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ABSTRACT.

This thesis explores the problem of making accurate
assessments of the performance of high level language
interpreter programs which are embedded in some more
complex system. The overall system performance will be
determined by all the software and hardware components
present; but in order either to analyse and improve
particular components, or to select between alternative
versions of components, the concept of the performance

of individual components is important.

A model is developed for the abstract behaviour of
software components playing the role of an interpreter

by considering their interaction with the program code
which is being interpreted and with the underlying

virtual machine which is, in turn, intefpreting them.

This model enables a flexible definition of performance

by relating the interactions in which an interpreter takes
part. A methodology is recommended for assessing
experimentally the performances defined within such a

framework.

The performancesof an interesting selection of
pseudo-machine and high level interpreter implementations
of Lispkit and Prolog are then assessed and conclusions

drawn.
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Chapter 1 - INTRODUCTION,



Introduction.

The observations, theories, experiments and results
reported in this thesis arose from an informal exploration
of the implementation of Lispkit and Prolog by means

of interpreters and pseudo—mgchines. The exploration

was primarily intended to enlarge my personal understanding
of these and related languages and of their particular
implementation problems. However, the urge to péss
judgement on the merits and demerits of individual
systems, and to compare and contrast different systems,

is very strong, and my thoughts turned in this direction.
It became clear that it is not a simple matter to make
accurate assessments and fair comparisons of the
performance of interpreters and pseudo-machines;

the influences of different hardware, different languages
(for implementation of the interpreters and pseudo-
machines), different programming styles within the same
implementation language, different overall system
structures, and so on, must ideally be factored away,

and the characteristics of the interpreters and
pseudo-machines must be presented in some abstract but
meaningful form. Great care must be taken in the

design of experiments, and in the statement of conclusions,
but I was not aware of any Other work which attempted

to clarify this matter; ad hoc techniques prevail in
assessments and comparisons reported in the literature,
and to me this felt less than satisfactory in such an

important subject.



In particular my attention was drawn to the performance
comparison of implementations of DEC-10 Prolog and
Stanford Lisp, reported in Warren (1977) and Warren

et. al (1977). The comparison arrives at some

surprising conclusions concerning the relatively

high efficiency of Prolog, and I did not feel satisfied
with the simple benchmarking technique used in the
assessment. On the other hand, both the comparison

of SASL and Lisp reported in Turner (1979), and the
comparison of various Prolog systems reported in Moss
(1980), show attempts to factor out the influences

of the environment; in the former case this is by
counting high level operations within the software, and
in the latter case by performing initial experiments

to "normalise" the execution speeds of different machines.
However, in neither case are the considerations underlying

such techniques developed as an independent topic.

Thus this thesis has grown to be an attempt to identify
and to clarify some of the issues in the analysis and
aséessment of the performance of iaterpreter systems.
The results of the investigation will show that a
comprehensive and reliable performance assessment is,

in general, very difficult to achieve.

[



Lispkit and Prolog are two representatives of the large
number of experimental (very) high level programming
languages currently aiding research in many branches

of computer science; for example, they serve as testbeds
for the development of advanced programming techniques,

as prototypes for future programming languages, and as
languages for use in experiments on automatic program
synthesis, transformation, verification and the definition

of semantics.

For experimental high level languages it is common to
make implementations which consist either of an
interpreter (usually written in some high level language,
and accepting programs in "source code" form), or a
software "pseudo-machine" (usually written in some high
level language, and accepting programs for execution

in an intermediate compiled form); pseudo-machines are
clearly also interpreters of some language. The
interpreter and pseudo-machine approaches expedite the
implementation process in the research and teaching
environments, and may themselves lead to a deeper
understanding of the implemented languages. In the
applications, or systems engineering, environment these
two approaches may also ease the modification and

maintenance of high level language systems.

0f course, an interpreter for a high level language may
itself be written in some high level language (possibly
the very one it is designed to interpret) and be
executing on some interpreter or pseudo-machine. Thus
the general picture which arises is that of programming
systems which are constructed as multiple levels of
interpreters and pseudo-machines. This has been true
for some time in the hardware field with the concept of

microprogrammed processor architectures.



It is to be expected that the price to be paid for an
extra layer of interpreter software between a program
and the hardware is a loss of anticipated execution
speed of the program. Perhaps the best that can be
expected is that the time for interpretation of a
program, ti, is a linear function of the time for
execution of the program (if suitably compiled) directly

on the hardware, td:
ti = a*td + b

But, with one of more layers of potentially sophisticated

interpretation, the relationship might very well be

much worse than linear, for example quadratic or

exponential:
ti a*td*td + b*td + ¢

a*exp(td) + b

or ti

The design decisions taken in individual interpreters

and pseudo-machines will critically determine the
performance characteristics. The decisions and their
consequences are of theoretical interest in the research
environment, but they are of practical importance in all
environments; the commercial user is paying money for CPU
time, and the researcher or student is trying to obtain

useful results whilst maintaining patience and interest.

Hence, whether for the sake of research interests, or of
systems engineering, it is necessary to be able to make
accurate assessments of the impact of design decisions
on the performance of systems and their components, and
to be able to make fair and meaningful comparisons

between alternative versions of components.



The complexity of the software of multi-level interpreter
systems makes an empirical assessment of performance more
feasible than an theoretical approach, though
experimental results can be expected to yield insight into
mechanisms to be considered later by a theoretical
analysis. In such assessments of the performance of
individual interpreters it is important to obtain
characteristics which are not distorted by the inclusion
of the characteristics of other components in the

system; for example, the results of assessing the
performance of an interpreter (and hence the interpretation
scheme which it realises) should depend neither on the
test programs which were being interpreted, nor on the
machine which was executing the interpreter.

To this end, what is necessary is some way of defining
the performance of an interpreter component in isolation
from the remainder of any system in which it is used,

and to have some practical method of obtaining good
assessments of such performances. Subsequent chapters
suggest some solutions to these probleﬁs, and the
suggestions are put into practice to assess a selection

of Lispkit and Prolog implementations.

Chapters 2 and 3 set the scene for a discussion of high
level language interpretation by presenting the Lispkit

and Prolog languages in some detail.

Chapters 4 and 5 examine one approach to the treatment
of multi-level interpreter systems and their performance,
and present a formal model for defining the performance

of individual, isolated components of systems. The model



also clarifies

the relationship of the performance of

individual components to the performance of compound

(multi-level) components, and of the system as a whole.

Chapter 5 also describes a methodology for the empirical

assessment of the performance of components of systems,

and in Chapters 6 and 7 the methodology is applied to

pseudo-machine

implementations of Lispkit and Prolog,

and to high level interpreters for Lispkit and Prolog.

The appendices
on the origins

pseudo-~machine

of experiments

contain a little more background information
of Lispkit and Prolog, details of the two
implementations, and the tabulated results

described in Chapters 6 and 7.



CHAPTER 2 - THE LISPKIT LANGUAGE.



The Lispkit Language.

In this chapter I shall describe the Lispkit Lisp variant,
which can be considered as representative of the family of
functional, recursive languages for manipulating symbolic

data structures.

The origins of Lispkit are outlined in Appendix A.

The first part of the chapter is concerned with the use of
Lispkit as a notation for expressing computations as
functions from symbolic data structures to symbolic data
structures. The second part of the chapter will cover an

operational model for the evaluation of Lispkit programs.

Lispkit has been implemented as a high level pseudo-

machine, for which Lispkit programs are compiled into an
intermediate machine code. Details of the design of the
machine and of the compilation are to be found in

Appendix B. Chapter 6 outlines the behavioural characteristics
of the Lispkit machine, and an empirical performance

assessment is made. In Chapter 7 two Lispkit interpreters

are programmed in Lispkit and their performance is assessed.

A much fuller exposition on the subject of functional
programming is to be found in Henderson (1980). Indeed,
this chapter and Appendix B are little more than a

personal reiteration of the same material, and in
particular I must give credit for the design of the Lispkit

language and machine to Henderson.

The Lispkit language is based on the concepts of using
symbolic data structures as basic values, of organising

a computation as nested expressions rather than as a
sequence of assignments, and of using recursive functions

to handle the tree-like symbolic data structures.



The following is an example of a complete Lispkit
program. It illustrates the basic constructs of the
language, and can serve to focus attention in the language
description which follows:
find whererec
find ( x,1) = if eq(l, NIL) then 1

else

.if eq(head(1),x) then 1

else 1 + find ( x, tail (1))

This program searches a list to find the first occunence,
if any; of a particular value. The result of the program
is the position of the value in the list, expressed as an
integer, or, if the value is not found, then an intepger
which is one greater than the length of the list. The
program requires two input arguments, the value and the
list, called x and 1 respectively. The second to fifth
lines constitute a function definition, of the recursive
function "find". Simple expressions appear throughout
the program, for example "eq(l, NIL)" and "1+find (...)",
and in fact the entire program is an expression. In line
5 the function "find" is applied explicitly to some

arguments : "find (x, tail (1))".

The action of the function find is programmed to cover
three cases: If the list 1 is empty (equal to NIL) then

x is certainly not contained in it, and result is 1 (since
the length of an empty list is 0). Otherwise if the

first member of 1 (head(l)) is equal to x then the result
is 1. Otherwise the first member is not equal to x, and
the result must be one more than the result of finding x

in the remainder of the list, that is 1 + find (x, tail (1)).



2.1 Expressing computations as functions.
2.1.1 Symbolic data structures.

The first feature of Lispkit which it is necessary to
describe is also one of the key factors contributing to

the great programming power of this and a host of other
experimental very high level languages. The class of

data values which a Lispkit program is designed to manipulate

is a particular form of symbolic expressions (s-expressions)

(McCarthy (1960)). S~expressions subsume the integers

and simple string constants (Elﬂhglﬁ) as atomic values
(atoms), and include all binary trees (acyclic) which

have atoms at the leaves. All compound objects (data
~structures) are represented as such binary trees. 1In
‘the_representation on paper of s-expression values integer
atoms will be written as expected, symbols will be short
unquoted strings of upper case letters (and possibly digits
in other than the first position), and a compound object
(a tree) will be represented as (a.b) where a and b are
the representations of the left and right subtrees

respectively. Hence the following simple syntax:

s-expression :: = atom I (s-expression.s-expression)

atom :: = integer I symbol

In practice the above "dot notation" will be cumbersome
and visually confusing, so we shall adopt the usual
convention that certain s-expression structures may be
simplified (unambiguosly). The following two rules for
rewriting s-expressions will apply:
(i) An s-expression of fhe form

(ab ... d.(e f ... g.h))

may be written as

(ab ... def ... g.h)



(ii) An expression of the form
(a b ... d.NIL)
may be written as
(ab ... d)

One consequence of these simplifying rules is that we shall

choose to represent a list of objects x1, x2,..., ¥xn by the

binary tree

x1

X2

xn NIL

which can be written as (x1.(x2.(...(xn.NIL)...)))

and conveniently rewritten as (x1 x2 ... xn).

Some examples of s-expressions (in various degrees of

simplification):

(1 2 3 4) (A B. (C D.NIL)) - "two lists"
( (123 ) (ABC ) (xYZ)) - "alist of lists"
( ( A.1) (B.4) (H.J)) - "a list of dotted pairs"

((( x1. Y1). (Xx2.Y2})). ((X3.Y3). (X4.Y4)))

- "a complete binary tree"
2.1.2 Simple computational expressions.

Lispkit provides a variety of computational expressions
which may be used in a program to construct new
s-expréssions from previously available ones, to extract
subexpressions from s-expressions, to create new integer
atoms by arithmetic, to compare atoms for equality and
inequality, to test for atomicity of an s-expression,
and to select between two alternative expressions

depending on a logical test.
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In order to construct new s-expressions we have the
computational equivalent of the dot notation:
cons (a, b)
builds a new s~expression whose left and right subtrees
are a and b, respectively, so
cons ((1 2), (3 4)) = ((1 2).(3 4))
= ((12) 34)

The car'operator will extract the left subtree of an
s-expression and cdr the right subtree. Car and cdr are
undefined if their operand is an atom. If the operand
represents a list then car and cdr correspond to the
intuitive operations "head" and '"tail" respectively. I
shall use car, head, cdr and tail interchangeably, and
as appropriate. Also it will be convenient to use "the
car/head" and "the éhr/tail" in place of the phrases
"the right subtree" and 'the left subtree". Hence

car (((X.Y).2))= (X.Y)

head ( (A B C ) ) = A

cdr ((X.(Y.2))) (Y.z)

tail ((A B C )) (B C)

~tail ((A)) = tail ((A.NIL)) = NIL

Arithmetic facilities are basic, but comprehensive. The

operators +, -, %, div, rem are available (defined only for
integer atom operands), and are written in the familiar infix

notation. Examples do not seem necessary.

The logical operator eq is used to test for the equality
of atoms. The expression eq (a,b) has, as value, the atom
T if a and b are identical integers or symbols, and the
atom F otherwise (including if either a or b is not an
atom at all). The operator £ tests for that
inequality between two integers. agb has the value T

or F, as appropriate, and is undefined if either a or

b is not an integer,
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There is a single unary predicate atom which has the value
T if its argument is an atom, and F otherwise.

Examples of logical expressions and their values:

eq((1 2), (1 2)) =F ° -°° eqlhead((1 2)), 1) = T
eq(tail ((1)), NIL) =T

1€2 =TT 2&&1 =F

atom (A) = T atom ((1 2)) = F

atom (tail ((1))) atom (NIL) = T

To select between two alternatives a conditional expression
construct is used:

if econd then etrue else efalse
has the value of etrue if the value of econd is T, and the
value of efalse if econd is F. For example

_f eq(A,B) then car ((X.Y)) else cdr((X.Y)) = Y
atom (1) then 2 else 3 = 2
car((T F F)) then THIS else THAT = THIS

It will often be the case that an expression will contain
two or more identical subexpressions. The use of a where
construct enableshcommon subexpressions to be replaced by
instances of the same variable name, and this variable is
associated with the value of the subexpressions. This
technique will be familiar from common mathematical
practice. For example, if we have a 3-list (list of 3
values) in which the first value is T or F, and indicates
whether we are to select the second or third value
respectively, then the selection operation for (T SECOND
THIRD) can be written as

if car (threelist) then head(tail (threelist))

else head(tail(tail(threelist)))
where threelist = (T SECOND THIRD)
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This is an expression, having the value SECOND, in which
the variable "threelist" has replaced 3 occurrences of

(T SECOND THIRD) in the conditional expression.

A where expression may introduce more than one variable -
variables will be written in lower case letters (possibly
with digits in other than the first position). The

variables introduced are the defined variables, and the

expressions which give their values are the defining
expressions, The expression to which the where is attached

is the qualified expression. A restriction introduced with

where expressions is that the scope of use of the defined
variable names is within the qualified expression only.
The defining expressions may not refer to locally defined

variables, but only to variables in more global scopes

(enclosing where expressions). In the following example
(... x ... where x = el
and y = Z cee X oaa)
where z = e2

and  x = e3
the first occurrence of x is resolved to the variable
which is associated with the value of el. In the definition
of y, the variables z and x are resolved to e2 and e3

respectively.

Note that parentheses may be used freely in order to
disambiguate nested expressions, as I have done in the
example above to indicate the nesting of the where

expressions.

2.1.3 Defining functions.

There is one form of expression, not mentioned above, which

has the special property that its '"value" represents a
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function, or operator, which may be applied to constant,
input or computed values. This value should not be thought
of as an s-expression, which would normally be expected as
the result of an expression evaluation,but simply as an
object‘which can receive arguments, perform a computation

with them and return a result.

Two new forms of expressions are necessary : for function
definition and function application.
A function definition has the form
X(x, Yy eees Z)e€

and is known as a lambda expression (commonly the function

value of such an expression is also known as a lambda
expression or simply a function). )\ is the operator
symbol which signals the type of expression. The
parenthesised list of variable names x, y, ..., 2z is the

ordered list of formal parameters or arguments; when the

function is applied it will require an ordered list of

actual parameters of exactly the same length. The final

component, e, stands for any Lispkit expression (including
a lambda expression or constant), which may contain
occurrences of the argument variables. e is the body of

'the lambda expression,

A function application has the form

f(a, b, ..., d)
in which f is an expression whose value is a lambda expression,
and a, b, ..., d are expressions whose values will be
computed in order to provide the lambda expression with its
actual parameters. Note that f is not restricted to being
an explicit lambda expression {(though this is one obvious
possibility). The value of a function application expression
is found by evaluating the arguments a, b, ..., d and f,
substituting a, b, ..., d into the body of the function for
occurrences of the corresponding formal parameter variables,
and evaluating the substituted body. This particular

parameter mechanism is known as "calling by value".
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As a simple example consider a function of 4 values which builds
a balanced binary tree with these values at its leaves. The
defining lambda expression is

)\(w, X, ¥y, z) cons(cons(w, x), cons(y, z)).
Referring to the function which this expression represents as f,

we can build the tree

A B c D
with the application
f(a,B,C,D).

The form of an application is similar to that of various Lispkit
primitive expressions, such as cons(a,b), but no confusion will

arise if we are careful about function names.

Despite the fact that function values should not be thought of
as s-expressions, they may be treated in a computation in many
of the same ways. In particular they may be built into data
structuresand extracted at a later stage, they may be associated
with local variable names in where expressions (useful if a
function is needed in several places in an expression), and they
may be given aé actual parameters to applications and returned

as results.

To demonstrate the local naming of a function we may write a
lambda expression representing a function which builds an 8 leaf
balanced tree, and incorporate the 4 leaf tree building
function from above:

AN (s,t,u,v,w,x,y,z)(cons(f(s,t,u,v),f(w,x,y,z))

where
T f = N(w,x,y,z)cons(cons(w,x),cons(y,z)))
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Here the body of the 8 leaf function is an expression qualified

by the definition of f as the 4 leaf function.

This example has introduced the need for a more refined
description of variable scope. The variable names in the formal
parameter list of a function have scope only within the body of
the function. When resolving which formal parameter or defined
variable a variable occurrence refers to, the variables in a
formal parameter list have the same status as defined variables
qualifying‘the body of the function. A variable is resolved to

the nearest enclosing definition in the textual levels of where

and lambda expressions. Hence, in the example above, the

variables w, x, y, z mentioned in the body of f refer to the
formal parameters of f, and the variables s, t, ..., z in the
qualified expression of the 8 leaf function all refer to the

parameters of this function.

Definitions of functions may be mixed with other definitions in
a where expression since function names are no different from
other variables, but retaining the previous restriction that

the definitions may not refer to each other.

To conclude this description of function definition facilities
I must show how recursive functions are treated. Recursive
functions are a natural way of expressing computations involving

tree structures.

The scope rule for the names defined in a where expression
implies that recursive functions cannot be defined directly
since the body of a function would need to mention the name of
the function explicitly. This rule also prevents groups of
functions defined together from referring to each other

(mutual recursion).
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To overcome this restriction a variant of the where
expression is available. The whererec expression is used
to qualify an expression by definitions in a similar way
to a where expression but with the extra feature that the
scope of the defined variables has been expanded to include
the defining expressions in addition to the qualified
expression, Thus function definitions may refer explicitly
to themselves, to each other, and to any non-function
variables defined in the samé whererec expression. One
restriction femains, the defining expressions for non-
function variables may not mention any variables (function
-or otherwise) defined in the local group. Note that it
appears that whererec subsumes the purpose of where but in
the implementation to be described in Chapter 6 (and in
Appendix B) it is slightly more expensive to execute
whererec than where.
For example, the
following lambda expression accepts as input a list of
values and returns a similar list in which each value has
been "doubled up" into a '"consed" pair:
A (1) (doubleall (1)
whererec doubleall = N\ (1) if eq(l,NIL) then NIL
else cons(double(head(1l)) ,
B doubleall (tail(1)))

and double = A (x) cons(x,x) )

The body of doubleall refers to itself and to double.

‘A notational convenience which I shall allow myself is to
represent function name definitions in a more familiar style.
In a where or whererec expression

f = X (X,¥5...52)e

will frequently be written as

F(X,¥,::4,2) = €

For example double (x) = cons(x,x).
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2.1.4 Complete programs.

The most recent three complete examples, constructing a 4 leaf
balanced tree, an 8 leaf balanced tree and doubling the members
of a list, have each had the form of a lambda expression in
which all variable occurrences could be resolved either to the
parameters of the lambda expression or to a definition (or
further parameter list) contained within the body of the lambda

expression.

Thus the three examples satisfy the requirements to be complete
Lispkit programs. Each is self-contained (no further definitions
are necessary in some more global context to give values to any

variables), and each is an expression whose value is a function.

A Lispkit program execution then consists of two steps; firstly

the program is evaluated to produce the function which it

represents, and secondly this function is applied to an actual

parameter list constructed from the desired input data values.
Two common examples of simple functional programs:

1) A program which maps a list of items (x y ... z) onto a list

with the items in reverse order (z ... y x)

reverse
whererec reverse (1)= if eq(1,NIL) then NIL

else append(reverse(tail(l)),
: cons(head(1),NIL))
and append (11,12) = if eq(11,NIL) then 12

else cons(head(11), append{(tail(l1),
12))

This progham embodies the list reversal algorithm frequently
called "naive reverse', since it requires a rather large number
of function applications and cons operations to perform its

task. The program does not have the form of a lambda expression,

but it nevertheless does represent a function, since the value



of the program is the value of the variable reverse, and
reverse is defined to be a function.
2) A program to sum the integers in the range from m to n

inclusive (assuming m £ n):

sum
whererec sum(m,n) = if eq(m,n) then =m

else m+sum(m+1,n)
To illustrate the power of the Lispkit function handling
consider the following alternative definition of the

doubleall function above:

.doubleall

whererec doubleall (1) = map(double)(1l)
and double (x) = cons(x,x)
and map (f) = (g whererec

g(l) = if eq(1,NIL) then NIL

) else cons(f(head(l)),
- ‘ g(tail(1))))
"In this program we have a “"higher order function" map,
which accepts as parameter a function f of one argument,
and constructs from this a function g which will apply f
to each member of a list. The definition of doubleall is
unusual in that it constructs a function which will double
the members of a list (the subexpression map (double)),
and then applies this function to 1. 1In a larger program
map could be used to provide simple definitions for a

variety of more sophisticated functions such as doubleall.
2.2 An operational model for Lispkit evaluations.

In this section I shall describe a method by which Lispkit
expressions may be evaluated.

This method will héve two important uses; firstly it will
provide an easily grasped guideline which a programmer

may use when
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creating and understanding his programs, secondly it will
immediately suggest an implementation of Lispkit, which will
thus obtain the results which the programmer expects from his

programs,.

An important remark which I must make before commencing with

the description is that the operational model is essentially
what is known as a 'call-by-value" method. The general approach,
which will become obvious later, is that first the subexpressions
of an expression are evaluated completely, and then the main
expression operator is applied to these results. This is a
straightforward approach, but unfortunately it makes impossible
certain programs which would yield useful results with a more
subtle evaluation mechanism. However, the class of programs
which will succeed with this call-by-value model contains a

very large number of useful and interesting members. The
primar& group of programs missing concerns the direct
repreéentation of the processing of finite portions of infinite
data structures - but this omission will not generally be a

problem.
2.2,1 Evaluating in an environment.

If we look into a Lispkit program and extract an arbifrary
expression then within that expression we will be able to
identify two different categories of variables. One category
contains those variables which are defined (or appear in formal
parameter lists) within the expression., The other category
contains variables which are associated with values somewhere
within the more global context from which the expression has

been extracted.

When a Lispkit expression is evaluated it will be arranged that

the values of global variables are contained within an



environment description. Hence an expression should be

thought of as being "evaluated in an environment". The
value of a variable, when required, will be looked up in

the environment. Ehgzg expressions, EEEEEEEE expressions
and function applications will each, as part of their
action, modify the environment in which their subexpressions

are evaluated.

An environment is an ordered set of associations between

variabie names and values, with the notion of '"more recent”
determining the ordering of the associations. Associations
are.added to the environment at the most recent end, and
the search for the value of a variable commences at the
most recent ena. This mechanism ensures adherence to the

scope rules for defined variables and formal parameters.
2.2.,2 Simple computational expressions.

The very simplest expression is a variable name, which is

evaluated by looking up its value in the environment.

The next simplest expressions to evaluate are those with the
operators cons, car, cdr, +, -, ¥, div, rem, eq, £ and
atom. To evaluate one of these expressions in environment E,
the operand expressions are evaluated in E and then the
operator is applied to the values obtained. To evaluate

the conditional expression if el then e2 else e3 in

environment E, we first evaluate el in E and then,

depending on its value, evaluate either e2 in E or e3 in E.

Where expressions involve extending the environment. To

evaluate a where expression in environment E the defining
expressions are evaluated in E, the values are associated
with the corresponding defined variables and these

associations are added to E to give E'. The qualified

expression is then evaluated in E'.

20.
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2.2,3 Lambda expressions, function applications and
whererec expressions.

Evaluating a lambda expression in environment E results in
an object called a closure, which contains a record of the
lambda expression itself and of E. The environment
recorded by the closure is used again when the function is
applied. A closure is the representation of a function
value. _

In order to evaluate an application f(a,b,... ) in
environment E the expressions f, a, b,... are evaluated

in E. The value of f will be a closure containing an
environment Ec, a formal parameter list and a body. The
values of a,b,... are associated with the corresponding
variables in the formal parameter list and these associations
are added to Ec to give E'. The body expression is

evaluated in E' to give the result of the application.

To evaluate a whererec expression in environment E requires
rather a curious action, but one which nevertheless is
accomplished in the software implementation of Lispkit
described in Appendix B. We construct a new environment E'
by adding to E the associations obtained from evaluating
the defining expressions in E'. Note the use of E' and not
E -~ it is this which enables recursive function bodies to
access themselves, since the closures will have recorded E'

and not E. The qualified expression is then evaluated in E'.

2.2.4 Complete programs.

A programmer initiates a Lispkit program execution by supplying

a program text P and some data values A. The program P is

evaluated in the empty environment (hence the requirement that
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it must be self-contained). The closure which results is then
applied to A in the normal way for a function application, »
where A contains the values of the evaluated actual parameters.
The value returned by this application is the final result

of the program execution.



CHAPTER 3 - THE PROLOG LANGUAGE.



The Prolog 1anguage.

In this chapter I shall describe Prolog, which is one
particular variant in the family of languages based on
statements in logic. The origins of Prolog are

outlined in Appendix C - these lie in work on automatic
theorem proving.‘In recent years there has been a growing
community of research prototypes for such programming
systems, of varying degrees of complexity and purity,

and with differing fields of application in mind. From
an examination of the fundamental properties of
programming in a logic style, and from a general
knowledge of the state of the art in designing and
implementing logic programming systems I have made an
attempt to capture the essential aspects in the design of
a 1ahguage and implementation for direct computation
("symbolic structure crunching", rather than data base
handling or an expert system). I have chosen to use

the name Prolog to refer to the language in order to
maintain the link with common terminology, although I
should actually use "my variant in the family of logic

programming languages'.

This chapter will cover the expression of computations
in the logic style of Prolog, and an operational model

for the execution of Prolog programs.

Prolog, like Lispkit, has been conveniently implemented
as a high level pseudo-machine, for which Prolog programs
must be compiled into an intermediate machine code.

Details of the design of the machine and of the compilation
| are to be found in Appendix D. Chapter 6 includes an
outline of the behavioural properties of the implementation,
and an empirical performance assessment is made. In
Chapter 7 a Prolog interpreter is written in Prolog and

its performance is assessed.
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The style of description of logic programming in Prolog
which follows is, I believe, a novel one for this
particular subject. I have attempted to produce a
"bottom-up'" approach to the required concepts and tools;
in the hope that this may make it easier for a novice

to grasp the use of Prolog for computation. The
presentation follows the same pattern as that of

Lispkit; firstly a description of data objects (for this
purpose I have introduced the notion of su-expressions}),
secondly the operations by which new values and results
are generated, and lastly the control of these operations
by a program. Kowalski (1979) gives a very broad coverage
of the application and reasoning behind logic programming
styles.

Prolog follows a significantly different style of
programming from Lispkit. 1In Lispkit a computation is
expressed as a function which is used to map input

values to result values. In Prolog, on the other hand, a

computation is expressed as a relationship which states

how acceptable input values and output values are
intended to be related to each other. Equivalently,

this relationship can be viewed as a specification or

input and output values. An important distinction is
that the functional style of Lispkit embodies the notion
of an implicit direction of computation, we supply some
input values and the result is computed. However, the
precise assignment of input and output roles to arguments
in Prolog programs does not occur until the program is
.executed. Hence Prolog programs may be written largely
independently of the flexible input/output roles of

their arguments.



Prolog is based on the concepts of symbolic data structures
as basic values, pattern matching between data structures, and
clauses which are implications enabling relations between
data structures to be defined in terms of other relations.
Clauses are grouped together as the cases of predicates,
and each relation between data structures is defined by

one such predicate. Hence a Prolog program is a collection
of mutually recursive predicates, and it is the task of
program execution to discover instances of data structures
which satisfy certain specified predicates. The formal
approach to Prolog takes a slightly different viewpoint,

and this is mentioned briefly in Appendix C.

The‘following complete Prolog program is a direct
reprogramming of the Lispkit "find" example from the
start of Chapter 2. It illustrates the basic constructs
available in Prolog, and will focus attention for the

language description which follows:

query (x,1l,n) e find(x,1,n)

find (x, NIL, 1)<

find (x,(x.1),1) e

find (x,(y.1),n) € Teq(x,y),find(x,1,m),add(m,1,n)

The resulting position of x in the list 1 has been
assigned a name, n. The query in the first line

states that there are three input/output arguments,

x,1 and n, and that they are related by the predicate
find. Find is defined by three cases, each of which is
an implication with the antecedents (or conditions)

on the righthand side of «— , and the consequent on the

~lefthand side. The first case states that when any value



x is sought in the empty list, the position value must
be 1. The second case states that when a value x is
sought in a list whose first value is equal to x, the
position value must be 1. The final case states that if
a value x is sought in a list whose first member is not
equallto x, then the position value n must be 1 greater
than the position m when x is sought in the remainder of
the list. Note the use of the symbolic data structure
patterns (x.1) and (y.l) to name and extract the component
parts of values. This is in direct contrast to the use
of explicit constructors and selectors (cons, car, cdr)

in Lispkit.

3.1 Expressing computations as relations in a logic
framework.

'3.1.1 Symbolic data structures and pattern matching.

Prolog programs are intended to handle binary tree data
structures of exactly the same form as those of Lispkit,
with one small, but important, change. The change is to-
introduce a rather unusual form of atom into the
s-expression syntax. The new values, which may appear
at the leaves of binary trees, represent subtrees for
which values are not known - although more information
may become available concerning the values of these
subtrees from other sources during a computation.

The new values I shall call '"unknowns'"; they will be
represented on the written page as an asterisk
prefixing a positive integer, and the new type of
symbolic data structures I shall call "su-expressions"

(for "s-expressions with unknowns"):

su-expression ::= atom |(su-expression.su-expression)

atom ::= integer Isymbol I*positiveintéger

26.
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I shall adopt the same simplifying rules for
su~-expressions as for s-expressions, and the same use
of the terms car, cdr, head and tail (although these

will not appear as parts of the Prolog language).

Some comments on what we gain from the introduction of

unknowns are appropriate:

(i) An implibation of the explicit numbering of
unknowns is that two or more occurrences of the same

unknown are intended to represent the same (unknown)

value. For example

(*1.%1) _
represents a tree for which.the car and cdr are
identical. Note that different unknowns do not
necessarily represent different values - we can

expl@citly specify equality, but not inequality.
(ii) An su-expression containing one or more
unknowns can be seen in two lights; it can be viewed
as a partial description of some particular data
structure, or as a representation of the entire set
of‘values which have the same structure. Both views

may be useful at different times.

The primary facility in Prolog for the computation
of new values is through the elaboration of the
subtrees represented by unknowns, thus extending
the known part of the su-expressions. Note that
this is very similar to the concept of assignment,
the difference being that the operation is a very
controlled one - unknowns are extended, but known
values are never replaced by other knowns.
Elaboration, or extension, of data structures is
achieved by ggification, which is a sophisticated

form of pattern matching.



28.

Two su-expressions are unified by finding elaborations
for some or all of the unknowns in the expressions, such
that the elaborated expressions are identical. The
simplest set of elaborations is a substitution usually

called the most general unifier of the expressions. It

may be the case that there is no most general unifier
for two expressions and so the attempted unification
fails and the expressions are not elaborated - for
example, if a number or symbol in one expression is at
a position corresponding to a different number or

symbol in the other expression.

The unification of two su-expressions may be described
conveniently by the following informal recursive
procedure. The procedure is a simultaneous pfefix order
walk over the two expressions to be unified ("visit the
roots, then the left subtrees in prefix order, then the

right subtrees in prefix order"):
To unify su-expressions sel and se2:

If Both sel and se2 are dotted pairs then unify
the car of sel with the car of se2, and then unify
the cdr of sel with the cdr of se2;

Otherwise, if either sel or se2 is a dotted pair
and the other is a number or symbol then the
entire unification fails,

Otherwise, if sel and se2 are identical numbers
or symbols then there is nothing to be done,
Otherwise, if sel and se2 are unequal numbers or
symbols then the entire unification fails,
Otherwise, if sel is an unknown and se2 is a
dotted pair, number or symbol (or vice versa)
then the unknown is elaborated to be identical

to the non-unknown,



Otherwise, the remaining case, both se1l and se2 are
unknown, and se2 is elaborated to be the same

unknown as sel.

