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Abstract 

Temporal logic programming is a paradigm for specification and verification of concurrent pro
grams in which a program can be written, and the properties of the program can be described 
and verified in a same notation. However, there are many aspects of programming in temporal 
logics that are not well-understood. One such an aspect is concurrent programming, another is 
framing and the third is synchronous communication for parallel processes. 

This thesis extends the original Interval Temporal Logic (ITL) to include infinite models, 
past operators, and a new projection operator for dealing with concurrent computation, syn
chronous communication, and framing in the context of temporal logic programming. 

The thesis generalizes the original ITL to include past operators such as previous and past 
chop, and extends the model to include infinite intervals. A considerable collection of logic laws 
regarding both propositional and first order logics is formalized and proved within model theory. 

After that, a subset of the extended ITL is formalized as a programming language, called 
extended Tempura. These extensions, as in their logic basis, include infinite models, the previous 
operator, projection and framing constructs. A normal form for programs within the extended 
Tempura is demonstrated. 

Next, a new projection operator is introduced. In the new construct, the sub-processes are 
autonomous; each process has the right to specify its own interval over which it is executed. 

The thesis presents a framing technique for temporal logic programming, which includes the 
definitions of new assignments, the assignment flag and the framing operator, the formalization 
of algebraic properties of the framing operator, the minimal model semantics of framed programs, 
as well as an executable framed interpreter. 

The synchronous communication operator await is based directly on the proposed framing 
technique. It enables us to deal with concurrent computation. Based on EITL and await 
operator, a framed concurrent temporal logic programming language, FTLL, is formally defined 
within EITL. 

Finally, the thesis describes a framed interpreter for the extended Tempura which has been 
developed in SICSTUS prolog. In the new interpreter, the implementation of new assignments, 
the frame operator, the await operator, and the new projection operator are all included. 
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Chapter 1 

Introduction 

This thesis extends the Interval Temporal Logic (ITL)[61] to include infinite models, past op
erators, a new projection operator for dealing with concurrent computation, synchronous com
munication, and framing in the context of temporal logic programming. 

1.1 Temporal logic programming 

Temporal logic has been proposed for the purpose of verifying properties of programs. However, 
the verification of programs has suffered from the convention that different languages (and thus 
different semantic domains) have been used for writing programs, writing about their properties, 
and writing about whether and how a program satisfies a given property [53]. One way to simplify 
this is to use the same language in each case, as far as possible. 

It has therefore been suggested that a subset of a temporal logic be used as the foundational 
basis for a programming language e.g. [79, 81, 61]. This has led to the definition of a number 
of programming languages based on temporal logics [82,61, 32, 3,35, 87]. 

One of the earliest temporal logic programming languages, XYZ/E [82], is based on linear 
time temporal logic proposed by Manna and Pnueli [63]. Moreover, XYZ system consists of a 
temporal logic programming language XYZ/E as its basis, and a group of CASE tools to support 
various kinds of methodologies [83]. 

Another temporal logic programming language, Tempura [61], which we are particularly 
interested in, is based on a subset of interval temporal logic whose formulas can be interpreted 
as a traditional imperative program. In logic terms, executing a Tempura formula (program) 
amounts to building a model for the formula. 

Gabbay developed the language USF [35], which follows an imperative future approach. The 
METATEM language [9, 29] is a development of USF consisting of a larger range of operators, a 
better defined execution mechanism [31] and a more practical normal form [30]. A METATEM 
program for controlling a process is presented as a collection of temporal rules. The rules apply 
universally in time and determine how the process progresses. 

TOKIO [32] is a logic programming language based on the extension of Prolog with ITL 
formulas. It provides a useful system in which a range of applications can be implemented 
and verified. TOKIO supports an extended subset of ITL incorporating the non-deterministic 
operators '0' and 'V'. 

The temporal logic programming languages [3, 87] are based on the logic programming 
paradigm and view an execution of a program as a refutation proof. Many other temporal logic 
programming languages can be found in [36, 14,80,48,55, 70, 71]. 
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An interpreter written in C for Tempura was developed by Hale [39]. He also investigated 
how to use Tempura in programming. Many samples illustrating how to model the structure 
and behaviour of hardware and software systems in a unified way can be found in [61] and [39]. 

However, there are many aspects of programming in temporal logics that are not well un
derstood (at least in Tempura). One such an aspect is concurrent programming, another is the 
problem of framing, and the third is synchronous communication for parallel processes. 

In a temporal logic programming language such as Tempura, the conjunction and parallel 
composition (see Chapter 4) are basic operators for concurrent programming. However, the 
conjunction seems appropriate for dealing with fine-grained parallel operations that proceed in 
lock step; while the parallel composition, on the other hand, permits the combined processes 
to specify their own intervals. Thus it is better suited to the coarse-grained concurrency of a 
typical multiprocessor, where each process proceeds at its own speed. However, processes com
bined through the parallel composition operator share all the states and may interfere with one 
another. It is therefore necessary for us to investigate other possible ways to handle concurrent 
programming. 

Framing techniques have been employed by conventional imperative languages for many 
years. However, framing in conventional languages has often been taken for granted. Never
theless, we have to consider this option carefully in temporal logic .programming. Framing is 
concerned with how the value of a variable from one state can be carried to the next. Temporal 
logic offers no solution in this respect; no value from a previous state is assumed to be carried. 
Therefore, if we want the value of a variable to be inherited, we have to repeatedly assign the 
value to the variable from state to state. This is not only tedious but also may decrease the 
efficiency of the program. Moreover, synchronous communication can not be handled without 
framing in temporal logic programming (see below). 

Another problem that must be dealt with in temporal logic programming is that of commu
nication between concurrent processes. Some models of concurrency involve shared (program
ming) variables, some involve synchronous message passing, and some involve asynchronous 
channels e.g. CCS [58, 59], CSP [44, 45]. In temporal logic programming languages such as 
XYZ/E [82, 83] and Tempura [61], communication between parallel components is based on 
shared variables. 

To synchronize communication between parallel processes in a concurrent program (e.g. 
solving the mutual exclusion problem) with the shared variables model, a synchronization con
struct, await( c) or some equivalent is required, as in many concurrent programming languages 
[66]. The meaning of await( c) is simple: it changes no variables, but waits until the condition 
c becomes true, at which point it terminates. 

Modelling an await( c) in a temporal logic requires a kind of indefinite stability, since it 
cannot be known at the point of use how long the wait will be; but it must also allow variables 
to change, so that an external process can modify the boolean parameter and it can eventually 
become true. Solving this problem also requires some kind of framing operation. 

1.2 Description of Thesis 

To deal with framing, synchronization and communication, and concurrent programming, an 
extend interval temporal logic (EITL) is formalised. The main extensions are made in two 
aspects: one is that the past operators such as previous and past chop (the counterpart of chop 
in the future) operators can be used; the other is that infinite models are permitted. (Of course, 
projection is an extension to ITL but it is treated as another topic). The reason for introducing 
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past operators is that a framed program may involve immediate assignments which require the 
previous operator for reducing the program in an operational manner. The infinite intervals 
are needed because we are concerned with reactive systems. The extensions are not trivial. In 
some sense, we generalise ITL from an interval-based notation to a point-based notation since 
we refer to no explicit subintervals but points over a fixed interval. The extended logic systems 
are divided into two parts: propositional and first order logics. 

Chapter 2 introduces the extended propositional interval temporal logic (EPITL). First, 
the syntax and semantics of the underlying logic are presented, then the fundmental logic laws 
concerning the temporal operators, both future and past, are formalized and proved. These 
logic laws also provide a basis for the first order EITL. 

Chapter 3 presents the first order extended interval temporal logic (EITL). The logic laws 
regarding variables, functions, predicates, equality, and quantifications, in addition to its syntax 
and semantics are presented. These logic laws, as a foundation, allow us to prove some useful 
properties of programs, to capture the temporal semantics of a framed program. 

Chapter 4 formalizes a programming language which is an executable subset ofthe extended 
logic system and an extension of Tempura. Within this language, a variable can refer to its 
previous value, as well as its next value as in the original Tempura. The computation trace of 
a program can also be infinite. These extensions enable us to handle a concurrent computation 
for a reactive system. 

I t 
A program P with the extended language has the normal form, V PeiAemptyV V PcjAOpjj, 

i=1 j=1 
where Pei and Pcj are state formulas consisting of equalitiesj whereas Pjj is an internal program. 
This conclusion is proved by induction on the structure of programs. It facilitates capturing 
temporal semantics and further reducing programs. 

Chapter 5 introduces a new projection operator, (PI, ... , 8 m) prj q, which can be thought of 
as a combination of the parallel (II) and the original projection (p proj q) operators in Tempura. 
The motivation for introducing the new projection construct is that we intend to give a more 
flexible parallel operator in temporal logic programming. 

Intuitively, (PI, ... , Pm) prj q means that q is executed in parallel with PI j ... j Pm over an in
terval obtained by taking the endpoints (rendezvous points) of the intervals over which PI, ... ,Pm 
are executed. The new projection construct permits the processes, PI, ... , Pm, q, to be autonom
ous, each process having the right to specify the interval over which it is executed. In particular, 
the sequence of processes PI, ... , Pm and q may terminate at different time points. Although 
the communication between processes is still based on shared variables, the communication and 
synchronization take place only at the rendezvous points (global states), otherwise they are 
executed independently. 

In the chapter, a considerable set of logic laws regarding the projection construct are form
alized and proved. The normal form of the projection construct is also proved. These logic laws 
and the normal form allow us to reduce the projection statement in temporal logic programming. 
Finally, an example is given to illustrate how to reduce a projection statement. 

Chapter 6 discusses the framing issue. Framing is difficult to handle within a logic system. 
It is well known that the first order logic is monotonic. That is, adding a formula to a theory 
has the effect of strictly increasing the set of formulas that can be inferred. However, the 
framing issue is intrinsically non-monotonic. Indeed, adding a new positive fact, i.e. an explicit 
assignment, to a set of positive facts with the framing operator has a 'side effect': the negation 
of the fact cannot be inferred from the previous set. 
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To work out an executable framed temporal logic programming language such as framed 
Tempura with mixed framed and non-framed variables is not straightforward. First, we find 
assignment operators within Tempura are inadequate to deal with framing and thus new as
signment operators must be defined. Second, the non-monotonicity makes a framed program 
radically shift in its semantics with respect to the one without framing. Framed programs are 
no longer well interpreted within the normal logic model we use. Therefore, some new models 
are required. 

In the chapter therefore a new assignment operator (<= ) and an assignment flag (af) 
are defined within the extended logic framework. Armed with the assignment flag, a framing 
operator frame( x) is formalized. These new constructs are interpreted within a minimal model 
semantics. 

This allows us to specify framing status of variables throughout an interval in a flexible 
manner. However, introducing the framing operator destroys the monotonicity, and leads to 
a default logic [76, 56, 57]. Therefore, negation by default has to be used to manipulate the 
framing operator. 

To illustrate framing techniques, a number of examples are given within different program 
constructs including the sequential, conjunction, parallel, projection and the mixed cases. These 
examples show us the framing operator can be used in a flexible manner to facilitate framing in 
different program constructs. 

Chapter 7 introduces minimal model semantics to interpret framed programs. As mentioned 
earlier, when a framing technique is introduced to temporal logic programming, the semantics of 
a program may be changed. So, one issue we have to face is how to interpret a framed program. 
That is, how to capture the intended meaning of a program. In logic programming languages 
such as Prolog, negation by failure has been used in programs, and a program is interpreted by 
the minimal model or fixed point semantics [13]. This leads us to introduce a similar idea in 
temporal logic programming. To interpret framed programs, the minimal model is developed 
in detail. As a result, the existence of a minimal model of a framed program is proved under 
the assumption that the program has at least one finite model or has finitely many models. 
Two important logic laws concerning substitution are formalized and proved. A normal form 
for framed programs is also presented. 

The framing operator enjoys some nice algebraic properties such as equivalency, distributiv
ity, absorptivity, and idempotency etc. These algebraic laws are very useful for the reduction 
of a framed program. Many reduction rules of the interpreter developed by me recently employ 
these laws. In this chapter, some of algebraic properties of framing operators are characterized 
and proved. 

Finally, an example is given to show how to use the logic laws and the minimal model to 
reduce a framed program. 

Chapter 8 discusses synchronous communication in temporal logic programming. With the 
framing operator, the synchronous communication construct, await(c), can easily be defined. 
Therefore, real concurrent programs can be managed within our system. In the thesis, we present 
a general framed concurrent temporal logic programming language FTLL which is similar to the 
language presented in [66] except that the concurrent computation model is true concurrency 
[49, 12] for ours but interleaving for theirs. The important difference is that our language is 
formally defined within the logic framework whereas their language is semi-formal. Of course, the 
language FTLL is a non-deterministic programming language. To deal with non-determinacy, 
we adopt Dijkstra's guarded language. As an illustration, two examples of programs within 
FTLL are given: one is the program solving the well known producer-consumer problem, and 
the other is the program filling an even order magic square problem. 
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Chapter 9 briefly introduces the new interpreter for the extended Tempura. To implement 
the previous operator, projection, await and framing constructs, a new framed interpreter has 
been developed in SICSTUS Prolog. However, we do not intend to present the interpreter in 
detailj only a brief explanation about implementation is provided, and some relative reduction 
algorithms are described. 

Chapter 10 draws some conclusions. 

In short, the main contribution of this thesis is in the following six respects: 

1. The extended interval temporal logics, both propositional and first order, are new. The 
thesis generalizes the original ITL [61] by adding past operators such as previous (0), 
and past chop (i), and by extending the model to an infinite case. The extension changes 
the logic, in some sense, from an interval-based temporal logic to a point-based one. A 
considerable collection of logic laws regarding both propositional and first order logics is 
formalized and proved in detail within model theory. 

2. A subset of the extended ITL is formalized as a programming language, called extended 
Tempura. These extensions, as in EITL, include infinite models and the previous operator. 
The normal form for the programs within the extended Tempura is firstly proved in a 
formal way based on the logic laws we give. 

3. A new projection operator, (Pt. ... ,Pm)prj q, is generalised from Moszkowski's projection 
P proj q, but the semantics is different. The construct P proj q requires that process p 
be repeatedly executed over an interval and q be executed at endpoints of each subinter
val on which p is executed, but the termination is controlled by q. The new construct, 
(Pt. ···,Pm) prj q, is treated as a combination of parallel and projection computations. 
The processes Pt. ... , Pm, q, are autonomous, each process has the right to specify its own 
interval over which it is executed. Although the process q is executed in a parallel way 
with the process Pl; ... j Pm, the communication between them is only at rendezvous states, 
and the processes may terminate at different time points. 

4. The framing technique presented in the thesis is entirely our own work. It is a new method
ology for temporal logic programming, which includes the definitions of new assignments 
«=,:=+,0=+,+-+), the assignment flag (aI), and the framing operator (frame), the 
formalization of algebraic properties of the framing operator, the minimal model semantics 
of framed programs, as well as an executable framed interpreter. 

5. The synchronous communication operator await is a natural consequence of our framing 
technique. It enables us to deal with the real concurrent computation such as one solving 
producer-consumer. Based on EITL and await operator, a framed concurrent temporal 
logic programming language, FTLL, is formally defined within EITL. The programs in 
FTLL, of course, have to be interpreted with the minimal model. 

6. The framed interpreter for the extended Tempura has been developed in SICSTUS prolog. 
In the new interpreter, the implementation of new assignments, the frame operator, the 
await operator, and the new projection operator are all included. It is not complete but 
workable. The development of the framed interpreter is also our own work. 
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Chapter 2 

Propositional Temporal Logic 

Summary: An extended propositional interval temporal logic (EPITL) is formal
ized. The syntax and semantics of EPITL as well as some derived formulas are 
presented. Furthermore, a collectioll of logic laws is investigated in the underlying 
logic. 

Temporal logic, like the classical first order logic, is formalized in two parts: propositional and 
first order. We first present an extended propositional ITL (EPITL). This later pro\'ides a basis 
for the first order extended ITL (EITL). The extension is made in two respects: a model can bp 
an infinite interval and a temporal operator can be a past operator in the underl,\'ing logic. 

This chapter is organized as follows: Section 2.1 presents t he syntax of EPITL. Sect ion 
2.2 presents the semantics of EPITL. To this end, first, states and intervals are defined. Then 
interpretations of terms and formulas are given in detail. Section 2.3 defines satisfaction and 
validity of formulas in EPITL. In Section 2.4, some useful derived formulas are gi\'('ll, Section 
2.S giv('o tit(' p/'{'c('dence rules of operators. Section 2.6 defines strong and weak equivalence 
['('lations as well as strong and weak implica.tion relations. In Section 2.7, a number of logic laws 
a['t' formalized and proved. 

2.1 Syntax 

'I'll<' extended propositional ITL basically consists of propositional logic wit h modal constructs 
to ['e<lson about intervals of tim(', The modal constructs include both future and past operators, 
Let Z dell(lt(' all integers, N all positi\'(' integers, and ;\'0 all non-negative integers. 

I. Alphabet 

1) i\ denumerable set Prop of atomic propositions. 

2) The symbols "A, 0, 0,;, 8,~, -;, +. 
2, Inducti\'(' Definition of Formulas 

1) E\'('I,)' proposition pE Prop is a formula. 

2) If p, q are formulas, so are t he constructs 

'p. pAq, Op, Op, p; q, 8p, ~p, p -; q, p+. 
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o (read next), <> (read sometimes), and; (read chop) are the basic future (temporal) 

operators whereas 0 (read previous), 0 (read sometimes in the past), and -; (read 
chop in the past) are the basic past (temporal) operators. The chop plus (+) operator 
is introduced for the purpose of easily constructing while-loop (Chapter 4). 

Here are some sample formulas: 

p, "'p,pAq, O(p; q),p;0q, 00p· 

2.2 Semantics 

1. States 

Following the definition of Kripke's structure [50], we define a state s over Prop to be a 
mapping from Prop to B = {true, false}: 

S : Prop ----+ B 

We will use s[P] to denote the valuation of p at the state s. 

2. Intervals 

An interval u is a non-empty sequence of states, which can be finite or infinite. The length, 
lui, of u is w if u is infinite, and the number of states minus 1 if u is finite. To have a 
uniform notation for both finite and infinite intervals, we will use extended integers as 
indices. That is, we consider the set No of non-negative integers and w, 

Nw = NoU {w} 

and extend the comparison operators, =, <,::;, to Nw by considering w = w, and for all 
i E No, i < w. Moreover, we define ~ as ::; -{(w,w)}. To simplify definitions, we will 
denote u as < So, ... , slO'I >, where slO'I is undefined if u is infinite. With such a notation, 
U(i .. j) (0 ::; i ~ j ::; lui) denotes the sub-interval < Si, ... , Sj > and u(k) (0 ::; k ~ lui) 
denotes < Sk, ..• , slUI >. 

3. Interpretations 

An interpretation is a quadruple I = (u, i, k,j), where u is an interval, i, k integers, and j 
an integer or w such that i::;k~j::; lui. We use the notation (u,i,k,j) p p to mean that 
some formula p is interpreted and satisfied over the subinterval < Sj, •.• , Sj > of u with the 
current state being Sk. 

The satisfaction relation (p) is inductively defined as follows: 

I - prop I p p iff Sk[P] =true, for any given proposition p. 

I - not I p "'p iff I FP. 
I -and I p pAq iff Ipp and Ipq. 

I - next I p Op iff k < j and (u, i, k + 1,j)pp. 
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J - som I 1= Op iff there exists r such that k5:r~j and (0', i, T,j)I=P. 

J- chop I 1= (p;q) iff there exists T such that k5:T~j and (O',i,k,T)l=p and 
(0', T, r,j)l=q. 

J- pTev I 1= 0p iff i < k and (O',i,k -1,j)l=p. 

J - somp I 1= Op iff there exists I such that i5:l5:k and (0', i, l,j)l=p. 

J - chopp I 1= (p; q) iff there exists I such that i5:15:k and (0', i, I, 1)l=p and 
(0',1, k,j)l=q. 

J- plus I 1= p+ iff there are finitely many TO, ... , Tn E Nw (n2::1) such that 
k = To5:Tl5: ... 5:Tn-1 ~Tn = j and (0', i, TO, Tt} 1= p and, for alI 
1 < I 5: n, (0', Tl-b Tl-1, Tl)I=P; or j = wand there are infinitely 
many integers k = TO 5: T1 5: T2 5: ... such that .lim Ti = w and .-00 
(O',i,To,Tdl=p and, for alII> 1, (0',Tl-bTl-1,Tl)I=P. 

Note that, in the interpretation of p+, the case with infinitely many partition points over a 
finite interval is not permitted because this would imply infinitely many partitions at one 
state. Therefore, only two cases in the interpretation of p+ are permitted: one in which 
there are finitely many partition points over a finite or infinite subinterval O'(i .. j); and the 
other case in which there are infinitely many partition points over an infinite subinterval 
O"(i .. j). With the latter, we require that the integer sequence in the correspondence with 
partition points be unbounded. 

Example 2.1 Let A denote (O(0(pAq);(...,p))); (Oq). We claim that (0',0,0, IO'I)I=A, where 
0" is given in Fig. 2.1. Note that each state is associated with a set of propositions and/or 
negations of propositions to mean that a proposition p is true at the state if p is in the set, and 
is false if ""p is in the set. 

So Sl 82 83 ••• 

1-------1-------1-------1-------1-------1---
{p,q} {...,p,q} {...,p,q} {...,p,q} ... 

Fig. 2.1 An interval 

Proof 

(0",0,0, 10"1)I=O(0(pAq);( ...,p»; (Oq) if and only if there exists T, 05:T~10'1 such that (0",0,0, T)I= 
O(0(pAq);(...,p» and (0', T, T, 1(01)I=Oq. Let T = 2. Then (0",2,2, 100DI=Oq is obvious because 

Sk[q)=true for alI k 2:: 2. So we need only to prove (0',0,0,2) 1= O(0(pA q);(...,p». 

(0",0,0, 2)I=O( 0(pAq); (...,p» 

{:::::> (0",0,1,2)1=0(pAq);(""p) 
{:::::> there exists 1,05:15:1 such that (0", 0, 1,/)1=0(pAq) and (0',1, 1,2)I=(...,p). 

Let I = 1. We have 
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and 

(u,O, 1, IH=8(pAq) 
{:::::::> (u,O,O,I)l=pand (u,O,O,I)l=q 
{:::::::> 80[P] =true and 80[q] =true 
{:::::::> true 

(0',1,1,2)1=("'p) {:::::::> 81["'p] = true 
{:::::::> 81 [P] = false 
{:::::::> true. 

Therefore 

(0',0,0, luDI=O(8(pAp);p); Oq. 

2.3 Satisfaction and Validity 

A model is an interval which can be finite or infinite. 

1. Satisfaction and Validity 

o 

A formula p is satisfied by an interval 0', denoted by O'l=p, if (u,O,O, luDl=p. A formula p 
is called satisfiable if u 1= p for some u. A formula p is valid, denoted by I=p, if ul=P for 
all 0'. 

2. Special Model 

In some cases, we need to define a set R of models satisfying some properties. A formula 
p is called R-satisfiable, if there exists a model uER such that ul=P. A formula p is said 
to be R-valid if for all intervals 0' in R, u 1= p. In this case, the satisfaction relation I=R 
will be used instead of 1=. 

Example 2.2 Let A denote (08p)+-+p (see Section 2.4 for the definition of +-+). A is satisfiable 
but not valid because < So >~ A. However, A is R-valid with R = {u I lui > OJ. 

"'(80p -+ 08p) is not satisfiable because 80p -+ 08p is valid. o 

2.4 Abbreviations 

The abbreviations true, false, V,-+ and +-+ are defined as usual. In particular, true ~f p V "'p 

and false ~f pA..,p for any formula p. Hence, for any interpretation I, I 1= true and I ~ false. 
Furthermore, we use the following abbreviations: 

1. Derived future operators 

1) empty 

Informally, empty, read as empty in the future, means that the current state is the 
final state of an interval. Its formal semantics is defined by 

(O',i,k,j)l=empty iffk=j 
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With this semantics, empty can be expressed in terms of the next and true, as follows: 

(Abb - e) deC empty = -.Otrue 

Note that the consistency (this means all derived formulas are valid equivalences) 
between the semantics and syntax definitions can be proved. This claim is true for 
all abbreviations in this section. 

2) more 

Informally, more, read as more in the future, means that the current state is a non
final state of an interval. Its semantics is defined by 

(O',i,k,j)F more iff k < j 

more can be expressed as the negation of empty: 

(Abb - m) deC ( more = -.empty or 0 true) 

3) weak next 

If p is a formula, so is 0p (0 read as weak next). Its semantics is defined by 

(0',i,k,j)F0piff(0',i,k,j)FOP or k=j. 

It can be expressed in terms of the next and the negation (see the definition of empty) 
operators to satisfy the semantics: 

(Abb - wnext) O deC 0 . p = empty V p 

4) nth next (n ~ 0) 

If p is a formula, so is onp (on read as the nth next). The operator on is an 
extension of the next operator. Its semantics is defined, as follows: 

(0', i, k,j)FOnp iff (k + n)~j and (0', i, (k + n),j)FP 

The nth next operator can be inductively defined in terms of the next operator. 

(Abb - nnext) 

5) length of an interval 

The future length of a finite interval (from the current point to the end) can be 
specified by the operator len. Its semantics is given by 

(0', i, k,j)Flen(n) iff j :I wand (j - k) = n (n ~ 0). 

The len construct can be defined in terms of the nth next operator. 

(Abb - len) 

(Abb - skip) 

len(n) 19c Onempty (nENo) 

skip1gc len(1) 

skip specifies one unit of time over an interval. 

10 



----------

6) always in the future 

If p is a temporal formula, so is Dp (read always in the future). The semantics of the 
always operator can be defined, as follows: 

(0", i, k,j)FDp iff for all k5:r~j, (0", i, r,j)FP 

The always operator can be defined as a dual of the sometimes operator. 

(Abb - alw) 

7) chop star 

If p is a temporal formula, so is p* (read chop star). The semantics of the chop-star 
construct can be defined, as follows: 

(0", i, k,j)FP* iff (0", i, k,j)FP+ or k = j 

The chop-star operator can be defined by the chop-plus operator, as follows: 

(Chop - star) deC + p* = p Vempty 

2. Derived past operators 

1) first 

The first, read as the first state, means that the current state is the left end state 
of an interval. Its semantics is defined by 

(O",i,k,j)'Ffirst iff k = i 
The first construct can be defined in terms of the previous operator. 

(Abb - f) f · deC r\ arst = -,'Vtrue 

2) elaps 

The elaps, read as elaps, means that the current state is a non-left end state of an 
interval. Its semantics is defined by 

(O",i,k,j)'Felaps iff k > i 

The elaps construct can be defined by the negation of the first construct. 

(Abb - el) elapscl,§!-,first (or 8true) 

3) weak previous 

If p is a temporal formula, so is G)p (read weak previous). Its semantics is defined by 

(0", i, k,j)'FG)p iff (0", i, k,j)F8p or i = k 

The weak previous operator can be defined using the previous operator. 

(Abb - wprev) G)p cl,§! first V 8p 
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4) nth previous 

If p is a temporal formula, so is 0 np (read nth previous). The operator 0 n is an 
extension of the previous operator. Its semantics is defined by 

(0", i, k,j) 1= 0 n p iff i~(k - n) and (0", i, (k - n),j)l=p. 

The nth previous operator can be inductively defined in terms of the previous oper
ator. 

(Abb - nprev) 0 0 de! 
- p = p 

0 n ~0(0n-l ) - p- - - p (nEN) 

5) past length 

The length of an interval in the past (from the current state to the first state) can be 
-

specified by operator len. Its semantics is defined, as follows: 

-
(O",i,k,j)l=len(n) iff k - i = n. 

The construct l;n can be defined in terms of the nth previous and the first. 

-

(Abb -lenp) 

(Abb - skipp) 

skip specifies one unit of time in the past from the current state over an interval. 

6) always in the past 

If p is a temporal formula, so is Qp (Q read as always in the past). Its semantics is 
defined by 

(u,i,k,j)I=Qpifffor aU I, i~l~k, (0", i, l,j)l=p 

The always in the past operator can be defined as a dual of the sometimes in the 
past. 

(Abb - alwp) de! A 
Qp = """"'''''p 

2.5 Precedence Rules 

In order to avoid an excessive number of parentheses, the following precedence rules are used: 

where l=highest and 5=lowest. 

1 ..., 
2 Q,0,O,D,E),G),O,Q,+,* 
3 fI, V 
4 ...... , +-+ 

5 ", 
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2.6 Equivalence Relations 

A formula is called a state formula if it does not contain any temporal operator; otherwise it 
is called a temporal formula. A formula is called a non-past (non-future) formula if it does not 
contain any past (future) temporal operators. 

Sometimes, we denote FP ...... q by p~q and FO(p ...... q) by p == q. The former is called 'weak 
equivalence' and the latter is called 'strong equivalence'. Similarly, we denote FP -> q by p ...... q, 
calling it 'weak implication', and FO(P -> q) by p ::> q, calling it 'strong implication'. In fact, 
p ~ q means that p and q have the same truth value in the first state of every model while p == q 
means that p and q have the same truth value in all states of every model. Similar explanations 
can be given for the weak and the strong implication relations. It is obvious that the strong 
equivalence (implication) implies the weak equivalence (implication) but the inverse does not 
hold. For instance, first ~ true but first ¢. true. However, within the future formulas, p ~ q 
if and only if p == q ( it follows from Definition 2.2 (page 22) and Theorem A.l proved in the 
Appendix). 

Note that the relations, ~ and ==, are reflexive, symmetric, and transitive. They are therefore 
equivalence relations over Lepitl (see below). 

In practice, we frequently use the strong equivalence relation for reduction of programs. 
This will be discussed in Chapter 4. 

2.7 Logic Laws 

In this section, we present a collection of logic laws, i.e. some valid formulas in the logic system. 
First, we discuss tautological validity. 

Let Lp denote the language of classical propositional logic, i.e. the set of all well-formed 
formulas, and Lepitl denote the language of the extended propositional ITL. 

Definition 2.1 A formula of Lepitl is called tautologically valid if it results from a tautology P 

of Lp by consistently replacing the atomic formulas of P by formulas of Lepitl. 0 

For instance, ..,(PVQ) ...... ..,P/\..,Q is a tautology in Lp. By taking P to be OA and Q to be 
DB, we have the tautologically valid formula: ..,(OAVOB) ...... ..,OA/\..,OB in Lepitl. 

Theorem 2.1 If p is a tautologically valid formula then FOp. 

Proof 

The proof is similar to the one presented in [51]. Let A* result from a formula A of Lp by 
replacing the atomic formulas Pl, ... , Pn of A respectively by formulas ql, ... , qn of Lepitl and let u 
be an interval and k (0 ~ k ~ luI) an integer. Define a classical valuation E of atomic formulas 
of Lp by E(pj) = true iff (u, 0, k, luI) F qj for j = 1, ... , n (and with arbitrary values for other 
atomic propositions). We claim that: 

E(A) = true iff (u, 0, k, luI) F A* 

which proves the theorem, since E(A) =true if A is a tautology. 

The proof of the claim runs by induction on (the syntax of) A: 
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(1) A is Pj: then A* is qj, hence E(A) = E(pj) =true iff (u,O,k, luI) F qj iff (u,O,k, luI) F A*. 

(2) A is ..,B: then A* is ..,B* in correspondence with the meaning of the 'operator' * on B. 
Hence, using the hypothesis 

E(A) = true <==> E(B) = false 
<==> (u, 0, k, luI) ~ B* 
<==> (u, 0, k, luI) F ..,B* 
<==> (u, 0, k, luI) F A* 

(3) A is B 1/\B2: we have again A* being Bt/\B~ and with the induction hypothesis, we get: 

E(A) = true <==> E(B1) = true and E(B2) = true 
<==> (u,O,k,luI)FBt and (u,O,k,luI)F~ 
<==> (u,O,k,luI)FBt/\B~ 
<==> (u, 0, k, luI) F A* 

o 

Theorem 2.1 allows us to use a class of valid formulas without proving them as long as they are 
tautologically valid. The validity and satisfaction are 'dual' notions in the following sense: 

Theorem 2.2 P is valid iff "'P is not satisfiable. 

Proof 

FP <==> O'FP for all u 

<==> ..,..,(u F p) for all u 

<==> ..,(u ~ p) for all u 

<==> ..,(u F ..,p) for all u 

<==> ..,(u F ..,p for some u) 

o 

Theorem 2.2 provides us with a means to prove the validity of a formula. When direct proof 
of the validity of a formula is difficult, we frequently prove the fact that the negation of the 
formula is not satisfiable. 

Theorem 2.3 Let I be an interpretation. If IFP and IFP-+q then IFq. 

Proof 

Suppose IFP and IFP-+q. The latter amounts to I F ..,p or I F q. Hence IFP/\q leading to 
IF q. 

o 

Theorem 2.3 states that modus ponens is a 'valid rule of inference'. 

Theorem 2.4 Let I be an interpretation. If IFq implies IFP, then I F q-+p 
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Proof 

If I V= q -+ p, then I F ...,(q -+ p) leading to IF q/l....,p. It thus follows that IF ""P and I F q, 
a contradiction. 

o 

So far we have looked at the logic laws in EPITL coming from the 'classical logic'. Let us now 
turn our attention to proper temporal logic laws concerning the temporal operators. In what 
follows, we prove, first of all, the monotonicity laws stated in Theorem 2.5 which are a basis for 
proving the substitution law given in Theorem 2.7. Subsequently, we give an extensive list of 
formulas all of which we claim to be valid without proving these facts except for a few examples. 

Theorem 2.5 If Pt.P2, q1, q2 are formulas, then 

Proof 

The proof of FMO 

FMO If (P1 :J P2) and (q1 '-+ q2) then «P1;q1):J (P2;q2)) 

P MO If (P1 :J P2) and (q1 :J q2) then «P1 ; qt) :J (P2 ; q2)) 

Let u be an interval and k an integer, 0:::; k ~ lui. Suppose (u,O,k,lul) F P1;q1. Thus, 
(u,O,k,r) F P1 and (u,r,r,lul) F q1 for some r,k:::; r ~ lui· 

Since P1 :J P2, we have (U(O"r), 0, k, r) F P1 -+ P2. By Theorem A.l (Appendix) (u, 0, k, r) F 
P1 -+ P2· By Theorem 2.3, (u, 0, k, r) F P2· 

Moreover, by q1 '-+ q2, we obtain U(r .. IO'I) F q1 -+ q2. By Theorem A.l, (u, r, r, luI) F q1 -+ q2· 
Hence (u,r,r,lul) F q2. It then follows that (u,O,k,lul) F P2;q2· 

The proof of PMO 

Let u be an interval and k an integer, ° :::; k ~ lui. Suppose (u, 0, k, luI) F PI; ql· Thus, 
(u, 0, I, I) F Pl and (u, l, k, luI) F ql for some I, 0:::; I :::; k. 

Since P1 :J P2, we have (U(o .. I),O,l,l) F PI -+ P2· By Theorem A.l, (u,O,I,I) F PI -+ P2. 
Hence (u,O,l,/) F P2· 

Similarly, since ql :J q2, we have (U(I..IO'I), 0, k - I, lui - I) F q1 -+ q2. By Theorem A.l, 
(u, I, k, lui) F ql -+ q2. By Theorem 2.3, it follows that (u, I, k, luI) F q2· 

Hence, (u, 0, k, luI) F P2; q2. We obtain (PI; qt) :J (P2; q2). 

As an immediate consequence of Theorem 2.5, we obtain the following 

Corollary 2.6 

F Ml If P1 :J P2 then (PI; q) :J (P2; q) P Ml 

FM2 If PI '-+ P2 then (q;PI) :J (q;P2) PM2 
FM3 If Pl = P2 and ql ~ q2 then PM3 

(Pl;ql) = (P2;q2) 
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If PI :J P2 then (PI; q) :J (P2 ; q) 

If PI :J P2 then (q;pt}:J (q;P2) 
If Pl = P2 and ql = q2 then 

(Pl;qd = (P2;q2) 

o 

o 



Theorem 2.7 If F is a formula in EPITL involving a subformula g, and I is a formula such 
that I=g, then 

F=F[J/gJ 

where F[J / gJ denotes the formula given by replacing some occurrences of 9 in F by I. 

Proof 

We need to show that, for all I, g, h in EPITL, if I=g then 

1 IAh - gAh 2 hAl - hAg 
3 ..,1 - ..,g 4 j+ g+ 
5 01 - Og 6 81 - 8g 
7 <>1 - <>g 8 ~I - ~g 

9 hjl hjg 10 h;1 h;g 
11 Ijh - gjh 12 r,h - g;h 

Each of 1,2,3,4,5,6,7 and 8 is an immediate consequence of the definitionsj and 9, 10, 11 and 12 
follow from Corollary2.6 (FM3), (PM3). 

0 

A simple check can be made to see that Theorem 2.5 and Corollary 2.6 still hold if we use 
the weak equivalence and implication to replace the strong equivalence and implication. 

Theorem 2.8 If PhP2, qh q2 are formulas, then 

1. FMO' If «PI '-+ P2) and (ql '-+ q2)) then «PIjql) '--+ (P2jq2)) 

2. PMO' If «PI '--+ P2) and (ql '--+ q2» then «PI ;qt} '-+ (P2 ;q2)) 

Corollary 2.9 

FM1' 

FM2' 
FM3' 

If PI '--+ P2 then (PI;q) '-+ (P2;q) PM1' 

If PI '--+ P2 then (qjPI) '--+ (qjP2) PM2' 
If PI ~ P2 and ql ~ q2 then P M3' 

(PI; qt) ~ (P2; q2) 

If PI '-+ P2 then (PI; q) '--+ (P2 ; q) 

If PI '-+ P2 then (q;PI) '--+ (q;P2) 
If PI ~ P2 and ql ~ q2 then 

(PI;ql) ~ (P2;q2) 

o 

o 

In general, Theorem 2.7 is not valid under the weak equivalence. A counterexample is given 
below: 

lirst ~ true but 0 lirst ¢ Otrue. 

In the following, we give some logic laws concerning the temporal operators. First, we prove 
an auxiliary lemma. 

Lemma 2.10 
1. more::> (·0 P +-+ O·p) 
2. more /I. • 0 P == more /I. O·p 
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Proof 

(1) Let u be an interval, and k an integer, ° ~ k ~ lui. IT k = lui, then (u,O,k,lul) 1= (more 
-+ (..., 0 p ..... O...,p)) is trivially true. IT k < lui, we have (u, 0, k, luI) 1= more and 

(u,O,k,lul)I=...,Op <====* (u,O,k,lul)~Op 
<====* (u,0,k+1,lul)~p 
<====* (u, 0, k + 1, luI) 1= ""p 
<====* (u, 0, k, luI) 1= O...,p 

Therefore, more ::J (..., 0 p ..... O...,p). 

(2) A proof can be given in a similar way to the proof of 1. However,2 can be derived from 1. 
Since (A -+ (B ..... C)) +-+ (A A B +-+ A A C) is a tautology in first order logic, (more -+ (..., 0 p +-+ 

O...,p)) +-+ (more A..., 0 P +-+ more A O...,p) is tautologically valid. Hence, by Theorem 2.1, 
(more -+ (..., 0 p +-+ O...,p) = (more A..., 0 P +-+ more 0 ...,p). Moreover, from (1), 1= O(more -+ 

(.., 0 p +-+ O...,p), so by Theorem 2.7, we have 1= O(more A..., 0 P +-+ more A O...,p). That is, 
more A ..., 0 P = more A O...,p. 

Theorem 2.11 Duality Laws 

Proof 

F DUl ...,0p=O...,p 
F DU2 ...,Op=0...,p 
FDU3 ...,op=o...,p 
FDU4 ...,op=O...,p 
F DU5 ...,more=empty 

P DU1 ...,Op=Q...,p 
P DU2 ...,Qp=O...,p 
P DU3 ...,Qp=O...,p 
PDU4 ...,Op=Ghp 
P DU5 ...,elaps=first 

o 

The proof of FDU5 is straightforward; the proofs of FDU2 and FDU4 are similar to the proofs 
of FDUl and FDU3. The proofs of PDU1 - PDU5 are analogous to FDU1 - FDU5. We prove 
only FDUl and FDU3. 

The proof of FDUl 

0p 
...,0p 

emptyVOp 
...,( emptyVOp) 
...,emptyA...,Op 
moreA..,Op 
moreAO...,p 
OtrueAO...,p 
O(trueA...,p) 
O...,p 

Abb-wnext 
theorem 2.7 
theorem 2.1 
Abb-m 
lemma 2.10 (2) 
Abb-e, Abb-m 
FD3 (theorem 2.17) 
theorem 2.1 

Note that FD3 can be used in the above proof before its proof in Theorem 2.17 since the proof 
of FD3 does not depend on FDU1. 

The proof of FDU3 

...,o...,q=Oq 

...,op=o...,p 
Abb-alw 
let p be -'q, theorems 2.1, 2.7 

o 
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Theorem 2.12 Reflexivity Laws 

FRI Dp:J P 
FR2 p:J Op 

PRI Glp:J P 
PR2 p:J Op 

Proof Straightforward. 

Theorem 2.13 Laws about the 'strength' of the operators 

FSI Dp:J 0p PSI Glp:J Qp 
FS2 Dp:J Op PS2 Glp:J Op 
FS3 Op:J Op PS3 8p:J Op 
FS4 OP:J more PS4 8p:J elaps 
FS5 ODp:J DOp PS5 OGlp :J GlOp 

FS6 (Pi q) :J Oq PS6 (p; q) :J Op 

FS7 (Pi qI Aq2) :J Pi qi PS7 (PI AP2; q) :J PI; q 
FS8 (Pi qi Aq2) :J Pi q2 PS8 (PI AP2; q) :J P2; q 
FS9 D(p--+q)A(WiP):J (Wiq) PS9 GJ(p--+q)A(p;w):J (q;w) 

FSIO DpA(Wi q):J (WiPAq) PSI0 GJpA(q; W) :J (pAq; w) 

Proof 

We prove only FS5 and PS8. Let 0' be an interval and k an integer, ° ~ k ~ 10'1. 

The proof of FS5 

(O',o,k,IO'IH= ODp 
¢:::::> (0',0, r, 10'1) F Dp for some r, k ~ r ~ 10'1 
¢:::::> (0',0, rl! 10'1) F p for some r and for all rl, k ~ r ~ ri ~ 10'1 
=> (0',0, hb 10'1) F p for all h and for some hI, k ~ h ~ hI ~ 10'1 
¢:::::> (O',O,h, 10'1) FOp for all h, k ~ h ~ 10'1 
¢:::::> (0',0, k, 10'1) F DOp 

The proof of PS8 

(0',0, k, 10'1) F PI A P2;q 
¢:::::> (0',0,1,/) F PI AP2 and (O',I,k,IO'I) F q for some 1,0 ~ I ~ k 
=> (0',0,1,/) F P2 and (O',l,k, 10'1) F q for some 1,0 ~ I ~ k 

¢:::::> (O',O,k, 10'1) F P2;q 

Theorem 2.14 Laws about weak and strong operators 

FWI Op=0pAmore 
FW2 0p=OpVempty 
FW3 Op:J0p 
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PWI 8p=QpAelaps 
PW2 Qp=8pv first 
PW3 8p:JQp 

o 
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Proof 

FW2 and PW2 follow directly from definitions; FW3 and PW3 follow from FW1 and PW1; the 
proof of PW1 is similar to the proof of FW1. So we prove only FW1. 

o p A more - (Op V empty) A more theorem 2.7, FW2 
= Op A more theorem 2.1, more A empty = false 
_ Op A Otrue Abb-e, theorem 2.7 
= O(p A true) FD3 

Op theorem 2.7 

Theorem 2.15 Idempotency Laws 

FIl ODp=Dp 
FI2 OOp=Op 
FI3 emptYAempty=empty 
FI4 moreAmore=more 

Proof Straightforward. 

Theorem 2.16 Commutativity Laws 

FC1 FIn! O(DOp +-+ OOp) 
FC2 FIn! O(OOp +-+ OOp) 
FC3 00p=ODp 
FC4 OOp-+OOp 

where Inf = {u Ilul = w}. 

Proof 

PIl QQp=Qp 
PI2 OOp=Op 
PI3 firstAfirst=first 
PI4 elapsAelaps=elaps 

PC3 QG)p=G)Qp 
PC4 OG)p-+G)Op 

We prove only FC1 and FC3. Let u be an interval and k an integer, 0 ::; k ~ lui· 

The proof of FC1: 

Since lui = w, we have 

(u,O,k,W)FOOP 
<==:} (u,O,k+ r,w) F Op for all r,O::; r < w 
<==:} (u,O,k+ r + 1,w) F p for all r,O::; r < w 
<==:} (u, 0, k + 1,w) F op 
<==:} (u,O,k,w) F OOp 

The proof of FC3: 

If k = lui, (u, 0, k, luI) F 00 p +-+ 0 op is trivially true; in the case of k < lui, we have 

(u, 0, k, luI) F OOp 
<==:} (u,O,k,lui)FOop 
<==:} (u, 0, k + 1, lui) F op 
<==:} (u,O,k+ r + 1, luI) F p for all r,O::; r and r + k + 1 ~ lui 
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¢::::::> (0',0, k + r, 10'1) FOP for that r 
¢::::::> (0',0, k + r, 10'1) F OP for that r 

and (0',0, k + rl! 10'1) F empty for rl = 10'1 - k (if 10'1 :f; w) 
¢::::::> ( 0', 0, k + r, 10'1) F 0 p for all r, ° ~ rand k + r :5 10'1 
¢::::::> (0',0, k, 10'1) F 00 p 

0 

Theorem 2.17 Distributivity Laws 

FDl D(pl\q) - Dpl\Dq PDl Q(pl\q) - Qpl\Qq 
FD2 O(pVq) - OpVOq PD2 ¢(pVq) - ¢pV¢q 
FD3 O(pl\q) - Opl\Oq PD3 E)(pl\q) - E)pl\E)q 
FD4 O(pVq) - OPVOq PD4 E)(pVq) - E)pvE)q 
FD5 O(p-+q) - 0p-+Oq PD5 E)(p-+q) - G)p-->E)q 
FD6 0(pl\q) - 0pl\0q PD6 G)(pl\q) - G)pl\G)q 
FD7 0(pVq) - 0pV0q PD7 G)(pVq) - G)pVG)q 
FD8 0(p-+q) - Op-+0q PD8 G)(p-+q) - E)p-+G)q 

FD9 (w;pVq) - (w;p)V(w;q) PD9 (w;pVq) - (w ;p)V(w ;q) 

FDIO (pVq; w) - (p; w)V(q; w) PDIO (pVq; w) - (p;w)V(q;w) 

Proof 

We prove FD2 - FD6, FD9, and PDIO. In the proofs, we use some interpretation rules, ab
breviations, and proved logic laws without declaration. Let 0' be an interval, and k an integer, 

° ~ k ::5 10'1. 

The proof of FD2 

The proof of FD3 

The proof of FD4 

The proof of FD5 

(0',0, k, 100I)FOpvOq 
¢::::::> (0',0, j, IO'I)FP for some j, k~j ::5 10'1 or 

(0',0, i, 1001)Fq for some i, k~i::5IO'I 
¢::::::> (0',0, r, 100I)FPVq for some r, k~r::5IO'I 
¢::::::> (0',0, k, 1001)FO(pVq) 

(0',0, k, 1001)FOp1\Oq 
¢::::::> (O',O,k+ 1,10'1)FP and (O',O,k+ 1,1001)Fq and k < 10'1 
¢::::::> (O',O,k+ 1, 10'1) FPl\q 
¢::::::> (0',0, k, 100I)FO(pl\q) 

(O',O,k,IO'I)FOpVOq 
¢::::::> «0',0, k + 1, IO'I)FP or (0',0, k + 1, 1001)Fq) and k < 10'1 
¢::::::> (0',0, k + 1, 1001)FPVq 
¢::::::> (0',0, k, 10'1) FO(pVq) 

O(p-+q) 

- O(-.pVq) theorem 2.1, theorem 2.7 

- O-.pvOq FD4 

- -'0pvOq FDU2 

- 0p-+Oq theorem 2.1 
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The proof of F D6 

0pA0q 
_ (emptyVOp)A(emptYVOq) Abb-wnext 

theorem 2.1 _ (emptyAempty)V(emptyAOp) V (emptyAOq)V(OPAOq) 
- emptyVOpA 0 q 
_ emptyVO(pAq) 

F13, empty A Op == false 
FD3 

- 0(pAq) Abb-wnext 

The proof of FD9 

(CT,O,k,ICTI)FwjpVq 
<==} (CT, 0, k, r )FW and « CT, r, r, ICTI) F p or (CT, r, r, ICTI) F q) for some r, k ~ r ~ ICTI. 
<==} (CT, 0, k, r)Fw and (CT, r, r, ICTI) F p for some r, k ~ r ~ ICTI. 

or 
(CT, 0, k, r) F wand (CT, r, r, ICTI) F q for some r, k ~ r ~ ICTI. 

<==} (CT,O,k,ICTI)F(wjp)V(Wjq) 

The proof of PD10 

(CT, 0, k, ICTI)l=pvq -; W 

<==} «CT, 0, 1, I)FP or (CT, 0, I, I) F q) and (CT, I, k, ICTI) F W for some I, ° ~ I ~ k. 
<==} (CT, 0, 1, l)FP and (CT, 1, k, ICTI) F p for some I, ° ~ I ~ k. 

or 
(CT, 0, 1, 1) F q and (CT, 1, k, ICTI) F W for some I, ° ~ I ~ k. 

