS), based upon a number of existing techniques such as CORE and JSD, and a formal

method called Modal Action Logic (MAL), based upon a many-sorted first order logic.

The FOREST approach is noteworthy since it placed emphasis on an overall

methodology and allows modelling of the operational environment.

In terms of analysis procedures for localizing faults in requirements specifications, a

general correctness criteria which must be satisfied by process control systems was

presented in /Jaffe 91/. However, the application of this set of criterion is more a

technique to validate requirements specifications than a methodology to produce them,

because issues such as how the specifications are obtained and what methods are

employed are not addressed. The same observation could be applied to the work by

Parnas & Madey /Parnas 91/, where a systematic way of producing documentation in the

development of computer systems is discussed. Comparing with our approach, although

both approaches adopt very similar domains of analysis in which requirements

specifications are produced, the cited publications only discuss how the specifications

should be represented for documentation purposes, and say little or nothing about the

methods which should be employed to obtain the specifications.

The ProCos project (Provably Correct Systems) has conducted research in the area of

specifying and verifying system requirements /Ravn 93/. The aim of this work is to specify

requirements and verify the system design using mathematical models. There is no

treatment of the issues that arise during analysis of the requirements. Although the

approach identifies domains of analysis, in terms of the physical process and controller,

a single formal method, Durational Calculus, is employed.

Instead of employing formal methods, tools based on rigorous approaches have been

employed for the production of requirements specifications; STATEMATE /Hare! 90/

is such a tool. In STATEMATE, requirements specifications are produced from three

perspectives: the functional view as data flow diagrams, the behavioural view as

statecharts, and the structural view as module charts. One of the most powerful features

of STATEMATE is its simulation capability.

10

1.4. Contribution of the Thesis

In the following, we outline the main contributions of this thesis; references to work

already published by the author are provided.

The essential contribution of this thesis is the proposal of a methodology for the

requirements analysis of critical real-time systems. For this methodology we introduced

a framework in which the analysis is performed in domains with the aim of simplifying

the analysis and thereby leading to more accurate specifications. These domains of

analysis are associated with the components of the system, and for each domain,

depending on the perspective being considered !Finkelstein 92/, we can perform

different types of analysis. For each domain, depending on the issues to be analysed, we

defined a set of features that a formal method should possess. The bases of the

framework were introduced in /Saeed 91a/, and elaborated for use in the requirements

analysis of a train set crossing case study Ide Lemos 92b/. The overall methodology,

including a revised version of the framework, was presented in /Anderson 93/.

Another contribution is related to the approach taken in performing the quality

assessment ofthe requirements specifications. Essentially, the hierarchical way in which

the specifications are structured, facilitates how the qualitative and the quantitative

analysis are performed in an integrated manner /Saeed 92/. The former, by applying

verification and validation techniques, and the latter, by measuring the probability of a

hazard occurring due to the impact of violations of the assumptions and the failure rates

of sensors and actuators.

For temporal analysis, we introduced the event/action model (E/ A model) based on work

by J ahanian & Mok /J ahanian 86/, with some additional features that make it applicable

to requirements analysis; specifically, the model is now flexible enough to support both

discrete and dense time structures, and can depict timing analysis graphically Ide Lemos

92a/. In a further development, the role ofthe E/A model was extended by using its basic

concepts (events, states and actions) to describe the behaviour of systems within the

11

different domains of analysis. In order to support this wider role of the E/A model, we

also introduced the predicate event/action notation (PEA notation) which provides a

compact notation and facilitates formal analysis of the system behaviour /Anderson 93/.

In this thesis we present another version of the PEA notation which allows temporal

analysis to be performed in both qualitative (ordering of events) and quantitative (time

of event occurrence) terms.

Two other contributions should be mentioned (although not directly related to the

requirements methodology) because of the influence they had on the main research

work. The first of these dealt with the issue of value inconsistencies resulting from time

uncertainties in distributed real- time systems. The aim was to identify the influence that

time inconsistencies within the system had on the value domain of a system variable, and

to define the minimum conditions, depending on whether we are dealing with continuous

or discrete variables, which should be imposed on the time domain in order to obtain

consistency in the value domain Ide Lemos 91/. In the second contribution, we extended

the framework for requirements analysis to the next stage in software development by

performing the link between requirements and design of real-time software Ide Lemos

92c/. In the approach, which was object-based, we employed Petri nets with Objects

(PNO) /Sibertin 85/ for the controller analysis, and for design we employed an

object-based notation that offers support for active objects /Shrivastava 91/. Also in this

work we introduced an approach for the interface analysis, based on the specification of

standard, exceptional and failure behaviours for the sensors and actuators; this served

as a basis for the interface analysis which is presented in this thesis.

Apart from the above, but less directly related to the subject of requirements analysis,

is another contribution which relates to research work conducted in the area of

distributed real-time systems Ide Lemos 90, Ezhilchelvan 90/. The problem addressed

in these papers is that of how to maintain a consistent and timely knowledge of the group

of non - faulty processors by those processors which are members of the group.

12

Compared with the solution initially proposed IKopetz 89/, our group membership

algorithm was much simpler and could tolerate a greater number of processor failures.

As can be seen from the bibliographical references made to other publications, part of

the work discussed in this thesis arises from joint work with colleagues from the

department of Computing Science. Work on distributed real-time systems (which was

not elaborated in this thesis) was conducted jointly with Paul Ezhilchelvan. In the area

of requirements analysis for critical real-time systems, the work has benefitted greatly

from interaction with Arner Saeed, who was responsible for sowing the first seeds in this

area of research in this department ISaeed 90b/, most notably by developing the

formalism Timed History Logic (THL) which we have used extensively in this thesis.

1.5. Outline of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 introduces process control systems as the type of critical real-time systems

with which we are concerned. As a general structure, we partition critical real- time

systems into three distinct components: the operator, the controller and the physical

process (or plant). This structure is further decomposed to reflect the decision to

separate the mission and safety issues. The roles of each of these components are then

described.

In Chapter 3 we provide the basis from which the analysis of timeliness requirements is

performed. Initially, we discuss how the flow of time can be modelled, by defining two

types of time structures which will be used in the framework. Finally, we discuss the issue

of value inconsistencies due to timing uncertainties in the context of distributed

real-time systems design, and provide the conditions to be imposed on the time domain

in order to obtain consistency in the value domain.

In Chapter 4 we introduce the event/action model (EfA model) which describes the

behaviour of systems at the various domains of analysis in terms of primitive concepts

13

such as events, actions and states, and the concept of a timeline. The utilization of these

concepts provides considerable flexibility, enabling descriptions of system behaviour to

be expressed ranging from the activities of the physical entities of the plant to the

temporal ordering of the computational tasks of the controller. However, to formally

express the primitive concepts of the E/ A model and to facilitate the formal analysis, we

employ the PEA notation. The concepts of the E/A model are then formalised in terms

of THL and PrT nets.

Chapter 5 presents a framework for requirements analysis and a hierarchical structure

for the safety specifications. The framework is presented in terms of phases of analysis

which correspond to the domains of analysis which follow directly from the general

structure adopted for critical real- time systems. For each phase of the framework we

discuss the appropriate formalism to be employed, the time structure which should be

used, and what the E/A model should represent.

Chapter 6 discusses how the quality of the safety specifications can be assessed

qualitatively and quantitatively in order to obtain high confidence (assurance) that the

level of risk is acceptable. The qualitative approach to assurance is based on formal and

informal analysis ofthe specifications, whereas the quantitative approach is based on an

evaluation of the probability that the system will enter a hazard state (because of faulty

assumptions about the behaviour of the physical process, or failures of the components

of the interface and controller).

In order to exemplify our methodology for the requirements analysis of critical

real-time systems, in Chapter 7 we discuss a case study based on a train set crossing,

which raises safety issues that are similar to those found at the traditional level crossing

(i.e. rail-road).

Finally, in Chapter 8 we summarise the main issues presented in this thesis, and suggest

directions for future investigation.

14

2.1. Introduction

Chapter 2

General Structure of
Critical Real-Time Systems

The adoption of a general structure for a critical real-time system will be a useful guide

for their requirements analysis, since it establishes the domains in which different

methods and techniques for the analysis can be applied. In this chapter we present such

a general structure, identifying the basic components of the system and describing their

respective role within the system. The type of systems under consideration are process

control systems, also known as embedded systems !Leveson 91b, Ostroff 87/. A process

control system has been defined as an arrangement of components interconnected in

such a way as to maintain, or to affect in a prescribed manner, some physical quantity or

condition of the process !Lowe 71/.

The restrictive view that we have taken in considering only process control systems,

instead of adopting a more general approach which could also include information

processing systems /Shrivastava 90/, has two essential motivations: the first is to exploit

existing dissimilarities between the structures of process control and information

processing systems in terms of the role (or behaviour) that the components of these

structures might have in the respective systems, and the second is that we would like to

use the knowledge already available, and which has been successfully applied, in

developing process control systems /Astrom 85, Parnas 91/.

The contents of this chapter are organized as follows. In the next section we present a

short historical evolution of the application of computers in process control systems.

Section 3 describes the basic components of a critical real-time system. In section 4 we

justify the roles of the mission and safety components. Finally, we present some

concluding remarks on the issues presented in this chapter.

15

2.2. Evolution of Critical Real-Time Systems

In this section we present a historical overview of the utilization of computers in process

control systems. The aim is to present the application domain that we are concerned

with, and to confirm that computers have been applied for some time in process control

systems. The major difference between the earlier applications and those only now

emerging, which we label in this thesis as "critical", is the higher risk of occurrence of an

accident associated with the latter.

The so-called real-time computing systems which initially appeared were utilised in

large commercial applications, usually transaction - based, such as airline booking

systems, bank automation and information systems for stock trading. These systems were

based on large centralized computer configurations where the software had a relatively

minor role, resulting in very complex systems with low reliability /Stankovic 89/. The

essential feature of these systems was the delivery of the required service within a

predictable and acceptable interval of time. However, issues like reliability, high

performance and functionality were limited or impossible to achieve because of the lack

of development methods and design disciplines. The consequences of a system failure

were never catastrophic because non-computer based systems were invariably

available as back-ups.

Apart from transaction - based systems, another application area from which real-time

systems also emerged was that of process control systems: the automation of applications

such as petro-chemical plants, electrical power generation and distribution, pulp and

paper industries, manufacturing systems, mining, and aircraft systems. The utilization of

computers in these applications started in the mid fifties with the development of a

digital computer for a military aeroplane, firstly, for supervisory control, and later for

automatic flight and weapon control.

Computer systems in commercial applications of process control were introduced more

as a result of pressure from the computer industries in order to expand their markets

16

rather than due to any initiative from the process and manufacturing industries; the first

commercial control computer was installed, in 1959, in a oil refinery at Texas, by TRW

(the aerospace company that lost the contract for the military aeroplane mentioned

above) /Williams 84/. In addition to monitoring the plant, the digital computer was also

responsible for the closed - loop control of some of the plant's functions. The computers

used in this period, called the pioneering period /Astrom 85/, were very large, slow and

unreliable. Because the computers were so unreliable, they had to be used in supervisory

control only, while conventional analog controllers were used for the primary control

functions. One of the aims of this period was to gain acceptance of the new techniques

by the plant's personnel.

The next period, the centralized period, was characterized by the replacement of analog

instrumentation, so that the computer could directly access the plant - direct digital

control (DDC). The installation of the first DDC systems was achieved, independently,

in the year 1962 by ICI at a soda ash plant in England, and the Monsanto company at an

ethylane plant in Texas /Williams 84/. The results obtained from early DDC installations

generated a great deal of interest which gave a major impetus to the development and

further utilization of the minicomputer in the field of computerized process control.

Many of the drawbacks of the computer systems used in DDC, in terms of reliability and

processing time, were due to limitations of the available technology at that time. The

standard solution was the design of much larger and faster computer systems, with the

high costs of these systems justified by the incorporation of all computer functions, both

supervisory and DDC, in one centrally located computer. This period was characterized

by two features: first, the vast communication system, needed to bring signals from the

plant to the centralized computer and to return control signals back to the plant, was very

expensive and prone to electrical noise problems which were a major cause of

unreliability; second, depending on the level of criticality of the application, there was

the need to have a complete analog system, redundant to the DDC, in order to improve

the reliability of the overall system.

17

The evolution of computerized process control and the corresponding increase in the

number of applications was made possible by progress in understanding physical

processes, and by advances in computer and control technology. The third period, the

microcomputer and distributed control period, was characterized by the introduction of

microprocessors and local area networks. The advent of the microprocessor meant that

computers were smaller and relatively inexpensive, influencing drastically, in terms of

size, performance and cost, the control equipment, and enabling the same system to

embody both control (DDC) and logic (PLC) functions. (PLC stands for "programmable

logic controller": special purpose computers which execute the logic and sequence

control functions, originally performed by separate relay systems.) Local area networks

were first introduced to provide high speed data links enabling data to be exchanged

between the many small and distributed computers, each one controlling just one or a

few loops of the physical process. The development of distributed control resulted in

architectures incorporating hierarchical control systems with different levels of control:

the upper system levels depending on the lower levels for the physical process data, and

the lower system levels in turn depending on the higher levels for more sophisticated

control functions. This type of configuration, which is physically dispersed but logically

central, has been used in most process control applications, particularly manufacturing

systems /Chintamaneni 88/.

Recent years have seen increasing deployment of computers in process control

applications considered safety-critical, where the consequences of failure may entail

danger to human life, property, and the environment. Examples of such applications

include control of commercial aircraft /Rouquet 86, Traverse 89/, air traffic control

systems /Avizienis 87/, emergency shut down systems for nuclear reactors /Sayet 90/,

railway signalling systems /Hachiga 92/, and medical systems ILeveson 93/.

2.3. Structure of the System

A system is any identifiable mechanism which maintains a pattern of behaviour at an

interface between the mechanism and its environment, where an interface is a place of

18

interaction between two systems /Lee 90/. Hence the environment of a system is another

system tha tin teracts at an interface with the given system. From the structural viewpoint,

a system is a set of components bound together in order to interact. Recursively, a

component of a system is another system /Laprie 89/.

For applications referred to as process control systems, the primary focus of this thesis,

a commonly accepted structure is to partition the system into three distinct components:

the operator, the controller, and the physical process (or plant) !Kopetz 89, Saeed 91/. The

system has an environment, which is that part of the rest of the world which may affect,

or be affected by, the system. Within this structure the controller, for example, might be

a computer based system which has a distributed architecture.

Within this structure for critical real-time systems, as shown in figure 2.1, we identify

two interfaces: the interface between the operator and the controller, and the interface

between the plant and the controller. The former is the place of interaction between the

operator and the controller, and the latter is the place of interaction between the plant

and the controller. This structure can be considered a simplified version because the

subsystems within the controller which are dedicated to providing support for operations

at the controller interfaces have not (yet) been separately identified. Refining the

structure of the controller we identify three distinct components: the operator inteiface,

the plant inteiface and the controlling system (in the sequel, we sometimes reuse the term

"controller" instead of "controlling system"). The plant interface contains those

components of the controller that supports the interface between the controlling system

and the plant, namely sensors and actuators, and the operator interface contains those

components of the controlling system that supports the interface between the controlling

system and the operator, such as consoles and dials. Another simplification introduced

in this model, is the absence of an interface between the operator and the physical

process. It might be the case that the operator has to have direct control over some

variables of the physical process which the controller might not have any influence. We

have adopted this simplification because of the current tendency in computer based

19

process control systems of forcing all the interactions between the operator and the plant

to pass through the controlling system ffraverse 89/. This allows to check whether the

attitudes of the operator do not violate any pre-established operational envelop; a

reason for this measure is to avoid possible human errors in the control of the system.

I Operator

~

,

I Controller

,~

,

~ Physical Process or Plant

System

Environment

Figure 2.1. General structure for critical real-time system.

The interaction between the operator, controller and plant can be described as follows.

The controller receives data from the physical process, through the sensors, and

setpoints fixed by the operator - the latter are inputs, such as parameters and conditions,

which establish how the system should operate. This data is processed by the controller,

and the results are output, through the actuators, to the physical process. The outputs of

the controller could influence the behaviour of the physical process in such a way that

changes can be observed by the controller through the sensors - thus closing the loop.

For correct behaviour from a critical real- time system, it is extremely important to avoid

inconsistencies between the states of these three components. The states of the

components are: the "real" state of the physical process, the state of the model (adopted

20

in the controller) which represents the physical process, and finally, the state of the

physical process as perceived by the operator (in another model) via the information

produced by the controller.

Now we proceed to describe each of these three main components of a critical real-time

system, together with the plant interface (the operator interface is outside the scope of

the present work).

2.3.1. Physical Process or Plant

The physical process or plant is the component within the general structure whose

behaviour is to be either monitored or controlled. The wide range of relevant physical

processes can be classified according to the dynamics that their physical variables

present, which can be either continuous or discrete. Continuous or analog variables are

those variables whose changes in the value domain are always continuous, such as

temperature, velocity and pressure. For these variables, from a known state it is possible

to predict other future states (values) of the variable. Discrete van·ables are those

variables whose changes in the value domain are in terms of discontinuities, such as the

position of a switch. For these variables, knowing the current state, it does not help in

predicting subsequent states of the variable.

Systems whose variables are continuous are known as continuous variable dynamic

systems (CVDS) and systems whose variables are discrete are known as discrete event

dynamic systems (DEDS) /Ostroff 86, Ho 89/. However, it is worth noting that there is

a third category of physical processes, which includes combinations of these two types

of systems, in various forms. Such systems, containing both continuous and discrete

variables, are known as hybrid systems /Maler 92, Nerode 93/. When analysing a system,

it is important to identify which parts are CVDS and DEDS because of the different

techniques that have to be employed in their development. In the following, we present

some of the features that distinguish the two type of systems.

21

2.3.1.1. Continuous Variable Dynamic Systems

The behaviour of continuous variable dynamic systems (CVDS) can be described by

ordinary and partial differential equations which express the physical laws, that is the

essential dynamic features of the physical process. These systems can tolerate brief state

inconsistencies (of limited magnitude) between the actual state of the physical process

and the state of the model by which the controller represents the physical process. After

resuming from some disruption which has generated an inconsistency of states, the

system is able to recover to a consistent state because the controller can determine an

estimate ofthe state ofthe physical process while the system was disrupted. On the other

hand, if the system suffers a long duration disruption then the states of the controller and

the physical process might become inconsistent, impairing a timely and useful recovery

of the state of the controller. The following example illustrates how CVDS deal with state

inconsistencies. If the controller of a train misses a reading of the speed of the train, the

controller can either simply continue to use the previous reading of the speed or estimate

a new value based on a sequence of past readings - this is possible because the train's

speed is a continuous variable and thus its behaviour can be predicted within known

margins of confidence. In this example, the safety of the train should not be affected so

long as the model ofthe physical process and confidence margins are properly employed.

However, the safety of the system could be affected if the controller fails to obtain

updated readings for sequence of values of the speed, since the state of the controller

might start to diverge substantially (become inconsistent) from the actual state of the

physical process. Other examples of CVDS systems are chemical plants /Wilkie 90/ and

commercial aeroplanes !Traverse 89/.

2.3.1.2. Discrete Event Dynamic Systems

The behaviour of discrete event dynamic systems (DEDS) can be modelled by automata

ILeveson 88/ or discrete mathematics /lahanian 86/. Since DEDS are invariably

man -made systems, there are no physical laws which constrain the system configuration

other than natural limits of material and ergonomics, which are the rules of operation.

22

These systems do not necessarily tolerate momentary state inconsistencies between the

actual state of the physical process and the state maintained by the controller. The system

cannot then recover to a consistent state after a disruption because the controller is not

able to estimate any state changes that might have occurred in the physical process while

the system was disrupted. However, long disruptions in the system can sometimes be

tolerated, mainly when the system remains in a state which is considered to be safe. The

following example illustrates how DEDS deal with state inconsistencies. If the controller

of a train misses the reading of a track-side signal, the controller will not be able to

maintain its representation of the physical process to be consistent with reality. In this

situation the safety of the train could be severely affected. But if the state inconsistency

can be detected (or anticipated), the usual practice is to disrupt the operation of the

system completely by forcing the system into a safe state (e.g. stop the train), in order to

avoid the system getting into some arbitrary but undesirable state whose consequences

might be catastrophic. Other examples of such systems are manufacturing systems

/Cassidy 85/, rail and road crossings Ide Lemos 92/, and high -voltage power substations

/CIGRE 83/.

2.3.2. Controller

The controller is designed to generate appropriate signals which make the plant behave

in the desired manner by ordering the operations in the plant and regulating the values

of the physical variables. If the controller is computer based we do not make any

restriction as to whether the architecture is centralized or distributed. The

implementation of the controller can either be analog or digital. Typical examples of

controller sub - components are proportional- integral- derivative controllers to

implement the control algorithms, and programmable logic controllers to implement the

sequencing of events.

The control algorithms to be implemented by the controller can use feedback and/or

feedforward techniques. Feedback techniques cause the outputs of the plant to follow

a desired path accurately, in spite of external disturbances or internal parameter

23

changes, by monitoring the plant variables to be controlled and applying the required

adjustments. On the other hand, feedforward techniques measure and estimate the

external disturbances (inputs that do not participate in feedback control) and try to

predict their effect on the plant. Corrective actions are taken by adjusting the control

signals generated by the controller. In feedback control, unknown "outputs" are

measured and compared with known (desired) inputs to generate control signals. In

feedforward control, unknown "inputs" are measured and that information, along with

the desired inputs, is used to generate control signals that can reduce errors due to these

unknown inputs or variations in them Ide Silva 89/.

The activity of modern controllers is not limited to maintaining and regulating the

variables in a plant, but also includes supervision and planning by means of scheduling

the operations in the plant /J affe 91/.

2.3.3. Operator

The operator is responsible for any human actions to be applied on the physical process

or controller. These actions include the initialisation of parameters, plant operation and

maintenance. Within the adopted general structure we consider only those activities

concerned with the normal operation of the system, ignoring maintenance issues, and

furthermore, we assume that the greater the role of computing systems in all levels of

control, the less is the influence that operators can have on the physical process; this

tendency is confirmed by the latest developments in airborne systems IRouquet 86/.

Thus, in our structure the operator only has direct access to the controller in order to set

its initial parameters, and to operate the physical process.

Although the details of the interaction between the operator and the controller are

dependent on the type of application under consideration, two general features can be

outlined. The first of these concerns the asynchronous nature of the interactions between

the two components, and the second concerns the long time duration between successive

activities from the operator on the controller, in relation to the number of activities

24

performed by the controller over this period. This latter feature derives from the fact that

in automatic critical real-time systems the influence of the operator is minimal; the

operator only interferes when the behaviour of the physical process starts to deviate from

the required behaviour. Examples of such applications, which seldom require the

interference of an human operator, are (usually) physically large plants, such as

manufacturing production lines, petrochemical plants and nuclear power plants. In these

applications the operator activities are normally restricted to handling emergency

situations, and the initial and final steps in the operation of these physical processes.

2.3.4. Plant Interface

The plant interface is made up of sensors and actuators Ide Silva 89/. Refining the

controller of figure 2.1, in order to incorporate explicitly the plant interface, we obtain

the schematic layout of figure 2.2. Sensors are devices used to monitor the behaviour of

Operator

VOl Voo

'f

I Controlling System

VCI
,

Vco
i----- ---------- , -----.

I
I

I
I

I
I

I Sensors Actuators I

I
I

I
I

I
I

I
I ._---- ---------- -----.!

V PM r Vpc

~ Physical Process or Plant

Plant
Interface

Figure 2.2. Structure of the plant interface.

the plant: strain gauges, thermocouples, thermistors, and tachometers are examples of

sensors. Actuators are devices that can influence the behaviour of the plant: solenoids,

valves, relays, and DC motors are examples of actuators.

25

The selection of sensors and actuators to be deployed in the plant interface depends on

which variables of the plant it is important to control. Moreover, the selection must also

consider which variables can physically be measured and which variables can be

controlled, respectively, for sensors and actuators. Other factors that can influence the

choice of sensors and actuators are !Franklin 86/: technology, functional performance,

quality factors and cost.

2.4. System Variables

In the general structure of a critical real- time system, for each level of abstraction a

state space, in terms of state variables, is defined. At the level of abstraction of the plant,

the state variables represent the physical state of the plant; at the level of abstraction of

the plant interface, the state space of the plant is reduced to those state variables which

are monitored and controlled by the sensors and actuators; at the level of abstraction of

the controller, the state variables represent the state that the model of the controller has

of the physical process; at the level of abstraction of the operator, the state variables

represent the physical state of the operator; at the level of abstraction of the operator

interface, the state variables represent the state of the components of the operator

interface.

From the system structure shown in figure 2.2, we define the following variables. The set

of variables of the system - system variables (V), consists of the variables of the physical

process - physical variables (Vp), the variables of the plant interface - plant interface

variables (VPJ), the variables of the controller - controller variables (Ve), and the

variables of the operator - operator variables (Va). In the following, we will not

considered the operator as a component of the system, and thus we are only concerned

with the physical variables, the plant interface variables and the controller variables

(Vp U VPJ U Ve !: V).

The variables of the physical process can be partitioned into the set of monitored variables

(VPM) and the set of controlled variables (Vpc). The monitored variables are those

26

physical variables whose values are measured by the controller, and the controlled

variables are those physical variables whose values the controller intends to modify.

Some physical variables can be both monitored and controlled. The variables which are

neither monitored nor controlled, i.e. those which are irrelevant for the controller are ,

not considered in this model. The union of the monitored and controlled variables is a

subset of the physical variables (VPM U Vpc ~ Vp).

The variables ofthe controller can be partitioned into the set of input variables (VCI) and

the set of output variables (Vco). The input variables are those controller variables which

correspond to the monitored variables, and the output variables are those controller

variables which correspond to the controlled variables. The variables which are neither

input nor output, i.e. those which are not related to the model that the controller has of

the physical process, are not considered in this model. The union of the input and output

variables is a subset of the controller variables (VCI U Vco ~ Vc)·

The variables of the plant interface are a subset of the plant and controller variables. For

instance, not all the variables of the physical process are read by the sensors of the plant

interface; it might be the case that it is unfeasible to build a sensor which measures the

value of a particular physical variable.

Each variable (Vi) of the set of system variables (V= {VI, v2, v3, ... }) can be represented

as a function which maps the timeline (1) into the range of values of the variable (RVv),

thus we have vdt): T ---+ RVv;" This range, or set, of values is the collection of values that

a system variable can assume, and it is partitioned into two subsets, the anticipated values

(RV~) and the unanticipated values (RV~): RVVi= RV~i U RV~;" The anticipated values of

a variable are those values which are expected to occur, and the unanticipated ones are

the rest. The concept of unanticipated values is similar to that of noncode value errors

presented and discussed in !powell 92/.

27

GE
liNG

IN
I IN L

be satisfied at run-time by preventing the mission controller from issuing any control

commands to the safety controller; it is then up to the safety controller to monitor the

operating conditions of the mission controller and, on the basis of its own observations ,

to issue the appropriate control commands to the mission controller. Thus, the mission

controller can influence the safety controller only via the observations made by the safety

controller (either over the state of the physical process or mission controller). The safety

controller must assume sole control of the system, that is, it must override the mission

controller, whenever the system enters into an unsafe state. Also, the safety controller

endeavours to prevent the occurrence of hazardous states, and, in the worst case, if an

accident becomes inevitable, must minimize the amount of damage that will be caused

to the system and the environment. On the other hand, the role of the safety operator

is to set up the safety limits of the safety controller and the plant, and to interfere in the

operation of the plant whenever it enters into an unsafe state which the safety controller

was not able to handle.

With reference to figure 2.3, it would be preferable to have two totally independent

controllers, with separate sensors and actuators at the plant interface, to avoid the risk

of any common failures of both the mission and the safety controller. Two fully

independent subsystems can be utilized in those situations, for example, where such a

separation is already enforced at the physical process level/Sayet 90/. Unfortunately, for

some applications this ideal structure is difficult to obtain due to limitations found in the

physical process, or restrictions imposed by the design of the system. Figure 2.3 depicts

this latter situation where the safety controller makes (possibly restricted) use of the

sensors and actuators of the mission controller.

2.6. Concluding Remarks

In this chapter we have introduced process control systems as the type of critical

real-time systems that we are concerned with. The approach proposed in this thesis for

conducting requirements analysis of critical real-time systems is based on the structure

of a system in order to identify the levels of abstraction, or domains of analysis, in which

29

the analysis is to be conducted. From the structure of a system, and the relations between

the components of the system, we define the domains of analysis and the sequential order

of the domains in which the analysis is to be conducted. In the study presented in this

chapter, we have identified, for an initial level of abstraction in which a system should

be analysed, the plant, operator and controller, as being the main components of a

critical real-time system from which the requirements analysis should be conducted.

The issues related to the requirements analysis will be discussed in more detail in

Chapter 5. Within the scope of this thesis, we restrict the overall analysis of the system

to the specification of the safety controller, taking into consideration the restrictions

imposed by the activities to be performed by the operator, the physical laws and/or rules

of operation of the physical process, and the particular characteristics of the

environment of the system.

30

3.1. Introduction

Chapter 3

Time Domain in
Critical Real-Time Systems

The service delivered by a system can be defined in terms of the value or information

content of the service, and the time or instant of delivery of the service !Powell 92/.

Moreover, the service can be described with respect to a set of system variables which

are defined in terms of a value domain and a time domain. In order to model the "flow

of time" in a time domain, we define a time structure which is based on temporal entities

connected by relations. As temporal entities, we can consider points (instants, moments

that imply no duration), periods (stretches of time that imply duration) and events

(composite entities, usually associated with linguistic constructs, which describe an

activity)1, and for each of these entities we associate different relations, such as identity

and precedence, in order to define a time structure Ivan Benthem 901. (Periods as

temporal entities should not be confused with intervals, the former implies duration

however there are no defined boundaries, i.e. points (they are obtained by maximal nests

of periods !Whitehead 291), while the latter is referred as a time stretch between two time

points.) The choice of which temporal entity should be regarded as most suitable as the

basis for a time structure is a controversial issue IAllen 84, Newton-Smith 81, van

Benthem 901. A representative of a time structure based on points as temporal entities

is the "physical time" which is the time as employed by physicists to represent their

theories. The "physical time" is considered to be isomorphic to the Euclidean line, in the

sense that the points in time have the same order, as well as the same topological and

metrical properties as the points on straight line. Time structures which make use of

1. This is a very broad definition, which is used, in the context of this thesis, to present the different
temporal entities which represent the passage of time; in the next chapter, 'events' will be redefined
as temporal entities of no duration.

31

periods as temporal entities have been used in knowledge representation of temporal

information /Allen 83/. Finally, the usage of events as temporal entities is more rare to

represent the passage of time, perhaps due to their compositional nature, i.e. events are

spatio-temporal entities whose logical analysis cannot remain purely temporal /van

Benthem 90/.

In order to show the necessity of completely specifying (during requirements analysis)

the time domain of system variables, we also present in this chapter a study relating the

consequences that uncertainties in the time domain of a system variable can have on its

value domain. This study of the analysis and synthesis of time uncertainties is presented

in the context of distributed real-time systems.

The contents of this chapter are organized as follows. In the next section we present a

general model of time which will serve as a basis for the analysis of timeliness

requirements. In section 3, we present a study of the consequences that uncertainties in

the time domain can have on the value domain of system variables. Finally, the last

section briefly reviews this chapter.

3.2. General Model of Time

Two classes of temporal relationships are distinguished for real-time systems, m

accordance with the causal relationships between events IKoymans 88/:

qualitative temporal relationships are only concerned with the ordering of even ts

in time, which means that there is no explicit time reference for the occurrence

of an event;

quantitative temporal relationships, referred to in this thesis as timing

constraints, are concerned with event occurrences where explicitly time appears

as a parameter.

Timing constraints can be further subdivided into timeliness requirements and

peiformance requirements. Timeliness requirements are intervals of time which dictate

32

the response time of the system to stimuli (either physical or logical). Performance

requirements are the amount of processing that a system performs within an interval of

time. (In this work we are only concerned with timeliness requirements.) A timeliness

requirement concerning a sequence of events can be specified in one of the following

forms:

an absolute time representation, associated with one of the events in the

sequence;

a relative time representation, stipulating a limit on the elapsed time between the

occurrence of two events in the sequence.

For our general model of time we assume that time (in an abstract sense) is a single and

absolute phenomenon, and that Newtonian time (rather than of relativistic time) is

sufficient to model the flow of time in the type of systems with which we are concerned.

For the formal definition of time we adopt the concept of point structures, instead of

period structures, since they are more widespread in their usage and more convenient,

in mathematical terms, for modelling the physics of the real-world. Supplementing

from the definition of time structures for the general model of time, we also define the

concept of an interval in terms of a time structure, and a containment relation between

time structures.

3.2.1. Time Structures

In this section, two traditional time structures are defined in terms of time points ordered

by a relation of precedence (<, less than). This relation generates a temporal ordering

of the type "earlier than" or "before" between time points of the structure Ivan Benthem

901.

Apoint strncture ry is an ordered couple (T, <) of a non -empty set T of time points with

a binary relation < on T

33

In order to define a time structure, the following conditions should be imposed on the

point structure defined above. The transitivity condition stipulates the formal aspect of

the flow of time, and irreflexivity stipulates the absence of stops in the modelling of the

flow of time.

Transitivity

For any three time points t1, t2, t3 in T, if t1 precedes t2 and t2 precedes t3 then t1 precedes

t3·

Irreflexivity

A time point in T cannot precede itself.

'<It ET: .,(t<t).

A point structure satisfying the transitivity and irreflexivity conditions is a strict partial

order. However, if time has to flow in a single stream instead of multiple (or branching)

streams, then a linearity condition should also be imposed on the point structure.

Linearity

For any two time points in T, either one precedes the other or they are the same point.

A point structure satisfying the transitivity, irreflexivity and linearity conditions is a strict

total order (or irreflexive total order IGoswami 921). Thus the set of time points T can

be referred to as a timeline, an abstract concept which captures the passage (or flow) of

time. The next condition stipulates that there is a continual succession of time points

towards the past and the future of a timeline.

Succession

For any time point, there is always a point that precedes it and another that succeeds it.

34

W1 E T: 3t2 E T: t1 < t2,

W1 E T: 3t2 E T: t2 < t1.

Rather than defining an endless succession of points, we could alternatively define a

begin and an end of a timeline.

3t1 E T: .,3t2 E T: t2 < t1,

3t1 E T: .,3t2 E T: t1 < t2.

The next step is to establish how dense are the points on the timeline. There are two

alternatives, either to adopt "infinite divisibility" in which case the timeline is dense, or

adopt "step-wise succession" in which case the timeline is discrete. These two

conditions are defined as follows.

Denseness

Between any two time points there is an intermediate time point.

Discreteness

Every time point has an adjacent timepoint; between two adjacent time points no

intermediate time point exists.

W1, t2 E T: (t1 <t2 ~ 3t3 E T:(t1 <t3 /\ .,3t4 E T: t1 < t4 < t3)) !\

W1, t2 E T: (t1 <t2 ~ 3t3 E T:(t3 <t2 /\ .,3t4 E T: t3 < t4 < t2))·

From the conditions, defined above, imposed on a point structure, we are able to identify

two types of time structure, namely, discrete and dense. However, before that we

introduce the concept of a time strncture as being a tuple c:r = (~, +), where ~ is a point

structure, and + the addition operation on T

A dense time strncture is defined as a tuple c:r DE= (~, +), which satisfies the conditions

of transitivity, irrefle.xivity, linearity, succession, and denseness. Either the Real numbers

35

(R) or the Rational numbers (Q) can be used to model dense time structures. Time

structures that are isomorphic to the reals are known as continuous time structures.

A discrete time structure is defined as a tuple cr m= (<3', +), which satisfies the conditions

of transitivity, irreflexivity, linearity, succession, and discreteness. In order to establish the

notion of distance between two adjacent points of a timeline, we introduce the concept

of a time grid which is a set of equidistant points on the timeline; each point on the time

grid is referred as a tick, and the distance between any two adjacent points is the

granulm1ty (~) of the time grid. For discrete time structures the granularity is greater than

zero (~ > 0) and allows to quantify the discreteness of the time grid. The ~-distance

is another condition that can be added to the definition of a discrete timeline to denote

the distance that separates two adjacent time points.

~ -distance

There exists a time point t3 that lies between two other time points t1, t2 in T, if and only

if t1 precedes t2 by more than ~.

Instead of a tuple, we can define a discrete time structure as a triple c:r m= (<3',~, +), with

~>O, and satisfying the same conditions as before. A discrete time structure becomes

isomorphic to the integers (I) when ~= 1. A discrete time structure may be realized by

a physical clock, to which we associate exactly one time grid. We assume the existence

of an abstract (and hypothetical) reference clock which has a sufficiently fine granularity

to enable the measurement (in principle) of the duration between ticks of any other

clock.

3.2.2. Relationships Between Time Structures

The relationship between time structures is captured through the containment relation.

This condition is important when passing information between time structures in order

to assess the amount of information that might be lost.

36

A time structure <T 2 contains another time structure <T 1 (denoted by <T 2 con <T 1) iff T(<T 1),

the set of time points of <T 1, is a subset of T(<T 2), the set of time points of <T 2.

This relation of containment is only applied to discrete time structures since dense time

structures are already at the finest granularity, which implies that the set of time points

of any other time structure must be (isomorphic to) a subset of the time points of a dense

time structure.

3.2.3. Time Intervals

An interval implies duration and refers to what lies between two time points, and is

defined as a subset of the point set Tof a time structure. We define two sorts of intervals.

A convex interval (lnt) is a subset of T that represents an uninterrupted stretch of time.

A non -COllVex interval (Nlnt) is a union of disjoint convex intervals.

From now on, the terms convex interval and interval are interchangeable.

3.3. Uncertainties in the Time Domain

In this section, we present a study, in the context of distributed real- time systems, which

relates inconsistencies in the value domain with the time uncertainties that exist within

the components of a system or between the system and its environment. (In the following,

the use of the term "system" will refer to "control system" of the system structure,

previously presented.) After performing the analysis, in order to identify the causes of

the value inconsistencies, we present the conditions which should be imposed on the

system in order to avoid these inconsistencies.

37

A characteristic of a real-time system is that the service to be delivered by the system

must satisfy requirements in both the value and time domains if the system is not to be

judged as having failed. This implies that a real-time system must operate properly

despite the presence of possible uncertainties in both these domains. Uncertainties in

the value domain do not present any new problems; for example, it is common practice

to account for the imperfections of an instrument (or measuring device) through

standard performance parameters. However, uncertainties in the time domain do

present a new set offundamental problems in distributed real-time systems, due to the

time uncertainties that exist between the timelines of the system and the environment

and, within the system, between the timelines of its components /Kopetz 90/. The source

of these latter time uncertainties is the clock synchronization imperfections that exist

between the various system components. For example, when two system components

attempt to measure the same physical variable at a specific time, they may in fact (as a

result of these time uncertainties) measure the variable at two different times, leading

to value discrepancies.

