
REFERENCE RETRIEVAL BASED ON

USER INDUCED DYNAMIC CLUSTERING

Robert N. Oddy

Ph.D. Thesis

University of Newcastle upon Tyne, December 1974

ACKNOWLEDGMENTS

My chie~ debt is to Miss E.D.Barraclough, who has

been always ready to discuss the work, contributing many
•

stimulating ideas, and to provide encouragement. Next,

I should like to thank the staf~ and graduate students

o~ the Computing Laboratory; particularly Professor E.S.

Page, who gave me the opportunity to do the work, and

members o~ the OSTI-supported Medusa on-line information

retrieval project, who made data available for my

experiments.

I wish to thank those members of the staff of the

University Library who have an active interest in library

automation for numerous instructive and provocative

conversations. I have also benefited from contact with

many information and library specialists in other

institutions. I gratefully acknowledge the financial

support that I have received from the Office for Scientific

and Technical Information (OSTI).

My family have been far more patient and encouraging

than I had a right to expect and I am indebted to them all,

particularly my wife and children.

R.N.Oddy

11

ABSTRACT

The problem of mechanically retrieving references to

documents, as a first step to fulfilling the information

need of a researcher, is tackled through the design of an

interactive computer program. A view of reference retriev­

al is presented which embraces the browsing activity. In

fact, browsing is considered important and regarded as

ubiquitous. Thus, for successful retrieval (in many circum­

stances), a device which permits conversation is needed.

Approaches to automatic (delegated) retrieval are surveyed,

as are on-line systems which support interaction. This type

of interaction usually consists of iteration, under the

user's control, in the query formulation process.

A program has been constructed to tryout another

approach to man-machine dialogue in this field. The machine

builds a model of the user's interest, and chooses refer­

ences for display according to its current state. The model

is expressed in terms of the program's knowledge of the

literature of the field, namely a network of references ans

associated subject descriptors, authors and any other entity

of potential interest. The user need not formulate a query

- the model varies as a consequence of his reactions to

references shown to him. The model can be regarded as a

binary classification induced by the user's messages.

The program has been used experimentally with a small

collection of references and the structured vocabulary from

the kedlars system. A brief account of the program design

methodology is also given.

iii

CONT.i.:iTS

Chapter 1.

Chapter 2.

:IHTRODUCTION

REF.;sRENCE RETRIEVAL

1 •

1 .1

2.

2.1

The problem 16

Ignorance and uncertainty
Towards solutions 22

Indexing 23
2.2 Searching 28

17

2.2.1 Automation o~ delegated searching 31
2.2.2 Semantics 34

2.3 Associations and clusters 37

2.4 Interaction 44
2.4.1

2.5
3.

An example: Wedusa

Feedback 57
Summary 62

49

Chapter 3. INFORI·:.ATION HEURISTICS

1 • Dialogues ~or
Modelling the

The knowledge

reference retrieval
user's interest 68

base 68
Retrieval by association 77
j.~odel o~ context 79

65
2.

2.1
2.2

2.3

3.
3.1

Creation and maintenance of the model

Using the model 81

3.1.1 Document similarity
3.2 Displays and messages
3.3 Modifying the model

4. A search (example)

5. Summary 108

88

90

94
101

Chapter 4. FUNCTIONAL DESCRIPTION OF THO[,l.AS

1 •

1 • 1

1.2

2.

The "data base"
Labels 110

109

Lines in the supergraph

The model 113

iv

112

80

1

16

64

109

The user's stateI;Jent: GET UJER :.£SS:.GE
IlU'LUENCE STATE OF LOD:8L 122

118

3.2.1 Monitoring performance: COMPUTE_SCOP.L 122
3.2.2 Removing points from the context Lraph:

PRUNE CONTE"{T 123
3.2.3 Adding points to the context graph:

ADD TO COnTEXT 124
3.2.4 Incorporating textual requests:

FIND NODES 125

3.2.5 Establishing coherence:
UNIFY CONTEXT GRAPH 126

3.3 RESPOND TO USER 128
3.3.1 Using the context: PICK_A_DOCUMENT 130
3.3.2 DISPLAY SI~ILAR 131
3.3.3 REVIEW COURSE 134
3.4

4.
Other features of the program

Summary 137

136

Chapter 5. DATA RECOGNITION ~{D FILE ORGANIZATION 139

1. Matching user's requests in the data base 140
1.1 Partitioning the bibliographic labels 143
1.1.1 Proper name compression 146
1.1.2 Phrase compression 149
1.2 The matching process 153
2. File organization 156
2.1 File processing within MTS 164
2.2 Partition organization 165

3. Summary 172

Chapter 6. IMPLEj\~ENTATION

1 •

2.

Programming languages 174
The structure of the program 177

2.1 The "top-down" approach in use 179
2.2 Data structures 190
2.3 Implementation of data structures 192

2.4

3.

Use of storage 194
~anagement and documentation of the

programming 195
4. Summary 198

v

174

Chapter 7. P ERFORl,iANCE OF 'l'H3 PROGRAM 200

1 • General remarks 200

2. The test collection 205

3. The trials 211

4. Comparison with ~edusa 222

5. Further experiments 227

Chapter 8. CONCLUDING REi.:A.RKS 233

1 • The problem of scale 233
2. A summing-up 240

BIBLIOGRAPHY 244

vi

Chapter 1

INTRODUCTION

Retrieving references to books, papers, reports,

and all the other forms of documentation is part of

the job of a library system: prerequisite, in fact, to

delivering the actual books, or documents, to the

reader. It is a task that may be performed, partly or

in whole, by the library user himself, and its nature

will depend upon the requirement which prompted him to

go to the library, and the type of tools provided for

this purpose. We shall be discussing such a tool - an

interactive computer program - in the light of our view

of the underlying problems of reference retrieval.

Research workers' requirements for information

vary, according to the stage that their work has

reached. Sometimes one needs factual information, such

as is assembled in reference handbooks. At other times,

in contrast, one is nagged by an ill-defined need to

find stimulation either from literature or from

colleagues. There is a continuous spectrum of require­

ments between these two. The present work is concerned

with needs that have an element of ill-definition, and

that, perhaps, includes any that are not at the "factual"

extreme of the spectrum. We felt that it was important

to try to come to grips with the problem of serving a

library user who is not able to formulate a precise

query, and yet will recognize what he has been looking

for when he sees it. A man, left to his own devices

among the bookshelves, accomplishes searches of this

1

sort by browsing. Lancaster(1968) describes a type of

search which undoubtedly occurs frequently in

libraries:

"Personal searches tend to be browsing searches.
• •• Having found some promising references,
[the seeker] locates the documents cited and, from
the text and bibliographies of these, may be led
to other sources or made aware of additional
subject labels that might usefully be consulted in
the tools with which he began the search. During
this whole process, the 'information need' tends
to be modified, to a greater or lesser extent, by
what is found during the search, and the final set
of documents, accepted by the searcher as
'useful' in relation to his requirements, may be
somewhat different in character from the 'kinds'
of documents he visualized as useful when the
search commenced." - p181.

It seems that the notion of information in this

context is extremely complicated. The concept of

information has been discussed by Belkin(1974) and

Brookes(1974), and they require that a suitable defin-

ition should take account of the state of the recipi-

ent's knowledge. It is because the information

obtained (somehow) from a document alters the mental

state of the reader, that he can conduct th~ type of

browse described above. For the same reason, the

"information content" of a book is very likely to differ

from one reader to another. For the time being, there­

fore, ~t would seem that we need to read books and

other documents to obtain certain types of information;

and that fact retrieval from some kind of information

machine is not sufficient. In designing a mechanical

aid to literature searching, we should take the view

expressed by the eminent chemist, Lord Todd(1967):

"We must surely make the maximum use of computers
and associated automation, but if we carry it to
the point where the scientist no longer browses

2

in the Ii terature wi thout first of all for::.'llat­
ing questions then I beleive we shall do harm to
science." - p9.

For some requirements - and they are not uncom~on -

the ideal search strategy would appear to consist of a

visit to the shelves, and a perusal of the books

themselves. The difficulty, of course, is in determin­

ing an arrangement of the books which assists the user.

The arrangement should bring together literature on

similar topics but, for the purposes of browsing, it

need not take account of the fine detail in the subject

matter. Hierarchical classifications, such as that of

Dewey and the Universal Decimal Classification (UDC),

are frequently used by libraries to generate a shelf

order for the material. However, searching in the

shelves is generally regarded as myopic, except in the

smallest libraries, even though it is very often

effective. In a large library, books which are

potentially useful to one reader may be widely separ-

ated spacially, and the separation of the short, but

very important, documents published in the many period­

icals devoted to any particul&r subject is much more

pronounced~ Hence the need for reference retrieval.

The crucial characteristic of a reference retrieval

device is that it aims to help the user to make choices

from among unseen documents. The searcher wants a

document for the (subjective) information it contains,

so we have the very difficult problem of finding a

proxy for the information, which must be very much

smaller c~d more manipulable than the document itself.

We need a symbolic description of the docwnent - there

3

is no question of it being regarded as Gn alternative

form of the information contained in the docu~ent, in

the sense of information that we have in :""'ind here.

The most that we should aim for, at present, is a

substitute which the user will interpret as meaning

"this document may contain information I want". This

is what class numbers (Dewey, UDC, Library of Congress,

for example) and sets of keywords do for a document.

With a good descriptor language, documents which

are relevant to a searcher's problem will have descr­

iptions which he recognizes as being promising. The

emphasis is on recognition: we are not saying that a

query can be formulated in advance by the searcher to

match those same descriptions. It seems reasonable to

assume that there will be some similarity between the

descriptions of documents which are relevant to the

same query. But the nature of the similarity may be

very subtle and hard to recognize by anybody other than

the enquirer. In any case, conventional query formul­

ation attempts to predict the descriptions of the

required documents. These are the considerations that

led the present author to the design of a reference

retrieval system which offers no facilities for query

formulation, in the usual sense, and proceeds on the

basis of the user's reaction to references and document

descriptions which it shows him.

There is another important dimension to the

program design: it is the concept of dialogue used.

Frequently, an enquirer can satisfy his information

needs by talking to somebody with knowledge of an

4

appropriate subject. Telling him the broad area in

which the problem to be solved lies, is relatively easy.

Their dialogue (in which, by definitio~, each

participates) refines the region of enquiry, until the

subject expert understands the other's problem in his

own terms. He may then be able to offer information

which may lead to a solution. The dialogue is not

always a simple question-and-answer interchal!ge. The

subject expert may miss the point and give a solution

to the wrong problem; then the enquirer must bring him

back on course - he must learn through conversation in

what terms he should communicate his need. This is the

approach adopted for our reference retrieval program.

A computer program necessarily has a very limited view

of the world; that is, the "terms" in which it can

represent the user's problem area are rather primitive.

This program's "knowledge" base is a richly connected

network of references, subject terms and authors'

names. It forms a model of the searcher's interest,

derived from the network and continuously modified in

the light of his reactions to references, which have

been chosen for display accorcing to the state of the

model.

The program, named Thomas, was written for the

IBM 360/67 at the University of Newcastle upon Tyne,

and designed to communicate with a user at an 1£;.1 2260

CRT character display terminal. The bibliographic data

was obtained from the Medusa project in the Computing

Laboratory of the University, reorganized into the

network structure and accessed by the program from disk

5

storage. The literature covered is in t~e fielis of

medicine and biochemistry, and records origi~ated at

the US Na tional Library of I,iedicine as ~r:edlars

(Medical Literature Analysis and Retriey:..:.~ SysteJl)

records. The indexing vocabulary in Iledlars is

strictly controlled, and each subject term in our

network either belongs to that vocabulary, or is a

synonym added to the Medusa system by the Newcastle

team.

'!Ie now give a sample dialogue conducted by a

medical research worker - an anaesthetist. This

searcher was of the opinion that very few articles had

been written on his precise topic. However, we had

ensured that the test file contained references in his

broader field of interest.

We shall indicate the lines supplied by the

searcher by preceding them wi th the symbol ~. This

"start" symbol is used on the terminal to tell the user

that he is required to type his next input, but it does

not remain on the screen. A slight departure from the

genuine computer displays is made in the interests of

legibility in this printed form: we use the lower case

alphabet here, whereas the IBM 2260 terminals are

without those characters.

6

THOMAS, THE REFERENCE RETRIEVAL PROGRA!.:

Help can be obtained whenever the pre c;'am has I

displayed the start symbol by typing '?'
immediately after it.

Please give a short name for the search:
"Alv.Resp.

Start searching:
~ pulmonary alveoli

The user has named the search, so that pr~nted

output will be identifiable. He has then typed the term

for a subject related to his need. The program's model

of the user's interest is centred on the subject key-

word 'pulmonary alveoli', and includes a few references,

one of which is (carefully) chosen for immediate display:

Influence of fasting on blood gas tension, pH,
and related values in dogs.; Pickrell et aI, Am
J Vet Res,34,B05-B,Jun 73 -- -- --
1.J:"A.Pickrell, 2. J.L.Mauderly, 3. B.A.
Muggenburg, 4. U.C.Luft, 5. animal experiments,
6. animal feed, 7. arteries, B. blood, 9. body
temperature, 10. carbon dioxide, 11. dogs, 12.
fasting, 13. hemoglobin, 14. hydrogen-ion
concentration, 15. irrigation, 16. lung, 17.
oxygen, 1B. pulmonary alveoli, 19. respiration,
20. time factors

~?

The searcher's request for assistance is answered by a

display suited to this particular part of the

dialogue:

7

There can be three parts to your statement tall
optional):

1. Your reaction to the reference just sLown
(if any). This must come first:

"Yes" or
2. A selection from the

terms shown, by nurnber. A
signifies rejection of all
it.

"lio"
names (authors) or
"not" in the statement
numbers that follow

3. New
quotes).

names or terms (terms preferably in

The
separated
Examples:

elements of the statement should be
by commas.

'posture', 'circulatory system'
Yes, not 11,12
No, 7,13,4
'heart rate'
Yes

Press enter key when you are ready to proceed~

When he has finished with the instructions, the user

returns to the dialogue:

• • • 10. carbon dioxide, 11. dogs, 12.
fasting, 13. hemoglobin, 14. hydrogen-ion
concentration, 15. irrigation, 16. lung, 17.
oxygen, 18. pulmonary alveoli, 19. respiration,
20. time factors .?

"No, 10,17,19,20

The reference is not what he wants, although it has

interesting aspe~ts - carbon dioxide, oxygen,

respiration and time factors. The model changes, and a

new reference is displayed:

8

The arterial-alveolar nitrous oxide difference:
a measure of ventilation-perfusion mi:~atch
during anesthesia.; Markello et aI, Anesth J..nalg

Cleve ,52,347-50,May-Jun 73
• R.~arkello, 2. H.Schuder, 3. D.Schrader, 4. E.

White, 5. aged, 6. anesthesia, inhalation, 7.
blood, 8. carbon dioxide, 9. cardiac output, 10.
human, 11. hydrogen-ion concentration, 12.
methods, 13. middle age, 14. nitrous oxide, 15.
oxygen, 16. partial pressure, 17. pUlmonary
alveoli, 18. respiration, 19. surgery, operative,
20. time factors, 21. ventilation-perfusion ratio

~Yes

The enquirer was pleased to see this reference. It

appeared to be an authoritative account of a different

school of thinking on his own proble~. The effect of

his response is to enrich the model, drawing on the

"knowledge" base, in the region of this document.