<==} (CT, 0, k, ICTI)I=(pj W )V( qj w) 

Theorem 2.18 Weak Distributivity Laws 

Proof 

FW Dl D(p-+q):J(Dp-+Dq) 
FW D2 DpVDq:JD(pVq) 
FW D3 (Op-+Oq):JO(p-+q) 
FW D4 O(pAq):JOpAOq 

PW Dl Q(p-+q):J(Qp-+Qq) 
PW D2 QpVQq:JQ(pVq) 
PW D3 (Op-+Oq):J O(p-+q) 
PW D4 O(pAq):JOpAOq 

We prove only FWD4. Let CT be an interval, and k an integer, ° ~ k~ICTI. 
(CT,O,k, ICTI) F O(pA q) 

<==} (CT, 0, r, ICTI) F p A q for some r, k ~ r ~ ICTI 
<==} (CT, 0, r, ICTI) F p and (CT, 0, T, ICTI) F q for that r 
=} (CT,O,k, ICTI) F Op and (CT,O,k, ICTI) F Oq 
<==} (CT, 0, k, ICTI) F Op A Oq 

Theorem 2.19 Expansion Laws 

F El Op==pvOOp 
F E2 Dp==pA0Dp 
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These laws are very useful for both theorem proving and the reduction of programs. 

Proof 

FEl and PEl follow directly from the definitions. The proof of PE2 is similar to the proof of 
FE2. We prove only FE2 . 

Dp - ...,O...,p Abb-alw 
- ...,(...,pV OO...,p) FE1, theorem 2.7 
- ...,...,pA0...,O...,p FDU2, theorems 2.1, 2.7 
- pA0Dp Abb-alw, theorems 2.1, 2.7 

o 

To formulate further chop laws and end point laws, some definitions such as left end closed 
and right end closed formulas are required. 

Definition 2.2 A formula p is called left end closed (lee-formula) if (O',k,k,j) F p ¢:::::> 

(0', i, k,j) F p for any interpretation (0', i, k,j). 

A formula p is called right end closed (ree-formula) if (0', i, k, k) F p ¢:::::> (0', i, k,j) F p for 
any interpretation (O',i,k,j). 0 

Intuitively, a formula p being left end closed means that if p holds over a subinterval O'(k .. j) 

resulting from O'(i..j) by chopping (j) it at the state Sk, then p does not refer to any left state 
beyond the state Sk, while a formula p being right end closed means that if p holds over a 

subinterval O'(i .. k) obtained by chopping CD O'(i .. j) at the state Sk, then p does not refer to (or 
depend on) any right state beyond the state Sk. For instance, D( more ~ O(p ..... E)q)) is a 
lee-formulaj whereas D(elaps ~ E)(p ..... Oq)) is a ree-formula (p and q are state formulas). In 
particular, empty is a lee-formula and first is a ree-formula. 

The importance of the set of the left end closed formulas lies in guaranteeing empty; p == p 
and q A emptYj p == p A q (p is a lee-formula and q is a rec-formula), which are the basic laws for 
reduction of ehop and while statements in a program. 

We first prove a useful lemma given below: 

Lemma 2.20 A non-past formula is a lee-formula, and a non-future formula is a rec-formula. 

Proof 

We prove only a non-past formula is a lee-formula. The proof runs by induction on the structure 
of p. Since p is a non-past formula, the past operators need not to be considered. 

Let (0', i, k,j) be an interpretation. Then 

1. If p is a proposition q. 

2. If p is ...,q. 

(0', i, k,j) F q iff Sk[q] = true 
¢:::::> (0', k, k,j) F q 

(O',i,k,j) F p 
¢:::::> (0', i, k,j) F ...,q 
¢:::::> (O',i,k,j)~q 
¢:::::> (O',k,k,j)~q 

¢:::::> (O',k,k,j)F""q 
¢:::::> (O',k,k,j)FP 
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3. If pis ql A q2. 
(CT, i, k,j) F P 

¢::::::> (CT, i, k, j) F ql A q2 
¢::::::> (CT,i,k,j) F ql and (CT,i,k,j) F q2 
¢::::::> (CT,k,k,j) F ql and (CT,k,k,j) F q2 
¢::::::> (CT,k,k,j) F ql Aq2 
¢::::::> (CT,k,k,j)FP 

4. If pis Oq. 
(CT, i, k,j) F P 

¢::::::> (CT, i, k,j) F Oq 
¢::::::> (CT, i, k + l,j) F q and k < j 
¢::::::> (CT, k + 1, k + l,j) F q 
¢::::::> (CT, k, k + l,j) F q 
¢::::::> (CT,k,k,j) F Oq 
¢::::::> (a, k, k, j) F P 

5. If pis qlj q2. 

(CT, i, k,j) F P 
¢::::::> (CT, i, k, j) F ql j q2 
¢::::::> (CT,i,k,T) F ql and (CT,T,T,j) F q2 for some k::; T ~ j 
¢::::::> (CT, k, k, T) F ql and (CT, T, T,j) F q2 for some k ::; T ~ j 
¢::::::> (CT, k, k, j) F ql j q2 
¢::::::> (CT, k, k, j) F P 

6. If pis q+. 

(a,i,k,j) F q+ iff there are finitely many TO,Tb ... ,Tn E Nw (n 2: 1) such that k = TO::; Tl::; 

••• ::; Tn-l ~ Tn = j and (CT, i, TO, Tl) F= q and for all 1 < I ::; n, (CT, T/_}, T/-l, T/) F qj or 
j = wand there are infinitely many integers k = TO ::; Tl ::; T2 ::; ... such that .lim Ti = w, and 

..... 00 

(a, i, TO, Td F= q and, for all I > 1, (a, T/_}, T/_}, T,) F q. 
By hypothesis, the above means that, (a, i, k,j) F q+ iff there are finitely many TO, Tb "" Tn E 

Nw (n 2: 1) such that k = TO::; Tl ::; ... ::; Tn-l ~ Tn = j and (a,k,To,Tt) F q and for all 1 < I::; 
n, (a, T/-l, T/_}, T/) F= qj or j = wand there are infinitely many integers k = TO ::; Tl ::; T2 ::; ... 
such that ,lim Ti = w, and (CT,k,To,Tl) F q and, for all I > 1, (a,T/_bT/_bT/) F q. This is 

..... 00 

equivalent to (a, k, k, 10'1) F= q+, 

Theorem 2.21 Further Chop Laws 

Let w be a rec-formula. Then 

Proof 

FCHI OPjq=O(Pjq) 
FCH2 wA(pjq)=(wApjq) 

PCHI p;E)q=E)(p;q) 

PCH2 wA(p;q)=(wAp;q) 

We prove only FCRI and FCR2. Let a be a model and k an integer k,O ::; k ~ ICTI. 
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The proof of FCH 1 

(u, 0, k, luDI=Op; q 
{::::} (u,O,k,r)I=Op and (u,r,r,luDl=q for some r,k:5r::Slul 
{::::} (u, 0, k + 1, r)l=p and k < rand (u, r, r, lul)l=q for some r, k:5r::Slul. 
{::::} (u, 0, k + 1, luDl=p; q 
{::::} (u,O,k,luDI=O(P;q) 

The proof of FCH2 

(u, 0, k, luDl=w A (p; q) 
{::::} (u, 0, k, luDl=w and (u, 0, k, luDl=p; q 
{::::} (u, 0, k, lul)l=w and (u, 0, k, r) 1= p and (u, r, r, lul)l=q for some r, k:5r::Slul 
{::::} (o-,O,k,r)l=w and (u,O,k,r) 1= p and (u,r,r,lul)l=q for some r,k:5r::Slul (lemma 2.20) 
{::::} (u, 0, k, r)l=w A p and (u, r, r, luDl=q for some r, k:5r::Slul 
{::::} (u, 0, k, luDl=w A p; q 

o 

Example 2.3 The condition of w being a ree-formula for FCH2 cannot be left out. For instance, 
len(3) A (len(l); len(2)) is satisfiable, but len(3) A len(I); len(2) is not. 0 

Theorem 2.22 Non-End Point Laws 

N FE ,firstA,empty:J (OE)p+-+E)Op) 
N F 'first:J (E)p+-+G)p) 
N E ,empty :J (Op+-+0p) 

Proof Straightforward. 

Theorem 2.23 End Point Laws 

FEPl empty;p ~ p 

FEP2 empty;p == p if p is a lee-formula 

FEP3 (pAempty; q) ~ pAq if p is a ree-formula 

F EP4 (pAempty; q) :J q if q is a lee-formula 

F EP5 (pAempty; q) == pAq if p is a ree-formula 
and q a lee-formula. 

F EP6 p; empty == p A Oempty 

FEP7 I=fi D(p;empty +-+ p) 

FEP8 (p;qAempty) == pAD(empty -+ q), 
if q is a lee-formula. 

where fi = {ullo-I < w}. 

o 

P EPl p; first ~ p if p is a ree-formula 

P EP2 p; first == p if p is a ree-formula 

P EP3 (p; qAfirst) ~ pAq if p is a ree-formula 

P EP4 (p; qAfirst) :J q if q is a lee-formula 

P EP5 (p; qAfirst) == pAq if p is a ree-formula 
and q a lee-formula. 

PEP6 first;p == p 

P EP7 (pAfirst; q) :J q 

PEP8 (pAfirst;q) ~ pAq, 
if p is a ree-formula. 

Note that PEP2 simply implies PEP!. PEPl is added here only for symmetry. 
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Proof 

Let (1 be an interval and k an integer, ° ~ k ~ 1(11. 

The proofs of FEPl and FEP2 

((1,0, k, 1(11) F empty; p 
¢:=> ((1,0, k, r) F empty and ((1, r, r, 1(11) F p for some r, k ~ r ~ 1(11 
¢:=> k = rand ((1,r,r, 1(11) F p 
¢:=> ((1,k,k, 1(11) F p 

If p is a lee-formula, then ((1,0, k, 1(11) F empty; p ¢:=> ((1,0, k, 1(11) F p. 

Let k = ° in the proof, it is obvious that ((1,0,0,1(11) F empty; p iff ((1,0,0, 1(11) F p. Hence, 
empty;p~ p. 

The proofs of FEP3, FEP4 and FEP5 

(u, 0, k, luI) F p A empty; q 
¢:=> (u, 0, k, r) F p A empty and (u, r, r, luI) F q for some r, k ~ r ~ lui 
¢:=> (u, 0, k, r) F p and r = k and (u, r, r, luI) F q 
¢:=> (u, 0, k, k) F p and (u, k, k, luI) F q 

If q is a lee-formula, then (u, 0, k, luI) F p A empty; q ~ (u, k, k, luI) F q ¢:=> (u, 0, k, luI) F q. 
Hence, p A empty; q :J q. 

Furthermore, if p is a ree-formula, then (u, 0, k, luI) F pAempty; q ¢:=> (u, 0, k, 1(11) F pAq. 

In the proof, let k = ° and p be a ree-formula. We obtain (u, 0, 0, luI) F p A empty; q iff 
((1,0,0,0) F p and (u, 0, 0, lui) F q iff (u, 0, 0,1(11) F p and (u, 0, 0,1(11) F q iff (u, 0, 0, luI) F pAq. 
That is, p A empty; q ~ p A q. 

The proof of FEP6 

(u, 0, k, luI) F p A Oempty 
¢:=> (u, 0, k, luI) F p and (u, 0, k, luI) F Oempty 
¢:=> (u, 0, k, luI) F p and (u, 0, r, luI) F empty for some r, k ~ r ~ lui 
¢:=> (u, 0, k, luI) F p and (u, 0, r, luI) F empty and k ~ r = 1(11 < w 
¢:=> (u, 0, k, r) F p and (u, r, r, lui) F empty and k ~ r = lui < w 
¢:=> (u, 0, k, luI) F p; empty. 

The proof of FEP7 

(u, 0, k, luI) F p; empty 
¢:=> (u, 0, k, r) F p and ((1, r, r, luI) F empty for some r, k ~ r ~ 1(11 
¢:=> (u,O,k,r) F p and r = lui < w 
¢:=> ((1,0, k, lui) F p and lui < w. 

The proof of FEP8 will be given in Chapter 4. 

The proof of PEP2 

(u, 0, k, luI) F p -; first 
¢:=> (u, 0, I, I) F p and (u, I, k, luI) F first for some I, ° ~ I ~ k 
¢:=> (u,O,I,/) F p and 1= k 
¢:=> (u, 0, k, k) F p 
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If p is a ree-formula, then (0',0, k, 10'1) F p ;"jirst ¢::::} (0',0, k, 10'1) F p 

The proofs of PEP3, PEP-I and PEP5 

(0',0, k, 10'1) F p; q A first 

¢::::} (0',0,1,/) F p and (O',I,k, 10'1) F q A first for some 1,0 ~ I ~ k 
¢::::} 1= k and (0',0,1,/) F p and (O',I,k, 10'1) F q 
¢::::} (0',0, k, k) F p and (0', k, k, 10'1) F q 

If q is a lee-formula, then (0',0, k, 10'1) F p; q A first ==> (0', k, k, 10'1) F q ¢::::} (0',0, k, 10'1) F q. 

Hence, p; q A first :J q. Furthermore, if p is a ree-formula, then (0',0, k, 10'1) F p; q A first ¢::::} 

(0',0, k, 10'1) F p A q. Hence p;q A first == p A q. 

In the proof, let k = ° and p be a ree-formula. We obtain (0',0,0,10'1) F p; q A first iff 
(0',0,0,0) F p and (0',0,0,10'1) F q iff (0',0,0,10'1) F p and (0',0,0,10'1) F q iff (0',0,0,10'1) F pAq. 

That is, p; q A first ~ p A q. 

The proof of PEP6 

(0',0, k, 10'1) F first; p 
¢::::} (0',0,1,1) F first and (O',I,k, 10'1) F p for some 1,0 ~ I ~ k 
¢::::} 1 = ° and (O',l,k, 10'1) F p 
¢::::} (O',O,k, 10'1) F p 

The proofs of PEP7 and PEP8 

(0',0, k, 10'1) F p A first; q 
¢::::} (0',0, l, I) F p A first and (0',1, k, 10'1) F q for some 1, ° ~ 1 ~ k 
¢::::} 1 = ° and (O',O,l,l) F p and (O',I,k, 10'1) F q 
¢::::} (0',0,0,0) F p and (0',0, k, 10'1) F q 
==> (0',0, k, 10'1) F q 

Let k = ° and p be a ree-formula in the proof. We have (0',0,0,10'1) F pA first; q iff (0',0,0,0) F 
p and (0',0,0,10'1) F q iff (0',0,0,10'1) F p and (0',0,0,10'1) F q iff (0',0,0,10'1) F p A q. That is, 

P A first; q ~ p A q. o 

Theorem 2.24 Laws about Termination and Absorption 

T ER p == (Pi empty) V p A Omore ABS p == (Pi empty) V P 

Proof 

The proof of absorption law is straightforward. We prove the termination law only. 

The proof of TER 
p _ P A (Oempty V -,Oempty) 

_ p A Oempty V p A Omore Abb-alw 
_ (Pi empty) V p A Omore FEP6 

o 
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Theorem 2.25 Laws about Chop-Plus 

FPSI p+ = p V (p;p+) 
FPS3 pv p+ = p+ 
FPS5 p;p+ J p+;p+ 
FPS7 p++ =p+ 

Proof' 

FPS2 pAp+ = P 
FPS4 p+;p J p;p+ 
FPS6 p+;p+ J p+ 

The proofs of FPS4, FPS5, FPS6, and FPS7 are given in the Appendix. We prove only FPSl, 
FPS2 and FPS3. 

The proof of FPSl 

Let q be an interval and k an integer, ° ~ k ~ Iql. 
Suppose (q, 0, k, Iql) 1= p+. Thus, there are finitely many TO, ... , Tn E Nw (n ~ 1) such that 

k = TO ~ TI ~ ... ~ Tn = Iql and (q, 0, TO, TI) 1= p and for all 1 < 1 ~ n (q, T/-b T/-l, Td 1= p; or 
Iql = wand there are infinitely many integers k = TO ~ Tl ~ T2 ~ ... such that lim ri = w, and 

ri~OO 

(q,O, TO, Tl) 1= p and, for all I > 1, (q,T/-lIT/_lI T/) 1= p. 

In the former case, if n = 1, then (q,O, TO, Tl) 1= p, i.e. (q,O,k,lql) 1= p; if n ~ 2 then 
(q, 0, TO, Tt) 1= p and for all 1 < I ~ n (q, T/-ll T/-I, T/) 1= p. That is, (q, 0, TO, TI) 1= p and 
(q,T},TI, Iql) 1= p+. We have (q,O,k, Iql) 1= p;p+. 

In the latter case, (q, 0, k, Iql) 1= p+ amounts to (q, 0, TO, Tt) 1= p and, for all I > 1, 
(q, T/_}, T/-b T/) 1= p. That is, (q, 0, TO, TI) 1= p and (q, T}, TlIlql) 1= p+. We obtain (q, 0, k, Iql) 1= 
PiP+· 

Conversely, suppose (q, 0, k, Iql) 1= p V (p; p+). If (q, 0, k, Iql) 1= p then (q, 0, k, Iql) 1= p+ is 
trivially true since we can simply choose n = 1, TO = k and TI = Iql ignoring q being finite or 
infinite. 

IT (q, 0, k, Iql) 1= pj p+, then there is an integer TI such that k ~ TI ~ Iql and (q, 0, k, rl) 1= p 
and (q, T}, TI, Iql) 1= p+. The latter tells us that either there are finitely many rl, T2, ... , Tn E Nw 

(n ~ l)such that TI ~ T2 ~ ... ~ Tn-l ~ Tn = Iql and (q, T/-b T/-ll T/) 1= p for all I > Ij or 
Iql = wand there are infinitely many integers TI ~ T2 ~ ... such that .lim Ti = w, and, for all .-00 
I> 1, (q, T/-l, T/-b T/) 1= p. Thus, in the former case, we obtain finitely many TO, rl, ... , Tn E Nw 

(n ~ 1) such that k = TO ~ TI ~ ... ~ Tn-l ~ Tn = Iql and (q,O,k,TI) 1= p and, for all I > 1, 
(q, T/-I, T/-b T/) 1= pj whereas in the latter case, we obtain infinitely many integers k = TO ~ 
TI ~ T2 ~ ... such that .lim Ti = w, and (q,O,k,TI) 1= p and, for all I > 1, (q,T/-lIT/-lI T/) 1= p . . _00 
Hence, in both cases, we obtain (q, 0, k, Iq) 1= p+. 

The proof of FPS2 
pAp+ - P A (p V (pj p+» 

- pAp V P A (pj p+) 

- pV pA (pjp+) 

- P 
The proof of FPS3 

pv p+ - p V (p V (pjp+» 
- p V (pjp+) 

- p+ 

0 
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The relationship expressed by the equivalence p+ == pV(PiP+) could also be discussed within 
a model supporting fixpoint semantics of logic formulas [8]. However, a detailed evaluation of 
the problem lies outside the scope of the thesis and is left for future research. 

We now further investigate some logic laws regarding the chop star operator. These laws 
are useful for the reduction of the while statement. 

Theorem 2.26 Laws about Chop-Star 

F STl p* == empty V (Pi p*) V P " Dmore 
FST3 P*iP:J (emptYip) V p+ 

FST2 P*iP~ pV (P+iP) 
FST4 P*iP:J p+ if P is a lee-formula. 
FST6 P*iP* ~ p* FST5 PiP*:J p+ 

FST7 P*iP* == p* if P is a lee-formula. FST8 p** == p* if P is a lee-formula. 

Proof 

The proof of FSTl 

p* _ empty V p+ Abb-star 
FPSl 
TER 
FD9 
Abb-star 

The proof of FST3 

The proof of FST4 

_ empty V (p V (PiP+» 
_ empty V «Pi empty) V P" Dmore V (PiP+» 
_ empty V (Pi (empty V p+» V P " Dmore 

empty V (Pi P*) V P " Dmore 

P*iP (empty V P+)iP 
_ (emptYiP) V (P+iP) 
:J (emptYip) V p+ 

Abb-star 
FD9 
FPS4 

P*iP - (empty V P+)iP 

The proof of FST2 

The proof of FST5 

= 
-
:J 

(emptYi p) V (P+iP) FD9 
P V (P+iP) 
p+ 

FEP2, P is a lee-formula 
FPS4 

P*iP (empty V P+)iP 
_ (emptYiP) V (P+iP) 
~ P V (P+iP) 

FD9 
FEPl 

Pi p* - Pi (empty V p+) Abb-star 
FD9 _ (Pi empty) V (Pi p+) 

:J (p+ i empty) V p+ 
p+ 
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The proofs of FST6 and FST7 

p.jp. _ (empty V P+)j (empty V p+) 
- (emptyj empty) V (p+ j empty) V (emptyj p+) V (p+ j p+) 
_ empty V (p+; empty) V (empty;p+) V (P+jP+) 

Abb-star 
FD9 
EMPI 

_ empty V (p+; empty) V p+ V (p+; p+) 
(::::: empty V (p+; empty) V p+ V (p+;p+) 
_ empty V p+ V (P+jP+) 

FEP2 and p is a lee-formula. 
FEPI) 
ABS 

_ empty V p+ FPS4 
- p* Abb-star 

The proof of FST8 is given in the Appendix. 

o 

Theorem 2.27 Associativity Laws 

F Al (p; (q; w» == ((p; q)j w) 

Proof 

We prove only FAl. Let u be an interval and k an integer, 0 ~ k ~ lui. 

The proof of FA 1 

(u, 0, k, luI) 1= (p; (q; w» 
<==:} (u,O,k,r) 1= p and (u,r,r,lui) 1= qjW for some k ~ r ~ lui. 
<==:} (u,O,k,r) 1= p and (u,r,r,r') 1= q and (u,r',r', lui) 1= W for some r,r',k ~ r ~ r' ~ lui. 
<==:} (u,O,k,r') 1= pjq and (u,r',r',lul) 1= W for some r',k ~ r' ~ lui. 
<==:} (u, 0, k, luI) 1= (pj q)j W 

Finally, we discuss some laws about the negation of the chop construct [24]. 

Theorem 2.28 Laws about negation of chop construct 

FCH NI (pj q) /\ ...,(pj r) ~ (pj q /\ ...,r) 
FCHN2 (pjq)/\ ...,(rjq) ~ (p/\ ...,rjq) 

FCH N3 (len(n)jp) ~ ...,(len(n)j ...,p) 

FCHN4 (pjlen(n» ~ ...,(...,p;len(n» 

Proof 

PCHNI (p;q)/\...,(p;r)~(p;q/\""r) 

PCHN2 (p;q)/\...,(r;q)~(p/\""r;q) 
- -

PCHN3 (len(n);p) ~ ...,(len(n);...,p) 
- -

PCHN4 (p;len(n» ~ ...,(...,p;len(n» 

We prove only FCRNI and FCRN3. Let u be an interval and k an integer, 0 ~ k ~ lui. 
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The proof of FCHNl 

(u, 0, k, luI) F= (Pi q) A -'(Pi r) 
<==? (u, 0, k, luI) F= (Pi q) and (u, 0, k, luI) F= -,(p; r) 
<==? (u,O,k,h) F= P and (u,h,h, luI) F= q for some k ~ h ~ lui, and 

(u, 0, k, h') ~ P or (u, h', h', luI) ~ r for all k ~ h' ~ lui 
===} (u, 0, k, h) F= P and (u, h, h, luI) F= q 

(u, 0, k, h) F= P and (u, h, h, luI) ~ r for some k ~ h ~ lui 
<==? (u, 0, k, h) F= P and (u, h, h, luI) F= q A -,r for some k ~ h ~ lui 
<==? (u, 0, k, luI) F= P; q A -,r 

The proof of FCHN3 

(u,O,k, luI) F= (len(n);p) 
<==? (u, 0, k, h) F len(n) and (u, h, h, luI) F P for some k ~ h ~ lui 
<==? n = h - k and (u, h, h, luI) F= P for some k ~ h ~ lui 
<==? (u, n + k, n + k, luI) F P 

Since (u,O,k,lul) ~ -,(len(n);-,p) is equivalent to (u,O,k,lul) F= len(n);-,p which, by the 
above, is equivalent to (u, n + k, n + k, lui) F -'p, we obtain a contradiction. Therefore, FCHN3 
holds. 

Theorem 2.29 Laws about always and negation of chop construct 

Proof 

FCHANI 
FCHAN2 

If Dp is valid then D(-,(-,p;q» is valid. 
If Dp is valid then D(-,(q; -,p» is valid. 

We prove only FCHANI. Let u be an interval and k an integer, ° ~ k ~ lui. 

o 

Suppose Dp is valid. Thus, for every model u, u FOp. That is, by Theorem A.8, for every 
interpretation I, I F p. 

If D(-,(...,p; q» is not valid, then there is a a and integer k such that (a,O,k, 10'1) ~ ...,(...,p;q). 
This is equivalent to (0',0, k, 10'1) F ""p; q. By I-chop, there exists a r, k ~ r ~ 10'1 such that 
(a,O,k,r) F""P and (a,r,r,lai) F q leading to (a,O,k,r) F ...,p. This is a contradiction. 

o 

In this chapter, we have investigated logic laws which will provide a basis of the underlying 
logic. In particular, these logic laws allow us to establish a model theory for the first order 
extended ITL (see Chapter 3) and to reduce (framed) programs built from the extended Tempura 
(see Chapters 4, 6,7). However, we have not established an axiom system as this is beyond the 
scope of this thesis. 
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Chapter 3 

First Order Temporal Logic 

Summary: An extended first order interval temporal logic is formalized by adding 
past operators and infinite models to ITL. The syntax and semantics of the extended 
logic are presented. The logic laws regarding variables, the equality, and quantifica
tions are formulated and proved. 

Temporal logic can be developed from its propositional basis to a first order predicate logic 
in a way analogous to the way in which this is done in the classical case. In this chapter, we 
present an extended ITL (EITL) which combines linear time temporal logic [66,51] with chop 
[78,42, 11], and is an extension of the interval temporal logic [61]. 

This chapter is organized as follows: Section 3.1 presents the syntax of EITL. Section 3.2 
presents the semantics of EITL. To this end, first, states and intervals are defined. Then inter
pretations of terms and formulas are given in detail. Section 3.3 defines satisfaction and validity 
of formulas in EITL. In Section 3.4, a considerable collection of logic laws concerning variables, 
the equality and quantifications are formalized and proved. The proofs of a number of useful 
theorems exploited later in the thesis are based on these laws. 

3.1 Syntax 

1. Terms 

Let Prop be a countable set of propositions, and V a countable set of typed variables. 
We assume the variables are partitioned into static and dynamic ones. B = {true, false} 
represents the boolean domain, D denotes all data needed by us including integers, lists, 
sets etc. Z denotes all integers, N denotes positive integers, No stands for non-negative 
integers, and N", = No U {w}. Terms are inductively constructed as follows: 

1) Individual typed static variables: a, b, c, u, v, ... possibly with subscripts. 

2) Individual typed dynamic (or state) variables: x, y, z, X, Y, Z, ... possibly with sub
scripts. 

3) Functions: if f is a function of arity m (m~O) and et, ... , em are terms over V of types 
compatible with the types of arguments of f, then f(el, ... , em) is a term over V with 
the type defined by f. In particular, when m = 0, f is a constant term. 

4) If e is a term, then Oe,8e, beg(e) and end(e) are terms with definite types. 
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2. Atomic Formulas 

1) Every proposition pEProp is an atomic formula. 

2) IT P is a primitive predicate of arity m (m > 0) and e}, ... , em are terms over V of 
types compatible with the types of arguments of P, then P( el, ... , em) is an atomic 
formula over V. 

3) IT el, e2 are terms of the same type, then el = e2 is an atomic formula. 

3. Basic Formulas 

1) Every atomic formula is a basic formula. 

2) If p and q are basic formulas, so are the following constructs: 

""p,pAq,3x : p, Op, Op,p; q, E.)p, Op,p; q,p+. 

where 0, 0 and; are the basic future operators whereas 8, 0 and ; are the basic 
past operators. 

Note that, in the following, the types of terms will not be considered in detail, and all terms 
are assumed to be 'well-formed'. 

The constants, functions, and predicates are concrete individual elements, concrete func
tions, and concrete predicates over their respective domains [66]. Similarly as in [66], we have 
constants true, false over B; -1, -2, 0, 1, 2, ... over Z; ( (the empty list) over lists; and <p (the 
empty set) over sets. We have the function symbols +, - over Z; . (the concatenation of two 
lists), 0 (the fusion of two lists), hd (taking the head of a nonempty list), tl (taking the tail of a 
nonempty list), It (taking the last element of a nonempty list) over lists (see Chapter 4 for the 
details); and U, n over sets. We also have predicates >, < over Z; and S;;;, E over sets. 

3.2 Semantics 

1. States 

We define a state s over VUProp to be a pair (Iv, 17') of state interpretations Iv and 17" Iv 
assigns each variable xEV a value in D or nil (undefined) and the total domain is denoted 
by D' = DU{nil}, whereas 17' assigns each proposition pEProp a truth value in B. s[v] 
denotes the value of v at state s. 

2. Intervals 

Basically, the notation for intervals is the same as that defined in Chapter 2. Some 
notations will also be used without declaration under the assumption that they are the 
same as defined in Chapter 2. It is assumed that a static variable remains the same over 
an interval whereas a dynamic variable can have different values at different states. To 
evaluate the existential quantification, an equivalence relation is required and given below. 
We use I~ and I; to denote the state interpretations at state Sk· 

Definition 3.1 Two intervals, u and u', are x-equivalent, denoted by u'~u, if lui = lu'l, 
I:[yj = I~h[y] for all yEV - {x}, and I;[P] = I;h[P] for all pEProp (O~h~lul). 0 
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Note that, (1) ~ is an equivalence relation over the set of all intervals; that is, ~ is 
reflexive, symmetric, and transitive; (2) ~ relation is extensible; that is, if < S;, ••• , S/ > 
x < I I > d x I I th x I I = s;, ... ,s/ an < s/, ... ,Sj > = < s/"",si > en < s;, ... ,Sj > = < s;, ... ,Sj > 
(i ~ I ~ j); (3) ~ relation is partitionable; that is, if < s;, ... , Sj > ~ < s~, ... , sj >, then 

x < I I d x I I r alll '<1 . <s;, ... ,s/>= s;, ... ,s/>an <s/, ... ,Sj>=<s/, ... ,Sj>lor ,t_ ~J. 

3. Interpretations 

An interpretation, as for EPITL, is a quadruple I = (0', i, k, j), where 0' is an interval, 
i,k E No and j E Nw , and 0 ~ i~k~j ~ 10'1. We use notation (O',i,k,j) to mean that a 
formula or term is interpreted over a subinterval < S;, ... , Sj > of 0' with the current state 
being Sk. 

For every term e, the evaluation of e relative to interpretation I = (0', i, k,j), denoted by 
I[e], is defined by induction on terms in the following way: 

1- varu I[a] = Sk[a] = I~[a] = I~[a] if a is a static variable. 

1- varx I[x] = Sk[X] = I~[x] if x is a dynamic variable. 

1- fun I[J(et. ... ,em)] { nil if I[eh] = nil, for some hE{1, ... , m} 
= f(I[el], ... ,I[eml) otherwise 

1- enext I[Oe] = { (O',i,k+ 1,j)[e] if k < j 
nil otherwise 

1- eprev I[E)e] { (0', i, k - 1,j)[e] if i < k 
= nil otherwise 

I - beg I[beg(e)] = (0', i, i,j)[e] 

I - end I[end(e)] 
{ (0', i,j,j)[e] if j < w 

= nil otherwise 

The meaning of formulas is given by the satisfaction relation, 1=, which is inductively 
defined as follows: 

I - prop I 1= p iff I;[P] = true, for any given proposition p. 

1- pred I 1= P( el, ... , em) iff P is a primitive predicate other than = and, for 
all h, O~h~m,I[eh] i' nil and P(I[el]' ... ,I[eml) = true. 

I - equal I 1= el = e2 iff el and e2 are terms and I[el] = I[e2]' 

I - neg I 1= "'p iff I FP. 

I - and I 1= pAq iff Il=p and Il=q. 

I - next I 1= Op iff k < j and (0', i, k + 1,j)l=p. 

I-som I 1= Op iff there exists r such that k~r::5.j and (0', i, r,j)l=p. 

I - chop I 1= (p; q) iff there exists r such that k ~ r~j and (0', i, k, r)l=p and 
(0', r, r,j)l=q. 
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1- pTev 

1- somp 

I - chopp 

I - plus 

I - exists 

4. Abbreviations 

I F 0p iff i < k and (0', i, k - 1,j)FP. 

I F ¢p iff there exists I such that ig5k and (O',i,l,j)FP. 

I F (p -; q) iff there exists 1 such that i515k and (0', i, I, I)FP and 
(O',I,k,j)Fq· 

I F p+ iff there are finitely many TO, ... , Tn E Nw (n~l) such that 
k = To5T15 ... 5Tn-l ~Tn = j and (0', i, TO, Tl) F P and, for all 
1 < 15 n,(O',Tl-bTl-bTl)FP; or j = wand there are infinitely 
many integers k = TO 5 Tl 5 T2 5 ... such that .lim Ti = wand 

1-00 

(O',i,To, TdFP and, for all I > 1, (O',Tl-l,Tl-l,Tl)FP. 

I F 3x: P iff there exists an interval 0" such that O'(i .. j)~O'(i .. j) and 
(0", i, k, j)FP. 

The abbreviations for tTue, false, ,#, v, -- and _ are defined as usual. We also define 
chop-star: 

(Abb - star) p* ~f empty V p+ 

The semantics of the chop star construct is the same as in EPITL. The universal quantifier 
is defined as usual: 

(Abb - all) \.I def 3 
vX: P =..., x:...,p 

Its semantics is given by 

(0', i, k,j)F\;/X : P iff (0", i, k,j)FP for every 0", O'(i .. j)~O'(i .. j). 

The usual convention of abbreviating multiple quantifiers of the same kind, e.g. \;/x : \;/y : P 
to \;/xy : P is also used. Furthermore, we use the abbreviations introduced in Chapter 2. 

5. Precedence Rules 
In order to avoid an excessive number of parentheses, the following precedence rules are 
used: 

where l=highest and 7=lowest. 

1 ..., 

2 Q,0,O,D,0,Q,¢,Gl,+,* 
3 3,\;/ 
4 = 
5 A,V 
6 --,-
7 " , 

A formula (or term) is called a state formula (or term) if it does not contain any temporal 
operators; otherwise it is a temporal formula (or term). 
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3.3 Satisfaction and Validity 

A model is an interval which can be finite or infinite. 

1. Satisfaction and Validity 

A formula P is satisfied by an interval (1, denoted by (1l=p, if «(1,0,0, 1(1l)l=p. A formula P 
is called satisfiable if (1 1= P for some (1. A formula P is valid, denoted by I=p, if (1l=p for 
all (1. 

2. Special Models 

In some cases, we need to define a set R of models satisfying some properties. A formula 
P is called R-satisfiable, if there exists a model (1ER such that (1I=P. A formula P is said 
to be R-valid if for all intervals (1 in R, (1 1= p. In this case, the satisfaction relation I=R 
will be used instead of 1=. 

Like Kripke's structure for EPITL, in a model of EITL, I: can be given by a set of pairs in 
the form Xi : ei, where Xi E V, ei ED'. The pair Xi : ei means that I:[Xi) = ei. In the examples, 
when the value of a variable Xi is irrelevant, the pair Xi : ei may not be shown. Thus, a empty 
set </> of such pairs means that all variables are irrelevant. 

Example 3.1 Evaluate the formula p: X = 11\0x = X + 1; O(Y = 3 * 0x) according to the 
interval given in Fig.3.1, i.e. (1 =< (I2,I~), ... >,I2 = {x: 1,y: 2},I~ = {x: 2,y: 4}, .... We 
do not need to specify I~ in this example. 

k 0123 .. . 
x 1234 .. . 
y 2468 .. . 

Fig.3.1 An interval 

«(1,O,O,I(1l)l=p {:::::} «(1,0,0, r )I=x = 11\0x = X + 1 and «(1, r, r, 1(1I)I=O(y = 3 * 0x) for some 
r,O~r~I(11 

Let r = 1. We have 

«(1,0,0, l)l=x = 11\0x = X + 1 
{:::::} «(1,0,0, l)l=x = 1 and «(1,0,0, l)I=Ox = x + 1 
{:::::} «(1,0,0,1 )[x 1 = «(1,0,0,1 )[1) and «(1,0,0, l)[Ox) = «(1,0,0,1 )[x) + «(1,0,0,1 )[1) 

{:::::} so[x) = 1 and «(1,0,1, l)[x) = so[x) + 1 
{:::::} I2[x) = 1 and Inx) = I2[x) + 1 
{:::::} 1 = 1 and 2 = 1 + 1 
{:::::} true 

«(1,1,1, 1(11)I=O(y = 3 * 0x) 
{:::::} «(1,1,2,1(11) 1= y = 3 * 0x 
{:::::} «(1,1,2, 1(11)[y) = 3 * «(1,1,2, 1(11)[0x) 
{:::::} S2[y) = 3 * «(1,1,1, 1(1I)[x) 
{:::::} I;[y) = 3 * Inx) 
{:::::} 6 = 3 * 2 
{:::::} true 

Therefore (1I=P. 
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3.4 Logic Laws 

The logic laws provided in Chapter 2 for EPITL are all available in the first order temporal 
logic EITL. In this chapter, we present some new logic laws concerning variables, the equality 
and quantifications. 

3.4.1 Basic Theorems 

First, we claim that Theorems (Corollary) 2.1 - 2.7 still hold for EITL. Their proofs are similar 
as in the preceding chapter but quantifications, predicates and the equality in the proofs have 
to be considered. We refer to them as Theorems (Corollary) 3.1 - 3.7, respectively. Note that 
the additional proof for Theorem 3.7 is given in the Appendix. 

Theorem 3.1 H p is a tautologically valid formula, then ~ Dp. 

Theorem 3.2 P is valid iff -,p is not satisfiable. 

Theorem 3.3 Let I be an interpretation. H I~p and I~p-+q then I~q. 

Theorem 3.4 Let I be an interpretation. H I~q implies I~p, then I ~ q-+p. 

Theorem 3.5 H PI, P2, qt, q2 are formulas, then 

Corollary 3.6 

FMl 

FM2 
FM3 

F MO If (PI :J P2) and (qi '-+ q2) then ((PI j qt) :J (P2j q2» 

PMO If (PI :J P2) and (qI :J q2» then ((PI;qt}:J (P2;q2» 

If PI :J P2 then (PI j q) :J (P2 j q) PM 1 

If PI '-+ P2 then (qjPI) :J (qjP2) PM2 
If PI = P2 and qi ~ q2 then PM3 

(PIjql) = (P2jq2) 

If PI :J P2 then (PI; q) :J (P2; q) 

If PI :J P2 then (q;pt}:J (q;P2) 
If PI = P2 and qi = q2 then 

(PI; qt) = (P2; q2) 

o 

o 

o 

o 

o 

o 

Theorem 3.7 If F is a formula in EITL involving the subformula g, and / is a formula such 

that /=9, then 

F=F[J/g] 

where F[J / 9] denotes the formula given by replacing some occurrences of 9 in F by /. 0 
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3.4.2 Quantifications and Temporal Operators 

Let us first introduce the notion of variable binding [51]. An occurrence of a variable x in some 
formula p is called bound if it occurs in a sub-formula 3x : q (or \Ix : q) of p. Otherwise it is 
called free. If t is a term then p[t/x] denotes the result of a simultaneous substitution of t for 
every free occurrence of x in p. When writing p[t/x] we always assume implicitly that t does 
not contain a variable which occurs bound in p ( this can be achieved by replacing the bound 
variables of p by fresh variables). 

Theorem 3.S states some logic laws concerning quantifications and future temporal operators. 

Theorem 3.8 The following formulas hold: 

FQTl O(3x: p) - 3x: Op FQT5 03x :p - 3x: Op 
FQT2 O(\lx: p) - \Ix :Op FQT6 D\lx:p - \Ix: Dp 
FQT3 O(3x : p) - 3x :Op FQT7 3x: Dp :J o3x :p 
FQT4 O(\lx: p) - \Ix :Op FQTS O\lx:p :J \Ix :Op 

Proof 

The proofs of FQT2, FQT4, FQT6 and FQTS are similar to FQTl, FQT3, FQT5 and FQT7, 
respectively. So, we prove only FQTl, FQT3, FQT5 and FQT7. Let 0' be a model and k an 

integer, ° :5 k ~ 10'1· 

The proof of FQT1: 

We need to prove (0',0, k, 10'1)I=O(3x : p)+-+3x : OP. If k = 10'1, the conclusion is vacuously true. 
If k < 10'1, we have, 

The proof of FQT9: 

(O',O,k, 10'1)I=O(3x: p) 
¢:::} (0',0,k+l,10'1)1=3x:p 
¢:::} (0",0, k + 1, 1CT'l)l=p for some O"~O' 
¢:::} (0",0, k, lo'l)l=Op for some O"~O' 
¢:::} (O',0,k,10'1)1=3x:Op 

We need to prove (0',0, k, 10'1)I=03x : p+-+3x : OP· 

(0',0, k, 10'1)I=03x : p 

I-next 
I-exists 
I-next 
I-exists 

¢:::} (0',0, k, 10'1)I=emptyV03x : p Abb-wnext 
¢:::} (0',0, k, 10'1)I=03x : p or k = 10'1 
¢:::} (0',0, k, 10'1) 1=3x : Op or k = 10'1 theorem 3.S (1) 
¢:::} (0",0, k, 1CT'I)I=Op or k = 10'1 for some O"~O' I-exists 
¢:::} (O",O,k, lo'l)l=Opvempty for some O"~O' 
¢:::} (0",0, k, 1CT'1)I=Op for some O"~O' 
¢:::} (O',O,k, 10'1)1=3x : Op I-exists 
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The proof of FQT5: 

(u,0,k,luI)FO(3x :p) 
<==:} (0',0, r, lul)F3x : p for some r, k~r:::flul 
<==:} (0",0, r, lo'l)FP for some r, k ~ r :::f lui, and for some 0", o'~u 
<==:} (0', 0, k, 10' I) FOp for some u~u' 

I-sam 
I-exists 
I-sam 
I-exists <==:} (0',0, r, IUl)F3x : Op 

The proof of FQT7: 

(0',0, k, lul)F3x : Op 
<==:} (u',O,k, lo'l)Fop for some u',u'~u 
<==:} (0",0, r, lo'l)FP for some u'~u, for all r, k~r~lo'l 
=} (u,0,r,lul)F3x :pforall r,k~r~lul 
<==:} (0',0, k, lul)F03x : P 

I-exists 
Abb-alw 
I-exists 
Abb-alw 

o 

Example 3.2 shows that the always operator (0) does not distribute over the existential 
quantification. 

Example 3.2 Relative to the interval given in Fig 3.2, the formula 03x : (more-x> 0/\ x2 + 
Ox2 = y2) holds but 3x : O( more_x > ° /\ x2 + Ox2 = y2) is false. The justification is as 
follows: 

UF03x : (more-x> 0/\ x2 + Ox2 = y2) 
¢::::> (0',0,0, lul)F03x: (more_x> 0/\ x2 + OX2 = y2) 
¢::::> (u,0,r,lul)F3x: (more-x> 0/\ x2 + OX2 = y2) for all integer r,O~r~lul 

Since lui = 2, r = 0,1,2. When r = 2, the formula is 'vacuously' true. So, we need only to 
consider the cases r = ° and r = 1. 

Case 1: r = ° 
(u,0,0,2)F3x : (more-x> 0/\ x2 + Ox2 = y2) 

¢::::> (u',0,0,2)Fmore-x > 0/\ x2 + Ox2 = y2 for some 0", u'~u 

We can construct such a 0" given in Fig 3.3. We have 

(u',0,0,2)Fmore 
and 

(u',0,0,2)FX > 0/\ x2 + OX2 = y2 
¢::::> (0", 0, 0, 2)Fsti[x] > ° and (sti[x])2 + (si[x]? = (sti[Y]? 
¢::::> (u',0,0,2)F3> ° and 32 +42 = 52 

¢::::> (0",0,0, 2)f=true 

Therefore, 

(u,0,0,2)F3x : (more-x> 0/\ x2 + Ox2 = y2) 

Case 2: r = 1 

38 



(0',0,1,2)t=3z : (more-+z > 01\ Z2 + OZ2 = y2) 
¢:::::> (0"',0, 1,2)t=more-+z > 01\ Z2 + OX2 = y2 for some 0"', O'''~O'. 

We can construct such a 0''' given in Fig 3.4. We have 

(0''',0,1,2)l=more 
and 

(0''',0,1,2)l=x > 01\ x2 + Ox2 = y2 
¢:::::> (0''',0,1, 2)l=sq[x] > ° and (sq[x])2 + (s~[x])2 = (sq[y])2 
¢:::::> (0''',0,1,2)1=5 > ° and 52 + 122 = 132 

¢:::::> ( 0''' , 0, 1, 2) I=true 

Therefore, 

(0',0,1,2)1=3x : (more-+x > 01\ x2 + OX2 = y2) 

By cases 1,2, we have 

However, 

0' }:3x : D(more-+x > 01\ x2 + Ox2 = y2) 

because we cannot construct one model 0" such that (s~[x])2 + (s~[x]? = (s~[y]? and (s~[x])2 + 
(S~[X])2 = (s~[y])2 and s~[x] > ° and s~[xl > ° and s~[xl > ° and O"~O' since there is no positive 
integer solution for the equation system: a2 + b2 = 25 and b2 + c2 = 169. 

1------1------1 
x=l 
y=5 

2 
13 

Fig 3.2 

1 
5 

1------1------1 
x=3 
y=5 

4 
13 

Fig 3.3 

5 
5 

1------1------1 
x=3 
y=5 

5 
13 

Fig 3.4 

12 
5 

o 
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Example 3.3 We now show that the sometimes operator does not distribute over the universal 
quantification, that is, in general, 

<>(Yx : p) == "Ix: <>p 

does not hold. Consider the two formulas, <>(Yu : p) and Yu : <>p, in the case that p stands for 
x ~ u and where variable u is static, and variable x is dynamic. 

Consider the interval relative to Fig 3.5. It is easy to show that O'FYu : <>( x =/; u). To see 
this, we have to s~ow that, for any 0", 0'~0', i.e. 0' =< (I~o, 1;°), ... > for ~i = {x : i, u : a}, 
and an arbitrary I~, for all i,O~dIO"I, and for every possible value of a, 0" satisfies <>(x ~ u). 

We consider two cases: 

(1) if a = 0 then (0",0,1, 100I)Fx =/; u as x = 1, u = 0 at s~ of 0'. 
(2) if a ~ 0 then (0",0,0, 100I)Fx =/; u as x = 0, u = a=/;O at sb of 0". 

On the other hand, the state formula Yu : x =/; u is false at any state of 0', since we can 
always take u = x at that state. It follows that 0' V= <>Yu : (x =/; u), which shows that the 
formulas are not equivalent. 

1------------1------------1--
x=O 
u=10 

Fig 3.5 

1 

10 
2 .. . 
10 .. . 

Theorem 3.9 concerns the past operators, its proof is similar to Theorem 3.B. 

Theorem 3.9 The following formulas are valid: 

PQTl 8(3x: p) == 3x : 8p 
PQT2 8(Yx: p) == "Ix : 8p 
PQT3 Q(3x: p) == 3x : Qp 
PQT4 Q(Yx: p) == "Ix: Qp 

PQT5 03x: p == 3x : Op 
PQT6 G1Yx: p == "Ix : G1p 
PQT7 3x: G1p ::::> G13x : p 
PQTB OYx: p ::::> "Ix : Op 

o 

Theorem 3.11 is devoted to developing the laws which are relevant to the chop operator. 
First, we prove an auxiliary Lemma. 

Lemma 3.10 If O'(i .. j)~O'(i .. j)' 0 ~ i ~ k ~ j ~ 10'1, and q is a formula without free occurrences 
ofthe (dynamic or static) variable v, then (O',i,k,j) F q iff (O",i,k,j) F q. 

Proof 

We need to prove that, any bound occurrence of v in the form of 3v : w contained in the formula 
q is evaluated to the same truth value over any interpretations (0',i1,kll jd and (O",illkt,jd 
(. >. . < .) S. V , V , 
'1 _ t, 31 _ 3· mce O'(i .. j)=O'(i .. j) , 0'(il .. jd=0'(i1 .. jd· 

If q contains 3v : w as a subformula, then 

(O',it,kllit) F 3v: w 

( '" k ')L- r "" v ¢::::> 0', '1, t,31 r- W lor some 0' 'O'(il .. jd=O'(il .. jd 

( "'k ')L- r /I /I v, (' x ) 
¢::::> 0', tll 1,]1 r- W lor some 0' '0'(i1 .. jd=0'(i1 .. jd 0'(i1 .. jd=0'(i1 .. jd 

¢::::> (0", it, kb jd F 3v : W 

o 
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Theorem 3.11 Let p, q be formulas. The following hold: 

FQCl (3x : pj q) - 3x:(pjq) x does not occur freely in q 
FQC2 (pj 3x : q) - 3x:(pjq) x does not occur freely in p 
FQC3 ("Ix :Pjq) :J "Ix: (p;q) x does not occur freely in q 
FQC4 (pjVx:q) :J "Ix: (pjq) x does not occur freely in p 

Proof 

The proofs of FQC2 and FQC4 are similar to FQCl and FQC3. SO, we prove only FQCl and 
FQC3. Let 0- be a model, and k an integer, ° :$; k ~ 10-1. 

The proof of FQC1: 

(0-,0, k, 10-1)1=(3x : p; q) 
{:::::::} (0-,0, k, r)1=3x : p and (0-, r, r, 1001)l=q for some r, k:$;r~lo-l. 
{:::::::} (0-',0, k, r)l=p and (0-, r, r, 1001)I=q for some r, k :$; r ~ 10-1 and for some 

, , x 
0- , 0- (O •• r) =0-(O •• r). 

{:::::::} (0-',0, k, r )I=p and (0-', r, r, lo'l)l=q for some r, k :$; r ~ 10-1 and for some 
0-', 0-' ~o-. 

{:::::::} (0-',0, k, lo'l)l=p; q for some 0-', o-'~o-. 
{:::::::} (0-,0, k, 10-1)1=3x : (Pj q) 

The proof of FQC3: 

(o-,O,k,lo-l)I=Vx :p;q. 
{:::::::} (0-,0, k, r)I=Vx : p and (0-, r, r, 1001)I=q for some integer r, k:$;r~lo-l 

I-chop 

I-exists 

lemma 3.10 
I-chop 
lemma 3.10 

{:::::::} (o-',O,k,r)l=p and (o-,r,r,lo-l)l=q for some r, k:$; r ~ 10-1, and for every 0-', o-(o .. r)~o-(o .. r). 