The rest of this section discusses the conditions under which two values (which can be

either a real world value and a system value, or two system values) representing the same

physical variable are considered to be mutually consistent, given that the time instants

at which these values can be obtained lie within a known bound. In /Kopetz 90/ a

condition for mutual consistency was discussed in terms of the maximum rate of change

of the value domain. Here, we extend that work to include a condition in terms of the

time domain which is sufficient to guarantee consistency between the two values.

The analysis performed is restricted to the case of value uncertainties which arise when

components of a system read the value of a physical variable from the system

environment; however, the analysis can easily be adapted to the case where the system

components output control signals to the environment.

38

3.3.1. System Model

As a model of time, we assume a discrete time structure, as already defined. With each

component in the distributed real-time system we associate a local clock which has its

own time grid. All of these local clocks are assumed to be synchronised by implementing

a synchronised time grid /Kopetz 87/, which permits us to interpret all system -wide

timestamps. This ensures that the timestamps of any two nodes, related to the occurrence

of the same event, are at most one tick apart on the synchronised time grid, implying that

the order in time of any two events can be deduced consistently at all nodes if the events

occur at least two ticks apart. We assume the existence of a reference clock which enables

us to quantify the duration between ticks of any other clock.

Within a distributed real-time system we consider two components, Ca and Cb,

interconnected by a communication network, as shown in figure 3.1. (Only two

components are necessary for the pairwise analysis of uncertainties presented here.)

These two components are part of the system/environment interface. They represent

sensors which measure the same physical variable, and exchange these measured values

with each other.

The following notation will be used to model uncertainties in both value and time

domains, which may exist in any measurement:

System Environment

Vet)

Figure 3.1. Model of the system.

39

x - represents the subscript of a system component, x E {a, b};

t, £X - timelines of the environment and ex respectively;

t(i), £X (i) - the ith tick on the timelines of the environment and Cx

respectively;

r(t(i)), r(£x(i)) - the ith tick on the timelines of the environment and Cx

respectively, as timed by the reference clock;

Vet) - the function that describes the behaviour of variable V of the

environment;

Vx(tx) - functions that describes the behaviour of variable Vas measured by

Cx;

c - represents the error factor in the measurements which is either

systematic or random, c E {s, r};

r - represents uncertainty in the time domain;

rt - represents uncertainty in the time domain, for Cx and error factor c;

v- represents uncertainty in the value domain;

v~- represents uncertainty in the value domain, for Cx and error factor c.

3.3.2. Uncertainties in measuring Value and Time

Uncertainties represent errors in the knowledge of the actual value of a physical variable

obtained by a measurement. That is, errors are algebraic differences between a

measurement of a value and the actual value of the corresponding physical variable Ide

Silva 89/. The actual value is considered to be defined with respect to a precise reference

scale of measurement, known as a standard, which is based on an arbitrary chosen

reference of suitable magnitude that is assumed to be unvarying.

40

Measurement errors are typically decomposed into two factors: systematic and random.

The former can be characterised as a mean error - the difference between the actual

value and the mean value of a set of test measurements - and the latter by a confidence

interval around the mean value where a specific percentage of all test measurements lie

(commonly expressed in terms of the standard deviation). Accuracy and precision,

respectively, are the two terms usually employed to express the extent of systematic and

random errors of a measuring component (instrument), and they may be defined as

follows:

Accuracy is the conformity of a measured value to an actual value, or

standard value;

Precision is the maximum difference between any two measured values of the

same actual value.

Accuracy and precision are properties of a measuring component (instrument)2, and

they influence any measurement performed by that instrument.

The concepts of accuracy and precision will be employed in this section as a basis for the

analysis to be performed on the type of uncertainties that may arise either in measuring

time or the values of physical variables, in distributed real- time systems. In fact, the

expression "measuring time" actually means measurement of the value of a physical

variable which represents the passage of time.

As mentioned before, the discrepancies that can arise in measuring the value of a

physical variable, at a particular point in time, stem from the limitations of accuracy and

precision associated with the instruments employed in the measurement of time and

value. In order to examine relationships related to the tolerances in measuring time and

value, we consider the two functions Va (ta) and Vb (tb) which represent two system values

2. Other properties may be associated with a measuring instrument which are not considered here,
such as resolution, repeatability and reproducibility.

41

of the same physical variable. (The same analysis can be modified to cover the case of

a real world value Vet) and a system value Va (ta).)

In the following, we present the four types of discrepancies, in the time and value

domains, that can arise when two system components measure the value of a physical

variable, at a particular point in time.

a. No uncertainties in either time or value measurements, hence the

variables Va (ta) and Vb(tb) can be considered identical:

Vi: r(ta(i» = r(tb(i) /\ Va(ta(i» = Vb(tb(i»;

b. Uncertainty in value measurement, but not in time measurement:

Remark: In the above two cases the timelines ta and tb are considered to be exactly

synchronous.

c. Uncertainty in time measurement, but not in value measurement:

d. Uncertainty in both value and time measurements:

Vi: Ir(ta(i» - r(tb(i» I <r /\ I Va (ta (i» - Vb(tb(i» I <v.

In this study we are concerned with those cases that are represented by relationship c,

where value uncertainties arise solely because of time uncertainties that may exist

between the clocks of the measuring instruments. That is, we assume that the

measurement of the value of a physical variable is not subject to errors, but we cannot

guarantee that two corresponding measurements are made at exactly the same time.

Because the value of the physical variable can change, the two values obtained from the

measurements could be different.

42

3.3.3. Value Uncertainties due to Time Uncertainties

The analysis of value uncertainties due to time uncertainties will be realised in two parts:

firstly, in terms ofthe individual system components, and secondly, in terms ofthe whole

system, by combining the uncertainties of the system components.

The time measurement performed by a component concerns the basic operation of

reading the value of its own local clock at specific time intervals corresponding to the

granularity of the synchronised time grid. The time uncertainties that can exist at each

component are caused by the time differences between the occurrence of the ticks of the

local clock and the corresponding ticks of the synchronised grid. These time

uncertainties are due to skews in the components' local clocks, and the limitations of the

process used to synchronise the clocks of the system; for each tick of the synchronised

time grid the time uncertainty varies.

In the following, we initially identify, in terms of a component, how the systematic and

random errors in measuring time can affect the measurement of the value. After

combining the two errors, we present how value discrepancies can occur, between

measurements performed by two system components, because of the time uncertainties

that exist between the components.

In terms of a system component, the systematic timing error, which is obtained from the

mean value t::(iJ for a set of time measurements performed by 4, may be represented

as follows:

(r(t(i» - r(t::(i») = r; I V(t(i» - Vx(t::(i» I <~.

The same applies to the random error which may be represented as follows:

The notation tx -(i) and tx +(i) represents the extreme values of the confidence interval

around the mean value of the readings of the components' local clocks.

43

The total time uncertainties (r) of a component may be expressed in terms of the

systematic error G' and the random error r;.:

r= IG'I +r,./2.

The total value uncertainty (v~) is constrained by the maximum absolute rate of change

(K =max I dV/dt I) in value of the physical variable being measured

v=Kr.

For a component Cx, the value uncertainty due to time uncertainty, associated with the

measurement by Cx of a physical variable, is bounded as follows:

Ir(t(i)) - r(tx(i)) I < rX I V(t(i)) - Vx(tx(i)) I < v.

An upper limit for the value uncertainty (v) and the time uncertainty (r) are determined

by:

v=Kr.

The value uncertainty between the components Ca and Cb due to the time uncertainty

between the two components, is bounded as follows:

(*)

In the above analysis we have not taken into account the clock synchronization

mechanism; this will bring the times of the clocks of the components closer together,

reducing r. In fact, clock synchronization must ensure that r is less than the granularity

g of the synchronized grid.

3.3.4. Value Inconsistencies due to Time Uncertainties

Two values of the same physical variable are said to be mutually consistent if their

uncertainties in time and value are within known and bounded ranges.

44

One approach to determining a bound on the difference between two values

representing the measurement of the same physical variable, is to establish a maximum

value uncertainty in terms of the maximum time uncertainty, which in our case refers to

the granularity of the synchronised time grid. This notion was called the.

timestamp - inconsistency of an observation in !Kopetz 90/. This approach was employed

in the previous section in order to calculate the maximum value uncertainty due to time

uncertainty. Although it is necessary to have such a condition on the value domain, this

is not sufficient because it does not guarantee that the signal of the original variable is

correctly reconstructed from the measurements (samplings) performed by the

components. A condition should also be imposed over the time domain, in terms of the

rate of measurements performed by a component.

For continuous variables, an appropriate condition can be defined as a ratio of the

highest frequency of the signal of the physical variable, or the Nyquist frequency (fN),

being measured. For instance, we could apply the sampling theorem, also known as the

Shannon theorem, which states that a sampled variable may be reconstructed from its

samples only ifthe frequency of the variable is lower than half ofthe sampling frequency.

However, in practice, the Shannon theorem does not give a condition which enables us

to maintain the consistency of two values representing the same measured physical

variable; it is rather difficult to formulate a uniform method for the selection of an

appropriate measuring rate. For instance, there are some applications which require a

measuring (sampling) rate ten times the highest frequency of the physical variable. In

terms of the model of the distributed system under consideration, the frequency of ticks

(the inverse of the granularity) of the synchronised time grid should be at least twice the

sampling frequency (fs) of the signal of the continuous variable being measured.

For discrete variables, a condition on the time domain to achieve mutual consistency

between two values can be formulated as a dual ofthe condition for continuous variables.

The condition can be defined in terms of the smallest time period in which the discrete

variable being measured is stable at a value. To allow the sampled variable to be

45

reconstructed from its samples, the period between samplings should be smaller than

half of the stable time period of the discrete variable. Stating this in terms of the model

of the distributed system under consideration, the granularity of the synchronised time

grid should be at least half of the sampling period (ts) of the signal of the discrete variable

being measured.

From the above analysis, for both continuous and discrete variables, we deduce that the

time uncertainty, recalling equation (*), may be expressed as:

r< g < 1 / (2 Is).

The granularity of the synchronised time grid must be at least half the rate of the

sampling interval, because we can only deduce the order of two events if their occurrence

is at least two ticks apart.

3.3.5. Continuous and Discrete Variables

Here we consider separately the mutual consistency of continuous and discrete

variables. The separation is necessary because of the different dynamic characteristics

of both types of variables. For continuous variables the change in value is bounded by

a certain rate which is related to the Nyquist frequency of the physical variable, whereas

for discrete variables the change in value is (ideally) instantaneous. For the purpose of

checking for consistency, these differences impose two distinct approaches: in the

former, we are concerned with approximate equalities with bounded errors, and in the

latter, with strict equalities /Kopetz 90/. In the following we analyse both cases, giving

conditions which enable consistency to be checked; these conditions are obtained from

equation (*).

For continuous variables, any two measured values representing the same physical

variable are mutually consistent (F::1) at the ith tick if and only if both measures, realised

within the time uncertainty i, are within the value uncertainty v. This may be expressed

as follows:

46

Remark: For continuous variables, if the frequency of the synchronised clock is much

greater than the sampling frequency, the value uncertainty due to time uncertainty

ceases to be significant.

For discrete variables, any two measured values representing the same physical variable

are mutually consistent (R::j) at the ith tick if and only if both measures, realised within

the time uncertainty r, are equal. This may be expressed as follows:

The time uncertainty parameter (r), in the case of discrete variables, assumes a slightly

different meaning; instead of being related to the highest frequency of the physical

variable, it is related to the smallest time period in which the discrete variable is stable.

This arises from the fact that an instantaneous change in state implies a whole range of

frequencies up to infinity, which means that no measuring rate that satisfies the Shannon

theorem can be found.

Concluding, to achieve mutual consistency between the values of the two components,

for continuous variables we have to establish the rate of measurement performed by a

component as a ratio of the highest frequency of the physical variable being measured,

and for discrete variables we have to establish the rate of measurement performed by a

component in the smallest time period in which the discrete variable is stable. For

instance, in the case of continuous variables, if we apply the ratio proposed by Shannon,

then the frequency of ticks (the inverse of the granularity) of the synchronised time grid

should be at least four times the highest frequency of the signal of the physical variable

being measured.

3.4. Concluding Remarks

In the first part of this Chapter, we have presented a general model of time, in which a

point-based structure was adopted to represent the passage of time. A time structure

47

was defined in terms of a set of logical conditions, which enable us to define dense and

discrete time structures. These time structures provide a basis for a framework for

analysing timeliness requirements to be discussed on following two chapters. The result

of the study presented in this Chapter provided the basis from which we could argue that

the choice of a time structure should rely essentially on the subject and the type of

analysis to be conducted, rather than on the technique that has to be employed to conduct

the analysis. Although this seems a trivial conclusion to arrive, there are still technical

works which suggest the technique to be employed, without providing the choice of the

time structure to be used for the analysis.

In the second part ofthis chapter, we presented the conditions to be imposed on a system

in order to avoid value inconsistencies in the system variables, due to time uncertainties

that exist in the system Ide Lemos 91/. These conditions depend on whether the system

variables are continuous or discrete.

48

Chapter 4

Behaviour Description in Critical
Real-Time Systems

4.1. Introduction

The aim of this chapter is to define a model, based on simple concepts, which enables

us to describe the behaviour of critical real- time systems. The model should be

sufficiently general in order to allow the behavioural description not only of the software

functions, but also of the activities performed at other levels of abstraction of the system.

The model proposed here was originally discussed within the context of an analysis of

timeliness requirements /de Lemos 92a/, and was intended to provide the means by

which informal analysis could be performed (for example, by depicting the timing

constraints in terms of graphics), before starting to formalise system requirements. This

would enable a more accurate analysis to be performed, from which we could obtain

specifications which were unambiguous and consistent. In this chapter we extend that

initial work by elaborating the basic model - leading to the event/action model (E/A

model) - and by proposing a formal notation for the concepts developed for the basic

model - the predicate event/action notation (PEA notation).

The purpose of our work is not merely to propose a new formalism for describing the type

of systems that we are concerned with; instead, we aim to define a set of basic concepts

which can be incorporated by other formalisms. The choice of the type the formalism to

be employed, apart from other possible factors, will depend essentially on the type of

application and the analysis to be performed. This approach is consistent with with the

broad notions introduced in the first chapter, concerning the utilization of formal

methods in the requirements analysis of critical real-time systems.

49

At this stage of our work, although we are advocating the utilization of more than one

formal method to perform the formal analysis of the requirements, we are not concerned

with how the different formalisms should be (formally) linked. Instead, as already

mentioned, our major objective is to characterise, for the type of system with which we

are concerned, the concepts that are most appropriate adequate for the description of

system behaviour at the different levels of analysis, and which can be employed across

a range of different formalisms. The model proposed to describe the behaviour of

systems relies on events, actions, states and their associated time uncertainties, and is

based on similar models presented in the literature/Heninger 80, lahanian 86/; however,

it contains some considerable differences which will be discussed at the end of this

chapter. In order to show the flexibility of the concepts adopted in our model we show

how they can be incorporated in logic formalisms such as Timed History Logic (THL)

/Saeed 90/, and net formalisms such as Predicate Transition nets (PrT nets) IGenrich 81/.

The contents of this chapter are organized as follows. In the following two sections we

present, respectively, the E/A model and the PEA notation. In section 4, the E/A model

is formalised in terms of two different formalisms, THL and PrT nets, with the aim of

showing the flexibility of its concepts. In section 5, in order to clarify some concepts

introduced in the previous sections we apply those concepts to an example based on a

simplified nuclear reactor control system. Section 6 compares the PEA notation with

some related models. Finally, the last section presents concluding remarks for this

chapter.

4.2. An Event/Action Model (E/A Model)

In order to describe the behaviour of real -time safety-critical systems, which exhibit

both continuous and discrete behaviours, we introduce the event/action model (E/A

model). The E/A model provides a set of primitive concepts which enable system

behaviour to be modelled in terms of system predicates (predicates over system

variables). In the approach taken, those variables which are continuous have their

50

behaviour discretised according to imposed thresholds and the discontinuities that they

are subject to.

The E/A model is based on primitive concepts such as events, actions and states, and the

concept of a time structure (or timeline). The state of a system is the information that,

together with the system input, determines the behaviour of the system. A transition

represents a transformation in the system state. The system state is modified by the

occurrence of events and the execution of actions. An event is a temporal marker of no

duration which causes or marks a transition. (Instead of the broad definition given in the

previous chapter for an event, here, an event has a more restrictive intepretation: it

marks a point in time which is of significance in describing an activity.) An action is the

basic unit of activity which implies duration. The duratioll of an interval is the distance

in time between the two events that define the interval. (An interval, as already defined,

is a time stretch between two time points.) Apart from events, actions and states which

describe the behaviour of process control systems, the E/ A model also takes into account

the timing uncertainties associated with them.

The motivation for selecting these primitive concepts is twofold: they have been used as

primitives in several real-time specification languages /Henninger 80, J ahanian 86/, and

they have meaningful interpretations at different levels of abstraction. These concepts

provide flexibility, enabling descriptions to be given of system behaviour ranging from

the activities of the physical entities of the plant to the temporal ordering of the

computational tasks of the control system. The key features of the E/A model are:

• the primitive concepts can be expressed in different classes of formalisms,

• both discrete and dense time structures are supported, and

• timing constraints can be depicted graphically.

4.2.1. Definition of the E/A Model

The E/A model is defined in terms of an extended first order logic that includes variables

and predicates that are interpreted as functions from a time domain. The predicates of

51

the extended first order logic are also referred to as state predicates and those predicates

that are used to specify a transition (i.e. mark a time point) referred to as transition

predicates. In the following we present the syntax and semantics of the E/A model.

4.2.1.1. Syntax of the E/A Model

The underlying model consists of a time independent and a time dependent part. The

time independent part consists of a set of variable names, a set of predicate names and

a set of function names. Each variable name denotes a value from an associated type,

each predicate name a predicate with a fixed arity n and associated domain, and each

function name a function with a fixed arity n and the associated domain and range. The

time dependent part consists of a set of time dependent variables and a set of time

dependent predicates. Each variable name denotes a function from the time domain to

a type, each predicate name denotes a function from the time domain to a predicate. The

passage of time (time domain) is represented by a time structure Twhich is isomorphic

to the non - negative reals or a subset of them (e.g. natural numbers).

For the the above model, a term is either a variable or a n-ary function evaluated over

n terms, and a predicate is defined inductively as:

1. A well- defined expression over Il terms using the relational operators (e.g. <

and =:;), a time independent predicate or a time dependent predicate is an atomic

predicate.

2. If p and q are predicates, so are ""p and p 1\ q.

3. If p is a predicate and x is a time independent variable of type Vx, \:Ix E Vx: p is a

predicate.

All time dependent variables and predicates are piecewise continuous (i.e. there are a

finite number of discontinuities and limits exist from both the left and right at each

discontinuity). Predicates satisfy the fillite variability property, since a predicate can only

change at a discontinuity.

52

We associate instance number to a predicate to specify the number of times for which the

predicate has been true. Instance numbers are a convenient way for describing the

behaviour of discrete variables, or continuous variables that have been discretised ,

because references to the past and future behaviours of predicates are allowed. In order

to express the instance number of a state predicate we introduce the following

notationsp(t)i, where sp(t) is a state predicate and the superscript index i is the instance

number.

A state predicate holds true for the first time at a particular time point t (the first instance

of a state predicate) when it never holds true before a time point t1 and holds true since

then until time point t (inclusive). The first instance of a state predicate is defined as

follows:

Vt E T. [sp(t)1 ~ sp(t) A (3t1 E T: t1:5.t A

(Vt2 E T. t2<t1 => -,sp(ti)) A

(Vt3 E T. t 1:5. t3:5.t => sP(t3)))].

A state predicate holds true for the ith time at a particular time point t (the ith instance

of a state predicate) when it holds true for the (i-1)th time between t1 and t2, it holds

false between t2 and t3, and it holds true between t3 and time point t (inclusive). The ith

instance of a state predicate, represented by the superscript index i (i> 1), is defined as

follows:

Vi E J+: i > 1=>

Vt E T. [sp(t)i~ sp(t) A 3t1, t2, t3E T. t 1 < t2< t3 <t A

Vt
4

E T. t1:5.t4 <t2=> sp(t4)i-1 A Vts E T. t2:5.tS<t3=> -,sp(ts) A

Vt6 E T. t3:5. t6:5.t => sP(t6)]'

In order to capture a transition predicate we introduce the bar operator" I". Figure 4.1

depicts four diagrams that represent the possible transition predicates that can be

obtained from a state predicate when the predicate is either true or false for the first or

53

last time. Clockwise direction, starting from the diagram on the top left corner, the four

cases are: true for the first time, false for the last time, true for the last time and false

for the first time. In the diagrams the following conventions were adopted: full circle

represents a predicate that is true at time t, and the empty circle represents a predicate

that is false at time t.

T ..-- T 9--
IC(sp(t») I o(sp(t))

F
. I

----0 F ~
t

T -9 T ~
Ic(...... sp(t» I IO(...... sp(t»

F
I

F
I --- 0-----

t t

Figure 4.1. Transitions over the state predicates sp(t) and..., sp(t).

By applying the operator" IC" to a state predicate we capture the first point in time at

which a state predicate becomes true (or false). This transition, known as a closed

transition, is defined as follows:

Vt E T. [Ic (sp(t)) ¢> sp(t) 1\

(30 E T. Vt l E T. t-o < tl <t ==:> ""sp(t l) 1\

Vt2 E T: t<t2< t+o ==:>sp(t~)].

The value of 0 is defined between the time separation (distance) between two

consecutive observations (or samplings) of the value of the variables, used to construct

the predicate. For continuous variables, 0 has to be defined as a factor of the highest

frequency of the variable (or the Nyquist frequency), and for discrete variables, 0 has to

be defined in terms of the smallest time period for which the variable remains stable Ide

Lemos 91/.

By applying the operator" I u" to a state predicate we capture the last point in time just

before a predicate becomes true (or false). This transition, known as an open transition,

is defined as follows:

54

Vt E T. [l°(Sp(t» ~ ~sp(t) 1\

(30 E T: Vt 1 E T. t-o < t1 <t ==:> ~sp(t1) 1\

Vt2 E T:t<t2< t+o ==:>sp(tz»].

In order to capture the instance number of a transition, we introduce the bar operator

with a subscript index i added to it " 1/'. The first instance of a closed transition is defined

as follows:

The ith instance of a closed transition, represented by the index i (i> 1), is defined as

follows:

Vt E T. Vi E J+: [i> 1 ==:> I~(sp(t» ~ IC(sp(t» 1\

(3t1 E T. t1<t 1\ 1~-I(Sp(t1» 1\ (Vt2 E T. t1<t2<t==:> ~ IC(sp(tz»»].

The definition of the bar operator for the open transition is similar to the one for the

closed transition. In the sequel, unless otherwise mentioned, a bar operator without a

superscript will refer to a closed transition. For example, the transition I (sp(t)) captures

the point in time when sp(t) becomes true for the first time.

4.2.1.2. Semantics of the E/A Model

For the time independent part, the valuation functions £Y, ~ and g: are respectively

defined for the variables, predicates and functions in the traditional way as for a

first-order logic. For the time dependent part the valuation functions err Gj and ~Gj are

defined for the variables and predicates as follows:

for a predicate Pi with range Vj for term try, c.PGj(Pi(trl, ... , tr,l»: T - VI X ...

X Vn-B.

55

The interpretation 9 for the underlying model is defined by the structure (0/: ~ g:: ~ t:T\) , , , c:r, J'c:r ,
and is defined pointwise.

The interpretation of a term tr is defined as follows:

9(tr)(t) = Cf[(tr), if tr is a time independent variable

9(tr)(t) = Cf[c:r(tr)(t), if tr is a time dependent variable

9(tr)(t) = CJ(fi) (9 (trJ) (t), ... , 9(tljl)(t», if tr is a functionJi(trJ, ... , trn).

The interpretation of the basic predicates is defined as follows:

9(p(trj, ... , tljl»(t) = 'fP(P) (9 (trJ) (t), ... , 9(trn)(t»,ifp is a time independent

predicate

9(p(trJ, ... , tljl))(t) =~c:r(P)(t)(9 (trJ)(t), ... , 9 (tljl)(t», if p is a time dependent

predicate.

For a given interpretation 9, each predicate p is evaluated by the function 9(P): T- B.

9(-'p)(t) =true iff 9 (p)(t) =false

9(p A q)(t)=true iff 9(P)(t)=true and 9(q)(t)=true

9(V'x E Vx: p)(t)=true iff 9'(P)(t)=true

for every 9' that has the same valuation functions as 9 except for Cf[' (y) which

is the same as Cf[(y) for every time independent variable not equal to x.

4.2.2. Primitive Functions of the E/A Model

The primitive concepts of the E/A model are related to the timeline by two types of

primitive function: point and interval. A point junction is a temporal marker of no

duration, represented as a cut in the timeline, which models events. An intelVal ju.nction

denotes a duration, represented as a contiguous section of the timeline, which models

states and actions. The timing uncertainties associated with point and interval functions

can be represented in terms of a utility junction. The primitive functions have time and

instance number as parameters.

56

In the definition of the primitive functions, conditions (state and transition predicates)

capture the value domain properties of the functions, and time points capture the time

domain properties of the functions. In order to distinguish the value domain from the

time domain definitions, the subscript "V" or "T", respectively, is added to the name of

the function. The definitions of the primitive functions, in the value domain, will be made

only in terms of closed transitions (although the open transition could have been used

instead). As a consequence, the lower and upper boundaries of a time interval will be

respectively closed ("[") and open (")"). Other combinations could be obtained by

employing a different usage of the transitions.

4.2.2.1. Point Function

Apoint junction E(t, i) is a function which maps the timeline (T the set of all of its points)

and the number of instances of an event ([+ the set of nonnegative integers) into a

Boolean (B = {true, false}).

In the value domain, the definition of the point function is in terms of the ith instance

of a condition (state predicate SPE(t)) which is specified by a transition predicate:

Ev(t,i): T X [+ ~ B

Vt E T. Vi E [+: [Ev(t,i) <=> IlsPE(t»].

In the time domain, the definition of the point function is in terms of the time point

constants t~ which mark the ith instance of the event:

ET(t,i): T X [+ ~ B

Vt E T. Vi E [+: [ET(t,i) <=> t = t~]

Instead ofthe notation (t~), the occurrence function (@(E,i»fromRTLcouldhavebeen

employed /J ahanian 86/.

The value and time domain definitions of a point function are alternative forms for

describing the occurrence of the same event:

57

Vt E T. Vi E [+: [Ev(t,i) ¢:> ET(t, i)].

A relative time represen ta tion of the timeliness requirements of a sequence of events can

impose one of two basic types of timing constraint /Dasarathy 85/:

minimum - no less than t time units must elapse between the occurrence of two

events;

maximum - no more than t time units must elapse between the occurrence of

two events;

A third basic timing constraint presented in /Dasarathy 85/ is the durational timing

constraint which states that an activity must occur for t amount of time. However, an

activity which has duration can be represented by two events which mark the begining

and end ofthe activity (i.e. an interval function which the topic ofthe next section). Thus

the durational timing constraint could alternatively be stated as exactly t time units must

elapse between two events, which is just an application of the other two basic timing

constraints.

In a similar way as is presented for RTL/lahanian 86/, we state below two monotonicity

properties which are associated with the point function:

uniqueness property - at most one time point can be associated with each

occurrence of an event, i.e. the same instance number of an event cannot happen

at two distinct time points:

Vt, t ' E T: Vi E [+: [E(t,i) 1\ E(t',i) => t = t'].

ordering property - if the ith occurrence of an event happens, then the previous

occurrences of same event must have happened earlier, hence two distinct

occurrences of the same event must happen at different time points:

Vt, t ' E T. Vi,j E [+: [E(t,i) 1\ E(t'J) 1\ i < j => t < t'].

58

For discrete time lines, in order to observe the occurrence of all instances of any

particular event in the 'real-world' (assuming to be a dense timeline), the

granularity of the discrete timeline should be smaller than the smallest time

interval between the occurrence of any two events in the 'real-world'. If any

event occurs more than once between two ticks of the discrete timeline, only one

of the occurrences will be observed.

4.2.2.2. Interval Function

An intelVai jU1lction A(t,i) is a function which maps the timeline and the number of

instances of an action (or a state) into a Boolean. (In the following, the definition of the

interval function will be restricted to the execution of an action, however, it could be

extended to represent the time interval in which a system state holds true (or false).) An

action is manifested in the system by its associated events: the start event that marks the

initiation of an action, and the finish event that marks the completion of an action.

In the value domain, the interval function is defined in terms of the transition predicates

corresponding to the start (sPtA(t») and finish (sP~A(t») conditions, and the state

predicate corresponding to the invariant condition (sPIN,)t»). This is represented as

follows:

Av(t): T~ B

'tit E T. [Av(t) <=> 3t1, t2 E T. l1 ~ t < l2 /\ (I(SPtA(t1») /\ I(sP~A(t2)) /\

'tIt3 E T.t1 ~ l3 < t2=:> sPIN,)t) /\ (-'SP~A(t))].

The first instance of an interval function is defined as follows:

Av(t,l):TXI+~B

'tit E T. [Av(t, 1) <=> Av(t) /\ (3t 1 E T. t 1 ~ t) /\

('tIl z E T. tZ<t1 =:> -'Av(t0)/\('tIt3 E T. tl~t3~t=:>Av(t3))]·

The ith instance of an interval function is defined as follows:

59

Av(t,i): T X [+ -+ B

Vi E [+: i > I==>

Vt E T. [Av(t,i) -=Av(t) A 3t1, t2J t3E T. t1 < t2 < t3<t A

V t 4 E T. t 1:::; t 4 < t 2 ==> Av(t 4> i -1) A V t 5 E T. t 2 :S; t 5 < t 3 ==> -,Av(t 5) A

Vt6 E T. t3:::; t6:::;t ==>AV(t6)].

In the value domain, the start and finish events are defined, respectively, as the start

condition and the finish condition. The start condition for an action A defines the

condition that triggers the execution of an action; it is denoted by tAv(t,i) and defined

as follows:

tAv(t,i): Tx [+ -+ B

Vt E T. [tAv(t,i) -= I(Av(t,i»].

The finish condition defines the condition in which an action A terminates its execution;

it is denoted by lAv(t,i) and defined as follows:

lAv(t,i): Tx [+ -+ B

Vt E T. [lAv(t,i) -= I(-'Av(t,i»].

In the time domain, the start and finish events are defined as temporal markers,

respectively, the start time and the finish time. The definition of the start and finish times

follows directly from the time domain definition of the point function. They are defined

in terms of time point constants of the form t~A and t~ at which the respective events

tAT(t,i) and lAT(t,i) have occurred for the ith time.

In the time domain, the interval functionAT(t, i) is defined, as follows, in terms of the start

and finish times of an action:

AT(t,i): T X [+ -+ B

Vt E T. Vi E [+: [AT(t,i) -= t~A :S; t < t~].

60

The start time refers to the time point at which the start event of an action occurs:

tAT(t,i): T X 1+ -- B

Vt E T. Vi E [+: [tAT(t,i) ¢:> t = t~A] ti E T - {t1 t2 } fA fA - fA' fA'

The finish time refers to the time point at which the finish event of an action occurs:

.lAT(t,i): T X [+ -- B

Vt E T. Vi E [+: [.lAT(t,i) ¢:> t = t~] t~ E T LA = {t~, t~, .. .}.

Similar to the point function definition, the value and time domain definitions of an

interval function are alternative forms for describing the execution of the same action:

Vt E T. Vi E [+: [Av(t,i) ¢:> AT(t, i)].

The execution time of an action is the duration of the interval during which the action is

executed.

We now state two properties that are associated with the interval function:

duration property - the finish event of an action cannot precede the start event

of the action:

Vt, t' E T. Vi E [+: [.lA(t,i) ~ tA(t',i) /\ t > t'].

If the start and finish events occur at the same time point, implying a

durationless action, then the action is modelled by a point function.

ordering property - two instances of the same action cannot be executed at the

same time:

Vt, t' E T. Vi,j E [+: [.lA(t,i) /\ tA(t',j) /\ i < j ~ t < t'].

4.2.2.3. Utility Function

The specification of time uncertainties for the two functions defined above can be

represented by means of a utility function U(t,i), or "value" function (in the sense of

monetary value) /Jensen 85/. We are concerned with the class of utility functions which

61

are typically applicable to critical real- time systems - discrete or critical utility functions.

In these systems the utility, or usefulness, can only assume two values, either maximal

or minimal - hence U(t,i) is a Boolean function.

The utility function U E(t, i) associated with the point function E(t,i) which models the

occurrence of an event, maps the timeline and the instance number of an event into the

usefulness of its occurrence. The maximal usefulness, in time domain, in the occurrence

of an event is established by the time interval defined by the following two times:

earliest occunillg time (eat) - the first point in time at or after which an event can

occur;

latest occuning time (lot) - the last point in time before which the event can

occur.

If an event occurs either its usefulness is maximal if it occurs during the interval of time

defined by these two time points, or minimal if the event occurs outside the time interval.

A utility function representing the usefulness of the occurrence of an event can be

defined as follows:

UE(t, i): T X [+ - B

Vt E T. Vi E [+: [U E(t, i) <==> (tEi ~ t < tEi)]
tul lUI

tEi E T E = {tEl ,t~ , .. .}
1'01 eol eol eol

tEi E T E = {t 1 ,t~ , ... }.
lUI lor lot lot

The utility function U A (t, i) associated with the interval function, which models the

execution of an action, maps the timeline and the instance number of an action into the

usefulness of its execution. In order to define the maximal usefulness in the execution

of an action, in the time domain, we have to consider the start and finish events of that

action and associate utility functions to these events. The time attributes of the utility

function associated with the execution of an action are the following:

62

earliest starling time (est) - the first point in time at or after which an action can

start its execution;

latest starting time (1st) - the last point in time before which an action can start

its execution;

earliest finishing time (eft) - the first point in time at or after which an action can

finish its execution;

latest finishing time (1ft) - the last point in time before which an action can finish

its execution.

The time attributes est and 1ft are often referred to as "delay" and "deadline",

respectively. When plotting an utility function that represents these time attributes, they

are expressed by step utility functions, respectively positive and negative step functions,

as it was depicted in figure 4.1.

A utility function representing the usefulness of the execution of an action is defined as

follows, in terms of the utility functions of the start and finish events of the action:

UtA(t',i): T X [+ ~ B

Vt ' E T: Vi E [+: [UtA(t',i) ~ (t~",:S; t' < t~J]

tA
i E TA = {tAl ,tA

2
, ... }

~sl l'l" est est

tA
i ETA = {t 1 ,t~ , .. .};

bl lal lst lst

U!A(t",i): T X [+ ---+ B

Vt" E T: Vi E [+: [U'A(t",i) ~ (t~ :s; til < t~)]
~ eft 1ft

. I 2 } tA' E TA = {tA ,tA , ...
eft eft eft eft

tA
i ETA = {t 1 ' t~ , ... };

/jI 1ft 1ft 1ft

UA(t,i): T X [+ ---+ B

Vt, t', til E T: Vi E J+: [UA(t,i) ~ UtA(t',i) A U!A(t",i)].

63

In the following, we present an example, illustrated in figure 4.2, which shows how the

functions defined above are interrelated in the specification of timeliness requirements

associated with the execution of an action. Taking as a reference point the occurrence

of an event at time tl, depicted by function E(t,i), and knowing beforehand the earliest

time (min) and the latest time (max) for an action, of duration dur, to start its execution,

we are able to construct the utility function UA(t,i) associated with the execution of the

action. This utility function represents the time uncertainties associated with the

execution of the action which were derived from the given basic timing relations. Finally,

one of the possible executions of the action is represented by the function A (t,i) , which

is executed within the timing constraints imposed by the utility function.

E(t,i)

min : : dur I -- - -- ------~~ -- - .- - - - - - - -~
I max , dur , ,

- - - - - - - - - - - r - - -~- - - - - - - r - - -~

A(t,i)

Figure 4.2. E/A model in the specification of timeliness requirements.

If two or more utility functions represent either the occurrence of an event or the

execution of an action, then the resulting utility function should embody the timing

constraints of all of the utility functions. Below we present a lemma which allows us to

define a utility function when there exists more than one utility function associated with

an action. (The lemma can also be applied for the occurrence of events.)

Lemma 4.1

When there exists more than one utility function representing the usefulness of executing

the same action, the resulting utility function reflects the following timing constraints on

the start time and finish time of an action:

64

tA E {t I max(t~ 1 ... , t~) <t< min(tAI , ... , tAn)}.
ala ~s ul lsI 1.11'

tA E {t I max(t~ , t~)<t<min(t~ , tAn n.
~ ~ ~ ~ ~

Sketch of the Proof: If the start and finish events of the action to be executed have the

respective time occurrences of fA and fA ,then for these two events we associate their
sla fin

respective utility functions that correspond to the various utility functions representing

the usefulness of executing the action. Ifwe consider, for instance, only tA•,a (the analysis

for tA is identical) then the time attributes of the resulting utility function should not
~

violate of the time attributes of any of the utility functions. For this condition to be

satisfied the resulting utility function must have its t A", the maximum of all the t A",'s of

the utility functions, and its tAlsl the minimum of all the tAIsI'S of the utility functions.

An example of having more than one utility function representing the usefulness in the

execution of an action, is the situation where the same exception handler is used to treat

two or more exceptions which impose different timing constraints upon the execution of

the handler. In practical terms this could represent the occurrence of two different

alarms which are treated by the same action.

4.2.3. Event/Action Model and Time Structures

One ofthe characteristics ofthe E/A model is that it can support both dense and discrete

time structures. However, depending on the time structure there are some dissimilarities

on how the occurrence of an event is observed. We say that an event is observed when

a point on the timeline is associated with its occurrence.

In dense time structures the occurrence and observation of an event is always

simultaneous. Thus, for distinct events we associate distinct time points, except for the

case where events occur simultaneously. In discrete time structures the occurrence and

observation of an event is not simultaneous. In discrete time structures, once an event

occurs, it is not possible to observe an event itself, only its consequence(s) may be

65

observed. The observation instants are restricted to the time points of the timeline.

Hence an event cannot be observed between any two time points on the timeline; the

time point we associate with the observation of an event might not be coincident with the

actual occurrence of the event.