A Posi ti ve EYld-Expiratory Pressure - t\asal-Assist
Device (PEEP-NAD) for treatment of respiratory
distress syndrolfie.; TunmlOns, Anesthesiology,38,
592-5,Jun 73
1. J.L.Tum~ons, 2. blood, 3. carbon dioxide, 4.
human, 5. hydrogen-ion concentration, 6. infant,
newborn, 7. masks, 8. methods, 9. nose, 10.
oxygen, 11. oxygen inhalation therapy, 12.
positive-pressure respiration, 13. respiration,
14. respiratory distress syndrome

~Yes, 13, not 6

He has mentioned 'respiration' for the second time now,

but that makes no difference. :~tice that the term that

he first thought of - 'pulmonary alveoli' - is absent

from this document's description.

Effects of continuous negative pressure on lung
mechanics in idiopathic respiratory distress
syndrome.; Baucalari et aI, Pediatrics,57,485-
93, ff.ar 73
1. E.Baucalari, 2. O.L.Garcia, 3. M.J.Jesse, 4.
bicarbonates, 5. carbon dioxide, 6. esophagus,
7. female, 8. gestational age, 9. human, 10.
hydrogen-ion concentration, 11. infant, newborn,
12. lung compliance, 13. male, 14. methods, 15.
oxygen, 16. partial pressure, 17. pulmonary
alveoli, 18. respiration, 19. respiration,
artificial, 20. respiratory distress syndrome,
21. ventilation-perfusion ratio, 22. vital
capacity

~ No, 19

This reference is judged not relevant, but the user

makes it known that artificial respiration interests

him. The term 'infant, newborn' (no.11) is present,

implying that the reference has been chosen for

display inspite of the fact that one of its descriptors

has previously been explicitly rejected by the user.

The assumption made about the user'8 intention when he

says tlnot X" is that he does not want references to be

selected on the basis of association with X, rather

than that he does not wish to see anything to do with

x.

Decrease in pulmonary capacity during lipid
infusion in healthy men.; Sundstrom et aI, J
~ Physiol,34,816-20,Jun 73
~.Sundstrom, 2. C.W.Zauner, 3. M.Arborelius,
4. adult, 5. carbon lilonoxide, 6. dietary fats,
7. human, 8. hyperlipemia, 9. male, 10. middle
age, 11. oils, 12. oxygen, 13. parental feeding,
14. pulmonary alveoli, 15. pulmonary diffusing
capacity, 16. respiration, 17. soy beans, 18.
triglycerides, 19. ventilation-perfusion ratio

~ [no reaction - user enters a null line]

10

~Phe searcher prefers not to comrni t r:il~,self to a

judgement on this reference. It is interestin[,

though not really pertinent to his present re1uire­

mente The model is not affected very much by this

type of response: the user is saying, in effect, "no

comment, give me another".

Cardiovascular function after pulmonary surgery.;
Wronne, rnt Anesthesiol Clin,10,27-39,',';inter 7~
1. B.Wronne, 2. adult, 3. aged, 4. arrhyth;nia,
5. blood pressure, 6. blood volume, 7. brO;lc'''.ial
neoplasms, 8. cardiac output, 9. cardiovascular
system, 10. human, 11. lung, 12. middle age,
13. postoperative complications

~No

Changes of venous admixture with inspired oxygen
in hyaline membrane disease and foetal aspiration
pneumonia.; Corbet et aI, Aust Paediatr J,9,25-
30,Feb 73 - -- -- -
1. A.J.Corbet, 2. EoD.Burnard, 30 anoxemia, 4.
fetal diseases, 5. human, 6. hyaline membrane
disease, 7. infant, newborn, 8. oxygen, 9.
pneumonia, aspiration, 10. pregnancy, 11.
pulmonary alveoli, 12. pulmonary circulation, 13.
respiration, 14. ventilation-perfusion ratio

.,No

The anti-atelectasis factor of the lung. I;
Lachmann et al,Z Erkr Atmungsorgane,137,267-87,
Feb 73 - - --
1. B.Lachmann, 2. Ko'Ninsel, 3. HoReutgen, 4.
animal experiments, 5. carbon dioxide, 6. extra­
corporeal circulation, 7. human, 8. lung, 9. lung
compliance, 10. mice, 11. microscopy, electron,
scanning, 12. models, theoretical, 130 pulmonary
alveoli, 14. pulmonary embolism, 15. pulmonary
surfactant, 16. rats, 17. respiration, 18.
respiration, artificial, 19. review, 20. surface
tension, 21. vagotomy, 22. ventilation-perfusion
ratio, 230 work of breathing

~Yes, not 11

1 1

The dialocue continued until a furt~er 15 references

had been displayed, as the user was obviously enjoying

it, but no more relevant ones were found. ·,Ve shall not

follow the search in detail through to t~~ point at

which the user felt that he had seen all that the

program had to offer. Before leaving the example, let

us jump forward a few steps in the dialogue. The

situation is that the user has rejected several

references in a row and the program, which measures its

own performance in the task of extracting favourable

reactions from the user, now makes an attempt to get

back on course. It shows him again a reference that

he has previously judged relevant:

We are not doing so well now. You may already
have the important references.
Please reconsider this document:

A Positive End-Expiratory Pressure - Hasal-Assist
Device (PEEP-NAD) for treatment of respiratory
distress syndrome.; Tummons, Anesthesiology,38,
592-5,Jun 73
1. J.L.Twnmons, 2. blood, •••

•
•
•

14. respiratory distress syndrome
~ No

Now, this judgement is a complete reversal of the

earlier one, so the program has not succeeded in its

course correction. The next display is:

12

We are not making progress.
Please reconsider this document:

The arterial-alveolar nitrous oxide dilference:
a measure of ventilation-perfusion mis~atch
during anesthesia.; Uarkello et aI, Anesth Analg
(Cleve),52,347-50,h:ay-Jun 73 --
1. H.~arkello, 2. R.Schuder, •••

•

18. respiration, 19. surgery, operative,
20. time factors, 21. ventilation-perfusion ratio

~ Yes, 1, no t 1 9 , 20

This was still the most important reference seen.

The user had noted that the term 'time factors' was

attached to several of the references, and had a wide

variety of meanings, so he now stated that he was no

longer interested in it. The response enabled the

program to display a few more new references on topics

in anaesthetics.

Naturally there are many aspects of the program

which are not illustrated in the dialogue above.

Nevertheless, it should give the reader an impression

of the simplicity of dialogues with program Thomas.

It can be seen that the program is not suitable in

itself for large-scale, exhaustive literature

searches. Even for such requirements, however, it may

be a useful tool for getting a search underway.

Finding a few references will help the searcher to

decide what he is looking for, and should also provide

a lead-in to the literature through chains of

citations.

13

A full description of the program co:-;mences in

Chapter 3, and occupies three chapters. Firstly,

there is an account and discussion of the design,

which attempts to explain why the program is the way it

is. This is followed, in Chapter 4, by a more formal

description, or specification, of the important features

of the data base and program. Methods of recognizing

subject terms, titles or names requested by the

searcher, and the way in w~ich the data base is

organized in storage are matters that have received no

mention so far in this introduction to the work. They

are dealt with in Chapter 5. The process of recogniz­

ing user-supplied data is that of finding the record

in the data"base which best matches that data.

Chapter 6 is something of a digression. It was

considered worthwhile to include an account pf the

methodology of design and programming used to imple­

ment Thomas. The principles of top-down, structured

programming were applied to the construction of the

software in a low-level language. The method was

successful for experimental programming in an

application field which does not fit conveniently

within the scope of any established progra~ming

language.

In Chapter 7, we discuss the retrieval perform­

ance of the program and present the results of the

trial searches. The evaluation of an on-line

information retrieval system is difficult. One must

decide whether to separate, for the purposes of

measurement, the machine's contribution from the

14

user's. If we do not, then we are regarding :he ~ser

as part of the system, and the evaluation must take i~~o

account his aims and performance. It has not been

possible to observe a significant number of genuine

searches, conducted by real users, within this project.

Before we embark on the material specific to our

own work, however, we present a view of the subject of

reference retrieval - the problems and some of the

techniques used to tackle them. Chapt~r 2 is devoted

to this.

15

Chapter 2

REFERENCE RETRIEVAL

1. The problem

Documentation, or "information science", is not a

discipline in its own right, but rather a problem

oriented field. Reference retrieval is one of the

problems in its domain: how can an individual, with a

desire to inform himself by reading, be aided in the

selection of satisfying material from a large docwnent

collection? It may not be at all easy to recognize,

objectively, a good solution (Kunz & Rittel,1972).

From the enquirer's point of view, a retrieval device

should not waste his time by presenting items that are

not to the point, and it should not withhold items

which would be influential in his current activities.

Several disciplines and technologies have been

brought to bear upon the problem, either in attempts

to understand it or to provide workable solutions:

various branches of mathematics, including logic (e.g.

Fairthorne 1961, NE~edham 1965, Hillman 1964, ::?ar-Hillel

1964); linguistics (reviews by ~ontgomery 1972 and Kay

& Sparck Jones 1971, for exrunple); psychology (e.g.

Farradane 1967, Miller 1968, Treu 1971); engineering in

various forms, including computer, co~unications and

optical hardware (e.g. Overhage & Reintjes 1974),

programming techniques and data organization (e.g.

Salton 1968), and systems engineering (e.g. Vickery ~j73,

Kraft 1973). There are as many statements of the problem

of reference retrieval, as approaches to the topic. ~e

16

, '_ , _, 6'{'

shall now try to five an expression of tt2 problem

which is more precise (and manipulable) than that Given

above. It is based on the arguments cone:. ·'ning the

classification of dynamic collections given by

Fairthorne(1956 and 1958).

1.1 Ignorance and uncertainty

Fairthorne brought Boolean algebraic models of the

retrieval process (from growing collections) into dis­

repute by pointing out that the principle of the

"excluded middle" is violated in any realistic classif­

ication. In classical sentence logic, the principle of

the excluded middle is that, for any proposition, p,

pV~p (i.e. p or not p) is a tautology. In other

words, a proposition, such as "document d belongs to

class All, is certainly either true or false. In reality,

a document (or its reference) may have been marked in

such a way that "the document belongs to class A" is

known to be true, or it may have a mark which tells us

that it does not belong to class A, or we may be in

ignorance about its status as regards class A. When

required to retrieve documents in cl~ss A, a system can

find all known to belong to A and either include or

exclude those about which it is really ignorant. If it

includes them it is said (in Fairthorne's terminology)

to be working in the all-but-not-only mode, otherwise

it is in the only-but-not-all mode.

A system of logic, founded by Brouwer, has been

developed tHeyting,1956) which rejects the principle

of the excluded middle. Perhaps the most meaningful

17

name for the subject, from our point of view, is

"constructivism". Fairthorne's and Hillman's reason

(Hillman,1968) for wishing to weaken the IO&ical model

of retrieval in this way was that Boolean algebra

"serves to prescribe decision operations only for those

collections in which the complement of any set always

exists and is, furthermore, describable."(Hillman,1968,

p221). The need for description, or the specification

of a construction, leads to problems when dealing with

infinite sets, unless the excluded middle is rejected.

We shall make limited use of these ideas; they just help

us to discuss the problem of reference retrieval. It is

difficult to view Brouwerian logic as a prescription for

a system.

A document collection is not an infinite set, but

the combination of documents and users as handled by an

effective retrieval system cannot realistically be

considered "closed". The ideal response to any partic­

ular query might be any of the subsets of the document

collection, and normally the collection will be growing

and the users changing. Figure 1 represents the

situation at any particular time with respect to a class

of documents, named A. C stands for the collection,

and should not be thought of as necessarily static.

The set K contains all documents which we kr-ow to belong

to A, and the set N contains all documents which we

know do not belong to A. Our (or the retrieval system's)

knowledge is that which is derivable from the marks

assigned to documents, by classifiers or indexers for

example. Let us use the symbol to denote the

18

c:
N:

,----
,- " / \

I

A: I , K: 0) \
"- / - ./

Figure 1.

ordinary Boolean complement; in this case

def
X = C - X

X is not necessarily constructible.

Our ignorance of the collection with respect to

class A is (K UN). This set contains, for example,

items that have not been classified, or have been

classified wrongly, or have not been indexed

sufficiently exhaustively for a decision to be made

about their inclusion in A, the class required by the

searcher. K and N are the only sets in the picture

which are well defined, but they are artificial: what

we wish to identify and retrieve is A. The problem of

a retrieval system is to make either K or N, or both,

converge to A.

To go into the problem further, we need to know

19

something about the nature of the searcher's certainty

that K S A or that N n A is erupty. First of all

we should dismiss the type of search (more likely to

be done by a librarian than a library customer) which

defines A to be that set of documents bearing some

particular mark, say 611·34. The searcher describes K

in the same way, and quite obviously A and K are co­

extensive; there is no problem. It is quite another

matter if the searcher defines A to be the set of

documents dealing with what he understands by the word

"intestines", say. If he accepts that the classifier

or indexer attaches to the word "intestines" a meaning

which is at least subsumed by his own understanding,

then he can define K as the set of documents which have

been assigned the index term INTESTINES, or the Dewey

class mark 611·34, knowing that K~ A (having

forfeited his right to deny it). He does not know

whether K = A. If he accepts that all the Dewey

numbers beginning with 611·34 are also used to classify

documents dealing with the subject as he understands it,

he can lay down a rule for constructing a larger K S A.

Now, although there must be some overlap in two

individuals' understanding of words, for verbal commun­

ication between them to be possible, the assumptions we

have made above are too strong to be plausible •. As a

result, we have only accounted for ignorance of the

membership of some documents in the sought-after class,

A. Factors such as lack of exbaustivity in indexing

may cause some documents to be undetectable in a search

for class A. If we make a weaker assumption about the

20

relationship between the meanings attached to a word

by two individuals (the searcher, and the classifier

interpreting the classification system), we can no

longer assume that the searcher knows that his forr:-I"J.I­

ation produces a K that is entirely contained in A.

We then have uncertainty that members of K are also in

A; and, similarly, that members of N are not in A. The

picture now looks like figure 2. K and N are still the

c:

.-
'" /

I

A: I

I
\

'\. ./ , .,.

Figure 2.

well defined sets and are therefore still disjoint.

However, if we retrieve K we no longer get "only but not

a~lu, and if we retrieve N we no longer get "all but not

only". Fundamentally, however, the problem is still the

same: attempt to bring either K or N into coincidence

with A.

We have been very vague about the class A. It has

been defined as the set of documents being sought by a

particular user, and it has been noted that it might be

21

any member of the power set of C, the doc~~ent col10c~­

ion. The concept of relevance is clearly involved here,

and the debate in the literature on that topic is by no

means concluded (for recent contributions, see Kemp

1974, Wilson 1973, Weiler 1973, D.J.Foskett 1~72). So,

for the time being, we must remain vague about A: that

is why Brouwerian logic was introduced into the present

discussion. But we can say a little more atout it.

The class A is a maximal set of documents, all of which

the searcher will consider pertinent. It is not

necessarily unique - the composition of the set may

depend upon the order in which the searcher is present­

ed with the references. It is maximal in that an enqu­

irer will stop searching when his need for information

is satisfied. Both of these aspects are related to the

knowledge of the searcher at the beginning of the

retrieval process, and the changes it undergoes during

the search. Attempts to formalize the relationship

between information and knowledge are being made by,

for instance, Brookes(1974) and Belkin(1974).

2. Towards solutions

We have expressed the problem in terms of the

necessity of specifying either a set K of documents

"known" to be contained in A, the set which the searcher

is after, or a set N "known" to contain A. To introduce

the confusion that exists in real reference retrieval

systems, we have pointed out that there is some degree

of uncertainty in our knowledge that K ~ A or A S ~~.

