
THE PERFORMANCE EVALUATION OF INTERPRETER

BASED COMPUTER SYSTEMS.

SIMON BERNARD JONES.

PhD. Thesis.

Computing Laboratory,

University of Newcastle upon Tyne.

June 1981.

l~rit~~~~'C~h~s~rL~E~U~P~O-N-~--N-E
U'::::::fl:'ITY UBC?~9Y

ACCESSION No.

8 1 - '_ '~~ 1 0 5

ABSTRACT.

This thesis explores the problem of making accurate

assessments of the p~rformance of high level language

interpreter programs which are embedded in some more

complex system. The overall system performance will be

determined by all the software and hardware components

present; but in order either to analyse and improve

particular components, or to select between alternative

versions of components, the concept ~f the performance

of individual components is important.

A model is developed for the abstract behaviour of

software components playing the role of an interpreter

by considering their interaction with the program code

wh.ic-h is being interpreted and wi th the underlying

virtual machine which is, in turn, interpreting them.

This model enables a flexible definition of performance

by relating the interactions in which an interpreter takes

part. A methodology is recommended for assessing

experimentally the performances defined within such a

framework.

The performancesof an interesting selection of

pseudo-machine and high level interpreter implementations

of Lispkit and Prolog are then assessed and conclusions

drawn.

ACKNOWLEDGEMENTS.

I would like to express my thanks to Dr. Peter Henderson

for his supervision of this research, and for frequent

and valuable constructive criticism.

I would also like to thank my parents for their financial

and moral support during my long years of study, both

undergraduate and postgraduate, and to thank my wife

Pethong for her unfailing confidence and encouragement.

This research was financed by the united Kingdom

Science Research Council, and latterly by the

University of Newcastle upon Tyne.

CONTENTS.

1.

2.

3.

4.

5.

6.

2.1

2.2

3.1

3.2

4.1

4.2

4 .. 3

5.1

5.2

5.3

6.1

6.2

6.3

Page.

Introduction. 0

The Lispkit language. 6

Expressing computations as functions 8

An operational model for Lispkit evaluations 18

The Prolog language. 23

Expressing computations as relations in a
logic framework 26

An operational model for Prolog computation 44

Multi-level structure in interpreter based
systems. 51

The structure of multi-level systems 52

Two models for the behaviour of components
within multi-level interpreter systems 62

Comments 75

The performance of components of multi-level
systems 77

Defining the performance of a component

A methodology for empirical performance
assessment

Comments

Lispkit and Prolog machines: Structure and

81

90

96

performance 97

A Lispkit pseudo-machine

A Prolog pseudo-machine

Conclusions and comparison of the Lispkit
and Prolog pseudo-machine~

100

135

162

7.

8.

A.

B.

C.

D.

E.

7.1

Higher level interpretation of Lispkit and
Prolog.

Interpreting Lispkit

7.1.1 A preliminary note on the Lispkit program

Page.

165

165

syntax required by the interpreters 166

7.1.2 First Lispkit interpreter, LISPINTl 168

7.1.3 Second Lispkit interprete~ LISPINT2 183

7.1.4 Comments 191

7.2 Interpreting Prolog

7.2.1 The syntax of interpreted programs

7.2.2 The interpreter, PROLOGINT

7.3

B.l

B.2

B.3

B.4

D.l

D.2

D.3

D.4

E.l

E.2

Conclusions and comments on the Lispkit
and Prolog interpreters

Summary and conclusions.

A brief history of Lispkit

A pseudo-machine implementation of Lispkit

An s-expression syntax for Lispkit

Compiling Lispkit programs for the LM

The Lispkit Machine

An AlgolW software realisation of the LM

A brief history of Prolog

A pseudo-machine implementation of Prolog

An s-expression syntax for Prolog

Compiling Prolog programs for the PM

The Prolog Machine

An AlgolW software realisation of the PM

Tabulated results from test executions on
the Lispkit Machine

Assessing the Lispkit Machine

Assessing LISPINTI and LISPINT2

192

194

194

204

205

211

213

214

215

218

222

227

230

231

233

236

247

256

256

257

F. Tabulated results from test executions
on the Prolog Machine

F.l Assessing the Prolog Machine

F.2 Assessing PROLOGINT

G. Bibliography.

Page.

266

266

267

274

Chapter 1 - INTRODUCTION.

Introduction.

The observations, theories, experiments and results

reported in this thesis arose from an informal exploration

of the implementation of Lispkit and Prolog by means

of interpreters and pseudo-machines. The exploration

was primarily intended to enlarge my personal understanding

of these and related languages and of their particular

implementation problems. However, the urge to pass

judgement on the merits and demerits of individual

systems, and to compare and contrast different systems,

is very strong, and my thoughts turned in this direction.

It became clear that it is not a simple matter to make

accurate assessments and fair comparisons of the

performance of interpreters and pseudo-machines;

the influences of different hardware, different languages

(for implementation of the interpreters and pseudo

machines), different programming styles within the same

implementation language, different overall system

structures, and so on, must ideally be factored away,

and the characteristics of the interpreters and

pseudo-machines must be presented in some abstract but

meaningful form. Great care must be taken in the

design of experiments, and in the statement of conclusions,

but I was not aware of any 6ther work which attempted

to clarify this matter; ad hoc techniques prevail in

assessments and comparisons reported in the literature,

and to me this felt less than satisfactory in such an

important subject.

o.

In particular my attention was drawn to the performance

comparison of implementations of DEC-10 Prolog and

stanford Lisp, reported in Warren (1977) and Warren

et. al (1977). The comparison arrives at some

surprising conclusions concerning the relatively

high efficiency of Prolog, and I did not feel satisfied

with the simple benchmarking technique used in the

assessment. On the other hand, both the comparison

of SASL and Lisp reported in Turner (1979), and the

comparison of various Prolog systems reported in Moss

(1980), show attempts to factor out the influences

of the environment; in the former case this is by

counting high level operations within the software, and

in the latter case by performing initial experiments

to "normalise" the execution speeds of different machines.

However, in neither case are the considerations underlying

such techniques developed as an independent topic.

Thus this thesis has grown to be an attempt to identify

and to clarify some of the issues in the analysis and

assessment of the performance of i~terpreter systems.

The results of the investigation will show that a

comprehensive and reliable performance assessment is,

in general, very difficult to achieve.

1.

Lispkit and Prolog are two representatives of the large

number of experimental (very) high level programming

languages currently aiding research in many branches

of computer science; for example, they serve as testbeds

for the development of advanced programming techniques,

as prototypes for future programming languages, and as

languages for use in experiments on automatic program

synthesis, transformation, verification and the definition

of semantics.

For experimental high level languages it is common to

make implementations which consist either of an

interpreter (usually written in some high level language,

and accepting programs in "source code" form), or a

software "pseudo-machine" (usually written in some high

level language, and accepting programs for execution

in an intermediate compiled form); pseudo-machines are

clearly also interpreters of some language. - The

interpreter and pseudo-machine approaches expedite the

implementation process in the research and teaching

environments, and may themselves lead to a deeper

understanding of the implemented languages. In thi

applications, or systems engineering, environment these

two approaches may also ease the modification and

maintenance of high level language systems.

Of course, an interpreter for a high level language may

itself be written in some high level language (possibly

the very one it is designed to interpret) and be

executing on some interpreter or pseudo-machine. Thus

the general picture which arises is that of programming

systems which are constructed as multiple levels of

interpreters and pseudo-machines. This has been true

for some time in the hardware field with the concept of

microprogrammed processor architectures.

2.

It is to be expected that the price to be paid for an

extra layer of interpreter software between a program

and the hardware is a loss of anticipated execution

speed of the program. Perhaps the best that can be

expected is that the time for interpretation of a

program, ti, is a linear function of the time for

execution of the program (if suitably compiled) directly

on the hardware, td:

ti = a*td + b

But, with one or more layers of potentially sophisticated

interpretation, the relationship might very well be

much worse than linear, for example quadratic or

exponential:

ti = a*td*td + b*td + c

or ti a*exp(td) + b

The design decisions taken in individual in~erpreters

and pseudo-machines will critically determine the

performance characteristics. The decisions and their

consequences are of theoretical interest in the research

environment, but they are of practical importance in all

environments; the commercial user is paying money for CPU

time, and the researcher or student is trying to obtain

useful results whilst maintaining patience and interest.

Hence, whether for the sake of research interests, or of

systems engineering, it is necessary to be able to make

accurate assessments of the impact of design decisions

on the performance of systems and their components, and

to be able to make fair and meaningful comparisons

between alternative versions of components.

The complexity of the software of multi-level interpreter

systems makes an empirical assessment of performance more

feasible than an theoretical approach, though

experimental results can be expected to yield insight into

mechanisms to be considered later by a theoretical

analysis. In such assessments of the performance of

individual interpreters it is important to obtain

characteristics which are not distorted by the inclusion

of the characteristics of other components in the

system; for example, the results of assessing the

performance of an interpreter (and hence the interpretation

scheme which it realises) should depend neither on the

test programs which were being interpreted, nor on the

machine which was executing the interpreter.

To this end, what is necessary is some way of defining

the performance of an interpreter component in isolation

from the remainder of any system in which it is used,

and to have some practical method of obtaining good

assessments of such performances. Subsequent chapters

suggest some solutions to these problems, and the

suggestions are put into practice to assess a selection

of Lispkit and Prolog implementations.

Chapters 2 and 3 set the scene for a discussion of high

level language interpretation by presenting the Lispkit

and Prolog languages in some detail.

Chapters 4 and 5 examine one approach to the treatment

of multi-level interpreter systems and their performance,

and present a formal model for defining the performance

of individual, isolated components of systems. The model

4.

also clarifies the relationship of the performance of

individual components to the performance of compound

(multi-level) components, and of the system as a whole.

Chapter 5 also describes a methodology for the empirical

assessment of the performance of components of systems,

and in Chapters 6 and 7 the methodology is applied to

pseudo-machine implementations of Lispkit and Prolog,

and to high level interpreters for Lispkit and Prolog.

The appendices contain a little more background information

on the origins of Lispkit and Prolog, details of the two

pseudo-machine implementations, and the tabulated results

of experiments described in Chapters 6 and 7.

5.

CHAPTER 2 - THE LISPKIT LANGUAGE.

The LisEkit Language.

In this chapter I shall describe the Lispkit Lisp variant,

which can be considered as representative of the family of

functional, recursive languages for manipulating symbolic

data structures.

The origins of Lispkit are outlined in Appendix A.

The first part of the chapter is concerned with the use of

Lispkit as a notation for expressing computations as

functions from symbolic data structures to symbolic data

structures. The second part of the chapter will cover an

operational model for the evaluation of Lispkit programs.

Lispkit has been implemented as a high level pseudo

machine, for which Lispkit programs are compiled into an

intermediate machine code. Details of the design of the

machine and of the compilation are to be found in

..,
6.

Appendix B. Chapter 6 outlines the behavioural characteristics

of the Lispkit machine, and an empirical performance

assessment is made. In Chapter 7 two Lispkit interpreters

are programmed in Lispkit and their performance is assessed.

A much fuller exposition on the subject of functional

programming is to be found in Henderson (1980). Indeed,

this chapter and Appendix B are little more than a

personal reiteration of the same material, and in

particular I must give credit for the design of the Lispkit

language and machine to Henderson.

The Lispkit language is based on the concepts of using

symbolic data structures as basic values, of organising

a computation as nested expressions rather than as a

sequence of assignments, and of using recursive functions

to handle the tree-like symbolic data structures.

The following is an example of a complete Lispkit

program. It illustrates the basic constructs of the

language, and can serve to focus attention in the language

description which follows:

find whererec
find (x,l) if eq(l, NIL) then 1

else

if eq(head(l),x) then 1

else 1 + find (x, tail (1»

This program searches a list to find the first occuqence,

if any, of a particular value. The result of the program

is the position of the value in the list, expressed as an

integer, or, if the value is not found, then an integer

which is one greater than the length of the list. The

program requires two input arguments, the value and the

list, called x and 1 respectively. The second to fifth

lines constitute a function definition, of the recursive

function "find". Simple expressions appear throughout

the program, for example "eq(l, NIL)" and "1+find (...)",

and in fact the entire program is an expression. In line

5 the function "find" is applied explicitly to some

arguments: "find (x, tail (1»".

The action of the function find is programmed to cover

three cases: If the list I is empty (equal to NIL) then

x is certainly not contained in it, and result is 1 (since

the length of an empty list is 0). otherwise if the

first member of 1 (head(l» is equal to x then the result

is 1. otherwise the first member is not equal to x, and

the result must be one more than the result of finding x

in the remainder of the list, that is 1 + find (x, tail (1».

7

2.1 Expressing computations as functions.

2.1.1 Symbolic data structures.

The first feature of Lispkit which it is necessary to

describe is also one of the key factors contributing to

the great programming power of this and a host of other

experimental very high level languages. The class of

8.

data values which a Lispkit program is designed to manipulate

is a particular form of symbolic expressions (s-expressions)

(McCarthy (1960». S-expressions subsume the integers

and simple string constants (symbols) as atomic values

(ato~), and include all binary trees (acyclic) which

have atoms at the leaves. All compound objects (data

structures) are represented as such binary trees. In

the_representation on paper of s-expression values integer

atoms will be written as expected, symbols will be short

unquoted strings of upper case letters (and possibly digits

in other than the first position), and a compound object

(a tree) will be represented as (a.b) where a and bare

the representations of the left and right subtrees

respectively. Hence the following simple syntax:

s-expression :: = atom (s-expression.s-expression)

atom:: = integer I symbol

In practice the above "dot notation" will be cumbersome

and visually confusing, so we shall adopt the usual

convention that certain s-expression structures may be

simplified (unambiguosly). The following two rules for

rewriting s-expressions will apply:

(i) An s-expression of the form

(a b ... d. (e f g.h»

may be written as

(a b ... d e f g.h)

(ii) An expression of the form

(a b .•. d.NIL)

may be written as

(a b ••• d)

One consequence of these simplifying rules is that we shall

choose to represent a list of objects xl, x2, ..• , xn by the

binary tree

xn NIL

which can be written as (x1.(x2.(... (xn.NIL) ... »)

and conveniently rewritten as (xl x2 ... xn).

Some examples of s-expressions (in various degrees of

simplification) :

(1 2 3 4) (A B. (C D.NIL» - "two lists"

((1 2 3) (A B C) (X Y Z » - "a list of lists"

(A. 1) (B. 4) (H.J» - "a list of dotted pairs"

«(Xl. Y1) . (X2.Y2». «X3.Y3). (X4.Y4»)

- "a complete binary tree"

2.1.2 Simple computational expressions.

Lispkit provides a variety of computational expressions

which may be used in a program to construct new

s-expressions from previously available ones, to extract

subexpressions from s-expressions, to create new integer

atoms by arithmetic, to compare atoms for equality and

inequality, to test for atomicity of an s-expression,

and to select between two alternative expressions

depending on a logical test.

9.

In order to construct new s-expressions we have the

computational equivalent of the dot notation:

cons (a, b)

builds a new s-expression whose left and right subtrees

are a and b, respectively, so

cons «1 2), (3 4» «12).(34»

«1 2) 3 4)

The car operator will extract the left subtree of an

s-expression and cdr the right subtree. Car and cdr are

undefined if their operand is an atom. If the operand

represents a list then car and cdr correspond to the

intuitive operations "head" and "tail" respectively. I

shall use car, head, cdr and tail interchangeably, and

as appropriate. Also it will be convenient to use "the ,
car/head" and "the cdr/tail" in place of the phrases

"the right subtree" and "the left subtree". Hence

car «(X.Y).Z»= (X.y)

head ((A B C)) = A

cdr «X.(Y.Z») (Y.z)

tail «A B C» (B C)

tail «A» = tail «A.NIL» = NIL

10.

Arithmetic facilities are basic, but comprehensive. The

operators +, -, *, div, rem are available (defined only for

integer atom operands), and are written in the familiar infix

notation. Examples do not seem necessary.

The logical operator eq is used to test for the equality

of atoms. The expression eq (a,b) has, as value, the atom

T if a and b are identical integers or symbols, and the

atom F otherwise (including if either a or b is not an

atom at all) . The operator ~ tests for that

inequality between two integers. a(b has the value T

or F, as appropriate, and is undefined if either a or

b is not an integer.

There is a single unary predicate atom which has the value

T if its argument is an atom, and F otherwise.

Examples of logical expressions and thei~ values:

eq«l 2), (1 2» = F eq(head«l 2», 1) = T

eq(tail «1», NIL) = T

l'2=T 2~1=F

atom (A) T atom «1 2» F

atom (tail «1») atom (NIL) = T

To select between two alternatives a conditional expres~ion

construct is used:

if econd then etrue else efalse

has the value of etrue if the value of econd is T, and the

value of efalse if econd is F. For example

if eq(A,B) then car «X.Y» else cdr«(X.Y» Y

if atom (1) then 2 else 3 2

if car«T F F» !he~ THIS else THAT = THIS

It will often be the case that an expression will contain

two or more identical subexpressions. The use of a where

construct enables common subexpressions to be replaced by

instances of the same variable name, and this variable is

associated with the value of the subexpressions. This

technique will be familiar from common mathematical

practice. For example, if we have a 3-list (list of 3

values) in which the first value is T or F, and indicates

whether we are to select the second or third value

respectively, then the selection operation for (T SECOND

THIRD) can be written as

if car (threelist) then head(tail(threelist»

else head(tail(tail(threelist»)

where threelist (T SECOND THIRD)

11.

This is an expression, having the value SECOND, in which

the variable "threelist" has replaced 3 occurrences of

(T SECOND THIRD) in the conditional expression.

A wh~ expression may introduce more than one variable -

variables will be written in lower case letters (possibly

with digits in other than the first position). The

variables introduced are the defined variables, and the

expressions which give their values are the defining

expressions. The expression to which the where is attached

is the ~~~ified ~£ression. A restriction introduced with

wh!!! expressions is that the scope of use of the defined

variable names is within the qualified expression only.

The defining expressions may not refer to locally defined

varLables, but only to variables in more global scopes

(enclosing where ---- expressions). In the following example

(... x ... where x e1 ----
and y = z .•• x •••)

where z = e2 ----
and x = e3

the first occurrence of x is resolved to the variable

which is associated with the value of e1. In the definition

of y, the variables z and x are resolved to e2 and e3

respectively.

Note that parentheses may be used freely in order to

disambiguate nested expressions, as I have done in the

example above to indicate the nesting of the where

expressions.

2.1.3 Defining functions.

There is one form of expression, not mentioned above, which

has the special property that its "value" represents a

12.

function, or operator, which may be applied to constant,

input or computed values. This value should not be thought

of as an s-expression, which would normally be expected as

the result of an expression evaluation,but simply as an

object which can receive arguments, perform a computation

with them and return a result.

Two new forms of expressions are necessary

definition ~nd function application.

A function definition has the form

''(x, y, ••. , z)e

for function

and is known as a ~mbd! ~~~sio~ (commonly the function

value of such an expression is also known as a lambda

expression or simply a function). ~ is the operator

symbol which. signals the type of expression. The

parenthesised list of variable names x. y, •..• z is the

ordered list of fo.!:.mal parameters or !!gu~nts; when the

function is applied it will require an ordered list of

!~!ual R!.!:.!~!!.!:.~ of exactly the same length. The final

component. e. stands for any Lispkit expression (including

a lambda expression or constant). which may contain

occurrences of the argument variables.

the lambda expression.

A function application has the form

f(a. b d)

e is the body of

13.

in which f is an expression whose value is a lambda expression.

and a, b. "', d are expressions whose values will be

computed in order to provide the lambda expression with its

actual parameters. Note that f is not restricted to being

an explicit lambda expression (though this is one obvious

possibility). The value of a function application expression

is found by evaluating the arguments a, b, ... , d and f,

substituting a, b, ... , d into the body of the function for

occurrences of the corresponding formal parameter variables,

and evaluating the substituted body. This particular

parameter mechanism is known as "calling by value".

14.

As a simple example consider a function of 4 values which builds i

a balanced binary tree with these values at its leaves. The

defining lambda expression is

A(w, x, y, z) cons(cons(w, x), cons(y, z».

Referring to the function which this expression represents as f,

we can build the tree

A B C D

with the application

f(A,B,C,D).

The form of an application is similar to that of various Lispkit

primitive expressions, such as cons(a,b), but no confusion will

arise-if we are careful about function names.

Despite the fact that function values should not be thought of

as s-expressions, they may be treated in a computation in many

of the same ways. In particular they may be built into data

structures and extracted at a later stage, they may be associated

with local variable names in wh!~ expressions (useful if a

function is needed in several places in an expression), and they

may be given as actual parameters to applications and returned

as results.

To demonstrate the local naming of a function we may write a

lambda expression representing a function which builds an 8 leaf

balanced tree, and incorporate the 4 leaf tree building

function from above:

X (s,t,u,v,w,x,y,z)(cons(f(s,t,u,v),f(w,x,y,z»

where
--r-~A(w,x,y,z)cons(cons(w,x),cons(y,z»)

15.

Here the body of the 8 leaf function is an expression qualified

by the definition of f as the 4 leaf function.

This example has introduced the need for a more refined

description of variable scope. The variable names in the formal

parameter list of a function have scope only within the body of

the function. When resolving which formal parameter or defined

variable a variable occurrence refers to, the variables in a

formal parameter list have the same status as defined variables

qualifying the body of the function. A variable is resolved to

the nearest enclosing definition in the textual levels of wh~

and lambda expressions. Hence, in the example above, the

variables w, x, y, z mentioned in the body of f refer to the

formal parameters of f, and the variables s, t, ... , z in the

qualified expression of the 8 leaf function all refer to the

parameters of this function.

Definitions of functions may be mixed with other definitions in

a wh~~~ expression since function names are- no different from

other variables, but retaining the previous restriction that

the definitions may not refer to each other.

To conclude this description of function definition facilities

I must show how recursive functions are treated. Recursive

functions are a natural way of expressing computations involving

tree structures.

The scope rule for the names defined in a wh~ expression

implies that recursive functions cannot be defined directly

since the body of a function would need to mention the name of

the function explicitly. This rule also prevents groups of

functions defined together from referring to each other

(mutual recursion).

To overcome this restriction a variant of the where

expression is available. The whererec expression is used

to qualify an expression by definitions in a similar way

to a where expression but with the extra feature that the

scope of the defined variables has been expanded to include

the defining expressions in addition to the qualified

expression. Thus function definitions may refer explicitly

to themselves, to each other, and to any non-function

variables defined in the same whererec expression. One

restriction remains, the defining expressions for non

function variables may not mention any variables (function

or otherwise) defined in the local group. Note that it

appears that ~!E!E!~ subsumes the purpose of wh~ but in

the implementation to be described in Chapter 6 (and in

Appendix B) it is slightly more expensive to execute

whererec than where.

Fo-r example, the

following lambda expression accepts as input a list of

values and returns a similar list in which each value has

been "doubled up" into a "consed" pair:

,,(1) (doubleall (1)

16.

whererec doubleall = A (l) if eq (1, NIL) then NIL

else cons(double(head(l»

doubleall (tail(l»)
and double A (x) cons(x,x»

The body of doubleall refers to itself and to double.

A notational convenience which I shall allow myself is to

represent function name definitions in a more familiar style.

In a ~~!E! or wh!E~~ expression

f = ~ (x,y, ... ,z)e

will frequently be written as

f(x,y, ... ,z) = e

For example double (x) cons(x,x).

17.

2.1.4 Complete programs.

The most recent three complete examples, constructing a 4 leaf

balanced tree, an 8 leaf balanced tree and doubling the members

of a list, have each had the form of a lambda expression in

which all variable occurrences could be resolved either to the

parameters of the lambda expression or to a definition (or

further parameter list) contained within the body of the lambda

expression.

Thus the three examples satisfy the requirements to be complete

Lispkit programs. Each is self-contained (no further definitions

are necessary in some more global context to give values to any

variables), and each is an expression whose value is a function.

A Lispkit program execution then consists of two steps; firstly

the program is evaluated to produce the function which it

represents, and secondly this function is applied to an actual

parameter list constructed from the desired input data values.

Two common examples of simple functional programs:

1) A program which maps a list of items (x y ... z) onto a list

with the items in reverse order (z ••• y x)

reverse
whererec reverse (1)= ~! eq(l,NIL) then NIL

and append (11,12)

else append(reverse(tail(l»,

cons(head(l),NIL»

if eq(11,NIL) then 12

else cons(head(ll), append(tail(ll),
12 »

This program embodies the list reversal algorithm frequently

called "naive reverse", since it requires a rather large number

of function applications and cons operations to perform its

task. The program does not have the form of a lambda expression,

but it nevertheless does represent a function, since the value

of the program is the value of the variable

reverse is defined to be a function.

reverse, and

2) A program to sum the integers in the range from m to n

inclusive (assuming m ~ n):

sum
whererec sum(m,n) = if eq(m,n) then m

else m+sum(m+1,n)

To illustrate the power of the Lispkit function handling

consider the following alternative definition of the

doubleall function above:

doubleall
whererec

and

and

doubleall (1) = map(double)(l)

double (x)

map (f) =
cons(x,x)

(g whererec

g(l) if eq(l,NIL) then NIL

else cons(f(head(l»,

g(tail(l»»

In this program we have a "higher order function" map,

which accepts as parameter a function f of one argument,

and constructs from this a function g which will apply f

to each member of a list. The definition of doubleall is

unusual in that it constructs a function which will double

the members of a list (the subexpression map (double»,

and then applies this function to 1. In a larger program

map could be used to provide simple definitions for a

variety of more sophisticated functions such as doubleall.

2.2 An operational model for Lispkit evaluations.

In this section I shall describe a method by which Lispkit

expressions may be evaluated.

This method will have two important uses; firstly it will

provide an easily grasped guideline which a programmer

may use when

18.

19.

creating and understanding his programs, secondly it will

immediately suggest an implementation of Lispkit, which will

thus obtain the results which the programmer expects from his

programs.

An important remark which I must make before commencing with

the description is that the operational model is essentially

what is known as a "call-by-value" method. The general approach,

which will become obvious later, is that first the subexpressions

of an expression are evaluated completely, and then the main

expression operator is applied to these results. This is a

straightforward approach, but unfortunately it makes impossible

certain programs which would yield useful results with a more

subtle evaluation mechanism. However, the class of programs

which will succeed with this call-by-value model contains a

very large number of useful and interesting members. The

primary group of programs missing concerns the direct

representation of the processing of finite portions of infinite

data structures - but this omission will not generally be a

problem.

2.2.1 Evaluating in an environment.

If we look into a Lispkit program and extract an arbitrary

expression then within that expression we will be able to

identify two different categories of variables. One category

contains those variables which are defined (or appear in formal

parameter lists) within the expression. The other category

contains variables which are associated with values somewhere

within the more global context from which the expression has

been extracted.

When a Lispkit expression is evaluated it will be arranged that

the values of global variables are contained within an

~vir~nt description. Hence an expression should be

thought of as being "evaluated in an environment". The

value of a variable, when required, will be looked up in

the environment. Where expressions, whererec expressions

and function applications will each, as part of their

action, modify the environment in which their subexpressions

are evaluated.

An environment is an ordered set of associations between

variable names and values, with the notion of "more recent"

determining the ordering of the associations. Associations

are added to the environment at the most recent end, and

the search for the value of a variable commences at the

most recent end. This mechanism ensures adherence to the

scope rules for defined variables and formal parameters.

2.2.~ Simple computational expressions.

The very simplest expression is a variable name, which is

evaluated by looking up its value in the environment.

The next simplest expressions to evaluate are those with the

operators cons, car, cdr, +, -, *, div, ~, eq, ~ and

atom. To evaluate one of these expressions in environment E,

the operand expressions are evaluated in E and then the

operator is applied to the values obtained. To evaluate

the conditional expression if el then e2 else e3 in

environment E, we first evaluate el in E and then,

depending on its value, evaluate either e2 in E or e3 in E~

!here expressions involve extending the environment. To

evaluate a where expression in environment E the defining

expressions are evaluated in E, the values are associated

with the corresponding defined variables and these

associations are added to E to give E'. The qualified

expression is then evaluated in E'.

20.

2.2.3 Lambda expressions, function applications and
whererec expressions.

Evaluating a lambda expression in environment E results in

an object called a closure, which contains a record of the

lambda expression itself and of E. The environment

recorded by the closure is used again when the function is

applied. A closure is the representation of a function

value.

In order to evaluate an application f(a,b,... in

environment E the expressions f, a, b, ... are evaluated

in E. The value of f will be a closure containing an

environment Ec, a formal parameter list and a body. The

values of a,b, ... are associated with the corresponding

variables in the formal parameter list and these associations

are ~dded to Ec to give E'. The body expression is

evaluated in E' to give the result of the application.

To evaluate a wh~~~ expression in environment E requires

rather a curious action, but one which nevertheless is

accomplished in the software implementation of Lispkit

described in Appendix B. We construct a new environment E'

by adding to E the associations obtained from evaluating

the defining expressions in E'. Note the use of E' and not

E - it is this which enables recursive function bodies to

access themselves, since the closures will have recorded E'

and not E. The qualified expression is then evaluated in E'.

2.2.4 Complete programs.

21.

A programmer initiates a Lispkit program execution by supplying

a program text P and some data values A. The program P is

evaluated in the empty environment (hence the requirement that

22

it must be self-contained). The closure which results is then

applied to A in the normal way for a function application,

where A contains the values of the evaluated actual parameters.

The value returned by this application is the final result

of the program execution.

CHAPTER 3 - THE PROLOG LANGUAGE.

The Prolog language.

In this chapter I shall describe Prolog, which is one

particular variant in the family of languages based on

statements in logic. The origins of Prolog are

outlined in Appendix C - these lie in work on automatic

theorem proving. In recent years there has been a growing

community of research prototypes for such programming

systems, of varying degrees of complexity and purity,

and with differing fields of application in mind. From

an examination of the fundamental properties of

programming in a logic style, and from a general

knowledge of the state of the art in designing and

implementing logic programming systems I have made an

attempt to capture the essential aspects in the design of

a language and implementation for direct computation

("symbolic structure crunching", rather than data base

handling or an expert system). I have chosen to use

the name Prolog to refer to the language in order to

maintain the link with common terminology, although I

should actually use "my variant in the family of logic

programming languages".

This chapter will cover the expression of computations

in the logic style of Prolog, and an operational model

for the execution of Prolog programs.

Prolog, like Lispkit, has been conveniently implemented

as a high level pseudo-machine, for which Prolog programs

must be compiled into an intermediate machine code.

Details of the design of the machine and of the compilation

are to be found in Appendix D. Chapter 6 includes an

outline of the behavioural properties of the implementation,

and an empirical performance assessment is made. In

Chapter 7 a Prolog interpreter is written in Prolog and

its performance is assessed.

23.

The style of description of logic programming in Prolog

which follows is, I believe, a novel one for this

particular subject. I have attempted to produce a

"bottom-up" approach to the required concepts and tools,

in the hope that this may make it easier for a novice

to grasp the use of Prolog for computation. The

presentation follows the same pattern as that of

Lispkit; firstly a description of data objects (for this

purpose I have introduced the notion of su-expressions),

secondly the operations by which new values and results

are generated, and lastly the control of these operations

by a program. Kowalski (1979) gives a very broad coverage

of the application and reasoning behind logic programming

styles.

Prolog follows a significantly different style of

programming from Lispkit. In Lispkit a computation is

expressed as a function which is used to map input

values to result values. In Prolog. on the other hand, a

computation is expressed as a relationshi~ which states

how acceptable input values and output values are

intended to be related to each other. Equivalently,

this relationship can be viewed as a specification or

££~dicat~ which is satisfied by acceptable patterns of

input and output values. An important distinction is

that the functional style of Lispkit embodies the notion

of an implicit direction of computation. we supply some

input values and the result is computed. However. the

precise assignment of input and output roles to arguments

in Prolog programs does not occur until the program is

. executed. Hence Prolog programs may be written largely

independently of the flexible input/output roles of

their arguments.

24.

25.

Prolog is based on the concepts of symbolic data structures

as basic values, pattern matching between data structures, and

clauses which are implications enabling relations between

data structures to be defined in terms of other relations.

Clauses are grouped together as the cases of predicates,

and each relation between data structures is defined by

one such predicate. Hence a Prolog program is a collection

of mutually recursive predicates, and it is the task of

program execution to discover instances of data structures

which satisfy certain specified predicates. The formal

approach to Prolog takes a slightly different viewpoint,

and this is mentioned briefly in Appendix C.

The following complete Prolog program is a direct

reprogramming of the Lispkit "find" example from the

start of Chapter 2. It illustrates the basic constructs

available in Prolog, and will focus attention for the

language description which follows:

query (x,l,n)E- find(x,l,n)

find (x, NIL, 1) ~

find (x,(x.l),l)~

find (x, (y.l) ,n) ~ ieq(x,y) ,find(x,l,m) ,add(m,l,n)

The resulting position of x in the list I has been

assigned a name, n. The qu~ry in the first line

states that there are three input/output arguments,

x,l and n, and that they are related by the predicate

find. Find is defined by three cases, each of which is

an implication with the antecedents (or conditions)

on the righthand side of ~ , and the consequent on the

lefthand side. The first case states that when any value

x is sought in the empty list, the position value must

be 1. The second case states that when a value x is

sought in a list whose first value is equal to x, the

position value must be 1. The final case states that if

a value x is sought in a list whose first member is not

equal to x, then the position value n must be 1 greater

than the position m when x is sought in the remainder of

the list. Note the use of the symbolic data structure

patterns (x.l) and (y.l) to name and extract the component

parts of values. This is in direct contrast to the use

of explicit constructors and selectors (cons, car, cdr)

in Lispkit.

3.1 Expressing computations as relations in a logic

framework.

3.1.1 Symbolic data structures and pattern matching.

Prolog programs are intended to handle binary tree data

structures of exactly the same form as those of Lispkit,

with one small, but important, change. The change is to

introduce a rather unusual form of atom into the

s-expression syntax. The new values, which may appear

at the leaves of binary trees, represent subtrees for

which values are not known - although more information

may become available concerning the values of these

subtrees from other sources during a computation.

The new values I shall call "unknowns"; they will be

represented on the written page as an asterisk

prefixing a positive integer, and the new type of

symbolic data structures I shall call "su-expressions"

(for "s-expressions with unknowns"):

su-expression ::= atom I (su-expression.su-expression)

atom :: = integer I symbol I *posi ti veint~ger

26. :

I shall adopt the same simplifying rules for

su-expressions as for s-expressions, and the same use

of the terms car, cdr, head and tail (although these

will not appear as parts of the Prolog language).

Some comments on what we gain from the introduction of

unknowns are appropriate:

(i) An implication of the explic"it numbering of

unknowns is that two or more occurrences of the same

unknown are intended to represent the same (unknown)

value. For example

(*i.*l)

represents a tree for which the car and cdr are

identical. Note that different unknowns do not

necessarily represent different values - we can

explicitly specify equality, but not inequality.

(ii) An su-expression containing one or more

unknowns can be seen in two lights; it can be viewed

as a partial description of some particular data

structure, or as a representation of the entire set

of values which have the same structure.

may be useful at different times.

Both views

The primary facility in Prolog for the computation

of new values is through the elaboration of the

subtrees represented by unknowns, thus extending

the known part of the su-expressions. Note that

this is very similar to the concept of assignment,

the difference being that the operation is a very

controlled one - unknowns are extended, but known

values are never replaced by other knowns.

Elaboration, or extension, of data structures 1S

achieved by unification, which is a sophisticated

form of pattern matching.

27.

Two su-expressions are unified by finding elaborations

for some or all of the unknowns in the expressions, such

that the elaborated expressions are identical. The

simplest set of elaborations is a substitution usually

called the ~~£~al unifier of the expressions. It

may be the case that there is no most general unifier

for two expressions and so the attempted unification

fai!! and the expressions are not elaborated - for

example, if a number or symbol in one expression is at

a position corresponding to a different number or

symbol in the other expression.

The unification of two su-expressions may be described

conveniently by the following informal recursive

procedure. The procedure is a simultaneous prefix order

walk over the two expressions to be unified ("visit the

roots, then the left subtrees in prefix order, then the

right subtrees in prefix order"):

To unify su-expressions sel and se2:

If both sel and se2 are dotted pairs then unify

the car of sel with the car of se2, and then unify

the cdr of sel with the cdr of se2j

Otherwise, if either sel or se2 is a dotted pair

and the other is a number or symbol then the

entire unification fails,

Otherwise, if sel and se2 are identical numbers

or symbols then there is nothing to be done,

Otherwise, if sel and se2 are unequal numbers or

symbols then the entire unification fails,

Otherwise, if sel is an unknown and se2 is a

dotted pair, number or symbol (or vice versa)

then the unknown is elaborated to be identical

to the non-unknown,

28. '

otherwise, the remaining case, both sel and se2 a~e

unknown, and se2 is elaborated to be the same

unknown as sel.

(Note that whenever a unification fails, then the

values of the su-expressions remain as they were

before unification started)

I must mention several more straightforward properties

of unknowns which are essential to the unification

operation:

(i) Unknowns have scope covering both the trees

which are being unified, and in general an unknown

represents the ~ value in all trees in which it

app"ears. In particular a series of unifications may

cause subtrees of a large number of su-expressions to

become "linked" by equality.

(ii) An obvious property of an unknown which

appears in several su-expressions is that all the

occurrences should be elaborated as a result of a

unification which elaborates the unknown in one of the

trees.

The description of unific~tion in the preceding

paragraphs may give a complex appearance to an

operation which is actually very simple. However,

despite the simplicity, unification is very powerful,

and its consequences are subtle - it is this which

makes a long discussion desirable.

A series of examples will make the unification operation

clearer:

(i) Unifying (A.*l) and (*2.B)

yields the matches *1 = Band *2 = A

and the su-expressions are elaborated to (A.B).

If our interest was in the su-expression (A.*l)

then our knowledge of it has been extended

to (A.B).

(ii) Unifying (A.*l) and (B.C) fails, since the

symbols A and B are not equal.

(iii)Unifying (A.*l) and (A.(l 2 3.*2» yields

the match *1 = (1 2 3.*2). So (A.*l) is

elaborateq to (A.(l 2 3.*2», but *2 is

not elaborated.

(iv) Unifying (*1 A) and (*2 *2)

yields the matches *1 = *2 and *~ = A

hence both su-expressions are elaborated to

(A A)-.

(v) Unifying (*1 A) and (*2 *1)

yields the matches *1 = *2 and *1 = A

and hence both su-expressions are elaborated

to (A A).

(vi) Unifying (*1 A) and (B *1) fails, since *1

cannot match both A and B simultaneously.

(vii)A more interesting example:

Suppose that we are interested in the

su-expression

(A.*l)

and we unify firstly (A.*l) and (A.(B.*2»,

and then (X.*2) and (X.(C.*3».

The first unification elaborates the expression

of interest to

(A.(B.*2».

The second unification matches *2 with

(C.*3), hence elaborating (X.*2) to (X.(C.*3»,

and simultaneously elaborating the expression

of interest to

(A.(B.(C.*3»)

30.

This final example shows how several unifications,

matching su-expressions. with common unknowns, can

extend our knowledge of particular su-expressions by

incorporating information indirectly from other sources.

3.1.2 Computational use of unification to satisy

specifications and relations.

The preceding examples have shown, in a rather

contrived way, how unifying an su-expression of interest

with another pattern may extend our knowledge of that

expression, either by failing to match or by elaborating

'unknowns (if any).

To illustrate the power of unification in a useful

computational context consider unifying various expressions

(assumed not to contain the unknown *1) with the pattern

(*1.*1). This pattern is a template for an su-expression

whose car and cdr are equal. The template can behave

as a generator of symmetrical trees, for example

((A B).*2) is elaborated to «A B) . (A B»

and ((A *2).(*3 B» is elaborated to ((A B).(A B»,

or as a verifier of symmetry for example

((A B) . (A B» will succeed with no further elaboration,

and «A B) . (C B» will fail.

Thus the template (*1.*1) can be considered as a

specification of symmetrical trees, or as an equality

relation between the two members of a dotted pair, and

can be employed as a data verifier or as a result

generator.

It is clear that unification provides a very powerful

means of transferring information and generating

results within a computation, and for this reason Prolog

31.

requires little more than unification in order to

perform useful computations.

One final point about unification is that it should be

used with great care when unifying two su-expressions

which contain the same unknown. Some of the examples

above were of this form, but they were safe. However,

consider the following example.

Unifying (A.*1) with *~ yields the match *1=(A.*1).

The unknown *1 thus becomes a self-referential data

structure, which could be considered as either an

unbounded tree, or as a cyclic structure. That is not

a problem, but if the structure were subsequently

unified with another unbounded tree then the unification

procedure might be thrown into a non-terminating

recursion.

unification can be defined in such a way as to detect

and warn against the creation of a cyclic structure,

using an "occur check", but it is expensive to implement.

Since many useful programs will not encounter this

problem, the occur check will be omitted from further

consideration.

A program in Prolog is ~ description of su-expression

patterns, and of unifications which are required

between these internally generated patterns and a list

of externally supplied su-expressions (the input). The

result of such a computation is an elaborated form of

the input expressions.

32.

3.1.3 Conditions - requests for unification.

The basic unit of a program which requests a unification

operation is a condition, which has the form

p(a,b, ..• ,d)

where p is the name of a E!:edicate, and a,b, .. -. ,d

are ~tual argument su-expression patterns.

Each su-expression pattern represents the value of an

su-expression, but ~riable names are used wherever

an unknown would otherwise be shown in asterisk notation.

The reason for this is quite simple. Most parts of a

Prolog program will be executed several times during a

computation (for example, if a pred~cate is recursive),

and,_ as with languages such as Algol, the local variables

in a section of code need to be fresh ones at each

execution. If unknowns were represented in the asterisk

notation then this would not be the effect at all.

Predicates and their cases are described a little later,

and the scope of each variable is exactly the case in

which it appears- at each execution of a case, each

variable is associated with a fresh, unique unknown.

The use of su-expression patterns provides notational

simplicity in the extraction of the components of input

arguments, and the combination of results to form

output arguments (for e~ample, the find program at

the beginning of the chapter uses the pattern (x.l) to

separate the head and tail of a list).

33.

A predicate is itself a collection of su-expression

patterns and unification requests, which define a

relation or specification that the actual arguments are

required to satisfy. The definition of predicates is

described below.

A condition is a predicate call, and is a request

that the named predicate apply unifications to the

actual argument values in order to elaborate and/or

verify their values. Three outcomes are possible for

the condition:

(i) The predicate call may succeed without

elaborating the arguments - they satisfy the

specification which it represents.

(ii) The predicate call may succeed with

elaboration of the arguments - our knowledge of the

argument values has been extended.

(iii) The predicate call may fail - the

arguments have not matched successfully during some

unification, and their values have not satisfied ihe

specification represented by the predicate. The

arguments are never elaborated in this case.

Some examples of conditions:

(i) Suppose that the predicate named "sympair"

verifies that its single argument is a symmetrical

dotted pair, then

sympair «(A.B).(A.B») will succeed without

elaboration,

sympair «(A.B).x» will succeed, elaborating

x to (A.B),

sympair «(A.x).(x.B») will fail.

34.

(ii) Suppose that the predicate named "swap"

verifies that its two arguments are each dotted pairs~

but with the car and cdr swapped, then

swap «A.B),(B.A» will succeed without elaboration,

swap «A.B),x) will succeed, with x elaborated to (B.A),

swap «A.B),(C.A» will fail.

3.1.4 Calling primitive pre_dicates, and negated conditions.

Conditions, .su-expression patterns and defined named

predicates form the necessary core of Prolog

programming, and they are adequate for a variety of

interesting programs.

However, for many more practical applications further

facilities are desirable. Arithmetic, for example,

could be programmed explicitly as relations on lists of

digits representing numbers, but it is much more

convenient to have arithmetic available directly.

For this purpose a selection of primitive (or "evaluable")

predicates are provided. These are called upon from

conditions in exactly the same way as defined predicates.

Integer arithmetic is provided by predicates for addition

(add), subtraction (sub), multiplication (mul), division

(div), and remainder (rem). Each of these is a three

argument predicate which-relates its arguments in the

obvious way. Informally:

add (x,y,z) succeeds if x+y=z and fails otherwise,

sub (x,y,z) succeeds if x-y=z and fails otherwise,

mul (x,y,z) succeeds if x*y=z and fails otherwise,

35.

div (x,y,z) succeeds if x div y=z and fails otherwise,

rem (x,y,z) succeeds if x rem y=z and fails otherwise.

Clearly the arguments x,y and z, must be either numbers

or unknowns. There are, however, practical restrictions

on the use of these predicates which are necessary to

permit a straightforward implementation. The five

arithmetic predicates can be used in their verification

role with no problem, but the restrictions apply to

the generation of results. Add and sub can compute

anyone unknown from two knowns. Mul will compute z

given x and y, and will compute x(or y) given y and z

(x and z) provided that the ratio y/z (x/z) is an

integer. Div and rem will compute z if given x and y.

In all other cases the result is undefined and the

computation cannot proceed.

Note that a com~utation which cannot proceed is different

from a unification which fails, as the latter determines

a definite choice between alternatives. This will

become clearer in the operational model.

Leq is a two argument predicate which terminates the

computation if either argument is unknown. If both

arguments are numbers and satisfy the inequality ~

then leq succeeds, otherwise it fails:

leq (x,y) succeeds if x ~ y and fails otherwise.

The predicate eq is used to test explicitly for the

equality of two arguments which must be atoms. If

the arguments are equal atoms then eq succeeds, if either

argument is unknown the computation is terminated,

otherwise eq fails. Eq is not strictly necessary since

equality constraints are easily expressed in Prolog.

However it is convenient in conjunction with negated

conditions, which are described below.

36.

The final primitive predicate is atom, which succeeds

only if its single argument is a number or symbol _

an unknown is not considered to be an atom for this

purpose. Atom fails if its argument is a dotted pair,

and terminates the computation if it is an unknown:

atom(x) succeeds if x is a number or x is a

symbol, and fails otherwise,

eq(x,y) succeds if atom(x) and atom(y) and x=y, and

fails otherwise.

The final tool necessary for practical programming in

Prolog is the capability to negate the success or failure

result of ~ condition. Such a condition will be

prefixed by the negation symbol, I .

Execution of an unnegated condition can have three

distinct types of result (excepting a termination of

the computation). These are described above.

A negated condition in some sense reverses the success

or failure interpretation of the unnegated condition.

If a condition c succeeds with no elaboration, then --, C

fails, if c fails then -,C succeeds with no elaboration,

and if c succeeds with elaboration then the computation

cannot proceed reliably as either success or failure as

the result is inconclusive in determining the truth of

-, C (see Appendix C) •.

Examples of negated conditions:

-, mul (2,4,7) will succeed,

-, add (l,2,x) will terminate the computation,

and assuming the same definition of sympair as above

-,sympair «(A.B).(A.B») will fail.

37.

3.1.5 Defining predicates.

The enigmatic circularity of this description of the

Prolog language must now be closed with a discussion of

the definition of the named predicates which are called

upon by conditions.

A predicate must impose on given actual argument values a

particular specification, and must verify and/or

elaborate those values by unification.

A predicate has a ~~ and consists of a group of one or

more alternative ~~, where each case has the form of

a logical imE.li~tion:

p(f1,f2, ...)+- c1,c2, ...

P is the name of the predicate, (f1,f2, ...) is a list

of fo~! ~~~ent su-expression patterns, and c1,c2, ...

are a group of conditions. Variables appearing in the

su-expressions of the formal arguments or conditions

have scope which is ~ac~ the case in which they appear

- so unknowns throughout the case may be linked by the

constraints of equality. Thus elaborations occurring

in conditions may modify the formal argument values.

A predicate call will succeed if the actual argument

values from the call satisfy anyone of the cases of

the predicate. Actual arguments satisfy a case if

they unify successfully with the formal arguments, and

if each of the conditions in the case also succeeds.

Hence the nature of a case as an implication becomes

clear:

38.

"The arguments f1,f2, ... satisfy (are related by)

the property p if the conditions c1,c2, ..• are

satisfied".

If a case has no conditions on the right hand side

p(f1,f2, ...)4E-

then the actual/formal unification succeeds or fails

without further qualification This form of case is

referred to as an assertion.

unconditionally satisy p".

"The arguments f1,f2, ...

The term "predicate" reflects the role of a program as

a verifier of su-expression values, though the term

"relation" would also be appropriate. In fact it will

be convenient to refer to predicates as "relating the

values of their arguments", thus reflecting the duality

of the programs.

Predicates in Prolog serve a parallel purpose to functions

in Lispkit. They provide a means of abstracting meaningful

specifications from a body of code and of describing them

separately, and a powerful method for the description of

computations involving tree-like data structures.

Unifications parallel the actions of passing arguments

and results, and the case structure of a predicate

parallels conditional testing in Lispkit.

Examples of predicate definitions:

(i) The pattern (x. x) can be 'used to define the

predicate sympair which is satisfied by a symmetrical

dotted pair:

sympair«x.x»~

39

This is a predicate consisting of only one case, an

assertion, with only one argument. It should be read

as "All dotted pairs whose car and cdr are identical

are symmetrical pairs".