Depending on the granularity of a discrete time structure, an action might be represented

either by a point function or an interval function. If we consider, for example, a time

structure g-'2 which contains another time structure g-' b as shown in figure 4.3, then an

actionA(t, 1) when measured in g-' 2 has a duration ofless than ~(g-' t), but when measured

in g-'l it becomes duration less. However, for another instance of the same action -

A(t, 2), we can have a different situation, as shown in figure 4.3. In summary, an action

of fixed duration in one time structure (<j 2) may have different duration in another time

structure (g-'l) with a coarser granularity - ~(g-'1) > ~(<j 2), depending on the time points

associated with the respective starting and finishing events of the action. (In order to

maintain compatibility with the closed/open interval being employed, we have opted to

"observe" the occurrence of an event at the time point before its occurrence. The reason

for this is that in order to establish an closed/open interval, the left point of the interval

should be observable. Whether the observation of an event is at time point before or after

the actual occurrence of the event is irrelevant because in both cases the same inevitable

imprecisions are introduced.)

'3"1
I A(t,l) A(t,2)

A(t,l)

I I I I I

A(t,2)

I I I I.

Figure 4.3. E/A model and the granularity of discrete time structures.

Apart from the above mentioned time uncertainties which are inherent in the utilization

of discrete time structures with different time granularities, there are those time

uncertainties related to the refinement of the timeline to which a specification of a timing

66

constraint was originally made fCorsetti 91/. These time uncertainties can easily lead to

the following type of ambiguity. If we state that a predicate holds at time t1 of a coarser

timeline T1, then we assume that the same predicate also holds in a subset ofthe interval

corresponding to t1 in a finer timeline T2; this subset might correspond to the whole

interval, or a single instant, or even a scattered sequence of smaller intervals. For

example, this can be the case for a specification which merely states that two trains, while

in motion, must be kept at least 10 minutes apart from each other; this specification does

not say anything about the time uncertainty around the time point which defines the end

ofthe interval of" 1 0 minutes", if, for instance, the timing constraint was to be considered

in terms of a microsecond timeline of the controller of the system.

4.3. Predicate Event/Action Notation (PEA Notation)

The concern in the E/A model was to identify a set of primitive concepts and define a

set of primitive functions tha t formalise these concepts. In order to express the primitive

concepts of the EfA model concisely and to facilitate formal analysis of the system

behaviour, we introduce the Predicate Event/Action notation (PEA notation). In the

following, the primitive functions of the E/A model will be defined as primitive

predicates of the PEA notation.

4.3.1. Primitive Predicates of the PEA Notation

4.3.1.1. Point Predicate

For the value domain definition of the point predicate the notation "E(i)" is introduced

to denote the ith instance (i.e. occurrence) of an event E. The point predicateE(i) is true

iff there exists a time point t at which the point function Ev(t,i) holds true:

Vi E [+: [E(i) ~ 3t E T. Ev(t,i)].

For the time domain definition ofthe point predicate the notation "E(i)@t" is introduced

to denote that the ith instance of an event E occurs at time point t. The point predicate

E(i)@t is true iff at the time point t the event E has occurred for the ith time:

67

Vt E T. Vi E [+: [E(i)@t ¢> ET(t, i)].

From the above definition, an observation that could be made is that the notationE(i)@t

is just an alternative for the notation ET(t,i).

4.3.1.2. Interval Predicate

For the value domain definition ofthe interval predicate the notation ';4(i)(tA,AINv,-!A)"

is introduced to denote the ith execution of actionA. The start condition "tA' and finish

condition" -!A" are transition predicates, and the invariant condition ';4INY" is a state

predicate. An action is executed between" tA" and" !A" while ';4INY" holds true. The

conditions associated with an interval predicate are defined as follows:

The interval predicate A (i)(tA,AINv,-!A) is true iff for all time points between ttA and t~A

the interval function Ay(t,i) holds true. The interval predicate is defined in the value

domain as follows:

Vi E [+: [A(i)(tA,AJ,w,-!A) ¢>

3ttA, tLA E T. "It E T: (ttA ~ t < tLA ¢> Av(t,i))].

For the time domain definition of the interval predicate the notation ';4(i)@(tfA't ~A)" is

introduced to denote the ith execution of an actionA between the time points ttA and

t~A. These time points represent the times at which the events associated with actionA

have occurred: the start event at time ttA and the finish event at time t LA· The two events

are respectively defined as follows, in terms of the point function:

68

Vt~A E T. Vi E [+: [.lA(i)@t~A ¢::> .lAT(t~A'i)].

The interval predicate is true iff for all time points between t fA and t ~A the interval

function AT(t,i) holds true. The interval predicate is defined in the time domain as

follows:

4.3.1.3. Utility Predicate

In the following we define the utility predicates that will be employed in reasoning about

time uncertainties.

The utility predicate "VE(i)@(teor,tloc)" is introduced to denote the time uncertainty

associated with the ith occurrence of event E. The utility predicate is true iff for all time

points between teot and tlot the utility function V E(t, i) holds true. The utility predicate

representing the usefulness of the occurrence of an event is represented as:

Vt E T. (teot ~ t < tlot ¢::> U~t,i))].

For the utility predicate of an action A, the notation" VA(i)@(t fA ,t fA ,tlA ,tlA)" is
est lst'" eft '" 1ft

introduced to denote the time uncertainty associated with the ith execution ofthe action.

The utility predicate is true iff for all time points between t fA ", and t fAls, the utility

function UfA(t',i) holds true, and for all time points between t!A'ft and t!Alj) the utility

function V!A (t", i) holds true. The utility predicate representing the usefulness in the

execution of an action is represented as:

69

'itfA.s/,tfAls"t~A,ft,t~Aljl E T. 'ii E [+: [VA(i)@(tfAest,tfAls/~A.ft,t~Aljl) ¢::.

'it' E T. (tfA,Sf ::::; t' < ffA
Is

, ¢::. VfA(t',i» 1\

'it" E T. (tiA ::::; t" < tlA ¢::. VIA (t",i»].
~ ,ft ~ /fl ~

4.3.2. Operators of the PEA Notation

In order to compose point and interval predicates of the PEA notation, a set of logical

operators are defined in both value and time domains. In the following, we define some

of the PEA notation operators in terms of the functions of the E/ A model; the full range

of operators is defined in Appendix D.

From two standard logical operators, negation (-,) and conjunction (/\), the other

logical operators can be defined, such as disjunction (v), implication (~) and

equivalence (¢::.). As an example of these standard logical operators, we define, in the

value domain, the conjunction of two interval predicates as follows:

'ii,j E [+: A (i)(fA,A/NvdA) /\ B(j)(fB,BINv,!B) ~3tE T. Av(t,i) /\ Bv(tj).

Four additional logical (binary) operators are defined over the interval predicates ofthe

PEA notation: choice (+) when either one of the predicates can become true (or false),

meet (<) when a predicate becomes true (or false) at the same time point that other

predicate becomes true (or false), overlap (II) when two predicates are true (or false) at

the same time point, and disjoint (V) when two predicates neither meet nor overlap.

These operators are very convinient in composing primitive predicates in order to

describing the operational behaviour of systems. As an example of these additional

logical operators, we define, in both value and time domains, the meet and overlap

operators.

The meet operator «):

'ii,jE [+:A(i)(fA,AINv,lA) <B(j)(fB,BINv,!B) (~

A (i)(fA,A/Nv,lA) /\ BU)(f B,B/tvv,!B) /\ lA(i)¢::.f B(j);

70

'v't fA , t~, tflP t!BET. 'v'i,jE I+:A(i)@(tfA,t~}<.B(j)@(tflPt!B} 1:1

A(i)@(t fA,t~} 1\ B(j)@(tflPt!B} 1\ (t ~ = t fB)'

The overlap operator (II):

'v'i,j E J+: A (i)(tA,AINv,-lA }IIB(j)(t B,BINv,~B} (I:!

A(i)(tA,AINv,-lA) 1\ B(j)(tB,BINv,~B} 1\

tA (i) ==:>B(j) (t B ,BINV, ~B} V t B(j)==:>A (i)(tA,AINv,-lA};

'v't fA , t~, tfIP t!BET. 'v'i,jE I+:A(i)@(tfA,t~}IIB(j)@(tfB,t!B} 1:1

(A(i)@(t fA,t~) 1\ B(j)@(tflPt!B}) 1\ «t fB::; t fA < t !B) V (t fA::; t fB < t ~».

Apart from the above two sets of logical operators, we now define an algebraic operator

that is only applicable to the time domain; the duration operator (or 0 -operator)

measures the time distance between two time points (associated with the occurrence of

events). The duration between the occurrence of the events E(i)@tE and F(i)@tF is

given, as follows, by the duration operator whose arguments are tE and tF:

o (t,l) : TxT ~ T

The minimum and maximum durations between the occurrence of two events is obtained

from their respective utility predicates, by using the following two variants of the

duration operator:

omin. T X T~ T
(t,t) .

omax. T X T~ T
(t,t) .

If the two time points of the duration operator refer to the time of occurrence of the start

and finish events of an action, then the notation 0A(") can be used instead of o(ti ti)"
I IA'IA

71

4.3.3. Examples

In order to exemplify the concepts and the notation introduced so far we now present two

examples based on the timing templates given in /lahanian 86/.

For the first example, let us consider a sporadic timing constraint in which after the

occurrence of an event EV, an actionAC must be executed with the deadline of 60 ms' ,

between the occurrence oftwo consecutive events a minimum separation of 100 ms must

be imposed. In figure 4.4 we depict this situation in terms ofthe functions defined for the

E/A model. The top diagram of figure 4.4 represents the point function EV(t,i) and the

utility function UEv(t,i) for the eventEV; they are respectively represented by an uparrow

and the shaded area. The time point constants tkvand tkV, on the time axis, are related

to theith and (i+ l)th occurrence of the eventEV, and tkt:
ol

is the earliest occurrence time

for the (i+ l)th occurrence of event EV. The bottom diagram of figure 4.4 depicts the

utility function UAc(t,i) of the action AC(t,i) that has to be executed whenever an event

EVoccurs. The timing equations below the two diagrams represent the timing relations

that have to be satisfied.

This sporadic timing constraint is formalised into the following logic assertions:

For the second example, let us consider a periodic timing constraint in which while the

state predicate SP is true at least for 200 ms, an actionAC must be executed periodically

every 200 ms with a completion deadline of 100 ms. In figure 4.5 we depict this situation

in terms of the functions defined for the E/A model. The top diagram represents the

interval function SP(tj) related to the state SPwhich becomes true for thejth time at the

time point t! . The bottom diagram depicts the utility function UAcCt,i) of the action
fSP

AC(t,i) that has to be executed periodically.

72

EV (t,WU EV(t,;) 1 , ,
t I
tkv

,
titl

E,Veo'

-

tkt~, tkv + 100

t~c = tkv est

t~c = tkv + 60
If.

,

t UEv(t,i+l)

t i+1
EV ,

UAc(t,i+l) I
t i + 1

ACes,

Figure 4.4. EfA model of a sporadic timing constraint.

SP(t,j) 1
I SP(t,i)
,

t~sp ,

UAC(t,;J1

D D
t i ~ t i + 200 * i

ACes, ISP

t~c < tis + 200 * i + 100
If' I P

Figure 4.5. EfA model of a periodic timing constraint.

~

t

t

~

~

This periodic timing constraint is formalised into the following logic assertion:

Vi,j E [+: VttSP' t!SP E T. [SP(j)@(ttSp,t!Sp) 1\

t1SP > ttSP+ 200*i ~ UA6i)@(ttSp+200*i, -, -,ttSp+200*i+ 100)].

73

The purpose of these examples was to show that the PEA notation can represent the

same timing templates that are used by RTL/lahanian 86/ in a much compact form which

is more adequate for conducting the requirements analysis. The same comparison

cannot be made in terms of the value domain because RTL only handles uninterpreted

predicates.

4.4. Formalisation of the E/A Model

The E/A model has introduced a set of concepts which are flexible enough in order to

be incorporated by different formalisms. In this section, we illustrate how the primitive

concepts of the E/A model can be incorporated other into existing formalisms. The

general approach adopted is to define the primitive functions in terms of the primitives

of the formalisms, and then impose restrictions over these primitives to capture the basic

properties of the point and interval functions. We do not aim to provide automatic

transformation rules, or formal linking, between the different formalisms; our aim is to

show how different primitives of the E/A model can be expressed in other formalisms.

This approach to formalisation is applied to the classes of formalisms identified in this

paper: descriptive and operational. To do so, we employ, respectively, THL/Saeed 90a!

and PrT nets /Genrich 87/.

4.4.1. E/A Model in THL

In this section we present how the primitive functions of the E/A model can be

incorporated into THL /Saeed 90a/. (The basics of THL are described in Appendix A.)

The THL description of an E/ A model of a system is obtained by extending the THL state

space r, in terms of the primitive functions. That is, for a system with q point functions

and r interval functions the state vector is extended by the following variables:

The above functions are of the form E(t): T --B xI+. However, to be consistent with the

E/A model the following convention is adopted to introduce the parameter "i":

74

VH E rH: Vt E T. Vi E [+: [HE(t,i) == HE(t)=(true,i)].

Axioms are then introduced into the THL description, to ensure that the uniqueness and

ordering properties of point functions and the duration and ordering properties of interval

functions are satisfied for all well- defined histories. For example, we say that a history

His well- defined for a point function E if and only if:

Vt, t ' E T. Vi E [+: [HE(t,i) A HE(t',i) ==> t = t'l.

The bar operator" Ie" of the E/A model is defined in THL as the following history

relation:

Vt E T. I\sp(t» -=

VTl E T. (Tl =t A Sp(Tl) A 3t 1 E T: Vt2 E T. t 1 < t2 < Tl ==> -'sp(tz».

4.4.2. E/ A Model in PrT Nets

In the following we present the primitive functions of the E/A model, in terms of

Predicate-Transition nets (PrT nets) /Genrich 87/. PrTnets is a form of high-level Petri

net which is mainly used for the modelling and analysis of discrete-event systems which

are concurrent, asynchronous, and non -deterministic. The use of high -level nets,

instead of (Time) Petri nets ILeveson 87/, adds to the modelling power of the latter the

formal treatment of individuals (i.e. the notion of token identity) and their changing

properties and relations. (The basics of PrT nets are described in Appendix B.)

The representation of the E/A model using PrT nets, and the implicit timed firing rule,

is straight forward because of the similarity between the firing rules of a transition and

the properties associated with the occurrence of events and execution of actions. The

timing constraints to be modelled are expressed as relational expressions which must be

satisfied for a transition to become enabled. To allow the complete representation of the

E/A model in terms ofPrT nets, we assume a Weak Time Semantics (WTS) rather than

a Strong Time Semantics (STS) for the firing of the transitions which means that a

75

transition does not have to fire when its maximum firing time has been reached; if it does

fire it does so within the time interval specified by the time condition /Ghezzi 91/.

The occurrence of an event in the E/A model (i.e. a cut in the timeline when a condition

becomes true) corresponds in PrT nets to the instantaneous time that a transition takes

to fire. If an explicit reference to time is made, by considering an event as a temporal

marker, then the definition of PrT nets has to be modified in order to incorporate the

notion of the passage of time. (To represent the passage of time in PrT nets we adopt the

approach described in Appendix B; alternative approaches, such as Time ER nets

/Ghezzi 91/, could also have been employed.) From the underlying model of time, when

a transition is fired a timestamp is associated with the tuple (or token), representing the

time that the tuple was produced. Figure 4.6 shows the concept of an event in terms of

PrT nets. When transition tr fires the tuple tup is removed from predicate P1 and placed

in P2 with a timestamp tstp(P2) corresponding to the time that the transition had fired.

The variable tstamp, whose value is of numerical type, is associated with the labels of the

net and represents the timestamp of the tuple. The utility predicate of an event is

represented by the timing relation associated with transition tr, in other words, once

transition tr is enabled, it is allowed to fire only within the time interval established by

the timing relation associated with the transition.

The execution of an action in the E/A model implies a time interval between the

occurrence of the two events associated with the action: the start and finish events. In PrT

nets (corresponding to the representation of an event) an action is denoted by two

tr

tr: tstp(P I) + IE<ol :5 tstp(P 2) < tstp(P I) + tEIOI

Figure 4.6. The occurrence of an event in PrT nets.

76

transitions representing the two events, and a predicate representing the execution ofthe

action. The precondition and postcondition of an action are expressed by first order logic

formula annotating the transitions. Figure 4.7 shows the concept of an action in terms

of PrT nets. When transition trl fires, the variable tstamp is updated with the time that

the tuple was produced, which corresponds to the start time of the action. While the tuple

tup is at predicate P2 this means that the action is being executed, until transition tr2 fires,

corresponding the finish event of an action. The annotations in transitions trl and tr2

represent the time uncertainties associated, respectively, with the start and finish events

of an action, that is, they represent the utility function associated with the execution of

an action.

Apart from specifying the normal behaviour of the system in terms of the timing

constraints that have to be met, it might also be important to specify the abnormal

behaviour of the system for the case when timing constraints are violated ICristian 89,

de Lemos 92c/. For violations of the timing constraints which can be anticipated we

specify the exceptional behaviour of the system. The PrT net of the model presented in

figure 4.8 is an extension of the model of figure 4.7, in the sense that we also consider the

tup = (tstp(Pt})

tr I : tstp(P I) + tA"'1 ::; tstp(P 2) < tstp(P I) + t AIS1

tr2: tstp(P2) + tAdl ::; tstp(P,) < tstp(P2) + tAIfI

Figure 4.7. The execution of an action in PrT nets.

77

specification of the exceptional behaviour for the case when the basic time attributes

associated with the execution of an action are violated. If we consider, for example, the

state in which an action is about to start its execution (PI), then either an action starts

its execution within the timing attributes associated with its respective utility function

(trI), or exceptions are raised. These exceptions are associated with the cases when an

action starts its execution earlier than specified (tr3), and when an action does not start

its execution within the specified time interval (tr4)' The exception handlers associated

with these two exceptions are represented by the net predicates Pest and Plst, respectively.

The same PrT net structure is also applied to the case when an action is about to finish

its execution, as shown in figure 4.8.

tr, : tstp(P ,) + tAosl :5 tstp(P z) < tstp(P ,) + t AISI

tr 3 : tstp(P ,) :5 tstp(P oS!) < tstp(P ,) + tAosl

tr 4: tstp(P ,) + tA :5 tstp(P ISI) < 00
lSi

trz : tstp(Pz) + tAdl :5 tstp(p)) < tstp(Pz) + tAll!

tr 5 : tstp(P z) :5 tstp(P eft) < tstp(P 2) + tAdl

trf, : tstp(P Z) + tAw :5 tstp(P lf,) < 00

Figure 4.8. Timing exceptions in PrT nets.

78

In the following, we present the two examples of section 4.3.5 in terms of PrT nets. The

first example, shown in figure 4.9, represents a sporadic timing constraint. The event EV

is represented by transition tr1, and the action AC is represented by transitions tr3 and

tr4, and the net predicate P3. The event EVis only allowed to occur at intervals of 100

ms; this timing constraint is imposed by the relational expression of transition tr1. Once

EVoccurs, actionAC has to be executed within a deadline of 60 ms. The timing relation

of transition tr2 shows that there are no time uncertainties associated with the occurrence

of the start event of actionAC; the deadline for the execution ofthe action is represented

by the timing relation of transition tr3. We assume that the value of the timestamp in the

initial marking tstp(P1) =tstp(P4) =0.

tUPtO = (tstp(Pt)}

tupzo = (tstp(P 4))

(tstamp)

tr 1 : tstp(P 1) + 100 ~ tstp(P 2) < 00

tr 1 : tstp(P 2) ~ tstp(P3) < tstp(P 2)

tr 3 : tstp(P 3) ~ tstp(P 4) < tstp(P 2) + 60

Figure 4.9. A sporadic timing constraint in PrT nets.

In figure 4.10, we present (in terms ofPrTnets) the second example of section 4.3.5 which

involves a periodic timing constraint. The state predicate SP is represented by transitions

tr1 and tr2, and the net predicate P2, and the action AC is represented by transitions tr3

and tr4, and the net predicate P3. Once the state SP holds true for at least 200 ms, action

AC may start its execution periodically at every 200 ms and with a deadline of lOOms; the

periodicity ofAC is imposed by the timing relation of transition tr3, and the deadline by

79

the timing relation of transition tr4· We assume that the value of the timestamps in the

initial marking tstp(P2) =tstp(P3) =0.

tUPIO = (tstp(Pz))

tupzO = (tstp(P3))

tr I : tstp(P I) < tstp(P 2) < 00

tr2 : tstp(P2) + 200 < tstp(P 1) < 00

tr 3 : tstp(P 2) :$ tstp(P 3) < 00

tr 4 : tstp(P 3) + 100 < tstp(P 4) < tstp(P 3) + 100

Figure 4.10. A periodic timing constraint in PrT nets.

4.5. Extract of a Case Study

To clarify some concepts introduced so far, an extract of a case study based on a simplified

nuclear reactor control system was selected as an example /Saeed 93a/. Specifically, the

example will serve to illustrate how the concepts of the E/A model can be incorporated

within different classes of formalisms in order to describe system behaviour.

The example involves a system used to control the temperature of a nuclear reactor, the

rods of the reactor have to be moved down when the temperature reaches the

pre-defined threshold (SOOOK). The activity of moving down the rods takes 20 time

units, and the start of consecutive movements of the rods should be at least 30 time units

apart. To simplify the concepts, we make the (strong) assumption that the movement of

the rods is not constrained by any physical limitation.

80

4.5.1. The Case Study from the PEA Notation Perspective

In a very simplified form, the nuclear plant can be defined, in the PEA notation, as the

parallel composition of the actions describing the physical process and safety controller.

(A(i)() andA(i)@() are abbreviations for the notation previously introduced.)

Vi EI+: Nuclear _Plant(i)() ~ Physical_Process(iJ () II Safety _ Controller(iJ().

The physical process is defined by the sequential composition of actions representing the

down movement of the rods (PDMovRods(iJ() and no movement of the rods

(PNDMovRods(iJ().

ViEI+: Physical_Process(i) () ~ PNDMovRods(i) () <PDMovRods(iJ().

In order to capture the timing requirements imposed on the actions the C)-operator can

be employed to specify that the execution of PDMovRods(iJ() should take exactly 20

units of time, and consecutive executions should be at least 30 units of time apart:

Vi EI+: 0 PDMovRods(i) = 20.

ViEI+:o~in (;+1)=30.
tPDMovRoti ... • fPDMuvRods

The safety controller is defined by sequential composition of actions representing the

down movement ofthe rods (CoDMovRods(iJ(), no movement (CoNDMovRods(i)(),

and a wait action on the down movement of the rods (CoWMovRods(iJ().

ViEI+: Safety_COlztroller(iJ() ~

CoNDMovRods(iJ() < CoDMovRods(iJ() < CoWMovRods(iJ().

In the next two sections we show how the PEA notation specifications can be used as

templates for specifying the behaviour in a descriptive formalism (THL) and an

operational formalism (PrT nets).

81

4.5.2. The Case Study from the THL Perspective

The behaviour of the nuclear plant is specified in THL by imposing invariant and history

relations over the start and finish conditions of the actions of the physical process and

safety controller.

4.5.2.1. Physical Process

prj. The initial condition of the physical process is that PNDMovRods holds true.

'VT1 E T. PNDMovRods(1)(T1) <=> (T1 =0).

Pr2. The rods must start to move down if and only if the temperature (PTemp) is

above the threshold (SOOOK) and 30 time units have elapsed since the previous

time the rods started to move down, the execution of the action should take

exactly 20 time units.

'VT1 E T. fPDMovRods(1)(T1) <=>

(PTemp>SOOO)(T1) 1\ 'VtE T. t< T1=> -, (PTemp>SOOO)(t).

'VT1 E T. 'ViEI+: i>l => fPDMovRods(i)(T1) <=>

(PTemp>SOOO)(T1) 1\ 3t1 E T: (tl:::; T1 -30 1\ fPDMovRods(i-1)(tl) 1\

'VtE T. t 1 +30:::; t < Tl=> -, (PTemp>SOOO)(t».

'VT1 E T. 'ViEI+: lPDMovRods(i)(Tl +20) <=> fPDMovRods(i)(T1)·

Pr3. PNDMovRods immediately follows the action PDMovRods, as specified by the

sequential composition of the actions in the PEA notation description of

Physical_Process.

'ViEI+: fPNDMovRods(i+ 1) <=> lPDMovRods(i).

'ViEI+: lPNDMovRods(i) <=> fPDMovRods(i).

82

4.5.2.2. Safety Controller

In this example, we assume that provided the reactor temperature (PTemp) is within its

anticipated range then it is equal to the thermometer reading (CiTemp).

Crl. The initial condition of the safety controller is that CoNDMovRods holds true.

VTl E T. CoNDMovRods(l)(Tl)¢> (Tl =0).

Cr2. The safety controller must start to move the rods down at the instant the

tempera ture (CiTemp) rises above the threshold (5000K) and 30 time units have

elapsed since the previous time the rods started to move down, the execution of

the action CoDMovRods should take exactly 20 time units.

VT1 E T. tCoDMovRods(l)(Tl) ¢>

(CiTemp>5000)(Tl) 1\ VtE T. t< Tl~ -, (CiTemp>5000)(t).

VTl E T. Vi EI+: i> 1 ~ tCoDMovRods(i)(Tl) ¢>

(CiTemp>5000)(Tl) 1\ 3t 1 E T. (t 1::::; T1-30 1\ tCoDMovRods(i-l)(t 1) 1\

VtE T. t 1+30::::;t < Tl~ -, (CiTemp>5000)(t».

VTl E T. Vi EI+: tCoDMovRods(i)(Tl + 20) ¢> tCoDMovRods(i)(Tl)·

Cr3. CoWMovRods immediately follows action CoDMovRods, and is of duration

exactly 10 time units.

ViEI+: tCoWMovRods(i) ¢> tCoDMovRods(i).

VTl E T. ViEI+: tCoWMovRods(i)(Tl + 10) ¢> tCoWMovRods(i)(Tl).

Cr4. CoNDMovRods must immediately follow CoWMovRods and precede

CoDMovRods, as specified by the sequential composition of the actions in the

PEA notation description of Safety_Controller.

83

'ViEI+: fCoNDMovRods(i+l) ~ ~CoU'M"ovRods(i).

'Vi EI+: ~CoNDMovRods(i) ~ fCoDMovRods(i).

4.5.3. The Case Study from the PrT Nets Perspective

In order to exemplify the utilization of the E/A model primitive functions as modelling

concepts for an operational formalism, in the following, we discuss the PrT net model

of the movement of the rods to control the temperature of a nuclear reactor. The PrT

net model is shown in figure 4.11 and includes models of the physical process and the

safety controller. The name and the role of the places of the PrT net correspond to the

actions specified by the descriptive formalism, presented in the previous section. The

relations associated with the transitions of the PrT net are defined in figure 4.11, and

correspond to the conditions of the actions defined in THL. In the PrT net model, the

place CiTemp contains the last measurement of the reactor temperature which is

periodically updated from the simulated values contained in PSimTemp. The sub net

containing PDMovRods and PNDMovRods is obtained from the PEA notation formula

that defines the sequence of actions that are associated with the rods; the subnet

containing CoDMovRods, CoWDMovRods and CoNDMovRods is obtained from the

PEA notation formula that defines the sequence of actions that have to be performed

by the safety controller in order to meet the requirements imposed on the movement of

the rods depending on the temperature of the reactor; the places ActDMovRods and

ActNDMovRods represent the outputs of the (logical) actuator that moves the rods. The

predicates associated with the transitions T3, T4 and T5 are derived from the start and

finish conditions defined for the actions to be executed by the safety controller.

4.6. Comparison of the PEA Notation with similar Models

The fundamental notions adopted for the PEA notation were based on the event- action

model initially proposed by lahanian & Mok /lahanian 86/. This model attempted to

capture the temporal ordering of computational actions, and was based on the following

84

GE
liNG

IN
I IN L

Although some of the notions adopted for the PEA notation are similar to those

presented in 11ahanian 86/, there are some differences which makes the former model

more suitable for the type of behavioural representations needed for requirements

analysis. An essential difference between the two models is the fact that the PEA

notation considers time as an independent variable. (In more recent work 11 ahanian 88a!

the occurrence function "@", which had time as dependent variable, is replaced by the

(Boolean) occurrence relation "<I>" which has time as a parameter.) The PEA notation

approach allows events, actions and states, and their respective utility functions, to be

easily depicted as graphics, which is consistent with the techniques usually employed in

process control engineering. Another difference between the two models concerns the

expressiveness of their notations. In the 1ahanian & Mok approach, by restricting its

expressiveness, emphasis was given to a notation that would simplify the mechanical

analysis of the specifications, while in the PEA notation an attempt was made to identify

and clearly represent each of the concepts defined. Another issue that shows the

flexibility of the PEA notation, by comparision with the 1ahanian & Mok approach, is

that while the former model supports both dense and discrete time structures, the latter

only supports discrete time structures. As far as similarities between the models are

concerned, the logic assertions of the PEA notation can also be transformed into a set

of formulas in Real-Time Logic, in a similar way to that performed for the 1 ahanian &

Mok event-action model /lahanian 86/.

Another feature of the PEA notation, which has no equivalent in the 1ahanian & Mok

event-action model /lahanian 86/, is that in the PEA notation we are also able to

describe the behaviour of a system, and its components, by abstracting from their timing

properties, in a similar way that of ISL IGoswami 92/. Interval Specification Logic (ISL)

is a first order linear-time temporal logic which is used for specifying the properties of

programs in execution intervals which are sequence of states. In ISL a timed description

of the system behaviour can be developed, by refinement, from an untimed description.

86

The PEA notation can also be compared with two other similar techniques, TRIO

/Ghezzi 90/ and VVSL /Middleburg 89/. TRIO is a first-order temporal logic language

for specifying and verifying timing requirements; its proof theory and its executability

have been mathematically defined. The language provides operators that allow to check

the truth or falsity of a proposition at particular time instants. TRIO can accommodate

either dense or discrete time structures. However, TRIO does not provide mechanisms

for modularizing complex specifications, and it is hard to read and understand. VVSL

defines operations in terms of temporal predicates over state variables; in addition to the

pre-condition and post-condition of VDM /Jones 86/, VVSL introduces an

inter-condition which imposes constraints during execution (i.e. acts as a

state-invariant). However, unlike the PEA notation, VVSL does not permit

quantitative timing analysis.

With respect to the timing constraints of the PEA notation, instead of adopting an

exhaustive list of all possible timing relations IDasarathy 85/, we have only considered

those that are essential for representing events, actions and states, and their associated

time uncertainties.

In comparision with other models mentioned above, the PEA notation is more flexible

in its application to requirements analysis because its features allows different issues in

the behaviour of the system, and its components, to be modelled from different

perspectives of the analysis.

4.7. Concluding Remarks

The aim of this chapter was to introduce the E/A model, which is based on a set of

concepts that allow us to describe the behaviour of systems at different levels of

abstraction, and using different formalisms. On top of the E/A model we proposed the

PEA notation in order to provide a compact notation for the E/A model, and to capture

the behaviour of critical real-time systems in terms of predicates over state variables.

Apart from proposing the PEA notation we also formalised the E/A model in terms of

87

TIlL and PrT nets with the aim of demonstrating the flexibility of the concepts being

employed.

However, there are some important issues which need to be resolved in order to obtain

a complete model from which we would be able to perform a formal analysis of system

timeliness requirements, the theme which was given more emphasis in this chapter. One

of these issues is how to obtain confidence that the specifications performed in terms of

the E/A model are complete; a possible way to tackle this issue is to provide a set of

criteria similar to the work done by Jaffe et aI/Jaffe 91/. Another issue is to justify

formally the extension proposed for PrT nets, which would allow the modelling and

analysis of timing constraints. A final issue, which is related to the approach of using THL

and PrT nets to perform a formal analysis of the requirements, is the need to provide

some means by which the verification of the PrT net model could be checked against the

original specification in THL. A hint to be followed up is to try to extract from the

simulation of the PrT net model its E/ A model, and to verify this E/ A model against the

initial E/A model specified using TIlL.

88

Chapter 5

A Methodology for Requirements Analysis

5.1. Introduction

In this chapter we describe a methodology, based on formal techniques, for the

requirements analysis of critical real- time systems. The approach, which provides a

systematic way in which safety requirements can be analysed, consists of a framework

with distinct phases of analysis, a set of techniques appropriate for the issues to be

analysed at each phase of the framework, a graph to record the safety specifications

obtained from the process of analysis, and a set of techniques for conducting a quality

analysis of the safety specifications.

The proposed approach for the requirements analysis of critical real- time systems is

based on five key principles:

• Focus on safety. The approach is based on maintaining a separation between the

mission and the safety requirements. (Safety requirements focus on the elimination

and control of hazards, and on the limitation of damage in an accident.) For a

particular system, the extent to which safety features can be separated from the

mission implementation will depend on the trade-offs that can be made between

maintaining safe behaviour and optimising the system's ability to fulfil its mission.

These trade-offs will take account of the risks associated with the system hazards

and the benefits gained from the mission.

• Techniques for the analysis. The techniques to be employed for a specific domain

of analysis are selected in accordance with the characteristics of the properties of

interest of that domain (and the perspective adopted). This leads to the utilization

of a range of specialized informal and formal techniques. The problem of linking

89

specifications obtained from different techniques is tackled by employing a

primitive set of modelling concepts that are appropriate for the properties being

analysed.

• Framework for the analysis. A systematic approach is provided by deriving a

framework from a system structure that is general for an application domain. This

framework partitions the requirements analysis into phases, and defines

dependencies between the phases. Each phase focuses on a specific domain of

analysis, providing partial knowledge of the overall system. During the analysis, a

domain is viewed from different perspectives; each perspective captures a specific

description of the domain.

• Formal record of the requirements specifications. The safety specifications obtained

from the requirements analysis are recorded in terms of a directed graph, in which

nodes represent the specifications, and edges denote the relationships between the

specifications. The graph provides a succinct representation which is amenable to

formal analysis.

• Quality analysis. The key quality factor for critical real- time systems is the risk to

which the environment is subjected by the system. To obtain confidence that the

risks associated with the requirements specifications are acceptable, quality

analysis techniques are included in the proposed approach. The quality of the

requirements specifications is confirmed by: firstly, applying verification and

validation techniques to ensure that the specifications are consistent and maintain

safe behaviour, and secondly, conducting a risk analysis of the requirements

specifications. The approach enables the integration of formal techniques with

traditional safety techniques to yield a coherent method for risk analysis.

The contents of the chapter are organised as follows. The next section justifies the

adopted separation between mission and safety issues of systems, specifically, during

requirements analysis. Then the role of different techniques during requirements

analysis is discussed in section 3, emphasising the contribution of formal techniques. In

90

section 4 we describe in more detail the phases of the framework for requirements

analysis, covering the issues to be analysed, the techniques to be employed, and the time

bases to be used. Section 5 presents the graph in which the requirements specifications

are organised. In section 6 we present how the quality analysis of requirements

specifications is conducted by qualitative and quantitative means. Finally, we present

some concluding remarks on the methodology presented in this chapter.

5.2. Separation between the Mission and the Safety Requirements

The methodology presented here for software requirements analysis for critical

real-time systems is based on establishing a clear separation of the mission and the

safety requirements. On the one hand, the mission requirements focus on what the

system is supposed to achieve in terms of function, timeliness and some dependability

requirements - namely the attributes of reliability, availability and security lLaprie 90/.

On the other hand, the safety requirements focus on the elimination and control of

hazards, and the limitation of damage in the case of an accident; in other words, they

address what the system should not do lLeveson 86/, and are thus related to the safety

attribute of dependability.

This separation at the requirements level is essentially logical rather than physical;

moreover, we do not have any intention to force a particular structure on the

implementation. The benefits of making this distinction during requirements analysis

are: the ability to focus on the safety-critical issues, the simplification of safety

certification, the resolution of potential conflicts, and detection of omissions and

inconsistencies between the mission and safety issues.

Although logical at the requirements analysis phase, this separation between the mission

and safety can, when appropriate, be enforced - at the plant domain, as exemplified by

the shut down systems of nuclear reactors, and at the controller domain, by

implementing separate controllers for mission and safety as is done in interlocking

systems for railways /Chandra 91/, or by the application of design techniques, such as

91

"firewalls", which are intended to prevent the mission factors from interfering with the

safety factors once the controller is implemented. Whether it is feasible to separate

completely the mission from the safety requirements for a particular critical real-time

system depends on the ease with which a distinction can be drawn between safe and

unsafe states. The mission controller is concerned with system behaviour while the

system is in a safe state, and the safety controller when the system is in an unsafe state.

Furthermore, the aims of the two controllers can be considered to be complementary.

The mission controller seeks to ensure that the mission is accomplished - this will also

require that the system does not enter into an unsafe state. The safety controller is

concerned with avoiding hazardous states by explicitly dealing with the unsafe states that

precede these states.

5.3. Formal Methods for the Framework

As already mentioned in the Introduction, although there are potential advantages in

employing formal methods, there are also a number of limitations concerning their

applicability in the requirements analysis of critical real-time systems. In this section,

we enumerate the goals that should to be pursued in order to make the application of

formal methods feasible, and the features that a formalism should possess in order to be

applied effectively in the context of the framework. But first, we define what we mean

by a "formal method".

Formal is a term applied to a notation or technique if it is amenable to mechanical

manipulation according to some calculus. A method is a set of procedures and guidelines

for the application of a notation or technique to system development. When the notation

or technique is formal, the method is referred to as a formal method.

In the following, we describe the demands that have to be considered when applying

formal methods to the process of software development /Anderson 93, Tsai 92/.

• During requirements analysis the objective is to capture the main ideas of the

system being developed rather than represent minute details of the system. Hence,

92

it is necessary to employ techniques which can improve the comprehension and

assimilation of the specifications. This can be achieved by employing techniques

that are accessible and suitable. Accessibility of a technique refers to the

experience and easiness that an analyst has when employing the technique, and to

the usefulness of the resulting documentation (produced by applying the

technique) as a means of communication between the analyst and the client.

Suitability refers to the appropriateness of a specific technique in performing a

particular aspect of analysis at the relevant stage of requirements analysis.

• The utilization of a technique during requirements analysis should be disassociated

from a prescribed specific method because the method might restrict the possible

implementation choices. In the sense that while a method should be tailored for

the subject and type of analysis to be conducted, a technique should be sufficiently

flexible in order to be used across different subjects and types of analysis.

• Formal techniques, apart from allowing verification to be performed, should also

enable specifications to be validated either by testing /Dauchy 91/ or by symbolic

execution /Harel 90/.

• Consistency has to be achieved between emerging techniques and those currently

adopted in practice, fundamentally, those techniques that are related to plant

analysis, such as Hazard and Operability Studies (HAZOPS) /Lawley 73/. Safety

is essentially an attribute ofthe system rather than just software, which implies that

the requirements analysis of critical real- time systems should always consider the

system in which the software is to be embedded.

• The formal method should support traceability in order to control any changes

applied to the product during its development, and to relate these changes back to

the relevant requirements. This is particularly important when conducting safety

certification.