In practice, if we insist on a high degree of certainty,

22

then K is usually very small and N is very l~rge.

The two most widely used me2sures of retrieval

performance are precision, the proportion of retrieved

references that are relevant, and recall, the

proportion of relevant references in the collection

that are retrieved. If the searcher uses a fairly

certain definition for K, he IDay miss alot (low

recall), but he will find little that is not relevant,

i.e. he should get high precision. If, on the other

hand, he is prepared to use a K which is less certain,

he may be able to reduce his "ignorance" and thus

obtain higher recall, but the uncertainty tends to

reduce precision. Thus, there is a tendency for recall

and precision to be inversely related, though this

statement should be treated with caution (Cleverdon,

1972). We have discussed the isolated search. A

system's performance is peculiar to the search and

depends upon the way the system's features relate to the

particular A sought.

The important features of a reference retrieval

system, in the context of the present discussion are

(i) the indexing language, which places ultimate limits

on the definitions that can be given for the set,

K, and

(ii) the searching facilities, which determine how

much of the potential power of the indexing

language is usable.

2.1 Indexing

A detailed discussion of indexing is not within the

23

scope of this thesis. The topic is given extensive

coverage in A.C.Foskett(1971), Lancaster(1972) and

Vickery(1973). Lancaster(1968) describes "subject

indexing as a two-step operation:

1. Deciding what a document is about (i.e. its
subject matter);

2. Translating this conceptual analysis into index
terms which act as shorthand symbols, or labels,
for the subject matter of the document." - p3.

He points out that the interests of the intended users

should influence the indexing. The symbols are taken,

traditionally, from the vocabulary of an indexing

language, which often also makes explicit a set of

relationships between the symbols. Most British

academic libraties use a "decimal classification" (e.g.

UDC - British Standards Institution,1963), in which the

vocabulary is strictly controlled and the relationships

are implicit in the numerical symbols used. Further

digits are added to a symbol for lower levels in the

hierarchy. Other indexing schemes use words and

phrases which occur in the natural discourse concer~ing

the subjects represented in the collection. The vocab­

ulary may be controll~d by the use of a thesaurus,

which will also give relationships between entries,

such as "broader term~, "narrower term" and cross-

-references. Some vocabularies are virtually uncontrol-

led: terffiS are taken from the titles, abstracts and even

texts of documents in the collection. It is not easy

to set up relationships between terms in such systems.

K.P.Jones(1971) gives an interesting discussion of

relationships in thesauri.

Another dichotomy in indexing techniques is the one

24

between the "pre-coordinate" and "post-coordinate"

types - the dividing line is not very clear. In a

system employing pre-coordination, each document is

indexed by few terms, standing for complex concepts.'

To retrieve a document, a search formulation must specify

the terms for component concepts in recognizably the same

combination as was used to index it. In a post­

-coordinate system, more terms for simpler concepts are

posted to each document and various combinations of

them are coordinated at retrieval time, thus Giving the

searcher more versatility at the cost of greater scope

for ambiguity ("false coordination" in the jargon of

indexing). We have skated over the very involved

topic of classification and indexing, giving brief,

uncritical attention in very general terms to some of

the major themes. A substantial experiment to evaluate

the various commonly used methods relative to each other

was done by Cleverdon et al(1966), and another, more

recently, by Keen(1973).

Using the picture of the retrieval problem given

i~ figure 2, we can now point out what various possible

attributes of an indexing method can do to performance,

i.e. to increase either the recall or the precision

ratio.

Firstly, recall devices. These reduce the level

of ignorance in the system. For any particular search,

they allow us to specify a larger set, K, of documents

which we can expect to lie within the required class,

A, with some degree of certainty.

(i) Exhaustive indexing (discussed recently from the

25

statistical point of view by Sparck Jon~3,1373b).

Terms for all topics covered in the docu;i,ent

should be included in its de~ption: the indexer

does not know for certain what aspect of a

document the searcher will find important.

(ii) Richly connected thesaurus. If, in determining

K, we are to be able to infer from a search

prescription, that a document which is not indexed

with terms appearing in the prescription is, never­

theless, in A, then we shall need connections

between terms in a thesaurus.

(iii) Specific indexing. Indexers are usually instructed

to use the most specific term available to describe

a topic (e.g. MEDLARS, see Lancaster,1969). This

allows inferences based on class inclusion to be

made.

Now we move on to precision devices. Uncertainty

in the definition of K should be reduced by these.

(i) Choice of symbols. Vocabulary should be well

accepted by practitioners in the subject field

(Lancaster,1972, pp27-37).

(ii) Qualification of various uses of a word, so that

meanings are not confounded.

(iii) Specific indexing tsee iii, above). Needed because

specific terms cannot be deduced from broader ones.

tiv) Term weighting (Maron & Kuhns 1960, Sparck Jones

1973, Salton & Yang 1973, Robertson 1974).

Numerical weights associated with the terms

aSSigned to a document can tell us which are the

important topics covered or which terms are more

26

discriminating in the collection as a A.tOle.

(The zoologist who is interested in ra~s Jer se ---
will not wish to encounter every eX?~~is0nt that

has used rats. A system which enabled hiffi to

attach hiGh weighting to the term RAT would give

him better precision).

(v) Pre-coordination. This involves the indexer in

specifying the relationships between concepts as

expressed in the document. False coordination

during search is reduced. Flexibility at the

search stage is the main problem. Some sort of

formal syntax must be used (e.g. Farradane et al

1973, Austin 1974, Coates 1~73).

In comparison with the above, it is interesting to

review Lancaster's list of "principle causes of seerch

failure in information retrieval systems" (Lancaster &

Fayan,1973, p141). His categorization is based on

detailed analysis of failures during the MEDLARS eval­

uation (Lancaster,1~69). Slight changes in terminology

have been made for convenience.

Recall failures Precision failures

Index language Lack of specific Lack of specific

terms terms

Inadequate thes- Defects in hierarchy

aurus structure False coordinations

Pre-coordination Incorrect pre-

causing »over- -coordination

preciseness"

Indexing Lack of Exhaustive indexing,

specificity causing retrieval

27

Searching

User/System

interface

Lack of

exhaustivity

Omission of

important

concepts

Use of inappropr­

iate terms

Failure to cover

all reasonable

approaches to

retrieval

Strategy too

exhaustive

Strategy too

specific

Request more

specific than

actual inform­

ation need

on perip:.-:Tal

topics

Use of in~?propr­

iate terns

Strategy not

sufficiently

exhaustive

Strategy not

sufficiently

specific

Use of inappropr­

iate terms

Defects in

search logic

Request more

general than

actuel inform­

ation need

The failures listed beside "searching" and "user/system

interface" describe the ways in wnich a user can go

wrong in defining K (or N, if he is searching by

rejection).

2.2 Searching

Indexing or classification - the process of

characterizing documents for reference retrieval - is

the crucial operation in a bibliographic information

28

system. The preceding account eives SOlne of tte

general notions and, because search techniq~es i:re so

dependent on indexing, this section will quite frequent­

ly digress into the topic of indexing. L seorch

strategy takes advantage of the available docuJ1ent

descriptions with the object of satisfying the need that

prompted the user to search the literature. The

strategy used will depend on the type of need and the

amount of effort available for the search as well as the

theoretical possibilities afforded by the indexing.

When all searching was done manually, it was

generally considered that users of libraries would be

served best by a hierarchically classified collection.

By choosing, at each level of the hierarchy, the class

that best matches the field of interest, the searcher

can home in-on a small set of potentially useful

documents without even considering most topics covered

by the collection. However, no hierarchical classific-

ation can suit all searches, and there will be occasions

when it is necessary to extend the search across many

branches of the tree. An interesting discussion on

the nature of classification for retrieval is given by

Sparck Jones(1970).

Post-coordinate indexing is an attempt at document

description without an ~ priori hierarchy of classes.

In its simplest form, each document is assigned a set

of keywords, and a search formulation must specify

which combinations of keywords an acceptable document
.

should have. The so called "Boolean search" formulation

is, perhaps, the most frequently used. Terms are

29

comtined by logical connectives; for example

BIBLIOIJlETRICS £!: (STATISTICS and .00CUliiBii:L']..TION)

would be used to select references which had been

indexed either with the term BIBLIOl.:ETRIC.s or wi th both

STATISTICS and DOCUMEllTATIOll. Another commonly used

type of strategy is known as the "quorum search".

The searcher specifies a list of terms and says how

many of them must be present in the description of a

document for it to be retrieved. One might, for example,

require any two (or more) of the following four terms:

RELEVANCE, PERTINENCE, SUBJECTIVE, SIGIUFICP_NCE.

This is a special case of the technique of linear

associative retrieval, in which a measure of similarity

between possibly weighted query terms and document

descriptions is used to rank documents by "closeness"

to the query. Performing these types of coordination

by hand is laborious and such methods did not become

widespread until the advent of machinery to aid the

task. Among the earliest mechanical systems were

optical coincidence cards (Batten,1947), and edge­

-notched cards (Mooers,1951). The former is an

inverted file - a card for each subject term - and many

computer-based systems employ the same principle in

their file organization (Lefkovitz,1969). ~ooersl

system is a mechanical version of content-addressable

memory. Linguistic problems are more serious in post­

-coordinate indexing: an example, false coordination,

has already been mentioned.

Pre-coordinate systems are linguistically more

satisfactory for the human searcher, because the syntax

30

in the description makes the relationships tetwcen the

component concepts clear. The linguistic subtleties

make automatic searching difficult, however.

2.2.1 Automation of delegated searching

Now, having given the general picture, we shall

concentrate on aspects of the automation of reference

retrieval. Very nearly every text on information

retrieval begins by pointing to the "information

explosion" as an urgent reason to enlist the aid of

fast machinery. They are probably right. Both the

literature and the user population are growing, so the

total volume of indexing increases, and so should its

complexity. Searches also become ever more arduous as

more discrimination is needed. If we are to delegate

a substantial portion of the work to a machine, we must

either give the machine linguistic skills (particularly

in the area of senlantics), or we must find efficient

ways of dividing the tasks between man and macLine

(Doyle,1965). The questions to be answered are: how

should the user express his need? having answered that,

how should the collection be described? then, what

search strategies and matching algorithms should be

applied?

The answer most frequently given to the first

question is "in whatever way seems natural to him".

~oyne(1969) gives reasons for using a natural language

to express queries. Apart from ease of use by casual

users, he points out that "natural languages are highly

economical and efficient systemS" for communication of

31

complex messages. There is nothing new here: sfccial­

ized information services have received queries in

natural prose for a long time. An information worker

constructs a formal query, using all his knowledge of

the document collection and its descriptive adjuncts _

this is called IIdelegated searching". In fact, he will

analyse the query in much the same way that the

documents have been analysed on entry to the system.

Automatic systems exist which emulate this type of

service. Abstracts or full text of documents are

prepared for machine reading, and analysed for content

indicators; requests are treated in the same way, and

the resulting representation compared against the

document descriptions. The most exhaustively documented

system of this type is a versatile collection of experi­

mental modules called the SMART system (Salton,1971).

Numerous comparisons have been made between system

performances observed with various linguistic algorithms,

ranging from simple word stem extraction, through the

use of thesauri to normalize vocabulary, to the const-

ruction of parse trees for phrases. Retrieval is

usually performed in SL~RT by ranking the whole collect­

ion l100 - 1000 documents) according to their si~ilarity . -

to the request; documents within a certain distance of

the. top of the list are considered retrieved. The more

complex syntactic representations which were prominent

in earlier papers (Salton 1962, Salton & Sussenguth 1964,

Salton 1966) have produced disappointing results: "when

the phrase generation procedures using simplified

syntax are compared with other, simpler, content analysis

32

methods which include no structural or semantic

components, the surprising co~clusion is that on the

average better results are obtainable without the

syntactic components than with them." (Salton,1973,

pp259-60). Montgomery(1972) is highly critical of the

syntax analysis procedures used in SMART, however, so

Salton's conclusion may not be so surprising. As for

the more straightforward processes, which reduce

documents and query to weighted term vectors, Salton

(1972) shows that they give results comparable to those

obtained by conventional human indexing and Boolean

searching (with a collection of 450 documents).

Another system which handles natural language

(documents and queries) is BRO'NSER (Williams, 1969).

Significant terms are extracted from the text using a

dictionary of "root words". Dictionary entries have

tlinformation values" attached to them which vary

inversely as the total number of occurrences of the

root word in the document corpus - they are indicative

of the usefulness of the term in searching. Sparck

Jones(1972b) defines "term specificity" in a very

similar way li.e. as a statistic associated with a

term's usage in a set of document descriptions).

A rather more complex linguistic analysis is

performed by the LEADER1~RT system lHillman,1973 and

1968). Sentences are decomposed into logical relations

between noun phrases. The noun phrases, it is presumed,

are what the sentence (and its containing document or

query) is about, and the relations involved determine a

weighting for the noun phrases, as well as providing

33

inrormation for partitioning the collecti~n (i.e.

classifying it).

The descriptions, above, of the three systems -

Sl.iART, BRO·.'/SER and LEADERMART - are, of co ~l.:se, inco:np­

lete; we have concentrated on what they do to t~eir

natural language input. Their common feature is that

they process requests in the same way as the document

texts in their files, which is the answer to our second

question - how should the collection be described? - if

we assume that the user should indeed express his need

lto an automatic system) in his natural language. So

the indexer has disappeared from the scene, and the

author is communicating directly with the potential

reader. Now that each is using his own language (with

no interposed, controlled indexing language), the third

question - what search strategies and matching algor­

ithms should be applied? - has no simple answer. We

need to know precisely what are the connections between

the words (symbols) we use and the concepts we are

trying to communicate, and that is the province of

semantics.

2.2.2 Semantics

The discussion, here, of semantics will be very

brief: there are many review articles which cover the

subject (Kuno 1966, Bobrow et al 1967a, Ii:ontgomery 1969,

Kay & Sparck Jones 1971, Pacak & Pratt 1971, Montgomery

1972). All of these reviewers are interested in making

linguistics work in the development of man-machine

communication, and all lament the lack of guidance from

34

theoretical studies, particularly studies of semantics.

Among theoretical linguists, semantics has received

comparatively little attention, and every p~ominent

semanticist has his own theory. One significant

common thread that runs through all the work in this

field is that an important aspect of the meaning of

words is the relationships they contract with each

other. Whether the relationships determine the

meanings (Lyons,1968), or vice versa (Katz & Fc,rjor,1963)

is a matter for debate, as is the question of the nature

of the relationships; whether they can be classified

into types - e.g. synonymy, antonymy, inclusion -

,(Sparck Jones, 1965).

On the practical plane, it has been shown that a

certain amount of "understanding ll can be displayed by

programs which manipulate networks of words (Quillian

1968, Simmons et al 1968, Simmons & Slocum 1972).

However, although it is clear that the environment of a

word in a simple (though large) network can be highly

suggestive of its meaning to a human observer (Doyle

1961, and see figure 3 for an illustration), much more

is needed to tell him (or a machine) how to use the

word. The success of Winograd's program SHRDLU

(Winograd,1972), supports the intuitively obvious

hypothesis that the understanding of natural languages

(i.e. that which brings forth an appropriate response

to a message conveyed in a natural language) demands

knowledge of the area of discourse, wuich includes the

discourse itself, and the ability to solve problems in

that area. The meanings of words are embodied in

35

Figure 3. The verbal environment of "relevance".
All the associations drawn in this picture
were taken from Roget's Thesaurus (Penguin
edition). The reader may judge how much of
the meaning of the words is evident from the
figure. The present author is reminded, by
it, o~ much of the substance of recent
published discussions on relevance in the
information retrieval context.

