THE DESIGN AND SEMANTIC ANALYSIS OF

A PROGRAMMING LANGUAGE AND ITS COMPILER

P. HENDERSON

NEWCASTLE UNIVERSITY LIBRARY

087 07888 1

Thasis LYY 3

Ph.D. Thesis September, 1970.

UNIVERSITY OF NEWCASTLE UPON TINE

ACKNOWLEDGEMENTS

The suthor would like to thank Mr. M.J. Elphick
for his supervision during the period of this research,
in particular for the time he devoted to reading this
thesis and for the helpful comments he made.

Thanks are also due to Miss H. Bell who typed the
thesis and to my wife who did many odd jobs concerned
with its production.

The research was supported initially by the
Science Lesearch Council and subsequently by the
University of Newcastle upon Tyne.

ABSTRACT

A programming language ALEPH and its compiler have been
designed under the constraint of being able to derive a functional
description of the semantics of the language from the
implementation. The way in which this approach developed is
described, particularly the reason why it is considered as a
design tool rather than a method of proving the equivalence of
implementation and description. As a design tool, the approach
proves to be very critical of irrational language and
implementation features.

The language is described informally and then an
implementation for a hypothetical computing device is given, by
means of a simple translator. The translator associates with each
source phrase, a sequence of commands in the machine language of
the hypothetical computing device. A symbolic model of this
device is described and the semantics of each commend in the
machine language is defined as a mapping of the internal states of
this model., By compounding the effect of sequences of such
mappings, the effect of a translated source phrase can be obtained.
The recursive nature of the syntax of ALLPH necessitates an
inductive approach to this analysis, where it is proved that a
phrase has a certain property whenever its component phrases have.
This property guarantees the integrity of the states of the model.

The derived functional description is used to enswer some
simple questions about ALEPH, to demonstrate its usefulness.

The main problems and limitations of the approach and its possible
extension are considered briefly. Appendices provide documentation

of the author's experimental implementation.

CONTENTS

CHAPTER 1 1

introduction, outline of dissertation topic.

CHAPTER 2 16

ALEPH language, sample ALEPH programs,
implementation of ALEPH for hypothetical

computer.

CHAFTER 3 64

symbolic model of implementation, analysis of
model, derivation of semantic functions for
ALEPH.

CHAPTER 4 108

discussion and application of derived semantic
functions, transfer of control in ALEPH.

CHAPTER 5 132

comments and conclusions.

APPENDIX 1 146

glossary of technical terms used to define
ALEFH,

APPENDIX 2 159

the author's experimental implementation of
ALEPH,

APPENDIX 3

sample ALEPH programs annotated and run under
the author's implementation.

APPENDIX 4

references.

177

CHAPTER 1

1.0 The need for precise specification of high level programming
languages stems from the exact interpretetation afforded to them by
their implementations. An implementation itself cen be considered as
such a specification but it is unlikely to be in a form suitable for
a language user to determine language features. An informal natural
language specification on the other hand, does not have the necessary
precision. A formal specification, which is more descriptive than an
implementation, is required as a standard against which implementations
and informel specifications can be checked.

For a language like ALGOL 60 however, providing such a
specificetion is a major problem. Many of the features provided in
ALGOL 60, although simple in themselves, may combine in the most

complex fashion, It is this potential complexity which makes formal

specification difficult. We must recognise however, that the constraints

under which ALGOL 60 was designed, which include consideration for the
programmer, for the field of application and for machine design, have
been well balanced. ALGOL 60 is generally accepted as being a step in
the right direction in programming language design.,

The problem of providing a formal specification of a
programming language like ALGOL 60 could be simplified if some of its
features were rationalised or restricted in use. It was with this
consideration in mind that the research reported in this dissertation
was begun, How the research developed and the results it produced are

described in this Chapter. The problem of providing an ad hoc formal

description, even of a programming language over whose design one has
control, turns out to be a difficult exercise. The possibility of
deriving a descriptive formal specification from an implementation is
the alternative investigated and this turns out to have the desirable
bonus of establishing the "correctness" of the implementation.

In the following Sections, three alternative methods of
programming language specification are exemplified. These are
respectively an informal specification, an implementation and a formal
specification, The possibility of establishing the consistency of
three such specifications is discussed. This enables us to introduce
some concepts and terminology. The way in which a programming language
was defined and repeatedly redefined to simplify its description, its
implementation and the equivalence of these two, is described.

Support for this approach is however left until Chapter 5 where its
effect can be more readily appreciated. Finally, this Chapter concludes
with a description of the way these results are presented in the

remainder of the dissertation.

1.1 Let us consider then a hypothetical programming language,
similar to ALGOL in that it allows for the recursive nesting of

statements and expressions. In particular, we shall examine an
iterating statement which has the form

while B do S

whére B is a Boolean expression and 8 is a statement. The effect
of the iterating statement is to repeat statement 8, zero or more
times while B is true. More precisely, B is evaluated and if it
is true then § is executed and the whole execution of while B do S
is repeated., Vhen B first evaluates to false, the execution is
complete,

Thus we have defined the rule whereby an iterating
gtatement may be written, if one lknows how to write a Boolean
expression and some alternative forms of statement. This is
(a generative form of) the syntax of the iterating statement.
Supplementary rules informally ascribe a meaning to the iterating
statement once constructed, assuming again that we have access to
rules defining how Boolean expressions and altemative forms of
statements are to be assigned a meaning, These rules specify the
semantics of the iterating statement in terms of the activities
"evaluation" and "execution". A complete specification of the
semantics of the language is needed to define these terms precisely.
The recursive nature of the syntax specification necessarily means
that this definition is also recursive. That is to say the "execution"
of the iterating statement is defined in terms of "execution" of the
general class ‘nf statements of which the iterating statement is a
membe r.

In general then, the syntax identifies the structure of a
program and the semantics determines its meaning, Certain rules are

obviously syntactic or semantic in nature but this is not always the

case. Syntactic rules may be qualified by semantic requirements or
alternatively semantic rules may be specified by the syntactic
constraints, For example, the way in which "type" is specified in
ALGOL 60 is both by syntactic and semantic rules. We shall not be
concerned with formal syntactic specification in this dissertation,
nor shall we attempt to esteblish standards for semantic specification

and hence this difficulty will not ocecur.

1.2 We turn our attention now to a simple scheme for language
tranglation and interpretation and exemplify this scheme using the
iterating statement of the previous Section. The iterating
statement is part of the source language which is mapped by the
translator to an equivalert program in some gbject language. The object
language is structurally simpler than the source language in the sense
that it is directly interpretable by some simple computing device.
That is to say, the object language is an ordered sequence of commands
similar to a current day machine language. Such a languapge we shall
refer to as procedural.

In order to specify the translator, we require an analytic
form of the syntax., We shall use an abstract analytic syntax after
McCarthy (1962a, 1964) which, in the case of statement § = while B:. do Sl,

defines three functions

iswhile (8) = true

condition (8) = B1

statement (8) = S1

The predicate "iswhile" is appliceble to any statement S and is true
only if 8 is an iterating statement., The selector functions "condition"
and "stetement" are appliceble only to an iterating statement S5 and
select the Boolean expression and qualified statement respectively.
Using this fomm of the analytic syntax, we may specify a
function "translate (8,i)" which maps the source statement S to a
command sequence in the object language. VWe shall use + as a
concatenation operator between strings and "label (i)" as a function

wvhose value is the string "Li" for some integer i. Ve have

translate (8,i) =
vess if isvhile (8) then
begin generate (label (i) + ":");
translatexp (condition (8));
generate ("if value = true then begin");
translate (statement (S), i + 1);
generate ("goto + label (i) + “end;")

The function "generate (t)" presents the string "t" to the object
language processor and the function "translatexp (B)" translates

expressions. Thus informally we see that the statement S = while Bx. do S1

translates into pS, where

uS = Li; uBl
if wvalue = true then

begin usx; goto Li end;

The translation u.B‘ of expression B1 leaves the value of the
expression in the variable "value". We see therefore that the
effect of 8, described earlier in Section 1.1, is obtained by this
translation, Indeed, the translation can be considered as a

procedural description of the semantics of the iterating statement,

1.3 Using the abstract analytic syntax of the previous Section,
we can give a functional description of the semantics of the
iterating statement. The technique is based on the work of
McCorthy (1962a, 1964) and Lendin (1963a). We define a recursive
function "effect (8,Z)" whose value is the enviromnment that results
wvhen the statement X is executed in the enviromment £,

The environment ig basically a collection of information concerning
the accumulated state of the computation, The sort of information
derivable from the environment is the current values of all declared
variables. We use a complementary primitive semantic function
"yalue (B,£)" which returns the value of the expression B in the

environment I .

effect (5,0) = ¢uus
sses if iswhile (8) then while (condition (S), statement (8), ©)
where while (B,8,f) =
if value (B,%) ™ true then while (B,S, effect (5,7)) else ©

elB8e .ees

Here we see that if "effect (S,f)" identifies the type of
the statement as an iterating statement, the the effect is defined
by the recursively specified function "while"., This is the method
deseribed by MeCarthy. Lendin (1964, 1965b) is concerned with the
production of an equivalent function rather than the exhibition of
an interpreting function, Suppose that the wvalue of "neffect (S)"
is a function, applicable to an environment, which defines the
semantics of S by updating the enviromment. If "nvalue (B)" yieldsa
function which when applied to the environment £ yields the value

of B with respect to £, we may have

neffect (8) =
sese if iswhile (8) then while (nvelue(condition(S)) ,neffect(statement(S)))
where while (B’,8')(€) =
if B’(€) then while (B/,8')(8'(%)) else ©

91!9 L

Here we see that the value produced by "neffect(S)" is a function,
tailored from the components of S, which defines the effect of S as
an environment mapping function. The language in which the funetion
"neffect" is defined is called the semantic metalanguage and the
language in which the value of "neffect(S)" is defined is called the
semantic object language. In Landin's work, the semantic metalanguage
is called "applicative expressions" and is essentially the A-calculus
with some predefined primitives, His semantic object language is

called "imperative applicative expressions" which includes applicative

expressions as a proper part of it. It has imperative features
vhich are evalusted for their "effeet" and can be considered as
a generalised subset of all Algol-like programming langueges.

Etrachey (1964) uses a semantic object language which
has no imperative features, The semantic object language
introduced in Chapter 3 of this dissertation is based directly
on the work reported by Strachey, differing slightly in notation
but substantially in domain of definition, The whole approach
to semantic deseription used in this dissertation is based on

the work reported by McCnrthy, Lendin and Strachey.

1.4 In the previous Sections, we have identified three different
types of language specification, Pirstly in Section 1.1, an informal
lenguage specificetion was exempiified which combined an informal
generative syntex description with an equally informal semantiec
description. Section 1.2 specified the language with an (abstract)
enalytic form of the syntax end a translator function which defined
the semantics by mapping the source language to a structurally
simpler (procedural) object language. Similarly in Section 1.3, we
saw how to associnte a semantic describing function with a source
lenguage statement, again using an abstract anelytic form of the
syntax., Choosing to ignore the way in which a source language
construct is written, we may leave the method of syntax description

unspecified and identify each of the above specification techniques

by one of the keywords: informal, procedural, functional. That is

to say, we distinguish them by the way in which they describe the
semantics,

Let us consider a language for which we have an informal,

a procedural and e functional specification. An obvious question
to ask is whether the three specifications are consistent.
Before we look at this question however, let us consider how these
specifications may have come about and who might ‘ise them.

An infommal language specification is the most familiar:
an example is the Algol report (Naur 1963), This is the fomm a
user of the language finds most useful because it is the simplest
Yo understand, It is also the form in which the language features
are originally conceived and specified. As such, it acts as a
problem specification for the implementer. It suffers from the
imprecision of naturel language and is commonly subjected to revision
vhen it is discovered that an unfortunate interpretation can be put
on it.

A procedural description of the semantiecs of the language
is the second commonest md usually takes the form of & machine
language program. Seldom is the procedural description very readable,
an important exception however, is the original description of LULER
provided by Wirth (1966). A procedural descripiion intended also to
be read would be of most use to a potential implementer, Any
implementation effectively forms a procedural description which is
as precise as the translator specification and object languages.
Because of the simpler structure, this is presumably more precise than

the informael source languege specification.

10

A functional description of the semantics of a language is
seldom provided, but a noteable exception is the work of the PL/1
group reported by Bandat (1968). Such a description is of most use
to the language theorist or the language designer. It provides a
formal basis for the derivation of language properties and a working
language for the formulation of semantics for proposed language
features.

Let us consider then the consistency of our three forms of
descripbion, Establishing consistency with the informal description
is necessarily itself informal and subjective. Inconsistency with
this description may however be due to an ambiguity in the informal
desoription allowing for its misinterpretation. Consistency between
the procedural and functional descriptions can be more precisely
determined due to the formality of the two descriptions. Again,
inconsistency arises because of errors in the descriptions. Thus we
mey expect to have to adjust all three specifications to obtain
consistency.

Thie dissertation presents a language which is the result
of an approach to language design based on establishing the above
consistencies, The remainder of this Chapter is devotied to a
description of this approach, why it was chosen and a preview of
the results it produced. We begin with a description of the
foundations upon which the language was built and the alternative
approaches attempted. In particular, we describe an early
experimentel approach to language design which was found unsatisfactory

mainly beceuse of the imprecisely specified objectives.

1"

1.3 Lendin (1965b) has produced a formal specification of the
semantics of ALGOL based on a semantic object languasge wvhich is mainly
funciional but has certein imperative features., The complexity of
this description is the direet result of the mbmtlm of features
in ALGOL which conspire to complicate either the form of the semantic
objoct description or the primitives of the semantic chject langunge.
This can be seen clearly when one studies Landin's model for programming
lenguages, ISWIM (Lendin 1966). A mejor conspiratorial feature is the
conbrol tranefer (gote) in ALGOL and the freedom with which it may be
used. An apparently simple control trangfer can require the most
complex onvivonment updating process. ISVIN suggests howvever, that a
judicious choice of source language constructs will considerably simplify
the functional deseription without reducing eoxpressive capability,

On the other hand, YULFK is described by an implementation
(Wixrth 1966) and based on enrlier ideas expressed by Vijngsarden (1962)
and Virth (1963). This implomentation includes a very readable
procedural r}noriptim of the semanticx of FULMM, Virth sees this
deseription as a desirable alternative to Landin's functional method.
fle considers the purpose of a formal langunge specification as twofold:
that it should provide a useable deseription for a proprammer and that
it should convince him of the reliability of an implementatien to
reflect this deseription. A readable procedural description certainly
satisfios both these criteria.

Thus we have two language types, ISWIM and FULIR, susccpiille
respectively to wo functional description and simple procedural
deseription, The language ALEPH described in Chapter 2 is based on
idens taken from both these languages where the idoas have apperently
pimplified description, Por example, ALEIH has ne control transfer

12

because it does not mix well with functions, additionally assignment
is performed by an expression rather than a statement to simplify the
implementation. This latter deviece considerably simplifies the source

language by removing the distinction between expression and statement,

1.6 Some earlier versions of ALIPH were substantially more
sophisticated both in facilities and implementation to the version to
be presented here. This was mainly because the earlier motivation for
designing ALEPH had been "linguistic" in the sense that experiments
were directed more towards the ways in which algorithms could be
expressed than towards language description. Such an approach is
unsatisfactory because there is no yardstick egainst vhich one can
measure one's success, It has however had a beneficial affect upon
ALEPH, in that the lenpuage has been designed to be discussed (on paper
at least) and has thus acquired an individual temminology. This allows
the informel specification of its syntax to be quite rigorous.

The familiar fomm of syntax specification, Eackus-Naur Form, has not
been used in this dissertation because it introduces ‘oo much
superfluous infommation for our purposes. Finally with regard to this
inception of ALEPH, let me say that its name is derived from an early

title for the research which was"algorithmic language experiments".

17 The original design of ALEPH wes aided by a syntax directed
compiler-compiler designed by the author and deseribed in Appendix 2
wvhere the final implementation of ALEPH is reviewed, The implementation
was simple enough for a procedural description of the semantics to be
abstracted from it, Next came the problem of providing a functional

description of the semantics along the lines of Strachey (1964).

13

The provision of ad hoc semantic functions is not easy., They last
just as long as it tekes to find a counter-example, which is not a
satisfactory state of affairs since one never considers them to be
reliable. It soon became obvious that ALEPH still had some features
which were not going to yield easily to functional descriptien.

The problem of an unreliable functional description would be
overcome if the semantic functions could be derived from the procedural
description. This would also solve the problem of consistency,
assuning every step in the derivation could be verified. If the
informal interpretation of the functional description was consistent
with the original language specification then the three-cornered
congistency would have been established. Iurther we would have
established the "correctness" of the implementation in those areas where
the semantics are concerned.

It turned out to be necessary to redesign repeatedly both
ALEPH and the implementation in order to make a success of this
approach., The result consists of a symbolic model of the implementation
and an analysis of this model to derive a functional description of the
semantics of ‘the source lenguage from the semantics of the object
language. The recursive nature of the syntax requires that this
derivation takes the form of an inductive proof that the source
language phrases each possess a certain property.

However, as we heve pointed out above, ALEPH did not easily
2it into this scheme and a continuous process of rationalisation of
sourco lenguage concepts and medification of implementation features
was necessary to simplify both the derivation and the derived semantic

functions. As such then the approach is a design tool in the sense that

14

the source language and implementation are "improved" by this
feedback process of proving the consistency of three specifications,
It is not easy to give a concrete example of this feedback without
discussing the details of the language itself first and so we shall
leave this until Chapter 5. Let me say however, that as well eas
rationelising individual source language features, the feedback
affected major design decisions such as the way a variable was to

be associated with a value at run time. Unlike standard ALGOL
implementations (Dijkstra 1961b, many others), where a variable is
accessed by lnowing its relative position within a block, it was
necessary to implement a much simpler scheme, This scheme, vwhich is
simply to associate each name with a fixed location at execution time,
is lmown to be inferior in certain major respects, This is not
regarded however as a design fault because the functional deseription
of the semantics predicts the ill effects that this can have in

certain cases, We¢ shall review this desipgn decision in Chapter 5,

1.8 In Chapter 2 the informel specificetion of the final version
of ALEPH is given. As we have said, this relies on an informel

syntax description wvhich introduces a technical vocabulary which is
very important in the ensuing analysis. In this Chapter also an
implementation of ALFPH is described by first specifying e hypothetical
machine which will support ALEPH at run time and then defining the way
in which ALEPH phrases are translated to command sequences for tiis

machine.

15

In Chapter 3 a symbolic model of this run time machine is
described and e functional description of the semantice of the machine
language is informally attributed to it. By combining the effects of
each of the commands in a sequence, the semantice of eack sowrce
phrase can be derived from its translation. As we have said above,
this requires an inductive proof that the translated phrases possess
a certain property essential for the integrity of the interpretation,
The derived semantics are acceptable only when this property has been
proved. As such this is seen as a "correctness" proof of this small
part of the implementation,

Chapter 4 discusses the derived functional description and
some results about ALEPH which have been established using it.

An example of how control can be exercised in a source language without
an explicit control transfer is given. The way in which an expliecit
control transfer would have affected the lanpuapge and implementation
desipns is depcribed in Chapter 5. In this Chapter also, particular
effects of the epproach are discussed. General effects and the
possibility of extending the approach, particularly to incorporate
data structures, are alsc discussed. In retrospect the language

ALEFH and the implementation described here are both seen to be
unsatisfactory in certain respects. Much of this dissatisfection
however is a direct result of the criticality of this approach to

lanuage design.

16

CHAPTER 2

2.0 In the following informal description of the programming
language ALEPH, certain common words will be used in a technical sense.
Such words will be underlined on their first occurrence in the text and
will subsequently only be used in their technical sense. No confusion
should arise with the underlining of words used in the source language
to form basic bols, since in general, the former are nouns and the
latter are conjunctions or verbs. A glossary of technical words is
given in Appendix 1.

ALEPH will be described here as a programming language for
computing with integers. This is however, quite an arbitrary choice of
domain and could be replaced throughout this description by any other,
provided only that there is a non-empty, distinguishable subset of the
domain, upon membership of which conditional branches may be made.

Thus for instance, where this dissertation refers to the set of integers
and zero (the distinguished subset), it may well have referred to the
set of real numbers and a neighbourhood of zero. In this sense, any
discussion of specific operations upon integers is superfluous to the
intent of the research. However such discussion lends substance to the
results and provides an area of application from which examples may be
obtained. In order to maintain this independence of the domain of
operation, any member of the demain will be referred to as a yvalue,

and those values which are also intended to be distinguished as
particular, will be referred to as zero. Note that in ALGOL, the
domain of operation is the direct union of integers, reals and booleans

and the distinguishable subset has only the single element, false.

17

2.1 In ALEPH, the user is particularly concerned with writing

two types of phrase called yelue phrases. A value phrase may be either
& primary or an expression and is complete, or self contained in the
sense that it denotes & value (or the computation of a wvalue) in

terms of other values. A value phrase may alsc have a side effect and
may well be evaluated for just this reason. The exact definition of a
side effect will be given later. Thus, in order to specify the semantics
of a particular type of value phrase, we must define how its value is
computed and determine its side effect, if any. Since the syntactic
structure of any particular value phrase is recursively defined in terms
of other value phrases, the description of ALEPH semantics is necessarily

recursive.

2.2 An expression is constructed from primaries and basic operators.
The basic operators denote simple operations upon the elements of the
domain, simple in the sense that they can have no side effect. Thus the
side effect experienced when an expression is evaluated is defined by
the order in which the constituent primaries are evaluated.

In the particular domain which is described here, the basic
operators which are used are those usually denoted by the following

symbols

These operators, taken in this order, refer to the infixed
integer (fixed point) operators of multiplication, quotient of division,
remainder of division, addition, subtraction, six relational operators,

conjunction, disjunction, negation and una y minus. All but the last two

18

ere binary operators for vhich we use an infix notation and a priority
scheme bnsed on the following partition:

(#y x, ¥, mod! 4, =] {<<=#>>] fnot, and) (er!
Por example
priml + prim2 x prim3d

is an expression when the primJ are primaries. The multiplication takes
precedence over the addition, The relationanl operations yield the value
-1 if the relation holds and O if not. The boolean operations similarly
handle O and -1 as false and true respectively,

The metalinguistic dovice of using priml, prin2 and prim3 as
variables ranging over the class of all primaries, and referring to them
collectively as primJ will be used through this chapter. In particular,
ve shall use

exprJ, nemeJd, primJ

for representatives of the classes of expressions, names and primaries
respectively. In the next chapter it will be necessary to use an
abreviated form of metalinguistic variable., It will not be necessary
however, to distinguish the various levels of metalinguistic abstraction
in which we shall become invelved. Already, for instance, we bave primJ

which ranges over

[m-‘.)rh?, m.’. ssnee ’{

each of which in turn ranges over the class of primaries.

19

The side effect experienced when an expression is evaluated is
determined by the order of evaluation of the constituent primaries.
This order is defined to be left to right as written. Thus in the above
example, priml is evaluated first, prim2 second and prim3 third end the

side effect, if any, is defined by this order of evaluation.

2:3 A particular type of primary directly connected with the
domain is a constant. A constant is a denotation of a value from the
domein, in the particular case of the domain of integers, a signed
number consisting of an optional minus sign (=) followed by & non empty

sequence of digits.

2.4 A variable is a primary and is defined to be a correspondence
between a name and a value. A neme is written as a sequence of letters.
The value of a variable is the value corresponding to its name. The
side effect of evaluating a primary ie defined to be the effect of this

evaluation upon these correspondences. In particular, the effect is null

if all the existing correspondences remain unchanged and no new
correspondences are defined. Thus the side effect of evaluating a

congstant or a variable is null.

2.5 The assignment primary is used to alter the value corresponding
to a name. Thus if namel and exprl represent a name and an expression
respectively, then

namel := expri

is a primary whose value is the value of expr! and whose side effect is

to alter the value corresponding to namel to the value of expri.

As mentioned earlier, ALEFIH does not distinguish statements and the
assignment primary is the principal example of a construction which
usually eppears as a statement in a conventional programming language
but eppears as & primary in ALEPH. It will be seen that this imparts
the usual meaning to common constructions using essignment. For example,

all the following are valid as assignment primaries:

xs= y+1
X = ys= 0

x1= 1+yi1= @&

In the last example, the expression assigned to x is 1 + y 1= @& which
consists of the two primaries 1 and y := @. Thus y takes the value of
8 and x and value & + 1,

There is an ambiguity inherent in the syntex given for the
assignment primary, in that since a primary can be a particular example
of an expression, it is not possible, without further rules, to define

the structure of some phrases. A simple example is the phrase

x = y+1

vhich may be either a primary or an expression, as follows

21

N
=N N\
|

The ambiguity is resolved by saying that the value assigned is the
value of the longest expression to the right of the := sign,
consistent with the remaining syntax of the language (e.g. closing

parentheses).

2.6 A parenthesised expression is a primary. The value and side

effect of this primary are the value and side effect of the enclosed

expression. Thus the last example given above can be written

x:-(l +y:-¢)

to distinguish it from

(x :=1) + (y :=a)

which is an expression whose value is 1 + & and whose side effect is

to set x to 1 and y to =.

22

2.7 Input to en ALEPH progran is accomplished by eveluating the
primary
input

which yields a value corresponding to the constant on the next record
at the head of the input stream. The organisation of the input and
output streams will not be further described here. Suffice it to say
that the usual sort of organisation of these streems is used, that they
are readable and that there is only one stream for input and one for
output.

The primary

output priml

where prim!1 is a primary, puts a constant denotation of the wvalue of
priml into the output stream. Additionally, it may have the side effect
of priml. The value of the primery is the value of priml. TFormatting
of the output stream can be accomplished but is not of interest here

(see however, the examples in Appendix 3).

2.8 The block primary is used to introduce names and initialise them

and such an introduction is called a declaration. The bleck primary has

the form

23

vhere namel is a name and exprl and expr2 are expressions. The value
of this block primary is the value of expr2, evaluated in the context
that namel initially has the value of exprl. The side effect is the
side effect of this same evaluation except that the value originally
associated with namel (in the greater context of the expression of
vhich this primary is a component) is restored upon completion of the
evaluation,

Thus for example

let y=u + v

Fry+y

is o block primary whose side effect iz null and whose value is the
same as (utv) * (u+v) + utv. Again the possible ambipnity involved
in not having a delimiter for exprl or expr2 is resolved by demanding
that they each extend as far to the right as possible.

Ve define expr2 to be the scope of this declaration of namel.
Any occurrence of namel in expr2 is referred to as a declared occurrence,
or alternatively namel is said to be declared. Fvery variable which
occurs as a primary in an ALEPH progrem, and every name on the left of
an assignment primary must be declared. If the block primary occurs
in the scope of some other declaration of namel, then any occurrence of
nemel in expr2 refers to the second (innermost) block primary.
However, at the conclusion of evaluating the inner block primary, the

value associated with namel in the outer block primary is restored.

Por example
let x=8a =x+ (letx=b xz2x)+x

has the value 2a + hr and null side effect.

The use of namel in the first expression, expri, is
meaningless except in the case of a self referential occurrence in
combination with the definition of a function (Section 2.16). Ve must
however, include exprl in the defined scope of namel since any
occurrence of namel in exprl is to be considered syntactically as a
self reference. VWe shall see that the semantics of the author's
implementation do not give a meaningful interpretation except in the

case of a function definition.

2.9 In order to group expressions together to compound their

side effects, ALEPH provides the compound primary,

begin exprl; expr2; ... «esj exprN end

where the exprJ are expressions. The value and side effect of the
compound primary are the same as the value and side effect of
evaluating exprN in the context of the side effect produced by
evaluating the first N-1 expressions in the order from left to right
as written. In effect the values of each exprJ, except exprN, are
discarded. As was stated in Section 2.1, these expressions are

evaluated simply for their side effects.