(Note that whenever a unification fails, then the
values of the su-expressions remain as they were

before unification started)

I must mention several more straightforward properties
of unknowns which are essential to the unification
operation:

(i) Unknowns have scope covering both the trees
which are being unified, and in general an unknown
represents the same value in all trees in which it
appears. In particular a series of unifications may
cause subtrees of a large number of su-expresSions to
become '"linked" by equality.

(ii) An obvious property of an unknown which
appears in several su-expressions is that all the
occurrences should be elaborated as a result of a
unification which elaborates the unknown in one of the

trees.

The description of unification in the preceding
paragraphs may give a complex appearance to an
operation which is actually very simple. However,
despite the simplicity, unification is very powerful,
and its consequences are subtle - it is this which

makes a long discussion desirable.

A series of examples will make the unification operation

clearer:

29,



(i)

(ii)

Unifying (A.*1) and (*2.B)
yields the matches *1 = B and *2 = A

and the su-expressions are elaborated to (A.B).

~If our interest was in the su-expression (A.*1)

then our knowledge of it has been extended
to (A.B).

Unlfylng (A *1) and (B.C) fails, since the

symbols A and 8 are not equal.

(111)Un1fy1ng (A.*1) and (A.(1 2 3.%*2)) yields

(iv)

(v)

(vi)

the match *1 = (1 2 3.*%2). So (A.*1) is
elaborated to (A.(1 2 3.%2)), but *2 is

not elaborated.

Unifying (*1 A) and (*2 *2)

yields the matches *1 = *2 and *2 = A

henée both su-~expressions are elaborated to
(A A).

Unifying (*1 A) and (*2 *1)

yields the matches *1 = *2 and *1 = A

and hence both su-expressions are elaborated

to (A A).

Unifying (*1 A) and (B *1) fails, since *1

cannot match both A and B simultaneously.

(vii)A more interesting example:

Suppose that we are interested in the
su-expression

(A.*1)
and we unify firstly (A.*1) and (A.(B.*2)),
and then (X.*2) and (X.(C.*3)).
The first unification elaborates the expression
of interest to

(A.(B.*2)).
The second unification matches *2 with
(C.*3), hence elaborating (X.*2) to (X.(C.*3)}),
and simultaneously elabofating the expression

of interest to

(A.(B.(C.*3)))
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This final example shows how several unifications,
matching su-expressions with common unknowns, can
extend our knowledge of particular Su-expressions by

incorporating information indirectly from other sources.

3.1.2 Computational use of unification to satisy

specifications and relations.

The preceding examples have shown, in a rather
contrived way, how unifying an su-expression of interest
with another pattern may extend our knowledge of that
expression, either'by failing to match or by elaborating

unknowns (if any).

To illustrate the power of unification in.a useful
computational context consider unifying various expressions
(assumed not to contain the unknown *1) with the pattern
(*1,%1), This pattern is a template for an su-expression
whose car and cdr are equal. The template can behave
as a generator of symmetrical trees, for example

((A B).*2) is elaborated to ((A B).(A B)) -
and ((A‘*2).(*3 B)) is elaborated to ((A B).{(A B)),
or as a verifier of symmetry for example

((A B).(A B)) will succeed with no further elaboration,
and ((A B).(C B)) will fail.

Thus the template (*¥1.%*1) can be considered as a
specification of symmetrical trees, or as an equality
relation between the two members of a dotted pair, and
can be employed as a data verifier or as a result

generator.

It is clear that unification provides a very powerful
means of transferring information and generating

results within a computation, and for this reason Prolog
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requires little more than unification in order to

perform useful computations.

One final point about unification is that it should be
used with great care when unifying two su-expressions
which contain the same unknown. Some of the examples
above were of this form, but they were safe. However,

consider the following exampie.
Unifying (A.*1) with *% yields the match *1=(A.%*1).

The unknown *1 thué becomes a self-referential data
structure, which could be considered as either an
unbounded tree, or as a cyclic structure. That is not

a problem, but if the structure were subsequently
unified with another unbounded tree then the unification
procedure might be thrown into a non-terminating

recursion.

Unification can be defined in such a way as to detect
and warn against the creation of a cyclic structure,
using an "occur check”, but it is expensive to implement.
Since many useful programs will not encounter this
problem, the occur check will be omitted from further

consideration.

A program in Prolog is a description of su-expression
patterns, and of unifications which are required
between these internally generated patterns and a list
of externally supplied su-expressions (the input). The
result of such a computation is an elaborated form of

the input expressions.
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3.1.3 Conditions - requests for unification.

The basic unit of a program which requests a unification

operation is a Egndition, which has the form
p(a,b,}..,d)

where p is the name of a predicate, and a,b,...,d

are actual argument su-expression patterns.

Each su—expressioh pattern represents the value of an
su-expression, but zgzighlg names are used wherever

an unknown would otherwise be shown in asterisk notation.
The reason for this is quite simple. Most parts of a
Prolog program will be executed several times during a
computation (for example, if a predicate is recursive),
and,_ as with languages such as Algol, the local variables
in a section of code need to be fresh ones at each
execution. If unknowns were represented in the asterisk
notation then this would not be the effect at all.
Predicates and their cases are described a little later,
and the‘scope of each variable is exactly the case in
which it appears- at each execution of a case, each

variable is associated with a fresh, unique unknown.

The use of su-expression patterns provides notational
simplicity in the extraction of the components of input
arguments, and the combination of results to form
output arguments (for example, the find program at

the béginning of the chapter uses the pattern (x.1) to
separate the head and tail of a list)..
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A predicate is itself a collection of su-expression
patterns and unification requests, which define a
relation or specification that the actual arguments are
required to satisfy. The definition of predicates is

described below.

A condition is a predicate call, and is a request

that the named predicate apply unifications to the
actual argument values in order to elaborate and/or
verify their values. Three outcomes are possible for
the condition:

(i) The predicate call may succeed without
elaborating the arguments - they satisfy the
specification which it represents.

(ii) The predicate call may succeed with
elaboration of the arguments - our knowledge of the

argument values has been extended.

(iii) The predicate call may fail - the
arguments have not matched successfully during some
unification, and their values have not satisfied the
specification represented by the predicate. The

arguments are never elaborated in this case.

Some examples of conditions:

(i) Suppose that the predicate named '"sympair"
verifies that its single argument is a symmetrical
dotted pair, then . |

sympair (((A.B).(A.B))) will succeed without

elaboration, '

sympair (((A.B).x)) will succeed, elaborating

x to (A.B),

sympair (((A.x).(x.B))) will fail.
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(ii) Suppose that the predicate named “"swap"
verifies that its two arguments are each dotted pairs,

but with the car and cdr swapped, then

swap‘((A.B),(B.A)) will succeed without elaboration,
swap ((A.B),x) will succeed, with x elaborated to (B.A),
swap ((A.B),(C.A)) will fail,

3.1.4 Calling primitive predicates, and negated conditions.

Conditions, su—expression patterns and defined named
predicates form the necessary core of Prolog
programming, and they are adequate for a variety of

interesting programs.

However, for many more praétical apblications-further
facilities are desirable. Arithmetic, for example,
could be programmed explicitly as relations on lists of
digits representing numbers, but it is much more

convenient to have arithmetic available directly.

For this purpose a selection of primitive (or "evaluable")
predicates are provided. These are called upon from

conditions in exactly the same way as defined predicates.

Integer arithmetic is provided by predicates for addition
(add), subtraction (sub), multiplication (mul), division
(div), and remainder (rem). Each of these is a three
argument predicate which relates its arguments in the

obvious way. Informally:

add (x,y,z) succeeds if x+y=z and fails otherwise,
sub (x,y,z) succeeds if x-y=z and fails otherwvise,

mul (x,y,z) succeeds if x*y=z and fails othe:wise,



div (x,y,z) succeeds if x div y=z and fails otherwise,

rem (x,y,z) succeeds if x rem y=z and fails otherwise.

Clearly the arguments x,y and z, must be either numbers
or unknowns. There are, however, practical restrictions
on the use of these predicates which are necessary to
permit a straightforward implementation. The five
arithmetic predicates can be used in their verification
role with no problem, but the restrictions apply to

the generation of results. Add and sub can compute

any one unknown from two knowns. Mul will compute z
given x and y, and will compute x(or y) given y and z
(x and z) provided that the ratio y/z (x/z) is an
integer. Div and rem will compute z if given x and y.
In all other cases the result is ungefined and the

computation cannot proceed.

Note that a computation which cannot proceed is different

from a unification which fails, as the latter determines
a definite choice betw¢en alternatives. This will

become clearer in the operational model.

Leq is a two argument predicate which terminates the
computation if either argument is unknown. If both
arguments are numbers and satisfy the inequality

then leq succeeds, otherwise it fails:

leq (x,y) succeeds if x € y and fails otherwise.

The predicate eq is used to test explicitly for the
equality of two arguments which must be atoms. If

the arguments are equal atoms then eq succeeds, if either
argument is ﬁnknown the computation is terminated,
otherwise eq fails. Eq is not strictly necessary since
equality constraints are easily expressed in Prolog.
However it is convenient in conjunction with negated

conditions, which are deséribed below.
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The final primitive predicate is atom, which succeeds
only if its single argument is a number or symbol -
an unknown is not considered to be an atom for this
purpose. Atom fails if its argument is a dotted pair,

and terminates the computation if it is an unknown:

atom(x) succeeds if x is a number or x is a

symbol, and fails otherwise,

'eq(x,y) succeds if atom(x) and atom(y) and x=y, and

fails otherwise.

The final tool necessary for practical programming in
Prolog is the capability to negate the success or failure
result of a condition. Such a condition will be
prefixed by the negation symbol, =7 .

Execution of an unnegated condition can have three
distinct types of result (excepting a termination of

the computation). These are described above.

A negated condition in some sense reverses the success
or failure interpretation of the unnegated condition.

If a condition ¢ succeeds with no elaboration, then ™ ¢
fails, if ¢ féils then —/ € succeeds with no elaboration,
and if ¢ succeeds with elaboration then the computation
cannot proceed reliably as either success or failure as
the result is inconclusive in determining the truth of

¢ (see Appendix C).

Examples of negated conditions:

— mul (2,4,7) will succeed,
~— add (1,2,x) will terminate the computation,

and assuming the same definition of sympair as above

— sympair (((A.B).(A.B))) will fail.
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3.1.5 Defining predicates.

The enigmatic circularity of this description of the
Prolog language must now be closed with a discussion of
the definition of the named predicates which are called

upon by conditions.

A predicate must impose on given actual argument values a
particular specification, and must verify and/or

elaborate those values by unification.

A predicate has a name and consists of a group of one or

more alternative cases, where each case has the form of

p(fi1,f2,...)e ci1,c2,...

p is the name of the predicate, (f1,f2,...) is a list

of formal argument su-expression patterns, and ci,c2,...

are a group of conditions. Variables appearing in the
su-expressions of the formal arguments or conditions

have scdpe which is exactly the case in which they appear
~ so unknowns throughout the case may be linked by the
constraints of equality. Thus elaborations occurring

in conditions may modify the formal argument values.

A predicate call will succeed if the actual argument

“values from the call satisfy any one of the cases of

the predicate. Actual arguments satisfy a case if
they unify successfully with the formal arguments, and
if each of the conditions in the case also succeeds.
Hence the nature of a case as an implication becomes

clear:
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"The arguments f1,f2,... satisfy (are related by)
the property p if the conditions c1,c2,... are

satisfied".

If a case has no conditions on the right hand side

p(f1,£2,...) e

then the actual/formal unification succeeds or fails
without further qualification . This form of case is
referred to as an assertion. "The arguments f1,f2,...

unconditionally satisy p".

The term '"predicate" reflects the role of a program as
a verifier of su-expression values, though the term
"relation" would also be appropriate. In fact it will
be convenient to refer to predicates as '"relating the
values of their arguments", thus reflecting the duality

of the programs.

Predicates in Prolog serve a parallel purpose to functions
in Lispkit. They provide a means of abstracting meaningful
specifications from a body of code and of describing them
separately, and a powerful method for the description of
computations involving tree-like data structures.
Unifications parallel the actions of passing arguments

and results, and the case structure of a predicate

parallels conditional testing in Lispkit.

Examples of predicate definitions:

(i) The pattern (x.x) can be used to define the
predicate sympair which is satisfied by a symmetrical
dotted pair:

sympair((x.x)) &—



This is a predicate consisting of only one case, an
assertion, with only one argument. It should be read
as "All dotted pairs whose car and cdr are identical

are symmetrical pairs",

(ii) The predicate
revsympair((x.y),(y.x)) &~ sympair(x), sympair(y)
atates that "For all su-expressions x and Y |
if X and y are both symmetrical pairs, then (x.y) »
and (y.x) are relgted by the reversed symmetrical pair

property".

(iii) If the 2x2 matrix (3 H) is represented by
the list of lists ((a b){(c d)) then the assertion

transpose (((a b)(c d)),((a c)(b d))) «—
could be used to compute or check the transpose of a

matrix. The condition

transpose (((1 3)(2 4)),x)
causes x to be elaborated to ((1 2)(3 4)).

(iv) Predicates with more than one case are
appropriate when several alternative argument structures
are acceﬁtable to the specification. To specify that
two arguments are related if either of them is a

symmetrical pair:

eitherpair (x,y) €= sympair (x)
eitherpair (x,y) €&—sympair (y)

(v) Tﬁe most common situation in which a multicase
predicate is appropriaté is when defining a recursive
predicate. At least two cases will be required - one
is a non-recursive (base) case, and the other contains
the recursive call. To verify that each member of a

list is a symmetrical pair:
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eachsym (NIL) & "base case"
eachsym ((first.rest))e— sympair (first),eachsym(rest)

These two cases state, respectively, that
Each member of the empty list is certainly a
symmetrical pair (following the usual convention
for empty conjunctions),

and Each member of the list (first.rest) is a symmetrical
pair if first is a symmetrical pair and each member

of rest is a symmetrical pair.

(vi) As én example containing many of the Prolog
features which have been described, consider the following
predicate "remove" which relates three arguments x
(assumed atomic), 11 and 12 (both lists of atoms) if 12
could be obtained from 11 by deleting all occurrences
of x: ' - E
remove (x, NIL, NIL) &«
remove (x,(x.ll),lZ)?&-remove(x,ll,lz)

remove (x,(y.11),(y.12))e— T1eq(x,y),remove(x,11,12)

The cases state, respectively,.that
Removing (any) x from an empty list NIL must
result in the empty list,

and If the resultbof removing x from the list 11 is 12,
then similarly the result of removing x from (x.11)
must be 12,

and If x and y are different atoms, and removing x from
the list 11 gives 12, then the result of removing x
from (y.l1) must be (y.1l2).

In its present form the remove predicate, given A
and (A B A C) as its first two arguments, specifies
‘that the third argument must be (B C). The

negated condition — eq(x,y) is crucial to this.
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If it were deleted then for A and (A B A C) the
predicate is satisfied if the third argument has
any combination of the As removed - the results

possible are (A B A C), (B AC), (ABC) and (B C).

The latter example shows clearly how Prolog programs
may be regarded less as algorithms, and more as
statements in logic which specify the properties and

rélétionships of data structures.
3.1,6 Complete programs.

A program in Prolog consists of a complete set of the
predicate definitions required for a particular computation
(complete in the sense that each of the non-primitive
predicates named in conditions is defined), plus a

distinct single case predicate with the name 'query"

which specifies the computation to be performed.

A computation is requested by supplying as input a
list of su-expression values. The query predicate is
called to verify and/or elaborate the input values

(actual arguments).

If the query cannot be satisfied by the input values

then the final result is an indication of failure.

If the‘query succeeds then zero or more elaborations
of the inputs exist which satisfy the query. The
final results are these elaborated forms of the input

values.



The following complete program can be used to verify
that_two lists are the reverses of each other, or can

generate elements of either list from the other:

query (x,y)ereverse (x,y)

reverse (NIL,NIL) &—

reverse ((x.11),12) <~ reverse(11,13),append(13,(x),12)
append (NIL, 1, 1) <

-append ((x.11),12,(x.13))<é-append(11,12,13)

With inputs (1 2 3), *1 the unknown *1 will be elaborated
to (3 2 1), ' '

With inputs (*%1 2 *3),(1 *2 3) the unknowns *1, *2 and
*3 will be elaborated.to 1,2 and 3 respectively.

If the query is modified to

query (x)ereverse (x,x)
then the program will check for palindromic lists:

With input (1 2 3) the query will fail.

With input (1 2 *1) the unknown *1 will be
elaboratéd to 1.

With input (1 2.*1) the query will succeed with
an infinite number of elaborations for *1, each of which
gives a structure which will make the list (1 2.*1)

palindromic. The simplest of these values are

(1), (2 1); (*2 2 1), (*3 *3 2 1),

(*4 *5 *4 2 1), (%6 %7 *7 *g 2 1), etc
in which the unknowns *2,%3,%4,*5,%6,*%7 have been
generated by the su-expression patterns of the program,

to stand in place of unknown values which are required

for the structure of the results.
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3.2 An operational model for Prolog computation.

The execution of a Prolog program with given input values
has the nature of a controlled exploration of a space of
alternative unifications and elaborations. Alternative
paths exist due to the presence of predicates with multiple
cases, and the notion that a predicate call succeeds if

the actual arguments satisfy any one of the cases

independently.

Thus there are two rather independent aspects of Prolog
execution: the construction of any particular alternative
computation, and the control of the exploration of
alternatives. The former is more direct and intuitive,
and I shall describe this first. The latter is more

abstract, it is a backtracking process, and will be

brought into the description gradually - a detailed
grasp of this is not necessary for successful

programming.

In the construction of a computation we shall be
concerned with the local variables of predicate cases,
the creation of su-expression values from su-expression

patterns, and the order of unifications within cases.
3.2.1 Local variables and environments.

As a computation proceeds predicate cases are entered
and su-expressions must be built from patterns which
contain variables. Actions within the execution of

a case take place in the context of a local environment

which contains associations between the local variables

of the case and values for them.
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When a local environment is created, as the execution
of a case is started, each variable has its value.

initialised to some unknown which is not yet in use

in the computation. Subsequent unifications may
elaborate these values or use them in the elaboration

of other unknowns.

Su-expression values are built from patterns (in the
formal arguments or conditions) by including the values
from the current local environment of variables named

in the patterns.

Note that, unlike Lispkit, environments are only local
to cases, and patterns cannot refer to variables in

any other cases. External values can only be accessed
by the unification between actual and formal arguments.

L

3.2.2 Executing conditions (predicate calls).

A condition p(a,b,...) is executed in a local environment
E by building a list of actual argument su-expressions
according to the patterns a,b,... (and referencing the
values of variables in E), and then calling the predicate
p to verify or elaborate the actual argument values.

The call to p may either succeed (with or without
elaborating the arguments) in which case the condition
succeeds, or if may fail (fhe arguments are not
elaborated) and the conaition fails also. If the
arguments have been elaborated then the values in E

have also been elaborated, and results have been

returned by the predicate call.



For example, if E associates X,y and z with (A.B),

*2 aqd *3 respectively then the condition sympair((x.(y.z)))

will build an actual argument ((A.B).(*2.%3))
and will call sympair, which will succeed and elaborate

y to A and z to B.

As may be expected from the deécription earlier, a

negated condition has a very similar effect, but if the
predicate call fails then the condition succeeds, if the
call succeeds without elaboration then the condition

fails, and if the call succeeds with elaboration then

the entire execution is terminated prematurely. As a
consequence of this it can be seen that a negated condition
can never return results, it can only be used to verify
that particular values do not satisfy a predicate.

3.2.3 Primitive predicates and defined predicates.

The execution of a primitive predicate call is very
straightforward. The values of the actual arguments

are examined to check that they satisfy the specification
of the predicate (as described previously), any unknowns
which can have their values computed are elaborated,

and the call succeeds, fails or terminates the computation,

as appropriate.

The executién of a call of a defined predicate is rather
more complicated. For ény particular alternative
computation one of the predicate cases is selected

for execution ~ when the predicate is first called

the first case is selected, and subsequent alternative
computations will select successive cases. Hence

cases are selected in the order in which they appear.

This selection sequence is an important rule to remember

when writing programs,

46.
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A selected case proceeds by selecting a fresh, unique
unknown for each variable in the case, and associating
these with the variables in the new local environment E.
The formal argument su-expressions are built and are
unified with the actual argument values. If this
unification fails then the selected case fails and the
next alternative computation is tried. If the
unification succeeds then the conditions of the case

are executed, in E, from left to right until either

they are all satisfied (and so the case and predicate
call succeed), or any condition fails and the next
alternative computation is tried. The left to right.

rule for conditions is also very important to remember.

When a condition fails, the "next alternative computation'
will. be found by trying any remaining choices in a
previous condition of the case. If there are no previous
conditions or remaining choices then the case itself

fails.

When a case fails, the '"next alternative computation"”
will be found by selecting the next case of the predicate
for execution. If there are no more cases, then none

of the cases has been satisfied, and the predicate

call itself fails.

3.2.4 Decision points and backtracking.

The pattern of execution described is a depth first
scanning of the nested predicate calling structure of
the program, and a left to right scanning of the
predicate calls in each predicate case. However, at
each call of a defined predicate there is a choice of

cases and execution has reached a decision point at




48.

which only one case can be selected for execution.

As execution proceeds each decision point is noted as

it is passed, together with a record of the entire
computatioh state at that point. This may seem to be

an extremely extravagant and complex operation; however
the language will be implemented using a garbage
éollécted list space (as is usual for very high level
languages such as'Lispkif and Prolog) and thus saving
the computation state is not'expensive in time or effort,

aS'it amounts to noting a small collection of pointers.

Whenever a predicate case or condition fails, and hence
demands that an alternative computation be found, the

record of decision points and states can be used to

backtrack -~ that is to roll the computation back to a
recent decision point; The state of the computation is

restored to that recorded at the most recent decision
boint, and computation proceeds with the next choice of
predicate case. If all the choices at the most recent
decision point have been exhausted then that decision
point is discarded and the computation backtracks to
the next most recent decision point - this corresponds
to a predicate call failing completely and then the

condition which called it being failed.

By this method of backtracking the computation does not
have to return to the beginning each time a failure
occurs. The method implements what is essentially a
parallel execution, of the alternative cases in a

predicate, by a sequential execution.
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3.2.5 Complete progranms.

An execution is started by supplying actual argument
values to a call of the query predicate. At this point
there is no backtrack record, as no decision points

have been passed.

If the query fails then the input values cannot satisfy
the program. In this case all decision points have been
discarded from the backtrack record, as the program tries
all alternative computations before failing. Hence the

computation must terminate with only failure as a result.

On the other hand the;query may succeed (either with

or without elaborating the arguments), and there may

be decision points remaining in the backtrack record

(if there are none then the computation has finished).

Any remaining backtrack records may point to alternative
elabérations of the input arguments, or maybe only to

an exhaustion of the search space with no further
solutions. In general more solutions will bé of interest,
and these can be coaxed from the program by artificially
backtrécking to the most recent decision point in the

normal way.

Care must be employed in the ordering of predicate

cases and conditions, as méy be deduced from the first

to last case selection fule, and the left to right
condition execution rule. The problems which may arise
concern calling primitive predicates with an impermissible
combination of unknowns, or unexpected infinite
recursions. As an example of the latter problem consider
activating the reverse and append definitions, given

earlier, by the query

query (1) « reverse(l,(1 2 3 )).
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The first recursive call of reverse has two unknowns

as arguments and behaves thenceforth as an inexhaustible
source of ever larger mutually reversible templates for
lists. After a few tries the correct elaboration for

1, (3 2 1), will be found to satisfy the query. However,
if we backtrack in order to exhaust the search space
then the source of templates never empties, the append
call continually fails and backtracks, and no second

solution or eventual failure is forthcoming!

This concludes the discussion of the operational model

for Prolog execution.



CHAPTER 4 -~ MULTI-LEVEL STRUCTURE IN INTERPRETER
BASED SYSTEMS.
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Multi-level structure in interpreter based systems.

In this chapter I shall outline an approach to analysing
the run-time structure and behaviour of complex computer
programs. I shall call the structural models "multi-
level interpreter systems'. The name arises from the
types of systems of programs to which I shall be primarily
interested in applying the analysis; these programs will
fall into two general classes: firstly, compiled high
level language programs executing on a high level

machine simulator (often implemented by a program
written in lower level language), and secondly, high
level programs in source code executing on an interpreter
(often itself written in a high level language and
executing as a program in the first class). Chapter 1
discussed the reasons why it is significant to study

programming systems of this form.

Clearly the components of such systems and their
relationships could become quite intricate. 1In order
to overcome this potential'complexity I propose to
introduce in this chapter constrained structural and

behavioural models for multi-level interpreter systems.

In the firét part I shall introduce a simple

diagrammatié notation with which to represent the structure
and name the components‘of systems. The diagrams should

be treated as little more than instructions for

assembling systems from their component hardware and
software blocks, though the precise arrangement of the
blocks is determined by some knowledge of their

run-time interactions; consequently, the description

of the notation makes much reference to the concept of

the interpretation of one component by another.



In the second part of the chapter I shall present two
semi-formal analyses of the behaviour of multi-level
interpreter systems. These are the Interpretation
model and Abstract Execution model, which clarify the
interpretative details of the first part of the chapter.
Subsequent chapters will exploit the properties of the
two models in order to define the concept of the
performance of a component of a multi-level system,

and to devise experimental procedures for assessing

performance empirically.
4.1 The structure of multi-level systems.

In practice, programming systems are invariably composed
of at least two components: one hardware component, a
machine, and one software component, a machine language
program residing in the memory of the machine. We can

distinguish an active component, the machine (a

performer of actions), from a passive component, the

program (a source of instructions for the active component).
0ften the system will be composed of a hardware component
and several software components, within which there will

be a discernible hierarchy of services provided and
interpretative actions performed; this will be especially
true of the systems to be studied in later chapters of

this thesis. A software component which interprets

and carries out the commands of another component is
similarly active in some sense, and the component which

is being interpreted is passive.

For the purposes of structuring a multi-level system,
each active/passive pair of components is separated

by an interface. Each interface usually separates two
physically distinct components which have been brought
together in constructing the system; for example a
hardware machine and its software program, or an

interpfeter and the program which it interprets.
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In general a complex programming system will contain
several interfaces of interest, and a notation is
necessary which allows the representation of such

systems,
4.1.1 The single interface.

An obvious choice for a notation to represent a single
interface is to draw a horizontal line for the interface,
and to name the passive and active entities, above and

below the line respectively.

For example:

} Passive,

Program + data Program text

Interface —>
‘ Machine Active
Interpreter

Bearing in mind that the diagram must cover the entire
structure of the system, I have, in the example, included
both a program and its data above the line, and all

the machinery (microprogram, hardware, etc) required to
execute the program below the line. No other

information is required in order to complete the

execution.

The operational view that I would like to take of this
configuration is that the program and data together
describe some computation in terms of concrete actions
which can be performed only by the lower level machine.
The program can take no action of its own - everything
must be done by the machine, and the machine is
responsible for interrogating the program to obtain its

directions.
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The active entity below an interface will be referred to

as an interpreter, a machine, or a virtual (or high level)

machine.

Thé passive entity above an interface will be referred
to as a program (since it will usually correspond
intuitively to just that), or occasionally as data
(since it is exactly that to the interpreter below

the interface).
4.1.2 Multiple interfaces.

For complex systems in which there are several obvious
choices for interfaces it may be constructive to consider
more than one at a time. The interfaces will then
clearly delimit the parts of the system which we are

interested to treat as single components.

The diagrammatic notation can be extended simply to
include one horizontal line per interface. Note that
the multiple division of the system follows a strict

vertical stacking scheme - no networks are allowed.

For example, the typical execution of a program, on
some machine's hardware with some data, has two

interfaces of interest:

' ' . Passive, Data
Data L3 Passive, program

12
B Program L2
‘Il

: ctive, .
Machine L1 }Active, machine J}Interpreter

Viewed from I1l Viewed from I2



The interfaces_and levels have been given labels to

assist in discussion.

Each interface divides the system into passive and
active entities - the single interface philosophy
applies separately at each interface. Hence, from the
point of view of I2 everything below it (program +
machine) forms a single interpreter for what lies
above (the data).

This suggests that a typical program can be considered
to be a very high level language interpreter for
programs in a language consisting, maybe, of only a

few numbers.

Operationally, the data contains instructions for work
to be done by the program, and this work is achieved by
instructing the machine. Hence the concept of

multi—level interpretation.
4.1.3 A refinement - "interpreter extensions".

I will introduce one small refinement into the notation

scheme.

It will be useful to distinguish one special case of an
interpreter.leVel. This is an interpreter in which some
of the actions made available at the upper interface are
implemented by the interpreter as a complex series of
actions at the lower interface, but in addition some

of the actions available at the upper interface are
already known to, and are provided by, the machine

below the lower interface; the lower machine performs

the latter actions directly.
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This is intended to represent the rather common situation
in which a program (compiled into machine language form)
is loaded onto a machine together with a collection of
"library subroutines" which act as a run-time support
package. The program then proceeds mainly by executing
machine instructions directly, but occasionally by
calling one of the subroutines to perform some more

sophisticated action.

A level of interpreter of this nature will be shown
diagrammatically by dividing the level into left and
righthand sides. The lefthand side will contain a
vertical arrow to show that some instructions are
executed directly at the lower interface, and the
righthand side will name the "package" of non-primitive

facilities, for example:

L Data L4
I3
. Program L3
I2
Numerical

: library L2
It

Machine L1

Levels of interpretation of this special kind will not
prove to be particularly significant in the following
discussion; for example they will receive no special
treatment in the second part of this chapter, or in

the definition of performance. However, it will be
necessary to bear them in mind during practical performance
assessment if the characteristics of the active part

of the level are to be assessed.
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4.1,4 Comments.

Although conceived separately, and for a different
purpose, the multi-level interpreter scheme which I
have described has a great similarity to the multi-
level system description given by Anderson, Lee and
Shrivastava (1978). They consider multiple levels of
interpreters with well defined interfaces, and also

the concept of interpreter extension which corresponds

to the refinement outlined above. However, their
treatment of interpreter extensions differs somewhat
from mine; the new level is considered to be an
extension of the next interpreter level below, and to

be under the control 6f that level, whereas I wish to
treat it as an independent interpreter. Despite the
slight dissimilarity I shall adopt the term "interpreter

extension".

In general, suitable choices for single components

of multi-level systems will be individual software
programs, designed and developed as integral units.
However, it will also prove to be convenient to group
togethér such programs to make compound components, or
to identify interfaces>within programs and to divide the
programs into two or more levels (for example, isolating
a group of subroutines providing a common service to a

main program).
4.1.5 Examples.

‘Before proceeding to give a formalised description of
the behaviour within multi-level interpreter systems,
I shall show a range of multi-level decompositions of
typical systems. The examples illustrate the styles

of decomposition which will be used in subsequent

chapters.
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4.1.5.1 Simple program.
The first example is almost the simplest situation
conceivable. A compiled program, given data and

executing on the bare hardware of a machine.

Data

Program (object code)

Machine

This system decomposition is appropriate in all normal
programming configurations. 1In general the program
might include several levels of interpretation, which
we are not interested to distinguish. Also the data
might include further levels of program text and data

which are to be interpreted by the program.
4.1.5.2 Executing with a file store.

The normal working environment rarely makes it possible
to run programs on completely bare hardware. Usually
there is some form of operating system providing

greater control over the machine, and extending the
machine's facilities. Typically the operating system
will provide file storage and possibly a virtual memory.
Considering only the provision of a file store, this

may be represented by an interpreter extension above the

hardware level:

Data

Program (object code)

l File store

routines

Machine
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The implication here is that the program executes
machine instructions, or calls file store routines
which execute machine instructions on its behalf.
The machine is unable to tell which instructions are
executed by the program, and which by the file store

extension level.

As a development from the simple example above, this
new decomposition can be seen in two ways; either as
the separation of two levels in what was previously
a rather sophisticated machine, or as the removal
from the program of a set of basic utilities which

were independent of the remainder of the program.

4.1.5.3 A simple Algol-type program.

This example iS of a similar complexity to the last,
but it introduces the ﬁossibility of interpreter

levels arising from degrees of sophistication of
implementation of high level languages. I choose

to illustrate this in the context of an Algol-type
language, executing on a machine which has no intrinsic

stack handling abilities.

A program of this type will be compiled into object
code which includes calls on stack manipulation
routines. Theée routines ﬁill be present in the object
code, but the programme; did not include thenm
explicitly in his design, and so I would like to
isolate them. The configuration can be represented
as follows:

' Data

Program (object code)
Stack
routines

Machine

R LZINER 2 O

RGN
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4.1.5.4. An advanced Algol-type program.

Further complexity arises in the previous example if

a program makes use of some more advanced facility of
the language. For example, a system of records and
pointers may require record allocation and accessing
routines, heap management and garbage collection. This
will be present in addition to the necessary stack
manipulation routines, and indeed the record management
will almost certainly rely on the stack routines. Hence

the following configuration:

Data

Program (object code)

Record

Management

Stack

routines -
Machine

0f course, if we were not interested in distinguishing
between the stack and record management levels then
they could be merged into a single "run time support"™

extension level.

The problem arises, when extracting several supporting
levels of interpreter, of the order in which the levels
should be placed in the configuration. The order will
be determined by the dependence between the levels.

For example, if two levels A and B are extracted from

a program then the order is determined by whether A
uses the facilities of B, and vice versa. If A and B
are independent (they only require the machine below

in order to execute) then they may occur in either order.