(ii) The predicate

revsympair«x.y),(y.x»~ sympair(x), sympair(y)

atates that "For all su-expressions x and y,

if x and yare both symmetrical pairs, then (x.y)

and (y.x) are related by the reversed symmetrical pair

property".

(iii) If the 2x2 matrix (~ 8) is represented by

the list of lists «a b)(c d» then the assertion

transpose «(a b)(c d»,«a c)(b d») ~

could be used to compute or check the transpose of a

matrix. The condition

transpose «(1 3)(2 4»,x)

causes x to be elaborated to «1 2)(3 4».

(iv) Predicates with more than one case are

appropriate when several alternative argument structures

are acceptable to the specification. To specify that

two arguments are related if either of them is a

symmetrical pair:

e i the r p air (x, y) ~ s ym p air (x)

ei therpair (x,y) ~ sympair (y)

(v) The most common situation in which a multicase

predicate is appropriate is when defining a recursive

predicate. At least two cases will be required - one

is a non-recursive (base) case, and the other contains

the recursive call. To verify that each member of a

list is a symmetrical pair:

40.

eachsym (NIL) ~ "base case"

eachsym «first.rest»~ sympair (first),eachsym(rest)

These two cases state, respectively, that

Each member of the empty list is certainly a

symmetrical pair (following the usual convention

for empty conjunctions),

and Each member of the list (first.rest) is a symmetrical

pair if first is a symmetrical pair and each member

of rest is a symmetrical pair.

(vi) As an example containing many of the Prolog

features which have been described, consider the following

predicate "remove" which :t;'elates three arguments x

(assumed atomic), 11 and 12 (both lists of atoms) if 12

could be obtained from 11 by deleting all occurrences

of x:
-remove (x, NIL, NIL)~

remove (x, (x. 11) ,12) +- remove (x, 11 , 12)

remove (x,(y.l1),(y.12»~ .eq(x,y),remove(x,11,12)

The cases state, respectively, that

Removing (any) x from an empty list NIL must

result in the empty list,

and If the result of removing x from the list 11 is 12,

then similarly the result of removing x from (x.l1)

must be 12,

and If x and yare different atoms, and remoVing x from

the lisi 11 gives 12, then the result of removing x

from (y.l1) must be' (y.12).

In its present form the remove predicate, given A

and (A B A C) as its first two arguments, specifies

that the third argument must be (B C). The

negated condition, eq(x,y) is crucial to this.

41.

If it were deleted then for A and (A B A C) the

predicate is satisfied if the third argument has

any combination of the As removed - the results

possible are (A B A C), (B A C.), (A B C) and (B C).

The latter example shows clearly how Prolog programs

may be regarded less as algorithms, and more as

statements in logic which specify the properties and

r~lationships of data structures.

3.1.6 Complete programs.

A program in prolog consists of a complete set of the

predicate definitions required for a particular computation

(complete in the sense that each o~ the non-primitive

pred_icates named in conditions is defined), plus a

distinct single case predicate with the name "query"

which specifies the computation to be performed.

A computation is requested by supplying as input a

list of su-expression values. The query predicate is

called to verify and/or elaborate the input values

(actual arguments).

If the query cannot be satisfied by the input values

then the final result is an indication of failure.

If the query succeeds then zero or more elaborations

of the inputs exist which satisfy the query. The

final results are these elaborate~ forms of the input

values.

42.

The following complete program can be used to verify

that two lists are the reverses of each other, or can

generate elements of either list from the other:

query (x,y)~reverse (x,y)

reverse (NIL} NIL) <IE-

reverse «x.l1),12)~ reverse(ll,13),append(13,(x),12)

append (NIL, 1, l)-E-

append «x.l1) ,12, (x.13» ~ append(ll,12,13)

with inputs (1 2 3), *1 the unknown *1 will be elaborated

to (3 2 1).

With inputs (*1 2 *3),(1 *2 3) the unknowns *1, *2 and

*3 will be elaborated to 1,2 and 3 respectively.

If the query is modified to

query (x.)~reverse (x, x)

then the program will check for palindromic lists:

With input (1 2 3) the query will fail.

With input (1 2 *1) the unknown *1 will be

elaborated to 1.

With input (1 2.*1) the query wili succeed with

an infinite number of elaborations for *1, each of which

gives a structure which will make the list (1 2.*1)

palindromic. The simplest of these values are

(1), (21), (*2 2 1), (*3 *3 2 1),

(*4 *5 *4 21), (*6'*7 *7 *621), etc

in which the unknowns *2,*3,*4,*5,*6,*7 have been

generated by the su-expression patterns of the program,

to stand in place of unknown values which are required

for the structure of the results.

43.

3.2 An operational model for Prolog computation.

The execution of a Prolog program with given input values

has the nature of a controlled exploration of a space of

alternative unifications and elaborations. Alternative

paths exist due to the presence of predicates with multiple

cases, and the notion that a predicate call succeeds if

the actual arguments satisfy anyone of the cases

independently.

Thus there are two rather independent aspects of Prolog

execution: the construction of any particular alternative

computation, and the control of the exploration of

alternatives. The former is more direct and intuitive,

and I shall describe this first. The latter is more

abstract, it is a backt~king process, and will be

brought into the description gradually - a detailed

grasp of this is not necessary for successful

programming.

In the construction of a computation we shall be

concerned with the local variables of predicate cases,

the creation of su-expression values from su-expression

patterns, and the order of unifications within cases.

3.2.1 Local variables and environments.

As a computation proceeds predicate cases are entered

and su-expressions must be built from patterns which

contain variables. Actions within the execution of

a case take place in the context of a local environment

which contains associations between the local variables

of the case and values for them.

44.

When a local ~nvironment is created, as the execution

of a case is started, each variable has its value

initialised to some unknown which is not yet in use

in. the computation. Subsequent unifications may

elaborate .these values or use them in the elaboration

of other unknowns.

Su-expression values are built from patterns (in the

formal arguments or con~ions) by including the values

from the current local environment of variables named

in the patterns.

Note that, unlike Lispkit, environments are only local

to cases, and patterns cannot refer to variables in

any other cases. External values can only be accessed

by the unification between actual and formal arguments.

3.2.2 Executing conditions (predicate calls).

A condition p(a,b, ...) is executed in a local environment

E by buiiding a list of actual argument su-expressions

according to the patterns a,b, ... (and referencing the

values of variables in E), and then calling the predicate

p to verify or elaborate the actual argument values.

The call to p may either succeed (with or without

elaborating the arguments) in which case the condition

succeeds, or it may fail (the arguments are not

elaborated) and the condition fails also. If the

arguments have been elaborated then the values in E

have also been elaborated, and re~ults have been

returned by the predicate call.

4~.

For example, if E associates x,y and z with (A.B),

*2 and *3 respectively then the condition sympair«x.(y.z»)

will build an actual argument «A.B).(*2.*3»

and will call sympair, which will succeed and elaborate

y to A and z to B.

As may be expected from the description earlier, a

negated condition has a very similar effect, but if the

predicate call fails then the condition succeeds, if the

call succeeds without elaboration then the condition

fails, and if the call succeeds with elaboration then

the entire execution is terminated prematurely. As a

consequence of this it can be seen that a negated condition

can never return results, it can only be used to verify

that particular values do not satisfy a predicate.

3.2.3 Primitive predicates and defined predicates.

The execution of a primitive predicate call is very

straightforward. The values of the actual Brguments

are examined to check that they satisfy the specification

of the predicate (as described previously), any unknowns

which can have their values computed are elaborated,

and the call succeeds, fails or terminates the computation,

as appropriate.

The execution of a call of a defined predicate is rather

more complicated. For any particular alternative

computation ~ of the predicate cases is selected

for execution - when the predicate is first called

the first case is selected, and subsequent alternative

computations will select successive cases. Hence

cases are selected in the order in which they appear.

This selection sequence is an important rule to remember

when writing programs.

46.

A selected case proceeds by selecting a fresh, unique

unknown for each variable in the case, and associating

these with the variables in the new local environment E.

The formal argument su-expressions are built and are

unified with the actual argument values. If this

unification fails then the selected case fails and the

next alternative computation is tried. If the

unification succeeds then the conditions of the case

are executed, in E, from left to right until either

they are all satisfied (and so the case and predicate

call succeed), or any condition fails and the next

alternative computation is tried. The left to right

rule for conditions is also very important to remember.

When a condition fails, the "next a).ternative computation"

will. be found by trying any remaining choices in a

previous condition of the case. If there are no previous

conditions or remaining choices then the case itself

fails.

When a case fails, the "next alternative computation"

will be found by selecting the next case of the predicate

for execution. If there are no more cases, then none

of the cases has been satisfied, and the predicate

call itself fails.

3.2.4 Decision points and backtracking.

The pattern of execution described is a depth first

scanning of the nested predicate ~alling structure of

the program, and a left to right scanning of the

predicate calls in each predicate case. However, at

each call of a defined predicate there is a choice of

cases and execution has reached a decision point at

47.

which only one case can be selected for execution.

As execution proceeds each decision point is noted as

it is passed, together with a record of the entire

computation state at that point. This may seem to be

an extremely extravagant and complex operation; however

the language will be implemented using a garbage

c611~cted list space (as is usual for very high level

languages such as Lispkit and Prolog) and thus saving

the computation state is not expensive in time or effort,

as it amounts to noting a small collection of pointers.

Whenever a predicate case or condition fails, and hence

demands that an alternative computation be found, the

record of decision points and states can be used to

backtrack - that is to roll the computation back to a

recent decision point. The state of the computation is

restored to that recorded at the most recent decision

point, and computation proceeds with the next choice of

predicate case. If all the choices at the most recent

decision point have been exhausted then that decision

point is discarded and the computation backtracks to

the next most recent decision point - this corresponds

to a predicate call failing completely and then the

condition which called it being failed.

By this method of backtTacking the computation does not

have to return to the beginning each time a failure

occurs. The method implements w~at is essentially a

parallel execution, of the alternative cases in a

predicate, by a sequential execution.

,

48.

3.2.5 Complete programs.

An execution is started by supplying actual argument

values to a call of the query predicate. At this point

there is no backtrack record, as no decision points

have been passed.

If the query fails then the input values cannot satisfy

the program. In this case all decision points have been

discarded from the backtrack record, as the program tries

all alternative computations before failing. Hence the

computation must terminate with only failure as a result.

On the other hand the query may succeed (either with

or without elaborating the arguments), and there may

be decision points remaining in the backtrack record

{if there are none then the computation has finished}.

Any remaining backtrack records may point to alternative

elaborations of the input arguments, or maybe only to

an exhaustion of the search space with no further

solutipni. In general more solutions will b~ of interest,

and these can be coaxed from the program by artificially

backtracking to the most recent decision point in the

normal way.

Care must be employed in the ordering of predicate

cases and conditions, as may be deduced from the first

to last case selection rule, and the left to right

condition execution rule. The problems which may arise

concern calling primitive predicates with an impermissible

combination of unknowns, or unexpected infinite

recursions. As an example of the latter problem consider

activating the reverse and append definitions} given

earlie~ by the query

query (l)~ reverse{l,{l 2 3 ».

49.

The first recursive call of reverse has two unknowns

as arguments and behaves thenceforth as an inexhaustible

source of ever larger mutually reversible templates for

lists. After a few tries the correct elaboration for

I, (3 2 1), will be found to satisfy the query. However,

if we backtrack in order to exhaust the search space

then the source of templates never empties, the append

call continually fails and backtracks, and no second

solution or eventual failure is forthcoming!

This concludes the discussion of the operational model

for Prolog executi~n.

50.

CHAPTER 4 - MULTI-LEVEL STRUCTURE IN INTERPRETER

BASED SYSTEMS.

Multi-level structure in interpreter based systems.

In this chapter I shall outline an approach to analysing

the run-time structure and behaviour of complex computer

pro grams. I shall call the structural model s "mul ti

level interpreter systems". The name arises from the

types of systems of programs to which I shall be primarily

interested in applying the analysis; these programs will

fall into two general classes: firstly, compiled high

level language programs executing on a high level

machine simulator (often implemented by a program

written in lower level language), and secondly, high

level programs in source code executing on an interpreter

(often itself written in a high lev~l language and

executing as a program in the first class). Chapter 1

discussed the reasons why it is significant to study

programming systems of this form.

Clearly the components of such systems and their

relationships could become quite intricate. In order

to overcome this potential complexity I propose to

introduce in this chapter constrained structural and

behavioural models for multi-level interpreter systems.

In the first part I shall introduce a simple

diagrammatic notation with which to represent the structure

and name the components of systems. The diagrams should

be treated as little more than instructions for

assembling systems from their component hardware and

software blocks, though the precise arrangement of the

blocks is determined by some knowledge of their

run-time interactions; consequently, the description

of the notation makes much reference to the concept of

the interpretation of one compone~by another.

51.

In the second part of the chapter I shall present two

semi-formal analyses of the behaviour of multi-level

interpreter systems. These are the Interpretation

model and Abstract Execution model, which clarify the

interpretative details of the first part of the chapter.

Subsequent chapters will exploit the properties of the

two models in order to define the concept of the

performance of a component of a multi-level system,

and to devise experimental procedures for assessing

performance empirically.

4.1 The structure of multi-level systems.

In practice, programming systems are invariably composed

of at least two ~~pon!nts: one hardware component, a

machine, and one software component, a machine language

program residing in the memory of the machine. We can

distinguish an active co~onent, the machine (a

performer of actions), from a passive component, the

program (a source of instructions for the active component).

often the system will be composed of a hardware component

and several software components, within which there will

be a discernible hierarchy of services provided and

interpretative actions performed; this will be especially

true of the systems to be studied in later chapters of

this thesis~ A software component which interprets

and carries out the commands of another component is

similarly active in some sense, and the component which

is being interpreted is passive.

For the purposes of structuring a multi-level system,

each active/passive pair of components is separated

by an interface. Each interface usually separates two

physically distinct components which have been brought

together in constructing the system; for example a

hardware machine and its software program, or an

interp~eter and the program which it interprets.

52.

In general a complex programming system will contain

several interfaces of interest, and a notation is

necessary which allows the representation of such

systems.

4.1.1 The single interface.

An obvious choice for a notation to represent a single

interface is to draw a horizontal line for the interface,

and to name the passive and active entities, above and

below the line respectively.

For example:

Program + data
Interface ~

Machine

}
}

Passive,
Program text

Active
Interpreter

Bearing in mind that the diagram must cover the entire

structure of the system, I have, in the example, included

both a program and its data above the line, and all

the machinery (microprogram, hardware, etc) required to

execute the program below the line. No other

information is required in order to complete the

execution.

The operational view that I would like to take of this

configuration is that the program and data together

describe some computation in terms of concrete actions

which can be performed only by the lower level machine.

The program can take no action of its own - everything

must be done by the machine, and the machine is

responsible for interrogating the program to obtain its

directions.

53.

The active entity below an interface will be referred to

as an interpreter, a machine, or a virtual (or high level)

machine.

The passive entity above an interface will be referred

to as a program (since it will usually correspond

intuitively to just that), or occasionally as data

(since it is exactly that to the interpreter below

the interface).

4.1.2 Multiple interfaces.

For complex systems in which there are several obvious

choices for interfaces it may be constructive to consider

more than one at a time. The interfaces will then

clearly delimit the parts of the system which we are

interested to treat as single components.

The diagrammatic notation can be extended simply to

include one horizontal line per interface. Note that

the multiple division of the system follows a strict

vertical stacking scheme - no networks are allowed.

For example, the typical execution of a program, on

some machine's hardware with some data, has two

interfaces of interest:

Data L3

12

Program L2
11

Machine L1

}

. lPassive, Data
Pass~ve, program]

~cti~e. machine ~~~!;;;eter
Viewed from 11 Viewed from 12

54.

The interfaces and levels have been given labels to

assist in discussion.

Each interface divides the system into passive and

active entities - the single interface philosophy

applies separately at each interface. Hence, from the

point of view of 12 everything below it (program +

machine) forms a single interpreter for what lies

above (the data).

This suggests that a typical program can be considered

~o be a very high level language interpreter for

programs in a language consisting, maybe, of only a

few numbers.

Oper_ationally, the data contains instructions for work

to be done by the program, and this work is achieved by

instructing the machine. Hence the concept of

multi-level i~terpretation.

4 . .1.3 A'refinement - "interpreter extensions".

I will introduce one small refinement into the notation

scheme.

It will be useful to distinguish one special case of an

interpreter le~el. This is an interpreter in which some

of the actions made avallable at the upper interface are

implemented by the interpreter as a complex series of

actions at the lower interface, b~t in addition some

of the actions available at the upper interface are

already known to, and are provided by, the machine

below the lower interface; the lower machine performs

the latter actions directly.

55.

This is intended to represent the rather common situation

in which a program (compiled into machine language form)

is loaded onto a machine together with a collection of

"library subroutines" which act as a run-time support

package. The program then proceeds mainly by executing

machine instructions directly, but occasionally by

calling one of the subroutines to perform some more

sophisticated action.

A level of interpreter of this nature will be shown

diagrammatically by dividing the level into left and

righthand sides. The lefthand side will contain a

vertical arrow to show that some instructions are

executed directly at the lower interface, and the

righthand side will name the "package" of non-primitive

facilities, for example:

Data L4
13 ------------------_

Program L3
12 __

-'---!--I-;~~ i cal
library L2 I 1 ______ _

Machine Ll

Levels of interpretation of this special kind will not

prove to be particularly significant in the following

discussion; for example they will receive no special

treatment in the second part of this chapter, or in

the definition of performance. However, it will be

necessary to bear them in mind during practical performance

assessment if the characteristics of the active part

of the level are to be assessed.

;)0.

4.1.4 Comments.

Although conceived separately, and for a different

purpose, the multi-level interpreter scheme which I

have described has a great similarity to the multi

level system description given by Anderson, Lee and

Shrivastava (1978). They consider multiple levels of

interpreters with well defined interfaces, and also

the concept of interpreter ~!ensi~ which corresponds

to the refinement outlined above. However, their

treatment of interpreter extensions differs somewhat

from mine; the new level is considered to be an

extension of the next interpreter level below, and to

be under the control of that level, whereas I wish to

treat it as an independent interpreter. Despite the

slight dissimilarity I shall adopt the term "interpreter

extension".

In general, suitable choices for single components

of multi-level systems will be. individual software

programs, designed and developed as integral units.

However, it will also prove to be convenient to group

together such programs to make compound components, or

to identify interfaces within programs and to divide the

programs into two or more levels (for example, isolating

a group of subroutines providing a common service to a

main program).

4.1.5 Examples.

·Before proceeding to give a formalised description of

the behaviour within multi-level interpreter systems,

I shall show a range of multi-level decompositions of

typical systems. The examples illustrate the styles

of decomposition which will be used in subsequent

chapters.

57.

4.1.5.1 Simple program.

The first example is almost the simplest situation

conceivable. A compiled program, given data and

executing on the bare hardware of a machine.

Data

Program (object code)

Machine

This system decomposition is appropriate in all normal

programming configurations. In general the program

might include several levels of interpretation, which

we are not interested to distinguish. Also the data

might include further levels of program text and data

which are to be interpreted by the program.

4.1.5.2 Executing with a file store.

The normal working environment rarely makes it possible

to run programs on completely bare hardware. Usually

there is some form of operating system providing

greater control over the machine, and extending the

machine's facilities. Typically the operating system

will provide file storage and possibly a virtual memory.

Considering only the provision of a file store, this

may be represented by an interpreter extension above the

hardware level:

Data

Program (object code)

I Eile ~tore
~ rout~nes

---------- ---------
Machine

The implication here is that the program executes

machine instructions, or calls file store routines

which execute machine instructions on its behalf.

The machine is unable to tell which instructions are

executed by the program, and which by the file store

extension level.

As a development from the simple example above, this

new decomposition can be seen in two ways; either as

the separation of two levels in what was previously

a rather sophisticated machine, or as the removal

from the program of a set of basic utilities which

were independent of the remainder of the program.

4.1.5.3 A simple Algol-type program.

This example is of a similar complexity to the last,

but it introduces the possibility of interpreter

levels arising from degrees of sophistication of

implementation of high level languages. I choose

to illustrate this in the context of an Algol-type

language, executing on a machine which has no intrinsic

stack handling abilities.

A program of this type will be compiled into object

code which includes calls on stack manipulation

routines. These routines will be present in the object

code, but the programmer did not include them

explicitly in his design, and so I would like to

isolate them. The configuration can be represented

as follows:

Data

Program (object code)

1 Stack
routines

Machine

59.

4.1.5.4. An advanced Algol-type program.

Further complexity arises in the previous example if

a program makes use of some more advanced facility of

the language. For example, a system of records and

pointers may require record allocation and accessing

routines, heap management and garbage collection. This

will be present in addition to the necessary stack

manipulation routines, and indeed the record management

will almost certainly rely on the stack routines. Hence

the following configuration:

Data

Program (object code)

l ----

t -----

Record
Management

stack
routines

Machine

of course, if we were not interested in distinguishing

between the stack and record management levels then

they could be merged into a single "run time support"

extension level.

The prob~em arises, when extracting several supporting

levels of interpreter, of the order in which the levels

should be placed in the configuration. The order will

be determined by the dependence between the levels.

For example, if two levels A and B are extracted from

a program then the order is determined by whether A

uses the facilities of B, and vice versa. If A and B

are independent (they only require the machine below

in order to execute) then they may occur in either order.

60.

If A uses B but B does not rely on A, then A is placed

above B (I have treated the record and stack, above,

in this way as A and B respectively). If A and B rely

on each other then they must be merged to form a single

level - maybe a different factorisation of the system

is possible. With three or more levels more care may

be needed, but I do not anticipate that this problem

will be of sufficient significance to prevent useful

progress.

4.1.5.5 A high level machine simulator.

Consider a program written in a very high level language,

such as Lispkit, which has been translated into a data

structure containing the object code for running the

program on a special purpose machine simulator. The

machine simulator is itself an Algol object code

program for executing on a particular computer's

hardware. The Lispkit program requires some data

in order to execute.

An execution of such a system of programs will have the

following structure:

Data

Program (Lispkit object code)

Lispkit machine simulator
(Algol object code)

Computer hardware

Again, each level of the configuration could be

decomposed into further levels if required. The next,

and final, example shows the interesting case where

the data is split into another program plus data.

This will be of significance later, as will the case

O~.

when the simulator has levels of mechanism distinguished

within it.

4.1.5.~ Higher level interpretation of a.program.

This final example is a development of the previous

one. The program has become more specifically an

interpreter for the source code programs of an

experimental language X. Above the interpreter we

have a source code X program and some data for it:

Data

X source code program

X interpreter (Lispkit object code)

Lispkit machine simulator
(Algol object code)

computer hardware

4.2 Two models for the behaviour of components within

multi-level interpreter systems.

The notations described in the following pages will play

a descriptive role in the formulation of concepts of

software behaviour, and in the subsequent discussion of

performance. The notations will not be developed into a

complete formal theory. The system configuration diagrams

introduced above are useful as reminders of the identities

of system components. However, the diagrams say'nothing

formal about the way in which levels of machines,

interpreters, programs and data interact.

I have two, apparently conflicting, demands of a

formal des~ription of the behaviour of multi-level

inte~preter systems. Firstly, the software components

of a system are simply chunks of text, whether they

are in a source or compiled form, and only acquire the

62.

ability to be active and perform computations when

"loaded" onto some active machine; the machine may

itsel~ be a virtual machine formed by loading the

passive text of an interpreter onto some lower level

machine. It should be possible to model this

activation of passive program texts. Secondly, despite

the previous observation, a program does seem to have

behavioural properties of its own which are independent

of the (virtual) machine on which it is executing; it

has a certain "algorithmic complexity" which determines

the amount of work required to complete the computation

specified by the program's data. It should be possible

to assign some active character to a program without

including the characteristics of the (virtual) machine

below, and it is this active character which a

perf?rmance assessment must assess.

In the following sections I shall attempt to capture

these two rather different aspects of system behaviour

in two models, the Interpretation and Abstract

Execution models respectively. The two models are

orthogonal, but can be related to each other, and the

requfremerit for consistency will constrain the models.

4.2.1 The Interpretation model.

In this model the components of a system are of two

types; each software component is a passive Base text

object, this covers the programs and data which form

every level of a system except the lowest; and the

lowest level of a system is an innately active object

of type Ma~hine which accepts the text of programs

and data and generates results.

0,) •

To represent the combinations of programs and data

which a Machine expects to receive (and, later,

interpreters will expect to receive), the more embracing

type !!~ is necessary

Text = Base + Base x Text

An object of type Text is a sequence of Base objects,

each of which is the passive text of some program or

data. When a Text object is a sequence of more than one

Base item I shall use square brackets to delimit the

sequence, e.g. [pl, p2, ~ ,in which the last item

will be of type Text although it will frequently be a

Base object.

The results of a computation are conveniently grouped

with programs and data as Base text:

program, data, results: Base

The type Machine can now be elaborated. A Machine is

a function which accepts some software (in general a

combination of programs and data), and produces some

results:

Machine = Text Base

For example, the execution represented by the configuration

d : Base

L":"~~!.-
i : Base

mc: Machine

in which the names of the components have been annotated

with their types, can be modelled by applying the

Machine mc to a compound data structure:

results = mc ((i,P,d]

64.

If mc)Machine then this gives a general purpose

character to mc with which it may execute self-contained

programs

results = mc(p) where p:Base

or more complex software systems, as above. This can be

seen by substituting the definition of Text into that of

Machine:

Machine = (Base + Base x Text) ~ Base

When a Machine is acting purely in the role of supporting

a multi-level software system then its properties can be

discussed in the restricted domain M':

M' = Base x Text ~ Base

or the "Curried" form of this, MI":.

MI
" = Base~(Text --+ Base)

This is the way in which hardware machines are normally.

used; the machine is given Base text as a program to

execute, and some Text as data for the program. The

separation of program and data shows that they are

changeable components, the program can be executed with

various sets of data. The two types M' and M" have been

derived from a consideration of hardware machines, but

they also describe precisely the usual concept of an

interpreter as an active object which accepts program

and data and produces results. I shall define the

Curried domain as being' exactly that of Interpreters:

Interpreter = Base ~(Text~ Base)

and I shall denote the member of Interpreter corresponding

to the Machine mc, acting in the restricted role M', by

mkInt(mc). mkInt converts a component of type Machine to

one of type Interpreter, simply by modifying its type:

65.

mkInt: Machine~Interpreter

and ~klnt may be defined (in the notation of Chapter 2) as

mkInt(mc)= A (base)(~ (text)mc([base, tex!] »
Hence the following equality holds:

results = mc([P,d])= mkInt(mc)(p)(d)

where mc:Machine, p:Base, d:Text

Now, the range of the Interpreter mapping is (Text ~ Base),

which has already been defined as Machine, and hence

Interpreter Base -7 Machine.

Thus it is possible to generate a new active Machine,

a virtu~! ~~hi~~, by applying an active Interpreter

to a passive program Base text. This corresponds to

"loading" a program onto a machine, but not executing

it until we provide some data; the loaded machine has

become a new and different virtual machine. The active

Machine obtained by loading a program text onto an

Inpterpreter has the character which we usually attribute

to the program itself - it accepts data and produces

results. Hence the distinction has been made between

the text of a program, which simply describes some

computational ability, and an active program, which is

a composition of the program's text and low~ levels

of hardware and software~ and which can perform

computation~

The analysis of a system can be continued to greater

levels of detail, since if the Base text which is

loaded onto an Interpreter also describes the function

of an interpreter, then the resulting Machine is of the

restricted type M' and can again be treated as an

Interpreter. For example, consider the system

66.

d

mc

The following analysis can be made of the results from

such an execution:

results =1nC([Pl,P2,d])

mklnt(mc)(pl)([P2,ciJ

pl'([p2,d])

= mklnt(pl')(p2)(d)

p2' (d)

where pl' m kI n t (m c) (p 1)

p2' = mklnt(pl')(p2)

The objects pl' and p2' are virtual machines which

implement the functions described by the program texts

pl and p2 respectively:

d

-~
--~

mc

Hence it has become clearer why I wish to treat complex

programming systems as "multi-level interpreter systems".

4.2.2 The Abstract Execution model.

In the Interpretation model, described above, each

software component of a system is passive, and only

acquires an active characteristic when executed (or

interpreted) by a Machine (or Interpreter). This

seems to suggest that it is fruitless to enquire about

the behaviour or performance of an isolated component,

as the behaviour of the component is intricately

67.

involved with the behaviour of the Machine or

Interpreter on which it is executing. However, the

notion that a program can be assigned behavioural

attributes independent of its execution environment is

in common usage; in some sense a program describes work

to be performed, and it is the business of some

underlying components h~~ the work is performed. This

notion will be of key importance in the treatment of

performance in Chapter 5, and I shall attempt to suggest

here a formal basis for that treatment.

The Abstract Execution model considers explicitly the

in!~cti~~ between each pair of components which are

vertically adjacent in a configuration diagram; the

interaction may be in the form of subroutine calls

(or other operations) which the upper component demands

of the lower, or in the form of accesses which the lower

component makes into the data structure representing the

upper component - these are simply convenient and

suggestive intuitive interpretations of the events

which occur during execution of the system. Each

compo~ent is then modelled by a function which maps an

interaction at the upper interface of the component

into an interaction at the lower interface.

An alternative view is to consider that, at each

interface, the component above the interface hands

to the component below,' some description of the complete

computation; the description is at a level of abstraction

which the lower component is prepared to expand in more

detail and hand to the next lower component.

I shall restrict myself. to consideration of interactions

which are sequences of events; this is certainly adequate

and clear for analysing systems executing on current

conventional sequential processors, though I do not

68.

know whether it is a necessary restriction in the following

analY$is, nor whether the theory will need modification

to handle parallel processing systems.

Having attempted to bridge the intuitive gap between

the Interpretation and Abstract Execution models, I

shall noV elaborate the latter.

Observation at an interface of a system for the duration

of a computation will yield a record of the interaction,

which is a sequence of events.

!:2!~cuti~ of type Tr~:

The record is an abstract

Trace = sequence of interaction events

Each component of a system, with the exception of the

high~st level component (usually simple data), will be

modelled by an active entity, an abstract execution

machine of type AEMachine, which transforms a Trace at

its upper interface into a Trace at its lower interface:

AEMachine = Trace -+ Trace

There are three types of system component which must be

described in terms of AEMachines and Traces.

Firstly, the lowest level component, computer hardware,

is innately active, as in the Interpretation model. A

hardware component mc is a member of type AEMachine:

mc : AEMachine.

In this case the upper interface Trace will be a sequence

of machine instructions and their operand values.

A hardware component, being at the lowest level, has

no true lower interfac&, but the Trace produced by the

component can be conveniently interpreted as the

manifestation of the computation to an outside observer -

69.

it will consist of such effects as power consumption,

time,. and input/output actions, and hence consists, in

part, of the desired "results" of the computation.

Secondly, each software component, except the highest,

is a Base text object representing a program which must

be modelled as an AEMachine. For this purpose I shall

postulate the availability of a function aep (for

"abstractly execute program") which takes the text of a

program and produces an appropriate AEMachine:

aep : Base ~AEMachine.

aep is universal in the sense that it is capable of

accepting any program~ in any language and producing

the AEMachine appropriate to the environment in which

it w.ill execute; I shall assume, for simplicity, that

the program's text contains relevant clues about these

matters for use by aep. This somewhat extravagant claim

for the properties of aep will be pursued further below.

Thirdly, the highest level component, data, is a Base

text object which is inspected by, and directs the

actions of, the component below. A data component is

not active in transforming Traces, but it interacts with

the component below, and hence will be modelled by a Trace

of this interaction. As for the case of programs, above,

I shall postulate the availability of a function aed

(for "abstractly execut'e data") which given a data text

produces the Trace at its lower interface

aed: Base~Trace

Again I assume that the text contains clues about the

nature of the data and the program which is to process

it (the component below), and that aed is universal in

a similar way to aep, above. In this case the Trace

70.

could simply b~ the pattern of accesses to the data

which the program below the interface makes, or even

simpler, the data itself; on the other hand the data

might be the text of a self-contained program, to be

interpreted by the component below, and a useful trace

of the interaction would be more complex.

Now that we can model each component of a system, the

computation performed by an entire system can be

modelled by composing the functions modelling each

component. For example, the configuration of components

13

12

11

is modell ed by

d:Base

P 2: B a . .;;;s..,;e __ _

p1: Bas . ..;;,e __

mc:AEMachine

result trace mc(aep(p1)(aep(p2)(aed(d»»

mc(p1'(p2'(d'»)

where p1', p2' and d' are the representations
of p1, p2 and d:

p1' = aep(p1)

p2' aep(p2)

d' aed(d)

The result trace contains the desired results of the

computation.

Alternatively the interaction at any interface can be

inspected by abstractly executing the components above

the interface. In the example above

trace at interface 12 aep(p2) (aed(d))==p2' (d')

The Interpretation model allowed the construction of

virtual machines by the combination of the lower level

components of a system. The virtual machines then had

the innately active Machine characteristic. Interpretation

model virtual machines always occupy the lowest level

71.

of a system. The Abstraction Execution model also

enables the construction of virtual AEMachines by

combining components, but not only at the lowest level

of a system. For example, in the system above,

the components may be combined in various ways:

result trace mc(pl'(p2'(d'»)

mcpl' (p2' (d'»

= mc(pl2' (d'»

= mc(pl'(p2d'», and others

wh~re mcpl' ~ (trace) mc(pl'(trace»

A (trace) mc(aep(pl)(trace»

pl2' A (trace) pl'(p2'(trace»

= A (trace) aep(pl)(aep(p2)(trace»

p2d' p2'(d') = aep(p2)(aed(d»

and mcpl', pl2': AEMachine, but p2d':Trace.

In this example mcpl' clearly corresponds to' the virtual

machines of the Interpretation model, as it combines

the lowest levels of the system. However, pl2' may be

better referred to as a "virtual program", and p2d' is

"virtual data" (not a particularly useful concept).

An important characteristic of the construction of virtual

programs in the Abstract Execution model is that it

permits adjacent levels of programs to be combined

(and indicates how single levels may be factorised into

two or more levels) without disturbing the structure

and analysis of the remainder of the system. In the

above example

mc(pl'(p2'(d'») = mc(pl2'(d'»

where the composition of two functions, pl' and p2', has

been replaced by a single function, pl2', which can be

used as if pl' and p2' had never been separate.

72.

This SDuld oe contrasted with the same transformation

in the Interpretation model, where pl and p2 can be

factored out by exploiting the lambda expression notation:

result mc{ [Pl, p2, d])
where, now, mC:Machine

mkInt{mkInt{mc)(pl»(p2){d)

pl2" (mc,d)

where pl2" = A (mc,d)mkInt{mkInt(mc){pl»(p2)

pl2" now formally is'ola'tes pl and p2, but it does not fit

naturally into the Interpretation model scheme, as pl2'

does into the Abstract Execution scheme.

unusual type

pl2" : MachinexBase~ Base

pl2" has an

and cannot be used in place of pl and p2 as if they had

never been separate.

Hence the Abstract Execution model has improved on the

Interpretation model by enabling abstract views of the

structure of a system to be generated more naturally;

but this has occurred at the expense of the introduction

of the hazy notion of a Trace, and two powerful, but

not formally defined, functions aep and aed. I shall

attempt to remedy this unsatisfactory situation in the

next section.

4.2.3 Relating the Interpretation and Abstract

Execution Models.

The functions aep and aed are extremely powerful.

They are marvellous tools to have available, but the

validity of their postulated existence must be

examined. This problem is intimately associated

with the question "What exactly is a Trace?" I

cannot answer that question satisfactorily in the

73.

general case, but by relating the Interpretation and

Abstract Execution models the functions aep and aed

will be specified in terms of Traces, and only the

latter problem will remain.

Ultimately I consider that the validity of the Abstract

Execution model will be verified by the existence of

useful experimental results which fit within the

framework of the model, although, in common with most

such models, that verification will not necessarily

imply that the model is the best possible formalisation

of the problem.

In the Interpretation model interfaces occur between

Machines and their data. For example, in the system

I3 ___ d_

I2-E~

I1-E~

mc

the interface 11 separates the Machine me and the

data [P1,p2,d] , the interface 12 separates the

Machine mkInt(mc)(p1) from the data [p2,d] and 13

separates mkInt(mkInt(mc)(p1»(p2) from d.

At each of these interfaces it is the interaction of

the Machine below and the data above which is

recorded by a Trace. The practical act of observing

an interaction can be achieved by taking the Machine

and data, possibly modifying one or both to include

monitoring mechanisms, and recording the events which

occur. I shall use the function tracing to represent

this experimental action formally:

tracing: Machine x Text ~ Trace

and in the above example:

trace at 12 = tracing (mkInt(mc)(pl), [p2,d]).

74.

In itself the introduction of tracing is fairly trivial,

but it allows the gap between the Interpretation and

Abstract Execution models to be bridged. The functions

aep, aed, and tracing, in order to be useful, must give

the same Traces at interfaces.

For example, in the configuration

12-~

Il-~

mc

the following equalities must be satisfied:

aep(p)(tracing(mkInt(mc)(p),d» = tracing(mc, [P,d]

since aep(p) maps the trace at 12 into the trace at Il,

and

and

aed (d)

trace at Il tracing (mc, [P,d])

trace at 12 = tracing (mkInt(mc)(p),d)

trace at I2 tracing (mkInt(mc)(p),d)

These equalities amount to the definition of aep and aed

by_th~~E.iri~Lob2.!~atio~of-.!~~~.

4.3 Comments.

The Interpretation model is more realistic and more

immediately credible than the Abstract Execution model,

which relies on fictitious Traces that never exist as

palpable data structures within a system. In Chapter 5

I shall sidestep the issue of the general nature of

Traces when, in the context of performance evaluation,

experiments which monitor interactions yield only

extracts of Traces and not the Traces themselves. The

extracts will be credible statistics concerning the

75.

execution of a system, and Traces will exist only

in the background, in the formal description of a

system. In the discussion of performance evaluation

the Abstract Execution model will provide the structure

of a performance analysis, and the correspondence with

the Interpretation model will show how empirical

assessments can be organised.

76.

CHAPTER 5 - THE PERFORMANCE OF COMPONENTS OF MULTI-LEVEL

SYSTEMS.

This chapter is concerned with the determination and

analysis of the performance of the individual components

of mUlti-level interpreter systems. The Abstract

Execution model of Chapter 4 will be built upon to

provide a framework for the study of performance.

Following the discussion in Chapter 4, programming

systems are comprised of component levels of software

and hardware. The component at the lowest level, which

requires no support, is a hardware machine, and is

generally of fixed characteristics in the sense that it

cannot be modified in the short term to suit different

applications. On the other hand, the software components

of the system will be programs and interpreters which

have been designed to cooperate in the solution of

certain problems, and which can be changed comparatively

easily to suit the circumstances.

Since the systems are intended to solve real-world

problems, as judged to be important by the designers

of the systems, those designers cannot ignore the

engineering goal of finding the "best" systems to

solve the given problems. This reasoning applies

equally well in both the commercial and academic fields,

as has been discussed in Chapter 1. The solution of a

problem, by the execution of one or more software

components on a hardware component, demands that

resources be made available - time, memory, power

and so on. The "best" system will be one which

optimises (according to some criterion) the use of

resources, the required balance depending on the

particular application.

77.

Hence the task is to be able to take programming

systems, to examine relevant aspects of their

performance, to make meaningful jUdgements of the

adequacy of individual systems, to make meaningful

comparisons of different systems, and, perhaps most

important of all, to obtain feedback of useful

conclusions to the designers of the systems and their

components.

This task is more complex in the case of multi-level

interpreter systems than for simple systems, as each

component will have its own behavioural properties.

A useful performance study of such a system should be

able to yield conclusions and feedback on the individual

components of the system - this is obviously

especially valuable if the components have been

des{gned independently.

For example, the system below has a typical multi

level interpreter structure:

Data

~E.£gr a,_m __ _

Interp.!:...!:te~

Machine

The most common measurement to be made of the

behaviour of such a system is the time taken to

execute particular computations. The time for

execution is itself a measure of the total amount of

work performed by the ~chine during the computation,

and hence reflects the contribution of all components

of the system to the overall performance. Consider

78.

executing the system above several times, with different

data on each occasion:

Data 1

~!:£E~ __
Interpreter

Machine

Data 2 -----
Program

Interp~ter

Machine

This is the experiment which is usually carried out in

order to assess experimentally the performance of the

£!££~; the interpreter level is not usually explicitly

noted, but it is almost invariably present, often in

the form of a library of subroutines supporting the

features of the language in which the program is written.

If the performance parameter measured is the execution

time then a relationship will be sought between this

measure and some relevant characteristic of the data,

the length of a list of items, for example. However,

any observed relationship, a distinct curve on a graph

or an approximate formula, will not necessarily yield

the desired conclusions on the properties of the

program, as the characteristics of the interpreter

and machine have also been included in the measurements.

Obviously the ability to distinguish the properties

of individual components from the properties of their

environments is very important; if the conclusions of

a performance study are to be returned to the designers

of the components of a system, then it would not be

reasonable or constructive to blame a program for

inefficiency if the fault actually lies with a bad

design decision in a lower level of interpretation.

79.

The design of experiments for the comparison of two

alternative versions of a component is an important

problem. Clearly care is needed to ensure a fair

comparison between the components, especially if they

are executing in different environments, on different

machines for example. The multi-level interpreter

model suggests a straightforward definition of a fair.

comparison; the comparison must be between the
• performance properties of the components in isolation

from the properties of their respective overall

systems. Care must be taken in factoring out the

influence of underlying levels of interpretation.

For example, Turner (1979) has compared implementations

of SASL and Lisp on different machines and has factored

out the influence of the hardware by examining the

requestsfor record storage cells that the implementations

make on their storage management support routines; also

Moss (1980) has compared several Prolog implementations,

on several different machines, by initially

performing simple experiments to "normalise" the

machine execution speeds. Undoubtedly there are many

other instances of these types of investigations.

Performance assessments may be carried out either

experimentally or analytically. The latter may be

quite appropriate for relatively straightforward

algorithms, and for the restricted use of more

complex algorithms, but in general such complex

algorithms will not be susceptible to a complete

analytical treatment. The complex algorithms in

which I shall be interested will be interpreters for

high level languages, and performance assessments

will have to be obtained experimentally.

80.

In the subsequent sections of this chapter I shall

give a definition of the performance of a component

in a multi-level system, and also the outline of a

methodology for the assessment of performance which

arises from the definition when applied to real

systems. The definition of performance is based on

the Traces of the Abstract Execution model of Chapter

4, and thereby provides a solution to the problem of

isolating the properties of components from the

remainder of the systems in which they execute. The

treatment of performance will concern itself with the

relationship of the performance of components to each

other, and to the system as a whole, and will not

concern itself with the internal details and

machanisms of individual components.

5.1 Defining the performance of a component.

The Abstract Execution model of multi-level interpreter

systems treats each component of a system as a mapping

between interactions at the upper and lower interfaces

of the component; the interaction, or Trace, at the

upper interface is a complete description of the

computation to be performed, and the component

transforms this into a (presumably) more detailed

Trace describing the computation at the lower interface.

The Trace at an interface defines the work to be performed

by the lower levels of the system.

This suggests that the crucial characteristic of a

component is the way in which it transforms the

workload between its upper and lower interfaces.

In the discussion which follows, this observation

81.

will form the basis for a definition of performance.

Before proceeding to the definition, however, it is

necessary to introduce a more practical means of

observing an interaction than the tracing function

introduced in Chapter 4.

5.1.1 Observing interactions at interfaces.

In Chapter 4 there was some difficulty with the

precise nature of the objects of type Trace, although

they were a valuable abstraction in enabling the

Abstract Execution model to construct representations

of multi-level systems which had useful properties.

The operation tracing was introduced to link the

Abstract Execution Traces to observations of real

syst~ms described by the Interpretation model.

tracing was defined as

being of type Mach ine x Text ~ Trace, and in the system

I2
d

the trace at, for example, I2 can be obtained from

the Abstract Execution model

trace at I2 = aed (d)

or by tracing the Interpretation model

trace at I2 = tracing (mkInt(mc)(p),d)

However, tracing is not a representation of the

practical act of observing an interaction; when

the interaction at an interface of a system is

observed, usually by modifying the software, the

information collected is never a complete Trace,

but some extract of ' the Trace which represents

some particularly interesting aspect of the interaction.

82.

Similarly, when discussing the Traces at upper and

lower interfaces and how they are related by the

component between, it will be the relationships

between particular aspects of the interactions which

convey most understanding.

Hence I shall define the type Extract to Cover the

interesting statistics which can be distilled from
•

Traces, and the deliberate act of choosing an

interesting statistic to extract from a Trace will

be represented by the functions Se~:

Select = Trace ~ Extract.

Note that Extracts of Traces are now more credible

objects; for example, they include such useful

statistics as the number of machine instructions

executed at the upper interface of a hardware

component, the number of times that particular

instructions or particular sequences of instructions

are executed, the number of statements or expressions

interpreted at the lower interface of a program, and

the riumber of times that certain elements of data

are accessed by the program below the lower interface

of the data. In 'short, Select functions allow us

to consider any aspect of an interaction that we

consider to be relevant, although, of course, some

statistics may be easier to obtain than others.

The practical act of observing an interface, in order

to obtain an Extract concerning a particular aspect

of the interaction, is modelled by the function

monitor:

83.

moni tor: Select x Machine x Text ~ Extract

which may be defined in terms of tracing:

monitor (sel,mc,d) = sel(tracing(mc,d»

For example, in the system

I2-L

I1-L

mc

if selaccess: Select can extract a record of the

accesses which p makes into d at 12 then

record of accesses = monitor(selaccess, mkInt(mc)(p),d)

The definition of monitor shows that the complete action

of modifying a system, observing an interaction, and

extr~cting useful information is modelled by the

composition of the functions sel and tracing; the

composition represents the practical experimental

measurement of a system.

Of course Select functions can be applied equally

well to the Traces of an abstractly executed system.

In the example above, the record of accesses can be

obtained trivially

record of accesses = selaccess(aed(d».

5.1.2 A definition of performance.

The Abstract Execution model represents a component

by a mapping between Traces, but Traces are more of

a formal than a practical tool; instead it is usual

to consider a program as determining a mapping

between events of interest at its upper and lower

84.

interfaces, in other words between Extracts at the

interfaces. For example, "a program makes x calls

of a particular subroutine at its lower interface

when the data at its upper interface contains y

items".

It is in these terms which the performances of

programs, interpreters and machines are usually

expressed, and so I shall define a Performance

as a mapping between Extracts:

Performance = Extract ~Extract

Any component may be characterized by a number of

Performance functions, each relating different

aspects of the interactions at the upper and lower

inteTfaces. It is the aim of the study of the

performance of a component to characterise, as

completely as possible, the mapping which the

component implements between selected events

of interest; the study may be carried out

analytically, thus arriving at a precise formula

for the Performance, or experimentally, yielding

particular points in the Performance mapping and

presented as maybe a table, graph, or approximate

formula.

To ~~~~ the Performance of a component with

both upper and lower interfaces it is necessary

to know the Base text of the component, and the

Select functions for monitoring the upper and

lower interface interactions:

assess : Base x Select x Select ~ Performance

85.

The assess operation is not constrained to being

either analytical or experimental, but in either

case the resultant Performance mapping must be

consistent in both the Interpretation and Abstract

Execution models. Consider assessing the performance

of p in the simple system

I2 __ d_
•

I1-E-
mc

and let sell and sel2 be interesting Select functions

for the interactions at 11 and 12 respectively. The

assessment of the performance of p, perfp, is

perfp = assess (p, sel2, sell)

so that perfp(extract2) = extract1 ..

By the Abstract Execution model the performance perfp

relates the selected features of Traces at the two

interfaces:

assess (p,se12,sel1)(sel2(aed(d») = sel1(aep(p)(aed(d»)

since extract1 sel1(aep(p)(aed(d»)

sel1(trace1)

extract2 se12 (aed(d»

- se12 (trace2)

trace1 aep(p)(aed(d»

trace2 = aed(d).

Alternatively, the Interpretation model can be used

to show monitoring actions explicitly:

assess(p,sel2,sel1)(monitor(sel2,mkInt(mc)(p),d»

= monitor (sel1,mc, [P,d])

which can also be simplified to

perfp(extract2) = extract1

86.

since monitor(sell,mc, [P,d]) = sell(tracing(mc, [P,d] »

sell(tracel)

extractl

monitor(se12,mkInt(mc)(p),d) se12(trace2)

extract2

87.

The required consistency of Traces between the Interpretation

and Abstract Execution models, and the applicability

of Select functions to both models, has ensured that

the properties of Performance mappings are the same

in both models. The notion of Performance is clearly

most closely related to the Abstract Execution model,

as it was defined in those terms, but its direct

compatibility with the Interpretation model and

moni~or is important, as the latter model indicates

how.assessments of performance can be made empirically.

The equations above show that perfp, a particular

Performance function characterising p, relates

Extracts:

perfp(monitored Extract at upper interface)

= monitored Extract at lower interface.