==> (o-',O,k,r)l=p and (o-',r,r,lo'l)l=q for every 0-', o-'~o- and some r, k:$; r ~ 10-1 (lemma 3.10). 
{:::::::} (0-',0, k, 100'1)I=Pj q for every 0-', o-'~o-. 
{:::::::} (o-,O,k,lo-l)I=Vx : (p;q). 

o 

Example 3.4 According to Theorem 3.11, the following formula holds: 

3x : O(x = 7); O(y = 8) = 3x : (O(x = 7); O(y = 8» 

o 

Example 3.5 and Example 3.6 show that the universal quantifier does not distribute over 
the chop operator. 

Example 3.5 Relative to the interval given in Fig 3.5, the formula Vu : (O(x = u/l.u ~ O)j true) 
holds, but the formula Vu : Ox = u /I. u ~ 0; true is false, where u is a static variable. We prove 
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this as follows 

O'FVu : (O(x = u 1\ u ~ O)j true) 
<==> (0',0,0, 100I)FVu : (O(x = u 1\ u ~ O)j true) 
<==> (0",0,0, 1u'I)FO(x = u 1\ u ~ O)jtrue for every 0", O"~O'. 
<==> (0",0,0, rO" )FO(x = u 1\ u ~ 0) and (0", rO'" rO'" 1u'I)Ftrue for every 0", O"~O', and 

some rO', relevant to the 0", O:S;rO"~Iu'I. 
<==> (0",0,0, rO" H=O(x = u 1\ u ~ 0) for every 0", O"~O' and some rO',. 
<==> (0",0, i, rO" )FX = u 1\ u ~ ° for every 0", O"~O', and some r,,', i, O:S;i :s; rO',. 
<==> (O",O,i,rO")FSaX] = sau] = s~[u] ~ 0 for every O"~O', and some r"',i,O:S; i ~ 10'1. 

For each given u, O"~O', we can choose an rO', to satisfy the above condition. In fact, let 
rO" = s~[u] and i = rO'" then sax] = i = rO', = s~[u] = sau]. However, we cannot construct one 
interval O"~O' for all u to satisfy the above condition. 

O'FVU : O(x = u 1\ u ~ O)j true 
<==> (0',0,0, 100I)FVu : O( x = u 1\ u ~ O)j true 
<==> (0',0,0, r)FVu : O(x = u 1\ u ~ 0) and (0', r, r, 100l)Ftrue, for some r, O:S;r~IO'I. 
<==> (0',0,0, r)FVu : O(x = u 1\ u ~ 0) for some r, 0 :s; r ~ 10'1. 
<==> (0",0,0, r)FO(x = u 1\ u ~ 0) for some r, 0 :s; r ~ 10'1, and every 0", o(o .. r)~O'(O .. r)' 
<==> (0",0, i, r)Fx = u 1\ u ~ 0 for some r,O :s; r ~ 10'1, for every 0", O'(O .. r)~O'(O .. r)' and for 

some i, O:S;i:S;r ~ 10'1. 
<==> sax] = sau] ~ 0 for some r,O :s; r ~ 10'1, for every 0", O'(o .. r)~O'(O .. r)' and some 

i,O:S;i:S;r~IO'I· 

<==> sax] = s~[u] ~ 0 for some r,O:S; r ~ 10'1, for every 0", O'(o .. r)~O'(o .. r)' and some 
i,O :s; i :s; r ~ 10'1. 

<==> i = s~[u] ~ 0 for some r,O :s; r ~ 10'1, for every 0", O'(O .. r)~O'(o .. r)' and some 
i,O:S;i:S;r~IO'I· 

Since O:S;i:S;r, when s~[u] > r, the above condition cannot be satisfied. o 

Example 3.6 As proved in Theorem 3.11 (FQC4), pj Vx : q :::> Vx : (pj q), x is not free in pj 
but the reverse does not hold. The justification is simple: if Vx : (pj q) :::> pj Vx : q held, then by 
taking p to be true, we would have 

Vx: (truejq) :::> (truejVx: q) 

If q and Vx : q are lee-formulas, then we can rewrite this as 

Vx : Oq :::> OVx : q 

Thus, taking x to be a static variable u, and q to be x "" u, the above contradicts Example 3.3. 
o 

Theorem 3.12 is similar to Theorem 3.11 but is concerned with chop in the past operator. 

Theorem 3.12 Let p, q be formulas. The following formulas are valid: 

PQC1 (3x:p;q) - 3x : (p;q) x does not occur freely in q. 

PQC2 (p;3x : q) - 3x:(p;q) x does not occur freely in p. 

PQC3 (Vx:p;q) :::> Vx : (p;q) x does not occur freely in q. 

PQC4 (p;Vx : q) :::> Vx:(p;q) x does not occur freely in p. 
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3.4.3 Values of Terms 

In this section, we present some logic laws concerning the values of variables at the previous, 
next, first and last states over an interval. First, we introduce some notations used in the sequel. 

Definition 3.2 
de! 1. keep(p) = D(...,empty -+ p) 

2. remain(p)~D(""first-+p) 
3. inner(p) ~f D( ...,first A ...,empty -+ p) 

o 

keep(p) holds over an interval as long as p holds at all states ignoring the last one, while 
remain(p) holds over an interval as long as p holds at all states ignoring the first one, and 
inner(p) holds over an interval if p holds at all states ignoring the first and last ones. 

Theorem 3.13 Let el, e2 be terms. Then 

Proof 

EQI 1= keep(Oel = Oe2 - O(el = e2)) 
EQ2 1= remain(8el = 8 e2 +-+ 8(el = e2)) 
EQ3 1= inner(08e = 80e) 

We prove only EQI here. To this end, we need to prove (0',0, r, loDl=more -+ (Oel = 
Oe2+-+0(el = e2)) for every 0' and r, ° ::;; r ~ 10'1. If r = 10'1, the conclusion is trivially 
true. Ifr < 10'1, then (u,O,r,lul) 1= more. Hence, 

(u,O,r,luI)I=Oel = Oe2 
¢::::? (u,O,r,lul)[Oel] = (u,0,r,lul)[Oe2] 
¢::::? (0',0, r + 1, lul)[el] = (0',0, r + 1, lul)[e2] 
<==> (u,O,r+ 1,lul)l=el = e2 
<==> (u,O,r,lul)I=O(el = e2) 

Lemma 3.14 Let e be a term and f a function of arity one. Then 

Proof 

Funl 1= D(f(Oe) = Of(e)) 
Fun2 1= D(f(8e) = 8f(e)) 

o 

We prove only Fun1. Let 0' be an interval and r an integer, 0::;; r ~ 10'1. If r = 10'1, (0',0, r, 10'1) 1= 
f(Oe) = nil = Of (e). If r < 10'1, then we have 

(0',0, r, lul)l=(f(Oe) = Of(e)) 
<==> (0',0, r, lul)[f(Oe)] = (0',0, r, lul)[Of(e))] 
<==> f« 0',0, r, lul)[Oe)]) = (0',0, r + 1, lul)[I( e)] 
<==> f« 0',0, r + 1, lul)[e]) = f« 0',0, r + 1, lul)[e])] 
<==> true 
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Corollary 3.16 Let et. ... , em be terms and f a function of arity m (m > 0). Then 

Fun3 t= D(J(Oet. ... , Oem) = Of(el, ... , em» 
Fun4 t= D(J(0et, ... , Oem) = 0f(e}, ... , em» 

o 

Notice that although we consider only the name and arity of a function, a function (called 
/unction-expression) can be defined compositionally in a complicated way. For example, +, 
" *, / are functions of arity two over Z, a composite function f of arity two over Z can be 

defined as f(x, y) 4~l (x + y) * «x - y)/(x * y». Therefore, in what follows, whenever a proof 
involves a function, it is sufficient to take only its name and arity into account. Note also 
that, in the definition of a composite function, the parameters of the function are only the free 
variables; whereas in the invocation of such a function, the parameters are replaced by terms 
(arguments). In a similar way, we can define a term-expression and formula-expression with 
only free variables as their parameters. In the applications of term-expressions and formula
expressions, the parameters can be replaced only by terms (arguments). Certainly, a term
expression (formula-expression) is also a term (formula). 

Lemma 3.16 Let 11. be a static variable and x a dynamic or static variable. Let f be a function 
of arity two. Then 

Proof 

Fun5 t= D(J(u,Ox) = Of(u,x» 
Fun6 t= D(J(u,0x) = 0f(u,x» 

We prove only Fun5. Let u be an interval and r an integer, ° ~ r ~ lui. If r = lui, (u, 0, r, luI) ~ 
f(u, Ox) = nil = Of(u,x). If r < lui, then we have 

(u,O, r, lul)~(J(u, Ox) = Of(u, x» 
<==? (u,O,r,lul)[f(u,Ox)] = (u,O,r,lul)[Of(u,x»] 
<==? f«u, 0, r, lul)[u], (u, 0, r, lul)[Ox)]) = (u, 0, r + 1, lul)[f( u, x)] 
<==? f«u, 0, r + 1, lul)[u], (u, 0, r + 1, lul)[x]) = f«u, 0, r + 1, lul)[u], (u, 0, r + 1, lul)[x]) 
<==? true 

Lemma 3.17 If u is a static variable, then 

Proof Straightforward. 

VarSl ~ keep(u = Ou) 
VarS2 t= remain(u = 0 u ) 

o 

o 

Lemma 3.18 Let u be a static variable and x a static or dynamic variable. Let e( u, x) denote 
a. state term-expression which can be a constant or a variable u or x or a function-expression 
f(u), or f(x) or f(u,x), then 

TerS1 ~ keep( e( u, Ox) = Oe( u, x» 
TerS2 ~ remain( e( u, Ox) = 0e( u, x» 
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Proof 

We prove only TerSl. The proof proceeds by case analysis of the term e( u, x). 

1. If e( u, x) is a constant c, then the conclusion is obvious. 

2. If e( u, x) is a static variable u, then by Lemma 3.17, the conclusion holds. 

3. If e( u, x) is a dynamic variable x, then the conclusion trivially holds. 

4. If e( u, x) contains u and x, then e( u, x) is a function-expression I( x), I( u) or I( u, x) then 
by Lemma 3.14, 3.16 and 3.17, the conclusion holds. 

o 

Theorem 3.19 Let u be a static variable and x a static or dynamic variable. Let cp( u, x) denote 
a state formula-expression that contains free variables u or x or both as its only variables. Then 

Proof 

ForSl F keep( cp( u, Ox) ...... Ocp( u, x))) 
ForS2 F remain(cp(u,E)x) ...... E)cp(u,x))) 

We prove only ForSl. Let u be an interval and r an integer, ° ::;; r ~ lui. If r = lui, the 
conclusion is obvious. We assume lui> r. The proof proceeds by induction on the structure of 
state formulas. Since cp( u, x) contains free variables u, or x or both as its only variables, it is 
impossible for cp( u, x) to contain quantifiers. Also, it does not contain any temporal operators. 
Thus, 

1. cp( u, x) is a primitive predicate p( u, x). 
The proofs for the cases of p( u) and p( x) are similar. 

(u,O,r, lui) F cp(u,Ox) 
¢::::} (u,O,r, lui) F p(u, Ox) 
¢::::} p«u, 0, r, lui)[uj, (u, 0, r, lul)[Ox)]) = true 
¢::::} p«u, 0, r, lui)[uj, (u, 0, r + 1, lul)[x]) = true 
¢::::} p«u, 0, r + 1, lui)[uj, (u, 0, r + 1, lul)[x]) = true 
¢::::} (u,O,r+ 1,lul) F p(u,x) 
¢::::} (u,O,r,lul) F Op(u,x) 
¢::::} (u,O,r,lul) F Ocp(u,x) 

(u,O,r,lui) F cp(u,Ox) 
¢::::} (u,O,r,lui) F el(u,Ox) = e2(u,Ox) 
¢::::} (u,O,r,lui) F Oel(u,x) = Oe2(u,x) 
¢::::} (u,O,r, lui) F O(el(u,x) = e2(u,x» 

3. cp( u, x) is .,'t/J( u, x) 

(u,O,r,lui) F cp(u,Ox) 
¢::::} (u, 0, r, lui) F .,'t/J( u, Ox) 
<==> (u,O,r,lui) F .,O't/J(u,x) 
<==> (u,O,r,lul) F O.,'t/J(u,x) 
<==> (u,O,r,lul) F Ocp(u,x) 
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I-pred 
I-next 

lemma 3.18 
theorem 3.13 

hypothesis 
r>O 



4. !p( 1', z) is "'I ( 1', x ) 1\.,p2 ( 1', x) 

(O',O,r,IO'I) 1= <p(1',Ox) 
<==* (0',0, r, 10'1) 1= .,pI ( U, OX)I\ .,p2( u, Ox) 
<==* (O',O,r, 10'1) 1= 0.,pI(U,X)1\0.,p2(U,X) 
<==* (O',O,r,IO'I) 1= O(.,pI(U,X)I\.,pz(u,x)) 
<==* (O',O,r,IO'I) 1= O<p(u,x) 

hypothesis 
FD3 

o 

Theorem 3.20 Let UI, ... , Urn be static variables and Xl, ... , Xn be static or dynamic variables. 
Let !p(ut. ... , Urn, Xt. ... , xn) denote a state formula-expression that contains free variables Ui (1 ::; 
i::; m) or Xj (1 ::; j ::; n) or all of them as its only variables. Then 

ForS3 F keep(<p(ul, ... ,Urn,Oxt, .. ·,Oxn) - O<p(Ul, ... ,Urn,xt, ... 'xn )) 

ForS4 F remain(<p(ul, ... ,Urn,OXl, .. ·,OXn ) - O<p(ut, ... ,urn,xt, ... ,xn )) 

Proof 

Similar to the proof of Theorem 3.19 which can easily be generalised. 

3.4.4 Replacement of Variables 

o 

Definition 3.3 A formula (or term) is called static if it does not refer to any dynamic variable. 

o 

Definition 3.4 Let l' be a formula or term. If t is a term and x a variable used in 1', then 
r[t/x] denotes the result of simultaneous replacement of all free occurrences of x by t in r. The 
replacement is called compatible if either x and t are static or X is dynamic. 0 

In the following, we write 1'( x) to imply that l' has one or more occurrences of variable x 
and that there is no quantification over x. 

Definition 3.5 The replacement r[t/x] is called admissible for rex) if it is compatible and none 
of the variables appearing in t is quantified in r. We also say that t is admissible for x in 1'( x) 
and write ret) to denote r[t/x]. 0 

Example 3.7 Let x be a dynamic variable and u a static variable, then the substitution of x 
for 'U in 3x : (x i- u) is not admissible. 0 

Theorem 3.21 (replacement of equals by equals in terms) 

For a state term-expression e( x) and terms, tl, tz, that are admissible for x in e( x), we have 

Proof 

The proof proceeds by induction on the structure of e(x). Obviously, we do not need to consider 
constant terms. Let I = (<7,0, k, 10'1) be an interpretation. 
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1. e( z) is a variable. 
I 1= tl = t2 

¢:=? I[tl ] = I[t2] 
¢:=? I[e(tt)] = I[e(t2)] 
¢:=? I 1= e(tt) = e(t2) 

2. e(z) is a (possibly composite) function f(x). 

I 1= tl = t2 
¢:=? I[tl] = I[t2] 
==> f(I[tt]) = f(I[t2]) 
¢:=? I[f(tt)] = I[f(t2)] 
¢:=? I 1= f(tt) = f(t2) 

o 

Corollary 3.22 For state term-expressions el (x), e2( x) and terms tl, t2, that are admissible for 
x in el(x),e2(z), we have 

Proof 

Let (1 be an interval and r an integer, 0::; r ~ 1(11. Suppose «(1,O,T,I(1l)l=t1 = t2Ael(tl) = 
e2(tl),0::;r~I(1I. By Theorem 3.21, we have 

Since «(1,0, T, 1(11) 1= el (tt) = e2(tt}, we obtain 

o 

Note that the condition, e( x) being a state term, is necessary for Theorem 3.21. For example, 
taking e(x) to be Ox, and tl,t2 to be x,y , respectively, x = y does not imply Ox = Oy. 
However, if tl = t2 holds throughout an interval, then the conclusion can be changed. 

Theorem 3.23 If e( x) is a term-expression, and tt, t2 are terms that are admissible for x in 
e(x), then 

Proof 

The proof is by induction on the structure of term e. Let (1 be an interval and k an integer 
O:S k ~ 1(11. Then, «(1,0, k, 1(11)l=tt = t2. 

1. If e(x) is a state term, by Theorem 3.21, the conclusion holds. 

2. If e(z) is Oel(x), we need to prove «(1,O,k,I(1I)I=Oet(tt) = Oel(t2). If k = 1(11, then 
the conclusion is obvious. Suppose k < lui. Then (u,O,k,lul)FOel(td = Oel(t2) iff 
«(1,O,k+ 1,1(1l)l=el(tt) = el(t2). By the induction hypothesis, «(1,O,k+ 1,1(1i)Fel(td = 
el (t2). 
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3. If e(z) is 8et(z), a similar proof as that for Oet can be made. 

4. If e(z) is beg(et(z)). We need to prove (0',0, k, 100I)Fbeg(et(tt}) = beg(el(t2)). 

(O',O,k,IO'I) F beg(el(tt)) = beg(et(t2)) 
<=> (0',0, k, 1001)[beg(el(tt})] = (0',0, k, 10'1)[beg(et(t2))] 
<=> (O',O,O,IO'I)[el(tt)] = (0',0,0, I 0'1) [el (t2)] 
<=> (0',0,0,10'1) F el(tt) = et(t2) 

By the induction hypothesis, (O',O,k,IO'I) F et(tl) = et(t2) for all k, ° $; k ~ 10'1. So, 
(0',0,0,10'1) 1= et(tt} = el(t2). 

5. If e(z) is end(et(x)), a similar proof as that for beg(et(x)) can be made. 

6. If e(x) is a function I(x), then it is already discussed in 1. 

o 

Theorem 3.24 (replacement of equals by equals in formulas) 

If p(x) is a state formula-expression and tt, t2 are terms which are admissible for p(x), then 

Proof 

Let u be a model and r an integer, 0 $; r ~ 10'1. The proof proceeds by induction on the structure 
of state formula p. 

Suppose (0',0, r, 1001)I=tl = t2' We need to prove (0',0, r, 1001)I=p(tl) +-+ (0',0, r, 10'1)I=p(t2). 

(1) p(x) is a primitive predicate q(x). 

Since (u,O,r,IO'I) 1= tl = t2, then 
(0',0, r, 10'1) 1= p(tt) 

¢:::} (u, 0, r, 10'1) 1= q(tt} 
¢:::} q«u, 0, r, 1001)[tl]) = true 
¢:::} q«O', 0, r, 10'1)[t2]) = true 
¢:::} (0',0, r, 10'1) 1= q(t2) 
¢:::} (u, 0, r, 10'1) 1= p(t2) 

(2) p( x) is e( x) = c and c is a constant in D. Then, 

(0',0, r, lui) 1= p(tt} 
¢:::} (u,O,r, 10'1) 1= e(tt} = c 
¢:::} (u, 0, r, 10'1) F e(t2) = e(tt} = c 
¢:::} (u, 0, r, 10'1) 1= p(t2) 

(3) p(x) is el(x) = e2(x). Then, 

(0',0, r, 10'1) 1= p(tt} 
¢:::} (u,O,r,IO'I) 1= el(tt} = e2(tl) 
¢:::} (0',0, r, 10'1) 1= et(t2) = e2(t2) 

(4) p(x) is -,q(x). Then, 

(0',0, r, 10'1) 1= p(tt} 
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<==* (u, 0, r, luI) 1= -.q( tt) 
<==* (u, 0, r, luI) 1= -.q( tz) 
<==* (u,O,r,lul) 1= p(tz) 

(5) p(x) is qt(x)Aqz(x). Then, 

(u, 0, r, luI) 1= p(tt} 
<===> (u,O,r, luI) 1= qt(tt}Aqz(tt) 
<===> (u,O,r, luI) 1= qt(tz)Aqz(tz) 
<===> (u,O,r,lul) I=p(tz) 

(6) p(x) is 3y: q(x). Then, 

(u, 0, r, luI) 1= p(tt) 
<===> (u,O,r,lul) 1= 3y: q(tt) 
<===> (u', 0, r, luI) 1= q(tt} for some u'!::u 
<===> (u' , 0, r, luI) 1= q(tz) for some u'!::u 
<===> (u,O, r, lui) 1= 3y : q(tz) 
<===> (u, 0, r, lui) 1= p(tz) 

hypothesis, theorem 3.7 

hypothesis, theorem 3.7 

hypothesis 

o 

In the above proof, it is important that y is not used by tt and t2 since this allows us to 
have (0",0, r, 10'1) 1= tt = t2, so induction hypothesis can be applied. 

We will show that the two restrictions required by the theorem are essential for its validity. 
Consider first the case p(x) is not a state formula. We may then take p(x) to be O(x = 10) and 
tb t2 to be y, z, respectively, and obtain 

I=O(y = z-(O(y = 10)+-+0(z = 10))) 

To see the above is not valid, it is sufficient to consider the sequence 

u =< (I~,I~),(I;,I~) > and I~ = {y: 1O,z: 10},I; = {y: 10,z: 20} 

We observe that u satisfies y = z and O(y = 10) but not O(z = 10) at state SQ. 

Next consider the case that formula p( x) quantifies over some of the variables of tt, t2' For 
example, take p( x) to be 3y : (y > x), and tt, t2 to be y, z, respectively, then 

I=0(Y = z-(3y : y > y+-+3y: y > z)) 

Clearly, 3y : y > y is always false, while if x and y range over the integers, 3y : y > z is always 
true. 

We can obtain a stronger notion of substitutivity by requiring that el = e2 holds not only 
at a single position, but throughout the interval. 

Theorem 3.25 Let p( x) be a formula with a free variable x and let it, t2 be terms that are 
admissible for p(x). Then the following holds: 

SFor2 if I=0(tl = t2) then p(tt} = p(t2) 

Proof Similar to the proof of Theorem 3.24. 
o 
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Theorem 3.26 For a stateformulap(xt, ... , xm), aformulaq(xt, ... , xm), a state term e(xt, ... ,xm), 
and terms tt, ... , tm, elo •.• , em, that are admissible for Xlo •.• , Xm in P(Xl' ... , xm) and e(xlo ... , xm) 
the following hold: ' 

STer4 (tt = et/l. ... /l.tm = em):::> (e(tt, ... ,tm) = e(elo •.. ,em » 
STer5 (tl = el/l. ... /l.tm = em):::> (P(tl, ... ,tm)~p(elo ... ,em» 

SFor6 if I=D(tl = et/l.··./l.tm = em) then (q(tt, ... ,tm) == q(elo ... ,em» 

Proof Similar to the proof in the case m = 1. 

o 

3.4.5 Quantifications 

The logic laws presented in this section are concerned with the universal quantification. 

Theorem 3.27 For a (static or dynamic) variable v, a formula p(v), and a state term t that is 
admissible for v in p( v) we have 

UQgol 'v'v:p(v):::>p(t) 

Proof 

Let u be a model and k an integer, ° :::; k ~ lui. 

(u, 0, k, lui) 
(u', 0, k, lu'l) 
(u', 0, k, lu'l) 
(u', 0, k, lu'l) 
(u, 0, k, lui) 

1= 'v'v: p(v) 
1= p( v) for any u', u' ~u. 
1= p( v) for some u' with (u', 0, k, lu'l)[v] = (u, 0, k, lul)[t]. 
1= p( v) iff (u, 0, k, lui) 1= p( t) for this u'. 
1= p(t) 

Abb·all 

o 

It is easy to come up with counterexamples for cases in which the required restrictions are 
violated. 

Example 3.8 For a static variable v and a variable x, 'v'v3x : (x "I- v) is valid. 

Taking t to be x which is not admissible for 3x : (x "I- v), we obtain for p(t) the contradictory 
formula 3x : (x "I- x). 0 

Example 3.9 Let v be a static variable and x a dynamic variable. The formula 

'v'v : O(x "I- v) 

is satisfiable (see Example 3.3). If we take t to be x which is not admissible for v, we obtain an 
invalid formula p( x) : Ox "I- x. Therefore, the condition of the term t being admissible for v in 
p( v) in Theorem 3.27 is necessary. 

o 
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Theorem 3.27 can be strengthened. In fact, a static variable, say u, can be replaced by a 
dynamic state term as long as the replacement of u does not create new occurrences of dynamic 
variable in the scope of temporal operators. We discuss this in the following. 

Example 3.10 
Vu: (u = x-+u = Ox) ::J (y = x-+y = Ox) 

holds, where u is a static variable and y is a dynamic variable. o 

Definition 3.6 A state term t with the property that its substitution for a static variable u 
in a formula p does not create new occurrences of dynamic variables in the scope of temporal 
operators and none of the variables in t is bound in p is called substitutable for u in p. 0 

Theorem 3.28 Let t be substitutable for u in p. Then 

UQgo2 Vu: p(u) ::J p[t/u] 

Proof Similar ro the proof of Theorem 3.27. 

o 
In Theorem 3.28, the condition for t to be substitutable for u in p is necessary. A counter

example is given in Example 3.11. 

Example 3.11 Consider the case that p is u = x-+O( u = x), taking t to be a dynamic variable 
y, and u to be such that 

(0',0,0, lul)[x] = (0',0,0, lul)[y] = (0',0,1, lul)[x] f (u,O, 1, lul)[y] 

then( 0',0,0, lul)I='v'u : (u = x-+O( u = x)) since (0',0,0, lul)[x] = (0',0,1, lul)[x], and (0',0,0, lul)l=Y = 
x and (u,O, 1, 10'1) )=y = x. 

Thus, we obtain 

(0',0,0,10'1) )='v'u : (u = x-+O( u = x ))-+(y = x-+O(y = x)) 

o 

Theorem 3.29 Let u be a variable which is not quantified in p( u), and e be a state term which 
is admissible for u in p( u ). Then 

EQadd p(e)::J 3u: p(u) 

Proof 

Let 0' be an interval and r an integer, ° ~ r ~ 10'1. Suppose (u,O,r,lul)l=p(e) and (u,O,r', lui) ~ 
3u : p( u). Then 

(u,O,r, 10'1) 1= -du :p(u) 
~ (u,O,r,lul)l='v'u:..,p(u) 
=} (u,O,r,lul) 1= ..,p(e) 

This is a contradiction. 
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Theorem 3.30 Let v be a variable and p and q( v) be formulas such that v has no free occur
rences in p. Then 

UQadd p:Jq(v) ~ P:J'v'v:q(v) 

Proof 

Let q be an interval and r an integer, ° ~ r ~ Iql. Suppose p:J q(v), and (q,O,r,lqi)FP. We 
need to prove that (q,O,r,lqi)p'v'v: q(v). 

Consider any q', q'~q. Since v has no free occurrences in p, by Lemma 3.10, we have 
(17',0, r, Iu'Dpp· Since p :J q( v), (q', 0, r, Iq'D p p --+ q( v). Hence, (q', 0, r, 1u'i)Fq( v). Therefore 

(q, 0, r, Iqi)p'v'v : q( v) 

o 

Theorem 3.31 Let v be a variable, and p( v) be a formula. 

I p D(p(v)--+q)--+D(3v: p(v)--+q), if v has no free occurrences in q. 
2 P D(p(v)--+q(v»--+D('v'v: p(v)--+'v'v: q(v» 

Proof 

We prove only (2). Let q be a model, and r an integer, ° ~ r ~ Iql. 

(q,O,r,lqi) pp(v)--+q(v) 
<=> (q,O,r,lqi) p 'v'v:p(v)--+p(v) and (q,O,r,lqD p p(v)--+q(v) 
==> (q,O,r,lql) p 'v'v :p(v)--+q(v) 
==> (q,O,r,lql) p'v'v:p(v)--+'v'v:q(v) 

theorem 3.27 
theorem 3.3 (MP) 
theorem 3.30 

o 

The law Ch VI in Theorem 3.32 is useful for proving the substitution law given in Theorem 
3.7. ChVI is proved using only the rule I-exists. 

Theorem 3.32 If variables x, y both are either static or dynamic, and neither does x appear 
in p(y) nor does y appear in p(x), then the following hold: 

Proof 

ChVI 3x: p(x) == 3y: p(y) 
ChV2 'v'x: p(x) == 'v'y: p(y) 
AddQI p(x) == q(x) ~ 3x: p(x) == 3x : q(x) 
AddQ2 p(x) == q(x) ~ 'v'x: p(x) == 'v'x : q(x) 

We prove only ChVI and AddQl. Let q be an interval and k an integer, ° ~ k ~ Iql· 

The proof of Ch Vl 
(q,O,k,lql) F 3x :p(x) 

¢::::> (q', 0, k, Iq'i) F p( x) for some q'~q 

We can construct an interval qll by Iqlll = Iql and (ul,O,k,lu"I)[yj = (u',O,k,lu'l)[xj and 
(0''',0, k, Iqlll)[zj = (q, 0, k, lul)[zj for all z E V -{y}. Then, it is obvious that (u", 0, k, lu"l) F p(y), 
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and (l1I~(I. Hence, «(1,0, k, 1(11) 1= 3y: p(y). 

The proof of AddQ 1 

«(I,O,k, 1(11) 1= 3x :p(x) 
<==> «(I',O,k,IO"1) 1= p(x), for some O"~O' 
<==> (0",0, k, 10"1) 1= q(x), for some O"~O' 
<==> (O',O,k,IO'I) 1= 3x :q(x) 

I-exists 
p(x) == q(x) 
I-exists 

o 

Theorem 3.33 can be proved by Theorem 3.32. It is useful for substitution for a dynamic 
(or static) variable in a bound formula. 

Theorem 3.33 If the variables x and y both are either dynamic or static, and y does not 
appear in p(x), then 

UQg03 "Ix: p(x)::J p(y) 

Proof 

Let 0' be an interval and k an integer, ° :::; k ~ 10'1. 

(O',o,k,IO'I) F= "Ix :p(x) 
<==> (O',O,k, 10'1) F= "Iy: p(y) 
<==> (O",O,k, 10"1) 1= p(y) for every O"~O' 
==> (O',O,k, 10'1) F= p(y) 

ChV2 

Abb-all 
O'~O' 

o 

In this chapter, we presented a collection of logic laws regarding variables, equality, and 
quantifications. They are useful for theorem proving and reduction of programs. However, we 
have not worked out a deductive system for EITL as such a system is beyond the scope of this 
thesis. 
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Chapter 4 

Programming Language 

Summary: An extended Tempura language, which is a basis for us 10 develop a 
framing technique for temporal logic programming, is formalized; thp s.vnl ax and 
SPill antics of the extended Tempura are presented; a normal form of programs is 
described and proved. 

Tempura language was introduced in [61] as an executable subset of ITL. Thp principal restric
tion is that Tempura programs must be deterministic and the intervals over which the programs 
are executed must be finite. Therefore, the following constructs are not allowed in basic Tem
pura. 

1. Disjunction. 

The disjunction is non-deterministic, so, in general, it is not permitted in Tel1lpura. For 
instancp, 

x:= IVy:= "2 

is not a well-formed program in Tempura. 

'2. Negation. 

Basically, the negation is non-deterministic, for example, 

,,,kip == e1llpty V len('2) V if 1/(3) Y ... 

,(.r := 21\y := 3) == ,(x := 2)Y,(y := 3) 

Therpfon" the negation of a program is not syntactically permitted. However, negation is 
indispensablp for boolean expressions which may appear in conditional and iterati\'e state
ments. For insl.ancp, ,(x = 2) and ,(x> 31\y < 5) are well-formed boolean expressions. 

:1. Slate formulas. 

;\ sl a Il' formula such as x = '2 is not a program in Tempura because no definite interval 
has been specified . 

. 1. Universal quantification. 

It is impossible to execute a program with universal quantification but a restricted form 
of universal quantification can be defined (see [61]). 
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Tempura will be extended in several respects in this thesis: 

1. Infinite intervals. 

The reactive systems, such as operating systems and control software of safety critical 
systems, etc. require non-terminating executions of software. To make Tempura more 
useful in practice, we extend Tempura to permit a program to be executed over an infinite 
interval. 

2. Previous operator. 

A variable can refer to its previous value but we do not permit the previous operator to 
appear freely in programs because this is very expensive in practice. 

3. Projection. 

A construct (Pl, ···,Pm) prj q, called projection, is used in the extended language and will 
be discussed in Chapter 5. 

4. Framing. 

A framing technique is introduced and discussed in Chapters 6,7,8 in detail. 

5. Await. 

After the framing technique is introduced, a communication and synchronization operator, 
await, is defined. It is discussed in Chapter 8. 

This chapter is organized as follows: Section 4.1 presents the syntax of the extended Tem
pura, derived structs and data structures. Section 4.2 presents the semantics of the extended 
Tempura. Section 4.3 defines P-models corresponding to a program P. In Section 4.4, the 
normal form of programs is formalised and proved. 

4.1 Syntax 

This section is devoted to presenting the syntax of the extended Tempura language. First, the 
grammar of statements is given, then expressions are defined. 

4.1.1 Programs 

The programming language we use is a subset of the underlying logic. As mentioned earlier, we 
augment Tempura with framing, parallel, projection and await operators [20, 22]. In addition, 
the variables within a program can refer to their previous values. 

A program can be terminable or non-terminable. A program is terminable if it has a finite 
model. A program is non-terminable if it has no finite model. If a program is terminable 
(non-terminable) then it can be executed over a finite (infinite) interval. The language provides 
some statements to specify the interval over which a program is executed. In fact, the primitive 
statement empty and the derived statements len( k) and halt( c) are used for this purpose. 

The extended language also intends to be as close to a deterministic language as possible. 
Being deterministic means that a program has only one model from the point of view of se
mantics; whereas, from the point of view of syntax, being deterministic requires that, roughly 
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speaking, the disjunction be generally unavailable. The negation of a temporal formula, being 
fundamentally non-deterministic, is not a primitive operator of the language. Instead, the con
ditional statement (see below) and empty, both defined in terms of the negation, are taken as 
primitives. This implies that some of the derived operators of ITL cannot be defined at all in 
Tempura. For instance, universal quantification and an arbitrary choice cannot be defined in 
full generality although a restricted form of the universal quantification can be defined and a 
mutually exclusive disjunction can be used in a program. Moreover, since the execution of a pro
gram proceeds over a series of states, a deterministic program also requires that only one choice, 
more or empty, be derived at each state so that the execution of the program can determine 
whether to continue or terminate. 

The previous operator facilitates referring to the previous values of variables which is useful 
in a framed environment. But using the previous operator is very expensive in practice because 
extra memory and computation time are required. Therefore, the previous operator is permitted 
only within expressions. 

In this chapter, it is sufficient to introduce the basic constructs of Tempura. Later, once the 
framing technique has been formalized, an await statement is defined in Chapter 8. A projection 
construct is discussed in Chapter 5. At the end of the thesis, as a comparison, a more powerful 
framed concurrent temporal logic programming language (FTLL) is briefly presented in Chapter 
8. 

Programs are constructed inductively from the operators shown below, together with a 
suitable choice of expressions which may involve the previous operator. 

There are ten elementary statements, six of them are basic constructs directly taken from 
EITL, i.e. the equality (=), conjunction (A), always (D) (since <> is not permitted), existential 
quantification (3x : p), next (0) and chop (i)i the other four, conditional statement, while 
statement, parallel and empty are derived constructs in EITL. From the point of view of the 
programming language, the ten statements are all primitives since the negation (...,), sometimes 
(0), disjunction (V) and chop-plus (+) are absent in the definition of the extended Tempura. 
This also implies that some operators cannot be derived in the way in which they were derived 
before. Note that in an induction proof of a property of programs, the assignment and empty 
statements can be thought of as basic statements and the others can be treated as composite 
statements. As usual, in the following, x denotes a variable, e stands for an arbitrary arithmetic 
expression, b stands for a boolean expression, and p and q stand for programs. 

S - ass Assignment (Unification) : x=e 

S-and Conjunction statement: pAq 

S - if Conditional statement: if b then p else q ~ (b - p) A ( ...,b - q) 

S -loc Existential quantification: 3x :p 

S - next N ext statement : Op 

S- alw Always statement: Dp 

S - seq Sequential statement: Piq 
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S - while 

S - par 

S - end 

While statement: 

Parallel statement: 

Termination: 

while b do p ~ (pl\b )*I\O( empty ....... .,b) 

def 
pllq = pl\( q; true )Vql\(p; true) 

empty 

where b is a boolean state expression consisting of propositions, variables, and boolean connect
ives. 

The meaning of these statements can be captured by the interpretations within the logic. 

The assignment x = e is a special case of equality and means that the value of the variable 
z is equal to the value of the expression e. Since it is an equality, its interpretation is subject 
to I-equal. Whenever an assignment x = e is encountered, we evaluate x and e by I[x] and I[e] 
to see whether or not I[x] = I[e]. Therefore, if e is evaluated to a constant in D and x has not 
been specified (or has been specified as the same value as e) before, then we say e is assigned to 
z. In this case, the equality x = e is satisfied otherwise it is false. It is really that x is unified 
with e as in Prolog. 

Note that the equality in Tempura has two functions: assignment and comparison. The 
former is a statement in a program while the latter is in a condition, boolean expression, asso
ciated with the conditional statements or iterative statements. An assignment is true as long as 
it is satisfiable whereas a condition is true if all the variables w.r.t. the condition are specified 
and the condition is evaluated to true. 

The conditional statement if b then p else q, as in the conventional programming language, 
means that if the condition b is evaluated to true then the process (i.e. sub-program) p is 
executed otherwise the process q is executed. 

As in the logic, the next statement Qp means that p holds at the next state while Dp means 
that p holds in all states from now. The terminal statement empty simply means that the 
current state has reached the final state of the interval over which a program is executed. 

The sequential statement p; q means that p holds from now until some point in time in the 
future and from that time point q holds. Intuitively, the program p is executed from the current 
state until its termination, then the program q is executed. 

The conjunction statement p 1\ q is executed in a parallel manner. The processes p and q 
start at the same state but may terminate at different states. They share all the states and 
variables during the mutual execution. 

The statement while b do p allows process p to be repeatedly executed a finite (or an infinite) 
number of times over a finite (or an infinite) interval as long as condition b holds at the beginning 
of each execution. If condition b becomes false, then the while statement terminates, otherwise, 
p is executed. For instance, while true do p allows p over an infinite interval to be executed a 
finite or an infinite number of times, each time on a finite subinterval, or an infinite subinterval 
for the last execution. However, this statement is obviously false within any finite interval 
if the execution of p requires a non-singleton interval. Another extreme case is the statement 
while b do empty. One can show that it is simply equivalent to .,bl\empty (see Theorem 4.7). 

The parallel computation presented here proceeds synchronously, and may be modelled 
by true concurrency. It is weaker than the asynchronous parallel computation modelled by 
interleaving. In fact, the parallel operator presented here is very close to the conjunction. The 
basic difference between pllq and pl\q is that the former allows both processes p and q to be able 
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to specify their own intervals while the latter does not. For instance, len(2)1I1en(3) holds but 
len(2)Alen(3) is obviously false. 

The existential quantification statement 3x : p intends to hide the variable x within the 
process p. It may permit a process p to use a local variable x. This idea can be realized in an 
operational semantics. However, within temporal semantics, the concept of a local variable is 
not effective (see Chapter 7 for details). 

Although the language given here rules out the disjunction and the negation as well as the 
universal quantification constructs as basic statements, the language does not guarantee that 
programs built from it are deterministic. The problem is that an immediate assignment, say 
x = e, is non-deterministic since x = e == x = e A empty V x = e A more, so are O(x = e), 
O(x = e) etc. If a unit assignment x := e rather than an immediate assignment were used as a 
primitive statement, the language would be deterministic. However, an immediate assignment 
has its advantages, e.g. it can easily be used to initialise variables and it corresponds to the 
equality taken directly from the underlying logic. So, it is necessary to keep the immediate 
assignment as a primitive. Therefore, to build a deterministic program in the language, len(k) 
(k ~ 0) or halt(b) (b is a boolean expression) (see below) or Omore (only for a non-terminably 
deterministic program) construct must be provided to specify a definite interval for the program. 

Hereafter, we will use the term 'programs' to mean programs belonging to the extended 
Tempura. Most of them are deterministic and terminable programs which may involve the 
previous operator only in expressions. However, some results are discussed in a broader scope in 
which non-deterministic programs and/or infinite intervals are considered. To avoid ambiguity, 
whenever only a deterministic program or only an finite interval is involved, we clarify it in an 
explicit manner. 

Example 4.1 Here is a simple program: x = OAwhile (x < 3) do (O(x = 8x+ l)AOempty). 
o 

4.1.2 Derived Constructs 

The following constructs can be built from the basic statements and used in programs. 

1. Termination and the final state 

2. 

The formula halt(p) is true over an interval if and only if p is true at the final state. In 
other words, the computation terminates as soon as the formula p becomes true. The 
other relevant operators are fin and keep. The formula fin(p) is true as long as p is true 
at the final state while keep(p) is true if p is true at every state ignoring the final one. 

S - halt halt(p) 
def O(empty<-+p) 

S - fin fin(p) 
def o (empty-p) 

S - keep keep(p) 
def o ( -,empty-p) 

Assignment Operators 

Based on the equality, several assignment operators can be defined. In the following, let x 
be a variable, u a static variable, and e an expression. 
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1) Temporal assignment 

S - tem - ass def 
Xf-e = 3u : u = el\D( empty-+x = u) 

Such an assignment has the meaning: the value of x at the end of an interval equals 
the value of e at the current state. 

2) Next assignment 

S defO - next - ass x Q=. e = x = e 

This assignment has the meaning: the value of x at the next state equals the value 
of e at the current state. Note that the next assignment does not specify the length 
of the interval although it takes one unit of time. 

3) Unit assignment 

S ·t def k · - un~ - ass x := e = s ~pl\x 0 = e 

The unit assignment asserts that the value of x at the next state equals the value of e 
at the current state the same as the next assignment does and it specifies the length 
of the interval is one unit of time. 

4) Multiple assignments 

) 
deC S - mult - ass (Xl, ... , xn op (e1' ... , e2) Xl op e1 1\ ••• 1\ xn op en 

where op ::= 0 = I := If-I = 

3. Iterative Statements 

1) For-loops 

A particularly simple form of loop is for n times do p which just denotes n iteration 
of p, i.e. pj ... j p (n times). It is inductively defined as follows: 

for 0 times do p 
def 

deC 
for n + 1 times do p 

empty 

(for n times do p)jP 

where nENo. Loops with control variables can also be defined. 

deC 
for i < 0 do p = empty 

for i < n + 1 do P ~f (for i < n do p)jp[nji] 

where nENo and i is a static variable, and n is substitutable for i in p as defined in 
Chapter 3. 

2) Repeat-loops 

Finally, a repeat-loop is defined in terms of the while-loop in the usual way. 

repeat p until b ~f pj while .,b do p 

Other loops could be defined in a similar way. For example, in the loop for vEl do p 
the control variable v takes successive value from the list l. 
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4.1.3 Expressions 

The choice of pernllssible expressions is wider but only constants, variables, array elements, 
strings, and list expressions, as well as restricted temporal expressions are used in this thesis. 

1. Constants. 

Constants include integers and boolean constants. 

2. Variables. 

In the underlying programnllng language, variables are, as in EITL, partitioned into two 
parts: static variables and dynanllc variables. From the point of view of data structure, 
variables are divided into simple variables (say x) and structured variables (say xlI]). The 
values of a variable at the previous and next states can be referred to over an interval. 

3. Arithmetic expressions. 

Arithmetic operators are: +, -, *, /, mod. Arithmetic expressions are built from integers, 
variables and arithmetic operators. 

• An integer is an arithmetic expression. 

• If el and e2 are expressions, so are the following operations: 

• If e is an expressions, so is the Oe at a state different from the final one. 

• If e is an expressions, so is the 8e at a state different from the first one. 

4. Boolean expressions. 

Boolean expressions include relational expressions. Relational expressions are built from 
arithmetic expressions and relational operators: >, <, =,~, '" etc. Boolean expressions 
are built from relational expressions and boolean connectives such as /I., V, "",-+. 

• If el and e2 are arithmetic expressions, then the following constructs are relational 
expressions: 

• A relational expression is a boolean expression. 

• Boolean constants 'true' and 'false' are boolean expressions. 

• Temporal constructs more and empty are boolean expressions. 

• If b1 and b2 are boolean expressions, so are the following constructs: 

4.1.4 Data Structures 

In addition to constants and simple variables, we also use lists, strings, and arrays. 
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1. Lists. 

Lists are sequences of elements separated by commas and enclosed in angle brackets, such 
as < 2,4,6,8 >. The length of a list I, denoted by III, is the number of the elements in I 
minus 1; the ith element is denoted by I[il, the sublist from element i to element j by I(i..j). 
The smallest subscript of a list is 0, and the empty list is denoted by f. To manipulate 
lists, we use the following operators: concatenation (.), fusion (0), head (hd), tail (tl) and 
last (It). Let I be a non-empty list. hd(l) obtains the first element of I, tl(l) obtains the 
sublist 1(1..111), i.e. the list I without its first element; 1t(1) obtains the last element of I; 
the concatenation of two lists It and h, denoted by It .12 , is the list whose elements are the 
elements of It followed by the elements of 12 ; the fusion of two lists It and 12 , denoted by 
11 012, is the list It .12(1..1121), we assume that the last element of It and the first element 
of 12 are the same and overlap in the resulting list. An empty list f concatenated or fused 
with any list I gives 1. Formally, we introduce the following definitions. 

Let I =< So, S1, ... > be a list, we define 

1) Length of a list 

III = {n if.1 ~< ~o, ... , Sn > 
W I IS mfirute 

1£1 = -1. If III = 0, then I is called a singleton list. 

2) Head of a list 

• hd(l) =< So > 
• hd(£) = £ 

3) Tail of a list 

• tl(l) =< Sl,'" > 
.tl(£)=f 

4) Last element of a list 

• It(l) =< sill> if III < w. 

• It( £) = £ 
If III = w then It(l) is undefined. 

5) Fusion (0) 

It 012 = { ~~ < So, ... ,Si .. · > 
undefined 

6) Concatenation (-) 

2. Strings. 

if 1111 = w or 12 = f 
if It = £ 

if 11 =< So, ... ,Si > and 12 =< Si, ... > and i E No 
otherwise 

if Iltl = w or 12 = £ 

if It = £ 

if It =< So, ... , Si > and 12 =< Si+1,'" > 
and i E No 

Strings are surrounded by the double quotation marks, like "string". They may be indexed 

and manipulated in the same way as lists. 
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3. Arrays. 

Arrays are sets of indexed elements of the same type. Arrays can be of one, two or three 
dimensions. An array can be expressed in terms of lists with row-first in an implementation. 

4.1.5 Omitting Parentheses Precedence Rules 

In order to avoid an excessive number of parentheses, the following precedence rules are used: 

where l=highest and 6=lowest. 

1 --, 
2 O,0,O,D,E),G) 
3 =,0=, :=, f-
4 A, V 
5 -+, ...... 

6 

There is an important fact we need to point out here. Since an expression refers neither 
to the previous value at the beginning state nor to the next value at the ending state over an 
interval, and the past operators, in general, are forbidden in a program, the statements of the 
extended Tempura language are lee-formulas in the sense ofthe logic language. However, during 
the reduction of a program, a sub-part of the program can refer to a previous state as long as 
the previous state does not go beyond the first state of the interval. 

4.2 Semantics of Programs 

An expression e can be treated as a term and a program P can be viewed as a formula in EITL. 
Therefore, the evaluation of e and the interpretation of P can be done as in EITL. However, 
since the programming language is a subset of the underlying logic, a program may have its own 
characteristics and may be interpreted in a simple and manageable way. In particular, when 
a. framing technique is introduced, some easily manageable models are required. We will use a 
minimal model (see Chapter 7) which is based on canonical models given below. 

In order to interpret framed temporal logic programs, we assume that a program P contains 
a. finite set S of variables and a finite set ~ of propositions. We interpret propositions over Band 
variables over Dt. For a program P, there are three ways to interpret propositions contained in 
P, namely canonical, complete, and partial interpretations as defined for the semantics of logic 
programming language [13]. Here, we use the canonical interpretation only on propositions. 
That is, in a model (1 =< (I2,l~), ... >, I~ is used as in the logic but I; is changed to the 
canonical interpretation. 

A canonical interpretation on propositions is a subset Ip~~. Implicitly, propositions not in 
Ip are false. Note that I; in the interpretation of the logic framework is an assignment of a truth 
value in B to each proposition pEProp at state Ski whereas in a canonical interpretation, I; is a 
set of propositions, each of them has truth value true in B at Sk. Clearly, the two definitions are 
equivalent except that they refer to different sets of variables and propositions. Using canonical 
interpretation is useful for easy manipulation of minimal models. Let (1 =< (i2,r.!), ... > be a 
model. We denote the sequence of interpretation on propositions of (1 by (11' =< ~, ... >. (11' is 
said to be canonical if each 1;( i~O) is a canonical interpretation on propositions. 
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If there exists a model u with up being a canonical interpretation sequence on propositions 
and I7I=P as in the logic, then program P is said to be satisfiable under the canonical interpreta
tion on propositions, denoted by UFcP; and up is said to be a canonical interpretation sequence 
(on propositions) of program P. If for all 17 with up being a canonical interpretation sequence, 
(1j=P, then program P is said to be valid under the canonical interpretation on propositions, 
denoted by FeP , 

Note that the definition of the canonical interpretation of program P is independent of its 
syntax in the sense that the definition does not refer to the structure of the program. So the 
definition can be extended so that it can be applied to non-deterministic programs and temporal 
formulas. 

Example 4.2 For the propositional formula, PI: ,A-OB, which can be treated as a non
deterministic program, we have cP = {A, B}, and PI has the following canonical interpretation 
sequences oflength 2, < </>, {B} >, < </>, {A, B} >, < {B}, {B} >, < {B}, {A, B} >, < {A},</» 
,< {A}, {A} >, < {A, B}, </> >, and < {A, B}, {A} >. 