• The formal method should also allow the system to be structured into subsystems

which can be dealt with separately from each other. This structuring can be in terms

93

of levels of abstraction, where higher levels are associated with the early stages of

requirements analysis, thus reducing complexity.

Formal support for the range of different activities concerning the framework for

requirements analysis demands the utilisation of a set offormal methods, whose features

and expressive power should match the characteristics of the different activities.

Selecting an appropriate formal technique for an individual activity allows emphasis to

be placed on pertinent characteristics of the system, enabling a technique to work to its

own strengths. In the proposed approach we employ formal techniques in accordance

with the characteristics of the system to be analysed, during the different phases of the

framework, and define the linkage between the different techniques, resulting in a

coherent approach.

Although formal methods have been classified in a different number of ways Ide Roever

91, Olderog 91, Pnueli 86, Wing 901, for the purpose of the framework we identify two

kinds of formalisms: descriptive and operational.

When using descriptive formalisms, system behaviour is specified in terms of system

properties that have to be satisfied. The specification is axiomatic, hence it should have

a conjunctive nature, which thus allows new requirements to be added while performing

the analysis, without the need to modify or reconstruct the entire specification. In order

not to restrict the set of possible implementations which can be obtained from a

specification, the specification should not state more than the necessary minimal

constraints on the system behaviour. In the context of the framework, as an example of

descriptive formalisms, we will only be considering logical formalisms, such as Temporal

Logic IGorski 86/, Real- Time Logic (RTL) IJ ahanian 86/, Real- Time Temporal Logic

(RTTL) IOstroff 87/, and Timed History Logic (THL) ISaeed 901.

When using operational formalisms, system behaviour is specified by constructing a

model of the system in terms of mathematical structures such as tuples, relations,

functions, sets and sequences. Another feature of this class of formalisms is that they

94

should be able to explicitly specify concurrency and non - determinism, in order to model

the interaction between specifications. In the context of the framework, as an example

of operational formalisms, we will only be considering graphical formalisms, such as

Petri nets /Murata 89/, Extended State Machines (ESM) /Ostroff 87/, Statecharts !Harel

87/, and Modecharts /Jahanian 88/. Also, algebraic formalisms that have constructs

supporting non - determinism and concurrency can be employed, such as CSP !Hoare 85/

and CCS /Milner 83/.

In order to facilitate the description of system behaviour using different formal methods,

we adopt the E/A model as a common foundation for the models of system behaviour.

These basic concepts of the E/A models (events, actions and states) are sufficiently

general that they may be expressed either in descriptive or operational formalisms. In

other words, the basic concepts of the E/A model will be used to model the behaviour

of the system being analysed by employing the proposed formalisms.

5.4. Framework for the Requirements Analysis

When developing critical real- time systems, a key concern is to ensure that accidents

do not occur. The usual practice for ensuring safety is to strive to identify all of the

hazards and then apply techniques which reduce the probability of these hazards

occurring. The level of effort that should be employed to handle a hazard depends on

the risk associated with that hazard.

In order to facilitate systematic analysis, for each level of abstraction of the system we

derive the phases of a framework from the components of that level, and their

interactions: the components define the domains of analysis and the interactions

between the components define the dependencies that exist between the domains. The

organization of the frameworks, in terms of the phases and their ordering, follows

(respectively) from the domains of analysis and their dependencies.

Our general framework for the requirements analysis of critical real- time systems is

shown in Figure 5.1. This is obtained by, first, splitting the mission requirements from

95

the safety requirements, and second, subdividing the analysis of the safety requirements

into a sequence of phases. The phases are convenient notions when describing the

framework and serve to show that the level of abstraction decreases from descriptive to

operational as the analysis proceeds. The results of a phase can, of course, be influenced

by feedback from subsequent phases, since these take additional information into

account. For example, the plant interface analysis can take into account limitations of

sensors and actuators which may enforce changes to the specifications produced at the

plant level. The proposed framework forces safety specifications to be formal from the

initial stages of requirements analysis. This has the benefit that, once the essential

requirements of the system are formalised (e.g. hazards) the subsequent safety

specifications and designs can be obtained by formal refinement.

Mission Requirements Safety Requirements

Safety Plant
Specification

I
Safety Plant Interface

Specification

Figure 5.1. A framework for requirements analysis.

96

According to figure 5.1, in order to conduct the requirements analysis, the ordering in

the phases analysis will be as follows. The initial phase, Conceptual Analysis, produces

a statement of the aim and purpose of the system and determines those failure

behaviours of the system which constitute accidents. The second phase, Safety Plant

Analysis, identifies the plant properties relevant to the safety requirements, such as the

physical laws and rules of operation that govern plant behaviour. The third phase, Safety

Plant Inteiface Analysis, delineates the interface between the plant and controller, and

specifies the behaviour that must be exhibited at that interface. The final phase, Safety

Controller Analysis, establishes a top level organization for the controller in terms of the

properties of its components and their interactions. (On its own animation is not

considered a phase of analysis, is part of the Safety Controller Analysis. Animation was

given a certain distinction in the framework of the figure 5.1 because of its importance

in the validation of the requirements specifications.)

In the following, we describe in more detail each of the identified phases by identifying

the formalisms to be employed for the analysis, the time structure in which the analysis

is more likely to be conducted, and how the concepts of the EIA model will be applied

in order to facilitate the modelling of the behaviour of the system.

5.4.1. Conceptual Analysis

The objective of this phase is to produce an initial, informal statement of the aim and

purpose ofthe system, with particular emphasis on what the impact the environment can

have on the system and what can be the consequences of the behaviour of the system on

the environment. During this phase what is meant by "safety" for the system is also

determined (i.e. the failure behaviours of the system which constitute accidents are

identified). As a product (i.e. output) of the Conceptual Analysis we obtain the Safety

Requirements, enumerating the potential accidents (an unintended event or sequence

of events that causes death, injury, environmental or material damage). Identification

of the possible accidents a system could cause would be conducted using standard

techniques, such as Comparative Methods lICE 85/. The identification of the accidents

97

provides a basis from which a distinction between the mission and safety issues of the

system can be obtained. Another activity to be performed during this phase is the

identification of the primary modes of operation of the physical process; these modes are

classes of states which group together related functions.

At the conceptual level, we are looking for notations which would allow the

representation of, and reasoning about, a very high level description of the preferred

behaviour of the system within its enclosing environment. A formal notation which

allows the representation of causality seems the most adequate because at this level of

description there is no intention in conducting a qualitative analysis of the activities of

the system. Currently, we describe system behaviour in terms of interpreted predicate

symbols in the PEA notation. This enables causality to be modelled in terms of temporal

ordering and modes of operation to be defined as actions or states, and also has the

advantage of allowing us to specify the main state transitions and activities ofthe system

at a high level, providing a link to the more detailed analysis at the plant level.

5.4.2. Safety Plant Analysis

The objective of this phase is to identify those properties of the physical process which

are relevant to the Safety Requirements. An essential starting point for the formal

analysis of a critical real- time system is to identify the physical entities that make up the

plant, and to construct a formal model of the physical process which captures its

characteristics as dictated by physical laws and rules of operation. We assume that a

model of the plant can be obtained that accurately represents the behaviour of the plant

necessary to conduct the requirements analysis of the software to be embedded in the

system (i.e. the safety controller). The plant analysis must also support the identification

of hazards (a condition over the physical process describing states from which an accident

might ensue). As the product of the plant analysis we obtain the Safety Plant

Specification which contains the safety constraints (a safety constraint is a condition

imposed on the physical process: usually the negation of a hazard modified to

incorporate safety margins) and the safety strategies (a safety strategy is a way of

98

maintaining a safety constraint, and is defined as a set of conditions, in terms of

controllable factors, over the physical process). The conjunction of all of the safety

constraints of a system characterises the specified safe behaviour for that system.

5.4.2.1. Proposed Formalism

At the plant level, we have to analyse both continuous variable and discrete event

dynamic systems. Hence it is necessary to employ both differential equations and

discrete mathematics at this level. After the analysis of continuous systems is performed,

and the appropriate safety thresholds of the plant behaviour defined, we need a

descriptive formalism in order to specify behaviour in terms of axioms over a model of

the system. In this thesis, as a descriptive formalism, we use THL during the Safety Plant

Analysis, primarily because the behaviour of systems expressed in THL is defined by

imposing constraints over the set of all sequences of states that the system can exhibit.

This property gives THL formulae a conjunctive nature. Hence, by using THL, the Safety

Plant Specification can be constructed by considering each safety constraint and safety

strategy separately.

5.4.2.2. Proposed Time Structure

We propose the use of a dense time structure during the Safety Plant Analysis which is

compatible with THL, the formalism being proposed for this phase of analysis. Several

other formalisms use a dense time structure; these include extensions to Temporal Logic

IPnueli 88/, CSP /Reed 86/ and CCS /Milner 83/. Some justification for selecting a dense

time structure for the Safety Plant Analysis is presented below.

Physical laws govern the properties of the environment in which a system works, and

therefore impinge directly on the behaviour of the system. To perform a thorough

analysis of system behaviour these laws must be expressed and their impact on the system

analysed. Many of these physical laws are defined in terms of formalisms that assume a

(continuous) physical time, e.g. the distance travelled by a train for a duration of time

99

is given by an integral over the velocity ofthe train. Hence, a dense representation oftime

is more suitable for the plant analysis.

The plant time structure is a dense time structure (defined as a tuple cr DE= (<P, +»)

isomorphic to the reals (R).

5.4.2.3. The E/A Model in the Safety Plant Analysis

During the Safety Plant Analysis, after the physical entities of the plant are identified,

we define, by employing the E/A model, the activities associated with the physical

entities and the relationships that might exist between these entities. From the

behavioural analysis of the entities, in terms of their discrete and continuous variables,

we identify their respective thresholds in terms of both value and time domains. From

these thresholds, which correspond to transitions in the continuous state of the system,

we define the behaviour to be associated with the physical entities in terms of the basic

concepts of the E/A model. In other words, by using the E/A model to describe the

behaviour of the plant we are discretizing its behaviour with the aim of facilitating

specification of the safety strategies and their subsequent verification. In terms of the

E/A model the actions associated with a particular physical entity are exhaustive and

exclusive, i.e. at any time point the physical entity must be performing exactly one action

or be at the transition point between two consecu tive actions. Another feature of the E/ A

model is that it facilitates timing analysis by providing formal and informal means to

capture the behaviour exhibited by the physical entities in terms of the timing

relationships between the occurrence of events.

5.4.3. Safety Plant Interface Analysis

The objective of this phase is to delineate the plant interface, and to specify the

behaviour that must be observed at the identified interface. This involves stipulating the

properties of the required sensors and actuators, including their failure rates, in order

to determine the limitations (constraints) which these components impose on an "ideal"

100

implementation of the safety strategies by the controller. We perform an analysis of the

safety strategies to determine their robustness in the presence of failures in the

components ofthe plant interface, i.e. failures of sensors and actuators. This phase leads

to the production of the Safety Plant Interface Specification, which contains the robust

safety strategies (a robust safety strategy is a modification of a safety strategy

incorporating the limitations of the sensors and actuators to be deployed).

5.4.3.1. Behaviour of Sensors and Actuators

In this section we are concerned with the analysis ofthose sensor or actuator failures that

have an adverse affect on the safety of the system. For that the behaviour of sensors and

actuators is specified in terms of their standard, exceptional and failure behaviours. The

motivation for adopting such a partition is to attempt to characterise the complete

behavioural space of sensors and actuators. The different categories of behaviour can be

obtained by employing appropriate techniques. By specifying the failure behaviour of

the sensors and actuators we are also able to establish how the system can be made more

robust in the presence failures of these components. The specification ofthe exceptional

behaviour of a sensor or actuator takes into account those situations when it becomes

impossible for them to deliver the specified standard behaviour. A sensor or actuator

instead of failing to provide any predictable service, notifies another component of the

system by raising an exception.

The specification of the complete behavioural space of sensors and actuators involves

specifying the anticipated values (RV~) and unanticipated values (RV~) of system

variables, in terms of their ranges, and stipulating the standard, exceptional, and failure

behaviour of the sensors and actuators. In order to sketch a model for the behaviour of

any such component (either a sensor or an actuator) we define vi as the input variable

and vo as the output variable of the component. The model follows an approach adopted

for specifying the standard and exceptional behaviour of software components /Cristian

89/.

101

For component CMlet RVyj= RV~jU RV~jbe the set of values that may be inputs for CM

and RVyo be the set of values returned by CM. The behaviour of CM is defined in terms

of partial relations over RV~jX RV~o. The standard behaviour is defined by relation

SS(CM):

SS(CM) = {(vi,vo) I vi E RV~j /\ vo is an intended outcome for vi}.

For component CM we specify the set of exceptions as E. For each exception e E Ewe

specify the exceptional behaviour for CM by the relation ESe (CM):

ESe(CM) = {(vi,vo) I vi E RV~j /\ vo is an intended outcome for vi for e}.

We will say that component CM has failed if its behaviour is not contained within the

relation SSe CM) or a relation ESc (CM). The failure behaviour is specified by the relation

FS(CM):

FS(CM) = {(vi,vo) I vi E RV~j /\ (vi,vo) $. SS(CM) /\

'TIe E E: (vi,vo) $. ESe (CM)}.

The failure behaviour of a component is identified by conducting a failure modes and

effect analysis (FMEA). A FMEA is used to analyse all component failure modes and

to identify the resulting affect on the system /Wells 80/. We denote the set of anticipated

failure modes as FM; and for each failure mode at E FM, we specify the failure

behaviour by the relation FSaj(CM):

FSaj(CM) = {(vi,vo) I vi E RV~j /\ VO is an outcome for vi in aft·

The anticipated failure behaviour will be a subset of the failure behaviour:

U af E FM FSaj(CM) ~ FS(CM).

In the above definitions, we have concentrated on relationships in the value domain.

However, for many practical systems it will be necessary to extend the specification to

incorporate the relationships that exist in the time domain !powell 92/.

102

At the interface level, we are concerned with modelling the properties of sensors and

actuators, the impact of failures occurring in either the physical process or controller,

and their ability to maintain safe behaviour. Again, to perform this analysis we need a

descriptive formalism in order to specify the behaviour of a component in isolation,

either by using pre/post-conditions or relations.

5.4.4. Safety Controller Analysis

During this phase the specifications from the previous phase, namely the robust safety

strategies, are analysed in terms of the properties of the controller, such as the top level

organization of the controller components and their failure rate. This phase leads to the

production of the Safety Controller Specification, containing the safety controller

strategies (a safety controller strategy is a refinement of a robust safety strategy

incorporating some of the components of the controller). The Safety Controller

Specification is the main product of the requirements analysis, and provides the basis for

subsequent development of the system.

5.4.4.1. Proposed Formalism

The general features which are required for a formalism to be appropriate for this phase

are the following: the specification should be able to represent the architectural design

of the controller, modelling the interactions between its components, and the operations

that must be performed by these components. To perform this we need an operational

formalism which explicitly specifies concurrency and non -determinism. In this thesis,

as an operational formalism, we use Predicate-Transition nets (PrT nets) /Genrich 87/,

a form of high -level Petri net, during the Safety Controller Analysis. Pet~i nets are

mainly used for the modelling and analysis of discrete-event systems which are

concurrent, asynchronous, and non -deterministic. The use of PrT nets, instead of

(Timed) Petri nets /Leveson 87/, adds to the modelling power of the latter the formal

treatment of individuals (i.e. the notion of token identity) and their changing properties

and relations.

103

5.4.4.2. Proposed Time Structure

For the analysis of timeliness requirements during the Safety Controller Analysis we

propose the use of a discrete time structure. The choice of using a discrete time structure

seems natural, in the sense that it is the most convenient and expressive model of time

for discrete computation. The timeliness analysis to be performed at this phase is

essentially related to the safety requirements of the safety controller.

The controller behaviour can be viewed through a sequence of conceptual layers (or

levels of abstraction) in which the passage of time is represented by discrete time

structures with different granularities. The granularity of each layer is dictated by the

timing constraints associated with the occurrence of events ofthat layer. The relationship

between discrete time structures with different granuralities is discussed in section 3.2.2.

The safety controller time structure is a discrete time structure (defined as a tuple CJ" 01=

(CP, + » isomorphic to the Integers (I).

5.4.4.3. The E/A Model in the Safety Controller Analysis

In terms of timeliness requirements, during the Safety Plant Analysis, the E/A model was

employed with the aim of understanding the temporal behaviour ofthe physical process,

in terms of quantitative relationships, and to identify those timing thresholds which will

be part of the safety strategy. The application of the E/A model during the Safety

Controller Analysis has the purpose of capturing the behaviour of the components of the

controller in terms of the tasks (actions) that they have to execute. The E/A model

behaviour of the component is obtained by successively refining the safety plant interface

specifications. In terms of the time domain, the behaviour ofthe components should take

into account the timing thresholds defined during the Safety Plant Analysis, and the time

uncertainties introduced by the sensors and actuators.

For every component, together with the specification of its standard behaviour, the

component's failure behaviour should also be specified. (This failure behaviour might

104

be characterized by the component failing to execute an action within the specified

timing constraints.) Once the failure behaviour of the component is known, error

handling mechanisms, such as exception handling, can be incorporated with the

component, in order to allow corrective measures to be taken whenever a error is

detected. The advantage of considering such error handling mechanisms at this early

stage is that these mechanisms can be specified and verified within the context of the

safety controller strategies, instead of implementing ad hoc approaches to handle errors

during the later phases of system development.

5.4.4.4. Animation

At this stage of the analysis, we can conduct the Animation of the Safety Controller

Specification which enables the user of the system to check if the safety controller

strategies do indeed capture the intended behaviour, and are consistent with the mission

requirements. In our approach this is achieved by simulating the PrT net models of the

physical process, plant interface, and safety controller. The animation provides a

concrete manifestation of the abstract models, thus enabling the user to exercise the

specifications in defined scenarios, and visualize different options in the refinement of

the specifications. It is certainly possible to envisage a requirements validation system

which would support and facilitate user interaction with the formally expressed

requirements specification by presenting a user friendly graphical interpretation of an

operational formalism.

5.5. Safety Specification Graph

The specifications produced during requirements analysis are recorded in a formal

structure, referred to as a Safety Specification Graph (SSG). An SSG is a linear graph,

in which a node represents a specification and an edge denotes a relationship between a

pair of specifications. Since the analysis is by repeated refinement, an SSG is directed

and acyclic. For those systems whose behaviour is described in terms of modes of

operation, a separate SSG is constructed for each mode.

105

5.5.1. Structure of SSG

By examining how the specifications are obtained from the framework for requirements

analysis, structural properties of an SSG can be deduced.

• Distinct component graphs. The derivation of the safety specifications starts from

the identification of the potential accidents, hence each accident represents a root

from which other safety specifications are derived. This is reflected in the SSG by

the construction of a distinct component graph for each accident.

• Evolutionary graph. Each component graph is an evolutionary graph (a graph

whose nodes and edges are formed by addition or removal !Marshall 71/), in which

the evolution is related to the phases of the framework. At each phase, a set of

nodes (representing the specifications produced) is added to the graph of the

previous phase, and edges are introduced connecting the additional nodes to what

were the terminal nodes of the graph.

• Layered graph. A component graph organizes the safety specifications into layers.

From the framework presented in section 5.4, a six layered graph is envisaged. The

top most layer, relating to the environment level, represents an accident (AC).

Layers two, three and four, relating to the plant level, represent hazards (HZ),

safety constraints (SC) and safety strategies (SS), respectively. The fifth layer,

relating to the plant interface level, represents the robust safety strategies (RSS).

The bottom layer, relating to the control system level, represents the safety

controller strategies (SCS).

5.5.2. Relationships of SSG

The SSG encodes and records the relationship between safety specifications at

consecutive layers of component graphs; three sorts of relationships are identified: the

absence of all of the hazards associated with an accident should ensure that the accident

does not occur; a safety constraint should imply the negation of the hazards which it

lOG

addresses; and a strategy is intended to maintain the specifications (of the previous layer)

to which it is linked.

When more than one strategy is related to a specification in a previous layer, then either

the strategies are exclusive alternatives and a choice will have to be made in later phases

of development to select and refine a single strategy, or the strategies complement each

other and all are needed to attain sufficient confidence that the risks are acceptable.

These two situations are distinguished by annotating the edges with a "EB" in the

exclusive case, and a "0" in the complementary case. The general structure of an

example SSG is given in figure 5.2.

Tl T2

AA
ssr1 sT,2 ~ SSj,2,l SSj,2,2

RSSfl,l,1 RTL21

SCSi,l,l,l,l SCSi,l,2,l,l

Hlq{j)-l

SCi,q(i)-l

Hrq{j)

T{j)

A

ACp

RSS' (") 1 1 RSSi,q(i),1,2

A
SCSi,q(i),l,l,l SCSi,q(i),l,l,2

Figure 5.2 Example 9f a safety specification graph.

5.5.3. Role of SSG

The structured record of the safety specifications embodied in an SSG will provide

assistance for subsequent certification and maintenance activities. The SSG can also

assist in a number of specific tasks.

107

• Qualitative Analysis. Support is provided by establishing the relationships (which

follow from the edges of the component graphs) that must be confirmed to ensure

that the specifications maintain safe behaviour.

• Modification. A key concern when strategies are modified is traceability, that is the

ability to trace back from a specification to its origins and to trace forwards to the

specifications which are derived from it. Support for traceability is provided by

constructing reach ability matrices and adjacency matrices of an SSG, determining

respectively the set of safety specifications reachable and adjacent to a given safety

specification. This enables the localization of the side-effects of a modification

and the identification of relationships that must be reconfirmed, thereby increasing

the assurance that when changes are necessary they will be complete and

consistent.

• Analysis of Assumptions. The structure embodied in the SSG can be used to record

the dependencies of the relationships on the assumptions over the domains. This

record of dependencies can also be used to trace the consequences of establishing

specifications based upon discredited assumptions (i.e. those to which subsequent

analysis associates low confidence), such as the need to reconfirm conditions or

re-evaluate identified options.

5.6. Quality Analysis of Safety Specifications

One important aspect of determining the quality of the specifications for critical

real -time systems is the risk analysis of the safety specifications; this aims to determine

if the contribution of the software to the overall system risk is acceptable. In order to

achieve this aim, a bridge has to be established between the risk analysis of the system

and the software. In the context of the methodology described here, this bridge is

established through the SSG by formal links between the system requirements and the

software requirements. To perform the risk analysis, those circumstances which can

violate a specification, and thereby cause the system to enter into a hazard state, have

108

to be identified and their probability of occurring calculated. Once the risk is quantified

we are able to judge whether the risk associated with a specification is acceptable or not

(risk assessment). If not, the specification has to be modified or combined with other

specifications in order to reduce the risk. As a result, we obtain a more robust safety

specification, a specification that can be violated only within an acceptable level of risk.

It should be noted that the risk analysis presented in this section does not take into

account the consequences of an accident, and thus all accidents are considered to be of

equal severity.

During the operation of the system, the occurrence of an initiating event (an event which

can lead the system into a hazard state) of an accident sequence !MoD 91/ distinguishes

two kinds of system state: safe and unsafe states. The definition of an initiating event

ensures that a hazard cannot occur subsequent to a safe state if no initiating event occurs.

In terms of the requirements specifications, the concept of an initiating event thus refers

to those circumstances which can initiate and lead to the violation of a safety

specification.

The quality analysis of the requirements, in each domain of analysis, is performed from

two different perspectives: qualitative and quantitative. The purpose of the qualitative

analysis is to identify those circumstances which can lead to a specification being

violated, and analyse the impact of these violations upon the safety of the system. Such

circumstances must entail either the violation of the assumptions upon which a

specification is based or the violation of safe states which are related to a particular

specification. The quantitative analysis complements the qualitative analysis by

attaching occurrence probabilities to these circumstances. In order to ensure that

essential system behaviour is not precluded, the restrictions that a safety specification

will impose on the mission of the system must also be considered.

109

5.6.1. Qualitative Risk Analysis

At each level of abstraction, analysis is conducted over safety specifications (descriptions

of safe behaviour at the level) and assumptions (properties assumed at the level). In the

proposed approach the qualitative analysis is conducted in two stages; firstly we perform

a preliminary analysis based on verification and validation, and secondly we conduct a

vulnerability analysis of the safety specifications.

5.6.1.1. Preliminary Analysis

Preliminary analysis aims to confirm the quality of the safety specifications by the

verification and validation of the SSG. Verification is the process of checking that the

safety specifications are internally consistent (i.e. the requirements captured by the

specifications are not contradictory), and that they conform to the specifications

stipulated at the previous layer. Validation is the process of checking that a safety

specification accurately reflects the requirements and constraints imposed on the system

by the user, or some other authority, and does not conflict with the mission requirements.

Thus, the use of these terms conforms to the increasingly common interpretation:

verification refers to checking that "the system is built right" whereas validation refers

to checking that "the right system has been built".

A result of the preliminary analysis is that consistency conditions and safety conditions

are confirmed. The consistency conditions are those conditions that must be established

at each layer of the SSG to confirm that the safety specifications (which relate to the

system in a particular mode) are not in conflict with each other (horizontal checks). The

safety conditions are those conditions that must be established between different layers

of the SSG to confirm that safety (absence of hazards) is maintained down the SSG

(vertical checks); the actual relationships that need to be confirmed, to ensure

compliance between the layers, are determined from the edges of the SSG.

At each layer, any assumptions required to confirm the relationships depicted by the

edges of the SSG are recorded. As an example of the safety conditions that must be

110

verified, we examine the edge (from the SSG in figure 5.2) that connects the safety

constraint SCi,l to the safety strategy SSi,!,l' Let us suppose that the strategy is based

upon assumption A (a property of the physical process); the relationship to be confirmed

is then:

A A SSi 1 1 ~ SCi 1 , , , /1

A result of the preliminary analysis is that the circumstances under which safe behaviour

is maintained are clearly scoped and organised to reflect their contribution to safe

behaviour at the different levels of abstraction. This activity ensures that the knowledge

gained during the development and validation/verification of the safety specifications

can be applied effectively during the subsequent risk analysis.

5.6.1.2. Vulnerability Analysis

After performing the preliminary analysis of the safety specifications, the second aspect

of the qualitative risk analysis consists of performing a vulnerability analysis of the

specifications; this probes each safety specification, and its associated assumptions, to

identify any circumstances under which the specification is unable to maintain safe

behaviour, i.e. the violation of that specification. Once these circumstances are

identified, the safety specifications can be modified to become more robust against

possible violations. An initial step in the vulnerability analysis is to negate the

relationships obtained during the preliminary analysis and to identify any system states

which can lead to occurrence of these circumstances.

For the relationship /1, the logical assertion is negated and those plant states (PS) which

can lead to the violation of SCi,! are identified:

.., SCi,! ~ (.., SSi,l,l A PS) V (.., A A PS) 12

For this relationship, which is associated with the plant level, the subsequent

vulnerability analysis of the safety strategy SSi,l,l will identify those conditions that can

lead to the violation of SQ,l.

111

Although logical formulae are useful in obtaining a high -level view of the relationship

between the specifications and assumptions, such formulae provide limited support for

a failure analysis. A suitable representation, for such an analysis, is one which supports

the identification of possible failure behaviours that can lead to the identified hazardous

states. In this thesis, to perform the vulnerability analysis ofthe safety specifications, we

employ fault tree analysis (FrA) Nesely 81/ which has been used extensively in the

analysis of system safety and more recently in the analysis of software safety ILeveson 91/.

A key feature of fault tree analysis which makes it suitable is that the analysis is restricted

to the identification of system components and conditions that lead to one particular

undesired system state.

To construct a fault tree for the relationshipj2, the initial step is to identify the undesired

state, in this case the negation of the safety constraint SCi,l, and then to determine the

set of possible causes which can lead to the undesired state (refer to figure 5.3). For the

logical formulaj2, we identify the violation of the assumption and the violation of the

safety strategy SSi,l,l. The latter has to be further refined in order to identify its primary

events.

Figure 5.3. Fault tree for relationship f2.

Qualitative risk analysis provides a basis for obtaining more robust safety specifications

which will lead to a risk abatement of the overall system. In the approach adopted, the

112

analysis is performed by employing both formal analysis and fault tree analysis in order

to determine the weaknesses of the safety specifications. Once these weaknesses are

identified the safety specifications can be modified to incorporate mechanisms which

aim to reduce their vulnerability.

5.6.2. Quantitative Risk Analysis

In this section we discuss how a quantitative analysis can complement the qualitative

analysis by introducing a measurement of confidence in the quality of the safety

specifications. While the latter analysis identifies circumstances which can lead to the

violation of the specifications, the former associates probabilities to these

circumstances.

Although the qualitative approach strives to achieve total assurance for the safety

specifications, there are three basic limitations which indicate that this aim may not be

realised. A first limitation stems from the process of capturing user requirements: some

faults introduced during the requirements stage may not be removed during the

verification process, nor can it be guaranteed that all such faults will be removed during

validation. A second limitation arises from observing past experience in the utilization

of formal techniques, which shows that a formal verification may itself contain faults

/Miller 90/. The third limitation is related to the confidence that can be placed on the

assumptions upon which a specification is based. From these limitations we infer that

even after performing the qualitative analysis we are still faced with uncertainties

concerning the quality of the safety specifications, and hence it is still necessary to

quantify these uncertainties in order to obtain a measurement of confidence in the

quality of the safety specifications. In other words, the aim is to obtain an early prediction

of the contribution of the software to the risk of the system.

The quantitative approach proposed here will not address the first two limitations

mentioned above, which have been treated elsewhere /Ramamoorthy 85/. Instead, our

concern is with the assumptions that are usually made in obtaining a mathematical model

113

of the real world. For example, for applications such as process control systems, if an

assumption about the behaviour of the physical process is violated, the probability of a

hazard occurring could very easily increase when the actual behaviour of the physical

process starts to deviate from the behaviour expected on the basis of the defective

assumption.

In this thesis, in order to perform the quantitative evaluation of the safety specifications

we employ fault tree analysis techniques Nesely 81/. Although fault tree analysis is

mainly considered to be a technique for qualitative analysis, it is nevertheless often used

for quantitative evaluations. In the qualitative approach, an undesired state (hazard

state) is specified, and the system is analysed in terms of its requirements and its

environment in order to find all possible ways that the undesired state can be reached.

The quantitative approach calculates the probability that the system will enter an

undesired state based on probabilistic information about the occurrence of primary

events (events that have not been further refined, and for which probabilities have to be

supplied). Once the minimal cut sets (the smallest combination of primary events which,

if they all occur, will lead to an undesired state) are obtained the quantification of the

fault tree is straightforward.

Fault tree analysis techniques have been employed in the various development stages of

safety-critical software /Leveson 91b/. In this work fault tree analysis techniques were

used in the quantitative evaluation of the safety specifications, however, other

alternative methods, such as Markov models and stochastic Petri nets, could have been

used. Another remark concerns the fact that, the type of quantitative evaluation

performed on the safety specifications differs from other evaluations more usually

performed on software, such as the use of reliability growth models to predict the

reliability of software /Laprie 91/, in the sense that, our basic intention is to obtain a

higher confidence in the quality of the safety specifications before proceeding to other

phases of software development. However, only recently has some work been performed

114

in estimating the reliability of software at the early stages of the development IWohlin

92/.

To associate occurrence probabilities to those circumstances which can lead to the

violation of the specification, such as plant states and violation of assumptions, might not

be a difficult task. On the other hand, associating occurrence probabilities to the

violation of certain conditions which depend on a software implementation is more

problematic because during the requirements phase of software development sufficient

design and implementation information is not yet available. Instead of estimating the

probability of a condition to be violated, target probabilities demanded from the higher

level safety specifications such as hazards, can be used. However, once a specification

is sufficiently detailed, currently available techniques which attempt to make early

predictions of the software reliability can be used, such as: metrics /Ramamoorthy 85/,

product-in-a-process ILaprie 92/, and execution of the specifications IWohlin 92/.

In the following we describe an approach to conduct the qualitative analysis of the safety

specifications which matches the framework for requirements analysis. During the first

phase, the Safety Plant Analysis, the assumptions associated with the safety strategies are

identified and quantified in terms of the probability of being violated. At this level of

abstraction, these assumptions, which are the physical laws and the rules of operation,

are violated when they cease to represent the actual behaviour of the plant. In the second

phase, the Safety Plant Interface Analysis, the quantitative approach to assurance is

performed in terms of the properties of sensors and actuators, such as the uncertainties

in value and domain, and their probability of failure. In the third phase, the Safety

Controller Analysis is performed in terms of the properties of the components of the

system, and their probability of failure.

5.6.3. Risk Assessment

Another stage of the quality (risk) analysis is to perform the risk assessment of the safety

specifications. This is ajudgement based on the estimated risk which provides guidance

115

for high level decisions, usually associated with the process of requirements analysis. The

results obtained from the quantitative analysis should be considered as a relative

measurement of how effective a given strategy is in reducing the risk of a hazard,

compared to the results obtained for alternative strategies. Hence it is most useful in

determining which strategy or combination of strategies is most suitable for the risks

involved (the choice of a strategy might also be influenced by constraints imposed by the

implementation, e.g. availability of sensors and actuators with the required properties).

Also, ifthe utilization of more than one strategy is required, this preliminary risk analysis

facilitates the search for a suitable combination of the available strategies in order to

avoid common mode failures.

By performing a quantitative assessment of the requirements specifications, we are able

to analyse the feasibility of further development of the software. The feasibility analysis

of a software specification represents the study performed to determine if the production

of software that implements the software specification should proceed, or not. The

primary concerns are mainly in terms of economic factors, such as whether the

development costs will be recuperated from the service provided, and do the benefits

outweigh the risks, as well as technical factors, such as system complexity and system

novelty. The feasibility analysis of the software specification is based on:

a. the level of confidence, or the evaluation of effectiveness /Leveson 90/,

of the formal and informal analysis of the safety requirements;

b. a prediction of the achievable and certifiable system reliability.

As far as the first issue is concerned, little work has been done until now; the challenge

here is to find metrics which would allow a probabilistic measure to be derived from the

approaches employed in the qualitative assessment of the safety requirements, so that

we can quantify the level of confidence that can be placed on the qualitative assessment.

The second issue is closely related to the application of software reliability models to the

phase of requirement analysis; however, two major concerns may be raised /Musa 90/:

116

a. how accurate are the reliability predictions made at this time?

b. is the effort of modelling the reliability at this stage worth it?

For the first concern, new approaches have been proposed /Laprie 92/ which could allow

the evaluation of software to levels above what can be attained using current methods;

these new approaches include product-in-a-process assessment which incorporates

information concerning the development process, and also utilises historical

information from previous products when there is a gradual evolution in the products.

For the second concern, a significant benefit obtained by performing a reliability

assessment at the requirements stage is that it provides an early prediction of the

attainable reliability for the system, which can be used as an early warning mechanism

for the detection of difficult (and high risk) systems. The high cost of critical real-time

systems and the risk associated with the production of the software for such systems

provide support for the suggested use of reliability assessment at the requirements stage.

5.7. Mission and Safety Analysis

The primary aim of the quality analysis presented in this thesis is to reduce the system

risk. However, it is usually impossible to maintain a complete dichotomy between the

mission and safety aspects, and it would be futile to impose safety requirements which

were so stringent that the system could not satisfy its mission. To complement the risk

analysis, the impact of the safety specifications on the mission of the system must also

be considered. Such an analysis involves relating the different safety specifications to the

mission requirements that can be affected by them. If analysis of the mission

requirements follows the framework described in section 5.3, leading to the construction

of a Missioll Specification Graph (MSG), a comparison between the safety specifications

and mission specifications (requirements specifications for the mission) is made

possible. During the development of a robust safety specification it would be possible to

identify the mission specifications that may be influenced by that specification by

inspecting the variables that it constraints and relating these variables to the mission

117

specifications at the same level of abstraction. Once the relevant mission specifications

have been identified an informal analysis of the restrictions that the safety specification

imposes on the mission can be conducted. An example of such an analysis is presented

elsewhere Ide Lemos 92b/.

5.8. Concluding Remarks

In conclusion, the aim of this chapter was to present a methodology for the requirements

analysis of critical real-time systems, based on the application of formal techniques.

The framework of the methodology is divided into domains of analysis, where for each

domain we identify the activities to be performed. The general approach adopted for the

methodology attempts to follow closely the usual practices in system engineering,

specifically for process control systems. For each domain the analysis of different views

of the requirements can be performed independently, by applying the most appropriate

method.

Also in this chapter we have described the means which allow us to assess, qualitatively

and quantitatively, the quality of the safety specifications. The qualitative analysis aims

to verify and validate the safety specifications, and the quantitative evaluation aims to

measure the probability of a hazard occurring due to the impact of violations of the

assumptions, and the failure rates of sensors and actuators and controller components.

The adoption of a framework for requirements analysis and a hierarchical structure for

the safety specifications facilitates this quality assessment, by enabling the analysis to be

performed in clearly defined stages. The approach to the quality assessment of safety

specifications presented in this chapter either provides evidence that the safety

specifications cannot achieve the quality that is required, or increases confidence that

the required quality has been attained.

The general methodology has been shown to be feasible and practical by applying it to

a set of case studies, such as a train set Ide Lemos 92b/, a chemical batch processing plant

118

/Anderson 93/, and a nuclear power reactor /Saeed 93/. In the next chapter the case study

of the train set will be discussed in detail.

119

6.1. Introduction

Chapter 6

Case Study: lrain Set Example

In this chapter, the aim is to exemplify some of the concepts of the methodology for the

requirements analysis of critical real-time systems, by means of a case study. The

adopted case study is that of a train set crossing, which raises safety-critical issues that

are similar to those found at the traditional level crossing (i.e. road - rail) /Gorski 86,

Leveson 87/. The main reason for choosing this case study is the availability in the

Department of Computing Science of a large train set /Conner 90/ which permits the

implementation of the requirements specifications produced from the analysis

conducted. Another obvious benefit from using a train set instead of a real railway system

is that safety specifications can be analysed and implemented without endangering the

travelling public. Apart from the train set crossing, the methodology has also been

applied to the requirements analysis of other case studies. In / Anderson 93/ we presented

two case studies which showed how the methodology can applied to hybrid systems: the

theoretical "cat and mouse" example /Maler 92/, and a chemical batch processing plant

/Saeed 90/. In another paper, we discuss the usefulness of applying formal methods in the

requirements analysis of a nuclear reactor /Saeed 93/.

In this case study we intend to illustrate the following features of the methodology. In the

next four sections, we present, in terms of the train set crossing, the activities that have

to be performed in the different phases of the framework, together with the qualitative

analysis; whenever temporal analysis is required we employed the concepts of the E/A

model. In section 6, the requirements analysis is summed up by presenting the safety

specification hierarchy of the case study. In section 7, the quantitative assessment of the

safety strategy of the crossing section is presented. Finally, in section 8, we present

concluding remarks.