This relationship shows that we can predict lower

interface Extracts if perfp is already known, or

that we can monitor the interfaces in particular

experimental executions of the system and thus build

up an impression of the perfp mapping from particular

data points. In the latter case the system will be

viewed initially in terms of the Abstract Execution

model - components of interest will be isolated,

and appropriate interfaces and Select functions will

be chosen; then experimental measurements will be

made by monitoring the system as described by the

Interpretation model; and finally the measurements

will be presented as a Performance assessment, in

tabular, graphical or algebraic form, and the precise

significance of the assessment with respect to the

system will be clear from the choice of components,

i~terfaces, and Select functions.

5.1.3 Combining the performances of adjacent components.

One important consequence of the definition of Performances,

above, is that the Performances of two components

occupying (vertically) adjacent levels of a system can

be combined in a very simple way to give the overall

Performance of the pair as if they were a single

component. This is related to the ease of construction

of "virtual programs" in the Abstract Execution model.

C~nsider the following system configuration

I3~
12£

IIE
mc

Suppose that sell, sel2 and sel3 are Select functions

extracting statistics of interest from the Traces at

interfaces Il,I2,and 13 respectively. Hence

aed(d) trace3

trace2

tracel

aep(p2) (aed(d»

aep(pl)(aep(p2)(aed(d»)

se13 (trace3)

se12 (trace2)

extract3

extract2

sell(tracel) = extractl

88.

If the Performances of p1 and p2 are perf1 and perf2

respectively,

then

perf1 = assess (p1,se12,se11)

perf2 assess (p2,se13,se12)

perf1(extract2)

perf2(extract3)

•

extract1

extract 2

and since for both perf1 and perf2 the same Select

function, se12, has been used at 12 to yield extract2

then

perf1(perf2(extract3» = extract1

or perf12(extract3) = extract1

where perf12 = A(extract) perf1(perf2(extract».

The Performance function perf12 is thus the mapping

between the selected statistics at 13 and 11, that

is the Performance of the virtual program formed by

considering p1 and p2 as a single component, and is

simply the composition of the Performances of the

individual components.

The importance of this result is that it assures us

that, when analysing a system, several components can

be combined if detail is to be ignored, and single

components can be separated into several levels if

more detail is required, without disturbing the

properties, structure and analysis of the remainder

of the system.

5.1.4 Comments.

I have attempted to provide a framework for the

analysis of the performance properties of components

within multi-level interpreter systems. Traces have

89

been relegated in importance with the introduction of

Extracts which represent Selected statistics that can

be obtained experimentally.

However, within the framework there still remains much

flexibility in the practical assessment of systems;

~omponents must be isolated, interfaces and statistics

for collection selected, experimental measurements made,

and any choices possibly modified due to unforeseen

complexity or experimental problems.

5.2 A methodology for empirical performance assessment .

. Many choices have to be made, and compromises reached,

during the empirical assessment of a system within the

framework outlined in the previous section. During the

practical research reported in the following chapters

of this thesis, I found that the 8 point programme

given below was valuable in organising the work, and

in highlighting the decisions to be made, and problems

to be overcome, in a manageable order.

1. The first step is to divide the system to be

assessed into a multi-level interpreter structure

which reflects the particular interests of the

performance assessment. The components to be assessed

should be isolated, as accurately as possible, from

their data, and any lower levels of supporting

routines or interpreters whose characteristics are not

to be included in the assessment. Interfaces should

delimit precisely the components to be assessed.

2. A general qualitative analysis should be made of

the behaviour and interactions occuring at the

interfaces delimiting components of interest. This

will guide the choice of Select functions in the next

step.

90.

3. The aspects of the interactions which are to be

monitored at each interface must be chosen. This

choice is largely determined by the particular

performance characteristics which are desired, but

also partially by practical considerations of what

it is possible and not possible to monitor (see step 4).

The choice made here, which includes a decision on

which monitored statistics are to be compared with

which, has a large effect on the meaning of the

performance relations obtained.

The main problem is that, at typical interfaces, the

choice of interaction events to monitor is very large,

'and the series of interaction events can be viewed

at different levels of abstraction. For example,

suppose that above an interface the data is a binary

tree (e.g. an s-expression), and below the interface

is some program which scans the tree repeatedly to

ascertain whether some property is satisfied (e.g.

whether any two subtrees are identical). A view of

the interaction which is very "close" to the data

would record only one event - that the data exists

and is passed to the program. A view that is very

close to the program could record each and every

individual occasion on which the program accesses

a node or leaf of the tree (including repeated

inspections). An intermediate view would note some

property of the tree, such as the total number of

internal nodes and leaves, or the depth of the tree.

Conventional wisdom will usually dictate that a

view in the latter group is the most appropriate,

but there is no reason why the other views should

not be selected for some applications.

91.

A similar situation exists when the interaction at

the interface is an interpreter executing a program.

A view of the interaction close to the program could

count the statements to be executed, and expressions

to be evaluated, according to some adequate and

economical flow of control through the program. On

the other hand, a view of the interaction close to

the interpreter cou~d count the number of basic

evaluation steps performed by the interpreter, which

would possibly include the repeated evaluation of

expressions (e.g. if an int-erpreter of Lispkit programs

re-evaluated a defining expression at each access to

the defined variable, a mechanism which could be used

-to implement call-by-name semantics). These two

views would not necessarily coincide closely.

The previous situation is complicated further if the

program above the interface has been compiled,

converted to some intermediate textual form, before

interpretation; this is a very common situation. The

performance properties may have been changed by the

compilation. The choice must be made whether to monitor

the interpreter below the interface, the intermediate

code above the interface (both of which are present in

the executing system), or the statements and expressions

of the original "source text" program (which may have

to be monitored indirectly, possibly by separate

simulation). The three choices may not be closely

related, and a decision must be made which is appropriate

to the circumstances. In fact, for this type of system

it may be interesting to monitor both the original

program and the evaluation steps performed by the

interpreter; the results may be compared to obtain a

92.

Performance relation as if there were an extra

software component between the program and interpreter,

and this relation could yield an assessment of the

overall evaluation scheme embodied in the compilation

step and interpreter design.

In the latter two cases I referred, somewhat vaguely,

to monitoring the source text statements and expressions

of a program, and described this as "according to some

adequate and economical flow of control through the

program". I wi shed to capture the impression that an

intelligent programmer would have of the amount of

work necessarily involved in executing his program.

'This is obviously a subjective issue, but for most

languages and constructs th~re is general agreement;

for example, in Lispkit we might expect a call-by-value

semantics and correspondingly expect each defining

expression and actual argument expression to be evaluated

once only. I shall call such a view of a program's

execution a ~de! interpretation. The important point

about the use of model interpretations for gathering

statistics in performance assessment, is that the

resultant assessment will be with respect to the

programmer's expectation, which will be consistent

between different programs in the same language.

4. Make a more detailed, but still qualitative,

investigation of the interactions at the interfaces.

The purpose here is to decide precisely how the

selected statistics are to be monitored at each

interface; this will usually entail deciding how

the various software components are to be modified

to collect the required statistics. In order to

93.

obtain model interpretation statistics it may be

necessary to decide on manual analysis of the program,

or to construct a special purpose simulator or interpreter,

or to modify the program itself to collect its own

statistics; some combination of techniques may be

necessary as manual analysis may become intractable,

and simulation or self-monitoring may be unduly

inefficient (especially in purely applicative languages

such as Lispkit or Prolog). In fact, the technique

of modifying a program to monitor its own activity could

be a good method for defining model interpretations

rather more formally, as the statistics gathered would

depend only on the semantics of the language and not

·on the details of execution, but that is a sideline

I have not pursued.

It is at this step, and possibly step 5, that re-iteration

through earlier steps may become necessary as difficulties

of monitoring arise. Some compromise may be necessary

between desired performance assessments and practical

statistics collection.

5. Make appropriate changes to the system to incorporate

monitoring mechanisms, and implement any special

simulators if necessary. Note that several versions of

a system may be required, each monitoring different

aspects of the execution, if the monitoring mechanisms

interfere with each other; for example, the execution

of monitoring mechanisms in an upper level component

will be present as a part of lower level interactions,

and monitoring this lower level interaction will

provide a false impression of the software above.

94.

6. Choose a set of test executions of the system,

perform the executions, and collect all the required

statistics. The tests should be chosen such that,

for each component whose performance is to be assessed,

the range of the component's abilities is fully

exercised; this is the requirement that the discrete

set of data points obtained should be as accurate a

representation of the desired Performance function as
• possible. This is a very big problem, and it does not

seem likely that a truly satisfactory solution will be

possible except in a very few cases.

When a component to be assessed is a "data processing"

program (e.g. sorting, searching), there may be an

obvious range of data values to present to the program

(e . go. lis t s 0 f s u c c e s s i vel y g rea t e r len g t h, 0 r t r e e s

of successively greater depth), but if the component

is an interpreter then it will almost certainly be

impossible to characterise a "range" of programs. In

the latter case it might be necessary to assess the

Performance of the interpreter separately for different

types of program and to attempt to infer some general

properties of the interpreter from the results.

7. Make comparisons of statistics collected in step 6

in order to obtain the Performance relations chosen

in step 3. The Performance relations can be expressed

as tables of statistics, as graphs of the discrete

points obtained in the test executions, or, if"there

is sufficient justification, as graphs of the discrete

experimental points with other points added by

interpolating or extrapolating along curves which fit

the experimental points. In each of the cases it

seems reasonable to present the relation as a formula

if the observed points show an easily defined trend;

this formula will be the fitted curve in the case of an

95

interpolated graph. Of course, it should be remembered

that such fitted formulae are only hypotheses about

trends.

This step may lead to reiteration through step 6 if

further statistics are required to confirm or explore

trends.

8. Finally, conclusion~ can be drawn from the empirical

performance assessments, the quality of components can

be judged against external criteria, and comparisons of

components can be made. Again, reiterations through

earlier steps may be inspired by the concluding

observations.

5.3 - Comments.

I have shown an approach to performance analysis,

which exploits the properties of systems described

by the Abstract Execution model in order to define

and isolate the properties of individual components,

and the Interpretation model guides the collection

of experimental performance data. Practical assessment

entails many complications which must be overcome by

careful choices; these have been outlined in an 8 step

scheme for organising the practical work.

In the following chapters the performance assessment

discipline will be illustrated by application to

pseudo-machine implementations of Lispkit and Prolog,

and to interpreters for Lispkit and Prolog. At the

same time the assessments will provide interesting

results and comparisons of the pseudo-machines and

interpreters.

96.

CHAPTER 6 - LISPKIT AND PROLOG MACHINES:

STRUCTURE AND PERFORMANCE.

Lispkit and Prolog machines: structure and performance.

It is common practice to implement very high level

languages, which provide for the handling of symbolic

data structures, by designing a special purpose

Eseudo-machine. Each language will have its own

style of pseudo-machine, and programs are usually

compiled into the fQrm of an intermediate machine code

which is then interpreted by the pseudo-machine.

Pseudo-machines, in this context, are largish programs

written in some well known, well supported, and usually

reasonably efficient, conventional language (typically

one of the widely varying Algol family). Each

pseudo-machine. in executing an intermediate machine code

program, simulates (at an abstract level) the activity

of some hypothetical computer hardware which is intended

to be particularly well adapted to the requirements of

the very high level language in question.

I am on reasonably safe ground to assume that the

only style of computer architecture, which is currently

well enough understood to provide a sound basis for

general purpose computing machines, is the traditional

von Neumann single sequential instruction stream

architecture. In the von Neumann paradigm the state

of the machine is held in a memory, and each instruction

in the sequential stream causes a state transition in

the memory. There is, nevertheless, flexibility

available in the choice of instructions (and hence the

transitions), in execution of the instructions

(possibly pipelined, for example), and in the

97.

organisation of the memory (linearly addressed, paged,

tree structured, for example). Thus it seems quite

reasonable that the von Neumann style has been followed

in the design of very high level language pseudo-machines

such as Henderson's Lispkit (Henderson (1980», Turner's

SASL (Turner (1979» and Warren's Prolog (Warren (1977»

(though Warren's Prolog machine does not exist as an

-independent entity, as its intermediate machine code

serves only to structure a compilation of his dialect

of Prolog into DEClO machine code). It is particularly

straightforward to construct the software for pseudo

machines with such architectures. My implementation

of Prolog also follows the von Neumann paradigm, though

it was designed independently of Warren's pseudo

machine.

Very high level languages oriented towards symbolic data

structure processing are well suited by one particular

memory organisation. This comprises a heap store of

cells which may be linked by pointers to form lists,

trees and so on. The use of such a heap store enables

machine states (or parts thereof) to be saved by

recording simply a small collection of pointers, and

avoids the copying of large data structures when passing

parameters or building new structures from old ones.

There are many strategies for organising and managing

heap stores, but I will not discuss them here.

The pseudo-machine style of implementation is

particularly valuable for very high level languages

for several reasons. By dividing the processing of

a program into distinct compilation and pseudo-machine

execution phases the complexity of the design exercise

98.

is reduced. Extension of the facilities in various

ways is made more straightforward. The two phase

design, if carried out well, may aid in understanding

the meaning and use of the language through one specific,

clear implementation.

The logical design characteristics of two particular

pseudo-machines, for Lispkit and Prolog, are given in

Appendices Band D, with example concrete realisations

in AlgolW. A performance assessment of these realisations

is made in the later parts of this chapter. For the

performance assessment to be made here, it is the

structure of the software realisations which is

important.

The powerful nature of the basic programming facilities

provided by very high level languages means that the

pseudo-machines will have to perform sophisticated

actions in response to single intermediate machine code

instructions. Examples of this include the allocation

of new heap cells (possibly invoking garbage collection

or other management actions), and the unification of

su-expressions in Prolog. Since it is good programming

practice to isolate the sophisticated facilities and to

design them separately, it would seem to be a good

idea to treat the implementations as multi-level interpreter

systems for the purposes of performance analysis. The

systems will comprise an upper level, which is

responsible for shaping the interpretation of the

intermediate machine code program, and one or more

lower levels, which provide the supporting facilities.

99.

The performance of each level is of interest

independently, not only in the cycle of design and

improvement of the pseudo-machines, but also in

obtaining an indication of the performance that could be

expected if the systems were executed on specially

constructed hardware. For example, the heap store

would be a candidate for realisation in hardware

rather than software, with each cell access or
•

allocation request forming one machine instruction,

but with all domestic chores (such as garbage collection)

carried out in parallel with normal execution. In this

case the activity generated by the upper levels of the

system alone would determine the time for execution.

Hence the framework of thought for performance assessment,

which has been examined at great length in previous

chapters, will be of relevance here, as well as in the

next chapter (where the performance of higher level

interpreters, executing on top of the pseudo-machines

of this chapter, will be the topic).

6.1 A Lispkit pseudo-machine.

The operational model for the execution of Lispkit

programs, given in Chapter 2, can be realised

reasonably directly by a special purpose Lispkit

machine (LM). The Lispkit programs are precompiled

to an intermediate machine code, which consists

essentially of linear sequences of instructions for the

LM. The LM has a conventional sequential machine

architecture, but in which all data, programs and results

are held in four registers, S,E,C and D, each of which

contains an s-expression. Appendix B contains a detailed

100.

description of the roles of the four registers, the

machine actions determined by each LM instruction,

and the code generated during compilation of each

type of Lispkit expression.

In practice Lispkit programs are represented in an

s-expression syntax {also in Appendix B}, and the

compiler itself is a Lispkit program which executes on

the LM. The compiler accepts a Lispkit program as an

s-expression, and produces object code, which is also

an s-expression, suitable for re-input to the LM as

a compiled program.

In this section I would like to describe the structure

and ~enera1 properties of a particular software

imp1mentation of the LM. The implementation is interesting

for its simplicity and economy, and its performance

properties will be explored in a subsequent section of

this chapter.

6.1.1 The software components.

The LM is implemented as a medium sized {several

hundred lines} A1g01W program, which is compiled

to execute on an IBM 370/168 under the supervision

of the Michigan Terminal System (MTS).

Broadly speaking the LM software can be divided into

four component parts: s-expression storage management,

s-expression input, s-expression output, and the

central Lispkit evaluator (usually known as the

"apply" routine).

101.

The s-expression storage management software is an

essential facility, relied upon by all other parts of

the LM. A large amount of storage for s-expressions

is provided in a collection of arrays. Without going

into too much detail, each constructed node in an

s-expression is allocated to one cell of storage which

contains pointers to the left and right subtrees, and

each atom is allocated one cell which contains the

number or symbol. The cells are managed as a heap, and

each cell contains administra tive information to help

with this. During program execution, storage cells are

explicitly allocated but implicitly released, and hence

the storage management incorporates a simple mark and

scan garbage collector to reclaim released cells. The

garbage collector reclaims all cells which are not

currently part of the s-expressions in S,E,C,D and a

temporary working register W. The storage management

is a self-contained component which provides a service

to the remainder of the LM. Each access to one of the

five registers, each access to a cell, and each request

for the allocation of a storage cell is considered to

be an operation provided by the service. Garbage

collections are invoked by the storage management

itself in response to an allocation request when no

more cells are noted as available. An explicit

storage initialisation procedure is also provided.

S-expression input and output does not deserve detailed

exploration. strings of characters representing the

written form of s-expressions are transformed to and

from s-expression storage respectively.

102.

The apply routine is very straightforward. It contains

statements to initialise the machine state in S,E,C and

D, with the Lispkit program and its arguments, and then

enters an llerative loop in which each execution of

the loop body decodes the next LM instruction and

performs the appropriate state transition. Iteration

is terminated when the STOP instruction is encountered.

The overall pattern'of activity in the LM follows a

simple sequence: s-expression storage is initialised,

the program and argument s-expressions are input,

the program is applied to its arguments, and finally

the resultant s-expression is output.

The services of the storage management are called upon

thro~ghout each stage of execution of the LM.

Performance analysis will be primarily concerned with

the properties of the apply phase of LM execution,

and with the storage management during this phase.

Bearing in mind the sophisticated stack manipulation,

parameter passing and array access mechanisms which cannot

be avoided when compiling and executing an AlgolW program,

I initially propose to treat the LM as a multi-level

interpreter with the following structure:

I1

I2

I3

I4 1J
~-~

~ Storage management

__ ~ AlgolW support

103.

Above interface II there will be a compiled Lispkit

program, and its data. Below interface 14 will be a

(virtual) machine capable of executing IBM 370 machine

code instructions, as all actions required by the

components above 14 will be presented at 14 in terms

of these instructions.

The components betweenII and 13 are derived directly

by compiling the LM source code in AlgolW.

The AlgolW support component contains software

implementing the stack, parameter and array access

mechanisms which are general facilities provided by

the AlgolW language.

6.1.2 General behavioural considerations.

Referring to the multi-level interpreter structure

above, the nature of the interactions at each of the

interfaces can be identified.

At interface II the LM machine instructions of a

compiled Lispkit program are scanned and executed

in sequence by the LM apply loop.

At interface 12 the actions of the apply loop are

presented as a sequence of IBM 370 machine instructions

(which are passed directly to 13), AlgolW support

operations (also passed directly to 13), and storage

management operations.

104.

At interface 13 the storage management actions are

executed as sequences of IBM 370 instructions and

AlgolW support operations. These sequences are

mixed with the instructions and operations passed

directly from 12. The IBM 370 instructions are passed

directly to 14.

At 14 the IBM 370 instructions which realise the AlgolW

operations of 13 are mixed with the instructions passed

directly from 13. Hence below 14 a (virtual) machine

which can execute programs in the form of IBM 370

machine instructions is required.

A simplification to the three level model will be

convenient for the purposes of performance analysis, as

it is impractical to gain access to the software contained

in the AlgolW support level, and so it is not possible

to monitor directly the activity at 13 as processed

by the support software, or to monitor the internal

behaviour of the level. However, it is unlikely that

th~ basic facilities provided by the AIgolW support

have been implemented without a little consideration

for the users of AlgolW, and therefore it seems

reasonable to assume that unsophisticated use of AlgolW

will not incur excessive overheads in the supporting

software. I shall assume that each simple operation

performed by the supporting software is achieved by a

short fixed length sequence of IBM 370 machine

instructions, and hence that the performance of the

supporting software is simply a linear factor. During

the apply loop and in the storage management I have

avoided the use of recursive procedures (substituting

loops and explicit stacks where necessary), and

105.

parameter passing is all achieved by value and by result.

By these simplifications I hope to remain within the

assumed behaviour of the AlgolW support. (In practice

the assumption is not violated obviously, though I have

no direct evidence to prove that this is so. Note that

I have avoided the use of the AlgolW records and

references facility, which would certainly incur large

overheads in the support as it would have to manage its

own heap storage).

I have discussed the behavioural contribution of the

AlgolW support separately, and in some detail, in order

to make its properties explicit, to show the practical

difficulties which its inaccessibility creates, and

to suggest how an attempt can be made to simplify these

difficulties by careful planning.

As a consequence of the assumption of linear performance

for the AlgolW support, empirical analysis of the LM will

be based on a slightly simpler multi-level interpreter

structure in which the support software has been

absorbed into the apply loop and storage management

components:

LI1

LI2

LI3

(Lispkit program)

_____ ~~£ly ~~~E ___________ _

____ ~~tO!~~~~~~Eement
(IBM 370 (virtual) machine)

It will be borne in mind that the IBM 370 machine

instructions at interface LI? already contain a linear

factor of overhead, and that the machine instruction

contribution at LI3, from the storage management, also

contains a linear factor.

106.

Throughout the remainder of this description and

analysis of the LM I shall use the simple terms LI1,

LI2, LI3, Apply and storage to refer to the interface

and levels as shown in the simplified multi-level

structure above.

6.1.3 Performance assessments to be made.

There are four interesting comparisons between abstract

executions which can be made in order to assess the

quality of the LM design and implementation. With

reference to the simplified LM structure above:

(i) Comparing a model interpretation of the Lispkit

program, executing above LI1. with the trace of LM

inst~uctions at LI1 scanned and interpreted by Apply,

will show how effectively the evaluation scheme

(embodied in the compilation step and Apply software)

implements the Lispkit !!~~uag!. This comparison is

not an assessment of a software component of the system,

but an identical technique can be applied as if an extra

software component were present.

(ii) Comparing a model interpretation of the Lispkit

program with the sequence of IBM 370 instructions and

storage operations which Apply presents at LI2 will

show how effectively the detai!~~ode of Apply

implements Li!E~it_!!~~~e constructs.

(iii) Comparing the trace of LM instructions scanned

and interpreted by Apply at LI1 with the sequence of

instructions and operations which Apply presents at

LI2 will show how effectively the detailed code of

Apply implements the evaluation strategy which it

imposes on the Lispkit program, that is how well

Apply achieves its own goals.

107.

(iv) Comparing the storage operations which Apply

executes at LI2 with the trace of IBM 370 instructions

presented by storage at LI3 will show how effectively

the detailed code of the storage software implements

its own higher level operations (as made explicitly

available to Apply).

Of course, comparisons (i), (ii) and (iii) will be

related to each other by the property of cascading

performances (discussed in Chapter 5), and also the

~!!~!! performance of the LM could be found by direct

comparison of the Lispkit program execution, above LI1,

with the IBM 370 instructions at LI3.

6.1.4 Monitoring the behaviour.

The performance assessments planned in the previous

section require five bodies of statistics to be

collected for comparison. By what techniques should

these statistics be collected?

Considering the interfaces individually:

LI1:

At LI1 the behaviour of the Lispkit program itself

must be monitored (call this statistic LSI), and the

LM instructions as executed by Apply must be monitored

(call this statistic LS2).

For LSI a convenient statistic to collect is the number

of function applications performed by a model

interpretation of the program. The count includes

whe!! and wher!~ expressions, which are related to

function applications (both semantically and practically).

108.

For some programs ~he count is obtained by manual

analysis, and for some by means of a specially

constructed simulator (this is inefficient, so it is

not practical for large programs). In later

experiments the count is obtained from the L52

statistics (below) by noting, in earlier experiments,

that the number of function applications (plus wheres

and whererecs) is exactly mirrored by the number of

AP and RAP instructions executed by the LM. Function

applications are a convenient way of estimating the

overally workload represented by a program. The true

workload per function application will vary between

programs, as the number of primitive expressions per

function application varies. However, it is usual

to find that large expressions contain embedded

function calls, and so the properties observed will be

approximately representative of "average" programs.

There are, of course, many other statistics which could

be collected {too many:). One of the more interesting

would be to count the operations which request

explicitly the allocation of new s-expressions cells,

that is the number of cons,+,-,*,div, and ~ operations.

Most programs can only make useful progress by employing

these operations. I would expect them to be well

scattered throughout a program, and hence they will be

closely related to the function applications.

For L52 the measurement is much easier. The number of

times that each LM instructions is executed is recorded

by simple modifications to Apply. This also gives the

109.

total number of instructions that are executed, but no

information on the ordering of the instructions is retained.

With only a little more ingenuity more complex events,

such as particular sequences of instructions, could be

monitored.

Whilst discussing the behaviour at LIl I shall note that

there is little interest in a model interpretation of

the compiled code (LM instructions) of a Lispkit program,

as the execution of the code by Apply corresponds

directly to the model interpretation. This fact could

be confirmed by experimentation, but the result is not

a key one in the assessment of the LM, and it can be

seen by inspection of the LM machine code and the Apply

software.

LI2:

At LI2 it is necessary to monitor the IBM 370 instructions

and storage operations executed by Apply (call this

statistic ~~~), and the operations as received for

execution by storage (call this statistic LS4).

There are two complications with these measurements.

Firstly, Apply cannot monitor its own execution of

IBM 370 instructions directly since it is written in

AlgolW source code. Attempting to count the

instructions by using the MTS timing facility would

be unreliable, as the contribution from execution of

storage operations would have to be measured and

subtracted, and these are sufficiently frequent tha~

the unaccountable effects of the timing operations

themselves would be significant. Secondly, the Storage

operations strictly include all allocation operations

(new cons cell, new number cell, new symbol cell},and

all accessing operations (car,cdr,iscons, isnumber,

110.

issymbol, extracting the value from atoms and

references to the registers S,E,C,D and W). But

most of the accessing operations are in the form of

in-line code in Apply rather than procedure calls,

and this means that monitoring LS4 from within storage

is not possible.

The first of these problems may be overcome by making

the reasonable assumption that AlgolW compilation

generates a simple linear sequence of IBM 370

instructions for each non-looping section of AlgolW

source code, and that the lengths of the two sections

of code are roughly proportional. Hence Apply can

measure the number of IBM 370 instructions which it

executes (to within a constant of proportionality) by

counting the number of times that critical sections of

the software are themselves executed (for example,

repetitive loop bodies). Since the Storage operations

which are executed by Apply are scattered throughout the

Apply software, the "loop counting" will automatically

also be proportional to the number of Storage operations

executed. Apply contains three loops, the main

instruction execution loop (already monitored for LS2),

and two small loops for looking up the value of variables

in the environment E. Each of these loops is counted to

give the LS3 statistic.

The second problem is overcome by noting that the

pattern of Storage operations requested by Apply is

identical to the pattern processed by Storage (since

Apply has explicit control via procedure calls). Apply

is modified to count each of the Storage operations which

it requests, in-line code as well as procedure calls,

though this requires care. The LS4 statistic is

obtained by this method.

111.

Note that although the LS4 data could be used to form

the storage operation count of LS3, it would be

unusual to add a loop count to a storage operation

count, and it would contribute no more useful information

to LS3 than the loop count alone. However, since it is

reasonably straightforward to obtain the operation

count, I have chosen to use it as the precise measure

of LS4.

LI3:

The execution of IBM 370 instructions by the storage

software is the only statistic of interest at this

interface (call the statistic LS5).

There is a problem here which is identical to that

described above for the LS3 statistic. storage cannot

monitor directly its own execution of IBM 370

instructions, and using the MTS timing facility is

unreliable. However, the problem can be overcome in

the same way, by making the simplifying assumption

about AlgolW compilation.

Each of the accessing operations at LI2 is realised at

LI3 as simple AlgolW code, and each of the allocating

operations consists of a simple piece of code but

with a potential garbage collection.

Hence the LS5 statistic is obtained by counting the

number of times that the loop bodies of the garbage

collector are executed (both mark and scan phases),

and adding to this the LS4 statistic, which is already

counting the number of basic storage operations executed.

11 2. I

The statistic obtained is (on average) proportional

to the number of IBM 370 instructions executed by the

storage software.

As a visual reminder, here are the five bodies of

statistics marked at the appropriate interfaces of the

multi-level structure diagram.

LI1 LS1
LS2

(Lispkit program and data)

LS3 Apply
LI2----------------r---~L~S~4-

t storage

LI3----------------,~ __ --L-S~5--------------------
(IBM 370 (virtual) machine)

6.1.5 Planning the test executions.

To assess the performance of the Apply and storage

software components, the statistics LSl-5 must be

collected from a series of test executions of the LM.

In order to obtain a representative assessment of the

performance from comparisons between LS1-5, it is

necessary to execute a large variety of problems on

the LM upper interface. Each problem consists of

some Lispkit program and some data. A variety of

programs is required since each will place different

emphasis on different parts of the Lispkit language,

and a variety of data is required in order to span

a range of loads on the LM. A large number of

113.

performance data points spanning a wide range of LM

loads is desirable, as this will give a much better

representation of performance trends than a small

number of clustered data points.

I have selected a group of six Lispkit programs,

which are intended to cover a range of styles of

application. The programs are classified by reference

to three independent attributes: list processing versus

arithmetic processing, function applications nested

linearly versus nested in a tree pattern, and the

presence or absence of higher order functions (that

is first order versus higher order).

(i) Naive reverse:

reverse whererec

reverse (l)=if eq(I,NIL) then NIL

else append(reverse(tail(l»,

cons (head(1) ,NIL»

and append (11,12)=if eq(ll,NIL) then 12

114.

else cons(head(11),append(tail(11),12»

This program requires rather a large number of function

applications to reverse any given list, and hence the tag

"naive". It is included partially for the sake of

tradition! Naive reverse is a first order list

processing program, which falls between the two

extremes of linearly and tree nested function applications.

(ii) Reverse with accumulating parameter:

revacc whererec

revacc(l) = (rev(l,NIL) whererec
rev(l,rl)=i~eq(l,NIL) th~ rl

eISe rev(tail(l),
cons(head(l),rl»)

This program is a most efficient way of reversing lists.

It is a first order, list processing program with

linear nesting of applications.

(iii) Quicksort (using an accumulating parameter to

avoid appending);

A (1) qui c ks 0 rt(1 , NIL)

wh~£~quicksort(l,rl)= if eq(l,NIL) then rl else

ifeq('tail (l) ,NIL)then

cons(head(l),rl)

115.

e 1 seq u i'c ks 0 r t(l e sse q (h e ad (1) , tail (1)).

cons (head (1) ,qui cksol"t (greater (

head(l),tail(l»,rl»)

and lesseq(x,l) if eq(l,NIL) then NIL else

if head(l)~x then cons(head(l),lesseq(x,

tail (l »)

else lesseq (x,tail(l»

and greater(x,l) = if eq(l,NIL) th~ NIL !!!!
if head(l)~x then greater(x,tail(l»

else cons(head(l),greater(x,tail(l»)

This is a first order, list processing program. The

nesting of function applications depends on the initial

ordering of the input list 1. For this experiment I

intend to use data which invokes the most branching

computation, in other words for each list 1 that

quicksort receives, tail(l) will be an equal mix of

values greater than and less than or equal to head(l),

and also this property will hold recursively for

lesseq(head(l),tail(l» and greater (head(l),tail(l».

In this case qicksort.. has a tree nested structure of

function applications.

(iv) Iterative summing: (Assuming m~n)

sum whererec sum(m,n) = if eq(m,n) then m

else m+sum(m+l,n)

This program is first order, arithmetic and with linearly

nested function applications.

(v) Powering. Computes n**k using exactly (n**k)+l

function applicatiops:

A (n,k) if eq(n,l) the~ count(l) else count(pow(n,k)-k)+k

whererec pow(n,k) = if eq(k,l) then n

~lse n*pow(n,k-l)

and count(n) if eq(n,l) then 1 else

if eq(n,2) then count(1)+1

else count«n-l) div 2)+

count«n-1) div 2+(n-l)rem 2)+1

This program is first order, arithmetic, and has a tree

structured nesting of function applications. The form of

the count function was designed to ensure that the depth

of nesting remains reasonable, at about (k log n), and

it achieves this by imposing a branching structure on

the'computation.

(vi) Higher order iterative summing:

~ (m,n)repeat(sum)(m,n,inc,end)

whererec repeat (op) = A (m,n,modif,finished)

and inc(m) = m+1

and sum(x,y) = x+y

if finished (m,n) then m

else op(m,repeat(op)(modif(m),n,
modif,finished»

and end(m,n) eq(m,n)

116.

This program was designed simply to make heavy use of

higher order functions, in contrast to the sum function,

(iv) above. It is a higher order, linearly nesting,

arithmetic program.

The selection of data for each of the programs above is

determined purely by practical constraints. The scope

of the data should be as large as possible, and the

bounds are set by the time available for carrying out

experiments and by the amount of s-expression storage

available (smaller stores give longer execution times,

and also set a maximum on the size of computation

possible). The data selected is given in Appendix E,

with the tabulated performance data, and is outlined

in the next section.

6.1.6 Experimental results.

The six programs given above have been executed on the

LM. The data chosen covers wide range of loads on the

LM:

(i) Lists of lengths between 1 and 300 were

processed by naive reverse.

(ii) Lists of lengths between 1 and 1000 were

reversed by reverse with accumulating parameter.

(iii) "Worst case" lists of lengths between 1 and

1023 were sorted by quicksort.

(iv) Series of numbers from 1 to various points

between 1 and 1000 were summed iteratively.

(v) Various powers of 2 from 1 to 15 were computed.

(vi) Series of numbers from 1 to various points

between 1 and 1000 were summed by the higher order

program.

117.

For the experiments the capacity of the s-expression

storage was kept to 50000 cells to be.allocated to

constructed nodes and numbers (which can be created

during a computation), and 2000 cells for symbols

(which cannot be created during a computation).

Garbage collection covers the cons and number storage only.

The load on the storage management varies considerably

between executions. In particular reverse with

accumulating parameter and iterative summing use little

storage, whereas naive reverse and powering are very

greedy. '
..... ';- . , . ·r

Appendix E contains a summary of the experimental

meas~rements obtained. Each table, one for each of

the six test programs, shows the variation of statistics

LSl-5 with the size of problem tackled. The variation

of each individual statistic is seen by scanning down

the appropriate column.

To obtain a performance assessment, of a particular

software component, from the raw data contained in the

tables, two columns must be selected (from the same table)

which correspond to the abstract executions at the upper

and lower interfaces of the software component. The values

in the lower interface's column must then be related to

the values in the upper interface's column - the latter

variable is the independent variable, and the former is

the dependent variable in any graphical or algebraic

representation of the relationship.

118.

The following pages show, graphically and algebraically,

the four interesting comparisons described earlier.

Each comparison covers the six test programs, and hence

there are six graphs to be examined for each comparison.

Some comments on the presentation of the graphs are

necessary. Each graph is titled by the name of its

table in Appendix E, and the axes are labelled with the

names of the column~ from which the· statistics are taken.

The correspondence between tables and Lispkit programs

is as follows:

Table 1: Naive reverse, Table 2: Reverse with accumulating

parameter, Table 3: Quicksort, Table 4: Summing, Table 5:

Higher order summing, Table 6: Powering. No scales are

marked on the axes, to avoid unnecessary detail; instead

each- statistic has been scaled independently so that the

maximum experimental value is represented by exactly 20

units on the graphs; the graphs are intended only to give

a visual indication of trends, and the precise details

are retained in the tables of Appendix E. The experimental

points have been joined by straight line segments, again

to indicate the trends; there is no implication that these

represent fitted curves, or that any intermediate points

would lie on the segments.

6.1.6.1 Inherent performance of the test program

algorithms.

Figure 1 shows, for each of the six Lispkit programs,

the number of function applications executed (LS1, which

includes where and wh~~ expressions) as a function

of the data supplied to the program. Where the data is

a list the length of the list is taken as a representative

parameter.

119.

The normally accepted performan~e of each algorithm

is quite obvious, and the empirical points fit the

following equations precisely (list length is 1):

Table 1: LS1

Table 2: LSl

1*1/2+3*1/2+2

1+4

Table 3: LSl 2*1*log(1+l)+2*log(1+l)~2*1+l

(logs to base 2)

Table 4: LSl n+l

Table 5: LSl 5*n

Table 5: LSl 2**k+2

120.

1 21 .

'- -I , -I I~rr l--jIlT-I-' ,'II ~- -.
I I; I ' -I' I I I
i ! ,t I -/ 1 I ~I 1-' .

I
: , ,I l~ 1--, I-I I 1.- ,! : !
-; / i I -- -'-, i' 1 I I . ., I

, _I I. II - I I - I , I I' ,

'II! I -j ! ,: I I !,'

I I 'I' II ! I ,I-I: I ii! ;
, , I' II I'" I II' 1 I ,

1
- 1 - L I I I,' II; I
I I, I I "I ,"

1 i';: I 1 I I: I I · I 'i
I -,! I I " I~ 1'1 I 1- i -l :': I I " -, ' I ' , , ' , ,
1 I" I 1- I 1..J 1- - -, '
I

, ,I I ,

I I I' ,'I ,_ 1 i ,I I , n I
Table 3 Table 4

!vr l TI- r~Tc~ - i " -~-"--I-f-l~' I.-i-:--: :-, ~ . , ~ x- , I', _. ; - j-I '-1: i . ,
, -! L~ ,-I . I,' i ' 1_'-1 ' i

1

1-1 1,._ , ' - -1-. - , . 1 .

-'I : II i , I : : ! ITi :-: ~ ! I: : ;

I -, I' ,. I 1 ,'.I 1 " '
1 I .I I ' : I I - - , :! I

' I 1-1'1-1 ! " ~ : ! -'1 i I -~-I :, ; ! .-
, _ _ 1 I, - l _ , .I - 1

. I-I :-11-' ,J i ' r' I -'[' : ' . ! i. I ':,:, 1 I I .I ii, i

-j i-!-r-.-i-I
I

'I-il i iii!): I, :_.1
, 'I 1 ' I 1-' -II \- - I
, • _ 1 - \' - 1 I' - I 1- - -.-. ' , ,
, "I 1 ,I I 1 ,I I , .

1 'I

I, _,:: ,_. '_._ •• '..i ' j -
~ , ' •• _ I , 1 _. _l _, 1_ !_._ 1._.

., I I ,1 •• _I' , ,
I .' • I. I I .•. I ._J_

, I , : ! I . : I : I : ! j .
I . I. I. I ,.1 I .' I I , .

, , ' 1 • J: ' , .. ~ , ,
I' ,'I I i -;' _. I I' '

I I ,-. I I l t ·

I. : ill' I 1- .
' ; • I I I I I :" 'I . .

! .' - +- I I ;., .

. . : 1-: r - - , - " .

. . I '-1-' --;- 1 I .-, :, ,I, _J • l .

• 1 •

I I" "I" 1 ' , ,. I ,.,
! I •• I ,

I I ' I • I I

_____ k _

Table 5 Tatie 6

6.1.6.2 Performance of the Lispkit compilation and

evaluation strategy.

Figure 2 shows the empirical relationships between the

number of function applications executed (LS1) and the

number of LM instructions executed (LS2). Hence, in

each graph the gradient represents the number of LM

instructions executed per function application

required by the Lispkit program.

Each graph appears to be linear, but a close examination

of the tables in Appendix E shows that only the

relatlonships in Tables 2,4 and 5 are precisely linear.

For Tables 1,3 and 6 the gradient is increasing quite

slowly, but seems to be tending to some limit in each

case; the curvature of the graphs is hidden by the

width of the drawn line. I shall use the maximum

observed gradient to characterise the relationships

in these latter three cases:

Table 1 : LS2 = 16.98*LS1 (Limiting)

Table 2 : LS2 = 17*LSl-36 (Exact)

Table 3 : LS2 = 21.2*LS1 (Limiting)

Table 4: LS2 17*LSl-17 (Exact)

Table 5 : LS2 = 9.8*LSl (Exact)

Table 6 : LS2 22.5*LSl (Limiting)

The variations between these relationships are easy

to explain. The gradient is determined by the size

of the function bodies in each program - larger

function bodies give larger gradients; for example,

compare the relationships for Tables 4 and 5, in which

the latter is a higher order version of the former

and consists of many small functions, thus giving a

smaller gradient. The intercept on the LS2 axis is

122.

not obtainable for Tables 1,3 and 6; however the

intercept is not a particularly useful observation as

it is determined by the code to be executed before

recursion starts, and by the amount of code to be

executed in the base cases of the recursive functions.

The difference between the linear relationships of

Tables 2,4 and 5, and the "tending to linear"

character of Tables 1,3" and 6 is due to the different

dynamic structure of the programs. In the programs

for Tables 2,4 and 5 the recursion is caused by only

one function, whereas for Tables 1 and 6 the recursion

is shared between two functions (three in the case of

Table 3) but in a way which depends on the data. For

example, naive reverse contains a reverse function and

an append function, and with larger lists to be

reversed the proportion of append applications increases

and dominates the relationship between LS1 and LS2;

there are 17 LM instructions to be executed for a

non-base case call of append, and this is thus the

limiting gradient; contributions from the small base

case of append, and the non-base case of reverse give

an actual gradient of less than 17.

The conclusion here is that the results strongly suggest

a linear performance characteristic for the compilation

and evaluation strategy. In other words the number of

LM instructions to be executed is some linear function

of the number of expression evaluations to be expected

from a model interpretation of a Lispkit program. A

particular statistic which can be extracted from the

results is the constant of proportionality in the linear

performance; this appears to be about 20 for Lispkit

123.

programs without large function bodies, though this

obviously varies between programs and could be quite

large (for example, for a compiler).

124.

Table 1

. !_ I • I I I I I I c:; ,. I • I! ..'; I 1
. r'; I : -r '-I -;-' -i -- , , 1 - . I ;

-! i I "-11
_I' I'; . , " I , ' ; ill 1 .,. . . -I ,

, I 1 I : ~ , , : . I

I : ! ' I I I: i: -. i
I ' , ,-, " , , ,. , "i'!

I ,-1-, -I . , : -, ., . '-,- I 1 "
" ,I I I I" , , , I 1 ",'; I' I '
r • ; I .- 1 I I I r I I , r [- I I

. Ii' -. ; : ,- ii, 1 I' I

; ; ~ : -: -: i 'I ,: : ' : i 'I' I , I
; i!!: ' : i < i::: I j '111
I I I I; I II 1 :' Ii'; I I

I 1 I 1 "I 1 I I I I

: '" I" I I I :' I I I I
I: t' I . It: I I

. _ _ -'- .:.....-'---'--___ -"~LS'\:.. J
TabLe 5

,I, I, I, I_Lg

Table 2

Tab le 4

~ -. !- 1 ,- , .- -,
~ I

I
N ; -i~l-~ : . -. -_. ~- ._;- I

·1-,-' -_ • . -'-'--' I'
1 ' -.-. - . ..- j , -

- - ~ I ' .• '

-I I ' ' , , , 1-

o : : - ~ ~ .. -: ~ : - • 1-' - - ~ • •• - ~ : -. •

" "I j 't ~ - . - ,_. .- - , I
, I -. ,'., _I -, -! I ; ; I , I
-,-I i I

Ii; I I -. .

I : • I " 1
'I' . I - •

, ! 1- . , • I. t" It· . I
I. . I 1 - I , ,

i: ' ; I "I , •. ' , I I
' I I ... I I 1 t I -1- I .

I • I • I I I I t

_ __ 1.5 _

Table 6

6.1.6.3 Performance of the LM Apply software in

implementing LM instructions.

Figure 3 shows the empirical relationships between the

number of LM instructions processed (LS2) and an

estimate of the number of IBM 370 instructions and

storage operat~ons executed by Apply(LS3). In each

graph the gradient represents the number of lower level

operations per LM instruction.

Each graph appears to be linear, but, as in the previous

section, a close examination shows that Tables 2,4 and 5

are precisely linear, that Tables 1 and 3 have a gradient

which is increasing slowly to a limit, and that Table 6

has a gradient which is decreasing slowly to a limit.

Tab~e 1 : LS3 1.76*LS2 (Limiting)

Table 2 : LS3 (1073*LS2 - 6660)/629 (Exact)

(Gradient approximately 1.7)

Table 3 : LS3 = 1.86*LS2 (Limiting)

Table 4 : LS3 (1184*LS2 - 3774)/629 (Exact)

(Gradient approximately 1. 9)

Table 5 : LS3 = 101*LS2/49 - 12 (Exact)

(Gradient approximately 2.1)

Table 6 : LS3 = 1.44*LS2 (Limiting)

Again the trends are easy to explain in terms of the

Lispkit program structure. In Tables 2, 4 and 5 the

single recursive function means that the same mixture

of LM instructions is executed, however long the

computation. In Tables 1,3 and 6 the changing dominance

of the different recursive functions with longer

computations gives a changing mixture of LM instructions

126.

which becomes dominated by a particular proportion of

each instruction for each program; since each instruction

is implemented by a different amount of Apply code, this

gives the observed changing gradient.

These results suggest that the Apply software has a

linear performance in implementing LM instructions.

127.

128 .

Table 1 Tabl e 2

'0 .-. -,- ' 1 1 1 1 U1
- I I, -

.

- - - -

/ 1 11- -, I / ' I I; -1-, -: I , t, -
, I 1 I J-LLI_'_'" ~~.J:,SLJ

Tabl e 3 Table 4

~ 1 'I I , ,I

r
I ~ , : -; ! 'j 1·-; i, : : i ; , ,1- i -,
. I ' I "I 1-, I ' . : 1 i .: 'I
: : I -. ! i -',1_:'-1,1 : : ' .; ,:' :,.:-

I ; i : I ": I , I! i I
I • I I ,- I I I I' I I ~ - , - I
! I I I I I
I -1'1 1 -' ,I I' r- . 1 ' . I

1 I I : .. 1 'I ; i ' : ' : - I
'I I,; i 1 - '. , , : 1 1 .. -- I! ' I ,t I I' , . 1 ' : ,-

, I f 1 1 I ,I i' "c I,

1

_ , I: i':!;' ':;: ~ - : i-:-

I 1 1 ,,' ! I " I ' I '" I I -

I , , · 1 ' I" '" - 1-
- 1 1 , . ,' I 1 ' , 1 , I ; -. , I, ,: I! - I ,;,.- I I' I -

l ,i , I'l l I I i-,:! ",!
I 1 I I : I I. ,., . -,

_ L..! ' ____ LSL

, -. ., - __ , . , . I
i .. :, . :. ,"I_""~:, ' ,_ .. /

!! ,';':' .:'" :.'-.. " ," . 'I
I r • " o •• I ,.-

, • I . ! - •• , -1-' -_. I

, L'" .. ' , ., ... ,
r -, - ~-. I. 1'-- I - . - ~

I ' ",' ..' --- ~ 1" ,1 -. ,- ... ' , I "'-'-"~'I 1 •.. ,
1-'-1 - 0- ' - • • -.- ••

1 _ I 1 . , • '-, • ' ' I"" .

,U-. ' I· ' : "'-!-" :'I . .. ,-
, 1 1" I'" ,-.- ' . , - ' .-,

'I ' ,I ,., :,' ' I 'I ... ,'
_, .' j __ ! ,-'-r- -I 1-. •

, I, i ,- - ,, ' -,
I ! ; I . I -. . - • 1-'

L.S

Table 5 Table 6

6.1.6.4 Composing the evaluation strategy and Apply

software.

Figure 4 shows the empirical relationship between LS1 and

LS3 statistics. The gradient represents the number of

lower level operations per Lispkit function application.

Not surprisingly each graph appears linear but only

Tables 2,4 and 5 are pr'ecisely so:

Table 1 : LS3 = 29.9*LS1 (Limiting)

Table 2 : LS3 = 29*LS1 - 72 (Exact)

Table 3 : LS3 = 39.5*LS1 (Limiting)

Table 4 : LS3 = 32*LS1 - 38 (Exact)

Table 5 : LS3 = 20.2*LS1 - 12 (Exact)

Table 6 : LS3 32.5*LS1 (Limiting)

Each of these relationships is the composition of the

relationships in the previous two sections, and I

include this section to illustrate how the composition

rule helps in combining the performance of several

adjacent levels of a system.

For example, in the case of Table 1:

LS2

and LS3

16.98*LS1

1.76*LS2

(from 6.1.6.2)

(from 6.1.6.3)

giving LS3 = 16.98*1.76*LS1

= 29.9*LS1 (approximately)

Hence, together the evaluation strategy and Apply

software have a linear performance.

129.

~ II " I
-Il J

iii

r- • I : - I I r
I~ I-i -

S1

Table 1

'--_-'---'--'-._L J _ __ ...li-..!.S1

Table 5

130 _

Table 2

"---_! L c _ ______ =_"

Table 4

\ '
, • , I , i ,_

, I
I i

, "
I .

, . ,

, ':r' -~.: , : , I

!- .!...- .-
LS1

6.1.6.5 Performance of the storage management component.

Figure 5 shows the empirical relationships between the

number of storage operations processed (LS4) and an

estimate of the number of IBM 370 instructions executed

in implementing the operations (LS5). In each graph

the gradient represents the number of lower level

instructions per higher level operation.