If A uses B but B does not rely on A, then A is placed
above B (I have treated the record and stack, above,

in this way as A and B respectively). If A and B rely
on each other then they must be merged to form a single
level - maybe a different factorisation of the system
is possible. With three or more levels more care may
be needed, but I do not anticipate that this problem
will be of sufficient significance to prevent useful

progress.
4.1.5.5 A high level machine simulator.

Consider a program‘written in a very high level language,
such as Lispkit, which has been translated into a data
structure containing the object code for running the
program on a special purpose machine simulator. The
machine simulator is itself an Algol object code

program for executing on a particular computer's
hardware. The Lispkit program requires some data

in order to execute.

An execution of such a system of programs will have the

following structure:

Data

Program (Lispkit object code)

Lispkit machine simulator
(Algol object code)

Computer hardware

Again, each level of the configuration could be
decomposed into further levels if required. The next,
and final, example shows the interesting case where
the data is split into another program plus data.

This will be of significance later, as will the case
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when the simulator has levels of mechanism distinguished
within it.

4.1.5.6. Higher level interpretation of a program.

This final example is a development of the previous
one. The program has become more specifically an
interpreter for the source code programs of an
experimental language X. Above the interpreter we

have a source code X program and some data for it:

Data

X source code program

X interpreter (Lispkit object code)

Lispkit machine simulator
(Algol object code)

Computer hardware

4.2 Two models for the behaviour of components within
multi-level interpreter systems.

The notations described in the following pages will play

a descriptive role in the formulation of concepts of

software behaviour, and in the subsequent discussion of

performance. The notations will not be developed into a

complete formal theory. The system configuration diagrams

introduced above are useful as reminders of the identities

of system components. However, the diagrams say ‘nothing

formal about the way in which levels of machines,

interpreters, programs and data interact.

I have two, apparently conflicting, demands of a
formal description of the behaviour of multi-level
interpreter systems. Firstly, the software components
of a system are simply chunks of text, whether they

are in a source or compiled form, and only acquire the



ability to be active and perform computations when
"loaded" onto sdme active machine; the machine may
itself be a virtual machine formed by loading the
passive text of an interpreter onto some lower level
machine. It should be possible to model this
activation’of passive program texts. Secondly, despite
the previous observation, a program does seem to have
behavioural properties of its own which are independent
of the (virtual) machine on which it is executing; it
has a certain "algorithmic complexity" which determines
the amount of work required to complete the computation
specified by the brogram's data. It should be possible
to assign somé active character to a program without
including the characteristics of the (virtual) machine
below, and it is this active character which a

performance assessment must assess.

In the following sections I shall attempt to capture
these two rather different aspects of system behaviour
in two models, the Interpretation and Abstract
Execution models respectively. The two models are
orthogonal, but can be related to each other, and the

requirement for consistency will constrain the models.
4.2.1 The Interpretation model.

In this model the components of a system are of two

types; each software component is a passive Base text

object, this covers the programs and data which form
every level of a system except the lowest; and the

lowest level of a system is an innately active object

of type Machine which accepts the text of programs

and data and generates results.

0J5.



To represent the combinations of programs and data
which a Machine expects to receive (and, later,
interpreters will expect to receive), the more embracing

type Text is necessary

Text'= Base + Base x Text

An object of type Text is a sequence of Base objects,
each of which is the passive text of some program or
data. When a Text object is a sequence of more than one
Base item I shall use square brackets to delimit the
sequence, e.g. [Pl, P2, cﬂ » in which the lﬂiﬁ item
will be of type Text although it will frequently be a

Base object.

The results of a computation are conveniently grouped

with programs and data as Base text:

program, data, results: Base
The type Machine can now be elaborated. A Machine is
a function which accepts some software (in general a

combination of programs and data), and produces some

results:
Machine = Text ——> Base

For example, the execution represented by the configuration

g_: Base
:_Base
1 Base

e e e e e i A

mc: Machine

in which the names of the components have been annotated
with their types, can be modelled by applying the

Machine mc to a compound data structure:
results = mec Eqp,él )
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If mc:Machine then this gives a general purpose
character to me with which it may execute self-contained

programs
results = mc(p) where p:Base

or more complex software systems, as above. This can be
seen by substituting the definition of Text into that of

Machine:
Machine = (Base + Base x Text) ~) Base

When a Machine is acting purely in the role of supporting
a multi-level software system then its properties can be

discussed in the restricted domain M':

M' = Base x Text —) Base
or the "Curried" form of this, M"':

- M"' = Base —»(Text —» Base)

This is the way in whibh hardware machines are normally.
used; the machine is given Base text as a program to
éxecute, and some Text as data for the program. The
separation of program and data shows that they are
changéable components, the program can be executed with
various sets of data. The two types M' and M" have been
derived from a consideration of hardware machines, but
they also describe precisely the usual concept of an
interpreter as an active object which accepts program

énd data and produces results. I shall define the

Curried domain as being exactly that of Interpreters:
Interpreter = Base —)(Text —) Base)

and I shall denote the member of Interpreter corresponding
to the Machine mc, acting in the restricted role M', by
mkInt(mc). mkInt converts a component of type Machine to

one of type Interpreter, simply by modifying its type:



mkInt: Machine —)Interpreter
and mkInt may be defined (in the notation of Chapter 2) as

mkInt(mc)= X\ (base)( X (text)mec( Ebase, texa ))
Hence the following equality holds:

pesults = me( [b,d] )= mkInt(mc)(p)(d)

where mc:Machine, p:Base, d:Text
Now, the range of the Ihterpreter mapping is (Text-—) Base),
which has already been defined as Machine, and hence

Interpreter = Base —» Machine.

.

Thus it is possible to generate a new active Machine,

a virtual machine, by applying an active Interpreter

to a passive program Base text. This corresponds to
"loading" a program onto a machine, but not executing
it until we provide some data; the ioaded machine has
become a new and different virtual machine. The active
Machine obtained by 1oéding a program text onto an
Inptérpreter has the character which we usually attribute
to the program itself - it accepts data and produces
results. - Hence the distinction has been made between
the téxt of a program, which simply describes some
computational ability, and an active program, which is
a composition‘of the program's text and lower levels
of hardware and software, and which can perform

computation,

The analysis of a system can be continued to greater
levels of detail, since if the Base text which is
loaded onto an Interpreter also describes the function
of an interpreter, then the resulting Machine is of the
restricted type M' and can again be treated as an

Interpreter. For example, consider the system
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The following analysis can be made of the results from

such an execution:

results =MC([b1:P2a4] )
= mkint(me) (p1)( [pz,d] )
= p1'( [pz,d] )
= mkInt(p1')(p2)(d)
= p2'(4d)
mkInt(me)(p1)
mkInt (p1')(p2)

where p1'

p2'

The objects pil' and p2' are virtual machines which
implement the functions described by the program texts

pl and p2 respectively:
d

—p2
--p1 p1' p2'
me

Hence it has become clearer why I wish to treat complex

programming systems as '"multi-level interpreter systems".

4,2.2 The Abstract Execution model.

In the Interpretation model, described above, each
software component of a system is passive, and only
acquires an active characteristic when executed (or
interpreted) by a Machine (or Interpreter). This
seems to suggest that it is fruitless to enquire about
the behaviour or performance of an isolated component,

as the behaviour of the component is intricately
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involved with the behaviour of the Machine or
Interpreter on which it is executing. However, the
notion that a program can be assigned behavioural
attributes independent of its execution environment is
in common usage; in some sense a program describes work
to be performed, and it is the business of some
underlying components how the work is performed. This
notion will be of key importance in the treatment of
performance in Chapter 5, and I shall attempt to suggest

here a formal basis for that treatment.

The Abstract Execution model considers explicitly the

interactions between each pair of components which are

vertically adjacent in a configuration diagram; the
interaction may be in the form of subroutine calls

(or 9ther operations) which the uppér component demands
of the lower, or in the form of accesses which the lower
component makes into the data structure representing the
upper component - these are simply convenient and
éuggestive infuitive interpretations of the events

which occur during execution of the system. Each
compoﬂent is then modelled by a function which maps an
interaction at the upper interface of the component

into an interaction at the lower interface.

An alternative view ié to consider that, at each
interface, the component above the interface hands

to the component below,  some description of the complete
computation; the description is at a level of abstraction
which the lower component is prepared to expand in more

detail and hand to the next lower component.

I shall restrict myself to consideration of interactions
which are sequences of events; this is certainly adequate
and clear for analysing systems executing on current

conventional sequential processors, though I do not
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know whether it is a necessary restriction in the following
analysis, nor whether the theory will need modification

to handle parallel processing systems.

Having attempted to bridge the intuitive gap between
the Interpretation and Abstract Execution models, I
shall now elaborate the latter.

Observation at an interface of a system for the duration
of a computation will yield a record of the interaction,
which is a sequence of events. The record is an abstract

execution of type Trace:
Trace = sequence of interaction events

Each component of a system, with the exception of the
highest level component (usually sihple data), will be
modelled by an active entity, an abstract execution
machine of type AEMachine, which transforms a Trace at

its upper iﬁterface into a Trace at its lower interface:

. AEMachine = Trace =—>» Trace

There'are three types of system component which must be

described in terms of AEMachines and Traces.

Firstly, the lowest level component, computer hardware,
is innately_éctive, as in the Interpretation model. A

hardware component mc is a member of type AEMachine:

mec : AEMachine.

In this case the upper interface Trace will be a sequence
of machine instructions and their operand values.

A hardware component, being at the lowest level, has

no true lower interface, but the Trace produced by the
component can be conveniently interpreted as the

manifestation of the computation to an outside observer -
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it will consist of such effects as power consumption,
time, and input/output actions, and hence consists, in

part, of the desired '"results" of the computation.

Secondly, each software component, except the highest,
is a Base text object representing a program which must
be modelled as an AEMachine. For this purpose I shall
postulate the availability of a function aep (for
"abstractly execute program") which takes the text of a

program and produces an appropriate AEMachine:
aep : Base —)»AEMachine.

aep is universal in the sense that it is capable of
accepting any program, in any language and producing

the AEMachine appropriate to the environment in which

it will execute; I shall assume, f&r simplicity, that
the program's text contains relevant clues about these
matters for use by aep. This somewhat extravagant claim

for the properties of aep will be pursued further below.

Thirdly, the highest level component, data, is a Base

text object which is inspected by, and directs the

actions of, the component below. A data component is

not active in transforming Traces, but it interacts with
the component below, and hence will be modelled by a Trace
of this int§raction. As for the case of programs, above,
i shall postulate the availability of a function aed

(for "abstractly execute data') which given a data text

produces the Trace at its lower interface
aed: Base — Trace

Again I assume that the text contains clues about the
nature of the data and the program which is to process
it (the component below), and that aed is universal in

a similar way to aep, above. In this case the Trace
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could simply be the pattern of accesses to the data
which the program below the interface makes, or even
simpler, the data itself; on the other hand the data
might be the text of a self-contained program, to be
interpreted by the component below, and a useful trace

of the interaction would be more complex.

Now that we can model each component of a system, the
computation performed by an entire system can be

modelled by composing the functions modelling each

component. For example, the configuration of components
13 d:Base
12 p2: Base
I1 pl; Base

mc:AEMachine

is modelled by
result trace = mc(aep(pl)(aep{p2)(aed(d))))
mc(pl'(p2'(d')))

where pl', p2' and d' are the representations
of p1, p2 and d:

pl' = aep(pl)
p2' = aep(p2)
d' = aed(d)

The result trace contains the desired results of the

computation.

Alternatively the interaction at any interface can be
inspected by abstractly executing the components above

the interface. In the example above

trace at interface I2 = aep(p2)(aed(d))=p2'(d')

The Interpretation model allowed the construction of
virtual machines by the combination of the lower level
components of a system. The virtual machines then had

the innately active Machine characteristic. Interpretation

model virtual machines always occupy the lowest level
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of a system. The Abstraction Execution model also
enables the construction of virtual AEMachines by °
combining components, but not only at the lowest level
of a system. For example, in the system above,
the components may be combined in various ways:

- result trace = mec(pl'(p2'(d')))
mepl'(p2'(d'))
mc(p12'(d'))
mc(p1'(p2d')), and others

n

X\ (trace) mc(p1l'(trace))
X\ (trace) mc(aep(pl)(trace))

where mcp1l’

pi2' = X\ (trace) p1'(p2'(trace))
= % (trace) aep(pl)(aep(p2)(trace))
p2d' = p2'(d') = aep(p2)(aed(d))

and mepl', p12': AEMachine, but p2d':Trace.

In this example mcpl' clearly corresponds to the virtual
machines of the Interpretation model, as it combines

the lowest levels of the system. However, pl2' may be
better referred to as a "virtual program", and p2d' is

"virtual data" (not a particularly useful concept).

An important characteristic of the construction of virtual
programs in the Abstract Execution model is that it
permits adjacent levels of programs to be combined

(and indicates how single levels may be factorised into
two or more levels) without disturbing the structure

and analysis of the remainder of the system. 1In the

above example
mc(p1'(p2'(d'))) = mc(p12'(d'))
where the composition of two functions, p1®’ and p2) has

been replaced by a single function, pl12', which can be

used as if p1l' and p2' had never been separate.



This dould %e contrasted with the same transformation

in the Interpretation model, where p1 and p2 can be

factored out by exploiting the lambda expression notation:

result = mc( [Pl, p2, é] )
where, now, mc:Machine
= mkInt(mkInt(me)(p1))(p2)(d)
= pi2" (mc,d)
where pi12" = %.(mc,d)mkInt(mkInt(mc)(pl))(p2)

pl2" now formally isolates pl and p2, but it does not fit
naturally into the Interpretation model scheme, as p12'
does into the Abstract Execution scheme. p12" has an
unusual type

pla2" : MachinexBase-é Base
and cannot be used in place of pl and p2 as if they had
never been separate.
Hence the Abstract Execution model has improved on the
Interpretation model by enabling abstract views of the
structure of a system to be generated more naturally;
but this has occurred at the expense of the introduction
of the hazy notion of a Trace, and two powerful, but
not formally defined, functions aep and aed. I shall
attempt to remedy this unsatisfactory situation in the

next section.

4.2.3 Relating the Interpretation and Abstract

Execution Models.

The functions aep and aed are extremely powerful.
They are marvellous tools to have available, but the
validity of their postulated existence must be
examined. This problem is intimately associated
with the question "What exactly is a Trace?" I

cannot answer that question satisfactorily in the
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general case, but by relating the Interpretation and
Abstract Execution models the functions aep and aed
will be specified in terms of Traces, and only the

latter problem will remain.

Ultimately I consider that the validity of the Abstract
Execution model will be verified by the existence of
useful experimental results which fit within the
framework of the model, although, in common with most
such models, that verification will not necessarily
imply that the model is the best possible formalisation
of the problem. '

In the Interpretation model interfaces occur between

Machines and their data. For example, in the system

13—
12—R2_

11—B1_

mc

the interface I1 separates the Machine mc and the
data Epl,pz,é] , the interface I2 separates the
Machine mkInt(mc)(p1) from the data [pz,é] , and I3
separates mkInt(mkInt{(mc)(p1))(p2) from d.

At each of these interfaces it is the interaction of
the Machine below and the data above which is
recorded by a Trace., The practical act of observing
an interaction can be achieved by taking the Machine
and data, possibly modifying one or both to include
monitoring mechanisms, and recording the events which
occur. I shall use the function tracing to represent

this experimental action formally:

tracing: Machine x Text —> Trace

and in the above example:

trace at I2 = tracing (mkInt(mec)(p1l), [p2,4] ).



75.

In itself the introduction of tracing is fairly trivial,
but it allows the gap between the Interpretation and

Abstract Execution models to be bridged. The functions
aep, aed, and tracing, in order to be useful, must give

the same Traces at interfaces.
For example, in the configuration

d

I2————

P

I)——t—

me
the following equalities must be satisfied:

aep(p)(tracing(mkInt(mec)(p),d)) = tracing(mec, [p,d] )
since aep(p) maps the trace at I2 into the trace at I1,
and

trace at I1

tracing (mec, [p,d] )

trace at I2

n

tracing (mkInt(mc)(p),d)
and -
aed (d) = trace at I2 = tracing (mkInt(mc)(p),d)

These equalities amount to the definition of aep and aed

by the empirical observation of Traces.

4,3 Comments.

The Interpretation model is more realistic and more
immediately credible than the Abstract Execution model,
which relies on fictitious Traces that never exist as
palpable data structures within a system. In Chapter 5
I shall sidestep the issue of the general nature of
Traces when, in the context of performance evaluation,
experiments which monitor interactions yield only
extracts of Traces and not the Traces themselves. The

extracts will be credible statistics concerning the
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execution of a system, and Traces will exist only

in the background, in the formal description of a
system. 1In the discussion of performance evaluation
the Abstract Execution model will provide the structure
of a performance analysis, and the correspondence with
the Interpretation model will show how empirical

assessments can be organised.



CHAPTER 5 - THE PERFORMANCE OF COMPONENTS OF MULTI-LEVEL
SYSTEMS.



The performance of components of multi-level systems.

This chapter is concerned with the determination and
analysis of the performance of the individualrcomponents
of multi-level interpreter systems. The Abstract
Execution model of Chapter 4 will be built upon to
provide a framework for the study of performance.

’
Following the discussion in Chapter 4, programming
systems are comprised of component levels of software
and hardware. The component at the lowest level, which
requires no support, is a hardware machine, and is
generally of fixed characteristics in the sense that it

cannot be modified in the short term to suit different

applications. On the other hand, the software components

of the system will be programs and interpreters which
have been designed to cooperate in the solution of
certain problems, and which can be changed comparatively

easily to suit the circumstances.

Since the systems are intended to solve real-world
problems, as judged to be important by the designers
of the systems, those designers cannot ignore the
engineering goal of finding the "best" systems to
solve the given problems. This reasoning applies
equally well in both the commercial and academic fields,
as has been discussed in Chapter 1. The solution of a
problem, by the execution of one or more software
components on a hardware component, demands that
resources be made available - time, memory, power

and so on. The "best" system will be one which
optimises (according to some criterion) the use of
resources, the required balance depending on the

particular application.
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Hence the task is to be able to take programming
systems, to examine relevant aspects of their
performance, to make meaningful judgements of the
adequacy of individual systems, to make meaningful
comparisons of different systems, and, perhaps most
important of all, to obtain feedback of useful
conclusions to the designers of the systems and their

components.

This task is more complex in the case of multi-level
interpreter systems than for simple systems, as each
component will have its own behavioural properties.

A useful performance study of such a system should be
able to yield conclusions and feedback on the individual
components of the system - this is obviously

espeéially valuable if the components have been

designed independently.

For example, the system below has a typical multi-

level interpreter structure:

Data

Program

Interpreter

Machine

The most common measurement to be made of the
behaviour of such a system is the time taken to
execute particular computations. The time for
execution is itself a measure of the total amount of
work performed by the machine during the computation,
and hence reflects the contribution of all components

of the system to the overall performance. Consider
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executing the system above several times, with different

data on each occasion:

Data 1 Data 2

Program Program te
Interpreter Interpreter

Machine Machine

This is the experiment which is usually carried out in
order to assess experimentally the performance of the
program; the interpreter level is not usually explicitly
noted, but it is almost invariably present, often in

the form of a library of subroutines supporting the
features of the language in which the program is written.
If the performance parameter measured is the execution
time then a relationship will be sought between this
measure and some relevant characteristic of the data,

the length of a list of items, for example. However,

any observed relationship, a distinct curve on a graph

or an approximate formula, will not necessarily yield

the desired conclusions on the properties of the

program, as the characteristics of the interpreter

and machine have also been included in the measurements.

Obviously the ability to distinguish the properties

of individual components from the properties of their
environments is very important; if the conclusions of

a performance study are to be returned to the designers
of the components of a system, then it would not be
reasonable or constructive to blame a program for
inefficiency if the fault actually lies with a bad

design decision in a lower level of interpretation.
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The design of experiments for the comparison of two
alternative versions of a component is an important
problem., Clearly care is needed to ensure a fair
comparison between the components, especially if they
are executing in different environments, on different
machines for example. The multi-level interpreter
model suggests a straightforward definition of a fair .
comparison; the comparison must be between the
performance propert&es of the components in isolation
from the properties of their respective overall
systems. Care must be taken in factoring out the
influence of underlying levels of interpretation.

For example, Turner (1979) has compared implementations
of SASL and Lisp on different machines and has factored
out the influence of the hardware by examining the
requestsfor record storage cells that the implementations
make on their storage management support routines; also
Moss (1980) has compared several Prolog implementations,
on several different machines, by initially

performing simple experiments to '"normalise'" the
machine execution speeds. Undoubtedly there are many
other instances of these types of investigations.
Performance assessments may be carried out either
experimentally or analytically. The latter may be
quite appropriate for relatively straightforward
algorithms, and for the restricted use of more

complex algorithms, but in general such complex
algorithms will not be susceptible to a complete
analytical treatment. The complex algorithms in

which I shall be interested will be interpreters for
high level languages, and performance assessments

will have to be obtained experimentally.
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In the subsequent sections of this chapter I shall
give a definition of the performance of a component
in a multi-level system, and also the outline of a
methodology for the assessment of performance which
arises from the definition when applied to real
systems. The definition of performance is based on
the Traces of the Abstract Execution model of Chapter
4, and thereby provides a solution to the problem of
isolating the properties of components from the
remainder of the systems in which they execute. The
treatment of performance will concern itself with the
relationship of the performance of components to each
other, and to the system as a whole, and will not
concern itself with the internal details and
machanisms of individual components.

5.1 Defining the performance of a component.

The Abstract Execution model of multi-level interpreter
systems treats each component of a system as a mapping
between interactions at the upper and lower interfaces

of the component; the interaction, or Trace, at the

upper interface is a complete description of the
computation to be performed, and the component

transforms this into a (presumably) more detailed

Trace describing the computation at the lower interface.
The Trace at an interface defines the work to be performed

by the lower levels of the system.

This suggests that the crucial characteristic of a
component is the way in which it transforms the
workload between its upper and lower interfaces.

In the discussion which follows, this observation
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will form the basis for a definition of performance.
Before proceeding to the definition, however, it is
necessary to introduce a more practical means of
observing an interaction than the tracing function

introduced in Chapter 4.
5.1.1 Observing interactions at interfaces.

In Chapter 4 there was some difficulty with the
precise nature of the objects of type Trace, although
they were a valuable abstraction in enabling the
Abstract Execution model to construct representations
of multi-level systems which had useful properties.
The operation tracing was introduced to link the
Abstract Execution Traces to observations of real
systems described by the Interpretation model.

tracing was defined as

being of type Machine x Text-—>Trace, and in the system

12 -4_
11 B
mc

the trace at, for example, I2 can be obtained from

the Abstract Execution model

trace at I2 = aed (d)
or by tracing the Interpretation model

trace at I2 = tracing (mkInt(mc)(p),d)

However, tracing is not a representation of the
practical act of observing an interaction; when
the interaction at an interface of a system is
observed, usually by modifying the software, the
information collected is never a complete Trace,
but some extract of ‘the Trace which represents

some particularly interesting aspect of the interaction.



Similarly, when discussing the Traces at upper-and
lower interfaces and how they are related by the
component between, it will be the relationships
between particular aspects of the interactions which

convey most understanding.

Hence I shall define the type Extract to cover the
ihteresting statistics which can be distilled from
Traces, and the del;berate act of choosing an

interesting statistic to extract from a Trace will

be‘represented by the functions Select:
Select = Trace —» Extract.

Note that Extracts of Traces are now more credible
objects; for example, they include such useful
statistics as the number of machine instructions
executed at the upper interface of a hardware
component, the number of times that particular
instructions or particular sequences of instructions
are executed, the number of statements or expressions
interpreted at the lower interface of a program, and
the number of times that certain elements of data

are accessed by the program below the lower interface
of the data. 1In short, Select functions allow us

to consider any aspect of an interaction that we
consider to be relevant, although, of course, some

statistics may be easier to obtain than others.

The practical act of observing an interface, in order
to obtain an Extract concerning a particular aspect

of the interaction, is modelled by the function
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monitor: Select x Machine x Text — Extract
which may be defined in terms of tracing:

monitor (sel,mc,d) = sel(tracing(mec,d))
For example, in the system

IZL

11-B_

mc
if selaccess: Select cah extract a record of the

accesses which p makes into d at I2 then

record of accesses = monitor(selaccess, mkInt(mc)(p),d)

The definition of monitor shows that the complete action
of modifying a system, observing an interaction, and
ektrgcting useful information is modelled by the
composition of the functions sel and tracing; the
composition represents the practical experimental

measurement of a system.

0f course Select functions can be applied equally
well to the Traces of an abstractly executed system.
In the example above, the record of accesses can be

obtained trivially
record of accesses = selaccess(aed(d)).

5.1.2 A definition of performance.

The Abstract Execution model represents a component
by a mapping between Traces, but Traces are more of
a formal than a practical tool; instead it is usual
to consider a program as determining a mapping

between events of interest at its upper and lower
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interfaces, in other words between Extracts at the
interfaces. For example, "a program makes x calls
of a particular subroutine at its lower interface
when the data at its upper interface contains y

items".

It is in these terms which the performances of
programs, interpreters and machines are usually
expressed, and so I shall define a Performance

as a mapping between Extracts:
Performance = Extract —>Extract

Any component may be characterized by a number of
.Performance functions, each relating different
aspects of the interactions at the upper and lower
interfaces. It is the aim of the study of the
performance of a component to characterise, as
completely as possible, the mapping which the
component implements between selected events

of interest; the study may be carried out
analytically, thus arriving at a precise formula
for the Performance, or experimentally, yielding
particular points in the Performance mapping and
presented as maybe a table, graph, or approximate

formula.

To assess the Performance of a component with
both upper and lower interfaces it is necessary
to know the Base text of the component, and the
Select functions for monitoring the upper and

lower interface interactions:

assess : Base x Select x Select —> Performance



The assess operation is not constrained to being
either analytical or experimental, but in either

case the resultant Performance mapping must be
consistent in both the Interpretation and Abstract
Execution models. Consider assessing the performance

of p in the simple system

!

12-9
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me
and let sell and sel2 be interesting Select functions
for the interactions at I1 and I2 respectively. The

assessment of the performance of p, perfp, is

perfp = assess (p, sel2, sell)

so that perfp(extract2.) = extractl..

By the Abstract Execution model the performance perfp
relates the selected features of Traces at the two
interfaces:
assess (p,sel2,sell)(sel2(aed(d))) = seli(aep(p)(aed(d)))
since extracti = sell(aep(p)(aed(d)))
= sell(tracel)
extract2 = sel2 (aed(d))
= sel2 (trace2)
tracel = aep(p)(aed(d))

trace?2 aed(d).

Alternatively, the Interpretation model can be used
to show monitoring actions explicitly:
assess(p,selz,sell)(monitor(selz,mkInt(mc)(p),d))

= monitor (seli,mc, [?,d] )

which can also be simplified to

perfp(extract2) = extracti
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]

since monitor(sell,mc, [p,é] ) seli(tracing(mec, [p,d] ))

seli(trace1l)

extractl

monitor(sel2,mkInt(mc)(p),d) = sel2(trace2)

extract?2

The required consistency of Traces between the Interpretation
and Abstract Execution models, and the applicability
of Select functions to both models, has ensured that
the properties of Performance mappings are the same

in both models. The notion of Performance is clearly
most closely related to the Abstract Execution model,
as it was defined in those terms, but its direct
‘compatibility with the Interpretation model and
monitor is important, as the latter model indicates
how assessments of performance can be made empirically.
The equations above show that perfp, a particular
Performance function characterising p, relates

Extracts:

perfp(monitored Extract at upper interface)

= monitored Extract at lower interface.

This relationship shows that we can predict lower
interface Extracts if perfp is already known, or

that we can monitor the interfaces in particular
experimental executions of the system and thus build
up an impression of the perfp mapping from particular
data points. In the latter case the system will be
viewed initially in terms of the Abstract Execution
model - components of interest will be isolated,

and appropriate interfaces and Select functions will

be chosen; then experimental measurements will be
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made by monitoring the system as described by the
Interpretation model; and finally the measurements
will be presented as a Performance assessment, in
tabular, graphical or algebraic form, and the precise
significance of the assessment with respect to the
system willlbe clear from the choice of components,

interfaces, and Select functions.
5.1.3 Combining the performances of adjacent components.

One important consequence of the definition of Performances,
above, is that the Performances of two components

occupying (vertically) adjacent levels of a system can

be combined in a very simple way to give the overall
Performance of the pair as if they were a single

component., This is related to the ease of construction

of "virtual programs'" in the Abstract Execution model.

Consider the following system configuration

11-RL
mcec

Suppose that sell, sel2 and sel3 are Select functions
extracting statistics of interest from the Traces at

interfaces I1,I2,and I3 respectively. Hence

trace3 = aed(d)
trace2 = aep(p2)(aed(d))
tracel = aep(pt)(aep(p2)(aed(d)))

sel3 (trace3) = extract3
sel2 (trace2) = extract2

sell(tracel) = extractl"



If the Performances of p1 and p2 are perfl and perf2

respectively,

perfl = assess (pl,sel2,sell)

perf2
then
perfi(extract2) = extracti

assess (p2,sel3,sel2)

perf2(extract3) = extract 2

and since for both éerfl and perf2 the same Select
function, sel2, has been used at I2 to yield extract2
then

perfi(perf2(extract3)) = extractl
or perfil2(extract3) = extractil

where perflz = N(extract) perfil(perf2(extract)).

The Performance function perf12 is thus the mapping
between the selected statistics at I3 and I1, that

is the Performance of the virtual program formed by
considering pl and p2 as a single component, and is
simply the composition of the Performances of the

individual components.

The importance of this result is that it assures us
that, when analysing a system, several components can
be combined if detail is to be ignored, and single
components can be séparated into several levels if
more detail is required, without disturbing the
properties, structure and analysis of the remainder

of the system.
5.1.4 Comments.
I have attempted to provide a framework for the

analysis of the performance properties of components

within multi-level interpreter systems. Traces have
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been relegated in importance with the introduction of
Extracts which represent Selected statistics that can

be obtained experimentally.

However, within the framework there still remains much
flexibility in the practical assessment of systems;
components must be isolated, interfaces and statistics
for collection selected, experimental measurements made,
and any choices possibly modified due to unforeseen

complexity or experimental problems.
5.2 A methodology for empirical performance assessment.

Many choices have to be made, and compromises reached,
during the empirical assessment of a system within the
framework outlined in the previous section. During the
practical research reported in the following chapters
of this thesis, I found that the 8 point programme
given below was valuable in organising the work, and

in highlighting the decisions to be made, and problems

to be overcome, in a manageable order.

1. The first step is to divide the system to be
assessed into a multi-level interpreter structure
which reflects the particular interests of the
performance assessment. The components to be assessed
should be isolated, as accurately as possible, from
their data, and any lower levels of supporting
routines or interpreters whose characteristics are not
to be included in the assessment. Interfaces should

delimit precisely the components to be assessed.

2. A general qualitative analysis should be made of
the behaviour and interactions occuring at the
interfaces delimiting components of interest. This

will guide the choice of Select functions in the next

step.
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3. The aspects of the interactions which are to be
monitored at each interface must be chosen. This
choice is largely determined by the particular
performance characteristics which are desired, but

also partially by practical considerations of what

it is possible and not possible to monitor (see step 4).
The choice made here, which includes a decision on
which monitored statistics are to be compared with
which, has a large effect on the meaning of the

performance relations obtained.

The main problem is that, at typical interfaces, the
choice of interaction events to monitor is very large,
‘and the series of interaction events can be viewed
at different levels of abstraction. For example,
suppbse that above an interface the data is a binary
tree (e.g. an s-expression), and below the interface
is some program which scans the tree repeatedly to
ascertain whether some property is satisfied (e.g.
whether any two subtrees are identical). A view of
tHe interaction which is very '"close" to the data
would record only one event - that the data exists
and is passed to the program. A view that is very
close to the program could record each and every
individual occasion on which the program accesses

a node or leaf of the tree (including repeated
inspections). An intermediate view would note some
property of the tree, such as the total number of
internal nodes and leaves, or the depth of the tree.
Conventional wisdom will usually dictate that a
view in the latter group is the most appropriate,
but there is no reason why the other views should

not be selected for some applications.
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A similar situation exists when the interaction at
the interface is an interpreter executing a progranm.
A view of the interaction close to the program could
.count the statements to be executed, and expressions
to be evaluated, according to some adequate and
economical flow of control through the program. On
the other hand, a view of the interaction close to
the interpreter could count the number of basic
evaluation steps performed by the interpreter, which
would possibly include the repeated evaluation of
expressions (e.g. if an interpreter of Lispkit programs
re—evaluated a defining expression at each access to
the defined variable, a mechanism which could be used
‘to implement call-by-name semantics). These two

views would not necessarily coincide closely.

The previous situation is complicated further if the
program above the interface has been compiled,

converted to some intermediate textual form, before
interpretation; this is a very common situation. The
pefformance properties may have been changed by the
compilation. The choice must be made whether to monitor
the interpreter below the interface, the intermediate
code above the interface (both of which are present in
the executing system), or the statements and expressions
of the original "source text" program (which may have

to be monitored indirectly, possibly by separate
simulation). The three choices may not be closely
related, and a decision must be made which is appropriate
to the circumstances. In fact, for this type of system
it may be interesting to monitor both the original
program and the evaluation steps performed by the

interpreter; the results may be compared to obtain a
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Performance relation as if there were an extra
software component between the program and interpreter,
and this relation could yield an assessment of the
overall evaluation scheme embodied in the compilation

step and interpreter design.