36

procedures, wLich may invoke rr.anipula tion of n.s

program t s model of the world. If it is true t:i<J. t

proper use of natural languages cannot be divJrced from

other mental activity, and knowledge, then we must make

do with much less in our mechanical intermediaries

between author and reader. The amount of knowledge

handled by a useful information service is vast.

So, although relatively simple syntactic analysis

of document texts may produce acceptable symbolic

characterizations (by conventional standards), one

should not yet expect enormous benefits from using

natural language as a medium for expressing a search

request. Successful operational systems which use this

mode of communication (BRO"NSER and LEAD3R;,~I!.RT, for

instance) probably depend for success more on inter­

action with the user, on-line, than on their ability to

make something of his English. We shall come back to

the question of interaction in a later section, but

first we consider some of the uses to which relation­

ships between words have been put, in attempts to

enhance reference retrieval performance.

2.3 Associations and clusters

A great deal of work has been done on the

discovery and use of associations between words, and

other entities involved in reference retrieval. The

background to this activity, linguistic, psychological

and philosophical, has been discussed by P.E.Jones(1965),

and Tague(1970) has written a useful review.

37

Associations occur in various ways:

(i) "Semantic" relations between words. Hierarchies

and cross-references in subject catclogues and

thesauri for information retrieval (K.P.Jones

1971, Sparck Jones 1972a). These are the

plausible relations: we tend to think of them as

inevitable, derivable from the nature of the

world. This is probably largely illusory, as

indicated by the fact that classifications

become out of date and vary from one licrary to

another.

(ii) Statistical relations between words. This is an

association with a measure instead of a type.

Words are meaningfully associated if they tend to

co-occur (Doyle 1961, ;,:aron & Kuhns 1960 are prime

examples among many who assert this). If the

tendency is strong enough, the words can be

regarded as synonyms for retrieval purposes

because, used as index terms, they are nearly

interchangeable - this is the justification for

the keyword classification procedures used by

Sparck Jones(1971). Suppose, now, that we find

the words-which tend to co-occur with the statist­

ical associates of a particular word. These are

what Stiles(1961) called "second e;eneration terr:ls",

and are the words which tend to occur in the same

context as the original word. Some of them will

be synonyms of that word, in the linguist's sense

(Sparck Jones,1965). The ideas of semantic and

statistical second generation links were brought

38

together by Gotlieb & Kumar(1968) when they

analysed the statistical association of pairs of

terms in the Library of Congress subject headings,

using the existing hierarchy and cross-references

without distinguishing between the types of relat­

ionships. A large scale statistical term associ­

ation experiment was done by Jacquesson & Schieber

(1973) using a file of 40,000 references, indexed

by 1400 terms. They found that even in their

strictly controlled indexing vocabulary (i.e.

where there should have been no synonyms), there

was, in fact, an appreciable amount of overlap in

the use of words.

(iii) Similarity relations between documents. The

"distance" between documents can be worked out by

considering the extent to which they are similarly

indexed (Jardine & van Rijsbergen 1971, Rettemeyer

1972, van Rijsbergen & Sparck Jones 1973).

(iv) Bibliographic coupling. Assuming that authors

tend to cite papers which have some bearing on

their subject matter, another meaningful distance

measure between documents is obtainable from their

bibliographies (Weinberg 1974, Zunde 1971, for

example). Gray & Rarley(1971) bring together these

two concepts of document similarity (iii and iv).

They use bibliographic coupling to suggest terms

to the indexer.

(v) Arbitrary user-specified association. By this,

we mean links between records created by a user,

as envisaged by Bush(1945). He laid down desien

39

principles for a personal filing mechal"ism in

which any document, note, correspondEnce c.ni so

on would be stored and linked to existing recorJs

in whatever way its user wished. Searching would

be done by following trails of associations.

Several systems have been constructed along these

lines (Glantz 1970, Treu 1970, Robinson & Yates

1973, Enge1bart et a1 1973). The facility for

adding arbitrary links to a communal information

structure, preferably under some sort of control,

might be a useful addition to a document retrieval

system, but we shall not discuss it further here.

Reference retrieval is concerned with bringing

to the notice of the user previously unknown

documents; not with organizing the information

for him after he has become aware of it.

We now turn to uses to which associations have been

put in reference retrieval. Two objectives have been

sought; they use similar techniques and are inter­

dependent, but should be distinguished. Co-occurrence

figures have been used to generate classes both of

documents and of index terms. The main motivation for

the former is to achieve efficiency of file searching

by cutting down the amount of the document file which

must be examined (this is very important in systems such

as S~~RT which retrieve by measuring the association

between documents and query, and ranking the documents).

The motivation for grouping index terms is to enable the

system to expand a query (mainly) to achieve higher

recall. As Sti1es(1961) put it:

40

" Literally hundreds of tE:r;,'lS :,',ay hE..ve been use':'
to index documents on the various aScE:cts 8: a
particular subject and yet we must grope for
just the right set of terillS." - p271.

The main stream of automatic classification (or cluster­

ing) methods (whether of documents or index teri:is) can

be summarized as follows:*

The documents in the collection are assumed to be

described by lists of weighted index terms. In other

words, each document is represented by a vector whose

dimension is equal to the number, t, of terms in the

vocabulary and which consists of the weights of all the

terms, as applied to the document. If a term is not

applied (posted) to a document, its weight is zero in

that document's vector. Frequently, in practice, the

only weights used are 0 and 1. The whole collection

of d documents is then represented by the d X t matrix,

M, having as its rows the d document vectors. Now, a

matrix product operator, ~, is defined and applied to

M and its transpose, MT, to form a similari~y matrix:

ei ther Sd = 1.1 ~1:T, for document clusterir..g,

or St = I~T ~ r..:, for index term cl us tering.

The result is a square, sy~~etric Qatrix giving a

measure of the similarity between every pair of

documents (Sd) or terms (St)' The operator ~ is

usually defined for matrix operands A (p X q) and B

(qXr), to give a pXr matrix product C = A®B,

*For document clustering, see Jardine & van Rijsbergen
(1971, good review included), van Rijsbergen(1974),
Salton(1971) Part IV Cluster generation and search,
Retterueyer(1972) and Crouch(1973). For index term, or
keyword, classification, see Sparck Jones(~971),
Needham(1965), Augustson & 1~inker(1970), Ih.nker et al
(1973), Gotlieb ~ Kumar(1968), Borko & Bernick(19b3,
1964), Stiles(1961).

41

where
L A.kBk .

1~k(q 1 J

N .. lJ

Nij is a normalizing factor, a function of the vectors

For example,

Having obtained the similarity matrix (Sd or St), the

associations can be found by deciding upon a threshold,

e, and replacing each element of the !natrix by 1 if it

is not less than e, or 0 otherwise. The resul t is the

adjacency matrix representation of an association graph.

A simple example should clarify these generalities.

Suppose we have 5 documents indexed by 6 different

terms, t1 - t 6 , without weights, as follows:

d 1 = {t3,t5,t6}, d2 = {t1,t3},

d 3 = {t1 ,t2 ,t3}, d4 = {t2 ,t4 ,t51,
d5 = {t4 ,t5,t6}·

0 0 1 0 1 1

1 0 1 0 0

Then M = 1 1 1 0 0

0 1 0 1 1

0 0 0 1 1 1

Using the particular definition of ® given above, the

document similarity matrix is

42

1/2 1/5 1/6 1/6 1/3
1/2 2/5 0 0

Sd " ® hoT 1/2 1/6 = !;; i = 0

symmetrical 1/2 1/3
1/2

Now we choose a threshold, e =i, say. Then the

adjacency matrix is

1 0 0 0 1
1 1 0 0

Ad = 1 0 0

symmetrical 1
1

which corresponds to the document association graph:

(Vo'e Q.mi t loops). We shall discuss similari ty between

documents again in Chapter 3.

Having established an association graph, between

terms or between documents, there are various ways of

forming classes, or clusters. Examples are maximal

complete subgraphs (cliques, within which each node is

connected to every other node), maximal connected

subgraphs (every node in the subgraph is reachable

from every other node), stars (one node is adjacent to

every other node). Augustson & J.:inker(1970) and Sparck

43

Jones(1971) discuss the possibilities. !i0t all

techniques produce disjoint classes and the ttreshold

(9), which obviously affects the association graph,

also affects the clusters obtained. The ~Eed to select

a somewhat arbitrary threshold led Needham(1965) to define

a "clump", using the similarity (rather than the adjacency)

matrix. An object is a member of a clump if the sum of

its similarities with all the other members of the clump

is greater than the sum of its similarities with all

non-members. In contrast, Jardine & van Rijsoerben(1971)

produce a hierarchy of document clusters by systematically

varying the threshold.

The detailed results of applying these techniques

are given in the literature already cited. Those who are

investigating document clustering must show that improved

efficiency is not accompanied by serious loss in retrieval

performance.. The most thorough evaluation of the many

possibilities for query expansion by term classification

is contained in Sparck Jones(1971). The conclusion

seems to be that the best combination of clustering

techniques tried performs Significantly, but not

substantially, better than simple term searching. There

is some later work (Sparck Jones 1973a, van Rijsbergen

& Sparck Jones 1973) which explains the performance of

keyword classification ·in terms of characteristics of

the document collection (derivable from a similarity

matrix), with respect to the set of test queries.

2.4 Interaction

Throughout this chapter, so'far, we have had a

44

particular type o£ search in mind. The enquirer ncs a

need for information which is well £ormed in his ~ind,

and he is able to express it quite precisely as a query.

We have discussed the problems that arise en we

assume that, in order to satis£y the searcher, the

system must match, in some precise sense, the query with

re£erences in its store. Lancaster(1969) estimated

(wi th qualifications) that the J.IEDLARS demand search

service achieved, on average 58% recall and 50% precision.

The construction of the formal search profile w~s deleg­

ated to trained search editors. Relevance was assessed

by the end-users, and relatively low degrees of relevance

were accepted £or computing the above £igures (i.e.

"minor value" articles are considered relevant). If we

accept that results obtained in sffiall scale experiments

(particularly the SMART document and query a.nalysis

trials, and the automatic classification tests of Sparck

Jones) are valid for large collections, then the average

recall and precision figures could increase by about 10%,

i.e. to around 64% and 55% respectively. The studies

which have been reviewed are atterupts to find out how

far we can go in creating machinery to which a man can

delegate his search, and they are important as such.

However, now that facilities are widely available

for the interactive use of computers, solutions to the

difficult linguistic problems are not required so

urgently. We have far more scope now for interleaving

mechanical and intellectual work. In 1965, Doyle wrote

that there were two alternative attitudes to the solution

of linguistic problems:

45

"(1) We can seek to make our procedures a~~r~3ch i~
complexity those used by the human intellect, and
this appears to be the route preferred by ~ost of
the research people; or (2) we can try to take
advantage of the fact that humans are experts in
handling language, and have them work in senior
partnership with computers." (Doyle,i)o5, p238).

Combine this with the fact that even among those with

apparently well defined needs "a characteristic feature

of this [information gathering] process is that the

scientist's original inquiry or interest is invariably

modified and restructured on the basis of the inform-

ation presented to him." (Hillman,1968). The obvious

result is that we should design the means whereby a

searcher may explore the collection, gradually refining

his request. When we reconsider the traditional

distinction between browsing and searching, in this

light, we find it so hazy that we are forced to abandon

it (Herner,1970). This is not to say that all searches

are alike: on one occasion, a scientist may want to look

for a small amount of material to stimulate him, at

another time he may wish to do a thorough literature

search on some topic, and there are other possibilities.

Lancaster & Fayen(1973) have recently published a

comprehensive state-of-the-art account of on-line inform­

ation retrieval systems, in which they give brief

desciptions of about 30 major operational systems, mostly

of North American origin. That is clearly a small

proportion of the systems now in existence. Most of the

work currently being done is concerned with man-machine

interface engineering (,!:alker 1971, Martin et al 1973)

and this is outside the scope of this thesis. We are

concerned with the information structures and processes

46

which can assist a user in his search. We s~all not

undertake an extensive survey of systems here: ~any

differ from each other only in superficial ietail

(retrettably, some systems are incredibly verbose).

At the very least, an interactive retrieval system

must help the user to find the appropriate words, and

must provide facilities for developing his query, having

shown him something from its files in response to his

previous messages. Williams(1971) has given a much

more detailed list of capabilities that he considers

important for a browsing system.

One of the major variations between systems is in

the indexing vocabulary used. Some systems (e.g. RECON

- Vlente 1971; BOLD - Burnaugh 1967; the h:edusa system -

Barber et al 1973) use a controlled indexing vocabulary,

and incorporate appropriate devices for exploring it:

on-line thesauri, with procedures for following the links

between terms. By having related terms displayed the

user is able to find words which he may not otherwise

have thought of. The user illay build up, in stages,

Boolean or quorum search strategies. Another important

component of these systems is a large "entry vocabulary",

that is a set of words and phrases which are not in the

restricted vocabulary of the indexers, but are commonly

used by searchers. They are linked to the preferred

terms. Higgins & Smith(1969) have suggested a way in

which the entry vocabulary could be extended by the users.

Other systems search the free text of titles,

abstracts or whole documents, having created an index to

all occurrences of every significant word or stem.

47

Significance is usually determined by t~e word's

absence from a "stop list" of common syntactic function

words (articles,prepositions, etc.). Examples of this

type of system are the Epilepsy Abstracts ~etrieval

System (Porter et al,1970) and the STATUS programs

(Price et al,1974), which are used to search legal texts.

One can often form Boolean queries in these systems,

specifying that the combination should occur within a

Single sentence or larger unit of text. Another type of

search is for a pair of words occurring within a certain

distance of each other. Where there is no controlled

indexing vocabulary, no thesaurus is likely to exist.

It may be possible to display the neighbours of a word

in an alphabetical list, but on the whole free text

systems rely on further words being suegested to the

user when he is shown relatively large pieces of text.

To illustrate the concepts involved in interactive

retrieval, we give a brief desciption of, and a s~~ple

conversation with a particular operational reference

retrieval program. The hledusa system, developed at the

University of Newcastle upon Tyne is suitable for this

purpose for three principle reasons: Firstly, it

operates on a well-known data base - MEDLARS - with its

controlled vocabulary of ~edical Subject Headings

(~eSH). Secondly, it has features which clearly show

off the benefits of interactive search. Finally, the

data and test queries used in the new work described in

this thesis were obtained from ~edusa files, as explained

in Chapter 7, section 2.

48

2.4.1 An example: Medusa

The descriptive material and sample run in this

section are adapted from the User Manual for r.~edusa,

prepared by J.A.Hunter (University of He~c~stle upon

Tyne,1974). Medusa is an on-line reference retrieval

system which runs on the IBM 360/67 computer at the

Uni versi ty of Newcas tIe upon Tyne, using tiEDL.A.RS

(l,;edical Literature Analysis and Retrieval System) data

from the U ~S. National Library of Medicine. r.ledusa is

designed for direct use by medical research workers

(Barber et al,1973).

Two means of accessing the system are provided;
Current Awareness and Retrospective Medusa. Both systems
allow the user to formulate an identical search, but
differ in the manner of searching the data available.