Tables 2 and 4 give precisely linear graphs, but

Table 5 gives a graph which curves sharply upwards for

the longest execution. Tables 1,3 and 6 are initially

linear relationships, but for longer executions the

gradients show an overall increase which does not seem

to be tending to any limit, and which has erratic

decreases; for example the gradients for Table 1 are

1.0 j ••• ,1.0,1.079,1.074,1.072,1.071,1.082.

The explanation for these trends lies with the

frequency of garbage collections, which are never

invoked explicitly as a storage operation but only

occur when the heap of list cells is exhausted. No

garbage collections occur in the executions recorded

in Tables 2 and 4. In Table 5 one (or more) garbage

collections occur in the longest execution, but none

before that. In Tables 1,3 and 6 no garbage collections

occur initially, but for longer executions the

collections occur at discrete, irregular intervals,

hence giving the erratic gradients observed.

131.

These results show that the storage management

component of the LM has an unusual, certainly non

linear, performance characteristic. However, there

is certainly not adequate experimental evidence here

to clarify any peculiarities of behaviour, or to

form any conclusions on the performance of the storage

management. More evidence, of the kind shown in

Figure 6, is required; this shows the same Lispkit

execution as Table 1, but the heap size has been

reduced to 4500 cells and the storage is consequently

more heavily loaded. The gradient is initially

irregular, but for longer executions it increases

rapidly with no apparent limit.

6.1.6.6 Conclusions on the performance of the LM

Lispkit implementation.

The experiments reported above suggest very strongly

that this particular compilation and evaluation

strategy, and this particular design for the Apply

component of the LM each have a linear performance,

and hence that Lispkit programs may be executed in

such a way that the number of storage operations and

IBM 370 instructions required is a linear function of

the number of function applications expected from a

model interpretation of the program.

However, evidence for the performance characteristics

of the Sltorage management component of the LM is

inconclusive and more investigation is required.

132.

133 .

Table 2

~- --- I -- - I I I I /v -'

:~ L - ~-~ ! II ! 1,)1
- yV [_

- - / , --
- -v -__ ~ -

- '- // ~ I
1_ vI --

IJ~ [I _ I I _I ~
TT l ' , , 1 I ,' , 1 I I , 1 1 LSL

Table 3 Table 4
1--

I, ' , : ., I _ . . . , _ I :-;-'--1
Vl 1 1 I I I' I 1
V'> 1 r T ' , 1- 1 -I -I r ' . . . ,-. ; I ' -1

, . , . ,I"" " '" I . I
. , , ' 1 I 1-:' -, , . . , . I -1 -
I I I t I I I ' I
I 'i: ')"" i -, ,
I : ,., 1 : I I I ' 1 :' • ; I

1 " "i ;- 1 ' , . , ,. ." 1
, [. -, ' I -r ,- -., -. . . ., ,--, .'
I ::: .! .. :! I ' :. . I I I I !
, , ,-: 'I I- -, -,- ,- ; . .. -; ,--I !
, 1 I . I , 1 I , " , 1'" '1 I

: r I ii" I . 1 " -, -1-
, 1 ; , , I ' I I: . I ' I ; I : '

I 1 I I II ' , . " I ", : I r ; : ; :. ', '. I' i I' I. ; - ' -:

, I I I' I" 'I I
I I· iii'" 1 .. 1 ,.
, , 'i'; I" I I ' , i - -I

, r , -, IT " I' -1 I I
, I :. ,. I 1 . , I I

4 , ,

I : , I, I, -1 r r I • --- j. • • • 1-- ' -

I~ -I r IJ - . ; - ' : --' i : ; ; -, '.. ;

I
I-j I i-: : :; 1 '-: --:-!- .: . !' I'

,- -I ! I-I ; .. ' -, : -:- : :; i :

' ~~I_.i ._; I ,., _ ": ';-:--- "~-I
1

-
1
-, -, .. I - r" I ' .---

_, ___ 1 _,._ . _ _ , I 1-' I, I I

'1-1 T' " - -,. I '

-I

"

-I' _,' ; . ,.' - I
- - 1 I I 1 ·- I I r I '

1- I ' ,_. '-'! " . , -I' ' , .. 'I
-l ,i I' 1 ;' 1 1 : 'J-'

I
-I -, 1 -".. - -

, , I

_________ ~LSLJ

Table 5 Table 6

134 0

Figure 6

Iv;I I 1- --- - II I l:m ~ I-rr-
<n ' 0 I ll- - - V - 00 _ V

- -- - - -- - / -
- -0-- 1 -,1m +-

-- >i - ----
-f-.o- -

- - - - 0 __ I) / - ::-: ~-
1/ 1- - - -

! 1 - -;v - --I ---- --
, / - 1 -

I ' ;X j 1,01-,0 - ,- ~ -;{f I - I 01 I, -
0_ ! 1 • . U .! ' I I LS4 I

Table 1

6.2 A Prolog pseudo-machine.

The operational model for the execution of Prolog

programs, given in Chapter 3, can be realised

reasonably directly by a special purpose Prolog

machine (PM). Prolog programs are precompiled to an

intermediate machine code, which consists essentially

of linear sequences of instructions for the PM. The

PM has a conventional sequential machine architecture,

but in which all programs, data and results are held

in nine registers, DE, A, F, L, C, R, DU, Band N,

each of which contains an su-expression. Appendix D

contains a detailed description of the roles of the

nine registers, the machine actions determined by each

PM instruction, and the code generated by the

comp}lation of the various Prolog language constructs.

In practice Prolog programs are represented in an

su-expression syntax (also in Appendix D), and the

compiler itself is a Prolog program which executes

on the PM. The compiler accepts a Prolog program as

an su-expression, and produces object code, which is

also an su-expression, suitable for re-input to the

PM as a compiled program.

Many of the characteristics of the structure and

qualitative behaviour of the PM are very similar to

those of the LM. This is also true of the reasoning

necessary in setting up a practical analysis of the

performance of the PM components. Consequently I

shall present this discussion of the PM in an outline

form, relying heavily on the material in the discussion

of the LM.

135.

Although the basic facilities provided by the PM are

rather more sophisticated than those of the LM, I

believe that it is nevertheless still interesting for

its relative simplicity and economy.

6.2.1 The software components.

The PM is implemented as a medium sized AlgolW program

(several hundred lines, about twice the size of the LM),

which is compiled to execute on an IBM 370/168 under

the supervision of MTS.

The PM software can be divided into five component

parts:

su-expression storage management, su-expression input,

su-e_xpression output, the main Prolog evaluator ("apply"),

and a group of routines which provide the evaluator

with high level support (unification, backtracking and

checking data structures before and after negated

conditions).

The su-expression storage management is used by all

parts of the PM. storage is provided in a collection

of arrays. storage cells are allocated to constructed

nodes, numbers, symbols, and unknowns (in addition

cells allocated to unknowns can be modified by

136.

unification to represent indirect pointers to su-expressions,

and backtracking can reverse this transformation).

The storage is managed as a heap with a mark and scan

garbage collector (marking from the nine registers

and a temporary register W). A storage initialisation

procedure is provided, and also a "forcing" function

which will follow a chain of indirections to yield

the referenced su-expression. Each access to a register,

each access to a cell, each cell allocation request a'nd

each forcing is considered to be an operation provided

by the storage management service.

The apply routine simply initialises the nine machine

registers and then loops iteratively through the PM

machine code program. It includes a large, but simple,

routine, implementi;g the primitive predicates.

The overall pattern of activity in the PM is a simple

sequence: su-expression storage is initialised, the

program and argument su-expressions are input, the

program is applied to the arguments until the first

solution (if any) is generated, the solution su

expressions are output, then the computation backtracks

and a second solution is sought. The actions of

application, output and backtracking are repeated until

the search space of the program is exhausted.

Performance analysis will be concerned with the apply

phase of PM execution, and with the storage management

and Prolog support routines during this phase.

Initially treat the PM as a multi-level interpreter

with the structure:

11
12 ___ AE, 1 loop _____________ _

13 ___ ~___ Pr~~~p_o_r_t ____ _

I4----~~--- stor~ management

15 ___ ~ ____ ~~A~l~g~o~l~W_~s~t~lp~p~o_r._t ______ _

137.

Above 11 will be a compiled Prolog program and its

data. Below 15 will be a (virtual) machine to

execute IBM 370 machine instructions.

6.2.2 General behavioural considerations.

At 11 the PM machine instructions of a compiled Prolog

program are scanned and executed.

At 12 the actions of the apply loop are presented as

IBM 370 instructions, calls on the storage

management and AlgolW support (these three categories

are passed on to 13), and as calls on the Prolog

support routines.

At I~ the Prolog support realises its own actions as

IBM 370 instructions, calls on AlgolW support (passed

on to 14), and as calls on the storage management.

These are mixed with the operations passed on from 12.

At 14 the storage management actions are realised as

IBM 370 instructions (passed on to 15), and as calls

on the AlgolW support.

At 15 all operations are IBM 370 instructions. These

include the execution of the AlgolW support routines.

The inaccessibility of the AlgolW support software

prompts a simplified multi-level structure in which

the AlgolW support has been absorbed into the other

levels:.

138.

PIl

PI2

PI3

PI4

(Prolog program)

___ ~lY loop
~ 'Prolog Support

__ ~ storage management

(IBM 370 (virtua~ machine)

The terms PIl, PI2, PI3, PI4, Apply, Support and

Storage will be used throughout this description.

6.2.3 Performance assessments to be made.

There are five interesting comparisons to be made

between the abstract executions at interfaces PIl-5:

(i) Comparing a model interpretation of the

Prolog program with the trace of PM instructions

executed at PIl by Apply will show how effectively

the ~~~ti~~~~ implements the Prolog language.

(ii) Comparing the model interpretation of the

Prolog program with the sequence of IBM 370 instructions

and Support and Storage operations executed by Apply at

PI2 will show how effectively the detailed code of Apply

implements the pr~l£i-language.

(iii) Comparing the trace of PM instructions

executed at PIl with the sequence of instructions

and operations at PI2 will show how effectively the

de!ai!!~code of Apply implements the evaluation

!!rateiZ which it imposes on the Prolog program,

(iv) Comparing the trace of Support operations

at PI2 with the IBM 370 instructions and Storage

operations presented by Support at PI3 will show how

effectively the detailed code of Support implements

its own higher level operations.

139.

•

(v) Comparing the trace of storage operations at

PI3 with the IBM 370 instructions presented by storage

at PI4 will show how effectively the detailed code of

storage implements its own higher level operations.

6.2.4 Monitoring the behaviour.

Seven bodies of statistics are required in order to make ,
the above comparisons.

The statistic PS1 is a count of the number of E!edicate

~!~~ which are tried during the course of a computation.

This is more representative of the work performed by a

Prolog program than a count of the number of E!edicates

called, as most try several cases before finding a

solution. The statistic has been obtained by manual

analysis, and later by extracting the number of

executions of the UNIFY instruction from PS2 statistics

(see below) after noting a direct correspondence.

The Apply software of the PM is easily modified to

count the PM machine instructions which are executed.

PS2 is the total number of instructions.

~~ is proportional to the total number of IBM 370

instructions, Support operations and storage

operations executed by Apply at PI2, It is obtained

by counting the loop body executions within Apply;

these are the main interpretation loop (already

counted for PS2), and small loops for the construction

of local environments, and for looking up predicates

and variables.

140 .

The number of Support operations (PS4) is easily

monitored by modifying Apply, and similarly the number

of Storage operations (PS6) can be found by modifying

Apply and Support.

PSS is proportional to the number of IBM 370 instructions

and Storage operations executed by Support; it is

found by counting the internal loop body executions

of the Support routines (unification, backtracking,

data structure checking) and adding to this PS4

which is already counting the number of entries to

Support operations.

~ is proportional to the number of IBM 370 instructions

executed by Storage; it is found by counting the loop

body executions within Storage operations (garbage

collection and forcing loops) and adding PS6, which

includes the contribution from in-line accessing and

register operations.

As a visual reminder here are the statistics marked

on the simplified multi-level structure diagram:

(Prolog program and data)

PII PSI
PS2

PS3
Apply

PI2

=- i =[
PS4

PI3
Psssupport

PS6

PI4
PS7storage

(IBM 370 (virtual) machin~

141.

6.2.5 Planning the test executions.

To assess the performance of the Apply, Support and

storage components, the statistics PS1-7 must be

collected from a series of executions of the PM.

Five of the programs used to test the LM have been

recoded in Prolog, as they cause a similar range of

styles of computation. The higher order summing

example has not been recoded, as Prolog does not have

a higher order predicate capability. Using the same

programs will also enable an attempt at absolute

comparison between corresponding components of the

LM and PM.

(i) Naive reverse:

query (11,12)~reverse(11,12)

reverse (NIL,NIL)~

reverse «x.ll),12)~reverse(11,13),
append(13,(x),12)

append (NIL,l,l)~

142.

append «x.ll),12,(x.13»~append(11,12,13)

(ii) Reverse with accumulating parameter:

query(11,12)~revacc(11,NIL,12)

revacc (NIL,l,l)~

revacc «x.ll),12,13)~revacc(11,(x.12),13)

(iii) Quicksort(with an accumulating parameter):

query(11,l2)~quicksort(11,NIL,12)

quicksort (NIL,rl,rl)~

quicksort «x.l),rl,ll)~partition(x,l,leql,grl),

quicksort(leql,(x.rll),ll),

quicksort(grl,rl,rll)

partition(x,NIL,NIL,NIL)~

partition(x,(y.l),(y.leql),grl)~leq(y,x),
partition (x,l,leql,grl)

partition(x,(y.l),leql,(y.grl»~ .leq(y,x),
partition(x,l,leql,grl)

(iv) Iterative summing: (Assuming m ~ n)

query(m,n,result) ~ sum(m,n,result)

sum(m/m/m)~

(v)

sum(m,n,s)~ -,eq(m,n),add(m,l,ml),

sum(ml,n,sl),add(m,sl,s)

Powering. compute n**k in (n**k)+2 predicate

invocations:

query(n,k,pbw) +- main(n,k,pow)

main(l,k,pow) +- count(l,pow)

143.

main(n,k,pow)~-, eq(n,l) ,power(n,k,nk) ,sub(nk,k,nkl),

count(nkl,powl),add(powl,k,pow)

power(n,l,n)~

power(n,k,product).- -,eq(k,l),sub(k,l,kl),

power(n,kl,productl),mul(n,productl,
product)

count(l,l)~

count(2,x)E- count(l,xl),add(l,xl,x)

c oun t (n • x) ~ -,1 e q (n. 2) • sub (n ,1 , ns ub 1) , d i v (ns ub 1 ,2,
ndiv2)

count(ndiv2,xl), rem(nsubl,2,rl),

add(ndiv2,rl,ndiv2pl),count(ndiv2pl,x2),

add(xl,x2,x3),add(x3,1,x)

The data selected for each program is given in Appendix F,

with the tabulated performance data, and is outlined in

the next section.

6.2.6' Experimental results.

The five programs given above have been executed on the

PM. The data chosen covers a range of lo'ads on the PM:

(i) Lists of lengths between 1 and 66 were

processed by naive reverse.

(ii) Lists of lengths between 1 and 1000 were

processed by reverse with accumulating parameter.

(iii) "Worst case" lists of lengths between 1 and 127

were sorted by quicksort.

(iv) Series of numbers from 1 to points between 1 and

1000 were summed iteratively.

(v) Various powers of 2 from 1 to 10 were computed.

Note that each of the programs has only one result, and

following the production of this result the PM will

continue to scan, fruitlessly, the remaining search

space. For the experimental executions the statistics

are gathered only up to the production of this first,

and only, result.

For the experiments the capacity of the su-expression

storage was kept at 50000 cells to be allocated to

constructed nodes, numbers and unknowns (which can all

be created during a computation), and 2000 cells for

symbols (which cannot be created). Garbage collection

covers the cons, number and unknown cells only.

Appendix F contains a summary of the experimental

measurements obtained. Each table, one for each program,

shows the variation of the statistics PSl-7.

The following pages show, graphically and algebraically,

the five interesting comparisons discussed earlier.

Each comparison covers the five test programs, and

hence there are five graphs to be examined for each

comparison.

144.

The graphs are again presented with simple labelling

from the tables in Appendix F, and without scales on

the axes. The tables correspond to Prolog programs

as follows: Table 1: Naive reverse, Table 2: Reverse with

accumulating parameter, Table 3: Quicksort, Table 4:

Summing, Table 5: Powering. Again the points are joined

by straight line segments to indicate trends.

6.2.6.1 Inherent performance of the test program

algorithms.

Figure 7 shows, for each of the five Prolog programs,

the number of predicate cases executed (PS1) as a

function of the data supplied to the program. Where

the data is a list, the length of the list is taken

as a representative parameter.

The normally accepted performance of each algorithm

is quite obvious, and the empirical points fit the

following equations (list length is 1):

Table 1: PS1 1*1+2*1+2

Table 2: PS1 2*1+2

Table 3: PS1 = 5/2*1*log(1+1)+5/2*log(1+1)-1+2
(logs to base 2)

Table 4: PSI = 2*n

~able 5: PSI 2*2**k+1

145.

146 ,

Table 1 Table 2

~
'" j

- - - ' , -
- -"

-,--
- 1- -- , - -

" : - - I -- - -
,. I 1

-

V ' 1·- - - -

'- r j -
-

/ "

V "

"- / -
' r - - - ' I v , ' V,

/ -
V - - - '

-I
--

~"I-~r
- -

I
I I 1 -

I I I 1 I I I~ I 1 I 1 .li~t. \ e ~ CJ th

Table 3 Table 4

-r " I rl' - , - .',- ~-, WI-' --I
k' ~' 1 I 1 I "I t, -I ' 1 ~ I 1 -I - - : I -1- I' : 'I '
, , -'"' 1- I I I - r 'I I
: 'I " I'-l-~II 'I'-li--'-I-I-:"I' \
, I - 1-' - , 'I , 1- =t- -I-' , -

, I" 1 1 " i I I " 1 - -, r'
, 1 \' ,Lrl-i \ 1-\-' . ,j '-\' I,

I" 1
1
"1-: T,-Ilt"l r- i ,-

i
; -: 1:l i 1'- '~~' II _ '~~~[ll-- >~; , 1'1 "

I 1 I - - ' 1 "- ~ ' - - 1 I ' '

I
! I' '-'" I I ' 'I"

, 1 I I ' I II' -1' I ; , I I ' II I"

I '" I I -t- , ~ - - I . -- -- ' : I
1 1 - '1 I -1- - I', " 1 ' - - 'I I '

I I 1 1 - I-I, l 1 I' ! I
I' I ' I: I ,-

K ~ J

Tatxe 5

6.2.6.2 Performance of the Prolog compilation and

evaluation strategy.

Figure 8 shows the empirical relationships between the

number of predicate cases executed (PS1) and the number

of PM instructions executed (PS2). Hence, in each graph

the gradient represents the number of PM instructions

executed per predicate case tried by the Prolog program.

Each of the five graphs appears to be linear, but

examination of the tables in Appendix F reveals that

only the relationships in Tables 2 and 4 are precisely

linear. For Tables 1,3 and 5 the gradient is increasing

slowly, but seems to be tending to some limit in each

case; the curvature is hidden by the width of the drawn

line~ I shall use the maximum observed gradient to

characterise the

cases:

Table 1 : PS2

Table 2 : PS2

Table 3 : PS2

Table 4 : PS2

Table 5 : PS2

relationships

17.98*PSl

18*PSl-3

23.89*PS1

29.5*PSl

26.73*PSl

in these latter three

(Limiting)

(Exact)

(Limiting)

(Exact)

(Limiting)

As in the case of Lispkit, the variations between these

relationships are easy to explain. The gradient is

determined by the size of the predicate case bodies

in each program - larger bodies give larger gradients.

Again the intercepts are not of any interest.

147.

The linear relationships shown by Tables 2 and 4 are

due to the dynamic structure of the respective programs

which consist of only one recursive predicate. The

"tending to linear" relationships shown by Tables I,

3 and 5 are caused by programs in which two recursive

predicates share the computation, but in a proportion

which alters with the data; for longer computations

one of the two predicates dominates the computation, and

the size of its cases determine the limiting gradient.

The conclusion here is that the results strongly suggest

a linear performance characteristic for the compilation

and evaluation strategy. In other words the number of

PM instructions to be executed is some linear function

of the number of predicate case (or condition) executions

whicn would be expected from a model interpretation of

a Prolog program. For Prolog programs with small bodied

predicate cases the constant of proportionality in the

relationship appears to be about 20.

.....
148.

1t\ 9 .

Table 1 Table 2

~ - - .. - I 1 I -. ~ ~ -~ =~ ~ -- . /v 1_

--~--~ --~ ~ ~ ~- ,-¥ ---
_. . - -. - -~.- .//' I i

_ 1_ . V I

I I I I _.L.I I I : ! I I I I flS1,

Table 3 Table 4

Table 5

6.2.6.3 Performance of the PM Apply software in

implementing PM instructions.

Figure 9 shows the empirical relationships between the

number of PM instructions processed (PS2) and an estimate

of the number of IBM 370 instructions, Support and

Storage operations executed by Apply (PS3). In each

graph the gradient represents the number of lower

level operations per PM instruction.

Each graph-appears linear, but again only those for

Tables 2 and 4 are precisely so. For Tables 1 and 5

the gradient is increasing slowly, and for Table 3 it

is decreasing slowly, but in each case the gradient

seems to be tending to some limit:

Table 1 : PS3 = 1.83*PS2- (Limiting)

Table 2 : PS3 (65*PS2-453)/36 (Exact)

(Gradient approximately 1.81)

Table 3 : PS3 1.91*PS2 (Limiting)

Table 4 : PS3 (104*PS2-277)/59 (Exact)

(Gradient approximately 1.76)

Table 5 : PS3 = 2.10*PS2 (Limiting)

Again the trends are easy to explain in terms of the

Prolog program structure. Each PM instruction is

implemented by a different amount of Apply code,

and the precise mix of instructions executed determines

the gradient of the relationship. Tables 2 and 4

represent programs with a single recursive predicate

which always executes the same mix of PM instructions,

but Tables 1,3 and 5 represent programs in which one

-------.,
150.

of two recursive predicates (and hence one of two

particular mixes of PM instructions) grows in dominance

with longer computations.

These results suggest that the Apply software has a

linear performance in implementing PM instructions.

~
I
I
I

15 2 .

F igu-e 9

~ . , l I I I-II JX
- - - ,: - I I i)'11 11

1
- - - t I I I I I
- -I- - , I I

- I 1- ~ - -':1 ~ I I ---_ - v 'I -- -
- --I - I/~I - - I ~ I - ,- -

. II Y ~ :~' -J" ~ 1- ~ - --

I ! MI- --~ '· :1 ~ -, -,---
I..,/, i 1-,- ,- - - - -I ,- - - -I--

I I I I I I _Ll.J 11 J PS2,

,- -
I . - - -, , ,

~....L....L~:....LL I 1 1 _I '-1 __ ~

Table 1 Table 2

- --- -ITTml-r r
g ~ 1- - ~ _-.: '- - i Illi~

- - - -- -~, -- - I I Y "-,
- '-~ '- -I~~ ,-

, -V ' -
- -1/ -

- 1- - " / ' -

; - _, ~ L>< - ,- - 1 - -

- -Y ". 1- - 1-

:- 1/"(-III(-,-:
; V~ II i 'r I I I I

I I I LJ.--"-,--"--.J I I I 1L.L L.L .LESL ~..l....-_, ___ '

Table 3 Table 4

Table 5

6.2.6.4 Composing the evaluation strategy and Apply

software.

Figure 10 shows the empirical relationship between PS1

and PS3 statistics. The gradient represents the number

of lower level operations per Prolog predicate case

executed.

Not surprisingly each graph appears linear, but only

the relationships in Tables 2 and 4 are precisely so:

Table 1 : PS3 32.88*PS1 (Limiting)

Table 2 : PS3 (65*PS1-36)/2 (Exact)

(Gradient 32.5)

Table 3 : PS3 45.58*PS1 (Limiting)

Table 4 : PS3 52*PS1+3 (Exact)

Table 5 : PS3 = 56.17*PS1 (Limiting)

Each relationship is the composition of the

corresponding relationships from the previous two

sections. Hence, together the evaluation strategy

and Apply software have a linear performance.

..,
153.

F~ure 10

l iT

';)l _:

Table 1

~ ~ > _-~ iJ _ I.
,----.-. /i l---. - ---- ~ -- / 1 I ----

- . ,;VY I -
__ :. I .~ _ 1/.' __ \ - , _

-I-- - - I}V --' i- -' - I -
- -- -1 1 ~ -~ - _.- -, . --I - --_ _ -, V_I - ,_., , - . -
_ ~j11 " ,: ~ ", -" I 'I -- - -

11 .. ' 1
1.1' 1 , I

I I I I ITT TI Ll, : ,~ I ". L_LL flS1

Table 3

; I _I !_; I 1_1 : rr _, , I ,.:- = -=1 ' . 01
I 1 , I 'I' I I II -

;!! i-i.'i.l.I:i"i~! ,-J I.t: . ..:: '-ll-
; ;. 1 I I /" - ,-Li ! J !.L 1- 1 . I

I 1 ': ! ; I -I ' n -, - r- -h 1'-
I , " -, I-i ' 1 1,1; '_I. ... j: : : ' I , .1- . r 1 '! 1 I I ~l" '+r -I :
:-: :: li_: I ; 1 i -1 ~-l· r -' "
: : I': -\-,! : r -1- - '- --i -I
:' I , : I" -, ,+ -r I 1
! ti l I' '-,! I I I '1-'1- - '1 , ,I I , 1 1 . - - 'I 1
1 I I ,I

! : i" 1 : I-I r-' -'r ~ -~~--lJ~l~-
I, iii' H 4 - -1- -1-

1
- - =r~ . ,-

, 'I - - - t -I - - I-~- -I-~- ,- j
, , , I I - - - I -I -1' , 1

, __ P'SLJ

TatXe 5

154 ,

Table 2

Table 4

6.2.6.5 Performance of the PM Support routines.

Figure 11 shows the empirical relationships between

the number of Support operations processed, or routines

called, (PS4) and an estimate of the number of IBM 370

instructions and Storage management operations executed

by the Support routines (PS5). In each graph the

gradient represents the number of lower level operations

per higher level Support operation.

Again each graph appears to be linear, but only the

relationships in Tables 2 and 4 are precisely so.

The gradients of the graphs of Tables 1,3 and 5 are

each decreasing slowly to some limi t:

Table 1 : PS5 = 4.67*PS4 (Limiting)

Table 2 : PS5 14*(PS4+1)/3 (Exact)

(Gradient approximately 4.67)

Table 3 : PS5 = 6.31*PS4 (Limiting)

Table 4 : PS5 4.4*PS4+7.2 (Exact)

Table 5 : PS5 3.38*PS4 (Limiting)

The linearity of these relationships has two causes,

the characteristics of the unification, backtracking

and data structure checking (for negation) routines

themselves, and the nature of the tasks they are

required to perform by the individual computations.

Taking the latter cause l the five Prolog

program applications used in these experiments each

requests a series of Support operations in which the

precise mixture of operations varies with the data,

but the complexity of the individual operations does

not vary with the data; for example, in the naive

-- ---------,
155.

reverse program the unification which occurs at entry

to the non-base case of the append predicate forms a

larger proportion of all unifications as the list to

be reversed grows longer, but the complexity of the

unification is the same in every instance of execution

of that case. Given these facts concerning the demands

156.

made of the Support routines by the particular applications,

it is clear that the experimental results strongly

suggest that the routines have a linear performance

in implementing the required operations.

However, this simple linearity will not be observed

in the case of a Prolog program in which, for example,

the complexity of a unification operation depends on

the data. The following program has this property:

_query(11,12}~ check(11,12}

check(l,l}E-

The lists supplied as data to the query (one unification

for receiving the data) are passed to the check

predicate where the second (and final) unification must

scan the ~ti!et~ of the lists to ensure equality. Hence,

for a contribution of exactly 1 to the PS4 statistic,

the check unification makes a contribution to the PS5

statistic which is dependent on the data; PS4 will

always be 2, but PS5 can be varied at will by changing

the lengths of 11 and 12.

Conclusions on the performance characteristics of the

Support software must be stated carefully. Although

for a number of Prolog applications (probably very many)

the Support implements a linear relationship between PS4

and PS5, in general this is not true. It appears that

the Support implements a linear relationship between

the complexity of the operations (unification,

backtracking and structure checking) requested and PS5;

perhaps some representation of this complexity would have

been a better choice for the PS4 statistic.

~-----~

157.

_ 1 _ rnmn
_, Ill: 1 ~~1ll

;- -- = - - I W1 ----- . yl{ 1, 1 , / ~_~~: ~ ,
yY< _ I 1 _~ _ -=- .. ,

. v: ' - -- ., ~ ~ = = / -
v _ _I I ,- - 1- , -

/ Y 1-, .. , " I ,-vV- ' - ,. -', I -!': --'
l ...LLi....L . ' ..L , I 1 1 1 1 R;4, i,

Table 1

~ I 1- " '
, / - -

-
- 1-

v .. , __ ,_ .. _ , V I"

--, _ . IV
.. y

, , .. , V
,-y , _ , V- .. _

' I '" - /

yY , -

/;1

vYl

--f
r

, I 1 , I, 1 I, 1 I I .J I I ! 1 J, L RS4
Table 3

I-'TT'I I -, - ," ~[8Yl' 1
1-0 Ii 1 1 1 1 '11 "r' ~ / , , !' ,,[.I,,: 1- :'-1 r 1 . L '-_

I I
,' I" ';', .. , I':' '[--
:1 1 ' , ---'1 '-';--[' 1"-1 4 -' 1

' ': I : I 1,1 1 I 1, 1'1' -, -"
/ ,- 1 ,- ' [,- I ,I ,-, , -l T ' , , , , I,
, , I ".. ,. /'" i, -. r' / " '
: / ~" ' ·I--- " ,_LT I~fl-I"-, ' , .' I 1 ' :' , i, i 1 -, ' ,- - / i-
, , I ' -I'" I- ,., f' r i -: j " . , . i ' 'j ,- ' r 'I , tiT I-I'; '''1 .. , ' " ' '1 ,Ii ,- , .- ,. ,- , '.-

, , , ! I ',-I ,-" l t-,- ,--, '
I ' ! i· 'i 'I I-! -r ,- -i ' I' " -;--,.
I' ' i,' ,. , ' .. ·r!.! I

~ "I l-I-1 ! ,- 'I' I f-'h -, ,,- ,- . '
1 I 11 'I 1:- 1'lt"- ' ,--1-'
1 I "1 I' i ~ 'T' -1-1 - i ,

, Iii 1 I - 1- 1-1- ---T"_ 1'.1 I , , I- , , i ,/ ,'" 1 .- -,- ,., I

i I L_LL. J PS4 ,

1 58 .

Table 2

Table 4

6.2.6.6 Performance of the storage management

component.

Figure 12 shows the empirical relationships between the

number of storage operations processed (PS6) and an

estimate of the number of IBM 370 instructions executed

in implementing the operations (PS7). In each graph

the gradient represents the number of lower level

instructions executed per higher level operation.

Table 1 shows a steadily increasing gradient, and curves

dramatically upwards at the longest executions. Table 2

has a precisely linear relationship. Tables 3,4 and 5

show a gradient increasing less rapidly than Table 1,

but nevertheless not tending to any limit (in Table 4

the upward curve only starts with the longest

computation).

As with the LM, the performance of the storage

management is determined by the demand for heap cells

and consequently the frequency of garbage collections.

Table 1 shows a heavily loaded heap, Tables 3,4 and 5

show a moderately loaded heap (in Table 4 garbage

collection occurs only in the largest computation),

and Table 2 shows no garbage collections at all.

The routine used to force indirect pointers in the heap

contributes to the performance of the storage

management, but in a way which ~s not, in these cases,

determined by the query data supplied to the programs.

159. l
i

These results show that the storage management

component of the PM has an unusual, certainly non

linear, performance characteristic, but there is

clearly inadequate information to form a complete

analysis. More careful experimentation would be

necessary to enable such an analysis.

--------...
160.

1 61 .

Figure 12

~ I -I 11 I , I j I

I
- 1-111-1 !I

II I I' I~ -- - I I v 'j
1 - - I " I I , -. ---- I ! I ~ -I -
, -- , -.-:: -.- II ; Y - ~_

- . - I j{1 -.
-: ~-· I ~ _ ;,,~~1 tl- ~ -.

- - - I.,,..,Y ----- -1'1- - ---v --.- -
- v I _ -

v~v l -- ----- --- : -i - , 1 - , i

L 1 _~ c __ .-1 1_ L~ ~

Table 1 Table 2

0
- I

11/
Y: -- --- -- I-- - - - V _

.- I

- - 1)"'-
1/

-
- ,

- 1- - - _,0_ - - V -
- - - -.- +- _. - V -

- , /
I - , - . - --I VV _ -

1- -

W
- _.

. v. -

yV
1/ _ --

V
I

- - - 1-- 1
,. -'

LYI ! ;

II' !-II '7~. :' , .. ,
.. -! I 1-' -I i I :- + ,-' , '
j

I
, -, . , 1 • . -, "- . ,., ••

I I I I . --1-,-1-' i-Ij-,I-:i" . ..
-)_ .. ,' -I -,' I-~-l ,-, . .

- - -,-I - - I r- i . ,I
, -I" j-! . "~, 1 -,. ., - - -- 1- -I,,-h :-1 ;-r-I-' , . . , '"
- -1' ,-I ,. I -I-II i-I , ; ., .. , - - --' -.. - -. -I' I· r 1-, I -.. i- -I 1 1 ,-' - , I I-I ~ 1-" '-r- . ,
- - -, : - [. I ' , 1 .--, r' -- .--,-- I
- ". . . , I_~--' :- 1-,- ~-. ~
- - - - j ,-' I' ,- -I -. j -. • • , _ I-'!-" I'- ~ ,- r' - , I' -I I I I I , '

- t-t-" I-I ' - j--r " ; .. - ----

I
Ll, -I 1 1- - .

_ __I -- ,---- .. , J-. . ~ , , , ;
- - "-' I h ~. -, I I j . - . -1 ! -

- I - , '-I • • r- i -.-- . r

I , 1 I I ,_
-'----- - J.I I , 11 RS6

Table 3 Table 4

Table 5

6.2.6.7 Conclusions on the performance of the PM

Prolog implementation.

The experiments reported above suggest very strongly

that this particular compilation and evaluation strategy,

this particular design for the Apply component of the

PM, and (with certain qualifications) this particular

design for the Support component each have a linear

performance, and hence that Prolog programs may be

executed in such a way that the number of storage

operations. and IBM 370 instructions required is a

linear function of the number of predicate case

executions to be expected from a model interpretation

of the program.

Howeyer, evidence for the performance characteristics

of the Storage management component is inconclusive,

and more investigation is required.

6.3 Conclusions and comparison of the Lispkit and

Prolog pseudo-machines.

The results of experiments reported in this chapter

enable a comparison of the relative performance to

be expected from the Lispkit and Prolog implementations

under consideration.

The results from Figures 1 and 7 show that about twice

as many predicate cases as function applications must

be executed in order to accomplish simple computations;

quicksort is an exception to this as the Prolog version

uses one predicate, partition, to perform the work of

two Lispkit functions.

162.

The results from Figures 2 and 8 then show that

approximately the same number of pseudo-machine

instructions (about 20) must be executed per function

application as per predicate case.

Examination of the AlgolW coding for the pseudo-machines

in Appendices Band D reveals that the average amount

of code to be executed for PM instructions is a little

more than for LM instructions.

The similarity of "programming technology" used in

both Apply components means that a direct comparison

will yield a useful result. From these simple

observations it seems that the PM Apply component

will do a little more than twice the work of the LM

Apply component for a similar computation, although

of course the flexibility of Prolog may enable a more

subtle program (as for quicksort, mentioned above)

and the PM Apply component may do less work than the

LM Apply component.

However, this comparison only remains true while both

Apply components make similar use of similar

underlying virtual machines to execute lower level

operations. The PM contains supporting software for

unification, backtracking and data structure checking

which is entirely absent in the LM; this provides a

considerable processing overhead. Both the LM and

PM execute with heap storage management, but the

PM places a greater load on its heap than does the

LM; this also provides a greater processing overhead

for the PM.

163.

Thus overall it seems that the doubling of workload

(and hence halving of speed on real hardware) when

moving from a Lispkit program to a Prolog program is

a very best case, and in general a much worse

degradation of performance should be expected.

However, if we ignore the contribution of storage

management to the overall performance of the

pseudo-machines, then the experimental results have

shown that Prolog p~ograms can be expected to execute

no worse than a linear factor slower than Lispkit

programs. Hence if future research in the field of

novel machine architectures can provide a computer

in which heap management is a hardware function which

occurs concurrently with program executions, then there

is a good probability that not only will Lispkit and

Prolog be able to execute much more efficiently than

at p~esent, but that the powerful logic programming

style will be no worse than a simple linear factor

slower than functional programming.

164.

CHAPTER 7 HIGHER LEVEL INTERPRETATION OF LISPKIT

AND PROLOG.

~i~er level interpretation of Lispkit and Prolog.

In this context I am using the phrase "higher level

interpretation" to imply that Lispkit and Prolog

programs (in source code form) are being executed by

some interpreter which is itself written in a very

high level language; the interpreter is then executing

on some special machine or virtual machine. Thus the

overall system structure in which I am interested is

Lispkit or Prolog program and data

Interpreter in very high language X

(Virtual)machine to execute language X

7.1 Interpreting Lispkit.

For the specific cases which I shall treat in this

chapter, the interpreter itself will be a Lispkit

program executing (in compiled form) on the Lispkit

pseudo-machine. The specific system structure will

be

11

12

Lispkit program and data

Interpreter

Lispkit pseudo-machine.~(~L~M~)~ __ _

IBM 370

in which the internal structure of the pseudo-machine

has been ignored, as it is of no interest here. Of

course the Lispkit interpreter could equally well be

executing on a virtual machine constructed from several

levels of source code interpreters, and this should not

affect our assessment of the performance of the one

interpreter of interest.

165.

When analysing the performance of systems with the above

configurations, the methodology of Chapter 5 is

particularly relevant. The Lispkit program algorithm,

the interpreter, and the LM will all have their own

performance characteristics, and simple minded monitoring

of the IBM 370 (by timing, for example) will not

necessarily enable the component of performance due to

the interpreter alone to be distinguished.

The characteristic of interest in a performance

assessment will be the relationship between the number

of expressions (or, typically, function applications)

which the Lispkit program expects to be evaluated at

I1, and the number of expressions which the interpreter

executes at I2. The former statistic must be derived

from a model interpretation of the program, in order

that it is independent of the interpreter, and that

any bad behaviour within the scheme of evaluation

embodied in the interpreter is not incorrectly

attributed to the program. The way that this is

achieved is made explicit in later sections.

Two Lispkit interpreters will be covered, as

representatives of an open ended family of such

interpreters. The interpreters are presented in the

order in which I examined them - the undesirable

performance characteristics of the first, as uncovered

by experimental assessment, led directly to modifications

yielding the second, more efficient interpreter.

7.1.1 A preliminary note on the Lispkit program

syntax required by the interpreters.

I have mentioned elsewhere that in practice Lispkit

programs are presented to the computer with an

166.

s-expression syntax, rather than with the more

palatable notation of Chapter 2. This is consistent

with the nquirement; that the data (this includes

program text) supplied to ~n interpreter written in

Lispkit must be in the form of s-expressions. Hence

the operations within the interpreters which extract

the syntactic components of Lispkit expressions will

be compositions of car and cdr selectors, and will be

determined by the precise syntax of the programs.

The s-expression syntax of Lispkit is given in

Appendix B.

Throughout the discussion of the interpreters I shall

avoid the use 0 f car and cdr as sub-expression selectors

wherever possible. Instead I shall use the following

mnemonic selector functions, defined here in terms of

car and cdr. An expression is atomic only if it is a

variable, and no selectors are required for this case.

All other expressions have the form of a list in which

the first element indicates the type of expression, and

successive elements are operands:

rator(e) = car(e)

randl(e) = car(cdr(e»

rand2(e) = car(cdr(cdr(e»)

Select operator

Select first operand

Select second operand

167.

rand3(e) car(cdr(cdr(cdr(e»» Select third operand
(conditional expressions
only)

with several special purpose selectors:

argsandbody(e) cdr(e) Of a lambda expression

arglist (e) cdr(e) of a function application

qualified (e) = car(cdr(e» of a where or whererec
expression

definitions(e) = cdr(cdr(e» Of a where or whererec
expression

168.

defvar(d)

defexp(d)

car(d)

= cdr(d)
Select variable from a definition

Select defining expression from
a definition.

7.1.2 First Lispkit interpreter for Lispkit, LISPINT1.

7.1.2.1 The interpreter program.

At its outermost level LISPINT1 is a function of two

arguments, a Lispkit program text and a list of

arguments respectively. The program text must be an

expression whose value is a function, and hence the

main structure of LISPINT1 is

~ (fn,args)"evaluate fn and apply it to args"

wh~~ "auxiliary functions required for evaluation".

The most important auxiliary function is eval, which

accepts a Lispkit expression and an environment of

variable names with associated values, and returns the

value of the expression in the given environment. Eval

is simply a case analysis of the possible expression types,

and it calls itself recursively as necessary for the

evaluation of subexpressions; in particular, recursive

calls within whe~ expressions, whererec expressions and

function applications are supplied environments which

have been extended with new definitions.

The general evaluation strategy can be illustrated by a

few selected cases from within eval (given in its

entirety later). If e is the expression to be

evaluated and n and v contain the current environment

then:

Fetching the value of a variable from the environment

(assoc to be defined later):

if atom(e) then assoc(e,n,v) else

169.

A typical binary operator:

if eq(rator(e),ADD) then eval(randl(e),n,v)+eval(rand2(e) . . ,

else

Conditional expressions:

if eq(rator(e),IF) then

if eval(randl(e),n,v) then eval(rand2(e),n,v)

else eval(rand3(e),n,v)

else

Building a closure to represent a function value:

n,v)

if eq(rator(e),LAMBDA) then cons(argsandbody(e),cons(n,v»

else

Before proceeding to describe the expressions which

extend the environment, it is necessary to give the

structure of the environment itself. From the example

cases of eval, above, it is apparent that the

environment consists of two parts, named nand v. The

s-expression n records the ~ames of the variables whose

~alues have been entered in the s-expression v. The

fact that the environment is extended by lists of

simultaneous definitions is reflected by the structure

of nj n is a list of lists of variable names, for

example

«x Y Z) (A B C) (X Y) ...)

Each sublist corresponds to one group of definitions,

and sublists nearest to the head of n correspond to

inner scopes.

The values entered in v follow exactly the same pattern

as the corresponding names in n. However there is a

very important difference; the true values of the

variables are not recorded, but instead each sublist of

val~! is represented by a closure (function) which,

when applied to an empty parameter list, returns the

actual values of the variables in the sublist. The

evaluation of each group of defining expressions has been

de!a~e~, and must be fo!ced when access is required.

So, for the name list above the value list will be

represented by

A ()xyz A () ab c A() xy ...)

where the body xyz evaluates to give a 3-list of

values for X,Y and Z, and similarly for abc and xy.

From these descriptions of n and v the assoc function

for looking up a variable's value can be defined:

assoc(x,n,v) = if member(x,head(n» then ~ocate(x'R~~a~~~{»

170.

else assoc(x,tail(n),tail(v)

member(x,l) = if eq(l,NIL) then F else

if eq(x,head(l» then T else member(x,tail(l»

locate(x,n,v) = if eq(x,head(n» then head(v)

else locate(x,tail(n),tail(v»

In the first line of as soc the expression "head(v)()"

forces the delayed sublist of definitions by applying

the closure to an empty parameter list.

This treatment of the environment may seem strange,

but it has good justification, which will become

apparent in the description of the evaluation of whererec

expressions below.

with this structure for an environment the evaluation

of a where expression is quite straightforward, and

function applications are only slightly more involved.