In the latter two cases I referred, somewhat vaguely,

to monitoring the source text statements and expressions
of a program, and descfibed this as "according to some
adequate and economical flow of control through the
program". I wished to capture the impression that an
intelligent programmer would have of the amount of

work necessarily involved in executing his program.
"This is obviously a subjective issue, but for most
languages and constructs there is general agreement;

for example, in Lispkit we might expect a call-by-value
semantics and correspondingly expect each defining
expression and actual argument expression to be evaluated
once only. I shall call such a view of a program's

execution a model interpretation. The important point

about the use of model interpretations for gathering
statistics in performance assessment, is that the
resultant assessment will be with respect to the
programmer's expectation, which will be consistent

between different programs in the same language.

4. Make a more detailed, but still qualitative,
investigation of the interactions at the interfaces.
The purpose here is to decide precisely how the
selected statistics are to be monitored at each
interface; this will usually entail deciding how
the various software components are to be modified

to collect the required statistics. 1In order to



obtain model interpretation statistics it may be
necessary to decide on manual analysis of the program,
or to construct a special purpose simulator or interpreter,
or to modify the program itself to collect its own
statistics; some combination of techniques may be
necessary as manual analysis may become intractable,

and simulation or self-monitoring may be unduly
inefficient (especially in purely applicative languages
such as Lispkit or Prolog). 1In fact, the technique

of modifying a program to monitor its own activity could
be a good method for defining model interpretations
rather more formally, as the statistics gathered would
depend only on the semantics of the language and not

“on the details of execution, but that is a sideline

I have not pursued.

It is at this step, and possibly step 5, that re-iteration
through earlier steps may become necessary as difficulties
of monitoring arise. Some compromise may be necessary
between desired performance assessments and practical

statistics c¢ollection.

5. Make appropriate changes to the system to incorporate
monitoring mechanisms, and implement any special
simulators if necessary. Note that several versions of

a system may be required, each monitoring different
aspects of the execution, if the monitoring mechanisms
interfere with each other; for example, the execution

of monitoring mechanisms in an upper level component

will be present as a part of lower level interactions,
and monitoring this lower level interaction will

provide a false impression of the software above.
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6. Choose a set of test executions of the system,
perform the executions, and collect all the required -
statistics. The tests should be chosen such that,

for each component whose performance is to be assessed,
the range of the component's abilities is fully
exercised; this is the requirement that the discrete
set of data points obtained should be as accurate a
representation of the desired Performance function as
possible. This is a very big problem, and it does not
seem likely that a truly satisfactory solution will be

possible except in a very few cases.

When a component. to be assessed is a '"data processing"
program (e.g. sorting, searching), there may be an
obvious range of data values to present to the program
(e.g. lists of successively greater length, or trees

of successively greater depth), but if the component

is an interpreter then it will almost certainly be
impossible to characterise a '"range" of programs. In
the latter case it might he necessary to assess the
Performance of the interpreter separately for different
types of program and to attempt to infer some general

properties of the interpreter from the results.

7. Make comparisons of statistics collected in step 6
in order to obtain the Performance relations chosen

in step 3. The Performance relations can be expressed
as tables of statistics, as graphs of the discrete
points obtained in the test executions, or, if there
is sufficient justification, as graphs of the discrete
experimental points with other points added by
interpolating or extrapolating along curves which fit
the experimental points. In each of the cases it
seems reasonable to present the relation as a formula
if the observed points show an easily defined trend;

this formula will be the fitted curve in the case of an
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interpolated graph. Of course, it should be remembered
that such fitted formulae are only hypotheses about

trends.

This step may lead to reiteration through step 6 if
further statistics are required to confirm or explore

trends.

8. Finally, conclusions can be drawn from the empirical
performance assessments, the quality of components can
be judged against external criteria, and comparisons of
components can be made. Again, reiterations through
earlier steps may be inspired by the concluding

observations.
5.3 " Comments.

I have shown an approach to performance analysis,

which exploits the properties of systems described

by the Abstract Execution model in order to define

and iSolate the properties of individual components,
and the Interpretation model guides the collection

of experimental performance data. Practical assessment
entails many complications which must be overcome by
careful choices; these have been outlined in an 8 step

scheme for organising the practical work.

In the following chapters the performance assessment
discipline will be illustrated by application to
pseudo-machine implementations of Lispkit and Prolog,
and to interpreters for Lispkit and Prolog. At the
same time the assessments will provide interesting
results and comparisons of the pseudo-machines and

interpreters.
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CHAPTER 6 - LISPKIT AND PROLOG MACHINES:
STRUCTURE AND PERFORMANCE.
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Lispkit and Prolog machines: Structure and performance.

It is common practice to implement very high level
languages, which provide for the handling of symbolic
data structures, by designing a special purpose

pseudo-machine. Each language will have its own

style of pseudo-machine, and programs are usually
compiled into the fgrm of an intermediate machine code

which is then interpreted by the pseudo-machine.

Pseudo-machines, in this context, are largish progranms
written in some well known, well supported, and usually
reasonably efficient, conventional language (typically
one of the widely varying Algol family). Each
pseudo-machine, in executing an intermediate machine code
program, simulates (at an abstract level) the activity

of some hypothetical computer hardware which is intended
to be particularly well adapted to the requirements of

the very high level language in question.

I am on reasonably safe ground to assume that the

only style of computer architecture, which is currently
well enough understood to provide a sound basis for
general purpose computing machines, is the traditional
von Neumann single sequential instruction stream
architecture. In the von Neumann paradigm the state

of the machine is held in a memory, and each instruction
in the sequential stream causes a state transition in
the memory. There is, nevertheless, flexibility
available in the choice of instructions (and hence the
transitions), in execution of the instructions

(possibly pipelined, for example), and in the



organisation of the memory (linearly addressed, paged,
tree structured, for example). Thus it seems quite

reasonable that the von Neumann style has been followed

in the design of very high level language pseudo-machines

such as Henderson's Lispkit (Henderson (1980)), Turner's
SASL (Turner (1979)) and Warren's Prolog (Warren (1977))
(though Warren's Prolog machine does not exist as an
independent entity, as its intermediate machine code
serves only to structure a compilation of his dialect

of Prolog into DEC10 machine code). It is particularly
straightforward to construct the software for pseudo-
machines with such architectures. My implementation

of Prolog also follows the von Neumann paradigm, though
it was designed independently of Warren's pseudo-
machine.

Very high level languages oriented towards symbolic data
structure processing are well suited by one particular
memory organisation. This comprises a heap store of
cells which may be linked by pointers to form lists,
trees and so on., The use of such a heap store enables
machine states (or parts thereof) to be saved by
recording simply a small collection of pointers, and
avoids the copying of large data structures when passing
parameters or building new structures from old ones.
There are many strategies for organising and managing

heap stores, but I will not discuss them here.

The pseudo-machine style of implementation is
particularly valuable for very high level languages
for several reasons. By dividing the processing of

a program into distinct compilation and pseudo-machine

execution phases the complexity of the design exercise
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is reduced. Extension of the facilities in various

ways is made more straightforward. The two phase

design, if carried out well, may aid in understanding
the meaning and use of the language through one specific,

clear implementation.

The logical design characteristics of two particular
pseudo~-machines, for Lispkit and Prolog, are given in
Appendices B and D, with example concrete realisations

in AlgolWw. A performance assessment of these realisations
is made in the later parts of this chapter. For the
performance assessment to be made here, it is the
structure of the software realisations which is

important.

The powerful nature of the basic programming facilities
provided by very high level languages means that the
pseudo-machines will have to perform sophisticated
actions in response to single intermediate machine code
instructions. Examples of this include the allocation
of new heap cells (possibly invoking garbage collection
or other management actions), and the unification of
su-expressions in Prolog. Since it is good programming
practice to isolate the sophisticated facilities and to
design them separately, it would seem to be a good

idea to treat the implementations as multi-level interpreter
systems for the purposes of performance analysis. The
systems will comprise an upper level, which is
responsible for shaping the interpretation of the
intermediate machine code program, and one or more

lower levels, which provide the supporting facilities.



The performance of each level is of interest
independently, not only in the cycle of design and
improvement of the pseudo-machines, but also in
obtaining an indication of the performance that could be
expected if the systems were executed on specially
constructed hardware. For example, the heap store

would be a candidate for realisation in hardware

rather than software, with each cell access or
allocation request %orming one machine instruction,

but with all domestic chores (such as garbage collection)
carried out in parallel with normal execution. In this
case the activity generated by the upper levels of the

system alone would determine the time for execution.

Hence the framework of thought for performance assessment,
which has been examined at great length in previous
chapters, will be of relevance here, as well as in the
next chapter (where the performance of higher level
interpreters, executing on top of the pseudo-machines

of this chapter, will be the topic).

6.1 A Lispkit pseudo-machine.

The operational model for the execution of Lispkit
programs, given in Chapter 2, can be realised

reasonably directly by a special purpose Lispkit

machine (LM). The Lispkit programs are precompiled

to an intermediate machine code, which consists
essentially of linear sequences of instructions for the
LM. The LM has a conventional sequential machine
architecture, but in which all data, programs and results
are held in four registers, S,E,C and D, each of which

contains an s-expression. Appendix B contains a detailed
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description of the roles of the four registers, the
machine actions determined by each LM instruction,

and the code generated during compilation of each

type of Lispkit expression.

In practice Lispkit programs are represented in an
s-expression syntax (also in Appendix B), and the
compiler itself is a Lispkit program which executes on
the LM. The compiler accepts a Lispkit program as an
s-expression, and produces object code, which is also
an s-expression, suitable for re-input to the LM as

a compiled program.

In this section I would like to describe the structure

and general properties of a particular software
implmentation of the LM. The implementation is interesting
for its simplicity and economy, and its performance
properties will be explored in a subsequent section of

this chapter.
6.1.1 The software components.

The LM is implemented as a medium sized (several
hundred lines) AlgolW program, which is compiled
to execute on an IBM 370/168 under the supervision

of the Michigan Terminal System (MTS).

Broadly spéaking the LM software can be divided into
four component parts: s-expression storage management,
s-expression input, s-expression output, and the
central Lispkit evaluator (usually known as the

"apply" routine).



The s-expreséion storage management software is an
essential facility, relied upon by all other parts of
the LM. A large amount of storage for s-expressions

is provided in a collection of arrays. Without pgoing
into too much detail, each constructed node in an
s~expression is allocated to one cell of storage which
contains pointers to the left and right subtrees, and
each atom is allocated one cell which contains the
number or symbol. The cells are managed as a heap, and
each cell contains administra tive information to help
with this. During program execution, storage cells are
explicitly allocated but implicitly released, and hence
the storage management incorporates a simple mark and
scan garbage collector to reclaim released cells. The
garbage collector reclaims all cells which are not
currently part of the s-expressions in §S,E,C,D and a
temporary working register W. The storage management
is a self-contained component which provides a service
to the remainder of the LM. Each access to one of the
five registers, each access to a cell, and each request
for the allocation of a storage cell is considered to
be an operation provided by the service. Garbage
collections are invoked by the storage management
itself in response to an allocation request when no
more cells are noted as available. An explicit

storage initialisation procedure is also provided.

S-expression input and output does not deserve detailed
exploration., Strings of characters representing the
written form of s-expressions are transformed to and

from s-expression storage respectively.
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The apply routine is very straightforward. It contains
statements to initialise the machine state in S,E,C and
D, with the Lispkit program and its arguments, and then
enters an iterative loop in which each execution of
the loop body decodes the next LM instruction and
performs the appropriate state transition. Iteration

is terminated when the STOP instruction is encountered.

The overall pattern’of activity in the LM follows a
simple sequence: s-expression storage is initialised,
the program and argument s-expressions are input,

the program is applied to its arguments, and finally

the resultant s-expression is output.

The services of the storage management are called upon

throughout each stage of execution of the LM.
Performance analysis will be primarily concerned with
the properties of the apply phase of LM execution,

and with the storage management during this phase.

Bearing in mind the sophisticated stack manipulation,

parameter passing and array access mechanisms which cannot

be avoided when compiling and executing an AlgolW program,

I initially propose to treat the LM as a multi-level

interpreter with the following structure:

I1

12 Apply loop

13 ¢ Storage management
14 & AlgolW support
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Above interface I1 there will be a compiled Lispkit
program, and its data. Below interface I4 will be a
(virtual) machine capable of executing IBM 370 machine
code instructions, as all actions required by the
components above I4 will be presented at I4 in terms

of these instructions,

The components betweenIl and I3 are derived directly

by compiling the LM source code in Algolw.

The AlgolW support component contains software
implementing the stack, parameter and array access
mechanisms which are general facilities provided by

the AlgolW language.
6.1.2 General behavioural considerations.

Referring to the multi-level interpreter structure
above, the nature of the interactions at each of the

interfaces can be identified.

At interface I1 the LM machine instructions of a
compiled Lispkit program are scanned and executed

in sequence by the LM apply loop.

At interface I2 the actions of the apply loop are
presented as a sequence of IBM 370 machine instructions
(which are passed directly to I3), AlgolW support
operations (also passed directly to I3), and storage

management operations.
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At interface 13 the storage management actions are
executed as sequences of IBM 370 instructions and
AlgolW support operations. These sequences are

mixed with the instructions and operations passed
directly from I2. The IBM 370 instructions are passed
directly to I4.

At I4 the IBM 370 instructions which realise the AlgolW
operations of I3 are mixed with the instructions passed
directly from I3. Hence below I4 a (virtual) machine
which can execute programs in the form of IBM 370

machine instructions is required.

A simplification to the three level model will be
convenient for the purposes of performance analysis, as
it is8 impractical to gain access to the software contained
in the AlgolWw support level, and so it is not possible
to monitor directly the activity at I3 as processed

by the support software, or to monitor the internal
behaviour of the level. However, it is unlikely that
the basic facilities provided by the AlgolW support
have been implemented without a little consideration
for the users of AlgolW, and therefore it seems
reasonable to assume that unsophisticated use of AlgolWw
will not incur excessive overheads in the supporting
software. I shall assume that each simple operation
performed by the supporting software is achieved by a
short fixed length sequence of IBM 370 machine
instructions, and hence that the performance of the
supporting software is simply a linear factor. During
the apply loop and in the storage management I have
avoided the use of recursive procedures (substituting

loops and explicit stacks where necessary), and
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parameter passing is all achieved by value and by result.
By these simplifications I hope to remain within the
assumed behaviour of the AlgolW support. (In practice
the assumption is not violated obviously, though I have
no direct evidence to prove that this is so. Note that

I have avoided the use of the AlgolW records and
references facility, which would certainly incur large
overheads in the support as it would have to manage its

own heap storage).

I have discussed the behavioural contribution of the
AlgolW support separately, and in some detail, in order
to make its properties explicit, to show the practical
difficulties which its inaccessibility creates, and

to suggest how an attempt can be made to simplify these

difficulties by careful planning.

As a consequence of the assumption of linear performance

for the AlgolW support, empirical analysis of the LM will |
be based on a slightly simpler multi-level interpreter

structure in which the support software has been

absorbed into the apply loop and storage management

components:

(Lispkit program)

LI1
LI2 & Apply loop
LI3 Storage management

(IBM 370 (virtual) machine)

It will be borne in mind that the IBM 370 machine
instructions at interface LI2 already contain a linear
factor of overhead, and that the machine instruction
contribution at LI3, from the storage management, also

contains a linear factor.



Throughout the remainder of this description and
analysis of the LM I shall use the simple terms LI1,
LI2, LI3, Apply and Storage to refer to the interface
and levels as shown in the simplified multi-level

structure above.
6.1.3 Performance assessments to be made.

There are four interesting comparisons between abstract
executions which can be made in order to assess the
quality of the LM design and implementation. With
reference to the simplified LM structure above:

(i) Comparing a model interpretation of the Lispkit
program, executing above LI1, with the trace of LM
instructions at LI1 scanned and interpreted by Apply,

will show how effectively the evaluation scheme

(embodied in the compilation step and Apply software)

implements the Lispkit language. This comparison is

not an assessment of a software component of the system,
but an identical technique can be applied as if an extra
software component were present.

(ii) Comparing a model interpretation of the Lispkit
program with the sequence of IBM 370 instructions and
Storage operations which Apply presents at LI2 will

show how effectively the detailed code of Apply

implements Lispkit language constructs.

(iii) Comparing the trace of LM instructions scanned
and interpreted by Apply at LI1 with the sequence of
instructions and operations which Apply presents at

LI2 will show how effectively the detailed code of

Apply implements the evaluation strategy which it

imposes on the Lispkit program, that is how well

Apply achieves its own goals.



(iv) Comparing the Storage operations which Apply
executes at LI2 with the trace of IBM 370 instructions
presented by Storage at LI3 will show how effectively

the detailed code of the Storage software implements

its own higher level operations (as made explicitly

available to Apply).

0f course, comparisons (i), (ii) and (iii) will be
related to each other by the property of cascading
performances (discussed in Chapter 5), and also the
overall performance of the LM could be found by direct
comparison of the Lispkit program execution, above LI1,

with the IBM 370 instructions at LI3.

6.1.4 Monitoring the behaviour.

The performance assessments planned in the previous
section require five bodies of statistics to be
collected for comparison. By what techniques should

these statistics be collected?
Considering the interfaces individually:

LI1:

At LI1 the behaviour of the Lispkit program itself
must be monitored (call this statistic LS1), and the
LM instructions as executed by Apply must be monitored

(call this statistic LS2).

For LS1 a convenient statistic to collect is the number
of function applications performed by a model
interpretation of the program. The count includes

where and whererec expressions, which are related to

function applications (both semantically and practically).
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For some programs the count is obtained by manual
analysis, and for some by means of a specially
constructed simulator (this is inefficient, so it is
not practical for large programs). 1In later
experiments the count is obtained from the LS2
statistics (below) by noting, in earlier experiments,
that the number of function applications (plus wheres
and whererecs) is exactly mirrored by the number of
AP and RAP instructions executed by the LM. Function
applications are a convenient way of estimating the
overally workload represented by a program. The true
workload per function application will vary between
programs, as the number of primitive expressions per
function application varies. However, it is usual
to find that large expressions contain embedded
function calls, and so the properties observed will be

approximately representative of "average" programs.

There are, of course, many other statistics which could
be collected (too many!). One of the more interesting
would be to count the operations which request
explicitly the allocation of new s-expressions cells,
that is the number of cons,+,-,*,div, and rem operations.
Most programs can only make useful progress by employing
these operations. I would expect them to be well
scattered throughout a program, and hence they will be

closely related to the function applications.

For LS2 the measurement is much easier. The number of
times that each LM instructions is executed is recorded
by simple modifications to Apply. This also gives the

total number of instructions that are executed, but no

information on the ordering of the instructions is retained.
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With only a little more ingenuity more complex events,
such as particular sequences of instructions, could be

monitored.

Whilst discussing the behaviour at LI1 I shall note that
there is little interest in a model interpretation of

the compiled code (LM instructions) of a Lispkit program,
as the execution of the code by Apply corresponds
directly to the model interpretation. This fact could
be confirmed by experimentation, but the result is not

a key one in the assessment of the LM, and it can be

seen by inspection of the LM machine code and the Apply

software.

LIZ2:

At LI2 it is necessary to monitor the IBM 370 instructions
and Storage operations executed by Apply (call this
statistic LS3), and the operations as received for

execution by Storage (call this statistic LS4).

There are two complications with these measurements.
Firstly, Apply cannot monitor its own execution of
IBM 370 instructions directly since it is written in
AlgolW source code. Attempting to count the
instructions by using the MTS timing facility would
be unreliable, as the contribution from execution of
Storage operations would have to be measured and
subtracted, and these are sufficiently frequent that
the unaccountable effects of the timing operations
themselves would be significant. Secondly, the Storage
operations strictly include all allocation operations
(new cons cell, new number cell, new symbol cell),and

all accessing operations (car,cdr,iscons, isnumber,
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issymbol, extracting the value from atoms and
references to the registers S,E,C,D and W). But

most of the accessing operations are in the form of
in-line code in Apply rather than procedure calls,

and this means that monitoring LS4 from within Storage

is not possible.

The first of these problems may be overcome by making
the reasonable assumption that AlgolW compilation
generates a simple linear sequence of IBM 370
instructions for each non-looping section of AlgolW
source code, and that the lengths of the two sections

of code are roughly proportional. Hence Apply can
measure the number of IBM 370 instructions which it
executes {(to within a constant of proportionality) by
counfing the number of times that critical sections of
the software are themselves executed (for example,
repetitive loop bodies). Since the Storage operations
which are executed by Apply are scattered throughout the
Apply software, the '"loop counting" will automatically
also be proportional to the number of Storage operations
executed. Apply contains three loops, the main
instruction execution loop (already monitored for LS2)},
and two small loops for looking up the value of variables
in fhe environment E. Each of these loops is counted to

give the LS3 statistic.

The second problem is overcome by noting that the

pattern of Storage operations requested by Apply is
identical to the pattern processed by Storage (since
Apply has explicit control via procedure calls). Apply
is modified to count each of the Storage operations which
it requests, in-line code as well as procedure calls,
though this requires care. The LS4 statistic is

obtained by this method.
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Note that although the LS4 data could be used to form

the Storage operation count of LS3, it would be

unusual to add a loop count to a Storage operation

count, and it would contribute no more useful information
to LS3 than the loop count alone. However, since it is
reasonably straightforward to obtain the operation

count, I have chosen to use it as the precise measure

of LS4.

LI3:

The execution of IBM 370 instructions by the Storage
software is the only statistic of interest at this
interface (call the statistic LS5).

There is a problem here which is identical to that
described above for the LS3 statistic. Storage cannot
monitor directly its own execution of IBM 370
instructions, and using the MTS timing facility is
unreliable. However, the problem can be overcome in
the same way, by making the simplifying assumption

about AlgolW compilation.

Each of the accessing operations at LI2 is realised at
LI3 as simple AlgolW code, and each of the allocating
operations consists of a simple piece of code but

with a potential garbage collection.

Hence the LS5 statistic is obtained by counting the
number of times that the loop bodies of the garbage
collector are executed (both mark and scan phases),
and adding to this the LS4 statistic, which is already

counting the number of basic Storage operations executed.
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The statistic obtained is (on average) proportional
to the number of IBM 370 instructions executed by the

Storage software.

As a visual reminder, here are the five bodies of
statistics marked at the appropriate interfaces of the

multi-level structure diagram.

L1 LS1 . (Lispkit program and data)
LS2
L1p_ LS3 Apply
LS4
l Storage
LI3 LS5

. (IBM 370 (virtual) machine)

6.1.5 Planning the test executions,

To assess the performance of the Apply and Storage
software components, the statistics LS1-5 must be

collected from a series of test executions of the LM.

In order to obtain a representative assessment of the
performance from comparisons between LS1-5, it is
necessary to execute a large variety of problems on
the LM upper interface. Each problem consists of
some Lispkit program and some data. A variety of
programs is required since each will place gjfferent
emphasis on different parts of the Lispkit language,
and a variety of data is required in order to span

a range of loads on the LM. A large number of
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performance data points spanning 2 wide range of LM
loads is desirable, as this will give a much better
representation of performance trends than a small

number of clustered data points.

I have selected a group of six Lispkit programs,
which are intended to cover a range of styles of
application. The programs are classified by reference
to three independent attributes: list processing versus
arithmetic processing, function applications nested
linearly versus nested in a tree pattern, and the
presence or absence of higher order functions (that
is first order versus higher order). ‘
(i) Naive reverse:
reverse whererec
reverse (1)=if eq(1,NIL) then NIL
. else append(reverse(tail(l)),
. cons (head(1),NIL))
and append (11,12)=if eq(l11,NIL) then 12
else cons(head(11),append(tail(1l1),12))

This program requires rather a large number of function
applications to reverse any given list, and hence the tag
"naive". It is included partially for the sake of
tradition! Naive reverse is a first order list
processing program, which falls between the two

extremes of linearly and tree nested function applications.

(ii) Reverse with accumulating parameter:

revacc whererec

revace(l) = (rev(1l,NIL) whererec
rev(l,rl)=if eq(I,NIL) then rl
elise rev(tail(l),
cons (head(1l),rl)))
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This program is a most efficient way of reversing lists.

It is a first order, list processing program with
linear nesting of applications.

(iii) Quicksort (using an accumulating parameter to
avoid appending);

A (1) quicksort{1,NIL)
whererec quicksort(l,rl)= if eq(1l,NIL) then rl else

. if eq(tail(1),NIL)then
cons(head(1),rl)
else quicksort(lesseq(head(l),tail(1)),
cons(head(l),quicksort(greater(
head(l),tail(l)),rl)))

and lesseq(x,l) = if eq(1,NIL) then NIL else

if head(l)<x then cons(head(l),lesseq(x,
tail(1l)))
else lesseq (x,tail(1l))
and greater(x,l) = if eq(1,NIL) then NIL else
_i_f_ head(1)g x then greater(x,tail(1l))
else cons(head(l),greater(x,tail(1)))

This is a first order, list processing program. The
nesting of function applications depends on the initial
ordering of the input list 1. For this experiment I
intend to use data which invokes the most branching
computation, in other words for each list 1 that
quicksort receives, tail(l) will be an equal mix of
values greater than and less than or equal to head(l),
and also this property will hold recursively for
lesseq(head(l),tail(1)) and greater (head(1l),tail(1l)).
In this case qicksort. has a tree nested structure of

function applications.
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(iv) Iterative summing: (Assuming mgn)
sum whererec sum(m,n) = if eq(m,n) then m

else m+sum(m+1,n)

This program is first order, arithmetic and with linearly

nested function applications.

(v) Powering. Computes n**k using exactly (n**k)+1

function applications:

A\ (n,k) if eq(n,1) then count(1) else count(pow(n,k)-k)+k
whererec pow(n,k) = if eq(k,1) then n
else n*pow(n,k-1)
and count(n) = if eq(n,1) then 1 else
if eq(n,2) then count(1)+1
else count((n-1) div 2)+

count((n-1) div 2+(n-1)rem 2)+1

This program is first order, arithmetic, and has a tree
structured nesting of function applications. The form of
the count function was designed to ensure that the depth
of nesting remains reasonable, at about (k log n), and

it achieves this by imposing a branching structure on

the computation.

(vi) Higher order iterative summing:
X (m,n)repeat(sum) (m,n,inc,end)
whererec repeat (op) = )\(m,n,modif,finished)
if finished (m,n) then m

else op(m,repeat(op)(modif(m),n,
modif,finished))
and inc(m) = m+1

and sum(x,y) = x+y

and end{(m,n) = eq(m,n)



This program was designed simply to make heavy use of
higher order functions, in contrast to the sum function,
(iv) above. It is a higher order, linearly nesting,

arithmetic program.

The selection of data for each of the programs above is
determined purely by practical constraints. The scope
of the data should be as large as possible, and the
bounds are set by the fime available for carrying out
experiments and by the amount of s-expression storage
available (smaller stores give longer execution times,
and also set a maximum on the size of computation
possible). The data selected is given in Appendix E,
with the tabulated performance data, and is outlined

in the next section.
6.1.6 Experimental results.

The six programs given above have been executed on the
LM. The data chosen covers wide range of loads on the
LM: '

(i) Lists of lengths between 1 and 300 were
processed by naive reverse.

(ii) Lists of lengths between 1 and 1000 were
reversed by reverse with accumulating parameter.

(iii) "Worst case" lists of lengths between 1 and
1023 were sorted by quicksort,

(iv) Series of numbers from 1 to various points
between 1 and 1000 were summed iteratively.

(v) Various powers of 2 from 1 to 15 were computed.

(vi) Series of numbers from 1 to various points
between 1 and 1000 were summed by the higher order

program.
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For the experiments the capacity of the s—-expression
storage was kept to 50000 cells to be allocated to
constructed nodes and numbers (which can be created
during a computation), and 2000 cells for symbols
(which cannot be created during a computatioh).

Garbage collection covers the cons and number storage only.
The load on the storage management varies considerably
between executions. 1In particular reverse with
accumulating parameter and iterative summing use little
storage, whereas naive reverse and powering are very
greedy. T . L

N R R . . ' . . A A v a

Appendix E contains a summary of the experimental
measurements obtained. Each table, one for each of

the six test programs, shows the variation of statistics
LS1-5 with the size of problem tackled. The variation
of each individual statistic is seen by scanning down

the appropriate column.

To obtain a performance assessment, of a particular

software component, from the raw data contained in the
tables, two columns must be selected (from the same table)
which correspond to the abstract executions at the upper
and lower interfaces of the software componeht. The values
in the lower interface's column must then be related to

the values in the upper interface's column - the latter
variable is the independent variable, and the former is

the dependent variable in any graphical or algebraic

representation of the relationship.



The following pages show, graphically and algebraically,
the four interesting comparisons described earlier.
Each comparison covers the six test programs, and hence

there are six graphs to be examined for each comparison.

Some comments on the presentation of the graphs are
necessary. Each graph is titled by the name of its
table in Appendix E, and the axes are labelled with the
names of the columnk from which the statistics are taken.
The correspondence between tables and Lispkit programs

is as follows:

Table 1: Naive reverse, Table 2: Reverse with accumulating
parameter, Table 3: Quicksort, Table 4: Summing, Table 5:
Higher order summing, Table 6: Powering. No scales are
marked on the axes, to avoid unnecessary detail; instead
each- statistic has been scaled independently so that the
maximum experimental value is represented by exactly 20
units on the graphs; the graphs are intended only to give
a visual indication of trends, and the precise details

are retained in the tables of Appendix E. The experimental
points have been joined by straight line segments, again
to indicate the trends; there is no implication that these
represent fitted curves, or that any intermediate points

would lie on the segments.

6.1.6.1 Inherent performance of the test program

algorithms,

Figure 1 shows, for each of the six Lispkit programs,

the number of function applications executed (LS1, which
includes where and whererec expressions) as a function

of the data supplied to the program. Where the data is

a list the length of the list is taken as a representative

parameter.
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The normally accepted performance of each algorithm
is quite obvious, and the empirical points fit the

following equations precisely (list length is 1):

Table 1: LS1

Table 2: LS1 1+4

Table 3: LS1 2*1*log(l+1)+2*log(l+1)-2%1+1
(logs to base 2)

1*1/2+3*1/2+2

Table 4: LS1 = n+1
Table 5: LS1 = 5%n
Table 5: LS1 = 2%*k42
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6.1.6.2 Performance of the Lispkit compilation and

evaluation strategy.

Figure 2 shows the empirical relationships between the
number of function applications executed (LS1) and the
number of LM instructions executed (LS2). Hence, in
eaqh graph the gradient represents the number of LM
instructions executed per function application

required by the Lispkit program.

Each graph appears to be linear, but a close examination
of the tables in Appendix E shows that only the
relationships in Tables 2,4 and 5 are precisely linear.
For Tables 1,3 and 6 the gradient is increasing quite
slowly, but seems to be tending to some limit in each
case; the curvature of the graphs is hidden by the

width of the drawn line. I shall use the maximum
observed gradient to characterise the relationships

in these latter three cases:

Table 1: LS2 = 16.98*LS1 (Limiting)
Table 2: LS2 = 17*LS1-36 (Exact)
Table 3 LS2 = 21.2%LS1 (Limiting)
Table 4: LS2 = 17*%LS1-17 - (Exact)
Table 5 Ls2 = 9.8*LS1 (Exact)
Table 6 LS2 = 22.5*LS1 (Limiting)

The variations between these relationships are easy
to>exp1ain. The gradient is determined by the size

of the function bodies in each program - larger
function bodies give larger gradients; for example,
compare the relationships for Tables 4 and 5, in which
the latter is a higher order version of the former

and consists of many small functions, thus giving a

smaller gradient. The intercept on the LS2 axis is
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not obtainable for Tables 1,3 and 6; however the
intercept is not a particularly useful observation as
it is determined by the code to be executed before
recursion starts, and by the amount of code to be

executed in the base cases of the recursive functions.

The difference between the linear relationships of
Tables 2,4 and 5, and the '"tending to linear"
character of Tables 1,3 and 6 is due to the different
dynamic structure of the programs. In the programs
for Tables 2,4 and 5 the recursion is caused by only
one function, whereas for Tables 1 and 6 the recursion
is shared between two functions (three in the case of
Table 3) but in a way which depends on the data. For
example, naive reverse contains a reverse function and
an append function, and with larger lists to be
reversed the proportion of append applications increases
and dominates the relationship between LS1 and LS2;
there are 17 LM instructions to be executed for a
non-base case call of append, and this is thus the
limiting gradient; contributions from the small base
case of append, and the non-base case of reverse give

an actual gradient of less than 17.

The conclusion here is that the results strongly suggest
a linear performance characteristic for the compilation
and evaluation strategy. 1In other words the number of
LM instructions to be executed is some linear function
of the number of expression evaluations to be expected
from a model interpretation of a Lispkit program. A
particular statistic which can be extracted from the
results is the constant of proportionality in the linear

performance; this appears to be about 20 for Lispkit
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programs without large function bodies, though this
obviously varies between programs and could be quite

large (for example, for a compiler).
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6.1.6.3 Performance of the LM Apply software in

implementing LM instructions.

Figure 3 shows the empirical relationships between the
number of LM instructions processed (LS2) and an
estimate‘of the number of IBM 370 instructions and
Storage operations executed by Apply(LS3). 1In each
graph the gradient represents the number of lower level

operations per LM instruction.