CURRENT AV1ARENESS Ii1EDUSA is intended for those users
who want to keep up to date with the current literature;
they will expect to return to the system each month, or
at least every three months, and search the data acquired
since they last used the system. ~he database kept for
the Current Awareness system is the latest three months
of the file. This is updated as new information arrives,
the oldest month being dropped and the new months citations
added. There are about 45,000 citations indexed from
2,200 journals for papers written in English, French and
German. Users running current awareness searches ~ay
retain up to four different profiles from session to
session as, it is anticipated that they will wish to modify
their search criteria as their work progresses.

RETROSPECTIVE MEDUSA is intended for USErs re1uiring
a simple search on a particular topic from as large a
database as possible. Some 110,000 citations are avail­
able for searching taken from 1,150 journals over the
past year. The citations are restricted to those written
in English. A Retrospective session is self-contained;
that is, any search formulation is lost when the session
ends. A special SA1~LE command, q.v., is supplied to
permit checking of a search against the latest block of
citations before it is used to access the whole database.

Medusa citations are indexed with terms selected
from a thesaurus of 10,000 medical subject headings(~eSH).
The user has to formulate his search using terms from
this thesaurus. The main object of the Medusa system is
to enable the user to find the correct terms for his
subject. The task of finding all relevant terms is made

49

easier by their organization into categori~s - e.g.
neoplasms, musculoskeletal system, vertebr~~est s~rgery.
The general term is at the "top" and the more s~c:cific
terms appear below, down to four levels - e.g. vertebrates
- mammals - rodents - mice. The terms above and below a
particular term can be displayed easily o~ ~he ter~inal.
Going "up", "down" and "across" the category structure is
the way in which a user finds available terms. Papers
are indexed under an average of ten main headings. An
important point about the selection of terms is the use,
by the indexers, of the most specific term for a subject.
In addition. to the 10,000 [eSH terms, there are 7,000
entry terms which, in most cases lead to synonymous r.reSH
terms. Some entry terms call up compound search
expressions instead of single terms.

There is a repertoire of commands for exploring the
thesaurus, constructing search prescriptions, EiJ.j

retrieving references. The user may introduce terLs at
any time; the system will assign to them short codes for
easy reference later. We start with thesaurus exploration
commands:

DOWN followed by a term code, will reveal the more
specific terms, if any. If successful, this
command will also generate the category term,
identified by the C prefix. This refers to all
of the terms in the relevant category below the
original term.

UP will reveal the broader term.

ACROSS will reveal related terms at the same level.

XREF will reveal any cross references to different
categories. These are indicated by a~ X printed
in the display of a term.

Qualifiers are sub-headings which may be linked to
main headings and categories to restrict the context in
which they retrieve references.

QUAL

LIST

followed by a code will print a list of those
qualifiers which may be legally linked to a term
when forming a search statement.

followed by a character string of three or more
letters will cause the system to print out
dictionary entry names which start with those
letters.

There are also commands to remind the searcher of details
of previously used terms. This is particularly useful in
Current Awareness Medusa where he may come back to a
search profile after some time. (We omit their definitions
here).

Now we come to the commands' for formulating searches
and performing them:

50

COi~BIHE followed by a term cac.e, or by a [r:np of codes
separated by one of the operators liND, r .. m ~'OT,
OR, LIme (for attaching aualifiers to tern.s),
will form a search state~ent. The svsten will
print out an R code number and give ~ l'ouc:h
estimate of the number of citation~ ~iable ta be
retrieved by its use. The R code n~~ber can be
used in subsequent COl.:BIllE commands and tt.us a
complex profile can be built up, without the
need to construct it in one error-prone step.

SEARCH followed by an R term causes the system to search
for citations satisfying the criteria of the term.
Citations found are printed out on the terminal
in sufficient detail to enable a user to locate
them, and with their associated index terms and
sub-headings. An asterisk against a;. index term
means that it is a "print" term, and appei.£S
against the reference to the citation in 'he
indexing journal Index ~edicus. If index terms
are not desired, as with a profile of established
reliability, they can be suppressed to give faster
printing.

SAMPLE is available only in Retrospective r.~edusa. It is
similar to SEARCH in use but only searches the
most recent month of citations.

In the run of Retrospecti ve fI~edusa which follows,

all comments, i.e. lines not printed at the terminal,

appear in lower case. Lines typed by the user are

underlined.

MEDUSA INFORMATION RETRI.2.;VAL SE;nrCE

PLE;ASE INDICATE WHETHER YOU :.'ISH TO USE CURP:::I;T A'.'IJ.RE:ESS
OR RETROSPECTIVE MEDUSA BY TYPL'~G "C" C'Fc 11 it" •

?R

RETROSPECTIVE MEDUSA

THE RETROSPECTIVE SERVICE IS AVAILABLE FRO~ 12.00 - 14.00
AND FROhl 16.00 - 19.00 EACH WEEKDAY. SHOULD YOU SIGN' ON
DURING THESE PERIODS AI\"D FIND THE SYSTEM NOT AVAILABLE,
PLEASE RING MBDUSA STAFF ON 0632-28511 EXT. 2761.
SYSTEl\~ HOLDS CITATI02lS FOR APRIL AND 1/~.Y 1974, OCTOBER
1973 TO MARCH 1974, APRIL TO SEPTE1433R 1973

* SIGN IHDICATES THAT SYSTEM IS READY FOR A REPLY

51

SEAHCH HUlI1BER 1: USERCODE, :UL.E, 'I' iT 1r ..,
*0109 J .A.HU!~TER, DEMOilSTRA.TION SE;.~,Cn

~l~'f.r.;R T..t:rlJ'jS. START BY ~YPING Iii A :,.:,.JICAL T.sRr,~ R~1ATED
TO AN ASPECT OF YOUR SEARCH

*STUDBNTS
M1=STUDJ:o;NTS T285 19:::'? X

DN 6 A EDUCATION (.-'il';I:i.:tOPOLO,}y,
EDUCATION,)

DN 0
EDUCATION,)

B EDUCATION, NONPROFESSIOH(Al~I'rIROPOLOGY,

DN 1.5 C NAIlED GROUPS (NON MESH)

FACTORS
DN 0 D OCCUPATIOnS
(POPULATION CHARACTERISTI»

(SOC IOECO ::0:.; I C

The term "students" has been assigned the code ~1. T285
gives the number of citations indexed under this :wading,
and 1962 gives the date of introduction of the term. X
indicates the presence of one or more cross references.
This term is in four categories A, B, C and D. In the C
category, the code DN 1.5 means that there is one term in
the next lower level of the category, and five in the level
below that. In the A category, "education" is the broader
term, and the information which follows it gives the
category structure above it.

*DOWN M1A
C1=STUDENTS
rv:2=STUDENTS, DENTAL
~.j3=STUDENTS, HEALTH OCCUPAT
M4=STUDENTS, MEDICAL
IvJ5=STUDENTS, NURSING
M6=STUDENTS, PHARl'.1ACY
lj7=STUDEliTS, PREMEDICAL

T~858
T93
T21
T267
T174
T9
T9

1962
N E','i T l!; R!.~

1962
1962

HEW TERll
1962

A,B,C
A,BrC
A,B,C
A,3,C
A,BrC
A,BrC

Here "down" has generated for the A category the category
term C1, which encompasses all terms below and including
"students" in tha·t category. TT858 gives the total tally
- the number of times the terms ir. the group have been
used in indexing references.

*FULL M4
j\i4=STUDENTS, MEDICAL T267

DN 0 A STUDENTS
1962

(ZDUCATI01~
(ANTHROPOLOGY, EDUCATION,»

DN 0 B STUDENTS, HEALTH OCCUPAT(STUDE~lTS
(NMliED GROUPS (NON !\lESH) »

DN 0 C STUDEHTS, HEALTH OCCUPAT(HZALTH !':AI';-
PO'NER(FACILITIES I,iliNPOWER SERV»

*XREF fI~1
M8=STUDEliT DROPOUTS

*STUDENT HEALTH SERVICES
T48

52

1962 X A,BrC

M9=STUDENT HEALTH SERVICES T114 1962
DN 0 A HEALTH SERVICES

hiAl1PO','/ER SBRV)
(?ACILITIES

*COLLEGES
M10=U~IVERSITIES T435 1962

DN 0 A SCHOOLS
(ANTHROPOLOGY, EDUCATIOil,»

(EDUCA.TIO!J

Note the action here in the case of a synonym being
entered. "colleges" is held in the dictionary as a
pointer to "universities", for which it generates a code.

*COMBINE M1 OR M8 OR M9 OR M10

R1= M1 OR W8 OR M9 OR M10
EXPECTED RETURN: LARGE

Here large means 25 or more citations would be retrieved.

*SAMPLE R1

FIRST CITATION FOUND IN 21 SECS

CIT NUM 00290919
HO"ilELL R CROWN S HOWELL RW
PERSONALITY AH"D PSYCHCSOCIAL INTERACTIONS IN AN UlIDER­
GRADUATE SAtvIPLE.
BR J PSYCHIATRY VOL123 699-701 DEC 73
*PERSONALITY ASSESSMENT *STUDShTS

ADOLESCENCE ADULT
AFFECTIVE DISTURBANCES FACULTY

(DIAGNOSIS)
FEMALE
JUVENILE DELINQUENCY
PSYCHOI',lETRICS
SEX FACTORS

HUMAN
i,~LE

SCHOOLS
SOCIAL CLASS

In this print out of a reference, the terms marked with
an asterisk are "print" terms which would appear in
Index Medicus. Terms in brackets are qualifiers, e.g.

- (diagnosis).

CIT HUM 00290921
DUDDLE M
AN INCREASE OF ANOREXIA NERVOSA IN A U~IVERSITY
POPULATION.
BR J PSYCHIATRY VOL123 711-2
*ANOREXIA NERVOSA(OCCURRENCE)

ADOLESCEUCE
EDUCATIONAL STATUS
FEkALE
INFANT NUTRITION
OBESITY

53

DEC 73
*STUDENTS

ADULT
ENGLAHD
HUMAN
IiALE
UNIVERSITIES

CIT UUM 00291303
CAi,jPBELL LP
MODIFYING ATTITUDES
Sl'IJOKING.

OF UPPER ELEj.:~NTAI{Y STUDL.;:;:'S TO'NARD

J SCH HEALTH VOL44
*HEALTH EDUCATION
ADOLESCEl~CE

ATTENTION INTERRUPT
M.ALE

97-8 FEB 74
*Sl.;OKIHG(:r<_~v co:nRL)

ATTITUDE TO !!

STUDENTS

Here the interrupt key has been used to stop a search.
Note that printing of the current citation is completed
before control is returned to the user.

*DRUG ADDICTION
M11=DRUG ADDICTION T816 1962 X

DN 3 A DRUG ABUSE (:'SYCHIATRY
)

DN 0 B SOCIOPATHIC PERSONALITY (PERSOJALITY
DISORDERS (PSYCHIATRY »

* ACROSS 1.111 A
M12=GLUE S~IFFING
Ivi11 =DRUG ADDICTION

*UP M11A
M13=DRUG ABUSE

*COj~BINE R1 AND M13

R2= R1 AND M13
EXPECTED RETURN: SUALL

T18
T816

T708

Here small means 10 or less retrievals.

*SAMPLE R2

FIRST CITATION FOUND IN 18 SECS

CIT NUM 00304555
BIENER K

NE~I TERM
1962 X

1962 X

<DIFFERENT PROBLEI.IS OF DRUGS III TRAD~ 8C£1001 AUD 3IGH
SCHOOL STUDENTS (AUTHOR r S TR.4.l{SL»
PRAXIS VOL62 1612-5 26 DEC 73
*DRUG ABUSE(OCCURRENCE) *STUDENTS

ADOLESCENCE AGE FACTORS
CANNABIS COCAIUE
COluPARATIVE STUDY ECOH01.1ICS
EXPLORATORY EEHA VIOR FElI:'4.LE

A,B,C
A,B

A,B,C

HUII'IAN LYSERGIC ACI:!) DIETHYLAI,:I
MALE EESCALIN3
SOCIOECONOMIC FACTORS STATISTICS
S .iT T ZERLAN""D

*QUAL 1113
Q1=B.LOOD
Q2=CEREBR.FLUID
Q3=CHEI.~. INDUCED
Q4=CLA3SIFICAT.
Q5=COL:PLICATIONS
Q6=DIAGNOSIS

54

Q7=DRUG THERAPY
Q8=EDUCATION
Q9=EN2Yi:,OLOGY
Q10=~TIOLOGY
Q11 =FA1IIW:GENET.
Q12=HISTORY
Q13=Il,,;,:UNOLOGY
Q14=IaSTRU~~HTATION
Q15=1.:A.l~PONER
Q16=;;;ETABOLISi,;
Q17=1'tl0RTALITY
Q18=NUltSING
Q19=OCCURREHCE
Q20=PATHOLOGY
Q21=PHYSIOPATH.
Q22=PR~V CONTRL
Q23=RADIOGRAPHY
Q24=RADIOTHRPY
Q25=REHABILITAT.
Q26=STANDARDS
Q27=SURGERY
Q28=THERAPY
Q29=URINE

The following three combine commands show how to build up
a search statement which will find references if they are
indexed under "drug abuse" linked to either of two
qualifiers. Note that a match will not occur unless one
of these qualifiers is actually specified for the main
heading "drug abuse", and that terms may appear several
times in one citation linked to different qualifiers.

*COkBINE M13 LINK Q19

R3= M13 LINK Q19
EXPECTED RETURU: sr.iALL

*COMBINE ~13 LINK Q22

R4= M13 LINK Q22
EXPECTED RETURN: Sl'vlALL

*COLBINE R3 OR R4

R5= R3 OR R4
EXPECTED RETURN: SMALL

*SEARCH R5

APRIL AND MAY 1974 CITATIONS

FIRST CITATION FOUND IN 14 SECS

CIT HUM 00297727
LOWINGER P
HOW THE PEOPLE'S REPUBLIC OF CHINA SOLVED THE DRUG ABUSE
PROBLEM.
AM J CHIN MED VOL1 275-82 JUL 73
*DRUG ADDICTION(PREV CONTRL) ATTITUDE TO HEALTH

CHINA DRUG ABUSE(PREV CONTRL)

55

DRUG ADDICTION(DRUG THERAPY)
DRUG AND NARCOTIC CO";TRO
HISTORY OF 1,:EDICIHE, 19T
HISTORY OF 1.!EDICIUE, I!.ED
P.UKAN

ilRUG ADDICTIO~;(rt£;:~',.:IL2:~;..T)
HISTORIC~L AR7ICLE
:"':I:.:rrooy OK' I" ;"·"ICI',!;;, 20T
.I.... v _.,:\. -. "J'~-J "'''-.J,

OPIUM(HISTORY)

CIT NU1~l 00305850
BRIGGS AH

HO~.G KO;W
iiiORALS

INDUSTRY? CAN WE PR1!:VEllT DRUG ABUSE IN
TEX],iED VOL70 49-54 JAH 74
*DRUG ADDICTI01HpREV CONTRL)

DRUG ABUSE(PREV CONTRL)
HUMAN

*INDUSTRIAL LiEDICIUE
HEALTH EDUCATION
maTED STATES

CIT NUId 00287976
EINSTEIN S
DRUG ABUSE TRAIHING AND EDUCATION: THE CO;.j,:1.I::-I:rY ROLE.
AM J PUBLIC HEALTH VOL64 99-106 FEB 74
*DRUG ABUSE *HEALTH EDUCATIOiJ

ATTITUDE OF HEALTH PERSO CRIME
CURRICULIDvl DECISION i.:AKE-iG
DRUG ABUSE(PREV COHTRL) DRUGS
HID\1AN JURISPRUDENCE
METHODS RELIGION
SCIENCE ~OCIAL VALUES
UNITED STATES

CIT Nmi~ 00234363
DISTASIO C NA'NROT M
METHAQUALONE.
Ahi J NURS VOL73 1922-5 NOV 73

*riiETHAQUALONE *DRUG ABUSE(PREV CONTRL)
ADULT
DRUG ~VITHDRA".vAL SYM.PTOMS

(DRUG THE)

DRUG Al;D NARCOTIC CONTRO
Hm:AN

JAPAN PENTOBARBITAL(THERAP USE)
UNITED STATES

OCTOBER 1973 TO MARCH 1974 CITATIONS

CIT NUM 00244640
GR8El'TE ME DUPOHT RL RUBENSTEIN Ril;
AMPHETAMINES IN THE DISTRICT OF COLmmIA. II. PATTERl{S
OF ABUSE IHAN ARRESTEE POPULATION.
ARCH GEN PSYCHIATRY VOL29 773-6 DEC 73
*Ar.~PHETAMINE *CRIi.1INAL PSYCHOLOGY
*DRUG ABUSE(OCCURRENCE) *SOCIAL CONTROL, FORMAL

ADULT DISTRICT OF COLUl.iBIA
DRUG ABUSE(PREV COHTRL) DRUG ADDICTION(OCCL' .. ~.R.ElfCE)
FEMALE HEROIN ADDICTION

(OCCURRENCE)

Hm:AN
UETHADONE

lIiALE
VIOLE~WZ

CIT NUM 00260832
REDFIELD JT
DRUGS IN THE '.VORKPLACE--SUBSTITVTING SSNSE FOR SENSATlm~-
ALI~I.l.
AM J PUBLIC HEALTH VOL63 1064-70 DEC 73

56

*DRUG ABUSE
ADOLESCENCE

A1'TBNTION INTERRUPT
CANNABIS
DRUG ABUSE(OCCURRENCE)
DRUG ABUSE(URINE)
HALLUCINOG.BNS
HUhiAN
LYSBRGIC ACID DIETH~~MI
OPIUM
SMOKING (OCCURRENCE)

*SIGNOFF

END SEARCH rruMBER 1

* INDUSTRIAL.':: _II CINE
ADULT !!