25

2.10 Alternation in the sequence of evaluation is provided for

by the conditional primary, which has the form

if exprl then expr2 else expr3

vhere the exprJ are expressions. The value and side effect of this
primary are the value and side effect of evaluating one of expr2 or
expr3 in the Pontext of the side effect of evaluating expri. The
choice between expr2 and expr3 is based on the value of expri,
choosing expr3 if expr1 yields zero and choosing expr2 otherwise.

Thus

if x <0 then x+y else x -y

has null side effect and corresponds to x - y if x 2 0, and to x + y
otherwise. The ambiguity problem introduced by expr3 is solved as before.
There is no ambiguity involved with having a conditional primary between
then and else since omitting the else is not allowed. In case the
conditional primary is evaluated only for its side effect, then both

arms must still be included. Any expression with null side effect may be
used as a dummy in this instance, but for the sake of efficiency, a

constant is suggested, O say. For example

if a>0 and a <11 then ai:=a + 1 else 0

will increment a only if it originally lay in the range 1-10.

26

2.1 Repetition in the sequence of evaluation is provided for
by the iterating primery, which has the fom

while expr1l do expr2

where the exprJ are expressions. This has the effect of evaluating
exprl and expr2 alternately, beginning with exprl. The iteration
terminates when exprl first yields the value zero. The total side
effect is then the side effect defined by this order of evaluation,
and the value of the primary is the value yielded by expr2 on its
last evaluation, or (conventionally) zero if expr2 is never evaluated,

Thus

while x>0 do

begin q :=q+ 13 X :=x-y end

increases q by x + y (if y > 0 initially) and reduces x to x mod y.
The value of the iterating primary is thus x mod y, or zero if x is
initially negative. If y is initially negative, the value and side
effect are undefined.

The ambiguity of the syntax given for the iterating primary

is resolved as for the other primaries.

2.12 An ALEPH program is a primary in which every occurrence of
a name is a declared occurrence.

Before going on to introduce functions and vectors, some

simple examples of programs written in this kernel language are
given. Results obtained from running these programs in the author's

implementation are shown in Appendix 3,

*2.13 Consider how the factorial of a number on the input stream
might be obtained. Obviously it is necessary to use the iterating
primary to perform the necessary number of multiplicetions, n say.

Thus after

vhile i <n do
begin 8 : = s8> i3 i=1i+1 end

s has as its value n!, if i and s are both initially 1. To form a
complete program, it is necessary to declare the variables and

initialise them and to owiput the result, thus

-
(]
o+
L]
]
—

c*
<l
ke
=

ot
L]
-
=]

= input
= 1

it
@

o+
[

5
(S
—
@

i<ndo

s 1= 8% i3 1 =1+ 1 end;

E

output s

28

This is correct, hovever a rather more satisfying solution

is the following

output let n = input
let s =1
let i =0
vhile (i :=41 +1)<ndos:=sxi

although this is not correct for n = 0.

*2,14 Congider now Euclid's algorithm for the highest common

factor of two integers. This may be written as

while x mod y # 0 do
begin & 1= x;

X 1=y

y t= @ mod y

end

which reduces y to the highest common factor of x and y (note that
if initially x < y, then the effect of the compound primary is to
exchange x and y, since x mod y = x in this case). However the

compound primary can be compacted to

y t=xmod x :1=y

according to the definition given for the order of evaluation of

primaries in an expression.

Thus

(letx-:i
let y = j

vhile x mod y # 0 do y = x mod x 1= y)

hes as its value the highest common factor of i and j assuming
initially that i # j (note that it has the value 0 if i = j).

Thus in order tc compute Euler's Totient which, for given n, has
as its value the number of positive integers less than n which are

relatively prime to n, it is sufficient to write

output let n = input
let i =0
let ¢ =0
while (i :=i +1)<n doc:i=c+
it (

let x =n
let

while x mod y # 0 do

y 3= x mod x :=y) = 1 then 1 else C

In fact the conditional primary can be removed, using the value of the

relation (0 or -1) with which to count.

*2.15 Considering how we might form the binomisl coefficient

|
ri oo = 4) Jee (n=x+1)

r J(n - r)T. 1

-20 “ee . ¥

we note that the division could not satisfactorily be performed
(using integer arithmetic) until both the mmerator and the
denominator are complete, Ior this reason it is necessary to

accumulote these values separately, as in

let s = 1

begin Bi=8, (n=-13=2i+1);
b=t % |
end; |
s+t
end
This end the previous two examples are further expleined in Appendix 3,

Examples 1, 2 and 3.

2.16 In order to add functions to the kernmel language, we extend
the domain to include values known as function references. A function
reference may be obtained by evaluating the function definition primary

which hes the form

lambda namel, name2, ..., nameN. expr0

vhere the nameJ are names and exprO is an expression. The result of

31

evaluating this primary is just a value from the domain. This value
is of type function reference and although it is indistinguishable
from e value of type integer, it is not well defined as an integer,
in the sense that the semantics of the language do not interpret this
value 28 a uniquely defined integer.

An example of a function definition primary is

lambda x, y. if x > y then x + y else y - x

which is intended to denmote the function of x and y defined by the
conditional primary.

In the general form, the list of names between lambda and
det (.), kmown as the formal parameter list, may be empty (N =0).
Like the block primary, the function definition primary introduces
a nev level of nomenclature, so that throughout expr0 any occurrence

of the nameJ is considered to be a declared occurrence.

2.7 The only valid basic operation which may be performed upon

a function reference is known as application. Through applicatien,

a correspondence is set up between the nameJ in the formal parameter

list and a list of values in an actual parameter list. In order to
define application, we must identify a subset of the primaries which

we call the aprimaries (gprimary is short for applicable primary) .

The only primaries so far introduced which are also aprimaries are

the parenthesised expression (Section 2.6) and the variable (Section 2.4).

If aprim! is an aprimary and the exprJ are expressions, then

32

aprim1l (exprl, expr2,, expr)

is an gpplication primery. The application primary is another example
of an aprimary.

If the application primary is such that apriml yields the
function reference corresponding to the function definition primary
of Section 2,16, then the value and side effect of evaluating the
application primary is the same as evaluating expr0 in the context of
each nameJ having the value exprJ, except that the values originally
corresponding to the nameJ remain unchanged. In general, the number
of formal parameters might not correspond to the number of actual
parameters. In this case, each of the exprJ are evaluated in order,
then from this list of values, the correspondence 8 with the nameJ are
set up., If there are too many exprJ, the excess values are ignored,
if there are too few, then arbitrary (undefined) values are provided.

Consider for example

(lambda x, y. if x > y then x + y else y - x)(p,q)

which is a valid application primary which yields the value p + q or
q - p according to whether p > q or not, Equivalently, if P had been
assigned the value of the function reference defined by the above

function definition primary, we could have written

¥(p,a)

instead. This formulation of functions owes a rreat deal %o a similar

technique in EULER,

33

Consider how recursion might be introduced., The funetion

reference assigned to hef by

hef := lambda x, y. if x mod y = O then y olse hef(y, x mod y)

will, if applied to two actual parameters, yield their highest common

factor, provided only that the variable hef retains its value until it
is used in the function body. Similarly, names can be initialised to

values which are function references by means of the block primary.

The method of parameter substitution described here is commonly
referred to as "call by value". In particular, any assignment to the
formal parameters within function body has a purely local effect.

In the case of functions of a single variable, this can be stated more
explicitly by an equivalence which will be established in Chapter 4.

The following block and application primaries are interchangeable

let namel = exprl expr2

(lambda namel. expr2)(exprl)

vhere namel is a name and the exprJ are expressions, provided only that
expr! does not contain a reference to namel.

The introduction of recursion by functions has ramifications
upon the implementetion, in particular upon the generality of the block

primary. Consider for exsmple the above recursive definition of hef.

34

The following alternative

hef := lambda x, y. let & = x mod y

if & = 0 then y else hef(y,as)

introduces the corcept of éynamically nested blocks. In particular,

if we consider the function

g := lambda x, y. let @ = x mod ¥y

if & =0 then y else y(y,8) + &

fwhich has as its result the sum of all the remainders produced when

Buelid's algorithm is applied), then it would fail if we used a static
allocation of storage for variables. It was necessary to mention this
only to motivate the actual implementation of the block primary to be

deseribed in Section 2,34.

*2.18 Using functions, we can rewrite the program for Euler's

Totient in the following way

let hef = lambda x, y. while x mod y # 0 do y 1= x mod x =y
let phi = lambda n. let i =0

let ¢ =0

while (i=i+!)<n do

if hef(n,i) = 1 then ¢ := o+l else ¢

output phi (input)

*2.19

standard functions usually available in a high level language. For the
next example we require the square root of an integer, which we define
tc be the integer part of its real square root. Ve can tackle this in

various ways,

Alternatively, we might hope to syeed up the convergence by using an

iterative technique such as "bisection" or "Newton Raphsex'.

shall only require values of sqrt(x) for x < 100, approximately.

defined in Appendix 3 (Example 5). BSuffice it to say that, in the following
program, the value of circle (n,rsy) is the number of integer lattice points,
on an n-dimensional grid, contained within the n-dimensional hypersphere

whose radius squared is given by the parameter rsq.

The euthor's implementation of ALEPH provides none of the

sqrt := lambda x. let

while (i s=i+1)x i<xdoi

However, we shall make do with the above versicn since we

The problem which we wish to sclve in this Section is fully

let sqrt = lambda x.
while i «x

let circle = lambda n,

eirele (n
let ¢ =0

An initial attempt might be

35

i=0

et 1 =0
i<xdois=i+1
rsq. if n =0 then 1 else

-1, rsq) + 2

let i = sqrt (rsq) + 1

vhile (i :

c 3

output cirele (input,

=i—1)>0_d_0'
=c¢ 4 circle (n = 1, rsq - i x i)

let k = input k k)

36

2.20 Two alternative forms for the block primery serve to
introduce the concept of a vector. Like 2 function, a vector is
considered to be a member of an extended domain, this time extended
to include vector references. An n-vector is an ordered set of n + 1

values numbered 0,1,......4n. By means of the block primery

let namel = row expr1 expr2

where namel is a name and the exprJ are expressiona, storage is
allocated for a vector. The value of exprl (n, say) determines that
the vector shall be of length n and the value of the o' clement is
initialised to n, the remaining values of the vector elements are
undefined. The value assigned to namel is a vector reference,
providing access to the elements of the vector. The storage exista
only throughout the evaluation of expr2. An alternative form of the

block primary serves to initialise the elements of the n-vector.

let namel = row expr! each expr3 expr2

This has the same offect as the block primary described above excepl
that, after expr! has been evaluated, then expr3 is evaluated. Each of
the elements of the n-vector except the oth jg initialised to the value
of exprd, the OM olement still being set to the value of expri.

Note that each of the expressions is evaluated once and once only.

37

2.21 The only meaningful basic operation which may be performed on a

vector reference is subscripting. If the aprimary aprim! yields a reference

to an n-vector, then the aprimary
apriml @ prim1l

is meaningful, if and only if, the value of prim1 (i, say) is in the range
0 to n, Inthis case, the ith value is selected from the n-vector referred
to by aprimi. The syntactic ambiguity introduced by priml not being
delimited is resolved by demanding that priml shall extend as far to the

right as possible.

2,22 In order to alter the values of an n-vector, an alternative form

of the assignment primary is used. Thus

apriml @ priml := expri
where aprim1 is an aprimary, prim!1 a primary and expr!l an expression, and
vhere primi and exprl extend as far to the right as possible, causes the

L

value of exprl to be assigned to the priml - element of the n-vector
referred to by apriml., If priml is not in the renge O to n, then the
value and side effect of this primary are undefined.
*2.23 Consider then

ifa @ j<a@ithen O else a @ (jl:=a @ (j) + 1

which compares the 1th and j‘h elements of the vector a and increases the

§*0 gloment by 1 if the i*™ ig 1ess then the i*P. On the right of the

38

assignment primary it is perfectly correct to write
a®j+1

since j + 1 is an expression, not a primary. The j + 1't element of a must

be denoted by
a® (j +1)

Lehmer's lexicographic method for the mth permutation of the integers

1, ««y n requires the factoriel expansion of the number m defined by

m=a(n-1)l+a. (n—2)l+...-rn.~.1].
n Bt

<

if initially q = nl. then the following piece of ALEFH evaluates these

lot § =n + 1 while (j t= 3 =1) > 1 do
begin a® (j) t=m+ q; m:=m mod q;
q=q+ (j~-1)

end

th ¢
which is eveluated for its side effect only. The m permutation is then

generated in the vector a by the following code

[
2
o+
[
li

1 while (i:= i + 1)

1A
B

)
o
prS

(%

]

0 while (ji= j + 1)

<i-14do

j__{gnj=uﬁithen0elsea!‘(ﬂ t=a 0 j + 1

which is elso evaluated for its side effect only. For & complete

: : e ’ T
discussion of this problem and for other examples of the use of vectors,
see Appendix 3. Note that it may be preferable to always put the primary
after @ in parentheses. This gives a correspondence, [€>92(,]€>)

between this notation and more usual notations.

An implementation of ALFPH

2.24 The remainder of this chaplter is devoted to a description of the
author's implementation of ALEPH. PFirstly, a particular hypothetical run
time machine is described and then, for each value phrase, a unique
translation to a macro language, which expands to a program for this
machine. The run time machine is abstract, in the sense that no real
machine exists which has exactly this specification, however the detail

of Appendix 2 may serve to illustrate to anyone fauiliar with the maclhine
languages of the IBM 360 and the IBM 1130 of the proximity of the run time
machine to (a certain mode of operation of) current day machines. It wounld
scem thal some more recent central processing units (e.g. ¥D? 11) are even

closer to this hypothetical device than the examples of Appendix 2.

2.25 The particular organisation of the run time machine is illusirated
below
i
[=
_Ej P
i n y
U
e R P
indirection variable stack repisters

table table

The storage area of the run time machine is divided into three sections,
rveferred to as the indirection table, the variable table and the Stack.
Each element of the storage area is able to represent a value., The
indirection table has two fields, called A and B respectively, The length
of the two tables is variable but is fixed before the computation begins,
in a manner to be described, The elements of the tables and the stack
may be considered to be addressed independently by the integers from some
arithmetic progressions, These indexes are themselves (internal) velues
which are indistinguishable from the values manipulated within the
computation and can therefore be stored in the elements of storage.
There is a set of three special purpose registers and (nominally) two
working registers. The register F always points to (holds the index of)
the last element put on the stack. Register T contains either the next
element to be stacked or the last element removed from the stack, in
general, The register M, the marks pointer usually holds the index of
an earlier stacked element, and is used in the evaluation of application
primaries, RegistersV and U are used as working registers in the sense
that the number of instructions, during the execution of which they are
expected to retain a perticular value, is fixed.

A program for the run time machine is a finite sequence of

commands

%3 ca. e seny ©

wvhere each ccmmand ex is one of a finite set of commands. Most of this

set of commands will be introduced in the next Section, but some will be

41

introduced when they are first required. The two fields of the
indirection table are set at translate time to contain the indexes of
predetermined elements of the command sequence. They remain uneltered
throughout the computation. The use of the indirection table is

described in Section 2.27.

2.26 In the following description of the types of command available
for the run time machine, use will be made of some simple neta-concepts.
Namely X end Y will denote registers, while y denotes a constant and x
is either a register or a constant.

The command

resets register X to contein the value denoted by x, which is either &
self defined velue or the content of enother register. As examples of
this command we have

T=127 and F =M,
The command

X =cY

resets register X to contain the contents of the stack element pointed to

by register Y. Thus for example, T = cF copies the element on top of the

stack into register T. Correspondingl s, the command

CR =%

copies the contents of register Y to the element of the stack pointed to

by register X. A stack pointer can be moved by use of one of the commands

% = nY or X = pY

where nY refers to the next element and pY to the previous element.

A\
o

X

| €<— pY

After X = nY the register X points to the next element to that pointed to

by Y. For example, F = nF moves the stack top pointer up.

The command XtY has the same effect as the sequence (¥ =nf, Y =X}

=Py oister F 1is
and the command X1Y as the sequence IE=el, ¥ = pY). Usually regist

: 3 i nreted
used as the Y field of these commands in which case they can be intervrete

i i +ackinge i v X The elements of the
respectively as stacking and unstacking register X. Yhe

43

variable table are accessed by the two commends
X=V@x and VOx =X

vhich respectively load and store the xth item of the table, where

x is an integer in the range 1 to . The fields of the indirection

table cen be used to effect jumps by the two commands
=+ POx and (¥=0) = =+ Adx

vhich respectively implement an unconditional transfer of control and
a transfer dependent on the content of register X being zero. If a
transfer is made then the nommal sequence of control is abandoned in
preference for the nevwly selected control index.

There is also a finite number of instructions of the form
T = ¢F _gn* T

where op* is the run time machine equivalent of the basic operator op
(vhich in turn stands for any of the basic operators used to construct
expressions from primaries). The values denoted by cF and T are oombined

by op* to form & new value for T.

2.27 In order to simplify the deseription of the translation from
ALEPH to the machine language of the run time machine, we extend the latter
by the addition of a macro definition facility. A macro definition may

have one of two forms. A simple name for a sequence of commands can be

44

introduced by a definition of the fom
mname : (cz, oy weey ck)

vhere the ci{ are basic commands, and mname is the name t» be given to

the sequence. As an example we may have
add : (T =cP+ T, F = pP)
The second form of macro definition has the format

mnag e (i) : (c § sae ’ c)

1 13
vwhere the macro has a name and a parameter. The parameter may be used
within the c:i as a constant, and may thus be used to index the tables

or as a self defining termm. Tor example we may have
load (i) s (TtF, T = VOi)
The definition of a program must now be modified to include macro calls

as valid replacements for subsequences of commands vhere the progrem is

understood to be obtained by a simple expar sgion of the macro cells.

In macros of the second type, any of the basic commands c; may be

labelled

mizcj or BPi: C

45

subject to the restriction that when every macro in the program is
expanded, there should be exactly one occurrence of each type (A and B)
of label for every element of the indirection teble. These labellings
effectively initialise the indirection table entries, It should be
noted at this point thet the use of the indirection table effectively
mokes both translation and assembly single pass (left to right).,

In the following Sceticns, the specific nature of the
translations of the value phrases defined in Sections 2.2 to 2,23 will
be described.

2.28 An expression is constructed from primaries and basic operators
in the form
1 2 .-
prim °p prim op = , primN

vhere a priority has been defined for each operator. The priority of
these operators can be made explicit by adding to the expression a pair
of parentheses for each operator, to enclose the two operands of the

operator. The expression then takes cn the form
(rand1 op rand2)

where randJ (operand) is either one of the original primeries or is also

of this form. The translation of
(rand1 op rand2)

then has the form

b randl, u rand2, | op
vhere | randJ is the translation of randJ (as & sequence of macros) and
i op is the macro for the basic operator op. Thus for example, if we
have

a+bjy c
vhich in parenthesised form is

(a+ (bx ¢))
then this translates to

b 'at+bzec®' = pa®, 4 'y e, mul, add

vhere mul =, 'x°*

add = p '+

The translatioc of variables hes not yet been defined. FPinally, the
translation of expressions is completed by displaying the macros for the

basic operators, these all have the form

pop ¢+ (T =¢FP op* T, F = pF)

vhere op* is the run time machine equivalent of op. Inductively, let us

presume that the result of evaluating prandl is placed in cF and that of

47

evaluating y rand2 is placed in T. Then uop leaves the result of
u "(rand1 op rand2)' in T, and moves the pointer down. Intuitively,
this will effect the correct evaluation of the whole expression,

8o far in this Section, a number of metalinguistic devieces have
been used without being introduced. Just as the primJ and the randJ are
elements of the syntactic metalanguage, being names for sections of
ALEPH text, so quoted pieces of text are elements of the same language,
being names for the text quoted. The translator function p which maps
sections of ALEPH text to the tanslation (of that text) in the macro
language is defined (recursively) by application to elements of the
syntax metelanguage. We shall in general, avoid quotes by using basie
symbols autonomously. Purther, throughout the remainder of this
dissertation, square brackets will be used algebraically in whatever
language they appear, in that they will only be used to exemplify the

syntax, Thus we may write the above result as
i [rand1 op rand2] = randl, u rend2, uop

vhere the rendJ are the operands of the operator op (as defined by the

syntax) and vhere jop is the macro implementing the operator op.
2.29 If prim1 is a constant, then we define
p priml = num (prim1)

where num(i) ¢ (TtF, T=i).

The effect of executing the sequence of commands obtained
from the translation of a value phrase is always to save the value
of T on the stack and to leave the result of the evaluation in T.
The translation of an expression as described in the previous Section
will be shown in Chapter 3 to also have this property, as will all
value phrases.

2,30 In order to describe the translation of a variable, it is
necessary to describe the overall translatior of a program, In a
program there are a certain number of declarations of names either
in block primaries or in function definition primaries, If these
occurrences are numbered from lelft to right (as written) with integers
from 1 to no, then each variable has thus asscciated with it an index,
This index defines the position reserved for il in the variable table.
Note that there is no attempt to correlate different declarative
occurrences of the same name. Thus we may refer to the index (oxr index
into the variable table) associated with a particulaer occurrence of a
neme, either as a primary or in an assignment primary or in the above
instances of declarative occurrences,

If priml is a variable occurring as a primary and . namel is

its associated index, then we define

p prim1 = get (unamel), val
where
get(i) s (TtF, T=i) y % 1 S50

val : (T = vor)

49

Thus we see that get(i) has the property of saving T and
replacing T by i. Immediately T is replaced by the content of the
variable table associated with the name occurring as a primary,

Purther, we see that the variable table is used to store the current

value associated with the varisble.

2.31 Equivalently the assignment primary is translated as follows
p [namel := expr1i] = get(y namel), 1 exprl, ass
where p namel is the index associated with namel and

ass 1 (W = cF, VOW = T, ¥ = pP)

The effect is to save the index of the variable on the stack,
while exprl is evaluated. The value of exprl is left in T while the
index is in c¢F. The macro 'ass' performs the required assigmment and

removes the index from the stack.

2.32 Trivially we have, for the parenthesised expression primary

w [(exprt)] = p expri

which noeds no explanation.

2.33 « [input] = inp
u [output prim1] = u priml, out

These two definitions effectively avoid the issue of input/output

by handing over responsibility for the definition to the macro language.

50

The maecro language in turn defines these in terms of newv primitives.

inp ¢+ (TtF, T = inp)
out : (out T)

wvhere T = inp is a new basic command used to redefine the content of
register T according to an input value. The mechine operation out T

is similarly undefined except to say that the value of T is passed to

the output stream.
2.34 The block primary

let namel = exprl expr2 e
is translated into the sequence of macro calls

p exprl, let (4 namel), p expr2, tel (v namel)

where . nemel is the index associated with namel by the translator.

The macros are defined by

let(i) H (w = Voi, vei =T, T = W)

tel(i) s (¥ = cP, V@i = ¥, F = pF)

51

The previous value of the variable is saved in T (and subsequently

on the stack) by the first macro, which also initialises the variable
to the value in T. This value is of course, the value of expri,

The second expression is evaluated in the light of this new value for
the variable and the result of the evaluation is placed in T, Now the
previous value of the variable is retrioved from the stack by 'tel' and

restored and the stack pointer is moved down.

2435 The compound primary has a simple translation defined as

follows
u.[bagin © 38 beee 0 end] = p.el,off,poa,off,...off,uo.
where e (1=j<n) are expressions and

off : (TIF)

As each result is obtained for the e;j in T, it is thrown away by ‘off’',

oxcept for the last expression wvhich provides the result of the whole

primary.

2.36 A further property of the translator is that it numbers (from
left to right, starting at one) each occurrence of a conditional,
iterating or function definition primery. This numbering is independent
of that defined for names. The number is assigned when ihe prefix (if,
while or lambda) is met in passing from left to right over the source.
This number is called the associated index and indexes the corresponding

element in the indirection table.

The translation of the conditional primary is defined by

plif expr then expr2 slse expr3] =y expri, thn(x), y expr2, els(x),

i expr3, nde(x)

vhere x is the index associated with this occurrence of the conditional

primary. The macros are defined by
thn (i) : (T =0) = - A0i, TIF)
els (i) : (= Boi, A@i ; T4F)

ade mde (i) ¢ (Boi:) 1sisn

It is easily seen that the value of exprl is tested and according to

vhether it is zero or not, one of the sequences

TP, pexpr2

TIF, pexpr3

is evaluated. In either case, evaluation resumes at BOx, thus ensuring

that one and only one of the above sequences is evaluated.
2,37 Evaluation of the iterating primery is very similer.
w [vhile exprl do expr2] = whl(x), pexpri, dow(x), uexpr2, gow(x)

where x is the associated index and where

53

whi(i) : (T1#, T=0, BOi:)
dow(i) : ((T=0) = + A®i, P=pF, TIP)

gow(i) : (= Boi, ADi: TD)

Pirst the value of T is saved and T is set to zero, a tentetive value
for the value of the whole primary. The first expression is evaluated
end its value tested. GShould this value be zero, then the current value
at the top of the stack is accepted as the value of the whole primary.
In case the test yields a non-zero value, the previously saved value of
the second expression ls removed and replaced by a new value, by
evaluating the expression again., In this way the loop is performed and l
the value of the iterating primary is the value obtained when the second

expression is last evalunted.

2.38 The function definition primary of Section 2.16 has the form

prim1 = lambda namel, nameZ, ... ooy nameN, expr0

vhere the nameJ are names and exprO is an expression. This translates |

as follows

p priml = fun(x), for(s namel), for(s name2), «..
vesy for(y nameN), chk, p expiw, dot, rof(x nameN), «ee

veey rof(p neme2), rof(imnane 1), nuf(x)

wvhere x is the index associated with the function definition primary, and

i nameJ the index associated with this declaration of named .

The macros are defined by

fun(i) ¢+ (TtF, T = A@i, = BOi, AGi : P = naM)
for(i) + (P =nP, T=cP, V=V0i, Voi = T, cF = V)
chk : (TIR)

dot s (cM =T, TIF)

rof(i) ¢+ (V@i =T, TIF)

nuf(i) ¢ (V = enM, -V, BOi 1)
Certain new basic commands have been introduced, all of which should
be self explenatory., It is pointless to try and explain the operations
performed here before the application primary has been translated.
2.39 The application primary of Section 2,17 has the form

prim1 = apriml (exprl, expr2,, expri)
which is translated into
ppriml = papriml, mrk, pexprl, Lexpr2, ... e« pexprM, cll, unm
where

mrk : (TtF, T =M, M = P, P = nF)

ell ¢ (TtF, enM = o, = M, © 1)

unm ¢ (F =M, M=1T, TIF)

55

The macro "mrk" (mark) saves T and establishes a three element "mark"
consisting of the function reference of the function 4o be called,

which is the value of apriml and is held in T, an empty location for

the return address and the address of the previous mark., It is intended
that the function reference of the called function shall be overwritten
by the value of the function. As each expression in the actual
parameter list is evaluated, its value is placed on the stack, then"cll"
places the value of exprM on the stack, the return address into the
second word of the mark and branches to the function.

The function is entered at A®i and P is resct to a position
Just below the list of evaluated parsmeters. Each occurrence of "for"
moves I' up the stack excharging the value of the actual parameter and
the previous value associated with the name. The macro chk simply resets
the contents of T to be significant. The body of the function is
evaluated, its result appearing in register T. The macrc "doi" cepies
this result back to the appropricte (i.e. the latest) mark (selected by
M) and then each of the "rof" restores the values of the bound variables.
Finally, the macro "nuf" causes a branch {to the return address, whereupon
"unm" (unmark) removes the mark, re-esteblishing the old mark end setting
the value of the evaluated body as the value of the application primary.