Each graph appears to be linear, but, as in the previous
section, a close examination shows that Tables 2,4 and 5
are precisely linear, that Tables 1 and 3 have a gradient
which is increasing slowly to a 1limit, and that Table 6
has a gradient which is decreasing slowly to a limit.
Table 1: LS3
Table 2: LS3

1.76%LS2 (Limiting)
(1073*LS2 - 6660)/629 (Exact)

(Gradient approximately 1.7)

Table 3: LS3 = 1.86%*LS2 (Limiting)

Table 4: LS3 = (1184*LS2 - 3774)/629 (Exact)
(Gradient approximately 1.9)

Table 5: LS3 = 101*LS2/49 - 12 (Exact)
(Gradient approximately 2.1)

Table 6: LS3 = 1.44%LS2 (Limiting)

Again the trends are easy to explain in terms of the
Lispkit program structure. In Tables 2, 4 and 5 the
single recursive function means that the same mixture

of LM instructions is executed, however long the
computation. In Tables 1,3 and 6 the changing dominance
of the different recursive functions with longer

computations gives a changing mixture of LM instructions
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which becomes dominated by a particular proportion of

each instruction for each program; since each instruction

is implemented by a different amount of Apply code, this

gives the observed changing gradient.

These results suggest that the Aﬁply software has a

linear performance in implementing LM instructions.
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6.1.6.4 Composing the evaluation strategy and Apply

software.

Figure 4 shows the empirical relationship between LS1 and
LS3 statistics. The gradient represents the number of

lower level operations per Lispkit function application.

Not surprisingly each graph appears linear but only

Tables 2,4 and 5 are precisely so:

Table 1: LS3 =

Table 2: LS3 = 29*%*LS1 - 72 (Exact)
Table 3: LS3 = 39.5%LS1 (Limiting)
Table 4: LS3 = 32%LS1 - 38 (Exact)
Table 5: LS3 = 20.2*%LS1 - 12 (Exact)
Table 6: LS3 = 32.5%LS1 (Limiting)

Each of these relationships is the composition of the

relationships in the previous two sections, and I

include this section to illustrate how the composition

rule helps in combining the performance of several

adjacent levels of a system.

For example, in the case of Table 1:

LS2 = 16.98*LS1 (from 6.1.6.2)
and LS3 = 1.76%LS2 (from 6.1.6.3)
giving LS3 = 16.98%1.76*LS1
29.9*%LS1 (approximately)

1]

Hence, together the evaluation strategy and Apply

software have a linear performance.

29.9+LS1 (Limiting)
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6.1.6.5 Performance of the Storage management component.

Figure 5 shows the empirical relationships between the
number of Storage operations processed (LS4) and an
estimate of the number of IBM 370 instructions executed
in implementing the operations (LS5). 1In each graph
the gradient represents the number of lower level

instructions per higher level operation.

Tables 2 and 4 give precisely linear graphs, but
Table 5 gives a graph which curves sharply upwards for
the longest execution. Tables 1,3 and 6 are initially
linear relationships, but for longer executions the
gradients show an overall increase which does not seem
to be tending to any limit, and which has erratic
decreases; for example the gradients for Table 1 are

1.04...,1.0,1.079,1,074,1.072,1.071,1.,082.

The explanation for these trends lies with the
frequency of garbage collections, which are never
invoked explicitly as a Storage operation but only
occur when the heap of list cells is exhausted. No
garbage collections occur in the executions recorded
in Tables 2 and 4. 1In Table 5 one (or more) pgarbage

collections occur in the longest execution, but none

before that. In Tables 1,3 and 6 no garbage collections

occur initially, but for longer executions the
collections occur at discrete, irregular intervals,

hence giving the erratic¢ gradients observed.
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These results show that the Storage management
component of the LM has an unusual, certainly non-
linear, performance characteristic. However, there
is certainly nét adequate experimental evidence here
to clarify any peculiarities of behaviour, or to

form any conclusions on the performance of the Storage
management. More evidence, of the kind shown in
Figure 6, is required; this shows the same Lispkit
execution as Table 1, but the heap size has been
reduced to 4500 cells and the storage is consequently
more heavily loaded. The gradient is initially
irregular, but for longer executions it increases

rapidly with no apparent limit.

6.1.6.6 Conclusions on the performance of the LM

- Lispkit implementation.

The experiments reported above suggest very strongly
that this particular ¢ompilation and evaluation
strategy, and this particular design for the Apply
component of the LM each have a linear performance,
and hence that Lispkit programs may be executed in
such a way that the number of Storage operations and
IBM 370 instructions required is a linear function of
the number of function applications expected from a

model interpretation of the program.

However, evidence for the performance characteristics
of the Storage management component of the LM is

inconclusive and more investigation is required.
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6.2 A Prolog pseudo-machine.

The operational model for the execution of Prolog
programs, given in Chapter 3, can be realised
reasonably directly by a special purpose Prolog
machine (PM). Prolog programs are precompiled to an
intermediate machine code, which consists essentially
of linear sequences of instructions for the PM. The
PM has a conventional sequential machine architecture,
but in which all programs, data and results are held
in nine registers, DE, A, F, L, C, R, DU, B and N,
each of which contains an su-expression. Appendix D
contains a detailed description of the roles of the
nine registers, the machine actions determined by each
PM instruction, and the code generated by the

compilation of the various Prolog language constructs.

In practice Prolog programs are represented in an
su-expression syntax (also in Appendix D), and the
compiler itself is a Prolog program which executes
on the PM. The compiler accepts a Prolog program as
an su-expression, and produces object code, which is
alsoc an su-expression, suitable for re-input to the

PM as a compiled program.

Many of the characteristics of the structure and
qualitative behaviour of the PM are very similar to
those of the LM. This is also true of the reasoning
necessary in setting up a practical analysis of the
performance of the PM components. Consequently I

shall present this discussion of the PM in an outline
form, relying heavily on the material in the discussion

of the LM,
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Although the basic facilities provided by the PM are
rather more sophisticated than those of the LM, I
believe that it is nevertheless still interesting for

its relative simplicity and economy.
6.2.1 The software components.

The PM is implemented as a medium sized AlgolW program
(several hundred lines, about twice the size of the LM),
which is compiled to execute on an IBM 370/168 under

the supervision of MTS.

The PM software can be divided into five component

parts:

su-expression storage management, su-expression input,
su-expression output, the main Prolog evaluator ("apply"),
and a group of routines which provide the evaluator

with high level support (unification, backtracking and
checking data structures before and after negated

conditions).

The su-expression storage management is used by all
parts of the PM. Storage is provided in a collection
of arrays. Storage cells are allocated to constructed
nodes, numbers, symbols, and unknowns (in addition
cells allocated to unknowns can be modified by
unification to represent indirect pointers to su-expressions,
and backtracking can reverse this transformation).

The storage is managed as a heap with a mark and scan
garbage collector (marking from the nine registers

and a temporary register W). A storage initialisation
procedure is provided, and also a "forcing" function

which will follow a chain of indirections to yield



the referenced su-expression. Each access to a register,
each access to a cell, each cell allocation request and
each forcing is considered to be an operation provided

by the storage management service.

The apply routine simply initialises the nine machine
registers and then loops iteratively through the PM
machine code program. It includes a large, but simple,

routine implementihg the primitive predicates.

The overall pattern of activity in the PM is a simple
sequence: su-expression storage is initialised, the
program and argument su-expressions are input, the
program is applied to the arguments until the first
solution (if any) is generated, the solution su-
expressions are output, then the computation backtracks
and a second solution is sought. The actions of
application, output and backtracking are repeated until

the search space of the program is exhausted.

Performance analysis will be concerned with the apply
phase of PM execution, and with the storage management

and Prolog support routines during this phase.

Initially treat the PM as a multi-level interpreter

with the structure:

It '

I2 ~LApply loop

13 Prolog support

14 ¢ Storage management
15 ¥ AlgolW support
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Above I1 will be a compiled Prolog program and its
data. Below I5 will be a (virtual) machine to

execute IBM 370 machine instructions.
6.2.2 General behavioural considerations.

At I1 the PM machine instructions of a compiled Prolog

program are scanned and executed.

At I2 the actions of the apply loop are presented as
IBM 370 instructions, calls on the storage
management and AlgolW support (these three categories
are passed on to I3), and as calls on the Prolog

support routines.

At I3 the Prolog support realises its own actions as
IBM 370 instructions, calls on AlgolW support (passed
on to I4), and as calls on the storage management.

These are mixed with the operations passed on from I2.

At I4 the storage management actions are realised as
IBM 370 instructions (passed on to I5), and as calls

on the AlgolW support.

At I5 all operations are IBM 370 instructions. These

include the execution of the AlgolW support routines.

The inaccessibility of the AlgolW support software
prompts a simplified multi-level structure in which
the AlgolW support has been absorbed into the other

levels: .
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139.

. (Prolog program)

PI1

P12 Apply loop

PI3 V _Prolog Support
P14 ¢ Storage management

. (IBM 370 (virtual) machine)

The terms PI1, PI2, PI3, PI4, Apply, Support and

Storage will be used throughout this description.
6.2.3 Performance assessments to be made.

There are five interesting comparisons to be made
between the abstract executions at interfaces PI1-5:
(i) Comparing a model interpretation of the
Prolog program with the trace of PM instructions
executed at PI1 by Apply will show how effectively
the evaluation scheme implements the Prolog language.

(ii) Comparing the model interpretation of the
Prolog program with the sequence of IBM 370 instructions
and Support and Storage operations executed by Apply at
PI2 will show how effectively the detailed code of Apply

implements the Prolog language.

(iii) Comparing the trace of PM instructions
executed at PI1 with the sequence of instructions
and operations at PI2 will show how effectively the
detailed code of Apply implements the evaluation

strategy which it imposes on the Prolog progranm,
(iv) Comparing the trace of Support operations
at PI2 with the IBM 370 instructions and Storage
operations presented by Support at PI3 will show how
effeétively the detailed code of Support implements

its own higher level operations.
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(v) Comparing the trace of Storage operations at
PI3 with the IBM 370 instructions presented by Storage
at PI4 will show how effectively the detailed code of

Storage implements its own higher level operations.

6.2.4 Monitoring the behaviour.

Seven bodies of statistics are required in order to make

the above comparisons.

The statistic PS1 is a count of the number of predicate
cases which dre tried during the course of a computation.
This is more representative of the work performed by a
Prolog program than a count of the number of predicates
called, as most try several cases before finding a
solution. The statistic has been obtained by manual
analysis, and later by extracting the number of
executions of the UNIFY instruction from PS2 statistics

(see below) after noting a direct correspondence.

The Apply software of the PM is easily modified to
count the PM machine instructions which are executed.
PS2 is the total number of instructions.

PS3 is proportional to the total number of IBM 370
instructions, Support operations and Storage
operations executed by Apply at PI2, It is obtained

by counting the loop body executions within Apply;
these are the main interpfetation loop (already
counted for PS2), and small loops for the construction
of local environments, and for looking up predicates

and variables.
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The number of Support operations (PS4) is easily
monitored by modifying Apply, and similarly the number
of Storage operations (PS6) can be found by modifying
Apply and Support.

PS5 is proportional to the number of IBM 370 instructions
and Storage operations executed by Support; it is

found by counting the internal loop body executions

of the Support routines (unification, backtracking,

data structure checkiﬁg) and adding to this PS4

-which is already counting the number of entries to

Support operations.

PS7 is proportional to the number of IBM 370 instructions
executed by Storage; it is found by counting the loop
body executions within Storage operations (garbage
collection and forcing loops) and adding PS6, which
includes the contribution from in-line accessing and

register operations.

As a visual reminder here are the statistics marked

on the simplified multi-level structure diagram:

(Prolog program and data)

PS1
P11 FS2
o1n PS3 Apply
PS4
13 l pssSupport
l PS6
. Storage
PI4 PS7

: (IBM 370 (virtual) machin@
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6.2.5 Planning the test executions.

To assess the performance of the Apply, Support and
Storage components, the statistics PS1-7 must be

collected from a series of executions of the PM.

Five of the programs used to test the LM have been
recoded in Prolog, as they cause a similar range of
styles of computation. The higher order summing
example has not been recoded, as Prolog does not have
a higher order predicate capability. Using the same
programs will also enable an attempt at absolute
comparison between corresponding components of the

LM and PM.

(i) Naive reverse:
- query (11,12)ereverse(11,12)
reverse (NIL,NIL) <«

reverse ((x.11),12)ereverse(11,13},
append(13,(x),12)

append (NIL,1,1) <-
append ((x.11),12,(x.13))€append(11,12,13)

(ii) Reverse with accumulating parameter:
query(li,12)<revacc(11,NIL,12)
revacc (NIL,1,1)e
revace ((x.11),12,13)erevacc(l1,(x.12),13)

(iii) Quicksort(with an accumulating parameter):
query(ll,12)<—quicksort(11,NIL,12)
quicksort (NIL,rl,rl)e
quicksort ((x.l),r1,11)é—partition(x,l,leql,grl),
quicksort(leql,(x.rll),ll),
quicksort(grl,rl,rll)
partition(x,NIL,NIL,NIL)<«

partition(x,(y.1),(y.leql),grl)&leq(y,x),
partition (x,1,leql,grl)

partition(x,(y.1),leql, (y.grl))e —leqly,x),
partition(x,1l,leql,grl)



(iv)

(v)
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Iterative summing: (Assuming m < n)
query(m,n,result) « sum(m,n,result)
sum(m,m,m) «

sum(m,n,s )¢~ —eq(m,n),add(m,1,m1),

sum(mi,n,s1),add(m,s1,s)

Powering. Compute n**k in (n**k)+2 predicate
invocations:

query(n,k, pow) €« main(n,k,pow)

main(1l,k,pow) « count(1,pow)

main(n,k,pow)e-—1eq(n,1),povwer(n,k,nk),sub(nk,k,nk1),
count(nki,powl),add(powi,k,pow)

power(n,1,n)e

power(n,k,product) <€ —Meq(k,1),sub(k,1,k1),

power(n,kl,productl),mul (n,producti,
product)

count(1,1) e
count(2,x) e count(1,x1),add(1,x1,x)

count(n,x) «—"1leq(n,2),sub(n,1,nsubl),div(nsubl,2,
' ndiv2)

count(ndiv2,x1), rem(nsubil,2,rl),
add(ndiv2,ril,ndiv2pl),count(ndiv2pl,x2),
add(x1,x2,x3),add(x3,1,x)

The data selected for each program is given in Appendix F,

with the tabulated performance data, and is outlined in

the next section.
6.2.6 Experimental results.

The five programs given above have been executed on the

PM. The data chosen covers a range of loads on the PM:
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(i) Lists of lengths between 1 and 66 were
processed by naiQe reverse.

(ii) Lists of lengths between 1 and 1000 were
processed by reverse with accumulating parameter.

(iid) "Worsﬁ case" lists of lengths between 1 and 127
were sorted by quicksort.

(iv) Series of numbers from 1 to points between 1 and
1000 were summed iteratively.

(v) Various powers of 2 frem 1 to 10 were computed.

Note that each of the programs has only one result, and
following the production of this result the PM will
continue to scan, fruitlessly, the remaining search
space. For the experimental executions the statistics
are éathered only up to the production of this first,

and only, result,

For the experiments the capacity of the su-expression
storage was kept at 50000 cells to be allocated to
cdnstructed nodes, numbers and unknowns (which can all
be created during a computation), and 2000 cells for
symbols (which cannot be created). Garbage collection

covers the cons, number and unknown cells only.

Appendix F contains a summary of the experimental
measurements obtained. Each table, one for each program,

shows the variation of the statistics PS1-7.

The following pages show, graphically and algebraically,
the five interesting comparisons discussed earlier.
Each comparison covers the five test programs, and
hence there are five graphs to be examined for each

comparison.



The graphs are again presented with simple labelling
from the tables in Appendix F,

the axes. The tables correspond to Prolog programs

as follows:

accumulating parameter, Table 3: Quicksort, Table 4:

Summing, Table 5: Powering.

Table 1: Naive reverse, Table 2:

by straight line segments to indicate trends.

6.2.6.1 Inherent performance of the test program

algorithms.

Figure 7 shows,

the number of predicate cases executed (PS1l) as a

function of the data supplied to the program,.

the data is a list,

as a representative parameter.

The normally accepted performance of each algorithm

is quite obvious, and the empirical points fit the

following equations (list length is 1):

Table 1: PS1
Table 2: PS1

Table 3: PS1
(logs

Table 4: PS1
Table 5: PS1

1*1+2%1+2
= 2%]1+42

= 5/2*%1*log(l+1)+5/2*Log(l+1)-1+2
to base 2)

= 2¥%¥n

2%2%%k 1

and without scales on

Reverse with

Again the points are joined

for each of the five Prolog programs,

the length of the list is taken

145.
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Figure 7
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6.2.6.2 Performance of the Prolog compilation and

evaluation strategy.

Figure 8 shows the empirical relationships between the
number of predicate cases executed (PS1) and the number
of PM instructions executed (PS2). Hence, in each graph
the gradient represents the number of PM instructions

executed per predicate case tried by the Prolog progranm.

Each of the five graphs appears to be linear, but
examination of the tables in Appendix F reveals that
only the relationships in Tables 2 and 4 are precisely
linear. For Tables 1,3 and 5 the gradient is increasing
slowly, but seems to be tending to some limit in each
case; the curvature is hidden by the width of the drawn
line. I shall use the maximum observed gradient to

characterise the relationships in these latter three

cases:

Table 1: PS2 = 17.98%PS1 (Limiting)
Table 2: PS2 = 18%PS1-3 (Exact)
Table 3: PS2 = 23.89%PS1 (Limiting)
Table 4: PS2 = 29.5*PS1 (Exact)
Table 5: PS2 = 26.73%PS1 (Limiting)

As in the case of Lispkit, the variations between these
relationships are easy to explain. The gradient is
determined by the size of the predicate case bodies

in each program - larger bodies give larger gradients.

Again the intercepts are not of any interest,.

147,
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The linear relationships shown by Tables 2 and 4 are

due to the dynamic structure of the respective programs
which consist of only one recursive predicate. The
"tending to linear" relationships shown by Tables 1,

3 and 5 are caused by programs in which two recursive
predicates share the computation, but in a proportion
which alters with the data; for longer computations

one of the two predicates dominates the computation, and

the size of its cases determine the limiting gradient.

The conclusion here is that the results strongly suggest
a linear performance characteristic for the compilation
and evaluation strategy. 1In other words the number of
PM instructions to be executed is some linear function
of the number of predicate case (or condition) executions
whicH would be expected from a model interpretation of

a Prolog program. For Prolog programs with small bodied
predicate cases the constant of proportionality in the

relationship appears to be about 20.
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Figure 8

Sl (NG o f

Table 5

| I O O 0
P T MRS ™ O 0 A TN ! B Jyl¢i|f- . A S o
MRS 0 MO T A0 R S B - ) . N L v ) .
CHPUR oSt I N I O L .lrl,['l[l 5 S TS L (0 T T . T | 2 = i el E Ao ) I
L R I R B A — — P NG s —
e o M- .»IlW&,vlr,l _ b . - [ ! 1 — — —
= Nt L gl 1. —— = 1 5 ot
| e | |
f , R W O S A A 0 . O T = T N
1= I 5 0 O 1 B 4 B 0 e R O T, B
| ! | [ EEET NN I IR ) i i
T G s Y T T v\T'ﬂ )’T — i L e o B T } e e
! - B I : == l_?_l.l.l.ltlkl‘lcllll‘rq;lrLl = JI_.WI_.L. n — = - =
= - ] | | ) SRR A —
| =BS2 |_PS2 e i G SR SO ) B o 8 (51 0 1
L st Lb ] LI O O
L LU RS e e B T
‘ | | ' AAEC = - ‘v v 1 i
a el Sl L. s
) A } i I
Y o B T
= f———— — —— =
e g I
i met ol " ST Y L B
L PR e

Table 1
Table 3




6.2.6.3 Performance of the PM Apply software in

implementing PM instructions.

Figure 9 shows the empirical relationships between the
number of PM instructions processed (PS2) and an estimate
of the number of IBM 370 instructions, Support and
Storage operations executed by Apply (PS3). 1In each
graph the gradient represents the number of lower

level operations per PM instruction.

Each graph appears linear, but again only those for
Tables 2 and 4 are precisely so. For Tables 1 and 5§
the gradient is increasing slowly, and for Table 3 it
is deqreasing slowly, but in each case the gradient

seems to be tending to some limit:

Table PS3

Table 2: PS3
(Gradient approximately 1.81)

Table 3: PS3 = 1.91%pPS2 (Limiting)

Table 4: PS3 = (104*PS2-277)/59 (Exact)

[

1}

1.83%PS2- (Limiting)
(65*P52~453)/36 (Exact)

(Gradient approximately 1.76)
Table 5: PS3 = 2.10%PS2 (Limiting)

Again the trends are easy to explain in terms of the
Prolog program structure. Each PM instruction is
implemented by a different amount of Apply code,

and the precise mix of instructions executed determines
the gradient of the relationship. Tables 2 and 4
represent programs with a single recursive predicate
which always executes the same mix of PM instructions,

but Tables 1,3 and 5 represent programs in which one

150.
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of two recursive predicates (and hence one of two
particular mixes of PM instructions) grows in dominance

with longer computations.

These results suggest that the Apply software has a

" linear performance in implementing PM instructions.
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6.2.6.4 Composing the evaluation strategy and Apply

software.

Figure 10 shows the empirical relationship between PS1
and PS3 statistics. The gradient represents the number
of lower level operations per Prolog predicate case

executed.

Not surprisingly each graph appears linear, but only

the relationships in Tables 2 and 4 are precisely so:

Table 1: PS3 = 32.88*PS1 (Limiting)

Table 2: PS3 = (65%PS1-36)/2 (Exact)
(Gradient 32.5)

Table 3: PS3 = 45.58%*PS1 (Limiting)

Table 4: PS3 = 52*%PS14+3 (Exact)

Table 5: PS3 = 56.17%PS1 (Limiting)

Each relationship is the composition of the
corresponding relationships from the previous two
sections. Hence, together the evaluation strategy

and Apply software have a linear performance.
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Figure 10
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6.2.6.5 Performance of the PM Support routines.

Figure 11 shows the empirical relationships between

the number of Support operations processed, or routines
called, (PS4) and an estimate of the number of IBM 370
instructions and Storage management operations executed
by the Support routines (PS5). 1In each graph the
gradient represents the number of lower level operations

per higher level Support operation,

Again each graph appears to be linear, but only the
relationships in Tables 2 and 4 are precisely so.
The gradients of the graphs of Tables 1,3 and 5 are

each decreasing slowly to some limit:

Table 1: PS5
Table 2: PS5

4.67*PS4 (Limiting)
14*(PS4+1)/3 (Exact)

1

fl

(Gradient approximately 4.67)

Table 3: PS5 = 6.31*%PS4 (Limiting)
Table 4: PS5 = 4.4%PS4+7.2 (Exact)
Table 5: PS5 = 3.38*%PS4 (Limiting)

The linearity of these relationships has two causes,
the characteristics of the unification, backtracking
and data structure checking (for negation) routines
themselves, and the nature of the tasks they are
required to perform by the individual computations.
Taking the latter cause, the five Prolog
program applications used in these experiments each
requests a series of Support operations in which the
precise mixture of operations varies with the data,
but the complexity of the individual operations does

not vary with the data; for example, in the naive
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reverse program the unification which occurs at entry

to the non-base case of the append predicate forms a

larger proportion of all unifications as the list to

be reversed grows longer, but the complexity of the
unification is the same in every instance of execution

of that case. Given these facts concerning the demands
made of the Support routines by the particular applications,
it is clear that the experimental results strongly

suggest that the routines have a linear performance

in implementing the required operations.

However, this simple linearity will not be observed
in the case of a Prolog program in which, for example,
the complexity of a unification operation depends on
the data. The following program has this property:
.query(11,12) €« check(11,12)
check(l,1)e

The lists supplied as data to the query (one unification
for receiving the data) are passed to the check

predicate where the second (and final) unification must
scan the entirety of the lists to ensure equality. Hence,
for a contribution of exactly 1 to the PS4 statistic,

the check unification makes a contribution to the PS5
statistic which is dependent on the data; PS4 will

always be 2, but PS5 can be varied at will by changing
the lengths of 11 and 12.

Conclusions on the performance characteristics of the
Support software must be stated carefully. Although
for a number of Prolog applications (probably very many)
the Support implements a linear relationship between PS4

and PS5, in general this is not true. It appears that
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the Support implements a linear relationship between

the complexity of the operations (unification,
backtracking and structure checking) requested and PS5;
perhaps some representation of this complexity would have

been a better choice for the PS4 statistic.
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Figure 1
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6.2.6.6 Performance of the Storage management

component.

Figure 12 shows the empirical relationships between the
number of Storage operations processed (PS6) and an
estimate of the number of IBM 370 instructions executed
in implementing the operations (PS7). 1In each graph
the gradient represents the number of lower level

instructions executed per higher level operation.

Table 1 shows a steadily increasing gradient, and curves
dramatically upwards at the longest executions. Table 2
has a precisely iinear relationship. Tables 3,4 and 5
show a gradient increasing less rapidly than Table 1,
but nevertheless not tending to any limit (in Table 4
the upward curve only starts with the longest

computation).

As with the LM, the performance of the Storage
management is determined by the demand for heap cells
and consequently the frequency of garbagé collections.
Table 1 shows a heavily loaded heap, Tables 3,4 and 5
show a moderately loaded heap (in Table 4 garbage
collection occurs only in the largest computation),

and Table 2 shows no garbage collections at all.

The routine used to force indirect pointers in the heap
contributes to the performance of the Storage
management, but in a way which is not, in these cases,

determined by the query data supplied to the programs.
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These results show that the Storage management
component of the PM has an unusual, certainly non-
linear, performance characteristic, but there is
clearly inadequate information to form a complete
analysis. More careful experimentation would be

necessary to enable such an analysis.
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Figure 12
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6.2.6.7 Conclusions on the performance of the PM

Prolog implementation.

The experiments reported above suggest very strongly
that this particular compilation and evaluation strategy,
this particular design for the Apply component of the

PM, and (with certain qualifications) this particular
design for the Support component each have a linear
performance, and hence that Prolog programs may be
executed in such a way that the number of Storage
operations and IBM 370 instructions required is a

linear function of the number of predicate case
executions to be expected from a model interpretation

of the program.

However, evidence for the performance characteristics
of the Storage management component is inconclusive,

and more investigation is required.

6.3 Conclusions and comparison of the Lispkit and

Prolog pseudo-machines.

The results of experiments reported in this chapter
enable a comparison of the relative performance to
be expected from the Lispkit and Prolog implementations

under consideration.

The results from Figures 1 and 7 show that about twice
as many predicate cases as function applications must
be executed in order to accomplish simple computations;
quicksort is an exception to this as the Prolog version
uses one predicate, partition, to perform the work of

two Lispkit functions.
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The results from Figures 2 and 8 then show that
approximately the same number of pseudo-machine
instructions (about 20) must be executed per function

application as per predicate case.

Examination of the AlgolW coding for the pseudo-machines
in Appendices B and D reveals that the average amount
of code to be executed for PM instructions is a little

more than for LM instructions.

The similarity of "programming technology" used in
both Apply.components means that a direct comparison
will yield a useful result. From these simple
observations it seems that the PM Apply component
will do a little more than twice the work of the LM
Apply component for a similar computation, although
of cburse the flexibility of Prolog may enable a more
subtle program (as for quicksort, mentioned above)
and the PM Apply component may do less work than the
LM Apply component.

Hdwever, this comparison only remains true while both
Apply components make similar use of similar
underlying virtual machines to execute lower level
operations. The PM contains supporting software for
unification, backtracking and data structure checking
which is entirely absent in the LM; this provides a
considerable processing overhead. Both the LM and

PM execute with heap storage management, but the

PM places a greater load on its heap than does the
LM; this also provides a greater processing overhead

for the PM.
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Thus overall it seems that the doubling of workload
(and hence halving of speed on real hardware) when
moving from a Lispkit program to a Prolog program is
a very best case, and in general a much worse
degradation of performance should be expected.
However, if we ignore the contribution of storage
management to the overall performance of the
pseudo-machines, then the experimental results have
shown that Prolog pwograms can be expected to execute
no worse than a linear factor slower than Lispkit
programs. Hence if future research in the field of
novel machine architectures can provide a computer

in which heap management is a hardware function which
occurs concurrently with program executions, then there
is a good probability that not only will Lispkit and
Prolog be able to execute much more efficiently than
at pfesent, but that the powerful logic programming
style will be no worse than a simple linear factor

slower than functional programming.



CHAPTER 7 HIGHER LEVEL INTERPRETATION OF LISPKIT
AND PROLOG.
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Higher level interpretation of Lispkit and Prolog.

In this context I am using the phrase "higher level
interpretation" to imply that Lispkit and Prolog
programs (in source code form) are being executed by
some interpreter which is itself written in a very
high level language; the interpreter is then executing
on some special machine or virtual machine. Thus the

overall system structure in which I am interested is

Lispkit or Prolog program and data

Interpreter in very high language X

(Virtual)machine to execute language X

7.1 Interpreting Lispkit.
" For the specific cases which I shall treat in this
chapter, the interpreter itself will be a Lispkit

program executing (in compiled form) on the Lispkit

pseudo-machine. The specific system structure will
be

11 Lispkit program and data

12 Interpreter

Lispkit pseudo-machine(LM)
IBM 370

in which the internal structure of the pseudo-machine
has been ignored, as it is of no interest here. O0f
course the Lispkit interpreter could equally well be
executing on a virtual machine constructed from several
levels of source code interpreters, and this should not
affect our assessment of the performance of the one

interpreter of interest.
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When analysing the performance of systems with the above
configurations, the methodology of Chapter 5 is
particularly relevant. The Lispkit program algorithﬁ,
the interpreter, and the LM will all have their own
performance characteristics, and simple minded monitoring
of the IBM 370 (by timing, for example) will not
necessarily enable the component of performance due to
the interpreter alone to be distinguished.

The characteristic of interest in a performance
assessment will be the relationship between the number
of expressions {(or, typically, function applications)
which the Lispkit program expects to be evaluated at

I1, and the number of expressions which the interpreter
executes at I2, The former statistic must be derived
from a model interpretation of the program, in order
that it is independent of the interpreter, and that

any bad behaviour within the scheme of evaluation
embodied in the interpreter is not incorrectly
attributed to the program. The way that this is

achieved is made explicit in later sections.

Two Lispkit interpreters will be covered, as
representatives of an open ended family of such
interpreters. The interpreters are presented in the
order in which I examined them - the undesirable
performance characteristics of the first, as uncovered
by experimental assessment, led directly to modifications

yielding the second, more efficient interpreter.

7.1.1 A preliminary note on the Lispkit program

syntax required by the interpreters.

I have mentioned elsewhere that in practice Lispkit

programs are presented to the computer with an



167.

s-expression syntax, rather than with the more
palatable notation of Chapter 2. This is consistent
with the rquirement: that the data (this includes
program text) supplied to an interpreter written in
Lispkit must be in the form of s-expressions. Hence
the operations within the interpreters which extract
the syntactic components of Lispkit expressions will
be compositions of car and cdr selectors, and will be
determined by the precise syntax of the programs.

The s-expression syntax of Lispkit is given in

Appendix B.

Throughout the discussion of the interpreters I shall
avoid the use of car and cdr as sub-expression selectors
wherever possible. 1Instead I shall use the following
mnemonic selector functions, defined here in terms of
car and cdr. An expression is atomic only if it is a
variable, and no selectors are required for this case.
All other expressions have the form of a list in which
the first element indicates the type of expression, and

successive elements are operands:

rator(e) = car(e) Select operator
randl(e) = car(cdr(e)) Select first operand
rand2(e) = car(cdr(cdr(e))) Select second operand
rand3(e) = car(cdr(cdr(cdr(e)))) Select third operand
(conditional expressions
only)
with several special purpose selectors:
argsandbody(e) = cdr(e) 0f a lambda expression
arglist (e) = cdr(e) 0f a function application
qualified(e) = carf{cdr(e)) of a where or whererec
expression
definitions(e) = cdr(cdr(e)) of a where or whererec

expression
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defvar(d)
defexp(d)

car(d) Select variable from a definition

cdr(d) Select defining expression from
a definition.

7.1.2 First Lispkit interpreter for Lispkit, LISPINT1.
7.1.2.1 The interpreter program.

At its outermost level LISPINT1 is a function of two
arguments, a Lispkit program text and a list of
arguments respectively. The program text must be an
expression whose value is a function, and hence the

main structure of LISPINT1 is
X (fn,args)'"evaluate fn and apply it to args"

whererec '"auxiliary functions required for evaluation",
The most important auxiliary function is eval, which
accepts a Lispkit expression and an environment of
variable names with associated values, and returns the
value of the expression in the given environment. Eval

is simply a case analysis of the possible expression types,
and it calls itself recursively as necessary for the
evaluation of subexpressions; in particular, recursive
calls within where expressions, whererec expressions and
function applications are supplied environments which

have been extended with new definitions.

The general evaluation strategy can be illustrated by a
few selected cases from within eval (given in its
entirety later). If e is the expression to be
evaluated and n and v contain the current environment
then:

Fetching the value of a variable from the environment
(assoc to be defined later):

if atom(e) then assoc(e,n,v) else



169.

A typical binary operator:

if eq(rator(e),ADD) then eval(randi(e),n,v)+eval(rand2(e),
' ‘ n,v)
else ...

Conditional expressions:

if eq(rator(e),IF) then
if.eval(randl(e),n,v) then eval(rand2(e),n,v)
) else eval(rand3(e),n,v)

else ...