PI is satisfiable but not valid under the canonical interpretation on propositions because a 
canonical interpretation sequence, < </>,</> >, does not satisfy it. 0 

Note that a program P can be satisfied by several different canonical models on propositions 
so program P has, possibly, different meanings under different models. Therefore, it is important 
to choose a model which satisfies the intended meaning of a program P, and this is the topic of 
Chapter 7. 

Since the canonical model is basically equivalent to the basic model except that the latter 
acts on the fixed set V of variables and the fixed set of propositions, whereas the former acts 
on the set of variables and the set of propositions within a concrete program. Hence, in what 
follows, we do not distinguish between the relation F and Fe. Whenever 11' is used to interpret 
a program P, it is treated as a subset of propositions CPp while whenever 11' is used to interpret 
a formula q, it is treated as a function (or set) over Prop. 

4.3 Models Corresponding to Programs 

A model of program P is a particular sequence of states that obey certain constraints imposed 
by P. Each model of program P is a finite (or infinite) sequence of states over S and CP, the 
set of variables and the set of propositions associated with P, respectively. Let V be the set of 
variables and Prop the set of propositions specified as in Chapter 3. V contains S and Prop 
contains CP. Consider a model 

U =< So, ... > 

over V and Prop. We say that model u is a P-model [66] ifthere is a model of P over Sand CP, 

u' =< s~, ... > 

such that lui = lu'l and each state Sj is identical to sj, when restricted to the sets S and CPj that 
is, for all 0 $; j :j lui, Sj[P] = sj[P], for all p E CP, and Sj[x] = sj[x] for all xES. 

Note that while a model of P interprets only the variables in S and propositions in CP, a 
P-model may give interpretation to additional variables and propositions. 
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Definition 4.1 Let p be a temporal formula, Vp the set of the variables appearing in p, and 
., the set of the propositions appearing in p. Let M(V, Prop, P) be the set of all P-models 
over V and Prop, where V = VpUS and Prop = ~pU~. P is satisfiable over P, denoted by 
C1I=M(V,Prop,pJP' if there exists a model O'EM(V, Prop, P) and O'l=p. p is valid (also described as 
being P-valid) over program P, denoted by 1= M(V,Prop,P)p, iffor every model O'EM(V, Prop, P), 

C1I=P· 

o 

It is not difficult to see that the above definition implies that every model in M(V, Prop, P) 
satisfies p for all V, Prop that contain VpUS and ~pU~, respectively. 

Clearly, every valid formula is also a P-valid formula, but since M(V, Prop, P) is only a 
subset of the universe of all possible models, there are formulas that are P-valid but not valid 
in general. Consider, for example, P given by x = OJ\D(more-+Ox = x + 1)J\len(2). Clearly, 
the formula x = 0 is P-valid, since it holds in the first state (i.e. so) of every model of P. On 
the other hand, x = 0 is obviously not a valid formula, as there are many models whose first 
state does not satisfy x = O. 

In the sequel, we need to employ, besides the canonical model, also the minimal model (see 
Chapter 7). To distinguish between them, we use Mm(V, Prop, P) to denote the set of P-models 
in which program P is interpreted by the minimal model. If V = S and Prop = ~, we refer to 
M(V, Prop, P) and Mm(V, Prop, P) simply as M(P), and Mm(P), respectively. 

We capture the relationship between the P-models and models of the program P in Theorem 
4.1. 

Theorem 4.1 Let P be a program, and 0' a P-model. If O'EM(P), then O'I=P. 

Proof 

Let S be the set of variables and ~ be the set of propositions contained in program P. Let V be 
the set of variables and Prop be the set of propositions associated with the P-model 0'. Since 
C1EM(P), by the definition of P-model, there exists a 0" such that O"I=P and 10'1 = 10"1, and for 
all 0 :s; j ~ 10'1, Sj[P) = sj[P) for all p E ~, and Sj[x) = sj[x) for all xES; by the definition of 
notation M(P), V = S and Prop = ~. Hence, 0' = O"I=P. 

o 

4.4 Normal Form of Programs 

In this section, we define a kind of normal form for programs and prove any program in the 
extended Tempura can be reduced to the normal form. We first prove Lemma 4.2, and then 
Theorems 4.3, 4.4, 4.5. They are useful for the reduction of the while statement. After that, we 
prove some conclusions regarding the while statement. Finally, we prove that a program built 
in extended Tempura can be reduced to the normal form. 

Lemma 4.2 Let p be a formula. 

EM PI empty; empty == empty 
EM P2 p J\ empty; empty == p J\ empty 
EM P3 empty V (p; empty) == empty V (p J\ more; empty) 
EM P4 p J\ empty; q J\ empty == p J\ q J\ empty 

if q is a lee-formula 
EM P5 p+ J\ empty == p J\ empty 
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-

Proof 

The proofs of EMP1 and EMP5 are straightforward. 

The proof of EMP2 

P A emptYj empty p A empty A Oempty 
- p A (emptYj empty) 
- pA empty 

The proof of EMP3 

FEP6 
FEP6 
EMPI 

empty V (pj empty) empty V «p A empty V p Amore)j empty) 
- empty V (p A emptYj empty) V (p A morej empty) 
- empty V p A empty V (p A morej empty) 
= empty V (p A morej empty) 

The proof of EMP4 

Let (1 be a model and k an integer, ° ~ k ~ 10'1. 

«(1,0, k, 10'1) F p A emptyj q A empty 

tautology 
FD9 
EMP2 
tautology 

<==:? «(1,0, k, r) F p A empty and (0', r, r, 10'1) F q A empty for some r, k ~ r ~ 10'1 
<==:? «(1,0, k, r) F p and r = k and (0', r, r, 10'1) F q and r = 10'1 
<==:? «(1,O,k,k) F p and (O',k,k,k) F q and k = 10'1 
<==:? «(1,0, k, k) F p and (0',0, k, k) F q and k = 10'1 q is a lee-formula 
<==:? (0',0, k, k) F p A q and k = 10'1 
<==:? «(1,0, k, 10'1) F p A q A empty 

Theorem 4.3 Let p be a lee-formula. Then 

FPS7 p+=pV(pAmorejp+) 

Proof 

o 

p V (p A morej p+) :J p+ is obvious. We prove p+ :J P V (p A morej p+) only. Let 0' be an interval 
and k an integer, ° ~ k ~ 10'1. 

Suppose (0',0, k, 10'1) F p+. Thus, either there are finitely many ro, ... , rn EN", (n ;::: 1) such 
that k = TO ~ rl ~ ... ~ rn = 10'1 and (0',0, TO, Tl) F p and for all 1 < I ~ n (0', TI-lo TI_lo rd F pj 
or 1(11 = wand there are infinitely many integers k = ro ~ rb'" such that lim Ti = w, and 

ri-+OO 

(0',0, TO, Tl) F p and for all I > 1, «(1, rl-b rl-lo rl) F p. 

In the former case, if n = 1, then (0',0, k, 10'1) F p+ amounts to (0',0, ro, rl) F p, i.e. 
(O',O,k,I(1I) F pj if n;::: 2 with k = 10'1 then (O',O,k, 10'1) F p+ is equivalent to (O',O,ro,rt} F 
p A empty and TO = k = Tl = 10'1 (EMP5) leading to (0',0, k, 10'1) F p. If n ;::: 2 with k < 10'1, 
there is the least integer h such that TO = Tl = ... = Th-l < Th ~ ... ~ rn' If h = 1, then 
(O',O,k,Tl) F moreAp. That is, (O',O,k,Tl) F pAmoTe and (O',TloTbIO'I) F p+. We have 
(O',O,k,lal) F pAmOTejp+. If h > 1, then (O',O,To,rl) F pAempty and for all 1 < I < 
h (O',TI-bTI_bTI) F p A empty and (O',Th-loTh-loTh) F p A mOTe. That is, «(1,O,k,rh) F 
p A emptYj ... j P A emptYj P A mOTe and (0', Th, Th, 10'1) F p+. By EMP4 and FEP4, we obtain 
(O',O,k, 10'1) F p A mOTe;p+. 
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In the latter case, (0',0, k, 10'1) 1= p+ amounts to (0',0, ro, rt) 1= p and for all I > 1 
(11, r/-1I r/-1I r/) 1= p. Since i~ ri = w, there exists the least integer h such that rh-l < rho 

Thu8, a 8imilar argument as in the former case can be given to prove (0',0, k, 10'1) 1= p/\ more; p+. 

o 

Corollary 4.4 Let p be lee-formula. Then 

1 P;P+:J P V (p /\ more;p+) 
2 p /\ empty; p+ :J P V (p /\ more; p+) 
3 p+ /\ more == p /\ more V (p /\ more; p+) 

Proof Straightforward. 

Theorem 4.5 Let p be a lee-formula. Then 

F ST9 p* == empty V (p /\ more; p*) V P /\ Omore 

Proof 

Let p be a lee-formula. Then 

p. -
-
-
-
-
-
-
-
-

empty V p+ 
empty V (p V (p /\ more; p+)) 
empty V (p; empty) V p /\ Omore V (p /\ more;p+) 
empty V «p /\ empty V p /\ more); empty) V (p /\ more; p+) V P /\ Omore 
empty V (p /\ empty; empty) V (p /\ more; empty) V (p /\ more; p+) V P /\ Omore 
empty V p /\ empty V (p /\ more; empty) V (p /\ more; p+) V P /\ Omore 
empty V (p /\ more; empty) V (p /\ more;p+) V p /\ Omore 
empty V (p /\ more; (empty V p+) V P /\ Omore 
empty V (p /\ more; p*) V P /\ Omore 

o 

Abb-star 
theorem 4.3 
TER 
tautology 
FD9 
EMP2 
tautology 
FD9 
Abb-star 

o 

We now prove some theorems regarding the while statement. The while statement can be 
expressed in a more operational way by means of an inductive description which is equivalent 
to its original definition. We show this in Theorem 4.7. Before proving it, we first prove lemma 
4.6. 

Lemma 4.6 If s is a state formula, then Jin(s)/\(p;q) == (p;Jin(s)/\q) 

Proof 

Let u be an interval and k an integer, ° ~ k ~ 10'1. Suppose (O',O,k,IO'I)I=Jin(s)/\(p;q). 
Then (u,O,k,luI)I=Jin(s) and (O',O,k,IO'I)I=Piq. The latter amounts to (O',O,k,r) I=p and 
(u,r,r,lul)l=q for some r,k~r~IO'I, whereas the former means (O',O,k,IO'I)I=0(empty -+ s). 
That is, (u, 0, h, I 0'1) 1= empty -+ s for every h, k ~ h~IO'I. This implies that (0',0, k.,lul)l=empty 
-+ s for every kltr ~ kl~lul. Moreover, since s is a state formula, empty -+ S is an lec
formula. (0',0, klt luI) 1= empty -+ S iff (0', kit klt lul)l=empty -+ s for every kit r~kdlul· Hence, 
(u,O,k,r)l=p and (u,r,r,IO'I)I= O(empty -+ s)/\q. It follows that (u,O,k,lul)l=p;Jin(s)/\q. 
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Conversely, suppose (0',0, k, 1001)pp; fin(s)Aq. Then, (0',0, k, r)pp and (0', r, r, lui) p fines) 
and (u,r,r, 10'1) pq for some r,k:5 r~IO'I· It turns out that (O',O,k, 100I)ppjq and (O',r,h, 100I)p 
empty ..... s for every h, r :5 h~IO'I· Since empty -+ s is an lec-formula, (0', r, h, 100I)pempty -+ s 
iff(u,O, h, 10'1) pempty -+ s for every h, r:5h~IO'I. It is easy to check that (0',0, h, 100l)pempty ...... 
8 for every h, O:5h < r because the formula is vacuously true in this case. Thus, (0',0, k, 100I)pempty 
-t 8 for every k,O:5k~IO'I· That is, O'pO(empty ...... s). Therefore,O'pfin(S)A(p;q). 

Theorem 4.7 

Proof 

(1) (whilebdop) _ «..,bAempty)V(bApjwhilebdop» 
VbApA Omore 

(2) (whilebdop) = «..,bAempty)V(bApAmore;whilebdop» 
VbApA Omore 
if p is alec-formula. 

we prove only (2). 

whilebdop == (bAp)*Afin(..,b) 
- (emptyV(bApAmorej (bAp)*»Afin( ..,b) V b A P A Omore A fine ..,b) 
- emptyAO(empty ...... ..,b)V(bApAmorej (bAp)*)Afin( ..,b) V b A P A Omore 

- emptyA(empty ..... ..,b)V(bApAmorej (bAp)*)Afin( ..,b) V b A P A Omore 
- (emptyA..,b)V(bApAmore; fine ..,b)A(bAp)*» V b A P A Omore 
- (emptyA..,b)V(bApAmore; while b do p) V b A P A Omore 

o 

S-wbile 
theorem 4.5 
(Omore) A fin(..,b) 
== Omore 
FE2 
lemma 4.6 
S-while 

o 

The statement of Theorem 4.7 can be expressed in a simplified form in terms of the if
then - else construct if p always terminates, since then b A P A Omore is false: 

while b do p (emptyA..,b)V(bApAmore; while b do p) 
(emptyA..,b)VbA(pAmore;while b do p) 
if b then (pAmorej while b do p) else empty 
if p is alec-formula. 

Similarly, if p is a terminable program ignoring whether or not P is a lec-formula, we have 

while b do p (emptyA..,b)V(bAp; while b do p) 
(emptyA..,b)VbA(pj while b do p) 
if b then (pj while b do p) else empty 

To reduce a program with existential quantification, we use a renaming method. Given a 
formula 3x : p( x) with a bound variable x, we can remove the existential quantification (3x) 
from 3x : p( x) to obtain a formula p(y) (or pry / x]) with a free variable y by renaming x as y. To 
do so, we require that y not occur (free or bound) in 3x : p(x), y and x both be either dynamic 
or static, and y be substituted for x only within the bound scope of x in 3x : p(x). In this case, 
we call p(y) a renamed formula of 3x : p(x). Now we discuss some facts concerning renamed 
formulas. 

67 



Lemma 4.8 Let p(y) be a renamed formula of 3x : p(x). Then, 3x : p(x) is satisfiable if and 
only if p(y) is satisfiable. Furthermore, any model of p(y) is a model of 3x : p(x). 

proof 

By I-exists, given a model u, the following is true: 

uF3y : p(y) iff there exists tT, ufu', and u' FP(Y) 

Thus, if uF3y : p(y) then there is au', tTFP(Y). Conversely, for a model u, if UFP(Y), then 
0'1=3y : p(y) because u is trivially y-equivalent to itself. Thus, 3y : p(y) is satisfiable iff p(y) 
is satisfiable; and any model of p(y) is a model of 3y : p(y). Moreover, by Theorem 3.32, 
3y : p(y) == 3x : p(x). Hence, Lemma 4.8 is true. 

o 

The importance of Lemma 4.8 is that it guarantees the soundness of the renaming method 
for reducing programs involving existential quantifications. From Lemma 4.8, it is clear that 
3x : p( x) and p(y) are equivalent in satisfiability. To check whether or not 3x : p( x) is satisfiable 
amounts to checking whether or not p(y) is satisfiable. Once we find a model for p(y), this model 
is also a model for 3x : p(x). Therefore, to reduce 3x : p(x), it is sufficient to reduce p(y). 

One may object to the renaming method by saying that it offends the original spirit by 
using local variables in a program. However, we are investigating the temporal semantics of a 
program under the logic model theory. To interpret a formula with an existential quantification, 
the only interpretation law we can use is I-exists which does not seem to distinguish between 
local and global variables at all. 

We now define the normal form of a program, as follows 

Definition 4.2 A program q is in normal form if 

I t 

qd4f V qei A empty V V qcj A OqJj ( 4.1) 
i=l j=l 

where 0 ~ I ~ 1, t ~ 0, and 1+ t ~ 1. 

For 1 ~ j ~ t, OqJj are lee-formulas and qJj are internal programs; whereas qei (i = 1) and 
qcj (1 ~ j ~ t) are either equal to true, or are state formulas of the form: 

where ele ED (1 ~ k ~ m). o 

o 
Note that, in the above definition, (1) V Pi == false; (2) a program is an internal program 

;=1 
if the variables involved in the program may refer to the previous state but not beyond the first 
state over the current interval. To ensure this condition, two adjacent previous operators are not 
permitted to be applied to a variable within a program. For instance, 000x is not permitted 
but 00 0 0x can be used in a program. 

Note also that the normal form we provide is a semantics driven reduction for program 
ra.ther than syntax determined normal form. Hence, in the proof of the normal form in the 
sequel, the logic laws presented in the thesis can be used and the evaluation of the expressions 
(including boolean expressions) can be involved. 
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If a program is deterministic then the normal form of the program has a simpler form with 
I + t = 1. That is, 

This means that if q terminates at the current state it is reduced to qe I\. empty otherwise it 
is reduced to qc I\. Qqj. 

Theorem 4.7, Lemma 4.8 and logic laws presented in Chapters 2 and 3 provide a basis for 
proving the existence of the normal form of a program. The normal form is closely related to 
the reduction of programs. A program p is reduced to q means that there are programs Pt. ... , Ph 
such that p == PI == ... == Ph == q. 

Theorem 4.9 Let P be a program. Then there is a normal form q as defined in (4.1) such that 

P==q 

Proof 

To simplify the proof, we assume that the expressions involved in a program are all well eval
uated at every state during a reduction. The proof proceeds by induction on the structure of 
statements. The atomic statements are the immediate assignment x = e and empty; whereas 
the compositional statements are Qp, Dp, pl\.q, p; q, if b then p else q, while b do p, pllq and 
3x: p(x). In the proof, we use implicitly Theorem 3.7. 

1) If P is an assignment statement, x = e, then we have 

x = e _ x = e I\. (empty V more) 
_ x = e I\. empty V x = e I\. Qtrue 

As seen, an immediate assignment is a non-deterministic program. It needs other constructs 
to specify a definite interval. If an empty interval is specified. it is reduced to x = e I\. empty; 
otherwise, it is reduced to x = e I\. Qtrue. 

2) If P is the terminal statement empty, the conclusion is trivially true. 

3) If P is a statement in the form Qq, it is already in its normal form. 

4) If P is the always statement Dq, then 

P - qt\0Dq FE2 
/ t 

- (V qej I\. empty V V qci I\. Qqji)l\.(empty V QDq) 
j=l i=l 

hypothesis, FW2 

/ t 
V qej I\. empty V V (qci I\. Qqjil\.QDq) 

j=l i=1 
FDU5 

/ t 
V qej I\. empty V V qci I\. Q(qjiI\.Dq) 

j=1 i=1 
FD3 

5) If P is the conjunction statement pl\.q, then, from the hypothesis, p and q have the normal 
form 

/1 tl 

P == V Pekl\.empty V V Pci I\. Qpji 
k=1 i=1 
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12 t2 

q == V qehl\empty V V qcj 1\ OqJj 
h=1 j=1 

Thus, we can rewrite P as 

p - pI\q 
h tl 12 t2 

_ (V Pelel\empty V V Pci 1\ OPli)I\( V qehl\empty V V qcj 1\ OqJj) 
1e=1 ;=1 h=1 j=1 
I ~ ~ 
V Pelel\qele 1\ empty V (V Pci 1\ OPli)I\( V qcj 1\ OPlj) 

1e=1 i=1 j=1 
I 
V Pelel\qele 1\ empty V V Pci 1\ qcj 1\ O(Pli 1\ qlj) 

1e=1 l$i:$tl,l:$j92 

6) If P is a sequential statement pj q, then, by hypothesis, we have 

11 tt 

P == V Pelel\empty V V Pci 1\ OPli 
1e=1 i=1 

12 t2 

q == V qehl\empty V V qcj 1\ OqJj 
h=1 j=1 

Thus, we can rewrite P, as follows 

pjq 
h ~ ~ ~ 

- (V Pelel\empty V V Pci 1\ OPli)j ( V qehl\empty V V qcj 1\ OqJj) 
1e=1 i=1 h=1 j=1 

11 12 
( V Pelel\emptyj V qeh 1\ empty) 

1e=1 h=1 
tl 12 

v( V Pci 1\ OP/ij V qeh 1\ empty) 
i=1 h=1 

11 t2 
v( V Pek/\emptYj V qcj /\ OqJj) 

k=1 j=1 
tl t2 

V(V Pci/\OPlij V qcj/\OqJj) 
i=l j=l 
I 
V Pek/\qek /\ empty 

k=l 
tl 

V V Pci /\ O(Plij qe1 /\ empty) 
i=1 
t2 

V V Pel /\ qcj /\ OqJj 
j=1 
tl t2 

V V Pci/\ 0 (Plij V qcj /\ OqJj) 
i=1 j=1 
I 
V Pek/\qek /\ empty 

k=l 
tl 

V V Pci 1\ O(P/ij qel /\ empty) 
i=l 
t2 

V V Pel /\ qcj /\ OqJj 
j=1 

V V pci/\ 0 (P/i; qcj /\ Oqli) 
l~i91,1:$j92 
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7) If P is the parallel statement pliq, then, by hypothesis, we have 

II tl 

P == V PekAempty V V Pci A OP/i 
k=1 i=1 

12 t2 

q == V qehAempty V V qcj A Oqfj 
h=1 j=1 

We first prove the following conclusion: 

(qj true) 
12 t2 

- (V qeh A empty V V qcj A Oqlj); true 
h=1 j=1 

12 t2 
- (V qeh A empty; true) V (V qcj A Oqlj);true 

h=1 j=1 
12 t2 
V qeh A (empty; true) V V qcj A O( qJj; true) 

h=1 j=1 
12 t2 
V qeh A true V V qcj A O(qJj; true) 

h=1 j=1 
h ~ 
V qeh A empty V qel A Otrue V V qcj A O( qfj; true) 

h=1 j=1 
12 t2+1 
V qeh A empty V V qcj A O(qfj; true) 

h=1 j=1 

h tl 
P A (q; true) == ( V Pek A empty V V Pci A OP/i) 

k=1 i=1 
12 t2+1 

A( V qeh A empty V V qcj A O(qJj; true)) 
h=1 j=1 

I tl 
V Pek A qek A empty V (V Pci A OP/i) 

k=1 ;=1 
t2+1 

A V qcj A O(qlj; true) 
j=1 

I 
V Pek A qek A empty 

k=1 
V V Pci A qcj AO(PliA(qfjjtrue)) 

l~i:5t1 ,1~j:5t2+1 

In the same way, we can prove 

hypothesis 

FDlO 

FeRl,2 

empty; true == true 

tautology 

hypothesis 

FDU5 

q " (p; true) == 
I 
V qek A Pek A empty V ( V qci A Pcj A O( qli A (Plj; true)) 

k=1 l~i:5tl +1,1~j:5t2 
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Hence, 

p _ pA(q; true)VqA(p; true) 
I 
V Pek A qek A empty V ( V Pci 1\ qci 1\ O(P/i 1\ (qfi; true» 

k=1 1~i~t1.1~i::St2+1 
I 

V V qek 1\ Pek 1\ empty V ( . V . qci 1\ Pci 1\ O(q/i 1\ (Pfi; true» 
k=1 1~'::Stl +1,1:5J:5t2 

I 
V Pek 1\ qek A empty V ( . V. Pci 1\ qcj 1\ O(P/i 1\ (qfij true» 

k=1 1<,<t1.1<J<t2+1 

V( V qci A Pci A O(q/i A (Pfi; true» 
1~i:5tl +1,1~j:5t2 

definition 

8) If P is the conditional statement if b then P else q, then, by hypothesis, we have 

Thus, 

It tl 

P == V Pekl\empty V V Pci 1\ OP/i 
k=1 i=1 

12 t2 

q == V qehl\empty V V qci 1\ Oqfi 
h=1 i=1 

if b then P else q 
b 1\ P V -,b 1\ q 

{
P
q 

if b 
- otherwise 

Therefore, if b is true according to a context in which P is executed then the construct is reduced 
to 

h tl 

P == V Pekl\empty V V Pci 1\ OP/; 
k=1 ;=1 

Otherwise, it is reduced to 

12 t2 

q == V qehl\empty V V qci 1\ Oq/i 
h=1 j=1 

9) If P is the while statement while b do p, then, by hypothesis, we have 

h tl 

P == V Pekl\empty V V Pci 1\ OP/; 
k=1 ;=1 

By Theorem 4.7, we have 

while b do P == -,b!\emptyV(bl\pl\morej while b do p) V P 1\ b 1\ Omore 

Therefore, if b is false at the current state according to a context in which P is executed, 
then the while statement is reduced to empty. Otherwise, it is reduced to the chop construct 
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pAmorej while b do p V P A omore. This is immediately re-reduced, as follows 

p A morej while b do p V P A omore 
_ p A (Otruej while b do p V more A 0 omore) 
_ p" (O( truej while b do p ) V Oomore) 
_ p A O((truej while b do p ) V omore) 

II tl 
_ (V PeleAempty V .v Pci A OPl') A O((truej while b do p ) V omore) 

1e=1 .=1 
tl 

_ (V Pci A OPl') A O((truej while b do p ) V omore) 
.=1 
tl 

_ V Pci A O(Pl' A ((truej while b do p ) V omore)) 
.=1 

FE2 
FW1, FeBl 
FD4 

hypothesis 

hypothesis 

FD3, FD9 

10) If P is the statement 3x : p( x), then we first use the renaming method to reduce this to 
p(y) as stated in Lemma 4.8. Then, we re-reduce p(y). By induction hypothesis, p(y) can be 
reduced to its normal form, so is the construct 3x : p( x ). 0 

The following expansion laws regarding fin, keep and halt are useful for reduction of pro
grams. 

Theorem 4.10 The following formulas are valid. 

FEF fin(p) 
FEK keep(p) _ 
FEH halt(p) 

P A empty V Ofin(p) 
empty V p A Okeep(p) 
p A empty V ""p A Ohalt(p) 

Proof 

The proof of FEF 

fin(p) _ O(empty --+ p) 
_ (empty --+ p) A 00( empty --+ p) 
_ (more V p)" (empty V Ofin(p)) 
_ p" empty V p A Ofin(p) V Ofin(p) A more 
_ p A empty V p" Ofin(p) V Ofin(p) 
_ p A empty V Ofin(p) 

The proof of FEK 

keep(p) _ O(...,empty --+ p) 
_ (...,empty --+ p) " 00 (...,empty --+ p) 
_ (empty V p) A (empty V Okeep(p)) 

empty V p A empty V p A Okeep(p) 
_ empty V p A Okeep(p) 

The proof of FEH 

halt(p) _ O( empty <-+ p) 
_ (empty <-+ p) A 0 0 (empty <-+ p) 

definition 
FE2 
theorem 3.1, definition 
tautology 
FS4 
theorem 3.1, theorem 3.7 

definition 
FE2 
theorem 3.1, definition 
tautology 
theorem 3.1, theorem 3.7 

definition 
FE2 
tautology _ (...,empty A ""p V empty A p) A (empty V Ohalt(p)) 

_ p A empty V ( ...,p A more) A Ohalt(p) 
_ p" empty V ...,p A Ohalt(p) 

theorem 3.1, definition 
theorem 3.1, theorem 3.7 

o 
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As seen, halt(p), in general, is not a deterministic program because it refers to the negation 
of p. However, we can take p to be a boolean condition b which may involve the negation 
operator. In practice, we frequently use halt(b) to specify an interval for a program. 

To execute a program q is really to find an interval to satisfy the program q. Based on 
the Tableau method [88], the execution of a program q consists of a series of reductions over 
a sequence of states, i.e. an interval. At each internal state Sj, the program is reduced to the 
normal form defined in Definition 4.2 with the index i: 

q~ A Oq} 

while at the final state Sj, the program is reduced to: 

q~Aempty 

Furthermore, the reduction at each state is composed of a series of reduction steps supported 
by logic laws. In this way, if a program is eventually reduced to true, then an interval which 
satisfies the program is obtained. With this method, the strong equivalence relation for each 
step in the reduction of a program over a subinterval is required since variables may refer to 
their previous values; whereas, at a chop point for a reduction, p; q say, the weak equivalence 
relation is enough since the variables within p are not permitted to refer to q and the variables 
within q are not permitted to refer to p as specified in the definition of semantics (see I-chop, 
page 33). 

As seen, some logic laws such as empty; p ~ p and q A empty; p ~ p A q (q is a state formula) 
hold without requiring that p be a lec-formula and are useful for the reduction at a chop point. 
Therefore, a program could involve some past operators and the reduction of this kind of program 
can be handled in the underlying logic. However, to simplify the matter, we confine ourself to 
the set of lec-formulas since all programs are lee-formulas as stated earlier. 

Example 4.3 Let P denote the program x = 0 A while x < 3 do x := x + 1. The following is 
the process of the reduction of P. 

p -
-
-
-
-

Thus, 

pO 
J -

-
-
-
-
-

Thus, 

x = 0 A while x < 3 do x := x + 1 
x = 0 A if x < 3 then (x := x + 1 A more; while x < 3 do x := x + 1) else empty 
x = 0 A ( 0 < 3 A (Ox = 0 + 1 A skip; while x < 3 do x := x + 1) V ...,(0 < 3) A empty) 
x = 0 A (Ox = 1 A skip; while x < 3 do x := x + 1) 
x = 0 A O( x = 1 A empty; while x < 3 do x := x + 1) 

P~==x=O 

pJ == x = 1 A empty; while x < 3 do x := x + 1 

x = 1 A empty; while x < 3 do x := x + 1 
x = 1 A while x < 3 do x := x + 1 
x = 1 A if x < 3 then (x := x + 1 A more; while x < 3 do x := x + 1) else empty 
x = 1 A ( 1 < 3 A (Ox = 1 + 1 A skip; while x < 3 do x := x + 1) V ...,(1 < 3) A empty) 
x = 0 A (Ox = 1 A skip; while x < 3 do x := x + 1) 
x = 1 A O(x = 2 A empty; while x < 3 do x := x + 1) 

pJ == x = 1 
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Further, 

pI 
I -

-
-
-
-
-

P} == x = 2 A empty; while x < 3 do x := x + 1 

x = 2 A empty; while x < 3 do x := x + 1 
x = 2 A while x < 3 do x := x + 1 
x = 2 A if x < 3 then (x := x + 1 A more; while x < 3 do x := x + 1) else empty 
x = 2 A ( 2 < 3 A (Ox = 2 + 1 A skip; while x < 3 do x := x + 1) V -,(2 < 3) A empty) 
x = 0 A (Ox = 1 A skip; while x < 3 do x := x + 1) 
x = 2 A O(x = 3 A empty; while x < 3 do x := x + 1) 

We obtain 

Finally, 

p2 
I -

-
-
-
-

P; == x = 2 

pJ == x = 3 A empty; while x < 3 do x := x + 1 

x = 3 A empty; while x < 3 do x := x + 1 
x = 3 A while x < 3 do x := x + 1 
x = 3 A if x < 3 then (x := x + 1 A more; while x < 3 do x := x + 1) else empty 
x = 3 A ( 3 < 3 A (x := x + 1 A more; while x < 3 do x := x + 1) V -,(3 < 3) A empty) 
x = 3 A empty 

We obtain 
Pe - X = 3 A empty 

o 

In this chapter, an extended Tempura language has been presented and a normal form of 
a program has been proved under the assumption that the past operators are not used within 
statements but can be used within expressions. This provides us a way to execute programs. 
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Chapter 5 

Projection in Temporal Logic 
Programming 

Summary: A new projection operator is defined as a prImltl\'(' in the Temporal 
logic. Its syntax and semantics are presented and illustrated with examples. Some 
logic laws concerning the projection operator are provided. In the framework of the 
temporal logic programming, the normal form of the projection construct is prm"ed. 

In a temporal logic programming language, such as Tempura [61J, the IJ('xt. always and chop 
are useful operators for sequential programs, while conjunction and parallel composit ion (II. S('(' 

Chapter 4), are basic operators for concurrent programming. As discussed earlier, conjun(tion 
construct seems appropriate for dealing with fine-grained parallel operations that proceed in lock· 
st('P whilp the parallel composition operator is better suited to the coarse-grained concurrency. 
where pa.cli process proceeds at its own speed. Moreover, processes COlli hill('d through the parallel 
composition operator share all the states and may interfprp with one another. 

In this chapter we introdu("(' a projection operator, (PI, ... , Pm) prj q, which can 1)(' thought 
of as a combination of the parallel and the projection operators presented in [61J. Intuiti\"dy. 
it means that q is ('xecuted in parallel with PI; ... ; Pm over an interval obtained h:-" taking the 
endpoints (rendezvous points) of the intervals over which PI, ... , Pm are execut ('d. T Ite projection 
construct permits the pro("('SS('S PI, ... , Pm, q to be autonomous, each process having the right to 
specify the interval over w h ic h it is execu ted. In particular, the sequence of processes PI, ... 'Pm 
and pro("('ss q may terminate at different time points. Alt hough the communication bet \\"('('ll 

processes is still based on shared variables, the communication and s:'llchronization only take 
place at the rendezvous points (global states), otherwise they are executed independent]:-". 

This chapter is organized as follows: Section 5.1 presents the new project ion operator; thp 
logic laws about the projection operator are proved in Section 5.2; in Section .).:1. the normal 
form of til!' projection construct. as a program statement. is proved, and an example of reduction 
of the projection (ollstruct is presented; Section 5.4 provides further examples for the application 
of the projection. S('ction 5.5 draws conclusions. 

5.1 Syntax and Semantics 

The projectioll construct is defined as 
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where PI,· •. , Pm and q are formulas (m ~ 1). To ensure smooth synchronization between 
Pl," .,pm and q, the previous operator is not allowed within q. However, it can be used in 
the PI'S. To define the semantics of the projection operator we need an auxiliary operator for 
intervals. 

Let q =< 80,81, ... 810'1> be an interval and Tl,··.,Th be integers (h ~ 1) such that 
o ~ rl $ r2 $ ... $ Th ~ Iql· The projection of q onto T1, .. . , Th is the interval 

where tl, ... , tl is obtained from Tl,' •• , Th by deleting all duplicates. That is, tl , . .. , t, is the 
longest strictly increasing subsequence of T1, ... , Th. For example, 

The semantics of the projection operator is defined, as before, relative to an interpretation 
1= (q, i, k,j). Formally, 

(I - pTj1) I F (PI.·" ,Pm) PTj q 

iffq!(k) F q and IF P1;"';Pm, or there are integers TI.T2, ... ,Th (1 $ h $ m) such that 
k ~ Tl ~ T2 $ ... $ Th ~ j and the following hold: 

• (q,i,k,T1) F PI, and for 1 < 1 $ h, (q,TI-t. Tl-I. Tl) F Pl. 

• If h < m then q!(k, Tl,"" Th) F q and (q, Th, Th,j) F Ph+!;.·. ;Pm' 

• If h = m then q!(k, Tl,"" Th)·q(rh+1..i) F q. 

Basically, the above definition of the projection is the same as in [22]. For ease of the proofs 
in the sequel, we define a notation, [PI. ... ,Pm](TI. ... , Tm), for formulas PI, "',Pm and integers 
Tb ... ,Tm-1 and Tm E Nw (T1 $ ... $ Tm-I ~ Tm), to mean that the formulas PI."',Pm are 
executed sequentially over a subinterval and TI. ... , Tm-l are the partition points and rm is the 
right end point of the subinterval. Formally, let I = (q, i, k,j) be an interpretation, then 

(q, i, k,j) F [PI, .. ·,Pm](T1, ... , Tm) 
iff (q, i, k, Tl) F PI and for all 1 < h $ m, (q, Th-I. Th-t. Th) F Ph 

We need also to generalize the notation of q!( T1, ... , Tm) to allow Tj to be w. For an interval 
q =< 80, St, ... , SIO'I > and 0 $ T1 $ T2 $ ... $ Th $ Iql (Ti E Nw ), we define 

q!O = ( 

q!(T1, ... , Th,W) = q!(TI. ... , Th) 

and, for integers TI. ... , Th, q!(T1, ... , Th) is defined as before. 

Thus, the meaning of the projection construct can be expressed in terms of [Pt. .. ·,Pm](T}, ... , Tm) 
as follows 

(I - prj2) (q,i,k,j) F (PI. .. ·,Pm) PTj q 

iff there exist integers Tt. ... , Tm-1 and rm E Nw and TO = k such that (q, i, k,j) F [PI. .. ·,Pm](T}, ... , Tm) 
and 

• rm = j and q ! (ro, ... , Th) F q for some 0 $ h $ m or 
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• rm < j and u! (ro, ... , rm ).U(rm+1..j) 1= q. 

One can show that the semantics given by I-prj1 and I-prj2 are equivalent. We use I-prj2 
only in a long proof. 

In programming language terms, the interpretation of (PI, ... ,Pm ) prj q is that we need two 
sequences of clocks (states) running on different time scales: one is a local state sequence, over 
which PI, ..• , Pm are executed, the other is a global state sequence over which q is executed. 
Process q is executed in a parallel manner with the sequence of processes PI. ... , Pm. The 
execution proceeds as follows (see Figure 5.1): First, q and PI start at the first global state and 
111 is executed over a sequence oflocal states until its tertnination. Then (the remaining part of) 
q and 1'2 are executed at the second global state. Subsequently, P2 is continuously executed over 
a sequence of local states until its tertnination, and so on. Although q and PI start at the same 
time, PI, ... , Pm and q may terminate at different time points. If q terminates before some Ph+! , 
then, subsequently, Ph+! , ... , Pm are executed sequentially. If PI, ... , Pm are finished before q, 
then the execution of q is continued until its termination. 

to t2 t4 t6 
1---------1---------1---------1 
I<------------q-------------->1 
to t1 t2 t3 t4 t5 t6 t7 t8 
1----1----1----1----1----1----1----1----1 
1<---p1--> 1<---p2--> 1<---p3-->I<---p4-->1 

(a): q terminates before p4 

to t2 t4 t6 t8 t9 t10 
1---------1---------1---------1---------1----1----1 
I<------------------q---------------------------->I 
to t1 t2 t3 t4 t5 t6 t7 t8 
1----1----1----1----1----1----1----1----1 
1<---p1-->I<---p2-->I<---p3-->I<---p4-->1 

(b): p4 terminates before q 

to t2 t4 t6 t8 
1---------1---------1---------1---------1 
I<------------------q------------------>I 
to t1 t2 t3 t4 t5 t6 t7 t8 
1----1----1----1----1----1----1----1----1 
1<---p1-->I<---p2--> 1 <---p3--> 1 <---p4--> 1 

(e): q and p4 terminate at the same point 

Figure 5.1: Possible executions of (p1,p2,p3,p4) prj q 

Note that the projection construct can be executed over an infinite interval. In this case, if 
Pm terminates before q, then q is continuously executed over the remaining infinite subinterval; 
whereas if q terminates before some PI (1 ~ I ~ m), then PI; ... ;Pm is sequentially executed over 
the remaining infinite subinterval. This implies Pm is executed over an infinite subinterval. 
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Projection can be thought of as a special parallel computation which is executed on different 
time scales. 

Example 5.1 Consider the following formulas: 

PI ~ len(2) A keep( i o=i + 2) 

de! 
P2 len(4) A keep(i o=i + 3) 

P3 ~ len(6) A keep(i o=i + 4) 

de! 
q len(4) A (i = 2) A (j = 0) A keep(j o=j + i). 

Then executing (PbP2,P3) prj q yields the following result: 

to t2 t6 t12 t13 
1-------1---------------1-----------------------1---1 
I-----------------------q-------------------------->1 
to tl t2 t3 t4 t5 t6 t7 t8 t9 tl0 tll t12 
1---1---1---1---1---1---1---1---1---1---1---1---1 
1<--pl->I<-----p2------>I<--------- p3--------->1 

i=2 4 6 9 12 15 18 22 26 30 34 38 42 
2 8 26 68 

Figure 5.2: Projection computation 

o 

The original projection operator defined in [61], P proj q, and the new projection operator 
defined above are not directly comparable. In the former, the formula P is executed repeatedly 
over a series of consecutive subintervals whose endpoints form the interval over which q is 
executed. This may result in repeating the same global state in the execution of q several times 
if some of the copies of P are executed over subintervals of zero length (in contrast, our definition 
rules this out). Moreover, in P proj q, the series of p's and the q always terminate at the same 
state. We feel that although p proj q and (Pl, ... , Pm) prj q do share some important properties, 
they still possess sufficiently distinct features to be treated independently as complementary 
constructs useful in the programming environment in which different time scales need to be 
considered. 

5.2 Properties of Projection Operator 

Projection operator enjoys a number of interesting properties. The theorems below are intended 
to formalize some of them. First, let us introduce some fundamental notions and auxiliary 
lemmas which are needed for proving the properties. 

Definition 5.1 

1 A formula p is called a terminal formula if p == pAempty. 
2 A formula p is called a local formula if p is a state formula or a terminal formula. 
3 A formula p is called non-local if for all u, u F p implies lui ~ 1. 

79 

o 



A local formula can be satisfied by a singleton interval, but a non-local formula can not be 
satisfied by a singleton interval. Also, a terminal formula can be satisfied by a singleton interval. 
We formalize this fact in Lemma 5.1. 

Lemma 5.1 A formula p is a terminal formula iff for all intervals u, ul=P implies lui = o. 

Proof 

Suppose P is a terminal formula. By definition 5.1, P == pAempty. Let u be an interval. If ul=p, 
then O'FpAempty. So ul=empty, and lui = o. 

Conversely, for all u, if ul=P implies lui = 0, then ul=empty. Hence ul=pAempty. 

o 

We also claim that the following conclusions hold: 

Lemma 5.2 Let u be an interval and rt. ... , rh E N w • 

1) u! (rt. ... ,ri, ... ,ri,ri+l, ... ,rh) = u! (rl, ... ,ri,ri+l, ... ,rh) 
2) u! (rt. ... , rt, rt+l, ... , rh) = u! (rt. ... , rt) 0 u ! (rt. rt+t. ... , rh) 

Proof Straightforward. 

o 
We now turn our attention to the logic laws about the projection formalized in Theorem 5.3 

- Theorem 5.9. To prove them, we sometimes use I-prj1 and sometimes use I-prj2. Whenever 
I-prj2 is used, we claim it explicitly. In what follows, whenever the construct (PI, ... , Pm) prj q 
is encountered, the formula q is thought of as a non-past formula, of course, a lee-formula (see 
Lemma 2.20). 

Theorem 5.S Let PI. "',Pm, q be formulas. 

Proof 

PRJempty1 (empty prj q) == q 
PRJempty2 (q prj empty) == q 
PRJempty3 «PI, ... ,Pm) prj empty) == (PI; ... ;Pm) 
PRJempty4 (PI, .. ,Pt, empty,pt+t. · .. ,Pm) prj q == (Pt. .. ·Pt,Pt+t. ... ,Pm) prj q 
PRJempty5 PI" empty; (P2, ... ,Pm) prj q:::> (PbP2, .. ·,Pm) prj q 

Let (J be an interval and k an integer, 0 ~ k:::; lui. 

The proof of PRJemptyl: 

Suppose (O',o,k,lul) 1= empty prj q. If u!(k) 1= q and (u,O,k,lul) 1= empty then k = lui and 
hence (u,O,k,lul) 1= q. Otherwise, there is r, k ~ r:::; lui, such that (u,O,k,r) 1= empty and 
u!(k,r)·O'(r+I .. lul) 1= q. The former yields r = k. Hence (u,O,k, luI) 1= q. 

Conversely, if (0',0, k,lul) 1= q then, by taking rl = k, one can show that (u, 0, k, 10'1) 1= 
empty prj q. 

The proof of PRJempty2: 
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Suppose (C1,O,k, 1(11) 1= q prj empty. If C1!(k) 1= empty and (O',O,k, 10'1) 1= q then we are done. 
Otherwise, there is r, k:S; r ~ 10'1, such that (O',O,k,r) 1= q and O'!(k,r)·O'("+1..IO'I) 1= empty. 
The latter means that r = 10'1 = k. Hence (0',0, k, 10'1) 1= q. 

Conversely, if (O',O,k, 10'1) 1= q then, since O'!(k) 1= empty, (O',O,k, 10'1) 1= q prj empty. 

The proof of PRJempty3: 

Suppose (0',0, k, 10'1) 1= (PlI· .. ,Pm) prj empty. If O'!(k) 1= empty and (0',0, k, 10'1) 1= PI; ... ; Pm 
then clearly (0', 0, k, 10'1) 1= PI; ... ; Pm· Otherwise, there are integers rl, ... , r h (1 :s; h :s; m) such 
that k :s; rl :s; .•. :s; rh ~ 10'1 and the following hold: 

• (C1,O,k,rl) 1= PI, and for 1 < 1:S; h, (O',TI-lITI-bTL) 1= PI 

• If h < m then O'!( k, r}, ... ,Th) 1= empty and (0', Th, Th, 10'1) 1= Ph; ... ; Pm. 

• If h = m then O'!(k, T}, . .. , Th)·O'(rh+1..IO'I) 1= empty. 

Ifh < m then TI = ... = rh = k and hence (O',O,k,IO'I) 1= PI; ... ;Pm. If h = m then 
10'1 = rI = ... = Th = k, yielding (O',O,k, 10'1) 1= PI;·· ·;Pm· 

Conversely, if (0',0, k, 10'1) 1= PI; ... ; Pm then, by taking h = 1 and TI = k, one can show that 
(0',0, k, 1(11) 1= (PI, .•. ,Pm) prj empty. 

The proof of PRJempty4: 

We prove this using I-prj2. 

(0',0, k, 10'1) 1= (PI, ... , Ph empty, PH}' ... , Pm) pTj q 
<==:} there exist integers TI, .•• , Tt, Te, THI. ... , Tm-I and Tm E Nw and ro = k such that 

Since 

Moreover 

and 

Therefore 

(0',0, k, 10"1) 1= [PI, ... , Ph empty, PH}' ... , Pm]( T}, ... , rt, r e, rt+1, ... , rm) 
and 
Tm = 10'1 and O'!(TO' ... , Th) 1= q for some ° :s; h:S; m or h = e or 
Tm < 10'1 and O'!( TO, ... , Tt, T e, Tt+I. ... , Tm)·O'(rm+1 .. IO'I) 1= q 

(0",0, k, 10'1) 1= [Pt, ···,Pt, emptY,Pt+1, ... ,Pm](TI. ... , Tt, Te , Tt+1, ... , rm) 
¢::::> (0",0, k, TI) 1= PI and 

(0", TI_I. TI_I. TL) 1= PI for alII, 1 < I :s; t and 
(O',Tt, Tt, re) 1= empty and 
(0', r e, Te , Tt+I) 1= Pt+1 and 
(O',rl_I.rl_bTI) 1= PI for alII,t+ 1 < 1:S; m 

¢::::> (0',0, k, rI) 1= PI and 
(0', TI_I. TI-I, Tt) 1= PI for alII, 1 < I :s; m (re = rt) 

¢::::> (0',0, k, 10'1) 1= [PI. ... ,Pt,PHI. ···,Pm](Tb ... , Th rt+1, ... , rm) 
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The proof of PRJemptll5: 

We prove this using I-prj2. 

(11,0, k, 1(11) F Pl A empty; (P2, ".,Pm) prj q 
<=> (11,0, k, Tl) F Pl A empty and (11, Tl! Tl! 1(11) F (p2, ···,Pm) PTj q for some Tl, ° ::; Tl ~ 1111 
<=> (11,0, k, Tl) F Pl and Tl = k and 

there exist integers T2, ... Tm-l and Tm E Nw such that 
(11, Tt, Tt, 1(11) F [P2, ···,Pm](T2, ... , Tm)and 
Tm = 1111 and I1!(Tt, ... , Th) F q for some 1 ::; h ::; m or 
Tm < 1111 and 11!( Tt. ... , Tm)·I1(rm+1..I<T1) F q 

~ there exist integers Tl, ... Tm-l and Tm E Nw and ro = k such that 
(11,0, k, 1(11) F [Pt. ... , Pm] ( rt. ... , rm) 
and 
rm = 1111 and 11!(ro, rl, ... , rh) F q for some ° ::; h ::; m or 
Tm < 1111 and l1!(ro, ... , rm)'I1(rm+LI<T1) F q 

<=> (11,0, k, 1(11) F (Pt. ... , Pm) prj q 

Theorem 5.4 

Proof 

PRJskipl (skip prj q) == q, 
PRJskip2 (q prj skip) :J q, 
PRJskip3 «p,q)pTj skip):J (p;q), 

Let (J be an interval and k an integer, ° ::; k ~ lal. 

The proof of PRJskipl: 

if q is non-local. 
if q is non-local. 
if p or q is non-local. 

o 

Suppose (11,0, k, lal) F skip prj q. We first observe that a!(k) F q and (a, 0, k, lal) F skip is 
impossible since q is non-local. Hence there is r, k::; r ~ lal, such that (a,O,k,T) F skip and 
u!(k, r ).a(r+1..I<T1) F q. The former implies r = k + 1 and hence (a, 0, k, lal) F q. 

Suppose (11,0, k, lal) F q. Then, since q is non-local, lal ~ k + 1. Hence (a, 0, k, lal) F= 
skip prj q can be shown by taking rl = k + 1. 

The proof of PRJskip2: 

Suppose (a,O,k,lal) F q prj skip. We first observe that a!(k) F skip and (a,O,k,lal) F q is 
impossible. Hence there is r, k ::; r ~ lal, such that (a, 0, k, r) F q and a!(k, T).a(r+1..I<T1) F skip. 
The former implies r ~ k + 1 (since q is non-local). This and the latter mean that T = lal· 
Hence (a, 0, k, lal) F q. 

The proof of PRJskip3: 

Suppose (a, 0, k, lal) F (p, q) prj skip. We first observe that a !(k) F skip and a F= Pi q is 
impossible. Thus one of the following must hold: 

• There is r, k ::; r ~ lal, such that (a,O,k,r) F p, a!(k,r) F= skip and (a,T,r,lai) F= q. 

Hence (a, 0, k, lal) F Pi q. 