It is easily observed that the velue of the function definition
primary is just the indirection table entry (A field) which (as & value)

is referred to as a function reference.

56

Because of the importance of the vay functional application
is handled, the description is repeated below pictorially, In these
diagrams, the following notation is used:

X function reference value of function
being called

4 return address

Mo previous value of marks pointer

Q undefined

th
e j value yielded by j actual parameter
th

xj index of j formel parameter in
variable table

" value yielded by body of function

The pcint reached in the commend sequence is shown below each diagram

by an arrov indicating just after the last command executed,

!
oo WK BXPTT 500 a vss @XPEY ,lcil,...

o %
]v 5
—t> P —4—> A
I —> N M — -T— M
o
s : L
LAt QUL s MRy e s 2und{@)ly n»r(:;l),...

: o) 2 Y o
At this stage, neither the velue of T nor the value of I i

correct in the sense of their specially defined roles. Indeed T 1s

not in use and F is being used to run up the actual paremeter list.

. o ¢ the elements VOx V2x has Db
After executing for (x), each of the elements ¥ X 3 308 yax has b
s [

reset to contain e , ...,e respectively, while the state of the staci
1 3

is as follows:

L=

L o1}
oc

Ti__._;______
oy 41
¥ = Vi, i
;
Vix,
S M
o
M — X M
. e,
o TOTUX Jig Lori® Jives .
| J41

Note how m actual parameters are obtained by ignoring

Y X1
I
ey
i
foxr(x), chk,..=
u
9. . ’

2t
<1
e}

p)
A

ey
n

if n > m or by taking arbitrary values from the stack if n < m.

i l“ '9 V e
B 3 £
= Vidm 1
E \r "VE ’j‘ 2 (\'.) o
i L:::::::]
Vi . VOoxa
—bs M s N
e o
W
My 4> A H_s Y
5 :
1) Ko
e chits oty eXnn0y s eee B expr0, dot,...
: . ; S
The value of the function body, exprO is left in register T
after eveluation. Note that this may have involved arbitrarily meny
function calls, nesting the marks, but that the inteprity of the
information stored here will have been retained (if veclors are USed
ible to interfere with this information

incorrectly however, it is poss

since the subscript is not checked Tor

Tang k’) .

l“ __9 V0 e
B]
'Wri
M ___> eo

e dot,lrof(x)
o

As each value V@Xj is removea by rof (x.) from T, it is restored
J

1
to the xJ. th

=3

w

)

M—

I
Jeer oBlx), "roflx)isns
J J=1

entbry in the variable table

]

3

60

The combination of muf(i) and “unm"now use 4he infomation available
in the stack 8, M and e, Yo establish e, 28 the returned value of

the application primary.

2,40 In Section 2,20, two alternative forms of the block primary

were introduced, These have the respective transletions given below:

u [let namel = row expri expr2] =

4 exprl, arr(y nemel), ;. expr2, vor(u. name1)

i [let namel = row exprl each exprl expr2] =
v exprl, i expr3d, row(u nemel), . expr2, wor(y namet)
arr(i) ¢+ (V=TF, ™F, P = n'P, VIF, V = n¥, T = V0i, VOi = V)
wvor(i) : (WIP, VOi = W, P = cF)
row(d) : (W=P, U=cP, W=pW, U=U + 1,
Cs TMF, U=U«1, (U# 0) == ¢,

cF=VWV, W=nVW, T =Vei, Vi = V)

Ageain, some new basic commands have been introduced,
The command F = nTF is defined to be the result of applying F = nF
the number of times indicated by register T, that is to say, & simple
address calculation. Thus "arr" and "wor" are intended to operate like
"let" and "tel" except that the initial value given to nsmel is a vector
reference, vhich is the address of a specially set up section of stack.
The set up after either "arr" or "row" heve been used is shown in the

following diagram:

61

]
| e pra=saas S
- \" .
v 3
i
!
i
. E i
w
)
;) Tid4 m
n vl i

’I‘0 and]3'0 are the initial values of T and F, n is the
value of exprl and w the value of expr3 (01.~ undefined in case
the vector is not to be initialised). Note how a link is placed
on the stack after the vector in order to “"down date" correctly.
This is in order not to have to rely on the value of V@i which

might be chenged by assignment.

2.41 Subseripting is implenented by the syntax
apriml @ primi

vhich translates invo

p [aprim1 @ priml] = p apriml, p priml, ind, 1¥

previous
valve of
Voi

62

where

ind ¢ (VIF, T = n'¥)

iva @ (T = cF)

Thus "ind" sets T to point to the selected element of the

vector and "iva" immediately takes its value. The reason for using

these two macros instead of one is involved with the particular
translator used by the author end is not of interest here. The deteils

of Appendix 2 should however clear this up.

2.42 Assignment to a vector is accomplished by the syntex
(Bection 2.22)

apriml @ priml := exprl
which translates into
i epriml, p priml, ind, p exprl, ias
where
ias : (WIF, W = T)
The values of aprimi and priml are compounded (by "ind") to

form & reference to the element to be altered and "ias" assigns the

value of exprl to this element.

63

2.43 This concludes the description of ALEPH translation as
implemented by the author. Many of the devices used, as mentioned
in Chapter 1, are meinly to simplify the proofs of Chapter 3 and
ghould not be criticised until the reader has satisfied himself,
after rooding Chapter 3, that the method described here is too
restricted, in the sense that a more general feature cen be
established with equivalent simplicity. In Chapter 5, the
implementation will be scrutinised when the results of Chapters 3

and 4 are discussed.

CHATTRR D

3.0 Each value phrase is defined in terms of certain component
value phrases. Thus for instance, the value phrases expr1 and expr2

are the component phrases of the following two primaries:

while exprl do expr2

let namel = exprl expr2

For each value phrase V therefore, we can define a syntax tree as

follows:

14 If the value phrase V has no component value
phrases, then the root of the syntax tree is
labelled with the name of V and the tree has
no brenches.

2, If the value phrase V has k component value
phrases V ,... ...,V', then the root of the
syntax tree is labelled V and there are k
branches from the root, the ith branch being
attached to the root of the syntax tree for
V.

1
Thus the value phrase
jle (it=4i+1)<n do s =8 + i

has the syntax tree:

65
iterating Primary

expression expression

parenthesised variable assignment

expression Primary primery
primary
oxpre'uion expression
assignment variable variable
Plery primary primary
expression
variable constant
primary primary

Note that wherever the syntactic component "name" occurs in the
definition of a value phrase, it is ignored for the purposes of
constructing the syntax tree.

Given a value phrase V, let us denote by 0V, the depth

of its syntax tree defined as follows:

1. If V has no component value phrases, then &V =0
2. If V is constructed from Vl,... ...,V. , then

6V=1+ max 8§V
15y <k !

66

Thus the depth of the syntax tree is the longest path from the root
to a terminal node. In the above example, the depth is easily seen

to be six. Let us denote by P[V] that the value phrase V has property
P and by

1’!'71]'--- coey P[V'] k2N
that P[V] can be deduced, according to some system of logic, from the

conjunction of the I’[V’], 1<j<k. We can now state and prove the
following simple theorem:

eorem 1

If, given property P, we cen establish for each type of

value phrase, that

P"Vlj,... TPR (AR |- Prv)

wvhere V is the value phrase and Vl gees ...,V‘ its components,

then we have established

b PV

for any value phrase V. That is to say, V has property P absolutely.

67

Proof is by induction on the depth of the syntax tree
for V. For consider vhen V has a syntax tree of depth 0, then
from the definition of 3V we see that V has no component value
phrases. Thus |- PrV] is given by the conditions of the theorem.
Our inductive hypothesis then is that we have established
} Prv] for all value phrases V for vhich gV < n. Consider now
the case 6V = n, Let Vl,... ...,V. be the component value phrases
of V. > implies k', Purther if l<i<k then w‘ < n by reductio ad
abg rdum, For ev(> n implies 6V >2n + 1.

Thus we have:

R A v <n
- V] ¢V <n
|- P['Vk] v <=
and P[Vlj,.. ..,P[Vk] |- Prv] is given
and so we cen deduce k P[V]. 1

This theorem enables us to break down the proof of a certain

property P into a series of lemmas, each of which has the form

"if the value phrases V ,..c. oo,V heve the property P
1 x
then so does the value phrase V vhich is constructed from

them"

In Section 3.3 we shall introduce a property which we wish to establish
for the value phrases of Chapter 2 and in the subsequent Sections, we

shall prove a series of lemmas of this type.

3.1 If £ is a function and x an argument within the domain of
f, we denote by fx the result of applying £ to its argument.
Application mssociates to the left, thus fxy means [fx)y where fx
has as its result a function which is applied to y. In general

& sequence of applicetions is denoted by fl fz... f where each £
is either a primitive function or a sequence of th.in type onclos:d
in brackets. The velue of such o combination can be deduced in

many weys, but in particular by the following procedure:

1. If n = 1 then the value is that of fx’ either
as o primitive evaluation, or by invoking this
procedure to remove any substructure.

2, If n > 1 then evaluate f as above and then

n
evaluate fz"" seeyfl " by this procedure.
e
Finally apply the result of £ ,... ..s,f
1 2l
to f .

Thus if the sequence rl,... ...,f. is defined at all, then it is
defined by the above process which in particular demands evaluation
of each of the f‘ before any of the applicetions are mede.

The function "dot" product f.g, where f and g are functions

over appropriate domains is defined by:

[f.g]x = £[gx]

in the sense that f.g has the value f{gx] at x or is undefined if
f[gx] is undefined. The function "dot" product has a lower binding
pover than application and hence [fx.gy]z is interpreted as

[fx])[gyz]. Note also that this product is associative and that we shall
write [f.p.hlx for felhx]1,

69

By means of the notation of the A -calculus, we may write
the definition of f.g as

f.g = xfgx]

In a)-expression, the) is followed immediately by the bound variable
and then the body which extends as far to the right as is consistent
with the bracketing. The M-expression, AxA denotes the function,
whose value for argument B, denoted by [)\xA]B, is obtained by
evaluating the expression obtained when B is substituted for all free
occurrences of x in A, To remain consistent with the above procedure,
we shall assume that B is evaluated before substitution and that any
clash of variables (if the result of B contains any)-expressions with
free variables) is catered for by renaming of bound variables.

We denote by Qx"" ...,a.‘> the n-tuple consisting of the
n elements al,... ...,s‘ . We consider an n-tuple as a function from

{12)0es «ssyn} to the set over which the s range. Thus if i is en

integer between 1 and n, then

<a geee .oc,‘>i’5
1 » i

This device enables us to avoid lowering the line for complex subscripts.

A useful function defined for an n-tuple is the update function U‘ ’

= L L a>
U‘<al’... -oo,a.>ib <ﬂl,.-¢ ...’al_ ,b'5‘+ ’ ’ =

70

vhich reads "update Q‘.... ...,a.> 80 that the ith element contains
b"s It is undefined unless 1<i<n, In general, if no confusion can

arise, we shall write U for U .
n

Suppose we have E defined by

Eij = Ax) yx if i=j

1% yy it i#j

vhere i and j are integers, then we can supply the following

equivalences:

i) Uabed = FEbdelad]
ii) Uab[ab] = a
iii) UfUabelde = Ebd[Uade][UlUade]bec]

That is to say the a° element of Uabc is ¢ if b = d, or the a'®

element of a otherwise. Secondly, updating a so that the bth
element contains ab leaves a unchanged. Finally, the resuit of
updating Uabc so that the dth element contains e is the same as
Uade if b = d, otherwise the two updates may be reversed. These
equivalences are taken from McCarthy (1962).

Congider a function f, defined by an equation of the form

where ¢ is & combination of functions which contain an occurrence of

f. Then, if such a function f exists, we shall write it as

N fe

Y is called the paradoxical combinator (Curry & Peys 1958) or the
"fixed-point" operator (Landin 1963). Effectively it allows us to
name the function f independently of the letter used to designate it.

As an example, we have the function

YALAxEOx Ax1] [Mx. £ N]x

which is applicable to an integer. If Nx yields x - 1 and Mxy yields

x x y, then this is an expression of the factorial funciion.

We shall require a characteristic property of I, wvhich is

YPF = M’YF'}

In the above formulation, we have

F = Me .

and that YFP is the solution of

1
Thus YF = ¢ = FYF]
e
vhich demonstrates the property of Y expressed above. This property

is useful in inductive arguments involving functions of the form YP.

72

A stack is a particular type of structure which we
distinguish with a special notation. Thus we wvrite

(lo, (II. (32,...(a.,_ Yanad))

to denote a stack with n + 1 elements, the top element being s
o
and the bottom element being s ., denotes the empty stack and
a
if s is a stack, then s denotes the top element and s~ the stack

that remains after the top element has been removed.

(8 ol siai wonsls 40)))* = &
(4] 1 n (]

(B 3(8 yeee ceey(B ,0)))7 = (8 ,(8 yeus eeey(s y4)))
o) 1 n 1 2 Y

The result of putting s on top of the stack s is denoted by (lo ,8)

and hence we have
8 = (5+,3-)

for any non-empty stack s. It will be necessary later to introduce

partitioning of tlie stack and equivalence of stack elements.

3.2 When we consider the run time mechine, there are various
elements which can alter as the result of executing a command.
Specifically these elements are the registers T, F and M, the variable

table and the input and output streams. Although the contents of the

73

working registers V and U may alsc change, the contents have purely
local significance, in the sense that their contents must remain
constant only during the execution of a fixed number of commands.
This is obvious when the macros of Chapter 2 are considered as
partitioning the command sequence. The content cf register W is not
gignificant between any two adjacent elements of the partitions.
That is to say, within a macro, the first reference to V always
assigns a value to it. The current state of all the elements whose

conbents may change is referred to as the enviromnment ° . We write

£ = [t,f,m,v,i,o]

vhere

+ is the current value held in register T,

£ is the stack of values identifiecd by register ¥,

m is the steck of velues identified by register M,

v is the n-tuple of values held in the variable table,
i is the stack of values yet to be input,

o is the stack of values so far output.

The semantics of the machine language can therefore be defined by the

effect each command would have upon & . Thus, for example

[t,f,m,v,i,0]

[t,f,ll,V,i,o]

[t,fym,v,i,0]

[t,f,m,v,i,o]

[tyf,m,v,i,0]

[t,fym,v,i,0]

[t,f,m,v,i,o]

[t,f,m,v,i,0]

74

TtP
- [t,(t,f),m,v,i,o]

TP e
i [f ,f-,I,V,i,O]

T=Vex
“* [V'X,f,m,V,i,o]

Vix=T
- [t,f,m,Uvxt,i,o0]

cP=T
- [t’(t!f-)im’v’iyoj

- [ti(nvf)o.v"vit"]

-+ [i+,f,m,v,1-,o]

o [t,f,m,v,47,(,0)]

Thus we see that the semantics of the machine language are fairly

straightforward and hence a complete list is not given here.

A more extensive list is to be found in Appendix 2 where each

command is also correlated with its equivalent in the author's

IBM 360 implementation of ALEPH., By composing the effect of each

command with the result of its predecessor in a sequence, we getl

a semantic description of the effect of the sequence, thus:

TP

[tyfym,v,i,0] -+ t,(t,£),m,v,i,o]
T=x
* Tx;(‘,f,).m,v.i.ol

W=cF, VOT=W

i [x,(t,f,),m,Uvxt,i,o0]
- [x,f,m,Uvxt,i,o]
T=Vez

- [[Uvxt]s,f,m,Uvxt,i,o0]

75

Vhere a derivation sequence such as the one above does not refer to
individual components of the original environment, as the above does
not refer to m,i,and o, then the components will be leit out of the

sequence. Thus the above sequence is written:

THP, Te=x WecP, VeT=V

[tof,v] [x,(t,2),v] = [x,(t,2),Uvxt]
F=pP T=Voz
- [xy2,Uvxt] - [[Uvxt]z,£,Uvxt]

The letters used to denote the components of the first element in
the sequence determine those components present. Occasionally, when
no confusion cen arise, we shell not be quite so explicit about which

components are present, which should be obvious from the context.

3.3, We noted in Chapter 2 thet, when a value phrase is evaluated,
the value is left in register T and the previous value of register T
has been saved on the stack., Murther, this eveluation may have a side
effect upon the contents of the variable table and upon the input and
output streams. These observations are incorporated in the property
we are to establish for all value phrases in ALEPH.
Property A

The value phrase V is said to possess property 4, if and only
if, the result of evaluating V in the environment ¢ = [t,f,m,v,i,o]
is the enviromment ¢’ =[t',(%,f), m,v’,i,0’] wvhere t’' = gv, v/ = hv,

o’ = kvo, for some functions .,0,k dotermined by the phrase V.

76

Thus we see that, in particular, the original value of T

is saved and that of M is restored. The input stream remains unaltered

end thus a value phrase which contains an evaluated occurrence of the
primary 1n1:nit cannot possess property A. W¥e have noted in Chapter 1
that the results to be obtained here are incomplete in that they do
not give e peneral approach to input and output. We shall discuss
later the reasons why a complete coverage has not been given.

It should be obvious how much more complicated property A would become
if input and output were to be treated fully. The principal feature
of property A is that the value of the phrase V and the side effect
upon the variable table can be expressed in terms of the original
contents of the variable table. The function g is called the value
function associated with V and h the associated side effect function.
We postulate the existence of three functions ¢, § and || which map e

given value phrase V to the respective associated functions, thus
g = oV h = §V k=TV

Therefore we can write the derivation due to a value phrase possessing

property A as
(t,f,m,v,i,0] - {gVv,(t,£) ,m, Vv,i,1 Vvo]

The function k has & form such that kve is the result of pushing some
values, dependant only on v, down onto the stack o. Ve shall not

concern ourselves further with the functions k or 7, nor distinguish k

with a special name. However, the functions p and § play e large
role in the following analysis and it is as well to understand them
now., Given a value phrase V, then ¢V and 4V are functions which
determine the semantics of V, by application to an n-tuple representing
the current values of the variables cccurring in V. In particular
Vv is a value in the domain, "the value of V" and :Vv is an n-tuple
of essignments, "the side-effect of V".

It is our purpose in the remainder of this Chapter to establish
the lemmas which, in conjunction with Theorem 1 will establish property A
for all value phrases. It should become obvious that property A provides
for the harmonious co-operation of the respective translations of the
value phrases.

In order to keep this analysis as short as possible, discussion
of the functional forms obtained for o and 4 is left until Chapter 4,
This is appropriate also beceuse these forms are not acceptable until
property A has been established. Where possible, the discussion of
Chapter 4 has been made independant of the derivation performed here.
This is possible because there are many ways in which the functional

form of the semantics could have been obtained end this Chapter presents

only one of them.

3.4 Lemma 1

If e is an expression, constructed from the primaries
P ygees eseyp in that order and if each pJ, 1<j<k has property A
1 X

then so does e.

[

In Chapter 2 we showed how e can be written in the form

if k 2 2, vhere each of T and ra contains at least one of the
original primaries. If k = 1 then e = pl. Pyrther 1'1 and T have
the same inductive structure. Thus since k = 1 implies e has
property A trivially, we take as our inductive hypothesis that

rl and r2 both have property A since they have less than k primaries

each. Constructing a derivation sequence for
= O
u[rlg_n z] BE 5 BT, QR
we haveo
r

(t,f,v] =1 [cprlv, (5:2) vrlv'i since A[rlfi

pr

-+ 8 [Qraurlvj, (qulv, (t,2)), W‘a['}rlﬂ]
J=cPop*T ,l'=pF .
S s v) op Tor Tm, 1), (8,2), i, Lim,¥)]

and thus e has property A. H
Coxol 1
i ' i t duct
Since \[1’122 r.] = Y% «fr and the function dot pro

is associative, we have

'. = vptcvpk-‘.o.-. eee .vpl

79

vhich establishes a left to right evaluation rule for the composite

egide effect of primeries in an expression.

Corollary 2

If E " e
e plg_glpag% _p‘-lp.mdvetckotho
operations inte the semantic metalanguage with the same priorities

then it follows from the ebove that

we

]

AV [rlv] °R {c'v] O e ...g_pt_l[\.vj

where [AV :;,p‘['l'Px_I[_-.. ...['plv]... ees]]

= (pp‘ .!;-p‘-loooo --..ﬁpl

th
Thus the value of the i primary is dependant upon the side effect

of the first i-1 primaries.

3.5 Lenme, 2
The constant primary has property A.

Proof

If p = c is a constant primary then
up = num (¢)

and we have
[t)f] - [cp(tyf)]

This derivation establishes that p hes property A with

@p = A\ve

¥p = Avy “

3.6 Lemma 3
The variable primary has property A.

Proof
If p= y, is a variable primery, let gy be the index of
¥ in the variable table, then

get(x) : (TP, T = x)

val : (T = Ver)

end we have
get(cy)

[tvf:VJ - [y, (t,2) V)
val
- [vlew], (t,£),v)

Thus p has property A with

gp = Avvlay]

¥p = Awv I

3.7 Lemma 4

If the expression e has property A then so does the assignment
primary p = y 1= e where y is a declared nanme.

Proof

Let oy be the index of y in the variable table.

81

We have
wly:=e] = get(oy), e, ass
where
ess : (VIF, VoW = T)
thus
get(oy)
[t,2,v] = Loy, (t,2),v]
ne
-+ [pev, (cy, (t,£)), vev] since Ale]
ass
- [gev, (t,2), Ulyev][oy][pev]]

vhich establishes that p hes property A. Ve have

plyt=e] = qe
ylyr= €] = AvU[yev][eyIlrev] [

3.8 Lemma 5
If the expression e has property A then so does the

parenthesised expression primary p = (e).

Proof
Trivial, since uyp = pe. H
3.9 Lemma 6

If the primary P, has property A, then so does the output

primary p1 2 output P .

82

Proof

LP
[t,2,v,0] = * rWPaVn (t,1), ".pa\V,o] since Alp]
s

outT

- [‘?Pavv (t,f), “JPavo (QPZV,O)]

Hence p haes property A and o, = 9P,

Although the primary p = input does not have property A, the

following derivation

A T1¥, T-dnp + -
[t,2£,1] - [17; (8,0),)

establishes thet it behaves very like the constant primary, except
that the value it produces is not determined by inspecting the

source program or the variable table,

3.10 Lemma,
If the expressions elmd e have property A, then sc does

the block primary

pElet y=e e

—_— 1 2

where y is & name.

Ercof

where

Thus

[t,2,v]

and thus

o [let ¥
¢ [let ¥

3.1

&3

pllet y = e es] = e, let(oy), we s tel(ay)

let(x) : (W=Vox, Vex =T, T = V)

tel(x) : (WIP, Vox = W)

we
“'% [we vy (t,2), te v] since 4le],

1 1
let(oy)
- [V‘-‘l"{ﬂ}’], (t,0), U[v;-elv][ry][oelv"]
e
4% [cpeav', (telv[ry],(t,!)),eeav'] since

where v’ = U[telv][cy'[cpelv]

tel(oy)
P [tpeav',(t,f), U[\'/eav"l[cy][-&elv[ay]]]

the block primary p has property A, with

A[eﬁ{],

= = 1 oL - q
maE] - RWPGS[UUBLV]W}’]L%V]

=p0] = lvUHea[U[teIV][CyT[WlV]?]TcyT[’:e. vlay]]
Lemma 8

If the expressions e1 1€ pese eee ,e' possess

then so does the compound primary

P = begin elaea;... ...;ek end

property A,

84

Proof
We prove, by induction on the index k, that if
B‘l = plbegin € ues -eeie end)

then

)

[t,£,v] -* ”Wek.“: & AR | ae .v;«eljv,(t,f),rte‘. S ane .'eljv]

for if k = 1, Bl = u[begin e end] = ye and hence
e 1

g
[t,f,v] [rpelv,(t,f), |:;e1v] since A!’elj and so hypothesis is

established for k = 1, Consider now k > 1, we have

pwlbegin e j.eee ..eje end = pel,off,pe R S -..,Off‘pe.
! g 2

= B R ST end ff,ne and hence
r’«[._&_be in el’ 3 . end],off,, .

P 1
[t,f,v] =*- [Ltpe. @ I e .teljv,(t,f),[‘he.-l. .on .veljv]

il .q:ek i
by the inductive hypothesis

off
<+ [t,f,[‘#ek—lo E e .¢e1]v]

e
*k r[(pek .\'Jek 1. e “ne .\;eljv,(t,f),[\,'ok. “aw e .’eljvj

and hence the hypothesis is established for all k > 0.
The compound primary p thus has property A as required and

¢l begin € fees eesje end] = we fe o e -ie

i = i iy - - oye
y [begin € jees eeeje end] = \Le..\.ek_x '1

3.12

Lenma 9
If the expressins e

does the conditional primcry

P=Eif e then e else e
= % =8 ¢, else e
Proof ;
A A

Ve can write the translaticn
form, which excludes reference to the

a flow diagran:

Pt

civen in Chapter 2 in a symmetric

indirection table, by consbrueting

Yes

oy .
T TiF
Weg €3
N <
= N
. " . . . L Vi
Noting the derivation, for some e with ALe;,
AP -+ -
o 5
[tyf,v] ~ [1 3 &y V]
e .
-+ [wev, £, yev] since Ale]j,
A e e oo 3 between two
and that the condition in the above diagram select euwe
. . 1 W L v e e o vather th two
alternative functions to epply to the envirenmend, rathed)

alternative updated envirorments, we have

ne

[t,2,v]

* [Eolge vIlye Jlge e
) 2" 1

and hence p

has

Plif e then e
YLif e then e
'[““ 1 2
F.13

[$147

+* [ge v, (t,2), ye v]
1 T

property A with

else

Lemma 10 -

If the expressions

the iterating primary

Proof

AVEO

AvEOT we v][te 1[
R A

e1 and e possess property A, then sc a
-

o
J|

©e

1

[. |
vj_',er‘ Ji

-

0l

-~

Or-

=

I 3
Jiye v]
1

KE e V]

As in Lemma 9, we construct a flow diagrem:

o

s

87

We postulate that there exist functions ¢ and P with the property
that, if we enter the diagram at 1 with £ = [t,f,v] then we exit

(if ot all) with the environment

Y

= [atv, £, BV)

and we prove this by induction on k, the number of times the

condition (72=0) proves false.

1f the condition never proves false (k=0) then we have

the derivation:

e
[t,£,v] =* [Lpelv, (6,2), p‘,-elv] since .A.[e1

™
=+ " [t,2,y elvj

and hence hypothesis is true with

aotv = 1

pv

ev
?1

Suppose now that the hypothesis is true in case we should

’

go round the loop k-1 times, and that in this case we have o = o
p =pn’, then if the condition should prove false k limes, we have

the derivat’on

e
1
[ty2,v] = [‘?91"» (t,f), Qe‘v] since A[et]

. [“’[“?°3[‘°1'1]['092[1'01"]], f, 8'[u~a {_",elv]]]

by inductive hypothesis, since condition proves false after k-1 more

loops. lNow this esteblishes existence of ¢ and ¢ with the fomm

oty = o-'[tpoa Nelv]]["ua[*olv]j

fv = p'[ye [,elv']

However these are not definitional equations, rather identities

satisflied by ¢ and ! in case (.x and e are such that) the condition

-

does not prove true on the first loop.