Building a closure to represent a function value:
if eq(rator(e),LAMBDA) then cons(argsandbody(e),cons(n,v))

else ...

Before proceeding to describe the expressions which
extend the environment, it is necessary to give the
structure of the environment itself. From the example
cases of eval, above, it is apparent that the
environment consists of two parts, named n and v. The
s-expression n records the names of the variables whose
values have been entered in the s-expression v. The
fact that the environment is extended by lists of
simultaneous definitions is reflected by the structure
of n; n is a list of lists of variable names, for

example
((X Y zZ) (ABC) (XY) ...)

Each sublist corresponds to one group of definitions,
and sublists nearest to the head of n correspond to

inner scopes.

The values entered in v follow exactly the same pattern
as the corresponding names in n. However there is a

very important difference; the true values of the
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variables are not recorded, but instead each sublist of
values is represented by a closure (function)_;hich,

when applied to an empty parameter list, returns the
actual values of the variables in the sublist. The
evaluation of each group of defining expressions has bLeen
delayed, and must be forced when access is required.

So, for the name list above the value list will be

represented by
( NOxyz A()abe ANOxy ...)

where the body xyz evaluates to give a 3-list of

values for X,Y and Z, and similarly for abc and xy.

From these descriptions of n and v the assoc function

for looking up a variable's value can be defined:
ass?c(x,n,v) = if member(x,head(n)) then }ocate(x,“gggigg())
else assoc{x,tail(n),tail(v)

member(x,l) = if eq(1,NIL) then F else
if eq(x,head(l)) then T else member(x,tail (1))

locate(x,n,v) = if eq(x,head(n)) then head{v)

else locate(x,tail{(n),tail(v))

In the first line of assoc the expression "head(v)()"
forces the delayed sublist of definitions by applying

the closure to an empty parameter list. .

This treatment of the environment may seem strange,
but it has good justification, which will become
apparent in the description of the evaluation of whererec

expressions below.
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With this structure for an environment the evaluation
of a where expression is quite straightforward, and
function applications are only slightly more involved.
To evaluate a where expression (keyword LET) the
qualified expression is simply evaluated in an
environment extended by the qualifying definitions; the
names in the definitions are added to n, and the
evaluation of the list of defining expressions (in

the current environment by evlis) is delayed and the

closure is added to v:

if eq(rator(e),LET) then
(eval(qualified(e),cons(newnames,n),cons(newdefns,v))
where newnames = vars(definitions(e))

newdefns = A()evlis(exprs(definitions(e)),n,v))

wheré the three auxiliary functions are defined as
vars(deflist) = if eq(deflist,NIL) then NIL

else cons(defvar(head(deflist)),
vars(tail(deflist)))

exprs(deflist) = if eq(deflist,NIL) then NIL

else cons(defexp (head(deflist)),
exprs{tail(deflist)))

evlis(explist,n,v) = if eq( explist,NIL) then NIL

else cons(eval (head(explist),n,v),
evlis(tail(explist)n, v))

To evaluate a function application the rator field of the
expression must be evaluated to obtain a closure, which
contains a qualified expression to be evaluated and a
list of variable names which are to be associated with
the actual argument values. This is the default case

for the eval case analysis, and so e is known to be a

function application:
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eval(body(fn), cons(formalargs(fn),oldn(fn)),
cons(actualargs,oldv(fn)))
where fn = eval(rator(e),n,v)
actualargs = MA()evlis(arglist(e),n,v)
where the extra selector functions may be defined as

formalargs(clos) = car(car(clos))
body(clos)
oldn(clos) = car{cdr(clos))
oldv(clos) = cdr(cdr(clos))

car(cdr(car(clos)))

Now to tackle the evaluation of a whererec expression
(keyword LETREC). This is closely related to the

evaluation of a where expression, but there is a new
problem because the new definitions must be evaluated

not in the current environment, but in the extended

definitions have been completed). 1In other words, what
we would like to write is

newdefns = M\()evlis(exprs(definitions(e)),

cons(newnames,n), cons(newdefns,v))

in which newdefns is defined in terms of itself. 1In
fact this has precisely the desired effect due to the
technique of delaying the evaluation of the defining
expressions until they are accessed; evlis does not
attempt to access newdefns until newdefns has certainly
been associated with the delayed environment level, and
then, provided that the restriction on whererec
defining expressions (see Chapter 2) has been obeyed,
evlis will not invoke a nonterminating recursive forcing
of newdefns (recursion is allowed only in defining
expressions which are themselves lambda expressions,

which naturally delay the evaluation of their bodies



until required). With a slight modification to the
above expression, the complete evaluation of a whererec

expression is:

if eq{(rator(e),LETREC) then
(eval(qualified(e), newn,cons(newdefns,v))
whererec newn = cons(vars(definitions(e)),n)

newdefns= X()evlis(exprs(definitions(e))
newn,cons(newdefns,v)))

All that remains to complete the interpreter is to give
eval in its entirety, and to show how the evaluation is

initiated from the main arguments fn and args.

To initiate the evaluation fn must be evaluated in an
empty environment to obtain a closure:
"clos = eval(fn,NIL,NIL)
and this must be applied to args in exactly the same way
as a normal function application (note that args themselves
do not need to be evaluated but they do need delaying!):
X(fn,args)(eval(body(clos), cons(}ormalargs(clos),

oldn(clos)),
cons( A()args,oldv(clos)))

where clos = eval(fn,NIL,NIL))

and te complete definition of eval is
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eval (e,n,v) = if atonm (e) then assoc(e,n,v) else
if eg(rator (e),QUCTE) then randl(e) else
if eg(rator (e),C2R) then car (eval (randl(e),n,v)) e€lse
if eg(rator (e),CLR) then cdr (eval (randl(e),n,v)) else
if eq(rator (e),CCNS) then cons(eval(randi(e),n,v),eval(rand2(e),n,v)) else
if eq(rator (e) ,AT0N) then atom(eval(randl(e),n,v)) else
if eq(rator (e) ,E() then eg(eval (rand1(e),n,v),eval (rand2(e),n,v)) else
if eq(rator (e) ,LEQ) then eval (randl (e),n,v) § eval(rand2(e),n,v) else
if eq(rator (e) ,IF) then if eval (rand1(e),n,v) then eval(rand2(e),n,v)
else eval(rand3(e),n,v) else
if eq(rator (e) ,L2MEDR) then cons (argsandbody (e),cons(n,v)) else
if isarithop(ratcr (e)) then arith(e,n,v) else
if eq(rator (e) ,LET) then ( eval (qualified (e),cons(newnames,n) ,cons(newdefns,v))

where newnames = vars(definitions(e))
and newdefns = )\()evlis(exprs(definitions(e)),n,v) ) else
eq (rator (e) ,LETREC) then ( eval (qualified (e),newn,ccns(newdefns,v))
whererec newn = cons(vars(definitions(e)),n)
and newdefns AN()evlis (exprs (definitions(e)),
newn,cons (newdefns,v)) )
else ( eval (body(fn),ccns(formalargs (fn) ,oldn(fn)) ,cons (actualargs,oldv (fn)))
where fn = eval (rator (e),n,v)

and actualargs = )\()evlis (arglist(e),n,v) )

i
I+

isarithop (op) = if egq(cp,ADD) then T else if egq(op,SUB) then T else
if eg(cp,MUL) then T else if eq(op,DIV) then T else
if eg(cp,REM) thep T else F

arith(e,n,v) = if eq(op,ADl) then (al+a2) else if eq(op,SUB) then (al-a2) else
if eq(op,MUL) then (a1*a2) else if eq(op,DIV) then (al div a2) else
if eq(op,FEM) then (al rem a2) else EFRCR
where or = rator (€)
and a1l = rand1(€)
and aZz = randz (e)
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Two final comments on the LISPINT1 program are appropriate.
Firstly, a more conventional approach to evaluating
whererec expressions is to extend the purely functional
Lispkit language with an extra primitive operator "rplaca"
("replace car') which appears to be an identity function,
but which actually has the side effect of modifying an
s-expression (in this case to tie a self-referential

loop in the environment). Whererec is then evaluated by
essentially the same controlled trick as is implemented

by the DUM and RAP instructions of the iM(Appendix B,
Henderson (1980)). I have chosen to avoid this, and to
look at the expression and performance of interpreters

in a purely functional language.

Secondly, the interpreter is not so revealing about the
semantics of Lispkit as, perhaps, it could be; this is

due to the somewhat circular definition in which each
Lispkit expression is evaluated by calling on an expression
of exactly the same type in the interpreter. Nevertheless,
the interpreter does seem quite interesting, and it is
certainly illustrative of performance assessment problems,

as covered in the next section.
7.1.2.2 The performance of LISPINT1.

The important question to ask about LISPINT1 (in addition
to "Does it work correctly?") is '"How efficiently does it
interpret Lispkit programs?" This question can be
phrased slightly more precisely as "How does the number
of expression evaluations required by LISPINT1 depend

on the number of expression evaluations required by

the program which LISPINT1 is interpreting?'" However,



the characteristics of interest must be specified even
more tightly before experimental evidence can be
gathered. The methodology of Chapter 5 will again be
the guideline.

Experimental assessment of the performance of LISPINTI1

will be made in the following system configuration:

Data
I1 Lispkit (source) program
I2 LISPINT1 (compiled)

LM
IBM 370/168

in which I have ignored the contribution of MTS, and
internal detail of the LM has been suppressed, as
stat;stics will not be required from interfaces below
I2. .

The component of interest is LISPINT1, and hence it is
the interactions at I1 and I2 which must be monitored.
At I2 the LM is interpreting the machine instructions of
LISPINT1, and at I1 the eval function is scanning and

interpreting the constructs of the Lispkit program.

At I2 the valuable statistic is the amount of work
(expression evaluations) generated by LISPINT1, as
determined by a model interpretation of LISPINT1. This
statistic, call it LIS2, will be independent of the

virtual machine below I2.

At I1 the valuable statistic, call it LIS1, is the amount
of work (expression evaluations) generated by the
Lispkit program, as determined by a model interpretation

of the program.
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Hence the performance assessment question can be
rephrased as '"How does the number of expression
evaluations predicted by a model interpretation

of LISPINT1 depend on the number of expression
evaluations predicted by a model interpretation of

the Lispkit program?"

Recalling the results of Chapter 6, a good representation

of the LIS2 statistic can be obtained by monitoring
the number of LM instructions executed during the
computation. These figures are easily obtained -
and more efficiently than by reprogramming LISPINT1

to monitor its own activity.

Similarly, LIS1 statistics can be obtained quite
effecti?ely by executing the Lispkit program in
question (plus data) directly on the LM and monitoring
the total number of LM instructions executed. This
technique is justified by the fact that the model
interpretation is determined solely by the programming

language semantics and not by particular interpreters.

Note that the actual interpreter code used in the
assessment is not exactly as the eval function has
appecared here; the selector functions are all expanded
"in line", and there are other minor syntactic
variations, none of which alter the evaluation strategy

implemented by the interpreter.
7.1.2.3 Experimental results.

In an ideal world LISPINT1 should have its behaviour

monitored for a wide range of program applications to
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obtain an accurate assessment of its performance; the
selection of programs used to assess the LM would be

a good choice. However, the comparative inefficiency
of LISPINT1 (when loaded onto the LM and IBM 370)
restricts the size of computation which it can execute
in a reasonable time; this renders impractical the more
complex programs, such as quicksort and powering, and
the longer executions of the simpler programs. This
restriction is not too serious, as the general trends
of each program were seen to be very similar in the
assessment of the LM, and a good impression of the
characteristics of LISPINT1 should be possible by

examining just a few applications.

Test executions of LISPINT1 have been performed,
intefpreting the naive reverse program for lists of
length 0,1,2,3, and interpreting the reverse program
with accumulating parameter for lists of length 0,1,2,
3,4,5,6., Naive reverse for a list of length 4 was
interrupted after 200 seconds of CPU time without having
found a solution, so no further data points are
practically possible for this algorithm. Reverse with
accumulating parameter for list length 6 used
approximately 60 CPU seconds; I expected list length

7 to use several hundred CPU seconds, so data collection

was stopped at this point.

The collected LIS1 and LIS2 statistics are tabulated in
Appendix E (Tables 7,8), and their relationships with
respect to the performance of LISPINT1 are analysed

in the following graphs. As in Chapter 6 the graphs



are presented with labelled but ungraduated axes, and
with the empirical data points joined by straight line
segments. The purpose of the graphs is to give a
visual guide to the trends discussed in the comments;

the precise data is to be found in Appendix E.

Figure 1 shows the results of executing the naive
reverse program on LISPINT1. The upper graph shows
the inherent performance of the reverse algorithm as
the relationship between the list length and the number
of LM instructions that the program would execute on
the pseudo-machine (LIS1). The lower graph shows the
performance of the interpreter as the relationship
between LIS1 and the number of instructions that the
interpreter executes on the LM(LIS2).
The inherent performance is, as expected, quadratic in
form. The data points fit the following equation
precisely:

LIS1 = 8,5%1*]1 + 19.5%1 + 19.

On the other hand the relationship between LIS1 and
LIS2 shows a very dramatic upward curvature. Since
only 4 data points are available, little can be deduced
about the true nature of the relationship. However,

the curve is certainly increasing more rapidly than a
quadratic function as a cubic function is required to

fit the points (but a cubic will fit any 4 points, and

hence the latter is not by itself a useful observation).

Bearing in mind that the lower graph contains no
contribution from the performance of either the reverse
program or the LM, the performance of LISPINTI1 clearly

is not linear.
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Figure 2 shows the results of executing the reverse
with accumulating parameter program on LISPINTI1.

The upper graph shows the inherent performance of the
reverse algorithm, and the lower graph shows the

performance of the interpreter.

The performance of the reverse prbgram is precisely

linear, as expected from the results of Chapter 6:
LISl = 17*1 + 32

However the interpreter performance again shows a
rapidly rising curve. A 6th degree polynomial is
required to fit the 7 data points, but that is not

conclusive evidence.

These results from executing the two list reversing
programs on LISPINT1 point out very clearly that the
interpreter has an extremely bad performance characteristic;
the work performed by the interpreter increases much more
rapidly than a linear function of the work demanded by

the program which is being interpreted.

An explanation must be found for this undesirably
inefficient performance. Not surprisingly the answer
lies with the particular strategy used for delaying

environment levels.

In order to be able to implement whererec successfully
some method of delaying evaluation is appropriate, but
although the method employed in LISPINT1 seemed natural

and correct, it turns out to be rather less than desirable.



182,

)

( Table 8

Figure 2

T Tengh |

I

ust:




The method employed effectively implements a "call by
name" evaluationvstrategy in which the arguments in a
function application are passed in unevaluated form

to the function body; within that body each access to
an argument will result in reevaluation of the
argument's value, which seems wasteful, but it leads

to at worst a linear factor increase in workload. A
much more serious consequence of the call by name
strategy is that an unevaluated argument may be passed
within an unevaluated expression to an inner function
application; the inner function body will cause both
levels of delaying to be forced when it accessess the
argument; in this way a recursive function will often
cause the interpreter to trace an arbitrary distance
back towards the start of the computation each time

an argument is accessed. The sublist delaying strategy
aggravates this problem, as a whole tree of unnecessary
auxiliary values may be computed each time an

argument is accessed.
I seem to have made some bad decisions in the design
of LISPINT1, and the experimental performance analysis

has provided the motivation to reexamine the design.

7.1.3 Second Lispkit interpreter for Lispkit, LISPINT2.

The undesirable inefficiency of LISPINT1 is caused by the

way in which the delaying of environment levels led to a

call by name evaluation strategy. LISPINT2 is an attempt

to improve upon this by thé introduction of a "call by

value" evaluation strategy.
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7.1.3.1 The Interpreter program.

LISPINT2 is essentially the same interpreter as LISPINTI1,
the only difference being in the treatment of delayed
environment levels. The environment, as given by the n
and v arguments of eval, will have exactly the same
structure and properties as for LISPINT1; each level in
v will require forcing before the values can be accessed,
and the assoc function will remain as before. However,
invorder to avoid the call by name mechanism the
definitions which comprise each level are evaluated
before being grouped together and delayed, to yield a
call by value mechanism; this is a fairly obvious

change of strategy, involving only minor changes to the
interpreter code, which is quite clearly correct in the
case of function applications and where expresSions, but

requires a little more thought in the case of whererec

before operational safety is apparent.

Tackling where expressions first, here is the interpretation

in LISPINT1 for comparison:

if eq(rator(e),LET) then
(eval(qualified(e),cons(newnames,n),cons(newdefns,v))
where newnames = vars(definitions(e))
newdefns = A ()evlis(exprs(definitions(e)),n,v))

else ...

In LISPINT2 this is modified simply by moving the " INSRE:

if eq(rator(e),LET) then
(eval(qualified(e),cons(newnames,n),cons( A()newdefns,v))
where newnames = vars(definitions(e))
newdefns = evlis(exprs(definitions(e)),n,v))

else ...
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Appealing to the semantic background of Lispkit these
two interpreter fragments are clearly equivalent.
Operationally, the LISPINT2 fragment has introduced no
new recursions, and will be safe to execute provided
that the definitions to be evaluated are safe (they do

not contain non-terminating recursions).

The interpretation of function applications is changed
in the same way:
eval(body(fn),cons(formalargs(fn),oldn(fn}),

cons( X() actualargs,oldv (fn)))

where fn = eval(rator(e),n,v)

actualargs = evlis(arglist(e),n,v)

The call by value parameter mechanism is explicit here.

An extra change must be made in the whererec case in order

not to violate the variable usage rules:

if eq(rator(e),LETREC) then
((eval(qualified(e),newn, cons( A\ ()newdefns,v))
whererec newd fns = evlls(ex rs(definitions(e)),
LLLRS S © ‘ ngan cons ( X()nerefnS’V)))

where newn = cons{vars(definitions(e)),n))

else ...

As in the previous two cases the "A()" has been moved

in such a way as to preserve the meaning of the
interpreter fragment, though it has now appeared in two
places - at both occurrences of newdefns. The definition
of newn has been moved to an enclosing scope, to

satisfy the restriction on whererec definitions (as it

is used in the evaluation of the defining expression

for newdefns), and as a slight economy the cons(...,n)
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has been taken into the définition. The validity and
safety of the definition of newdefns must be considered
carefully; the defining expression itself mentions
newdefns, and both requirements will be satisfied if

the expression evaluations invoked by evlis never attempt
to access newdefns (which after all, is at the head of
the environment in which the evaluations occur) - of
course evaluating the qualified expression may attempt
access to newdefns, but that is operationally safe.

The first point to note is that the reference to

newdefns is delayed:
evlis(exprs(definitions(e)),newn,cons( A()newdefns,v))

and so attempted access to newdefns will only occur if
any of the evaluations of exprs (definitions(e)) call
assoc to look up a variable whose value is contained in
newdefns (call on assoc to look up variables whose values
are in v are perfectly safe). Recalling that we are
considering the interpretation of a whererec expression,
such a call of assoc will occur only if the evaluation

of one of the defining expressions requires the values

of one of the locally defined variables. This occurrence
is precisely what the restriction on defining expressions
in whererecs disallows. Hence the interpreter fragment
is valid and safe if the exprs{definitions(e)) consist
only of expressions which delay the variable references
that they contain (for example, lambda expressions
defining recursive functions), and other expressions

which refer only to variables in outer scopes.
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This discussion has shown, in a somewhat paradoxical
fashion, how the restriction on variable usage in
whererec expressions arises. The circularity appears

in interpreting whererec expressions by using whererec,
but hopefully the resolution of the problem wiII have
served to reinforce the understanding of the limitations
of whererec. The restriction is appropriate in the

case of programs compiled to execute directly on the

LM for analogous .reasons.
7.1.3.2 The performance of LISPINT2.

The same reasoning applies here as in the assessment

of LISPINT1.

Experimental assessment of the performance of LISPINT2

will be made in the system configuration:

Data
I3 Lispkit (source) program
1)
b 14 —LISPINT2 (compiled)

LM
IBM 370/168

where again the internal structure of the LM has been

suppressed, and the contribution of MTS has been ignored.

The enquiry about the performance of LISPINT2 is phrased
as "How does the number of expression evaluations
predicted by a model interpretation of LISPINT2 depend
on the number of expression evaluations predicted by

a model interpretation of the Lispkit program?"



The statistics collected at interfaces I3 and I4 will be

counts of LM instructions executed, LIS3 and LIS4,
analogous to LIS1 and LIS2 respectively.

7.1.3.3 Experimental results.

Not surprisingly LISPINT2 is much more efficient than
LISPINT1, and test executions have been performed for
the same two programs, naive reverse and reverse with

accumulating parameter, up to lists of length 50.

Tabulated results for the statistics LIS3 and LIS4 are
given in Appenaix E (Tables 9,10), and their
relationships with respect to the performance of
LISPINT2 are analysed in the following graphs. Again
the graphs are presented with labelled but ungraduated
axes, and joined by straight line segments to show the

trends discussed in the accompanying comments.

Figure 3 shows the results of executing the naive
reverse program on LISPINT2. The upper graph shows the
inherent performance of the reverse algorithm, and the
lower graph shows the performance of the interpreter

as the relationship between LIS3 and LIS4 statistics.

The inherent performance of the reverse algorithm is

precisely quadratic
LIS3 = 8,.5%1*1+19.5%1+19

The lower graph shows a relationship which has a
gradient increasing slowly, apparently to some limit;
approximately

LIS4 = 55.8*LIS3

It seems that LISPINT2 has a linear performance.
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Figure 4 shows the results of executing the reverse with
accumulating parameter program on LISPINT2. The upper
graph shows the inherent performance of the reverse
algorithm, and the middle graph shows the performance

of the interpreter. The lower graph shows the
relationship between LIS4 and the CPU seconds required
to complete the computation when only 5400 heap cells
have been allocated to the LM (fairly close to the
minimum number of cells in which the longest computation

could be performed).

Both the inherent performance of the reverse program and

the performance of the interpreter are precisely linear:

17*1+32
(913*L1S3-4600)/17
(Gradient approximately 53.7)

LIS3
LIS4

7.1.4 Comments.

LISPINT1 made use of a particular strategy for delaying
environments in order to implement the interpretation of

whererec expressions. The design decision led to an
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interpreter with an unacceptable performance characteristic.

In LISPINT2 a modified delaying strategy is used, and the
interpreter exhibits a beautifully linear performance
characteristic (for, at least, the test programs used in

the experiments).

Thus in LISPINT2 we have a purely functional interpreter
for Lispkit, which will interpret L ispkit programs by
executing a number of LM instructions which is no worse

than a linear factor more than the number of instructions

performed if the program were executing directly on the LM.
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The linear factor appears to be about 55.

"Rplaca'" is usually introduced in order to bring the
interpreter performance under control. Assuming that
it enables a linear performance interpreter to be
produced, then the linear factor would probably be
smaller than the 55 observed for LISPINT2. However
it would only be a small linear factor better than
LISPINT2, and this must be weighed against the

introduction of the semantically untidy "rplaca" operation.

To illustrate the problems which might be encountered
in a naive attempt to assess the performance of an
interpreter consider the lowestgraph in Figure 4.

The graph increases irregularly, and the overall trend
is clearly much worse than linear; this is due to the
heavy loading of the heap store of the LM. An
experiment which attempted to assess the performance
of LISPINT2 by relating, for example, function
applications in the interpreted program to the CPU
time required for execution, would be unable to isolate
the behaviour of the interpreter from that of the LM.
The non-linear performance might be incorrectly
attributed to LISPINT2 which, as we have seen, is

quite innocent.
7.2 Interpreting Prolog.
It would be attractive to embark on an exploration of

Prolog interpretation mechanisms, as started for

Lispkit in a small way in the first part of this chapter.
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However, opportunity permits me to show only one,
straightforward, example of a Prolog interpreter,
written in Prolog, which has a linear performance

characteristic.

The interpreter, PROLOGINT, handles only a restricted
form of Prolog - negated conditions and primitive
predicates have been omittedboth for simplicity and

to enable sizeable computations to be performed in a
reasonable time. Like the Lispkit interpreters,
PROLOGINT makes use of the facilities of Prolog to
implement the facilities of Prolog; in particular
unknowns in the interpreted computation are represented
by unknowns in the interpreter, and unification is
implemented implicitly by a generalised equality

predicate -~ more details appear below.

PROLOGINT will be executed on the PM in the following
configuration:

Data

Prolog (source) program
PROLOGINT (compiled)
PM
IBM 370/168

In a performance assessment the behaviour will be
isolated carefully from that of the PM with its
internal storage management. The concern of a
performance assessment will be the relationship
between the work performed by PROLOGINT and the work

required by the Prolog program.
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7.2.1 The syntax of interpreted pPrograms.

To be acceptable as data for PROLOGINT, a Prolog
program must have a syntax within the framework of
su-expressions. Appendix D gives one such syntax, and

PROLOGINT accepts programs in this form.

The interpreter will not require the definition of any
special selector functions (or predicates), as all
parsing is performed by pattern matching and unification,
and the significance of a construct will be apparent from
the structure of the pattern and the variable mnemonics

used.
7.2.2 The interpreter, PROLOGINT.
7.2.2.1 The interpreter program.

PROLOGINT is a query which requires two arguments, a
Prolog program (no negated conditions or primitive
predicates) and a parenthesised list of the arguments
which the program would expect if it were executed
directly on the PM. The arguments are checked, to
determine whether they satisfy the query represented by
the program, by the interpreter predicate satisfy, which
has a central role corresponding to eval in the Lispkit
interpreters; as a side effect of the checking, the
arguments may become elaborated, and the results of the
interpretation, if any, are valid elaborations of

the unknowns in the original arguments.
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The predicate satisfy accepts one argument representing
a condition to be checked, and the list of predicate

definitions which may be called on by the program:

satisfy((predname.args),deflist) «— ...
The query of PROLOGINT initiates the interpretation by
explicitly constructing a call on the predicate named

QUERY in the program being interpreted, and inserting

QUERY into the definitions list:

query(((query.argsandconds)where.deflist),arguments) €~

satisfy((QUERY.arguments), ({(QUERY argsandconds)
.deflist))

The satisfy predicate follows the actions described in
the operational model of Prolog execution in Chapter 3;
to interpret a condition the predicate it names must be
found, one of the predicate's cases selected, the formal
argument list constructed and unified with the actual
arguments of the condition, and any extra conditions

associated with the case must be executed:

satisfy((predname.actualargs),deflist) €«

finddef(predname,deflist,cases),selectcase(cases, .
' (args.conds)),

localvars((args.conds),locals),argbuild(args,locals,
formalargs),

unify(actualargs,formalargs),

satisfyconds(conds,locals,deflist)

The auxiliary predicates finddef and selectcase are
easily programmed:
finddef(predname,((predname.cases).deflist),cases)<+

finddef(predname, (other.deflist),cases) <€~
finddef(predname,deflist,cases)

selectcase((case.cases),case) €

selectcase((other.cases),case)<&-selectcase(cases:case)



finddef simply looks up the appropriate entry in the list

of predicate definitions, and selectcase returns each
case in a list as backtracking requires ; selectcase
implements backtracking for the Prolog program by

backtracking in the interpreter.

satisfyconds is also straightforward; it checks that
each condition in a list of conditions is satisfied
when the actual arguments are built from a given list

of local variable values:

satisfyconds((if.conds),locals,deflist) e

satisfyeach (conds,locals,deflist)

satisfyconds(NIL,locals,deflist) <
(The second clause expresses the fact that a case with
no antecedent conditions is satisfied with no further
checking)
satisfyeach(((predname.args).conds),locals,deflist) <
argbuild(args,locals,actualargs),
satisfy((predname.actualargs),deflist),
satisfyeach(conds,locals,deflist)
satisfyeach(NIL,locals,deflist) &

In a Prolog program the variables mentioned in each

case are purely local to that case; they have their
values built into the formal arguments of the
consequent of the case and the actual arguments of any
conditions present. When a case is entered, by satisfy,
the local variables are identified and collected into

a local environment list by the predicate localvars.

The environment list is a list of pairs (x.v) where x

is a variable name and v is its value. When localvars

creates an environment list the values are set to new

196
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unknowns, and they are subsequently elaborated by
unification. localvars makes use of several additional
predicates:

localvars((args if.conds),vars)<-inargs(args,NIL,varsl),
inconds(conds,vars1,vars)

localvars((args),vars) & inargs(args,NIL,vars)
inargs(NIL,vars,vars)e—

inargs(x,oldvars,newvars)<&-atom(x),—jeq(x,NILL
. addvar (x,oldvars,newvars)

inargs(('.x),vars,vars) <

inargs((x.y),oldvars,newvars) e —eq(x,'),
inargs(x,oldvars,newvarsi),
inargs(y,newvarsi,newvars)

inconds(((predname.args).conds),oldvars,newvars) <«
inargs(args,oldvars,newvarsil),
inconds(conds,newvarsl,newvars)
inconds(NIL,vars,vars)e-

addvar(x,oldvars, ((x.newvar).oldvars)) &
TImember (x,0ldvars)

addvar(x,vars,vars) €« member(x,vars)
member(x, ((x.varx).vars)) &«

member(x, (other.vars)) «- member(x,vars)

Several comments are appropriate here. The predicates
localvars, inargs, and inconds each use an accumulating
parameter technique to avoid appending lists of variables.
The apostrophe mentioned in inargs has crept in because

of the necessity to indicate explicitly the constant

parts of su-expression patterns (see Appendix D); also
note that the atom NIL is treated specially as a constant
and not as a variable. Finally, the variable newvar
which appears once in addvar introduces a new unknown

into the environment list; the unknown acts as a
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placeholder for the value which will eventually be

associated with the variable x.

The auxiliary predicate argbuild is used by satisfy
to construct formal arguments from formal argument
patterns, and by satisfyeach to construct actual
arguments from actual argument patterns; variables
in the patterns are replaced by their values from

the local environment list:

argbuild(NIL,locals,NIL) &«

argbuild(x,locals;varx) « atom{(x), — eq(x,NIL),
findvar(x,locals,varx)

argbuild(('.x),locals,x) <

argbuild({(x.y),locals, (buildx.buildy)) € —eq(x,"'),
argbuild(x,locals,buildx),argbuild(y,locals,buildy)

findvar(x,((x.varx).vars),varx) €—

findvar(x, (other.vars),varx)<-findvar(x,vars,varx)

Finally, unification is defined very simply by a
predicate which asserts equality between actual and

formal arguments:

unify(args,args) <
7.2.2.2 The performance of PROLOGINT.

Experimental assessment of PROLOGINT will be made in

the following system configuration:

Data

Prolog (source) program

I1

12 PROLOGINT (compiled)

PM
IBM 370/168
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in which, again, the contributions of MTS and the

internal structure of the PM have been ignored.

To assess PROLOGINT the interactions at Ii and I2

must be monitored and compared.

The performance question to be addressed is "How

much work does PROLOGINT perform in interpreting the
requirements of the Prolog program?" Again adopting
the view of a model interpretation, which predicts

the amount of work required by a program independently
of the virtual machine on which it is executing, the
question is rephrased as '"How does the work predicted
by a model interpretation of PROLOGINT depend on the
work predicted by a model interpretation of the Prolog

program?"

Recalling the observation, in Chapter 6, that the
number of PM instructions executed during a Prolog
computation is a good representation of the work
predicted by a model interpretation, the interactions
at I1 and I2 can be monitored in exactly the same way

as for the Lispkit interpreters.

The statistics of I2 are obtained by counting the total
number of PM instructions executed during the
interpretation; call these statistics PIS2. At I1,

the statistics PIS1 are obtained by executing the
Prolog program directly on the PM and again counting

the total number of PM instructions executed.



7.2.2.3 Experimental results.

Test executions of PROLOGINT have been performed for
the familiar programs naive reverse and reverse with
accumulating parameter, err a small range of list
lengths between 0 and 10. Statistics PIS1 and PIS2 are
collected up to the production of the single result of

the interpretation.

The results are tabulated in Appendix F(Tables 6,7),
and their relationships with respect to the

performance of PROLOGINT are analysed in the following
graphs. The graphs are presented with labelled but
ungraduated axes, and the empirical points are joined
by straight line segments to shows the trends discussed

in the accompanying comments,

Figure 5 shows the results of executing the naive reverse
program on PROLOGINT. The upper graph shows the inherent
performance of the reverse algorithm as the relationship
befween the list length and the number of PM instructions
that the program would execute on the pseudo-machine
(PIS1). The middle graph shows the performance of the
interpreter as the relationship between PIS1 and the
number of instructions that the interpreter executes on
the PM (PIS2). The lower graph shows the relationship
between PIS2 and the CPU seconds required to complete

the computation when 70000 heap cells are allocated

to the PM.
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( Table 6 )
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The inherent performance of the reverse program is

precisely quadratic:

PIS1 = 18*1*1433*1+29

The relationship between PIS1 and PIS2 shows a gradient
which seems to be increasing slowly to a limit,
approximately

PIS2 = 148.6*%PIS1

Hence the performance of PROLOGINT would appear to be

linear.

Figure 6 shows the results of executing the reverse

with accumulating parameter program on PROLOGINT. The
upper graph shows the inherent performance of the reverse
algorithm. The middle graph shows the performance of

the interpreter. The lower graph shows the CPU seconds

required when the PM is allocated 23000 heap cells.