82 



• There are integers r1lr2 such that k ::::; rl ::::; r2 ::::; lui, (u,O,k,rl) F p, (u,rl,rl,r2) F q 
and O'!(k, rl, r2)·U(r2+1 .. 11T1) F skip. Since at least one of p and q is non-local, we must have 
rl ~ k + I or r2 ~ rl + 1. Thus, from O'!(k, r}, r2)·0'(r2+1..11T1) F skip it follows that lui = r2. 
Hence (u, 0, k, luI) F p; q. 

Theorem 5.5 Let P,q,Pl," .,Pm be formulas. 

Proof 

PRJorl (PI,"" (Pi V ~), •.. ,Pm) prj q 
== (Pt.··· ,Pi,··· ,Pm) prj q V (PI,'" ,~, ... ,Pm) prj q 

PRJ or2 (PI. ... ,Pm ) prj (p V q) 
== (PI." ·Pm) prj P V (PI,'" ,Pm) prj q. 

o 

The proof of PRJorl and PRJor2 follow directly from the definition of the semantics of the 
projection operator and FD9 

ql; ... ; (qj V qj); ... ; qs == (ql; ... ; qj; ... ; qs) V (ql; ... ; qj; ... ; qs). 

Theorem 5.6 Let p, q be formulas. 

PRJpar P II q == P A «q, true) prj empty) V q A «p, true) prj empty) 

Proof 

The proof of PRJpar follows from PRJempty3. 

Theorem 5.7 Let PI, ... ,Pm be lee-formulas. 

Proof 

PRJnextl P prj 0 q 
PRJnext2 Pt II more; (p2, ... ,Pm) prj q :) 
PRJnext3 (Pt, "',Pm) prj 0 q -

(p A more; q) V (p A empty; Oq) 
(P}'P2, .. ·,Pm) prj 0 q 
Pt A more; (P2, ... , Pm) prj q 

PRJnext4 (Op prj 0 q) 
PRJnext5 (OPt, ... ,Pm) prj 0 q 

VPt A empty; (P2, .. ·,Pm) prj 0 q 
- O(p;q) 
- O(Pl; (p2, ... ,Pm) prj q) 

o 

o 

We prove this theorem using I-prj2. Let u be an interval and k an integer, ° ::::; k ~ lui and 
m~2. 

The proof of PRJnextl 

(u, 0, k, lulH:: p prj 0 q 
{::::::} (u, 0, k, luI) F [p](rl) (i.e. (u, 0, k, rt) F p) 

and 
rt = lui and u!(k, rt) F Oq or 
rt < lui and u!(k, rt),u(rl+1..11T1) F Oq 
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.. 

In the case of'1 = 10'1, if 10'1 = w or '1 = k then 0' ! (k, '1) = O'! (k) Pf: Oq. Hence 
k <'1 = 10'1 < w. 0'!(k"1) 1= Oq implies (0',0,10'1,10'1) 1= q. Moreover, (O',O,k, 10'1) 1= pI\. more, 
bence (0',0, k, 10' I) 1= p I\. more; q. 

In the case of'1 < 10'1, if'1 = k then 0'!(k,'1)·O'Crt+1..I0'i) = O'(k) 1= Oq. This amounts to 
(u,k,k, 10'1) 1= Oq· Since (0',0, k, '1) = (0',0, k, k) 1= p I\. empty, (0',0, k, 10'1) 1= p I\. empty; Oq. If 
'1 > k, O'!(k, '1)'0'(rl +1..10'1) = O'(k) 1= Oq iff O'Crt) 1= q iff (0"'1.'1. 10'1) 1= q. Since (0',0, k, '1) 1= 
pA more, (0',0, k, 10'1) 1= p I\. more; q. 

Conversely, suppose (0',0, k, 10'1) 1= (p I\. empty; Oq) V (p I\. more; q). If (0',0, k, 10'1) 1= pI\. 
empty; Oq then there exists r, k :::; r ~ 10'1 such that (0',0, k, r) 1= p I\. empty and (0', r, r, 10'1) 1= 
Qq. It is obvious that r < 10'1 otherwise (0', r, r, 10'1) ~ Oq. Thus, (0',0, k, 10'1) 1= [P]( r) and 
, = k and (O',r,r, 10'1) 1= O'!(k,r)·O'(r+1..IO'i) 1= Oq· Hence (O',O,k, 10'1) 1= p prj 0 q. 

If (0',0, k, 10'1) 1= p I\. more; q, then there is r, k :::; r :::; 10'1 such that (0',0, k, r) 1= p I\. more 
and (O',r,r,IO'I) 1= q. Thus, (O',O,k,IO'I) 1= [p](r) and k:::; r = 10'1 and O'!(k,r) 1= Oq (since 
< 8r >=< 810'1 >1= q). Or r < 10'1 and 0' !(k,r)·O'(r+1..IO'i) =< Sk,Sr > ·00(r+1) =< Sk,Sr > 
ou(r) 1= Oq (since O'(r) 1= q). 

Therefore, (0',0, k, 10'1) 1= p prj 0 q. 

The proof of PRJnext2 

If (u, 0, k, 10'1) 1= P1 I\. more; (p2, ... , Pm) prj q, then there exists an integer r1. k :::; r1 ~ 10'1 such 
that (O',O,k,rl) 1= PI I\. more and (O',r1.r1.IO'I) 1= (p2"'.,Pm) prj q. By the former, we know 
that (0',0,k,r1) 1= PI and k < r1. By the latter, we obtain 

Therefore, 

(0', r1. r1. 10'1) 1= [P2, ... , Pm] ( r2, ... , rm) for r1 :::; r2 :::; ... :::; rm-1 ~ rm :::; 10'1 
and 
rm = 10'1 and 0'1(r1' ... , rh) 1= q for some 1 :::; h :::; m or 
rm < 10'1 and O'1( r1. ... , rm )·0'(rm+1..I0'i) 1= q 

(0',0, k, 10'1) F [PI, ... , Pm]( r1. ... , rm) for k < r1 :::; ... :::; rm-1 ~ rm :::; 10'1 
and 
rm = 10'1 and O'1(k, r1. ... , rh) = O'!(k, rt} 0 O'1(r1. ... , rh) F Oq for some 1 :::; h :::; m or 
rm < 10'1 and O'!(k, r1. ... , rm )·O'(rm+1..IO'I) = O'1(k, rt} 0 O'!(r1. ... , rm )·O'(rm+1..IO'i) 1= Oq 

Therefore, (O',O,k, 10'1) 1= (PI, · .. ,Pm) prj 0 q. 

The proof of PRJnext3 

Suppose (O',O,k,IO'i) F (P1. ... ,Pm) prj Oq. We have 

(0',0, k, 10'1) F [PI, ... ,Pm]( r1. ... , rm) for k = ro :::; r1 :::; ... :::; rm-1 ~ rm :::; 10'1 
and 
rm = 10'1 and O'!( ro, r1. ... , rh) 1= Oq for some ° :::; h :::; m or 
rm < 10'1 and O'!(ro, ... , rm )·O'(rm+1..IO'i) F Oq 

Thus, two cases need considering: 

1) '1 = k. 
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In this case, u ! (k, rt, ... , rh) = U!(r1' ... , rh) (Lemma 5.2). Hence, the following hold: 

(u,0,k,r1) 1= PI and (u,rt,rt,lul) 1= [P2, ···,Pm](r2, ... ,rm) for r1 5 r2 5 ···5 rm-1 ~ rm 5 lui 
and 
rm = lui and u!(ro, rt, ... , rh) = u!(rb ... , rh) 1= Oq for some ° 5 h 5 m or 
rm < lui and u!(ro, ... , rm)·U(rmH .. lul) = u!(r1, ... , rm)'U(rm+Llul) 1= Oq 

Thus, (u,O, k, r1) 1= pA empty and (u, r1, rb luI) 1= (P2, .. ·,Pm) prj Oq leading to (u, 0, k, luI) 1= 
p!\ empty; (P2, .. ·,Pm) prj 0 q. 

2) k < r1' 

In this case, u! (k,rb· .. ,rh) =< sk,srl > ou!(rl, ... ,rh) (Lemma 5.2). Hence, the following 
hold: 

(u,O,k,rl) 1= PI A more and (u,rl,rb luI) 1= [P2, ... ,Pm](r2, ... ,rm) 
for k = ro < r1 5 ... 5 rm-1 ~ rm 5 lui 
and 
rm = lui and u!(ro, rb ... , rh) =< Sk, SrI> ou!(rt, ... , rh) 1= Oq leading to (u!(rl, ... , rm) 1= q 

or 
rm < lui and u!(ro, ... ,rm)·U(rm+1..lul) =< sk,srl > ou!(rt, ... ,rm)·U(rmH .. lul) 1= Oq 

leading to u!( r}, ... , rm)·U(rmH .. lul) 1= q 

Thus, we obtain (u,O,k,rl) 1= PI A more and (u,r},r}'lul) 1= (P2, ... ,Pm) prj q. Hence, 
(O',O,k, luI) 1= PIA more; (P2, ... ,Pm) prj q. 

Conversely, suppose (u, 0, k, luI) 1= (PI Amore; (P2; "';Pm) prj q)V(PIAempty; (P2, ... ,Pm) prj 0 
q). By PRJempty5 and PRJnext2, (u, 0, k, luI) 1= (p}, ... , Pm) prj 0 q. 

The proof of PRJnext4: 

The proof of PRJnext5: 

Op prj 0 q - OpA more;q 
- Op;q 
- O(p;q) 

PRJnext3 
FS4 
FCH! 

(OPl, ... Pm) prj Oq - OPIAmore;(p2, .. ·,Pm)prjq 
- OPI; (P2, ' .. ,Pm) prj q 

O(p; (P2, "',Pm) prj q) 

PRJnext3 
FS4 
FCH! 

From Theorem 5.7, a useful conclusion can be derived. We formalize it in Corollary 5.8. 

Corollary 5.8 Let PI, "',Pm be lee-formulas and q a non-past formula. 

PRJnext6 (PI, ···Pm) prj 0 q 
= (PI A more; (P2, .. ·,Pm) prj q) 

m-2 
V V «PI A ... A Pt) A emptY;Pt+1 A more; (Pt+2, ''',Pm) prj q) 

t=l 
V«PI A ... APm-t} A empty; Pm A more;q) 
V«PI A ... A Pm) A empty; Oq) 
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.... -

proof 

(Pl, · .. Pm) prj 0 q 
= (PI A morej (P2, "',Pm) prj q) 

V(PI A emptyj (P2, "',Pm) prj 0 q) 
_ (PI A morej (P2, .. ·,Pm) prj q) 

V(Pl A emptYjp2 A morej (P3, "',Pm) prj q) 
V(Pl A emptYjP2 A emptYj (P3, "',Pm) prj 0 q) 

_ (Pl A morej (P2, ... ,Pm) prj q) 
V(PI A emptYjp2 A morej (P3, ... ,Pm) prj q) 
V((PI A P2) A emptYj P3 A morej (P4, ... , Pm) prj q) 
V((PI A P2) A emptYj P3 A emptYj (P4, ... , Pm) prj 0 q) 

_ PI A morej (P2, ... ,Pm) prj q 
VPl A emptYjp2 A morej (P3, "',Pm) prj q 
V(PI A P2) A emptYjP3 A morej (P4, "',Pm) prj q 
V ... 
V(PI A ... A Pm-I) A emptYjPm A morej q 

PRJnext3 

PRJnext3 

EMP4, PRJnext3 

V(Pl A ... A Pm-I) A emptYjPm A emptYj Oq EMP4, PRJnextl, PRJnext3 
_ (PI A morej (P2, "',Pm) prj q) 

V((PI A ... A Pm-I) A emptYj Pm A morej q) 
m-2 
V ((PI A ... A pt) A empty; PHI A morej (PtH, ... , Pm) prj q) 

t=l 
V((Pl A ... A Pm) A emptYj Oq) 

PRJnext6 can be written in a more concise form, as follows: 

PRJnext6 (PI. .. ·,Pm) prj 0 q 
m-l 

= V ((Po A ... A Pt) A emptYjPHl A morej (PtH, ... ,Pm+t> prj q) 
t=o 
V((po A ... A Pm)j Oq) 

where Po == Pm+l == empty. 

o 

Since the disjunction in the above formula is mutually exclusive, PRJnext6 can also be written 
in another form shown below: 

PRJnext6 (PI. "',Pm) prj 0 q 
== 3t: 0 ~ t ~ m - 1 A ((Po A ... A Pt) A emptYjPt+1 A morej (PtH, .. ·,Pm+t> prj q) 

V((Po A ... A Pm)j Oq) 

These concise forms of PRJnext6 are frequently used in the reduction of programs. 

Theorem 5.9 Let PI. ... , Pm, q be formulas. 

PRJandl pprjq==pAq 
if P or q is a state formula. 

PRJand2 (w API, ... ,Pm) prj q == w A (PI. "',Pm) prj q 
if w is a state formula. 

PRJand3 (Pl, ... ,Pm) prj (w A q) == w A (Pt. ... ,Pm) prj q 
if w is a state formula. 
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proof 

Let (f be an interval and k an integer, ° ~ k ~ 10'1. 

The proof of PRJandl: 

Suppose (0',0, k, 10'1) 1= P prj q. If O'!(k) 1= q and (0',0, k, 10'1) 1= P then (0',0, k, 10'1) 1= P 1\ q. 
Otherwise, there is T, k ~ T ~ 10'1, such that (0',0, k, T) 1= P and O'!(k, T)·O'(r+I..IO'I) = O'(k .. IO'I) 1= q. 
If p is a state formula, then (0',0, k, T) 1= P iff (0',0, k, 10'1) 1= p. Hence (0',0, k, 10'1) 1= P 1\ q. 

Conversely, if (0',0, k, 10'1) 1= P 1\ q then (0',0, k, 10'1) 1= P and (0',0, k, 10'1) 1= q. Further
more, if P is a state formula, by taking TI = k, one can show that (0',0, k, TI) 1= P and 
(f !(O, TI)'O'(rl + I..IO' I) 1= q. Hence, (0',0, k, 10'1) 1= P PTj q. If q is a state formula, one can 
show that O'!(k) 1= q, Hence (0',0, k, 10'1) 1= P PTj q. 

The proof of PRJand3: 

We prove this using I-prj2. Since w is a state formula, O'!( k, Tt, ... , Tt) 1= w iff (0',0, k, 10'1) 1= w. 
Thus 

(0',0, k, 10'1) 1= (Pt, "',Pm) PTj (w 1\ q) 
<==> (0',0, k, 10'1) 1= (PI, ... , Pm]( Tt, ... , Tm) for k = TO :5 TI :5 ... :5 Tm-I ~ Tm ~ 10'1 

and 
Tm = 10'1 and O'!(TO' Tt, .. " Th) 1= w 1\ q for some ° :5 h :5 m or 
Tm < 10'1 and O'!(TO, ... , Tm)·O'(rm+1..IO'I) 1= w 1\ q 

<==> (0',0, k, 10'1) 1= (PI, ... , Pm]( Tt, ... , Tm) for k = TO :5 TI ~ ... :5 Tm-I ~ rm :5 10'1 
and 

Tm = 10'1 and (0',0, k, 10'1) 1= wand O'!(TO, Tt, ... , Th) 1= q for some ° :5 h :5 m or 
Tm < 10'1 and (0',0, k, 10'1) 1= wand O'!( TO, ... , Tm)·O'(rm+1..IO'I} 1= q 

<==> (0',0, k, 10'1) 1= wand 
(0',0, k, 10'1) 1= (Pt, ... , PmJ( Tt, ... , Tm) for k = TO :5 TI ~ ... ~ rm-I ~ Tm :5 10'1 
and 
Tm = 10'1 and O'!(TO, Tt, ... , Th) 1= q for some ° :5 h :5 m or 
Tm < 10'1 and O'!(TO, ... , Tm)·O'(rm+1..IO'I} 1= q 

<==> (O',O,k,IO'I) 1= wand 
(0',0, k, 10'1) 1= (Pt, ... , Pm) PTj q 

<==> (0',0, k, 10'1) 1= w 1\ «pt, ' .. ,Pm) PTj q) 

The proof of PRJand2 is similar to PRJand3. 

5.3 Normal Form of Projection Construct 

o 

The projection is a new construct for EIT1. It can be also a statement for programming language 
as long as PI, ... , Pm, q are all programs (of course, lee-formulas). In this section, we prove that 
a program involving the projection construct can also be reduced to the normal form given in 
Chapter 4. 

Theorem 5.10 If PI, ... , Pm, q are programs, and q is a non-past formula, then there is a program 
p as in (4.1) (Definition 4.2) such that 

P == (PIt .. ·,Pm) PTj q 
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proof 
d h 4 

SUppose q == V qer " empty V .v qci "Oqji and, for all 1 ~ 1 ~ m, PI == V PIer " empty V 
r=1 .=1 r=l 

Jr, 
V Plcj " OPljj· 

j=1 

Further, 

t h 
- (PI, ···,Pm) prj ( V qer "empty V V qci "Oqji) 

r=l i=1 
- (PI. ···,Pm) prj (qe1 "empty) 

h 
V V (PI, ···,Pm) prj (qci "Oqji) 

i=l 

hypothesis 

PRJor2 

(Pt. .··,Pm) prj (qet "empty) == qe1" (Pt. ... ,Pm) prj empty 
== qe1" (PI; ···;Pm) 

PRJand3 
PRJempty3 

By Theorem 4.9, (PI; ···;Pm) can be reduced to a normal form and so can qeI " (PI; ... ;Pm). 
Hence, there is a program P such that the following holds 

d n 

qel "(PI; ···;Pm) = V Per" empty V V Pcj" OPfj (1) 

On the other hand, 

(Pt. .··,Pm) prj (qci" Oqjd 
- qci" ((Pt. ··.,Pm) prj 0 qji) 

r=l j=l 

- qci" (PI" P2 " ... "Pm" empty; Oqji) 
m-1 

Vqci" V (PO" ... "Pt " empty; Pt+I " more; (Pt+2, ... , Pm+t) prj qji) 
t=o 

- qci" (Ple1 " ... " Pme1 " empty; Oqji) 
m-1 

Vqci" V (POe1" P1e1 "P2e1 " ... "Pte1 " empty; 
t=O 

k,+1 

V Pt+1cj" OPt+!fj "more; (Pt+2, ···,Pm+!) prj qji) 
j=l 

- qci" Plel " ... "Pme1 " (empty; Oqj) 

PRJand3 

PRJnext6 

POel == empty 

hypothesis 

m-l k,+1 
Vqci" V (pOet" Ple1 " ... " Ptel "empty; V Pt+1cj" OPt+1ji; (Pt+2, ···,Pm+l) prj qji) 

t=O j=1 
FCR2, FS4 

- qci" Ple1 " ... "Pme1 " Oqji 
V V (qci" Plcj" OPljj; (P2, ···,Pm) prj qji) 

l$i$k l 

V V (qci "P1el " ... " Pte1 "Pt+1ci" OPt+1fj; (Pt+2, ... ,Pm+1) prj qjj) 
1$t$m-1,1$j$k'+1 

FD9, FEP5 

- qci" Ple1 " ... "Pme1 " Oqjj 
V V qci" Plcj "0(P1fj; (P2, ... ,Pm) prj qjj) 

l$i$k l 

V V (qci "P1e1 " ... " Pte1 "Pt+lci "O(Pt+lfj; (Pt+2, ···,Pm+1) prj qjj) 
1$t$m-1,I$j$k'+1 

FCR! 
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Therefore, 

h 
V (pt, ···,Pm) prj (qci A Oqji) 

i=1 
h 

_ V qci A PIe! A ... A Pme! A Oqji 
i=1 
V V qci A Plcj A O(Pljj; (P2, "·,Pm) prj qji) 

l;Si;Skl,l;Si;Sh 

V V . (qci A PIe} A ... A Ptel A Pt+!cj A O(Pt+!Jj; (PtH, "',Pm+!) prj qji) (2) 
l;St;Sm-I,I;SJ;Skt+I,I;S,;Sh 

From (1), (2), it follows that (PI, ... ,Pm) prj q is reduced to its normal form. o 

Note that, if (PI, ... , Pm) prj q is a deterministic program, then its normal form is of a simpler 
form. That is, in an internal state, it is reduced to: 

and at the final state, it is reduced to: 

wherepe,pc and Pj are defined as in (4.1) (Definition 4.2). 

Example 5.2 Programs PI,P2,P3 and q are defined as follows: 

deC 
PI len(2) A keep(i o=i + 2) 

P2 deC len(4) A keep(i o=i + 3) 

P3 d~C len(6) A keep(i o=i + 4) 

q deC len(4) A (i = 2) A (j = 0) A keep(j o=j + i). 
We reduce (PI,P2,P3) prj q. Note that, in the reduction, we use Theorem 3.7 for substitution 

without declaration. 

Since 

q -
-
-
-

and 

len(4) A i = 2 Aj = 0 A D(more --+ (OJ = j + i)) 
Olen(3) A i = 2 A j = 0 A more --+ (OJ = j + i) A 0 D( more --+ (OJ = j + i)) 
Olen(3) A i = 2 A j = 0 A OJ = 2 + 0 A OD( more --+ (OJ = j + i)) 
i = 2 A j = 0 A O(j = 2 A len(3) A D(more --+ (OJ = j + i))) 

PI - len(2) A D(more --+ (Oi = i + 2)) definition 
FE2 _ Olen(1) A (more --+ Oi = i + 2) A 0 D(more -> (Oi = i + 2)) 

_ Olen(1) A Oi = 2 + 2 A OD(more --+ (Oi = i + 2)) 
_ O(i = 4 A len(1) A D(more -> (Oi = i + 2))) 
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Thus, (pt,P2,P3) prj q can be reduced as follows: 

(Pl,P2,P3) prj q 
_ (O(i = 4/\ len(l) /\ D(more -+ (Oi = i + 2))),P2,P3) prj 

(i = 2/\ j = 0/\ OU = 2/\ len(3) /\ D(more -+ OJ = j + i))) definition 
_ i = 2/\ j = 0/\ (O(i = 4/\ len(l) /\ D(more -+ (Oi = i + 2))), P2, P3) prj 

(OU = 2/\ len(3) /\ D(more -+ OJ = j + i))) PRJand3 
_ i = 2/\ j = 0/\ O(i = 4/\ len(l) /\ D(more -+ (Oi = i + 2»; (P2,P3) prj 

(j = 2/\ len(3) /\ D(more -+ OJ = j + i))) PRJnext5 

Hence, 
P~ _ i=2/\j=0 
P7 - i = 4/\ len(l) /\ D(more -+ (Oi = i + 2»; (P2,P3) prj 

U = 2/\ len(3) /\ D(more -+ OJ = j + i» 

Now we turn our attention to reducing the chop construct. Since 

i = 4/\ len(l) /\ D(more -+ (Oi = i + 2» 
_ i = 4/\ Oempty /\ more -+ (Oi = i + 2) /\ 0 D(more -+ (Oi = i + 2» 
_ i = 4/\ Oempty /\ Oi = 4 + 2/\ OD(more -+ (Oi = i + 2» 
_ i = 4/\ O(empty /\ i = 6/\ D(more -+ (Oi = i + 2))) 

By Theorem 5.10, it follows that 

pl 
c -

pl 
f -

-

-
-

-

-

-

We achieve 

i=4 
empty /\ i = 6/\ D(more -+ (Oi = i + 2»; 
(P2,P3) prj U = 2/\ len(3) /\ D(more -+ OJ = j + i» 
empty /\ i = 6; 
(P2, P3) prj (j = 2/\ len(3) /\ D( more -+ OJ = j + i» 
i = 6/\ (P2, P3) prj (j = 2/\ len(3) /\ D( more -+ OJ = j + i» 
i = 6/\ (len(4) /\ D(more -+ Oi = i + 3),P3) prj 
(j = 2/\ Olen(2) /\ more -+ OJ = j + i /\ 0 D(more -+ OJ = j + i» 
i = 6/\ j = 2/\ (Olen(3) /\ Oi = 6 + 3/\ OD(more -+ Oi = i + 3),P3) prj 
(Olen(2) /\ OJ = 2 + 6/\ OD(more -+ OJ = j + i» 
i = 6/\ j = 2/\ (O(len(3) /\ i = 9/\ D(more -+ Oi = i + 3»,P3) prj 
O(len(2) /\ j = 8/\ D( more -+ OJ = j + i» 
i = 6/\ j = 2/\ O(len(3) /\ i = 9/\ D(more -+ Oi = i + 3);P3 prj 
(len(2) /\ j = 8/\ D( more -+ OJ = j + i» 

P~ -
PJ -

i=6/\j=2 
len(3) /\ i = 9/\ D( more -+ Oi = i + 3); (P3 prj 

(len(2) /\ j = 8/\ D( more -+ OJ = j + i))) 
In a similar way, we can eventually obtain the following: 

P~ _ i=9 
Pj == len(2) /\ i = 12/\ D( more -+ Oi = i + 3); P3 prj 

(len(2) /\ j = 8/\ D( more -+ OJ = j + i» 
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p5 
c 

p5 
f 

pll 
c -

pll 
f -

-
-
-

p12 
c -

p12 
f -

-
-

-
-

-

-

-

~ _ i = 12 
PJ == len(l) /\ i = 15/\ D(more ---+ Oi = i + 3);113 prj 

(len(2) /\ j = 8/\ D(more ---+ OJ = j + i» 

i = 15 
empty /\ i = 18/\ D(more ---+ Oi = i + 3);P3 prj 
(len(2) /\ j = 8/\ D(more ---+ OJ = j + i» 
i = 18/\ (len(6) /\ D(more ---+ Oi = i + 4) prj 
(len(2) /\ j = 8/\ D(more ---+ OJ = j + i))) 
i = 18/\ j = 8/\ (Olen(5) /\ i = 22/\ D(more -+ Oi = i + 4) prj 
(Olen(l) /\ j = 26/\ D(more ---+ OJ = j + i))) 
i = 18/\ j = 8/\ O(len(5) /\ i = 22/\ D(more -+ Oi = i + 4); 
(len(l) /\ j = 26/\ D(more -+ OJ = j + i))) 

p6 
c - i = 18/\ j = 8 

p6 
f - len(5) /\ i = 22/\ D(more -+ Oi = i + 4); 

(len(l) /\ j = 26/\ D(more -+ OJ = j + i» 
p7 

c - i = 22 
p7 

f - Zen(4) /\ i = 26/\ D(more -+ Oi = i + 4); 
(Zen(l) /\ j = 26/\ D(more ---+ OJ = j + i» 

p8 
c - i = 26 

p8 
f - Zen(3) /\ i = 30/\ D(more ---+ Oi = i + 4); 

(Zen(l) /\ j = 26/\ D(more -+ OJ = j + i» 
p9 

c - i = 30 
p9 

f - Zen(2) /\ i = 34/\ D(more -+ Oi = i + 4); 
(Zen(l) /\ j = 26/\ D(more ---+ OJ = j + i» 

plO 
c - i = 34 

plO 
f - Zen(l) /\ i = 38/\ D(more -+ Oi = i + 4); 

(Zen(l) /\ j = 26/\ D(more ---+ OJ = j + i» 
i = 38 
empty /\ i = 42/\ D(more -+ Oi = i + 4); 
(len(1) /\ j = 26/\ D( more ---+ OJ = j + i» 
i = 42/\ (len(l) /\ j = 26/\ D(more ---+ OJ = j + i» 
i = 42/\ j = 26/\ (Oempty /\ OJ = 42 + 26/\ OD(more -+ OJ = j + i» 
i = 42 /\ j = 26 /\ O( empty /\ j = 68 /\ D( more ---+ OJ = j + i» 
i = 42/\ j = 26 
empty /\ j = 68/\ D(more -+ OJ = j + i) 
j = 68/\ empty /\ (more ---+ OJ = j + i) /\ 0 D(more -+ OJ = j + i) 
j = 68 /\ empty 

Pe - j = 68 /\ empty 
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5.4 Examples 

We now present two simple applications of the projection construct. The first is a pulse generator 
for variable x which can assume two values: 0 (low) and 1 (high). We first define two types 
of processes: The first one is hold( i) (i ~ 1) which is executed over an interval of length i and 
ensures that the value of x remains constant in all but the final state: 

hold(i) ~r len(i) A D(Omore -+ (Ox = x». 

The other is switch(j) which ensures that the value of x is first set to 0 and then changed at 
every subsequent state: 

switch(j) ~ (x = 0) A len(j) A D(more -+ (Ox = 1 - x». 

Having defined hold(i) and switch(j) we can define pulse generators with varying number and 
length of low and high intervals for x, 

pulse( i l , ... , i,.) ~r (hold( it), ... , hold( i,.» prj switch(k). 

The second example is that of special parallel computation. Consider the formula « len( it), len( i2 ), 

... , len( i,.» prj q) A p. This allows processes p and q to be executed in a special parallel manner 
in which p is executed over a series of subintervals, and q is executed at their endpoints: 

to t2 t6 ti0 
1-------1---------------1---------------1 
I-----------------------q-------------->I 
to t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 ti2 
1---1---1---1---1---1---1---1---1---1---1---1---1 
1<--------------------- p---------------------->I 
Figure 5.3: Special parallel computation 

The projection operator (Pl, . .. , Pm) prj q presented in this thesis can be used to specify 
computations on different time scales. Another possible application area is that of the real time 
systems. In this case, we could treat Pl, ... ,Pm as formulas over a series of dense or real intervals 
and q as a formula over a projected discrete interval. 
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Chapter 6 

Framing 

Summary: Problems and principles about framing are discussed and a solution for 
framing based on a default logic is presented. With this solution, a new assignment 
operator (<=), an assignment flag (af(x)), and a framing operator (Jrame(x)) are 
defined in EITL. Finally, some basic framing techniques in temporal logic program
ming are illustrated with examples. 

In a conventional programming language such as C or Pascal, if a variable has not been assigned 
a new value within a program, the current value of the variable remains the same as its old 
value, and all variables have this inertial property. This framing technique is simple and often 
taken for granted. However, in a temporal logic programming language such as Tempura, the 
situation is different, since a program is executed over a sequence of states (time stamps) and 
the values of variables are not inherited automatically. Thus, some interesting questions arise: 
1. Is it necessary for a variable to inherit its value automatically? 2. How is the value of a 
variable inherited while a program is executed? 3. Do all variables behave similarly? This 
chapter intends to answer these questions and to formalize a framing technique in which framed 
and non-framed variables can be mixed. 

This chapter is organized as follows: Section 6.1 discusses why we need framing techniques. 
Section 6.2 looks at some fundamental aspects of framing issue. In Section 6.3, a solution based 
on a default logic for framing is introduced. In Section 6.4, some basic techniques for temporal 
logic programming are discussed. Finally, conclusions are drawn in Section 6.5. 

6.1 Why Framing? 

The introduction of a framing technique to temporal logic programming is motivated by both 
practical and theoretical considerations: improving the efficiency of a program and synchronizing 
communication for parallel processes. Let us begin with an example in Tempura: 

x = 1A(Y := 2; y := x + y) (1) 

The program only tells us that x equals 1 at state So, and y equals 2 at state SI. One may expect 
that y equals 3 (the sum of the values of x and y) at state S2. Unfortunately, the program does 
not sa.tisfy this requirement. The reason is that x is unspecified at SI and S2. SO y is unspecified 
at 82 (y is also unspecified at so). There are several ways to correct it. An ad hoc fix to the 
problem is to make stability explicit; the above example can be rewritten as 
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:c = l1\O(more-(Ox = x))I\(Y := 2; y := x + y) (2) 

As seen, however, x has to be assigned its current value at the next state repeatedly from one 
state to another so that its value could be inherited. These additional assignments are tedious 
and may also decrease the efficiency of the program. For a small program, the repeated assign
ments may be tolerable; however, in some cases, repeated assignments may be unacceptable. 
For instance, to maintain a large array while changing a few its elements at different times over 
an interval, using repeated assignments would be a disaster. Furthermore, the verification and 
the transformation of programs may also suffer from these excessive assignments. To eliminate 
them in an implementation, it seems that the best choice is to introduce a framing technique. 

As discussed in Chapter 1, in a sequential program, an await statement is useless, since if c 
is currently false it will remain so forever. In a process within a concurrent program, however, 
this statement makes sense, since another process, acting in parallel, may cause c to become 
true. 

How can await(c) be defined in temporal logic programming like Tempura? It would be 
difficult without framing. Within Tempura, the statement halt(c) (see Chapter 4) may playa 
role similar to that of the await(c) statement; however, halt(c) requires that c become true only 
at the end of an interval. Thus, c must be false until the time at which c is true. However, halt( c) 
does not prevent the variables from being changed. Thus, a problem arises whether we adopt 
repeated or unrepeated assignments, when we attempt to synchronize parallel components by 
halt(c). For instance, within a finite specified interval, the program 

x = Ol\halt(x = 1)J\len(2) 

is satisfied by an interval, < x : 0, x : _, x : 1 >, (here we are only concerned with variable x; _ 
denotes any value in the domain). It forces x = 1 at the final state of the interval. On the other 
hand, if we use the repeated assignment approach to inherit the value of x, the program 

x = Ol\D(more-Ox = x)I\halt(x = 1)I\len(2) 

is obviously false. For an unspecified interval, the program 

x = Ol\halt(x = 1) 

is also satisfiable on an interval such as < x : 0, ... , x : 1 >. It terminates at some indefinite 
state where x = 1 because x is only defined at the initial state. On the other hand, if we use 
the repeated assignment approach to carry forward the value of x, the program 

x = Ol\D(more-Ox = x)I\hait(x = 1) 

satisfies the busy waiting (i.e. waiting for x = 1 to become true), but it waits forever. No 
process, acting in parallel, can change x to 1, since such an assignment conflicts with x = 0. 

The problem is caused by the fact that, unlike conventional programming languages, the 
values of variables are not inherited automatically from one state to another and the assignments 
are not destructive in temporal logic programming languages. 

Modelling an await( c) in a temporal logic requires a kind of indefinite stability, since it 
cannot be known at the point of use how long the waiting will be; but it must also allow 
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variables to change, so that an external process can modify the boolean parameter and it can 
eventually become true. Solving this problem also requires some kind of framing operation. 

Framing is concerned with how the value of a variable from one state can be carried to 
the next one. Temporal logic offers no solution in this respect; no value from a previous state 
is assumed to be carried along. Framing techniques have been used in the programming with 
conventional imperative languages for many years without consideration. However, we have to 
consider this option carefully in temporal logic programming. 

Considerable attention has been given to framing in recent years [68, 40, 53, 83, 39]; however, 
no consensus has emerged as to the best underlying semantics. Moreover, some of papers deal 
with framing in a simplified manner, e.g. assuming the values of variables are automatically 
inherited. This thesis is concerned with investigating the behaviour of concurrent programs 
under a particular mode of framing in which framed and non-framed variables are mixed. 

To deal with framing, a new assignment operator (¢: ) and an assignment flag (af) will 
be defined within EITL. Armed with the assignment flag, a framing operator frame(x) will be 
formalized. These new constructs will be interpreted within minimal model semantics. 

This will allow us to specify the framing status of variables throughout an interval in a 
flexible manner, and to verify the properties of a reactive system in a manageable way. However, 
introducing the framing operator destroys the monotonicity and leads to a default logic [76, 56, 
57]. Therefore, negation by default has to be used to manipulate the framing operator. 

When a framing technique is introduced to temporal logic programming, the semantics of 
a. program may be changed. Therefore, one issue we have to face is how to interpret a framed 
program; that is, how to capture its intended meaning. This will be discussed in Chapter 7. 

With the framing operator, the synchronous communication construct, await( c), can easily 
be defined. Therefore, real concurrent programs can be managed within our system. We discuss 
this issue in Chapter 8. 

An interpreter [20], written in SICSTUS Prolog, has been developed using the framing 
technique presented in this thesis. It will be presented in Chapter 9. 

6.2 Problems and Principles 

As mentioned earlier, framing is concerned with the persistence of the values of variables from 
one state to another. There are at least two realistic ways to go about framing. One way is 
directly associated with the definition of the assignment operator as [40] does in an algebraic 
programming language. There the assignment is defined as follows: 

x := e ~f x' = eAy: = Yi (l:£i:£m) 

where x is a variable, and x' represents the new value of x. Yl, ... , Ym which are different from x 
are all the other variables within a program. Intuitively, this means that whenever a variable x 
is assigned a value, the other variables remain stable. However, this method can only manage 
framing in a limited case in which all variables are framed, and the conjunction of assignments 
is forbidden since x := el Ay := e2 is obviously false if el (or e2 ) does not equal the current value 
of x (or y). In Tempura, however, the definition of parallel composition is based on conjunction 
(see Chapter 4); this implies that parallel assignments would be forbidden if we adopted the 
same strategy for framing. The other way in which the values of variables could persist is by 
means of an explicit operator. This method may enable us to establish a framed environment 
in a. flexible manner in which framed and non-framed variables can be mixed and the framing 
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operator can be used in a sequential, conjunctive, or parallel manner. Intuitively, the meaning 
o(the framing operator, denoted by Irame, can be stated as follows: 

Irame( x) means that variable x always keeps its old value 
over an interval il no assignment to x is encountered. (*) 

The crux of the above technique is how to perceive the assignments of values to variables. To 
identify an occurrence of an assignment to a variable, say x, we make use of a flag called the 
assignment flag, denoted by a predicate al(x); it is true whenever an assignment of a value to x 
is encountered, and false otherwise (Note that al(x) is not allowed to use freely in a program but 
only connected with an assignment (see Condition 1) and a framing operator (see Definitions 
6.3,6.4)). al(x) is easy to understand but difficult to formalize in a logic framework. The 
problem is that a program provides only positive information, that is, some explicit assignments 
from which we know those variables assigned explicitly within the program. However, what we 
need is negative information, i.e. those variables which do not encounter assignments at the 
current state. It is possible to search for the positive information syntactically and to obtain 
the negative information by complement. But it is very hard to define the negative information 
in a logic framework. 

Let P be a program and R = M(P). M(P) denotes the set of all P-models in which framing 
operators are used. In fact, here M(P) equals Mm(P) which is based on the minimal model 
given in the sequel. We use P-models below because the conditions given below involve formu
las which not all are programs but relevant to a program P. The framing technique using an 
assignment flag should satisfy some necessary conditions, as follows: 

Condition 1: I=R D(al(x)-3b: d:bA b:f. nil) 

where J: is an assignment operator associated with al(x). As a predicate, the assignment flag 
(af(:c» must be defined in a way in which it is associated with some assignment operator and 
can be used to assert whether or not such an assignment has taken place to x in the execution 
of a program. Whenever such an assignment is encountered, al( x) should be true. Conversely, 
when af( x) is true, such an assignment should have been perceived in the execution of the 
program P. Therefore, whichever wayan assignment and assignment flag may be defined, Con
dition 1 should hold. The b :f. nil means that nil is not allowed to be assigned to a variable by 
the assignment operator :1. 

Condition 2: I=RD(af(x)-xEX) 

where X is the set of assigned variables associated with the assignment operator:1. X is 
determined syntactically (see Chapter 7). Condition 2 requires that the assignment of a value 
to :c semantically should be equivalent to the assignment of a value to x syntactically. This 
amounts to requiring that the set of variables assigned semantically within a program should 
equa.! the set of variables intended to be assigned by the program at every state. 

Condition 3: I=R remain(...,al(x) A Ox :f. nil--+-(x = Ox» or 
I=R keep(O...,al(x) A x :f. nil--+-(Ox = x» 

Condition 3 is merely an informal description of the intuitive meaning in (*). It indicates the 
conditions under which the values of variables are inherited. The first formula is denoted by 
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Ib/(Z), and the second by If f(x) (the formal definitions are given later). It implies causality, 
i.e. when an explicit assignment has not been encountered, an inherited assignment takes place 

insteadj it also implies simultaneity, that is, the disappearance of an assignment using J: and 
the appearance of an inherited assignment using = take place simultaneously. Note that nil is 
not allowed to be inherited. So the condition requires 0x i- nil with Ibf(x), and x i- nil with 
I/I(x). It is easy to show the following fact: 

Fact 6.1 band = are different. 

The above can be justified as follows. Let P be a program and x a framed variable in 
P. By Condition 3, for any interval u,uEM(P), and any integer i,O < i ~ lui, (u,O,i,lui)F 
-,a/(x) /I. 0x i- nil-+(x = 0x). Suppose (u,O,i, luDF...,af(x). That is, no assignment which 
is associated with af(x) is encountered to x at the current state Si. Thus, (u,O,i,luDFx = 
0x f: nil. If J: were =, then (u, 0, i, IuD F xJ:0x /I. 0x i- nil. By Theorem 3.32, we have 

(O',O,i,IO'DF 3b: xJ:b/l.x i- nil. This implies, by Condition 1, (u,O,i,lui)Faf(x). This yields 
a contradiction. 

o 

Fact 6.1 tells us that the assignment operator associated with af and the assignment operator 
(=) inheriting the value of a variable must be different, otherwise a conflict arises. Hence, the 
existing assignment operators in ITL are not enough to manage framing. In fact, it is impossible 

to choose J: from the existing assignment operators: =,0=, := and .- in ITL. By the simultaneity 

of Condition 3, b cannot be 0=, := and '-j by Fact 6.1, J: cannot be =. Therefore, J: has to 

be defined as a new assignment operator (it is definable in ITL). We will define J: to be a new 
assignment operator (¢::) and use the equality (=) as the inheritance assignment operator in 
this thesis. 

An important fact we claim is that adding framing operators to ITL makes the underlying 
semantics a radical shift from monotonicity to non-monotonicity. 

Let us recall that the first order logic has the following properties [34]: 

(1) reflexivity: {Wit ... , Wn , w}f-w. 

(2) monotonicity: if {Wl' ... , wn}f-w then {Wl, ... , Wn , U }f-w. 

(3) transitivity: if {Wl, ... , wn}f-u and {Wl, ... , Wnt u}f-w, then {Wl, ... , Wn , }f-w. 

In the expressions above, Wit ... , Wnt U, W represent formulas oflogicallanguage. From above (2), 
the first order logic is monotonic. That is, adding a formula to a theory has the effect of strictly 
increasing the set of formulas that can be inferred. We conclude it in Fact 6.2. 

Fact 6.2 (non-monotonicity) 

A logic involving framing operators is non-monotonic. That is, given formulas, Wit ... , Wn , U, W, 

it may happen that Wl /I. ... " Wn -+ W holds, but Wl /I. ... /I. Wn /I. u -+ W does not. 
o 

For example, we should have, according to the derived properties of framing, 

x = 1/1. len(1) /I. frame(x) :> Ox = 1 
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11""' .. 

x = 1" len(I) " jrame(x) " O(x ~ 2) :J Ox = 2 

From the above discussion about the framing technique using assignment flag (af) and 
framing operator, we know the following facts: 1. the assignment flag aj must be defined 
based on an assignment operator; 2. the framing technique must use two different assignment 
operators: one is the assignment operator associated with the definition of aj, and the other is 
the assignment operator used to inherit the value of a variable when the variable is framed and 
an explicit assignment to it is absent; 3. the syntactic definition and the semantic interpretation 
of af must be consistent; 4. a logic involving framing operator is non-monotonic. Therefore, 
we have to provide a way to perceive the absence of the explicit assignment associated with the 
assignment flag to a variable so that an inheriting assignment to the variable can take place if 
the variable is framed. 

6.3 Solutions 

In this section, we first define some new assignments which are required by framing as dis
cussed earlier; then we define framing operators; and finally, we present a minimal model-based 
a.pproach for framing. 

6.3.1 New Assignments and Framing Operators 

Let 8p = {Xl! ... , xn}(SpCV) be a set of state variables within a program P and ~p = {PXI' ···'PXn} 
be the set of propositions associated with state variables. Note that variables bound by quanti
fiers can always be given distinct names by renaming them as necessary. We also assume that 
a. program P does not involve propositions other than ~p. 

Deflnition 6.1 (new assignments) 

(1) Xi ~ e ~f Xi = eApxj (l=::;i=::;n) 

(2) Xi ..... + e ~f 3a: (a = eAO(empty~xi~a» 

(3) Xi 0=+e~f3a: (a = eAO(xi~a» 

(4) Xi :=+ e ~f Xi 0=+ eAskip 

(5) (xt, ... xn ) op (et, ... , en) ~f (Xl op edA ... A(xn op en) 

where a is a static variable, e an expression, PXj an atomic proposition associated with state 
variable Xi (l=::;i=::;n). PXj cannot be used for other purposes. In (5), op ::= ..... +10=+ 1 :=+ I~· 

o 

In the above definition, (1) defines a positive immediate assignment operator; (2)-(5) specify 
derived assignment operators. The meaning of these assignment operators is similar to those 
presented in Chapter 4, but they set some proposition( s) to be true besides assigning some 
value( s) to variable( s) at the same time. These operators are called (in the ord~r of the~r 
definitions) positive temporal, next, unit, and multiple assignment operators, respectIvely. It IS 

now time to define the assignment flag. 
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Definition 6.2 (assignment flag) 

del 
a/(Xi) = Pz, 

where proposition Pz, associated with variable Xi is the same as in Definition 6.1, and cannot 
be used for any other purpose. As expected, whenever xi¢:b is encountered, Pz, is set to true, 
hence a/(xj) is true. Whereas, if no assignment to Xi takes place, Pz, is unspecified. In this 
case, we will use a minimal model to force it to be false. 0 

Armed with the assignment fiag, we can define state framing and interval framing operators. 
Intuitively, when a variable is framed at a state, its value remains unchanged if no assignment 
is encountered at that state. A variable is framed over an interval if it is framed at every state 
over the interval. We formalize this idea in Definition 6.3 and Definition 6.4. The former invokes 
the previous operator to look back to the previous state, (1) specifies X,. to be framed at the 
current sate, and (2) defines x,. to be framed over an interval; while the latter employs the next 
operator to look forward to the next state, (1) specifies the state framing and (2) defines the 
interval framing. In fact, the two definitions are equivalent (see Theorem 7.11). 

Definition 6.3 (looking back framing) 
Let b be a static variable, and Xl, ... , Xn dynamic (state) variables. 

(1) Ibf(x,,) ~f -,af(x,.)-+3b: (0x,. = b1\x,. = b) 

(2) frame(x,.) ~f D(more-+Olbf(x,.» 

(3) frame(x1, ... , xn) ~f frame(xt}A ... Aframe(xn) 

Definition 6.4 (looking forward framing) 
Let b be a static variable, and Xl, ... ,xn dynamic (state) variables. 

(1) If f(x,.)'~:El O-,af(xk)-+3b : (Xk = bAOXk = b) 

(2) frame'(xk) ~f D(more-+lf f(x,.» 

(3) frame'(xl, ... , xn) ~f frame'(x1)A ... Aframe'(xn) 

o 

o 

Note that the above definitions are on domain D rather than D'. So, nil is not needed in 
contrast with Condition 3. 

A dynamic variable X is said to be framed in a program P if frame(x) or lbf(x) or lff(x) 
is contained in p. A program P is said to be framed if P contains at least one framed variable. 
In general, a framed program is non-deterministic under the canonical model. Consequently, a 
framed program can inductively be defined, as follows 

• For any variable X E V and any well-formed expression e, X = e, x ¢: e, and empty are 
framed programs . 

• lff(x), lbf(x), and frame(x) are framed programs. 
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• H p,q,Pt, .. ·,Pm are framed programs, then so are the followings: 

Op, Dp, P /I. q, Pi q, i/ b then p else q, while b do p, pllq, (Pt, ... ,Pm) prj q, and 3x : p. 

Fact 6.3 

Proof 

EQ F R Xi = ei - PXi /I. Xi = ei V "PXi /I. Xi = ei 
LBF Ib/(xi) - PXi V"PXi /I. Xi = 0Xi 

EQFR is obviously true. We prove only LBF. 

Ib/(xi) - .,a/xi ~ 3b : 0Xi = b /I. Xi = b 
- "PXi ~ 3b : 0Xi = b /I. Xi = b 

"PXi ~ 0Xi = a /I. Xi = a 
- "PXi ~ Xi = 8Xi (:f; nil) 
- PXi V "PXi /I. Xi = 0Xi 

lemma 4.8 

D 

D 

By EQFR and LBF, when we reduce a framed program p, whenever Xi = ej occurs in p, it 
is replaced by PXi /I. Xi = ei V "PXi /I. Xi = ei; whereas whenever Ib/(xi) occurs in p, it is replaced 
by PXi V ""PXi /I. Xi = 0 Xi. Then we can reduce P under the canonical model as usual. 

Example 6.1 

/rame(x) /I. X {:: l/l. O(x = 2) /l.len(l) 
- D(more ~ Olb/(x)) /I. X {:: 1 /I. O(x = 2) /I. O(empty) 
- (more -+ Olb/(x)) /I. 0 D(more -+ Olb/(x)) /I. X {:: l/l. O(x = 2) /I. more /I. O(empty) 
- Olb/(x) /I. OD(more -+ Olb/(x)) /I. X {:: 1 /I. O(x = 2) /I. O(empty) 
- X {:: 1 /I. O(lb/(x) /I. D(more -+ Olb/(x)) /I. X = 2/1. empty) 
- x=l/1.px/l.O(lb/(x)/l.x=2/1.empty) 

Thus, 

p~ == X = l/1.px 

P~ - lb/(x) /I. x = 2/1. empty 
- (Px V .,Px /I. X = 8x) /I. (Px /I. X = 2 V ""Px /I. X = 2) /I. empty 
- Px /I. x = 2 /I. empty V ""Px /I. x = 1 /I. x = 2 /I. empty 
- Px /I. x = 2 /I. empty 

D 

This example shows us that although no explicit assignments using {:: at a state, a potential 
positive assignment can occur in the state since x = e can be treated as x = e /l.Px V x = e" ""Px. 

6.3.2 Minimal Models 

A framed program P also has its normal form which is similar to the normal form for a non-framed 
program but the propositions in ~p have to be involved. 
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J)eflnition 6.5 A program q is in normal form if 

k h 

q ~ V q"i /\ empty V V qcj /\ OqJj (6.1) 
i=l j=l 

where k,h ~ 0 (k + h ~ 1) and 

• for all 1 :$ j :$ h, OqJj are lee-formulas and qJj are all internal programs. 