To get the correct definitions of ¢ and P, consider the
partial derivations, corresponding to the two arms of the disgram

chosen by the condition T=0,

™ "
£y] [£7, £7, v] for the right branch, and
FepP,MF
ii) [t,f,v] = (€, & ;
e -
+? [gev,f , ye_v] since Ale]
-5 [t/[tpeav][qer vl, £, plye ¥] 1]
- -

for the left branch.

89

Employing these in a derivation, where we consider entry to the diagram
at 1

pe
[tyt,v, = 3 [‘?‘17: (t,1), .'elv]
* [EQ,[\';'OIV]:_}\V‘I'::[Avm.l,eav][geav]][,e1v.:,f.

ko[ge vILAv][Avilye, villte ¥]

which defines ¢« and { by

wtv = il_q[r‘;exv][hvt'j[)\va[rpeav][i; e’v"j][te1 vl

Bv = EQ_[mexv][Aw"rQ .tea]UGlV']
Thus

o = ncktkvlig[rf»elv][}\'rt'][)\vcl'gne_ ﬂ[‘vves v11re e v)

f =ne.AvLQ[r:'elv'\[km’]f?.,L—_‘][gclv}
Now to establish property A, we have simply to construct a derivation
for the whole diagram

TP, T=0
[t,2,v] -+ LQ,’ (t,2), ¥v]

« Togv, (t,0), BV

and hence p has property A and we have

9P = AvoQv = o

p=AvEYy =

which, when expanded, give

glwhile e do e=] = [naltka.Q_['oelv][hvt][kva[:;ezv]!’feav]][telv]]g

-]

#{while o do

ezj = nelvl‘ug[:pexﬂrkwﬂa.Ves'j[talv] §

3.14 Before we can state and prove the requisite lommas about the

application primery snd the function definition primary, we must introduce
some altornative notation for hundling the overlap of the sections of stack
identified by F and M. First note that if we simply allowed the following

derivation

M=F
[t,f,m,v] - [t,f,2,v]

then the essential information correlating the elements pointed to by

M and ¥ has been lost. If the derivation were to continue
eM=T i
» [tyff (t,£7), v]

then the resulting enviromment is incorrect, and should be

(4, (£,£7),(,£), ¥v)

91

This latter form is only slightly better since it is open to the same
misteke again.

Our solution is to write

M=F

(t,2,m,v] = [4,0,8,v] P=M
vhere we have employed two devices. PFirstly, we make a note of the
equivalence of M and F, and secondly we retaia only one copy of the
information origirally identified by ¥, choosing to consider F as
identifying a newly empty stack. The equivalence allows us to interpret
any reference to P which affects the infomation identified by M (this
fact being cstablished automatically by its direct inepplicability to F)
to correctly adjust the model, Thus the above continuation becomes

cM=T

- [t,0,(t,£),v] M=F
Note that the equivalence is not altered by this operation. Iffectively,
when an operation is found inapplicable to an enviromment, the equivalences
are inspected to see if an alternative interpretation is justified.
Usually we shall anticipate the operations to be applied and use the
equivalences to adjust the model approprietely.

Thus we consider F and M as two independant stacks in the model,
but with a restricted mode of access to M. The equivalences can be

generalised to include, for example F = p*M with an obvious meaning.

92

Consider the follecwing derivation

T=M
[t,2,m,v) -+ [n,f,;;,v] T=M

M=F
-y [m,i\,f,v} P=HM
™mMP
- [A,(m,8),2,¥] P=nM, T=cF

vhere we have manipulated the equivalences in i obvious wey

%) A second device which we require, which will be obvious Trom

a glance av the diagrammatic representation ¢f function evaluation in

Chapter 2, is to be able to identify information siacked zbove a pointer
(11 or F), via that pointer. In particular, we must be able to collect

the actual parameter fran an area of the steck vhich the current model

would consider undefined. Consider the stack shown below

1
o
So e
S1
i

which we shall cdenote by

93

£ = (tt’tu-l“" ""t:.; (lo, (u‘,... ...,(aa,..)...),‘...)

vhere, for example, applying the operation ¥ = nP results in

f= (tk ,tk_l'... ceert (tl, (sc,... cosgB g2)ess))aes)

The sequence {t‘} can be considered as semi-infinite vhere, if i > k

then t‘ =] which is undefined.

3.16 Lemma 11

The function definition primary

PR lambde ¥ jees snsyy o @
EES— x

vhere k > 0 has property A.
Proocf
Ve have

pp = Mnlx) jese oo nuf(x)

vhere x is the index associated with this occurrence of the primary,

and where

fun(i) : (TtF, T = A®i, = BOi, AGi : F = nnM)

nuf(i) : (W= cnM, * W, DO :)

50 we see that p has the same effect as a constant primary, except that
the value is found in the indirection table. Since we consider this value

to be an element of the domain, then we conclude that p has property A.

94

Further

,|1mbda yl.’.'. -..,y'. O] = Avvy

however, we do not choose to represent

o[lambda CATTE ...,y‘. e]

in the metalanguage, always referring to it in this fomm. H
307 Lemma 12

If the aprimary a, the expressions e and o ssee sesye have
1]

property A, and if

tpﬁ=fp[1&mbd5y1,... o'o,y.o e]

vhere CATEE ...,yk are distinct nemes, then for some k and s,

P = a.(el,... ...,e')

also has property A.
roof

We note that

pp = pa, nrk, ”'91"" sssgphe cll, unmm

where

95

urk s (TP, T=M, M=F, FeulF)
cll : (T1F, cudi=i, cM, $:)

unm i (P4, M=T, TI7)

ulembde AALIERLTE 4 .e] = fun(x), for(clyl).... ...,for(ag.),ehk,

p.e,dot,rof(czyt Yiann iwme ,rof(cvyl) ,nuf(x)
vhere

fun(i) : (TtF, T=A@i, = BOi, A@i : FennM)
for(i) : (P=nP, T=cF, W=V@i, VOi=T, cP=W)
chic : (p)

dot t (eM=T, TIF)

rof(i) : (Vei=I, TIF)

nuf(i) (W=cnM, = W, Dei:)

Ve observe also that execution of 'cll' causes a branch to the function
reference returned by a, which corresponds to A@x. The sequence of
instructions which are executed is thus well defined but of length determined
by s and k. Bocause of this, our derivetion will alsoc be of & length
determined by s and k, and hence the proof will require inductive reasoning

to establish the correct form of the envirorment on certein occasions.

Where this need arises we shall rely upon an informal induction which
consists of exhibiting the first, i'" and i + 1°° (genersl) and last
steps in a sequence of similar derivation steps and checking that the
notation denotes correctly the special case of no (zero) elements in

the sequence. Ve begin then by constructing a derivation as follows

s
[t,£,m,v] » [gav, (t,f),m,yav] since Ala],

TR, T=1
+ [m, (vav,(t,£)),A,4av] T =M

M=r
+ [myh,(vav,(t,f)),jav] M = F

P=nF
<+ [m,(0y0), (gav,(t,)),jav] H = pF

Using the equivalence we can write this as

[myhy (5 (0o, (t,£))) ,4av] H = pF

e -
- [tpel[t;:w],(m,/\) s (033 (pav, (t,£))) ,i&el[;-ng M= ppF Since Afaxf

Le
"” [r ,(r geve n..,(r ’(m’“)) ..o)'(ri(fﬁ‘vy(tvf”):
1 1= 1

[48 &« vae aes .\',el.va.]v] M=y
1

1 izi = r.=[0e e o coa <o oye Salv
- o= J [J 3=l 1

ﬁe"’-l[r ;(Tiucop(r ,(m,[‘.)) “ee),(ﬁ;(g\av,(t,f))),
|+1 | 1

= ’%F

[1’9 +1. .o .¢'el.'(fa]v] M= P

i

,"f.' - -

97
pe
- 85 tt.g(r.-;go-c coo,(ft.(ﬂ, ﬂ)) ses),(".;(m,(t,!))),[to'. e ".l.t.]']
M=pfp
TtP, coM = §

- [ﬂ,(l‘.,... -..,(l‘l,(m, l'-)) s).(QI(%V.(‘&,{)}),V"! M= P‘ﬂp

where 'l - [tﬁ'o e e .ﬁel.ia]v

We must checlk that this fomm correctly denotes the environment in case s = 0,

vhich, when substituted yields
[0,(my 4),(53 (wav,(t,£))),4av] M = °F

which is correct, We continue now at the entry point, to which transfer has

been made.

[11,(!‘.,... oo-,(l‘t.(m, h)) e),("Z;((ﬁ&v,(t,il))).v'] M= f“?

F=nnM .
- [Oy(x, gaese ...,rl;(m, 0)) (23 (pav,(t,£))),v'] M = p°P

We can rewrite this as

[\7.(1" gene .o-,l‘};(fﬂ, AN)) ,(‘f;(u*av,(t,i’))),v'] M= P F

where if i > s then r = (is undefined. What this means is that we
1

anticipate the need for k actual parameters by making sure that k are

available, Our extended definition of the r would therefore be
1

98

1ix< o A gy = [QO e « s “.e ."]v
1 1 11 1

a<isk = » =20
i
to which we would give the correet interpretation in case s = k.

The derivation continues

for(x)
- . [Q!(T yess ao-’r'f(le ,(m,,\))),m"Uv'x r 1 M= pQF
X B 1 11
where m’ = (53 (%V,(t,f)))

L

for(x) ,
- 1 [f“,(}k,-go ...,r‘“;(v x‘,... -oo,(lel,(mgl.))).m'y

+*-
L] Uv'x r 1 “ane }l 5 = F
u L 13]xl r‘] ¥
(next we split up "for(x +1)" into its component parts)
1

FenF,T=cl
’ ’ ’
-+ [r‘ﬂ,(r.,... ...,rHa;(r;.ﬂ,(v X pues - xl,(m,t.)))),ll "

U ees [lex:er] yee jx‘r‘] M= p¥p

W=VOx yVox =T,cP=W
- 143 141

rr‘+1,(rk,ooo ...,r‘w;(v'x‘ﬂ,... oo-'(\"xl,(m,‘»)))),ll',

U eee [Uv'x > 1)x »r M=p¥p
: [1 1'] 141 1+1] 4
vhich follows since yl,... veeyy all distinet implies X yeee ...,x‘ are
x
distinet end hence (UM ... Uv’x r] ... Tx r Tx = ¥V ls
11 1 17 R 14

Ve prefer to consider the value of t as now undefined,

a9

for(x)
-+ x [0,(1'1(‘,... ...,(v'xl_.(m,/»)) can)ol%s(pav,(£,£))),

TV'SX yeee o0eyX 5T yuus wea,r >] M = P
1 O ! v

AR DK o sle) - o B PEE gian avds® > = WU soe [Pex 2) wus o @ xr
3 ¥ 3 X 2 1 k-1 k1" k k

Again we must check that our notation takes care of the case k = 0, which it

can be seen to do trivielly. The derivation centinues

chk,|.e
- [rpev',(v'x',... ...,(v'xl,(m,l‘)) eoe)y (85 (pav,(t,2))) ,4ev"]

M= p+P since Afe]

where v”=Uv'<x1,... ey ® PET yees wayT >
¥ v

dot
- [V'x p(V'x TEERY ...,(v'x :(my“)) esse).(i;(weV',(t.f))),teV']
k k1 1
M=pghp
rof(x)
@ Elv'x L(v'X _jyees esey(¥'x ,(myA)) oo), (85 (0ev”,(t,0))),
k=1 k 2 1
U[iuav":]xk EVka]] Ms pHP
rof(x)
- 1+1[lei ,(V'xi_x yeee ...,(V'xl AN vss)4l ‘;(:,ev',(t,f))),

UL oo [Ufpev™Ix [v'x 1] eee Jx. [v'x]l Mwp'*F
3 k 141 141
rof(x)
- ! [v'x 1,(v'x! _gese ...,(v'xl;(m,.'s)) ess)o(8;(pev”,(t,£))),

1 -

Ul ooo [UCgev™)x [v'x 1] eee Ix [v'x)] M = p'#F
k k i i

seenee

rof(x)

b * [m.“.(’?;(meV'.(t,f))).ﬁ[VGV']q yess seeyX ><v'x il ".’v’x1>]
k : k

ngQF

100

Again the form is correct if k = O is substituted. lLxecution is now
transferred to the return address ', which has been correctly preserved

in cnM, and ve return to execute the "unm" corresponding to the original

"mrk" .
F= &
9 [m,(':‘ev.’(tlf))’lv‘ ,U‘:M'iev”-_'ka geen u'-,x1><V'x g ...,V'xl>] P = H
k
M=T,TIF =)
- [%ev”n(taf).m'm'._\#(!v,](l‘,.-. ac.,x ><V'x1,... oo-,le >]
k k

where reversing the k-tuples in the last clement is justified because
x1,... ...,xk are all distinct, This form of the environment finally
establishes property A for the application primary p, since v’ and v’ are

defined solely in terms of v.

v = r*e . s sees o€ O*_a]v
s 1

4
]

Bl cies wensk PER yuis sessl P
1 k 1 k

¢ \ e see TIEL . v
r = [ue’ .ve‘ Ve ya)

ift1gi=sgy

If we write 0 = §@ eysee eesjefe ofa which is the accumulated side effect
1 1 1

after the i*'h actual parameter has been evaluated, then vi=owif1cis<s
s

then

r = [we oo Jv = ovel[oc v¥]
1 t= il P

101

‘p[.(.l”" ..".D)J " lwo[ﬁ[c.v:}@yl,." ""“y.&e;[cgvflc see)irek[og-xv]))
v[.(.ljcoo ...,e.)] =
1"ﬁtve[’ﬁ[cl.'"}<‘:‘y1’... '..’dykx?eltoov?' s ,wﬁk[ok-dv}]](o_yt’... ...,Q‘Y.)

<£0 V}x) s ,[U V7x>
[1 s k
vhere; if 1 €£i<s then 0 = e ¢« coe s .vel.ta
1 1

v o=

it i>s ' then o v is undefined. [
1

As we have pointed out in Chapter 1, the symbeolic model which
we have developed is unable to handle the concept of a vector properly.
The analyses however are included here in order to exemplify the

difficulties involved with this concept.
3.18 Lemma 13
If the expressions el and e possess property A, then so does
the first alternative block primary
p = let y = row el e
wvhere y is a name.

Proof

We have

bP = pe sarr(oy) e, ,wor(cy)

with

102

o

arr(i) : (V=P, TP, P=a P, V'F, W=uW, T=VOi, V@i=V)

wor(i) : (WIF, V@i=VW, P=cF)
and hence we can construct a derivation as follows

we
[t,2,v] “*1 [Oelvo(t’f) vtelv-

V=F
- [we vy(t,2),4e v] W= F
1 1
ey
- [cpelv,(cpelv,(t,f)),&elv] W= pP
ErznTF
- [tpelv,(ﬂk‘(?.-l,... oo-,(qlg(k ’(t,f))) e)),’.1']' = #HP

where k = (polv and {7 is undefined.
1

W1F,W=nW
-+ [:pelv,((t,f) ,(Q. godd Heik ,(ﬂ1 ,(k,0A)))) ,\{welv]VEI}ﬂP, cF=pW

By the equivalences, we note ihat
V= (D g -oo,r' ;(k,‘\))
x 1
and hence

T=Vony , Vooy=H
- [-::elv[ay],((t,f) ,n),U[y‘elV?fG'y](("k e ...,Fl;(k,[))]v%yElf'HF

e
-** [ma"ly(VezvftY)’],((t,f),h)),%eev'] since A[ez'l

where v' = Ut.alvj[a)'1(rj geee -.o,(.ll;(k’n))p

note however that we have necessarily dropped the equivalence.

103

WiF, Voo y=WN

- [(9.37' ,((f.f) i) 10['.3"’][°7]['.1'[q]]]
F=cF

- [pe, v'dt,2) ,Ulve v/ ey]lve veyT]]

which provis property A for the first alternative block primary. However,

the last step in the derivation F=cF also results in a deallocation of

storage which is not depicted here, Had it been possible to determine the
effect of uea upon the equivalence Vioy = P F then the resulting equivalences
would have noted references to the storage represented by (p““F,k) which
could then have been deleted. The danger arises with the incorrectly

specified side effect of a primary such as

(let & = row n bi= a)

However, for the record, we note the semantics vhich we have

derived above.
=) (0 “ew . ! H)
(P[M y = XoW e‘ eti] o)\‘"JGB[U[\' le][ﬁ'yv,(.' ’ s (k,4))]
y[let y = xow e eafl - Avlﬂ'weaf!l[\belv][c.y] (f“k sd & ...,Fl;(k,u))]][ay][vo‘v[o'y]] |
The second form of the block primary is neglected here since its

analysis cannot add any substantial informmation concerning the difficulties

discovered here.

3.19 Lemma 14
If the aprimary a and the primary p’ possess property A, and if

pa returns a vector reference (x ,... ...,xlg(k,u)) for some k, and if ¢p’
k

104

returns a value i, in the range 0 = i < k then the subscripted veriable

primary

p = ap’

also possesses property A.

Eroof

where

We have

pp = pa, up’, ind, iva

ind :

iva 3

(Wip, T=nTV)

(T=eT)

and so we construct a derivetion as follows

[t,2,v]

up’
-

WIF
-

[wav,(t,£) ,0av] since Ala)
F[(,)p'.\}af!v,(qnv,(t,f)) ,Hp'.ga]v‘
MTop’syalv, (t,2),[{p 4alv] V = (x' oo ---,xli(ku-))

[(x gres senyX ;(x gevnse Qon,(k/\) e) e),(t,f),
k 18 i
[4p'stelv] W = p'T

i=[wp’etalv

[1‘9(tnf)v[*P'°t‘]V]

105

and hence p has property A. If we let Ixy dencte the operation of taking

the yth element of the vector reference x then we have

ofe0p’] = AvIlwav)[op’[4av]]
y[ap’] = ¢p’. ye I

3.20 Lemma, 15
If a and p’ setisfy the conditions of Lemma 14 and if e is mn
expression with property A, then the subscripted assignment primary

pPE aﬁp':n e

has property A.

Proof

Since

ula@p’i= e] = pa, pp’, ind, pe, ias
wvhere

ias ¢ (WiF, cVW=T)
we can continue the derivation from Lemma 14.

['(x gese sy X ;(x geee n-o,(k"‘) e) e)’(t’f)’[*p"t‘]v]
k 1+ i

106

pe
-+ [[w..'p‘.*‘]v’((x' gees 000’8‘#’(3‘ peen ooo'(k,) e) “se)’(t,f)),

[yeeyp’ehalv])

ias
+ [[gpeaip’etalv,(t,2) A0 yesyp’ a1l vavilop’[4av]] [we yp’ cpalv])

where Aabed updates the variable teble a so that the cth element of the
vector b conteins d, This is only an approximetion however since not all

references to the vector b will be in the variable table. For example
a@(a0(1)s= 1)

would stack the value of a, then alter .i and thenaccess ai. A model which
can take care of all aspects of sharing of deta is highly desirable.

However, we have established property A and the result
ql[aﬂ’p'a:: e] = m.&p'.ta “

It seems that the aspects of sharing which arise when vectors are
handled in this way present substantial problems for our model. It is
difficult to imagine a model which does not have difficulties in this quarter
and this suggests an approach through language design. Sufficiently
powerful constraints upon the user could probably keep the multiplicity of
references to vectors small but this would exclude such devices (as the
example above shows) as subscripted vuorlsbles cceurring as incices, and many
others. Ve shall not further concern ourselves with the semantics we have

derived here for vectors, other than to discuss the difficulties in Chapter 5.

107

3.21 In the next Chapter we shall discuse the semantics we have
derived here end apply them to obtain some results sbout ALEFH, To conclude
this Chaplter, let us summarise these results. The fifteen Lemmas combine
via Theorem 1 to establish property A ebsolutely for each value phrase,
Further, for most of the value phrases we have been able to derive an
acceptable form of the semantics as functions applicable to an n-tuple of
values, representing the variables in the phrase, If these semantic
functions should prove intuitively acceptable,as a representation of the
semantics, as the reader has derived such, informelly, fwons Chapter 2, then
the analysis of this Chapter is a proof of correctness of the run time
machine. Alternatively, the semantic functions can be considered as a tool
to be used in determining the definition of the language recognised by the
run time machine., In this sense, the description of Chapter 2 is considered
mere speculation, It is to be hoped that the applications of the next
Chapter will do much to reinforce the reader's acceptance of the semantics

of ALEPH as correct in one of these senscs.

108

CHAPTER 4

4.0 This Chapter presents some results which use the functional
description of ALEPH semantics derived in Chepter 3. In an attempt

to make these results as independant as possible of thet Chapter and

of the way the functicnal description was derived, certain conceptual
details will be repeated here. However, the notaticn introduced in
Section 3,1 will not be repeated. Certain of the functional descriptions
themselves will be reviewed in order to give them the informal
commentigry we avoided in Chapter 3. The semantics associated with
vectors howvever, will not be reviewed until the next Chapter,

We use the functional description to show the equivalence of
the block primary and a certain application primary, and then te analyse
the role of the assignment primary in expressions. This latter analysis
leads to the introduction of a special operator which allows for a
restricted form of parallel assignment. Next we analyse the iterating
primary, giving three slternative forms of the semantics., Firstly we
establish its equivaleme with a replacement text, seccndly a simpler
form of the functionel description is given and finally we prove that
a certain form of propesition is unchanged by the iteration, In &
somevhat different vein, we turn to the problem of centrol transfer in
ALIPH, in particular the problem of encoding am arbitrary flow diagram
and two alternative solutions are given. All the results prosented in
this Chapter are intended to demonstrate some features of the functional
deseription or of ALEPH which are relevant tc a discussion of the design

of ALIFH which we undertake in the next Chapter.

109

4.1 A value phrase V has associated with it two functions ¢V
and |V which together describe its semantics: ¢V is the value
function, and {V is the side effect function. Both of these
functions are applicable to an n-tuple of values which represents
the current assignment of values to names occurring in V. If y is
a name in V, then ¢y is the index of y in the n-tuple v, and v[ay]
is the current value associated with y. The way in which o associates
the index with y is as follows. If V occurs in the program p then p
is scanned from left to right as written, and each name occurring
directly in a block primary or a function definition primary is
numbered, starting at one. The index thus assigned to y is ¢y and
the maximum index assigned is n.

Por a given n-tuple v, ¢Vv is the value of the value phrase V
evaluated with this assignment of values and (Vv is the side effect of
evaluating V, that is to say an n-tuple derived from v. The primitive
functions used to define @V and |V include U. » Unvix is the n-tuple
vhich differs from v only in that the ith element contains x.

We abbreviate U +to U when no confusion can arise. Ve have also
n

ﬁ v<i geee -‘.,i >x gene -..,x> =
nk 1 k 1 3

U[oo U[Uwi xJix ..o Jix
n n a 11 23 k k
which we abbreviate to U. Finally we have the equality function I which
is defined so that Eijxy yields x if i and j are equal as values and

yields y otherwise.

110

In the remainder of this Chapter we shall use the following

notational conventions:

e, 01' 08, sss +ss Aare expressions,

a, D, pl, p;, ess sss are primaries, a is an aprimary,

Y y].’ ya’ sen "o are names,
b 38 r;, A ess ses are operands, i.e. components of an
o
expression

The next six Sections repeat the functional descriptions, described in
the Section of Chapter 3 used to identify them, and then briefly

interpret them informally.

‘.2(304) If e s P1 2%1)‘22- e ses 2%-1p. then

ye

kv‘[o:iv]g%[o'av]gp: T g‘pi_l[a.v]

¢0-¢P.ovpk-lo-oco s .Qp

where

- » ense see ® 1515k
e = qn% *12-4 VPI

The principal semantic feature of an expression is that the
side effect is determined solely by the constituent primaries and the
order in which they appear, independantly of the actual operaticns

performed upon them and the priorities of these operations.

111

The side effect of the expression is the side effect of evaluating the
constituent pr imaries in order from left to right as written.

The value of the ith constituent primary is affected by the side effect
of the first i-1 constituent primaries and the value of the expression
as a whole is then obtained by combining the values of the constituent
primaries according to the priorities and primitive definitions of the

operators appearing.

4.3 (3.7) olyi=e¢] = o
Ylyi= e] = AvU[yevi[ay]lgev]

The value of the assignment primary is the value of the
expression assigned, The side effect is to install this value as the
new current value corresponding to the name y. However, the side

effect of evaluating e is experienced before the assignment.

4.4 (3.10) g{let y = . ea] = kmea[U[telv][ey][cpelv]:

pllet y = e e] = avU[ye [Ulye vi[ey)lve v1]1leyIlve vleyl]

The expression e is evaluated in the environment obtained
by essigning the value of 01 to the name y. The value of the block
primary is the value of e thus evaluated. The side effect of the
block primary is the side effect of this evaluation except that the
original value corresponding to y is restored. Strictly, the nhove

interpretation tells us that the restored value is that value of y

112

after 01 has been evaluated, Previously we had imposed the informal
restriction that the only form el could take, if it contained a
legitmate occurrence of y, was a function definition primary, in
vhich case Qe‘ = Avv. The eabove definition of the side effect of
the block primary allows us to state this restriction more formelly
ast e is such that for any v, 001v[c¢y] = v[ey]. That is to say,
the side effect of el is transparent to y. Thie ensures that the
correct value is restoredj however, since the velue of y may be
undefined until the assignment due to the block primary takes place,
an additional restriction is to say that o may not contain an

evaluated occurrence of y.

4.5 (3011) '{J[b.gin 91,-.. nc-‘a‘ end | = w. ot‘ek-lo e e o¢91

*[b.‘in 31; s ..-;9' end] = *QR .*e._l. see .o o*’l
The compound primary provides for the evaluation of an
expression e in the iight of the side effect of evalueting the
x
expressions el,... sees® o The value and side effect of the
k

compound primary are just those yielded by this evaluation.

4.6 (3.12) glif e then e else ea] =)‘v})g[rpelv][c;ea][gaea][*,elv]
ylif e then e else eaj = lv@[molv][tea][genl[eelv]
Depending upon the value produced when e1 is evaluated,

one of the expressions .a or ‘a is evaluated, in the light of the

side effect of the evaluation of el. The value and side effect of

the conditional primary are the value and side effect of this

113

evaluation, HNote that the expression evaluated is ea if e1 yields

& non-gero value, and aa otherwise. This is consistent with our
choice of O as false and -1 as true. However, it does show that

if x # O then would be given the same interpretation as

if x then The former is to be preferred because it is explicit

about the condition being tested.

4,7 (3.13) of L de .a] = [nﬂxxvl-}(_)[@elv'}[kvx][’lvt[mezv][veav]][telv]]g

while e
J(xhile ¢ do e] = [TAg\vEQge vIAvvilg.ve Tte v]

Direct interpretation of this description is a little
difficult because of the recursive form. Unlike the previous
descriptions, it does not correspond to the informal description of
Chapter 2 in an obvious way. The value of the iterating primary is
tentatively set to zero. The expression 01 is evaluated and if this
yields zero, then the tentative value is accepted. Otherwise ° is
evaluated as a new tentative value for the iterating primary and the
whole process is repeated., The side effect is defined by this iterated
evaluation of o1 followed by e', vhere ex is evaluated at least once
and exactly one more time than e.. In Section 4.11 we shall give a

proof of these statements.

4.8 (3.17) If pa = p[lambda Yyreee ceesd .e] where Yyrere seead,

are distinct names, then

114

q{a(.lgooo vsny®)1 'lm(?j[c V]Q‘yl’O'O ODOQQy.ml[U v:‘-,oa- see e
s . o k
[o vP]

k=l

t[n(el,... ...,e')]-kﬁ[u[ﬁfo.v]wl,... ""W.><¢°1[°oﬂ’"' ...,cpe.

lo, L ¥PII%, seve +ensey ><[0 vIlay, Jsuve eoulo viley P

vhere, if 1 £ i < 8

01 = ve‘ .“.‘-1. “oe e otﬂlova

otherwise o,V is undefined.