Both the performance of the reverse algorithm and of

the interpreter are precisely linear:

36*1+33
(5567*PIS1-70851)/36

PIS1
PIS2

1}

(Gradient approximately 154.6)

The experimental results reported here have shown that
the PROLOGINT interpreter, written in Prolog, has a
linear performance (for, at least, the test programs
used in the experiments). PROLOGINT will interpret
Prolog programs by executing a number of PM instructions
which is no worse than a linear factor more than the

number of instructions performed if the program were
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executing directly on the PM. The linear factor

appears to be about 150,

The lowest graphs in Figures 5 and 6 illustrate again
that naive experiments which fail to isolate the
behaviour of PROLOGINT from that of the PM could give

misleading results.

7.3 Conclusions and comments on the Lispkit and Prolog -

interpreters.

The design and assessment exercises reported in this
chapter have revealed two particular results. Firstly
that there exists a purely functional interpreter for
Lispkit which has a linear performance characteristic.
Secondly that there also exists a Prolog interpreter
for (restricted) Prolog which has a linear performance
characteristic. These results are important when
looking ahead to the possible availability of special
purpose hardware, with linear performance characteristics,
to replace the compound virtual machines LM/IBM 370
and PM/IBM 370. On such machines Lispkit and Prolog
programs could be interpreted (without compilation)

in a time proportional to the computational demands

of the program.

The interpreters themselves do not contain any

exciting, innovative techniques, but the experiments
reported illustrate how the performance assessment
methodology can lead to a carefully controlled empirical
exploration of interpretation mechanisms - an

exploration which has barely begun in this chapter.



CHAPTER 8 -~ SUMMARY AND CONCLUSIONS.
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SUMMARY AND CONCLUSIONS.

In this thesis I have made a theoretical and practical
exploration of the problems of assessing the performance
of individual components of interpreter based computer

systems.

0f particular interest are interpreter systems for the
execution of (very) high level language progranms.
Chapters 2 and 3 establish the high level language context
by introducing the functional and logic styles of Lispkit
and Prolog, and by hinting at software pseudo-machine
implementations which are described in more detail in
Appendices B and D. Although the treatment of Lispkit is
quite conventional, the treatment of Prolog is (as far as
I am” aware) innovative in the use of su-expressions to
enable a bottom-up description of the language following
the pattern of the Lispkit description; su-expressions
and the elaboration of unknowns certainly aid in under-
standing the operation of the Prolog Machine, but their
merit in the understanding of Prolog programming is not

certain.

Given that the primary task of performance assessment in
multi-level interpreter based systems is to assess the
performance of individual components (discussed in
Chapter 1 and in the introduction to Chapter 5), Chapters
4 and 5 examine the structure and behaviour of such
multi-level systems and their components. A simple

form of diagram is adopted for distinguishing and naming
individual components in a system (both hardware and
software); interfaces separate machine from progranm,

interpreter from program, and program from data in a
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linear stacking scheme. The Interpretation model then
describes the semantic attributes of systems constructed
from innately active hardware components and passive
program and data texts. However, the Interpretation model
does not enable an active characteristic to be attributed
to software components in isolation from the remainder of
the system, and so the Abstract Execution model is
introduced in which each program or interpreter component
is represented by a function which maps the interaction
Trace at the higher level interface of the component to the
Trace at the lower level interface. The Abstract Execution
model can be related to the Interpretation model, but also
serves to enable the definition of a performance
characteristic as a mapping between statistics of interest
extracted from the upper and lower interface Traces of a
component.

Although the system structure diagrams are adequate for
simple systems, in more complex systems (such as those
incorporating the Prolog Machine with its two interpreter
extension levels) the meaning is not so clear. 1In
retrospect it might have been better to employ simple
directed graphs to make the role played by interpreter
extensions more explicit; a directed arc would represent
the use of a service provided by a lower level component.
For example, the execution of a Prolog program on the PM

would be represented by:

Data

Prolog program

Apply

. Support routines
Prolog Machine

Storage management

IBM 370



This representation, being more explicit, would also

be more amenable to re-working of the Interpretation and
Abstract Execution models, and the definition of
performance, to include interpreter extensions: they are
entirely absent at present, though in Chapter 6 the
performances of several interpreter extensions are assessed
by methods exactly similar to those used for normal

interpreter levels.

Several other aspects of the Abstract Execution model
and performance assessment methodology remain slightly
hazy and would benefit from a closer examination and
tighter specification. I am thinking particularly of
the concepts of interactions, Traces and model
interpretations which seem clear enough to be applied
in Chapters 6 and 7, but which might not be so clear

in other cases.

Nevertheless, even with considerable refinement the
behaviour and performance models can never be more than
guidelines for empirical performance assessment, as there
must remain flexibility in the choice of interfaces and
precise statistics of interest; the models provide a

formal framework within which the'significance of empirical

results is clear.

The guidelines were sufficiently clear to give structure
to practical experiments assessing pseudo-machine and
high level interpreter implementations of Lispkit and
Prolog. These experiments are reported in Chapters

6 and 7. The great attention to detail that was required
in planning and carrying out the experiments, and in

forming conclusions from the results, is evidence of the

Aty



genuine difficulty of making accurate performance
assessments. However, I believe that following the
assessment methodology has yielded specific observations
and results which are unarguably good representations of
the performance characteristics of particular software

components,

The implementations and experiments were chosen not only
for their illustrative properties, but alsoc because the
results obtained would touch on some aspects of current
research questions, such as "How do functional and logic
language compare?'" and "What overheads must we suffer in
interpreting rather than compiling high level language

programs?"

Useful results obtained can be summarised as follows:

1. The Lispkit and Prolog Machines (LM and PM
respectively) can each be divided into two distinct
software components concerned with pseudo-machine
instruction execution and storage management. Both
the instruction execution components have a linear
performance characteristic, but both the storage
management components have non-linear performance
characteristics (though they are similar, for
similar reasons).

2, TFor similar programming examples, the PM must
execute about twice as many pseudo-machine
instructions as the LM.

3. The LM and PM were deliberately constructed using
similar programming technology, and from inspection
of the AlgolW code the average work per PM pseudo-
machine instruction is a small factor (2 to 5, maybe)

greater than that for the LM.

c08.
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Hence for similar programs, and ignoring the influence
of the storage management components, the PM can be
expected to perform about, maybe, 10 times as much
work as the LM, but note that this is only a linear
factor and applies whatever the size of the computation.
This observation is interesting as it may be
conjectured that future computing hardware might
provide assistance with heap storage management and
thus potentially remove (or drastically reduce) the
overhead of garbage collection. 1In this circumstance
both the LM and PM would become linear performance
pseudo-machines, rather than being progressively less
efficient for larger and larger computations.

The interpreters LISPINT2 and PROLOGINT each have a

linear performance characteristic; a program running

-on one of the interpreters suffers only a linear

factor overhead in the number of pseudo-machine
instructions executed (although the factors are rather
large, about 50 and 150 respectively). Again this
suggests that if the garbage collector overheads could
be absorbed into hardware then the entire interpreter
virtual machines could have a linear performance.

The previous observation also supports the conjecture
that direct source code interpretation is not
necessarily worse than compiling for a pseudo-machine.
A source code interpreter written to execute directly
on current hardware would be the composition of a
linear performance evaluation mechanism and a non-
linear storage management, just as the pseudo-machines

are.



210.

The performance assessment methodology has been

valuable in the analysis of a small set of high level
language interpreters, and there are many other similar
cases to which it could be applied. However I hope that
the approach I have outlined to the behaviour and
performance of multi-level systems is sufficiently clear
to guide the investigation of other systems which can be
structured in a similar way. Where the approach is
inadequate I hope that the notions I have discussed are
sufficiently sound and clear to be refined to give a
more satisfyingly complete theory of performance

assessment.



Appendix A.

A brief history of Lispkit.

This appendix is intended to be no more than a sketch of the
origins of Lispkit (Henderson (1980)), and of the influences
on its development, with pointers to the appropriate literature.
Henderson gives a much broader coverage of theliterature, and

of the properties of Lispkit itself.

Lisp kit is a significant variant of the language Lisp described
by McCarthy (1960). Lisp was important for the introduction of
s-expressions as both a data type and program syntax, and for
showing the power of recursion in the processing of the tree
structured s-expressions.

Landin (1964) discusses the modelling of computational
expressions by the applicative structure of Church's lambda
notation(Church (1941)(1952)), and an abstract machine for the
evaluation of such expressions. The applicative structure
defines clearly the scope of local variables qualifying an
expression, and shows the properties of function valued
expressions. The abstract machine is the four register SECD
machine, to which the Lispkit machine in Appendix B is very
closely related. The SECD machine is described by an

applicative program.

Landin (1966) introduces ISWIM, a family of expression oriented
programming languages which take applicative (or "purely
functional",or"nonimperative") structure as fundamental, with
"procedural notions grafted on in such a way as not to disturb

many desirable properties" (paraphrased).
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Hence Henderson's Lispkit language and machine have arisen from
these ideas - a purely functional language operating on
s-expression data structures, with programs represented for
computational purposes as s-expressions, and executed on an
abstract machine of the same family as Landin's SECD machine.
Extensions to the language and machine are made and used with
care - such as the introduction of delayed evaluation, and

nondeterministic constructs discussed by Henderson.
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éggendix B

A_pseudo-machine implementation of Lispkit.

One possible approach to the implementation of Lispkit is

that of designing a special purpose high level "virtual

machine". The Lispkit Machine (LM) described in this

appendix accepts programs in the form of a special purpose

machine language, the primitive operations of which are
at a high level of complexity compared to the primitive
operations of a conventional computer. Lispkit progranms
are compiled into the language of the LM, The semantic
capabilities of the implemented language are those
embodied in the language description and operational
model of Lispkit given in Chapter 2, though that is
certainly not a formal specification. The operational
model is a reasonably accurate reflection of the
behaviour of the LM,

Architecturally the LM is a fairly conventional
sequential machine in which each sequential step
involves a change of state. The state of the machine
is held entirely in 4 registers - this includes program

and data structures.

This appendix outlines an s-expression notation for
Lispkit programs, the high level machine code obtained
by compiling such programs, the machine state
representation, and the state transitions invoked by
each machine instruction. The appendix is not a
complete description of a software realisation for the
LM, though a listing of the machine used in
experiments is included for completeness. Some more
details of the software implementation appear in
Chapter 6, and a much more complete "kit'" is available

in Henderson (1980).
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B.1 An s-expression syntax for Lispkit.

For practical purposes Lispkit is processed on the
computer in the syntactic form of s- expressions.
Below I give the correspondence between Lispkit
expressions, in the notation of Chapter 2, and one
possible s-expression syntax. This particular syntax
is that in which the higher level interpreters of

Chapter 7 expect to receive Lispkit programs.

In the s-expression forms, an asterisk following a
subexpression denotes that the subexpression must also

be represented in s-expression form.

A variable is represented by the single symbolic atom
obtained by converting the letters in the variable into

uppér case only, e.g. x1 is represented by X1.

A constant s-ekpression ¢ is represented by (QUOTE c).
Other expressions:

car(x,y) is represented by (CAR x* y*),
cdr(x,y) is represented by (CDR x* y*),
cons(x,y)is represented by (CONS x* y¥*),
x+y is represented by (ADD x* y*),

x-y is represented by (SUB x* y*),

x*y is represented by (MUL x* y*),

x div y is represented by (DIV x* y*),
x rem y is represented by (REM x* y*),
eq(x,y) is represented by (EQ x* y*),
x€y is represented by (LEQ x* y*),
atom(x) is represented by (ATOM x*),
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if ¢ then x else y is represented by (IF c* x* y*),
)\(xl, .+.)e is represented by (LAMBDA( x1+ el ) e*),
e where xl=el ... is represented by
(LET e* (x1*.ei*)..,),
e whererec xl=el ... is represented by
(LETREC e* (x1*.e%*)...),
f(el1, ...) is represented by (f* e1* .. .).

For example, the naive reverse program:
reverse
whererec reverse (1) = if eq(1,NIL) then NIL
else append(reverse(cdr(l)),cons(car(1),NIL))
and append (11,12) = if eq(l1i, NIL) then 12

else cons(car(l1), append(cdr(11),12))

is represented by
(LETREC REVERSE

(REVERSE LAMBDA (L)

(IF (EQ L (QUOTE NIL)) (QUOTE NIL)

(APPEND (REVERSE (CDR L))
(CONS(CAR L)(QUOTE NIL)))))

(APPEND LAMBDA (L1 L2)

(IF (EQ L1(QUOTE NIL)) L2

(CONS(CAR L1) (APPEND(CDR L1) L2)))))

B.2 Compiling Lispkit programs for the LM.

The compilation process must take a Lispkit progranm,
which represents a function, and produce an s-expression
machine code program for the LM which evaluates the

function, applies it to some arguments and then halts.

I shall give here, in an informal fashion, the code
skeletons generated for each type of expression in
Lispkit. The compiled form of subexpressions will be

denoted by the use of a postfixed asterisk *. A



vertical bar indicates list concatenation.

The compiler maintains a correctly structured environment
of variable names, and the indices required when compiling
a variable reference are obtained by examining the
environment. Treatment of the environment will be
completely implicit in the code skeletons, for

simplicity (Henderson gives a full treatment).

A program p is compiled and the instructions AP and
STOP are added to give the resultant object code:
p* | (AP STOP)

in which p* evaluates the function closure, and AP

applies it to the input argument list.

Individual expression types:

x* = (LD (m.n))
where x is a variable
and m,n are found by inspecting the environment

and locating x,

-(QUOTE e)* = (LDC e},
(CAR e)* = e* | (CAR),
(CDR e)* = e* | (CDR),

(CONS el e2)* = e2* | e1* | (CONS),
(ADD e1 e2)* = ei* | e2* | (aDD),
(SUB el e2)* = el* | e2x | (suB),
(MUL el e2)* = e1l* | e2* | (MUL),
(DIV el e2)* = ei* | e2* | (DIV),
I
|

(REM el e2)* = el* | e2* | (REM),
(EQ e1 e2)* = el* e2* | (EQ),

(LEQ el e2)* = el* | e2* | (LEQ),
(ATOM e)* = e* | (ATOM),
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(IF el e2 e3)* = el* | (SEL e2* | (JOIN) e3+ l (JOIN)),
(LAMBDA (x1 ...) e)* = (LDF e* | (RTN))
and the environment for compiling
e is extended with the variable
names (... x1),
(f e1 ...)* = (LDC NIL) l e1l* | (CONS) I ... l £ l (AP)
(LET e (xl.el)...)* = ’
(oc NIL) | e1* | (cons) | ... | (LDF e* | (RTN) AP)
and the environment for compiling e
is extended with the variable names (... x1),
(LETREC e (x1.el) ...)* =
(DuM LDC NIL) | e1+ ] (c0Ns)| e | (LDF e* | (RTN)RAP)
and the environment for compiling e,el,... is

extended with the variable names (... x1).

For example, the naive reverse program of the previous
section compiles to give the code:
(DUM LDC NIL
LDF (LD (0.0) LDC NIL EQ
SEL (LDC NIL JOIN)
(LDC NIL
LDC NIL LD (0.0) CDR CONS LD (1.1) AP
CONS
LDC NIL LD (0.0) CAR CONS
CONS LD (1.0) AP JOIN)
RTN)
CONS
LDF (LD (0.1) LDC NIL EQ
SEL (LD (0.0) JOIN)
(LDC NIL LD (0.1) CDR CONS
LD (0.0) CONS
LD (1.0) AP
LD (0.1) CAR CONS JOIN)
RTN).
CONS
LDF (LD (0.1) RTN)
RAP

AP STOP)



B.3 The Lispkit Machine.
B.3.1 The registers.

At each step of the computation the entire machine
state is held in 4 registers, S,E,C and D. These
registers are the memory of the LM and contain the

program code, results, and working storage.

The value held by each register is an s-expression,
and hence all operations of the machine are performed
by constructing new s-expressions, and by selecting
subexpressions. In the machine transitions described
below the register values will be represented as
s~expressions, but with variables naming whole
expressions or subexpressions in order to be able to

identify identical values before and after transitions.

The general roles of the 4 registers can be described

as follows:

The S register ("Stack'") is used for temporary working
storage in the construction of data structures
required by the machine. S is a list of values, and
the head of the list corresponds to the head of the

stack.

The E register ("Environment") contains a list of

lists corresponding to the environment of defined values
in which Lispkit expressions are evaluated. Each

member of the inner lists is a defined value, and each
inner list contains all the values defined as a group
(in a where expression, whererec expression or function

application). Inner lists nearer the head of the
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environment correspond to inner levels of definitions.
E grows and shrinks during a computation in such a way
that the "current local variables" are always at the
head of E. Variable values in E are accessed by using
an ordered pair of indices generated when the progranm
is compiled. The ordered pair (x.y) locates the value
which is the (y+1)th member of the (x+1)th inner list
of E.

The C register ('"Control") contains the sequence of
instructions currently being executed. The instruction
at the head of C is the next to be executed. New
instruction sequences are loaded into C primarily at
function application and conditional expressions. (Note,
from the compiler code skeletons in this appendix, that

where and whererec expressions are executed like function

applications).

The D register ("Dump") maintains a record of
instruction sequences suspended at function applications
and of the corresponding S and E values which must be
restored when the current function returns its result.

D is also used during conditional expression evaluation.
B.3.2 The state transition rules.

There are three phases of execution to be tackled here.
Firstly the LM must be set up with the code of the
program to be executed, and with its data. Secondly

the transitions which accomplish the computation

must be described. Finally the result of the computation

must be extracted from the final state of the machine.
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Each state of the LM will be given as an ordered
quadruple (S,E,C,D) in which the items correspond to

the appropriately named registers above.

Initially the input to the machine consists of an
s—expression, fn, which is‘a machine language program,
and a list of s-expression values, args, forming the
input arguments to the program. The program fn contains
code to evaluate a closure, to apply the closure to
arguments at the head of S, and then to halt. Hence

the initial state of the LM is

((args), NIL, fn, NIL)
i.e. S =cons(args, NIL) E = D = NIL C=fn

The computation proceeds by executing LM instructions
from the head of C. The LM has a repertoire of 21
instructions represented by the mnemonics LD,LDC,CONS,
CAR,CDR,ADD,SUB,MUL,DIV,REM,EQ,LEQ,ATOM,SEL,JOIN,LDF,
AP,DUM,RAP,RTN,STOP. Each instruction determines
exactly one of the following transition rules, in

which the previous and next states are shown on the left

and right sides of a right pointing arrow, —.

To load the value of a variable or constant onto S:
(s,e, (LD (m.n).c),d)—>((x.s),e,c,d)
where x is obtained from e:
e=( . ( o.-X..-) .--)
—
m n

items items

(s,e (LDC x.c),d)—((x.s),e,c,d)



221.

List construction and dissection on S:

((a b.s),e,(CONS.c),d)>D(((a.b).s),e,c,d)
(((a.b).s),e,(CAR.c),d)—=>((a.s),e,c,d)
(((a.b).s),e,(CDR.c),d)=>((b.s),e,c,d)

Arithmetic on S. Note that the second operand is at the
head of S: T
((x y.s),e,(ADD.c),d)—»((z.s),e,c,d) where z=y+x
((x y.s),e,(SUB.c),d)—9((z.s),e;c,d) where z=y-x
((x y.s),e,(MUL.c),d)—>((z.s),e,c,d) where z=y*x
((x y.s),e,(DIV.c),d)—=>((z.8),e,c,d) where z=y div x
((x y.s),e,(REM.c),d)—>((z.s),e,c,d) where z=y rem x

Predicates testing the head members of S:

({(x y.s),e,(EQ.c),d)=>((b.s),e,c,d)
. where b=T if x, y are equal atoms

=F otherwise

((x y.s),e,(LEQ.c),d)—>({(b.s),e,c,d)
where, assuming x and y are numbers,
b=T if y «x

=F otherwise

((x.s),e, (ATOM.c),d)=>((b.s),e,c,d)
where b=T if x is an atom

= F otherwise

Conditional expression branching and rejoining:

((b.s),e, (SEL c1 c2.c),d)—>(s,e,csel,(c.d))
where csel=cl if b=T

=c2 otherwise

(S,e,(JOIN))(c-d))Q(S)e’C’d)

Constructing a function closure:

(s,e, (LDF body.c),d)—)(((body.e).s),e,c,d)



Applying a function, or ealuating an expression

qualified by where:

(((body.eclos) args.s),e, (AP.c}),d)
—9(NIL,(args.eclos),body,(s e c.d))

Constructing a recursive environment, and evaluating an

expression qualified by whererec:

(s,e,(DUM.c),d) —>(s,(x.e),c,d)
where x is any value (NIL would be
appropriate)
(((body.eclos) args.s), eclos,(RAP.c),d)
—>(NIL,eclos', body,(s e c.d))
where e=cdr (eclos)
and eclos' is obtained from eclos by
modifying the car field of
eclos to be args.
Informally:

eclos=(x.e)=(args.e)=eclos’

Réturning the result from function applications:
((x.s1), el1,(RTN),(s2 e2 c.d))—>((x.s2), e2,c,d)

Terminating the computation and returning the result:

((x.s),e,(STOP),d) = No successor state

When the computation has terminated in the state
({(x.s),e,(8TOP),d)

the result which is extracted from the machine is the

value of x from the head of the stack S.
B.4 An AlgolW software realisation of the LM.
The following pages contain a listing of the AlgolW

implementation of the LM which was used for the

experimental work reported in this thesis.

222,



ALGOL w : LISP.MACHINE DEFINITION CF L 1ST STORAGE AREA 15€1

JUNL
CCou 1- BEGIN
cucl —-
uoul -- INTEGER FPAGES.NO_UF_ELCMS,NO_CF_SYNES,
0001 -- FIRST_LLEN,CAST_cLEM,
0vo1 -— FIRST_SYMo,LAST_SyMB;
9002 == WRKITE(*"NC. CF PAGLS, NO. CF (CNS wy . S
CUC4 —— READL PAGESINC. CF_ELENS 35 (CNSES/MUMES 2923 LOCONTRCLLZ):
cCCH -— IF (340%(FAGES=G))<NC_OF_LLENMS THERN
cgc; 2~ bEGlgl¥CTDFELLtNS:=340'(FAG:E-C);
9007 -- " ET"NCe OF CCNS NLMBE CRE - . = 1
0008 {0CCNTRTL(Z) RS RINRS R REEAT KEOUCED o, a0, 0H_FLnS):
000% END;
Uo10 —- NO_OF _ 2000; X%cP OF SYMBSX
0011 -- FIRST_ELE LAST _ELEM:=FIRST_ELEN+NO_OF_ELEMS—1:
%%i’ -— FIKST_SYMO:=LAST _ELEN#1; LAST_SYME:=FIRST_SYWNE4NC OF SYMBS—1;
e = _OF_5
0015 2- BEGIN
00lu ——
83}? - INTEGER NIL,NEXT_ELEN,NEXT_S¥ME;
0017 -— INTEGER ARRKAY FLAGSyCARyCLR(FIRST_ELEM:IZLAST_ELEM);
V1B —— STRING(12) ARRAY SVAL(FLlkST_SYNME:ZILAST_SvyMe)] '
€Cc19 -- =
0019 —-—
0020 3-
ggsﬁ ot =SYMBI"NIL™);
= ELEM DC CAR =
gocs =5 3 (1):=1¢1;
0020 —=—
0020 —— INTECER FROCEOURE SIMFLECCNS(INTECER VALUE NE#CAR,n~EwCOK);
V027 3-— BEGIN INTECER TEMP; XCALY LSED IN GETEXP2
0029 —— IF NEXT_ELEM>LAST_ELEM TFHEN
0029 4— BEGIN WRITE("CCNS/NUNE SFACE OVERFLCw DURING S—EXP INPUT™);
0021 —-— ASSERT FALSE;
c0z2 -4 g ENC;
0033 -- TEMFI=NEXT_ELEN; NEXT_ELEM: (NEXT_ELEM) ;
V03Y -— CAR(TENP):=NEWCAR: CLR(TEMF EwWCDRT FLAGS(TcMM):=1;
0C38 —— MF
0czB -3 END;
0C:s ——
cc39 -- INTECGER PRCCEDURE CCNE (INTEGER VALUE NcwCAkaNEWCOR);
0040 3- BEGIN INTECER TENF;
0042 -- IF NEXT_ELEM>LAST_ELEM THEN GAREAGE_COLLECT:
0043 -- TEMF:I=NEXT_ELEM; NEAT_ELEMI=CAR(NEXT_clcM);
0045 —- CAR(TENF):=NEWCAR; CCR(TEMF):I=NEWCDR; FLAGS(TEMP):I=1;
TENP
0C48 -3 END;
0049 -- INTEGER FRCCEDURE SIMFLENUME (INTEGER VALUE NEwhUho);
0020 3- BEGIN INTECER TEMF; ACNLY LSED IN GETEAPZ
00s2 -- IF NEXT_ELEM>LAST_ELEM TFEN
0052 4-— BEGIN WRITE("CCNS/NUMG SFACE CVERFLOw UURING S—cXP INPUT™);
ASSERT FALSE;
END;
0050 == TEMF:=NEXT_ELENM; NEXT_ELEM:=CAR(NEXT_ELEM);
0058 -- CARITEMF)I=NEWNUMB: FLAGS(TENF):I=2;
0Ceo —— TENF
CCou -3 END;
GCel ——
00cl -- INTEGER PRCCEDURE NUMLE(INTEGER VALUE NEWNUME)D;
00€E2 3— BEGIN INTEGER TENP;

IF NEXT_ELEMDLAST_ELEM THEN CAREAGE_COLLECT;
TLMP :=NEXT_ELEM; ~NEXT_ELEM:I=CAR(NEXT_ELcM);
CAR(TENF):=NEWNUMB; FLACS(TENF)I=2;
TENF :

END

(=]
|
|

-- INTEGER FRCCEDURE SYME(STFING(12) VALUE NEWSYME);
3- BEGIN INTECER TEMF;

-— IF NEXT_SYMB>LAST_SYMB THEN

4= BeGIN WRITE("SYNMECL SFACE CVERFLOW™):

- ASSERT FALSE;

END;

-— TEMPI=NCXT_SYMB; NEXT_SYNEI=NEXT_SYMB+l;

-- SVAL(TEMP)T=NEWSYNB;

-- TEMF

~CcCCNCULL=-C
1
&

ICAL FRCCEDURE 1SCCNS(INTEGER VALUE PTR);

S LOG ey
FIRST_ELENC=PTR AND PTRC=LAST_ELEN AND AOS(FLAGS(PTR)I=1:

nCo omoccoccoco
mmm mmENSSsIsgaN

LCGICAL FRCCEDURE ISNLNBUINTEGER VALUE PTK); . ey
= FIRST_ELEMSK=PTR AND PTR<=LAST_LLEWV AND A0S (FLAGS(FTR))=2;

~m
s wh=
]
|

- LO CAL FRCCEDURE ISSYMOL EGER VALUE PTk);
<= T SY B

GI
i FIRST_SYMIK=FTR AND FTR

nooGc ©oCc

e LLGICAL PRCCEDURE ISELEMUINTEGER VALUEC PTr )
- FIRST_cLENK=FTR ANO PTR<=LAST_ELEMNS

C
Q
C
c
G
C
C
C
C
v
C
c
C
0
C
0
0
0
C
0
C
0
c
C

~noCC

{\V]
~n
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CCEY
ocel

0051
0osz2
0usu
ccse
00sSu

e e e 0 e s €

Ccooco0COOCpoCOCOOC coCoOCOoOCOCo
NROARNNANN = = = e 00 N~OoO00O0CoOoV
NNCUEWOCONNUURRNNCT GNNUWWL=O
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e s e
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N nN=ONNULoCa
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-

LISP.MACHINC CARUAGL CCLLECTICAN

1SE1 JUNc
INTEGER ARFAY STACK(1::1000); INTECER ST_PTR;

PROCELUKE CARBAGE_CCLLEC
BEGIN FARK_FRCHMI(S5); MEIRK
MARK_FRCM(D); MARK_FR

T

:
_FFCNM(E); MARK_FRONM :
Criwd; SR I

NEXT LLtﬁ:=LAST ELEM+] §

FOR T1:=FIRST_ELEM UNTIL LAST_ELEM 0O
1F FLAGS(()(O THEN rLACS(lj::AdS(rLAuS(l)}
ELSE UGEGIN CAR(1):=NEXT ELEM;
NEXT_ELEM:=I; END;

IF NEXT_ELEM>LAST_ELEM TFEN
BEGIN WRITE(YCCNS/AUNDG SFACE CVERFLCw"):
ASSCRT FALSE; END; SRR

END CARBAGE_COLLECT;

PROCLULRE MARK_ FFCM(I TECE V

E FTR);
BEGIN ST_F1R:=2; ACK( 1 ; =

ALL
PTR
WhILE €1_PTR-=1 DC
BEGIN ST_PTR:=ST_PTR-1; PTR:I=STACK(ST_PTK);
WhILE™ 1SCONS(PTR) ANC FLACS(FTRJ)>0 DO
DECLIN FLAGS(FTR):=—1;
1F ST_PTR>1000 TFEN
BEGIN wRITE("CAREACE CCLLECTOR "
AN NELTE (S cln Ok STACK GVERFLOW");
END;
STACK(ST_PTR):
FTIR:I=CAFRI(PTR);
END;
IF ISNUMB(FTR) THEN FLAGS(FTR):=-2;
END;

SCLR(FTR); ST_PTR:=ST_PTh+1;

END MARK_FhRCWM;

LISP«MACHINE INFUT AND OUTPUT CF S—EXPRESSIUNS 1S81 JUNE

STRING(12) TCKEN,1YPC;

PROCECURE S£CAN;
BEGIN GETTCKEN(TOKEN,TYPE); IF TYPE=“ENDFILE"™ ThEN TCKoNI=")*" £NO;

FPROCEVDURE CETEXP(INTECER FESULLT E);
IF TCKEN="(" THEN
BEGIN SCAN; GETEXPLIST(E); ASSERT TGKEN=")"; SCAN END ELSE
1IF TYPL="AUVtRIC" ThEN

EEGIN E:=SIMPLENUME (TCINTECER(TOKENJ); SCAN END ELSE
BEGIN E:=57N5(TCKCN) SCAMN END;

PROCECULRE CETEXPLISTCINTECER RESULT E);

BEGIN E2=SIMPLECCNS(0,0); CETEXF(CAR(E));

“ THEN EECIN SCAN; CGETEXP(CDOR(E)) END ELSE
ThHEN CLsR(E):=NIL ELSE GETEXPLISTI(CORI(E)) END;

“XP(INTECER VALUE E);
REN FUTTCKeMN(SVAL(E)) ELSE
FEN PUTTOKEN(TCSTRING(CAR(L))) ELSE

hILE 1>ccn5(6) DO
BEGIN PLTEXP(CAR(E)); C:=CDR(E) END; 3
IF 1SSYMB(E) ANC SVAL(E =#NJL" THEN ELSE

EEGIN FUTTCKEN("«"); FUTEXP(E) END; PUTTCKEN(*™)'") ENU;

INTEGER FRCCEDURE TOINTECGER(STRING(12)VAL
BEGIN STRING(1)D; INTEGER [4Si LCCICAL Nc

IF T(O|1)="-" ThEN EcGIN NEG:I=TRUE; 1l:=

ELSE UEGIN NEG:=FALSE; I:=0 END; C:2=T(I

WHILE C-=" * DO

SEGIN S:=10%S+(CECODE(D)—CECOCE(™0")); 1:=1+13

IE 1511 TEER Be=N moELE s=TCE]1Y3

CND;

IF NEG THEN -S ELSE S
END G
STRING(1Zz) FROCEDURE TCSTRINGIINTEGER VALUE 1)
IF 1=0 ThEN “0" ELSE )
UEGIN STRING(12)T; LOGICAL NEG; INTEGER Li

NEG:=1<C; Ti="

l:=ABS(1);L:=2¢TFUAC‘TE;LC((éE-l));

FOR J:= L—1 STEF =1 UNTIL 1 i ¥

aEuxn 7(51§)::couc(L:cocE("o")<1 REM 10); 1:=1 DIV 10 END;
IF NEG TREN T(O[1):=n=%] 7
END

PROCECURE INIT_SYRTAX; SCAN;

o

n



ALGUL w : LISF.MACHINE INFUT/Z/CLTPLT OF TCKENS 1SE1 JUNE

0194 —~-— STRING (1 )ARKAY INBUFFER(1::Z25€); INTEGE -

e == LOGICAL ECF: < 0 GER INBUFFTRINBUFEND;

DIST ==

QST = PROCELURE CETCHAR;

0168 3~ BEGIN IF INBUFPTR>INELFENL ThEN

0155 4— BEGIN GETLINE(INEUFFER ¢ INELFEND ECF )}

0201 -4 INBUFFTR:=1 ENC;

3582 =3 CRI=INBLFFERIINEUFPTR) ; INEUFFTRI=INEUFPTR+1 ENC;
0

V204 --— STRING(1)CH;

0203 ~=

020% —— PROCECLKL CETTCKCNISTRING (1Z)JRESULT TCKEN, 1YPEJ;

0200 3- BEGIN TCKENI=" " WHILE-ECF AND (k=" % DO GETCRAR;

209 == IF EUOF THEN TYPE:="ENDFILE"™ ELSE

0?0) e al IF "O"<=CF AND CH<="9" OR CF="-% ThEN

BEGIN INTECGER I; TYPEI="NUMERIC";
TCKEN(U]1):i=CH; 13i=1; CETChAR;
WhiLc "0%"<=CH AND Ck<=%6" (CQ
BECIN ASSERT I<12; TCKEM1]|1):=Ch; Il:=1+1; CETChAR ENO
CAD ELSE
IF "A"<=Ch AND Ch<="2" THhEN
BEGIN INTEGER I1; TYPE:=“ALFRANUNERIC™;
TCKEN(O]1):2=CH; 1:=1; GETChAh;
ARILE "A%<K=CH AND Ch <="S" CGC