• qcj (j :$ h) and q"i (i :$ k) are true or all state formulas of the form: 

(Xl = el) /\ ... /\ (Xl = el) /\ PX! /\ ... /\ PXm 

where ei E D (1 :$ i ~ I) and Px denotes Px or "'Px and 1 ~ 0 and m ~ 0 and 1+ m ~ 1. 

A similar proof as for Theorem 4.9 can be given to obtain the following conclusion. 

D 

Theorem 6.4 If p is a framed program, then there is a program q as defined in (6.1) such that 

p==q 

Proof Similar to the proof of Theorem 4.9. 

Example 6.2 

Thus, 

/rame(x) /\ X = 1/\ len(l) 
_ D(more -+ Olb/(x)) /\ X = 1/\ O(empty) 
_ (more -+ Olb/(x)) /\ 0D(more -+ Olb/(x)) /\ x = 1/\ more /\ O(empty) 
_ Olb/(x) /\ OD(more -+ Olb/(x)) /\ X = 1/\ O(empty) 
_ (Px /\ X = 1 V "'Px /\ x = 1) /\ O(lb/(x) /\ empty) 

p~ == Px /\ x = 1 V "'Px /\ X = 1 

P~ _ lb/(x)/\empty 
== (Px V "'Px /\ x = 1) /\ empty 
== Px /\ empty V "'Px /\ x = 1 /\ empty 

Hence, four models given below can satisfy the program. 

0"1 =< ({Px},{x: 1}),({Px},4» > 

0"2 =< ({Px},{x: 1}),(4),{x: I}) > 

0"3 =< (4), {x : 1}),({Px},4» > 

0"4 =< (4), {x : 1}),(4),{x: I}) > 
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As seen, a proposition P:& can appear alone without an equality x = e at a state. Also, a 
framed program can have a number of canonical models. Thus, a problem we have to face is how 
to choose a model to satisfy the intended meaning of a program. We interpret framed programs 
using minimal models. 

Definition 6.6 Let P be a framed program, and ~p = {O'IO' Fe p}. Let O'}, 0'2 E ~p. We define 

• O'lp ~ 0'2p iff lip ~ I~p and 10'11 = 10'21 for all i, 0 ~ i ~ 10'11 

• 0'1 ~ 0'2 iff O'lp ~ 0'2p 

• 0'1 == 0'2 iff 0'1 ~ 0'2 and 0'2 ~ 0'1 

Example 6.3 

< ({Px},4» >;;;;!< (4), {x : I}) > 

< ({Px}, 4» >:::J< (4), {x: I}) > 

< (4), {x : I}) >=< (4), {x : 2}) > 

< (4), {x : I}) >=< (4), {x : I}) > 

Definition 6.7 Let P be a framed program. Then 

• [0']: = {O"'IO"' == 0",0" Fe p}. 

• !:p = {[O']:IO' Fe p} 

• t p = I(!:p), where I : l: ---+ ~p is any function such that 1([0']:) E [0']: 

o 

o 

Note that (1) [0']: is an equivalence class, i.e. the set of models which are equivalent to 0' 
under ==; (2) t p consists of Il:pl elements. Each element belongs to a different equivalence 
class in l:p. t p is needed in the proof of Theorem 7.1. 

o 

. Let p be a program, and 0' =< 80, .... 81"1 > be an interval over Sp and CJ.)p, where 8j = (I~, I;), 
l~ is defined as in Chapter 4 and I; is canonical interpretation defined as in Section 4.2 of 
Chapter 4. 

Definition 6.8 (the minimal satisfaction relation) 
Let p be a program, and (0', i, k, j) be an interpretation. Then the minimal satisfaction relation 
1=111 is defined as 

(0", i, k, j) I=m p iff (0', i, k, j) I=e p and there is no 0" such that 0" L 0' and (0", i, k,j) I=e p. 

o 
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A program p is satisfied by a model u under relation I=m, denoted by ul=mP' if (u, 0, 0, luI) I=m 
p. A model u is a minimal model of program P if u I=m p. 

The relations ==m and R::m can be defined similarly to the relations == and R::. P ==m q 

iff for all (1, all ° :5 k j lui, (u, 0, k, luI) I=m P ¢:} (u, 0, k, luI) I=m q. P R::m q iff for all u, 
q pm P ¢:} (1 I=m q. The relations ==m and R::m are also equivalence relations over the set of 
programs. That is, they are reflexive, symmetric and transitive. 

The strong implication relation under the minimal model, Jm, can also be defined similarly 
to J. That is, P Jm q iff for all u, and for all 0:5 k j luI), (u,O,k, luI) I=m P => (u,O,k, luI) I=m 
q. 

Note that the definition of the minimal model of a program P is also independent of its 
syntax in the sense that the definition does not refer to the structure of the program, and can 
be applied to temporal formulas. 

Example 6.4 The program P in Example 6.2 has only one minimal model U4 = « </>, {x : 
1}),(</I,{x : I}) >. The formula PI in Example 4.2 has only two minimal models, namely, 
< </I,{B} > and < {A},</> >. 0 

The intended meaning of a program p is captured by its minimal model. For instance, if 
p is Xl <= Il\frame( xt}l\len( 1) then under the minimal model, Xl = 1 defined at both state 80 

and 81, this is the intended meaning of p. However, within only the canonical model, P"'l is 
unspecified at state 81, so it could be true at 81. This causes Xl to be unspecified at state 81. 

Therefore, Xl could be any value from its domain. Using the framing technique, the program 
(1) in the introduction can be amended as follows 

frame(x)l\(x = Il\y:= 2; y:= X + y) (3) 

As seen, this program has the same meaning as, but is more concise than, the program (2) in 
the introduction. Furthermore, the implementation of program (3) is simpler than program (2) 
(see Chapter 9). Therefore, program (3) is more efficient than program (2). 

6.4 Basic Framing Techniques 

In this section, we show how the framing techniques can be used in temporal logic program
ming; and some basic techniques in various types of programs including sequential, conjunctive, 
parallel, or mixed computations are illustrated with examples. Each example indicates a useful 
property. 

We consider first a simple computation: given a positive integer n, to compute the sum 
of all integers in the sequence 1, ... , n; and the sum of the sums of integers in every prefix of 
the sequence 1, ... , n, i.e. 1 + (1 + 2) + ... + (1 + ... + n). In the following, let n be a static 
variable, x, y, 8 dynamic variables. X denotes an integer, y denotes 1 + .. , + n, and s denotes 
1 + (1 + 2) + ... + (1 + ... + n). The programs are designed in different manners for the purpose 
of showing the different applications of framing techniques. 

1. Sequential computation 

The following program computes y and s in a sequential way: 

frame(x,y,s)A(X,y,s) = (0,0,0) Afar n time8 do (x :=+ X+ 1iY :=+ y+x;s :=+ sty). 
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The computation of the program is depicted in Fig 6.1 with n = 4. The correctness of the 
program is obvious. In each iteration, x is incremented by 1, y by x, and s by y. After n 
time iterations, the computation sequences are 1, .. , n for x, 0,1,1 + 2, ... , 1 + ... + n for y, 
and 0,0,1,1 + (1 + 2), ... , 1 + (1 + 2) + ... + (1 + 2 + ... + n) for s. Hence, the values of y 
and 8 at the final state are correct results. 

sO sl 82 83 84 85 86 87 88 89 s10 811 s12 
1----1----1----1----1----1----1----1----1----1----1----1----1 

x-O 1 1 1 2 2 2 3 3 3 4 4 4 
y=O 0 1 1 1 3 3 3 6 6 6 10 10 
saO o o 1 1 1 4 4 4 10 10 10 20 

Fig. 6.1 A Sequential Computation 

2. Conjunctive Computation 

The following program also computes y and s but in a conjunctive way. 

frame(x,y,s)A(x,y,s) = (0,0,0) 
Afor n times do x :=+ x + 1 
Afor (n + 1) times do y :=+ y + x 
Afor (n + 2) times do s :=+ s + y 

The computation is pictorialized in Fig.6.2 with n = 4. 

sO al a2 a3 a4 as a6 
1-----1-----1-----1-----1-----1-----1 

x=O 1 2 3 4 4 4 
y=O 0 1 3 6 10 10 
s=O 0 0 1 4 10 20 

Fig. 6.2 A Conjunctive Computation 

3. Parallel Computation 

The following program also computes y and s but in a parallel manner. 

frame(x, y, s)A(x, y, s) = (0,0,0) 
II for n times do x :=+ x + 1 
II (skip; for n times do y :=+ y + x) 
II (len(2); for n times do s :=+ s + y) 

The computation proceeds similarly to the conjunctive computation (see Fig. 6.3). 
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80 81 82 83 84 86 86 
1-----1-----1-----1-----1-----1-----1 

x=O 1 2 3 4 4 4 
o 
o 

1 
o 

3 
1 

6 
4 

10 
10 

Fig. 6.3 A Parallel Computation 

10 
20 

4. A Mixed Case of Sequential and Conjunctive Computations 

The following program also computes y and s but in a mixed manner. 

frame(x, y, s)A(x, y, s) = (0,0, O)A(x :=+ x + 1; (x, y) :=+ (x + 1, y + x); 
for n - 2 times do (x,y,s) :=+ (x + 1,y+ x,s + y); (y,s,) :=+ (y+ x,s + y);s :=+ s + Y) 

The computation proceeds in a similar way as Fig.6.2 shows. However, at state S1. S2, the 
computations proceed sequentially, at state S3, S4, conjunctively by for iteration, and at 
state S5, S6, again sequentially. 

5. A Mixed Case of Conjunctive and Parallel Computations 

The following program also computes y and s but in a mixed way. 

frame(x,y,s)A(x,y,s) = (0,0,0) Afor n times do x :=+ x + 1 
A((skip; for n times do y :=+ y + x)ll(len(2); for n times do s :=+ s + Y» 
The computation proceeds basically in the same way as in Fig. 6.3. 

6. A Mixed Case of Sequential and Parallel Computations 

The following program (algorithm borrowed from [66]) computes binomial coefficient ( k ) = 
n.(n-l) ..... (n-k+1) . 

1.2 ..... k • 

k = 2An = 3AYl = nAY2 = lAx = 1Aframe(x,YhY2)A 
( 

while(Yl > (n - k») do 
(x :=+ x *Yl;Yl :=+ Yl -1) 

II 
while(Y2~k )do 

(halt(Yl + Y2~n); 
x :=+ X/Y2; 
Y2 :=+ Y2 + 1 

) 

In the program, k, n are static variables, (O~k~n), and x, Y1. Y2 are framed variables. 
The output of the program is stored in the variable x. The computation is illustrated 
in Fig 6.4. The program is justified as follows: the first while statement computes the 
product n.(n - l) ..... (n - k + 1). These factors are successively computed in variable Yl· 
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,.'" 

The second while statement responsible for the denominator, successively divides x by 
the factors, 1,2, ... ,k, using the integer-division operator j. That x is divisible by Y2 is 
guaranteed by the general property by which a product of m consecutive integers is evenly 
divisible by mL Thus, x should be divided by Y2, which completes the stage of dividing x 
by V2, only when at least Y2 factors have already been multiplied into x by the first while 
statement. Since it multiplies x by n, (n - 1), etc. and Yl holds the value of the next 
factor to be multiplied, the number of factors that have been multiplied into x as soon as 
V2~n - VI, or equivalently, Yl + Y2~n. This is the condition for the halt statement. 

80 81 82 83 84 85 
1-----1-----1-----1-----1-----1 

yl=3 3 2 2 1 1 
y2=1 1 1 2 2 2 

x=l 3 3 6 3 3 

Fig. 6.4 Sequential and Parallel Computations 

7. A Mixed Case of Framed and Non-framed Variables 

To Compute 81 = 1 + 3 + 5 + ... + (2n - 1), and 82 = 2 + 4 + 6 + ... + 2n, we have the 
following program: 

frame(8t, 82)I\(X, 8t, 82) = (1,0,0) I\len(2 * n - 1)I\D(x 0= x + 1) 
AD(if(x mod 2 = 1) then 810=+81 + x el8e 820=+82 + x) 

where n is a static variable, x is an non-framed variable, and 81,82 are framed variables. 
The computation is illustrated in Fig.6.5. 

sO sl s2 s3 s4 s5 s6 s7 s8 
1-----1-----1-----1-----1-----1-----1-----1-----1 

x=l 
sl=O 
s2=0 

2 
1 
o 

3 
1 
2 

4 
4 
2 

5 
4 
6 

6 
9 

6 

7 
9 
12 

8 
16 
12 

9 
16 
20 

Fig. 6.5 A Computation with Framed and Non-framed Variables 

8. Initialization 

We do not require that variables must be initialized. The following program computes the 
greatest common divisor (GCD) 

a = 6Ab = 41\YI = al\Y2 = bl\frame(y1. Y2) 
while YI ::j:. Y2 do if Yl > Y2 then YI :=+ YI - Y2 else Y2 :=+ Y2 - Yl; 
g:= YI 

The program is based on Euclid's well known algorithm [1]. The computation is depicted 
in Fig 6.6. In the program, a, b are static variables, YI, Y2 are framed dynamic variables, 
and 9 is non-framed dynamic variable not initialized at so, even is not defined at S1. S2, 

only assigned at the final state S3. The question mark (?) in Fig 6.6 means that we do 
not know the value of 9 at the marked state (the same meaning for below). 
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80 81 82 83 
1-----1-----1-----1 

y1=6 
y2=4 

g=? 

2 
4 
? 

2 
2 
? 

2 
2 
2 

Fig. 6.6 Initialization 

9. The framing operator can be used in different parallel components and different subinter
vals 

The following program computes yand s again as in 1. The computation is pictorialized 
in Fig. 6.7 with n = 4. 

halt(x = 4)"x = O"O(more-+x := x + 1) 
lI(skipj frame(y)"y = O"O(more-+y :=+ y + x)"len(4) 
II(len(2)j frame(s)"s = O"O(more-+s :=+ s + y)Alen(4) 

80 s1 s2 s3 s4 s5 s6 
1-----1-----1-----1-----1-----1-----1 

x=O 1 2 3 4 4 4 
y=1 0 1 3 6 10 10 
s=1 1 0 1 4 10 20 

Fig. 6.7 Frame operators in Different Processes 

The computation is similar to 3 but frame(y) and frame(s) are used in different parallel 
processes, and start at different states. Note that y is unspecified at state So, and s is 
unspecified at states So and S1. 

10. A variable can be framed on one subinterval and non-framed on another subinterval 

The following program is satisfiable. 

frame(x)"x = 1"len(5)j O(x o=+x + 1)"len(5)j frame(x)"len(5). 

11. The framing operator can handle the immediate assignment 

The following example is satisfiable within our notation. 

frame(x),,(x = 1"len(3)jx<=5!\x :=+ x + 1) 

The framing operator can be used in programs executed over either a local interval or a 
projected interval, or local intervals and projected intervals. The examples given below 
are intended to illustrate these respects. 
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12. The framing operator with a local interval in the projection construct 

This example shows how the framing operator can be used in programs executed over a 
local interval. 

(len(2) /I. D(more ~ i :=+ i + 2), frame(i) /l.len(4)) prj 

(i = 2/1. j = 0 /l.len(2) /I. D(more ~ j :=+ j + i)) 

sO s1 s2 s3 s4 sS s6 
1-----1-----1-----1-----1-----1-----1 

i=2 4 6 6 6 6 6 
1-----------1-----------------------1 

j=O 2 8 

Fig. 6.8 Framing operator with a local interval 

13. The framing operator being in conjunction with the projection construct 

This example shows how the framing operator can be used in conjunction with the pro
jection construct in a program. 

«len(2) /I. D(more ~ i :=+ i + 2), len( 4)) prj 

(i = 2 A j = 0 A len(2) A D(more ~ j :=+ j + i))) A frame(i) 

sO s1 s2 s3 s4 sS s6 
1-----1-----1-----1-----1-----1-----1 

i=2 4 6 6 6 6 6 
1-----------1-----------------------1 

j=O 2 8 

Fig. 6.9 Framing operator with a local interval 

Basically, this program proceeds in a similar way to the program shown in Fig. 6.8. That 
is, the framing operator affects every state over the local interval. 

14. The framing operator with a projected interval in the projection construct 

This example shows how the framing operator can be used in programs executed over a 
projected interval. 

(len(2) A D(more ~ i :=+ i + 2), len(4) A D(more ~ i :=+ i + 1)) prj 

(i = 2 Aj = 0 A frame(j) A len(3) Aj :=+ j + i) 
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80 81 82 83 84 85 86 87 
1-----1-----1-----1-----1-----1-----1 

i=2 4 6 7 8 9 10 
1-----------1-----------------------1-----1 

j=O 2 2 2 

Fig. 6.10 Framing operator with a projected interval 

15. The framing operator with projected and local intervals in the projection construct 

This example shows how the framing operator can be used in programs executed over 
projected and local intervals. 

(len(2) A D( more ~ i :=+ i + 2), len( 4) A frame( i)) prj 

(i = 2 Aj = 0 A frame(j) A len(3) Aj :=+ j + i) 

80 81 82 83 84 85 86 87 
1-----1-----1-----1-----1-----1-----1 

i=2 4 6 6 6 6 6 
1-----------1-----------------------1-----1 

j=O 2 2 2 

Fig. 6.11 Framing operator with both local and projected intervals 

However, in the case in which framing operators are used both in local and projected 
intervals for one variable, one has to be careful because an error may be hidden. For 
instance, the following program is false because it causes i = 6 A i = 2 at state 86' Note 
that i equals 6 rather than 2 at state 82 because an assignment is encountered at that 
state with the local state. It is a programmer's responsibility to make a program correct 
when the program involves framing operators with the projection construct. To avoid the 
problem, in practice, we suggest using the framing operator for a variable only once either 
with a local interval or with a projected interval. 

(len(2) A D( more ~ i :=+ i + 2), len( 4) A frame( i)) prj 

(i = 2 Aj = 0 A frame(i) A len(3) Aj :=+ j + i) 

sO s1 s2 s3 s4 s5 s6 s7 
1-----1-----1-----1-----1-----1-----1 

1=2 4 6 6 6 6 ? 

1-----------1-----------------------1-----1 
j=O 2 ? ? 

Fig. 6.12 A wrong use of the framing operator 

This chapter developed the framing technique by using the minimal model. However, we 
have not investigated the logic laws relevant to the minimal model. These will be discussed in 
the next chapter. 
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Chapter 7 

Minimal Model Semantics of 
Framed Programs 

Summary: In order to capture semantics of framed temporal logic programs, a 
minimal model theory is developed. Algebraic properties of framing operators are 
formalized. An example is given to illustrate how to use the theory for reducing a 
framed program. 

Semantics of a program in imperative languages can be captured in an operational or denota
tional or axiomatic manner. In temporal logic programming, these semantics of a program can 
also b!' investigated. Since a temporal logic programming language, e.g. Tempura, is a subset 
of the corresponding logic, and the logic has its model theory and its axiomatic system, the 
srmantics of a program can be captured naturally by the mod!'1 theory and axiomatic tlH'ory 
respectively. Of course, when executed, a program can also be interpreted in a more operational 
way. Actually, the model theory, in some sense, plays a similar role in temporal logic prograIII
ming languages as the denotational semantics tlJ('ory in imperative programming languages. 

To capture the temporal semantics of non-framed programs in Tempura. the canonical model 
has been introduced to interpret programs. Within this model, the semantics of a non-framed 
program is well captured. However, since introducing a framing operator destroy's monotonicity. 
a canonical model may no longer capture the intended meaning of a program. A program, 
therefot'(" can have different meanings under different models. To interpret a framed program 
faithfully, minimal models will be employed in this thesis. 

This chapter is devoted to the development of the minimal model in detail. Some conclusions 
regarding the minimal model are presented in Section 7.1. Furthermore, algebraic properties of 
the framing operators are formalized in Section 7.2. Finally, in Section 7.3, an example is given 
to illustrate how to use the theory' for reducing a framed program. Conclusions are drawn in 
S('rtion 7.·\. 

7.1 Minimal Model Semantics 

In this S('Ct.iOIl, \\'(' pwn', first, the existence of a minimal model for a giYeIl program. Then, we 
discuss th(, suhst itution law under the minimal model. Subsequently, we consider the normal 
form of a framed program in the extended Tempura. 
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Theorem 7.1 Let P be a satisfiable framed program (which may be non-terminating, and/or 
non-deterministic). If, (1) P has at least one finite model or (2) p has finitely many models, then 
p has at least one minimal model on propositions_ 

Proof 

Let El' be defined. as in Definition 6.7. Since p is satisfiable under the canonical interpretation 
on propositions, ~l' '" <p. F!trthermore, if program p has at least one finite model u, then we 
claim that r = {u~1 u' E ~l' and lu'l = lui} is finite. This is immediately obvious since the 
proposition set ~l' is finite. Thus, let u~Er be an arbitrary canonical interpretation sequence on 
propositions. If u~ is not a minimal interpretation sequence on propositions, then there exists a 
q 1ef such that u~ ;;;;) u~!\u~ '" u~. Analogously, if u~ is not a minimal interpretation sequence 
o~ propositions, then there exists a u~Er such that u~ ;;;;) U~Au~ '" u~, ... , and so on. In this 
way, we obtain a sequence: 

o 1 2 ( ) up:::Jup:::Jup:::J... 7.1 

Since f is finite, so is sequence (7.1). Therefore, there exists au;' (m ~ 0), i.e. the last one in 
sequence (7.1), such that u;' is a minimal interpretation sequence. 

IT P has finitely many models then t p is finite. Let r = t p • Thus, a sitnilar argument to 
the above can be given to produce the sequence (7.1). 0 

Theorem 7.1 asserts the existence of a minimal model for a given (possibly non-deterministic 
or non-terminable) program as long as the program has finitely many models or at least one 
finite model. For a program which has infinitely many infinite models and has no finite model, 
the sequence (7.1) above can be infinite and each u~ in it is also an infinite sequence; but, 
in this case, sequence (7.1) has a limit because the sequence is monotonically decreasing with 
the lower bound < 0,0, ... >. Unfortunately, we cannot know whether the limit is a canonical 
interpretation of program p. 

Introducing the framing operator into programs destroys the well known monotonic law. 
This implies that some logic laws related to the monotonic law such as substitution law are also 
no longer valid within framed programs. 

Theorem 7.2 Let P,P',Pb ... ,Pm, and q be framed programs. Then 

1 If P =m P' and q =m q' then P !\ q =m p' A q' may not hold. 
2 If P =m p' and q =m q' then P; q =m p'; q' may not hold. 
3 If P =m p' and q =m q' then pllq =m p'lIq' may not hold. 
4 If P =m P' then p+ =m p'+ may not hold. 
5 If Pi =m p~ (1 ~ i ~ m) and q =m q' then (PI, ... ,pi, .. ·Pm) prj q =m (pL ... ,p~, .. ·,P'm) prj q' 

may not hold. 

Proof 

We prove only 1 and 2. 

The proof of 1: 

Let p be y = 1 A O(.af(y) -+ y = 8y), p' be y = 1 A O(Y = 8y), q be y = 1 A O(...,af(y) -+ 

y = E)y)!\ 0 (y~9), and q' be y = 1 A O(y~9). We have 
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P =m p' and q =m if 
However, p /I. q =m q but p' /I. if =m false. 

Tilt proof of 2: 

Let p be y = 1/1. O(..,af(y) - y = E)y) /l.len(l), p' be y = 1/1. O(y = E)y) /l.len(l), q be 
(-.af(y) - Y = E)y)/l.y*9 /I. empty, and if be y*9 /I. empty. Thus, 

p =m p' and q =m q' 

However, there is a u such that (u,O,O,lul) Fm pjq but for any u, (u,O,O,lul) ~m P'jif since 
11 = 9 conflicts with y = 1 at the final state of the interval. 

o 

Even ifthe conditions in Theorem 7.2 are strengthened, the conclusions can still be invalid. 
Theorem 7.3 is a stronger version of Theorem 7.2. Its proof is easier than Theorem 7.2, and is 
therefore omitted here. 

Theorem 7.3 Let P,P',Pb ... ,Pm, and q be framed programs. Then 

1 If P =m P' then P /I. q =m p' /I. q may not hold. 
2 If P =m p' then q /I. P =m q /I. p' may not hold. 
3 If P =m p' then pj q =m p'j q may not hold. 
4 If P =m p' then qj P =m qj p' may not hold. 
S If P =m P' then pllq =m p'llq may not hold. 
6 If P =m p' then qllp =m qllp' may not hold. 
7 If Pi =m p~ then (Plo ···,Pi, ···Pm) prj q =m (PI, ... ,p~, ".,Pm) prj q may not hold. 
S If q =m q' then (Pb ···,Pi, ···Pm) prj q =m (plo ... ,Pi, "',Pm) prj q' may not hold. 

o 

It is clear that Theorem 7.2 and Theorem 7.3 destroy the substitution law presented in 
Theorem 3.7 within framed programs under the minimal model. Therefore, although we have 
proved a collection of logic laws under the basic and canonical models in the preceding chapters, 
these laws need to be re-examined for framed programs under the minimal model. As a matter 
of fact, all logic laws with the equivalence are valid under the minimal model. We discuss this 
in the following. 

As seen in Theorem 7.2 and Theorem 7.3, the problems arise in the case when a minimal 
model takes effect on a sub-program, that is, a proposition Px associated with the dynamic 
variable x is evaluated to false under the minimal model in the context within the sub-program, 
and another sub-program in conjunction with this sub-program contains a positive immediate 
assignment which conflicts with "'Px' In fact, this violates the principle of the minimal model 
because the minimal model requires that whole program, i.e. all the conjuncts at the current 
state be taken into account before a 'default effect' functions. However, when reducing composite 
programs such as P /I. q, pj q, pliq, and (PI, "',Pm) prj q, we have to reduce sub-programs one 
by one and the components contained in a sub-program one part by one part. Therefore, to 
ensure a reduction process without 'default conflicts', whenever a 'default effect' is invoked by 
the minimal model, we have to make sure that it is impossible to come up with a positive 
immediate assignment in the later reduction which conflicts with the current 'default effect'. 

In the following, two simple but useful theorems regarding the substitution laws are formal
ised. For our purpose, these laws and the laws provided in the preceding chapters are sufficient 
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to reduce a framed program under the minimal model. Before proving them, we first prove 
Theorem 7.4 and Lemma 7.5. 

Theorem 1.4 Let p and q be framed programs. 

MIN - EQ If p == q then p ==rn q 

Proof 

Let q be a model and k an integer, ° ~ k ~ 10'1· Suppose (u,O,k, 10'1) Frn p. Then, (u,O,k, 10'1) F 
p. Since p == q, we have (u,O,k,lul) F q. If (u,O,k,lul) ff:rn q, then there is a 0" such that 
(q',O,k,lul) F q and 0" Cu. By p == q, we have (u',O,k,lul) F p and 0" C 0'. This contradicts 
(q,O, k, 10'1) Frn p. Hence (0',0, k, 10'1) Frn q. 

Conversely, if (0',0, k, 10'1) Frn q then, in the same way, we can prove (0',0, k, 10'1) Frn p. 

o 

Theorem 7.4 is useful since it shows that the strong equivalence relation under the basic 
(canonical) model can be inherited under the minimal model. For example, (p V q) A r ==rn 
p" r V q A r since (p V q) A r == p II r V q A r. 

Lemma 1.5 Let 0' be a model, r an integer, ° ~ r ~ 10'1, and p, q framed programs. 

MIN - OR If (0',0, r, 10'1) Frn p V q then (0',0, r, 10'1) Frn p or (0',0, r, 10'1) Frn q. 

Proof 

Suppose (u,O,r, 10'1) Frn pVq. We have (0',0, r, 10'1) F p or (0',0, r, 10'1) F q. Without loss ofgen
erality, let (0',0, r, 10'1) F p. If (0', 0, r, 10'1) ff:rn p, then there exists a 0" such that (0",0, r, 10"1) F p 
and q' C 0' leading to (0",0, r, 10"1) F p V q and 0" Co'. This contradicts (0',0, r, 10'1) Frn p V q. 

o 

We now prove two useful theorems concerning substitution under the minimal model. 

k h 
Theorem 1.6 Let q == V qei A empty V V qcj A OqJj be normal form of a framed program q. 

i=l j=l 

If Px is not contained in qei (1 ~ i ~ k) and qcj (1 ~ j ~ h), then 

Proof 

q _ P:c A q V -'P:c A q 
k h 
V P:c A qei A empty V V P:c A qcj A OqJj 

;=1 j=l 
k h 

V V -'P:c A qei A empty V V -'P:c A qcj A OqJj 
i=l j=l 

k h 
V -'P:c A qei A empty V V -'P:c A qcj A Oqji 

;=1 j=l 

Let (1 be a model and r an integer, ° ~ r ~ 10'1. Suppose (u,O,r, 10'1) Frn -'P:c A q. Then, 
(17,0, r, 10'1) F -'P:c and (0',0, r, 10'1) F q. If (0',0, r, 10'1) ff:m q, then there is 0" such that 
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(I,O,r, 10"1) 1= ~ and O",C 0'. From (O',O,r, 10'1) 1= "'pz and 0" C 0', it follows that (cr',O,r,lu'l) 1= 
"ps' Hence, (0' ,0,r,lcrl) 1= "'pz /\ q. So, (cr,O,r,lcrl) I=m "'pz /\ q could not hold. Thus we 
obtain a contradiction. ' 

Conversely, suppose (cr, 0, r, Icrl) I=m q. We claim (cr, 0, r, Icrl) I=m "'pz /\ q. 
k 

If (O',O,r,lcrl) I=m pz /\ q, then by Lemma 7.5, (cr,O,r,lcrl) I=m V pz /\ qei /\ empty or 
i=1 

h k 
(O',O,r,IO'l)l=m V Pz/\qcj/\OqJj· If(cr,O,r,lcrl)l=m V Pz/\qei/\empty, then we can construct 

j=1 ;=1 
a 0" from cr by a single change (note that r = Icrl in this case), namely, 

1'1<11 - 11<11 _ {p } p - p z 

k 
Since pz is not contained in qe; (1 ::; i ::; k), (cr', 0, r, Icr'l) 1= V "'pz /\ qe; /\ empty. So, cr' C cr 

;=1 
and (0",0, r, Icr'l) 1= q. This contradicts (cr, 0, T, Icrl) I=m q. 

h 
If (cr, 0, T, 10'1) I=m V pz /\ qcj /\ OqJj then we can construct a cr' from cr by a single change 

j=1 ' 
namely, 

Since P:z; is not contained in qcj (1 ::; j ::; h), and for all 1 ::; j ::; h, OqJj are lee-formulas 
and qJj are internal programs, qj j do not refer to pz at the current state. Thus, (cr', 0, r, Icr'l) 1= 
II 
V "'P:z; /\ qcj "OqJj· So, cr' C cr and (cr', 0, T, Icr'l) 1= q. This contradicts (cr, 0, r, Icrl) I=m q. 

i=1 
Therefore, if (cr, 0, r, 10'1) I=m q, then, by Lemma 7.5, it must be (cr, 0, r, Icrl) Fm ..,p", /\ q. 

k h 

o 

Corollary 7.7 Let q == V qei" empty V V qcj /\ Oqj; be the normal form of a framed program 
;=1 ;=1 

q. If p:z; and x = e', where e' f:. e (e', e E D), are not contained in qei (1 ::; i ::; k) and qcj 
(1 $ j ~ h), then 

x = e /\ q ==m "'Px /\ x = e /\ q 

Proof 

Since x = e' (e' f:. e) is not contained in qei (1 ::; i ::; k) and qcj (1 ::; j ::; h), x = e /\ q ¢ (¢m 
)Ialse if q ¢ (¢m)!alse. Moreover, for all 1 ::; j ::; h, qJj are internal programs and Oqfj are 
lee-formulas. x = e being in conjunction with q does not affect the evaluation of OqJj· 

Since p", is not contained in qei (1 ::; i ::; k) and qcj (1 ::; j ::; h), p", is not contained in 
qei" x = e (1 ::; i ::; k) and qcj /\ x = e (1 ::; j ::; h). Thus, taking x = e /\ q to be the q in the 
Theorem 7.6, we obtain 

x = e " q ==m ..,p", /\ x = e /\ q 

o 

k h 
Theorem 7.8 Let q == V qei " empty V V qcj 0 qj j be the normal form of a framed program 

i=1 j=1 
q. If p:z; and x = e', where e' f:. e (e', e E D), are not contained in qei (1 ::; i ::; k) and qcj 
(1 $ j ~ h), then 

(pz V ..,p", /\ x = e) " q ==m ..,p", /\ x = e /\ q 
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proof 

(P:I1 V "'P:I1 /\ X = e) /\ q 
_ P:I1 /\ q V "'P:I1 /\ X = e /\ q 

k h 
- V P:I1 /\ qei /\ empty V V P:I1 /\ qcj /\ OqJj 

.=1 3=1 
k h 

V .y. "'P:I1 /\ X = e /\ qei /\ empty V V "'P:I1 /\ X = e /\ qcj /\ OqJj 
._1 3=1 

k h 
-'P:I1 A x = e /\ q == V "'P:l1 /\ x = e /\ qei /\ empty V V "'P:I1 /\ x = e /\ qcj /\ OqJj 

.=1 3=1 

Let u be a model and r an integer, ° ::; r ~ lui. Suppose (u, 0, r, luI) Fm "'P:I1 /\ x = e /\ q. 
Then, (u,O,r,lul) F "'P:I1, (u,O,r,lul) F x = e and (u,O,r,lul) F q. We claim (u,O,r,lul) Fm 
(P:I: V -'P:I1 /\ x = e) /\ q. 

If (u, 0, r, luI) ~m (P:I1 V "'P:I1 /\ x = e) /\ q, then there is u' such that (u', 0, r, lu'l) F (P:I1 /\ q V 
"'P:l:Ax = e/\q) and u' C u. Thus, (u', 0, r, lu'l) F P:I1 /\q or (u', 0, r, luI) F "'P:I1/\x = e Aq. Since 
(0',0, r, luI) Fm "'P:I1/\ X = e /\q, it follows that (u', 0, r, lu'l) ~ "'P:I1 /\x = e/\q and u' C u. Hence, 
(0",0, r, lu'l F P:I1 /\ q leading to (u', 0, r, lu'l) F P:I1' However, u' C u and (u, 0, r, luI) F "'P:I1' So, 
(0",0, r, lu'l) F -'P:I1' This is a contradiction. Hence, (u, 0, r, luI) Fm (P:I1 V "'P:I1 /\ x = e) A q. 

Conversely, suppose (u, 0, r, luI) Fm (P:I1 V "'P:I1 /\ x = e) /\ q. By MIN-EQ, (u, 0, r, luI) Fm 
P:I: A q V -'P:I: /\ x = e /\ q. Then, we claim (u, 0, r, luI) Fm "'P:I1 /\ x = e /\ q. 

k 
Suppose (u, 0, r, luI) Fm p:I1/\q. By MIN-EQ and MIN-OR, (u, 0, r, luI) Fm V P:I1/\qei/\empty 

i=1 
k 

or(O',O,r,lul)Fm V p:I1/\qcj/\OqJj· 
i=1 

k 
If (u,O,r, lui) Fm V P:I1 /\ qei /\ empty, then we can construct a u' from u by a single change 

i=1 
(r = 10'1), namely, 

k 

Since P:I1 and x = e' :f e are not contained in qei (1 ::; i ::; k), (u', 0, r, lu'l) F V "'P:I1 /\ x = 
i=1 

eAqei A empty leading to (u',O,r,lu'l) F -'P:I1 /\ x = e /\ q. So, u' C u and (u',O,r,Iu'1) F 
(P:I: V -'P:I: /\ x = e) A q. This contradicts (u, 0, r, luI) Fm (P:I1 V "'P:I1 /\ x = e) /\ q. 

h , 
On the other hand, if (0',0, r, luI) Fm V P:I1 /\ qcj /\ OqJj then we can construct a u from 0' 

j=1 
by a single change, namely, 

Since P:I1 and x = e' :f e are not contained in qcj (1 ::; j ::; h), and for all 1 ::; j ::; h, OqJj 
are lee-formulas and qJ' are internal programs, qJj do not refer to P:I1 at the current state, and 

3 h 

I~r[xl = e does not affect the evaluation of qJj. Thus, (0",0, r, lu'l) F V "'P:I1 /\ x = e A qcj /\ OqJj 
3=1 

leading to (0",0, r, 10"1) F "'P:I1 /\ x = e /\ q. So, 0" C u and (0",0, r, lu'l) F (Px V -'Px /\ x = e) /\ q. 
This contradicts (0',0, r, luI) Fm (Px V -'P:I1 /\ x = e) /\ q. 

Therefore, by Lemma 7.5, (u, 0, r, 10'1) Fm "'P:I1 /\ x = e /\ q. 
o 
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-
We have proved several useful logic laws concerned with the substitution law within framed 

programs under the minimal model. Actually, there are some very simple heuristics to follow in 
the reduction of a framed program under the minimal model using the Tableau method. These 
are as follows: 

1. use the relation == as far as possible during a reduction; 

2. do not use the minimal model to obtain a ""Px for a dynamic variable x until the last stage 
of a reduction, and make sure that x has really not been assigned a value by <= within all 
the conjuncts at the current state. 

A framed program P also has its normal form under the minimal model, which is similar to 
the normal form defined in (6.1). 

Theorem 7.9 If P is a framed program, then there is a program q as defined in Definition 6.5 
with I = m such that 

o 

Proof 

By Theorem 6.4 and Theorem 7.4, we need to prove only I = m in the Definition 6.5. That is, 
in qei (i ~ k) and qcj (j ~ h), the number of the equalities and the number of propositions are 
equal. We justify this fact as follows: 

Since qei and qcj are state formulas, three types of assignments, Xi <= ei, Xi = ei and Ibf(xi) 
need to be considered. Xi <= ej is simply reduced to Xi = ei A PXj under the minimal model. 
Xi = ei == Xi = ei A PXj V Xi = ei A ""PXj is reduced to Xi = ei A ""PXj under the minimal model 
(Theorem 7.6). lbf(Xi) == (PXj V ""PXj A Xi = 0Xi) is reduced to ""PXj A Xi = ei under the minimal 
model ( Theorem 7.8 and with the assumption 0Xi = ei). Thus, we can see Xi = ei and PXj (or 
"'PXi) always occur together in qei and qcj. 

o 

If a program is deterministic under the minimal model, its normal form has a simpler form, 
as follows: 

P ==m Pe A empty or Pc A QPI 

where Pe, Pc and PI are defined as in (6.1) of Definition 6.5. 

By Theorem 7.9, if a framed deterministic program P terminates, it can be reduced to a 
sequence of state formulas, p~, ... ,p~, where p~ corresponds to state Si. Thus, we can define a 
calculus var to select assigned variables as follows: 

Algorithm AX (selecting the set of assigned variables) 

• var( true) = <p, 
• var( x = e) = <p, 
• var( "'PXj) = <p, 
• var(pXj) = {Xi}, 

• var(wlAw2) = var(wdUvar(w2) 
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where e is a state term, and WI and W2 are state formulas. Then Xi = var(p~) is called a set of 
poeitively assigned variables of program p at state 8i. 

Let 0',; =< X o, ... , > be a sequence of the sets of the positively assigned variables of program 
p as defined in the above. Let ~ =< pO, •.. , > be the sequence of the sets of the assigned 

propositions with respect to the sequence 0',;, i.e. pi ~ {pdXiEXi} for every i, i~O. These 
notations will be used henceforth. 

Finally, we claim that Definitions 6.1, 6.2, 6.3, 6.4 and 6.8 satisfy Conditions 1, 2 and 3 
under the minimal model on propositions. Condition 1 is simply satisfied by Definition 6.2; and 
Condition 2 and Condition 3 are satisfied by these definitions, as stated in Theorem 7.10. 

Theorem 7.10 Let Y be a variable denoting the set of positively assigned variables within 
program p at each state over a model of p, and R = Mm(P). Then 

(1) FRD(af(xi)+-+XiEY) 
(2) FRframe(xi)+-+D(Xi ~YII""fir8t-"3b : 8Xi = bAXj = b) 

Proof' 

First, we claim that, if 0' E Mm(P) then 0' I=m p. This fact can be proved in a way similar to the 
proof of Theorem 4.1. Let 0' =< (~, ~), ... , (Il,It) , ... > EMm(P), and k an integer ° ~ k ~ 10'1. 
Since O'ER = Mm(P), ul=mP. 

The proof of (1) 

Suppose (u,O,k, 10'1) I=R xiEY, i.e. XjEX k at state 8k. Since 0' I=m p, according to the algorithm 
AX given in Section 7.1, there exists e such that Xj {::: e at state 8k. That is, (u,O,k,lul) I=R 
Zj ~ e. This leads to (0',0, k, 10'1) I=R af(xj). 

Conversely, suppose (0',0, k, 10'1) I=R af(xj). That is, by Definition 6.2, (0',0, k, lul)l=RPr,. 
Hence, Prj EI; at state Sk according to the interpretation. Thus, there is an assignment Xi {::: 
e (e E D) at state Sk (Theorem 7.9). Hence, Prj Epk at state Sk , and xiEY at state Sk leading 
to (u,O,k, 10'1) I=R xjEY. 

The proof of (2) 

(u,O,k,lul) I=R frame(xj) 
<==> (u,O,k,lul) I=R D(...,first -+ lbf(x)) 
<==> (0',0, k, 10'1) I=R D( ...,first -+ (...,af(xi) -+ 3b: 8Xi = b II Xi = b)) 
<==> (0',0, k, 10'1) I=R D( ...,af( xd II ...,first -+ 3b : 8Xi = b II Xi = b) 
<==> (0',0, k, 10'1) I=R D(Xi f/. Y II ...,first -+ 3b: 8Xi = b II Xi = b) 

corollary 7.18 
definition 6.3 
theorem 3.7 
theorem 7.10 (1) 

° 
So far different models have been introduced to capture semantics of logic formulas and 

programs under different assumptions. In the logic (EITL), the basic model and the satisfaction 
rela.tion (F) are used to interpret terms and formulas. Within the extended Tempura, the 
canonical model and the satisfaction relation (I=e) are employed to interpret expressions and 
programs. To capture the intended meaning of a framed program in the extended Tempura, 
the minimal model and the satisfaction relation (I=m) are introduced. This model enables us to 
ca.tch those variables which are framed, but not assigned new values by the positive immediate 
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assignments 80 that their values can be inherited. The minimal model takes effect by means of 
perceiving the defaults of positive immediate assignments. 

In addition to the above models, the P-model relevant to a program P is needed to express 
some conditions relative to the program P since the conditions can be expressed by means of 
formulas of EITL rather than in the extended Tempura. A P-model can also be connected with 
a minimal model in addition to with a canonical model. 

Theorems 7.1 - 7.10 show us that the temporal semantics of a framed program can be well 
captured by the minimal model. For easy manipulation, we need further to investigate the 
properties of framing operators. 

7.2 Algebraic Properties of Framing Operators 

The framing operators enjoy some interesting properties such as equivalent, distributive, ab
sorptive, and idempotent laws etc. They are formalized in Theorems (Corollaries) 7.11 - 7.18. 
Note that these theorems are established on the basic model and are independent of concrete 
programs. 

Theorem 7.11 frame(x) == frame'(x) 

Proof 

frame(x) 

- D(more-tOlbf(x )) definition 6.3 

- D(more-tO(...,af(x)-t(3b: 8x = bAx = b))) definition 6.3 

- D(more-t(0...,af(x)-t 0 (3b : 8x = bAx = b))) FD5 

- D(more-t(0...,af(x)-t3b: O(8x = bAx = b))) theorem 3.8 1 

- D(more-t(0...,af(x)-t3b: O(8x = b)/\ 0 (x = b))) FD3 

- D(more-t(0...,af(x)-t3b: (08x = Ob)/\(Ox = Ob))) theorem 3.13 

- D(more-t(0...,af(x)-t3b : x = b/\ 0 x = b)) lemma 3.17, theorem 3.13 

- D(more /\ 0...,af(x)-t3b: x = b/\ 0 x = b) 

- D(more /\ O...,af(x)-t3b: x = b/\ 0 x = b) FW1 

- D(more-t(O...,af(x)-t3b: x = b/\ 0 x = b)) 

- frame'(x) definition 6.4 
o 

Theorem 7.11 asserts that two operators, frame and frame', are equivalent. Hence, in 
wha.t follows, we do not distinguish between them. 

Theorem 7.12 The following formulas hold 

(1) frame(x)/\frame(x) 
(2) frame( x )/\more 
(3) frame( x )/\more 
(4) frame(x)/\empty 
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frame(x) 
O(lbf(x )/\frame(x)) 

_ Iff(x)/\Oframe(x) 
_ empty 

... 



proof 

We prove only (2). 

frame(x) 1\ more 
_ D(more ..... Olbf(x»I\more 
- (more ..... Olb f( x) )I\0D ( more~Olb f( x) )I\more 
_ Olbf(x)I\morel\OD(more~Olbf(x» 

- Olbf(x)I\morel\Oframe(x) 
- O(lbf(x)I\frame(x»I\more 
_ O(lbf(x)I\frame(x» 

definition 6.3 
FE2 
FW1 
definition 6.3 
FD3 
FS4 

o 
In Theorem 7.12, (1) describes the idempotent law; (2) and (3) describe the properties ofthe 

framing operator at non-terminating states over an interval; whereas, (4) describes the property 
of the framing operator at a terminating state. 

Theorem 7.13 The following formulas hold 

(1) frame(x)I\(frame(x)I\pVq) _ frame(x)I\(pVq) 
(2) frame(x)I\(pV frame(x)I\q) _ frame(x)I\(pVq) 
(3) frame(x)I\(frame(x)I\pV frame(x)I\q) _ frame(x)I\(pVq) 
(4) (frame(x )I\pV frame(x )I\q) frame(x )I\(pVq) 

This set of laws is concerned with disjunction. The first three are absorptive laws, the fourth 
is the distributive law. 

Proof 

We prove only (4); and the others can be easily proved by (4) and Theorem 7.12 (1). Let q 

be an interval, and k an integer, ° $ k ~ Iql. First, by abbreviation of pVq, the following fact 
is obvious. 

(q,O,k,lql)I=PVq ¢:::} (q,O,k,lql)l=p or (q,O,k,lql)l=q (7.1) 
Thus, 

(q, 0, k, Iql)l=frame( x )I\(pVq) 
¢:::} (q,O,k,lql)l=frame(x) and (q,O,k,lql)I=PVq I-and 
¢:::} (q, 0, k, Iql)l=frame( x) and « q, 0, k, Iql)l=p or (q, 0, k, Iql)l=q) (7.1) 
¢:::} (q,O,k,lql)l=frame(x) and (q,O,k,lql)l=p 

or (q,O,k,lql)l=frame(x) and (q,O,k,lql)l=q 
¢::::> (q,O,k, Iql)l=frame(x)I\p or (q,O,k, Iq)l=frame(x)I\q I-and 
¢::::> (q, 0, k, Iql)l=frame(x)I\pV frame(x)I\q (7.1) 

o 

Theorem 7.15 is concerned with chop(;) operator. (1), (2) and (3) state the absorptive law; 
(4) states distributive law; and (5) states idempotent law. To prove them, we need first to prove 
Lemma 7.14. 

Lemma 7.14 Let q be an interval, and k, r integers, ° $ k $ r~lql· Then 

(q, 0, k, Iql)l=frame(x )=>(q, 0, k, r)l=frame(x) 
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proof 

Let (O',o,k,lui) F frame(x). Suppose (u,O,k,r) tFframe(x) for some r,k::;r~lul. Then we 
have 

(0',0, k, r)F-.frame(x) 
~ (u,O,k,r)F<>-.(more--+lff(x)) 
~ (u,0,k,r)F<>-.(emptyVO-.af(x)--+3b(x = bAOx = b))) 
~ (u,0,k,r)F<>(moreAO-.af(x)A-.(3b(x = MOx = b))) 
~ (O',0,I,r)FmoreAO-.af(x)A-.(3b(x = MOx = b)) for some l,k::;/::; r 
~ (u,O,I,r)Fmore and 

(O',O,I,r)FO-.af(x) and 
(u,0,I,r)F-.(3bx = bAOx = b) for some I,r, k::; I::; r ~ 10'1 

Note that the following facts are obvious. 

(0',0, I, r)Fmore~(u, 0, I, lui)Fmore 
(0',0, I, r)FO-.af(x )~(u, 0, I, lul)FO-.af(x) 
(0',0,I,r)F-.(3bx = MOx = b)~(u,O,I,r)Fsl[x] f; SI+l[X] 

On the other hand, we have 
(0',0, k, luDFframe(x) 

~ (0',0, k, lui)FD(more--+lf f(x» 
~ (O',O,h,lui)Fmore--+lff(x) for every h,k::;h~lul 
==> (O',O,l,lul)Fmore--+lff(x) let h = I (7.5) 
==> (O',O,I,lul)f=lff(x) 
~ (0',0,1, 10'1)FOaf(x)--+3b(x = MOx = b) (7.6) 
==> (0',0,1,lul)F3b(x = MOx = b) 
==> (O',O,I,IO'I)FSI[X] = SI+l[X] (7.7) 
==> (0',0, I, 1001)Ffalse 

Thus, we achieve, 

(0',0, k, r)Fframe(x) 

(7.2) 
(7.3) 
(7.4) 

I-not 
definition 6.3 
definition 6.3 

abb-som 

I-and 

premise 
definition 6.3 

abb-alw 

(7.2), (7.5) 
definition 6.3 

(7.3), (7.6) 

(7.4), (7.7) 

o 

In general, (u,O,k,lui)FDp does not imply (u,O,k,r)I=Dp (k < r ~ luI). For instance, 
given an infinite interval 0', (0',0, k, lul)FDmore but (0',0, k, r) ,FDmore if r < 10'1. Even for a 
finite interval 0', (u,O,k,lui)FD(empty--+x = 10) can hold, but (u,O,k,r)I=D(empty--+x = 10) 
may not hold at all because x can be 10 at the final state but may never be 10 at any internal 
state over the interval. 