The value and side effect of the application primary is
that of evaluating the function body with the value of each actual
perameter assigned to the corresponding name., The side effect is
however transparent to the names occurring in the actual parameter
list in the sense that their original values are restored on exit.
Each actual parameter is evaluated in the light of +the side effect
of evaluating the aprimary and then all the preceding actual parameters

in order from left to right. Similarly, the side effect of
evaluating the actual parameters affects the evaluation of the
function body.

Names other than ‘."1 gece ...,yll which occur in e have values
which are current at the time of function calling, rather than function
definition time. The way « associates an index with each name in a
program is important at this point. Since the correlation between

names is lost, the name referred to from e includes e in its scope.

115

This seems to be a desirable effect of wv. Consider for example

s 2
lety, = %

ya()

when yl and y’ are the same name. Any occurrence of this name in 'a
refers to yl. Had the neme correlation been retained, the ability to

update y from 08 would have been obtained.
a

4.9 If we consider the case of an application primary which
has only a single parameter, we get a useful subcase of the results of
Section 4,6, If va = Avv and ya = o[lambda y.e] then
q»[a(el)] =)\vtpe[ﬁ[ﬂ«elvf]@y)«pelv>1 from Section 4.6

=)wrpa[U[volv][ey][cpole] from defn. of U

=oflet y = e e from Section 4.3
v[s(ol)] = hvﬁ[{:o[ﬁ[Qvelv]<ay><<pelv>]<ay><telv[ay]> from Section 4.6

= Aﬂl[to[U[q;exv][czy][cpelv]][oy][;elV[cyU from defn. of U

= y[let y = ele] from Section 4.3

116

We have established therefore, that in case y does not ocecur in e1

then (lambdse y.e)(cl) end (let y = ele) are interchangeable.

The case when y is assigned the value of a recursive function and thus
y occurs in «1 cannot be handled in this way hut requires the explicit
programming of the paradoxical combinator Y. How this can be done in
a particular case is the subject of Example 10 in Appendix 3.

This equivelence of two combinations of ALEPH phreses is an instance
of the eapplication of the functional form of the semantics to establish
a result about ALEPH, The remeining Sections of this (hapter are

devoted to similar applicetions.
4.10 Consider now the expression
- H*- Yo LRV Y
for some basic operator op and names Y, and y’. We have

ge=oly 1=y opy =Y]
=oly, 22y =V,]
= Avloy,_v] ep [¢ly, 1=y, 1v]
= Avlvley 7] ep [y, v]

= Av{viey 1] op [v[ayll)

17

fo = yly 1= Y, SR Y=V]

= MWUlyLy, op ¥, t= ¥, Iv]ley Joly, op v, 1=y 1v]

= MWUL[4ly, += 5, 1oty Iv]loy, Jlvlay,] op vley, 17

= MWLy, v1ley, 19y, v1]ley, Jlvley,] op viey 1]

= MI{Uv{ovg][v{ayll'.!][ayl][v[oval op V[ayl]]
From these results, ve sec that y takes the original value of y and
y, tekes the value of y_ opy, in terms of the original values of y

and ya. Thus if we were to include in the set of basic operators, an

operator et, say with the property
r etr = r
1

that is to say, it discards its second operand, then the side effect

of e = ylcu ya _e_'gynla y1 is
ve = AUUv{ay](vlay 1](ey, Jlvley]]

wvhich exchanges the original values of y1 and Y, If et were
considered an arithmetic (or logical) operator, it would be given
& lower priority than or. This would mean that combination of its
operands was performed last in expression evaluation. This gives a

reasonable interpretation to

118

“ s see =
yls- rl_y‘:- rg_gl o_ty': r.

which is to assign the "expressions" r ,... ...,r to the names

2 x
yl,... ...,y. » where each r’ is evaluated with the original values
of yl,... ...,y- « For example, the assignment

xt= y+1 et y:= x + 1

is constructed as

X3=
+
y ot
1 yi=

|
/\

and hence the values of x and y are incremented and exchanged.

By assuming that each r‘ does not contain an occurrence of et,

the above statement could be proved by a simple proof such as the
one given at the beginning of this Section. An operator such as
et is useful for transforming some recursive functions to iterative

ones. For example, the function

119

f=my1,.-. ccn.y'-

g .l then f(rl,... c-.,rk) else 92
can be written as

f=lambda ¥ jyeeo ocoesy o
et k

begin
whileel_gl_g
Y.i= r et «,. ¢t ¥y 1= 17 ;
i L - e X
eo
<

and

In particular, we have

hef = lambda a,b.

if a mod b # O then hef(b,a mod b) else b

and

hef = lambde a,b.
begin
while a mod b+ 0 do
at= b et bi= a mod b;

b

120

These forms of the highest common factor function should be compared with
the one introduced in Section 2.18 which makes use of the result given

at the beginning of this Section.

4,11 Turning our attention now to the iterating primary, a useful

result is that

AR while n do e

», if e then begin e ; while . do e end else O
L -

have the same side effect. Trivially, they do not have the same value
(for consider the case when e is evaluated exactly once). Considering
-

the side effect, we expand as follows

e, = kvEQ_[tpelv][Aw][t[begin e ; vhile ° do e ﬂ]][\;oxv]
= AvEQ_[yelv][lvv][‘[vhilo e do ea].Qe][velv_
¥p, = DighviQve vIlAvvilg.ie J(ve v]

= kvEQLQGLVWEAVVJ[[!Kglvﬁgfm01VW[XVV](e-¢oa](#eIVJ]-ve;3[v01v
by characteristic property of Y, YF = F(YF!, thus

¥p, = kvEQIcpolv][lw"[Q[vhilo e do oa].tea][tolv]

= yp

11

This form of replacement definition for the iterating
primary is sufficient to define the semantics (side effect cnly)
of that primary. Lffectively

y[while e do oa] = ylif e then begin e ; while e So e end else 0]
-

says that the side effect of while . do e is just the side effect of
evaluating e if the value of e is zero, COtherwise it is the side
effect of evaluating s 9 and while . do e in that order. The

same effect as this replacement can be obteined by making the recursion

explicit at run time as follows

p, . (let y = lembda. if e theu begin e ; y() end else O
y())

which can also be shown to have the same side effect as P if y does

not oceur in ezor e « The primary

= = o') 1
? 2 (let A lambda y, if e then yl(eé) else ¥,

yl(O))

has the same velue and side effect as while el do ® s if ¥, and Y, are
names which do not occur in el or e . However showing this is complicated
by the use of ¥, 4o hold the tentative result of the iteraviag primary.

A somevhat more directly useful result about the iterating primary is

deduced in the next Section,

122

4,12 Let us denote by f* the product f. .ee ... of, where f

occurs n = 0 times., Thus, we have

f -f.f.-l, n>0

£ = Axx
If, given vo, there existe n = 0 such that

D) [ve o[ye e 1w, =0

and ii) if 0 = k < n then [cpel.[yek.volj'j v 70

o
then we can prove
1)' \é,‘[“’hile e do e 3 v = [te .[v. e ",I] v
=== % = A 1 E » 4
ii)’ wlmhile e do ‘al v =[Q =0

[mg-lt#el-ua]'“l'[n;vo] a2

To prove (i) " requires an inductive argument as follows. OSuppose n =0,
then e s 0. Trom the definitions of while . do A given in

Section 4.5, we have

123

y[while e do .a] v o= [ng)w!'l_),['sexv][kw][g.voa][ﬁexv]] Y
= [Avl'x_)[qnlv][kw]['[vhilo e do ea].v;e‘][\'gelv}] v_ since YF = F IF)
= BQ[gev JAvv][i[shile e do e lete Jlve v]

= *elvo since Ny = o

We take as our inductive hypothesis thet if n < n then
o

y(while ° do ea] v o= [io1 .[1;0a .Qotj'] v vhere n is the least integer
such that [cpel.[\yoa.trl]‘] v . 0 and consider the case n = n > 0.

We have

y[while e do ea]'o
= Eg[qelvo][lvv][t[y_héy e do ea].voa][tolvoj
= [y(while e do 03-1'“3][“;%1 since ve v 70

= [qol ’[‘“a‘“;].-l‘“a][“;vo] since n - 1 < n

= [ye o[ye oye J*] v

and Nence the induction is complete. A similar induction proves (ii)’ (]

This result confirms the interpretation of Section 4.5.

4.13 Hoare (1969) and Dijkstra (1969) both describe a result about
an iterating statement which they use to prove the correctness of short
programs, Hoare states the result as an axion and Dijkstra deduces it
from a definition of the iterating statement similar to the first

equivalence of Section 4.9. They state that,if B is a Boolean expression

124

and U is & statement and if the truth of PA B before § is executed
is sufficient for P to be true after 5 is exccubed, then if P is true
before

while B do §

is exccuted then it is true afterwards (assuming the iteration
teminates).

To state this in terms corresponding to the notation we have
used in this dissertation we concern ourselves vith ¢[while . do Q.]
when Wel = Avve The result we wish to establish is then that, if it
is possible to deduce P[veav] given Pv and we v / O for some v, then
given on (and that the iteration teminates) we can deduce
Py[yhile e do e v].

Por from Section 4,10 we have 4n20 such that, if 0 s k < n

then [w‘el.[ﬁle J*]v #0 and hence
5 o

Py e v #0 ' Plie v]
” ’ 6‘1 o = r [\ o of

Pf!,eavd],[t,:el.w ch]vo,'g I— 1’[[\;&:‘_ _l“V‘]

Bllye 132 s[we olye 1*~*1v #0 I Bllye 1%]

that is to say Pﬂ;[while-ol do e Jv]

The way in which this result is used is not of interest here.
Suffice it to say that such propositions about socurce language
statements are usually sufficient to prove correctness of programs
using them and further that this form of semantic specification seems

to be very suitable for this purpose. Certainly it is a more suitable

125

form of the semantics than our functionsl description. I suggest
however that detemmining di rectly that the implementation gives the
iterating primary this interpretation would invelve a process not
very different from the one used in this dissertation, although

probably not explieitly detemining the semantic functions.

4.14 Pinally we turn to the problem of control sequencing in
ALEPH, Due to the absence of an explicit control trausfer
instruction such as the goto in ALGUL, we may not be able to express
some algorithms in their most natural form in ALEMI, 14 is our purpose
in this Section to show how an arbitrary flow diagram csn be encoded as
an ALEFI program. We leave a discussion of how an explicit contrel
transfer instruction affects both the desipn of ALEFH and the results
of this dissertation until Chapter 5.

The process to be deseribed will be applied to the following

flow diagram

apply

subprocess

£

The

1s9as
oxrder.

Appendix

McCarthy

functions.

can

the

of the diggram

regions.

diag

Pirst ve
(1960,
MeCax

cvaluate

resulting ALTE

repres

anc

v
i

functions

agrem where contbrol

1

apply

subprocess

£

Vs

— B SR T
+ssyn and submit then

to

for

labelled.

DIrogIram.

vt

1

3"

obtain

1

ir

Jjoins

Yach

from more than oue

pply a process wnich is

a

Pl o S 1 . . ; ik
altexred here to suil ALEPH, which

Px
dges

cribed

set of mutually ree

. ol o 4 4 25
side elfect only.

label is

i
Lo

¥

used

fach label identifies

the whole diagram

R

.

Il

<

¢

can be decompo

5

in

Dach point in

¥s

curce is

as a varisable
o tree=like

Xe

into

sed

j'

Ji= &
d
1
1= false
s bl

'
«

1led.,

4.1

ion
Xeglon

128

Because of this tree-like structure, an? because the exit ‘rom each
region identifies » successor region, we can encode cach region as a

parameterless function in an obvious way,

Pi= lambda . begin j:= 1; 0() end;
0= lamida . if w®j then B() slse
begin
a(1):= §3
u(j) 1= true;
if (is= i + 1) > n then
begin £(); 8() end else P()

ands

Res lambda . AL (Je= J + 1) > n then () else 2();
S1= lambda o Af (1= 1 = 1) = 0 then T() glse
Legia
Jr= aliy
ulji= false;

R()
ondy

Te= lambds . O
Now after these apsignments have been made, the whole diszram can be

executed by

ir= 13 P()y

129

We see that, just before each function has been completed, it calls
another function in the scheme. This is extremely wasteful of stack
space since we shall have a nest of "marks", one for each label passed
in the diagrem, and vhen finally T is called, the nest of marks is
complete in the sense that none of the functions P, 0, I, S have yet
been exited. The exit from T causes a string of exits to be made

and the functions are exited in reverse order to which they were entered.
To counteract this, we alter each of the above functions to return as
its value the name of the function it selects as its successor.

Thus, for example, O becomes

Qi= lambda . if u0j then R else
begin
a®(i):= j;
u®(j) = true;
if (i:=4i + 1) >n then
begin £(); § end slse P

end;

Now if we alter P, R and S similarly and replace the assignment to T

by T:= 0, the scheme can be executed by

ii= 13 let x = P while x # 0 do x:= x();

130

Here we see that each function is exited befoure the next is entered

and hence we have an overhead of only one "mark" on the s ack,

The complete scheme as presented here is programmed and annotated

as Lxample 11 in Appendix 3.

in alternative way in which the regions identified above

can be programmed has been reported by Bohm and Jacopini (1966)

and modified by Cooper (1967b, 1968).

This consists of using the

labels of eech region as Boolean veriables which permit access to

the region.

identifier true.

let ¥ = false let O = false let i = false
while not T do
4LP then

begin Pi= false; ji= 1;

if O then

begin (:= false;
if u®j then R:= true else
begin a®(i)i= j3 wi(j)s= trues

if (is= i -+ 1) > n then

(s= true end

Each region selects a successcr by setiing its

Tius the above diagrem is encoded as

let § = false let T = false

else

begin £(); S:= true end else P:= true

end else
if R then

begin Ri= false;

if (j:= § + 1) > n then Si= true else (:= true

ond olso

11

false;

F
4
1
+]
g
]

if (is=i=-1) =0 then T:= true else
bogin

ji= e@i; wO(j):= false;

R:= true
end

end else

-2

2880

end

This is Example 12 of Appendix 3.

An important feature of both the above processes is the existence
of an effective procedure for encoding eny flow diagram using only

the sequencing facilities provided in ALVPH,

4,15 It is to be hoped that the results of this Chapter have
demonstrated the way in which the functional description can be used.

The results themselves are not very deep. Neither is it true that the
functional description can effectively answer every question one can

ask about ALEFPH, However, if results of the sort derived in this Chapter
are required and if it is necessary to establish them directly from the
implementation, the functional form of the semantics seems to be & useful

intermediate stage.

132

CHAPTER 5

5.0 The derivation of a functional description of the
semantics of ALEPH has been presented as an approach to programming
language design, rather than as a contribution to the problem of
proving the correctness of an implementation. The reason for this
is that the original version of ALEPH and of its implementation
were changed substantially in order tc make the derivation possible.
In Section 3.18 hovevér-, we postulated that the correctness of the
implementation had been proved, if the derived functional
description was informally interpretable as what was intended, and
in Chapter 4 have made such an interpretation. Indeed, had the
functional description been presented, independantly of its
derivation, before the implementation was described, then the
derivations of Chapter 3 would have been sufficient to prove
correctness of the implementation. It is not necessary however to
derive semantic functions in this way, it is necessary only to show
that the implementation and the functional description have the
same effect.

McCarthy (1962) defines correctness of a compiler in this
way and McCarthy and Painter (1967) prove the correctness of a
compiler for simple arithmetic expressions according to McCarthy's
definition. By means of an abstract analytic gy-'ex for the source
language they can give a functional description of ils semantics.
Similarly the semantics of the object language are defined and then
a translator, whose correctness is in question is described. It is

then proved that executing the translated expression leaves the

133

value predicted by the functional description in the sccumulator.
The proof is based on an inductive principle similar to that
expounded in Theorem 1 (Section 3.0). The approach presented in
this dissertation is obviously very similar to this, differing
meinly in details and in the fact that the functional description
is regarded as a result rather than date.

It was not possible hovever, as we have pointed out in
Chapter 1, to establish the correctness of the oripginal
implementation of ALVPH in the way MeCarthy had described,
This was for many reasons, in particular invelved language concepts
and complex implementation features. It was necessary therefore to
tlilo'r the language and its processor to the requirements of the
proof. Once this process had been begun it was used freely and
proved to be a very critical design tool. Some examples of this

process of "feedback" can now be given,

Fa1 The principle example of feedback affecting the

implementation was to force the use of the extremely simple method

of associating s value with a variable at run time. This association,

described in Chapter 2 and again in Chapter 4, allocsles a fixed
location to each declaration of a name. The immediate consequences
of this are to make the implementation of a "call by nane" feature

impossible. This can be illustrated by a simple exsmple.

134

Congider the recursively defined factorial function:

‘lot £ = lambda n. if n = O then 1 alse n* £ (a - 1)

vhich can be rewritten, to give a simple case of recursively

nested blocks, as follows:

let £ = lambda n. if n = 0 then 1 else
lot j =0
begin ji= f(a - 1);

Jrnmn

L)

Now, if instead of having f return a value as its rosult, we
provide it with sn extra parameter, a function to apply to its

result, we can rewrite this again as:

let £ = lambda n,a. a(if n = 0 then 1 else
let § =0
begin f(n - 1, lambds x Jji= x)3

Jxnm

end)

The oxtra actual parameter provided in the recursive cell
implements one of the features provided by a call-by-nase

parameter, that is the ability to assign to variables at =

]

E 135

previous level of (recursive) nesting. If we make the simple
transfomation of having "a" apply directly to its arguments "1" ||

and "j * n" then the resulting function is incorrect: ’

let £ = lambda n,a. if n = O then a(1) else

let j =0

PR —

begin f(n - 1; lambda x.j:= x)3

a(j » n)

Within the scope of "j" we now have two methods of updating it:

ji= e and ale)

but since j is associnted with a fixed table entry they both have

the same offect. The second form, which was intended to update the

previous incernation of "j", dees not work. Any simple

implementation of & call-by-name feature using the variable table '
in this way is therefore yoing to meet the same difficulty. |
An alternative way of using the variable table to get over this

problem is to note that if the exiz. nctual paramster is & vector

reference, that is the address of a stack location, then the separate ‘
identification for each incarnation of a name is aclieved. The three
functions described here are demonstrated in Uxamples 13, 14, 15 of

AM 3.

136

Another way in which feedback affected the
implementation was that it often caused the generated machine
code to be reorganised, either because the analysis suggested
a simpler organisation or because the originsl organisation was
in error. In the latter case, the error shcwed up in the
analysis, rather than giving an unacceptable semantic functions
On one occasion an implementetion of the iterating primary was
found to overwrite the last element siacked before it was entered.
This had not shown up in practice because in all the test
programs run this value had been unimportant. On ancther oeccasion
the implementation of the application primary was found to reserve
an extra cell after the last actual parameter. This was not
incorrect but was a wasteof storage. It appeared in the
derivation and was corrected by inserting the macro “ecld".

The first of these design faults would undoubtedly have appeared
but the sccond need never have been discovered. The mnalysis
convinces that there are no other "bugs" of either type.

The way in which feedback affected the language design
was mainly in the exclusion of features for which an adequate
description could not be derived. An example is a fenture which,
although never implemented, was considered and rejected on this

basig. The ecurrent function aprimary:

this

has mull side—effect and returns as its value the function

reference corresponiing to the function eurrenily being svnluated.

137

The highest common factor function of Section 2.17 could thus be
written:

hef:= lambda x,y. if x mod y = O then y else this (y,x mod y)

This aprimary is trivially implemented by

u this = ths

where

ths ¢ (T1F, T=cM)

but cennot be defined by the semantic object language. This is
because it does not possess property A,in that its value is not
dependant only on the variable table. It seems unlikely that any
simple functional description would be able to describe such a

context dependant object.

5.2 The semantic functions derived for vectors are
incomplete. The difficulties involve the way in which storage is
allocated and shared. By sharing of storage, we mean effectively
that there is & multiplicity of references to it by which it can
be updated. The main problem is then with guaranteeing that all
these references are updated to refer to the updated storage.

A simpler aspect of sharing was involved when we created multiple

references to the stack in the derivation of the application

138

primary. We took care of these by using equivalence relations

which effectively kept a record of multiple references. In addition

the model retained only one copy of each element of storege so that
it is not necessary to update multiple copies. Ixtending this
approach to vectors is not trivially possible however. As we have
seen in Section 3.15 the effect of expression evalustion upon the
equivalences expressing sharing of vector storage is not easily
detormined. Essentially what is required is an extended version of
property A which determines this effect. This would in turan
require all the lemmas to be reproved to ascertain that each phrase
possese this extended property. It seems unlikely that such an
oxtended property could be defined for this lanpuage snd this
symboliec model of the implementation.

The analysis of the implementation of the veclor concepts
was only worth including here for this reason. It nuiut%ut that
there are major conceptual difficulties involved with the
implementation of vectors and to where these difficulties lie,

As well as the concept of sharing of storage which we encountered
in Section 3.18, there is the concept of allocetion and deallocation
of storage also encountered in that Section. Specific
identification of the operaticns of allocation and deallocation in
the semantic object language would seem to be demanded by the

situation observed in Section 3.18.

139

5.3 The functional description of the semantics is incomplete
also in that it does not specify the effect of the input and output
streams., Again this could be remedied by using an extended version
of property A with the added complexity that this entails., This is
indeed lqbs‘bmtial, for in addition to 9V and (V we should require
to associate with the velve phrase V two more functions to update
the input end ocutput streams respectively. In addition each of
these four functions would obtain wvalues, not only from the wariable
table but the input stream also, for example the side-effect

function for the assignment primary would be:

Lyr= e) = AWhiU[gevillay]wevi)

In case of primaries defined in terms of many value phrases

(e.g. compound primary, application primary) the added complexity
would be enormous. Ve need only look at the compound primary where
we sce that the simple "dot" product form would be lost due to this

increased number of arguments.

5.4 In Section 4.4 we introduced the concept of a region as
a means of programming complex control problems in a language wihich
has no explicit coutrol “ransfcr. A region Is @ peraneterless
function which returns as its result either another region or zero.
Control is then exercised by repeatedly evalusting such a sequence
of rogions until zero is returnmed. Landin (1964, 1965h) introduces
a similar grouping of phrases called a "program-point". It would

have been simple to have implemented regions directly in ALEPH and

140

thus avoided the repeated "marking" and "unmarking" involved in a
control loop of the form:

while x # 0 do xi= x()

Itv was not felt however that a region was a sufficiently general
feature to werrant this inclusion.

Regions bave illuminated the need for a more sophisticated
block primary which allows for mutually cross referenced delinitions.

For example:

];giylpo.. ..t’y. = Ql,o.o ...,0. e

with the meaning that each y is initialised to the value of the
1

corresponding o’ « Apart from the fact that each e‘ could refer to

y“.--. ‘.I’y‘ this would have the same mea.nimr_ as:

(Lambda SARTEE SR A .e)(el,... ...,ek)

and o corresponlingly complex derivation.

The way in which a freely useable control traunsfer should
be implemented in ALEPH is not clear. Certainly one could not
allow "labelled expressions" since this would allow scome unpleasant
abnormalities, such as labels occurring withi: arithmetic
expressions. Anything less than this, such as labelling only the

compouents of a compound primary would ve too restricted. This is

41

hovever the course taken in FULER. The implementation would be
correspondingly more complex because of the complex interaction
~ with a block structure. The semantic description of a source
language wvith & control transfer instruction is complicated also
by the semantic incompleteness of syntactic units, Ve have in
fact encountered this problem in ALEPH with the application
primary, It was necessary to specify the associsted function
definition primary in order to fully specify the semantic
functions. A control structure such as the iterating primary on

the other hand combines syntactic and semantic completeness.

5.5 Ve have described in Section 5.1 how the method of
associating a neme with a value at run time was forced by the
requirement of a simple symbolie model for analysis. In the
funetional description this choice appears as the functilon o,
applicable to a name, to yield its index into the variable table,

Certain of the semantic funections however are independant of o.

These are the functions nssociated with the expression, the compound

primery, the conditional primary and the iterating primary.

These functions make no explicit mention of the method of access

used to obtain the value of a varieble, or of the structure of the

object to which they are applicable. Consider for instence the side

effect function of the conditional primary:

ylig . then e else ea] =)“'EQ[W,_"]{WS][W,.::%‘“1‘{

142

This might be considered as applicable to a much more complex
infomation structure than an n-tuple, where the funcitions e »

: "t"‘ to. and 'o. are defined in temms of primitives appropriate

to this structure. As such, it would appear still to convey the
required meaning, We should expect to derive this form from

other implementations with alternative methods of storage
allocation, Ve could not expect however to derive equivalent
functions in the case of the block primary, say, even with an
appropriate redefinition of U and o. ALGUL, for example, does

not regard the value of a variable in a recursively entered

block with the same sanctity as ALEPH (cf, Example 14, Appendix 3).
These structure-independent semantic functions might therefore,
justifiebly be considered with more reverence than the humble

background of their simple implementation might suggest.

5.6 The implementation itself is worthy of scme reverence
however. For, consider agein the side effect of the conditional

primary. If we were to specify this as:

ylif e then e else e] = AvEQ[ge vllye 1lpe Jv
T 3‘"‘""]) 8™

where the side—effect of the expression e is ignored, then slthough
the somentics are (in a sense) simpler, this is Ly no neans simply
implementable. Since the primitives of the semantic object
langunge can be implemented (say, in LISP) there is no doubt that

we could implement any such functions yhich we should consider it

suitable to choose. Although the example above seems silly, it
would probebly be seriously considered by a designor, choosing
functions on an ad hoc basis, who had temporarily overlcoked the
side effect of " The probability of considering sueh silly
functions becomes even higher when they become more complex and
so will the probability of accepting them. It would then be
impossible to show the equivalence of the functional description
and the implementation. Indeed the functional description of the
gsemantics is nothing more than an implementation for a "functional™
machine and just as prone to error as the proper implementation.
The redundancy introduced by having two semantic dea‘crip‘tions and
proving their equivelence adds a measure of reliability to the
aystbom,

Tt ought not to be claimed however that the approach
presented in this dissertation, where the functional deseriptbion
is dorived from the implementation, is guaranteed to be foolproof.
Any formal description of iho semantics of » programming language
is based on the informal interpretation of certain primitive
concepts in the semantic object language. Applying these primitive
concepts in the derivation is therefore necessarily a fairly
informal affair. Thus ve are prone to error at this level.
Murther, in any practical case, the¢ enommity of the derivations

involved will add another level where errors are possible.

144

5.7 - Finally let us summarise the results of this dissertation
and see what conclusions can be drawn. ALIPH has been presented as
a programming language designed under the constraint of having a
functional description of its semantics provided. This constraint
led to the development of an iterated approach to langusge design
which simultaneously rationalised the source language, its
implementation and ite formal description. Inability to detemmine
an ncceptable functional description on an ad hoc basis led to the
derivation of the semantics from the implementation. Iy defining
the semantics of the object language and deseribing a i{ranslater,
the semantics of each source phrase was derived from its
translation.

When we consider how we might extend this approsch in
the case of ALEPH an obvious candidate for consideration is the
vector concept. ALIPH is powerless without scme method of
structuring data but we have not made any impression upon the
semantics of vectors here. The main probkms heve beon discussed
in Soction 5.2 where it is concluded that a substentially different
sywbolic model is required. An alternative extension lLowever
would be to implement lisls instead of vectors, with ihe only
updating function being "cons". It is then justifiable to congider
miltiple references to common data as references To igtinct copies.
This svoids the sharing problem, rather than solving 1i.