DRUG ABUSE(DIAG~WSIS)
DRUG A:"USE(Pl~~V CO~JTRL)
DRUG Aj)"".JI ':;TIO:~
HEALTH EDUCATION
HYPNOTICS AND SEDATIVES
OCCUPATIONAL HEALTH SERV
OREGON
STUDEUTS

ELAPSED TIME WAS 38 1.:IUS 23 SECS

2.5 Feedback

The type of interaction supported by almost all

operational information retrieval systems can be

summarized in this way. When commanded to do so, the

system will display references, sometimes with details

such 'as index terms or abstract. Having seen this type

of information, the user decides whether the computer's

response is relevant, and whether a change in the search

statement is necessary. He may construct a new request,

perhaps a modification of a previous attempt, and command

the machine to search again. It is the user's responsib­

ility to arrive at a satisfactory profile. The system

may help him to find suitable words and it may do useful

clerical tasks for him (we have seen that Medusa, for

instance, keeps a record of terms and intermediate

search statements with short codes for easy reference).

However, there is no way in which users can inform these

systems of their success in disp~aying relevant references,

and the systems have no way of making use of such inform-

57

:'~'C'.;~.'.""-ps, to moni tor it for tIle '::,::nefi t of

system designers and evaluators). Whate~Er the difficulties

of formulating a theory of relevance for infor::mtion

retrieval might be, there is an obvious s1:"::>jective

definition for it. A reference is relevant if, on the

basis of available evidence, the searcher recognizes it

as the sort of reference he was looking for. If we could

use his relevance judgements to influence the search, we

would depend even less upon his ability to express his

interest.

There are, in fact, at least two large, computer

aided services which have experimented with relevance

feedback, neither of which provides the end-user with

on-line access to the files. A study was conducted by

UKCIS - the United Kingdom Chemical Information Service -

(Barker et al,1972). In analyzing search failures result­

ing from profiles constructed by users, they found that a

disturbing number (34% of precision failures and 46~ of

recall failures) were attributable to faulty original

statements of interest. An iterative process involving

a fixed file was used to develop a profile. The first

search was done with a profile devised with the aid of

UKCIS staff. Abstracts of documents retrieved were

assessed by the user and terms occurring in the~ given

weights accordingly. Terms with weights above a certain

threshold were then used to retrieve more references which

were sent to the user for assessment. The process

continued until no new relevant documents were found,

then the resulting list of terms with high weighting were

considered by the user, who coul~ make changes to his

58

profile accordingly. The new profile would tt~n serve

his regular current aw&reness needs. The difference in

perforffiance betw8en original and new profiles was

estimated: precision remained about the ~6 'Ie, but rc·call

increased by up to 30%.

The other large scale use of relevance feedback is

reported by Vernimb & Steven(1973). ENDS (European

Nuclear Documentation Service) maintains a very large data

base; 15% of the references (i.e. 200,000) are available

on-line to Elms staff. A query is formulated ir:.teractively,

using Boolean strategies, and a small sample of the

documents retrieved are checked for relevance. All the

terms assigned to the documents in the sample are given

weights (which may be negative) reflecting their postings

to relevant and non-relevant references. In the batch

processed search of the whol~ file, document weights are

calculated using the term weights so obtained and those

with weights above a threshold value are retrieved and

ranked.

The major experimental work on relevance feedback

has been done on the SMART system; the techniques are
-

described by Ide & Salton(1971), and evaluations and

further details can be found in several chapte~s of

Sal tone 1971). Sl'IART is a system in which a number of

processing options can be specified independently of

each other; the number of combinations that can be tried

is enormous. Generally speaking, documents entering the

system are characterized by lists of weighted terms

derived from the text. Queries are processed in a

similar way and a correlation function is specified

59

which measures the "distance" between a query ane. a

document, two documents, or two queries. Retrieval

consists of ranking the collection of docu~~~ts according

to their correlation with the query, choosing some cutoff

point, and selecting the documents above it.

If the characteristics of the relevant documents

retrieved are denoted by the vectors r.
-~

and those of

the non-relevant documents retrieved are s., a query
-l

denoted by the vector So is updated by the equation:

nr

.9.0+ cxL r .
. 1 -1
~=

s .
-l

where nr and ns are respectively the numbers of relevant

and non-relevant documents retrieved in response to query

.9.0' and ~ and ~ are experimental parameters. In words,

the terms occurring in relevant documents have their

weights increased by ~ times the sum of their weights in

those documents (new terms may be introduced). Terms

occurring in non-relevant documents have their weights

decreased similarly, but using p as the constant multiplier

(terms whose weights become non-positive are deleted).

The retrieval process is repeated with ~1' and relevance

decisions can, of course, be fed back as many times as the

experimenter wishes. The constants ~ and P determine the

extents of "positive" and "negative" feedback, respectively.

It has been found that negative feedback is necessary for

best performance. The majority of the improvement in

performance comes with the first and second iteration, and

can be substantial. A striking example of the effect of

60

feedback is given in Sal ton's second comparison of S:~A~T

and l.:EDLARS (Sal ton, 1972).

A problem arises with the technique as a consequence

of the method of retrieval (which is called "linear

associative"). Whereas, with Boolean searching it is

possible to construct a query that will retrieve any

subset of a collection, so long as every item is indexed

uniquely, it is not always possible to find a query that

will bring any given subset to the head of the list with

linear associative retrieval. We can illustrate this

with a collection of four documents, labelled A, B, C, and

D, and indexed by a vocabulary of 2 terms (weichted).

The collection can be represented by a set of two­

-dimensional vectors:

A

c

If we define the distance function to be the angular

separation of a pair of vectors, then no query can be

found to retrieve just A and C, for instance, no matter

how many iterations of query modification are executed.

Any query that retrieves A and C must also retrieve B.

The Sn~T system can, in principle, cope with this

situation by clustering the document representatives and

applying the query, and subsequent iterations, independ­

ently, to each cluster to which it is nclose". The effect

61

of relevance feedback on the query will differ from one

cluster to another, so that several different q:J.eries

may be generated. To reach all the i~portant documents,

it may be necessary to consider many clusters.

3. S ununary

We have covered a considerable amount of ground in

this chapter, rather briefly of necessity. We started by

trying to state the problem of reference/retrieval,

because the work reported in later chapters was motivated

by the need to find practical solutions. If Kunz & Rittel

(1972) are right when they say of this type of problem

that "problem formulation is identical to problem solving",

our attempt at stating the problem is bound to have failed.

However, one needs a point of view from which one can

define goals and refine them as sets of subgoals, and the

nature of one's approach determines how far this refine­

ment can be taken. The decomposition of a goal into

subgoals can be regarded as an interpretation of the

meaning of the goal. A goal has no practical meaning if

it cannot be decomposed into achievable subgoals. If

one can find no way of doing this, then one must eithsr

change one's point of view so as to avoid the problem, or

accept some modification of the goal which ~ be achieved.

If we do the latter, we are really changing the problem

and must make sure that the new problem is a useful one

to solve in the context of the old one.

We are continually coming up against such intractable

goals: matching concepts, defining relevance, understand­

ing natural language. Even the major goal - to build a

62

reference retrieval system - is ill-defined. The

evaluation techniques used to assess the success of

systems are indications of the goals that the desieners

are trying to achieve. The traditional measures of

performance are recall, precision and fallout (the

proportion of non-relevant material retrieved). They are

calculated from the result of dividing a collection in

two different ways, according to: (i) whether retrieved

or not, (ii) whether "relevant" to the query, or not.

The corresponding goal is to divide the collection, using

the system, along the same line that hucan "relevance"

judges would split it. That is, of course, a corruption

of the goal which we tried to express in the first

paragraph of this chapter. The objection to the modified

goal is that there is no unique relevant subset of the

collection. This is true even if the relevance judge is

the man who needed the information. We have already

remarked that the order in which he sees the references

will affect the composition of the relevant subset. (In

this connexion, there are some interesting discussions

on evaluation in Cooper 1973, Vickery 1973, and Cleverdon

1974). The requirement to set up the very difficult

goals is modified-substantially in our favour when we can

use a computer interactively. Decisions demanding

intelligence are now achievable - the man makes them.

As for the machine, we must find out how it can best

select and present information, concerning which the man

shall make decisions.

63

Chapter 3

INFOR1~ATION HEURISTICS

There is, at present, no prospect of creating an

automatic system capable of making an accurate record or

representation of a researcher's information requirement,

and delivering to him literature, of which it ca~ be said,

with confidence, that it will satisfy the need. ~e have

seen that the fine discriminating powers of the searcher

himself might be efficiently integrated with the crude

powers of a machine in a well designed interactive system.

When considering computer-aided literature searching, it

is as well to keep in mind the fact that the final result

of a search, from the user's point of view, is a set of

documents judged by him to be relevant. Whatever device

is used to inform him of references, and however much of

the total search process is delegated (to machine or

librarian), the end-user makes the final choice, rejecting

the irrelevant. To return to figure 1 in Chapter 2

(repeated here as figure 4, for convenience), the set of

c:
If: - - ~ ,-

,/ \
I

0) A:
K:

\
....... /

'- -"

Figure 4.

references retrieved is a set K U N; the ~ser will

decide which belong to K (known to be relevant) and

which to N (known to be not relevant). The success of

the search depends upon the extent to which K meets the

searcher's expectations (A). It is important to notice

that as soon as the man has made a decision, the

"uncertainty" that we introduced to discuss the problem

of totally delegated searching disappears (i.e. K C A

and N n A = ¢).

Our aim, now, is to produce a mechanical aid to

decision making, or problem solving, for the particular

task of bibliographic searching. The decisions that the

searcher wishes to make concern documents. The program

developed here shows him references to documents, one

at a time, and invites him to assess their relevance: in

other words the sets K and N are specified by enumeration.

The search should be efficient, in that the user should

not have to consign many references to the set Hj and at

the same time it should promote awareness of what exists

by permitting browsing among document surrogates (or

ideally the documents themselves).

1. Dialogues for reference retrieval

Few scientists rely on a single source to provide

all the information they need in their work. Among the

most efficient and most frequently used sources is

consultation with colleagues or subject specialists. In

the course of such a conversation, some information will

be exchanged - facts, opinions, and so on - and very often

a few references to literature on the topic. Menzel has

65

written quite extensively on the role of personal

communication in science (e.g. Menzel,1967). Regarded

as a reference retrieval device, a subject expert is

usually very precise. The process of retrieval by an

expert has been studied by Olney(1962), who divides it

into three steps:

" 1) interpreting the request as a statement of some
kind of problem;
thinking up possible solutions to that problem;
selecting certain documents as relevant
according to the contribution which information
contained therein is likely to make to the more
promising of these solutions." - p10.

Olney very optimistically thought that a large biblio­

graphic retrieval system could be built on this basis.

No mechanical subject expert has emerged so far. However,

Olney's paper draws attention to an important aspect of

dialogue which is generally missing from "man-machine

dialogues", on the machine's side, at any rate. Each

participant in a conversation tries to construct a model

of the other's interest, in terms of his own view of the

world. This is the basis of the first step, above, and

it is the conceptual basis of the program, Thomas,

described in this and the next chapter. Our machine's

world-model is very simple, and~annot be used, by the

machine, for problem solving~ It is a set of document

references embedded in a verbal context; the details

will follow a little later.

The objectives of the program are to build a model,

which must be defined in terms of its "knowledge", to

show the man parts of it, and to use his reactions to

bring the model into closer resemblance with the man's

current interest. A set of functions with some suitable,

66

corresponding commands is the traditional approach to

designing interactive computer software, but for this

program it seems inappropriate. Firstly, although the

knowledge structure that we have given our program is

straightforward in principle, it is potentially very

large. If its full richness is to be used effectively,

we cannot put its manipulation under the direct control

of the man; that would require huge feats of memory on

his part. Secondly, we wish to build a program which is

of use to the searcher who cannot specify what, precisely,

he wants and would, thus find it difficult to issue

commands. Actually, we have stated the view that, in

general, it is not possible for a user to specify exactly,

in advance, the attributes of relevant documents. For this

reason, the user of program Thomas does not formulate a

query.

The searcher starts by mentioning one or more points

of interest - a subject, a document title, or an author.

The program locates corresponding points in its

"knowledge" of the literature and forms the initial model

of the user's interest. The contents and various prop-

~rties of the model are then used to determine a response

to the user: the program usually tries to show him a

reference together with some words and phrases descriptive

of the document's subject matter. In his reaction, the

searcher may assess the relevance of the document,

indicate aspects of the description in which he is

particularly interested, or not interested, and introduce

new words. Thomas uses his assessment and any other

inputs to update its model, and the cycle is repeated.

67

We shall go into the goals which the proGram tries to

achieve, and its methods in a later section of this

chapter.

From the user's viewpoint, a dialogue '.'Ii th Thocas

is a browse through a collection of document surrogates,

in which he may take vrhatever, and as much, initiative as

he wishes. The subjects covered by the collection are

seen by the searcher through their use in describing

individual documents.

2. Modelling the user's interest

Our program creates and continuously adjusts a model

of the area of interest of the enquirer. The model is

constructed out of parts of the program's stored data

about the literature. We do not consider in this thesis

techniqu~s for incorporating new information into the

data base as a by-product of dialogues: this is not a

learning program, though that might be a fruitful next

step. A detailed description of the program is contained

in Chapters 4 and 5. In this chapter, we shall try to

give a view of the program from a higher level, so that

reasons for the various design decisions can be seen.