120

6.2. Conceptual Analysis

The physical process of the example case study consists of two track circuits Cp and Cs,

and two types of trains - primary (Trp) and secondary (Trs). The circuits are divided into

sections (numbered in a clockwise direction) and there are two separate crossing

sections CC(c,a) and CC(c,b) at which the circuits intersect (i.e. a section that is part of

both circuits). Trains of type Trp travel around circuit Cp and trains of type Trs travel

around circuit Cs. Both types of train travel in one direction (clockwise) only, hence

trains cannot reverse around the circuits. The longest train is shorter than the smallest

section. A crossing section is that part of the track which consists of the sections (one from

each circuit) at which the two circuits intersect. The circuits Cp, Cs and the crossing

sections CC(c,a) and CC(c,b) are illustrated in figure 6.1.

CC(C,b)~ Cs

CP/~ "
((l'
\,~J

CC(c,a)

Figure 6.1. The train set circuits and crossing section.

As far as the safety requirements are concerned, several accidents are possible with this

system, but we only consider the following two accidents:

a. trains of the same type collide;

b. trains of different type collide.

The mission requirements for the train set have to ensure that all trains complete their

journeys, while allowing all (legitimate) concurrent movements of the trains. This

mission is in fact a special case of the Merlin - Randell problem /Merlin 78/, which is

121

concerned with train journeys on arbitrary tracks. This problem has been heavily studied,

and involves a complex analysis of synchronization strategies /Koutny 86/. A special case

of synchronization is that the primary trains must always take priority over the secondary

trains at the crossing sections - that is, a primary train must not be made to wait for a

secondary train (c.f. priority of trains over road vehicles at a level crossing). Although

in this work we are primarily concerned with the analysis of the safety requirements, the

above priority mission requirement for priority of trains will be considered in detail in

order to show how the analysis of timeliness requirements is performed in the proposed

framework.

For the train set, one of the main advantages in separating the mission requirements

from the safety requirements is that synchronization issues can be ignored in the analysis

of the safety controller. As a result issues involving problems of optimal use of the

sections of the tracks, routes of the trains, and to start moving stopped trains can be

ignored during the analysis of the safety requirements. By focusing on the safety issues

only, a thorough verification of the safety controller specification becomes practical.

However, as will be shown later, the mission requirements must still be considered in

order to ensure that any safety specifications do not lead to inconsistencies with the

mission requirements.

6.3. Safety Plant Analysis

The Safety Plant Analysis is concerned with the identification of hazards, safety

constraints, and the definition of safety strategies. We consider each potential disaster

separately.

General Model

The type of circuit is denoted by c E L, L = {p, s}, the crossing section by r E R, R = {a,

b}, the trains which run on Cc are denoted by x,y E Trc = {I, ... ,Ntc} (Ntc is the number

oftrains in a circuit), the sections of Cc are denoted by i;j, k, m, II ESc, Sc = {a, ... ,Nsc}

(Nsc is the number of sections in a circuit), and the velocity of a train is denoted by u, v

122

E V, v = {u E RIO < u < Vm} (Vm is the maximum velocity of a train). Addition ffi

and subtraction e on circuit section numbers are performed modulo the number of

sections of the circuit. The danger zone on circuit Ce for CC(e,r) is defined as: DZ(e,r)

= {CC(e,r) , CC(e,r)ffi 1}. The danger zones DZ(p,r) and DZ(s,r) for a crossing section

CC(e,r) are illustrated in figure 6.1. We define two functions dmax(e,ij) and dmin(e,ij)

which give the maximum and minimum distance that a train in section i must travel to

enter sectionj on circuit Ce. That is,dmax(e,ij) gives the distance to sectionjwhen a train

is at the start of section i, and dmin(e,ij) the distance when a train is at the end of section

i. The behaviour of the system is captured by three state variables Ptrain, Rtrain and

Vtrain (a continuous variable) described below.

No. Name Range Comments

Pl Ptrain SpN1PXSsN1S The position of each train expressed as a section number,
that is, the section containing the front of a train.

P2 Rtrain RpNrp X RsNrs The reservation sets of the trains, where Rc = 'P(Sc).

P3 Vtraill 0 Nrp+Nrs) The velocity of the trains.

The behaviour of trains is captured by the state variable Ptrain(e.,x) which denotes the

position of train x on circuit Ce. In the general model of the train set it is assumed that

the position of the front of the trains is known at any time point during the system lifetime

(captured by Ptrain). Hence, at the start of the system lifetime the fronts of the trains are

positioned in specified known sections.

At this stage we introduce the notion of a "reserved section", which is a section that is

reserved by a train, implying that other trains cannot either enter or reserve it. The notion

of reserved sections of a train is captured by the state variable Rtrain(e.,x) which denotes

the reservation set of train x on circuit Ce. The velocity of a train is captured by the state

variable Vtrain(e.,x) which denotes the velocity of train x on circuit Ce. rH is the set of

all functions H: T- SpNtp X SsNts X RpNtp x RsNts x 0 Ntp+Nts); these functions define an

history, that is a mapping from each time point in the system lifetime to a system state.

A history from rH satisfies a safety specification, if and only if the system (respectively

123

history) predicates that describe what are invariant (respectively history) relations for

that history.

For the train set we identify two rules of operation:

a. trains oftype Trp travel around circuit Cp and trains of type Trs travel around circuit Cs;

b. both types of trains travel in one direction (clockwise) and only advance one section at

a time.

As an example, we present the formalization of rule of operation b, as a history predicate.

For any interval [To, T1] if the position of a train x at time point T1 does not equal the

position of the train at time point To there must be a time point t in [To, T1] such that the

position of train x at t is equal to the section that immediately follows the position at time

point To.

Hr1. "Ie E L: "Ix E Tre:[Ptrain(e,x)(To) ;c Ptrain (e,x) (T1) ~

3t E [To, T1]: Ptrain(e,x)(t) = Ptrain(e,x)(To)E91].

The following assumptions are made regarding the behaviour of the trains on the

circuits:

a. a train will stop within a section (that is when a train is requested to stop at the

beginning of a section, the train stops before it reaches the end of the section);

b. the longest train is shorter than the smallest section;

c. the average velocity of a moving trainx that travels through a section on circuit Ce has a

lower bound of Vmin(e,x) and an upper bound of Vmax(e,x).

The hazardous states for the collision of trains of the same type are identified by

considering the relative positions of the trains on a circuit; a collision can only occur if

some part of two trains are in the same section. Hence, since the longest train is smaller

than the smallest section, a state is deemed to be hazardous if the front of one train is

in the same, or adjacent, section as the front of another train.

124

The hazardous states for the collision of trains of different type are identified by

considering the relative positions of the primary and secondary trains at a crossing

section. A collision involving a primary train and a secondary train can occur only when

both trains are in the same crossing section. Since the length of a train is less than a

section, a train can only be in a crossing section if the front of that train is in the crossing

section or the section that follows the crossing section. To express the hazard associated

with a crossing section, for each circuit we introduce the notion of danger zones (one for

each crossing section) as the set of sections in which the front of a train can be while that

train is in a crossing section. We conclude that the hazardous states for the collision of

trains of different type are those in which the front of a primary train and the front of a

secondary train are in the danger zones of the same crossing section. The danger zones

DZ(p,r) and DZ(s,r) of a crossing section CC(e,r) are illustrated in figure 6.1.

6.3.1. Collision of Trains of Same lYpe

Circuit Safety Constraint

The hazardous states (HZI,I) for the collision of trains of the same type on a circuit Ce

can be expressed, in the general model, by the system predicate:

'tic E L: 3x,y E Trc: [x 7:- y 1\ Ptrain(c.;x) E {Ptrain(cJl)81,Ptrain(cJl)}].

Thus we deduce that a safety constraint of the form "for any two trains there must be at

least one section between the sections containing the fronts of the trains" will, if

maintained on circuit Ce, prevent the occurrence of these hazardous states on Ce. This

safety constraint SCI,I is expressed in terms of a system predicate:

'tic E L: 'tIx,y E Tre: [x 7:- y ~

Ptrain(c.;x) $. {Ptrain(eJl)81, Ptrain(c,y), Ptrain(cJl)E91}].

If each train has to reserve at most three sections, as a consequence we can deduce a limit

on the number of trains in terms of the sections: Nse > 3Trc (for each circuit).

125

Circuit Safety Strategy

Once the safety constraint SCI, 1 is specified, we have to devise a safety strategy which

maintains SC1,1. The safety strategy SSl,l,l which we propose for a circuit Cc is based on

a reservation scheme, and can be formalized as two system predicates:

ssa. for any train, the current section (i.e. the position of the front of the train) and the

section behind the current section must always be reserved for that train;

Vc E L: Vx E Trc: [{Ptrain(c,x)81, Ptrain(c,x)} C Rtrain(c,x)]; and

ssb. no section can be reserved by more than one train.

Vc E L: Vx,y E Tre: [x ~ y => Rtrain(c,x) n Rtrain(c;y) = 0].

We say that a history H from rH satisfies safety strategy SSl,l,l if and only if rules ssa and

ssb are invariant relations (i.e. they are satisfied at all time points in T) for that history.

Lemma 6.1.

A history H that satisfies the safety strategy SSl,1,l must satisfy safety constraint SC1,1.

Proof. (By contradiction.)

Assume 3H E rH: H sat SSl,1,1 1\ 3t E T. [H sat (Ve E L: 3x,y E Tre:

x ~ y 1\ Ptrain(e,x) E {Ptrain(e;y) 8 1, Ptraill(c;y), Ptrain(c;y)E9l})@t].

Then from rule ssa of SSl 11: , ,

H sat ({Ptrain(c,x)81, Ptrain(c,x)} ~ Rtrain(c,x) 1\

{Ptrain(c,y)81, Ptrain(c;y)} ~ Rtrain(c;y))@t,

hence H sat (Rtraill(c,x) n Rtrain(c;y) ~ 0)@t. But this contradicts rule ssb of SSl,l,l'

Therefore VH E rH: H sat SSl,1,1 => H sat SC1,1·

Corollary 6.2.

A history H that satisfies the safety strategy SSl,l,l for both circuits must satisfy the safety

constraints SCl,1 of the respective circuits.

126

Proof. Immediately from lemma 6.1.

Circuit Safety Strategy and Mission Requirements

The aim of the framework is to restrict the requirements analysis of safety-critical

software to the safety issues of the system. However, it is usually impossible to maintain

a complete dichotomy between the mission and safety requirements, because it would

be futile to impose safety requirements which were so stringent that the system could not

satisfy its mission. Here we consider the impact of safety strategy SSl,l,l on the mission

requirements ofthe train set. More specifically, our aim is to check that SS111 does not , ,

lead to the definition of an over restrictive safety controller strategy; the safety controller

should not impose restrictions on the movement of trains in addition to those imposed

by the mission controller (except when the system enters an unsafe state). The

restrictions imposed on the movement of trains can be stated in terms of the reserved

sections; the upper bound in the number of sections that have to be reserved by the safety

controller for a train should be less than the lower bound in the number of sections that

have to be reserved by the mission controller.

To determine the upper bound of the reservation set of the safety controller we consider

how the reservation set of a trainx is modified as the train travels around the circuit Ce.

Firstly, while a train is travelling in a section, the current section and the previous section

are reserved. Secondly, we make the observation that before trainx enters a new section

it must reserve that section, i.e. the sections Ptrain(c.,x) 81, Ptrain(c.,x) and Ptrain(c.,x) EB 1

must be reserved. Thirdly, immediately after the front of trainx enters a new section the

position of the train is updated, hence sections Ptrain(c.,x) 82, Ptrain(c.,x)81 and

Ptrain(c.,x) are reserved. Therefore, in order for the safety controller not to affect the

mission controller, an upper bound for the reservation set is: {Ptrain(c.,x) 82,

Ptrain(e;x) 8 1, Ptrain(c,x), Ptrain(c;x)EB I}.

From the above analysis we can conclude that the safety strategy is not too restrictive on

the movement oftrains if the lower bound of the reservation set of the mission controller,

127

is at least {Ptrain(c.,x)82, Ptrain(c.,x)81, Ptrain(c.,x), Ptrain(c.,x)E9l}. If this condition

could not be satisfied then the mission requirements would have to be modified or a new

safety strategy devised.

Here we construct a modified version of SS1,1,1, denoted by SSI,I,1 *, that includes the

upper bound on the size of the reservation set; the two rules for SSI,I,1 * are given below:

ssa*. 'tic E L: 'tIx E Trc: [{Ptrain(e.,x) 8 1, Ptrain(e.,x)} ~ Rtrain(e.,x) 1\

Rtrain(e.,x) c {Ptrain(e.,x) 82, Pf;-ain(e.,x) 8 1, Ptrain(e.,x), Ptrain(e.,x)E9l}];

ssb*. 'tie E L: 'tIx,y E Tre: [x ~ y =:.Rtrain(e.,x) n Rtrain(eJl) = 0].

Lemma 6.3.

A history that satisfies the safety strategy SSI,I,1 * must satisfy safety constraint SCl,I'

Proof. Follows directly from lemma 6.1, and the fact that SSI,I,1 is a consequent of

SSI,I,1 *.

Corollary 6.4.

A history that satisfies the safety strategy SSI,I,1 * for both circuits must satisfy safety

constraints SCl,l for the respective circuits.

Proof. Immediately from lemma 6.3.

6.3.2. Collision of Trains of Different 1Ype

The following analysis can be applied to both crossing sections provided they are

sufficiently far apart. That is, on both circuits there must be at least one section between

the two crossing sections (which will ensure that the danger zones do not overlap).

Crossing Section Safety Constraint

Let CC(p,r) (resp. CC(s,r)) denote the number ofthe section of Cp (resp. Cs) that is part

of CC(e,r). The danger zone for CC(e,r) is defined as: DZ(e,r) = {CC(c,r), CC(e,r)E9l}.

128

The hazardous states HZ2,1 for the crossing section CC(e,r) says that some part of a

primary or secondary train are in the danger zoneDZ(e,r), which can be expressed by the

system predicate:

\;Ie E L: 3x E Tre: [Ptraill(e,x) E DZ(e,r)].

Thus we deduce that a safety constraint of the form "either the front of no primary train

is in the danger zone DZ(p,r) or the front of no secondary train is in the danger zone

DZ(s,r)" will, if maintained, prevent the occurrence of any hazardous state. This safety

constraint SC2,1 can be expressed in terms of a system predicate:

3e E L: \;Ix E Tre: [Ptraill(e,x) $: DZ(e,r)].

Assuming that we wish to have at least one train on each circuit we can deduce that Nsp

2': 3 /\ Nss :2: 3.

Crossing Section Safety Strategy

The safety strategy SS2,1,1 we propose for the crossing sections is based on a modification

of the reservation scheme. The two basic rules are formalized as two system predicates:

ssa. if any train x on circuit e is in a danger zone then the crossing section contained within

that danger zone is reserved for that train;

\;Ie E L: \;Ix E Tre: [Ptrain(e,x) E DZ(e,r) ~ CC(e,r) E Rtrain(e,x)];

ssb. section CC(p,r) and section CC(s,r) cannot both be reserved.

3e E L: [\;Ix E Trc: CC(e,r) $: Rtrain(e,x)].

We will say that a history H from rH satisfies this safety strategy if and only if system

predicates ssa and ssb are invariant relations for that history.

Lemma 6.5.

A history that satisfies the safety strategy SS2,1,1 for the crossing section must satisfy

safety constraint SC2,l.

129

Proof. (By contradiction.)

Assume 3H E rH: H sat SS2,l,l /\ 3t E T.

[H sat (3x E Trp:Ptrain(p,x) E DZ(p,r) /\ 3y E Trs: Ptrain(s,y) E DZ(s,r))@t].

Then from rule ssa of SS2 1 1: , ,

H sat (CC(P,r) E Rtrain(p,x) /\ CC(s,r) E Rtrain(s,y»@t.

But this contradicts rulessb of SS2,1,1. Therefore VH E rH: H sat SS2,1,1 => H sat SC2,1.

Corollary 6.6.

A history that satisfies the safety strategy SS2,1,1 for both crossing sections must satisfy

safety constraint SC2,1 for each crossing section.

Proof. Immediately from lemma 6.5.

Combination of Safety Strategies

In terms of the two circuits and the two crossing sections the safety controller must

implement the safety strategies for circuits Cp and Cs and for the crossing sections

CC(c,a) and CC(c,b). Here we analyse the relationship between these safety strategies

and the restrictions imposed on the size of the circuits and the number of trains.

By inspecting the rules of the safety strategies we can deduce that the following three

rules are equivalent to the conjunction of the safety strategies for the two circuits and the

two crossing sections:

a. Vc E L: Vx E Trc: [{Ptrain(c,x) 8 1, Ptraill(c,x)} ~ Rtrain(c,x) /\

Rtrain(c,x) ~ {Ptrain(c,x) 82, Ptrain(c,x)81, Ptrain(c,x), Ptrain(c,x)EBl}];

b. Vc E L: Vx,y E Trc: [x ¢ y => Rtraill(c,x) n Rtrain(c,y) = 0];

c. Vr E R: 3c E L: [Vx E Trc: CC(c,r) f/:: Rtrain(c,x)].

Rule a is concerned with the reservation of sections (i.e. maintaining the reservation sets)

and rules band c impose mutual exclusion conditions over the reservation sets. We must

130

confirm that the above three rules are not in conflict. The set of states which satisfy the

three rules are characterized by the following conditions over the relative position of the

trains:

\;fc E L: \;fx,y E Trc: [Ptrain(c,x) E {Ptrain(c,y) 8 1, Ptrain(c,y)} A

\;fr E R: 3c E L: \;fx E Trc: Ptrain(c,x) ft. DZ(c,r)].

These states are those that satisfy the circuit and crossing section safety constraints,

hence the restrictions on the circuit size are obtained by examining the restrictions for

the safety constraints: Nsp ;;::: max(2Trp, 3) A Nss ;;::: max(2Trs, 3).

The above restrictions are minimal constraints on the circuit size. For practical purposes,

issues others than the satisfaction ofthe safety strategies must be considered, such as the

ability of the safety controller to implement the safety strategies in the identified states

and properties of the physical process. For example, the conditions given above do not

preclude the possibility of a deadlock in the physical process. To prevent this situation,

the conditions on the circuit sizes should be strengthened to strict inequalities.

Inspection of the three rules above also gives insight into the implementation of the

safety strategies. More specifically, the reservation sets must be maintained for each

circuit, and mutual exclusion must be achieved for reserved sections for the sections of

each circuit and the sections CC(p,r) and CC(s,r) (i.e. the sections that form CC(e,r».

Crossing Section Safety Strategy and Mission Requirements

Although safety strategy SS2,1,1 is sufficient to prevent collisions involving primary and

secondary trains, it takes no account of the mission requirement that trains on the

primary circuit have priority over secondary trains; there is no mechanism which

establishes that primary trains should pass first. The priority requirement between the

primary and secondary trains is similar to the requirement of maintaining a safe distance

(minimal separation) between trains where the notion of sections of constant length is

inappropriate. A typical example is the control of underground trains where the

utilization of tracks must be optimized. The approach taken to satisfy the priority

131

requirement will be based on a comparison of the relative velocities of the primary and

secondary trains as they approach and cross the crossing section. In the following we

consider how the E/ A model can be used to analyse this priority requirement. To perform

the requirements analysis the physical laws involving the velocity of the trains must be

captured in terms of the THL model.

Physical Laws

In the following we present the laws (as history predicates) which capture the relevant

relationships involving the velocity of the trains. Hr1 captures the relationship between

intervals, the velocity and position of trains. Hr2 captures the relationship between the

velocity of a train and the functions Vmax(c,x) and Vmin(c,x) (both of which are

non -zero) that give the maximum and minimum average velocity of train x on circuit

Cc.

Hr1 - For any train, if during any interval [To, T1] the train travels more than the

maximum distance between the section it occupies at To and section i, then the train must

occupy section i at some time point in [To, T1]; and if the train travels less than the

minimum distance between the section it occupies at To and section i, then the train is

never in section i during [To, T1]'

Vc E L: Vx E Trc: Vi ESc:

Tl

f Vtrain(c,x)(t)dt ~ dmax(c,Ptrain(c,x)(To),i) ~
To

3t E [To, T1]: Ptrain(c,x)(t) = i /\

Tl

f Vtrain(c,x)(t)dt < dmin(c,Ptrain(c,x)(To),i) ~
TO

Vt E [To, T1]: Ptrain(c,x)(t) ;r:i.

132

Hr2 - If any train x on circuit Ce travels a distance of M (the length of the smallest

section) during an interval [To, T1] without stopping then the average velocity

(U/(T1- To» during [To, T1] is bounded by the functions Vrnax(e,x) and Vrnin(e,x).

Tl

Ve E L: Vx E Tre: J Vtrain(e,x)(t)dt = M 1\

TO

Vt E [To, T1]: Vtrain(e,x)(t) ~O ~ Vrnax(e,x) :5 M/(T1- To) :5 Vrnin(e,x).

The above laws must be validated as properties of the system, in this case by comparison

with the behaviour of the train set; Hr1 follows from the physics of the system (and the

definitions of drnax and drnin) and Hr2 depends on the observed minimum and maximum

velocity ofthe trains. During the subsequent analysis these laws are treated as axioms of

the model of the system. More precisely, henceforth we consider only those histories of

fH for which Hr1 and Hr2 are history relations.

E/A Model in the Safety Plant Analysis

By inspection of rules ssa and ssb of SS2,1,1, the priority requirement can be stated in

terms of the reservation scheme as: the section CC(s,r) cannot be reserved by a secondary

train if any primary train may need to reserve section CC(p,r) before the secondary train

releases section CC(s,r).

The actions for the secondary trains and primary trains are identified by examining the

relationship between the reservation of CC(e,r) and the position of the trains. We

identify the following actions:

APp(t,i) - a primary train approaches DZ(p,r) after a secondary train has entered

CC(s,r) 8 1 (i.e. the primary train may attempt to reserve CC(p,r) before the secondary

train will release CC(s,r».

APs(t,i) - a secondary train approaches DZ(s,r) after it has entered CC(s,r)81 (i.e.

CC(s,r) may need to be reserved by the train).

133

STc(t,i) - a train of type Trc has stopped in section CC(c,r) 8 1 (Le. the train was not

allowed to reserve CC(c,r».

CZc(t,i) - a train of type Trc is crossing the danger zone DZ(c,r) (i.e. the train must have

reserved CC(c,r».

The timing constraints must ensure that a secondary train cannot perform the action

CZs(t,i) if a primary train will need to perform the action CZp(t,i) before completion

of the action CZs(t,i). To analyse this situation in the E/A model, we describe the utility

functions UTrp(t,i) for actions APp(t,i) and CZp(t,i), and UTrs(t,i) for actions APs(t,i),

STs(t,i) and CZs(t,i), as illustrated by the graphs in figure 6.2. These graphs depict

a. the case when a secondary train does not stop when approaching DZ(s,r) (Le. the train

is allowed to reserve CC(s,r», and

b. the case when a secondary train must stop (Le. the train is not allowed to reserve

CC(s,r» immediately after entering CC(s,r) 8 1.

The duration of the utility function of action ACc(t,i) for train x on circuit Cc is

abbreviated to <5 ACc(x)' For example, <5 APs(x) denotes the duration of action APs(t,i) for

train x on circuit Cs.

From Hr1 and Hr2 we can infer the following bounds on the duration of action APs(t,i):

<5~~(x)=O and <5~;;(x)= dmax(s,CC(s,r)81,CC(s,r»/Vmin(s,x).

The duration for the actionAPs(t,i) has an upper and a lower bound since the action may

be aborted: the minimum duration is zero since CC(s,r) 8 1 immediately precedes

DZ(s,r), and the maximum duration occurs in the case when a train crosses the entire

section CC(s,r)e1 at minimum velocity.

Bounds on the duration for action APp(t,i) (assuming the train does not stop) starting at

time point t, can be derived from Hr1 and Hr2:

134

•
t

CZp I I • ,
tv t12 t

t13 t14 t15 t16

.'
Q. A secondary train does not have to stop at a crossing section.

UTrs(t,i)

1 I I ST~ ~APsl I CZs I APs I I I •
APs(t,i) t1=t2 t3 t4

,
tl' t/ t ' 3 t4' t
,

STs(t,i) t17 t18 t19 t20

CZs(t,i) ts t6 t7 t8

Q~~X) + Q~X)
I max max
, 15 AP>'(x) + 15 CZs(x) .' '. .' • ,

, , , , ,
, , , , ,
, , , , , ,
, , , , , ,
, , , , , ,

I
,

I I APp CZp APp ,
, ,

, ,
APp(t,i) t9=;=tlO t11 t)2 t.9' t10

, ,
tu' t12' t

,
CZp(t,i) t13 t14 t,15 t\6 ,

QDlin Q~~V)
APP(Y) ,- . , • ..

b. A secondary train must stop at a crossing section.

Figure 6.2. The EfA model of the priority requirement.

o~~~(y)(t) = dmin (p,Ptrain (PJl) (t),CC(p,r))fVmax(pJl); and

135

0A;;(v)(t)= dmax(p,Ptrain(PJl)(t),CC(p,r»/Vmin(pJl).

The duration for the action APp(t,i) has an upper and a lower bound since the controller

knows that the train is somewhere in section Ptrain(PJl), but does not know exactly where

and the velocity of the train is unknown.

Similarly, we can infer the following bounds on the duration of action CZc(t,i) (under the

assumption that a train does not stop in the danger zone):

O~t:(x)= dmax(c,CC(c,r),CC(c,r)ffi2)/Vmax(c,x); and

O~Zc(x)= dmax(c,CC(c,r),CC(c,r)ffi2)/Vmin(c,x).

For the action CZc(t,i), since a train always travels a fixed distance related to the size of

the sections, uncertainties in the duration of the action are entirely due to the

uncertainties in the velocity of the train.

Ifwe consider the behaviour of a secondary train x which is approaching the danger zone

DZ(s,r) with respect to a sequence of primary trains approaching the danger zone

DZ(p,r), we observe that trainx may cross the danger zone DZ(s,r) if it will cross DZ(s,r)

before the nearest primary train y (i.e. the train that must travel the shortest distance)

reaches DZ(p,r), which can be expressed in terms of the durations of the actions:

Omax + omax < omm APs(x) CZs(x) APp(v)"

In order to use the E/A model to analyse the timing constraints associated with the three

actions of the equation above, we must analyse the parallel composition of the utility

functions for the secondary and primary trains (i.e. Un-s(t,i) II Unp(t,i». In the following

we identify the PEA notation for UTrs(t,i) and Unp(t,i), as depicted in figure 6.2.

a. A secondary train does not have to stop at a crossing section:

136

b. A secondary must stop at a crossing section:

UTrs(i)@() <=> UAPs(i)@() < USTs(i)@() < UAps(i+ l)@() < UCZs(i)@();

By examination of the graphs we conclude that the action CZs(t,i) for any train x follows

the actionAPs(t,i) for train x only if the earliest finishing time ofAPp(t,i) for all primary

trains is greater than the latest finishing time of CZs(t,i).

We specify the priority constraint as a history predicate that describes the conditions in

which a secondary train cannot reserve the section CC(s,r); we say that a history satisfies

the priority constraint if the history predicate that describes it is a history relation for that

history. To complete the safety strategy SS2,1,1 for the crossing section we therefore add

the priority constraint (rule sse) to the rules ssa and ssb:

sse. For any interval [To, T]], for any secondary trainx, if CC(s,r) is not reserved by train

x at To and during [To, T]] the maximum duration for all parts of train x to approach and

pass the danger zone DZ(s,r) from section CC(s,r) 8 1 (when it is moving) is at least the

minimum duration for any primary train y to approach DZ(p,r) or the current section is

not CC(s,r) 8 1, then the section CC(s,r) cannot be reserved by train x during [To, T]].

't/r E R: 't/x E Trs: [CC(s,r) $. Rtrain(s,x)(To) 1\

't/t E [To, T]]: 3y E Trp: o~p:(x) + ocf:(x) > o~~~(y) V

Ptrain(s,x)(t) -:;r: CC(s,r) 8 1 => 't/t E [To, T]]: CC(s,r) $. Rtrain(s,x)(t)].

Alternatively, this rule could be expressed in terms of the PEA notation. The timing

constraints are then captured by the following formula, which represents a third rule sse

for SS2 11: , ,

137

VH E rH: Vx E Trs: Vi E N: Vt1r., t20 E T.

[H sat UAPs(i)@(t1.t2,t3,t4)< UcZs(i)@(t5,t6h,ts) =>

3j E N:Vy E Trp: HsatUAPp O)@(t9ho,t11,t12) 1\ ts < t11].

To confirm that rule sse captures the priority requirement, we state and sketch the proof

of the following lemma.

Lemma 6.7

Provided sse is satisfied, even if the primary trains never stop, the safety constraint SC2 1 ,

is maintained. This can be formally stated as: sse 1\ Vy E Trp: Vtrain(eJl) ~ 0 => SC21. ,

Proof. (By contradiction).

Assuming that there exists a time point t in which SC2,1 is violated, this implies that the

actions CZs(t,i) and CZp(t,i) are superimposed, which can be stated in terms ofthe utility

functions as follows:

3t5, t6,t7,ts,t]3,t]4,t15, t16 E T. 3x E Trs: 3y E Trp: 3i,j EN:

[UCZs(i)@(t5,t6h,ts) 1\ UCZp O)@(t]3,t]4h5h6) 1\

«(t5 :::; t]3 1\ ts ~ t]3) V (t]3 :::; ts 1\ t16 ~ ts»].

But this contradicts rulessc. The only condition assumed over the velocity of the primary

trains in ssc is that they are bounded by Vmax(pJl) (i.e. the earliest finishing time for

APp(t,i) is bounded), which is consistent with the constraint that primary trains never

stop.

Combination of the Safety Strategy Rules

To implement the safety strategy SS2,1,1 the safety controller must establish the rules ssa,

ssb and ssc. We have already shown that the rules ssa and ssb are sufficient to maintain

SC2,1, and are not in conflict, provided the number of sections of the the circuits satisfy

certain constraints. Now we have formulated the rule ssc to maintain the priority

requirement, therefore the conjunction of the three rules is sufficient for both SC2,1 and

138

the priority requirement provided the three rules do not conflict. Rule sse imposes

constraints only on secondary trains; specifically it identifies those intervals during which

a secondary train cannot reserve a crossing section. For a secondary train x in section

CC(s,r) 8 1 to reserve the crossing section CC(s,r) under rule sse, the minimum duration

of APp(t,i) for any primary train y must be greater than the sum of the maximum

durations of APs(t,i) and CZs(t,i) for the train x. The definitions of actions APp(t,i),

APs(t,i) and CZs(t,i) can be used to derive conditions under which a secondary train x is

allowed to reserve CC(s,r) when the nearest primary trainy is in section i:

dmin(p,i,CC(p,r»/Vmax(pJl) > dmax(s,CC(s,r) 8 1,CC(s,r)E£l2)/Vmin(s, x).

In general, we may have any secondary trainx and primary trainy, therefore for the above

condition to be satisfied for any pair of trains we identify the following general condition

over the train set which says that between any pair of primary and secondary trains, the

secondary train is allowed to reserve the CC(s,r) when from their relative positions, the

maximum time it takes for a secondary train to approach and cross its danger zone, is less

than the minimum time it takes for a primary train to approach its danger zone:

3i ESp: \Ix E Trs: \ly E TIp:

dmin(p,i,CC(p,r))/Vmax(pJl) > dmax(s,CC(s,r) 8 1,CC(s,r)E£l2)/Vmin(s,x).

By imposing the above general condition on the train set, in addition to the constraints

on the number of sections established for rulesssa and ssb, it is possible to satisfy all three

rules. These would be minimal constraints on the physical process of the train set. For

practical purposes, issues other than the satisfaction of safety strategy SS2,1,1 must be

considered, such as the ability of the safety controller to implement the safety strategy

in the allowed states and the impact of safety strategy SSl,1,l derived to avoid collisions

on the circuits for which the number of trains on the circuits must be taken into ,

considera tion.

139

6.4. Safety Interface Analysis

After establishing the safety strategies during the Safety Plant Analysis, the Safety

Interface Analysis phase investigates how these are to be implemented by the

components of the interface as robust safety strategies. In this section, we will restrict the

analysis to the crossing section because of the similarity in the type of analysis that has

to be performed in order to obtain the other robust safety strategies.

In the physical model train set, at the beginning of every section there is a sensor that

detects the presence of a train, and for each train there is an actuator that can stop the

train within any section. A first step in the analysis is to identify the initiating event

related with SS2,1,1 (the analysis for SS1,1,1 is similar to the analysis performed in the

following).The initiating event occurs for a train x on circuit Cc for crossing section

CC(c,r) when the train is in section CC(c,r) 8 1 and section CC(c,r) is not reserved by the

train.

Vr E R: Vc E L: Vx E Trc: [IE2,1,1(c,x,r) ~

Ptrain(c,x) = CC(c,r)81 /\ CC(e,r) t/:. Rtrain(c,x)].

The behaviour of the sensors and actuators is represented by two state variables SeIlS and

Act, the observations recorded by the safety controller are held in the variable Pos, and

the set of sections reserved by each train is recorded in the variable Res. The universal

history set of the physical process must be extended to include these state variables.

No. Name Range Comments

P4 SeIlS BNsp+l XBNss+l The state of each sensor expressed as a truth value.

P5 Act BNsp+l XBNss+l The state of each actuator expressed as a truth value.

P6 Pos SpNtpxSsNts The position of each train as recorded by the safety
controller.

P7 Res RpNtp X RsNts The reservation sets of each of the trains as recorded by
the safety controller.

In the following we present a set of assumptions, expressed in THL, over the properties

of the sensors and actuators and the behaviour of the physical process.

140

Sensor and Actuator Relations

The sensor Sens(e,i) returns the value true iff a train is in section i on circuit Ce.

Irl· 'Ve E L: 'Vi ESe: [Sens(e,i) ~ 3x E Tre: Ptrain(c,x) =i].

IfAct(c,x) is set throughout any interval [To, T]], then for every time point in [To, T]] the

position of the front of train x is the same as its position at time point To.

Hrl. 'Vc E L: 'Vx E Tre:[('ift E [To, T]]:Act(c,x)(t» ~

'Vt E [To, T]]: Ptrain(c,x)(t) =Ptrain(c,x)(To)].

Trains on the circuits are modelled as moving in steps of one section in a clockwise

direction.

Hr2. 'Vc E L: 'Vx E Trc: 3k ESc: [Ptrain(c,x)(T]) = Ptrain(c,x)(To)ffik 1\

'Vi E {a, ... , k}: 3t E [To, T]]: Ptrain(e,x)(t) = Ptrain(c,x)(To)ffii].

Assuming perfect sensors (Irl), and the above restriction on the movement of trains

(Hr2) the position of trains as recorded by the safety controller is identical to the actual

position of the trains.

Ir2. 'Vc E L: ['Vx E Tre: Pos(e,x) = Ptrain(c,x)].

Ir3. 'Vc E L: ['Vx E Trc: Res(e,x) = Rtrain(c,x)].

In this ideal case the rules of the safety strategies and the initiating events can be

rewritten in terms of Pos and Res by simply substituting Pos(c,x) for Ptrain(e,x), and

Res(c,x) for Rtrain(e,x) , respectively.

Connection between Initiating Events and Actuators

While a trainx on circuit Cc is approaching section CC(e,r) and CC(e,r) is not reserved

the actuator on train x must remain set.

141

Ir4· 'tIr E R: 'tic E L: 'tIx E Trc: [IE2,1,1(c,x,r) =:> Act(c,x)].

Properties of the Reservation Scheme and Physical Process

If CC(c,r) is reserved for train x on circuit Cc and the front of train x is in section

CC(c,r) 8 1 then CC(c,r) must remain reserved for the train until it leaves danger zone

DZ(c,r).

Hr3· 'tIr E R: 'tic E L: 'tIx E Trc: 'tit E [To, T1]: [CC(c,r) E Rtrain(c,x)(To) A

Ptrain(c,x)(To) = CC(c,r) 8 1 A

Ptrain(c,x)(t) E {CC(c,r) 8 1} U DZ(c,r) =:>

'tit E [To, T1]: CC(c,r) E Rtrain (c,x) (t)].

In the initial state of the system there is no train in a danger zone or a section that

immediately precedes a danger zone.

Hr4. To = S(1) =:> 'tIr E R: 'tic E L: 'tIx E Trc:

[Ptrain(c,x)(To) $. {CC(c,r) 8 1 U DZ(c,r)}].

The lemma below shows that the initial state of the system is a safe state, by proving that

safety constraint SC2,1 cannot be violated subsequent to the initial state if the initiating

event does not occur.

Lemma 6.8

UHrl, Hr2, Hr3 and Hr4 are history relations for a history which satisfies rulessb of safety

strategy SS2,1,1 and during that history IE2,1,1(c,x,r) is never satisfied, then SC2,1 is

satisfied during that history.

Proof. (By contradiction)

Assume 3t E T. 3r E R: 3x E Trp: 3y E Trs:

[H sat (Ptrain(p,x) E DZ(p,r) A Ptrain(s,y) E DZ(s,r»@t].

From rule ssb of SS2 11 we conclude: 3t E T. 3r E R: 3c E L: 3x E Trc: , ,

142

[H sat (Ptrain(crt) E DZ(c,r) 1\ CC(c,r) $. Rtrain(crt»@t].

From Hr2, Hr3 and Hr4 we conclude: 3t, t' E T. 3r E R: 3c E L: 3x E Trc:

[t' < t 1\ H sat (Ptrain(crt) = CC(c,r)81 1\ CC(c,r) $. Rtrain(c,x»@t'].

But this contradicts the assumption that 'tIr E R: 'tic E L: 'tIx E Trc:

[H sat --,IE2,1,I(Crt,r)].

The lemma below shows that if the system enters an unsafe state, corrective action by

the safety controller (specifically setting an actuator) will maintain safety constraint

Se21· ,

Lemma 6.9

If Hrl is a history relation for a history and during that history Act(c,x) is set whenever

IE2,1,1(Crt,r) holds, then SC2,1 will be maintained.

Proof. From Hrl we conclude: 'tIr E R: 'tic E L: 'tIx E Trc:

[H sat IE2,1,1(c,x,r)@To 1\ H satAct(c,x)@[To, T1] ===>

H satPtrain(crt) $. DZ(c,r)@[To, T1]].

Sensor and Actuator Failures

A sensor may fail permanently and not detect the presence of a train - "miss a train",

or detect the presence of a train that does not exist - a "ghost train", or fail

intermittently. An actuator may fail permanently and never stop a train when required,

or stop a train inadvertently, or fail to stop the train within the required distance, or fail

intermittently.