BEGIN
ASSERT 1<12; TCKEN(I|1):=Ch; 1:=1+1; GETCHAR
ENC
END CLEE
BEGIN TYPE:="DELINITER";
BEGIN TCKEN(O|1):=Ch; GETCHAR END &NU ENC;
STRING(1)ARRAY OUTBUFFER(1::€0); INTEGER OUTUUFPTR;

PRUCEULRE FUTCHAR(STRING(1)VALUE ()3
BEGIN 1F CLTEUFPTR=80 THEM FCRCELINEOQOUT;
OUTBUFFTR:=0UTBUFPTR+1; CUTEUFFERIOUTBUFFTR):=C ENU;

PROCECUKE FORCELINECUT
BEGIN FUTLINEIOUTEUFFER,OLTBLFFTR); OUTBUFPTR:I=0 END;

PROCECULRL FLTTOKEN(STFING (12)VALLE T);
BEGIN INTEGER LEN; LENI=1Z23
wHILc LEN>O0 AND T(LEN—-1]1)=" * CO LEN

s=LEN-13;
FOR 1:=0 UNTIL LEN=1 DC FUTCHAR(T(1]1));

PUTCHARL™ ") END;

PROCECLRE INIT_LEXICAL
BEGIN GETLINE(INBUFFER
OUTELFPThI=0 ENLC3

INEUFENDLECF); INBUFPTR:=1: GLCTCHAK:

ALGOL W : LISF.MACHINE  INFUT/OLTPLT OF LINES 1SE1 JUNE
0258 -- PROCECURE CET(STRING(I1)ARRAY L INE(%);INTEGER RESULT LEN; y
0200 'INTEGER VALUE MODsLNUMsDEV);
02¢cl FURTRAN “READ";
0262 --
02¢2 -- PROCECULRE FUT(STFRING(1)ARRAY LINE(#); INTEGER VALUE LEN.MOD.
02¢3 -- LNULN,CEV);
02éa —— FORTRAN "WRITE™;
opds ==
2 : RE GETLINE(STRING(1)ARRAY LINE(#);INTEGER RESULT LeNj
0se? foautugnt, St LOGICAL RESULT EOF);
0ze8 3- BEGIN LINE(1):=" %; GET(LINE JLEN4C40,0);
087Y == EOF :=R_COLE>O0;
272 ~= BITSTRINC(LEN) ShR loli
0273 -3 END;
0274 —=
0274 —= PROCEDURE FUTLINE(STRING(1)ARRAY LINE(#); INTEGER VALUE LEN);
Q276 == PUTI(LINC yNUMBER(BITSTFING(LEN) ShL 1©)»0+0+1)3

no
[\%]
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Q277
0270

3=

276
€279
czel
C2E0
Czeb
[2-2-)
0ZEQ
028/
0261
0293 55
gz2s¢e )
VJ00
0304
0306
0307
0309
0311 -5
0212
0315 S—
0318
03219
Y22 =5
0323
0325
0325 -5
0327
0330
0235
0330
0337
0049 S-—
0342
0343 S5—
0344
0344
0344
0J44
0Jd4u
0340
0345
0452 5L
0Jd€5
0354
0zel
03el
03ce
03¢c 3
03¢5 15
0Je7
0Jde9
036
vJcs

0370
0371
U374
0270
037¢c
C377

0377
U370
0379
0479
V37y
0379
0379
V379
RV
0Jao

ALGOL W

0381
osee
03EL
03e7
Vogb
0350
0351

g
=

LISPeMACHINE EXECUTICN CYCLE

INTECER SsbsColon;
INTEGER
BEGIN INTECEK TsF;
S:I=CCNS(ARGS,NIL); E:=NIL;
TI=SYNE("T"); Fi=SYMB(%F®);
CYCLE:CASE CAR(CARI(C)) CF
BECIN
BECIN LC i WISLCOKUP(CAR(
S:=CONS(wyS);
BECIN LLC S:I=CONES(CAF (CC
BEGIN LDF wi=CCNSE(CAR(CLC
BEGIN AF D:=CUNS(CLFR(C)
E:=CCNS(CAFR(CC
S:i=NIL END;
BEGIN RTN & S:=CUNS(CAFR(S5)
E:=CAR(CDK (L))
D:=CDR(CDOR(CCF
BEGIN CUM I £:=CONS(NILsE)
BECIN RAP : D:=CONS(COFR(C)
EI=COR(CARI(5))
S:i=NIL END;
BEGIN SEL : D:=CCNES(CCR(CD
IF SVAL(CAK(S)
C:=CAR(CLCR(CCR
BEGIN JUOIN: C:=CAR(D); C:i=
BEGIN SI=CCNS(CAFK (C2
BEGIN o S:=CONS(COFR(C2
BEGIN ATLM: IF ISSYMB(CAR(
SI=CUNS(TyCLR(
BECGIN CCNS_:w:=CONS(CAFR(5)
C:=COR(C) ENC;
BEGIN EG_ ¢ IF ISSYME(CAR(
SVAL (CAR(S))
ISNUNE(CAR(S
CAR(CAR(S))=
ELSE S:=CONS(F
BECIN ADD : S:=AKITH(1,S):
BEGIN SUB ¢ S:i=ARITF(2+S):
BEGIN MUL ¢ S:i=ARITF(34S)
BEGIN CIV_: S:i=ARLITh(4+S);
BEGIN REM_: S:=ARITh(5:5);
BECGIN LEG : IF CAR(CAR(CCR
Si=CCNS(T+CLh(
C:=CDRI(C); ENC
BECGIN STOF: GO TO ENDCYCLE

END; GCTO CYCLE;

LENODCYCLE : CARI(S)
ENO

INTEGCeR PROCEDURE LOCKUP(INTE
BEGIN FOR I 1 UNTIL LEVELS C
FOR 1 ITEMS

1 UNTIL

L}
END LCCKUFR;

Ne NON

.

U NO~~T

L el NN

- -

G
G

CC w:

1SE1 Junc

FRCCEDURE APFLY(INTECGER VALUE FN,ARGS) ;

Ci=FN; Di=nNIL; w:i=NIL;
fF 1) CARICCRICARICDRICII I D 2D S
.= chNC;
(C LRICLR(C)) ENOD;
(C CNS(myS); Ci=CURICDRICJ) ENU;
D) s0); DI=CUNS(CDR(CORIS))su);
{< S)))i Ci=CAR(CARI(S) ),
E)sC)3;
NS(COR(COR(S))I 40
C (S))i Ci=CAR(CAR(S)),;
(C
=u =CAK(CDR(CJ)) ELSE
C) S:=CUR(S) END;
Uk ENLC
(s OR(S) )5 CI=CUR(C) ENO;
(S CR(S)); C:i=CDR(C) END;
)) LSNUMB(CAR(S)) ThEN
)) E SI=CCNS(F4COR(S))s Ci=CORIC _ENUS
CA R(S)J); Si=CONS(wsCUR(CURI(S))
)) ISSYMo(CAR(CDR(S))) ANU
Sv CAR(CUR(S))
) ISNUMEB(CAR(CCR(S2)) ANU
AR RICUR(S))) ThEN S:=CONSITsCORICLUNIS)))
co KES))) s CI=CORIC) CENO;
C REC) ENU;
C R(C) ENUS
C R(C) ENC,
C R(C) ENU;
C R(C) END;
S) CAR(CAR(5)) THEN
Ch ) ELSE S:=CONS(FsCURICOUR(S5)));
END;
ER VALUE LCVLL DR
CCR(w) .

Chklm);

INTEGER PROCEDURE ARITH(INTEGER VALUE OPsS);

UtuiT=CAs: CF OF XNCTE THAT AN IVAL IS SELECTED dY A CAR FILELLX
( NUMB(CAR(CAR(COR(S))I+CAR(CAR(S)I) ),
NUMb (CAR(CAR(COR(S)))=CAR(CARIS)) )
NUMB(CAR (CAR(CCR (S)))*CAR(CAR(S)) ),
NUMB(CAR(CAR(CCR(S))) LIV CAR(CAR(S)I )
NUMG( CAR (CAR(COR(S))) REM CAR(CARI(S)I) )i
CCNS(WsCLRICDR(S)))
END
LISFeMACHINE CCNTROL OPcRATICN 1581 JUNE
ARGS,RES; "
i?f%‘fﬁxﬁth; INIT_SYNTAX; INIT_LIST_STORAGES:
GETEXP(FN); GETEXPLIST(ARGS);
RES:=AFFLY(FNyARGS)
PUTEXF(RES); FORCELINEOUT;
END MAIN_cLCCK;
ENC.

(S
(]



227.

A brief history of Prolog.

This appendix is a brief sketch of the origins and development
of my personal dialect of Prolog and its implementation, as
described in Chapter 3 and Appendix D respectively. I will
provide a few signposts into the literature of logic
programming. Kowalski (1979) tackles the application of logic
methods to problem solving in great depth, and also provides

an extensive bibliography.

The Prolog language and its semantics arise from the notions of
theorem proving as applied to a restricted form of sentences in

the first order predicate calculus.

A problem.is represented as sentences, or statements, in the
quantifier free clausal form of logic (Nilsson (1971)). The
solution of the problem is found by discovering an inconsistent
set of instances of the statements. Robinson (1963) describes
the '"combinatorial explosion" which, in general, hampers the

search for an inconsistent set of instances.

The use of unification with the resolution inference method
are presented in Robinson (1965) and (1967), with the emphasis

on a more directed search for inconsistent sets of instances.

Kowalski (1974) noted that the Horn clause subset of sentences
has a useful interpretation as procedures describing relations
or predicates over symbolic data structures, and that problems
expressed in this form were programs which could be executed

by an efficient, top down, theorem prover.
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Horn clause logic thus adopted the status of a prototype
for a programming language ("Prolog"), and specially
designed interpreters and compilers appeared (for example
Roussel (1975), Warren (1977), and Clark (1979)). However,
each of these systems incorporates extra features to
overcome fundamental limitations of programming in the Horn
clause style. These include: evaluable predicates (to
avoid the necessity of defining arithmetic and other basic
relations explicitly), "cut" (to provide explicit control
of the backtracking of the theorem prover), negated
antecedents in clauses, side effects (allowing a program

to change the clauses from which it is built), and control
flow annotations (to guide the activity of the theorem

prover). .

The Prolog language of Chapter 3 is a restrained extension
of Horn clause programming but compatible with enabling a
reasonable set of interesting applications. Simple evaluable
("primitive") predicates are provided in a limited form.
Negation of antecedents is important and has been included,
but its implementation is problematical. Negation steps
outside the Horn clause formalism, back towards general
sentences, and the semantics of negation, in the context
of the efficient Horn clause theorem prover, must be
considered carefully if spurious, incorrect results are to
be avoided (Clark (1978)). Warren's Prolog and Clark's
IC-Prolog differ in their treatment of negation. I have
chosen to follow IC-Prolog's safer scheme, by disallowing
the continuation of a computation when theory shows that
the outcome of the execution of a negation is inconclusive
in determining success or failure. My dialect of Prolog

is also constrained to manipulating symbolic expressions
built using the s-expression dot constructor - but clearly

other constructors can be simulated by appropriate s—-expressions.
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The Prolog implementation described in Appendix D has been a
deliberate attempt to follow the abstract machine st&le of
Landin (1964), as discussed in the context of Lispkit in

Appendix A.



APPENDIX D. A PSEUDO-MACHINE IMPLEMENTATION OF PROLOG.
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A pseudo-machine implementation of Prolog.

The implementation of Prolog described here follows the same
design principles as the Lispkit machine in Appendix B.

The implementation is a high level Prolog Machine (PM)

which requires that Prolog programs be compiled into a
special purpose intermediate machine.language before
execution. The semantic capabilities of the implemented
language are those outlined in the language description

and operational model of Chapter 3, though that is not a
formal specification. The operational model is a

reasonably accurate reflection of the behaviour of the PM.

Architecturally the PM is a fairly conventional sequential
machine in which each sequential step involves a change of
the machine state. The state of the machine is held in

9 registers - this includes program code and data structures.

I have chosen to follow the Lispkit machine paradigm in
the design and presentation of the PM; the sequential
architecture is a straightforward style to handle.
Although conceived and designed independently, the
sequential machine style is very similar to Warren's
Prolog implementation (Warren (1977)). Warren compiles
Prolog programs into the machine language of the DEC10
computer, although the code skeletons are based on the
microprograms for high level machine operations. I
choose to maintain the integrity of a single high level
machine, and to isolate its states and transitions
explicitly. I shall use a style of notation for

presenting the transitions of the PM very close to that
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used for the LM, though it may not succeed in clarity
as well as in Appendix B since the operations of the

PM are essentially more powerful than those of the LM.

This appendix outlines one possible s-expression syntax
for Prolog programs, the code produced when compiling
such programs, the machine state representation, and the
state transitions. The appendix is not a complete
description of a software realisation of the PM, but the
listing of an AlgolWw realisation is included. Some more

details of the AlgolW PM are given in Chapter 6.
D.1 An s-expression syntax for Prolog.

For practical purposes Prolog is processed on the computer
in the form of s-expressions. Each Prolog construct, in
the notation of Chapter 3, is given a corresponding
s—expression representation. This particular syntax is
that in which the higher level interpreter of Chapter 7
expecfs to receive Prolog programs. The syntax is similar
to that employed by the MicroProlog system implemented at
Imperial College and described in McCabe (1980).

One trivial extension to the s-expression notation is
employed below, This is the distinguishable symbolic
atom consisting of a single apostrophe '. It is used
as the "keyword" introducing a constant s-expression

in én su-expression pattern. ' thus corresponds to
QUOTE in the s-expression syntax of LIspkit, but I hope
that it is less obtrusive as it is to be used within

patterns.

In the s-expression forms a subexpression postfixed by
an asterisk * must also be represented in s-expression

form.
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Each variable and predicate name is represented by the
single symbolic atom formed by converting letters from

lower to upper case, e.g. x, p are represented as X, P.

Su-expression patterns used as formal or actual arguments:
Variables: Represented by upper case form.

Constant su-expression (not containing variables): c¢ is
represented by ('.c) with the exception of NIL, which is
allowed to represent itself, for convenience.

Constructed expressions: (x.y) is represented as (x*.y*),

Conditions calling defined predicates:

p(al, ...) is represented as (p* al* ...).

Conditions calling primitive predicates:

add (x,y,z) is represented by (ADD x* y* z*),

sub (x,y,z) is represented by (SUB x* y* z*),

mul (x,y,z) is represented by (MUL x* y* z*),
div (x,y,z) is represented by (DIV x* y* z¥),

rem (x,y,z) is represented by (REM x* y* z%*),

atom(x) is represented by (ATOM x*),

eq (x,y) is represented by (EQ x* y*),

leq (x,y) is represented by (LEQ x* y¥*).

Negated conditions:

*4c is represented by (NOT.c*),

Predicate definitions: Collecting together all the cases

of predicate p, and naming the cases, stripped of the

name p, by cal, ca2, etc:

p( ... ) €... or p cal is represented by (p* cal* ca2* ... )
pl ...) €&... p ca2

where each of the cases is represented as follows:
(al, ...)é— 1is represented by ((al* ... )),
(al, ...)&— c1, ... is represented by ((a1* ... )IF ci1* ...).
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The overall program structure, where the cases for the
defined predicates have been collected together as pi1

p2, etc:

‘query (a1, ... )e&—c1, ...

pl

p2 ...

is represented as ((QUERY (al* ... ) IF ci1* ...)
WHERE
pl* p2% ..., )

For example, the naive'reverse program:
query (11,12) € rev(1l1l, 12)
rev (NIL,NIL) €
rev ((x.11), 12)«€- rev(11,13), append (13, (x), 12)
append (NIL,1,1)&~
append ((x.11), 12, (x.13)) &append (11, 12,‘13)
is represented in the s-expression syntax as:
((QUERY (L1 L2) IF (REV L1 L2)) WHERE
(REV ((NIL NIL))
((x.L1) L2) IF (REV L1 L3) (APPEND L3 (X) L2)))
(APPEND (( NIL L L ))
((( x.L1) L2 (X.L3)) IF (APPEND L1 L2 L3})))

D.2 Compiling Prolog programs for the PM.

The compilation process must take a Prolog program, which
is a list of predicate definitions with a distinguished

query predicate, and produce an s-expression machine code
program for the PM which contains the compiled definitions

and instructions to invoke the query predicate.

I shall give here, in an informal notation, the code

skeletons generated for Prolog constructs. The compiled



form of syntactic items will be denoted by the use of a
postfixed asterisk *. A vertical bar l indicates list

concatenation.

When compiling a predicate case the compiler maintains
an ordered list of the local variables used in the case.
The indices required for ALDV and FLDV instructions are

computed from this list.

A program consisting of a query case'q and a list of
predicate definitions p1, ... (each of which is a group

of one or more cases):

((QUERY.q) WHERE p1 ...)* =
((INVOKE 0 HALT) (QUERY q)* pi* ...).

Note that the query has been changed to a single case
predicate (QUERY q)* to be compiled.

A predicate definition with cases c1, c2,
(p ¢1 c¢2 ...)* = (TRYCASE ci1* TRYCASE c2* ... ENDP).
Individual cases without and with conditions:
((a1 a2 ...))* = (pcL m) | (a1 a2z ...)* | (UNIFY ENDC)
((al1 a2 ...) IF cl c2 ...)* =
(pcL m) | (a1 a2 ...)* | (unzFY)|er#]...|(ENDC)
where m is the number of local variables in the case, and

(al a2 ...)* must be compiled as a formal argument list.

Formal argument list:
(al a2 ...)* = al%* | az¥* | I (FLDC NIL FCONS ... FTOP)
where the number of FCONS instructions is equal to the

number of arguments al, a2,

Individual formal argument patterns:
Variables: x* = (FLDV n) where n is the index of x in
the local environment

(numbered from zero).

234. |
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Constant expressions c¢* = (FLDC c).

Constructed expressions (x.y)* = x*l y*' (FCONS) .
Conditions, not negated and negated:

(p a1 ...)* = (a1l ...)*,lp*

(NOT p al ...)* = (al ...)* |(NSUCCTRAP)| p* ‘(NFAIL)

where (a1l ...)* is compiled as an actual argument list,

and p* as a predicate name.

The predicate name in a condition, either a defined or

primitive predicate:

defined* = (INVOKE n) where n is the index of the
predicate in the global list of
definitions (numbered from zero).
prim#* = (PRIM prim)where prim specifies the primitive

action to be performed.
Actual argument list:
(a1 a2 ...)* = a1+ | a2% [ ... ] (aLDc NIL AcoNs ...aToP)
where the number of ACONS instructions is equal to the

number of arguments al, a2, ...

Individual actual argument patterns:
Variables: x* = (ALDV n) where n is the index of x in
the local environment

(numbered from zero).

constant expressions: c¢c* = (ALDC c).

Constructed expressions: (x.y)* = x*l y* l(ACONS).

For example, the naive reverse program from the previous

section compiles to give:

((INVOKE O HALT)
(TRYCASE (DCL 2 FLDV 0 FLDV 1 FLDC NIL ECONS FCONS FTOP

UNIFY ALDV O ALDV 1 ALDC NIL ACONS ACONS ATOP
INVOKE 1 ENDC)

ENDP)
(TRYCASE (DCL 0 FLDC NIL FLDC NIL FLDC NIL FCONS FCONS FTOP

UNIFY ENDC)
TRYCASE (DCL 4 FLDV 0 FLDV 1 FCONS FLDV 2 FLDC NIL
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FCONS FCONS FTOP UNIFY
ALDV 1 ALDV 3 ALDC NIL ACONS ACONS ATOP INVOKE 1
ALDV 3 ALDV O ALDC NIL ACONS ALDV 2 ALDC NIL
ACONS ACONS ACONS ATOP INVOKE 2 ENDC)

ENDP)

(TRYCASE (DCL 1 FLDC NIL FLDV O FLDV 0 FLDC NIL
FCONS FCONS FCONS FTOP UNIFY ENDC)

TRYCASE (DCL 4 FLDV 0 FLDV 1 FCONS FLDV 2 FLDV O FLDV 3
FCONS FLDC NIL FCONS FCONS FCONS FTOP UNIFY
ALDV 1 ALDV 2 ALDV 3 ALDC NIL
ACONS ACONS ACONS ATOP INVOKE 2 ENDC)

ENDP) )

D.3 The Prolog Machine.

D.3.1 The registers.

At each step of the computation the entire machine state
is held in 9 registers De, A,F,L,C,Du,R,B,N. These
registers are the memory of the PM and contain program
code, results, working storage, and all the information

necessary for complex operations such as backtracking.

The value held by each register is an su-expression,
though the contents of Du, and C will always be simply
s-expressions. All operations of the machine are
performed by constructing new su-expressions and by
selecting sub-expressions. In the machine transitions
described below the register values will be represented
as su-expressions (with unknowns in the asterisk
notation of Chapter 3) but with variables naming whole
expressions and subexpressions in order to identify

values before and after transitions.
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The general roles of the 9 registers can be described

as follows:

The De register ("Definitions") contains the s-expressions
representing the predicates of the Prolog program. De

is a list of lists. Each inner list is the code for one
predicate, and is a list of the cases of the predicate.

The first predicate, the head of De, is the query predicate.
Predicates are accessed by an index computed during

compilation -~ they are numbered from zero.

The A register ("Actuals") is used for the construction

and processing of actual parameter lists.

The F register ("Formals'") is used for the construction

and processing of formal parameter lists.

The L register ("Locals") contains the environment of
variable valueé which are local to the predicate case
currently executing. Note that only the local variables
are accessible directly. L is a list of su-expression
values, one per variable, and the members are accessed by
indices which are computed during compilation (variables

are numbered from zero).

The C register ("Control") contains the sequence of
instructions currently being executed. The head of C
is the next instruction to be executed. New instruction

sequences are loaded into C primarily at the invocation

of defined predicates.

The Du register ('"Dump'") maintains a record of
instruction sequences which have been suspended at the
invocation of a defined predicate and of the corresponding

local environments which must be restored when the

sequences are resumed.
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The B register ("Backtrack") maintains a record of the
decision points as they are passed during program
execution. B is used as a stack in which the most recent
backtrack point is nearest to the head of B. At each
decision point all necessary parts of the machine state

to enable resumption are recorded.

The R register ("Restore"or '"Reset'") keeps an ordered
list of the su-expressions which have been modified from
an unknown since the most recent backtrack point was
passed. R is a part of the information which is stacked

on B as each new decision point is reached.

The N register ("Negation") is used in conjunction with B
to handle the execution of negated conditions. N and B
must cooperate for negated conditions as the success/
failure actions of these conditions must be reversed and
B must be modified specially for their execution. N is

a repository for machine states, including B, and behaves

as a stack to cater for nested negations.

The collection of registers and roles which I have
described is certainly adequate for the execution of
Prolog. However, the number of registers (9) does
seem rather large and possibly a more careful analysis

would uncover a better factorisation of the roles.
D.3.2 The state transition rules.

There are three phases of execution to be described.
Firstly the PM must be set up with the machine code
representation of the program to be executed, and with

the input su-expressions. Secondly the transitions which
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accomplish the computation must be given. Finally the
resultant su-expressions must be extracted from the final

machine state.

Each state of the PM consists of an su-expression value

for each of the 9 registers De, A, F, L, C, Du, R, B,

and N. The value of De remains fixed once the computation
has started, and it will not appear explicitly in the
transitions. The stétes will be given as ordered octuples
(A, F, L, C, Du, R,B, N) in which the items correspond to
the appropriately named registers - however, to save space,
registers which do not contribute to particular transitions
will be omitted (though the delimiting commas will be

retained).

Initially the input to the machine consists of an s-expression,
prog, which is the machine language program, and a list
of su-expressions, args, which are the arguments of the
query predicate. Any unknowns in args are formed into

a local environment, vars = (*1 *2 ,..), which is treated
as the local environment in which the condition invoking
the query predicate is executed. prog is a pair (p.de)
in which p is a short sequence of instructions which
simply invokes the query predicate and then halts, and de
is the list of compiled predicate definitions. Hence the
PM receives(p.de) and args, derives vars from args, and

the initial state of the machine is:
(args, NIL, vars, p, NIL, NIL, NIL, NIL)

and the value of De throughout the computation is de.
(In fact the value of F is arbitrary, and I have set it

to NIL).



The computation proceeds by executing PM instructions
from the head of C. The PM has a repertoire is 18
basic instructions, represented by the mnemonics DCL,
INVOKE, ENDC, TRYCASE, ENDP, UNIFY, ALDC, ALDV, ACONS.
ATOP, FLDV, FLDC, FCONS, FTOP, NSUCCTRAP, NSUCC, NFAIL,

HALT, and 8 variants of PRIM which implement the primitive

predicates.

Each instruction selects amongst the following transition

rules, in which the previous and next states are shown on

the left and right of a right pointing arrow, =». 1In some

transition rules it is necessary to show explicitly the
modification of an su-expression by the elaboration of

one or more unknowns. A phrase of the form a=Hb will be
used to indicate that a must be modified to give b, and

that a-and b are the same physical data structure.

To create ( DeCLare) a new local environment at entry
to a predicate case:
(,, 1,(DCL n.c),,,,)=>(,,(*ut *u2 ...),c,,,,)
where there are exactly n unknowns in the list (*u1l
and *ul, ... are chosen to be unknowns which are

not already in use in the registers.

Instructions for building su-expressions as actual and
formal arguments in the A and F registers (used as
evaluation stacks):
(a,,, (ALDC X.C),,,,)=»((x.a),,,Cs,,5) (Load constant)
(a,,1,(ALDV n.c),,,,)-=»((x.a),,1,¢c,,,,) (Load variable)
where x is the (n+1)thitem in the local environment
1= (L;b X o)

n items

240.
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((x y.a),,, (ACONS-C),,.,)"(((y-X)-a),,,C,,,,)
((x-a);’, (ATOP.é),,,,)-y(x,,,c,,,,)
v(,f,, (FLDC x.c),,,,)d>(,(x.f),,c,,,,)
(,f,, (FLDV n.c),,,,)=>(,(x.f),,c,,,,)
where x is the (n+1)th item in the local
environment 1= (.o x ...)
n items
(,(X y.f),, (FCONS.C),,,,)‘P(,((y.x)-f),,c;,,,)
(,(X.f),,(FTOP.C),,,,)J>(,X,,C,,,,)

Invoking primitive predicates:

((x y z),,,(PRIM ADD.c),,,,)->depending on x,y,z as follows

Cases:

X,¥,2 all numbers, x+y=z - (x y 2),,,C,,,,)

X,¥,z all numbers, x+y#Zz-®»Fail, so backtrack (see below)

One of x,y,z unknown, e.g. X=*n»((xX' y 2),,,C,,,5,)
 where *nep(z-y) and so xHx'

Two or three of x,y,z unknown-»Terminate computation

with an error.

((xy z),,,(PRIM SUB.c),,,,)»depending on x,y,z in
a way analogous to ADD
((x y z),,,(PRIM MUL.c),,,,)->»depending on x,y,z as
follows:
Cases:
X,y,2z all numbers, x*y=z «»((x y 2),,¢,,,,)
X,y,z all numbers, x*y#z ~»Fail, so backtrack (see below)
Z unknown, z=*n~3»((x y z'),,C,,,,)
where *n=»x*y and so z=» z'

X or y unknown, e.g. x=*n:
y divides z =3((x' ¥y 2),,5C5555)
where *n»(z div y)and so x=px'
y does not divide z~»Fail, so backtrack (see below)
Two or more of x,y,z unknown->Terminate computation with

an error.
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((x y z),,,(PRIM DIV.c),,,,)~>depending on X,¥,z as follows
Cases:
x,y,z all numbers, x divy = z->((x y z),,,¢c,,,,)
X,y,z all numbers, x div y # z->Fail, so backtrack
(see below)
z unknown, z = *n-3((x y z')},,,¢c,,,,)
where *n=H (x div y) and so z»z'
X or y unknown =2 Terminate computation with an error
((x y z2),,,(PRIM REM.c),,,,) ~>depending on X,¥,Z as
follows
Cases:
X,y,z numbers, x rem y=z -»((x y z),,,¢c,,,,)
X,y,2z numbers, x rem y#z ~»Fail, so backtrack
(see below)

z unknown, z=*n =3»((x y 2'),,,Cy,,,)

- where *n=»x rem y) and so z=» z'

X or y unknown-»Terminate computation with an error.
((x),,,(PRIM ATOM.c),,,,) =»depending on x as follows
Cases:

x is symbol or number -»((x),,,c,,,,)

" x is constructed, (y.z)->Fail, so backtrack (See below)

X is unknown-»Terminate computation with an error.

((x y),,,(PRIM EQ.c),,,,) =>»depending on x,y as follows
Cases:
x and y both symbols or numbers and x=y
(X y)s55C5555)
x and y different values, or either is constructed

~3»Fail, so backtrack (See below)

X or y unknown —Terminate computation with an error.

((x y),,,(PRIM LEQ.c),,,,)=>depending on x,y as follows



Cases:
X,y number‘s, xéy—»((x y))’!c:,”)
X,y numbers, x > y =»Fail, so backtrack (See below)

x or y unknown -»Terminate computation with an error.

Invoking a defined predicate:
(»,1,(INVOKENn.c),du,,,) > (,,1,cp,(1 c.du),,,)
where cp is the (n+1)th predicate definition in

De =( ... cp ...)
n items

Selecting a case within a predicate and recording the

decision point:

(a,,,(TRYCASE case.c),du,r,b,)~»(a,,,case,du,NIL,(r a ¢

If there are no more cases:

(,,,(ENDP),,,(x.b),)=>»The predicate fails, so backtrack
the most recent decision point on
(See below)

(,,,(ENDP),,, NIL,) =»No remaining decision points, so
computation terminates without a

solution.

Unify actual and formal arguments:
(a,f,,(UNIFY.¢),,r,,) =>depending on a, f as follows
Cases:
a and f cannot be unified -»Fail, so backtrack
(See below)
a and f are unified successfully (See below)
—>(a',f',c,,(ul u2 ... .r),,)
where a' and f' are the elaborated forms
of a and f, and ul, u2, ... {in
the new value of R) are the elaborated forams
of the unknowns in a and f which were modified

in order to achieve the match.
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Return successfully from a case, having satisfied all the

conditions:

(',11,(ENDC),(12 c‘du)’,’).é(’,lz’c’du,”)
Successfully complete a computation:

(a,,1,(HALT),,,,) =»Output the result - either the
elaborated actualyarguments a,
or simply the elaborated unknowns
- 1 (corresponding to vars at
initialisation).
If further solutions are required
then the computation can be resumed

by backtracking (see below).

Before describing the instructions for handling negated
conditions it is appropriate to give the transition which
accomplishes backtracking, and to show how unification may

be performed.

In order to backtrack to the most recent decision point,
the machine state recorded in the first four items of B
must be restored. That itself is straightforward, but

in addition any unknowns which have been elaborated since
the decision point must be reset to their unknown state.
These elaborations are all recorded in R, and the resets
are achieved by modifying each item in the list R to an

unknown. Hence:

Firstly the resets:
R=(xy ...)s»>(*m *n ...)
where the unknown *m, *n, ... are not already in
use in the machine.
And secondly the transition:
(a1,,,c1,dul,r1,(r2 a2 c2 du2.b),)=>»(a2,,,c2,du2,r2,b,)



The process of unification must achieve two results.
Firstly, it must attempt to match the values in the A and
F registers by finding a (minimal) set of modifications
for unknowns in A and F (either succeeding or failing in
this attempt), and secondly any modifications made during
the attempt must be recorded in the R register. A simple
way to perform the matching is to scan the A and F
su-expressions (both are binary trees) in parallel and

in prefix order. When an unknown leaf is encountered in
either register it is elaborated to the corresponding
subtree of the other register, and the subtrees are
skipped as they are then known to be equal. The
unification fails if a mismatch is found, or is successful
if the scan completely covers the structures without
mismatch. To give this process a more concrete form I
shall use a register transition notation. Unification
requires two extra registers, Ul and U2, and the
transitions will be between states involving these and R,

(Ui, U2,R). From a machine state
(a,f,, (UNIFY.c),,r,,)

unification commences in the state ((a«NIL),(f.NIL),r),
and the values a and f are gradually decomposed and

compared.

The unification transitions are as follows:

(NIL, NIL, r) =>»Unification succeeds.

((x.u1),(y.u2),r) with x,y -—>(ui,u2,r)
atoms of same value,

or identical unknowns

((x.ut),(y.u2),r) with x,y unequal atoms ~>»Unification fails
or x atom, y constructed

or y atom, X constructed



(((x1.x2).u1),((y1.y2).u2),r)=~»((x1 x2.ul),(y1 y2.u2),r)
((x.u1),(y.u2),r) with x unknown, x=*n,
and y atom or constructed
~»(ul,u2,(x'.r))
and modify *nsy and so xH x'
((x.u1),(y.u2),r) with y unknown, y=*n,
and x atom, constructed or unknown
5 (ul, uz, (y'.r))
and modify *n=yx and so y=>y'

Note that this unification algorithm does not incorporate
the occur check (see Robinson (1965), Warren (1977)). The
‘check would have to be included in the final two transitions
in order to ensure that the unknown which is to be modified
is not also a leaf of the value with which it is being
matched. Omission of the check simply means that the
algorithm will be badly behaved for some rather unlikely

progra