Let us start with the "data base", which is the program's

knowledge of the literature.

2.1 The knowledge base

We are not attempting, here, to make any contribution

to the art of indexing, or document description, so we

adopt the familiar pattern of associating index terms and

author's names with document references, and index terms

68

with each other. If we think of documents, subject

descriptors and authors as being points in space, the

association between two entities is a line joining the

corresponding points, to signify that they are, in some

sense, close. In principle, we need not restrict our­

selves to associating document and author, document and

subj ect, and subj ect and subj ect. "\Ve know from experience

in conventional manual literature searching that

document-document, author-author and author-subject

associations are all useful, and would be valuable assets

in the machine's data base. Neither should we necessarily

restrict our consideration to documents, subjects and

authors: corporate bodies and projects have their place

in our knowledge of the literature of a field.

Associations between entities or ideas are themselves

classifiable into various types, as are the associations

between words or other symbols. Semanticists, philosophers,

psychologists, computational linguists and librarians have

all discussed the nature of the associations, but we shall

side-step the issue, and say that two symbols are associated

without trying to define the type of relationship that

exists between them. This is acceptable in our retrieval

methods, just as it was in L.B.Doyle's proposal, because

"instead of depending on his [the user's] imagination to

think up a search request, he is depending on his

recognition of semantic relationships." (Doyle,1961,p577).

Whitehall(1974) has described a successful manually

maintained, growing thesaurus for an industrial research

library. Associations between terms are plentiful, but

it is left to the user to decide on the nature of the

69

relationships.

The program's "knowledge" is in the form of a network

with labels on its nodes. Those that are cssociated are

jOined by lines. The important labels ar~ references to

documents, e.g.

"Medullary carcinoma of the thyroid gland. A
clinicopathologic study of 40 cases." Gordon et aI,
Cancer,31,pp915-24,Apr.73.

Other labels are names of authors, e.g.

P.R.Gordon

and subject terms, e.g.

thyroid neoplasms

We treat names just like subjects in manipulations of the

network. The relationship of a name to a document may be

that of "authorship" or "editorship", for example, and we

may think of a subject being related to a document by

"aboutness"; however, the program knows nothing of the

types of these relationships.

In the discussions and desciptions which follow, it

would be useful to have a small example network for

illustrative purposes. Unfortunately, even for very small

collections of references (20-30), the network is extremely

difficult to draw: firstly, because if it is to be at all

useful, it should be well connected, and one is then

confronted with a figure resembling a seriously malformed

spider's web; secondly, the labels on the nodes are long,

and must be listed separately from the nodes themselves,

thus making the associations difficult to appreciate at a

glance. Nevertheless, we shall describe a small collection

in sufficient detail for manipulation later.

70

(i) Example collection: "IR collection"

15 references from volume 16, 1973, of the

Communications of the ACM. Indexing derived from

that published with the papers.

Ref.1 "On Harrison's substring testing technique"
A.Bookstein.
string, substring, hashing, information storage
and retrieval

Ref.2 "Some approaches to best-match file searching"
W .A. Burkhard , R.l.~.Keller.
matching, file organization, file searching,
heuristics, best match

Ref.3 "On the problem of communicating complex
information" D.Pager.
complex information, information, communication,
mathematics, proof, language .

Ref.4 "Hierarchical storage in information retrieval"
J.Salasin.
information storage and retrieval, hierarchical
storage

Ref.5 "Optimum data base reorganization points"
B.Shneiderman.
data base, reorganization, files, information
storage and retrieval

Ref.6 "A note on information organization and storage"
J.C.Huang.
data base, data base management, information
storage and retrieval, information structure, file
organization, storage allocation, tree, graph

Ref.7 "A generalization of AVL trees" C.G.Foster.
AVL trees, balanced trees, information storage and
retrieval

Ref.8 "Evaluation and selection of file organization - a
model and system" A.F.Cardenas.
file organization performance, file organization
model, secondary index organization, simulation,
data base, access time, storage requirement, data
base analysis, data management

Ref.9 "Design of tree structures for efficient querying"
R.G.Casey.
tree, information storage and retrieval, clustering,
searching, data structure, data management, query
answering

Ref.10 "General performance analysis of key-to-address
transformation methods using an abstract file
concept" V.Y.Lum.

71

hashing, key-to-address transformation, random
access, scatter storaee, information storage and
retrieval, hashing analysis

Ref.11 "Comment on Brent's scatter storage algorithm"
J.A.Feldman, J.R.Low.
hashing, information storage and re~rieval, scatter
storage, searching, symbol table

Ref.12 "A data definition and mapping language" E.H.Sibley,
R.W.Taylor.
data definition language, data structure, data base
management, file translation

Ref.13 "The reallocation of hash-coded tables" C.Bays.
reallocation, dynamic storage, hashing, scatter
storage

Ref .14 "A note on when to chain overflow i te . .G.s with a
direct-access table" C.Bays.
hashing, open hashing, chaining, information
storage and retrieval, collision

Ref.15 "Reducing the retrieval time of scatter storage
techniques" R.P.Brent.
address calculation, content addressing, file
searching, hashing, linear probing, linear quotient
method, scatter storage, searching, symbol table

(ii) Index term list, with associations

There follows an alphabetical list of the terms used

to index the IR collection. Most are linked to one

or more of the above references, and to other index

terms. The latter associations were made arbitrar­

ily (but, it is hoped, sensibly) by the present

author.

Term no. Term Assoc.refs Assoc.terflls -
1 access time 8 21 ,29
2 address calculation 15 9,34
3 AVL trees 7 55
4 balanced trees 7 55
5 best match 2 38
6 chaining 14 8,17
7 clustering 9 22,25
8 collision 14 6,26,36
9 content addressing 15 2

10 communication 3 33,35
1 1 complex information 3 30
12 data base 5,6,8 13,14,24
13 data base analysis 8 12,51
14 data base

management 6,12 12,15

72

Term no.

15

16
17
18
19

20

21

22
23
24
25
26

27
28
29

30
31

32

33
34

35
36
37

38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55

Term

data definition
language

data manaGement
data structure
dynar.1ic storae;e
file organization

file organization
model

file organization
performance

file searching
file translation
files
graph
hashing

hashing analysis
heuristics
hierarchical

storage
information
information

storage and
retrieval

information
structure

information system
key-to-address

transformation
language
linear probing
linear quotient

method
matching
mathematics
open hashing
proof
query answering
random access
reallocation
reorganization
scatter storage
searching
secondary index

organization
simulation
storage allocation
storage requirement
string
substring
symbol table
tree

i-ssoc.refs

12
8,9
9,12
13
2,6

8

8
2,15
12
5
6
1,10,11,13,
14,15

10
2

4
3

1,4,5,6,7,9,
10,11,14

6

10
3
15

15
2
3
14
3
9
10
13
5
10,11,13,15
9,11,15

8
8
6
8
1
1
11 ,15
6,9

14,23
45
6,19,32,52,55
44,50
17,20,21,24,29,

43

19,39,49

1,19,51
7,34,47
15
12,19,54
7,55
8,27,34,40

26
47

1 ,55
11 ,33

33,42

17
10,30,31

2,22,26,46
10

. 8,38,40

46
5,36,47,52
20,41
26,36
39
31
19,46
18,50
1 6
34,37,43
22,28,38

20
18,44,51
13,21 ,50
17,38,53
52
24
3,4,17,25,29

It can be seen that there are many different types of

association between terms, and no attempt has been made to

73

distinguish them.

(iii) "IR collection": reference table

For convenience Vie list the documents with their

descriptions, referring to the table of index ter~s,

by number (the symbols appearing in this table are

used in the later diagrammatic representations of

graphs):

Doc.no. Author(s)

1 Bookstein
2 Burkhard, Keller
3 Pager
4 Salasin
5 Shneiderman
6 Huang
7 Foster
8 Cardenas
9 Casey

10 Lum
11 Feldman, Low
12 Sibley, Taylor
13 Bays
14 Bays
15 Brent

Term nos

26,31,52,53
5,19,22,28,38
10,11,30,35,39,41
29,31
12,24,31,45
12,14,19,25,31,32,50,55
3,4,31
1 , 1 2 , 1 3,16,20,21 ,48,49,51
7,16,17,31,42,47,55
26,27,31,34,43,46
26,31,46,47,54
14,15,17,23
18,26,44,46
6,8,26,31,40
2,9,22,26,36,37,46,47,54

(iv) A collection-induced clustering of "IR collection"

We use the method given by Jardine & van Rijsbergen(1971)

to generate a hierarchy of clusters of documents. The

authors are regarded as index terms for this purpose.

The principles of the method are explained in Chapter 2,

section 2.3.

"IR collection":

74

Similarity between documents is strongest inside the

inner-most ring, i.e. documents 11 and 15 are the

"closest", and becomes weaker as we move outwards. The

advantage of this type of clustering is that it forms the

basis for an arrangement, in storage, of document references

which can be used efficiently if one is content to limit

the search to one, or a very small nu:]ber (van Rij sbergen,

1974) of clusters. Van Rijsbergen claims that this is

reasonable for collections in which the "Cluster Hypothesis"

holds. Simply stated, this hypothesis is that documents

which are relevant to the same query tend to have similar

descriptions. This is a statistical phenomenon, which is

more pronounced in some collections than in others

(van Rijsbergen & Sparck Jones,1973). The design of the

program Thomas makes use of such general properties; but

it also takes account of the inevitable deviations, and

we consider that this is an important feature of it. We

shall discuss this last point again in the next section,

and the example near the end of the chapter (section 4)

illustrates it.

(v) "IR collection": part of the association graph

Figure 5 is part of the network in the neighbourhood of

the seven documents, numbered 1,2,10,11,13,14 and 15.

Documents 1,10,11,13,14 and 15 have been chosen because

they are close to one another in the clustering given

above; it can be seen from figure 5 that each of them is

within a path length of 2 lines from all the others.

Document number 2, on the other hand, is separated from

the others in the hierarchical clustering. It's minimum

"distances" from the other document nodes in the

75

5 A-_--.

Burkhard

Figure 5.

Keller

In this representation of part of the
network, the dark squares stand for
document nodes.

76

14

(sub)network shown are

2,1) 3 lines,
2,1 0 ~ 3 lines,
2,11 3 lines, 2,13j · 4 lines, · 2,14 · 4 lines, and · 2,15 2 lines.

Document 2 is related to the others in a way that is not

apparent in the description-induced clustering, but which

can be found by a suitable search in the network. This

is a very simple example of the sort of situation which

Thomas can handle.

2.2 Retrieval by association

Retrieval by program Thomas is associative. The user

indicates which labels interest him, and further labels

(particularly references) are selected for his inspection

from among those reachable by paths of association from

the interesting ones. There are distinctions to be drawn

between methods of the type proposed here, and the uses of

association reviewed in Chapter 2, section 2.3. On the

one hand, it has been suggested (Bush,1945) that

associative links between items should be recorded in a

machine to forci "trails". As noted in Chapter 2, several

computer-based systems have been inspired by the

hypothetical Itmemex", as Bush called it. Treu(1970)

describes such a system in detail: trails are given names

for easy recall, and a recorded item may be placed in

several trails. Retrieval is guided by the user, who tells

the machine where to start and which trail to follow. He

is shown item after item, can backtrack, and may select

alternative trails. Similar facilities have been incorp-

orated into a few text editors (Engelbart et al 1973,

7

van Dam &: Rice 1970), so that the "on-line writer" may

hop about his text, not constrained to think of it as

sequential. The search is directed entirely by the user,

and that is probably quite reasonable because, in these

systems, he, or a close colleague, was the one to set up

the trails. In a bibliographic network, the choice of

trails available to him would be bewildering. What our

program does is roughly equivalent to following many

short trails in parallel, and, basing its decision on

whatever hints the user has supplied, picking one of them

to show him. The program has ways of blocking trails

which the user does not like, and can retrieve material

on many different trails.

Other uses of association in retrieval are based on

statistical properties of the assignment of index terms

to documents (Stevens et al,1965). A brief account of

this area has been given in Chapter 2. Associations

between items are calculated, using a statistic which

measures their tendency to co-occur. Retrieval strategies

which use links formed in this way generally use only

strong associations: although the occasional weak link

leads to important references, more often a great deal of

irrelevant material would be retrieved. In the inter­

active search, the situation is different. A user can

increase the importance of a tenuous association if he

wishes. Statistically derivable associations of the types

used by Jardine & van Rijsbergen(1971) to cluster documents,

or by Sparck Jones(1971) to produce classes of keywords are

obtainable from the network structure used by Thomas. We

do not, however, work them out and record them explicitly

78

in the network: it is more useful to insert what we

referred to as "semantic" links in section 2.3 of Chapter

2. The network used for trials of Thomas was obtained

from a file of bibliographic records, which supplied

document, author and subject nodes, end subject-document

and author-document links. Subject-subject links were

derived £rom a conventional thesaurus (ignoring the

hierarchical direction of the links). Details can be

found in section 2 of Chapter 7.

2.3 Model of context

The principle component of the program's model of

the user's interest is called the "context graph". A

simplified description o£ it would be that it contains

nodes from the complete network (corresponding to items of

various types - documents, authors, subjects) known to be

o£ interest to the searcher, and a selection of nodes

associated with those. Ohere two nodes in the context

graph are joined by a line in the network, that line is

inherited by the context graph. Nodes known not to be of
-

interest are excluded. The second essential part of the

model is thus a list o£ all the nodes which are known not

to be of interest •

. The goal o£ the program is to make the "context

graph" a £ruitful representation of the context of the

user's enquiry. In other words,-it should include the

references which will satisfy him, and should have a

structure which facilitates the selection of those

references. The two components of the model that we have

mentioned so far - the context graph and the set of

79

unwanted nodes - can be regarded, at any stage in the

dialogue, as the current interpretation of the user's

area of interest. Many of the program's hc:-uristics

require information about the history of the dial05~e,

and various sets of nodes and numerical values are

considered to be parts of the model and maintained for

this purpose. We shall introduce them as we need them

in this chapter. Chapter 4, section 2 contains a more

formal description of the model.

3. Creation and maintenance of the model

It would be as well to explain our use of the word

"heuristic", in view of its common association with

artificial intelligence studies and problem solving

programs. We do not claim that Thomas solves problens or

is in any way intelligent: it is the human user who must

exercise his intelligence. Workers in machine intelligence

describe a wide variety of programs as heuristic. Precise

definitions of the term are hard to come by. Broadly

speaking, it is applied to procedures which are based on

the programmer's knowledge and common sense, but which are

not guaranteed to complete, successfully, their assigned

tasks (see, for example, Simon 1965, Minsky 1968, Science

Research Council 1973). Often a program will contain more

than one heuristic procedure for the same task - if the

first fails, the next is tried, and so on. There are two

main reasons for using heuristics: firstly, it may be that

no deterministic algorithm is known for the required task;

secondly, all known, complete solutions may be far too

expensive.

80

The one solution to the reference retrieval problem

which is sure to work is to present the whole collection

to every enquirer, regardless of the query, and let him

select the relevant documents. This is quite clearly a

ridiculous approach, but we should remember that any

more practical system, i.e. one which performs a prelim­

inary selection or sorting, must employ heuristic proc­

edures, because we do not know how a man makes relevance

jUdgements. A feature of'heuristic solutions is that it

is usually not possible to characterize them as rirht or

wrong; we can only make comparisons and state that one

method performs better than another in certain respects.