We consider only the case of sensor failures that "miss a train"; specifically we suppose

that there can be at most m sensor failures in a sequence of sensors. To capture this failure

assumption the relationship between the sensors and the position of the trains must be

modified. For any mEe1 consecutive sections, i, ... , iEem, at least one of the sensors will

still be working in the way described by Irl and if a sensor detects a train there must be

143

a train in that section, in other words, we assume the nonexistence of sensor failures that

detect "ghost trains".

Irs. 'tic E L: 'tIi ESc: [(3j E N:j <m 1\ Sens(c,iffij) ~

3x E Trc: Ptrain(c,x)=iffij) 1\ Sens(c,i) ~ Ptrain(c,x) =i].

The relationship between Pos and Ptrain must also be modified to reflect the limitations

of the sensors. If m consecutive sensors "miss a train" Pos will be m sections behind

Ptrain. Hence, to allow for faulty sensors (Irs), the relationship between Pos and Ptrain

must incorporate the uncertainty in position of the trains.

Ir6. 'tic E L: 'tIx E Trc: [Ptrain(c,x) E {Pos(c,x), ... ,Pos(c,x)EBm}].

Moving on to consider actuator failures, note that we cannot handle the situation when

an actuator fails to stop a train without introducing redundant actuators. Instead, we

examine the case of actuator failures that result in a train requiring more than one section

to stop. More specifically, we assume that if an actuator on a train fails, then the train

will still be stopped but may need nEB1 sections (at most) to do so (n;::: 0).

Hrs. 'tic E L: 'tIx E Trc: ['tit E [To, T1]: Act(c,x)(t) ~

Ptrain(c,x)(t) E {Ptrain(c,x)(To), ... ,Ptrain(c,x)(To)ffin}].

The initiating event for RSS2,1,1 (IE2,1,1 Ff) is a modification of IE2,1,1 that takes into

account the limitations of the sensors and actuators.

'tIr E R: 'tic E L: 'tIx E Trc: [IE2,1,1(c,x,r)Ff ~

Pos(c,x) E {CC(c,r)8(m+n+ 1), ... , CC(c,r)ffi 1} 1\ CC(c,r) f/:. Res(c,x)].

Properties of the ReseIVation Scheme and Physical Process

The reservation scheme and the condition over the initial state of the physical process

must be strengthened to allow the safety controller to tolerate failures in the sensors and

actuators.

144

If CC(e,r) is reserved for train x on circuit Ce and the front of train x is in the sections

{CC(e,r)8(m+n+1), ... , CC(e,r)ffil} then CC(e,r) must remain reserved for the train

until it leaves danger zone DZ(e,r).

Hr6· 'tIr E R: 'tic E L: 'tIx E Tre: [CC(e,r) E Res(e,x)(To) A

Pos(e,x)(To) E {CC(e,r)8(m+n+1), ... , CC(e,r)ffil} A

'tit E [To, T]): Pos(e,x) E {CC(e,r)8(m+n+ 1), ... , CC(e,r)EB l} U

DZ(e,r) ==> 'tit E [To, T]): CC(e,r) E Res(e,x)(t»).

The initial state of the system must be such that there is no train in an extended danger

zone or the n ffi 1 sections that immediately precede a danger zone.

Hr7. To = SeT) ==> 'tIr E R: 'tic E L: 'tIx E Tre:

[Pos(e,x)(To) f/:. {CC(e,r)8(m+n+1), ... , CC(e,r)ffil} U DZ(e,r»).

We define a robust safety strategy RSS2,1,1 which compensates for failures of the sensors

and actuators, by extension of the danger zones (i.e. by employing spatial redundancy)

to ensure that whenever any part of a train is in a crossing section, the crossing section

is reserved for that train despite sensor/actuator failures. RSS2,1,1 is described by the

following two rules:

rssa. if the recorded position of train x on circuit Ce is in an extended danger zone then

the crossing section contained within that danger zone is reserved (on circuit Ce);

'tIr E R: 'tic E L: 'tIx E Tre:

[Pos(e,x) E DZ(e,r)FT => CC(e,r) E Res(e,x)];

where DZ(e,r)FT = {CC(e,r)8(m+n+ 1), ... , CC(e,r)ffil};

rssb. sections CC(p,r) and section CC(s,r) cannot both be reserved;

't:fr E R: 3e E L: ['t:fx E Tre: CC(e,r) $. Res(e,x)].

145

Lemma 6.10

A history for which Irs is an invariant relation, and which satisfies the robust safety

strategy RSS2,I,b must satisfy the safety strategy SS2,1,1.

Proof. This proof follows directly from Ir4 and the definitions of DZ(e,r)Ff and DZ(e,r).

The two lemmas below show that the initial state is safe and the safety controller can take

corrective action (c.f. lemma 6.8 and lemma 6.10).

Lemma 6.11

If Ir6 and Hr2, Hr3, Hr4, Hr6 are relations for a history which satisfies rule ssb of the

robust safety strategy RSS2,1,1 and IE2,1,1 (e,x,r)Ff is never satisfied,then SC2,1 is satisfied

during that history.

Proof. (By contradiction)

Assume 3t E T: 3r E R: 3x E Trp: 3y E Trs:

[H sat (Ptrain(p,x) E DZ(p,r) A Ptraill(s;y) E DZ(s,r»@t].

From lemma 6.8 we have: 3t, t' E T: 3e E L: 3x E Tre: 3r E R:

[t' < t A H sat IE2,1,1(e,x,r)@t'].

From IE2,1,1(C,x,r) A Irs we conclude:

[H sat (Pos(e,x) E {CC(e,r)8(m+ 1), ... , CC(e,r)E\3l})@t'].

Together with Hr6 this contradicts the assumption that \:;fe E L: \:;fx E Tre: \:;fr E R:

H sat -,IE2,1,I(e,x,r)n:

Lemma 6.12

If Ir6 and Hr7 are relations for a history and during that history Aet(e,x) is set whenever

IE2,l,1(e,x,r)Ff holds, then SC2,1 will be maintained during that history.

Proof.

From IE2,1,I(e,x,r)F[, Ir6 and Hr6 we conclude that at the instant at which IE2,1,I(e,x,r)Ff

occurs

Ptrain(e,x) E {CC(e,r) 8 (m+ll+ 1), ... , CC(e,r)E\3(n+ I)}.

Hence, from Hrs we conclude: \:;fe E L: \:;fx E Tre: \:;fr E R:

146

H sat IE2,1,1(C,x,r)IT@To 1\ H satAct(c,x)@[To, T1] ~

H sat Ptrain(c,x) f/:. DZ(c,r)@[To, T1]'

From the analysis we conclude that the basic effect of the sensor and actuator failures

considered here is that a block of sections must be treated as if they were a single section.

The size of this block depends on the failure assumptions (i.e. values of m and n) and on

the extent to which tolerance is to be provided for sensor and actuator failures.

6.5. Safety Controller Analysis

After establishing the robust safety strategies during the Safety Plant Analysis, the safety

controller analysis phase investigates how these strategies are to be implemented by the

safety controller as safety controller strategies; these are formed by mapping the robust

safety strategies onto the system components. However, in presenting this case study, in

order to simplify the analysis, the derivation of the safety controller strategies will ignore

the results of the Safety Interface Analysis presented in the previous section; instead we

will work directly from the safety specifications obtained in section 6.3 from the Safety

Plant Analysis. In Ide Lemos 92/, for the same example, the Safety Controller Analysis

is conducted using the robust safety strategies obtained from Safety Interface Analysis.

The analysis to be performed entails modelling the relationship between the

components of the safety controller, the physical process, and the interface between

them (which includes sensors and actuators). The general approach followed in

modelling the system is to maintain a clear separation between models of the physical

process and the safety controller, even though they must cooperate whenever an action

is to be performed. The advantage of adopting this approach is that both models can be

independently developed and modified, and the state of the physical process can be seen

to correspond to the sequence of control commands issued by the safety controller

ICombacau 901.

The analysis will be divided into two parts, corresponding to the safety strategies

established during the Safety Plant Analysis. First, we model the safety strategy which

147

prevents the collision of trains of the same type, and second, we model the safety strategy

which prevents the collision of trains of different types.

6.5.1. Collision of Trains of the Same lYpe

To illustrate modelling the behaviour of trains in a circuit, we assume that each circuit

contains seven sections (Ns=6) and two trains (Nt = 2). For simplicity, the modelling and

analysis is performed for just one circuit. The PrT model is shown in figure 6.3 (because

of the flexibility of the model it is possible to modify the number of sections and trains

without affecting the structure of the model of the safety controller). An outline

definition of PrT nets is presented in Appendix B.

The predicates of the PrT net model of a train set circuit are the following:

SOx to S6x - train x occupies a section of the circuit;

ICPxj - train x is allowed to enter sectionj;

IPCxj - train x has entered sectionj;

FSn - section n is not reserved by the safety controller;

RSlxm - train x has reserved section m;

RS2xk+xj - train x has (temporarily) reserved sections k andj.

To obtain the structural properties of the PrT net model of the circuit, we derive the

S-invariants of the net; these are integer equation invariants which are obtained from

the projection of the predicates IGenrich 87/. In order to simplify the calculation of the

S- invariants of the PrT net model of figure 6.3, the predicates representing the circuit

sections ofthe model ofthe physical process were folded into one predicate (Sxj - train

x occupies sectionj).

The S-invariants of the PrT net model of the safety controller strategies of the circuit

are:

IRS212 + 21RSll2 = 8;

IIPCI + IICPI + IFSI = 3;

148

(sil)

(si2)

S

j = (i EB 1)

Physical Process Model

t2

j = (m EB 2) /d=n !\ k=m

(x,k) +

(x,j)
RS2

(x,k) +

(x,j)
t3

(x,m) (n)

(x,m) (n)

n = (j e 2) !\ n=k 1\ m=j

Safety Controller Model

Figure 6.3. The PrT net model of the train set circuit.

IRS11 - IFSI = 1;

IRS21 + 21FSI = 6.

(si3)

(si4)

The number of tuples in the predicate Sxj is constant and is established by the initial

marking.

Lemma 6.13

The PrT net of the train set circuit shown in figure 6.3 is contact-free and

deadlock-free. (Contact-freeness means that even under the weak transition rule

allowing multi -sets on places there is no marking reachable that puts the same tuple on

149

a place more than once. Deadlock-freeness means that there is no forward reachable

marking at which no transition is enabled.)

Proof:

To confirm that a PrT net is contact-free, we must show that there is no marking that

puts the same tuple at the same predicate more than once. For the PrT net of figure 6.3,

this follows immediately from equations (sil) and (si2).

To confirm that a PrT net is deadlock-free, we must show that there is no forward

reachable marking at which all transitions are disabled. By inspecting the PrT net of

figure 6.3, we show that if both t2 and t3 are disabled then t1 must be enabled. Firstly,

we consider the case when t2 is disabled, and secondly when t3 is disabled.

a. Ift2 is disabled, this implies that the tuples <;X,m) in RS1 and (n) in FS are not sufficient

to satisfy the transition selector of t2. This condition can be confirmed from (si3), from

which we obtain IRS11 =2 and IFS 1= 1. Hence, from (si1) we have IRS212=4 and from

(si2) we have I fPC I + I fCP I = 2, which leads to two possible cases: if I fPC I :;60 then t3

would be enabled, however I fPC I =0 implies that t1 is enabled.

b. If t3 is disabled, this implies that there are no tuples in the predicates RS2 and fPC,

that is, there is neither <;X,j) in IPC nor <;X,k) + <;x j) in RS2. If there are no tuples in RS2

and fPC then it follows from (sil) and (si3) that the number of tuples in RS1 and FS are

identical to those in the initial marking, and it can be easily shown that t2 is enabled. If

there are no tuples in RS2 then it follows from (si2) and (si4) that IIPC! + IICPI =0

implying that there are also no tuples in IPC, in which case the number of tuples in RS1

andFS are identical to the previous case. If there are no tuples inIPCthen it follows from

(si2) that IICP 1+ IFS I =3 which leads to two possible cases: if IFS I =3 then

IICPI = IRS21 =0 in which case the number of tuples in RS1 and FS are identical to the

initial marking, but if I FS 1:;63 then I ICP I :;60 implies that t1 must be enabled.

Verification of Circuit Safety Controller Strategy

150

The safety controller strategy defined by the PrT net model of figure 6.3 is verified by

proving that the safety strategy SSl,1,1 is a property of the PrT net model. To verify this,

a link must be identified between the THL and PrT net models of the train set system.

This link can be established in terms of system predicates of the THL model and the

predicates of the PrT net model, as follows:

Vc E L: Vx E Trc: Vi ESc: [Ptrain(c,r) = i ~ Sxi];

Vc E L: Vx E Trc: Vi ESc: [i E Rtrain(c,r) ~ RSlxi V RS2xi].

The two rules of SSl,l,1 can be expressed in terms of the PrT net model, as logical

formulae (lfl and lf2) over the predicates of the PrT net model, by substituting the

equivalent predicates of the PrT net model for the THL predicates:

!fl. If any train x is in section i, then sections i and i 8 1 are reserved by train x.

Vx E Trc: Vi ESc: [Sxi ==> (RSlxi V RS2xi) 1\ (RSlxi81 V RS2xi81)].

/f2. Any section i is reserved by at most one train.

VXJ' E Trc: Vi E Sc: [x~y ==>

(-.RSlxi 1\ -.RS2xi) V (-.RSlyi 1\ -.RS2yi)].

Lemma 6.14.

The formulae Ifl and lf2 are logical invariants (i.e. they hold on all reachable markings)

of the PrT net model

Proof: A sketch of a proof is given below by analysing the transitions of the PrT net

model. In the initial marking Ifl holds then both trains have reserved the current and

previous sections:

(1,0) E S ==> {(I,D), (1,6)} ~ RSI U RS2;

(2,3) E S ==> {(2,3), (2,2)} ~ RSI U RS2.

We show that the firing of the three transitions cannot violate Ifl. Transition tl can fire

with (x,i) only when (xj) is in ICP (j =i EB 1), therefore this can only happen after t2 fires,

151

producing (x,j) in ICP and RS2. Prior to the firing of tl, {{x,i), (x,i8 I)} ~ RSI U RS2' ,

after tl fires, {{x,j), (x,i)} C RSI U RS2 (since (x,j) must remain in RS2 until IPC fires

producing (x,j». Firing t2 adds (x,j) to RSI U RS2, therefore t2 cannot violate ifl. Firing

t3 removes (xl<) from RSI U RS2 only when there is (x,j) in S, this is obtained from the

transition selector of t3 (k = j82), therefore t3 cannot violate If 1.

In the initial marking lf2 holds; no section is reserved by more than one train: RSI U RS2

= {(1,0), (1,6), (2,3), (2,2)}. Firing tl does not change the markings on RSI or RS2. Firing

t2 removes (x,m) from RSI and adds (xl<> + (x,j) to RS2, where k=m andj=mE92. The

only change inRSl U RS2 is the addition of{x,j). From the transition selector oft2,j (=n)

is a free section, hence prior to t2 being fired -, (3y) (y,j) E (RSI U RS2). Therefore t2

cannot violate lf2. Firing t3 removes (x,k) from RSI U RS2, and therefore t3 cannot

violate 1f2.

6.5.2. Collision of Trains of Different 'lYpe

For simplicity, the modelling and analysis of the behaviour of trains in a crossing section

is performed for just one crossing section, and we assume that each circuit contains four

sections (Ns=3) and one train (Nt = 1), as shown in figure 6.4. In the PrT net model of

the physical process we have folded the models of the primary and the secondary circuits

into one net; the danger zone (DZ) of each circuit is represented by the predicates CCcx

(crossing section) and SOcx, and the predicate S2cx represents the section which

immediately preceds CCcx.

The predicates of the PrT net model of the crossing section are the following:

SOcx, Slcx, S2cx - a section of the circuit c is occupied by train x;

CCcx - the crossing section of circuit c is occupied by train x;

ICPcxj - trainx in circuit c is allowed to enter sectionj;

IPCcxj - train x in circuit c has entered sectionj;

APcxj - train x in circuit c is in sectionj =2 (i.e. x is about to enter DZ);

152

t1 t5

Physical Process Model Safety Controller Model

A={(P,l); (s,l)}

Figure 6.4. The PrT net model of the crossing section.

ZDcxj - train x in circuit c has access to sectionj (= 3, the crossing section);

ME - either primary or secondary trains allowed to enter the crossing section.

To obtain the structural properties of the PrT net model of the crossing section, we derive

the S-invariants of the net, which are:

so + S1 + S2 + CC = 2; (sil)

ME + IZD I = 1; (si2)

S1 + 2S2 - 21ICPI3 - IIPCh - IAPh + IZDi3 = 2; (si3)

SO - S2 + CC + 2IICPi3 + IIPCi3 + IAPi3 - IZDI3 = 0; (si4)

2S0 + S1 + 2CC + 2IICPi3 + IIPCl3 + IAPi3 - IZDi3 = 2. (si5)

Lemma 6.14.

The PrT net model of the train set crossing section shown in figure 6.4 is contact-free

and deadlock-free.

Proof:

The contact-freeness of the PrT net model of the crossing section is shown through

inspection of (sil), (si2), (si4) and (si5). From (sil) we know that the number of tuples

153

in the net model of the physical process remains constant and equal to the initial marking.

From (si2) we know that the number of tokens in the predicates ME and ZD do not

increase. Finally, from (si4) and (siS) we know that ICp, IPC andAP are contact-free,

implying that the number of tuples in the whole PrT net model remains constant.

To confirm that the PrT net model of the crossing section (in figure 6.4) is deadlock-free

we show that if t1, t2, t3, t5, t6 and t7 are disabled then t4 must be enabled. The approach

followed here is to consider each of the transitions which we assume to be disabled

individually and show that t4 is enabled, implying deadlock-freeness.

If t1 is disabled, it means that there are no tuples in Cc. From (sil) it follows that if SO

or S1 have tuples, then transitions t2 or t3 must be enabled. However, if the two tuples

are in S2 then (si4) is reduced to 21 ICP 13 + I IPC 13 + lAP 13 - I ZD 13 = 2. From this

equation, if IZD I =Othen there are no tuples inICP (reasoning from the PrTnet model)

and the two tuples must either be in IPC or Ap, implying that at least t5 or t6 are enabled;

if I ZD I #0 then t6 is disabled, one of the tuples is in either IPC or AP, implying that t5

or t6, respectively, are enabled, and the other tuple is in ICp, implying that t4 is enabled.

Similar reasoning can be applied for each of the other transitions that we assume to be

disabled, and in each case we can show that t4 will be enabled.

Verification of Crossing Section Safety Controller Strategy

The safety controller strategy defined by the PrT net model of figure 6.4 is verified by

proving that the safety strategy SS2,1,1 is a property of the PrT net model.

The THL predicates and the predicates of the PrT net model correspond as follows:

\lc E L: \Ix E Trc: [Ptrain(c,x) E DZ(c,r) ¢:;> CCcx v SOcx];

\lc E L: \Ix E Trc: \lj ESc: [CC(c,r) E Rtrain(c,x) ¢:;> ZDcxj].

The two rules of SS2,1,1 can be expressed in terms of the PrT net model as logical

formulae (lf3 and If4) over the predicates of the PrT net model, by substituting the

equivalent predicates of the PrT net model for the THL predicates.

154

if3. If any train is in a danger zone then the crossing section is reserved by that train.

\::Ix E Trc: \::Ii ESc: \::Ir E R: [CCcx V SOcx ==> ZDcxj].

if4. A crossing section cannot be reserved for both the primary circuit and the secondary

circuit.

\::Ix E Trc: \::Ii ESc: \::Ir E R: [-'ZDcxj].

Lemma 6.15

The formulae lf3 and If4 are logical invariants (i.e. they hold on all reachable markings)

of the PrT net model.

Proof: A sketch of a proof is given by analysing the transitions and S-invariants of the

PrT net model.

In the initial marking lf3 holds, since the sections CC and SO are empty: (CC USa) =

0. Firstly, we make the observation that tuples can be added to the set CC U SO only by

transition t4 and removed only by transition t2. In the following we argue that (c,xj) E

ZD before t4 adds (c,x) to CC U SO and until t2 removes (c,x) from CC U SO. Transition

t4 can fire with (c,x) only if (c,xj) is in ICp, therefore after t6 fires with (c,xj). Hence,

before t4 fires we have (c,xi) E ZD. Now (c,xi) can be removed from ZD only when t7

fires with (c,xj); this transition can fire only when (c,xj) E ICP Therefore t7 can fire with

(c,xj) only after t2 has fired with (c,xJ">- Hence (c,xj) E ZD, at least until t2 fires.

The fact that lf3 is a logical invariant for the PrT net model follows from S-invariant

(si2).

Crossing Section Safety Controller Strategy and Mission Requirements

Similar to the analysis conducted in Section 6.3, in the following we extend the safety

controller strategy SCS2,1,1,1 in order to consider the mission requirements established

for the train set model which says that trains on the primary circuit have priority over

trains on the secondary circuit. To illustrate the modelling oftrains in the crossing section

155

oftwo circuits, we assume that: the two circuits cross only once, each circuit contains five

sections (Nse=5), and one train runs on each circuit (Ntp=1). To simplify the analysis

we ignore the safety strategy for avoiding collisions of trains of the same type; thus we

implicitly assume that each circuit has a safety controller strategy as developed

previously.

The safety controller strategy must maintain the three rules of the safety strategy: rules

ssa and ssb which say that no part of a primary or a secondary train can be in their

respective danger zones at the same time, and rule sse which says that a primary train

must not be made to wait for a secondary train at a crossing section. In terms of the

analysis of timeliness requirements, this can be represented by constructing the EfA

model of the timing thresholds obtained from the Safety Plant Analysis, such as the

example shown in figure 6.5. The names adopted for the actions and the events are

equivalent to those adopted in the Safety Plant Analysis. This EfA model will be used

as a reference for the construction of the PrT net model of the safety controller strategy.

For every subsequent refinement of the PrT net model we should first construct the

corresponding Ef A model.

UTrs(t,i)

1 APs< CZs
..

, , t
APs(t,i) < CZs(t,i) t1

o~p$lmax + o;U1max
t2 , ,

'. .,' , ,

UT,,(t,i) 1
APp

•
, , t

APp(t,i) t~ t4
o~PI'ln.n

,
, , ,. .,

Figure 6.5. The EfA model for the priority requirement.

156

The PrT net model of the physical process and the safety controller which implements

these rules is shown in figure 6.6. (In order to simplify the representation of the relational

expressions associated with the transitions, we adopt the following notation for the

duration of the actions of the safety strategy: Os = o-jPs I max + o.fZs I max and

op = o1PP(t) I min') From the net model we notice that a primary train is never made to

wait for a secondary train if the duration of key actions remains within known bounds:

minimum time for a primary train to approach the crossing section, the maximum time

for a secondary train to approach the crossing section, and the maximum time it takes

for a secondary train to cross the danger zone. Whenever the duration of one of these

key actions is no longer within the stipulated bounds, access to the crossing section is

controlled by the mutual exclusion technique, which ignores the priority constraint.

The predica tes of the PrT net model of the crossing section in figure 6.6 are the following

(the names of the predicates follow the ones already defined in Section 6.3 during the

Safety Plant Analysis):

SOcx, Slcx, S2cx, S3cx - a section of circuit c is occupied by trainx;

S4cx (CCcx) - the crossing section of circuit c is occupied by train x;

ICP(j)cx - train x in circuit c is allowed to enter sectionj (= 4, the crossing section);

IPC(j)cx - train x in circuit c has entered section j;

APPxj~ - a primary train x is in sectionj =3 (i.e. x is about to enter DZ(p,r» , and the

duration of the approach action APp(t,i) will take ~;

APSxjCs - a secondary trainx is in sectionj =3 (i.e.x is about to enter DZ(s,r» , and the

duration of the approach action APs(t,i) and crossing danger zone action CZs(t,i) will

take cs ;

FPTpxi~ - the next primary trainx approaching the danger zone is in sectionj, and will

take ~ to approach it;

ME - either primary or secondary trains allowed to enter the crossing section;

ECcx - safety controller allows trainx in circuit c to enter DZ(c,r);

PPpxi~ - trainx in circuitp is in section i and the approach action APp(t,i) will take~.

157

c=sAj=4

(p,x,j,op) (p,x,j,Op)

pp pp
c=sAj=2

c=pAj=2Mp=3

c=pAj=3Mp =O

Physical Process Safety Controller

transSj: (dmax(cj81j)/Vmax(c,x)) < tstamp(Sj) < (dmax(cj81j)/Vmin(c,x)), for j = 0 to 4

SlO={ (p, 1,1); (s, 1,1)}; ppo= {(P, 1,1)}

Figure 6.6. The PrT net model of the crossing section.

The time intervals associated with the transitions ofthe model of the physical process are

intended to model the movement of a train, in accordance with the physical laws

established during the Safety Plant Analysis. Further refinements in the PrT net model

of the safety controller will consist of introducing the timing constraints imposed on the

exchange of information between the physical process and the safety controller; for

instance, the time delays associated with the sensors and actuators, and the estimated

execution time of the safety controller actions that form part of the control loop.

158

6.6. Safety Specification Hierarchy

Here we present some of the accidents, hazards, safety constraints, robust safety

strategies and safety strategies associated with the train set case study. From the various

accidents possible on the train set, we consider only two. The (extremely simple) safety

specification hierarchy for the train set example is shown in figure 6.7.

ACI AC2

I I
HZI,I HZ2,1

I I
SCI,I SC2,1

I I
SSI,I,I SS2,l,l

I I
RSSI,I,I RSS2,l,l

I I
SCSI,I,I,I SCS2,l,l,l

Figure 6.7. Safety specification hierarchy of the train set example.

Accidents

ACl - trains of the same type collide;

AC2 - trains of different type collide.

Hazards

HZl,1 - some part of any two trains are in the same section.

HZ2,l - some part of a primary train and a secondary train are in the danger zone.

Safety Constraint

SCl,1 - for any two trains on a circuit there must be at least one section between the

sections containing the fronts of the trains:

Vc E L: Vx,y E Trc: [x#y ~

Ptrain(c,x) $. {Ptrain(c.Jl) e 1, Ptrain(c.Jl), Ptrain(c.Jl) ffi 1}].

159

SC2,1 - either the front of no primary train is in a danger zone DZ(P,r) or the front of

no secondary train is in the danger zone DZ(s,r):

Vr E R: 3c E L: Vx E Tre: [Ptraill(e.,x) f/;. DZ(e,r)].

Safety Strategy

SSlll - the safety strategy is based on a reservation scheme. The two essential rules , ,

which impose the safety strategy are as follows:

ssa. ReselVatioll Constraint

If any train x on circuit e is in a danger zone then the crossing section contained

within that danger zone is reserved for that train.

Ve E L: Vx E Tre: [{Ptrain(e.,x) 8 1, Ptrain(e.,x)} ~ Rtraill(e.,x) 1\

Rtrain(e.,x) c {Ptrain(e.,x) 82, Ptrain(e.,x) 8 1, Ptrain(e.,x), Ptrain(e.,x)ffi 1}];

ssb. Exclusion Constraint

No section can be reserved by more than one train;

Ve E L: VX,y E Tre: [x ~ y => Rtrain(e.,x) n Rtrain(e,y) = 0].

SS2,1,1 - the safety strategy is based on a reservation scheme. The two essential rules

which impose the safety strategy are as follows:

ssa. ReselVation Constraint

For any train the current section (i.e. the position of the train) and the section

behind the current section must always be reserved:

Vr E R: Ve E L: Vx E Tre: [Ptrain(e.,x) E DZ(e,r) =>

CC(e,r) E Rtrain(e.,x)];

ssb. Exclusion Constraint

Section CC(p,r) and section CC(s,r) cannot both be reserved at the same time:

160

Vr E R: 3e E L: [Vx E Tre: CC(e,r) f/:. Rtrain(e,x)].

sse. Priority Constraint

For any interval [To, T1], for any secondary train x, if CC(s,r) is not reserved by

train x at To and during [To, T1] the maximum duration for all parts of train x to

approach and pass the danger zone DZ(s,r) from section CC(s,r)81 (when it is

moving) is at least the minimum duration for any primary train y to approach

DZ(p,r) or the current section is not CC(s,r) 8 1, then the section CC(s,r) cannot

be reserved by train x during [To, T1].

Vr E R: Vx E Trs: [CC(s,r) f/:. Rtrain(s,x)(To) 1\

Vt E [To, T1]: 3y E Trp: 01ps 1 max + of'2.\·1 max> 01pP(t) 1 min V

Ptrain(s,x)(t)~CC(s,r)81 ~ Vt E [To, TI]: CC(s,r) f/:. Rtrain(s,x)(t)].

Robust Safety Strategy

RSS1,1,1 - the robust safety strategy compensates for (consecutive) failures of the

sensors (m) and actuators (n) by extending the number of sections that have to be

reserved by a train. The two essential rules which impose the robust safety strategy for

the circuit are as follows:

rssa. For any train, the current section as observed by the controller and the

m+n+ 1 sections behind this current section must always be reserved;

Ve E L: Vx E Tre: [{Pos(e,x)8(m+n+ 1), ... , Pos(e,x)} ~ Res(e,x)];

rssb. No section can be reserved by more than one train;

Ve E L: Vx,y E Tre: [x -::j:. y ~ Res(e,x) n Res(eJl) = 0].

RSS2,1,1 - the robust safety strategy compensates for failures of the sensors and

actuators by extension of the danger zone. The two essential rules which impose the

robust safety strategy for the crossing section are as follows:

161

rssa. If the recorded posi tion of trainx on circuit Ce is in an extended danger zone

then the crossing section contained within that danger zone is reserved (on

circuit Ce);

Vr E R: "Ie E L: "Ix E Tre:

[Pos(e,x) E DZ(e,r)FT => CC(e,r) E Res(e,x)];

where DZ(e,r)FT = {CC(e,r)8(m+n+ 1), ... , CC(e,r)EB1};

rssb. Sections CC(p,r) and section CC(s,r) cannot both be reserved at the same

time;

Vr E R: 3e E L: ["Ix E Tre: CC(e,r) $. Res(e,x)].

Safety Controller Strategy

The safety controller strategies for a circuit (SCSl,l,l,l) and a crossing section (SCS2,1,1,1)

are the PrT net models of the safety controllers of figures 6.3 and 6.6, respectively.

6.7. Quantitative Risk Analysis of Safety Specifications

In this section, we exemplify how quantitative evaluation of a safety specification should

be performed. As already mentioned, this assessment completes the qualitative analysis

performed in the previous sections, in the sense that it provides more confidence that the

level of risk for a certain safety specification is acceptable. Although the quantitative

evaluation performed in this section is restricted to a safety strategy, a similar analysis,

using different criteria, could be performed for other safety specifications. For example,

the quantitative evaluation of a robust safety strategy would consider the failure rates of

sensors and actuators.

To perform the quantitative evaluation of the crossing section safety strategies we

employ fault tree techniques. For the fault tree analysis of safety strategy SS2,1,b

presented in figure 6.8, we only consider those faults that can affect the behaviour of

primary trains (Trp). Note that the refinement of rectangles I and F is symmetric to that

162

of rectangles Hand G, respectively. The undesired state of the fault tree of SS2,1,1 is the

negation of SC2,1. For this undesired state to occur, one of the rules of SS2,1,1 must be

violated: either at least one train does not reserve the crossing section while it is in its

danger zone, or the crossing section is reserved by both trains. (In figure 6.S, RS stands

for Reservation Scheme, and includes both rules of the safety strategy SS2,1,I-)

The quantitative evaluation of the fault tree is obtained from the minimal cut sets by

assigning probabilities to the primary events of the tree. Because the probability of each

individual minimal cut set should be low, we use the rare event approximation equation

Nesely S1/ to obtain the minimal cut set expression for the fault tree of SS2,1,1:

A=j-H7-M+H8-H7-M+j-H4-HS+L-17-M+I8-17-M+L-I4-IS+

j-K-L-M+j-G1-H7+L-P1-17.

In the following, in order to perform the quantitative evaluation of the safety strategy

SS2,1,h we present estimates of the probabilities for the primary events. Some of these

probabilities are related to the physical construction of the train set (P[H7], P[I7], P[K],

P[M], P[HS], P[IS], P[H4], P[I4], P[G 1] and P[Hl]); these are the ratio of the length of

a section, or set of sections, to the total length of the circu it Ce (for example, P[H7] is the

ratio of the length of section CCce1 (CCe is the short form for CC(e,r)) to the total

length of the circuit Ce). Other probabilities are related to experiments conducted on the

physical process (P[H8] and P[I8]), and to assumptions about expected failure rates of

the components of the controller (P[J] and P[L D.

Primary Events Probabilities

P[J], P[L] 0.001

P[H8], P[I8] 0.1

P[H7], P[I7] 0.128

P[K], P[M] 0.144

P[HS], P[IS] 0.016

P[H4], P[I4] 0.128

P[Gl], P[H1] 0.144

163

D

B

T", In DZs, Trp
InDZpwhen
CCc reserved

for at least
oftheTrc

Trs in DZs, Trp
In DZpwhen
cee reserved
for one of the

H

Trs In DZs, T rp
In DZpand

CCp not
reserved for

Trp

HI

Trs In DZs, Trp
In CCp and

CCpnot
reserved for

Trp

H3

Trp In CCp and
CCp not

reserved lor Trp

Trc

Trs In DZs, Trp
In DZp and

CCs not
reserved for

Trs

E

Trs In DZs, Trp
in DZpwhen

CCcnot
reserved for

both Trc

H2

Trs in CCs, Trp in

CCpffil and
CCp not reserved

forTrp

A

F

C

Trs In DZs, Trp
In DZpwhen
CCc reserved
for both Trc

Trs In DZs, Trp
In DZp and

CCs Incorrectl
reserved for

Trs

G

T", In DZs, Trp
in DZpand

CCp
Incorrectly

reserved for
Trp

Figure 6.8. Fault Tree of SS2,1,1·

The probabilities associated with the nine minimal cut sets are calculated as the product

of the appropriate primary event failure probabilities (assuming failures to be

independent). In the table below, we also take into account the relative quantitative

164

importance of the various minimal cut sets. This is done by calculating the ratio of the

minimal cut set probability to the total undesired state probability.

Minimal Cut Set Probability Importance (%)
p[JeH7eM] 1.84xlO =-s 0.49

p[HSeH7eM] 1.84xlO ·3 48.9

p[JeH4eH5] 2.05xlO -6 0.05

p[LeJ7eM] 1.84xlO -5 0.49

p[ISeJ7eM] 1.84xlO -3 48.9

p[LeJ4eI5] 2.05xlO :0 0.05

p[JeKeLeM] 2.07xlO 7 5.5xlO 4

p[JeGleH7] 1.84xlO 5 0.49

p[LePleI7] 1.84xlO -5 0.49

The probability of the undesired state (negation of SC2,1) occurring is the sum of all of

the minimal cut set probabilities:

P[A] ~ 3.76xlO-3.

From the relative quantitative importance of each minimal cut set, we are able to analyse

how the violation of an assumption may contribute to a hazard occurring. For instance,

dubious assumptions (those with a high probability of being violated) should not be part

of those minimal cut sets which have a high relative importance. This analysis allows us

to select, from a set of safety strategies, the most adequate strategy in terms of the trade

off between the safety requirements and the constraints imposed by the physical process.

This can be seen in the example, where the minimal cut sets which have the assumption

that a train is able to stop within one section as a primary event, have a higher relative

quantitative importance. This leads us to conclude that we should not have high

confidence in this safety strategy, unless we can modify it in order to guarantee that, when

requested, a train always stops (within one section) before entering the crossing section.

6.8. Concluding Remarks

In this chapter, we showed how the requirements methodology could be applied to the

analysis of a train set crossing. One of the benefits in applying the proposed methodology

165

was the identification of small domains of analysis in which a systematic approach to the

analysis could be performed, in terms of the specific issues of the system, and employing

the most appropriate formal method. However, we noticed that there are still some

issues that have to be improved. One of these issues is the need to find an operational

formalism which would enables the representation and analysis of systems which contain

both discrete and continuous variables. Another issue is to find a formal linkage between

the different formal methods employed in the analysis, which would facilitate the

verification of the specifications obtained at different levels of abstraction.

IGG

Chapter 7

Conclusions

From both structural and behavioural perspectives, software within a system is just

another component of the system. As the role of software has become more and more

crucial in the struggle to obtaining more efficient and less costly systems, the complexity

of software has increased without the (necessary) provision of means which would

provide confidence that required levels of software quality can be attained. In respect

of critical real- time systems, this is reflected by a lack of methods and techniques for

effectively facilitating software development, or to adequately assess software quality

while it is being developed.

In this thesis, we were particularly concerned with the phase of requirements analysis,

which lately has received more emphasis due to increased recognition of its importance

within the whole software development life cycle. Instead of proposing a general

approach for requirements analysis which could be applied across a wide range of

applications, we have restricted our approach to the class of systems known as process

control systems. The advantages of having approaches for requirements analysis specific

for a particular application domain have already been discussed in /Garlan 93/. One of

the characteristics of process control systems is that high levels of dependability are

associated with many of the application domains for this class of systems - for instance,

transport systems, chemical plants and nuclear reactors. With the replacement of

traditional technologies, such as hydraulic and analogue electronics, by computer based

systems, the challenge has been for computer based systems, especially software, to

achieve the same levels of dependability as the traditional techniques.

Essentially, the aim of the thesis is to propose an approach which systematizes the

process of requirements analysis and provides confidence that the required quality of the

167

resulting requirements specifications can be attained. In the following, we present the

achievements reported in this thesis by summarising its contents, and discuss how the

proposed approach could be extended.

7.1. Achievements and Limitations

In this thesis we propose a methodology for the requirements analysis of critical

real-time systems. The methodology deals with a range of issues which aim to provide

confidence that the level of risk, in terms of safety, associated with the requirements

specifications is acceptable. The issues that are dealt with in the methodology include:

a framework with distinct phases of analysis, a graph that depicts the relationship

between a set of safety specifications produced during the analysis, a set of formal

techniques appropriate for the issues to be analysed at each phase, and a set of

procedures for the risk (or safety) analysis of the safety specifications.

Instead of dealing with the whole range of system requirements, the analysis presented

here was restricted to the safety requirements of the system; however, the methodology

could be generalised to cover mission requirements. For the mission requirements,

instead of adopting a formal approach, widely used rigorous methods, such as SADT and

PSL/PSA, could be employed during the analysis. Separating and distinguishing the

mission and the safety requirements (which is essentially a logical distinction) has the

major benefit of allowing the system analyst to concentrate on what the system should

not do.

The basis of the whole approach is the hypothetical system structure discussed in chapter

2. This structure captures the three fundamental components that are present in any

system that has to be controlled: the plant, the operator and the controller. As already

pointed out, each of these components has its own specific role in a system. However,

depending on the level of abstraction being considered and the viewpoint adopted in the

analysis of a system, other system structures could be found where the components might

assume different roles.