It is not suggested that it should be possible to apply the
method of deriving semantic functions to exisling high level

languages such as ALGOL and their implemeniations. This is for many

145

reasons already noted in this Chapter and is itself the principal
reason vhy the approach has been considered as = design tool.

. There would seem to be no reason why this tool should not be used
to design much more extensive languages, with a carelful choice of
implementation and description primitives. The approech is, in
general, very disapproving of irrational source language concepts.
Ideally, concepts should be simple to deseribe bLoth procedurally
and functionally. Hopefully, these two qualifications correspond
to gimplicity of description, on the one hand to the mechine and

on the other, to the programmer.

146

APPENDIX 1 : GLOSSARY

This glossary collects together terms used in a
technical sense in this dissertation., Most of the terms were
introduced in Chapter 2 and the references in this glossary to
sections of that Chapter identify the section in which the term
is first used., The principal object of the glossary is to refresh
the reader's memory and hence the definitions may not be complete.
Ali underlined phrase occurring in a definition denotes & suggested
céou reference.

The notation of Chapter 3 is used for metasyntactic
variables, because it is felt that this is the chapter in which

the glossaxry will be of most use.

Py p;, p.. cee are primaries,
e, ex’ e 2 sue are expressions,
I y;’ Yo oo are namnes, and
a is an aprimary.

Since most of the technical terms defined here refer to
ALEPH constructs, this glossary also acts as a language reference

manual .,

147

alternative block primary

This primary has two foms, both allocate storage for
vectors. The first fomm

prlet y=xove e
———

sets up a vector of ex elements, each undefined, for use

during the evaluation of e - The second form

p'!lei'.ya::.-mra1 each e e
s

.
-~

initialises each element to the value of the expression

o which is evaluated once only.

application (2.17)

The only meaningful dereferencing operntion which can be

performed upon a function reference.

application primaxy (2.17)
The primary

p= a(el,... ...,ek)

calls the function referred to by the aprimary a with

actual parameters .1"" ...,e..

148

aprimary (2.17)
An abbreviation for applicable primary, intended to
subclessify those primaries which may return a function
or vector reference as their value: wvarisble primary,
subseripting primary, parenthesised expression primary

application primary.

assignnent primary (2.17)
The primary
PTyi=e

wvhich returns the same value as o but has the sidr=nffect
of updating the value corresponding to y (in the variable

table) to this value.

bagic operator (2.2)

A basic operator is used to construct an expression from

primaries:

e ™ P, SR P, OB ¢ ..._2._1 P

Each operator g_g‘ denotes a rule whereby values from the
domain may be combined to form new values. The way in
which the primeries in the above expression are combined
is governed by the relative priorities of cperators.

No basic operator may have a side-effect.

149

basic symbol (2.0)
A source language program in ALEPH is represented by a
sequence of basic symbols. In particular,certain

underlined words are basic symbols (eg. let, while, do,ete.)

block primary (2.8)
The primary

p»?loty:el e

introduces a name y, with initial value e for use in the
expression e s The value of the block primary is the

value of e and the side-effect is that of evaluating °
except that this effect is transparent to y. The expression

e1 may also contribute to the side-~effect. See also

alternative block primary.

compound primery (2.9)
The primary

p ® begin elg... ...;s. end

provides for the grouping of expressions, where expressions
are to be evaluated for their side-effect only. The value
and side-effect of the compound primary is that of evaluating
e' in the environment produced by the side—effect of

evaluating .1.000 seey @ in that order.

150

conditional primexy (2.10)
The primary

p® if e then e else e
B Ty

which has the value and side-effect of evaluating one

of on or ea according to the value produced when e

is evaluated., If o yields the value zero, then e is

selected, otherwise e is selected.

consbant primary (2.3)
The primary which allows the denotation of constant

values from the domain.

declaration (2.8)

The occurrence of a name directly in the block and

function definition primaries,

declared (2.8, 2.16)
The property attributed to a name throughout its scope.

domain (2,0)
The set of yalues over which an ALEFH program expresses
a computation, In the case of this dissertation, the
union of the set of integers (suitably truncated) and
of function and vector references. The union rather
than the direct sum implies type of element is not

determinable from the element itself.

sffect is null (2.4)
When the side-effect is such that the environment
is left uncheng ed.

expression (2,1)
The expression

e ™ », 21‘ P, OB oo '"2%..1 p.

is constructed from primaries and basic operators.
Tach of the primaries is evaluated in order from left

to right. The value of the expression is then the
result of combining the value of each primary

acca ding to the definition of each basic operator.
The side-effect is defined by the order of evaluation

only,

first altemati oclc a

see alternative block primary.

function definition primary (2.16)
The primary

pllgbdl yl"u. -..,y‘.e

which has null side effect and yields a function reference

as its wvalue,

152

refe: e
A value from the domain which surmerises the
information of a certain function definition pri y

in the sense thet this information may be accessed by

applicetion.

functional description
A description based principally on the primitive
operations of functional application and abstraction.

Contrasts with the concept of a procedural description.

iternting primary (2.11)
The primary

p = yhile e do e
- gl s

repeatedly evaluates e end e (alternately) while e
is not zero. Thus o is evaluated exactly once more

than e The side—effect is defined by this order of
evaluation, The value is that yielded by e vhen last

evaluated, or mero if it is never evaluated.

marks pointer (2.25)
Functions are called by establishing a mark on the stack,
which is a three element entry containing the function
reference, return address and previous marks pointer.

The marks pointer refers to the latest one of these.

153

s i) .
Byntectically, a name is = sequence of letters. A neme
identifies a yarisble and is introduced by a declaration,

null, offect is
see offect is mull.

nunber (2.3)
Parlicular type of constant primary.

parenthesised expression primary
The primary

pre (e)

used to give an expression the status of an sprimary,

or to override priorities of operators.

primexy (2.1)
In ALEPH all sequencing constructions are classified
syntactically as primaries. A primary yields a value
and may have a side-effect. As such a primary includes

the usual concept of statement.

S P SV S S —

154

procodural description

Essentially a description is procedural if one must apply
& procedure (or a machine) to determine its meaning,
Ultimately all descriptions are procedural. However, the
nature of the primitive operations of the procedure makes
a step-wise state~transforming procedure,executing simple
state~transforming commands intuitively "more procedural”
than a description based on the primitive operation of
functional application. In this serse the tern procedural
is used in this dissertation to qualify the machine
language translation of an ALEPH progrem when this is

regarded as a semantic description of that progrem.

See functional description.

scope (2.8)

In the block primary the (syntactic) scope of a name is
principally the qualified expression. Similarly in the
function definition primery it is the function body.

In general however, the scope may be reduced by the nested
occurrence of a declaration of the same name within its
scope. Also in the cuse of a block primary, the scope
includes the initialising expression, but the method of

referencing is restricted here.

second altemative bloek primary
see ltermative block prima

155

semenbics (2.1)
In ALEFH the semantics of a value phrase is & definition
of its yalue and its side-cffect.

semantic function
For & value phrase V, one of the functions ¢V and ¢V
vhich respectively determine the value and side effect
of Vo

The property which may be possessed by two or more
distinetly referencesble components of a data struecture,
which determines that updating the component by any one
of the references effects the value subsequently returned
via the other references. Conceptually a problem arises
vhen an address of a block of information is used in the
implementation, but separate copies of the block are

sssumed in the symbolie model.

side—cffect (of evaluation) (2.1)
The side-effect of a value phrase is its effect upon the
] yariables of » program. Via the names occurring in the
value phrase, the correspondences between name and value
are updated. This is principally performed by the
assigoment primary. Infommally, & value phrase may also
have a side-effect upon the input and output sireams, bul

in defining the gemantics of ALEPH, we choose to ignore this.

156

Stock (2.25)

The principal tool of the implementation is = stacked

allocation of storage allowing for recursive eveluation
of functions,

subscripting primazy (2.21)

The primary
pmaé 1)1
used to access the B, Lo element of the vector referred

to by a. The aprimary a nust yield a vector referonce

Tor this %o be meaningful,

subscripted assipmnment primary (2.22)

The primery
A © $=
PEaOpi=e
combines the effect of the assignment and subscripting

primaries. The vector referred to by a is updeted in that

the value of its P, " element is set to the value of e.

In ALEPH, the rules governing the writien representation

of yalue phrases.

157

¥alue (2.0)

A member of the domain. Also the result of evaluating
a value phrase,

Yalue phrese (2.1)
Lxpressions and primaries, components from which ALEPH
programs are built., In general & value phrase is
defined syntactically by a recursive form involving
componen® velue phrases. Rules governing the value and

side~effect of a value phrase are defined in terms of

this recursive structure.

vaxriable
The correspondence betweon a name and o value. Subject to

to frequent change by the side—effect of evoluating value

phrases,

varieble primery (2.4)
A name may occur as a primary in an expression. As such

it denotes the value currently corresponding to this name.

yarisble table (2,25)
Tarlicular way in which the correspondence between a name
and a value has been implemented. Fach declaration deteruines
2 table entry at run time which contains the value

corresponding to the name declared.

r

158

yector (2.20)
A vector of length n contains n + 1 entries, indexed by

Ojaee «wsyne Unless altered by explicit assignment, the

Oﬂ‘ element contains the value n. The elements are
accossed via o yector reference using the subseripting

or subgcripted assignment primaries.

yector reference (2.20)
A particular velue from the domain used to access the

elements of a vector.

Any member of a distinguished subset of the domain.
Membership of this subset is tested to deternine conditional

plternatives at run time.

APPENDIX 2

This Appendix presents details of the author's
implementation of ALEFT for the IiM 360/67 running under the
Michigan Terminal System (MIS). These details may illuminate
the description of Chapter 2 and add substance to the results
of Chapter 3,

The compiler consisis of & syntax directed string
translator (produced by the author's PUSSUM system) and a table
driven essembler which are linked together as co-routines,

The tronslator produces a string of three lelter mnemonics which
the assembler maps into machine code., The resulting object module
is acceptable to the MIS loader when provided with a module of
input and output routines. The translator consisis of an
analysis routine, based ou the work reported by Conway (1963)

and Kanner, Kosinski and Robinson (1965), which operates on a
linked~1ist form of the syntax of the source language. The syntax

is put into this form by POSSUM, which is described below.

Pete's Own Systom for String Menipulation (POSSUM)
POSSUM provides a notation in which string ‘ranslations

may be described. The notation given here is in the fomm
implemented by the author but no details of this implemeniciion
are given since POSSUM is intended for use here only as a
description language. For the purposes to which POSSUM is put in

this dissertation, it is to be hoped that it provides a clear and

160

unambiguous description of a certain string translator, and that
a correct implementation of a program to perform this translation
is intuitively possible,

An alphabet is a finite set of characters. For our
purpose, an alphabet shall slways be assumed to contain the letters
AyByesasayZ and the digits 0,1,.....,9. A sbring over the alphabet
A is a finite sequence of characters from A, The set of all strings
over A is denoted by A*. In particular the empiy string is a member
of A*, A itranslator is a mapping from A* into A* which is one-one.
At ion is the image of a string under a translator.

A subset of A* is referred to as & genus. In particular
a genus may be empty, finite or (countably) infinite., In POSSUM
notation a translator description defines a finite set of genera,
classifying the source language (and the objcct lenguage under
transloation) and, simultaneously how a source string, which is a
member of a given genus, is translated.

The principal items for the construction of a translator
description are nemes (of genera) and strings (over the alphabet A).

A translator description utilises a firite number of genera,
each of which it identifies by a name, this identification being
made in a decleration statement. A name is formed Irom letters only,

for example

CONDITIONAL VARIABLE PRIMARY

are names of genera. A translator description is enclosed in the

brackets BEGIN......SND and consists of a declaration statement

161

followed by a finite set of rules. Each rule defines a unique
genus and translation. Thus there is exactly one rule associated
with each genus and hence exactly eas meny declarsiions in the
declaration gtatement as there are rules.

A declaration statement is a finite list of distinct
names, separated by commas, prefixed by the word GENERA and

terminated by a semicolon. For example

GENERA CONDITIONAL, VARIABLE,PRIMARY;

is a declaration statement.
Bach rule in the finite list of rules consists of a name
followed by a (possibly empty) list of options and terminated by

a semicolon, An option is prefixed by the sumbol ::= and consists

of o prefix followed by a transducer. For example

COMPOUND 3= '3' . ':0FF,' . EXPR . COMPOUND

1= 'END' ;

is & rule defining the genus COMPOUND which has two optious.
The prefixes are ';' and 'END' respectively end the transducers
are ,':0FF,' . EXPR , COMPOUND and empty, respectively.

A prefix may be a string enclosed in apostrophes cr an
action prefix (EMPTY, NUMBER, GEN, NAME, SAVE). A transducer
consists of a finite sequence of trxansduction elements, each prefixed

by & dot. A transduction element mey be a siring enclosed in

162

apostrophes, or & genus or an activity (GET, GETN, GETNUM).

Given a (source) string and a genus we may specify that
a translation of the string with respect to the genus succeeds or
fails, and it if succecds we may specify the translated string.
Translation with respect to a genus is defined in terms of
translation with respect to its list of options. Translation with
respect to a list of options is defined as follows,
1. If the list is empty then the translation fails, otherwise
the first option is chosen and if the prefix matech succeeds then
translation proceeds undoer 2, with respect to this option, otherwise
translation is performed with respect to the remaining list of
options. Thus we see that the first option whose prefix match
succeeds is chosen,

A prefix match succeeds or fails as follows:
If the prefix is a string then the mateh succeeds if and only if
the characters of this string are found heading the source string
and further, if all the characters matched are letters, then the
first character not matched is not a letter, The action prefix
NAME will match the longest sequence of letters heading the input
and the action prefix NUMBER the longest sequence of digits.
Neither will match an empty sequence. The action prefixes
GEN, IMPTY and SAVE all match the empty sequence (i.e. they succeed

identically).

2. Having seclected the first option with a prefix match,
the matched string is removed from the input. If further, any
spaces appear at the head of the input, these are removed too.

We have now got a (poesibly) shortened input string and a selected
trensducer. Translation proceeds with respect to this transducer
as follows. Each transducticn clement is selected in turn.

1f the element is a string then this string is appended to the
output (the translation). If the element is GET, GETN or GETNUM
then the appropriate action (defined below) is invoked. If the
element is a genus then the input string is translated with
respect to this genus (as defined in 1.) and then translation
proceeds wita respect to the remaining transduction elements with
& (possibly shortened) input string.

The effect of the action prefixes and their associated
activities is defined below, 1 at uny stage in the process,
translation wita respect tc some intermediate genus should fail,
then the whole translation fails and the translated string is
undefined. However, an appropriate failure message can be
generated by attaching this message to the genus when the genus

is declared. Jor example

VARIABLE = 'UNDECLARED -~ IDENTIFIER'

164

Consider the transletor description:

BEGIN

GENERA UM, ADDEND, TEEM;

SUM s:= ' ' , TERM . ADDEND;
ADDEND s3z= '+' . TERM , ":ADD,' ., ADDEND
.‘."'

TERM s3= NUMBER , GETNUM . ',';

Any sequence of numbers separated by + signs will be matched and
translated to an equivalent sequence with the operators in a
reverse position. For example 12 + 143 + 17 + 0 would produce

the translations

12,143,3ADD,17,3ADD,0, s ADD,

where we have anticipated an appropriate action for GETNUM,

Initially trenslation proceeds with respect to the penus

whose (efinition is provided by the first rule after the declarations.

actions and eotivities
NUMB..t and GETIUM

As mentioned above NUMBER will match any non-empty
sequence of digits on the input. The action is to preserve these in

a specially provided location. The associated activity GETNUM will

move the string of digits currently stored there to the output,
The storage for these sequences is static and is overwritten each

time NUMBER is successfully matched. The option

te= NUMBER , '":NUM:' , GETNUM , ',*

vill matech any string which begins with e sequence of digits
(e.gs 127+...) and will produce as output the digits matched,
preceded by :NUM: and followed by a comma (example :NUM:127,).
GEN ond GET

In order to provide some correlation in the output
between the elements produced by a single transducer in the
translotion a device is used called a symbol generator. This is
simply a counter which begins at 1 and counts up in ones, increasing
by one each time GEN is matched., When GET is invoked, the sequence
of digits corresponding base ten to the current value of this
counter is appended to the output. The storage provided for the
counter however is dynamic in the following sense. Lvery time the
translator encounters o tranduction element which is a genus then
the current value of the counter is saved and this velue is restored
if and when the translator returns to this incarnation of this

transducer, Thus for instance the option:
t1= GEN , ";FUN:' . GET . ',' . BINDING , ':NUF:' . GET . ",
will match any input directly. Repardless of the effect of BINDING

upon the symbol generator, the output from both occurrences of GET

will be the same, the value generated by GEN, This allows the

166

assembler to correlate the occurrences of FUN and NUP in the
intermediate language program.
HAE and GHTN

As we mentioned above NAME as a prefix will mateh any
sequence of letters al the head of the input., Hovever, the action
associated with NAME is much more complex than that. To begin with
NAME may only be used as a prefix if a genus called NAME has been
declared and defined (given & possibly empty list of options).
A successful match against the prefix NAME ‘then effectively
activetes an independent symbol generator and then constructs an
option whose prefix is the sequence of letiers matched and whose
tranducer consists of a single transduction element vhich is the
string of digits generated., This option is then linked into the
definition of the genus NAME as a new first opbtion, all the other
options taking a place one later in the sequence. The effect
therefore is to alter the definition of NAME te include the
possibility of correlating the occurrences of identifiers in the

source language. Ior example, the option

ts= NAME

would match the input PETER+.... and cause the definition of

NAMI: to become, for example

NAME 3= ‘'PETER' . 17!

11= sesseprevious first option (if any).

167

Associated with the symbol generator used in conjunection
with NAME we have the activity GETN which simply moves the current
value, as o sequence of digits base ten, to the output., Thus if
the above option had been

""" = m . .‘Dm|. . Clm . '.'

the output :DEC:17, would have been produced in correlation with the
17 stored in the definition of NAME.
BAVE

If SAVE occurs as a prefix to an option then the current
level of definitions attached to the genus NAME is noted. At the end
of transls%ion wi th respect to this option, this level of definition
is restored, any options added by translating with respect to genera
which were tranduction elements of this option, are lost. This gives
the usunlly accepted definition of block structure to the source

language. For example the option
g1= 'USE' , BLOCK . ALFPHA
in the context of the definition
BLOCK ::= SAVE , DECLARATIONS
has the property that any definitions introduced (by adding options

to NAME) when translating with respoct to BLOCK are removed before

translation with respect to ALPHA

168

BETY

This sction prefix is simply an alternative to the empty
string.
The translator descripiion for ALEFH

ALEPH, es described in this dissertation is implemented
by POSSUM and the actual translotor description follows. Lach three
letter mnemonic is preceded Ly a colon, which is used by the
assembler as a locator. Paramecterless mnemonics are delimited by
& comme ~ wvhile others are separated from their (integer) parameter
by & colon and the paramecter is delimited by a comma. The mmemonics
correspond directly to the macro names used to specify translations
in Chapter 2, It therefore is possible for the reader to follow
the action of the translator by referring to the definition of the

treanslation of each primary as given in Chapter 2.

B

SCCMMENT % TRANSLATOR DESCRIPTION FCR ALEFE* IN PCSSUMO* NCTATICN T
ELIS SYNTAX

1 BEGIN

3 CENERA PROG,EXPRZCISJUNCTION,CISJCIN,CONJUNCTICN,CCNJCIN,

4 NECATICN,RELATION,RELATIVE,SUM,ACCEND,TERM,MULTIPLIER,
5 FACTCRyPRIMARY BLCCK,4LCCPCCNCITICNAL,ENCCCNC,

& VARIABLE,ASSICNATION,FUNCTICN,BINCING,INITIAL,

7 APRIMARY 4 ARCUNMENT y PARAMETERS y VALUE, SUBSCRIPT,SUBSCRASS,
€
9

COMPCUND =* INVALID-EXPRESSICN-DELIMETER?®,
10 DECLARATICN=vADJACENT-CELIMETERS-IN-DECLARATICON-LIST?',
11 DO ='[CC-MISSEC-IN-ITERATING-PRIMARY"',
12 ANTECECENT =*THEN-MISSEC-IN-CCNDITICNAL-PRIMARY?,
13 CONSEQUENT ='ELSE-MISSED-IN-CCNDITICNAL-PRIMARY",
14 CLESE =*CLCSING-PARENTFESIS—-MISSED",
15 NANE ='"UNDECLAREC-NANME/ INVALIC-PRIMARY",
1€ FORMALS =YADJACENT-CELIVMITERS IN-FORMAL-LIST?',
i7 MCREFCRMS ="']INVALID-CELIMITER-IN-FCRMAL-LIST?' ,
18 MOREPARANS =* INVALID-DELIMITER-IN-ACTUAL-LIST* ,
19 EQUAL =t EQUAL-SIGN-MISSED-IN-DECLARATION-LIST* ;
U
21 PROC se= t¥i S T3ENTHY & PRIMARY YSEXT o 3
Z2
23 EXPR te= % o DISJUNCTIEN 3
24
25 DISJUNCTICON 2:= v* SCCNJUNCTICN o CISJOIN 3
Z6 CISJDIN 38 'CRY o CONJUNCTICN » "=QCR,* « CISJCIN
27 ts= EMPTY 3§
ZE CCNJUNCTICN 2:= *% , NEGATICN o CCNJCIN 3
29 CCNJOIN ti= VAND' « NEGATICN « ":AND,y* ., CONJCIN
30 = EMPTY 3
31 NEGATION = YNCT* o NEGATICN « *INOT,"
242 tz= Y0 . RELATICN 3
28 RELATION - R . SUM « RELATIVE ;
24 RELATIVE $s= =0, SUM , YIEQL,’

691

AmAn AR N AN

O@m~NUDWN

AN MR AN
I ST I

™™
~N O W

Y W W

SUM

ACCENC

TERM
MULTIPLIER

FACTCR

PRIMARY

APRIMARY

CCMPCUND

D T

e

L | T 1§ {1 1 [A 1| I | S 1 | { Y (I

L | 1 | {1 1 A I { B { B

Hhu

=1 o SUM & fELEQe™
=R 5 SUM SHEBEQ, !
ta=l o SUMA. TINEQH®
YR Y . SUNPT PSS
"3Y L.S5UR '3 1:6RIS?
EMPTY " 35

V¥V« "TERM ACDENC

=% ", TERM Y:NEG,' . ACCEND
Y5 s« TERM AEDEND " s

‘+v . TERM *:ACDy* « ACCEND
—4 s TERM '*:SUB,"' « ACCEND
EMPTY 3

v &' FACTER
E¥P S "FACTOR
£/ .8 " ERETOR
'MOD*,FACTCR
EMPTY 3

' . PRIMARY H

MULTIPLIER 3

YiMUEyY o MUERTIPLIER
$30IVs"Y, 2 MULTIPLIER
¥IMCD," « MULTIPLIER

'BEGIN? EXPR « CCMPCUND

"WHILE" s LOQP

FLET® « BLOCK

o R « CCNCITICNAL

NUMBER o YINUMZI+Y , GCETNUM , t,?*

YINPUT® *ZINP,y

*DIGITSY o« PRIMARY o« ":CIG,"
‘FIELDSY S"PREMARY s *2FLDg?
'LAMEDA'. FUNCTICN

'CUTPUT*s PRIMARY « !:0UTy?
v . APRIMARY « ARGUMENT 3

{1 %s EXPR & CLOSE
" . VARTABLE . ASSIGNATICN 3

5% « ":0FF;* « EXPR o CCMPOUND
YENC? 3

oLl

7 BLOCK ::= SAVE « DECLARATICN 3

3 CECLARATICN ::= NAME . EQUAL . VALUE 3

T4 VALUE 2= ""ROM* « EXPR « INITIAL s GETN &« %3' o« EXPR « YSWORsY . GETN o« Y3?*
15 L o EXPR o "SLETI® & GETN « %Y9¥ « EXPR o *3TELSY 5 GEIN & ®g? 5
1€ INITIAL 2= WEACHY o 'EXPR » "SiRCW:"

T Sie= RSN BRARRsY 3

78

75 LECP 23= 1 GEN o PSHHLEY GIBGET « Y9 ' o EXPR & DO « EXPR o YIGONZY o GET « S0
&0 DC o= DOY o YIDOWRY o GET « Yt 3

21

82 CCNCITICNAL ::= CGEN o EXPR . ANTECECENT . CCNSEQUENT « ENDCOND ;

83 ANTECEDENT 2= YTHENY o T2THNZ® &« EET & '3 <« EXPR

€4 CCNSEGUENT ¥= TELSEM & ":ELS:® & GEYT s Y3Y « EXPR 3

€5 ENDCONC s MRS VINBCEY o EE1 &« Yyl 3§

Eé

87 CLOSE = Wepeae =
£8 -
€95 VARTABLE Ra= MY 5 FIGEV:IY 5 NAME 5 Yo'

Ci

< ASSIGNATICON = Pi=¥ o EXPR « "2ASSs®

G2 = EMPTY « Y2VAL,Y 3

G3

G4 NAME -

C-‘)

CE FUNCTION 3= GEN o« ¥3FUN:2' o CET « "9' o BINDING o« '2NUF:" o GET « ',' ;3

<7 BINCING ::= SAVE . FCRMALS ;

S8 FORMALS = NAME o ":FOR:"' , GET « '3* o« MOREFORMS o ":ROF:2' o, GET o ',

9 = TV o f3CHK»* LJEXPR » *2DOT»" 35

1C MCREFCRNMS = ,% o FORMALS

1C1 = ®e¥ o C3CHK,Y « EXPR & YSDCT,* 2

102

1C3 ARGUMENT = "(' o ':MRKy' . PARAMETERS « *":UNM,' . ARGUMENT

104 = #% o SUBSCRIPT 3

105 PARAMETERS ts= Vv o PICLLRY

106 t:='' , EXPR o MCREPARAMS ;

107 MCREPARAMS =:= *)* , ':CLL,"

1C8 = '5' o EXPR - MCREPARAMS ;3
iCs

110 EQUAL si= BV

i 5 1

112 SUBSCRIPT tz= %3v ., PRIMARY . ':INC,* , SUBSCRASS . ARGUMENT
113 s2= EVMPTY ;

114

115 SUBSCRASS 3= W= _ EXPR = T2IAS,”

116 22= EMPI Vs IVAY 3

o

118 END

ENE BF FILE

The sequence of mnemonics which represents the
translation of an ALEPH program is processed by the author's
assembler. The assembler is table driven and the table is compiled

into 2 form acceptable to the MTS loader by the 360 G /SSEMBLER

using & macro DEP illustrated below. For example, the mnemonic

A88, vhose definition in Chapter 2 is

ass t (We=cF, VON=T, FP=pP)
is encoded straightforwardly as

DEP ASS

L W, o(P)

8T T, o(w,V)

SR P4
vhere W,P,T and V are registers with appropriate definitions, and
vhere rogister 4 contains the number of bytes per integer (m 4),
In the case of ELS however:

els(i) 1 (#Boi, A®i: TIF)

the encoding is less straightforward

174

DEF ELS, A=6, P1=2
L V¥, 4(0,J)

BR W

L T, 0o(F)

SR P, 4

Here J is a register referring to the indirection table and the
displacement of 4 selects the B field. The keyword parameter A=6
specifies that the A field of the indirection table is to be
initialised to the address of the instruction which begins on the 6*h
byte of this macro. The keyword parameter P1=2 specifies that the
displacement beginning at the second hyte of this macro is to be
incremented by an emount calculated from i, to select the correct
entry in the indirection table.