To evaluate a where expression (keyword LET) the

qualified expression is simply evaluated in an

environment extended by the qualifying definitions; the

names in the definitions are added to n, and the

evaluation of the list of defining expression~ (in

the current environment by evlis) is delayed and the

closure is added to v:

171.

if eq(rator(e),LET) then

(eval(qualified(e),cons(newnames,n),cons(newdefns,v»

where newnames vars(definitions(e»

A()evlis(exprs(definitions(e»,n,v» newdefns

else ...

where the three auxiliary functions are defined as

vars(deflist) = !! eq(deflist,NIL) then NIL

else cons(defvar(head(deflist»,
vars(tail(deflist»)

exprs(deflist) = if eq(deflist,NIL) then NIL

else cons(def~xp (head(deflist»,
exprs(tail(deflist»)

evlis(explist,n,v) if eq(explist,NIL) then NIL

else cons(eval(head(explist),n,v),
evlis(tail(explist)n,v»

To evaluate a function application the rator field of the

expression must be evaluated to obtain a closure, which

contains a qualified expression to be evaluated and a

li.t of variable names which are to be associated with

the actual argument values. This is the default case

for the eval case analysis, and so e is known to be a

function application:

eval(body(fn), cons(formalargs(fn),oldn(fn»,

cons(actualargs,oldv(fn»)

wh!!! fn = eval(rator(e),n,v)

actualargs = h()evlis(arglist(e),n,v)

where the extra selector functions may be defined as

formalargs(clos) = car(car(clos»

body(clos) car(cdr(car(clos»)

oldn(clos) = car(cdr(clos»

oldv(clos) = cdr(cdr(clos»

Now to tackle the evaluation of a whererec expression

(keyword LETREC). This is closely related to the

evaluation of a wh~! expression, but there is a new

problem because the new definitions must be evaluated

~~~~he_~~~_!~ir£~nt, but in the extended 

environment (which is only available for access when the 

definitions have been completed). 

we would like to write is 

In other words, what 

newdefns = ~()evlis(exprs(definitions(e», 
cons(newnames,n), cons(newdefns,v» 

in which newdefns is defined in terms of itself. In 

fact this has precisely the desired effect due to the 

technique of de!~ling the evaluation of the defining 

expressions until they are accessed; evlis does not 

attempt to access newdefns until newdefns has certainly 

been associated with the delayed environment level, and 

then, provided that the restriction on whererec 

defining expressions (see Chapter 2) has been obeyed, 

evlis will not invoke a nonterminating recursive forcing 

of newdefns (recursion is allowed only in defining 

expressions which are themselves lambda expressions, 

which naturally delay the evaluation of their bodies 

172. 



until required). With a slight modification to the 

above expression, the complete evaluation of a whererec 

expression is: 

if eq(rator(e),LETREC) then 

else 

(eval(qualified(e), newn,cons(newdefns,v» 

wh~~ newn = cons(vars(definitions(e»,n) 

newdefns= A ()evlis(exprs(definitions(e», 
newn,cons(newdefns,v») 

All that remains to complete the interpreter is to give 

eva I in its entirety, and to show how the evaluation is 

initiated from the main arguments fn and args. 

To initiate the evaluation fn must be evaluated in an 

empty environment to obtain a closure: 

clos = eval(fn,NIL,NIL) 

and this must be applied to args in exactly the same way 

as a normal function application (note that args themselves 

do not need to be evaluated but they do need delaying!): 

A(fn,args)(eval(body(clos), cons(formalargs(clos), 
oldn(clos», 

cons( A()args,oldv(clos») 

where clos = eval(fn,NIL,NIL» 

and ~ complete definition of eval is 

173. 



eva 1 Ie, n , v) = if 
If 
If 
~I 
if 
~I 
if 
If 
~f 

atoll (e) 
eq (rator (e) ,QUOTE) 
eq (rator (e) ,CAR) 
eq(rator(e),CtR) 
eq (rator(e ) ,CeNS) 
eq (rator (e) ,A'IO ~ ) 

e q (rator (e ) ,EO 
e q (rator (e ) ,LEQ) 
eq (ra tor (e ) ,I F) 

th§1! 
~l!§1! 
ihe1! 
th§1! 
then 
!hen 
~l!§1! 
il!~1! 
il!§1! 

i~ eq (rator(e ),LlMfDA) th§1! 
i~ isarithop(ratar (e» th§1! 
i~ e q (rator(e ) ,L ET ) i~§1! 

i~ eq(rator (e ),LETB EC) ~h§1! 

assoc(e,n,v) §l§§ 
rand1 (e) elSE 
car (evallrandl (e) ,n, v}) el.§§ 
cdr (eval (randl (e), n, v)} §l.§§ 
cODs(eval(randl (e),n,v),eval(rand2(e),D,v» else 
atoll (eval (randl (e) ,D,V» §ls~ ---
eq (eval (raDd 1 (e) , n, v), eval (raDd2 (e) , n, v» §l§§ 
Eval(rand1 (e),n,v) ~ eval(rand2(e),D,v} §]&§ 
.it eval (randl (e) ,n,v) .!l!§1! e val(rand2(e) ,D,V) 

§ls§ e val(rand3(e) , D,V) §l.§~ 
eonslargsandbody(e),cons(n,v» ~l.§~ 
arith(e,n,v) §l~ 
( eval (qualified (e) ,cons (nevnaaes,n) ,cons(nevdefns, v» 

wbere newnaaes = vars(definitions(e» 
- aii~ newdefns = ~ () evEs (exprs (deti ni tions ( e ) ) , n , v) 
evallqualified(e),newn,cans(newdefns,v» 

§!§§ 

§l.§~ 

whererec ne wn = cons(vars(definitions(e»,n) 
-----~~~ newdetns = }..()evlis (exprs (definitions (e » , 

newn,cons(nevdefns ,v) ) 
e val (body Ilfn) ,cens (fol:lla largs (fn) ,ol dD (tD» , cons (actualargs ,oldv (tn» ) 
~h§f~ tn = e val(rator le),D,v) 

!!~~ actualargs =A() e vlislarglist(e ),n,v) ) 

isaritho t: (op) = .i1 eg (c p,ADD ) 
H eq (c p , MUL ) 
H eg (cp, HEM ) 

.!h~ll 'I §l.§~ jf 
the D T else if 
1h~] T ~l§g F-

eq (op,SOB) ~h§g T ~!§§ 
ea (o p ,DIV) ih§g T §!§§ 

arith (e , n,v) = i! eq (o p , HC) i.b§~ 
if eq (OF , MUL ) !]§~ 
if eq (o p ,H EM ) i.b~n 
~hgf~ Of = rator (e) 

!!gQ a 1 == rand 1 (E) 
~~£ a~ = rand2(e ) 

(al+a2) §l§~ i1 eq (of ,SU B) .!E§~ (al-a 2) §!.§§ 
(a1*a2) ~1§~ i1 Eq(op ,D IV ) !E§~ (al gj! a2 ) §!.§~ 

tal f§! a2) ~1§~ EERCR 

.... 

..... 

"" 



175. 

Two final comments on the LISPINT1 program are appropriate. 

Firstly, a more conventional approach to evaluating 

whererec expressions is to extend the purely functional 

Lispkit language with an extra primitive operator "rplaca" 

("replace car") which appears to be an identity function, 

but which actually has the side effect of modifying an 

s-expression (in this case to tie a self-referential 

loop in the environment). Whererec is then evaluated by 

essentially the same controlled trick as is implemented 

by the DUM and RAP instructions of the LM(Appendix B, 

Henderson (1980». I have chosen to avoid this, and to 

look at the expression and performance of interpreters 

in a purely functional language. 

Secondly, the interpreter is not so revealing about the 

semantics of Lispkit as, perhaps, it could be; this is 

due to the somewhat circular definition in which each 

Lispkit expression is evaluated by calling on an expression 

of exactly the same type in the interpreter. Nevertheless, 

the interpreter does seem quite interesting, and it is 

certainly illustrative of performance assessment problems, 

as covered in the next section. 

7.1.2.2 The performance of LISPINT1. 

The important question to ask about LISPINT1 (in addition 

to "Does it work correctly?") is "How efficiently does it 

interpret Lispkit programs?" This question can be 

phrased slightly more precisely as "How does the number 

of expression evaluations required by LISPINT1 depend 

on the number of expression evaluations required by 

the program which LISPINT1 is interpreting?" However, 



the characteristics of interest must be specified even 

more tightly before experimental evidence can be 

gathered. The methodology of Chapter 5 will again be 

the guideline. 

Experimental assessment of the performance of LISPINT1 

will be made in the following system configuration: 

Dita 

11 _Lispkit i!£~E~~_o~g~r_a~m~ ______ _ 

12 LISPINT1 (co~iled.~) __ __ 

LM 

IBM 370/168 

in which I have ignored the contribution of MTS, and 

internal detail of the LM has been suppressed, as 

statistics will not be required from interfaces below 

12. 

The component of interest is LISPINT1, and hence it is 

the interactions at 11 and 12 which must be monitored. 

At 12 the LM is interpreting the machine instructions of 

LISPINT1, and at II the eval function is scanning and 

interpreting the constructs of the Lispkit program. 

At 12 the valuable statistic is the amount of work 

(expression evaluations) generated by LISPINTl, as 

determined by a model interpretation of LISPINTI. This 

statistic, call it LIS2, will be independent of the 

virtual machine below 12. 

At II the valuable statistic, call it LIS1, is the amount 

of work (expression evaluations) generated by the 

Lispkit program, as determined by a model interpretation 

of the program. 

176. 



Hence the performance assessment question can be 

rephrased as "How does the number of expression 

evaluations predicted by a model interpretation 

of LISPINT1 depend on the number of expression 

evaluations predicted by a model interpretation of 

the Lispkit program?" 

Recalling the results of Chapter 6, a good representation 

of the LIS2 statistic can be obtained by monitoring 

the number of LM instructions executed during the 

computation. These figures are easily obtained -

and more efficiently than by reprogramming LISPINT1 

to monitor its own activity. 

Similarly, LIS1 statistics can be obtained quite 

effectively by executing the Lispkit program in 

question {plus data} directly on the LM and monitoring 

the total number of LM instructions executed. This 

technique is justified by the fact that the model 

interpretation is determined solely by the programming 

language semantics and not by particular interpreters. 

Note that the actual interpreter code used in the 

assessment is not exactly as the eva I function has 

appeared here; the selector functions are all expanded 

"in line", and there are other minor syntactic 

variations, none of which alter the evaluation strategy 

implemented by the interpreter. 

7.1.2.3 Experimental results. 

In an ideal world LISPINT1 should have its behaviour 

monitored for a wide range of program applications to 

177. 



obtain an accurate assessment of its performance; the 

selection of programs used to assess the LM would be 

a good choice. However, the comparative inefficiency 

of LISPINT1 (when loaded onto the LM and IBM 370) 

restricts the size of computation which it can execute 

in a reasonable time; this renders impractical the more 

complex programs, such as quicksort and powering,and 

the longer executions of the simpler programs. This 

restriction is not too serious, as the general trends 

of each program were seen to be very similar in the 

assessment of the LM, and a good impression of the 

characteristics of LISPINT1 should be possible by 

examining just a few applications. 

Test executions of LISPINT1 have been performed, 

interpreting the naive reverse program for lists of 

length 0,1,2,3, and interpreting the reverse program 

with accumulating parameter for lists of length 0,1,2, 

3,4,5,6. Naive reverse for a list of length 4 was 

interrupted after 200 seconds of CPU time without having 

found a solution, so no further data points are 

practically possible for this algorithm. Reverse with 

accumulating parameter for list length 6 used 

approximately 60 CPU seconds; I expected list length 

7 to use several hundred CPU seconds, so data collection 

was stopped at this point. 

The collected LIS1 and LIS2 statistics are tabulated in 

Appendix E (Tables 7,a), and their relationships with 

respect to the performance of LISPINTI are analysed 

in the following graphs. As in Chapter 6 the graphs 

17s.-



are presented with labelled but ungraduated axes, and 

with the empirical data points joined by straight line 

segments. The purpose of the graphs is to give a 

visual guide to the trends discussed in the comments; 

the precise data is to be found in Appendix E. 

Figure 1 shows the results of executing the naive 

reverse program on LISPINT1. The upper graph shows 

the inherent performance of the reverse algorithm as 

the relationship between the list length and the number 

of LM instructions that the program would execute on 

the pseudo-machine (LIS1). The lower graph shows the 

performance of the interpreter as the relationship 

between LIS1 and the number of instructions that the 

interpreter executes on the LM(LIS2}. 

The inherent performance is, as expected, quadratic in 

form. The data points fit the following equation 

precisely: 

LIS1 = 8.5*1*1 + 19.5*1 + 19. 

On the other hand the relationship between LIS1 and 

LIS2 shows a very dramatic upward curvature. Since 

only 4 data points are available, little can be deduced 

about the true nature of the relationship. However, 

the curve is certainly increasing more rapidly than a 

quadratic function as a cubic function is required to 

fit the points (but a cubic will fit any 4 points, and 

hence the latter is not by itself a useful observation). 

Bearing in mind that the lower graph contains no 

contribution from the performance of either the reverse 

program or the LM, the performance of LISPINT1 clearly 

is not linear. 

179. 



1 0 _ 

Fig u-e 1 ( Tab le 7 ) 

• , 1 'T ~-'~, rrT~-r~-' ---,- -'e 1 1-, 1 ' ""'- -,-. -,-. 
'~ - - .j' l'l -I--j-r' -~-'-I -, - 1-

'-,-, I I 1- ,- 1 -I " -

- ~ -1'- I--j-I-I'- -'I-I ~t ~r-:I ; -, ,-' , '~ 
"' . - r' j--- - -, ,-, II 1-[,- ,1"-" 

, -" - I, -, I ' 1 r . , 1 1 " 

! - T - - - r-I-l~~' ~l-- T~-: :~ 
I - - I I r - I ~I ' ' , 1- 1 1- , - I '-I h I'i 'T 
1 - - I I 'I 'I I I ' , , ' , I ' 

' " ,, - I • 1 ' I -- -1 1- - -1- -i - -! I -, r i ! 

I ~ I' -1- -I l -l - 11 ~ -i ! : l' '-I 
' 1 I' -l 1 , -I' I - I , 1 ' " , , 

/ " I _cJ_ '. , I,LLLI L,st lerr;lh __ _ 

1- 1 I I 



Figure 2 shows the results of executing the reverse 

with accumulating parameter program on LISPINTI. 

The upper graph shows the inherent performance of the 

reverse algorithm, and the lower graph shows the 

performance of the interpreter. 

The performance of the reverse prbgram is precisely 

linear, as expected from the results of Chapter 6: 

LIS1 = 17*1 + 32 

However the interpreter performance again shows a 

rapidly rising curve. A 6th degree polynomial is 

required to fit the 7 data points, but that is not 

conclusive evidence. 

181. 

Thes~ results from executing the two list reversing 

programs on LISPINTI point out very clearly that the 

interpreter has an extremely bad performance characteristic; 

the work performed by the interpreter increases much more 

rapidly than a linear function of the work demanded by 

the program which is being interpreted. 

An explanation must be found for this undesirably 

inefficient performance. Not surprisingly the answer 

lies with the particular strategy used for delaying 

environment levels. 

In order to be able to implement wh!!!~ successfully 

some method of delaying evaluation is appropriate, but 

although the method employed in LISPINT1 seemed natural 

and correct, it turns out to be rather less than desirable. 



18 2 . 

Fig ure 2 (Table 8 ) 

• 1 I I 1-1-'" 'I I~ , ' i ; : I I: -I ,'I I 1 
I.-" ! I' I" I --I 1 .. .-
I ' - I 1 ,- . , I I ,,-
. 1 I II'! '" ,-- -I ,- i "--, , , 

" ,I I , - - I I .-, I" i ; 

I 
I 1 I 1 I I I [ , , I' i 
1 ; I, -,' 1 ,-, ; 1 - , 
I -, '-j-- - --I "- f . ,-,' -1-

- !! ;. . -~ I 'I. :' 'I' .. ---, I 1 • 1-' 1 i - :. - ~ ,: 1 . ' 1 , "'- j 1 ", II' .. -I - -i . 1)- -l I-I -I i,. ' , -, 
I Til I I 1 - -, I 'I I l' 1- i-
'-'-, ','-1"1-'- I--

l _ -1- - _.I I 1- f'j-'--I- ' -; -, ! r ' 'I-

I - -1- , -I ,- -" - ,- 'I -j--- ---1- - ----I-~ i I· ,--
-;j- ,- I -I 1 -! 1 ~ ' . I' :-... -: - , 

, , 



The method employed effectively implements a "call by 

name" evaluation strategy in which the arguments in a 

function application are passed in unevaluated form 

to the function body; within that body each access to 

an argument will result in reevaluation of the 

argument's value, which seems wasteful, but it leads 

to at worst a linear factor increase in workload. A 

much more serious consequence of the call by name 

strategy is that an unevaluated argument may be passed 

within an unevaluated expression to an inner function 

application; the inner function body will cause both 

levels of delaying to be forced when it accessess the 

argument; in this way a recursive function will often 

cause the interpreter to trace an arbitrary distance 

back towards the start of the computation each time 

an a:gument is accessed. The sublist delaying strategy 

aggravates this problem, as a whole tree of unnecessary 

auxiliary values may be computed each time an 

argument is accessed. 

I seem to have made some bad decisions in the design 

of LISPINT1, and the experimental performance analysis 

has provided the motivation to reexamine the design. 

7.1.3 Second Lispkit interpreter for Lispkit, LISPINT2. 

The undesirable inefficiency of LISPINTI is caused by the 

way in which the delaying of environment levels led to a 

call by name evaluation strategy. LISPINT2 is an attempt 

to improve upon this by the introduction of a "call by 

value" evaluation strategy. 

183. 



7.1.3.1 The Interpreter program. 

LISPINT2 is essentially the same interpreter as LISPINT1, 

the only difference being in the treatment of delayed 

environment levels. The environment, as given by the n 

and v arguments of eval, will have exactly the same 

structure and properties as for LISPINT1; each level in 

v will require forcing before the values can be accessed, 

and the assoc function will remain as before. However, 

in order to avoid the call by name mechanism the 

definitions which comprise each level are evaluated 

~efore being grouped together and delayed, to yield a 

call by value mechanism; this is a fairly obvious 

change of strategy, involving only minor changes to the 

interpreter code, which is quite clearly correct in the 

case of function applications and where expressions, but 

requires a little more thought in the case of whererec 

before operational safety is apparent. 

Tackling whe~ expressions first, here is the interpretation 

in LISPINTl for comparison: 

i~ eq(rator(e),LET) then 

(eval(qualified(e),cons(newnames,n),cons(newdefns,v» 

where newnames = vars(definitions(e» 

newdefns = ~ ()evlis(exprs(definitions(e»,n,v» 

el se ... 

In LISPINT2 this is modified simply by moving the" A()": 

if eq(rator(e),LET) then 

184. 

( eval ( qual i fi e d ( e ) , cons (ne wname s ,n) , cons ( A ( ) newde fn s , v) ) 

where newnames = vars(definitions(e» ---
newdefns = evlis(exprs(definitions(e»,n,v» 

else 



Appealing to the semantic background of Lispkit these 

two interpreter fragments are clearly equivalent. 

Operationally, the LISPINT2 fragment has introduced no 

new recursions, and will be safe to execute provided 

that the definitions to be evaluated are safe (they do 

not contain non-terminating recursions). 

The interpretation of function applications is changed 

in the same way: 

eval(body(fn),cons(formalargs(fn),oldn(fn», 

cons ( ~ () actualargs, old v (fn») 

~~~!~ fn = eval(rator(e),n,v) 

actualargs = evlis(arglist(e),n,v)

The call by value parameter mechanism is explicit here.

An extra change must be made in the whererec case in order

not to violate the variable usage rules:

if eq(rator(e),LETREC) then

185.

«eval(qualified(e) ,newn,cons(A ()newdefns,v»

whererec newdefns = evlis(exprs(definitions(e»,
------ ,. newn,cons(A()newdefns,v»)

" .'

wh~ newn = cons(vars(definitions(e»,n»

else

As in the previous two cases the "A ()" has been moved

in such a way as to preserve the meaning of the

interpreter fragment, though it has now appeared in two

places - at both occurrences of newdefns. The definition

of newn has been moved to an enclosing scope, to

satisfy the restriction on whererec definitions (as it

is used in the evaluation of the defining expression

for newdefns), and as a slight economy the cons(... ,n)

has been taken into thedefinitionL The validity and

safety of the definition of newdefns must be considered

carefully; the defining expression itself mentions

newdefns, and both requirements will be satisfied if

the expression evaluations invoked by evlis never attempt

to access newdefns (which after all, is at the head of

the environment in which the evaluations occur) - of

course evaluating the qualified expression may attempt

access to newdefns, but that is operationally safe.

The first point to note is that the reference to

newdefns is delayed:

evlis(exprs(definitions(e»,newn,cons(A()newdefns,v»

and so attempted access to newdefns will only occur if

any of the evaluations of exprs (definitions(e» call

assoc to look up a variable whose value is contained in

newdefns (calIon assoc to look up variables whose values

are in v are perfectly safe). Recalling that we are

considering the interpretation of a whererec expression,

such a call of assoc will occur only if the evaluation

of one of the defining expressions requires the values

of one of the locally defined variables. This occurrence

is precisely what the restriction on defining expressions

in whererecs disallows. Hence the interpreter fragment

is valid and safe if the exprs(definitions(e» consist

only of expressions which delay the variable references

that they contain (for example, lambda expressions

defining recursive functions), and other expressions

which refer only to variables in outer scopes.

186.

This discussion has shown, in a somewhat paradoxical

fashion, how the restriction on variable usage in

~~~~er~ expressions arises. The circularity appears 

in interpreting wh~~ expressions by using whererec, 

but hopefully the resolution of the problem will have 

served to reinfor~e the understanding of the limitations 

of whererec. The restriction is appropriate in the 

case of programs compiled to execute directly on the 

LM for analogous ,reasons. 

7.1.3.2 The performance of LISPINT2. 

The same reasoning applies here as in the assessment 

of LISPINT1. 

Experimental assessment of the performance of LISPINT2 

will be made in the system configuration: 

Data ,---
13 Lispkit (source) program 

14 .2:.!2.~NT~~~piled) ___ _ 

LM ---------------------------
IBM 370/168 

where again the internal structure of the LM has been 

suppressed, and the contribution of MTS has been ignored. 

The enquiry about the performance of LISPINT2 is phrased 

as "How does the number of expression evaluations 

predicted by a model interpretation of LISPINT2 depend 

on the number of expression evaluations predicted by 

a model interpretation of the Lispkit program?" 

187. 



The statistics collected at interfaces 13 and 14 will be 

counts of LM instructions executed, LIS3 and LIS4, 

analogous to LIS1 and LIS2 respectively. 

7.1.3.3 Experimental results. 

Not surprisingly LISPINT2 is much more efficient than 

LISPINT1, and test ~xecutions have been performed for 

the same two programs, naive reverse and reverse with 

accumulating parameter, up to lists of length 50. 

Tabulated results for the statistics LIS3 and LIS4 are 

given in Appendix E (Tables 9,10), and their 

relationships with respect to the performance of 

LISPINT2 are analysed in the following graphs. Again 

the ~raphs are presented with labelled but ungraduated 

axes, and joined by straight line segments to show the 

trends discussed in the accompanying comments. 

Figure 3 shows the results of executing the naive 

reverse program on LISPINT2. The upper graph shows the 

inherent performance of the reverse algorithm, and the 

lower graph shows the performance of the interpreter 

as the relationship between LIS3 and LIS4 statistics. 

The inherent performance of the reverse algorithm is 

precisely quadratic 

LIS3 = 8.5*1*1+19.5*1+19 

The lower graph shows a relationship which has a 

gradient increasing slowly, apparently to some limit; 

approximately 

LIS4 = 55.8*LIS3 

It seems that LISPINT2 has a linear performance. 

188. 



Figure 3 (Table 9 ) 

I! .. , _. ,-. 
, I 

I I r I 1 ' - I 

I-! -: . _: I 

. I 

I I 

i 
1 -I 

! .-
f -r .-

1 . I I 

US3 

18 . 



190 . . 

Figure I, (Ta e 10 ) 

'I' 1 • 1 
r -,- 1 ' . -. I 1- -, -
~ . - - -, ~ . - ,,- 1-\ -I- 1 1-- : 1 , - -

-- 1 ' -1 :- 1
1
-1';1 1 i ,--- - - ., -, i r--'-i . -:-

- I -I ~ I 1 -1-- I" ; 
- I ill' " 1 - r' 1- I 1 -I . " I 

. - -- - : . 1- i- ,- 1 ,- : - -, . 
1 I " \ ' I 1 1 I 'I I - I ;' - - I: '1' 1 I -1-

1 

,- , , . . ; --

- ' I:: I ' I , ': ,,' I 1 

~. -II ! :. I: -J -- I' : • • :.l_: 
" 'I " . I I ii i-II ,-- f-' : ' . 1 .. 

- ' f" I" i "1 - - i-I-, ' 1 .. 
- 1 I -1-I- j-1--\-' 1 i ! I . 

i" 1 I I I· I 'i- I • I I I I 

r-- ' !>-I-"'--l-,-I :, 'i , .. 1 . -" 1 1 I - -, il' ., 
I I' I' • -, I I . I : 1 , f - -1 ,. • •• 

LlS3.":-_ 



Figure 4 shows the results of executing the reverse with 

accumulating parameter program on LISPINT2. 

graph shows the inherent performance of the 
The upp~r 

reverse 
algorithm, and the middle graph shows the performance 

of the interpreter. The lower graph shows the 

relationship between LIS4 and the CPU seconds required 

to complete the computation when only 5400 heap cells 

have been allocated to the LM (fairly close to the 

minimum number of cells in which the longest computation 

could be performed). 

Both the inherent performance of the reverse program and 

the performance of the interpreter are precisely linear: 

LIS3 = 17*1+32 

LIS4 = (913*LIS3-4600)/17 

(Gradient approximately 53.7) 

7.1.4 Comments. 

LISPINT1 made use of a particular strategy for delaying 

environments in order to implement the interpretation of 

~~~~ expressions. The design decision led to an 

191.

interpreter with an unacceptable performance characteristic.

In LISPINT2 a modified delaying strategy is used, and the

interpreter exhibits a beautifully linear performance

characteristic (for, at least, the test programs used in

the experiments).

Thus in LISPINT2 we have a purely functional interpreter

for Lispkit, which will interpret Lispkit programs by

executing a number of LM instructions which is no worse

than a linear factor more than the number of instructions

performed if the program were executing directly on the LM.

The linear factor appears to be about 55.

"Rplaca" is usually introduced in order to bring the

interpreter performance under control. Assuming that

it enables a linear performance interpreter to be

produced, then the linear factor would probably be

smaller than the 55 observed for LISPINT2. However

it would only be a small linear factor better than

LISPINT2, and this must be weighed against the

introduction of the semantically untidy "rplaca" operation.

To illustrate the problems which might be encountered

in a naive attempt to assess the performance of an

interpreter consider the lowest graph in Figure 4.

The graph increases irregularly, and the overall trend

is clearly much worse than linear; this is due to the

heavy loading of the heap store of the LM. An

experiment which attempted to assess the performance

of LISPINT2 by relating, for example, function

applications in the interpreted program to the CPU

time required for execution, would be unable to isolate

the behaviour of the interpreter from that of the LM.

The non-linear performance might be incorrectly

attributed to LISPINT2 which, as we have seen, is

quite innocent.

7.2 Interpreting Prolog.

It would be attractive to embark on an exploration of

Prolog interpretation mechanisms, as started for

Lispkit in a small way in the first part of this chapter.

1~2.

However, opportunity permits me to show only one,

straightforward, example of a Prolog interpreter,

written in Prolog, which has a linear performance

characteristic.

The interpreter, PROLOGINT, handles only a restricted

form of Prolog - negated conditions and primitive

predicates have been omitted both for simplicity and

to enable sizeable computations to be performed in a

reasonable time. Like the Lispkit interpreters,

PROLOGINT makes use of the facilities of Prolog to

implement the facilities of Prolog; in particular

unknowns in the interpreted computation are represented

by unknowns in the interpreter, and unification is

implemented implicitly by a generalised equality

predicate - more details appear below.

PROLOGINT will be executed on the PM in the following

configuration:

Data

_P ro 1 0 ~~~!:.l.-Ero gr~ __

PROLOGINT (comp.~i~l_e_d~)~ ____ _

PM

IBM 370/168

In a performance assessment the behaviour will be

isolated carefully from that of the PM with its

internal storage management. The concern of a

performance assessment will be the relationship

between the work performed by PROLOGINT and the work

required by the Prolog program.

193.

7.2.1 The syntax of interpreted programs.

To be acceptable as data for PROLOGINT, a Prolog

program must have a syntax within the framework of

su-expressions. Append~x D gives one such syntax, and

PROLOGINT accepts programs in this form.

The interpreter will not require the definition of any

special selector functions (or predicates), as all

parsing is performed by pattern matching and unification,

and the significance of a construct will be apparent from

the structure of the pattern and the variable mnemonics

used.

7.2.2 The interpreter, PROLOGINT.

7.2.2.1 The interpreter program.

PROLOGINT is a query which requires two arguments, a

Prolog program (no negated conditions or primitive

predicates) and a parenthesised list of the arguments

which the program would expect if it were executed

directly on the PM. The arguments are checked, to

determine whether they satisfy the query represented by

the program, by the interpreter predicate satisfy, which

has a central role corresponding to eval in the Lispkit

interpreters; as a side effect of the checking, the

arguments may become elaborated, and the results of the

interpretation, if any, are valid elaborations of

the unknowns in the original arguments.

194.

The predicate satisfy accepts one argument representing

a condition to be checked, and the list of predicate

definitions which may be called on by the program:

satisfy«predname.args),deflist)~

The query of PROLOGINT initiates the interpretation by

explicitly constructing a calIon the predicate named

QUERY in the program being interpreted, and inserting

QUERY into the definitions list:

query«(query.argsandconds)where.deflist),arguments) ~

satisfy«QUERY.arguments),«QUERYargsandconds)
.deflist»

The satisfy predicate follows the actions described in

the operational model of Prolog execution in Chapter 3;

to interpret a condition the predicate it names must be

found, one of the predicate's cases selected, the formal

argument list constructed and unified with the actual

arguments of the condition, and any extra conditions

associated with the case must be executed:

satisfy«predname.actualargs),deflist)~

finddef(predname,deflist,cases),selectcase(cases,
. (args.conds»,

localvars«args.conds),locals),argbuild(args,locals,
formalargs),

unify(actualargs,formalargs),

satisfyconds(conds,locals,deflist)

The auxiliary predicates finddef and selectcase are

easily programmed:

finddef(predname,«predname.cases).deflist),cases)~

finddef(predname,(other.deflist),cases)~
finddef(predname,deflist,cases)

selectcase«case.cases),case)~

selectcase«other.cases),case)~selectcase(cases,case)

195,

finddef simply looks up the appropriate entry in the list

of predicate definitions, and selectcase returns each

case in a list as backtracking requires ; selectcase

implements backtracking for the Prolog program by

backtracking in the interpreter.

satisfyconds is also straightforward; it checks that

each condition in a list of conditions is satisfied

when the actual arguments are built from a given list

of local variable values:

sat i s fy con d s« if. con d s) , I 0 c a Is, de f lis t) Eo-

satisfyeach (conds,locals,deflist)

satisfyconds(NIL,locals,deflist)~

(The second clause expresses the fact that a case with

no antecedent conditions is satisfied with no further

checking)

satisfyeach«(predname.args).conds),locals,deflist) ~

argbuild(args,locals,actualargs),

satisfy«predname.actualargs),deflist),

satisfyeach(conds,locals,deflist)

satisfyeach(NIL,locals,deflist) ~

In a Prolog program the variables mentioned in each

case are purely local to that case; they have their

values built into the formal arguments of the

consequent of the case and the actual arguments of any

conditions present. When a case is entered, by satisfy,

the local variables are identified and collected into

a local environment list by the predicate localvars.

The environment list is a list of pairs (x.v) where x

is a variable name and v is its value. When localvars

creates an environment list the values are set to new

196

197.

unknowns, and they are subsequently elaborated by

unification. localvars makes use of several addition~l

predicates:

localvars«args if.conds),vars)~inargs(args,NIL,vars1),
inconds(conds,vars1,vars)

localvars«args),vars)~ inargs(args,NIL,vars)

inargs(NIL,vars,vars)~

inar gs (x, 01 dvars, newvars) ~ a tom (x) , -, eq (x, NI L)j
. addvar (x,oldvars,newvars)

inargs«'.x),vars,vars) ~

inargs((x.y) ,oldvars,newvars)~ -,eq(x, I),
. inargs(x,oldvars,newvarsl),

inargs(y,newvarsl,newvars)

inconds«(predname.args).conds),oldvars,newvars)~

inargs(args,oldvars,newvarsl),

inconds(conds,newvarsl,newvars)

inconds(NIL,vars,vars)~

addvar(x,oldvars,«x.newvar).oldvars»~
-'member(x,oldvars)

addvar(x,vars,vars)~ member(x,vars)

member(x,«x.varx).vars»~

member(x,(other.vars»E-member(x,vars)

Several comments are appropriate here. The predicates

localvars, inargs, and inconds each use an accumulating

parameter technique to avoid appending lists of variables.

The apostrophe mentioned in inargs has crept in because

of the necessity to indicate explicitly the constant

parts of su-expression patterns (see Appendix D); also

note that the atom NIL is treated specially as a constant

and not as a variable. Finally, the variable newvar

which appears once in addvar introduces a new unknown

into the environment list; the unknown acts as a

placeholder for the value which will eventually be

associated with the variable x.

The auxiliary predicate argbuild is used by satisfy

to construct formal arguments from formal argument

patterns, and by satisfyeach to construct actual

arguments from actual argument patterns; variables

in the patterns are replaced by their values from

the local environment list:

argbuild(N1L,locals,N1L)~

argbuild(x,locals;varx) ~ atom(x), -, eq(x,NIL),
findvar(x,locals,varx)

argbuild«'.x),locals,x)~

198.

ar gbui 1 d ((x. y) ,1 oc al s , (bui 1 dx. bui ldy)) +- --, e q (x, ,) ,
argbuild(x,locals,buildx),argbuild(y,locals,buildy)

findvar(x,«x.varx).vars),varx)~

findvar(x,(other.vars),varx)~findvar(x,vars,varx)

Finally, unification is defined very simply by a

predicate which asserts equality between actual and

formal arguments:

unify(args,args)~

7.2.2.2 The performance of PROLOGINT.

Experimental assessment of PROLOGINT will be made in

the following system configuration~'

Data

II Prolog (source) program

12 PROLOGINT (compiled)

PM

IBM 370/168

in which, again, the contributions of MTS and the

internal structure of the PM have been ignored.

To assess PROLOGINT the interactions at I1 and I2

must be monitored and compared.

The performance question to be addressed is "How

much work does PROLOGINT perform in interpreting the

requirements of the Prolog program?" Again adopting

the view of a model interpretation, which predicts

the amount of work required by a program independently

of the virtual machine on which it is executing, the

question is rephrased as "How does the work predicted

by a model interpretation of PROLOGINT depend on the

work predicted by a model interpretation of the Prolog

program?"

Recalling the observation, in Chapter 6, that the

number of PM instructions executed during a Prolog

computation is a good representation of the work

predicted by a model interpretation, the interactions

at I1 and 12 can be monitored in exactly the same way

as for the Lispkit interpreters.

The statistics of I2 are obtained by counting the total

number of PM instructions executed during the

interpretation; call these statistics PIS2. At 11,

the statistics PIS1 are obtained by executing the

Prolog program directly on the PM and again counting

the total number of PM instructions executed.

199

7.2.2.3 Experimental results.

Test executions of PROLOGINT have been performed for

the familiar programs naive reverse and reverse with

accumulating parameter, over a small range of list

lengths between 0 and 10. Statistics PISl and PIS2 are

collected up to the production of the single result of

the interpretation.

The results are tabulated in Appendix F(Tables 6,7),

and their relationships with respect to the

performance of PROLOGINT are analysed in the following

graphs. The graphs are presented with labelled but

ungraduated axes, and the empirical points are joined

by straight line segments to shows the trends discussed

in the accompanying comments.

Figure 5 shows the results of executing the naive reverse

program on PROLOGINT. The upper graph shows the inherent

performance of the reverse algorithm as the relationship

between the list length and the number of PM instructions

that the program would execute on the pseudo-machine

(PIS1). The middle graph shows the performance of the

interpreter as the relationship between PISl and the

number of instructions that the interpreter executes on

the PM (PIS2). The lower graph shows the relationship

between PIS2 and the CPU seconds required to complete

the computation when 70000 heap cells are allocated

to the PM.

200

20] .

Figure 5 (Table 6)

, ----1 - ,
., ,

-~ I
-'

~
-~' -,I]-r ~-i-L ; -; i- ~,T 'Tr-- ,

, I - r- iii -: I ,- 1-1-'1-1 1 ' - L
~ , "I ,-, I 1-' - , ' I '" -,
~ ! II-!' I -I I q-- -I r! 'I ',: ,:
I II! ,-. I-IT 1'1 I' I' ,

,-i- i ; l'I-!-r'-:;-I-r' i;
- 1 1- ' 1- /. -,'

- -I Ti ' ~
, '1- , I 1--1 ,-I, '11- -, . I , I I Iii ,: I-! ,"- I

i I II " 'I """" ' I i ' ; I i-I -,-iii I I ' " -I ,+ ' II I '"
'1 -,"r-' ~ -j 1-,- · - ." '

I 1 I-I 1-' I I I ' I I '. - ,
". I , ' , I ,. ' j . , , 'I' I

I ' !' "I I, , ' , ,
Pl$L _

Figure 6 (Table 7)

~--.~ .. -

F
i ! 1-"'-' I . I
• I I .~~- I"

1_ t I , ,

I

' j Tr-j -ill I I I I i --, ----- .-

I~ f! ! -, ~ t .' i ~ 1=1 1- -~ ~~ri-: -i.-~!. . . . ~
~ t-; I I I I-I-i :.J-.i I I. h ' -.
§. I r-: , " t -I : --I. I - • •
Vl , I I t I I I I

! -[-If -' -. -; i =; ',1 ~ I -J ~I i -; -: -'

I
, 1-- -, -j 1 : -,-, -. -L -~ 1 ", •

I ,I I -- r I-I 1-1"-1- I I '--I

i . i r~' : I ; .' i - ~ ::-' , ,':: -: 1 I I
1 -, ,1-:- 1'--' ,-- ',-,-, --I I-! ,-

I I I I , -1 : I; : -, I I I . -, -,--I ,-" ,-1-
1-".: '-j"!

I . I .. ,.- .-, •. , t I .

I 1- I ' . ,- I! -,-1-1 , 1 : ' , , , j
I 1 I I ,1,- -I-I ~~-i 1-:' ~ r " "'1 I' -/ I " 1 --! ,

I I I r- I -I f • I I I

I I I ,I I I I P1S2 ,

202 .

The inherent performance of the reverse program is

precisely quadratic:

PIS1 = 18*1*1+33*1+29

The relationship between PIS1 and PIS2 shows a gradient

which seems to be increasing slowly to a limit,

approximately

PIS2 = 148.6*PIS1

Hence the performance of PROLOGINT would appear to be

linear.

Figure 6 shows the results of executing the reverse

with accumulating parameter program on PROLOGINT. The

uppe! graph shows the inherent performance of the reverse

algorithm. The middle graph shows the performance of

the interpreter. The lower graph shows the CPU seconds

required when the PM is allocated 23000 heap cells.

Both the performance of the reverse algorithm and of

the interpreter are precisely linear:

PIS1 = 36*1+33

PIS2 (5567*PIS1-70851)/36

(Gradient approximately 154.6)

The experimental results reported here have shown that

the PROLOGINT interpreter, written in Prolog, has a

linear performance (for, at least, the test programs

used in the experiments). PROLOGINT will interpret

Prolog programs by executing a number of PM instructions

which is no worse than a linear factor more than the

number of instructions performed if the program were

executing directly on the PM.

appears to be about 150.

The linear factor

The lowe~graphs in Figures 5 and 6 illustrate again

that naive experiments which fail to isolate the

behaviour of PROLOGINT from that of the PM could give

misleading results.

7.3 Conclusions and comments on the Lispkit and Prolog

interpreters.

The design and assessment exercises reported in this

chapter have revealed two particular results. Firstly

that there exists a purely functional interpreter fur

Lispkit which has a linear performance characteristic.

Secondly that there also exists a Prolog interpreter

for lrestricted) Prolog which has a linear performance

characteristic. These results are important when

looking ahead to the possible availability of special

purpose hardware, with linear performance characteristics,

to replace the compound virtual machines LM/IBM 370

and PM/IBM 370. On such machines Lispkit and Prolog

programs could be interpreted (without compilation)

in a tim! proportional to the computational demands

of the program.

The interpreters themselves do not contain any

exciting, innovative techniques, but the experiments

reported illustrate how the performance assessment

methodology can lead to a carefully controlled empirical

exploration of interpretation mechanisms - an

exploration which has barely begun in this chapter.

204.

CHAPTER 8 - SUMMARY AND CONCLUSIONS.

SUMMARY AND CONCLUSIONS.

In this thesis I have made a theoretical and practical

exploration of the problems of assessing the performance

of individual components of interpreter based computer

systems.

Of particular interest are interpreter systems for the

execution of (very) high level language programs.

Chapters 2 and 3 establish the high level language context

by introducing the functional and logic styles of Lispkit

and ?rolog, and by hinting at software pseudo-machine

implementations which are described in more detail in

Appendices Band D. Although the treatment of Lispkit is

quite conventional, the treatment of Prolog is (as far as

I a~ aware) innovative in the use of su-expressions to

enable a bottom-up description of the language following

the pattern of the Lispkit description; su-expressions

and the elaboration of unknowns certainly aid in under

standing the operation of the Prolog Machine, but their

merit in the understanding of Prolog programming is not

certain.

Given that the primary task of performance assessment in

multi-level interpreter based systems is to assess the

performance of individual components (discussed in

Chapter 1 and in the introduction to Chapter 5), Chapters

4 and 5 examine the structure and behaviour of such

multi-level systems and their components. A simple

form of diagram is adopted for distinguishing and naming

individual components in a system (both hardware and

software); interfaces separate machine from program,

interpreter from program, and program from data in a

205

linear stacking scheme. The Interpretation model then

describes the semantic attributes of systems constructed

from innately active hardware components and passive

program and data texts. However, the Interpretation model

does not enable an active characteristic to be attributed

to software components in isolation from the remainder of

the system, and so the Abstract Execution model is

introduced in which each program or interpreter component

is represented by a function which maps the interaction

Trace at the higher level interface of the component to the

Trace at the lower level interface. The Abstract Execution

model can be related to the Interpretation model, but also

serves to enable the definition of a performance

characteristic as a mapping between statistics of interest

extracted from the upper and lower interface Traces of a

component.

Although the system structure diagrams are adequate for

simple systems, in more complex systems (such as those

incorporating the Prolog Machine with its two interpreter

extension levels) the meaning is not so clear. In

retrospect it might have been better to employ simple

directed graphs to make the role played by interpreter

extensions more explicit; a directed arc would represent

the use of a service provided by a lower level component.

For example, the execution of a Prolog program on the PM

would be represented by:

Prolog Machine

Data

t
Prolog program

~
Apply

~suPPort routine'

~storageJmanagement
IBM 370

206.

This representation, being more explicit, would also

be more amenable to re-working of the Interpretation and

Abstract Execution models, and the definition of

performance, to include interpreter extensions; they are

entirely absent at present, though in Chapter 6 the

performances of several interpreter extensions are assessed

by methods exactly similar to those used for normal

interpreter levels.

Several other aspects of the Abstract Execution model

and performance assessment methodology remain slightly

hazy and would benefit from a closer examination and

tighter specification. I am thinking particularly of

the concepts of interactions, Traces and model

interpretations which seem clear enough to be applied

in Chapters 6 and 7, but which might not be so clear

in other cases.

Nevertheless, even with considerable refinement the

behaviour and performance models can never be more than

guidelines for empirical performance assessment, as there

must remain flexibility in the choice of interfaces and

precise statistics of interest; the models provide a

formal framework within which the significance of empirical

results is clear.

The guidelines were sufficiently clear to give structure

to practical experiments assessing pseudo-machine and

high level interpreter implementations of Lispkit and

Prolog. These experiments are reported in Chapters

6 and 7. The great attention to detail that was required

in planning and carrying out the experiments, and in

forming conclusions from the results, is evidence of the

207.

genuine difficulty of making accurate performance

assessments. However, I believe that following the

assessment methodology has yielded specific observations

and results which are unarguably good representations of

the performance characteristics of particular software

components.

The implementations and experiments were chosen not only

for their illustrative properties, but also because the

results obtained would touch on some aspects of current

research questions, such as "How do functional and logic

language compare?" and "What overheads must we suffer in

interpreting rather than compiling high level language

programs?"

Usef~l results obtained can be summarised as follows:

1. The Lispkit and Prolog Machines (LM and PM

respectively) can each be divided into two distinct

software components concerned with pseudo-machine

instruction execution and storage management. Both

the instruction execution components have a linear

performance characteristic, but both the storage

management components have non-linear performance

characteristics (though they are similar, for

similar reasons).

2. For similar programming examples, the PM must

execute about twice as many pseudo-machine

instructions as the LM.

3. The LM and PM were deliberately constructed using

similar programming technology, and from inspection

of the AlgolW code the average work per PM pseudo

machine instruction is a small factor (2 to 5, maybe)

greater than that for the LM.

4. Hence for similar programs, and ignoring the influence

of the storage management components, the PM can be

expected to perform about, maybe, 10 times as much

209.

work as the LM, but note that this is only a linear

factor and applies whatever the size of the computation.

This observation is interesting as it may be

conjectured that future computing hardware might

provide assistance with heap storage management and

thus potentially remove (or drastically reduce) the

overhead of garbage collection. In this circumstance

both the LM and PM would become linear performance

pseudo-machines, rather than being progressively less

efficient for larger and larger computations.

5. The interpreters LISPINT2 and PROLOGINT each have a

-linear performance characteristic; a program running

on one of the interpreters suffers only a linear

factor overhead in the number of pseudo-machine

instructions executed (although the factors are rather

large, about 50 and 150 respectively). Again this

suggests that if the garbage collector overheads could

be absorbed into hardware then the entire interpreter

virtual machines could have a linear performance.

6. The previous observation also supports the conjecture

that direct source code interpretation is not

necessarily worse than compiling for a pseudo-machine.

A source code interpreter written to execute directly

on current hardware would be the composition of a

linear performance evaluation mechanism and a non

linear storage management, just as the pseudo-machines

are.

The performance assessment methodology has been

valuable in the analysis of a small set of high level

language interpreters, and there are many other similar

cases to which it could be applied. However I hope that

the approach I have outlined to the behaviour and

performance of multi-level systems is sufficiently clear

to guide the investigation of other systems which can be

structured in a similar way. Where the approach is

inadequate I hope that the notions I have discussed are

sufficiently sound and clear to be refined to give a

more satisfyingly complete theory of performance

assessment.

210.

211.

~E.endix A.

This appendix is intended to be no more than a sketch of the

origins of Lispkit (Henderson (1980», and of the influences

on its development, with pointers to the appropriate literature.

Henderson gives a much broader coverage of theliterature, and

of the properties of Lispkit itself.

Lispkit is a significant variant of the language Lisp described

by McCarthy (1960). Lisp was important for the introduction of

s-expressions as both a data type and program syntax, and for

showing the power of recursion in the processing of the tree

structured s-expressions.

Landin (1964) discusses the modelling of computational

expressions by the applicative structure of Church's lambda

notatio~Church (1941)(1952», and an abstract machine for the

evaluation of such expressions. The applicative structure

defines clearly the scope of local variables qualifying a~

~xpression, and shows the properties of function valued

expressions. The abstract machine is the four register SEeD

machine, to which the Lispkit machine in Appendix B is very

closely related. The SECD machine is described by an

applicative program.

Landin (1966) introduces ISWIM, a family of expression oriented

programming languages which take applicative (or "purely

functional",or"nonimperative") structure as fundamental, with

"procedural notions grafted on in such a way as not to disturb

many desirable properties" (paraphrased).

212.

Hence Henderson's Lispkit language and machine have arisen from

these ideas - a purely functional language operating on

s-expression data structures, with programs represented for

computational purposes as s-expressions, and executed on an

abstract machine of the same family as Landin's SEeD machine.

Extensions to the language and machine are made and used with

care - such as the introduction of delayed evaluation, and

nondeterministic constructs discussed by Henderson.

APPENDIX B - A PSEUDO-MACHINE IMPLEMENTATION OF LISPKIT.

ApE,endix B

~-Eseudo-machin~ implementation of Lispkit.

One possible approach to the implementation of Lispkit is

that of designing a special purpose high level "virtual

machine". The Lispkit Machine (LM) described in this

appendix accepts programs in the form of a special purpose

machine language, the primitive operations of which are

at a high level of complexity compared to the primitive

operations of a conventional computer. Lispkit programs

are compiled into the language of the LM. The semantic

capabilities of the implemented language are those

embodied in the language description and operational

model of Lispkit given in Chapter 2, though that is

certainly not a formal specification. The operational

model is a reasonably accurate reflection of the

behaviour of the LM.

Architecturally the LM is a fairly conventional

sequential machine in which each sequential step

involves a change of state. The state of the machine

is held entirely in 4 registers - this includes program

and data structures.

This appendix outlines an s-expression notation for

Lispkit programs, the high level machine code obtained

by compiling such programs, the machine state

representation, and the state transitions invoked by

each machine instruction. The appendix is not a

complete description of a software realisation for the

LM, though a listing of the machine used in

experiments is included for completeness. Some more

details of the software implementation appear in

Chapter 6, and a much more complete "kit" is available

in Henderson (1980).

213.

B.l An s-expression syntax for Lispkit.

For practical purposes Lispkit is processed on the

computer in the syntactic form of s- expressions.

Below I give the correspondence between Lispkit

expressions, in the notation of Chapter 2, and one

possible s-expression syntax. This particular syntax

is that in which the higher level interpreters of

Chapter 7 expect to receive Lispkit programs.

In the s-expression forms, an asterisk following a

subexpression denotes that the subexpression must also

be represented in s-expression form.

A variable is represented by the single symbolic atom

obtained by converting the letters in the variable into

upper case only, e.g. xl is represented by Xl.

A constant s-expression c is represented by (QUOTE c).

Other expressions:

car(x,y) is represented by (CAR x* y*) ,

cdr(x,y) is represented by (CDR x* y*) ,

cons(x,y)is represented by (CONS x* y*),

x+y is represented by (ADD x* y*) ,

x-y is represented by (SUB x* y*) ,

x*y is represented by (MUL x* y*) ,

x div y is represented by (DIV x* y*) ,

x rem y is represented by (REM x* y*),

eq(x,y) is represented by (EQ x* y*) ,

x~y is represented by (LEQ x* y*),

atom(x) is represented by (ATOM x*) ,

214.

if c then x else y is represented by (IF c* x* y*),

~(X1, ...)e is represented by (LAMBDA(x1* ...) e*),

e where x1=e1 ... is represented by

(LET e* (x1*.e1*) .••),

e whererec x1=e1 •.. is represented by

(LETREC e* (x1*.e*) .•.),

f(e1, ...) is represented by (f* e1* •..).

For example, the naive reverse program:

reverse

whererec reverse (1) = if eq(l,NIL) then NIL -------- -- ----

215.

else append(reverse(cdr(l»,cons(car(l),NIL»

and append (11,12) = if eq(ll, NIL) then 12 -- ----
else cons(car(ll), append(cdr(11),12»

is represented by

(LETREC REVERSE

(REVERSE LAMBDA (L)

(IF (EQ L (QUOTE NIL» (QUOTE NIL)

(APPEND (REVERSE (CDR L»

(CONS(CAR L)(QUOTE NIL»»)

(APPEND LAMBDA (Ll L2)

(IF (EQ Ll(QUOTE NIL» L2

(CONS(CAR Ll) (APPEND(CDR Ll) L2»»)

B.2 Compiling Lispkit programs for the LM.

The compilation process must take a Lispkit program,

which represents a function, and produce an s-expression

machine code program for the LM which evaluates the

function, applies it to some arguments and then halts.

I shall give here, in an informal fashion, the code

skeletons generated for each type of expression in

Lispkit. The compiled form of subexpressions will be

denoted by the use of a postfixed asterisk * A

vertical bar indicates list concatenation.

The compiler maintains a correctly structured environment

of variable names, and the indices required when compiling

a variable reference are obtained by examining the

environment. Treatment of the environment will be

completely implicit in the code skeletons, for

simplicity (Henderson gives a full treatment).

A program p is compiled and the instructions AP and

STOP are added to give the resultant object code:

p* I (AP STOP)

in which p* evaluates the function' closure, and AP

applies it to the input argument list.

Individual expression types:

x* (LD (m.n»

where x is a variable

and m,n are found by inspecting the environment

and locating x,

. (QUOTE e)* (LDC e) ,

(CAR e)* = e* (CAR) ,

(CDR e)* e* (CDR),

(CONS el e2)* = e2* I el* I (CONS),

(ADD el e2)* el* e2* I (ADD).

(SUB el e2)* = el* e2* I (S UB) •

(MUL el e2)* = el* e2* I (M UL) •

(DIV el e2)* = el* e2* I (DIV).

(REM el e2)* el* e2* I (REM).

(EQ el e2)* el* e2* I (E Q) •

(LEQ el e2)* el* e2* I (LE Q) •

(ATOM e)* e* I (ATOM).

216.

(IF el e2 e3)* = el*

(LAMBDA (xl .•.) e)*

(SEL e2* I (JOIN) e3* I (JOIN».

(LDF e* I (RTN»

and the environment for compiling

e is extended with the variable

names (... xl).