168

Modelling of the passage of time, in terms of time structures, was discussed in chapter

3. Although the result of the study might look trivial, the study was nevertheless

important because it provided a better understanding of time structures. However, more

work needs to be done, mainly on the relationships between different time structures ,

perhaps in the direction of the work by Corsetti et aI/Corsetti 91/. This would be of

considerable benefit if analysis had to be performed for different time granularities.

Another issue discussed in chapter 3 was the effects that uncertainties in the time domain

can have upon the value domain, in particular on those systems which are based on

synchronised clocks.

For the class of systems under consideration, process control systems, the techniques to

be employed in requirements analysis need to have certain characteristics that are

unique to the type of application involved. One of these characteristics is that the

techniques employed have to handle both continuous and discrete variables -

consequently, we have to combine algebraic and logical analysis within the same

approach INerode 93/. In the approach presented in chapter 4, we adopted a slightly

more conservative approach by making discrete the behaviour of continuous variables,

and performing all of the analysis by using discrete mathematics. This is the role of the

E/A model: to describe the behaviour of systems by employing a restricted set of

primitive concepts, with first order logic as the underlying semantics. This set of concepts

can be incorporated in existing formal techniques, such as THL and PrT nets, or can form

core of new techniques, such as the PEA notation (which is not yet fully developed).

Another issue that has to be tackled is the need to provide a proper and unified semantics

for the techniques employed in the analysis, in order to facilitate the verification process

of the formal specifications. However, this is not enough; because of the high degree of

complexity of the requirements specifications, we need mechanical assistance (ideally

theorem provers) to perform the verification ofthe specifications. Neither ofthese issues

were discussed in the thesis.

169

A methodology for the analysis of safety requirements was presented in chapter 5. In the

following, we summarise the four key issues on which the methodology is based. The first

is the framework for requirements analysis, which provides a systematic approach to

conduct analysis. This framework partitions the requirements analysis into phases, and

defines dependencies between the phases. Each phase focuses on a specific domain of

analysis, which is obtained from the system structure, providing partial knowledge of the

overall system. During the analysis, a domain is viewed from different perspectives; each

perspective captures a specific description of the domain. The second issue is the directed

graph which records the safety specifications obtained from the requirements analysis;

nodes represent the specifications and edges denote the relationships between the

specifications. The graph provides a succinct representation which is amenable to formal

analysis. The third issue is the set of techniques to be employed for a specific domain of

analysis; from this set a technique is selected according to the properties of interest of

that domain (and the perspective adopted). This leads to the utilization of a range of

specialized informal and formal techniques. The problem of linking specifications

obtained from different techniques is tackled by providing a primitive set of modelling

concepts that are appropriate for the properties under analysis. The fourth issue is a

framework for the safety analysis of the safety specifications which provides the

confidence that the risk associated with the requirements specifications is acceptable.

The quality of the requirements specifications is confirmed by firstly, applying

verification and validation techniques to increase confidence that the specifications are

consistent and maintain safe behaviour, and secondly, conducting a safety analysis (or

risk analysis) of the requirements specifications. The approach enables the integration

of formal techniques with traditional safety techniques to yield a coherent method for

risk analysis.

The feasibility of the whole approach was demonstrated by applying the methodology to

the train set case study, presented in chapter 6. Although the train set can be considered

a "toy" example, the experience obtained from the application of the proposed

methodology in other case studies / Anderson 93, de Lemos 93, Saeed 93a/, some of them

170

real systems, has shown that the complexity of the analysis depends on the assumptions

made about the behaviour of the system. Usually, in order to reduce the complexity, the

tendency has been to make strong assumptions about the behaviour of systems. In the

train set case study, we have attempted to reduce the number of assumptions to those

that are essential.

At the current stage ofthe proposed approach, a question that could be asked is whether

the provision of tools to implement the different issues of the methodology is envisaged?

It is still too soon to go this way, and one reason is that there are plenty ofrequirements

tools available on the market that fall short of their objectives. Our aim is still to obtain

a complete understanding of the process of requirements analysis - essentially, to search

for improved abstraction concepts that can be used in the effective modelling and

analysis of software requirements.

7.2. The Current State of the Work

In the following, we propose an approach which makes systematic the analysis of

software requirements for application - specific domains, for the class of process control

systems. From a generic system structure, common to an application domain, we obtain

frameworks that guide analysts in the production and assessment of requirements

specifications. The general approach is illustrated by presenting a framework for the

analysis of safety requirements. By repeating some of the contents of the previous

chapters, we seek to give a unified view of the future direction of the methodology for

the requirements analysis of critical real- time systems proposed in this thesis.

Within the class of process control systems, the various types of applications can be

grouped into application domains, such as chemical, aerospace, nuclear and railways,

whose system structures, defined in terms of system components and interactions

between components, have a great degree of similarity. In terms of requirements

analysis, perhaps the main advantage, amongst several others, of grouping related

systems into application domains is that to perform the requirements analysis for a

171

specific system should be easier, since the analysis will be based on a pre-defined set

of simple abstractions IGarlan 93/.

The proposed approach systematizes the requirements analysis of process control

systems that are within the same application domain. The approach relies on obtaining

application - specific frameworks for requirements analysis that enhance the visibility of

the requirements process, and guide the analysts in the production and assessment of the

requirements specifications. The phases of these frameworks and their ordering,

correspond, respectively, to the domains of analysis and their interactions, which are

obtained by performing successive refinements on a generic system structure. The

components identified at each refinement step provide the domains of analysis from

which the requirements analysis is performed through multiple perspectives

/Easterbrook 93, Finkelstein 92, Leite 91/. In other words, while a domain of analysis

determines the scope of the system to be analysed, a perspective of analysis determines

the scope of analysis to be performed on the domain. Both the domain and perspective

of analysis have the aim of dividing up the task of requirements analysis of the whole

system into manageable parts.

Although the tendency in system development has been the re-utilization of

specifications from other similar systems, in the approach presented we propose the

re- utilization of the same framework for the requirements analysis of systems within the

same application domain. In order to exemplify the feasibility of the general approach

for requirements analysis being proposed, we discuss in the following a framework for

the analysis of safety requirements in critical real-time systems Ide Lemos 93, Saeed

93b/.

7.2.1. System Structure and Refinement Process

The grouping of systems into application domains enables systems with common

structures to be identified. In order to obtain a structure for a system, successive

refinements are performed to the system and its components (recursively, a component

172

can be considered to be another system). These refinements are stopped when the

components are considered as being atomic ILee 901. With each step in the refinement

process we associate a level of abstraction which represents a particular view of the

system structure, suppressing detail that is irrelevant to that view, but enabling the

components of the system and their interactions to be identified. The components ofthe

system are what make the system do what it does, and the interactions between the

components prescribe the ways in which the components are connected. A detailed

description of the interaction between components consists of the definition of the

interface between the components (structural part) and the behaviour observed at that

interface (dynamic part). To model the behaviour of a system, and its components, the

following variables are introduced: input variables (vu) and output variables (Vy) which

describe the external behaviour of the system, and state variables (vx) which describe the

state of the system. A variable is represented by a function which maps time (1) into a

set of values (Vv) of the variable, that is, viet): T - VV(

7.2.2. Perspectives and Domains of Analysis

In our approach, the process of requirements analysis is partitioned in terms of

perspectives and domains of analysis. A perspective of analysis is a set of facts observed

and modelled according to a particular modelling aspect. Perspectives capture a partial

description of the system (or domain) without prescribing the components of those

descriptions. The integration of a set of perspectives is called a view, which is obtained

by a view-constructing process !Leite 91/. A domain of analysis is established from the

components, or set of components, obtained from the structure of the system. The

analysis performed in a domain, identifies the entities of that domain, the properties

associated with these entities in terms of their standard, exceptional and failure

behaviour, and the interactions between the entities. The entities identified for a domain

of analysis, related to a particular level of abstraction, are considered to be the

components of the next refinement level.

173

The different perspectives, from which a system is viewed, can establish different

domains of analysis. Depending on the perspective of analysis adopted a system will

present a different partial structure. However, by combining all the perspectives from

which the analysis of the system is performed we obtain the complete structure of the

system.

7.2.3. Frameworks

Fundamental for the definition of a framework for the requirements analysis, for a

specific application domain, are the components and their interactions which describe

a common system structure. The components define the domain of analysis for a system,

and the interactions between the components define the dependencies that exist

between the domains of analysis. A framework for requirements analysis is defined in

terms of a set of phases of analysis and an ordering relation between these phases. Each

phase corresponds to a domain of analysis and the ordering relations follow from the

dependencies that exist between the domains of analysis. Each phase of analysis consists

of the following notions.

• Input specifications - the specifications produced from previous phases of the

framework and the requirements imposed on the entities of the domain that are

used as the basis for analysing those entities.

• Support models - the models that are constructed to support the analysis in order

to identify the entities of the domain, capture their assumed behaviour and

describe their interactions.

• Output specifications - specifications produced during this phase that describe the

required behaviour of the entities of the domain.

A framework systematizes the requirements analysis of an application domain, by

organizing the analysis of the requirements into smaller domains of analysis with clearly

delineated relationships. This enables analysts to systematically consider the

174

requirements imposed over the different domains of analysis, and guides the analysis of

interactions between the requirements of related domains. Although the phases of a

framework are obtained from the system structure, it is also valid to say that the structure

of the system is refined as a result of the analysis performed at each phase of the

framework.

As part of the methodology, also there exists another framework to conduct the risk (in

terms of safety) analysis in parallel with each phase of requirements analysis, and this has

the aim of ensuring that the risk associated with the safety specifications produced during

each phase is acceptable. In the case where the risk associated with a safety specification

is not deemed acceptable the safety specification must be modified. The overall

approach to safety analysis considers both qualitative analysis and quantitative analysis

/Saeed 93b/. The safety analysis to be performed for each phase of the process of

requirements analysis is restricted to the information scoped by the level of abstraction

ofthat phase, thereby limiting the effort required during in the safety analysis. The safety

analysis for safety specifications, apart from analysing the normal behaviour must

examine the failure behaviours of the safety specifications to determine their impact on

safe behaviour. Our concern is with devising a systematic approach to examine failure

behaviours of safety specifications, based on the principles that underpin traditional

safety analysis techniques.

7.2.4. Techniques for the Analysis

The different activities performed during requirements analysis demand the utilization

of a set of techniques whose features and expressive power match the characteristics of

the activities. Selecting an appropriate technique for a specific activity allows emphasis

to be placed on pertinent characteristics of the domain and enables the technique to

work to its own strengths. The phases of analysis defined by the frameworks facilitate the

selection of the most appropriate techniques. By examining the characteristics of the

support models and output specifications, the properties that appropriate techniques

must provide can be determined. As an example of identifying appropriate techniques,

175

we consider the role of formal support during requirements analysis. Formal support

consists of formal techniques (or notations) that are used to represent and reason about

the behaviour of the entities of the domain. In the context of our work, two classes of

formalisms are identified: property-oriented and operational. Property-oriented

formalisms specify behaviour in terms of the properties that are exhibited by an entity.

Operational formalisms specify behaviour by constructing an executable model of the

domain in terms of mathematical structures such as tuples, relations, functions, sets and

sequences. For each phase of analysis, the properties of the entities and the interactions

between entities must be determined. This suggests, respectively, the use of both

property- oriented and operational formalisms. In general, the degree of utilization of

one class of formalism rather than the other is related to the level of abstraction being

considered. At higher levels of abstraction there is a great tendency to use

property-oriented formalisms, whereas for lower levels the tendency is reversed.

7.2.5. Analysis of Safety Requirements for Process Control Systems

In the following, we discuss the concepts presented in the previous sections in the context

of an approach for the analysis of safety requirements for process control systems. To

facilitate the presentation we adopt a system structure that is typically used for the class

of systems under consideration. First, we identify the levels of abstraction associated with

the adopted system structure, then we discuss the relationship between the domains of

analysis and the structure of a system, and finally, we discuss a framework obtained from

the adopted system structure.

The initial step is to enumerate the levels of abstraction identified for the adopted system

structure, shown in figure 7.1. At the highest level of abstraction - the environment level,

the system is identified within its environment, that is, the interactions between the

system and its environment are stipulated. At the next level of abstraction - the system

level, the components of the system and their interactions are identified. The adopted

system structure defines three basic components: the physical process or plant, the

controller, and the operator. At the next level of abstraction - the components level, the

176

following levels of abstraction are obtained from the components previously defined: the

plant level, the controller level, and the operator level. For each of these levels of

abstraction, other components are identified and recursively refined. For example, at the

controller level, apart from the controlling system, which can be a computer based system,

we identify those components of the controller that support the interfaces of the

controller with the plant and the operator, which are referred to, respectively, as the

plant interface and the operator interface. The levels of abstraction associated with these

components are the plant inteiface level and the operator inteiface level. Figure 7.1 shows

a partial system structure obtained through successive refinements. The boxes represent

the components of the system, and the arrows represent the interactions between the

components (that is, the inputs and outputs of the components).

At the level of abstraction of the environment the entity of analysis is the system, the

behaviour of the system is described in terms of its input/output variables which are the

state variables of the environment. At the level of abstraction of the system the entities

of analysis are the plant, operator and the controller, and the input/output variables of

these components (or sub-systems) are the state variables of the system. The same

principle of refinement is applied to the other levels of abstraction; once the entities of

a particular domain of analysis are defined these become domains of analysis for the next

+ I
-'-

J Operator I
l Interface J

t • -- r-- -~ Controllerl--I-·
J Controlling I
I System J

f ~
J Plant I

Plant . I Interface I

System System C:ntrJller

Environment Environment System

a. Environment level b. System level c. Component (Controller) level

Figure 7.1. Levels of abstraction in process control systems.

177

level of abstraction. For instance, from figure 7.1 we notice that the components of the

controller: the plant interface, operator interface and the controlling system - are to be

considered the domains of analysis in the next level of abstraction.

Figure 7.2 illustrates a framework for the requirements analysis of process control

systems, obtained by adopting the perspective of safety. The boxes represent the phases

of the framework, and the arrows represent the information flows and ordering relation

between the phases. The aim of the framework is to obtain the safety requirements

specifications of the controlling system (a component of the controller), hence the need

to perform the controller analysis from the perspectives of the plant and operator. This

is stipulated in figure 7.2, by having as input specifications to the phase of controller

analysis, the specifications output from the phases of plant analysis and operator

analysis.

The specifications produced at the different phases of the requirements analysis are

organized into a Safety Specification Graph (SSG). The structure embodied in modes of

operation can be reflected in the organization of the requirements specifications by

constructing a separate SSG for each mode. An SSG is a directed acyclic graph, in which

the vertices represent the safety specifications and the edges denotes relationships

between the specifications. For a mode of operation with p accidents, the SSG consists

ofp component graphs.

A safety specification is composed of the following elements: a safety strategy, a set of

assumptions (hypotheses on the behaviour of the system at the level of abstraction being

considered), and system states deemed unsafe for the level of abstraction being

considered. The safety strategies are justified in terms of the assumptions which should

hold for the strategy to be valid, and the system states in which the strategy is expected

to be satisfied. A safety integrity level is associated with each safety specification, which

must be inherited by related safety specifications at a lower level of abstraction /MoD

91/. Relative weights can be associated with the safety specifications of the Same layer

in order to provide a notion of relative risk associated with alternative safety

178

Environment
Analysis

~Viranme~
/safety specification\

/ \
Plant Analysis Operator Analysis

PILt opeLtor
Safety Specification Safety Specification

. . ~ Plant Interface Operator Interface ... ,. ~

.~ Analysis Analysis ..
~ Plant Interface operat~erface

Safety SPecific~ 7ty Specification

Control System
Analysis

contra} System
Safety S~cification

Controller Analysis

System Analysis

Figure 7.2. A framework for the analysis of the safety requirements.

specifications. However, the relative weights do not give the necessary assurance that a

particular safety specification, or set of safety specifications, are able to attain the

required safety integrity level.

The SSG encodes the relationships between safety specifications at consecutive layers

of component graphs that must be confirmed to ensure that the specifications maintain

safe behaviour. A relationship consists of the following elements: constraints

(restrictions imposed on the safety specifications from guide-lines and standards, i.e.

requirements that are not negotiable), and evidence (claim limits that are associated

179

with the techniques employed to perform the refinement of the safety specifications) to

show that the techniques are effective in preserving the safety integrity levels associated

with the safety specifications. This evidence is obtained by applying, for instance, formal

proofs or rigorous analysis depending on the safety integrity levels demanded. The

formal refinement process should not be used as the only evidence that a safety

specification is able to preserve the safety integrity levels dictated from the safety

specifications above. Additional analysis must be conducted in order to show that a safety

specification does not violate the safe behaviour of the system by influencing hazards

from which it is not derived.

When more than one safety specification is related to a specification in a previous layer,

then either the safety specifications are exclusive alternatives and a choice will have to

be made in later phases of development to select and refine a single strategy, or the

strategies complement each other and all are needed to attain sufficient confidence that

the risks are acceptable. These situations are distinguished by annotating the edges with

a" ED" in the exclusive case, and a "0" in the complementary case. The SSG of a system

provides support in conducting the risk analysis of safety specifications, provides the

basis for a systematic approach to modifying the specifications, and facilitates the

analysis of dependencies of the specifications on the assumptions.

7.2.6. Overview of the Approach

In the following we summarise how a framework for the requirements analysis can be

obtained from the system structure while performing the requirement analysis of the

system. Once a framework is obtained, it can be employed in the requirements analysis

of process control systems that are in the same application domain.

Within a generic system structure, for a specific application domain, the levels of

abstraction provide the means from which the system components and their interactions

are identified. From the system components, domains are established from which the

analysis is performed from different perspectives (e.g. mission and safety), and from the

180

interactions between the components the interactions between the domains of analysis

are identified. Depending on the perspective adopted during the analysis of a domain,

different system structures can be obtained (e.g. mission and safety controller). From the

domains of analysis and their interactions, we define, respectively, the phases of a

framework and their ordering. A framework enables a more systematic approach to be

followed for the requirements analysis of other systems in the same application domain.

For each phase of the framework the entities of analysis are identified from the analysis

performed on the specifications obtained from previous phases ofthe framework and the

requirements imposed on the domain. As a result of the analysis we specify the

properties of the entities and the interactions between the entities.

7.3. Future Work

In the short and medium term, requirements analysis for critical real-time systems will

require currently available solutions (in terms of methods and techniques) that are

already tailored for a particular subject and type of analysis to be conducted; an example

of such a solution is the approach proposed in this thesis, which exploits a set of different

methods and techniques. However, in the long term, alternative solutions should be

envisaged in order to provide a common approach that is independent ofthe subject and

type of analysis to be conducted, in a similar way to the pivotal role that differential and

integral calculus has in conducting different kinds of analysis for different systems across

a range of fields of engineering. Although this aim might not be achieved for a wide

spectrum of problems, we believe that solutions can be found for specific topics, such as

the methods and techniques for conducting safety analysis in both application and

software domains. In the following we describe, in the context of our work, the activities

that will be conducted in the future, in order for software development (and in particular,

requirements analysis) to become more like an engineering discipline.

Our methodology for requirements analysis of critical real-time systems aimed to

provide an approach in which requirements analysis could be conducted in a more

systematic and effective way. The purpose was not so much to present a solution to the

181

whole problem, but to concentrate on a set of issues that appeared to be most relevant

for producing of the requirements specifications for process control systems. For this

reason, the work described in this thesis could be expanded in several distinct ways,

depending on the focus to be given. However, instead of describing future work in terms

of issues that are needed to obtain a complete approach for requirements analysis, we

have chosen to concentrate on those issues that can be tailored for the type of analysis

to be conducted and for the class of systems under consideration.

The issues discussed in this thesis can be summarized as the following list of topics.

• The modelling of the system and its environment.

• An approach to conducting the requirements analysis which consists of: a method

for conducting the analysis through different domains, a process of analysis that

establishes the steps that should be followed at each domain, and a set of

techniques which are employed (depending on the domain and the type of analysis

to be performed).

• An approach for conducting safety analysis which is conducted in parallel with the

requirements analysis and which aims to increase assurance that the level of risk

associated with a requirements specification is acceptable.

• A documentation scheme which provides a concise and organized means for

documenting the product of the requirements analysis, and provides the means by

which the safety analysis is conducted.

In the following we present the future work that will be conducted in each of these topics.

The activity of domain modelling is concerned with the description of the structure and

behaviour of a particular domain (a scope of analysis). One of the important issues in

domain modelling is the provision of appropriate modelling abstractions that support the

analysis of both behaviour and structure of a domain. In the proposed approach, the

modelling abstractions being used depend on the methods and techniques being

182

employed. This causes difficulties, fundamentally, when there is a need to share

information between the different analyses which are conducted when employing

methods and techniques which are based on different modelling abstractions. A solution

that we currently envisage is the utilization of a modelling abstraction based on objects.

However, the principles involving the utilization of objects at the requirements analysis

phase should be distinct from those applicable in the design (object-oriented design)

and implementation (e.g. C+ +) phases. A reason for this distinction is that while during

design and implementation the concern is with computational objects and the activities

associated with each object, during requirements the concern is essentially with the

physical objects and the identification of properties associated with those objects. The

work to be conducted in this topic should initially consider how objects, as a modelling

abstraction, can be exploited in domain modelling for the purpose for conducting

requirements analysis. Furthermore, the work should also consider the provision of

means which can facilitate the linkages, in terms of domain modelling, between the

requirements analysis and the other phases of development.

In terms ofrequirements analysis for critical real- time systems, there are several topics

for future research. In order to control and manage the complexity of the requirements

analysis process, we can make use of the viewpoint analysis mechanism to determine the

scope of the system to be analysed, and partition the analysis of the system into

manageable parts. The mechanism of viewpoint analysis has been shown to be useful in

general information processing systems /Easterbrook 93, Finkelstein 92, Leite 91/,

however, nothing very concrete has been done in process con trol systems to demonstrate

its effectiveness.

A major problem that we currently encounter when applying the proposed process for

the requirements analysis is the identification of the appropriate levels of abstraction

from which the analysis should be conducted. These levels of abstraction are established

from an analysis of the system structure in terms of its components. In order to assist the

analyst in the task of identifying the appropriate levels of abstraction, we envisage the

183

possibility of using knowledge based systems to provide support in identifying the

relevant components of a particular level of abstraction of the system. Such knowledge

based systems would need to be adequately embedded in the process of conducting

requirements analysis.

In the approach proposed in this thesis, the method for conducting the requirements

analysis, which leads to production of software for the controller of the system, has only

considered the plant and the interface between the plant and the controller. However,

this approach needs to be extended in order also to consider the operator and the

operator interface, and will need to embrace an understanding of human error and the

formulation of human error tolerance requirements, so as to ensure that safety is

preserved in the presence of human errors. A challenging issue is how to incorporate

established methods and techniques employed in the analysis of human factors within

the methodology presented here. Recent work has already been performed on this topic,

with some promising results.

During the presentation of our approach to conduct requirements analysis, we have only

identified the phases in which the analysis should be conducted, whereas the individual

stages in which the analysis is to be conducted during each phase were not fully described.

Although the entities of analysis are distinct from phase to phase, there are certain

activities that are common to every phase. For the future, the aim should be to identify

and model (by using, for example, SADT diagrams /Ross 801) the process of analysis to

be associated with every phase of analysis, which should consist of: the input and output

specifications, the activities to be conducted, and the interactions between the activities.

The intent behind the modelling of the method and process for conducting the

requirements is to obtain a systematic approach from which requirements analysis can

be conducted. Instead of having a "product-oriented" approach for conducting the

requirements analysis, we aim to establish a "process-oriented" approach which can be

employed for many different systems within the same application domain. The ultimate

objective is twofold; apart from being able to re-use the proposed approach (more

184

specifically the framework) to conduct the analysis of safety requirements across

different systems within the same application domain, we also aim to be able to reuse

some of the safety specifications that are produced during requirements analysis. In our

understanding, whether these aims can be achieved will depend on the degree of

modularity that can be obtained when establishing the levels of abstraction which are

employed during the analysis.

The migration of traditional safety analysis techniques into software development has

the potential to provide a good basis for an integrated approach to the overall safety

analysis of both the application domain and the software domain. However, the

application of traditional techniques tends to be less effective, and more complex, when

applied to software because of the necessary parameterization or customization of the

techniques. A more fundamental approach would be first to understand the basic

(semantic) notions of the safety analysis techniques, and then investigate how such

notions can be combined with the formal methods currently employed in the software

domain. A more radical theme is to devise safety analysis techniques based on novel

abstraction notions, such as object-oriented methods, that are appropriate for both the

application and software domains.

Concerning documentation of the requirements specifications, although we have

proposed a safety specification graph in which the specifications are recorded in a

structured form, not much has been discussed about how such structure could be fully

exploited in order to achieve a high degree of traceability between the specifications. The

fact that all the safety specifications are formally recorded can be exploited in order to

obtain a degree of semantic traceability for the specifications - a major advance on the

more commonly found syntactic traceability. (Syntactic traceability is based on links

established between the labels used to identify the elements of the specifications, while

semantic traceability is based on the relationships - or transformation functions -

established between the information contained within the specifications.) However, it

will be an almost impossible task to achieve full semantic traceability between the safety

185

specifications produced at different levels of abstraction and perhaps written in different

notations. A more pragmatic approach is to aim for a "quasi-semantic" traceability

which would entail establishing some form of semantic relationship between a subset of

the information contained within the specifications.

An important aspect that should be emphasized in future reviews of the proposed

methodology is the provision of means that would allow the requirements for software

to be expressed and analysed while the system in which it is to be embedded is still being

designed. This reflects the fact that software has become ubiquitous in process control

systems, which implies that the design of such systems should embody the software

perspective. This requires a more integrated approach to system design, with the

necessity of sharing information generated from different engineering domains. In order

to achieve this aim, information models should be provided to allow the exchange of

information produced by different methods and techniques that are specific for each of

the engineering domains. However, mechanisms should also be provided to restrict the

access to the information that is relevant for the analysis to be conducted. The ultimate

aim of having an integrated approach for requirements analysis of critical real-time

systems might only be achieved with the availability of tools that would guide the process

of conducting the analysis.

In our judgement, some of the issues within the approach proposed here for the analysis

ofthe safety requirement of a critical real-time system, could equally be applied to the

broader activities of requirements analysis that were not discussed in this thesis, or even

applied to later phases of software development.

186

References

/Allen 83/ J. F Allen. "Maintaining Knowledge about Temporal Intervals".

Communications of the ACM Vol. 26 (11). November 1983. pp 832-843.

/Allen 84/ J. FAllen, P. J. Hayes. ':A,. Common-Sense Theory of Time". Procedings of the

9th IntemationalJoint Conference on Artificial Intelligence. Los Angels, CA. August 1985.

pp 528-531.

/Anderson 93/ T Anderson, R. de Lemos, J. Fitzgerald, A. Saeed. "On Formal Support

for Industrial-Scale Requirements Analysis". Hybrid Systems. Lectures Notes in

Computer Science Vol. 736. Eds. R. L. Grossman et al. Springer- Verlag. 1993. pp

426-451.

/Astrom 85/ K. J. Astrom. "Process Control - Past, Present and Future". IEEE Control

Systems Magazine Vol. 5 (3). August 1985. pp 54-60.

/Avizienis 87/ A. Avizienis, D. E. Ball. "On the Achievement of a Highly Dependable and

FauIt-Tolerant Air Traffic Control System". IEEE Computer Vol. 20 (2). February 1987.

pp 84-90.

/Beyaert 81/ B. Beyaert, G. Florin, P. Lonc, S. Natkin. "Evaluation of Computer Systems

Dependability using Stochastic Petri Nets". Proceedings of the 11th IEEE Intemational

Symposium on Fault-Tolerant Computing. Portland, Maine. June 1981. pp. 79-81.

/Barroca 92/ L. Barroca. "Using Real Time Logic to Prove Properties about Timed

Statecharts and Transition Systems". Proceedings of the 2nd Intemational Workshop on

Responsive Computer Systems. Saitama, Japan. October 1992. pp 28-38.

/Bishop 1986/ P. Bishop. "Invariants as an Alternative to Petri Nets for Safety Design".

EWICS TC7, WP 498. March 1986.

187

!Boehm 81/B. W. Boehm. Software Engineering Economics. Prentice-Hall. 1981.

ICassidy 8511. Cassidy, et al. "Research Needs in Manufacturing Systems". IEEE Control

Systems Magazine Vol. 5 (3). August 1985. pp 11-13.

IChandra 91/ V. Chandra, M. R. Verma. '~Fail Safe Interlocking System for Railways".

IEEE Design & Test of Computers, Vol. 8 (1). March 1991. pp 58-66.

IChintamaneni 881 P. R. Chintamaneni, P. lalote, Y. - B. Shieh, S. K. Tripathi. "On Fault

Tolerance in Manufacturing Systems". IEEE Network Vol. 2 (3). May 1988. pp 32-39.

ICIGRE 831 "Interim Rep0l1 on Computer Based Protection and Digital Techniques in

Substations". WG 34.02. CIGRE SC 34. Tokyo. November 1983.

ICombacau 901 M. Combacau, M. Courvoisier. '~ Hierarchical and Modular Structure

for F.M.S. Control and Monitoring". Proceedings of the 1st Intemational Conference on

AI, Simulation and Planning in High Autonomy Systems. Tucson, AZ. March 1990.

IConner 901 K. N. R. Conner, et at. '~ Train Control System for the Newcastle University

Computing Laboratory Model Railway". Documentation of the Group Project for the MSc

in Computing Software and Systems Design. Computing Laboratory. University of

Newcastle upon Tyne. April 1990.

ICorsetti 91/ E. Corsetti, et al. "Dealing with Different Time Scales in Formal

Specifications". Proceedings of the 6th Intemational Workshop on Software Specification

and Design. Como, Italy. October 1991. pp 92-101.

ICristian 891 F. Cristiano "Exception Handling". In Dependability of Resilient Computing

Systems. Ed. T Anderson. Blackwell Scientific Publications. 1989. pp 365-397.

ICunningham 851 R. Cunningham, A. C. W Finkelstein, S. 1. Goldsack, T Maibaum,

c.Potts. "Formal Requirements Specification - The Forest Project". IEEE Workshop on

Specification and Design. 1985. pp 186-191.

188

/Dasarathy 851 B. Dasarathy. "Timing Constraints of Real- Time Systems: Constructs

for Expressing Them, Methods of Validating Them". IEEE Transactions on Software

Engineering Vol. SE-ll (1). January 1985. pp 80-86.

/Dauchy 91/ P. Dauchy, B. Marre. "Test Data Selection for the Algebraic Specification of

a Module of an Automatic Subway". Laboratoire de Recherche en Informatique

Research Report 638. Universite de Paris-Sud, Orsay. January 1991.

Ide Lemos 901 R. de Lemos, P. D. Ezhilchelvan. ''l\.greement on the Group Membership

in Synchronous Distributed Systems". Proceeding of the 4th International Workshop on

Distributed Algorithms. Lectures Notes in Computer Science Vol. 486. Eds. J. van

Leeuwen, N. Santoro. Springer-Verlag. Bari, Italy. September 1990. pp 353-372.

Ide Lemos 91/ R. de Lemos, A. Saeed, T. Anderson. "Value Inconsistencies due to Time

Uncertainties". IFAC Workshop on Distributed Computer Control Systems. Semmering,

Austria. September 1991. pp 1-6.

Ide Lemos 92al R. de Lemos, A. Saeed, T. Anderson. ''l\nalysis of Timeliness

Requirements in Safety-Critical Systems". Proceedings of the Symposium in Formal

Techniques ill Real- Time alld Fault- Tolerant Systems. Lectures Notes in Computer

Science Vol. 571. Ed. J. Vytopil. Springer-Verlag. Nijmegen, Netherlands. January

1992. pp 171-192.

Ide Lemos 92bl R. de Lemos, A. Saeed, T. Anderson. ''l\. Train Set as a Case Study for

the Requirements Analysis of Safety-Critical Systems". The Computer Journal. Vol. 35

(1). February 1992. pp 30-40.

Ide Lemos 92cl R. de Lemos, A. Saeed, A. Waterworth. "Exception Handling in

Real - Time Software from Specifica tion to Design". Proceedings of the 2nd International

Workshop Oil Responsive Computer Systems. Saitama, Japan. October 1992. pp 108-121.

189

Ide Lemos 93/ R. de Lemos, A. Saeed, T Anderson. "Requirements Analysis for

Safety-Critical Systems: A Chemical Batch Processing Example". Department of

Computing Science TR 469. University of Newcastle upon Tyne, UK. December 1993.

Ide Roever 91/W.- P. de Roever. "Foundations of Computer Science: Leaving the Ivory

Tower". Bulletin of the European Association for Theoretical Computer Science. Number

44. June 1991. pp 455-492.

Ide Silva 89/ C. W. de Silva. Control Sensors and Actuators. Prentice- Hall. 1989.

/Ericsson 81/ C. A. Ericsson. "Software and System Safety". Proceedings of the 5th

Intemational System Safety Conference. Vol. 1, part 1, Denver, 1981. pp III - B-1 to

III-B-11.

/Easterbrook 93/ S. Easterbrook. "Domain Modelling with Hierarchies of Alternative

Viewpoints". Proceedings of the IEEE Intemational Symposium on Requirements

Engineering. San Diego, CA. January 1993. pp. 65-72.

/Ezhilchelvan 90/ P. D. Ezhilchelvan, R. de Lemos. ''A Robust Group Membership

Algorithm for Distributed Real-Time Systems". Proceedings of the 11th Real-Time

Systems Symposium. Lake Buena Vista, FL. December 1990. pp 173-179.

/Fidge 92/ C. J. Fidge. "Specification and Verification of Real-Time Behaviour using Z

and RIT'. Proceedings of the Symposium in Formal Techniques in Real- Time and

Fault-Tolerant Systems. Lectures Notes in Computer Science Vol. 571. Ed. J. Vytopil.

Springer-Verlag. Nijmegen, Netherlands. January 1992. pp 393-409.

/Finkelstein 92/ A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke.

"Viewpoints: A Framework for Integrating Multiple Perspectives in System

Development". Intemationalloumal of Software Engineering and Knowledge Engineering

Vol. 2 (1). March 1992. pp.31-57.

/Franklin 86/ G. F. Franklin, J. D. Powell, A. Emami-Naeini. "Feedback Control of

Dynamic Systems". Addison- Wesley. 1986

190

/Garlan 93/ D. Garlan. "Domain Specification Require First Class Connectors".

Proceedings of the IEEE Intemational Symposium on Requirements Engineering. San

Diego, CA. January 1993. pp. 78.

/Genrich 87/ H. Genrich. "Predicaterrransition Nets". Petri Nets: Central Models and

their Properties. Lectures Notes in Computer Science Vol. 254. Eds. W Brauer, W Reisig,

G. Rozemberg. Springer- Verlag. 1987. pp 206-247.

/Ghezzi 90/ C. Ghezzi, D. Mandrioli, A. Morzenti. "TRIO: A Logic Language for

Executable Specifications of Real- Time Systems". foumal of Systems and Software Vol

12. June 1990. pp 107-123.

/Ghezzi 91/ C. Ghezzi, D. Mandrioli, S. Morasca, M. Pezze. "A Unified High-Level

Petri Net Formalism for Time-Critical Systems". IEEE Transactions on Software

Engineering Vol. SE-17 (2). February 1991. pp 160-172.

/Goldsack 91/ S. J. Goldsack, A. C. W Finkelstein. "Requirements Engineering for

Real-Time Systems". lEE Software Engineeringfoumal. May 1991. pp 101-115.

/Gordon 88/ M. J. C. Gordon. "Mechanizing Programming Logics in Higher Order Logic".

Computer Laboratory, University of Cambridge Technical Report 145. Cambridge, UK.

September 1988.

/Gorski 86/ J. Gorski. "Design for Safety using Temporal Logic". SAFECOMP'86. Sarlat,

France. October 1986. pp 149-155.

/Goswami 92/ A. Goswami, M. Bell, M. Joseph. "ISL: An Interval Logic for the

Specifications of Real- Time Programs". Proceedings of the Symposium in Formal

Techniques in Real-Time and Fault-Tolerant Systems. Lectures Notes in Computer

Science Vol. 571. Ed. J. Vytopil. Springer-Verlag. Nijmegen, Netherlands. January

1992. pp 1-20.

/Hachiga 92/ A. Hachiga. "The Concepts and Technologies of Dependable and

Real-Time Computer Systems for Shinkasem Train Control". Proceedings of the 2nd

191

International Workshop on Responsive Computer Systems. Dependable Computing and

Fault-Tolerant Systems. Eds. Y. Kakuda, H. Kopetz. Springer-Verlag. Saitama, Japan.

October 1992. (to appear.)

!HareI87/ D. Harel. "Statecharts: A Visual Formalism for Complex Systems". Science

of Computer Programming, Vol 8. 1987. pp 231-274.

!Harel 90/ D. Harel, et. al. "Statemate: A Working Environment for the Development

of Complex Reactive Systems". IEEE Transactions Oil Software Engineering Vol. SE-16

(4). April 1990. pp 403-414.

!He 90/ X. He, J. A. N. Lee. "Integrating Predicate Transition Nets with First Order

Temporal Logic in the Specifica tion and Verifica tion of Concurren t Systems". Journal on

FonnalAspects of Computing. Vol. 2 (3).1990. pp 226-246.

!Heninger 80/K. L. Heninger. "Specifying Software Requirements for Complex Systems:

New Techniques and Their Application". IEEE Transaction on Software Engineering Vol.

SE-6 (1). January 1990. pp 2-13.

!Henley 92/ E. J. Henley, H. Kumamoto. "Probabilistic Risk Assessment". IEEE Press.

1992.

!Ho 89/ Y. C. Ho. "Dynamics of Discrete Event Systems". Proceedings of the IEEE Vol.

77 (1). January 1989. pp 3-6.

!Hoare 85/ C. A. R. Hoare. "Communicating Sequential Processes". Prentice-Hall

International. 1985.

/ICE 85/ The Institution of Chemical Engineers. "Hazard Identification Procedures".

Risk Analysis in the Process Industries. England. 1985. pp 7-19.

/Jaffe 91/ M. S. Jaffe, N. G. Leveson, M. P. E. Hiemdahl, B. E. Melhart. "Software

Requirements Analysis for Real-Time Process-Control Systems". IEEE Transactions

on Software Engineering Vol. SE-17 (3). March 1991. pp 241- 258.

192

/J ahanian 86/ F. J ahanian, A. Mok. "Safety Analysis of Timing Properties in Real- Time

Systems". IEEE Transaction on Software Engineering Vol. SE-12 (9). September 1986.

pp 890-904.