The following table shows most of the instructions used
in the hypothetical machine of Chapter 3, along with their effect
upon the environment ? = [¢,f,m,v]. In addition, the suthor's
interpretation of these instructions for the IBM 360/67 and a
suggested scheme for the IBM 1130 are tabulated. In the case of
the 360, the displacement i* denotes a value inserted by the
assembler, calculated from the parameter i. Similarly the 1130
implementetion requires the displacement inserted into the
instruction. The 1130 code could not be generated in s single
pass because of insufficent index registers. The use of i" is
not intended to imply that the displacements are the same funetion

of i, only to signify that a calculation is necessary.

175

I 360/67 I8 1130

F =nf (4, (0,1) ym,v] AR F,4 MIX ¥ 1

F = pF [t,£",m,v] SE ¥,4 MIX F -1

T =oF (", 2,m,v) L T,0(®) w F o

¢F =T [£,(t,£7) ,m,v] ST T,0(¥) SO F 0

¥ , Lt,(4,2) ym,v] (F=nf, c¥F =1)

TP (27,2 m,v) (T = cF, P =pP)

T = Vei [vi,fym,v) L T,i*(Vv) LD V4 i

voi = T [t,2,m,Uvit] 8T T,i*(V) S10 V o+ ir

T = Vaw L T,0(w,V) I v v

T =Vor [vt,f,m,v’ L T,0(T)

=Boi L W,i*(J) BEC T J 4+ 4*
BR W

(T = 0) = = ABi LTR T,T BSC I J+ 1% 4
L ¥,i*(J)
BCR 8%

F = nTP (t,@Qy.00 (O,0),m,¥v] (SLLT,2
AR F,T

T =M B T,M

Vhen a replster is used to index V then the register conterins a

caleulated displacement rather than the index, where those differ.
The intention here has been simply te illusirots the

proximity of the hypothetical device of Chap er 2 fo nctual current

day machine operated in a certain way., Thus this Appondix may seem

176

annoyingly incomplete. To attempt to describe the author's
implementation fully would require much more space than could
be justified in a dissertation of this nature,

177

AFFRRDIX 3

This Appendix presents fifteen examples of ALSPH programs
in the form of the output obtained when these programs are run
under the euthor's 360 (MTS) implementation, The fomm of the
interface with MTS should be obvious when the Appendix is inspected,
The programs are held in a file called TESTSOURCL and are referred
to as TESTSOURCE (i) for i = T,..s .e.y15. A file called DESCRIBE
contnins descriptions of each progrem, DESCRIBE (i) describing
TESTESOURCE (i) and the file DATA contains sample data, DATA (4)
being used for TESTSCURCE (i). Each example is presented by
listing, first the source program then its description., The compiler
is stored in the file ALEPH* and it cobtains its source from SCARDS

and dumps the load module produced in the file attached to device 2.
{RUN ALEPH# SCARDS = TESTSCURCE (i) 2 = =LOAD

The file ~LOAD collects the mechine language translation of

TESTSOURCE (i)s. The command

/RUN ALGQO " +=LOAD SCARDS = DATA (i)
runs the program -LOAD using the input and output routines stored
in ALGO* and the data stored as DATA (i). The date is printed

vhen it is rea¢ oy the primary input, in the form

DATUM x,

178

and then the results are printed in a format defined as follows.

The primaries p1 end ’:’ defined by

P, = digits p

P, = fields p

for some primary p control the shape of an output record.

The first primary, when evaluated, determines that subsequent
output values shall be nssumed to contain a maximum of p digits
and hence p columns will be used to print each value. Similarly,
the number of values printed on each record is defined by the

primary P, to be the value of p, Hence

digits 3; fields nj

will cause output records to contain n values, cach occupying 3
columns of the record. If digits and fields are not used then
output defaults to 11 digit integers printed 1 per record,

The remainder of the Appendix should be self-explanatory.

SCCMMENT *%% EXAMPLE 1 #**>
SL1ST TESTSCURCE(1l)

1CC CUTPUT LET N=INPUT

1C1 LET S=1

1C2 LET I=C

1C3 WHILE (I:=I+1)<=N CC S:=S*I

ENDSBF FILE
SLISHFNDESCRIBELL]

1C0 THIS SIMPLE PRCGRAM CCMPUTES THE FACTCRIAL FUNCTION BY USING THE

1C1 ITERATING PRIMARY.THE VARIABLE I IS SUCCESSIVELY INCREMENTED BY 1 AND
1C2 MULTIPLIED INTC THE PRODLCT S« THE VALUE CF THE ITERATING PRIMARY

103 IsEs THE PRODUCT Sy IS OUTPUT AS THE RESULT.

ENCEEF FILE
SEMPTY =LOAD
CCNE.
S5RUN ALEPH* SCARCS=TESTSCURCE(1l) 2=-LOAC
EXECUTICN BEGINS
EXECLTION TERMINATED
S§RUN ALGO#*+-L0OAD SCARDS=CATA(1)
EXECUY ICN BEGINS
CATUW €y
A
EXECUTICN TERMINATED

5LL

SCOMMENT
£1L1ST TESTS
2C0
2C1
202
203
2C4
205
2C6
2C7
ENCOIGE FILE
&L IS8T DESCR
2C0
201
202
203
2C4
205
2C6
ENDVBE ETLE
SEMPTY -LOA
CCNE.
SRUN ALEPH=*
EXECLTICN B
EXECLTION T
SRUN ALGC=*+
EXECUTICN B
CATLWV B4,
23

EXECUTION T

**% EXAMPLE Z *%=*
CURCE(2)
CUTPUT LET N=INPLT
LETI=0
LET C=C
WHILE (I:=I+1)<N CC
C:=C+ IF (LET X=N
LET Y=1I
WHILE X :MOC Y —~=€ DC
Y:= X MCC X:= }=1 THEN 1 ELSE O

IBE(2)

AS CESCRIBED IN CHAPTER 2 THIS PRCGRAM CCMPUTES EULERS TOTIENT. THE
INNERMOST ITERATING PRIMARY CETERMINES THE HIGHEST COMMON FACTOR OF X
AND Y« THE USE OF THE BLCCK PRIMARY LOCALISES THE SIDE EFFECT UPON

X AND Y COF THIS CETERMINATION. THE CCNDITICONAL PRIMARY THUS HAS 1

AS ITS VALUE IF N ANEC I HAVE A COMMCN FACTOR ANC O IF NOT. THE VARIABLE
C TFUS ACCUMULATES THE NUMBER OF INTEGERS LESS THAN N WHICH HAVE A
FACTOR LN COMMEN WITE Ne. TRIS IS EMLERS.TOGTIENT.

3

SCARCS=TESTSCURCE(Z2) 2=-LOADC
EGINS
ERMINATED
-L0OADC SCARDS=CATA(2)
ECGINS

ERMINATED

021

SCCMMENT *%% EXAMPLE 2 #*=*
SLIST TESTSCURCE(3)

3¢0 LET N=INPUT+1
301 LET R=INPUT

302 LET S=1 LEET (%=1
3C3 BEGIN

3C4 LET I=0

305 WHILE I<R B0
306 BEGIN S:=S*(N-=1:=1+1);
307 T:=T*1I
308 END 3

3409

310 GUTPUT (S/7)
311 END

ENE OF EILE
£L1ST DESERIBE(3)

3C0 AGAIN THIS EXAMPLE 1S DESCRIBEC IN CHFAPTERZ2. THE COMPCUND PRIMARY
301 SIMPLY DETERMINES THE NUMBER CF WAYS R THINGS CAN BE PERMEC FROM
302 N=1 BY ACCUMULATING THE PRODUCTS CF ljyesssR IN T AND N-lyeawsN-R
3C3 LN S« yTHE QUCTIENT S/T IS THE BESIRED COEFFIGIENT »

END CE FILE

SEMPTY =LODAD

CCNE

SRUN ALEPH* SCARCS=TESTSCURCE(3) 2=-LOAC
EXECLTION BEGINS

EXECUTION TERMINATED

SRUN ALGC*+-LCAC SCARDS=CATA(3)
EXECUTICN BEGINS

CATUWM Ty
CATUM 5%
2]

EXECLUTICN TERMINATED

181

SCOMMENT

243 EXAMPLE 4 ##%%

ZLIST TESTSBURCE(4)

4C0
4C1
402
4C3
4C4
405
406
4C7

LET PHI=LAMBDA N .
LET I=0
LET C=0

WHELE X MCC Y -=0 DC Y:=X MOD X:=Y

WHILE (I:=]+1)<N DC
IF HCF({N#I)=1 THEN C€Cz=C+1 ELSE C

CUTPUT PEI{INPUTH

END BE FILE

SLIST DESCRIBE(4)
EXAMPLE 2 IS REPEATEC FERE USING FUNCTIONS FOR HIGHEST COMMON FACTOR
(HCF) AND EULER®*S TCTIENT (PHI).

4C0
4C1

END SOF 'FILE

ZEMREN =10
CCNE.
SRUN ALEPH
EXECUTION
EXECUTICN
SRUN ALGCH*
EXECUTICN
CATUM g4
23
EXECLTION

AC

* SCARDS=TESTSCURCE(4)
BECINS

TERMINATED

+-LCAD SCARCS=CATA(4)
BEGINS

b

TERMINATED

2==LCAC

IT DIFFERS VERY LITTLE FROM EXAMPLE 2.

(44}

£CCMMENT #8% EXAMPLE & #*%**
ELIST. TESTSOURCE(S)

5C0 LET SQRT =LAMBDA X & LET I=0

501 WEILE (I:=1+1)*I<=X LCC 1

5C2

5C3 LET CIRCLE=LAVMBDA N,RSQ o IF N=C THEN 1 ELSE ’
5C4 CIRCLE(N-1yRSQ)+2%

5C5 LET C=C

5C¢ LET I=SQRT(RSQ)+1

507 WHILE (1:=1-1)>0 DC

5C8 C:=C+CIRCLE(N-14RSQ-I%*I)
509

514 CUTPUT CIRCLE(INPUT,LET K=INPLT K*K)

ENE. BF FILE
ELIST DESCRIBE(S5)

5C0 TEIS IS A MORE INTERESTING PRCBLEM AND CULR FIRST EXAMPLE OF ALEPH

5C1 USEC RECURSIVELY. A SIMPLE SQUARE RCCT FUNCTION IS USED WHICH

52 RETLRNS THE INTECGER PART CF THE SQUARE RCCT COF ITS PARAMETER, AS

5C3 LCNGC AS THE PARAMETER IS GREATER THAN ZERC, AND RETURNS ZERC CTHERWISE.
504 IT COES THIS SIMPLY BY INCREMENTING I UP BY CNES FRCM ONE AND TRYING
5C5 EACH INCREMENTEC VALUE BY SQUARINC IT. AS SOON AS I SQUARED EXCEEDS X, THE
5Cé PARAMETER, THE PREVICULS VALUE CF I IS ACCEPTEC. FCR TEHE USE TO WHICH IT
507 IS T0 BE PUT HERE, PRACTICAL CCNSICERATICNS DICTATE THAT IT WILL NOT BE
5C8 NECESSARY TC CCUNT BEYGNC 10 SAY, THUS THE METHCD IS NOT NECESSARILY
5CS INEFFICIENT.

510 THE FUNCTICN CIRCLE(NyRSQ) RETURNS THE NUMBER OF LATTICE POINTS ON

511 AN N=CIMENSICNAL UNIT CRIC CCNTAINEC IN CR CN THE SURFACE OF AN

12 N-DIMENSICNAL HYPERSPHERE, CENTREC AT THE CRIGIN, WKOSE RACIUS SQUARED
913 IS CIVEN BY THE PARAMETER RSQe« A ZERC CIMENSICNAL SPHERE CF ANY RADIUS
514 CCNVENTICNALLY CCNTAINS A SINCLE POINT « A SPHERE OF NON-ZERQ DIMENSION
515 N CCNTAINS THCSE PCINTS WHICEH ARE CCNTAINEC IN THE (N-1) DIMENSIONAL

516 CROSS SECTICNS CRTHOGCNAL TC AN AXIS CF THE CCORDINATE SYSTEM, CUT BY
517 THE PLANES CF LATTICE POINTS. THERE IS A SYMMETRY ABOLT THE ORIGIN

518 WHICH MEANS WE NEED CNLY CCUBLE THE PCINTS IN A HYPERHEMISPHERE

519 THE CENTRAL CRCSS—SECTICN HCWEVER CCCURS CNLY ONCE. TEUS

520 THFE ITERATING PRIMARY SUMS THE CRCSS-SECTIONS CIRCLE(N-1,RSQ=-1%*])

(5231

521 WHERE I RUNS FRCM 1 TC SCRT(RSQ) o IT COES THIS BACKWARDS TGO SAVE

522 STORING THE VALLE CF SQRT(RSQ)e THE VALUE COF THIS SUM, DOUBLED AND
223 INCREVMENTED BY CIRCLE(N-14RSG)y THE CENTRAL CRCSS-SECTION IS THE
524 VALUE OF THE FUNCTION

END. EF FILE

SEMPTY —-LOAD

CCNE .

SRUN ALEPH* SCARCS=TESTSCURCE(5) 2=-LOAD
EXECUTICN BEGINMS

EXECLTION TERMINATED

SRUN ALGO*+-L0AD SCARDS=LATA(5)
EXECLTICN BEGINS

CATLM 4,
CATUpN 1C,
49689

EXECUTICN TERMINATEEL

el

SCCMFMENT

#%% EXAMPLE €& ##%

ZL1ST TESTSQURCE(6)

6CO
eC1
ecz
€C3
€04
ECS5
€606
eC7
6C8
ECS
€10
611
€12
613
€14
&15
€16
617
&£18
619
END BF FILE
§L1IST DESCR
6CO
601
602
Q03
ECH
605
ECE
EC7
&CH
609
€10
611

LET N=INPUT
LET Q=(LET S=1
LET J=C WHILE (J:=J+1)<N DC S:=S*J)
LET A=ROW N
LET M=INPUT

BEGIN

LEYT J=N+1 MHILE {(J2:=J-1)>1 EE

BEGIN A2(J)2:=M/Q; Mi=M MCD GC3

:=Q/7(J-1)

ENC 3

Aalsi=0 ;3

LET I=1 WHILE (Is=I+1)<=N OC

LET J=C WEILE (J:=J%1)<=1-1 DC

IF A@J<Aal THEN @ ELSE A@(J):=A23(J)+1 ;

DIGITS 33 FIELDS N;:

LET I=N+1 HWEBILE {I:=]1-1)>=1 DO QUTPLT {AaI+1)
END

IBELS)
TEIS IS LEFMERS LEXICCGRAPFIC METHOC CF CETERMINING THE M-TH
PERMUTATICON IN LEXICCCRAPHIC CRCER CF THE INTEGERS lyeee oeerNe
FIRST N IS REAC IN ANC THEN Q IS SET TC THE VALUE OF THE FACTCRIAL
OF N=-1, A VECTCR CF N ELEMENTS WITF UNDEFINED VALUES IS DECLARED FOR
WORK SPACE. THE VALUE M IS THEN CBTAINEC FROM THE INPUT STREAM,
THE FACTORIAL EXPANSICN OF M IS THEN CALCULATED AS DESCRIBED IN SECTION
2«22+ THESE CIGITS ARE COMBINED BY SCANNING THE FIRST I=1 ELEMENTS
FCR I RUNNING BETWEEN 2 AND Ny, AND INCREASING EACKF ELEMENT BY 1 IF
IT IS LESS THAN THE I*'TH.THUS IF N=4 ANC M=17
17=203 "2:2 4’1-1
ANC A=(04,19292) WHICE WHEN SCANNEC
YIELCS A=(Cy19342) WHICH IS THEE 17'TH PERMUTATION CF QOyeesr3

el

612 IN REVERSED CRCER.

€13 THE USE OF DICITS ANC FIELDS CEMONSTRATES LAYOUT CONTROL AND THE FINAL
614 ITERATING PRIMARY DUMPS THE REQUIRED FERMUTATICN AS A ROW CF N, 3-DIGIT
615 NUMBERS,

ENDYEF FILE

SEMPTY -1LOAD

CCNE.

S£RUN ALEPH* SCARCS=TESTSCURCE(6) 2=-LOAC
EXECLTICN BECGINS
EXECLTION TERMINATED
SRUN ALGC*+-L0OAD SCARDS=DATA(6)
EXECUTICN BECGINS
CATLWV 10,
CATUWM 1CCCCcCC,
3 PR 9 5 3 2 € TIF1LDSs
EXECUTICN TERMINATED

981

SCCMMENT

FEX EXAMPLEC T -3%%

SLIST 'TESTSOUREELT)

7€0
7¢1
702
7C3
704
705
7C6
707
7C8
709
710
711
712
714
715
716
717
718
719
720
721
ENC CF FILE
§LIST DESCR
7¢C
701
702
73
7C4
7C5
706
707
708
709

710

LET TRUE =-1
LET FALSE='0
LET N=INPUT
LET CCL=RCW N EACH FALSE
LET PCS=ROW N
LET PR =ROW 2z*N-1 EACF FALSE
LET*SC =ROW® 2%N=1 EACH FALSE
LET SCLUTICN=LAMBCA . LET J=0
WHILE (J:=J+1)<=N CC CUTPUT PCSaJ

LET~QUEEN = LANBRA T « IF I>N TEEN SCLUTION()} ELSE
LET J=0C WHILE(J:=J+1)<=N CC
IF COLal(J) GR PRa(I+J-1) EBR SCRIN+I-J) THEN O ELSE

BECIN
PCSa(I)z:=Js
COLZ2(J):=PRa(I+J-1):=SCa(N+I-J):=TRUE ;
QUEEN(I+1);
COLa(J):=PRa(I+J-1):=SCa(N+I-J):=FALSE
ENC

BEGIN DIGITS 353 FIELDS N5 QUEEN(1) END

IBE(T)

THIS 1S A RECURSIVE SCLUTICN TC THE NXN QUEENS PRCBLEM., WHEN SUPPLIED
WITF THE INTEGER N IT PRINTS A SEQUENCE CF VECTCRS,EACH A PERMUTATION
CF 1 TO N EACE CF WHICH IS INTERPRETABLE AS THE COLUMN POSITIONS FOR
THE QUEEN IN THE CCRRESPCNDING RCW CF A CHESSBODARD. QUEENS THUS
ARRAYED CANNCT TAKE EACH CTHER . THREE VECTCORS ARE USED TO MARK
CCCUPANCY OF THE COLUMNS (CCL)y THE PRINCIPAL DIAGONALS (PR) AND THE
SECCNCARY CIAGCNALS (SC). TEE FUNCTICN "“QUEEN" TAKES A PARAMETER 1
REPRESENTING THE NEXT RCwW ON WHICKH TC PLACE A QUEEN. THUS IF IDN IT
CALLS "SOLUTICN"™ TO PRINT THE SCLUTION VECTOR (PCOS)e CTHERWISE, FOR
EACF POSSIBLE VALUE CF THE CCLUMN CCUNTER (J) THE SQUARE (I,4d) IS
CHECKEE TC SEE IF IT IS CCVEREC (CORRESPONCING COLUMN OR DIAGCNALS

181

7L CCCUPIED)e IN CASE IT IS NOT COVEREC THEN THIS SQUARE IS RECORDED

712 AS & CANDIDATE BY UPCATING PCS,CCL,PR ANC SC. THE ROUTINE IS ENTERED
713 RECURSIVELY wWITF THE NEXT HIGHER VALUE CF THE RCW CCUNTER TC

114 CETERMINE ALL SCLUTICNS WITH THIS PARTIAL COMPONENT (REPRESENTED

715 BY chalv--o ...pPCSEI)-

END*EF FILE

SEMPTY -LODAC

CCNE.

ERUN ALEPH* SCARCS=TESTSCURCE(7) 2=-L0OAC
EXECLTION BEGINS

EXECUTICN TERMINATEC

SRUN ALGC*+-=LCAD SCARDS=CATA(T)
EXECUTION BEGINS

CATUN €y

205 6 1 3 5

3 0E6R 2 5 1 4

4 1L 5§ 2 & 2

5 828 1 & 4 2 P
EXECLTICN TERMINATED &

£CCMMENT

#%% EXAMPLE 8 #%%

ELIST TESTSOURCE(8)

gcao
801
8C2
803
8C4
8C5
80¢
807
acs
8cs
810
811
812
814
816
817
g1e
81s

ENC CF FILE

LET Y=INPUT
LET X=3
LETHE=0
EET1C=0
LET P=LAMBCA,
IF X>Y TEHEN C ELSE

LET N=RCw 1

BEGIN
NaQ:=X3; Nal:=L;
Xe=YE2 5
LET T=L WHILE T-»=(DG

IF X MOD Ta0 =0 TFEN
BECIN X:=X+42; T:=L ENC ELSE T:=Tal 3
C:=C+1 3
=N 3
PC)
END
CUTPUT P}

631

SLIST DESCRIBE(8)

8C0O
801
8c2
803
804
ROS
BCé&
8C7
acs
BCS
810
811
812
813

THIS 1S AN INTERESTINC USE CF RECURSIVELY NESTEC BLOCKS TO GENERATE

A LINKED LIST CF PRIME NUMBERS, TKFE INTENTION IS TO DETERMINE THE
NUMBER OF OCC PRIMES LESS THAN THE VALUE INPUT, WHICH IS STORED IN Y.
WHEN P IS ENTERED X IS THE LARGEST PRIME SC FAR GENERATED AND C IS
THE NUMBER OF PRIMES GENERATEC. AT THIS STAGE ALSC L IS A LINKED

LIST (IN A SENSE TO BE DESCRIBEC) OF THE PRIMES LESS THAN X. IF

X>Y THEN C IS THE RESULT CF THE CCMPUTATIONs; OTHERWISE A TWO ELEMENT
VECTOR N (MAXe. INCEX 1) IS CREATEC.THE TwWC ELEMENTS OF N ARE SET

TC CONTAIN X AND L RESPECTIVELY. THUS A NEW ELEMENT IS ATTACHED TO THE
FRCNT CF THE LIST. X442 1S PCSTULATEC AS THE NEXT PRIME AND T IS USED
TC RUN DOWN THE LIST AND CHECK THIS RYPCTHFESIS. IF A CIVISCR IS FOUND
THE GUESS IS INCREASED BY 2 AND THE SEARCH REPEATED, CTHERWISE X IS

A NEW LARGEST PRIME, C IS INCREASED BY 1 AND L IS SET TO ITS NEW VALUE
Ne P IS THEN REENTERED TC SEARCH FCR THE NEXT PRIME,

END @F FILE
SEVMPTY -LOAC
CCNE.
SRUN ALEPH* SCARCS=TESTSCURCE(8) 2=-LCAC
EXECLUTION BEGINS
EXECUTICN TERMINATED
SRUN ALGO*+-=L0AD SCARDS=CATA(R)
EXECUTICN BECGINS
CATUN 5C0,
94
EXECLTION TERMINATED

SCOMME

SCOo
901
Sc2
903
SC4
905
S€é
907
SC8
509
910
511

912
913
G514
515
S16
Sd

ENE CF

EL1IST
SCO
9C1
SC2
9C3
9C4

NT %% EXAMPLE G *¥%
FLIST TESTSBURCE(9)

LET
LET
LET
EET
LET

BEGI
CIGI
Pi2}
ENC

FILE
DESCRIBE (
THE

SC THAT TEE LCNCEST UNBRCKEN

M=INPUT LET N=INPUT
TRUE==1" LET FALSE=0
S=ROW N LET T=RCw N LET B=RCK N
X=0
PSUAMBDALF ITs=TF N IDNITHEN
IF TaN<=X THEN 0 ELSE
BEGIN CUTPUT X:=TaNj;

LET I=0 WHILE (I:=I+1)<=N OC QUTPLT Ba(l):

ENG* "ELSE
LET J=52(1=1)
LET:8=73i=1)%2
WHILE (U:=U-1)2>J DBC
BEGIN Sa(l):=U 3
Ta(I):s=(LET V=RCW M%Sa(I)+1 EACF FALSE
LET NEST =LANMBDA KySUM,SLS &
IF K>I THEN Va(SUM):=TRUE ELSE
LEY L==1 HWHILE (t=L+1)<=M=-SLS DO
NEST(K+1,SUN+L*SAK,SLS+L)
BEGIN NEST(1,0,0C)3
(LET K=Ta(I-1) WKILE VaK DC Ki=K+1)-1
ENC) 3
P{I+1)
END
| Sa(1):=13Ta(l):=M;
TS 3 1 RTELDSEN+1) '3

i)

=Sal

PROBLEM HERE IS TC DETERMINE THE CENCMINATICNS OF N STAMPS TO BE
ISSUEC BY THE PCST-OFFICE IF THE MAXIMUM OF M IS ALLOWED PER ENVELOPE

SECUENCE CF PCSTAGES CAN BE CONSTRUCTED.

CF PRINCIPAL INTEREST IS THE RECURSIVE CEFINTICN OF "P" ANC "NEST®,
Balsess esesBa@N IS THE REST SET SC FAR FCUND AND X THE MAXIMUM

905
SC6
9C7
sC8
9C9
S10
9311
912
513
914
91D
516
w8
918
919
SzC

921

922
523
S24
925
G26

O

O W Ny NN

-~

~
O
(o2

O L O
O

NGO

END CF FILE
SEMPTY =LCA

CCNE«
§RUN ALEPH*
EXECUTION B

EXECUTICN T
SRUN ALGC*+
EXECLTICN B

CBTAINABLE PCSTAGE, SO THAT EVERY PCSTAGE LESS THAN X MAY BE CBTAINEC.
WHEN P IS ENTERELC S@lyees eee3SalI-1) IS A PARTIALLY CONSTRUCTED
ISSUE AND Ta@lsess eeesT@(I-1) ARE PARTIAL PCSTAGES IN THE SENSE THAT
TaJ IS THE MAXINMUM OBTAINABLE PCSTAGE USING CONLY S@ljyeee esesSaJ FOR
EACF J,1<=J<=I-1. CN ENTRY TC P WHEN IDN,S AND T ARE COMPLETED AND

S IS SAVED IN B IF IT IS AN IMPRCVEMENT. THIS OPPCRTUNITY IS ALSO TAKEN
TC PRINT S. IF I<=N CN ENTRY TC P HChEVER THEN ANY OF THE VALUES U,
WHERE S@(I-1)+1<=U<=Ta(I-1)+1 ARE CANCIDATES FOR Sal. THUS EACH

IS TRIED BY CALCULATING T@l AND RE-ENTERING P WITH AN INCREMENTED
VALUE OF I FCR EACH PCSSIBLE VALUE U. THE CALCULATICN OF TaI IS
FCWEVER NON-TRIVIAL . A VECTOR V CF APPRCPRIATE SIZE IS ESTABLISHED

SC THAT VaSuv CAN BE SET TRUE IF SUM IS AN OBTAINABLE POSTAGE USING THE
PARTIAL ISSUE S@lsess eee1SaI. THFE VALUES CF V ARE SET UP BY TKE
FUNCTION NEST WHICH WHEN ENTERED IS ABCLT TO STICK S@K ON A LETTER
WHICH ALREACY HAS A PARTIAL PCSTACGE CF SUM CONTRIBUTED BY SLS (<=M)
STAMPS o+ THUS IF K>I THEN SUM IS RECCRCEC AS AN CBTAINABLE PCSTAGE.
ALTERNATIVELY, IF K<=I THEN SaK CAN BE LSEC L TIMES WHERE 0<=L<=M=-SLS
THUS FOR EACF CF THESE PCSSIBILITIES NEST IS ENTERED RECURSIVELY

WITH K INCREASEC BY 1, SUM INCREASED BY L*SaK AND SLS INCREASED BY

L (SLS MEANS SUM CF L'S)e NEST (1,C,C) THEREFCRE HAS THE CESCRIBED SIOE
EFFECT UPON v WHICH IS THEN SCANNEC FCR THE FIRST FALSE ENTRY. THIS
SCAN 1S RECUCEC BY KNCWINC THAT THE FIRST Ta(I-1) ELEMENTS ARE TRUE

AND IS STOPPEC IN THE EXTREME CASE BY PRCVICING AN EXTRA ELEMENT FOR

V WHICH REMAINS FALSE. S@l AND Tal ARE INITIALLY 1 AND M RESPECTIVELY
AND THE COMPLTATICN IS BEGUN BY CALLINC P(2). WHENEVER AN IMPROVED
VALLE IS OBTAINEC IT IS PRINTED ANDC SC THE LAST LINE CF CUTPUT IS THE
CESIREC SCLUTIONGTHIS ALGORITHM WAS DEVISEC WITH THE ASSISTANCE OF

MR T. ANDERSCN CF THE UNIVERSITY CF NEWCASTLE UPON TYNE.

b

SCARDS=TESTSCURCE(9) 2=-LCAD
ECINS
ERMINATED
-LCAD SCARDS=CATA(9)
EGINS

261

S
=@

I L& Y S0 EeT L ~5 5 i : >)

i MR N YRR T Y ~E 4w 350 Wi Fri @

4 407N)D
1i=2)aex 5% | SBaL Der i
12y wiitde =g L3Y
.. PO T mEh
a3y

T TUFORE R P _._tg.usn-c-‘
T . R o s

- Ll :..!._4. “_# sl e e e L

% _.-....-__.n....._ rn___.._.# ..lr:__..‘. 8 | ot

i a .r__.