Theorem 7.15 The following formulas hold 

(1) frame(x)A(Jrame(x)Apj q) - frame(x)A(pj q) 
(2) frame(x )A(pj frame(x )Aq) - frame(x )A(pj q) 
(3) frame(x)A(Jrame(x)Apj frame(x)Aq) - frame(x)A(pj q) 
(4) (Jrame(x)Apj frame(x)Aq) - frame(x )A(pj q) 
(5) frame(x)j frame(x) - frame(x) 

Proof 
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We prove only (1); and the others can be proved in the similar way. Let u be a model, and k 
an integer, ° :::; k ~ lui· 

(00,0, k, luDpframe(x)J\(jrame(x)J\p; q) 
<=> (u, O,k, luDpframe(x) and 

(00,0, k, luDp(jrame(x)J\p; q) I-and 
<=> (u,O,k,luDpframe(x) and 

(00,0, k, r)pframe(x)J\p and 
(u,r,r,luDpq for some r,k::; r:::;lul I-chop 

<=> (u,O,k,luDpframe(x) and 
(00, 0, k,r)pframe(x) and 
(u,O,k,r)pp and 
(u,r,r,luDpq for some k:::; r ~ lui I-and 

<=> (u,O,k, luDpframe(x) and 
(00, 0, k,r)pframe(x) and 
(00,0, k, I uD PP; q I-chop 

<=> (u,O,k, luDpframe(x) and 
(00,0, k, I uD PP; q lemma 7.14 

<=> (u,O,k,luDpframe(x)J\(p;q) I-and 

o 

Theorem 7.16 states some similar laws as Theorem 7.10 with respect to the parallel operator. 

Theorem 7.16 The following formulas hold 

(1) frame(x)J\(frame(x)J\pllq) - frame(x)J\(pllq) 
(2) frame(x)J\(pllframe(x)J\q) _ frame(x)J\(pllq) 
(3) frame(x)J\(frame(x)J\pllframe(x)J\q) - frame(x)J\(pllq) 
(4) (frame(x)J\pllframe(x)J\q) - frame(x)J\(pllq) 
(5) frame(x)lIframe(x) - frame(x) 

Proof 

We prove only (1); and the others can be proved analogously. Let 00 be an interval, and k an 

integer, ° ::; k ~ lui. 

(u, 0, k, lul)pframe(x )J\(frame(x )J\pllq) 
<==:} (u, 0, k, luDp frame( x )J\( (frame( x )J\p; true )J\q)V frame( x )J\pJ\( qj true» 
<==:} (u, 0, k, luDpframe(x )J\qJ\(frame(x )J\pj true)V frame(x )J\pJ\(qj true» 
<==:} (u, 0, k, luDpframe( x )J\q"(Pj true)V frame( x )"p"( qj true» 
<==:} (u, 0, k, lul)pframe(x ),,( q"(Pj true )Vp"( qj true» 
<==:} (u, 0, k, lul)pframe( x )"(pllq) 

Theorem 7.17 is concerned with Ibf and Iff. Its proof is straightforward. 

Theorem 7.17 Let u be an interval, lui> 0, then 

(1) upframe(x) <=> (00,0, i, lul}f=lbf(x) for all ° < dlul 
(2)upframe(x) <=> (u,O,i,lul)plff(x) forallO::;i<lul 
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definition 
th 7.13(4),7.12(1) 
th7.15 (1) 
th7.13 (4) 
definition 

o 
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By Theorem 7.17, the frame operator can be expressed by the previous operator as follows. 

CoroUary 7.18 
1 frame(x) == D(..,first-+lbf(x)) 
2 frame(x) == D(..,first-+(Jlff(x)) 

o 

Theorems (or Corollaries) 7.11 - 7.18 play an important role in temporal logic programming 
within our system. They enable us to reduce a program in a convenient way. Many reduction 
rules of the interpreter developed by us recently are based on these theorems. 

1.3 Example 

In this section, an example is given to show how to apply the algebraic properties together with 
the minimal model to interpret a framed program. The example also illustrates how to reduce 
a program in a way in which Theorem 7.9 operates. By such means, we hope that the reader 
will agree that the temporal semantics of a framed program is well captured. The program 
considered is as follows 

The following is a complete reduction process of program p. 

p - frame(xt}"(xl = 1"X2 = 2"len(2); xl<=9"X2 = 3"frame(x2)"xl :=+ Xl + OX2) 
!rame(xt)"xl = 1!'X2 = 2Alen(2); !rame(xl)"xl <=9" 
X2 = 3"!rame(x2)"xl :=+ Xl + OX2 theorem 7.15 
Xl = 1"X2 = 2"!rame(xl)"01en(1); !rame(xl)"xl <=9"X2 = 3"!rame(X2) 
"Xl :=+ Xl + OX2 Abb-Ien 
Xl = 1"X2 = 2,,!rame(Xl)"more"0Ien(1); !rame(Xl)"Xl <=9"X2 = 3A!rame(x2) 
"Xl :=+ Xl + OX2 FS4 
Xl = 1"X2 = 2"O(lb!(xt)Aframe(xt)"Olen(1); !rame(xl)"Xl <=9Ax2 = 2 
"!rame(x2)"xl :=+ Xl + OX2 theorem 7.122 
Xl = 1"X2 = 2"O(lb!(xl)A!rame(xl)Alen(1»; !rame(xl)Axl <=9Ax 2 = 3 

"!rame(x2)"xl :=+ Xl + OX2 FD3 
Xl = 1"X2 = 2"O(lb!(Xl)A!rame(xt}"len(1); !rame(Xl)Axl <=9Ax 2 = 3 

"!rame(x2)"xl :=+ Xl + OX2) FCHI 
(PXl "Xl = 1 V "'PXl A Xl = l)A(Pxl "X2 = 2 V "'PXl A X = 2)A 
0(lb!(Xl)"!rame(Xl),,len(1); !rame(Xl)"Xl <=9"X2 = 3Aframe(x2)Axl :=+ Xl + OX2) 
"'PXl "Xl = 1""'PXl "X = 2AO(lb!(Xl)A!rame(Xl)"len(1); !rame(Xl)Axl <=9Ax2 = 3 
"!rame(x2)"xl :=+ Xl + OX2) corollary 7.7 

The last formula shows that P is in a well-reduced (Le. normal) form p~A 0 P~ at state So· 
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.... 

Then I} is continuously re-reduced as follows: 

111 -
p'} -

-

-

-
=m 
-

-

-

-

Xl = I1\x2 = 2 1\ -'PZ1 1\ "'Pz2 

Ib/(xl)l\/rame(xt}l\len(l)j /rame(xl)l\xl ~91\x2 = 31\/rame(x2)l\xl :=+ Xl + OX2 
(-,a/(xt}-3b: 0Xl = bl\Xl = b)l\/rame(Xl)l\len(l)j/rame(Xl)l\xl~9I\X2 = 3 
l\/rame(x2)l\xl :=+ Xl + OX2 theorem 6.3 
(PZl V"'Pz1 1\ Xl = 0 xl)l\/rame(xl)l\len(l)j /rame(xl)l\xl ~91\x2 = 3 
l\/rame(x2)l\xl :=+ Xl + OX2 theorem 6.3 
(PZl V"'Pz1 1\ Xl = 1)I\/rame(xt}l\len(l)j /rame(xl)l\xl ~91\x2 = 3 
"'PZl 1\ Xl = II\/rame(xt}l\len(l)j /rame(xl)l\xl ~91\X2 = 3 
l\/rame(x2)l\x l :=+ Xl + OX2 theorem 7.8 
-'PZl 1\ Xl = II\/rame(xt}l\moreI\O(emptY)j /rame(xt}l\xl ~91\x2 = 31\/rame(x2) 
I\xl :=+ Xl + OX2 FS4 
-'Pz1 1\ Xl = 11\0(lb/(Xl)l\/rame(Xl))1\0(emptY)j /rame(Xl)l\xl ~91\X2 = 31\/rame(X2) 
I\Xl :=+ Xl + OX2 theorem 7.12 2 
"'Pz1 1\ Xl = 11\0(lb/(xl)l\/rame(xl)l\emptY)j /rame(xt}l\xl ~91\X2 = 31\/rame(x2) 
I\xl :=+ Xl + OX2 FD3 
-'Pz1 1\ Xl = 11\0(lb/(Xl)l\/rame(xdl\emptYj /rame(xt}l\xl ~91\X2 = 31\/rame(X2) 
I\Xl :=+ Xl + OX2) FeRl 

At this point of time, P~ is reduced to the normal form p~I\Op}, and p} is continuously 
re-reduced as follows: 

P~ -
PJ -

-
-

-
-
-

-
-

-

-

=m 

"'PZ1 1\ Xl = 1 
Ib /( xl)l\/rame( xt)l\emptYj /rame( Xt)l\xl ~91\x2 = 31\/rame( X2)I\Xl := + Xl + OX2 
Ib/(xl)l\emptYj /rame(xl)l\xl ~91\x2 = 31\/rame(x2)l\xl :=+ Xl + OX2 theorem 7.124 
(..,a/(xt}-xl = 1)l\emptYj/rame(xl)l\xl~9I\x2 = 31\/rame(x2)l\xl :=+ Xl + OX2 

def 6.3 
(-,a/(xl)-Xl = l)l\/rame(xt}l\xl ~91\x2 = 31\/rame(x2)l\xl :=+ Xl + OX2 FEP5 
/rame(Xt}l\xl = 91\Pz11\X2 = 31\/rame(X2)l\xlo=+9 + OX21\skip 
Xl = 91\Pzl1\X2 = 31\/rame(xl)l\/rame(x2)1\0(Xl ~9 + x2)I\Oempty 

def 6.1, theorem 3.13, lemma3.17 

Xl = 91\Pz
1
l\X2 = 3I\/rame( Xl)l\/rame(X2)l\moreI\0( Xl ~9 + X2)I\Oempty FS4 

Xl = 91\Pz11\X2 = 31\0(lb/(xt}l\/rame(Xl))1\0(lb/(X2)I\/rame(X2))1\0(Xl ~9 + X2) 
1\0empty theorem 7.122 
Xl = 91\Pzl1\X2 = 31\0(lb/(Xl)l\lb/(x2)I\/rame(xt}l\/rame(x2)l\xl~9 + x2 Aempty) 

FD3 

Xl = 9I\Pz11\(-'Pz21\ X2 = 3 V Pz2 1\ X2 = 3)1\0(lb/(Xl)l\lb/(X2)1\ 
/rame(xl)l\/rame(x2)I\Xl~9 + x2l\empty) 
Xl = 91\Pz11\"'PZ 2 1\ X2 = 31\0(lb/(xdl\lb/(X2)I\/rame(xdl\/rame(X2)I\Xl ~9 + X2 Aempty) 

corollary 7.7 
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At state 82, p} is reduced to the normal form rc"Op}. Then p} is re-reduced again. 

~ -

" ---
-

Em 

-
-
-

Xl = 9" X2 = 3 "PZl ""'PZ2 
Ib f( xl)Alb f( x2)"frame( xt}"frame( X2)"XI ~9 + x2Aempty 
Ibf(Xl)Albf(X2)"Xl~9 + X2Aempty 
(..,af(xt}--+xl = 0xt}"( ..,af(x2)--+X2 = 0 X2)"XI = 9 + X2"Pz

1 
"empty 

(PZ2 V"'Pz2 " X2 = 3) "Xl = 9 + X2"Pz1 "empty 
"'Pz2 " X2 = 3 "Xl = 9 + X2"Pz1 "empty 
"'Pz2 " X2 = 3"Xl = 9 + X2"Pz1 "empty 
Xl = 9 + 3"pz1 " "'Pz2 " X2 = 3"empty 
Xl = 12"Pz1 ""'Pz2 " X2 = 3"empty 

theorem 7.124 
def 6.2,6.3 

theorem 7.8 

Finally, pJ is reduced to the form Pe == p~"empty, which indicates that the reduction process 
of p is successfully completed. Where 

af(xt} 
af(X2) 
Xi 
Ip 
Iv 

P; - Xl = 12"Pl"X2 = 3 "Pz1 " "'PX2 

PJ - empty 

~ ~ ~ ~ 
1'----1----1----1 
p~ p~ p~ p~ 
f f t t 
f f f f 

¢ ¢ {Xl} {Xl} 
¢ ¢ {PXl } {Pz1 } 

{Xl: l,x2: 2} {Xl: l,x2: -} {Xl: 9,X2: 3} {Xl: 12,x2: 3} 

Fig. 7.1 The reduction record of program P 

In the above example, variable Xl is framed throughout the overall interval, while variable 
Xl is framed only over the subinterval < 82,83 >. Note that X2 is unspecified at state 81, so X2 

is unavailable (Le. unaccessible) at that state. 

7.4 Discussion 

In this chapter, the temporal semantics offramed programs is captured using the minimal model. 
This model allows us to treat variables which are framed and not assigned new values by the 
positive immediate assignments in such a way that their values are inherited. The minimal 
model does it by means of perceiving the defaults of positive immediate assignments. 

It should be emphasised that by using the minimal model, the underlying logic is changed 
from being monotonic to non-monotonic. In particular, the minimal model semantics has im
posed a kind of default logic in which a special set of propositions within a program is considered 
as a domain in which the default technique is applied. This results in revisable reasoning in 
EITL. 
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Chapter 8 

Communication and 
Synchronization 

Summary: Using the framing operator, a synchronization operator, await(c), is 
defined within EITL. Furthermore, a framed concurrent temporal logic programming 
language (FTLL) is presented. To illustrate how to use both the language, the await 
operator, and framing technique, some examples are given. In particular, a mutual 
exclusion problem, producer - consumer, is solved using FTLL. 

Introducing the framing operator enables us not only to write concise programs but also to define 
await construct within the underlying logic. Hence, the synchronized communication can be 
handled in framed Tempura. Furthermore, with the help ofthe await operator, a more powerful 
framed concurrent programming language, FTLL, can be designed under the EITL framework. 
This allows us to specify reactive systems at a higher level. 

The chapter is organized as follows: Section 8.1 formalizes the await construct; Section 
8.2 describes the framed concurrent programming language, FTLL; Section 8.3 provides two 
examples of programs, the first, constructing magic square, is concerned with framed arrays and 
non-deterministic programs; the second, modeling producer - consumer scheme, is devoted to 
solving the mutual exclusion problem. Finally, conclusions are drawn in Section 8.4. 

8.1 Await Construct 

A number of temporal logic programming languages, e.g. XYZjE [81, 83], Tempura [61], TLA 
[53], employ logic conjunction (II) as a basic parallel operator for concurrent computations. 
The communication between processes is based on shared variables. However, the conjunction 
construct seems appropriate for dealing with fine-grained parallel operations that proceed in 
lock-step since processes combined through the conjunction operator share all the states and 
may interfere with one another. The projection operator, (PI, ... ,Pm) prj q, introduces a new 
computational model in which the process q is executed in parallel with PI; ... ; Pm over an inter
val obtained by taking the endpoints (rendezvous points) of the intervals over which PI,· .. ,Pm 
are executed. Although the communication between processes is still based on shared variables, 
the communication and synchronization only take place at the rendezvous points (global states), 
otherwise they are executed independently. 

However, with both the conjunction and the projection constructs, a problem that must 
be dealt with in temporal logic programming is that of synchronized communication between 

concurrent processes. 
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AI discussed earlier, to synchronize communication between parallel processes in a concur
rent program (e.g. when solving the mutual exclusion problem) with the shared variable model, 
a synchronization construct, await(c) or some equivalent is required, similarly as in many con
current programming languages [66]. The await(c) does not change any variable, but waits until 
the condition c becomes true, at which point it terminates. 

One may think await( c) could be defined as 

await( c) ~f (c -+ empty) A ( -,c -+ Oawait( c» 

which amounts to 
await( c) ~f (c A empty) V ( -,c A Oawait( c» 

This is exactly the definition of halt(c) (see Theorem 4.9 in Chapter 4). However, halt(c) is 
capable of changing variables contained in c at the final state over an interval but await( c) is not 
although they both wait for c to become true and terminate the interval over which they act. 
The key difference between await( c) and halt( c) is that the former can only wait until another 
process acting in parallel changes c to true, while the latter can change c itself at the final state 
without the help of other processes acting in parallel. 

Therefore, halt(c), in general, is not suitable as a synchronization construct for concurrent 
computations. However, if the variables contained in c all are framed, and no positive assign
ments appear in c (this condition is usually satisfied because we consider c as a condition, i.e. 
a boolean expression), halt(c) is equivalent to await(c). This is clear since the variables in c 
are framed and only positive assignments are able to change framed variables. For instance, 
frame(x)Ahalt(x = 1) is similar to await(x = 1). 

Defining await( c) is difficult without some kind of framing construct since the values of 
variables are not inherited automatically from one state to another. But one requires some kind 
of indefinite stability, since it cannot be known at the point of use how long the waiting will 
last. At the same time one must also allow variables to change, so that an external process can 
modify the boolean parameter and it can eventually become true, 

To define await construct, we make the following assumption: 

Let Vc = {x}, .. " Xh} be the set of dynamic variables contained in c, Then 

Definition 8.1 

frame(Vc) 

frame(xI. .. " Xh) 

~f frame( Xl, .. " Xh) 
def frame(xt} A .. , A frame(xh) 

With the help of the framing operator, we can define await construct as follows: 

Definition 8.2 (await statement) 

await(c)~f frame(Vc)Ahalt(c) 

where Vc represents all dynamic variables contained in c. 
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Since /rame(x) and halt(c) both are executable within the extended Tempura, await(c) is 
aI80 an executable construct in the extended Tempura. Therefore, synchronized communication 
for concurrent computations can be implemented in the extended Tempura. For instance the 
following program synchronizes variables x and y in a parallel computation (see Figure 8.h 
Example 8.1 A synchronized computation. 

/rame(x) /\ /rame(y) /\ x = 0/\ Y = 0/\ 
« while (x < 5) do ( 

) 
II 

x :=+ x + 1; 
await(y ~ x) 
) 

(while (y < 5) do ( 

) 
). 

) 

await(y < x); 
y :=+ y + 1 

sO sl 82 83 84 85 86 87 88 89 810 
1------1------1------1------1------1------1------1------1------1------1 

x-O 1 wait 1 2 wait 2 3 wait 3 4 wait 4 5 wait 5 
1------1------1------1------1------1------1------1------1------1------1 

y-O wait 0 1 wait 1 2 wait 2 3 wait 3 4 wait 4 5 

Fig. 8.1 A Synchronized Computation 

8.2 Framed Programming Language 

o 

The introduction of the framing operator and the minimal model semantics enable us to define 
await statement within the underlying logic. It is therefore interesting to point out that all 
statements of the concurrent programming language defined semi-formally in [66] can easily 
be defined formally within the extended logic framework except that the parallel computation 
is modeled, in the notation of [66], by interleaving as claimed, while in our notation, by true 
concurrency [49, 12] (see Example 8.1). In addition, our language contains the projection con
struct. Thus, a more powerful concurrent temporal logic programming language can be designed 
without obstacles. The following is a brief presentation of the language called Framed Temporal 
Logic programming Language (FTLL). We repeat all constructs from Chapter 4 and Chapter 5 
and use the terminologies from [66] . 

• Empty statement 

The empty is a trivial do-nothing statement. It is defined as 
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de{ 
empt1l = .., 0 true 

Note that the empt1l statement has the same meaning as skip statement in [66]. We use 
empt1l rather than skip because skip has already been employed in the underlying logic 
with different meaning. 

• Assignment statement 

if := e is an assignment statement defined as follows 

where if = (111, ... , Yn) is a list of variables and e = (e1,"" en) is a list of expressions. :=+ 
is the positive unit assignment operator. The types of ei and Yi are compatible. 

• Await statement 

The await( c) statement is defined by 

await( c) ~f frame(Vc) II halt( c) 

where c is a boolean expression, and Vc denotes all the dynamic variables occurring in c. 

• Conditional statement 

If S1, S2 are statements and c is a boolean expression, then the conditional statement is 
defined by 

ifc then S1 else S2 ~f (c -+ sd II (..,c -+ S2) 

• Sequential statement 

For statements Sl, S2, the sequential statement can be expressed by projection operator 
directly. 

def ( ) . t Sl; S2 = Sl, S2 prj emp Y 

• When statement 

With sequential statement and await, we can define when statement 

when c do s ~f await( c); s 

• Selection statement 

For statements S1, 82, the selection statement can be defined directly by disjunction. 

A multiple selection statement is defined as 

ORn def 
k=18k = Sl or S2 or .. . or 8 n 
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• Conditional selection statement 

The guarded command in the language proposed by Dijkstra [17] of the form 

can be represented by a multiple selection statement formed out of several when state
ments: 

OR'k=l(when Ck do 8k) 

• While statement 

While statement is defined as that in Chapter 4. 

while C do p ~ (c 1\ p)* 1\ fin( ..,c) 

• Repeat statement 

Repeat statement is defined as 

repeat p until c ~ p; while (..,c) do p 

• Conjunction statement 

d def 
81 an 82 = 81 1\ 82 

• Parallel Composition 

Parallel composition statement is defined as: 

811182 ~f 81 1\ (82; true) V 82 1\ (81; true) V D( more 1\ 81 1\ 82) 

• Projection statement 

Projection statement is a primitive statement from the logic framework: 

(8t. ... , 8m ) prj 8 

where 81, ••• , 8 m , 8 are statements. 

• Block statement 

A block statement is of the form 
local x : 8 ~f 3x : s where x is a variable. 

Comparing the framed Tempura and FTLL, we can see that most of the statements are the 
same except the disjunction construct and its derivativities such as choice statement. FTLL, 
therefore, is a non-deterministic programming language, and the normal form of a program in 
FTLL has to involve disjunctions. A program, in general, has its normal form as formalized in 
Theorem 8.1. 
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Theorem 8.1 IT P is a framed program, then there is a program q as defined in (6.1) such that 

o 

Proof Similar to the proof of Theorem 4.9. 

o 
Here we claim that the semantics of programs in FTLL can be captured by the minimal 

model under the model theory within EITL. 

8.3 Programming in FTLL 

In this section, two examples are given to illustrate how FTLL can be used. 

8.3.1 Framed Arrays 

Like variables, arrays (or lists) can also be framed. An array being framed means that all of its 
elements are framed. In temporal logic programming, a framed array is a useful construct. It 
leads to cleaner, more readable and efficient programs. To illustrate the framing technique for 
arrays, an algorithm for the construction of an even order magic square will be implemented. 
The example also shows how a non-deterministic program can operate. 

Filling a magic square is an old mathematical puzzle. It requires one to fill in the consecutive 
positive integers 1, ... , n2 to an n X n array in such a way that the sums of the elements contained 
in each row, each column, and the two diagonals all are equal. For an odd number n, to fill a 
n X n magic square is simple. However, for an even n one requires a more subtle algorithm. The 
following algorithm presented in [19] can be used to construct a 4m X 4m magic square. 

Algorithm (constructing 4m X 4m magic squares) 
Let A be a 4m X 4m array, and m be a positive integer. 

1. Chop the sequence 1, ... , 16m2 into 4m subsequences of equal length, keeping the original 
order; 

2. Insert the ith subsequence into the ith row of A according to the following rules: 

• when i is an odd number 
if 1 ~ i ~ 2m - 1, we fill in the numbers from the left to the right; if 2m + 1 ~ i ~ 
4m - 1, we fill in the numbers from the right to the left; 

• when i is an even number 
if 2 ~ i ~ 2m, we fill in the numbers from the right to the left; if 2m + 2 ~ i ~ 4m, 
we fill in the numbers from the left to the right; 

3. For each i, 1 ~ i ~ 2m, swap 2m pairs consisting of the ith and the (4m - i + 1 )th row 
elements residing in the same column but not in the diagonal lines of A; 

The above algorithm can be implemented by the following program with a framed array: 
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(i,j) = (1,1) and frame(i,j) and frame(A) and 
( 
while i :::; 4 * m do {inserting 1, ... , 16m2 into array A} 
( 
while j :::; 4 * m do 

( 
if i mod 2 = 1 then 

(if 1 :::; i :::; 2 * m - 1 then A[i,j] :=+ (i - 1) * 4 * m + j 
else if 2 * m + 1 :::; i :::; 4 * m - 1 then A[i,j] :=+ i * 4 * m - j + 1) 

else 

)j 

(if 2 :::; i:::; 2 * m then A[i,j] :=+ i * 4 * m - j + 1 
else if 2 * m + 2 :::; i :::; 4 * m then A[i,j] :=+ (i - 1) * 4 * m + j)j 

j :=+ j + 1 

i :=+ i + 1 
)j 

(i,j) = (1,1) and frame(i,j, c, temp) and 

while i :::; 2 * m do {swapping 2m pairs of the elements of A} 
( 
c :=+ 0; {c is a counter} 
while j :::; 4 * m do 

( 
if (i '" j and (i + j) :::; 4 * m and c::; 2 * m) then {the condition for swapping} 

( 
temp :=+ A[i,j]; {swap} 
A[i,j] :=+ A[4 * m - i + l,j]j 
A[4 * m - i + l,j] :=+ temp; 
c :=+ c + 1 
)j 

j :=+ j + 1 
)j 

i :=+ i + 1 
) 

) 
Fig. 8.2 A program for constructing a 4m X 4m magic square 

In the program, the first two nested while statements insert 1, ... , 16m2 into a 4m X 4m array, as 
specified in the algorithm. The second two nested while statements swap 2m pairs of elements 
which do not reside on the diagonal lines. Each element A[i,j] in the diagonal line from upper 
left to down right satisfies i = j, whereas each element A[i, j] on the other diagonal from down 
left to upper right satisfies i + j > 4mj moreover, we only swap 2m pairs of elements for each 
i, 1 ~ i ~ 2m. Hence, the condition for swapping is i =I j " (i + j) ::; 4m" c ::; 2m. Note that c 
is used as a counter to record the number of swapped pairs. 

Example 8.2 Constructing a 4 X 4 magic square. 
According to the above program (m = 1) the construction produces a square shown in Fig 8.3. 
It is easy to check its correctness, the sum is 34 for each row, column and diagonal line. 
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1 2 3 4 1 14 15 4 1 14 15 4 
fill in 8 7 6 5 swap 8 7 6 5 swap 12 7 6 9 

1,2, ... , 16 12 11 10 9 l:l,l~! 12 11 10 9 ~8,12) 8 11 10 5 (3,15) (5,9 ) 
13 14 15 16 13 2 3 16 13 2 3 16 

Fig. 8.3 Constructing a 4x4 magic square 

initialization 
11 in 1, ... ,64 

o 

1 3 4 5 6 8 swap 1 58 59 4 61 6 63 8 swa 
16 5 14 13 12 1110 9 @ 15 Q) 13 12CD 1Oe]) P 56 1554 13 1251 1049 
1718 19 20 212223 24 (2,58) 1718 19 20 212223 24 (16,56 [)@ 19 QO ~22 2324 
323130 29 282726 25 (3,59) 3231 30 29 282726 25 (14,54 3231 30 ~ 28'27 2625 
403938 37 363534 33 (5,61) 4039 3837 36 3534 33 (11,51 4039 3837 3635 3433 
414243 44 454647 48 (7 63) 414243 44 454647 48 (9 49) 4 ti2l43 ~ ffiH6 4748 
5655 4 53 525150 49' 55 (953 52@) 50 (49' 1655 1453 m 11 50 9 
5 60 6 626 64 2 3 60 5 62 7 ()4 57 2 3 60 5 62 7 64 

swap 
(2, 58) (3, 9) . 
(4,60) (5, 1) .. 

1 58 59 60 61 6 7 8 
1615 14 13 12 11 10 9 
1718 19 20 212223 24 
3231 30 29 282726 25 
403938 37 363534 33 
4142 43 44 45 46 47 48 
5655 54 53 52 5150 49 
572 3 4 5 6263 64 

wap(3, 59) (4,60) 
(5,61) (6,62) 

1 2 59 60 61 62 7 8 
16 15 14 13 12 11 10 9 
1718 19 20 21 22 23 24 
3231 30 29 282726 25 
4039 3837 36 3534 33 
4142 43 44 45 4647 48 
5655 54 53 52 5150 49 
5758 3 4 5 6 63 64 

J 

Fig. 8.4 Constructing 8x 8 magic squares 
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swap 
(17 41) (20, 44) 
(18; 42) (21, 45) 

1 58 59 4 61 6 63 8 
56 1554 131251 1049 
41 42 19 44 45 22 23 24 

30292827 @@ 
4 38 37 36 35 (34(3'3 
1718 43 20 2146 ~48 
1655 14 53 52 11 50 9 
57 2 3 60 5 62 7 64 

swap 
(32, 40) (26, 34) 
(31, 39) (25, 33) 

1 58 59 4 61 6 63 8 
56 1554 13 1251 1049 
41 42 19 44 45 22 2324 
40 39 30 29 28 27 34 33 
3231 38 37 363526 25 
17 18 43 20 21 46 47 48 
16 55 14 53 52 11 50 9 
57 2 3 60 5 62 7 64 



In the above example, the program is deterministic. However, according to the algorithm, 
step 3 requires 2m elements not residing at the diagonal lines in the ith row be swapped with 
the corresponding elements in the (4m - i + l)th row. Hence, each row has 4m - 2 elements 
which are entitled to be chosen for swapping; but only 2m elements are needed to be swapped. 
If m = 1, i.e. for a 4 X 4 square, then 4m - 2 = 2m; thus, all of elements entitled for swapping 
must be swapped. If m ~ 2 then 4m - 2 - 2m = 2m - 2 ~ 2; so there are different choices of 
elements for swapping, leading to different squares. 

The swapping part of the program can be rewritten as a non-deterministic program, as 
shown below: 

J= {I, ... ,m}; 
while c ~ 2 * m do 

(ORi=lwhen (j E J and i f; j and i + j ~ 4 * m) 
do(A[i,j) :=+ A[4 * m - i + I,j) 

) 

and A[4 * m - i + I,j) :=+ A[i,j) 
and c :=+ c + I 
and J :=+ J - {j} 

Using the non-deterministic program, the constructing process of a 8 X 8 magic squares is 
shown in Fig 8.4. Note that, in the non-deterministic program, J can be implemented by a list, 
and j E J can be implemented by a while statement. 

8.3.2 Mutual Exclusion Problem 

The mutual exclusion problem is one of the most important problems in concurrent program
ming. One solution to the problem is the Dekker's algorithm (6). Below we show how it can be 
implemented in FTLL. 

frame(C1, C2, turn) and Cl = I and C2 = I and 
turn = 1 and 
( 
repeat ( {Process PI } 

Non - critical - section; 
C1 :=+ 0; 
while not (C2 = 1)do 

( 
if turn = 2 then 

(C1 :=+ 1; 

); 
); 

await (turn = 1); 
C1 :=+ 0; 

Critical - section - 1; 
C1 :=+ 1; 
turn :=+ 2; 
) 
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until empty 

" repeat( 
Non - critical - section; 
C2 :=+ 0; 
while not (Cl = 1 )do 

( 
if turn = lthen 

(C2 :=+ 1; 

); 
); 

await (turn = 2); 
C2 :=+ 0; 

Critical - section - 2; 
C2 :=+ 1; 
turn :=+ 1; 
) 

until empty 
). 

{Process P2 } 

Fig. 8.5 A program implementing Dekker's algorithm 

In the above program, the individual variables in each process will ensure mutual exclusion, but 
upon detecting contention, a process, say Pl , will consult an additional global variable turn to 
see if it is its turn to insist upon entering its critical section. If not, it will reset Cl and defer the 
choice to P2 , waiting on turn. When the P2 completes its critical section, it will change turn to 
1, freeing Pl' Even if P2 immediately made other requests to enter the critical section, it will 
be blocked by turn once Pl re-issued its request. 

The program is correct [6]. It satisfies the mutual exclusion property, it does not deadlock, 
neither process can be starved and in the absence of contention a process can enter its critical 
section immediately. 

8.3.3 Producer and Consumer 

Using the Dekker's algorithm with the await operator, the producer - consumer problem can be 
solved by the program shown in Fig 8.6. 

/rame(cl,c2,turn,x,s,ne,nf,buf) and Cl = 1 and C2 = 1 and 
turn = 1 and ne = nand nf = 0 and buf = nil and 
( 
while true do 

( 
x :=+ x + 1; 
if ne > 0 then Cl :=+ 0; 
while (C2 = 0) do 

( 
if turn = 2 then 

(Cl :=+ 1; 
await (turn = 1); 

{Process Pl } 
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II 

Cl :=+ 0; 
); 

); 
bu/ :=+ bu/·x; 
Cl :=+ 1; 
turn :=+ 2; 
) 

{Critical section} 

while true do {Process P2 } 

). 

( 
i/ n/ > 0 then C2 :=+ 0; 
while (Cl = 0) do 

( 
i/ turn = 1 then 

(C2 :=+ 1; 

); 
); 

await (turn = 2); 
C2 :=+ 0; 

(y, buf) :=+ (hd(buf), tl(buf)); 
C2 :=+ 1; 
turn :=+ 1; 
) 

{Critical section} 

Fig. 8.6 Producer-consumer 

In the program, bu/ is an one-dimension array (or list) used as a buffer; ne, n/ are dynamic 
variables denoting the number of free slots and the number of the items in the buffer respectively; 
and x, y, s are dynamic variables. Ct, C2 and turn are the variables serving for the mutually 
exclusive accesses to the buffer, the same as in Fig. 8.5. 

The program presented in Fig.8.6 models a producer-consumer scheme. The producer com
putes a value and stores it in x; after successfully appending x to bu/, it cycles back to complete 
the next value of x. The consumer, acting in parallel, removes an element from the head of 
the buffer bu/ and deposits it in y. After successfully obtaining such an element from bu/, it 
proceeds to use the value for computations. 

The buffer is represented by a list bu/, whose initial value is the empty list, i.e. each element 
is nil. Adding an element to the end of bu/ is accomplished by the appending operation bu/·x. 
The head element of the bu/ is retrieved by the list function hd( buf), and removal of this element 
from the buffer is accomplished by replacing bu/ with its tail tl(buf). It is assumed that the 
maximal capacity of the buffer is n > O. 

In order to ensure correct synchronization between the processes, which also guarantees that 
the buffer neither overflows, nor overexhausts, we use three variables . 

• The variables Cl, C2 and turn ensure that access to the buffer is protected and provide 
mutual exclusion between the two critical sections, in which bu/ is accessed and modified. 
Whenever one of the processes starts accessing and updating bu/, the other process cannot 
access until the previous access is completed. 
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• The variable ne contains the number of free available slots in the buffer buf. It protects 
bul against overflowing . 

• The variable nf contains the number of items currently in the buffer buf. It protects buf 
against overexhausting when the buffer is empty. 

8.4 Conclusion 

In this chapter, we discussed synchronization and communication for concurrent computations 
in the framed programming language FTLL. The major synchronization operator is await. 

The language FTLL contains the extended Tempura as an executable subset. The hierarchy 
of the consistent three level languages: an extended logic language (EITL), a non-deterministic 
framed concurrent programming language (FTLL), and an extended Tempura, could facilitate 
specifying, verifying and developing reactive systems in a more efficient and uniform way. In 
practice, we feel that the framing operators and minimal model semantics may enable us to 
narrow the gap between temporal logics and programming languages in a realistic way. 
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Chapter 9 

A Framed Interpreter for Extended 
Tempura 

Summary: An outline of the implementation of the framed interpreter including 
implementation strategy, data structures, program structure and some relevant re
duction rules for the projection, parallel and framing operators are presented. 

Tempura has several executable interpreters written in different languages including Moszkowski's 
Lisp version and Hale's C version [39]. All of them interpret statements from the basic Tempura 
presented in [61]. In order to use the framing technique and the projection operator in program
ming, a new interpreter for the extended Tempura has been developed using SICSTUS Prolog. 
The framed interpreter is intended to interpret the extended Tempura including the previous 
operator, the parallel and projection operators, as well as the framing and await operators. Since 
the extended Tempura is interpreted by the minimal model semantics under the model theory of 
a default logic, there is a radical change in the semantics of the underlying language in contrast 
with the other interpreters for Tempura. Moreover, the framed interpreter is written in Prolog, 
it is therefore closer to logic programming. 

The interpreter accepts a well-formed program in the extended Tempura as its input, and 
interprets the program through a sequence of states. At each state the values of variables of the 
program are evaluated and output. Thus, if a program is eventually reduced to true then it is 
satisfiable and a model is found; otherwise the program has no model. In the latter case, the 
error message is indicated and the execution stops. During the reduction of a program, syntax is 
checked and errors are indicated by the interpreter. During the execution, any problems related 
to the semantics of the executed program are found and indicated in a dynamic manner. 

This chapter is intended to discuss implementation techniques for the extended Tempura. 
Section 9.1 introduces implementation strategies; Section 9.2 introduces data structures; Section 
9.3 introduces the program structure; Section 9.4 presents some relevant reduction rules for the 
projection, parallel, await and framing operators; and conclusions are given in Section 9.5. 

9.1 Implementation Strategy 

Basically, the implementation strategy for the framed interpreter is based on the Tableau method 
[88]. That is, to execute a program is to transform it to a logically equivalent conjunction of 
two formulas Present and Remains: 

Presentl\Remains 
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where the form.ula Present consists of assignments (by = or ¢:) to program variables, output 
of program varlable.s, true and mm:e or empty. The roles of more and empty are to indicate 
whether or not the mterval over which a program is executed terminates. Formally, 

m 

Present = /\ presenti 
i=l 

presenti ::= x = e I x¢: e I true I more I empty 

The formula Remains is what is executed in the subsequent state if the interval does indeed 
continue. The Remains is said to be in a reduced form if either it is true or it consists of 
conjuncts leading with only the next operators. Formally, 

where Wi is a Tempura formula. 

n 

Remains = /\ OWi 
i=l 

When the execution of the next state is prepared, a function, nexLw, is used to remove these 
next operators from the conjuncts contained in Remains. What is really executed at the next 
state is the formula Next 

n 

Next = /\ Wi 
i=l 

Wi = nexLw(OWi) 

Since only deterministic programs are considered within the interpreter, the Remains part 
has a simple form. Compared with the normal form presented in Theorem 7.9, it is different 
from the one used for reduction. The differences are twofold: one is that the reduced form is 
1\ OWi rather than a single Ow for the Remains part. It is obvious that the two formulas are 
equivalent in the sense W == 1\ Wi. The reason why we use the former for reduction is merely for 
convenient operation. The other is that the Present part may contain more, empty and true 
while in the normal form they are absent. Again, the reason for using them is merely for easy 
manipulation in reduction. 

9.2 Data Structures 

9.2.1 Variables 

As mentioned earlier, there are different types of variables in the framed Tempura. Variables can 
be static or dynamic. A static variable keeps stable over an interval while a dynamic variable 
may change from state to state. 

Variables can also be global or local. If a variable is introduced by the existential quanti
fication it is local otherwise it is global. A local variable is accessed only within the program 
bound by the existential quantification, whereas a global variable is accessed everywhere within 
a program. 

As discussed earlier, variables are also divided into framed and non-framed ones. The value 
of a framed variable is carried along to the next state if no assignment is encountered at the 
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oext state whereas the value of a non-framed variable is always cleared after the execution of a 
state. Hence, in the framed interpreter, a variable is stored in the form: 

val(x, v,status, frntark) 

where, x is the name of the variable, v is the value of the variable at the current state or next 
state indicated by the status wh.ich h.as value state, next or static, and the frntark can be f 
(framed) or nf (non-framed) to Identify whether or not x is framed. 

9.2.2 Constants 

Constants consist of integers, boolean constants, lists and strings. They are defined as in Chapter 
4. 

9.2.3 Flags 

The framed interpreter makes use of several flags to handle the reduction of a program. One 
of the important flags, done, indicates whether or not an interval terminates. At the beginning 
of execution at each state, done is set to nil. During the execution at a state, the interpreter 
places either false or true in the done according to ntore or empty being encountered. If a 
programmer fails to specify the interval for his program, the interpreter cannot set the done 
flag, and it remains nil. In such a case, an error will be detected and indicated. 

The assigned flag af is the second important flag in the framed interpreter. The functions 
of af are twofold: one which indicates whether or not a variable will be changed at the current 
state; the other is to identify if a variable is accessible at the current state. If the aft x) is 
true, then x will be assigned a new value at the current state and it is not accessible before the 
assignment is completed. aft x) is set to true prior to the current state by using syntax check. 

The third flag is side flag concerning side effects. When this flag is set to off, the interpreter 
is in the ordinary mode, whereas when the flag is set to on, it prevents side effects. For instance, 
more sets the done flag to false and entpty sets the done flag to true as mentioned earlier, but 
in the case of the side flag being true, they do nothing. The side flag is set to true whenever a 
tail recursion is involved in the reduction of a program. 

9.3 Program Structure 

The execution of a program consists of a series of state reductions. The last state contains the 
conjunct empty. A state reduction is composed of the reductions of multiple passes. After the 
last pass, the executed program is reduced to the form: 

Present/\Rentains 

In fact, the Present part has been dissolved during the reduction. Its effects are reflected in 
updating variables, displaying the values of some variables, and setting the done flag etc. What 
is left at the last pass of the reduction is the Rentains which will be executed at the next state 
if the interval over which the program is executed does not end. Therefore, the execution of a 
program can be treated as a series of reductions or rewritings. 
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9.3.1 One Pass Reduction 

Algorithm 1: One-pus-reduction 

In SICSTUS Prolog, the algorithm can be written in the following form: 

1) retract( w( P», 
2) rw(P,Q), 
3) simple( Q, R), 
4) assert(w(R». 

where w(P) is a compound term, a structured data in Prolog; w is its principal functor; and Pis 
~ variable. ~etract( w( P)) en~bles P to obtain ~ progra~ which will be executed. The rw( P, Q) 
18 the most Important reductIOn procedure which reWrItes P to Q corresponding to reduction 
rules at different passes and different states. The simple( Q, R) is intended to erase conjunct 
true contained in Q and the result is placed in the variable R. The assert( w( R» stores the R 
into w again. 

9.3.2 Reduction at One State 

Algorithm 2: One-state-reduction 

The algorithm proceeds as follows: 

1) clear-done-flag, 
2) show-time, 
3) one-pass-reduction, 
4) ready? if no go to 3) else 5), 
5) checking done flag and preparing assigned flags, 
6) preparing the next state. 

At the beginning of the execution of each state, the interpreter clears done flag, i.e. sets it 
to nil. The 'show-time' displays the current state number and increases the number by one in 
the preparation for the next state. The initial number is o. The one-pass-reduction, as discussed 
above, reduces a program in one pass. At the end of the process, a check is required to test 
whether or not the program is ready in a reduced form. This is the task of ready. If the program 
is not in a reduced form, then another reduction pass resumes. If the program is already reduced 
to a reduced form, an auxiliary check is required to ensure that done has been set to true or 
false. Otherwise an error 'done-not-set' is issued and the reduction interrupts immediately. 

The 'preparing the next state' process does the following: if the current state is not the 
last one, then this process initializes two storages for each variable according to the information 
of framing and assignments, and releases the old storages. The process also erases the leading 
operator 0 from the conjuncts of the program held in w. 

The 'prepare-assigned-flag' process is important for framing. After the ready procedure, 
it is the exact time for checking whether or not the interval is empty and there is therefore a 
chance to do the syntax check so that assigned flags for some variables involved in temporal 
assignments, fin, and halt etc. can be set prior to the next state. 
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9.3.3 Reduction of One Program 

Algorithm 3: One-program-reduction 

To execute a program is to call one-state-reduction repeatedly. 

1) one-state-reduction, 
2) empty? if no go to 1) else clear all variables. 

9.3.4 Execution of Tempura 

Algorithm 4: Executing tempura 

This is the main algorithm employed in the framed interpreter. 

1) show Tempura version, 
2) initialization, 
3) show Tempura number, 
4) input(P), (user's task) 
5) read( w(P», 
6) P=exit, quit, stop? if yes clear all then stop else 7), 
7) one-program-reduction, 
8) prepare-next-formula and then go to 3). 

The interpreter can successively execute many programs. When a program is finished, the 
interpreter is waiting for the next input unless one intends to quit and issue an exit command. 

9.4 Implementing New Operators 

The most important reduction procedure is rw(P, Q). It is relevant to all reduction rules for 
all constructs. For the most of general Tempura formulas, Moszkowski has described how to 
execute them in (61). In this section, we discuss only how the new operators, projection, parallel, 
await and framing, can be implemented in the interpreter. The reduction rules are presented 
briefly. 

9.4.1 Implementation of Projection Operator 

The projection construct (Pt. ... ,Pm) prj q is implemented as follows: it is processed by first 
allocating a done flag initialized to nil to serve as a done flag for projected interval over which 
the statement q is executed and then transforming the statement to the internal construct IC, 

{ 

project((p2, ... ,Pm),pt.q,done(nil» ifm> 1 

IC = 
project( empty, Pt. q, done( nil» if m = 1 

which is immediately re-reduced. The construct project(R, P,Q, done(D1» is executed by first 
saving the current done flag to OLD and setting the done flag to done(D1). The statement Q 
is then reduced in the context to a new statement Q'. Afterwards, the current done flag is saved 
to D2, the old done flag, done(OLD), is restored, and the statement P is then reduced in the 
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context to a new statement pl. H pi or Q' is not fully reduced, the overall project statement is 

rewritten as 
project(R, pi, Q', done(D2)). 

This is returned as the result of the reduction. On the other hand, if pi and Q' are both fully 
reduced, then, with the notation 

D 
E 
choose(R1, (R2)) 
choose(R1) 

= nexLw(pl) 
= nexLw(Q') 
= (R1j choose((R2))) 
= R1 

the overall project statement is transformed as in Fig 9.1. This tests the done flag indexed 
by done(D2). H it is true, the interval over which Q was reduced is finished and therefore the 
nezt-w(pl) is executed followed by the remaining formulas (R1, (R2)), chosen by the procedure 
choose, ifthey were not empty. On the other hand, if done(D2) = done(false) the interval over 
which Q was executed is not yet finished. Therefore, the formula D is executed followed by the 
resumption of the projection statement. 

if done(D2) = done(true) 
then 

if R = (R1, (R2)) 
then 0 (Dj choose(R1, (R2))) 
else 

else 

if R = R1 
then 0 (Dj R1) 
else 

if R = empty 
then 0 D 

if done(D2) = done(false) 
then 

if R = (R1, (R2)) 
then 0 (Dj project«R2), R1, E, done(nil))) 
else 

if R = R1 
then 0 (Dj project( empty, R1, E, done(nil))) 
else 

if R = empty 
then 0 (Dj project(, empty, empty, E, done( nil))) 

Fig 9.1 Rewriting project statement 

9.4.2 Implementing Parallel Operator 

The interpreter handles a statement of the form AIIB by transforming the statement to the 

internal construct 
parallel( A, B, done( nil» 
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This is immediately re-reduced. Here donee nil) is a flag initialized to nil. It serves as a local 
done flag for the interval over which the statement A is executed. 

We execute the parallel(A, B, done(D1» construct by first saving the value ofthe old done 
flag to OLD and setting it to D1. The statement A is then reduced in the context to a new 
statement A'. Afterwards the current done flag is saved to D2, and the old done flag value, 
OLD, is restored. The statement B is then reduced in the context to a new statement B'. If 
A' or B' is not fully reduced, then we simplify A' to Al and B' to B1 and the overall parallel 
statement is rewritten as 

parallel(A1, B1,done(D2» 

This is returned as the result of the reduction. On the other hand, if A' and B' are both fully 
reduced, then the overall parallell is transformed to the following conditional statement and 
then immediately re-reduced: 

if done(OLD) = done (true) then (A1,done(D2» 
else if (done(D2) = done(true) then B1 
else Oparallel(A1, B1, done(nil» 

Here Al = nexLw(A') and B1 = nexLw(B'), and (A1,done(D2» means to set done flag to D2 
and then to reduce Al in the context. 

This first tests B's done flag indexed by OLD. If it is true, the interval in which B was 
reduced is finished and therefore the overall parallel construct reduced to (AI, done(D2». On 
the other hand, it tests A's done flag indexed by D2j if it is true, the interval over which A was 
reduced is finished and the overall parallel construct is reduced to B1. Otherwise, the reduction 
procedure advances to the next state. 

9.4.3 Implementing await(c) 

A statement of the form await( c) is rewritten as a logically equivalent formula 

halt(c) /\ frame(Vc ) 

and then it is immediately re-reduced, where Vc stands for all dynamic variables contained in c. 

The condition in halt cannot cause side effects unless empty. Hence, the halt(c) can be 
reduced using the following rules: 

1. halt( c) /\ empty ---+ c 

2. halt( c) /\ more ---+ ..,c /\ Ohalt( c) 

3. halt(true) -+ empty 

4. halt(Jalse) ---+ more /\ Ohalt( c) 

The frame(Vc) can be reduced according to the rules given in the next subsection. 
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9.4.4 Implementation of Framing Operators 

To implement the framing operators, we first consider programs containing no positive immediate 
assignments. Afterwards, we discuss the general situation. 

(1) Implementing Framing in Programs without Positive Immediate Assignments 

In the case in which no positive immediate assignments are contained in programs, the basic 
assignment relevant to framing is the positive next assignment. There are two ways to go about 
it: one way is by means of the look forward framing operator; the other way is to make use of 
the look backward framing operator. In the following, we consider the former. The latter can 
be handled by the case (2) in the sequel. 

With the look forward framing operator, to reduce a program, we associate each variable 
with a mark in its storage to identify its framing status in addition to its value and state mark. 
So a variable is stored in the form, (N am, Val, St, Fr). The parameter Nam and Val are simply 
the name and the value of the variable; St can be either c (current) or nx (next) or st (static); 
FT is f (framed) or nf (non-framed). As a program is reduced, a variable, say x, within the 
program takes two storages at every state. One is a current storage initialized to the form, 
(x,nil,c,nil), at the beginning of the initial state So. The other is a next storage initialized 
to the form, (x, Val, nx, Ass), with Val and Ass being nil at the beginning of every reduction 
state. As the reduction proceeds, these parameters will be updated at various states. The detail 
of the algorithm for changing these parameters is omitted here. 