/J ahanian 88a/ F. J ahanian, A. K. Mok, D. A. Stuart. "Formal Specifications of Real- Time

Systems". Department of Computer Sciences TR - 88 - 25. University of Texas at Austin,

TX. June 1988.

/Jahanian 88b/ F. Jahanian, D. A. Stuart. '~ Method for Verifying Properties of

Modechart Specifications". Proceedings of the 9th Real-Time Systems Symposium.

Huntsville, AL. December 1988. pp 12-21.

/Jensen 85/ E. Jensen, D. Locke, H. Tokuda. '~ Time- Driven Scheduling Model for

Real- Time Operating Systems". Proceedings of the 6th Real- Time Systems Symposium.

San Diego, CA. December 1985. pp 112-122.

/Jones 86/ C. B. Jones. "Software Development: A Rigorous Approach". Prentice- Hall.

Hemel Hempstead, UK. 1986.

/Kirrmann 87/ H. Kirrmann. ')4 Method for the Design of Embedded Faul-Tolerant

Computers for Process Control and a Design Example". Technical Report CRB 87 -70 C.

Brown- Boveri. Baden, Switzerland. April 1987.

IKopetz 87/ H. Kopetz, W Ochsenreiter. "Clock Synchronization in Distributed

Real-Time Systems". IEEE Transactions on Computers Vol. C-36 (8). August 1987. pp

933-940.

IKopetz 89/ H. Kopetz, et al. "Distributed Fault-Tolerant Real- Time Systems". IEEE

Micro 9 (1). February 1989. pp 25-40.

IKopetz 89/ H. Kopetz, G. Grunsteidl, J. Reisinger. "Fault-Tolerant Membership

Service in a Distributed Real- Time System". Proceedings of the Intemational Conference

on Dependable Computingfor Critical Applications. Santa Barbara, CA.· August 1989. pp

167-174.

193

!Kopetz 90/ H. Kopetz, K. H. Kim. "Temporal Uncertainties in Interactions among

Real-Time Objects". Proceedings of the 9th Symposium on Reliable Distributed Systems.

Huntsville, AL. October 1990. pp 165-174.

!Koutny 86/ M. Koutny. "The Merlin-Randell Problem of Train Journeys". Acta

Informatica, Vol. 23 (4). July 1986. pp 429-463.

!Koymans 88/ R. Koymans, R. Kuiper, E. Zijlstra. "Paradigms for Real-Time Systems".

Proceedings of the Symposium in Formal Techniques in Real- Time and Fault- Tolerant

Systems. Lectures Notes in Computer Science Vol. 331. Ed. M. Joseph.

Springer-Verlag. Warwick, UK. September 1988. pp 159-174.

/Laprie 89/ J.e. Laprie. "Dependability: A Unifying Concept for Reliable Computing

and Fault - Tolerance". InDependability of Resilient Computing Systems. Ed. T. Anderson.

Blac1cwell Scientific Publications. 1989. pp 1-28.

/Laprie 91/ J. - e. Laprie, B. Littlewood. "Quantitative Assessment of Safety- Critical

Software: Why and How?". Probabilistic Safety Assessment and Management Conference.

Beverly Hills, CA. February 1991.

/Laprie 92/ J.-e. Laprie. "For a Product-in-a-Process Approach to Software

Reliability Evaluation". Proceedings of the 3rd Intemational Symposium on Software

Reliability Engineering. Research Park Triangle, Ne. October 1992. pp 134-139.

/Lee 90/ P. A. Lee, T. Anderson. "Fault Tolerance: Principles and Practices" (Second,

revised edition). Springer-Verlag. Wien. 1990.

/Leite 91/ J. e. S. P. Leite, P. A. Freeman. "Requirements Validation through Viewpoint

Resolution". IEEE Transactions on Software Engineering Vol. SE-17(2). December

1991. pp. 1253-1269.

/Leveson 86/N. G. Leveson. "Software Safety: Why, What and How". ACM Computing

Surveys Vol. 18 (2). June 1986. pp 125-163.

194

/Leveson 87/ N. G. Leveson, J. Stolzy. "Safety Analysis Using Petri Nets". IEEE

Transactions on Software Engineering Vol. SE-13 (3). March 1987. pp 386-397.

/Leveson 91a/ N. G. Leveson, S. S. Cha, T. J. Shimeall. "Safety Verification of Ada

Programs using Software Fault Trees". IEEE Software. July 1991. pp 48-59.

/Leveson 91b/ N. G. Leveson. "Software Safety in Embedded Computer Systems".

Communications of the ACM Vol. 34 (2). February 1991. pp 34-46.

/Leveson 93/ N. G. Leveson. ':A.n Investigation of the Therac- 25 Accidents". Computer

Vol. 26 (7). July 1993. pp 18-41.

/Lowe 71/ E. I, Lowe. "Computer Control in Process Industries". Peregrinus. London.

1971.

!Maler 92/ O. Maler, Z. Manna, A Pnuelli. "From Timed to Hybrid Systems".

Proceedings of the REX Workshop Real-Time: Theory and Practice. Lectures Notes in

Computer Science Vol. 600. Ed. J. W. de Bakker, C. Huizing, and G. Rozenberg.

Springer-Verlag. 1992

!Marshall 71/ C. W. Marshall. ''Applied Graph TheOly". Wiley- Interscience. 1971.

!Merlin 76/ P. Merlin. "Methodology for the Design and Implementation of

Communication Protocols". IEEE Transactions on Communications Vol. COM -24 (6).

June 1976. pp. 614-621.

!Merlin 78/ P. Merlin, B. Randell, "Notes on Deadlock Avoidance on the Train Set".

Report MRM/144. Compo Lab. University of Newcastle upon Tyne. 1978.

!Middleburg 89/ C. A. Middleburg. "VVSL: A Language for Structured VDM

Specifications". FormalAspects of Computing Vol. 1. J anuary- March 1989. pp 115 -135.

!Miller 91/ D G Miller. "The Role of Statistical Modeling and Inference in Software

Quality Assurance". Software Certification. Ed. B de Neumann. Elsevier Applied

Science, 1990, pp 135-152

195

/Milner 83/ R. Milner, "Calculi for Synchrony and Asynchrony". Theoretical Computer

Science Vol. 25. 1983. pp 267-310.

/MoD 91a/ Draft Interim Defence Standard 00-55. The Procurement of Safety Critical

Software in Defence Equipment. UK Ministry of Defence. London. April 1991.

/MoD 91b/ Draft Interim Defence Standard 00-56. Hazards Analysis and Safety

Classification of the Computer and Programmable Eletrollic System Elements of Defence

Equipment. UK Ministry of Defence. London. April 1991.

/Morasca 89/ S. Morasca, M. Pezze. '~ Rationale of an Environment for Real-Time

Software". Proceedings Euromicro Workshop Oil Real Time. Como, Italy. June 1989. pp

37-42.

/Moser 90/ L. E. Moser, P. M. MeIIiar-Smith. "Formal Verification of Safety-Critical

Systems". Software Practice and Experience Vol. 20 (8). August 1990. pp 799-821.

/Murata 89/ T Murata. "Petri Nets: Properties, Analysis and Applications". Proceedings

of the IEEE Vol 77 (4). April 1989. pp 541--580.

/Musa 90/ J. D. Musa, W W Everett. "Software- Reliability Engineering: Technology

for 1990s".lEEE Software 7(6). November 1990. pp 36-43.

!Nerode 93/ A. Nerode, W Kohn. "Models for Hybrid Systems: Automata, Topologies,

ContrabiIIity, Observability". Hybrid Systems. Lectures Notes in Computer Science Vol.

736. Eds. R. L. Grossman et al. Springer-Verlag. 1993. pp 317-356.

!Newton-Smith 81/W Newton-Smith. The Structure of Time. Oxford University Press.

Oxford, UK. 1981

/Olderog 91/ E. - R. Olderog. "Nets, Terms and Formulas". Cambridge Tracts in

Theoretical Computer Science 23. 1991.

196

/Ostroff 86/ J. S. Ostroff. "Real- Time Computer Control of Discrete Systems Modelled by

Extended State Machines: A Temporal Logic Approach". Report 8618. University of

Toronto. System Control Group. September 1986.

/Ostroff 87/ J. S. Ostroff, W. M. Wonham. "Modelling, Specifying and Verifying

Real- Time Embedded Computer Systems". Proceedings of the 8th Real- Time Systems

Symposium. San Jose, CA. December 1987. pp 124-132.

/Ostroff 90/ J. S. Ostroff. "Deciding Properties of Timed Transition Models". IEEE

Transactions on Parallel and Distributed Systems Vol. PDS 1 (2). April, 1990. pp 170-183.

/pam as 91/ D. L. Pamas, J. Marley. "Functional Documentation for Computer Systems

Engineering". CRL Report No. 237. McMaster University. Hamilton, Canada.

September 1991.

/PDCS 90/ "Real-Time Systems (Specific Closed Workshop)". ESPRIT PDCS

Workshop Repol1 W6. London, UK. September 1990.

IPnueli 86/ A. Pnueli. "Specification and Development of Reactive Systems".

Information Processing 86. Ed. H.J. Kugler. 1986. pp 845-858.

/Pnueli 88/ A. Pnueli, E. Harel, 'i\pplications of Temporal Logic to the Specification of

Real Time Systems". Proceedings of the Symposium ill Formal Techniques in Real- Time

and Fault-Tolerant Systems. Lectures Notes in Computer Science Vol. 331. Ed. M.

Joseph. Springer-Verlag. Warwick, UK. September 1988. pp. 84-97.

/Powell 92/ D. Powell. "Failure Mode Assumptions and Assumption Coverage".

Proceedings of the 22nd Intematiollal Symposium Oil Fault- Tolerant Computing. Boston,

Massachusetts. July, 1992. pp 386-395.

/Ramamoorthy 85/ C. V. Ramamoorthy, N. - T Tsai, T Yamura, A. Bhide. "Metrics

Guided Methodology". Proceedings 9th Intemational Computer Software and

Applications Conference - COMPSAC'85. Chicago, IL. October 1985. pp 111-120.

197

!Ramchandani 74/ C. Ramchandani. ''Analysis of Asynchronous ConcUlTent Systems by

Petri Nets". MIT MAC TR-120. February 1974.

!Ravn 93/ A. P. Ravn, H. Rischel, K. M. Hansen. "Specifying and Verifying Requirements

of Real-Time Systems". IEEE Transactions on Software Engineering Vol. SE-19 (1).

January 1993. pp 41-55.

!Reed 86/ G. M. Reed, A.W Roscoe, ''A Timed Model for Communicating Sequential

Processes". Proceedings of 13th Intemational Colloquium on Automata, Languages and

Programming. Lectures Notes in Computer Science Vol. 226. Ed. L. Kott.

Springer-Verlag. Rennes, France. July 1986. pp 314-323.

!Ross 80/ D. Ross. "Structured Analysis (SA): A Language for Communicating Ideas".

Tutorial on Design Techniques. P. Freeman and M. Wasserman (Eds.). IEEE Computer

Society Press. 1980. pp. 107-125.

!Rouquet 86/ J. C. Rouquet, P. J. Traverse. "Safe and Reliable Computing on Board the

Airbus and ATR Aircraft". Proceedings of the 5th [FAC Workshop on Safety of Computer

Control Systems. Ed. W J. Quirk. 1986. pp 93-97.

!Rushby 91/ J. Rushby, F. von Henke, A. Owre. ''An Introduction to Formal Specification

and Verification using EHDM". Computer Science Laboratory, SRI International

Technical Report SRI -CSL-91- 2. Menlo Park, CA. February 1991.

/Saeed 90a/ A. Saeed, T. Anderson, M. Koutny. ''A Formal Model for Safety-Critical

Computing Systems". SAFECOMP'90. London, UK. October 1990. pp 1-6.

/Saeed 90b/ A. Saeed. ''A Framework for the Requirements Analysis of Safety-Critical

Computing Systems". Ph.D. Thesis. Computing Laboratory. University of Newcastle

upon Tyne. 1990.

/Saeed 91a/ A. Saeed, R. de Lemos, T. Anderson. "The Role of Formal Methods in the

Requirements Analysis of Safety-Critical Systems: a Train Set Example". Proceedings

198

of the 21st Symposium on Fault-Tolerant Computing. Montreal, Canada. June 1991. pp

478-485.

/Saeed 91b/ A. Saeed, R. de Lemos, T. Anderson. "The Role of Formal Methods in the

Requirements Analysis of Safety-Critical Systems: a Train Set Example". 2nd }ear

Report ESPRIT BRA Predictably Dependable Computing Systems Vol. 3. May 1991.

/Saeed 92/ A. Saeed, R. de Lemos, T. Anderson. ';,til Approach to the Assessment of

Requirements Specifications for Safety - Critical Systems". Compu ting Laboratory TR 381.

University of Newcastle upon Tyne, UK. April 1992.

/Saeed 93a/ A. Saeed, R. de Lemos, T. Anderson. "Formal Techniques for Requirements

Analysis for Safe Reactor Control". The Nuclear Engineer Vol 34 (4). July/August 1993.

pp 108-115.

/Saeed 93b/ A. Saeed, R. de Lemos, T. Anderson. "Robust Requirements Specifications

for Safety-Critical Systems". Proceedings of the 12th International Conference on

Computer Safety, Reliability and Security (SAFECOMP'93). Springer-Verlag. J. G6rski

(Ed.). Poznan-Kiekrz, Poland. October 1993. pp 219-229.

/Sayet 90/ C. Sayet, E. Pilaud. ':A.n Experience of a Critical Software Development".

Proceedings of the 20th Symposium on Fault- Tolerant Computing. Newcastle upon Tyne,

UK. June 1990. pp 36-45.

/Scholefield 92/ D. J. Scholefield, H. S. M. Zedan. "TAM: A Formal Framework for the

Development of Distributed Real-Time Systems". Proceedings of the Symposium in

Formal Techniques in Real- Time and Fault- Tolerant Systems. Lectures Notes in

Computer Science Vol. 571. Ed. J. Vytopil. Springer- Verlag. Nijmegen, Netherlands.

January 1992. pp 411-428.

/Shrivastava 90/ S. K. Shrivastava, L. V. Mancini, B. Randell. "The Duality of

Fault-Tolerant System Stmctures". Computing Laboratory Technical Report No. 305.

Newcastle upon Tyne, UK. February 1990

199

IShrivastva 91/ S. K. Shrivastava, A. Waterworth."Using Objects and Actions tp provide

Fault-Tolerance in Distributed, Real-Time Applications". Proceedings of the 12th

Real-Time Systems Synposium. San Antonio, Texas. December 1991. pp 276-285.

ISibertin 851 C. Sibertin-Blanc. "High-Level Petri Nets with Data Structure".

Proceedings of the 6th European Workshop Oil Application and Theory of Petri Nets. Espoo,

Finland. June 1985.

IStankovic 89/ J. Stankovic, W Halang. M. Tokaro. Editorial. The Journal of Real-Time

Systems Vol. 1 (1). June 1989. pp 5-6.

ffraverse 891 P. Traverse. "Dependability of Digital Computers on Board Airplanes".

Proceedings of the International Conference on Dependable Computing for Critical

Applications. Santa Barbara, CA. August 1989. pp 53-60.

ffsai 921 J. J. P. Tsai, T. Weigert, H. -CO Jang. '~Hybrid Knowledge Representation as

a Basis of Requirements Specification and Specification Analysis". IEEE Transactions

on Software Engineering Vol. 18(12). December 1992. pp 1076-1100.

Ivan Benthem 901 J. van Benthem. "The Logic of Time". Kluwer. 1991.

Nesely 81/ W E. Vesely, F. F. Goldberg, N. H. Roberts, D. F. Haasl. "Fault Tree

Handbook". US Nuclear Regulatory Commission NUREG-0492. Washington, DC.

January 1981.

/Wells 801 G. L. Wells. "Formal Safety Studies". Safety in Process Plant Design. John

Woley & Sons. New York. 1980. pp 101-120.

!Whitehead 291 A. N. Whitehead. "Process and Reality". Cambridge University Press.

Cambridge, UK. 1929.

/Wilkie 901 J.D.F.Wilkie. "Batch Process Control". Computer Control of Real-Time

Processes. Eds. S. Bennett and G.S.Virk. 1990. pp. 274-285.

200

/Williams 84/ T. J. Williams. "The Development of Reliability in Industrial Control

Systems". IEEE Micro Vol. 4 (6). December 1984. pp 66-80.

/Wing 90/ J. M. Wing. ''A Specifier's Introduction to Formal Methods". Computer Vol.

23 (9). September 1990. pp 8-24.

/Wohlin 92/ C. Wohlin, P. Runeson. ''A Method Proposal for Early Software Reliability

Estimation". Proceeding of the Third Intemational Symposium on Software Reliability

Engineering. Research Triangle Park, NC. October 1992. pp. 156-163.

201

Appendix A

Timed History Logic (THL)

THL is a formalism based on a dense time structure and consists of three main concepts:

histories which are the underlying semantics of the model, relations which are constructs

used to capture properties that are invariant over histories, and modes which are used to

structure specifications expressed by the model. Here we present an overview of histories

and relations; a more detailed description of the model is given elsewhere /Saeed 90/.

For a system with n state variables we have the state vector: SV =(VI, V2, ... , vn) The set of

possible values of a state variable (say, Vi) is defined by its variable range (Vv). The state

space of a system (r) is defined as the cross product of the variable ranges in the state vector

Sv. The system lifetime (T) is an interval which represents the operational lifetime of the

system. A history H of a system is a function of the form H: T -+ r. The set of all "possible"

histories of a system are defined as the universal history set rHo For a history H the sequence

of values taken by a variable Vi of SV is denoted by the function H V(T --+ Vvr Over any

interval the following functions are defined: start point s(Int) - the earliest time point in

Int; end point e(Int) - the latest time point in Int; and interval set SI(Int) - the set of all

intervals contained within Int.

Specifications are expressed by restricting the set of histories by two sorts of relations:

invariant and history relations.

Invariant relations are used to express relationships over the state variables which hold at

every time point within T, these are formulated as system predicates. A system predicate is

a predicate built using 11 free value variables VI, ... , VIl of types VVI , ••• , Vvn • No other free

variables may be used. A tuple of values V =(xI, ... , xll), where Xi is of type Vv;, satisfies a

system predicate P if and only if substitution of each Xi for Vi within P(XI, ... , xn) evaluates

to true. This is denoted by: P(V). We will denote P(HVI(t), ... , Hv,dt)) by H satP@t. A

history H satisfies an invariant relation P iff: 'V t E T. H sat P@t.

202

History relations are used to express relationships over the state variables which hold during

every interval included within T, these are formulated as history predicates. A history

predicate is a predicate built using two free time variables To, Tl (To and TI should be

interpreted as being universally quantified over T) and Il free function variables Vb ... , Vn .

No other free variables may be used. A history H satisfies a history predicate HP for an

interval lnt if and only if the expression resulting from substituting: (i) s(lnt) for To, (ii)

e(lnt) for TI, and (iii) H. Vi for Vi for all i, evaluates to true. This is denoted by: H satHP@lnt.

A history H satisfies an history relation HP iff: 'if Int E SI(T): H sat HP@lnt.

203

Appendix B

Petri Nets

B.l. Introduction

B.2. Petri Net Model

Let S, T, F be finite sets. The triple N=(S, T, F, W) is called a net structure if and only if the

following conditions hold:

S n T= 0;

S U T ~ 0;

F c (S x T) U (T x S);

W:F-N,and

domain (F) U codomain (F) = S U T.

For a given net N=(S, T, F, W), S is the set of places of N, T is the set of transitions of N, F

is the flow relation containing the arcs of N, and W the weight function.

For all xES U T the preset lex) and the postset O(x) are defined as follows:

lex) = {y E S UTI (y,x) E F}, and

O(x) = {y E S UTI (x,y) E F}.

A Petri net is a net structure with a given initial marking (Mo), and is denoted as PN = (N,

Mo). A marking M of a Petri net is a mapping of the set of places S in to N (M: S ---+ N), the

set of natural numbers. With I S I =m, a marking M is represented by vector M E Nm; its

ith component is denoted by M(sj).

A transition t E T is enabled in marking M if and only if'Vs E let): M(s) ~ w(s, t), where

w(s, t) is the weight of arc from s to t. A firing occurrence produces a new marking M' from

204

M by choosing an enabled transition t in M. The new marking M' is defined as follows: 'Vs

E I(t): M'(s)=M(s)-w(s,t), 'Vs E OCt): M'(s)=M(s)+w(t,s), andM'(s)=M(s) for all other

places. A finite sequence of transitions is called a firing sequence if transition t· 1 < . <
I, - l _ n,

is enabled in marking ~-1 and its firing produces the marking~, starting from Mo.

B.3. Predicate-'fransition Nets (PrT Nets)

Predicate - Transi tion nets (PrT nets) IGenrich 871 is a form of high -level Petri net which

is mainly used for the modelling and analysis of discrete-event systems which are

concurrent, asynchronous, and non - deterministic.

A PrT net consists of the following constituents:

(1) a net structure (S, T, F) where, S is the set of predicates, and T is the set of

transitions;

(2) predicates are variable relations amongst individuals ("first-order" places);

(3) the transitions are schemes of elementary changes of markings representing

the actions carried out by the system;

(4) an arc label specifies a variable extension of a predicate to which the arc is

connected;

(5) a marking is a mapping that assigns to each predicate formal sums of

n - tuples of individual symbols, also called tuples.

The graphical representation of a PrT net is obtained by representing a predicate by a circle,

a transition by a box, an element of Fn(S xT) by a directed arc from a circle to a box, and

an element ofFn(TxS) by a directed arc from a box to a circle.

For the analysis of the PrT net model we have employed the S- invariant method IGenrich

87/. The S-invariants are obtained from the projection of the entries of the incidence

205

matrix C of the net. The projection along the j-th position of the tuple (I u) introduces a

kind of partial cardinal number, by ignoring information at position j in the tuple. As a

consequence every solution of ICiT lil=O whose entries do not contain individual variables

determines a family of S- invariants.

B.4. Petri Nets and the Modelling of Time

The concept of time is not explicitly given in the original definition of Petri nets. However,

for performance evaluation and scheduling problems of dynamic systems, it is (at present)

necessary and useful to introduce time delays associated with transitions and/or places in

the net models. Such a Petri net model is known as a (deterministic) time(d) net if the timing

constraints are deterministically given, or as a stochastic net if the delays are

probabilistically specified. Only the former one is discussed in this appendix.

B.4.1. Timed Petri Nets

A Timed Petri Net /Ramchandani 74/ is a couple (PN, t) where PN is a Petri net and t is a

function assigning a non -negative real number to each ti E T called the firing time of

transition ti. The firing of a transition is carried out in three steps. In the first step, the

transition starts firing as soon as it is enabled, removing the enabling tokens from its input

places: \;Is E S: M' (s) = M(s) - w(s, li). In the second step, for a duration given by the firing

time associated with the transition, the firing is in progress. In the third step, the firing

terminates by producing tokens in the output places of the transitions: \;Is E S: Mil (s) =

M' (s) + W(ti, s). Mil (s) is the marking of place s obtained after the firing of ti. When a

transition is enabled a firing is initiated unless the firing of another transition disables the

first one.

B.4.2. Time Petri Nets

A Time Petri Net /Merlin 76/ is a couple (PN, 8) where PN is a Petri net and 8 is a function

assigning a closed interval [dmill , dmax] to each transition ti E T, called the static firing

206

interval of transition tj, which is interpreted as the interval of t' . h' h th .. Ime III w IC e transition

must fire. The first value gives the minimal time the transition, after being enabled, must

wait before it can fire. The second value gives the maximal time before which the transition

must fire if it is still enabled. Thus, for a transition to fire between dnlin and dmax , it must

stay enabled between dmin and dmax , and if the transition has not been fired before dmax and

if it is still enabled then it fires at dmax . The firing of a transition is instantaneous as in Petri

nets. No restrictions to the lower and upper bound of the interval is implied, except thatdmin

must be greater or equal than dmax .

B.S. High - Level Nets and the Modelling of Time

As far as the modelling of time in Petri nets is concerned, the comparison of using Time(d)

Petri nets or high -level nets was already thoroughly discussed elsewhere IGhezzi 91/. The

basic difference between the two types of nets is related to the fact that in higher level nets

tokens may have an identity. The property of tokens having an unique identity allows

timestamps to be associated with tokens, representing the time point at which a token has

been produced. When using timestamps the concern is not just with the ordering of events

(firing of transitions) in time, but also with the explicit time reference in which the event

has occurred. However, timestamps can only be employed if the "flow of time" is correctly

modelled by the net.

B.S.1. Time ER Nets

ER nets IGhezzi 91/ are high -level Petri nets where tokens are environments, i.e. functions

associating values to variables. Furthermore, an action is associated with each transition,

describing which input tokens can participate in a firing and which possible tokens are

produced by the firing.

Time is introduced in ER nets by adding to each environment a variable chronos, whose

value is of numerical type, representing the timestamp of the token, in other words, the

timestamp represents the time point at which the token was produced. The intuitive concept

207

of time is captured by three axioms which can be satisfied by constraining the relationships

associated with the transitions.

Axiom 1: Local monotonocity. For any firing, the value of chronos in the environments

produced by the firing cannot be less than the value of chronos in any environment removed

by the firing.

Axiom 2: Constraints on timestamps. For any firing, the value of the chronos in the

environments produced by the firing are the same, called the time of the firing.

Axiom 3: Firing sequence monotonicity. For any firing sequence, the times of the firings

should be monotonically non decreasing with respect to their occurrence in firing sequence.

It is shown that, the three axioms are mutually independent, and once Axiom 1 and 2 are

satisfied by an ER net, every firing sequence is equivalent to one that satisfies Axiom 3,

which allows all observable behaviours of the net to match the intuitive notion of time.

Time ER net (abbreviated TER net) is defined as an ER net where all environments contain

a variable chronos and where Axioms 1 and 2 are satisfied.

B.S.2. Time PrT Nets

When the flow of time is being modelled in nets, for a transition to fire it is not sufficient

for the transition to be enabled; the timing relationships associated with the transition,

which are the timing constraints to be modelled, must also be satisfied. A timed firing nile

must capture the conditions necessary for a transition to fire, together with the model ofthe

flow of time associated with the net. The flow of time can either be explicitly modelled,

imposing timing relationships to the transitions of a net, or implicitly, by associating with

the firing of a transition an underling clock.

Definition 4.1: In the explicit timed firing rule the concept of time is captured by the

relationships associated with the transitions.

Definition 4.2: In the implicit timed firing rule the firing of a transition is restricted by the

properties of the underlying time structure.

208

The concept associated with the explicit timed firing rule is similar to the one employed in

TER nets IGhezzi 91/. To each tuple we associate a timestamp which represents the time

when the tuple was produced, which depends on the relational expression associated to a

transition. However, a disadvantage ofthis approach is that to capture the flow of time the

relationships associated with any transition must include the basic conditions of the flow of

time, in addition to the timing constraints of the system being modelled. Another

disadvantage of the time model of TER nets is that we are not able to distinguish

concurrency from non - determinism if we describe the behaviour of a net model as a

transition sequence, as it is shown in figure 2.

a

a. Timestamping concurrent events.

a

b

b. Timestamping sequential events after a choice

Figure 2. Discriminating concurrency and non - determinism.

In the implicit timed firing rule the modelling of time in high level nets becomes

transparent; we do not need to express explicitly, in the relationships of the transitions, the

209

basic conditions associated with the flow of time. This is achieved by associating with the

net two types of clocks: a reference clock, and a net clock which has a different granularity

for each level of abstraction being considered for the system. We assume that at each tick

of the reference clock at most one transition fires, producing a token whose timestamp is

given by the net clock. With this scheme for modelling the flow of time, the relationships

associated with the transitions will only need to express the timing constraints of the system

being modelled. Also, we are able to distinguish concurrency from non-determinism for

the case in which the behaviour of a net model is described as a transition sequence: the

timestamps of the tokens produced by the firing of two concurrent transitions may in this

scheme assume the same value.

The timing constraints to be modelled are expressed as relational expressions which must

be satisfied for a transition to become enabled. We assume a Weak Time Semantics (WTS)

rather than a Strong Time Semantics (STS), which means that a transition does not have

to fire when its maximum firing time has been reached; if it does fire it does so within the

time interval specified by the time condition IGhezzi 91/.

For the verification of a PrT net model which incorporates the implicit timed firing rule, the

main analysis method consists of executing specifications, as suggested for TER nets

IGhezzi 91/. However, if we ignore the timestamps of the tokens, and the timing relations

associated with the transitions, known techniques for the analysis of PrT nets, such as the

S-invariant method IGenrich 87/, may be also employed to check the properties of a PrT

net model, such as the liveness property.

210

Appendix C

Fault lree Analysis (FTA)

Fault tree analysis (FTA) is a "top down" analysis which delineates the logical relationships

between component malfunctions and the designated undesired event. During system

analysis, there are often a number of undesired events identified by techniques such as

Preliminary Hazard Analysis, which are considered by separate fault trees.

In a fault tree the undesired event appears as the top event, and this is linked to more basic

fault events by event statements and logic events. The mains advantage of FTA comparing

with other techniques such as FMEA is that the analysis is restricted only to the

identification of the system elements and events that lead to one particular undesired

failure or accident. In the following, we describe the basic building blocks of fault trees

!Henley 92, Veseley 81/.

There are two types of building blocks: gate symbols and event symbols. Gate symbols

connect events according to their causal relations. A gate may have one or more input

events but only one output event. The OR gate is used to show that the output event occurs

only if one or more of the input events occur. Causality never passes through a OR gate, or

alternatively, the inputs to an OR gate are never the causes to an output event. Inputs to an

OR gate are considered a refinement of the output. On the other hand, the AND gate

specifies a causal relationship between inputs and outputs, that is the input events

collectively represent the cause of the output event. The more important event gates are

the rectangle, diamond and circle. A rectangle indicates an event which must be analysed

further. A diamond indicates a specific event that is not further developed either because

it is of insufficient consequence or because information is unavailable. A circle indicates a

basic fault requiring no further development.

Both the qualitative and quantitative evaluation of a fault tree can be performed in straight

forward manner by using minimal cut sets. Minimal cut sets define the "failure modes" of

211

the top event and are usually obtained when a fault tree is evaluated. A minimal cut set is

the smallest combination of component failures which, if all occur, will cause the top event

to occur, or alternatively, is a combination of primary events sufficient for the top event to

occur. The minimal cut set (~) expression for the top event (1) is the following:

T=M1 + ... +~ + ... + Mk·

212

Appendix D

Operators for the PEA notation

D.l. Standard Logical Operators

In the following the standard logical operators are defined over the point and interval

predicates, in the value and time domains. The operators are defined in terms of the

functions of the E/ A model.

D.l.l. Value domain - Point predicate

Negation (-,)

Vi E]+: -'E(i) dgVtE T: -'Ev(t,i)

Conjunction (/\)

Vi,jE]+:E(i)/\F(j) (,:/ 3tET:Ev(t,i)/\ Fv(tj)

D.l.2. Time domain - Point predicate

Negation (-,)

Conjunction (/\)

VtET: Vi,jE]+: E(i)@t /\F(j)@t dgET(t, i) /\ FT(tj)

D.l.3. Value domain - Interval predicate

Negation (-,)

213

'Vi E [+: -'A(i)(tA,AINv,JA) d:f 'Vt E T. -'Av(t, i)

Conjunction (A)

'Vi,jE [+:A(i)(tA,AINv.JA) AB{j)(tB,BINv.lB) '!13tET.AV(t,i) A Bv(tJ).

D.I.4. Time domain - Interval predicate

Negation (-.)

'Vt fA' t JA E T. 'Vi E [+: -,A(i)@(tfA,t LA) d:f

3tE T. (tfA ::; t < t ~A A -,AT(t,i» v ((ttA > t ~ t ~A AAT(t,i»

Conjunction (A)

'Vt fA , t JA' t f19 t ~BE T. 'Vi,j E [+: A(i)@(ttA,tJA) A B{j)@(t tE,t ~B) d:f

'Vt E T. (t fA ::; t < t ~A<=>AT(t,i» A 'VtE T. (t tB::; t < t ~B <=>BT(tj» A

max(tfA,t fB) < mine t ~A,t ~B)

D.2. Interval Operators

Four additional logical operators are introduced over the interval predicates of the PEA

notation.

D.2.I. Value domain

Choice Operator (+)

'Vi,jE [+:A(i)(tA,AINv.JA)+B{j)(tB,BINv.lB) d:f

(A(i)(tA,AINv.JA) A -.B{j)(tB,BINv,lB) V

(-'A(i)(tA,AINv,JA) AB{j)(tB,BINv,lB)

Meet Operator (<)

214

Vi,j E [+: A(i)(tA,AJNv,JA) -<B(j)(tB,BINv,~B) '!:!

A(i)(tA,AINv,~} A B(j)(t B,BINv.~B) A JA(i)~t B(j).

Overlap Operator (II)

Vi,j E [+: A(i)(tA,AINv.JA)11B(j)(t B,BINv.~B) '!:!

A(i)(tA,AINv.~) AB(j)(tB,BINv.~B) A

tA(i)=>B(j)(t B ,BINv. ~B) V t B(j)=>A (i)(tA,AINv.~).

Disjoint Operator (V)

Vi,jE I+:A(i)(tA,AINv.~)VB(j)(tB,BINv.~B) '!:!

-, (A(i)(tA,AINv.~)IIB(j)(tB,BINv.~B) A

-, (A(i)(tA,AINv.~) -<B(j)(tB,BINv.~B) A

-, (B(j)(tB,BINv.~B) -<A (i) (tA,AINv.lA).

D.2.2. Time domain

Choice Operator (+)

Vt tA, t!A' ttiP t~BET. Vi,jE [+:A(i)@(ttA,t!A)+B(j)@(ttB,t~B) d:;[

(A(i)@(ttA,t!A) A -, B(j)@(t tB,t ~B) V (-'A(i)@(ttA,t!A) A B(j)@(t tiPt ~B)'

Meet Operator (-<)

Vt tA, t!A' ttiP t~BET. Vi,jE [+:A(i)@(ttA,t!A)-<B(j)@(ttB,t~B) d:;[

A(i)@(ttA,t!A) A B(j)@(t tB,t ~B) A (t!A = t tB)'

Overlap Operator (II)

Vt tA, t!A' ttiP t~BET. Vi,jE [+:A(i)@(ttA,t!A)IIB(j)@(ttB,t~B) '!:!

(A(i)@(ttA,t!A) AB(j)@(ttiPt ~B) A «(ttBS; t tA < tJ,B) V (ttA S; ttB< t!A»'

215

Disjoint Operator (-)

'v'ttA' t JA, ttIP t~BET. 'v'i,jE 1+:A(i)@(ttA,tJA)VB(j)@(ttIPt~B) d:f

-, (A(i)@(tfA,tJA)IIB(j)@(t tB>t ~B)) A

-, (A(i)@(tfA,tJA)<.B(j)@(ttB,tlB)) A

-, (B(j)@(ttIPtlB) <.A(i)@(ttA,tJA))'

216

	387417_0001
	387417_0002
	387417_0003
	387417_0004
	387417_0005
	387417_0006
	387417_0007
	387417_0008
	387417_0009
	387417_0010
	387417_0011
	387417_0012
	387417_0013
	387417_0014
	387417_0015
	387417_0016
	387417_0017
	387417_0018
	387417_0019
	387417_0020
	387417_0021
	387417_0022
	387417_0023
	387417_0024
	387417_0025
	387417_0026
	387417_0027
	387417_0028
	387417_0029
	387417_0030
	387417_0031
	387417_0032
	387417_0033
	387417_0034
	387417_0035
	387417_0035a
	387417_0036
	387417_0037
	387417_0038
	387417_0039
	387417_0040
	387417_0041
	387417_0042
	387417_0043
	387417_0044
	387417_0045
	387417_0046
	387417_0047
	387417_0048
	387417_0049
	387417_0050
	387417_0051
	387417_0052
	387417_0053
	387417_0054
	387417_0055
	387417_0056
	387417_0057
	387417_0058
	387417_0059
	387417_0060
	387417_0061
	387417_0062
	387417_0063
	387417_0064
	387417_0065
	387417_0066
	387417_0067
	387417_0068
	387417_0069
	387417_0070
	387417_0071
	387417_0072
	387417_0073
	387417_0074
	387417_0075
	387417_0076
	387417_0077
	387417_0078
	387417_0079
	387417_0080
	387417_0081
	387417_0082
	387417_0083
	387417_0084
	387417_0085
	387417_0086
	387417_0087
	387417_0088
	387417_0089
	387417_0090
	387417_0091
	387417_0091a
	387417_0092
	387417_0093
	387417_0094
	387417_0095
	387417_0096
	387417_0097
	387417_0098
	387417_0099
	387417_0100
	387417_0101
	387417_0102
	387417_0103
	387417_0104
	387417_0105
	387417_0106
	387417_0107
	387417_0108
	387417_0109
	387417_0110
	387417_0111
	387417_0112
	387417_0113
	387417_0114
	387417_0115
	387417_0116
	387417_0117
	387417_0118
	387417_0119
	387417_0120
	387417_0121
	387417_0122
	387417_0123
	387417_0124
	387417_0125
	387417_0126
	387417_0127
	387417_0128
	387417_0129
	387417_0130
	387417_0131
	387417_0132
	387417_0133
	387417_0134
	387417_0135
	387417_0136
	387417_0137
	387417_0138
	387417_0139
	387417_0140
	387417_0141
	387417_0142
	387417_0143
	387417_0144
	387417_0145
	387417_0146
	387417_0147
	387417_0148
	387417_0149
	387417_0150
	387417_0151
	387417_0152
	387417_0153
	387417_0154
	387417_0155
	387417_0156
	387417_0157
	387417_0158
	387417_0159
	387417_0160
	387417_0161
	387417_0162
	387417_0163
	387417_0164
	387417_0165
	387417_0166
	387417_0167
	387417_0168
	387417_0169
	387417_0170
	387417_0171
	387417_0172
	387417_0173
	387417_0174
	387417_0175
	387417_0176
	387417_0177
	387417_0178
	387417_0179
	387417_0180
	387417_0181
	387417_0182
	387417_0183
	387417_0184
	387417_0185
	387417_0186
	387417_0187
	387417_0188
	387417_0189
	387417_0190
	387417_0191
	387417_0192
	387417_0208
	387417_0209
	387417_0210
	387417_0211
	387417_0212
	387417_0213
	387417_0214
	387417_0215
	387417_0216
	387417_0217
	387417_0218
	387417_0219
	387417_0220
	387417_0221
	387417_0222
	387417_0223
	387417_0224
	387417_0225
	387417_0226
	387417_0227
	387417_0228
	387417_0229
	387417_0230
	387417_0231
	387417_0232
	387417_0233
	387417_0234
	387417_0235
	387417_0236
	387417_0237