-
w = . M .

ECCMMENT *%% EXAMPLE 1C #*x
£LIST TESTSCURCE(10)

1CCo LET N=INPUT

16¢1 BEGIN

1¢C2

1CC3

10C4 (LAMBDA F.CUTPUT F(N))

1065 (LAMBLCA X,

1CC6 LET G=LANMBLCA X4F.

1087 LET F=LANMBDA Z.H(Z,F)

1CC8 IF X=C THEN 1 ELSE X*F(Xx-1)
1009 GiX26) J);

1010

1C16

1017 (LAMBCA F.CUTPUT F(N))

1018 (LAMBDA X.

1019 LET G=LAMBCA X,H.(LAMBDA F. IF X=C THEN 1 ELSE XXF(X=1))(LAMNBLCA 2.H(Zy4H))
1020 G(X4+G) })3

1021

1027

1028 (LAMBCA F.CUTPUT F(N))

1029 (LANBCA X.

1020 (LANBDA GaG(X,G))

1021 (LAMBDA Xy3F.(LAMBDA F. IF X=C THEN 1 ELSE X*F(X-1))(LAMBCA ZeF(ZsH))))
1032

1023 END

1024

ENG GF FILE
ALIST DESCRIBE(10G)

1CCC THIS PRCGRAM PRCVIDES THREE VERSICNS CF THE FACTORIAL FUNCTICN,

1CC1 REFERRED TO IN CHAPTER 4,EACH THE CBJECT CF THFE OPERATOR

18C2 (LAMACA Fa CUTPLT F(N))e. THE SECCNC AND THIRD VERSICNS ARE CBTAINED
10€C3 RESPECTIVELY BY APPLICATICN CF THE EQUIVALENCE

1CC4 (LAMBCA YL.EZ)(E1) = (LET Y =E2 El)

1005 DERIVED IN CHAPTER4, THE FIRST VERSICON IS CERIVED FROM MCCARTHY

10C¢ (16€32) AND IS EQUIVALENT TC AN EXPLICIT FRCGRAMMING OF THE PARADOXICAL

1607 CCMBINATOR. IT HAS THE PRCPERTY THAT THE NAME CF A FUNCTICN IS NOT

10Cc8 REFERREC TO EXPLICITLY WITHIN ITS BOCY. BY DEFINING F=LAMBDA Z.H{(Z,H)
1CCsS THEE EXPRESSICN

1010 IF X=0 THEN 1 ELSE X*F(X-1)

1011 CAN BE TURNEC INTC A FUNCTICN G CF TWC VARIABLES, THE PARAMETER

1612 WHCSE FACTCRIAL IS REQUIRED ANC C ITSELF. WHEN THE BLCCK PRIMARY

1C13 INCLUDES A RECURSIVE DEFINITICN AT ITS HEAC IT CAN BE REPLACED BY
1014 A FORM SIMILAR TG THE THIRD VERSION WFICH EXCLUDES USE OF THE BLCCK
1615 PRINARY,

ENDLBF FILE
SEMPTY =-LOAC
CENE.
SRUN ALEPH* SCARCS=TESTSCURCE(1Q0) 2=-LOAC
EXECLTION BEGINS
EXECUTICN TERMINATED
SRUN ALGC*+—-L0OAD SCARDS=CATA(10)
EXECLTICN BEGINS
CATUWM €y
720
T2C
720
EXECUTICN TERMINATED

61

£CCMMENT

%% EXAMPLE 11 #%»

ELTST-TESTSOURCE(11)

11GC
11C1
1102
1103
1104
1105
1106
1107
11C¢
1109
1110
1111
1312
1133
1114
1115
1116
2117
1118
108 B
1120
1121
1122
Aed3
1124
1125
112¢
1az{
1128
1129
113C
1131
1132
1133

LET TRUE=-1

LET FALSE=0

LET N=INPLT

LET A=ROW N

LET U=ROW N EACF FALSE

LET P=0 LET C=0 LET R=0.LET S$=0 LET T=0

LET C=0 LET M=INPUT

LET F=LAMBCA.IF(C:=C+1)MOC M-=0 THEN O ELSE
LET I=0 WHILE (I3=I+1)<=N.BO<CUTPUT

LEF: I=0,LET:J=0

BEGIN

P:=LAMBDA.BEGIN J:=1;Q END;

Q:=LAMBLA,

IF Uad THEN R ELSE
BEGIN

Aa(l):=J;

Ua(J):=TRUE;

IF (I:=I+41)>N THEN

BEGIN F(); S END ELSE P

END ;

R:=LAMBDALIF(J:=J+1)>N THEN S ELSE C;

S:=LAMBDALIF(I:=I-1)=0 THEN T ELSE
BEGIN
Ji=Aals
Ua(J):=FALSE;
R
END3

DIGITS 25 FIELES N;

Aal

961

1134
2135
1136

ENE CF FILE
SLIST DESCRIBE(11)

11C0O
11C1
1102
1103
11C4
1105
11Cé6
1107
11C8
1109
111C
1111
1112
1113
1L14
1115
1116
Y117
ENG QF
SENPTY
CCNE.

FILE
~LOAC

SRUN ALEPH*
EXECUTION
EXECUTICN TERMINATED

SRUN ALGC*+-=LCAD SCARDS=

5

1e=k5" T LEF

ENC

THIS PRCGRAWM

X=P WHILE X-=0 CC Xz:=X{()

USES RECICNS AS CESCRIBEC IN CHAPTER 4 TC CONTROL THE

SEQUENCE OF EXECLTICN. EACH REGICN (F,QyRySy ANC T) RETURNS ANOTHER
REGION AS ITS RESULT. THE SEQUENCE CF EVALLATICON IS DEFINED BY
EVALUATING EACF RETURNELC RECICON IN TURN ULNTIL THE TERMINATING REGION
(T) IS OBTAINED. THE PRCGRANM GENERATES ALL PERMUTATIONS OF

lyess eeesN IN LEXICOGRAPHIC CRCER AND SLBMITS THEN TC THE

SUBPRCCESS F.
TO Qs Adlssse
UZ(AD1)yess

IN THIS CASE F PRINTS EVERY M'TH PERMUTATION. CN ENTRY
eessPAa(I-1) CCNTAINS A PARTIAL PERMUTATION DEFINED BY U,
esesUa(AT(I-1)) ARE ALL TRLE ANC THE REMAININC

ELEVENTS OF U ARE FALSE. Q'S OBJECTIVE IS TO TRY J AS A VALUE FCR

Adl. IF UaJ I
INCREMENT Je
CCUNTER T IS
BACKTRACKING,
OF A2l. R IS
gR S IE d IS
REDUCINC TEE
IS CALLED TC

SCARDS=TESTS
ECINS

EXECLTION BEGINS
CATUNM Ty

CATUM 504 ,

1 €6 27 %5 4 3

¢ 4 37T & 8)

2 1S T 8 &4 2

S TRUE TFEN THIS IS NCT PESSIBLE AND R IS- CALLEDR TO

IN CASE J CAN CCCUR THEN THIS IS RECCRDELC AND THE ELEMENT
INCREASEDCs IF IDN THEN F IS CALLED AND THEN S TC BEGIN
CTHERWISE P IS CALLEC TO INITIALISE J TC TRY FOR VALUES
USEC TO INCRESE J ANC CALLS @ TC TRY THIS INCREASEC VALUE

CUT CF RANCE«. S ESTABLISFES A BACKTRACKING PRCCESS BY
ELEMENT COUNTER I ANC RESETTING J FROM Aal, FINALLY R

TRY THE NEXT VALUE FCR J.

CURCE(11l) 2=-LCAC

CATA(11)

l61L

tEecr Ripaw

UM Pmwrni kg gei = b

- i A | Y d TRE g

Jager s W Jomsen Yoy 0

= 3212

T ARad) 00 el lef=al) FyreM . Ca]l LAt
#5799 3 N3L Drsw JONN T D= 1YV e s
LN vy —4—.— b

l."ﬂ .F,na ASWA=S 43) 50048 L3V A3 WD L3N BN
WS AT & sguﬂ

SCOMMENT *¥* EXAMPLE 12 #*%%
S§LIST TESTSCURCE(12)

12C0 LET TRUE=-1

1201 LET FALSE=0

1202 LET N=INPUT

1203 LET A=RCW N

12C4 LET U=ROW N EACKE FALSE

1205 LET P=FALSE LET Q=FALSE LET R=FALSE LET S=FALSE LET T=FALSE
120¢ LET C=0 LET M=INPLUT

12C7 LET F=LAVMBCAL.IF(C:=C+1)MOC ¥-=C TFEN C ELSE
12CE8 LET I=0 WHILE (I2=1+1)<=N DO GUTPUT. AT
12Cs LET" I=0 LET ' 4=0

1210 BEGIN

1211

202 DIGITS 23 FIELDS N;

1213

1214 WEILE NOT T CC

1215 IF P THEN

1216 BEGIN P:=FALSE; J:=13 Q:=TRUE ENC ELSE
2T IF € THEN

1218 BEGIN Q:=FALSE;

1219 IF LaJ THEN R:=TRUE ELSE

1220 BEGIN Aa(I):=J;

1221 U2 (J):=TRUE;

1222 IF(I:=1+41)>N THEN BEGIN F(); S:=TRUE ENC
1223 ELSE P:=TRUE

1224 END

1225 END ELSE

1226 IF R THEN

1227 BEGIN R:=FALSE;

1228 IF(J2=J+1)>N TEHEN S:=TRUE ELSE Q:=TRUE
1229 END ELSE

1220 IF § THEN

1221 BEGIN S:=FALSE;

1232 IF(I:=1-1)=C THEN T:=TRUE ELSE

1223 BEGIN J:=A31;

661

1224 ua(J) s=FALSE;

1225 R:=TRUE
122¢ END

1227 ENDS ELSE

1238 BEGIN 1:=13
1239 P:=TRUE

124G END

1241 END

ENBIEEF FILE
£LIST DESCRIBE(12)

12C0 THIS IS JUST AN ALTERNATIVE METHCC CF PRCGRAMMING THE REGIGNS

1201 ICENTIFIED IN EXAMPLE 11 ANC AS SUCH IS CESCRIBED IN CHAPTER 4. HERE
12C2 RCOLEAN VARIABLES P,GyRySsT CCRRESPONCING TO THE SAME VARIABLES IN
12C3 EXAMPLE 11, PERMIT ACCESS TC APPRCPRIATE SECTIONS OF CODE

ENE '8F FILE

SEMPTY =LOAB

CCNEs

SRUN ALEPH* SCARDS=TESTSCURCE(12) 2=-LCAC
EXECUTICN BECINS

EXECUTICN TERMINATEC

SRUN ALGC*+-LCAD SCARDS=CATA(12)
EXECUTICN BEGINS

CATUWM 7y

CATLVM

wn
-
D

-

= s

o=t = AR AN D D R e
zwbmbsE>RDOOOWM

>
~ NN N Jninladn

f
—_ A NN NN
=S NWN W DN DD

mon DI

O

)
z

MINATED

SCCMMENT

#%% EXAMPLE 13 #%%

SLIST TESTSOURCE(13)

13C0
13C1
1302
1303
13C4
1285
13Cé
1307
1308

LET F=LAMECA N,A.
AC{IF N=0 THEN:1,ELSE
LET J=C
BEGIN F(N-1,LAMBDA X.J:=X)3;
JEN
END)

F(INPUT,LAMBLCA X,CUTPLT X)

ENC CF FILE
S§LIST DESCRIBE{f12)

1300
1301
13Q2
1303
13C4
1305
1306
1307
13C8
1309

TEIS SIMPLE EXAMPLE; IN CONJUNCTICN WITH THE NEXT IS INTENDED TG
DEMCNSTRATE CNE CF TEE LESS FCRTUNATE ASPECTS OF THE USE OF A
VARIABLE TABLE. CCNSIDER THE FUNCTICN

F=LAMBCA N« IF N=C THEN 1 ELSE N*F(N-1)
WHEICH RETURNS THE FACTORIAL CF ITS ARCUMENT. PROVIDING THIS
FUNCTION F WITH AN EXTRA PARANETER A, WFICKF IS A FUNCTION TC BE
APPLIED TC TEHE RESULT OF Fy AND ACJUSTING THE INTERNAL CALL CF F TO
SLPFLY LAVMBLA XeJ:=X AS THE CCRRESPONCINC ACTUAL PARAMETER, FCR SOME
LOCAL Jy CCMPLETES THE FCRMAL CCNSTRUCTICN OF THIS PRCGRAM. THIS
TRANSFORMATICN IS Ce.Kes ANC THE PRCCGRANM CCMPUTES THE FACTORIAL CORRECTLY.

END CF EFILE
SEMPTY =LOAC

CCNEe

SRUN ALEPH®* SCARCS=TESTSCURCE(12) 2=-LCAC

EXECUTICN
EXECLTICN

BEGINS
TERMINATED

SRUN ALGO*+=L0AD SCARDS=CATA(13)

EXECUTION

CATUM

121
EXECLTION

BECINS

TERMINATEL

Loz

SCCMMENT

3% EXAMPLE 14 *%x*

SLIST TESTSCURCE(14)

1400
14C1
1402
14C3
14C4
14C5
14Cé6
14C7

LET F=LAMBDA N,A.
IF N=0 THEN A{(1l) ELSE
LET J=GC
BEGIN F(N-14LANBDA X.J:=X)3
A(J*N)
ENDC

FIINPUT,LAMBCA X.CUTPLT X)

ENG CF FILE
£LIST, DESCRIBE(14)

140G
14C1
1402
14C3
1404
1405

TFIS PRCGRAM 1S CETAINEC FRCM THE PRCCGRAM CF EXAMPLE 13 BY THE SIMPLE

DEVICE OF MOVING THE CALL OF A TC AFPLY CIRECTLY TO ITS ARGUMENTS.

THE PROCRAM IS NC LCNGER VALIC HOWEVER BECAUSE CF THE NATURE CF THE ACTUAL
PARAMETER SUFPLIEC FCR AyNAMELY LAMBLCA X.J:=X. WHEN TFE CALL OF THIS PARAMETER
1S MOVED INSIDE THE LCCAL DECLARATICN CF J ITS APPLICATICON ALTERS THE

CURRENT INCARNATICN RATHER THAN THE PRECECING.

END-CF FILE
SEMPTY =LOAD

CCNE.

SRUN ALEPH* SCARDS=TESTSCURCE(14) 2=-LCAC
EXECUTION BEGINS

EXECLTICN TERMINATED

SRUN ALGC*+=LCAD SCARPES=CATA(14)
EXECLTION

CATUV

&y
0

BEGINS

EXECLTICN TERMINATED

coz

SECCMMENT ¥%% EXAMPLE 15 *#x%
SLIST TESTSCURCE(15)

1500 LET F=LAMBDA N,A,
15C1 IF N=C THEN AQC:=1 ELSE
1502 LET J=RCHW C

1503 BEGIN F(N=1,J)3;
15C4 A3Q:=N*J30
15C5 END

1506

1507 LET J=ROW 0

15¢C8 BEGIN F(INPLT,J);

1509 OUTPLT Jac

1510 ENC

ENDTCFIFTLE
SLIST DESCRIBE(1¢%)
1500 THE ERROR ENCCUNTEREC IN EXAMPLE 14 IS CCRRECTED BY SUPPLYING A VECTOR
1501 AS THE ACCITICNAL ACTUAL PARAMETER, RATFER THAN A FUNCTION.
ENC OF FILE
SEMBTY =L0OAD
CONE-«
ERUN ALEPH% SCARCS=TESTSCURCE(15) 2=-LCAL
EXECLTION BEGINS
EXECUTION TERMINATED
SRUN ALGUC*+=-LCAD SCARDS=LCATA(15)
EXECLTICN BEGINS
CATUM €y
7120
EXECLTICN TERMINATED

£og

3.

4.

Se

6.

Te

Ba

4 - REPERENCES

Bandat, K. (1968) "On the formal definition of PLI"

AFIPS (Spring) 1968, Vol. 32, p.363.

Bohm, C. (1964a) "The CUCH as a formal and description

language” in Steel, T.B. (1964c), p.179.

Bolm, C. and Gross, W. (1964b) "Introduction to the CUCH"
' in Automata Theory. Ld. Caianiello,

Aecnvemic Press.

Bohm, C. and Jacopini, G. (1966) "Flow diagrmms, Turing
machines and languages with only two fometion

mleﬂ“, C.AQCO)d. VO].. 9’ 1966' 11'36(’.

Church, A. (1941) "The Calculi of Lambds - Conversion®,

Annpls of Math. Studies No. 6, Prineeton

University I'ress.

Conway, M.E. (1963) "Design of a separable tronsition

diagram compiler", C.A.C.M. Vel. &, 1963, p.396.

Cooper, D.C. (1967) "DBolm and Jacopini's reduction of flow
charts" (letter), C.A.C.M. Vol. 10. No. 8,

Cooper, D.C. (1968) "Some transformations and standard fomms
of graphs with applications to compuiex prograns”

Machine Intelligence 2, Ldinburgh University Press.

10.

1.

12,

13.

14.

15.

16.

17.

Curry, H.B. and Peys, R. (1958) “Combinatory Logic®
Volume 1, North-Holland, Amsterdas.

Dijkstra, E.W. (1960) "Recursive Programming"
h. "‘th- vnln 2, p.312. "

Dijkstra, E.V. (1961a) "Meking a translator for Algol 60"
- Annual Review in Automatie Progremming, Vol. 3,
p.347o

Dijistra, H.W. (1961b) "An Algol 60 translator the the XI"
Anmual Review in Autumatic Programming, Vol. 3,

P.329.

Pijkstra, E.V. (1962) "An attempt to unify the constituent
concepts of serial program execution",
Symbolie Languages in Data Processing,

Proec. ICC Symp. (Rome) 1962. p.237.

Dijkstra, E.V. (1963) "On the design of machine independent

programming languages", Amnual Review in

Automatic Programming, Vel. 3, 1963, p.27-42.

Dijkstra, B.,W. (1968) "Goto statement considered harmful®

(letter), C.A.C.M. Vol. 11, p.147,

Dijkstra, E.V. (1969) "Notes on structured programming”
EWD249, TH-Report 70, Technological University

Edindhoven.

Peldman, J. and Gries, D. (1968) "Translator writing systems"

C.A.C.M. Yol. 11, p.T7.

18. Ployd, R.VW. (1967) "Assigning meanings to programs"
AMS Symposium in Appl. Maths. 19.

19. Garck, J.V. (1964) "The definition of progremming
languages by their compilers” in

Steel, T.B., (1964c), p.139,

20. Hoare, C.R. (1969) "An axiomatic besis for computer

programming” C.A.C.,M. Vol. 12, Nov.1969,
p.575.

21. Kanner, H., Kosinski, P, and Robinson, C.L. (1965)
"The structure of yet another Algel compilexr"

C.A.C.M. Vol. 8’ p.427,

22, Landin, P.J. (1963a) "The mechanicel evaluation of
‘ expressions", Computer Journal, Vol. 6,

P.M¢

23. lLendin, P.J. (1963b) "The A-caleculus approsch"
Advances in Programming & Non-Numerical

Computing, Ed. Fox.

24, Landin, P.J. (1964) "A formal description of Algol 60"

in Steel, T.B. (1964c), p.266

25. Lendin, P.J. (1965a) "“An abstract machine for designers
of computing langunges" IFIF Proc.(1965),

Vo]..2.

27.

29.

31.

3z,

33.

207

Lendin, P.J. (1965b) "A correspondence between Algol 60
and Churches A-calculus" C,A.C.M. Vol., 8 1965,

-

P89 (part 1), p.158 (part 2).

Lendin, P.J., (1966) "The next 700 Programming languages"
CofaCoM, Vol. 9 1966, p.157.

McCarthy, J. (1960) "Recursive functions of eymbolic
expressions and their ev'uluation by machine"

C.A.C.M. Vol, 3, p.184,

MeCorthy, J, (1962a) "Towards a mathematicel science of

computation", IFIP Proe, (1962), P,21,
MeCaxthy, J. et al (1962b) LISP 1,5 Programmers Manual
Computation Lab, Report MIT, 1962,

McCoxthy, J. (1963) "A basis for e mathematical theory of
computation" in "Computer programming and formal
systems" eds. P. Braffort and D. Herschberg,

North Holland, Amsterdam.

MeCerthy, J. (1964) "A formal description of e subset of

Algol"™ in Steel, T.B. (1964c), p.1.

MeCarthy, J. (1965) "Problems in theory of computation”

IFIP 1965, Vol.1l.

Why, J. apd Painter, J. (1967) "Correciness of a
compiler for arithmetic expressions"

AMS Symposium in Appl. Math. 19, 1967.

208

35. Neur, P, (1963) "Eevised report on the algorithmic
languege, Algol 60", C,A.C.M, Vol.6,
January 1963, p.1-17.

36, Nivat, M, and Nolin, N, (1964) "Contribution to the
development of Algol uujntics"

. in Steel, T.B. (1964c), p.148,

37. Rice, J.R. (1968) "The goto statement reconsidered"
('I‘i‘kh r.p].y hy Eovt Dijmm)’ CQAoC.“Q

Vol., 11, No.8, Auygust 1968,

38, Steel, T.B., (1964a) "Beginnings of a theory of
infommation handling", C.A.C.M. 7 (1964),

pn%c

39, Steel, T.B. (1964b) "A formalizaticn of semantics for

) progremming language deseription”, in
Steel, T.B, (1964c), p.25.

40, BSteel, T.B. (ld.) (1964c) "Formal language description
langueges for computer programming”,
Pro, IFIP Conf. Baden, 1964,

North-Holland Puk. Co.

41. Strachey, C. (1964) "Towards = formal gsementics"

in Steel, T.B. (1964¢) p.198.

209

42. ven Vijngaarden, A. (1962) "Generalised Algol®,
Symbolie Lenguages in Data Processing,
Proc, ICC Bymp. (Rome) 1962, p.409.

43, ven VWijngaarden, A. (1964) "Recursive definition
of syntax and semanties"” in

Steel, T.B. (1964¢), p.13.

44, Virth, N. (1963) "A generalisation of Algol",

C.A.C.M, Vol.6, 1963, p.547.

45, Virth, N, (1966) "Euler, a gcnérnlina.fion of Algol
and its formal definition",

CQJ\.C'M.A vol..g' 1966' P.13. p.89.

	458864_0001
	458864_0002
	458864_0003
	458864_0004
	458864_0005
	458864_0006
	458864_0007
	458864_0008
	458864_0009
	458864_0010
	458864_0011
	458864_0012
	458864_0013
	458864_0014
	458864_0015
	458864_0016
	458864_0017
	458864_0018
	458864_0019
	458864_0020
	458864_0021
	458864_0022
	458864_0023
	458864_0024
	458864_0025
	458864_0026
	458864_0027
	458864_0028
	458864_0029
	458864_0030
	458864_0031
	458864_0032
	458864_0033
	458864_0034
	458864_0035
	458864_0036
	458864_0037
	458864_0038
	458864_0039
	458864_0040
	458864_0041
	458864_0042
	458864_0043
	458864_0044
	458864_0045
	458864_0046
	458864_0047
	458864_0048
	458864_0049
	458864_0050
	458864_0051
	458864_0052
	458864_0053
	458864_0054
	458864_0055
	458864_0056
	458864_0057
	458864_0058
	458864_0059
	458864_0060
	458864_0061
	458864_0062
	458864_0063
	458864_0064
	458864_0065
	458864_0066
	458864_0067
	458864_0068
	458864_0069
	458864_0070
	458864_0071
	458864_0072
	458864_0073
	458864_0074
	458864_0075
	458864_0076
	458864_0077
	458864_0078
	458864_0079
	458864_0080
	458864_0081
	458864_0082
	458864_0083
	458864_0084
	458864_0085
	458864_0086
	458864_0087
	458864_0088
	458864_0089
	458864_0090
	458864_0091
	458864_0092
	458864_0093
	458864_0094
	458864_0095
	458864_0096
	458864_0097
	458864_0098
	458864_0099
	458864_0100
	458864_0101
	458864_0102
	458864_0103
	458864_0104
	458864_0105
	458864_0106
	458864_0107
	458864_0108
	458864_0109
	458864_0110
	458864_0111
	458864_0112
	458864_0113
	458864_0114
	458864_0115
	458864_0116
	458864_0117
	458864_0118
	458864_0119
	458864_0120
	458864_0121
	458864_0122
	458864_0123
	458864_0124
	458864_0125
	458864_0126
	458864_0127
	458864_0128
	458864_0129
	458864_0130
	458864_0131
	458864_0132
	458864_0133
	458864_0134
	458864_0135
	458864_0136
	458864_0137
	458864_0138
	458864_0139
	458864_0140
	458864_0141
	458864_0142
	458864_0143
	458864_0144
	458864_0145
	458864_0146
	458864_0147
	458864_0148
	458864_0149
	458864_0150
	458864_0151
	458864_0152
	458864_0153
	458864_0154
	458864_0155
	458864_0156
	458864_0157
	458864_0158
	458864_0159
	458864_0160
	458864_0161
	458864_0162
	458864_0163
	458864_0164
	458864_0165
	458864_0166
	458864_0167
	458864_0168
	458864_0169
	458864_0170
	458864_0171
	458864_0172
	458864_0173
	458864_0174
	458864_0175
	458864_0176
	458864_0177
	458864_0178
	458864_0179
	458864_0180
	458864_0181
	458864_0182
	458864_0183
	458864_0184
	458864_0185
	458864_0186
	458864_0187
	458864_0188
	458864_0189
	458864_0190
	458864_0191
	458864_0192
	458864_0193
	458864_0194
	458864_0195
	458864_0196
	458864_0197
	458864_0198
	458864_0199
	458864_0200
	458864_0201
	458864_0202
	458864_0203
	458864_0204
	458864_0205
	458864_0206
	458864_0207
	458864_0208
	458864_0209
	458864_0210
	458864_0211
	458864_0212
	458864_0213
	458864_0214