(f el •••)* = (LDC NIL) I el* I (CONS) I ... I f* I (AP)
(LET e (xl.el) ...)* =

(LDC NIL) I el* I (CONS) I ... I (LDF e* I (RTN) AP)

and the environment for compiling e

is extended with the variable names (... xl).

(LETREC e (xl.el) ...)* =

217.

(DUM LDC NIL) I e1* I (CONS) I ... I (LDF e* I (RTN)RAP)

and the environment for compiling e.e1 •... is

extended with the variable names (..• xl).

For example. the naive reverse program of the previous
-

section compiles to give the code:

(DUM LDC NIL

RAP

LDF (rO (0.0) LDC NIL EQ

SEL (LDC NIL JOIN)

RTN)

CONS

(LDC NIL

LDC NIL LD (0.0) CDR CONS LD (1.1) AP

CONS

LDC NIL LD (0.0) CAR CONS

CONS LD (1.0) AP JOIN)

LDF (LD (0.1) LDC NIL EQ

SEL (LD (0.0) JOIN)

CONS

(LDC NIL LD (0.1) CDR CONS

LD (0.0) CONS

LD (1.0) AP

LD (0.1) CAR CONS JOIN)

RTN) .

LDF (LD (0.1) RTN)

AP STOP)

B.3 The Lispkit Machine.

B.3.1 The registers.

At each step of the computation the entire machine

state is held in 4 registers, S,E,e and D. These

registers are the memory of the LM and contain the

program code, results, and working storage.

The value held by each register is an s-expression,

and hence all operations of the machine are performed

by constructing new s-expressions, and by selecting

subexpressions. In the machine transitions described

below the register values will be represented as

s-expressions, but with variables naming whole

expressions or subexpressions in order to be able to

identify identical values before and after transitions.

The general roles of the 4 registers can be described

as follows:

The S register ("Stack") is used for temporary working

storage in the construction of data structures

required by the machine. S is a list of values, and

the head of the list corresponds to the head of the

stack.

The E register ("Environment") contains a list of

lists corresponding to the environment of defined values

in which Lispkit expressions are evaluated. Each

member of the inner lists is a defined value, and each

inner list contains all the values defined as a group

(in a wh~ expression, !~~~ expression or function

application). Inner lists nearer the head of the

218.

environment correspond to inner levels of definitions.

E grows and shrinks during a computation in such a way

that the "current local variables" are always at the

head of E. Variable values in E are accessed by using

an ordered pair of indices generated when the program

is compiled. The ordered pair (x.y) locates the value

which is the (y+l)th member of the (x+l)th inner list

of E.

The C register ("Control") contains the sequence of

instructions currently being executed. The instruction

at the head of C is the next to be executed. New

instruction sequences are loaded into C primarily at

function application and conditional expressions. (Note,

from the compiler code skeletons in this appendix, that

!~~ and wh~~ expressions are executed like function

applications).

The D register ("Dump") maintains a record of

instruction sequences suspended at function applications

and of the corresponding Sand E values which must be

restored when the current function returns its result.

D is also used during conditional expression evaluation.

B.3.2 The state transition rules.

There are three phases of execution to be tackled here.

Firstly the LM must be set up with the code of the

program to be executed, and with its data. secondly

the transitions which accomplish the computation

must be described. Finally the result of the computation

must be extracted from the final state of the machine.

219.

Each state of the LM will be given as an ordered

quadruple (S,E,C,D) in which the items correspond to

the appropriately named registers above.

Initially the input to the machine consists of an

s-expression, fn, which is a machine language program,

and a list of s-expression values, args, forming the

input arguments to the program. The program fn contains

code to evaluate a closure, to apply the closure to

arguments at the head of S, and then to halt.

the initial state of the LM is

«args), NIL, fn, NIL)

i.e. S =cons(args, NIL) E = D = NIL C=fn

Hence

The ~omputation proceeds by executing LM instructions

from the head of C. The LM has a repertoire of 21

instructions represented by the mnemonics LD,LDC,CONS,

CAR,CDR,ADD,SUB,MUL,DIV,REM,EQ,LEQ,ATOM,SEL,JOIN,LDF,

AP,DUM,RAP,RTN,STOP. Each instruction determines

exactly one of the following transition rules, in

which the previous and next states are shown on the left

and right sides of a right pointing arrow, ~.

To load the value of a variable or constant onto S:

(s , e , (LD (m. n) . c) , d) ~ ((x. s) , e , c , d)

where x is obtained from e:

e = (.•.
"--,--J

• •• x •••) •••)
'----""

m n

items items

(s,e (LDC x.c).d)~«x.s),e,c,d)

220.

List construction and dissection on S:

({ a b. s) ,e, (CONS. c) ,d) ~{{ (a. b). s) ,e, c, d)

{ { (a. b) . s) , e , (CAR. c) , d) ~{ (a. s) , e , c , d)

({ (a.b) .s) ,e, (CDR.c) ,d)-:»{ (b.s) ,e,c,d)

Arithmetic on S. Note that the ~££nd operand is at the

head of S:

({x y.s),e,(ADD.c),d)~«z.s),e,c,d) where z=y+x

«x y.s),e,(SUB.c),d)~«z.s),e,c,d) where z=y-x

«x y.s),e,(MUL.C),d)~«z.s),e,c,d) where z=y*x

«x y.s),e,(DIV.c),d)~«z.s),e,c,d) where z=y div x

«x y.s),e,(REM.c),d)-+«z.s),e,c,d) where z=y rem x

Predicates testing the head members of S:

((x y. s) ,e , (E Q. c) ,d)~((b. s) ,e, c, d)

~ where b=T if x, yare equal atoms

=F otherwise

«x y.s),e,(LEQ.c),d)~«b.s),e,c,d)

where, assuming x and y are numbers,

b=T if Y x

=F otherwise

. ((x. s) ,e , (ATOM. c) ,d) ~((b. s) ,e ,C, d)

where b=T if x is an atom

= F otherwise

Conditional expression branching and rejoining:

«b.s),e,(SEL cl c2.c),d)~(s,e,csel,(c.d»

where csel=cl if b=T

=c2 otherwise

(s,e, (JOIN), (c.d))~(s,e,c,d)

constructing a function closure:

(s,e, (LDF body.c) ,d)4(«body.e) .s) ,e,c,d)

221.

Applying a function, or e-.aluating. an expression

qualified by ~here:

«(body.eclos) args.s),e,(AP.c),d)

~(NIL,(args.eclos),body,(s e c.d»

constructing a recursive environment, and evaluating an

expression qualified by whererec:

(s, e , (DUM. c) , d) ~ (s, (x. e) , c, d)

where x is any value (NIL would be
appropriate)

«(body.eclos) args.s), eclos,(RAP.c),d)

~ (NIL, e c los', body, (s e c. d))

where e=cdr (eclos)

and eclos' is obtained from eclos by

modifyi~ the car field of

eclos to be args.

Informally:

eclos=(x.e)=(args.e)=eclos'

Returning the result from function applications:

«x.sl), el,(RTN),(s2 e2 c.d»4«x.s2), e2,c,d)

Terminating the computation and returning the result:

«x.s),e,(STOp),d)~No successor state

When the computation has terminated in the state

«x.s),e,(STOP),d)

the result which is extracted from the machine is the

value of x from the head of the stack S.

B.4 An AlgolW software realisation of the LM.

The following pages contain a listing of the AlgolW

implementation of the LM which was used for the

experimental work reported in this thesis.

222.

AL";OL •
CCO U 1-
ooe l
OOUI
000 1
OUO I
0002
cu e ..
ce (~
cee::. 2 -
11007
OOO!!
000.; -2
UOIO
00 11
UOI.j
001~

00 1" 2 -
00 1"
vO l6
00 17
11017
,,010
eel9

01119
0020 3 -
u O~
00,4
OC~:J -3
00 2 0

0020
u027 .j-
0029
00 29 .. -
OO~I
00::2 -.
00:!3
OOJ~
OC 30
oe::8 -3
OC::S

ce39
OO~O 3-
00 4 2
00. 3
004~
0(4d
oe48 -3

00 .. 9
00 :: 0 3-
00~2
OO:..! .. -
00 ~ 4
ve s::. -4
00:;"
0 0 58
oeeu
CCou -3
c e t I
OOel
OOt2 .j-
OC6 4
Que:",
00 ~7
Oe09
O(e," -3
Ce70

e 0 7 u
OC 11 3 -
OC7J
OeiJ 4-
ee"i ::'
C(1" -4
Oe7 7
.; C7 9
CellO
(. f u -.j
Oef l

CCEI
\JOEl
Cef3

vOEJ
00<4
OOIS

o C E"
CO Eb
CCf 7

U087
oeso
(efS

LISP.MACHI"e

1.;0 G I"
U~F 1I~ll1 0N CF L 1ST STORAGE ol;e'"

I NTtu~R ~A~[S , ~O~UF_EL c ~ S , No _ C f_ S V~ES,
~l~~ l_ LLE~ . LAST_cLE~ •
FI RS 1_~Y ~o .L ~ST_!Y~d;

IS e I JUNC

~~~~~ ( ~~ ~Es~~ c~2F:~L E~~ · ) ~ F (CN~ES/"l.tMt:S 1"j; .l O (.a~ThCL( iJ i 

I f ( :!4U '( FAGE!-0 11 <~( OF LL E ~ S lH E~ 
bEG I N NO_ oF _ E L~~ S := 34~ '(~ AGe!-t) ; 

~ ~~~~ ~~ ~E 7~~~ CCN!tS/"L~O! TGO G~EAT . hE~wCE~ 10 _OF_EL~M~J; 
t"O; 
NU_OF _ S Y MdS : ~~OOO; XiP OF 5Y~ 6! ~ 
F l RS T _E L E ~: = I; LA ST_ ELEM: = Fl.S l_ ELE~. ,.,o OF ~LekS-I· 
F li<S T _SY ~ d := LAST _EL E~ 'I; LAS1 _ SY~E:=f I f;ST _ SY~E'NC_CF _ ;Y><aS-I; 

tlEG l " 

INT cGE~ ".lL. NEX T_ ELE~ . ~EX1_~\~ a ; 

INTE GE H AhHAY FLA GS ,(Jf;,C Cf; (FIf;ST_ E L EM: :LA!T ELE~ I; 
S TRING(1 2 1 ARRAY SVAL (Fl hS T_ SY ~E:: L A S T_ SWMe l~ 

PROCEDURE 1~IT_LlSl_Sl oRA~E; 
tlEG I~ ~EXl E L E M:=FIHSl ELE.; 

NtAl_S)~~:=F ' ~ST_5~~d; "lL:=!~M6 'I' hlLNJ; 
Fu~ 1 :=t-1I,S T ELc M UNllL LAST E L':~ DC CAI«II:=I.I; 

E I-O; 

l~l EGE ~ F~OCtJURE S lMFL EC (~ S II ~lE(EN VALUE Nc . C~R , ~~ . COk ); 
~ E vIN l~l EGE R T EM P; ' (' LV L SED I N GcTEAP ~ 

I~ N ~X l ~LEM>LA 5 T E L ~ M It- EN 
Bt~l~ WNITt("lCNS/ ~U~e SF .Ct oVERFLC . DURII~ S - ExP INPUT "I; 

AS !ER l FA L Se : 
E ~ C ; 

T E ~F: =I-EX l E L £ ~; ' ( XT E l E ~ : =(' " I N~AT E L E ~I; 
CARlle~P):~N E ~CAh : CC~l l EMF ): =NE~CUh~ FLAGS(TeM~ ): =I; 
11:_ F 

£ 1\ 0 ; 

lNT E~eR ~h C C~CURE CC~S II N 1 EGER VALU~ Nc .CAh , NE , CUh l; 
bEvlN l~l l:( ER l E ~F; 

I F ' EX T e l EM> L. S l E L EM It-EN ~'~EA~E COL l !:C l; 
T E ~F: =I-~A l E L t ~; -~EAT E L E~:=( ) f;(N Al iLEM ); 
CAf; IT E ~ F I:;NE~C'R; CE" (l EMF J :=~E.CU~; FLAGS l lfNF ) :=I; 
T E.P 

E~O; 

INT EGEh Ff;CCEDURE S I MF L I:NUME (I N 1 !:GE~ VALUf ~ E . ~~~o l; 
~EG I ~ lNl t~t h lEMF; ACNL> L ~EO I N GE T EAP , 

J ~ NEAT t L EM> L' ~ l tLE. It- E ~ 
OI:~l1- WR I TI:( " lc~s/~U~d SF AC E GV"RF LO. Ou~ I ~~ S-tXP I NPUT" I; 

AS! E l'l FALSE; 
t."O ; 

T f .F: = I-CAT E L E.; NEX T EL EM:=CAf;( NEA T ELEM ); 
CAA (l [ .FI:;NE'~UM B ; F Li G! (T E.F):=l; -
l E ~F 

E I\O; 

IN1~ G t R ~hCCEuUhE "U. ~ (IN1 EGER \. LUE NE. NU . C J; 
bEG I N I N lt ~t h T E.P; 

+~.~~~ ~ E~ ~ E~~~~~T_ ~~~ ~ ~t~~:~~;~~ ~~x~o~ t~~;; 
C.f; ll E ~' F) :;NEoNUM1:l; F L. GS (lE.P) : =2; -
11:.,..'= . 

EhU; 

I NT EGE f; ~ ~C CED U RE S YM e ( S TF1~ G I1 2 ) VALUf NE . SYMB I; 
UtUIN l~l ~~EH l E ~F ; 

I F ~ixl SWMS> L. S T O WN S It-EI-
dc.I..J J" " f; lT E( "~"(~ eC L SJ=ACE Cvt. R.t= LO ...... ); 

A5Si'R T FALSE; 
E I\O; 

T~~~~=~[Xi_SYN O ; ~EXT_~"(~E:=~EAT_ S~MB .l; 
SVAL(T c MP J :=N E II S Y"' B ; 
lE.F 

tl-O; 

LOGICAL FhCCtDURE I!_~ Ma llI-1 EGEf; VALUE PTh ); 
F 1RS 1_ S W. d<=FTR A~U F1R<=LAS1_ SY ~E; 

L LG I CA L PRCCtOURE I SELENliN1EGEI' VALUe PTN); 
F I RS1_eLt.<=FT~ '~Il P l~ <= L~51_ ELE~ ; 

22 3. 



ALGUL ~ 

CCey 
o C S I 

<>O~ I 
UO ~ 2 ~-
O fJ t; v 
CCStl 
OOSO 
C O~9 
.0,,9 
CJ,9 4-
U 101 -4 
0 1 0 3 
0 10 3 
0 1 03 4-
ole::> -4 
0l C7 
0 1 07 -3 
0 1(" 

OI Ctl 
o I Oil 3-
011 2 
o I I ~ 
o II ~ 4-
o II ~ 
01 I !:> 5 -
0117 
<>117 b-
0119 
01 2 0 -6 
01 ~ 1 
01 2 3 
01 24 -!:> 
OI L::> 
01 2 b -4 
01 2 7 
01 27 -.3 

ALGOL '1/ 

OILtJ 
01 , 9 

01 29 
111 3 0 :l3 
Ol ~~ 

0133 
01 3 4 
01 3 4 3 3 
0 1 36 
01 3 6 3 3 
0140 3 .> 
014.J 

014 3 
01 .. 4 .J-
0147 ~4 
014') -3 
U 1 ::>0 

01 5 0 
0 1 5 1 
0101 
01 :.i l 3 -
01 ~ .J 
01 53 4 .. 
01 !:o 
01 0 0 43 
01 60 

010v 
Olbl .>-
I,) l ou ~4 
Ol ua ~4 
017 2 
017 2 4-
017 ::> 
01 ·' 0 -4 
0 1 ? 7 
CI77 -3 
017 b 

017" 
0 179 
0 17 9 J -
O l e .J 
0 1 f 5 
C I E7 
0 l d7 4 4 
0 190 
0 1 . 1 -.J 
0 1 92 

0 lS 2 

L I 5P .M ~CH 1 "C G~hdAGe CCLLlCT1C" 

l N T cGtc~ .fd, ~ AY ST~Cl(ll : :10001 ; 

~ HOC[LUk" EPRdAGE _ CCLLEC T ; 

1 «;bl JU"c 

l"l ECE" ST _ P1R; 

dE~ I N .A hK _ F~CM C ~ ); ~ 1 ~I( _ F f CM C E ); ~ ' ''I( _ F~OMCC); 
MA~ ~ _ ~h ( ~ l U ); ~P~K _~ RC ~( ~ ) : 

NtX T_ c L c ~: =LAS T _E L E~ +l ; 
FC" I: =F I HS T_ E LCM L" TIL LAS l E L E~ 00 

IF F LA GS (ll <O T hEN I- L AGS CI) : =AdS l l-'LA(;S CI 1) 
ELSE uEGI" CJ RC I) :="".(1 _ EL">'; 

"E> l_ E L E~: =I ; END ; 

IF " E X1_ EL I:' M> L' Sl_EL EM ll-E N 
" Io G I " " I' IT c C" CC"S/ "L. U SF ACE CVERFLC .,,) · 

A SSt:N T fAL St:: ; E~D ; I 

c"U ~ ' k bA G t_C O LL EC T; 

P AOCEULRIo M'~ I(_F~ C MCI"T EGE~ ~ ' L L E F T ~ ); 
d EG IN ~ T_Fl N := 2 ; 5 TA CK C I) : =P TN; 

WhlLI:' ~l PT H ~=I DC 
"lG IN ~ T=P T R := S T_ P T i< -I; P T~:= S l AC" CST_ P T ~ ); 

.hIL E I SCON5 C PT ~ ) P"C FLA ES (FT ~ ) O DO 
GE E H F LI, G~ (PT R ) :=-1; 

IF ~T_PT R> I OOO T, E" 
bEG !~~~: +T ~ !~ ~~ ~ e A(E C CLL E 'T D~ STA C" CJVERFLO ."); 

E: NO; 

~~~~~~ ;;,~~~;~=C (~ CFT~); S T F T ~ := S l P 1 k +l; 

tND;
IF IS~U M " CP1 R) T hEN FLA GS CFl l' l:=- 2 ;

ENO;

LI SP .M AC HI" " I" P UT A" O OU T P Ul (F S- EXP~ES~ I CJNS I se l JU~E

5 TRIN G CI 2 J TC " EN.lvP E ;

P~OCEC U RE ~ CAN;
B E~ l '~ GE TT (KE I~ (T OKEN.TY P~); I F 1) PE = uENDF 1L E" ThEN T CKcN : =") " 2NO :

~ r.OCE0 ~ RE GE T EXP CINT EE t~ . E ~lLT E);
J F T C~E ~ = "(fl Th EN
dEG I" SCA "; GET EX PLl S T(E); ' SSI=~ l T CJKE" =")" ; SCAN eND ELSE
IF TY~E= "~ W ~ ~A IC" Th E ~

8EG I" E:=S I~ P L E "U" E C1CINT E(ER Il O"EN)) ; SCAN END E Lse
d E Gl~ E : =~)~o(T CKEN); S (A~ E~ O i

PROC E C ~R E ("l EX PLI S 1CI"T E (E ~ ~ E S U L1 E);
~EG IN e : =5 IM P LEC C" S (0 . 0); (E T EXF C C A ~ C c));

I F l (KI: " = T, E ~ EEG IN SC .,,; GE 1 EXPICOR CE)) END ELSe
I F l CK~" ="J" Th EN CC~ (E J : = " IL ELSE Gi T EXPL I S 1I CD~C)) eND ;

P~OCI=C~ R E F L1 EX PCI"T "(E ~ Y ~Lu E E) ;
I F I S~ VMI:(E J T hE N F UT1 CKe "C S 'ALC E)) EL SE
IF I SN ~ ME C E J Th" N Pu TT KE "(l (S T. I " G (CAH (c))J I=LSi
8EG I N FU Tl C ~ EN ("C"J;
_ h IL " ISC (" S I ") DO

dc "l<. ~ LT I=X PCCA n C E); [:= CDR CE J E " O ;
I F 1 ~5 IM d C E) ANC SVA LC E) = " " I L" T, EN EL SE
c:EG IN FU TTC I<EN (·' ."); FU T EXP (E ' t.ND ; PUTTCKEN (")II) ENL.l ;

lNT EGE~ F~CCED U RE TOI"T E(EkC S T k l" G(1 2) VALUt TJ;
!:.it"; l,..., S TFdf\ G t 1) 0 ; I NT EGER 1.5. LGG I CAL Nc:. ; 5:=0.

I F 1Iull)=" - " Th EN b,G I" " EG :=l kUE ; 1:=1 END
c L ~E ,"oE I" NEG: =, ALSE ; I: =u E"O; c:= T CIIIJ;
w HIL1: C ~:" Of DO
dt:G I" ~ :=IO.S+(C ECOOE C D)- CECOCE C" O ")) ; 1:=1'1 ;

I, 1>11 T, E N L1 : = " " t: L ~E 0 :=1(1 11) ;
E ND ;
IF " EG ll- E " -5 EL SE 5

t: f\ l,) i

ST R IN G CI ~) FROCED ~~E l GS T "ING II~T EGEI' VALUE I);
I, 1 = 0 Thtct> " 0 " ELSE
uE~ It> ST ~ I~ulI 2)T; LOG I CA L " EG ; I " T EGE~ L ;

NEG ;=l <' C; T:=" ";
1: =AtlS (1);L: =2+ 1 kU"C ~T E C LG (C l •• l)) ;
fOh j : = L-l 5 T EF -1 LN TI L I DC
d"~ I " TCjll) :=CC Ce l CcCDCE C" O",.1 k[M I U) 1:=' D IV 10 END;

I F NEG T hEN 1(0 11): = " - "; 1
cNU ;

P~OCECvRE 1"11 ~ Y~l AX ; se A";

22

ALC,UL "
0194
ClSv
OH7

O I ~ 7
o ls e J-
0 l S9 4-
020 1 -'+
O£O2 -3
02C~
u20"
02(5

020 '-'
020., :J -
02 C9
02 O.
0 209 4-
02 1o!
u 2 1 tJ
0215 55
0, 19 - 4
0219
0219 ,,-
0 2,2
022t>
0 225 5 -
022u
0229 - 5
02<9 -4
0229 ~-
o 2~ 1 ~J
02 ~ 4
02 34
02~L

02Jv
0 2J7 J-
O£J9 - J
0241

0 2 "1
0 24<1 3 3
02"5

02"5
0 2 4 0 j -

0249
0250 -J
02~2

0 2~2
0 2 ~:J J-
U ~: 7 -3

ALGUL "

0258
0200
<1 2 , I
02 t £

0 2 (2
02<J
02 1 4
02(5

0 20S
0207
o.c.ctt 3 -
0211
027£
0213 -3
0 4:/ ,,

0 27 "
0210

LISF.MA CH[I\([I\FU T/ CL TPLl OF lC<EI\~ 1 SEI JU",E

P~OCECLRt ~c l CHAR ;
BtC, I N I F l"'bLFPT~>IN ELFEN C l hE"

!.lEG I" GETL["(I[~EUFfE~ , INcLftl\D , eCF I;
I N!.lUFF T ~:=1 EI\C;

Ch:=INbLFF",RIIN 6UFPT~); [I\EUfFl~:= I NEUFP1R '1 tNO ;

Slid",C,(I)Ch;

PROCE":LJ<L ~ETTC O«I\ I S T~It< G (I <HleSvL T TGO<[H ,l 'Pt. J;
~~G J~ l(~t~:= ·t t'; WHILE~E(f ' NO (h=~ " 00 GETChAR ;
IF eUF Th EI\ lYPE:= " tl\DF IL E" ELSE
IF HUIl <=C ~ At\O CH<="9" Oh. C :II_U lht:N
bE~IN 'I~T ~GE ~ 1; lY P~ :=" N L~ E~ lC";

T Co<EN [u l[I: =C h; 1: = 1; ~E1ChA~;
Wh iL e " O"<=CH At\ LJ (~ <="C;" CO
BE(l N ASSER T 1<1 2 ; lCO<e ~([111:=(h; 1:='+1; (E1Ch~R EN':>

[~ D I:: L~ E
I F " AOI<=Ch A" O Ch<="Z" Th EN
bE~lN I NT t: G E ~ 1; lYP E: ="ALF h ~ "U ~E~lC";

TCO<el\ I O III:=cH; [: =1 ; GE l ChA h;
~NIL E " A~< = C H ~" O Ch <=f'~'1 CO
!.l G II\

ASSeRT 1<1 2 ; TC KEN (IIl):=Ch; 1: = 1+1; .oElCHA~
~NC

END C l~ E
~~G ll~ lVP ~: ='f DE LI~lT~ ~ ";

dEG II\ lC o<EN I OIII: =Ch ; (,ETChA~ el\D ENLJ I:.NO;

STfdNl"(II'h F;AV OU 1 8U FftR(I::eO); I Nl EGER OU l tlUFPTR ;

PRUCcDLR~ Fu l CHAR (S T~ING[IJ\AL uE ();
bEG I N I F LLTtUFPTR =SO T hE ~ fC~CtL I NEOU 1;

OUTOUFP1~:=DUT bUFPTR 'I; OL TeUFfER(OU TdUFPTR):=C END;

PROCc CvJ<E F O hCELI~ECvl;
dE~ II\ P UTLI NE I OU l E uFFER.OLleLF FT~I; Ou TdUFPTR : =O "'~

P~OCEC L ~ L F LTT OKE~ (ST~ING(1 2 I VA lL E Tl;
bEGIN [NT EGEF; LEN; Ltl\:=I~;

"H lle l ~">O AND T(L EN-IIII=" " CO LEN:=LEN-I;
FOH 1:=0 UNTIL LE,,- I DC Fu lC h~~ (T(ll III ; PU1ChAF;(" "I t 0;

P ~ OCI:'CLRt I~IT LE ~ ICPL;
BEG IN .oETL1" E (l NdUFFER ,IN EUfEND , E[F I; I NtlU,P TR:=I; GLTCHA~;

OUT ELFP Th:=O E",C;

LISP.MA CH II\ E INFuT/ OLTPLT OF LII\ ES 1 SEI JU~E

FOR Th)lil\ " ~E AO" i

PF;UCEC LRt FL1(ST~ING(I)AR~PY LI~E('I; INT EGER VALUe LEN . MOO .
L "L~ , CEv I;

PHOC~DuRE ~E1LINE(S TF;I NG (IIA "~A) LII\~6~:~!~T ~E~~L~e~~~ j;L I:.N ;
uElall\ LI Nc ll):=u .. ; GE T(Ll" E , LE" , C . O , OJ'

EOF :=R COCE>O;
L ~":="U~dER l d [T ! T ~I ~ ((L E") !h~ 101;

P h OCEDURE FLTLINE(ST~ING(IP""A) ll "E ('I; I"T~~ER VALUe LEN);
PUT (Ll" L ," uMbER ' BlTS T~l N~ (LE") ~hL 10). 0 . Q . l).

225 .

AL G L ~

02 77
02 7d

IU7u
C2 7 9 J-
C ~ 8 1
C2 € o
0 28tJ
(.88
OUel 4-
028 , :, -
O " ~ I -:,
0 29 J :;,5
02S6 .;J~
uJOO :J -
0 3 0 4
03 06 -~
OJ C7 ~-
03 09
0 3 II -~
0 3 12 50
031'-> ~ -
OJI U
0 3 19
03 <2 -;,
o J 2.3 ;,-
0:; 2:>
03 ,,5 - ~
OJ 2 7 ,, ~

O_DO "" UJ3::' ,,~

O~ .Jo ~-
OJ :;7 - 5
0 ." J9 :>-
0 3 . 2 - ~
o J4J ~-
0344
0 3 44
OJ~ 4
OJ 44 - ~
OJ4("
UJ40 ~"
034S ,, 5
OJ S~ !.:J!J
O J ~;, "" 0 35d 05
O'; tl
03 e l
U3 f .l
03 tJ -" 03 (5 :,t;
OJ67 -~
OJ 09
O J o ~
uJc "; - 3

0 3 7U
0 3 71 J-
OJ74
0:: 7 0
031 0 -3
OJ77

0 3 77
037 b 3 -
OJ 7 9
OJ7 9
UJ 7\1
0 3 7 9
UJ 7 9
0 379
OJ 80
0 38 0 -J

AL GOL W

0313 1
OJe,
0 ..!6 :...
03 <7
O:l d b
03 ~ 0 .. 2
0 3S I -I

2 2 6 .

E.< E CUTIOI C)C LE ISEI Ju~E

C) C L E :CA S~ C ~R(CA"(Cl) CF
Bt~ I N
dEG II. L C ~ ;~~g~~~~~ ~~~ (~~:g ~ 7~ ~g7 ~ ~ ~) ~~ C~Af" C ,« ARIC (- I) I I . e l ;
dl:~ I N LLe
d EG I N LDF
b ~ G I'" AF

BEG I N J;lN

BEG IN Cu M
61:(11; hA P

5: = CC!N~ (CA F((C " ICI) .S); C: = CCR (CL." I CJ J EN0 ;
":= C~~~ (C ~F(CCF(C)J. E I; 5: = CCNS(•• S I: c: = Ll I ORI I) e u ;
LJ := CU NS (CC F ((J. D); O := CONS lc. Ll I: D := CeJN lC ORlC0 R tSJI ".I):
~ :~ ~?~5~~~ ~((C F (~)).C CR (C A R(S III: C :=ORICAK(S I I;

S :=C OtlS (C AF (~J.(JF(O I);
E : = C A R (c Ok (C I I; c: = C AR (CDI'd CDR (L. I) I ;
D := CO>«COR ((C FIOJI) ENu :
E:= CONS(N IL. E I; C:= CCR (C I e NLl :
0 := G ~ ~ (C O F(CI.OI; C := CCN (LlR IEI. OI ;
. u: = CO~SICuh (CLl H I S I). u J :

I::= CD"(CAR (S I): CJf;(EI:= CA ,,(':: LJF.IS)J: C := AR I AI«S I);
S :=NIL E ~ O :

B ~ ~ I N S ~L : O:= CCN ~(CCF (CC" ICC F ICIII. D I:

beG IN J O IN:
tlEG I N C AR :
UI:G I N c ur, -:
OEG lN ATCM:

11-' S VAL((A F I~II="l" l h ~ N :=CAI;I 0 1e)1 E L Se
C:= C AR (C DR (CCF (CI)I; S:=COR I S I END :
C:= CAR (DI; C := C0 FI (. 1 c"'l: ;
S := CCNS (C A ~ (C~ ~ I S ll. COR I S II; C := COJ;IC I 0 ;
S := CON~ I CDF (C ~ F (S II. CCR I SI I; := CO I I NLJ:
IF I S~Y . 8 1 (t F (S II OR I S UMd l C ARIS II TheN
5 := C O,, " (T. CC F(S JI EL SE 5:= CNS(F . CD (5)1: C : =CO"(L I eNLl ;

I.J G I N CCN S :":= CON; I CAr. I S I. C ~ R I CO R I S IJI; S : =CONSI •• u (CuRISI I I;
- C := CD~ (C I E ~ C ;

tl t G IN E C I I' I S;)N E (C~ F (S II AN C I SS 'f M~ 1 A" I l) 1 " 111 ANlJ
S VAL ((A I< (S I I= S VAL((AR l eu,'(S » I 0
I SNU .E(C t F (S IJ A~ O I SNUMd I C ~ R t CI<IS I1) ANu
C AR (C Ak l ;)I=CA"(CA"ICuf< I ;' J)1 Thl:N S:=CC " I T . lJF;(euh (" J1J

EL SE b : =ca ~ S I F . CDR I CO (5 11); ~ := CD l e I ~Nu ;

d l: ~ IN ADO
b t:Cd N S Ub
tJl: "IN .vL
B e GIN C IV
1l1:(' I N ~ fo~:::

S : =Af< ITh(1. 5);
S :=A R IT!· U . S l;
5 :=A R IT.(J.SI;
S : =AR ITr,(4. ~ J;
S : = Ah l Th (S . S);

C:= CCR I C I LNLl ;
C:= CCR (C I ENU ;
C := CCR(C I ENe;
C:=CCk () E "u ;
C: = C CR(C I E Na :

bE~ IN L EO: IF C Ak (CA R (C C"(S I)I <=CAI«CAn (!> 11 THeN
S :=CC NS (T . C C IC CR I S IIJ EL !>E S:=CONS (F . Ok(CLlFd S II) ;
C : =CDI«() ; E ~ C ;

DEG lN b l OF : GO T O " LJ ' CL E E'" ;
E "' LJ : GG1 0 C 'f C L E :

E "' DC 'f C L E : C AF(5 1
E Nu:

INT C: ~I:~ >'I' O«(: DUR I: L OCK UP II NTEGI:" VAL UE L e VEL S . IT .. 5 •• I;
dE "IN FO~ 1: = 1 UNTIL LeV E L S C C ':=CC~ (.J: . :=C AJ;I . I ;

FOF 1:=1 U ~ll L IT EM~ CO .: =C R lol; ~: =CA" I.I ;

• 1::",, 0 LC CKUPj

lNT I:GE F p~ aC e a U RE A J; I1~II~T E G E" VAL uE OP . S I;

[JEG ~~=CASE CF OF :'NC T C: lhn A~ IVAL IS SeLEC 1 EO tH A AI< F I ELu,(
("LMtj(C AR(C A k (CDR (S IIJ+C~FI CARIS) II.

~ U"'.d C ~ R (CA R (CDh (5 1 II-U !: (CA l S I I I.
"U'[J I C A I< (C H . ((Cli (S I II • C A!: ((AR 15 1 I J.
~LM d (C A ~ (C A R (CR (S III e lV CAR (CA R I S JJI.
NWMd (CA J; ((A R (CDR I S III " I: M C AR (CAR (I JI I;

Ce N ; I " . CC F (CD" I S J I I
E ND ;

LI S F. MAC HI", E CGNT I<O L OPe~ATIC~ I SS I J U"'~

:~i ~G ~ ~.< ~ ~ ;~7 GS i ~ ~ i ~ S 'f N T AX ; j~ll_ L I S T_ S T OFA G E ;
~ I: TE~P I F '" I; GE T EXP LI S 1I A FG S);
Rt S : =AFF LY(F~tA R~5) ;
PUTE>~ I RI:S I; FORCE LI~ EOU 1;

tf\ O IJ A l l\ cL (II.,
I: ~ D . -

227.

Appendix C.

This appendix is a brief sketch of the origins and development

of my personal dialect of Prolog and its implementation, as

described in Chapter 3 and Appendix D respectively. I will

provide a few signposts into the literature of logic

programming. Kowalski (1979) tackles the application of logic

methods to problem solving in great depth, and also provides

an extensive bibliography.

The Prolog language and its semantics arise from the notions of

theorem proving as applied to a restricted form of sentences in

the first order predicate calculus.

A problem is represented as sentences, or statements, in the

quantifier free clausal form of logic (Nilsson (1971». The

solution of the problem is found by discovering an inconsistent

set of instances of the statements. Robinson (1963) describes

the "combinatorial explosion" which, in general, hampers the

search for an inconsistent set of instances.

The use of unification with the resolution inference method

are presented in Robinson (1965) and (1967), with the emphasis

on a more directed search for inconsistent sets of instances.

Kowalski (1974) noted that the Horn clause subset of sentences

has a useful interpretat~onas procedures describing relations

or predicates over symbolic data structures, and that problems

expressed in this form were programs which could be executed

by an efficient, top down,theorem prover.

Horn clause logic thus adopted the status of a prototype

for a programming language ("Prolog"), and specially

designed interpreters and compilers appeared (for example

Roussel (1975), Warren (1977), and Clark (1979». However,

each of these systems incorporates extra features to

overcome fundamental limitations of programming in the Horn

clause style. These include: evaluable predicates (to

avoid the necessity of defining arithmetic and other basic

relations explicitly), "cut" (to provide explicit control

of the backtracking of the theorem prover), negated

antecedents in clauses, side effect~ (allowing a program

to change the clauses from which it is built), and control

flow annotations (to guide the activity of the theorem

prover) .

The P r.o log 1 an g u age 0 f C hap t e r 3 i s are s t r a i ned ext ens ion

of Horn clause programming but compatible with enabling a

228.

reasonable set of interesting applications. Simple evaluable

("primitive") predicates are provided in a limited form.

Negation of antecedents is important and has been included,

but its implementation is problematical. Negation steps

outside the Horn clause formalism, back towards general

sentences, and the semantics of negation, in the context

of the efficient Horn clause theorem prover, must be

considered carefully if spurious, incorrect results are to

be avoided (Clark (1978». Warren's Prolog and Clark's

IC-Prolog differ in their treatment of negation. I have

chosen to follow IC-Prolog's safer scheme, by disallowing

the continuation of a computation when theory shows that

the outcome of the execution of a negation is inconclusive

in determining success or failure. My dialect of Prolog

is also constrained to manipulating symbolic expressions

built using the s-expression dot constructor - but clearly

other constructors can be simulated by appropriate s-expressions.

229.

The Prolog implementation described in Appendix 0 has been a

deliberate attempt to follow the abstract machine style of

Landin (1964), as discussed in the context of Lispkit in

Appendix A.

APPENDIX D. A PSEUDO-MACHINE IMPLEMENTATION OF PROLOG.

230.

A pseudo-machine implementation of Prolog.

The implementation of Prolog described here follows the

design principles as the Lispkit machine in Appendix B.

The implementation is a high level Prolog Machine (PM)

which requires that Prolog programs be compiled into a

special purpose intermediate machine language before

same

execution. The semantic capabilities of the implemented

language are those outlined in the language description

and operational model of Chapter 3, though that is not a

formal specification. The operational model is a

reasonably accurate reflection of the behaviour of the PM.

Architecturally the PM is a fairly conventional sequential

machine in which each sequential step involves a change of

the machine state. The state of the machine is held in

9 registers - this includes program code and data structures.

I have chosen to follow the Lispkit machine paradigm in

the design and presentation of the PM; the sequential

architecture is a straightforward style to handle.

Although conceived and designed independently, the

sequential machine style is very similar to Warren's

Prolog implementation (Warren (1977». Warren compiles

Prolog programs into the machine language of the DEClO

computer, although the code skeletons are based on the

microprograms for high level machine operations. I

choose to maintain the integrity of a single high level

machine, and to isolate its states and transitions

explicitly. I shall use a style of notation for

presenting the transitions of the PM very close to that

used for the LM, though it may not succeed in clarity

as well as in Appendix B since the operations of the

PM are essentially more powerful than those of the LM.

This appendix outlines one possible s-expression syntax

for Prolog programs, the code produced when compiling

such programs, the machine state representation, and the

state transitions. The appendix is not a complete

description of a software realisation of the PM, but the

listing of an AlgolW realisation is included. Some more

details of the AlgolW PM are given in Chapter 6.

D.l An s-expression syntax for Prolog.

For practical purposes Prolog is processed on the computer

in the form of s-expressions. Each Prolog construct, in

the notation of Chapter 3, is given a corresponding

s-expression representation. This particular syntax is

that in which the higher level interpreter of Chapter 7

expects to receive Prolog programs. The syntax is similar

to that f'mployed by the MicroProlog system impleme-nted at

Imperial College and described in McCabe (1980).

One trivial extension to the s-expression notation is

employed below. This is the distinguishable symbolic

atom consisting of a single apostrophe '. It is used

as the "keyword" introducing a constant s-expression

in an su-expression pattern. 'thus corresponds to

QUOTE in the s-expression syntax of LIspkit, but I hope

that it is less obtrusive as it is to be used within

patterns.

In the s-expression forms a subexpression postfixed by

an asterisk * must also be represented in s-expression

fopm.

231.

Each variable and predicate name is represented by the

single symbolic atom formed by converting letters from

lower to upper case, e.g. x, p are represented as x, P.

Su-expression patterns used as formal or actual arguments:

Variables: Represented by upper case form.

Constant su-expression (not containing variables): c is

represented by (' .c) with the exception of NIL, which is

allowed to represent i~self, for convenience.

Constructed expressions: (x.y) is represented as (x*.y*).

Conditions calling defined predicates:

p(a1, ...) is represented as (p* a1* ...).

Conditions call ing primitive predicates:

add (x,y,z) is represented by (ADD x* y* z*),

sub Jx,y,z) is represented by (SUB x* y* z *) ,

mul . (x,y,z) is represented by (MUL x* y* z*) ,

div (x~y,z) is represented by (DIV x* y* z *) ,

rem (x,y,z) is represented by (REM x* y* z*),

atom(x) is represented by (ATOM x*),

eq (x,y) is represented by (EQ x* y*) ,

leq (x, y) is represented by (LEQ x* y*).

Negated conditions:

-,C is represented by (NOT.c*).

Predicate definitions: Collecting together all the cases

of predicate p, and naming the cases, stripped of the

name p, by cal, ca2, etc:

232.

p () +- ... or p cal is represented by (p* cal * ca2* .,.)

p (...) ~... p ca2

where each of the cases is represented as follows:

(a1, ...)~ is represented by «a1* ... »,
(a1, ... ~ c1, ... is represented by «a1* ...)IF c1* ...).

The overall program structure, where the cases for the

defined predicates have been collected together as pI

p2, etc:

query (al, ...)~cl, .•.

pI

p2

is represented as «QUERY (al* ...) IF cl* ...)

WHERE

pl* p2* ...)

For example, the naive reverse program:

query (11,12)~rev(11, 12)

rev (NIL,NIL)~

rev «x.ll), l2)~ rev(11,13), append (13, (x), 12)

append (NIL,l,l)~

appe_nd «x.l1), 12, (x.13» ~append (11, 12, 13)

is represented in the s-expression syntax as:

«QUERY (Ll L2) IF (REV Ll L2» WHERE

(REV «NIL NIL»

«X.LI) L2) IF (REV Ll L3) (APPEND L3 (X) L2»)

(APPEND « NIL L L.»

«(X.Ll) L2 (X.L3» IF (APPEND Ll L2 L3»»

D.2 Compiling Prolog programs for the PM.

The compilation process must take a Prolog program, which

is a list of predicate definitions with a distinguished

query predicate, and produce an s-expression machine code

program for the PM which contains the compiled definitions

and instructions to invoke the query predicate.

I shall give here, in an informal notation, the code

skeletons generated for Prolog constructs. The compiled

form of syntactic items will be denoted by the use of a

postfixed asterisk * A vertical bar t indicates liat

concatenation.

When compiling a predicate case the compiler maintains

an ordered list of the local variables used in the case.

The indices required for ALDV and FLDV instructions are

computed from this list.

A program consisting of a query case q and a list of

predicate definitions pl, .•. (each of which is a group

of one or more cases):

«QUERY.q) WHERE pl ...)*

«INVOKE 0 HALT) (QUERY q)* pl* ...).

Note that the query has been changed to a single case

predIcate (QUERY q)* to be compiled.

A predicate definition with cases cl, c2, .. .

(p cl c2 ..•)* = (TRYCASE cl* TRYCASE c2* ... ENDP).

Individual cases without and with conditions:

«al a2 .•• »* = (DCL m) I (al a2 ...)*, (UNIFY ENDC)

«al a2 ..•) IF cl c2 •..)* =

(DCL m) I (al a2 ...)* I (UNIFy)lcl*I·.·1 (ENDC)

where m is the number of local variables in the case, and

(al a2 •••)* must be compiled as a formal argument list.

Formal argument list:

(al a2 ...)* = al* I a2* I ... I (FLDC NIL FCONS ... FTOP)

where the number of FCONS instructions is equal to the

number of arguments al, a2,

Individual formal argument patterns:

Variables: x* = (FLDV n) where n is the index of x in

the local environment

(numbered from zero).

234. 1

Constant expressions c* = (FLDC c).

Constructed expressions (x.y)* = x* I y* I (FCONs).

Conditions, not negated and negated:

(p al ...) * = (al .•.) * I p*

(NOT P al ...) * = (al •••)"* I (NSUCCTRAP) I p* \ (NFAIL)

where (al ..•)* is compiled as an actual argument list,

and p* as a predicate name.

The predicate name in a condition, either a defined or

primitive predicate:

defined* = (INVOKE n) where n is the index of the

predicate in the global list of

definitions (numbered from zero).

prim* = {PRIM prim)where prim specifies the primitive

action to be performed.

Actual argument list:

(al a2 •..)* = al* (a2* I ... I (ALDC NIL ACONS ... ATOP)

where the number of ACONS instructions is equal to the

number of arguments al, a2, •..

Individual actual argument patterns:

Variables: x* = (ALDV n) where n is the index of x in

the local environment

(numbered from zero).

constant expressions: c* = (ALDC c).

Constructed expressions: (x.y)* = x* I y* I (ACONS).

For example, the naive reverse program from the previous

section compiles to give:

«INVOKE 0 HALT)

(TRYCASE (DCL 2 FLDV 0 FLDV 1 FLDC NIL FCONS FCONS FTOP

ENDP)

UNIFY ALDV 0 ALDV 1 ALDC NIL ACONS ACONS ATOP

INVOKE 1 ENDC)

(TRYCASE (DCL 0 FLDC NIL FLDC NIL FLDC NIL ~CONS ~CONS FTOP

UNIFY ENDC)

TRYCASE (DCL 4 FLDV 0 FLDV 1 FCONS FLDV 2 FLDC NIL

235.

236.

FCONS FCONSFTOP UNIFY

ALDV 1 ALDV 3 ALDC NIL ACONS ACONS ATOP INVOKE 1

ALDV 3 ALDV 0 ALDC NIL ACONS ALDV 2 ALDC NIL

ACONS ACONS ACONS ATOP INVOKE 2 ENDC)

ENDP)

(TRYCASE

TRYCASE

ENDP»

(DCL 1 FLDC NIL FLDV 0 FLDV 0 FLDC NIL

FCONS FCONS FCONS FTOP UNIFY ENDC)

(DCL 4 FLDV 0 FLDV 1 FCONS FLDV 2 FLDV 0 FLDV 3

FCONS FLDC NIL FCONS FCONS FCONS FTOP UNIFY

ALDV 1 ALDV 2 ALDV 3 ALDC NIL

ACONS ACONS ACONS ATOP INVOKE 2 ENDC)

D.3 The Prolog Machine.

D.3.1 The registers.

At each step of the computation the entire machine state

is held in 9 registers De, A,F,L,C,Du,R,B,N. These

registers are the memory of the PM and contain program

code, result~ working storage, and all the information

necessary for complex operations such as backtracking.

The value held by each register is an su-expression,

though the contents of Du, and C will always be simply

s-expressions. All operations of the machine are

performed by constructing new su-expressions and by

selecting sub-expressions. In the machine transitions

described below the register values will be represented

as su-expressions (with unknowns in the asterisk

notation of Chapter 3) but with variables naming whole

expressions and sUbexpressions in order to identify

values before and after transitions.

The general roles of the 9 registers can be described

as follows:

The De register ("Definitions") contains the s-expressions

representing the predicates of the Prolog program. De

is a list of lists. Each inner list is the code for one

predicate, and is a list of the cases of the predicate.

The first predicate, the head of De, is the query predicate.

Predicates are accessed by an index computed during

compilation - they are numbered from zero.

The A register ("Actuals") IS used for the construction

and processing of actual parameter lists.

The F register ("Formals") is used for the construction

and processing of formal parameter lists.

The L register ("Locals") contains the environment of

variable values which are local to the predicate case

currently executing. Note that only the local variables

are accessible directly. L is a list of su-expression

values, one per variable, and the members are accessed by

indices which are computed during compilation (variables

are numbered from zero).

The C register ("Control") contains the sequence of

instructions currently being executed. The head of C

is the next instruction to be executed. New instruction

sequences are loaded into C primarily at the invocation

of defined predicates.

The Du register ("Dump") maintains a record of

instruction sequences which have been suspended at the

invocation of a defined predicate and of the corresponding

local environments which must be restored when the

sequences are resumed.

23'7.

The B register ("Backtrack") maintains a record of the

decision points as they are passed during program

execution. B is used as a stack in which the most recent

backtrack point is nearest to the head of B. At each

decision point all necessary parts of the machine state

to enable resumption are recorded.

The R register ("Restore"or "Reset") keeps an ordered

list of the su-expressions which have been modified from

an unknown since the most recent backtrack point was

passed. R is a part of the information which is stacked

on B as each new decision point is reached.

The N register ("Negation") is used in conjunction with B

to handle the execution of negated conditions. Nand B

mus~ cooperate for negated conditions as the success/

failure actions of these conditions must be reversed and

B must be modified specially for their execution. N is

a repository for machine states, including B, and behaves

as a stack to cater for nested negations.

The collection of registers and roles which I have

described is certainly adequate for the execution of

Prolog. However, the number of registers (9) does

seem rather large and possibly a more careful analysis

would uncover a better factorisation of the roles.

D.3.2 The state transition rules.

There are three phases of execution to be described.

Firstly the PM must be set up with the machine code

representation of the program to be executed, and with

the input su-expressions. Secondly the transitions which

238.

accomplish the computation must be given. Finally the

resultant su-expressions must be extracted from the final

machine state.

Each state of the PM consists of an su-expression value

for each of the 9 registers De, A, F, L, C, Du, R, B,

and N. The value of De remains fixed once the computation

has started, and it will not appear explicitly in the

transitions. The states will be given as ordered octuples

(A, F, L, C, Du, R,B, N) in which the items correspond to

the appropriately named registers - however, to save space,

registers which do not contribute to particular transitions

will be omitted (though the delimiting commas will be

retained).