When frame( x) occurs within the context of the program, we invoke the look forward 
framing operator. By FE2, the framing operator can be written as 

frame(x) == (more-+lff(x))A0frame(x) 

Thus, it is reduced to true if the final state is reached. Otherwise, we simply set a mark f in the 
current storage of x. This framing mark along with the status of the next assignment provides 
us with sufficient information to determine if the value of x is carried along to the next state, 
when the reduction is accomplished at the current state. When advancing to the next state, we 
check the two storages of each variable whose framing mark is f in its current storage. Three 
cases need considering: 

1. if the value in the next storage is nil, then we copy its value from the current storage to 
the next one; 

2. if the value in the next storage is the same as in the current storage, we do nothing; 

3. if the value in the next storage differs from the value in the current storage but the mark 
Ass = + in the next storage, we do nothing; 

Afterwards we release all of the current storages, and change the next storages to be the new 
current sto~ages at the next state. This can be done by changing nx to c, setting Fr to nil, 
and keeping all of the other parameters. The new next storage is initialized to (x, nil, nx, nil) 

for the variable x. 
A framed program is more efficient than a program without framing. For example, comparing 

program (2) with program (3) in Chapter 6, for the former, without framing, we have to reduce 
O(more-+Ox = x) from state to state; while for the latter, with framing, we need to reduce 
frame(x) with the whole reduction process. To reduce D(more-+Ox = x), first, we reduce 
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it to a form (more-Oz = z )A00 ( more-Oz = z). Subsequently, if the final state is not 
reached, more-Oz = z is, in turn, reduced to Ox = x otherwise to true. Afterwards if th 
final state is still not reached, we re?uce 0: = x by accessing to the value of z, and reducin; 
it to O(x = c) for some constant e In D. FInally, the whole formula is reduced to the normal 
form, O(x = eAO(more-Oz = x». The reduction process needs at least four reduction runs. 
Whereas, to reduce frame(z), a mark f is placed in the current storage of x in one reduction 
run. An assignment z :=+ e is reduced by taking almost the same amount of work as x := e 
except that we need to set Ass to + in the next storage of x. However, this does not increase 
the num?er o~ ~edu.ction runs. ~h~ extra work connected with frame( x) is to check the storages 
of x for InhentIng Its value. This IS fast because only one copy of the value of x in the current 
storage is required if x is framed and next value is nil. The following is a brief reduction of 
program (3) in Chapter 6: 

80: frame(x )A(x = lAy :=+ 2; y :=+ x + y) 
(x, nil, e, nil) (x, 1, e, I) 
(y, nil, e, nil) (y, nil, e, nil) 
(x, nil, nx, nil) -- (x, nil, nx, nil) 
(y,nil,nx, nil) (y,2,nx,+) 

.IJ. 
81 : frame(x )Ay :=+ x + y 

(x,l,e,nil) (x,I,e,1) 
(y, 2, e, nil) (y, 2, e, nil) 
(x,nil,nx,nil) -- (x, nil,nx, nil) 
(y, nil, nx, nil) (y, 3, nx, +) 

.IJ. 
82: frame( x )Aempty 

(x, 1, e, nil) 
(y, 3, e, nil) 
(x, nx, nil, nil) 
(y, nx, nil, nil) 

where - represents the reduction relation within one state, while .IJ. represents the relation 
between two states. Thus, it is clear that program (3) is more efficient than program (2) in 
Chapter 6. 

The restriction for ruling out the positive immediate assignments in programs is not a 
problem since this does not reduce the expressive power of the language but makes more concise 
and constructive programs. Moreover, for most imperative programming languages, assignment 
statements take a unit of time, so the restriction makes the transformation between framed 
Tempura (or FTLL) and imperative languages easier. 

However, the positive immediate assignment is a key formula in the framed Tempura, there
fore it should be permitted within a specification. If a program involves positive immediate 
assignments, the reduction of the program is somewhat complicated. 

(2) Implementing Framing in Programs with Positive Immediate Assignments 

In general, a program may involve any kind of assignments presented in Chapter 4 and Chapter 
6 including the positive immediate assignment. In this case, the basic assignment relevant to 
framing is the positive immediate assignment. To reduce a program, we also need two storages 
for a variable at every state except the initial one. However, a previous storage rather than the 
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next storage is required besides the current storage. As the reduction proceeds, these parameters 
are updated from state to state according to an algorithm which is omitted here. 

When frame( x) occurs within the context of the program, we invoke the look back framing 
operator. By FE2, the framing operator can be written as 

frame(x) == (more-Olbf(x»A0frame(x) 

Thus, it is reduced to true if the current state is the final state. Otherwise, we simply set a mark 
/ in the current storage of x. This framing mark and the assignment status of x at the next 
state provide us with useful information to determine if the value of x is carried along when the 
reduction advances to the next state. After progressing to the next state, we release the past 
storages, and change the current storages to be new past storages at the next state. 

However, since a program may involve the positive immediate assignments, from an op
erational point of view, we can not foresee the assignment status of a variable by the current 
knowledge at the present state because a positive immediate assignment may appear after a chop 
operator. For instance, to reduce the program frame(x) A x = 1 A skip; x -¢= 2 A Y :=+ x + 3, 
we can obtain a framing mark f in the current storage of x but cannot perceive the existence 
of x<=2 after the chop operator in an operational manner. To solve this problem, some syntax 
check algorithms are required. We omit the detail here. 

9.5 Conclusions 

The framing technique for variables can easily be generalized to arrays (or lists). In such a 
case, all elements of an array are treated as a single unit, so frame(A) means that all elements 
of array A are framed. For implementation of frame(A), only one framing mark is needed to 
associate with the array name A. Hence checking the framing mark for inheriting the value of 
A is very quick. In contrast with the repeated assignment approach to an array, the framing 
approach is clearly more efficient. 

A reduction may not involve any syntax checking if we rule out the positive immediate 
assignments within programs. Therefore, when we allow a program to invoke the positive im
mediate assignment, the reduction of the program is somewhat complicated. In practice, as a 
convention, positive immediate assignments could be ruled out in a program but can be used to 
specify high level executable specification. For most programs, this is not a problem. Finally, 
we conclude that framed programs are more concise, simpler, and easier to understand. In the 
case without positive immediate assignments, the implementation of a framed program is also 
more efficient than a program without framing. 

A question one can ask is why we need to introduce the previous operator in this thesis since 
/rame(x) == frame/ex) as Theorem 7.1 tells us. The answer is not obvious. Although, from a 
theoretical point of view (temporal semantical view), the framing operators involving next and 
previous operators are equivalent, the implementations (operational view) ofthem are different. 
Therefore, in addition to the well known reasons for introducing past operators to the temporal 
logic [54], there is also a particular reason for us to do so. That is, the reduction of the positive 
immediate assignment can be implemented in a manageable way. It is clear that the reduction 
of a program containing positive immediate assignments would be difficult without the previous 
operator. In such a case, we can only obtain a set of next assigned variables at the current state. 
However, a positive immediate assignment possibly occurs after a chop operator. It may.destroy 
the current view of the assignment status of a variable for the next state. Thus, a difficulty 
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ariseS when we determine if a value of a framed variable is carried along to the next state as the 
reduction advances. This indicates the fact that the previous operator is really needed for the 
framing. 

The reduction rules used in the framed interpreter are based on the logic laws and the min
imal model provided in the preceding chapters. The consistency between the framed interpreter 
and the minimal model semantics could also be discussed. However, a detailed justification of 
the problem lies outside the scope of the thesis and is left for futhure research. 
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Chapter 10 

Conclusion 

An extended propositional ITL, an extended first order ITL, a projection construct, an extended 
Tempura, a framing technique and a synchronous communication construct have been investig
ated in detailj a framed interpreter for the extended Tempura has also been briefly introduced. 
However, some issues need to be discussed further. This chapter is devoted to discussing them. 

10.1 Extended Propositional ITL 

• Although the extended propositional ITL is based on the original ITL, the semantics of 
EPITL is much different from PITL. First, the extension to include past operators destroys 
the logic law, emptYj P == p. That is, in general, emptYj P == P no longer holds. Second, 
the extension to use infinite models destroys the logic law, Pi empty == p. In other words, 
in general, Pi empty == p is not valid in EPITL. However, Pi emptYj q == Pi q holds and the 
association law, (Pi q)j r == pj (qj r), is still valid. 

• The negation of the chop construct, ...,(pj q), is hard to express in EITL. Instead, we use 
some weak laws (see Theorem 2.28) relevant to the negation of the chop construct rather 
than using yield operator [78, 60]. 

• The next operator refers to one state forward but not beyond the final state within an 
interval while the previous operator refers to one state backward but not beyond the first 
state within an interval. In fact, the chop operator (i) and the past chop (;) operator make 
the borders of sub-intervals over which the next and previous operators act. Barringer[ll] 
pointed out the possibility for extending choppy logic to use the previous operator in this 
manner. 

• We claim a number of times in the thesis that we extend ITL, in some sense, from an 
interval-based notation to a point-based notation. As seen, terms and formulas are inter
preted w.r.t. an interpretation (O',i,k,j) rather than an interval as in the original ITL. 
Unlike the original ITL, 0' is fixed in the notation (0', i, k, j) while a formula P is interpreted 
over 0'. To interpret p, we start with (0',0,0, 10'1) i subsequently, as the interpretation pro
ceeds, we interpret subformulas of p over some subintervals introduced by the partitions of 
0' obtained through the chop operators. The notation (0', i, k,j) provides us with the ne
cessary information: the first parameter 0' is the whole interval over which the full formula 
p is interpreted. That is, 0' represents the computation trace of formula p, whereas the 
other three parameters i, k and j specify a subinterval O'(i .. j) of 0' with the current state 
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being 81e over which a subformula of p is interpreted. When the interpretation proceeds, 
two situations may take place. In the first, the current position may swing forward or 
backward between 8i and 8j because the subformula may involve both the next and the 
previous operators in an arbitrary order. So parameters i and j serve as delimiters, while 
the parameter k is used as an indicator of the current position so that the move of the 
position can be consistent with the interpretation. Since the chop operator can be used 
recursively, another situation may occur in which a chop operator is involved in the sub
formula of pj it gives rise to the partition of the subinterval O'(; .. j) into two new subintervals 
O'(i .. h) and O'(h .. j) with the delimiters i, hand h,j respectively. The current position for the 
former is k while for the latter it is h in the future chop case. For the past chop case, the 
current position for the former is h while for the latter it is k. The change of the current 
state and the partition of intervals are all handled by means of increments or decrements 
in the values ofthe parameters i, k,j. In a sense, we generalize ITL from an interval-based 
notation to a point-based notation since we refer to no explicit subintervals but to points 
i, k, j, over a fixed interval. This could allow us to compare the extended logic system 
with a point-based linear temporal logic such as [66, 51] in an easy way and to formalize 
a proof system possibly by adding axioms concerning the chop operators to these existing 
systems . 

• In this thesis, EPITL has been studied within the model theory. A proof theory could be 
formulated. However, a lot of work is needed and this is beyond the scope of this thesis. 

10.2 Extended First Order ITL 

EITL has been developed based on EPITL. EITL is much different from the first order ITL . 

• A problem we need to point out is the use of nil. In most point-based temporal logics 
[51,66,53], a model is an infinite sequence of states. However, within EITL (and in the 
original ITL), the chop operators force us to use finite intervals as models in addition to 
infinite models. Thus, problems arise when we define the value of Ox at a final state and 
the value of 8x at a starting state. In this thesis, they are treated as undefined (denoted 
by nil). Introducing nil to the logic poses another problem: should we have nil = nil or 
nil", nil when we interpret the equality (=)? If we adopt the convention, nil = nil, then 
Oel = Oe2 == O(el = e2) does not hold at the final state and 8 el = 8 e2 == 8(el = e2) 
does not hold at the first state over an interval. This destroys some intuitions. On the other 
hand, however, if we make the convention, nil", nil, then it poses more problems since 
different equalities are needed to interpret terms and the equality (=) in the semantics, 
and some very useful laws such as replacement of equal term by equal term in a term does 
not hold. Within this thesis, for our purpose, we adopt nil = nil as a convention . 

• Another issue is a proof system for EITL. A lot of work is needed to develop a deductive 
system for EITL, and this is left for future research. 

10.3 Projection 

• The projection operator subsumes the chop operator as stated in Theorem 5.3. However, 
the projection operator is only defined as a future operator in this thesis. It is possible 
to define a projection over a subinterval 0'(; .. ;) with the current state being Sk so that the 
previous operator can be used. However, further research is required. 
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• The projection construct has a potential use in real time systems, especially, in hybrid 
systems [41, 4] consisting of continuous activities and discrete events. Intuitively, con
tinuous activities can be interpreted over a series of local but continuous intervals, while 
discrete events can be interpreted over a projected interval (discrete interval). Thus, the 
continuous activities and the discrete events can be mixed in a uniform way. Therefore, 
the projection construct is useful to handle hybrid systems. However, further research is 
needed to investigate the technical aspects in detail. 

10.4 Extended Tempura 

• In the thesis, we extended Tempura in several ways. However, the input, output state
ments, data types declaration statements and pointers are excluded. It seems that there is 
no straightforward way to include these statements in Tempura under the EITL notation. 
Further research is required to solve these problems. 

• In the dissertation, the temporal semantics of programs within the extended Tempura is 
investigated under the model theory. Operational and axiomatic semantics of programs 
are still waiting for further research. 

• Another very active research field is the real time programming. At the moment, the 
extended Tempura is concerned with a sequence of states without absolute time. We 
could find a way to extend Tempura to use time explicitly so that real time systems can 
be handled by Tempura. 

• The extended Tempura is not a deterministic language. A subset of deterministic programs 
in the extended Tempura can be defined. However, in this thesis, a formal definition of 
deterministic programs has not been given. 

10.5 Framing 

• Framing is managed in a default logic within this thesis. This inevitably leads to revisable 
reasoning [84] for framed programs. However, we have not investigated the revisable 
reasoning within EPITL and EITL. 

• Moreover, the narrative reasoning [67] may also be done with framed Tempura. Therefore, 
framed Tempura could be a useful tool in AI field. 

10.6 Synchronous Communication 

In the thesis, the await operator is defined with the help of framing, and a useful language FTLL 
is defined in EITL. 

• The language FTLL contains the extended Tempura as a sub-language. The hierarchy 
of the consistent three level languages: an extended logic language, a non-deterministic 
framed concurrent programming language (FTLL), and an extended Tempura, could facil
itate specifying, verifying and developing reactive systems in a more efficient and uniform 
way. From our experience, we believe that the framing operator and the minimal model 
semantics may enable us to narrow the gap between temporal logic programming languages 
and conventional programming languages in a realistic way. 
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• For synchronous communication, we have not found a way to handle the group statement 
which is useful to define P-V operation which is the traditional approach for solving the 
mutual exclusion problem. 

10.7 Interpreter 

Although the previous operator, the projection operator, the framing operator, and the await 
operator have all been implemented, and the frameci interpreter is workable, the current version 
of the interpreter is not complete. The domain includes only integers, and there is no library of 
functions etc. A compiler for the extended Tempura is also required. 

10.8 Comparison with other works 

The formalism presented in this thesis refers to Kroger's temporal logic [51], Manna and Pnueli's 
temporal logic [66], Lamport's TLA [53], Moszkowski's ITL [61] and others (e.g., [11, 24]). 

EITL is close to the original ITL. They share several common operators, such as the next 
(0) and chop (j). However, ITL is a linear temporal logic based on intervals of states. Its basic 
temporal operators are future operators, the next (0) and chop (j). A model of ITL is a finite 
interval of states. In contrast with ITL, EITL uses both future temporal operators, the next and 
chop, as well as past temporal operators, the previous (8) and past chop (;"). A model of EITL 
can be a finite or infinite interval of states. Furthermore, the semantics of EITL is different 
from ITL. The interpretations of terms and formulas in ITL are by means of intervals, whereas 
within EITL, they are interpreted over a fixed interval with changing current end points. Hence, 
EITL is a point-based linear temporal logic in this sense. Many constructs in EITL have the 
same names as in ITL. However, their meaning can be different. For instance, empty means a 
singleton interval in ITL, but it means that the right end of the current interval is reached in 
EITL. For projection constructs, p prj q in ITL and (Pt. ... ,Pm) prj q in EITL, their meaning 
is different, as discussed in Chapter 5. 

ITL has a simple proof system [62]. However, the model theory in ITL has not been explored. 
EITL provides model theories for both the propositional and first order logics. However, a proof 
system for EITL has not been formalised. 

Kroger's temporal logic is one of the earliest versions of temporal logic, and it is a main 
reference here. This logic includes future operators such as 0, 0, atnext and until, as the basic 
operators. A model of the logic is an infinite sequence of states. The logic has a substantial 
model theory and a proof system. Within the propositional logic, the completeness of the logic 
has been proved. However, no executable sub-set of the underlying logic has been formalised. 
This logic cannot handle the chop and projection constructs. Conversely, EITL cannot handle 
the atnext operator. 

Manna and Pnueli's temporal logic [66] includes both future operators, such as 0, 0 and 
U (until), and past operators, such as 8, 0 and S (since). A model of this logic is an infinite 
sequence of states. The definition of a state is similar to EITL. It also has a proof system. 
However, the model theory of this temporal logic has not been investigated in detail. It does 
not handle the chop and projection constructs. To verify programs, Manna and Pnueli define 
separately a programming language in the normal programming context rather than a sub-set 
of the underlying logic. It seems that EITL cannot handle until and since constructs. 
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Lamport's TLA [53] is a. simple temporal logic of actions. This logic includes the alwa.ys 
operator 0 as the basic future temporal operator. An important point we need to make is that 
Lamport [52] objects to the use of the next operator in a specification language, claiming that 
it enables the expression of distinctions between programs that should be considered equivalent. 
He consistently uses reflexive operators instead of the next operator. In this logic, fairness is 
investigated in detail. This logic has an executable sub-set and also a proof system. It cannot 
handle the chop and projection constructs, as well as the until and atnext constructs. In contrast 
with TLA, EITL does not deal with the fairness. 

The extended Tempura is close to the original Tempura and Hale's work [39]. Many state
ments ofthe extended Tempura are similar to the constructs ofthe original Tempura. However, 
the semantics of the language is given in EITL model theory. Moreover, the extended Tempura 
has a new projection statement (Pl, ... ,Pm) prj q and a communication and synchronization 
statement await(c) as well as the framing operator. These allow us to handle concurrent com
plex computations. 

Another temporal logic programming language, Tokio [32], is also based on ITL. This lan
guage combines temporal operators with Prolog. The extended Tempura does not refer to this 
language. 

The XYZ/E [79, 82] is one of the earliest temporal logic programming languages. This 
language is based on Manna and Pnueli's temporal logic [63]. Moreover, XYZ system consists 
of a temporal logic programming language XYZ/E as its basis, and a group of CASE tools 
to support various kinds of methodologies [83]. However, XYZ/E cannot handle the chop and 
projection constructs. 

The predominant approach to the extension of the logic programming paradigm to temporal 
logic is TEMPLOG [3]. In TEMPLOG, Temporal Horn Clauses, which can be categorised as 
either initial clauses (effectively if they contain start) or glob ale clauses, are restricted still 
further using the following constraints. 

1. The '0' operator cannot occur in the head of a clause. 

2. The '0' operator can only occur in the head of what are termed, initial definite permanent 
clauses, which can be characterised as 

De +- d, start, c. 

Gabbay developed the language USF [35], which follows an imperative future approach. The 
METATEM language [9, 29] is a development of USF consisting of a larger range of operators, a 
better defined execution mechanism [31] and a more practical normal form [30]. A METATEM 
program for controlling a process is presented as a collection of temporal rules. The rules apply 
universally in time and determine how the process progresses from one moment to the next. A 
temporal rule is given in the following clausal form 

past time antecedent implies present and future consequent 

These languages are significantly different from the extended Tempura. 
As this thesis was not intended to provide a survey of executable temporal logics, merely 

a comparison with some of the basic mechanisms, there are obviously languages utilising this 
paradigm that we have not mentioned. The other temporal programming languages can be 

found in [87,36, 14,80,48,55, 70]. 
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The framing technique presented in this thesis is concerned with framing in a particular 
manner in which framed and non-framed variables are mixed. This framing technique makes use 
ola framing operator /rame(x), an assignment flag a/ex) and a positive immediate assignment 
% <= e. 

The minimal model for framed Tempura is based on the minimal model (or fixed point) 
semantics [13] for logic programming languages and default logics [76,56, 57]. However, within 
logic programming, the minimal model is based on Herbrand model which applied to both 
variables and propositions. Within the extended Tempura, the minimal model is only applied 
to propositions. 

Considerable attention has been given to framing in recent years [68, 40, 53, 83, 39]; however, 
no intensive study has been done. 

Ness [68] claims that a framing technique has been used within L.O but no formal definition 
is presented. Hehner [40], Lamport [53], and Manna and Pnueli [66] define their programming 
languages implicitly using framing technique. As mentioned in Chapter 6, the assignment is 
defined as follows: 

x := e ~f x, = eAy: = Yi (l~i~m) 

where x is a variable, and x, represents the new value of x. Yl, ... , Ym which are different from x 
are all the other variables within a program. Intuitively, this means that whenever a variable x 
is assigned a value, the other variables remain stable. However, this method can only manage 
the case in which all variables are framed, and the conjunction of assignments is forbidden. 

Hale [39] first introduced explicitly, as far as we know, a framing technique based on inertial 
idea into the temporal logic programming area. However, no formal theory is presented to 
convince us that the technique works well. As he said in his thesis: '... but it has to be 
admitted that the definition is rather tricky, and has not yet been proved to work in all such 
programs'. 

Many other researchers deal with framing in a simplified manner, e.g. assuming the values 
of variables are automatically inherited [83]. 

The framed interpreter developed using SICSTUS Prolog is the first version including the 
framing, projection and await constructs. Hence, it is different from the interpreter written in 
C for Tempura developed by Hale [39]. 

10.9 Future Work 

In this section, we outline three main areas for our future research. 

10.9.1 A Proof System for EITL 

In this thesis, a collection oflogic laws for both the extended propositional ITL and the extended 
first order ITL have been formalised and proved. However, we have not worked out proof systems 
for EPITL and EITL. Therefore, we intend to formalise a deductive system for EPITL and EITL. 
This could be attempted by adding new axioms and inference rules to the existing proof systems 
such as those of Manna and Pnueli [66], Kroger [51] and Moszkowski [62]. 
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10.9.2 Axiomatic Semantics of the Extended Tempura 

In the thesis, we have investigated the temporal semantics of programs in the extended Tem
pura within the model theory. In particular, we have introduced the minimal model to capture 
temporal semantics of framed programs in the extended Tempura. As for conventional imperat
ive programming languages, we envisage that the semantics of programs and framed programs 
in the extended Tempura can be captured by an axiomatic system based on the proof system 
for EPITL. For framed programs, such a system would contain a default rule to capture the 
meaning of the minimal model semantics. 

10.9.3 Operational Semantics of the Extended Tempura 

The semantics of (framed) programs in the extended Tempura can be expressed in an operational 
style. To achieve this, we plan to formalise an inference rule system by following the approach 
advocated by Plotkin [74]. We expect that such an inference rule system would be close to the 
existing interpreter for Tempura programs. Moreover, we intend to investigate the consistency 
between the temporal, axiomatic and operational semantics of programs within the extended 
Tempura. 

Finally, we conclude that the thesis has successfully extended ITL to include infinite mod
els, past operators and new projection operator. The resulting extended Tempura is still a 
non-deterministic language, but we expect that a sufficiently general deterministic subset of the 
extended Tempura can be defined syntactically. The work on minimal model based temporal 
semantics of framed programs can provide a new direction for research in temporal logic pro
gramming. Although the substitution laws presented in Chapter 7 are sufficient for the purpose 
of the reduction of framed programs, additional substitution laws concerning the general case 
under the minimal model are required to carry out substitutions within the model in a more 
flexible manner. 
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Appendix 

Definition A.1 Two interpretations II = (O'b iI, kbil) and I2 = (0'2, i2, k2,h) are equivalent, 
denoted by II '" I 2, if for every term e, Il[e] = I 2[e], and for every formula p, II t= P iff I2 t= p. 

Let 0' be an interval, i, k, ib kl integers, and j,jl integers or w such that 0 ~ i l ~ i ~ k~j~jb 
then we can show (0', i, k,j) '" (0'(i1 .. M' i - ib k - il,j - i l ) (see Theorem A.l). 

Intuitively, the two interpretations use the same segment of 0', i.e. the sub-interval, < 
8i, •.• , 8; >, and refer to the same state sk as the current state. To prove the conclusion formally, 
Borne details regarding terms and formulas need considering. 

Theorem A.1 Let I = (0', i, k,j) and I' = (O'(i' .. i') , i - i', k - i',j - i') be interpretations with 
o ::; i' ~ i ~ k ~ j ~ j'. Then I '" I'. 

Proof 

Let e be a term, and p a formula. The proof proceeds by induction on the structure of terms 
and formulas. We first prove I[e] = I'[e]. 

• If e = c ED', then I[e] = c = I'[e]. 

• If e = x E V, then I[e] = Sk[X] = sk_dx] = I'[e], where s~,sL ... are the states of O'(i' .. i')· 

Suppose I[e] = I'[e] for any interval 0' and for all i, k,j, i',j', such that 0 ~ i' ~ i ~ k~j~j'~IO'I· 
Thus, 

• For a term of the form: Oe, if k < j, by the interpretation I-next, then I[Oe] = (0', i, k + 
1,j)[e] and I'[Oe] = (O'(i'..i') , i - i', k - i' + l,j - i')[e]. By hypothesis, (0', i, k + l,j)[e] = 
(O'(i' .. j') , i - i', k - i' + l,j - i')[e]. Hence, I[Oe] = I'[Oe]. 

If k = j, then I[Oe] = nil = I'[Oe]. 

• For a term of the form: 8e, if k > i, by the interpretation I-pre, then I[8e] = (0', i, k-
1,j)[e] and I'[8e] = (O'(i'..j'), i - i', k - i' - l,j - i')[e]. By hypothesis, (0', i, k - l,j)[e] = 
(CT(i'..;') , i - i', k - i' - l,j - i')[e]. Hence, I[8e] = I'[8e]. 

If k = i, then i - i' = k - i'. So, I[8e] = nil = I'[8e]. 

• For a term of the form: beg( e), I[beg( e)] = (0', i, i,j)[e] = (0'(" .. ;')' i - i', i - i',j - i')[e] = 
I'[beg( e)]. 

• For a term of the form: end(e), if j < w, then I[end(e)] = (CT, i,j,j)[e] and I'[end(e)] = 
(CT(i'..i') , i - i',j - i',j - i')[e]. By hypothesis, (0', i,j,j)[e] = (O'(" .. i')' i - i',j - i',j - i')[e]. 
Hence, I[end(e)] = I'[end(e)]. 

If j = w, then j - i' = w. Thus, I[end(e)] = nil = I'[end(e)]. 
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• For a term in the form of a function f( el, ... , em), notice that, by hypothesis, I[eh] = nil 
iff I'[eh] = nil for all h,1 ::s; h ::s; m. Thus, if I[eh] = I'[eh] = nil for some h 1 < h < m , - - , 
then I[J(el' ... , em)] = f(I[el], ... ,I[em)) = nil = f(I'[el], ... ,I'[em)) = I'[f(el. ... , em)]. 

On the other hand, if for all h, 1 ::s; h ::s; m, I[eh] f: nil, then, by hypothesis, I[eh] = I'[eh]. 
Thus, I[f( el, ... , em)] = f(I[el], ... , I[em)) = f(I'[el] , ... , I'(em)) = I'[J( el, .... , em)]. 

We now prove I F p iff I' F p. Note that, in the proof, we will frequently use the conclusion 
lIe] = I'[e] without clarification. 

• For a proposition p, I F p iff I;[P] = true iff I;k-i'[P] = true iff I'[P] F p. 

• For a predicate peel, ... , en), since I[eh] = I'[eh], for all h, 1 ::s; h ::s; n, ifthere exists a k, 1 ::s; 
k ::s; n,I[ek] = nil, then P(I[el], ... ,I[en)) = P(I'[el], ... ,I'[en)) = falsej otherwise, I F 
P(et, ... , en) iff P(I[el}, ... ,I[en)) = true iff P(I'[el], ... ,I'(en)) = true iff I' F P(et, ... , en). 

• For an equality el = e2, since I[eh] = I'[eh] for h = 1,2, I F el = e2 iff I[el] = I[e2] iff 
I'[e}] = I'h] iff I' F el = e2. 

Suppose I F p iff I' F p for any interval 0' and for all i, k,j, i',j', such that 0 ::s; i' ::s; i ::s; 
k~j~j'~lul. Thus, 

• For the formula "'p, we have, I F "'p iff I ~ p iff I' ~ p iff I' F "'p. 

• For the formula p 1\ q, I F p 1\ q iff I F p and I F q iff I' F p and I' F q iff I' F P 1\ q. 

• For a formula in the form: Op, IF Op iff i ::s; k < j and (0', i, k+l,j) F p. By hypothesis, 
(0', i, k + l,j) F p iff (u(i'..j'), i - i', k - i' + l,j - i') F p. Moreover, (U(i'..j') , i - i', k - i' + 
1,j - i'l F p iff I' FOP· Therefore, I FOP iff I' FOP· 

• For a formula in the form: (Jp, I F p iff i < k~j and (0', i, k - l,j) F p. By hypothesis, 
(0', i, k - 1,j) F p iff (U(i'..j') , i - i', k - i' - l,j - i') F p. Further, (U(i'"j') , i - i', k - i'-
1,j - i'l F p iff I' F (Jp. Therefore, I F (Jp iff I' F (Jp. 

• For a formula in the form pj q, we have I F pj q iff for some T, such that k ::s; T~j 
(u,i,k,T) F p and (U,T,T,j) F q. 

I' F pjq iff for some h, such that k - i' ::s; h~j - i' (U(i'"j,),i - i',k - i',h) F P and 
(u(i'"j,),h,h,j - i') F q. That is, for some T, such that k::S; T~j (T = h + i') (u(i'"j,),i
i', k - i', T - i'l F p and (U(il"j') , T - i', T - i',j - i') F q. 

Since 0 ::s; i' ::s; i ::s; k ::s; T ~ j' and 0 ::s; i' ::s; T ::s; T ~ j ~j' hold, by hypothesis, we obtain 

(0', i, k, T) F p iff (U(i'..j') , i - i', k - i', T - i'l F P 

(0', T, T,j) F q iff (U(i'"i') , T - i', T - i',j - i'l F q 

Therefore, IF pj q iff I' F pj q. 

• For a formula in the form p -; q, a similar proof can be given. 
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• For a formula in the form 3z : P, since < S~/' ... , sj, >(i-i/ .. i-i/)=< s~, ... , sj > and < 
8;1, ... ,8i' >(;-;I .. i-;/)=< s;"",si >, and, by hypothesis, (u',i,k,j) F P iff (u(i/ .. j/),i
i', k - i',j - i') F P, we have 

I1...3z:p iff forsomeu',(u',i,k,j)1...pwithu('·3·)~u'( .. ) ie <so s·>.!.<s' s'> r- r- u I •• J'· . 1, ••• , J - i' ... , j 

iff for some u', (U'(", ,'/), i - i', k - i',J' - i') 1... P with < s~ s'· > ~ < s· s· > .. r- I' ••. , J I, .•• , 1 

iff for some u', (u'(il ,'/), i - i', k - i', j - i') 1... P with < S~, S'·, >(. '1 • ,/)'!' .. r-. , ... , 3 .-•.. 3-' -

< Si/, ••• ,si' >(i-il .. j-i/ ) 

iff I' F 3z : p . 

• For a formula in the form (Pl. ... ,Pm) PTj q, we have, 

(u,i,k,j) F (Pl. ... 'Pm) PTj q 

iff there exist integers TO,Tb ... ,Tm-l and Tm E Nw such that TO = k and (u,i,k,j) F 
[Pl, ···,Pm](Tl, ... , Tm) and 

- Tm = j and u! (TO, ... , Th) F q for some h, 0 ::;; h::;; m or 

- Tm < j and u ! (TO, ... , Tm).U(rm+1..j) F q. 

That is, iff there exist integers TO, Tl. ... , Tm-l and Tm E Nw such that TO = k and 
(u, i, TO, Tt) F Pl and for all 1 < I ::;; m, (u, TI-l. TI-l, TI) F PI and 

- Tm = j and u! (TO, ... , Th) F q for some h, 0 ::;; h::;; m or 

- Tm < j and u ! (TO, ... , Tm).U(rm+1..j) F q. 

By induction hypothesis, we have, 

( . ) 1... 'ff ( .., k" ") L-U,~, TO, Tl r- Pl 1 U(i/ .. j/), ~ - " -', Tl -, r- PI. 

(u, TI-l. TI-l. TI) F PI iff (U(i' .. j/), TI-l - i', rl_l - i', rl - i') F PI for all I, 1 < I ::;; m, 

U!{ TO, ... , rh) F q iff U(i/ .. j/)!( ro - i', ... , rh - i') F q, 

u!( rO, ... , rm).U(rm+1 .. j) F q iff U(i/ .. j')!{ ro - i', ... , Tm - i').U(rm-i/+1..j-i/) F q. 

Thus, we obtain, 
(u,i,k,j) F (Pl. ... 'Pm) PTj q 

'ff .. , ., , ." ., d' - i' E N I there eXIst mtegers ro = ro - t ,rl = rl - , , ... , r m-l = Tm-l -, an T m - rm - w 

such that rb = k - i' and (O'(I'..j/) , i - i', rb, ri) F PI and (O'(I'..j/) , T,_1 , Tl_I' TD F PI for all 
1,1< I ::;; m and 

- U(i/ .. j/)!( rb, ... , r~) F q for some h, 0 ::;; h ::;; m or 

- O'(i/ .. j/)!{ rb, ... , r:n)'O'(rin+1..j-i /) F q. 

'ff h . ", and r'm E Nw such that TO' - k ;' and I' L-I t ere exist mtegers ro, rl' ... , r m-l - -. r-
[Pl. ... , Pm] ( ri, ... , r:n) and 

- U(i/ .. j/)l{rb, ... , r~) F q for some h, 0 ::;; h::;; m or 

- O'(i/ .. j')!( rb, ... , r:n).U(rin+1..j-i/) F q. 
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iff I' 1= (Pt. ···,Pm) prj q. 

• For a formula in the form p+, we have, 

Il=p+ iff there are finitely many TO, ... , Tn E N w (n~l) such that k = To::5Tl::5 ... ::5Tn_l 
~rn = j and (O',i,TO,Tl) 1= P and, for all 1 < I ::5 n,(O',Tl-toTl_toT,)l=p; or j = w and 
there are infinitely many integers k = TO ::5 Tl ::5 T2 ::5 ... such that .lim Ti = w and 

(O',i,TO, Tt}I=P and, for all I > 1, (0', Tl-t. Tl-l,Tl)I=P. 
...... 00 

By induction hypothesis, we have, 

(O',i, TO, Tl)l=p iff (O',i - i',To - i',Tl - i') 1= p, 

(0', Tl-l, Tl-to Tl)l=p iff (O'(i' .. j/) , Tl-l - i', Tl-l - i', T/ - i') 1= P for all I > 1 

Thus, we obtain, 

Il=p+ iff there are finitely many integers Tti = TO - i', ... , T~ = Tn - i' E N w (n~ 1) such 
that k - i' = Tti::5T~::5 ... ::5T~_l ~T~ = j - i' and (O'(i' .. p),i - i',Tti,TDl=p and, for all I, 
1 < I ::5 n, (O'(il .. j') , T:_1, T:_1, TDI=Pj 

or j = wand there are infinitely many integers k - i' = Tti = TO - i' ::5 T~ = Tl - i' ::5, ... , 
such that .lim T: = w, and (O',i - i',Tti,TDl=p, and for all I > 1, (O',Tf_l' Tf_l' TDl=p· 

...... 00 

iff I' 1= p+ 

o 

If i = i' and j = j' in Theorem A.l, then we obtain, 

Corollary A.2 (0', i, k, j) ,...., (O'(i .. j), 0, k - i, j - i). 
o 

The proof of Theorem 3.7 (continued) 

Let formulas Pi == P: (1 ::5 i ::5 m) and q == q'. We need to prove the following in addition to the 

proofs given in Theorem 2.7. 

1. 3x : q == 3x : q' 

2. (Ph ... , Pm) PTj q == (p~, ... , p~) PTj q' 

Let 0' be a model and k an integer, 0 ::5 k ~ 10'1· 

The proof of 1: 

(0',0, k, 10'1) 1= 3x : q <==> there exists 0", O"~O' , and (0",0, k, 10"1) 1= q 

there exists O",O"~O' , and (O",O,k, 10"1) 1= q' 

(0',0, k, 10'1) 1= 3x : q' 

The proof of 2: 
Let I = (O',O,k,j),j = 10'1· 
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ift'there exist integers Tt, ••• , Tm-l and Tm E Nw such that TO = k and (u i k J') L- f~_ P ](r r) , " r- 1J'l, ... , m 1, ... , m 
and 

• rm = j and u!(ro, ... ,rh) t= q for some h,O ~ h ~ m or 

• rm < j and U!(TO, . .. , Tm)'U(rm+1"j) t= q. 

Since Pi == 11; and q == t/, by hypothesis, we have 

I t= (Ph ... ,Pm) prj q 

iff there exist integers Th ... , Tm-l and Tm E Nw such that TO = k and (u i k J') L- f..,l ..,I ](rl r) , " r- ll'1' ···,I'm , ... , m 
and 

• rm = j and ul(To, ... ,Th) t= q' for some h,O ~ h ~ m or 

• Tm < j and u!(ro,.", Tm)'U(rm+1"j) t= q'. 

iff I t= (14, ... , p:n) prj q' 

o 
We now turn our attention to the laws regarding the chop plus and chop star. We first 

introduce two auxiliary definitions. 

Definition A.2 
1. pO def 

empty 

2. pI ¥ p 
pn def pjpn-l (n > 1) 

The semantics of pn can be given as follows: 

(u,i,k,j)t=pn iff there are extended finitely many integers ro, ... ,rn = j E Nw (n2:1) such 
that k = To~TI~ ... ~Tn-1 ~Tn and (u,i,To,Tt}t=P and, for all 1 < I ~ n,(u,TI-br'-bTI)t=P. 

Definition A.a 
We define an auxiliary formula poo. Its semantics is given as follows: 

(u, i, k, j) t= poo iff j = wand there are infinitely many integers k = TO ~ TI $ , .. such that 
,lim Ti = wand (u,i,ro, TI)t=P, and for all I > 1, (u,r,-bTI-bT,)t=P. 
1-00 

Thus, following conclusions are obviously true. 

Theorem A.a Let I = (u, i, k,j) be any interpretation. Then, 

1. I t= p+ iff I t= pn V poo for some n 2: 1 
2. I t= p* iff I t= pn V poo for some n 2: 0 

The following 'negative' conclusions regarding pi and poo are also obviously true, 

Theorem A.4 
NPW1. pOOjq 
N PW2. (pOO)OO 
NPW3. pO+i 

_ false 
false 

= pi+O _ pi does not hold 
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The logic laws regarding p" are given in Theorem A.5. 

Theorem A.5 
PW1. pijpi - pHi (i,j ~ 1) 
PW2. (pi)i pii (i,j ~ 1) 
PW3. pijpoo poo (i ~ 1) 
PW4. (pi)oo - poo (i ~ 1) 

Proof 

We prove only 4. Let u be an interval and k an integer, ° $ k ~ lui. 

(0",0, k, luI) F (pi)oo iff lui = wand there are infinitely many integers k = TO $ TI $ ... such 
that ,lim Ti = wand (U,0,To,T1) F pi and (U,TI-I.TI_1,TI) F pi for all 1 > 1. ._00 

(0",0,TO,T1) F pi iff there are finitely many integers Tg,T~, ••• ,T?_I and a T? = TI such 
that TO = Tg $ T~ $ ... $ Ttl ~ T? = T1 and (U,O,Tg,T~) F p and for all t, 1 < t $ i, 
(O",T~_I,T~_I,T~) F p. 

( ) L i·ff th fi ·t I . t 1-1 1-1 1-1 d 1-1 0", TI-1, TI-1, TI r- p 1 ere are ill e y many III egers TO , TI , ... , Ti-I an a Ti = TI 

h th t 1-1 < 1-1 < < 1-1 -< 1-1 d r all t 1 < <. ( 1-1 1-1 1-1) L-sue a TI-1=TO _T1 _ ... _Ti_1_ Ti =Tlan lor , _t_I, U,Tt_l,Tt_l,Tt r-
p. 

Thus, let TTix+1I = T; for x ~ ° and ° $ y $ i - 1. We have, 

(0",0, k, luI) F (pi)oo iff lui = wand there are infinitely many integers TTO, TTh ••. such 
that TTO = k and TTh $ TTh+l for all h ~ ° and ,lim TTi = wand (u, 0, TTO, TTl) F p and .-00 
(0", TTl-I. TTl-I. TTl) F p for aUl > 1. 

iff (u,O,k, lui) F poo. 
o 

Theorem A.6 
1. (p+)n:) p+ 

2. (p+)oo:J p+ 

Proof 

The proof of 1 

Let u be an interval, k an integer, ° $ k ~ lui, and I = (u,O,k, luI). The proof proceeds by 

induction on n. Thus, 

1. When n = 1 the conclusion is obviously true. 

2. Suppose when n = m ~ 1 the conclusion holds. That is, (p+)m :) p+. 
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3. When n = m + 1, we have, 

I F= (p+)m+1 

~ I F= P+j (p+)m definition A.2 

==> I F= p+ j p+ induction hypothesis, theorem 3.5 

~ (O',O,k,T) F= p+ and (O',T,T,IO'I) F= p+ for some T,k::S; T ~ 10'1 

~ (0',0, k, T) F= pi V poo for some j ;::: 1 and (0', T, T, 10'1) F= pI V poo for some I ;::: 1, 

and for some T,k::S; T ~ 10'1, theorem A.3 

~ (0',0, k, 10'1) F= (pi V poo)j (pI V pool for some j ;::: 1 and for some I ;::: 1 

~ I F= (pijpl) V (poojpl) V (pijpoo) V (poojpoo) for some j ;::: 1 and for some I;::: 1, 

FD9,10 

~ I F= pi+1 V poo for some j ;::: 1 and for some I ;::: 1, theorems AA, A.5 

~ I F= pi V poo for some i = j + I ;::: 2 

==> I F= ph V poo for some h ;::: 1 

~ I F= p+ theorem A.3 

The proof of 2 

Let 0' be an interval and k an integer, ° ::s; k ~ 10'1· 

iff 10'1 = wand there are infinitely many integers k = TO ::s; TI ::s; ... such that .lim Tj = w and ._00 
(0',0, TO, TI) F= (pi V pool and (0', TI-lo TI-lo TI) F= (pi V pOOl for all I > 1. 

Since (O',O,TO,TI) ~ poo and (O',TI_loTI_loTI) ~ poo for all I > 1, we obtain, 

This implies (0',0, k, 10'1) F= (pi)oo. By Theorem A.5 PW4, (0',0, k, 10'1) F= p+. 

Therefore (p+)oo :) p+. 

Theorem A.7 If p is a lee-formula, then 

1. (p*)n:) p* 
2. (p*)oo:) p+ 

Proof 

The proof of 1 
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Let f1 be an interval, k an integer, 0 :::; k ~ 1f11, and I = (f1,O,k, 10'1). The proof proceeds by 
induction on n. Thus, 

1. When n = 1 the conclusion is obviously true. 

2. Suppose when n = m ~ 1 the conclusion holds. That is, (p*)m J p*. 

3. When n = m + 1, we have, 

IF (p*)m+1 

{::::} IF p*j (p*)m definition A.2 

=> I F p"j p* induction hypothesis, theorem 3.5 

{::::} (0',0, k, T) F p" and (0', T, T, 10'1) F p" for some T, k:::; T ~ 10'1 

{::::} (0',0, k, T) F empty V pi V poo for some j ~ 1 and (0', T, T, 10'1) F empty V pi V poo 

for some I ~ 1, and for some T, k:::; T ~ 10'1, theorem A.3 

{::::} I F (empty V pi V pOO)j (empty V pi V pOO) for some j ~ 1 and for some I ~ 1 

{::::} I F (emptYj empty) V (pij empty) V (pOOj empty) V (emptYj pi) V (pij pi) V (poo;pl) 

V(emptyjpOO) V (pijpOO) V (pOO;pOO) for some j ~ 1 and for some I ~ 1, FD9,10 

{::::} I F empty V (pij empty) V pi V pi+1 V poo for some j ~ 1 and for some I ~ 1, 

EMPl, FEP2, theorems AA, A.5 

=> I F empty V (pi; empty) V (pi II DmoTe) V pi V pi+1 V poo for some j ~ 1 

and for some I ~ 1 

{::::} I F empty V pi V pi V pi+1 V poo for some j ~ 1, and for some I ~ 1, TER 

{::::} I F empty V ph V poo for some h ~ 1 

{::::} I F p" theorem A.3 

The proof of 2 

Let 0' be an interval and k an integer, ° :::; k ~ 10'1. 

(u, 0, k, 10'1) F (p")OO iff (0',0, k, 10'1) F (empty V p+)oo. 

iff 10'1 = w and there are infinitely many integers k = TO :::; TI :::; ••• such that .lim Tj = wand 
1-00 

(U,O,TO,TI) F (empty V p+) and (U,TI_t.TI_t.T,) F (empty V p+) for all I > 1. 

We now use the following algorithm to rule out some integers from the sequence of TO, TI, .••• 

1. if (f1, 0, TO, Tt) F empty but (0',0, TO, Tt) ~ p+, then we delete TO; 

2. for all I > 1, if (U,TI_t.TI_t.T,) F empty but (U,TI_t.TI_t.T,) ~ p+, then we delete TI-I; 
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(Note that, in the above algorithm, 1. whenever a ro or r'-t is deleted, an identical integer 
rl or r, is reservedj 2. whenever (O',O,rO,Tt) F= emptyAp+ or (O',O,ro,rt) F= more Ap+, and 
(0', r,-t. r,-t. Tl) F= empty A p+ or (0', r,-t. Tl-t. r,) F= more A p+, we do nothing.) 

Then, we obtain a sequence of integers ro, T~, ..• from ro, rt, '" by deleting some duplicates. 
Thus, ro, T~, ... is an infinite sequence of integers, and .lim rj = w and TO = k and rh :5 rh+t for 

'--00 
all h ~ 0. Furthermore, (O',O,ro,TD F= p+ and, for alii > 1, (O',rLt,r:_t,rD F= p+. 

This implies (0',0, k, 10'1) F= (p+)oo. By Theorem A.6 2, (0',0, k, 10'1) F= p+. 

Therefore (p*)OO :J p+. 0 

The proof of Theorem 2.26 (continued) 

The proof of p+jp:J pjp+ (FPS4) 

Let 0' be an interval and k an integer, ° :5 k ~ 10'1. 

(0',0, k, 10'1) F= p+ j p 

<==> (0',0, k, T) F p+ and (0', T, T, 10'1) F= p for some r, k :5 r ~ 10'1 

<==> (0',0, k, T) F= (pi V pOO) for some i ~ 1 and (0', T, T, 10'1) F= p, theorem A.3 

<==> (0',0, k, 10'1) F= (pi V pOO)j P for some i ~ 1 

<==> (O',O,k,IO'I)F= (pijp)V(pOOiP)forsomei~ I,FDI0 

<==> (O',O,k, 10'1) F= pHt for some i ~ 1, theorems AA, A.5 

<==> (0',0, k, 10'1) F= Pi pi for some i ~ 1, theorem A.5 

==> (0',0, k, 10'1) F Pi p+ pi :J p+, theorem 3.5 

The proof of Pi p+ :J P+i p+ (FPS5) 

Since p+ == pV (PiP+), so p:J p+. By Theorem 3.5, we obtain pjp+:J P+jP+· 

The proof of P+jP+ :J p+ (FPS6) 

This is an immediate consequence of Theorem A.6 (1). 

The proof of p++ == p+ (FPS7) 

Let 0' be an interval and k an integer, ° :5 k ~ 10'1. Since p++ == p+ V (p+ i p++), so p+ :J p++. 

Conversely, 
(0',0, k, 10'1) F p++ 

<==> (0',0, k, 10'1) F= (p+)i V (p+)OO for some j ~ 1 
==> (0',0, k, 10'1) F= p+ V p+ theorem A.6 

<==> (O',O,k,IO'I)FP+ 

Therefore, p++ == p+ . 

The proof of Theorem 2.26 (continued) 

The proof of p •• == p. (FST8) 
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Let (1 be an interval and k an integer, ° ::s; k ~ 1(11. 

p.. _ empty V (p.)+ 

== empty V p. V (p.; (p.)+) 

So p. :> p... Conversely, 

«(1,O,k, 1(11) F p** 

¢::::> «(1,0, k, 1(11) F empty V (p*)+ 

¢::::> «(1,0, k, 1(11) F empty V (p*)j V (p*)OO for some j ~ 1 

===> «(1,0, k, 1(11) F empty V p* V p+ theorem A.7 

¢::::> «(1,0, k, 1(11) F p* 

Therefore, p** == p" . 

o 
In a previous paper [22], we introduced a kind of validity of formulas as follows, if I F p, 

for every interpretation I, then p is valid. This is equivalent to say that Dp is valid in the sense 
of the validity defined within this thesis. We justify the claim in Theorem A.8. 

Theorem A.S Let p be a formula of EITL. Then the following are equivalent: 

1. I F p for every interpretation I. 

2. (1 F Dp for every model (1. 

Proof 

Suppose for every interpretation I, I F p. If there is a model (1 such that (1 ~ Dp, then 
(0',0, k, 1(11) ~ p for some k, ° ::s; k ~ 1(11. Thus, a contradiction arises. 

Conversely, suppose for every model 0', (1 FOp. That is, «(1,0, k, 1(11) F p for every (1 and 
all integers k, ° ::s; k ~ 1(11. If there is an interpretation I, I ~ p, then, there are (1, i, k,j 
and (O',i,k,j) ~ p. Thus, by Theorem A.l, we have «(1(i .. j),O,k,I(1(i .. j)1) ~ p. This causes a 
contradiction. 

o 
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