239.

Initially the input to the machine consists of an s-expression,

prog~ which is the machine language program, and a list

of su-expressions, args, which are the arguments of the

query predicate. Any unknowns in args are formed into

a local environment, vars = (*1 *2 ...), which is treated

as the local environment in which the condition invoking

the query predicate is executed. prog is a pair (p.de)

in which p is a short sequence of instructions which

simply invokes the query predicate and then halts, and de

is the list of compiled predicate definitions. Hence the

PM receives(p.de) and args, derives vars from args, and

the initial state of the machine is:

(args, NIL, vars, p, NIL, NIL, NIL, NIL)

and the value of De throughout the computation is de.

(In fact the value of F is arbitrary, and I have set it

to NIL).

The computation proceeds by executing PM instructions

from the head of C. The PM has a repertoire is 18

basic instructions, represented by the mnemonics DCL.

INVOKE. ENDC. TRYCASE, ENDP. UNIFY. ALDC, ALDV, ACONS.

ATOP. FLDV. FLDC. FCONS. FTOP. NSUCCTRAP, NSUCC, NFAIL.

HALT. and 8 variants of PRIM which implement the primitive

predicates.

Each instruction selects amongst the following transition

rules. in which the previous and next states are shown on

the left and right of a right pointing arrow.~. In some

transition rules it is necessary to show explicitly the

modification of an su-expression by the elaboration of

one or more unknowns. A phrase of the form a=>b will be

used to indicate that a must be modified to give b. and

that a-and b are the same physical data structure.

To create (DeCLare) a new local environment at entry

to a predicate case:

(.. 1.(DCL n.c))-+(.. (*u1 *u2 ...).c)

240.

where there are exactly n unknowns in the list (*u1 .•.).

and *u1 •... are chosen to be unknowns which are

not already in use in the registers.

Instructions for building su-expressions as actual and

formal arguments in the A and F registers (used as

evaluation stacks):

(a ••• (ALDC x.c) ••••)~«x.a) ••• c ••••) (Load constant)

(I (ALDV)) «) I) (Load variable) a.. . n.c •••• ~ x.a ••• c ••• ,

where x is the (n+1)thitem in the local environment

l=(•.• x •••)
~
n items

«x y.a),,, (AC ONS . c) , , , ,) ~(((y. x) . a) c)
't' ""

((x. a) , " (AT 0 P . C) , , , ,) ~(x, , , c , , , ,)

(,f" (FLDC x.c)"")~(,(x.f),,c)

(, f" (FLDV n. c) , , , ,) ~(, (x. f) , , c , , , ,)

where x is the (n+l)th item in the local

environment
1 = (... x ...)

~'{tems

(,(x y.f)" (FCONS.c)" ..)..=,o(,«y.x).f) .. c",,)

(, (x . f) , , (F TOP. c) , , , ,)~ (, x, , c , , , ,)

Invoking primitive predicates:

«x y z)",(PRIM ADD.c)",,)~depending on x,y,z as follows

Cases:

x,y,z all numbers, x+y=z~(x y z),,,c,,,,)

x,y,z all numbers, x+y#z~Fail, so backtrack (see below)

One -of x, y, z unknown, e. g. x=*n ~((x' y z)", c, , , ,)

where *n~(z-y) and so x~x'

Two or three of x,y,z unknown~Terminate computation

with an error.

«x y z)",(PRIM SUB.c)",,)~depending on x,y,z in

a way analogous to ADD

«x y z),.,(PRIM MUL.c).",)~depending on x,y,z as

follows:

Cases:

x,y,z all numbers, x*y=z ~«x y z)"c",,)

x,y,z all numbers, x*y#z ~Fail, so backtrack (see below)

z unknown, z=*n~((x y z'), ,c",,)

where *n:=:>x*y and so z ~ z'

x or y unknown, e.g. x=*n:

y d i v ide 5 z ~« x' y z)," c , , , ,)

where *n~(z di::. y)and so x~x'

241.

y does not divide z~Fail, so backtrack (see below)

Two or more of x,y,z unknown~Terminate computation with

an error.

«x y z)",(PRIM DIV.c)",,)~depending on x,y,z as follows

Cases:

x,y,z all numbers, x div y z~«x y z)) , , , c , , , ,

x,y,z all numbers, x div y ~ z~Fail, so backtrack

(see below)
z unknown, z *n ~((x y z 0) , , , c, , , ,)

where *n+ (x div y) and so z~ z 0

x or y unknown ~Terminate computation with an error

«x y z)",(PRIM REM.c)",,) ~depending on x,y,z as

follows

Cases:

x,y,z numbers, x rem y=z ~«x y z)",c",,)

x,y,z numbers, x rem y~z ~Fail, so backtrack

(see below)

z unknown, z=*n ~«x y ZO)",c",,)

where *n:+(x ~ y) and so z~ ZO

x or y unknown~Terminate computation with an error.

«x)",(PRIM ATOM.c)",,) ~depending on x as follows

Cases:

x is symbol or number ~« x) " ,c" ")

x is constructed l (y.z)~Fail, so backtrack (See below)

x is unknown~Terminate computation with an error.

«x y)", (PRIM EQ.c)",,) -+depending on x,y as follows

Cases:

x and y both symbols or numbers and x=y

-+((x y)", c , , , ,)

x and y different values, or either is constructed

~Fail, so backtrack (See below)

x or y unknown ~Terminate computation with an error.

«x y)", (PRIM LEQ.c)"")":;"depending on x,y as follows

242.

Cases:

x,y numbers, x, y ~«x y)",c",,)

x,y numbers, x > y ~Fail, so backtrack (See below)

x or y unknown ~Terminate computation with an error.

Invoking a defined predicate:

";l,(INVOKEn.c),du,,,) ~ ("l,cp,(1 c.du)",)

where cp is the (n+l)th predicate definition in De

De =(~ cp •..)
n ltems

Selecting a case within a predicate and recording the

decision point:

243.

(a, , , (T R Y CAS E cas e . c) , d u , r , b ,) ~(a, , , cas e , d u , NIL , (r a c d u . b) ,)

If there are no more cases:

(",(ENDP)",(x.b),)~The predicate fails, so backtrack to

the most recent decision point on B

(See below)

(",(ENDP)." NIL.) .. No remaining decision points, so

computation terminates without a

solution.

Unify actual and formal arguments:

(a.f •• (UNIFY.c).,r,,) ~depending on a, f as follows

Cases:

a and f cannot be unified~Fail, so backtrack

(See below)

a and f are unified successfully (See below)

4(a' ,f'lIc" (ul u2 r),,)

where a' and f' are the elaborated forms

of a and f, and ul, u2, (in

the new value of R) are the elaborated forms

of the unknowns in a and f which were modified

in order to achieve the match.

Return successfully from a case, having satisfied all the

conditions:

(, , 11 , (E ND C) ,(12 c. du) , , ,) ~(, , 1 2 , c , d u , , ,)

Successfully complete a computation:

(a"l,(HALT)",,) ~Output the result - either the

elaborated actual arguments a,

or simply the elaborated unknowns

1 (corresponding to vars at

initialisation) •

If further solutions are required

then the computation can be resumed

by backtracking (see below).

Before describing the instructions for handling negated

condJtions it is appropriate to give the transition which

accomplishes backtracking, and to show how unification may

be performed.

In order to backtrack to the most recent decision point,

the machine state recorded in the first four items of B

must be restored. That itself is straightforward, but

in addition any unknowns which have been elaborated since

the decision point must be reset to their unknown state.

These elaborations are all recorded in R, and the resets

are achieved by modifying each item in the list R to an

unknown. Hence:

Firstly the resets:

R = (x y ...) * (*m *n ...)

where the unknown *m, *n,

use in the machine.

And secondly the transition:

are not already in

(a1",c1,du1,r1,(r2 a2 c2 du2.b),)~(a2",c2,du2,r2,b,)

244.

The process of unification must achieve two results.

Firstly, it must attempt to match the values in the A and

F registers by finding a (minimal) set of modifications

for unknowns in A and F (either succeeding or failing in

this attempt), and secondly any modifications made during

the attempt must be recorded in the R register. A simple

way to perform the matching is to scan the A and F

su-expressions (both are binary trees) in parallel and

in prefix order. When an unknown leaf is encountered in

either register it is elaborated to the corresponding

subtree of the other register, and the subtrees are

skipped as they are then known to be equal. The

unification fails if a mismatch is found, or is successful

if the scan completely covers the structures without

mismatch. To give this process a more concrete form I

shall use a register transition notation. Unification

requires two extra registers, Ul and U2, and the

transitions will be between states involving these and R,

(Ul, U2,R). From a machine state

(a,f"(UNIFY.c),,r,,)

unification commences in the state «a.NIL),(f.NIL),r),

and the values a and f are gradually decomposed and

compared.

The unification transitions are as follows:

(NIL, NIL, r) ~Unification succeeds.

«x.ul),(y.u2),r) with x,y ~(ul,u2,r)

atoms of same value,

or identical unknowns

245.

«x.ul),(y.u2),r) with x,y unequal atoms~Unification fails

or x atom, y constructed

or y atom, x constructed

«(Xl.X2).Ul),«yl.y2).u2),r)~«xl x2.ul),(yl y2.u2),r)

«x.ul),(y.u2),r) with x unknown, x=*n,

and y atom or constructed

~(ul,u2, (x' .r»

and modify *n:!)y and so x~x'

«x.ul},(y.u2},r) with y unknown, y=*n,

and x atom, constructed or unknown

~(ul, u2, (y'.r»

and modi fy *n~ x and so y:!/1 y'

246.

Note that this unification algorithm does not incorporate

the occur check (see Robinson (1965), Warren (1977». The

check would have to be included in the final two transitions

in order to ensure that the unknown which is to be modified

is not also a leaf of the value with which it is being

matched. Omission of the check simply means that the

algorithm will be badly behaved for some rather unlikely

programs.

The final machine transitions to be described are those

for the instructions handling the execution of negated

conditions.

Preparing to trap the backtracking of a condition which fails,

in order to turn it into success:

(a"l,(NSUCCTRAP 'pl p2 NFAIL.c),du,r,b,ns)

~(a"l,(pl p2 NFAIL.c),du,NIL,(NIL NIL (NSUCC)NIL),

(w 1 c r du b.ns»

where pl, p2 are INVOKE, n or PRIM,op

and w is a list (*m *n ...) of the unknowns

in the actual arguments a.

Changing a negated condition failure into success,

following backtracking, by restoring state from N:

("ll,(NSUCC),dul,rl,bl,(w 12 c2 r2 dU2 b2~ns»

~ (., ,12,c2,du2,r2,b2,ns)

Note that the NSUCC instruction never appears explicitly

in program code. It can only be executed after having

been inserted into B as an artificial decision point by

the NSUCCTRAP instructiDn.

Changing the success of a negated condition into either

failure, or termination with an error (if any unknowns

in the actual arguments have been bound):

(",(NFAIL.cl)"rl,bl,(w 12 c2 r2 du2 b2.ns»

~depending on w as follows:

Cases:

All items in the list ware still unknowns

~(",(NFAIL.cl)"r2,b2,ns)

and then require failure, so backtrack,

One or more items in w have been elaborated

~Terminate the computation with an error.

D.4 An AlgolW software realisation of the PM

The following pages show one possible implementation of

the PM, in AlgolW. This particular machine was used to

perform the experiments reported in Chapters 6 and 7.

247.

AL" OL "

eCGO 1-
000 1
000 1
JOO I
" O ~I
uJ l
CO e4
Ov 0:...
vOC!') 2 -
00C 7
ecce -~
CL.Cd
UOIU
ou II
OOIJ
oel5
OC I:> 2 -
00 10
OU I ...
CO 17
00 17
OO ld
OC I9
00;;0
0020
UO~J
00;:1)
0020
U0 20
U020
0 020
U0 20
00 2 0
ve20
0020

vO ~O
OO ~ I J-
00 ;::;
002e
00;:9
00 :: 1
,,0:: 2 - J
OO ::J

OOJJ
00 J 4 J
UI,) ';6
OOJo 4-
OOJB
OO::S -4
JO.0
uO 42
0045
o C 4" - J
00 46

004b
00 47 3 -
0049
OO S O
Ov ~2
00 5S
OO:S - J
ee50

00:;"
JU57
0 0: 0

005b
00:>9
vOol
OOfl
\lCeJ
OCC4
uut.:j
J O,,7
00b9
Cct9
C 00

00 7v
00 71
00 7 .>
0074
CC70
CC7d
cna
JC79

CC7~
J0 eu
ceel

Ovbl

J-.-
- 4

-J

J-

00 E2 J
COE4
00f4 4-
OC~o
(C E7 -4
OJb~
(1090
009
I." .. S " - J.
OOS.)

Dc~I ~ (TI CN OF LI S T ST OR AGE ~ kE A

t::H:.u LN " ... FkuLDC ~AChIN E - . 11 M ~ <G AT I DN A~D A ~ IT h c T(~ ~R ('(TI

I N 1 ~GE R PA(~S . ~C_OF _ ~L~ ~ ! .~(_CF_ !Y~~! .
rJk~ l tLLM tLA S l E L c ~.
F J ~S T= ~YM U . LAS T=~~ M~i

:~i~~ (;~~;5~:CP ~~E ~ ~c ~~ 'J ~~ (Ch SES ' hU~e~'UNK S 1-); I LCCN 1 A0L (2 1;
IF (:: ~ O .(P Aul~= ~ »)<hC_ CF_cL E > S 1 hch
u"G I N NC_C F_ t LCM S :=J40 .(PA G c~ -S) ;

c..S

E"O " k ITU" NC . CF CONScS/"UM d ~ / l,,"KS TCe GREAT. RECuc "" TO ". ,iu_ OF _ ELE",S);

~~~gF~ : ~~ ~~ ~: ~ ~ug~ ~g:S~=' :~ :~~~UNKS : ".NO_OF_EL EMS ); I OC UN T~ OL(2); 
FIRS 1_ eL E >:=I; L AST_CLE.:=FIFS1_ELE~'N O OF ELc > S-I · 
~ l k~ T_SYM ~ : = LA S T_ E LE~.l; LA S 1_~Y Mti : ~F l ~~ T_!YM6 . NO _ ~~ _ S Y~CS_l; 

EEGIN 
INT EGER CChS1YPE.S'MeTYPc . Nl,, >el)FE.1 ND I RcC TT YPt . 

~~KNGWN.U~KNC.N_VJ~~.~Exl_ELE~.NE XT_ SY~B . NI Li 

INT EGE k A~" AY CA~.C DR (rl ~ ~T_EL t .::LAST_ ELE >J; 
INT tGtF ~~ h A~ FLA GS (fl~S T _ c L EM ::LAS T S,,,,U ) · 
S T R IN G (1 2 ) A~ kAY ~VALifIM~l _ SY~E ::LAST_ SYME ); 

~ELE~"~T hEF" ES E ~TATIC NS ; 

" 

CC~ S : F LA GS =I. CA h ~ CCFo 
~)MI3 : F L A"S =2. ST"ING I~ S'OL. 
~L. ~ : FLA GS=:: . l"l EGE F VILLE Ih CAHo 
l,,~" NC W~ : FLAGS=4 . VAFI~ELE ' S SU8SCkiPT IS I N C~R . 
I N~I~tC T : FLAGS= 5 . CJ~ F Dlh1S TO I N~ l hEC T OB J EC T. 

C[~ ST ILL CCNTJINS SUBSC R I PT • 
••• N01E: AhITHM [ TIC FklMITIVES AND UN IFI CA TI DN HelY CN THCSE FLA ... COJcS . 
FLAG IS -VE FGR "MAHK" O" CLhlNG GAR b AGE CCLLeCTIGN 

PROCECLR E l"IT L(~l SlORA~E; 
~ E ulN CC~Sl~PE:= l; SY~BTY~E;= 2 ; ~UM61~PE;=3; 

U~~~G~~:=~; j~GIR E (lTYFE:= 5 ; U~KNO _ N_VAhS:=Oi 
N c ~T_ c lt.:=FI~Sl_E L E .; 
N tJl. ' _S V,... &: =F ' RST_S'TMB; ~ lL :=~"'M E ,uNlL") i 
FCR 1:= F I R~ T ELE M UNTI L LJST ELEM DO CARII):=I'I; 

E ND i -

I NTEGER PNCCeUURE S I.FL EC C~ ~ IIN1 EGEh VALU E ~t,CAh . ~c . CDR I; 
tl c " IN INT CGtR T EMP; '(~lY L~ED I N Gc T EXPX 

IF "E XT lLE~>lAS T ELE M Tr E ~ 
lj E:. GI N WHITt ,·' CCNS/ f\l.~ E /U~ K ~PACE: OV E.~FLC .. UUh ,r--':; SU- CAP 1 t-lU T" , i 

A~5CF<T FALSE; 
E ~D; 

T E ~F: = ~ tX 1 E L E ~; ~ EX T El EM:= Cl h I NEX T tLtM J; 
CARITE~P):;N E W CAM; CC~ (l EMP J: = NEW C OR ; FLAG~(T E MP) : =C ONSTYPE; 
T E ~. P 

END; 

INT EGER P"'CCEDURE CD N S (I N1E~Eh VJLU E Nc oCAh.Nt.CDh); 
u Ev lN l~lt Gth T E ~P; 

I F ~ EX 1 tLEM>LAS T CL E M 1r Eh ~AR e AGf CULL EC1; 
T c MP: = ~~xT E Lf M; -~ EX T E L E~ : =C'~(NEX T CL c M); 
C Ah(T c ~FJ: ;N E WCAR; CO~ (T E~F ) : = ~E.C D R; FLA Gg IT EMPJ:=C CNSTYPf; 
TE .P 

E"D. 

LC GICAL P f;CC EOUR[ ( SCC~S II NTEG E ~ \lALUE PTR); 
F I RS T_EL " ~. < =f'TH A~ D PT~ <= LA S T _ E lE~ AND AI3S IFLAGS ( PH; ) )= C() . S TY Pc ; 

I NTEGE~ PR LC ED UR E S I~FL EN U_E(I NT EGE h VALU E N E .~ UMd ); 
BE GIN I~l~( ~ h TEM P; ~ ON L~ L ~ED Ih GE T EXP ~ 

IF ~ EX T t L EM> LA S T ELEM T hEN 
bEGIN .RITE I "CC NS/ ~u~ i3/U ~ K SF AC E OVERF L C. eu ~ I" .; Su- XP I N,.>UT "I; 

A S~[k T FALSE; 
t: I\D; 

T E MF := ~ E ~T E L E ~; ~ EX T E LE~:=(A ~ (N EX T cLEM ); 
CAk(T E~P ) :;NL .~ UM B ; F L~ GS IT E ~ F ): =NU ~ 8T Y PE ; 
T E ~ P 

eND; 

INT EGE ~ Pf;CCtDURE hUME(IN1E~E ~ ~JLUE NE_NU.a ); 
dcG l~ INTc GE H T c ~P; 

IF h Ex T L E ~ > LAS T ELEM Tr< N G~"'EA G E _C OLLtCT; 
T E "' P : = ~EXT E L E ~; -~EXT_ElEM:= C ' ~ ( NEX T _eLE M); 
CAR (T "I<F ) : ;N C .hUM~; F L 'GSITE~FI : =N UMdTY PE; 
T E>F 

tNO; 

LO G I CAL F~ CC EDuRc I SN LM i3 llhTE GE F vA LU E PT R ); 
FIRS1_cLLMC=PTR A~ O PT R<= l AS T_ EL E'" AND A B S ( F L A~~(PT ~)) =NU M a TY PE ; 

INT EGE ~ P~CCcDURE SYMcISTFI~G(12) VA LUE NE . SYMd J; 
&EG I N I~T E(l:~ TE _F; 

IF " EX T _YN ~> LAS1 ~)M B l~E" 
BEG lf\ ... ~ lTC:("~y". eC L Sf.A( t: C'VERFLO .. ,,); 

AS"ER T fA L SE ; 

T E ~ P~~~ix T ~Y~B ; ~ EXT 5)~B:=~EX 1_S YM d .l; 
SVA l(T EMP )! 'N E .5Y~l:; FtAGS IT E"F):=SY"dT~PE; 
T f frll F 

E""; 

LO ~ I CAl F ~ CC t " U RE I S~YM d (I~TEG E F VA LUE PTR); 
F I RS 1_ ~ Y~b<=PT~ AN J ~T ~ < = lA ~ l_ ~}~E; 

24 



AL GO L W 

ooc;!> 
C ~" 3-
(O~cl 

OO)~8 ,,-

" HIU a 10 1 - .. 
0 102 
0 1 03 
OI CS 
a 1 07 
01 (7 - 3 
a I (8 

OIOIS 
0 1 (9 3-
a III 
0 11 2 
u 11.J 
.II I ~ 
0 117 
0 117 - 3 
a II" 

0 118 
01 19 
Il I .2 u 

0 120 
0 1 2 1 
012.2 

0122 
0 1 2 .J 
01 2 4 

0124 
01 25 J-
0 1 2 7 
0 128 
0 1 2 9 -3 
O l ~ u 

01 30 
0 1 3 1 .J
U 1 ;'2 
0133 
o I ~;' - J 
0 1 34 

0)134 
lll.J5 

AL" OL 

0 1.J" 
OI ~ tI 

01 3i1 
lll39 
0 140 
Ulo.J 
0 140 
0 1 .. 9 
0 1 ! 1 
0) 1:>1 
01 =2 
vi 52 
0 1 ~2 
0 1 ~ 4 
a 1 :>0 
O l ~ o 
0 1 56 
O l ~ b 
0 1 ';0 
O I ~O 
o It I 

Oltl 
0 11.12 
a IL s 
0 1e5 
UI05 
0 10" 
0 1 0" 
0 100 
"17u 
0170 
01? 2 
Ol?..> 
0 17 4 
0 170 
Ol?? 
"177 
o l e I 
0 181 
Olf 2 
C l e3 
0 183 

W 

.J-

4-
-4 

4-
-to 

-3 

J-

0-

5-

0-

-0 

-~ 
:>5 

-0 

-3 

~~r l ~ITICN OF LISl 5T OHAGE .R£4 

I N T E(E ~ ~~CCtOURt S I ~~lEU~K; 
uEG I ~ I NT tCtR T ~ ~~; 

IF ~~X T cL[M>LA5T ELEM T ~EN 

lIW U 1 .J Uli e. 

BEGI " . R I 1[("CC NS/ ~l~ c / U~K 5., C A ~SERT FALse; A c OV~hFL( . Ou~lNG SU - cXp 1 ~ T'I); 
c"O ; 

U"~"O '~_VA RS :=u"K"(~N_\~~~.l; 
T t~~ : =~CA: _ ~ L E ~; ~ cA T_Cl EM:=C~R("CAT_ELEM ); 
~ ~; ~T ~~F ).= U~K~O ' '' _ \Ak~; FL ' GS(TEMP) := U"~"C . N ; 

t:t\O; 

I"T EGER FR [C ED UR E U"K ; 
bEG I N l " l £GEk T E ~~; 

I f ~ ~ X T_cL cM>LAST_ E L EM T hEN GAREAGE COLLECT; 
U"K"O~"_vARS : =L"K"C~N_\ J~ S .l ; -
T e ~ P:="EX T_ E LE~; " EX T_ E l E~:=C'R ( "EXT E LEM )· 
C Ch lT £:.MF- J :=U"K, .. O."_V Ai<5; FLAGS(T E ,..P) ;= U"I<.NC * N' 
T E ~f • 

EN!), 

LC G ICAL FRCC cD URE I SU"K II"l E~ER \ALUE UNK); 
~ l R ST_tL E ~<=U NK AND U "K<= L ~S T_ E LE~ A I~O AdSlFLA GS l U~~ JJ =UNKNO .N; 

PROCEDlRE CMANGET CUNK( I NTE (E~ VALle NE , UNK I; 
FLAG~ (" E 'U"K):=U""~C'N; 

LC " ICAL P~GCcOURE I S I ND IRECT'lN1 E(E~ VALUE IN DI; 
FI RST_c ~E~ <= I ND AND IN D<= lAST_ E LE M AND A dS(FLAGS( I Nu JI=I NU l~ECT TYPt ; 

PRuCE Dlrtc CMAN G~ T O I ND I REC 1'I~T E~c R VALUE "E.I" O .IT c ~l; 
dtG IN FLA GS ( N~w I NC ): = I Nu j ~EC 1TYPc ; 

C~~ '~ E 'INO):=IT E ~; 
R::(C~S ( NE .I" D .~); 

c "o; 

I"T EGE R P~CCEDURE FORCc (I~T E (ER v~~UE !T EMI; 
d E GI~ 

wHI~E F LAG S (IT EM I = I~ D I~ E (llYP E ue IT c M: :C ' ~ (l l E ~); 
IT E , 

t: t-. O; 

L CG I CAL PRC.CtD URE I SN IL! l~ lc~ ER v~LvE Xl; 
F J RST_ 5 Y~G<=A AND X<= LAS T_SY~d A"C S VAL( X )=" N IL'I ; 

PRO L Ol .. MACH I I ~ E GARtlAGE CCLLtC1IO~ 

PROCEOlRE GAR~ A GE CO LL EC T; 
dEGIN -

MARK_F~C ~(u ~ l; MARK_F~(M(A); ~~ ~~_FRDM ( F ); 
MARK F~ CM(ll; MA RK F~G~(CI; MA~ ~ FRCM ( R I; 
MARK- FRCM ( DU); MAR~ F~C~( E ); M' ~. FRC "("); 
MA~K=FR GM (NtGTRAP);-MA"K_F R C~(.);-

NEX T LLc~:= LA S T E L E~+ I; 
FC " j: = ~I RS T ELE M U"Tll LA S T ELE M DO 

I~ F LA ~S (I) <O ThE~ F LA GS(II:=-F LAGS( I) 
E LSE bE~ I" CPR(I): = ~ EX T_tL E M; 

NE~ T_ E L E ":= I; E~O ; 

I F ~cxT E L E ~ > LA S T ELE M T ~EN 
dtG1N . R IT E (" Ec~s/~v~E/U~K SPACE OVE~FLG. ") ; 

AS S ER T FALS E ; E~C ; 

~ ND GAR BAGE_ COLLECT; 

P~DC E D L Rf MA~K F~CM(I~T EGE" VALU E FTR ); 
bEGIN S T_ P T.R:=Z; S TA CK (I) : = PTR; 

.hIL E ~ l PT R ~=I DC 
BEGIN S T-PTR:=ST PTh-l; P T ~ : =S lA C~ ( S T PTR ) ; 

. rl IL t-(I S I NCI~ECT(PTR ) OR I SCCNS(PTRll ANC FLA - S IPT R J> O uD 
IF I ~CCNS'~lR ) 
l~ E " bEG IN FlAGS(PT~ I;=- CC~~TYPE; 

IF ~~~ ~~~~ ~~$~ (! ~~~EA~E COl L EC T O~ STAC~ OV~RFLD~· I; 
.o ~St:R l f.lL SE; 

E"D· 
5 T A C K ( 5 T PT ~ ) : = C DR ' F T R ) ; S T P T R : = 5 T "T f-. I ; 
PT R:=C.~ Tp T~) ; 

ELS~ ~~~ lN FLA GS (PT~J:=-J NC I REC TTYPE ; P T ~ : =CAR(P TR); t~O; 
I F 1 '~vM8 1 P T R ) T MEN F L AGS ( ~ T R ):=-NUME TY PE ELSE 
I F I SU~K(P TR) T hEN F LA ~S'FT~ J: =-UNKNC.N; 

E" C ; 

1 '010 1 J UNE 

2 49 . 



ALG OL w 

01 e'+ 
CH5 

0 1f5 
0 18 0 3.3 
0199 

01 89 
01<;0 
0 19 U ;'.3 
UI S ,+ 
0 lS4 33 
e lS8 
0198 3 .> 
", ~OU :,) 

02C J 

0 20 3 
OlC 4 3 -
", 2 (" 
0 2 06 '+'+ 
02 1J 
O~ 11 
0 2 11 4-
02 12 !:o5 
0 2 10 
02 18 -4 
02 19 
02 19 
02 19 -3 
0220 

o ~ ~o 
022 1 3 -
0 22 4 '+'+ 
o.au -3 
0 227 

0227 
0 22 8 3 -
0230 
0 2" 0 
0 2 30 
"'<~O 4-
0 2~2 
02 32 5" 
0 235 
022J~ 5 0 
02":8 
0 23 9 -" 0 2 4U -.; 
02. 1 

0 2 41 
0 2 4 2 J-
0 2 44 
0 2 44 -3 
0245 

0 2 45 
0 2 40 3 -
02~ 1 '+4 
0 2 ~3 44 
0 2 :::7 
0 257 4-
0 26 ", 
Ol < 1 -4 
0 2 t 2 
0262 -3 
02 t3 

o 2 ( 3 
Ol04 
02e. 3 -
02 utl 
02 70 
0212 
027 2 44 
U2 7:;, 
U276 -3 
0 2 77 

0 2 77 
02 70 3-
0 2 E2 
J 2~3 
0.83 - 3 
0 28 4 

02E4 

"'~O L OG . MAChINL I NPU T A ~C 0 TPL T OF ~U-EAP R e~~IC~S 1"'&1 ..IU C 
STHI NG ( 12) lC KEN .1Y Pe ; 

"f.OCED LRe ~CAN; 

BEG I N Gc l1 C~EI~ (TO KEN .1 YP~); IF lYP E: "E NUF lLf tl l h~N T ~cN :=")" tN~; 

P~O C ED LRC GETEXP(INTe(Eh FE~LLT E1; 
I f T GKt:. "=~." 

~t;~ ~ ~G ~~~ ~~~~i"E:=ULERY~ ~h(TCI~T EGER( T OKEN1 1: SCAN; eND 

~t~~ ~ ~G ~~p~ ~~= ~ . ~~~~ :F L1 S T( E1; A~S ER l T O~EN=·l"; SCAN ENU 

l hEN BE GI N ~ : = S I NF L EhU.E (1 DINT EG~R IT O~eN 11 ; SCAN END 
~LSE DE GIN E;=5~.E (T CKE~ 1: SCAN EhD ; 

INT EGE h P hCCE DU~E OUEhYV }f.II~T E lEf. VA LU E II; 
B eG IN IhT E(E h VAl'S; 

I F I S hlLI OUERYV ' h IA ELE~ l 

~A hs :=~8~ '~ ye~gf~b~~~~1' P LEU~K: OUE" Y VAR IJ ~LES:=S INPLtCON~ I •• NIL); "-N 
.hIL E 1 > 1 CG 
BEGI" If I S~ ILIC C RI"If.S11 

~A R~ ~~~o ~ ~ei~~~~=Sl~~~~~~K; CO~(VA~SJ:~S l M~LcCONS ( •• NIL j; eND . 
END : 

C ~ I' 1 vAf<S) 
E NU CL~R)~~R; 

~ ~ O CE DL~E (~ T EXPLIST llhT EGE f< f< ESL LT E1 : 
D EviN e := S I. P LECC" S IO.OI; (E T EXP I C~f« E J): 

IF TC KE": ..... T~ EN EEG ll\ SCAN; GET EXP (C Dh l E ) ENO e LSE 
IF T OKE~= "J" Th EN CDR ( E) : =N IL EL~ E GE TEXP LI S1IC Oh ( E J) t:NU; 

Ff<D CECLH E PU T eXP (I NT E GEf< 'ALu E E ); 
tJ E"IN E:= FLH-D fiCE I E 1 ; 

I F I S u"K l e ) T~ EN P L1T G'E "(VA~" ANE ( CDR ' E )lJ ELSE 
I f I S S YMa( f ) 1~ EN PuTTCK E ~( S VAL'E) l ELSE 
I f I S I\UM e l E I T~ EN FUTT( Kt~ 11 CSThING'CA R ( ~ ))1 ELS E 
BEGIN ~ Ll1 0K~ ~("("); 

.hlL E I SCG "SIE1 CO 
OEGIN PU1 EXP ( (AR I E1): E:=PuTF~ fiCE ICUhl E )l END ; 

IF 1 ~ "IL( E 1 T~ EN ELSE 
Et: GIN puT T OKE ~I" . ·); PL 1 EXF I E ) END ; 

PUllCKCN(")"l; 
EhD; 

E ND; 

INT E ~Eh FhGCEDURE PUTFCRCEII"T E(E h vALU E I~ U ); 
d EG IN "HIL E I S INDl fiEC TIIN C) DO Ih O: = CA RIIN D): 

IN D 
E t\O, 

INTEGE ~ P hC CE DURE T D I~T EG Ef.( S T fi l" G II 2 1 VALU E T); 
IJEG II\ S T fi l",.;(11U; IIH EGER I.S : LCGICAL NeG ; 5:=0 ; 

I F TI O II) ="-" T h EN tEG lh ~ EG :=1 R u E ; 1 : = 1 END 
E LS E tlE · l h NEG:=fAl SE : 1' =0 EI\ D; O: =TIIIII; 
wHIL E U..., =" " 00 

tlEG I~ S ;=I OOS.I DECOCE IC1 - DEC COEI" 0"11: 1: = 101; 
I F 1> 11 Th EN C:= " .. EL SE C;:=TI II I): 

e"u; 
IF NEG T hEN -S EL SE S 

E ND; 

S1hlN GI I 2 J FfiDCEDLRE l C;STF II\ ( (I "TEGER VA LUE 11; 
IF 1:0 T~ E" ·0" E LS E 
bEG IN S T ~I " G (1 2 1T; L D~IC AL ~EG: I"T EGER L; 

NEG:=I<C; T :='o tl; 
1: =Ad S I 1);L:= 2 .Tf<v~CATEILC G IH.IJ); 

FOR b ~~~I\ L~:JTi~ ~=~6D~~U~c3E~SO")oJ keN 1 0 1 ; 1:=1 DIV 10 END : 
I F I\f G ThEN T( o ll):="- " ; 1 

t"O; 

S TR I NG II £ ) FhOCEDURE 1I~"N~~E (I ~TE( Ef< VALU E I): 
l:Je G IN S ThlhG (1 2 ) TI.T 2 ; TI : =TO S Th I NG II); T 2 :="0 ": 

If TI="O" TH Eh T2:= .... 0 · E LSE T 2 111 9 1:=TlCIIS); 
T2 

END; 

2 50 . 



AL GU L " 
028 " 
e2ea 
02ec; 

C2d" 
0< ~O 3-
0 II I 4-
OZSJ -4 
uZ~4 
Jl~b -J 
02S 7 
02. 7 
e2sa 

J29tl 
0 2.9 3-
0302 
vJ O" 
uJO~ 4-
OJO:> 
UJed 
OJetl 5 ~ 
0 " 1 '< - 4 
o JIZ 
03 12 4-
03 1 5 
03 16 
03 18 5 -
OJ 19 
03"! -5 
0 ::.2 -4 
0 322 ,,-
032" -J 
0::26 
03lll 
0 :: id 

0::.<8 
03,,9 J-
03 :: 1 -J 
OJ]J 

U3';J 
OJ3. JJ 
03J7 

03:: 1 
OJJU 3 -
0341 
OJ . Z -3 
O~44 

0 :: 44 
OJ4:> 3-
0349 -J 

ALliCL .,. 

03 :' 0 
03~2 
U 2~3 
OJ54 

OJ54 
Ojt~ 
OJ 5 (' 
0351 

0351 
0359 
0300 3-
0J(J 
UJt 4 
03co - 3 
0300 

PRGLG" .... AChINE I NP~T/O~TPU T CF T(~ EN S 

PROCEC~RE ~~TChA~; 
dE~ I N j F I~ ~UFPT~> I~ B LFENC T~ EN 

tltGIN ~~~t;~~~~~iU~~ ~7 .I~tl UFENO 'EOFl; 
ENO ; CH:=lM,UF FEhl l"b~FPT~l; l"E~FFT R: =INt:UFFTh'l; 

ST~ING(jlCH; 

~RUCEUL RE _ GETTCKE"I S T~~"GII<l~E~LLT T C~eN ,T' Pcl; 
tj EG I N TO KEN:::;;; " "; ..,HI Lt: ..... c: CF ~ND en=" .. 00 GcTC .... ARi 

If ECF lht::N TYF~ :~·tENOf JL E" El~E 
I F OI O" <=c. ..., AND CH<="Q " O~ Ch~"-" T..- EN 

EE(,l"" l''''TEC:ER 1. 1YFE:; "NU~ERJC" ; 
TCKE,HOIIJ:=CH; 1:=1; e E T(HA~; 
MHILE " O"<=CH ANC C"' <= "' S · 00 

1981 JUNe 

tNt) E L ~~G IN ASSEj;T 1 < 1 ~; 1 0r<..t:N (!Jl.l: =Ch: 1: =1"'1; ~cTCi'1A~ c:. LJ 

I F ~A~<=Ch AND CH<="L " T~fN 

cE(,; IF\ I NT EG!: $; 1; TY~ E :::::"ALPJ.AI\UM ER IC". 
TCK EIHOIIl:=Ch; 1:=1; ~E TC h A R; 
v.hlLc "AIt < =Ch ANt: en <::tlC;" 00 

6EG IN 
ASSE "T 1(1 < ; TO Ke~ (jII): =CH; 1:=1+1; Ge TCrlA .. 

eNO 
ENO EL SE 

BEG IN IF CH= ".·' T~ E F\ lYFE:=" S lA ~ " E LS E T' PE::::: " DcL I~lTk~N; 
TC~[NIOIIJ:=ch; ~E TCh~~ END ENU; 

S TR INGII H~J;AY O~ T tlUFfERI I: : eO ); I"Tt GER DUl aUFPT~; 

PROCEDURE PUT CHA~ ( 5T ~ I~ G ( I)V~LUE C); 
OEG I~ I F C~T8UFPT~=tlO Th t: ~ FC ~ CELINEOUT; 

OuTt:~FFli':=UUTaUFPT~+l; C~T "UFFt:~IOUTfjUfPTfd:=C ENll; 

P~OCED~~ E fO~CELI~EO~T; 
tlEGIN FUTLIN[IOUT eUFFt~,O~TEUFPT~l; OUT ~UFP T " : =O t"v; 

P~ OCEO L R PUTTOKENtST~INGII<lVAL~E TI; 
uEG IN I~Te GeR L E~ ; L E~:= I < ; 

~HIL E Lc">O ANO TtL E,,- llll=" " DO L EN :=LEN-I; 
FO~ I: = ll ~NTIL L E ~-I DC FUTCh}~tTIIIII); PU1CrlAJ;I .... ) cNll ; 

PROCEDU~E I"IT L E~ ICAL; 
ilEG IN "ETLj NE ll" BUFFE~,INEUFfNll.EOF); IN dUFP T :=1; ~cTCHAR; 

OUTd~FFlh:=O END; 

P~O L O(, .MA C ~. IN "- IN P~ T/O LT P uT CF LIN E S 19 8 1 JV""c 

PROCECuR,,- ~[ TI S T~IN G (I)A RJ; ~' LI~ E (');I NTEGC h RESULT L ~; 
i NTEGeR VAL0c ~u~ , LNU~ . UcV J; 

FOR Th"" "r..EAU"; 

Pf<OCEOUR" FUTtST~INGtl)AR~~Y LI~ Et 'J; INT t~E~ VALUE LE . ... 00 . 
LI\ U,.. . Ct:V J' 

P~OCtUURe GETLI NE t S T~I" G (I)~~ h"Y LI~E(.);I N T EGE kESULT LEN; 
L O~ICAL ~"SULT EOF ); 

tiE(; lN LIF\ E( ll :=" tI; GI::T(Ll"E.LEl\, O ,C. O J ' 
ECF : =~ CC06>0 ; 
L ~:="v~ fjt Rldl l S T R I NG (L E~) S,~ Ie); 

END; 

~~DC ECURt PUTL I NEISTr.. I~ Gt I) AF~AY LI~ E C'l; I ~TtGER VALU~ LEN ); 
P~TIL1" " '''UH' E~ l b Il ST~lN;; ILE") ShL 10l,O.Ool); 

251 



ALGQL 'fI 

U.J09 

0 ~ 71 
v .J 72 .1-

C~7t;. 
0376 
038v 
0360 
0~60 ~-
O.J B..l 
03<13 ,,-
03<~ 
03 < 5 u-
OJ e b 7-
U..lE7 
031> 7 08 
U.J91 
OJ~L 
03~3 
03~4 

O..l~" -7 
03<;7 
O.JSB 
03i9 7-
04 UO 
U401 -7 
0403 
0404 
04(4 
O~O~ 
0 ... (.0 7-
v4 C7 
04Ctl -7 
u410 
041 1 
0412 
041 <! 
0413 7-
04 14 
04 15 -7 
U41 7 7 -
v4 18 
04 19 -7 
04 2 1 7-
v4 2l 
0423 -7 
U425 7 -
04 Z6 
0427 -7 
0 .. 29 7-
U4JJ 
U 4 ~ I -7 
04~3 -0 

043. - 5 
0435 -4 
04 "')0 

04~O 
04~6 -3 

ALGOL W 

., 437 
J4.JB 3-
0440 -3 
0442 

044 2 
044J ;,-
0447 
04,,9 
1l04~.,j -3 
04~ 4 

04!l ... 
0 ... :'-5 ..1-
0457 
o .. "e 
O"'uO 
U46u 4-
04t2 
0462 ~-
04c3 ,,-
t,)4c~ -0 
IJ407 
040& 
0409 
0470 -5 
0470 
0470 
0471l 
0471l ~ S 
0 .. 74 -4 
0 .. ;.;) -3 
0470 

Ol4?o 
0 .. 77 ..1-
047<1 
047 9 
0479 -..I 

UNIFICA1IC~ PFCCEOU~E 

INT ECt~ lr.hAV UA lA C"."'FSTIC"(I::IOCOI; 

LGulCIL F~C C DU~E UN IF.; 
dtG IN I NTc(E h CH •• • CA kF; l ~lEGEr. C; LOGI CAL FLA G; 

FLAG: =1 r.l.t; l..FSTAC"'(l):=F; 

ohlLE F LA v AND "'5T" PTF ,=C DC 
dEG I N C~KA:=UA~TAC«LS1"_FT K I; CAKF:=u FS TAC K( US1" yT RJ; 

I F CA~A=CA ~ r Thf~ U~ T K_PTh:=LST" PT R-I eLSe 
btG2~s~:~F~~GS((J~AJ'(FL~ E SICAKF1-1)" ; 

ccGlN 

252 . 

I 01 J 

cculN CC~~E~T CO~S I CC~~F; 
IF US 1 K PTF=IOOO TrioN 

Et:Gl,,- ... Ft lTc(OO UN 1FlCAT1 0N STAC)( OovcRFLO ."); ASSeRT FALS c..i C. NU ; 
UASTAC"I US 1K_ FThl :=F OHCE(COr.(C~hAJJ ; 
UASTAC"(U~lK_Flh'IJ:=F O~ C E (CA~ICA~AJJ; 
UFSTACK(U S 1K_FTRJ:=F ORCE t CCh (CAhFJI; 
UFSTACK(US1K_FTh'IJ := F ORCE (CA R(CAhrJJ; 
U5T~_Pl~ : =L51~ _ Pl~ .1; END; 

FLAG:=FALS E ; COM~E~ l SV"cA CC~SF; 
FLAG:=FAL~c; COM~ENl ~U~EA CO~ SF ; 
BE~ lN C(~~ E ~T UN~A CON5F; 

Ch'NGfTOIN(I~ECT(('~A . CA RFJ; 
LS 1 ~_P1H :=LS1"_ Plh- l; E~D; 

FLAG:=FA LSE ; C(M~E ~l CC~~A SYM BF ; 
I F SVA L( CARA )~ =S' ~L(CA~FI TrE~ FLAG:=FALSE eOMM f NT ~V~ OA ~Y~d F; 

ELS E US 1~ P1R:=LS T< PTR-l; 
FLAL:=fAL SE ; CCM~E~ l ~l.~EA SVM6F; - -
b EG JN C(V~E~ l U~~~ ~Y~eF ; 

ChANGETCINC 1 HECTI(ARA . CARF ); 
US 1K PTH:=LS1K FTh-l; END ; 

FLAG:=FAL S~; CCM~E~ l- CC~~A ~u~ F ; 
~ L AL:=FALSE; CGM ~ E ~l ~ Y~tA ~UM Br; 
I F (ARtCARAJ,=eAF((AhF) ThEN FLAG:=F.LS E CO~~ENT NUMbA NUMoF; 
bEG I N CC~~c~ T U~KA ~UMEF~LSE UST~_PTR:=LST~_PT R-I; 

ehA~GE1G I NC I HEe l (C'HA.(ARFJ; 
USTK PTh:=LS 1" P l h-l; END ; 

~~GJN CC~.ENT CC'SA U~KF; 
CHA~ GE T 0 1 NC Ir. EC 1(C'~F.CARA J; 
U~TK PTh:=LS1. PT~-l; END ; 

BEG I N C C~~ENT $V >EA D'KF; 
CHANGbTO I NC I" EC TI C ' ~F .CA R A I; 
UST~ PTh:=L5 1K F 1 M- l; END ; 

BeG IN CC "" ~ ~l NU~E ' C~"F; 
CHA~G E TCINCIHECT(CA R F . CA RA J; 
USTK Plh : = LS1K P l n -l; E~D ; 

EEGIN CC~~E~l U~'A L~KF; 
ChANGE T G I NCj~ EC T(CARF . CA R AI ; 
USTK_PT : = LS 1K_ F lh - l; E"U ; 

f~O; 
ENe; 

END U~IF I ATjC~_CYCLE; 

FLAG ~5"'(C ES S OR fAILLhE hE~LL 11 
E~D l. NIf)_Fh OeEOUhE ; 

PS;OL OG .MAC~ I I~E a ACKThACKI~ G A~C ~EGATION CheCKS 

PhOCEC",RE S;tSTOhE(I~TEGE R ,ALU E l~fC); 
WhIL E ~I$~IL( I NFO) 00 8EG IN ChANGETOU~K(eA~ 1 INF OI); 

J NFC:= CDR II NFO J; E~D; 

PS;OCECLRE FGPd~CK; 
BEG I N hES1CRe(RJ; R:=CIR(EJ ; 13:=CDR(B); 

A:=CI,, ( 8 J; e:=CCh(8J ; 
C:=C'h( B); 8: =CC ~ t b l ; (U:=(AR(8) ; 8 :=eDRl b J ; 

PROCECLRE ~OT ~ VAR1ABLES; 
tltGIN INlt( Ek CARA; 

• : = ~ J L ; 
LA S 1A CK (1J:=A; LST K Flr.:=I ; 
.HIL E LS TK FTR,=O DC 
tl EG I~ CARA:=UASTACK (L S1K_Fll< ); 

1 9b 1 J UNE 

~~ E ~S6~~~~C i ; '~STK P TR=lO OO Th eN 
O~~ l~ .~lT~(NNOTEVARIAcLE STAC~ Gv~kF LO.··l: 

E ~LJ; 

ELS E 

A~5~Rl FALSE; ENe ; 
UJSTA CK (L STK Fll<J: =FURCE (C Ch tCA RA)J; 
UASTAC K (LST":::PTr.-d ): =r Che.: (C Ai< ((AhA) I ; 
US1 K FTH:=L~lK F TR.I; 

E~D - -

IF ISSYf.IE tc.RJI Oh ISNUI< B(CARAI 
lh EN LS TK F TR: =LS1 ,,_Flj;-1 c· ~D •. 
LLSE BEG I~ W:=CO~S(C' R A •• I; USTK P1S;:=LST,,_ P TR-I; 

END ~C1E"hIADLE~; 

LC G I CAL PhCCEUURE CH E CKVAFI. E LE~; 

tlEG !~IL E ~I S~IL(' 1 AND ISL~K(C'S;I.)1 DU A: =CDRI A); 
IS~IL(AI 

l:"U; 



ALGUL \01 

u .. eu 
046 1 .j -
04f4 
046~ 4-
04t6 
U 4tl9 
046" 
O~ 6" :>:l 
U492 ~ ~ 
V'4S:.J 
04~:; ~:; 

04SI:> -4 
C4,S 
v"f S"8 4-
0:> C2 
050.j 
05U., 
o e OJ ::'S 
U!)Ou :.J:i 
0 509 
O~OC; :.:; 
~~ I" -4 
0~12 
0512 ~-
0:.10 
05 17 
O ~ 17 
0:'1 7 :;,:; 
05..10 
a t ~ o !> -
0~ 22 - 5 
0~23 
0~2J 
0 52 ..1 
0~LJ ~-
O~ 2:. -:; 
052 " 
O~2l.1 -4 
05~o 
u ~2() 4-
0:>3u 
OO.!O 
u ~:;o 5 -
0 ::;2 -5 
05;'3 
053..1 
~ ~ J3 -4 
0~J3 
0 5 33 ~-
U:;:; 7 
0:37 
0:.> 3 7 5 -
05 J 9 -:; 
0:40 
0:'40 
0:'4 U - 4 

0 5 40 4-
Oo4:! 
0:'42 -4 
O~.Q4?: 

lJ o "~ ~-
O!J " ~ 
0:'4:' 
v:;' ... ::' 
0:..:. 
o:;, .. !J -4 
0:. .:. 
O:l " ~ 4-
O!> .. d 
~ :'4!l 
U:'46 
V:'>4U -4 
0:>48 
0:"8 -3 

ARITHM~lIC ANC CT~ Ek PR I MITIVES I I-BI JU C 

INT EC CK ~"OC"UURE PR IMITI~ E II ~TEGEk VALUe kATG~ I; 
bE':;IN I NTIoGIoK OP I . OP2.0P3 ; I NTEGt:R C; 

CA!>E H AT OR OF I "NCT E: I=SUCC ESS 2=FAILURt: J=IoRROR.c 
t3t:GIN AOU : OF I:=CJ~IA); OP2: =C. R IC CF; IAIJ; OF3:=C.l.FdC kICUR(J.) I) , 

C : =IF LA G5 ICFIJ- ~) ' 4' l fLAGSIOP2J-3J ' 2+FLA~Slap3 J_2 ' • 

BE GIN SUB 

CASE C CF I • 
IF CA ~ I OP3 J= C'R ICFIJ' CAR I OP2) Th EN I t: LSc 2 . 
beG I N W:=NLMEIC'RICPI J+ CAR I OP2 JJ; ChAN Gt: TO INDIR EC TIO P J .) ' 
BeG I N .: =NL~c(C'h IC P3 J- CAR I CPIJJ ; ChANGETOINOIRECTIOP2 :.J: 
J . xO P ~ ANt QP3 L~ KN(~N~ , 
BE GIN ~:=NLMfIC'"ICF31-CARIOP2JI; ChANGE T01NOIRECTIOPl .J ' 
3.~,3 A(Pl/~, OP 1/ ~ . OP 1/2/3 U~~~O.~ 4 j END , • • 

OP I:=CJ~IAI ; CF2:=C'hICCRIAJI; OPJ:=CARICUhICDRIAI JI ; 
C:=IFLA GS IC~II-3J'4+(FL AG~IOP2 J- 3 1. l 'FLAGSlap31-2; 
CASe C CF I 
I F CARICPJI=C'kICFII-CAFHOP21 Th EN I ELSE 2 . 

253 , 

EN.J , 
E.NLJ f 

t:.NU , 

tlEG IN • :=NU~E I C'k IC P II-C AR ( OP2 ) I; CHA NGEo TOIND I R':CTIOP.J . "I ; C::NLl . 
(JEGIN • : =N L~ i: ICJI ~ 10PII-CARI CPJ l); ChANGiTOINLlIRcCTI OPo! •• l; .. .l . 

JjEGIN _UL 

BEG IN OlV_: 

3 . ~OP2 PNC C~~ L ~K~G WN~ 

uEG IN ': =NL .tI C JI ~ IC P3 1' CARIOP2 11; ChJlNGETO I NDlkcCT I OPI •• I; I ENLl . 
3 . 3 .3 ~OPI/ 3 . OP I/ ~ . OP I/2/ ~ U~~NO . NX J ~ND , 

OPI:=(,kIAJ; C~ 2: =CA R ICCR IAJI; OP::S:=CAkIC Dh ICDkIAIIJ; 
C:=IFLAGSIC~II-3).4.IFLAGSIOP 2 J- ~1 ' 2 .FLA~SIOP31-2; 
C A ~ E C OF I 
I F C A k ICPJI=CJlRICFII.CAR ( OP~ l Tr EN I EL~E 2 . 
uEGIN .: =NL " c (C, R I OP II* CAR I OP2 1); CH~NYETuJNDI REC TIOPJ •• I; I ENLl. 
I F CP~ I OP3 1 ~ E N C'~ICPII=O 

Th E~ BEG l~ .: =~LMB I CAR I OP3 l D iy (AkIJP III; 
Ch '~ GE T O IN D IR EC T( CP2 "l; I ENO 

EL Se 2 . 
3 . xop, ANC CF~ L~~NC.NA 
I F CAR I CP3 J ~EM ( ' ~IOP2 1 =0 

Th eN bEC I N .: =~LMt: I CAR(OP3 J DIV CA I OP2l l; 
CHJI~GETOINOlk EC TIOPI •• J; I ENLl 

EL S E 2 . 
3.3.3 ~GPI/3. OP l/ 2 , OP l/Z/3 U~~NG . N~ J eND . 

OP I:=CAR IAJ; (P2:=C , R IC Dk ( A J); OP3:=C~~ I CLlR I CDR IAI)I; 
I F I SU ~ K I O FII Ok I ~U~K ( OP2 J TH EN 3 ELSc 
IF I SL ~ K I O,:: ) 
ThEN BEG I~ ': =NU ~ c IC AR I OP II DIY CA R I OP2 11; 

(hANGE TO I NO J REC TI OP3 •• I; I END 
ELS E 
I F CAR I OP I) e lY CJlhIOP21 =CAh IOF::1 TheN I 
EL~E 2 ENe. 

OP I: = CJI ~ IAJ; OP2:=C'~ICORIAIJ; OP3:=CJlRICDRICDR I AJ JJ; 
I F ISU~~IO,11 OR I SU ~ K I GP2 ) TH EN 3 ELSE 
I F ISL~KIO, ~ J 

T h E N E.G lN .:= NU ~ E ICA R IOPIJ REM CAkIOP 2 11; 
CH AN GE TOl~ 0 IR EC TI CP3 •• 1; I ENLl 

E L~ E 
IF CARIOPI I hEN CP F; IO P2 J=CA RIOP3J Tr~N I 
EL~E 2 ENe . 

BEG IN A1 CM: O~ I : =CJI~ (AJ; 

tlEGl~ EO 

I F I SC (N~IC~IJ T~ EN ~ ELSE 
I F I Su ~ K IO F II T~E~ ~ EL SE I t:.NO. 

OP I: =C Jl RIA I; CF 2:=C AkI CCR IAII ; 
IF l SSYMd l CP IJ ANC I SSYNJjlOP2J ANU SYALluPI I= SVALI(JP2 J 
OR IS~u~EICFIJ ANC I SNUMBIOP2J ANO CA ~ I O P II =CAR I OP2 J 
TH: ~ I eLSE 
IF I SU~KIO, IJ OR I SU NKI DP2 1 THEN 3 
E L~ E 2 t:NC . 

bEG IN LEC ~~li~~G~~:~~I~P~~~C~~~G~~l~~~j JlND CARIOP II < =CA I OP2) 
TeEN I ELSE 
I F ISU~ K I OF IJ Ok IS U~K IGF 2 1 Th EN 3 
EL~E 2 ENC 

) ~ENO .AIN CASE~ 
t:~0 F~ I.ITIV Eo; 



o !.I 49 
O~,O 

""U 0 5: I 
o~t " 
O~!J9 

0"".3 
o:;,o.;S 
O!)c4 
05(5 
~ ~ t. !.I 

OSc..:." 
O"C,o 
u~cu 

O.Jt;; 7 
O:J u 7 
O!)tJli 
0::>09 
05 ; :3 
0:> 1 !> 
0,1, 
u 5 7 0 
O,~O 

O,d" 
U 5 i~ 
O!)EJ 
0.>£:'" 
OSE7 
U,,8 7 
O~S I 
C 5S 1 
o::>SJ 
esc; .. 
usn 
0 59 7 
ot 02 
0003 
00 C5 
00 05 
co e-l 
Co09 
CU3 
0 01.3 
00 l ~ 
Oo l t> 
~" 19 
00 19 
Ut.2 4 
Oe2!:> 
,J( 2 7 
Oe 2 7 
Ol~l 
o t.; I 
Ode 

O(' ~ 4 
00J7 
Oc 39 
Ot42 
V04 <! 
06 .. J 
Of 4!:> 
0040 
0646 
0(46 
0049 
OC 4S 
u«.. ~ l 
~ t oJ 
Of ~ 5 
Oo:.;u 
Ou,,7 
OO:)d 
00 , .. 
Co ':)9 
COo l 
000 1 
Oe,., o:;, 
lh.lU 
Cou7 
Ooed 
uuu 9 
00 1 3 
o ... n 
O0 71l 
OQt~ 

~uf" 
coeo 
Oe tiO 
Qu e d 
CoS I 
OoS .3 
OO~:J 
OoC)!) 
cun 
cose 
OoS9 
01 C I 
1l7 Cl 
07 C2 
01 C 4 
0 7 0:J 
010 7 
01 C 6 
01 9 

7 9 
07 II 
01 1 
01 12 
0 71.3 
01 1J 

J-

4-

:> -

v-

77 
-0 

,,-
-0 

0-

-0 

"'0 

0-

-0 

0-

-0 

~o 

vO 

0-

-6 

(,-

-0 

0-
-u 

(,-

-6 

,,-
7-
-7 
-0 

0-

7-
Il-
-6 
-7 

- 0 

u-

-0 

u-

-0 

0-

7-

-7 
7-

-0 

0-

7-

u-

-8 
-0 

- !) 
-4 

-3 

I:XlCUTlCN CYC LE 
1 9b 1 ~ E 

PNUCEDLRI: ~~ PLY1INT (~tR V ~L UE SF E C. O tF S . UUE ~YAh G S . uE~ Y ANS) 
~t ~I~.j NlcCtR T~~~; LCC~(JL ~ALTEC.5 0 M E ~OLUTILh5; • 

O~:=UE~S; ~~:'CU~RY~~vS:.F:~~JL: L;= U~ ~ YV A M~; C:=S P~ Ci 
H.-N IL. L-U. -N 1L. u a -NIL . 1'\ . :t\I L; 
NE'T~AF: = 5 I MPLECCN5 1 N IL. SI~PLE(C~S I N I L. x COC E 11 = I: !:>UL ce~ U 4 

~~LT ~ t~:~~~~~~ ~ Gii Z~ ~ ~~~;~~~7FL E ~UM 8 (17). NIL) . SI~ PL cC ~S I N IL. IL)J)); 

. h ll lZ ~hALTEO CO 
Be GJN 

CASI: C A~ IC~hIC)) OF 
eEG 1~ 

!lEG I N l.)C lC C ALS 

bEG I N tNCCASE 

BEG IN I~ VCKE 

BEGIN ALCC 

BEG IN AlOV 

BtG IN ACCNS 

tJl:G I N ATCP 

!:leGIN FL CC 

EEG IN FLOV 

tJl:G I N FCCNS 

b~G I N F T OP 

Et~ IN U~IF 

UEG IN T ~ Y C ASE 

I:lI:GIN E ~DPR E D 

BEGIN HALT 

L :=N lL ; 
For; 1: =1 UNTIL CA~((Jj" CCRICl )1 DO 
C:=C D ~( ~~~ : ~ l~~= ~~~ ~ L:= CQhS{ •• LJ i END ; 

L:= C.~ICU); C:=CA R I CDRIU I) ; 
O(., :=CChI CC~ I CUJI; ENC ; 

TE.P := CE ; 
FC~ 1:=1 UNTIL CAf;(c p r;ICCR1C )J ) Ou TeM?:= COR ITE,.P) ; 
~y ~~ ;~~~~;g~ ~ c~~~:) J . OU I; OU :=CONS 1L. OU ); 

A:= CGN~ ICA ~ IC D" I C )).A); C:=CDN I CD~IC)) ; eN .J; 

lE.F : =l; 
F~h 1: ~ 1 UNTIL CAR I C~R 1C CR IC)11 00 Tc"~:=C l.)h lT"M P ); 
A_=CC~ S IFC RC E I C Ar;ITEMPJJ.A); C:=COk I COKIC)J ; tNJ ; 

~~~~~):~~~C Drt (A); CD~ (iIf): =CAk (.J ; CARl • .! !:.":AR (AJ; 

C:= CO ~IC); END ;

A:=CJ ~ IA); C : =CORIC l; ENC ;

F:=CDNS I CAR I COR ICJ). F); C:= COR I CUR I C)); ENU ;

TEMF : =l;
fCh 1:=1 UNTIL C. RICP~ICCR I C)JJ 00 TCMP:=CO" I T':::"P);
F :=CC~S IF OR C E I C A R IT E " ..)) . F); C: =CUR IC O'HC)); E.N .:J;

w: :. f ; F: :. CO ~ (F J ;
(AHF):= -.;
C:=CD~ ICJ; ENO;

F:=CAr;IF); C:=CO~ IC); E ~ .:J ;

IF UNIFY Th EN C:= C D~I CJ
ELS E POPb ACK; iNO ;

E:=CC~SIOU. B J; B : =CONS I COR I COr; I C)) . B);
E:=C CNS IA.tJ); u: =C C"S I ~ . B);
h: =N ll; C:=CANI CCR 1 C)); END ;

IF I S"llIBJ
T~EN EG 1N I F ~ SO ~ I:SGLUTI ONS TH ~N PUTTUK~NI·FAILU e n) ;

hALT EU :=T RUE ; ENO
E L~ E ~O~EACK ; e Ne;

IF I S ~ILIC UER YVAr; S J
T hE ~ FU T1 0KEN I" SA 11 SF l tO ")
ELSE EcG IN T EMP : =CU ~'VARS ;

254 _

~HILc ~I SN I L(T~MPJ 00 d E G I N PUTcAP(CAM(TcM~ JJ ;
TEMP : =CO~{TcMP I; ~~~;

END ;
FC~Cl:ll"EOU T ;
~ O OF SO LUTI ONS := NO OF S OLU llCNS- I;
S(~ESCLLTIONS:=TRU E ; -
I F "u CF S O LUTI O ~ S=O OR I S NIL l d) T HEN HALTcJ:=TRUe
I:lSE F CPtACK; ~NO ;

BeG IN NI:G S UCC T RAF: ~: =CC~SI B .N); N:=CCNSI~U . N); N:=CONS I . N);
N: = C O ~Slco r; I COR 1 COR IC CR I C)))).N);
~ :=CC~S IL .N);
NOltVAr;IA o LE S; XL IST AP PE ARS I N .X
,,::.C(f\.~ (",.N);
R:=I\l L ; e :=N EG T R Ar; C:=C CF: (C); eND ;

tJlG IN NEGSUCCEEO: N:=CCr;(,,); L :=C ARI N); N:= COr; I N); C:=CAhlN) ;
N: =COh l~) ; R := CA~IN); N:=Cu I N) ; OU:=CA"IN);
N:= COr; IN); B:=CARINJ ; N:=COr;I~); tNU;

bfGIN Nc~FAILOR E hr; : A := (Ar;IN);
IF C~ECKVAr; I AdL~S ~T~UE I F N NE CHAN~ E U.
T hEN E E~ I N N: =COhICOo;IC.:J U<))); r; :=CAR 1NJ;

N:=CCfi I CO hl N)); o:=CAr; I N);
N : =ccr; IN); PO? 6 ACK ;

BEG IN ADD5UElE TC:

END ;

t~C
e LS E EtG ll\ PUT TOKE~(··cR~ O ~ ··J;

¥.F\ lT E CH I:.KKOK ; NE GA TI VE L f T t:: RAL o (J UNL) A VA FO. IAdL E. -) ;
hJlL T i::O : :. l f'ut:: .

e~o; END ;

(AS E P~IM1TIVE(CAR I c.r;IC~RIC))) J OF
EEGIN C:=COR I CONIC)) ; ASUC~CSS ~

PO P cACK ;)oF,.. I LU!;EA
~cGlN PL 1T OKEN(- R~O~ ");

.. R ITt:.(" Efi h ;) k : oA O Af=.. t.iU Mt: NTS TO P R IMITlVL-j;
HAL TtO:= T j;,Ut::.;

eNO
E" C ; E~O ;

END E) EC CYCLE;

c t\ O ;

AL GO L "

0714
07 1 S
0716
0 710
0-'1 8
071~
07~ 1
07 2 1
0 72 4
C7 2 7
0729
0 7 2 0
072 1
07 J I - 2
0 7 32 - I

Ff.u l e..; . ",ACt- IN E CON T ~OL CPEkA1 I CN

INT E G E ~ ,~ eGk AM.~ FE C. DE FS . CUER)~~GS.OUtRYVAR IAblES;
INT cGEh ~ e _CF $OLuTIC~S;

" k IT E(" LCeK FOR He~ MANY SC l "TICNS 1"1; I OCCN T ~OL I 2 1;
RtALC ~I~ _CF_ SO LUTION S I;
~R IT E I "~C .C F SO LUTI Oh S SO l Ghl :".hO_ OF_S OlUT I O ~ S); I UCONT~OLI2 1;

II\IT l E'(I CAl ; INIT SYN 1~ X; l h lT L I S T STOkAGE;
GE TeXP I PkCGk AM) ; -OUE"YVA~ IA c L c5 :=N IL ; Gt TEXPL I ST I CUERYARGS J;
SPE(; =CP h I Fk[J"hAM I ; DEFS:=CDf;(Pf;CGhA MI;
AP~Ly , ~pc C. UcFS . CUER Y~f;G S . CUEf;Y~ Pkl' 8LES I;
F [JR CE LlN ~CU T ;

EI\U ~, A I/\ 6Le c";
E ~c. -

255 _

I el Ju .. E

APEendix E.

Tabulated results from test executions on the Lispkit

Machine.

E.1 Assessing the Lispkit Machine (Chapter 6).

Tables 1-6 cover the statistics LSl-5 obtained from

executing the naive reverse, reverse with accumulating

parameter, quicksort, iterative summing, higher order

summing and powering programs on the LM. The s-expression

storage management component was set at 50000 heap cells,

with the exception of an extra series of experiments

(Table 1, rightmost column) for which the allocation was

set at 4500 cells.

Here is a recap of the behavioural measures recorded by

the statistics:

1. LS1 is the total number of function applications

executed. This is the number of AP and RAP

instructions executed by the LM, and thus includes

wh~£~ and wh~~ expressions.

2. LS2 is the total number of LM instructions executed.

3. LS3 counts the total number of Apply loop steps

4.

5.

(= LS2) and environment lookup steps. LS3 is

proportional to the number of IBM 370 instructions

and storage operations executed by Apply.

LS4 is the total number of s-expression storage

allocation and access requests executed by Apply.

LS5 counts the number of steps executed by the

storage management component. It counts the

allocation and access operations (= LS4), and

the number of garbage collector marking and

scanning steps, and is proportional to the number

of IBM 370 instructions executed by the storage

management.

256.

E.2 Assessing LISPINT1 and LISPINT2 (Chapter 7).

Tables 7 and 8 show the statistics LIS1 and LIS2 for the

execution of naive reverse and reverse with accumulating

parameter on LISPINT1 on the LM. The s-expression

storage was set at 50000 heap cells.

Both LIS1 and LIS2 are counts of numbers of LM

instructions executed, with the following significance:

1. LIS1 is the number of LM instructions executed by

the test program running directly on the LM. It

is proportional to the work performed by the

program as predicted by a model interpretation.

2. LIS2 is the number of LM instructions executed by

LISPINT1 during the interpretation. It is

proportional to the amount of work performed by

LISPINT1 as predicted by a model interpretation.

A rough measure of the total "problem state" CPU time

in seconds is also included for comparision; this

includes the time for operations such as heap

initialisation, s-expression input and output, collection

and output of statistics.

Tables 9 and 10 show the statistics LIS3 and LIS4 for

the execution of naive reverse and reverse with

accumulating parameter on LISPINT2 on the LM. The

s-expression storage was set at 50000 and 5400 heap

cells respectively. LIS3 and LIS4 correspond to LIS!

and LIS2 respectively. Again a rough measure of CPU

time is included in the tables.

257.

A.E12!nli!_~L I~l!lJL1.!.

I List length I LS 1

1 I 4 I

10 I 67 I

20 I 232 I

40 I 862 I

50 I 1127 I

100 I ,152 I

150 I 11477 I

20 () I 2r)':l02 I

2";0 I 31627 I

100 I 45452 I

A§§~22i~g_ih~_~~~]~i!L~~!~~~!!~

LS2 LS3 LS4 LS5

47 I 69 I 921 I 921 I

1064 I 1833 I 21342 I 21342 I

1809 I 6643 I 76522 1 76522 I

14399 I 25263 I 289482 I 289482 I

22244 I 39073 I 447262 I 447262 I

86969 I 153123 I 1749162 I 18,2358 I

194194 I 342173 I 3906062 I 4168875 I

141919 I 606223 I 6917962 I 7397795 I

536144 I 945273 I 10784862 I 11538758 I

77086 q I 1359321 I 15506762 I 16648259 I

~QQQQ_tl~~E_£~ii2~

I LS5 (4500 cells) I

921

21342

81469

310376

484581

1916689

4480692

8097341

13241032

20349385

N
Ul
CD

!££~!l~i~_S;.:. IablJL££.

R~Y~~2~_!iih~££y~~!~i!l~-E~I~~~!~.:.

I List length I 1.S1 L52

1 I 5 I IJ9 t

20 I 2 Q I 312 t

50 I 5Q I 882 t

100 I 104 I 1732 I

150 I 154 I 2582 t

200 I 204 t lq32 t

250 I 25Q t Q282 I

100 I 30Q t 5132 I

') 0 a I SOQ t 8532 I

1000 I 1 CO Q t 17012 I

1~2!~2i!lg_ib~_~~.:.

~QQQQ_~~gE_£~112':'

L53 L54 L55

13 I q80 I 980 I

624 I 7459 I 71159 I

1494 I 17689 I 17689 I

2944 I 3Q739 I 34139 I

439Q I 51789 I S178g I

5844 I 68839 I 68839 I

1294 I 85889 I 85889 I

814Q I 102919 I 102939 I

1Q 5Q4 I 171139 I 171139 I

21} 044 I 341639 I l416l9 I

I\)

UI
CD

A2.1HH!gi!._~.!. Iabl!Ll~ A§222§ing_~h~_~~~

2yi£~.EQ!1~ ~QOOQ_y~g2._£211~~

I List length 1 L51 L52 L53 L5q

1 I 3 I 38 I 52 I 731 I

'3 I 11 I 198 I 335 I 3881 I

7 I 35 I 690 I 1225 I 13597 I

15 1 qq I 2018 I 3653 I 3f)861 I

31 I 259 I '5362 I 9805 I 106053 I

63 I 6q 1 I 13q26 I 2q 701 I 265765 I

127 I 151 q I 32306 I 59617 I 6398q5 I

2S5 I 3'5R7 I 7'1510 I 139997 I 1Q97317 I

') 1 1 I 81Q') I 171106 I 32117'3 I 3q30885 I

1021 I 18q3'1 I H01QQ I 725')C}7 I 771')269 I

L55

731

3881

13597

39861

106053

265765

6]q8q 5

1552062

3643895

82Q0558

N
0>
o

1
1

JIl!~.!!giL!.!. IsR!!L!!.!.

• = 1
n

1 I

20 I

50 I

100 I

150 I

200 I

250 I

300 I

500 I

1000 I

r~2I~~1~~_§Y~~i~~~

L51 L52

2 I 171

21 I 3/J0 I

51 I 850 I

101 I 1700 I

151 I 2550 I

201 I 3400 I

251 I 4250 I

301 I ';100 I

:01 I 8500 I

1 CO 1 I 11COO I

!~~~§§igg_~h~-b~.!.

2QOOQ-tleap_£211~.!.

L53

26 I

634 I

1594 1

3194 1

4794 I

6394 1

7994 I

9594 I

159q4 I

31994 I

L54 I
1

354 1

7327 1

18337 I

36687 1

55037 I

73387 I

91737 I

110087 I

183487 I

366987 I

L55

354

7327

18337

36687

55037

73 3B 1

9113 7

110087

1834B1

366987

N
01

1
I

!~2~~gil_~~ Ia~!~_2~

• = 1
n

1 I

20 I

so 1

100 1

150 1

200 I

2S0 I

10 C I

1)10 1

100e I

lligh~'_Q~g~'_2~~~!~~

LS 1 L52

I) I HI

10C I 980 I

250 I 2450 I

50 C I 4900 I

750 I 7350 I

1 cae I 9800 I

1250 I 12250 I

1500 I lQ700 I

251) 0 I 2(1)00 I

5COO I Q9000 I

A§2~2§~~g_th~_~~~

2QQQQ_~~~E_f~!!2~

LS3

89 I

2008 1

5038 I

10088 I

15118 I

2:> 188 I

25238 I

30288 I

50488 I

100988 I

LS4 I
I

1045 I

21831 I

54651 I

109351 I

164051 I

2187'51 I

2n4'51 I

328151 I

546951 I

1091951 I

LS5

1045

21811

54E51

109351

164051

218751

271451

328151

546951

1614072

N
01
N

J
1

n = 2
It

}~.E~.ns'!i.!_I~

.F21§!:i.n.9.!.

LS1

1 J 4 I

2 J 6 J

1 1 10 1

5 1 34 1

7 J 130 J

10 J 1026 I

12 1 40118 1

14 1 16386 I

15 1 32771) I

I!bl~L§.!. !2§~§§in.9_th~_~~~

2QQQQ_~~g.E_£§11§~

LS2 LS3 LS4 LS5

47 J 74 I 959 I 959

82 1 130 I 1663 I 1663

162 1 251 I 3230 1 3230

682 J 1013 I 13268 J 13268

2822 1 4115 J 54374 1 543711

22952 I 33208 I 4110521 I 440521

92052 I 133010 I 1765771 1 1866675

368512 J 532372 I 7067725 J 7521q:>6

717142 1 1064843 I 14137262 I 15096403

N
01
(,.I

!§§~§§i~g_1I~£1!!1~

2QQoO_B~aE_£~112~

I List length I LIS 1 L1S2 I CPU seconds I

o I 19 I 779 I 1. 1 9

1 I 3843 I 1.40

2 I 92 I 311187 I 3.25

3 I 1511 I 521619 I 40.07

4 I Not coapleted. I
I filore than 200 CPU s!con3s required. I

I List length I LIS1 LIS2 I CPU seconds I

o I 32 I 1635 I 1.25

1 I 49 I 4078 I 1.43

2 I 66 I 10556 I 1.90

3 I 83 I 29139 I 3.24

4 I 100 I 84037 I 7.81

5 I 117 I

247880 I 21.10

I 6 I 134 I 738558 I 60.34

264.

265.

I List length I LIS3 LISII I CPU seconds I

o I 19 I 783 I 1. 19

1 I 117 I 22"6 I 1.30 I

2 I 92 I 4660 I 1.46

3 I 1511 I 8025 1 1.68

II I 233 I 12311 1 I 1.97

6 I 442 I 23826 I 2.711

8 I 719 I 39115 I 3.78

10 I 106!J I 58208 I 5.36

20 I 3809 I 210733 I 16.90

50 I 2224 q I 1238908 I 97. 10

I List length I LIS3 LISII I CEU sec:>nds I

C I 12 I 14!J8 I 0.65

1 I IIq I 2361 I 0.72

2 I 66 I 32711 I 0.87

3 I 81 I 4137 I 0.93

I II I 100 I 5100 I 1.08

I 6 I 134 I 6926 I 1.21

I 8 I 168 I 8752 I 1.113

I 10 I 202 I 10578 I 1.65

I 20 I 372 I 19708 I 2.85

I 50 I 8'12 I 117098 I 10.37

266.

ApE,endix F.

Tabulated results from test executions on the Prolog Machine.

F.l Assessing the Prolog Machine (Chapter 6)

Tables 1-5 cover the statistics PSl-7 obtained from

executing the naive reverse, reverse with accumulating

parameter, quicksort,iterative summing and powering

programs on the PM. The su-expression storage

management component was set at 50000 heap cells for cons,

number and unknown allocations. Statistics were collected

only until the production of the first result.

Here is a recap of the behavioural measures recorded

by the statistics:

1. PSi counts the total number of predicate cases

executed during the computation. It is found by

counting the number of UNIFY instructions which

the PM executes.

2. ,PS2 is simply the total number of PM instructions

executed.

3. PS3 counts the total number of Apply loop steps

(= PS2), the steps in local environment building

and lookup, and the number of predicate definition

lookup steps. PS3 is proportional to the number

of IBM 370 instructions, ~pport operations, and

~orage operations executed by Apply.

4. PS4 is the total number of Support operations

requested by Apply. These are the unification,

backtracking, and data structure checking routines.

5. PS5 is proportional to the number of IBM 370

instructions and Storage operations executed by the

Support component. It is found by counting the

internal looping steps of the Support routines and

adding the number of support operations requested (=PS4).

6. PS6 counts the number of storage operations

executed by the Support and Apply components.

7. PS7 is proportional to the number of IBM 370

instructions executed by the Storage component.

It is found by counting the internal looping

steps of the garbage collector and forcing routines,

and adding the number of Storage operations

requested (= PS6).

F.2 Assessing PROLOGINT (Chapter 7).

Tables 6 and 7 show the statistics PIS1 and PIS2

for the execution of naive reverse and reverse with

accumulating parameter on PROLOGINT on the PM. The

su-expression storage was set at 70000 and 23000

heap-cells respectively. Statistics were collected

only until production of the first result.

Both PIS1 and PIS2 are counts of numbers of PM

instructions executed, with the following significance:

1.' PIS1 is the number of PM instructions executed

by the test program running directly on the PM.

It is a representation of the work performed by

the program as predicted by a model interpretation.

2. PIS2 is the number of PM instructions executed by

PROLOGINT during interpretation of the test program.

It is a representation of the work done by

PROLOGINT as predicted by a model interpretation.

A rough measure of the total "problem state" CPU

time in seconds is also included for comparison;

this includes the time for heap initialisation,

su-expression input and output, collection and output

of statistics.

267.

!l!2!Ul!liI_X~ Igl!l~Ll.£ !~§~~sing_ih~_f~~ !:H~~l!L~~!~£2.!h. 2QQQQ_B~g2_Cell§~

1 List length I PS1 PS2 PS3 PS4 PS5 PS6 PS1

, I 5 1 80 I 123 I 6 I 32 I 2433 I 2440

5 I 37 1 644 I 1115 1 52 I 252 1 24891 1 24956

10 1 122 1 2159 I 3940 I 177 I 842 1 88077 I 88291

20 , 442 1 7889 I 1!J240 I 652 , 3072 I 331437 I 132261

10 I 962 I 17219 I 31240 I 1427 I 6702 1 730797 I 732631

40 I 1682 1 30149 1 5IJ840 I 2502 I 117 32 1 1286157 1 1289401
--

so I 2602 I 46679 I 85040 I 3877 I 18162 I 1997517 I 2002571
--

60 I 1722 I 66809 I 121840 I 5552 I 259!J2 I 2864877 I 2975131
--

65 I 4157 I 78224 I 142115 I 6502 I 30412 I 3357057 I 3721401
--

66 I 449C I 80615 I 141088 I 6701 I 31362 I 3460171 I 4248289
--

67 I Heap over flow
--

N
01
00

J

!1!12~Dg.i!._t:L I~bl!!_~L !§§~§§!gg_i~~_gAL

B~!~~~~_~i~~_~££~~lg~ing_EE!~!~~~£~ 2QQQQ_ll~gE_f~11§~

J List length I PS 1 PS2 PS3 PS4 PS5 PS6

1 I 4 I 69 I 112 I 5 J 28 I 1940 I

20 I 42 I 753 I 1347 I 62 I 294 I 23125 I

50 I 102 I 1833 I 1297 I 152 I 714 I 56575 I

100 I 202 I 3611 I 6547 I 302 I 1414 I 112325 I

150 I 102 I 5433 I 9797 I 452 I 2114 I 168075 I

200 I 402 I 7231 I 13047 I 602 I 2814 I 223825 I

2')0 I 502 I g031 I 16297 I 752 I 1~14 I 27<)575 I

10 () I 602 I 10E13 I 19547 I 902 I 4214 I 33532') I

c)00 I 1002 I 1 A OD I 32')47 I 1502 I 7014 I 558325 I

1 CO 0 I 2C02 I 36011 I 65047 I 3002 I 14014 I 111582') I

PS7

1947

23208

56778

112728

168678

224028

280578

136')28

560128

1119828

N
01
CD

A2~!lg!!._f£. TaRle J£. !~§§22i~g_~h§_£~~ 2.!!i£J£§2!:!~ 2QQQQ_H~~E_£!!!§£.

--
I List length I PS1 PS2 PS3 PS4 PS5 PS6 PS7
--

1 I 6 I 115 I 208 I 7 I 46 I 3521 I 3532

3 1 19 I 403 I 765 I 27 I 173 I 14539 I 114582

7 I 55 I 1227 I 23149 I 87 I 553 I 47821 I 47970

15 I 147 I 3371 I 6457 I 247 I 1565 I 136901 I 131322

31 I 371 I 8E51 I 16553 I 647 I 4093 I 360075 I 361178

63 I 8qq I 21195 I 40505 I 1607 I 10157 I 896421 I 999 H4

127 I 2115 I 50251 I 9592q 1 3847 I 24301 I 2149163 I 2246430

N

"" o

J

AE~i.a~_IL !s121!L!!.!. A§§~§§i~_!~~_~L 1!~~atiY~_~Y!!i~g.!. 2~~Q~_H~~E_£~!12.!.

--
• = 1 PSl P~2 PS3

n
I
I

PSq PS5 PS6 PS7

--
1 I 2 I 35 I 57 I 2 I 16 I 910 I 915

20 I qO I 1156 I 2033 I 97 I 43IJ I 32545 I 32121
--

so I 100 I 2926 I 5153 I 241 I 1094 I 82495 I 82941

100 I 200 I 5876 I 10353 I 497 I 2194 I 165145 I 166641

150 I 300 I 8826 I 15553 I 1q7 I 3294 I 248995 I 250341

200 I qOO I 11776 I 20153 I 997 I 4394 I 332245 I 134041

250 I 500 I 14726 I 25953 I 1247 I 5494 I 415495 I 417141

lr)O I 600 I 17 06 I 31153 I 1491 I 6594 I 498145 I 501441

500 I 1000 I 29 II 7 6 I 51953 I 2497 I 109Q4 I 831745 I 836241

1000 I 2000 I ~8976 I 103951 I 4991 I 21994 I 16611245 I 17610B9

I

I\) I

;j I
j

!E~n~!.~_E~

n = 2
k

, 1

2 I

3 1

5 I

PS 1

1~Ql~L2.!. !22~2§!.n~_!h~_g~~

P~2 PS3

5 I 107 I 'Q3 I

') 1 197 I]3Q I

171 39n I 710 I

65 I 16n 4 I 3252 I

.f;l!~~i!!g~ 2~~~Q_H~g~_£!!12.!.

PS4 PS5 PS6 PS7

a I 41 I 4241 I 4254

16 I 73 I 9314 I JB6

32 I 132 I 20640 I 206B3

128 I 466 I 93316 I 9J4:.J7
--

7 I 257 I 6746 I 13894 I 512 I 1772 I 391100 I 391851
--

8 I 513 I 11577 I 2B 215 I 1024 I 3505 I 790112 I 791628
--

9 I 1025 I 27256 I 56916 I 2048 I 6966 I 15an16 I 1,)923fi5

10 I 204Q I 54631 I 114457 I 4096 I 13883 I 318Hon I 328238n

11 I Heaf overflow
--

N
~

N

~

!22~§2in~_R]Q1QgIBI~

2QQQQ_n~aQ~~112~

o I 2q I 2470 I 1.49 I

1 I 80 I 8698 I 1.92 I

2 I 167 I 201167 I 2.73

1 I 290 I 37777 I 3.93

4 I 1149 I 60628 I 5.51

6 I 87: I 122953 t 14.63

7 I 1142 I 162427 I 25.0')

8 I 1445 I 207442 I 47.17

1 List length I PIS1 PIS2 I CFU secon ,15 I

o I :n I 3135 I 0.93

1 I 69 I 8702 I 1. 31

2 I 105 I 14269 I 1. 6 <J

4 I 177 1 25403 I 3.06

1 6 I 24<:; t 36537 I 4.71

I 8 I 321 I 47671 I 6.58

I 10 I ~9) I 58805 I 10.02

--273.

APPENDIX G. BIBLIOGRAPHY.

Appendix G. Bibliography.

Anderson, T., Lee, P.A., and Shrivastava, S.K. (1978)
A Model of Re~overability in Multilevel Systems.
IEEE Transact10ns on Software Engineering,
Vol. SE-4, No.6, 486-494.

Boyer, R.S., and Moore, J.S. (1972) :

274.

The Sharing of Structure in Theorem Proving Programs.
Machine Intelligence 7 (Eds. Meltzer and Michie) 101-116 . , ,
Ed1nburgh University Press.

Boyer, R.S., and Moore, J.S. (1975) :
Proving Theorems about Lisp Functions.
JACM, Vol. 22, No.1, 129-144.

Burstall, R.M. (1977) :
Design Considerations for a Functional
Programming Language.
Infotech State of the Art Conference, 45-57, Copenhagen.

Burstall, R.M., and Darlington, J. (1973)
A System which Automatically Improves Programs.
Proceedings 3rd International Joint Conference on
Artificial Intelligence, 479-485, Stanford, California.

Burstall, R.M., and Darlington, J. (1977) :
A Transformation System· for Developing Recursive Programs.
JACM, Vol. 24, No.1, 44-67.

Church, A. (1941) :
The Calculi of Lambda-Conversion.
Annals of Mathematical Studies, No.6,
Princeton University Press.

Church, A. (1952)
Introduction to Mathematical Logic.
Princeton University Press.

Clark, K.L. (1978)
Negation as Failure.
Logic and Databases (Eds. Gallaire and Minker), 293-322,
Plenum Press, New York.

Clark, K.L. (1979) : .
Predicate Logic as a Computational Forma11sm.
Research Monograph, Imperial College, London.

Clark, K.L., and Darlington, J. (1980): .
Algorithm Classification through Synthes1s.
Computer Journal, Vol. 23, No.1, 61-65.

--

275.

Clark, K.L., and MCCabe, F. (1979) :
Programmer's Guide to IC-Prolog.
CCD Report 79/7, Imperial College, London.

Clark, K.L., and McCabe, F. (1979) :
The Control Facilities of IC-Prolog.
Expert Systems in the Microelectronic Age (Ed. Michie).
122-149, AISB Summer School, Edinburgh University Press.

Clark, K.L., and Tarnlund, S.-A. (1977)
A First Order Theory of Data and Programs.
Proceedings IFIP 77, 939-944, North-Holland.

Davis, R.E. (1980)
Runnable Specifications as a Design Tool.
Proceedings of Logic Programming Workshop. 106-117.
Debrecen, Hungary.

Deliyanni, A., and Kowalski, R. (1979)
Logic and Semantic Networks.
Comm. ACM, Vol. 22, No.3, 184-192.

Hans~on, A., and Tarnlund, S.-A. (1980)
Program Transformation by a Function that maps
Simple Lists onto D-Lists.
Proceedings of Logic Programming Workshop, 225-229,
Debrecen, Hungary.

Henderson, P. (1978)
Lispkit System - A Software Kit.
Computing Laboratory Technical Report No. 129,
University of Newcastle upon Tyne.

Henderson, P. (1980)
Functional Programming: Application and Implementation.
Prentice-Hall International, Series in Computer Science,
London.

Henderson, P., and Morris, J.H. (1976)
A Lazy Evaluator.
Proceedings 3rd Symposium on the Principles of
Programming Languages, 95-103, Atlanta.

Jones, S.B. (1979)
Predicate Logic Programming Style for Database
Manipulation and General Computation.
Computing Laboratory Memo MRM/151,
University of Newcastle upon Tyne.

Jones, S.B. (1980)
structured Programming Techniques in Prolog.
Proceedings of Logic Programming Workshop, 322-333,
Debrecen, Hungary.

Kowalski, R. (1974)
Predicate Logic as a Programming Language.

276.

Proceedings IFIP 74, 569-574, North-Holland, Amsterdam.

Kowalski, R. (1978)
Logic for Data Abstraction.
Logic and Database (Eds. Gallaire and Minker), 77-102,
Plenum Press, New York.

Kowalski, R. (1979)
Logic for Problem Solving.
Elsevier North-Holland, Artificial Intelligence Series,
New York.

Kowalski, R. (1979)
Algorithm = Logic + Control.
Comm. ACM, Vol. 22, No.7, 424-436.

Landin, P.J. (1964)
The Mechanical Evaluation of Expressions.
Computing Journal, Vol. 6, No.4, 308-320.

Landin, P.J. (1965)
A Correspondence between Algol 60 and Church's Lambda
Notation: Parts I and II.
Comm. ACM, Vol. 8, Nos. 2 and 3, 89-101 and 158-165.

Landin, P.J. (1966)
The Next 700 programming Languages.
Comm. ACM, Vol. 9, No.3, 157-166.

Manna, Z., and Vuillemin, J. (1972) .
Fixpoint Approach to the Theory of ComputatIon.
Comm. ACM, Vol. 15, No.7, 528-536.

McCarthy, J. (1960)
Recursive Functions of Symbolic Expressions and their
Computation by Machine.
Comm. ACM, Vol. 3, No.4, 185-195.

McCarthy, J., et al. (1962)
The Lisp 1.5 Programmer's Manual.
MIT Press, Cambridge, Mass.

--

McCarthy, J., (1963) :
A Basis for a Mathematical Theory of Computation.
Computer Programming and Formal Systems (Eds. Braffort
and Hirschberg), 33-70, North-Holland, Amsterdam.

Mellish, C.S. (1980)
An Alternative to Structure Sharing in the
Implementation of a Prolog Interpreter.
Proceedings of Logic Programming Workshop, 21-32,
Debrecen, Hungary.

Moss, C. (1980) :
The Comparison of several Prolog systems.
Proceedings of Logic Programming Workshop, 198-200,
Debrecen, Hungary.

Nilsson, N.J. (1971)
Problem Solving Methods in Artificial Intelligence.
MCGraw-Hill, New York.

Paterson, M.S. (1976)
Linear Unification.
Proceedings 8th Annual ACM Symposium on the
Theory of Computing, 181-186, Pennsylvania.

Reynolds, J.C. (1972)
Definitional Interpreters for Higher Order
Programming Languages.
Proceedings ACM Annual Conference, 717-740, Boston.

Robinson, J.A. (1963)
Theorem Proving on the Computer.
JACM, Vol. 10, April, 163-174.

277.

Robinson, J.A. (1965) :
A Machine Oriented Logic Based on the Resolution Principle.
JACM, Vol. 12, No.1, January, 23-41.

Robinson, J.A. (1967)
A Review of Automatic Theorem Proving.
Annual Symposia in Applied Mathe~atics, .
Vol. 19, 1-18, American Mathemat~cal Soc~ety.

Robinson, J.A. (1971)
Computational Logic: The Unification Computation.
Machine Intelligence 6 (Eds. Meltzer and Michie), 63-72,
Edinburgh University Press.

Robinson, J.A. (1979) :
Logic : Form and Function.
Edinburgh University Press.

Roussel, P. (1975) :
Prolog: Manuel de Reference et d'Utilisation.
Groupe d'Intelligence Artificielle . . ,
Un1vers1te d'Aix-Marseille, Luminy.

Sickel, S., and McKeeman, W. (1980) :
Hoare's Program FIND Revisited (Abstract).
Proceedings of Logic Programming Workshop, 224,
Debrecen, Hungary.

steele, G.L., and Sussman, G.J. (1980) :
Design of a Lisp Based Microprocessor~
Comm. ACM, Vol. 23, No. 11, 628-645.

Sussman, G.J. (1980)
Lisp Chip - Scheme 79.

278.

Proceedings of Joint SRC/University of Newcastle upon Tyne
Workshop on VLSI: Machine Architecture and
High Level Languages (Ed. Treleaven), 31-36,
Computing Laboratory Technical Report No. 156,
University of Newcastle upon Tyne.

Turner, D.A. (1979) :
A New Implementation Technique for Applicative Languages.
Software Practice and Experience, Vol. 9, 31-49.

Warren, D.H.D. (1977)
Implementing Prolog.
Research Reports 39 and 40,
Dept. of Artificial Intelligence, Edinburgh University.

Warren, D.H.D. (1977) :
Logic Programming and Compiler Writing.
Research Report 44,
Dept. of Artificial Intelligence, Edinburgh University.

Warren, D.H.D., Pereira, L.M., and Pereira, F. (1977)
Prolog - The Language and its I~plementation
compared with Lisp.
SIGPLAN Notices, Vol. 12, No.8, 109-115.

Additional reference:

McCabe, F. ~1980)
MicroProlog Reference Manual.

Imperial College, London.

	259015_0001
	259015_0002
	259015_0003
	259015_0004
	259015_0005
	259015_0006
	259015_0007
	259015_0008
	259015_0009
	259015_0010
	259015_0011
	259015_0012
	259015_0013
	259015_0014
	259015_0015
	259015_0016
	259015_0017
	259015_0018
	259015_0019
	259015_0020
	259015_0021
	259015_0022
	259015_0023
	259015_0024
	259015_0025
	259015_0026
	259015_0027
	259015_0028
	259015_0029
	259015_0030
	259015_0031
	259015_0032
	259015_0033
	259015_0034
	259015_0035
	259015_0036
	259015_0037
	259015_0038
	259015_0039
	259015_0040
	259015_0041
	259015_0042
	259015_0043
	259015_0044
	259015_0045
	259015_0046
	259015_0047
	259015_0048
	259015_0049
	259015_0050
	259015_0051
	259015_0052
	259015_0053
	259015_0054
	259015_0055
	259015_0056
	259015_0057
	259015_0058
	259015_0059
	259015_0060
	259015_0061
	259015_0062
	259015_0063
	259015_0064
	259015_0065
	259015_0066
	259015_0067
	259015_0068
	259015_0069
	259015_0070
	259015_0071
	259015_0072
	259015_0073
	259015_0074
	259015_0075
	259015_0076
	259015_0077
	259015_0078
	259015_0079
	259015_0080
	259015_0081
	259015_0082
	259015_0083
	259015_0084
	259015_0085
	259015_0086
	259015_0087
	259015_0088
	259015_0089
	259015_0090
	259015_0091
	259015_0092
	259015_0093
	259015_0094
	259015_0095
	259015_0096
	259015_0097
	259015_0098
	259015_0099
	259015_0100
	259015_0101
	259015_0102
	259015_0103
	259015_0104
	259015_0105
	259015_0106
	259015_0107
	259015_0108
	259015_0109
	259015_0110
	259015_0111
	259015_0112
	259015_0113
	259015_0114
	259015_0115
	259015_0116
	259015_0117
	259015_0118
	259015_0119
	259015_0120
	259015_0121
	259015_0122
	259015_0123
	259015_0124
	259015_0125
	259015_0126
	259015_0127
	259015_0128
	259015_0129
	259015_0130
	259015_0131
	259015_0132
	259015_0133
	259015_0134
	259015_0135
	259015_0136
	259015_0137
	259015_0138
	259015_0139
	259015_0140
	259015_0141
	259015_0142
	259015_0143
	259015_0144
	259015_0145
	259015_0146
	259015_0147
	259015_0148
	259015_0149
	259015_0150
	259015_0151
	259015_0152
	259015_0153
	259015_0154
	259015_0155
	259015_0156
	259015_0157
	259015_0158
	259015_0159
	259015_0160
	259015_0161
	259015_0162
	259015_0163
	259015_0164
	259015_0165
	259015_0166
	259015_0167
	259015_0168
	259015_0169
	259015_0170
	259015_0171
	259015_0172
	259015_0173
	259015_0174
	259015_0175
	259015_0176
	259015_0177
	259015_0178
	259015_0179
	259015_0180
	259015_0181
	259015_0182
	259015_0183
	259015_0184
	259015_0185
	259015_0186
	259015_0187
	259015_0188
	259015_0189
	259015_0190
	259015_0191
	259015_0192
	259015_0193
	259015_0194
	259015_0195
	259015_0196
	259015_0197
	259015_0198
	259015_0199
	259015_0200
	259015_0201
	259015_0202
	259015_0203
	259015_0204
	259015_0205
	259015_0206
	259015_0207
	259015_0208
	259015_0209
	259015_0210
	259015_0211
	259015_0212
	259015_0213
	259015_0214
	259015_0215
	259015_0216
	259015_0217
	259015_0218
	259015_0219
	259015_0220
	259015_0221
	259015_0222
	259015_0223
	259015_0224
	259015_0225
	259015_0226
	259015_0227
	259015_0228
	259015_0229
	259015_0230
	259015_0231
	259015_0232
	259015_0233
	259015_0234
	259015_0235
	259015_0236
	259015_0237
	259015_0238
	259015_0239
	259015_0240
	259015_0241
	259015_0242
	259015_0243
	259015_0244
	259015_0245
	259015_0246
	259015_0247
	259015_0248
	259015_0249
	259015_0250
	259015_0251
	259015_0252
	259015_0253
	259015_0253a
	259015_0254
	259015_0255
	259015_0256
	259015_0257
	259015_0258
	259015_0259
	259015_0260
	259015_0261
	259015_0262
	259015_0263
	259015_0264
	259015_0265
	259015_0266
	259015_0267
	259015_0268
	259015_0269
	259015_0270
	259015_0271
	259015_0272
	259015_0273
	259015_0274
	259015_0275
	259015_0276
	259015_0277
	259015_0278
	259015_0279
	259015_0280
	259015_0281
	259015_0282
	259015_0283
	259015_0284
	259015_0285
	259015_0286
	259015_0287
	259015_0288
	259015_0289
	259015_0290
	259015_0291
	259015_0292
	259015_0293
	259015_0294
	259015_0295
	259015_0296
	259015_0297