Some of the heuristics used by Thomas, to influence the

state of its model and to respond to the searcher, have

undergone several modifications and could, no doubt, be

further improved. We beleive, however, that they perform

sufficiently well to illustrate a viable approach to

handling bibliographic data for information retrieval.

3.1 Using the model

Assuming that the program has formed a context

graph like the one shown in figure 6, how should a

reference be selected from it for consideration by the

user? Document nodes (from "IR collection") are repres­

ented by black squares. The document nodes vary in

their involvement in the context graph. Some, such as

6, 9, 14, are on the periphery: most of their neighbours

in the complete network are not in the context graph. It

seems sensible to use a measure of the involvement in

choosing a reference. The other factor which we should

81

6

1 ~ _____ 5~2~--~~~-----;9\----_Bu~rkhard

Figure 6. A context graph

consider is the degree of porrespondence between the model

and the user's interest. To gauge this, the program must

observe the reactions of the user to what has already been

shown to him. * If the recent performance of the program

has been poor, according to the user, some special correct-

iveaction should be taken; but first we deal with the

case where the program is performing reasonably well.

When we are prepare~ to accept that the context graph

is a good representation of the field of enquiry, the

program usually chooses the reference with the highest

involvement in the model. Involvement of a node is

measured by counting the number of nodes adjacent to it in

the context graph, and dividing by the number of such

nodes in the full network. Here are the values for each

* see Chapter 4, section 3.2.1

82

docum~nt node in the graph of figure 6:

Reference Involvement
number measure ,

2 1 ·0
1 ·4

1 1 ·286
13 ·2
14 ·167
10 ·143

9 ·125
6 ·111

The user would be shown reference 2 - "Some approaches to

best-match file searching" by Burkhard & Keller - unless

he had already seen it earlier in the dialogue. To be

precise, one should say that the program picks the most

highly involved node which has not already been displayed,

if such a node exists. This choice is intended to achieve

the short-term goal of giving the searcher a relevant

reference. If the reference selected proves to be of no

interest, there are, at least, good prospects of being

able to reduce the size of the context graph, because

several nodes on display are in the context graph and r:;a'­

be eliminated as a result of the user's negative response.

A searcher who is collecting references during a

dialogue with a computer is unlikely to want a large

number of them. This provides us with a motivation for

trying to keep the context graph small. We take what

opportunity we can to delete nodes, and place limitations

on the incorporation of new nodes. At various times, the

context graph is inadequate as a source of relevant

references, and more nodes must be added if the dialogue

is to continue. The user may take the initiative by

83

spontaneously supplying a new subject te=m or a~tno~ls

name, for instance, but we should not rely on his abilit~

to do that. The program will encourage g~owth of the

context graph in the vicinity of nodes wtich are known

to be of interest. References are not usually displayed

more than once in a dialogue; but if the program's

performance is unsatisfactory, or if the context graph

contains no further document nodes, a reference in which

the user has previously shown interest will be chosen and

displayed again. In this case, the user is re~inded that

he has already seen the reference and is asked to

reconsider it. We know that a searcher's criteria for

judging the relevance of documents and the usefulness of

subject terms are affected by the coarse of a search, so

his response to the second occurrence of the reference

may bring about a significant change in the context graph.

If no reference is available for review, he will be shown

a subject or name which he has entered or previously

selected, together with all associated subjects or names.

These actions on the part of the pr05r~~ seew to be the

n~tural way to promote "course correction", and their

effectiveness will now depend upon the use ~ade of the

man's responses to the displays. We discuss this in

sections 3.2 and 3.3.

Returning to figure 6 for an example, let us suppose

that the searcher has, at an earlier stage, approved

reference 2, but that the dialogue is not proceeding so

well now. The program displays reference 2 again.

84

Please reconsider this document:

Some approaches to best-match file searching.;
Burkhard et aI, CACM 16, 1973.
1. VI.A. Burkhard , 2. R.M.Keller, 3. best :--:3.tch, 4. file
oreanization, 5. file searching, 6. heu~istics,
7. matching

Whereas up to this point, the search may have been

concentrated on the aspects represented by "best match",

"heuristics" and "matching" (term nos 5, 28 and 38 in

figure 6), the user may now consider it more profitable

to look into "file organization" (term number 19). The

effect of indicating this to the program is that several

new subject nodes (such as "data structure", "file orean-

ization model", "files", "random access ll
) and associated

document nodes will be brought into the context graph,

which will become much denser in the region of subject

node 19.

We have mentLoned two kinds of inadequacy in the

model of the user's interest:

(i) The context graph contains no document nodes that

the user has not seen,

(ii) There is an ill-defined lack of correspondence

between the model and the query, as revealed by

poor performance in the dialogue. The context

graph contains too many nodes which are not of

interest.

There is a third state of the model which we regard as

unsatisfactory:

(iii) The context graph is not connected; that is, it

contains pairs of points which are not reachable

85

from each other by any path within the context

graph.

It is assumed that the user is not attempting to conduct

two or more totally unconnected searches at the same ti:::e.

'Nhat is usually referred to as a "multi-aspect search"

arises when the enquirer wishes to establish, or find, a

link between ideas, or when he cannot express the concept

that he has in mind in a single phrase, recognizable by

the retrieval system. If our program can find a set of

nodes in the network which form a bridge between otherwise

unconnected parts of the context graph, these could lead

to the retrieval of important references. We shall come

back to this topic in section 3.3, and in Chapter 4,

section 3.2.5, where a method for attempting to establish

bridges is discussed. Here, we consider the selection of

a document node for display, in the si tua tion ','ihere the

context graph is not connected.

A document node with a high involvement in the model

would be lIcentralll to just one of the connected componentf

of the context graph, and we would expect it to be relev~~t

to one aspect of the query, though not necessarily to be

very useful in solving the searcher's underlying problem.

At the other extreme, a document node having very low

involvement is likely to be non-relevant. In Thomas, we

opt, rather arbitrarily perhaps, for the reference with

involvement closest to the average for all the unseen

references in the context graph. The user may recognize

a term which reduces, or even closes the gap between

components.

As an example, consider again figure 6, and suppose

86

that subject node 52 ("string ll
) and document node 11 have

been rejected. The new context graph is shown in fieure 7.

In addition, we assume that references 1 and 2 have been

displayed already_ The two aspects of the ~~del might be

represented by the title of document 2 and index term 26;

6
19

BUTL1-;C!rd
1 n-------~~~-~----o

47 Keller

10

component a component b

Figure 7.

-
namely, "Some approaches to best-match file searching" and

"hashing"_ The references which are candidates for the

next display, with their involvement measures, are:

Reference Involvement
number measure

13 -2
14 -167
10 -143

9 -125
6 ·111

average -149

87

The reference with involvement closest to the average is

number 10, in component a. Two of its associated subject

nodes (34 and 43) are also adjacent to subject nodes in

component b. Term 34 ("key-to-address transformation") is

linked to term 22 ("file searchingll), and term 43 l"random

access") is linked to term 19 \"file organization"). If

neither of the terms 34 or 43 were acceptable to the user,

these routes between the components would be blocked and

attempts would be made to find another.

3.1.1 Document similarity

When a user judges a reference to be relevant, there

are two obvious, sensible approaches to selecting the next

reference. Firstly, we might say that the model is a

good representation of the area of interest, and make

another selection based on involvement, as described

above. Secondly, we might assume that van Rijsbergen's

Cluster Hypothesis holds, and find the document most

similar, in terms of associated subject nodes, to the one

just displayed, regardless of the context graph. The

second method may select a reference which is not in the

model. The program Thomas is capable of either procedure,

or a mixture of the two.

The similarity measure finally used for the second

method is the latest of a sequence of trial functions.

It takes account of the searcher1s expressed interests

and, in a crude way, the usefulness (specificity) of

index terms. The measure is given formally in Chapter 4,

section 3.3.2. It is based on the extent to which

documents share associated subject terms. Greater weight

88

is given to subjects which have been entered by the user,

or selected by him from displays. Terms which he has

rejected, but are nevertheless associated with the

relevant document, are disregarded. Initially, no account

Vias taken of the frequency of use of the terras in describ­

ing the collection (the term postings). A small number

of very highly posted terms made nonsense of the similarity

measure, however, and they are ignored by the final version

of the similarity function unless explicitly mentioned by

the user. The test collection for this project ~as derived

from Medlars data, originally prepared at the USA National

Library of Medicine. The indexers for that system consider

a small number of common medical words, called check tags,

for application to every document. A complete list of the

check tags occurring in the test collection is given in

Chapter 7, section 2. It includes, among others, mn,;AN,

M.ALE, FEIY'lALE, CHILD and ANTIiIAL EXPERH1ENTS.

Should we, then, use the normal procedure for picking

a document node from the context graph, when the user has

approved the last reference displayed; or should we use

the similarity function? The main disadvantage of a

similarity function of this type, for our purposes, is

it takes no account of the associations between terms.

Information about the nature of associations is not

recorded in the data base, but in the context of a partic­

ular search, a user may treat two terms as exact equival­

ents. The similarity measure ignores this possibility.

On the other hand, similarity between documents will often

be registered on the basis of terms to which the user is

indifferent. If these terms are the only contributors to

89

the measure, we should not expect the II s i;,i lar" :::oCl;:;e:. t

to be relevant, unless the value were particul~r:y hi[h.

This suggests that we should only choose the doc~~ent

most similar to the one last displayed if ~he similarity

measure exceeds a certain threshold. Otherwise, we pick

a document node from the context graph. The formal

definition of the procedure is given in section 3.3.2 of

Chapter 4.

If the similarity threshold is zero, the similarity

function will always be used after a judgement cf

"relevant" by the user; if it is (effectively) infinite,

the similarity function will never be used. Experiments,

like those described in Chapter 7, sections 4 and 5, in

which the threshold was varied from one extreme to the

other, indicate that the overall performance of the

system varies only slightly with threshold value; neither

extreme gave the best performance obtained. (The differ­

ences in performance are not statistically Significant).

To first try the similarity function, find that no

document is similar enough to the one previously displayed,

and then use the node involvement measure to choose a

document, is rather an expensive procedure. ',lie could

remove the appl~cation of a similarity ~eas~re altogether

without significantly degrading the retrieval effective­

ness of the program.

3.2 Displays and messages

We have aimed for a very simple form of dialogue.

The user's statements to the program are of one basic

form, which is designed to be the vehicle for his response

90

to a displayed reference. In other circu~stances, when ~G

reference has been shown to him, a degenerate form of the

statement is appropriate. The syntax of tr.e user's

statement has received little attention, and is very

simple.

A message from the user is analyzed into three types

of information, any or all of which way be absent. If he

has been shown a reference, he may wish to say whether he

is interested in it. He may also wish to single out

certain aspects of the document description as leing of

particular interest, or definitely not of interest.

Finally, he may have thought of a new term, author or title

which may lead to further useful references. The display

format of selected references is geared to these require­

ments. The label on the document node comes first, consist-

ing of its title and information needed by the user to-fina

the full document. This is followed by the labels of all

the personal name and subject nodes associated with the

document. They are numbered in the display so that the

user may easily refer to them. Let us illustrate this

with an example from "IR collection". Reference 1 would

be displayed like this:

On Harrison's substring testing technique.; Eookstein,
CACfu, 16, 1973.
1. h.Bookstein, 2. hashing, 3. information storage and
retrieval, 4. string, 5. substring

Some responses that the user may make to this are as

follows:

91

(i) Yes

(ii) Yes, 2

(iii) Yes, Harrison

(iv) No

(v) lio, 4

(vi) Yes, 1, not 2

lvii) 4,5

(viii) 'string matching',

'patterns'

Co,il:ner, ts

ne is interested; we sh.cOtll aS~\"l:;.e

that all the numbered items are

of interest.

He is interested in the reference,

and particularly in Rhashing". ~e

make no assumptions about the

other numbered items.

He is interested in the document,

and presumably all the .-:,:u:lbered

items; and a new name is intro­

duced, suggested to him by the

title.

The reference is not relevant;

none of the numbered ite~s are of

interest.

He is not interested in the refer­

ence, but "string" looks promisin[~

the other items are assumed to te

of no interest.

The reference is relevant; part­

icularly interested in a~thor

Bookstein; "hashing" is of no

interest.

He is making no comment about the

reference, but is interested in

It string" and n substring".

He makes no comment about the

reference or the numbered

items, but introduces two new

92

(ix) [null message]

terms.

The user makes no co:n;Iient; he is

indecisive and presu~ably wishes

to see what will co~e up next.

The program's interpretation of the user's message is

given precisely in Chapter 4, section 3.1. It should be

pointed out here that assumptions in the "comments"

column concerning numbered items which the user does not

mention are Simplifications, and are in fact modified by

information which he has given earlier in the d~alo;ue.

If, instead of displaying a reference, the program

displays a group of subject terms, the responses "yes"

and "no" are inappropriate, but otherwise the same

statement form can be used. There are occasions when

nothing has been displayed: (i) at the beginning of the

dialogue, (ii) when all heuristics for selecting nodes

for display have failed, and the program is forced to ask

the user to take the initiative. The user must then

supply one or more new names or terms; relevance judge­

ments have no meaning.

A point to notice about the displays is that nodes

which have previously been rejected by the user are not

barred from appearing among the numbered items. The

reason for this is our uncertainty of the status of these

nodes. ·A user may say that the term "hashing" represents

an aspect of a document which does not interest him.

Nevertheless, there may be, in the collection, a useful

document which touches upon the topic of hashing,

inCidentally so far as this user is concerned. Just as we

cannot be certain that if a document is indexed by a

93

particular term then it is relevant, so, eq.-...;all:;·, we

cannot be certain that the presence of any particular

term implies that a document is not relevant. In fact, it

is not at all unusual for a searcher to discover that a

term, hitherto dismissed, is a useful hook for fishing

out relevant references.

3.3 fuodifying the model

Throughout this discussion, it should be remembered

that the "deductions" that we can make from the '-l.ser's

messages are never very strong. We must be prepared for

the user to change his mind. If growth of the context

graph is inhibited in some region, it should not be too

difficult to break through if the user appears to contra-

dict his earlier statements. The assumptions made about

the user's interests, as given above, are used to compile

three sets of nodes (in the main network). Firstly, there

may be explicit, textual requests in his statement, and

the nodes with corresponding labels are found (details

of this process are given in Chapter 5, sections 1.1 and

1.2). The second set contains all the nodes, represented

in the last display, in which he is assumed to be interest­

ed, and the third set all those nodes in which, it is

presumed, he is not interested. Not every item in the

previous display is necessarily contained in one of these

sets: there may be some, concerning which no assumption

should be ffiade. The sample responses listed in the section

above illustrate cases of this type. 'lIe shall refer to the

sets as "requested", "selected" and "rejected" nodes resp-

ectively.

94

The rejected nodes are used to deter~:.ine ',\'h'::re the

context graph shall be "pruned", and where future growth

shall be inhibited. EVen nodes previously requested or

selected may be removed from the context 6~Gph: the U8er

must state, explicitly, that he is no longer interested

in them. The removal of a node from the context graph

brings about the removal of all lines incident with it.

Thus, the context graph may become unconnected. Figure

8 is a particular context graph derived from the "IR

collection". The document node most ttinvolved" is

number 10, so it is displayed with all its neighbours

in the complete network:

General performance analysis of key-to-address
transformation methods using an abstract file
concept.; Lum, CACM, 16, 1973.
1. V.Y.Lum, 2. hashing, 3. hashing analysis,
4. information storage and retrieval, 5. key-to-address
transformation, 6. random access, 7. scatter storage

40v---__ ~C

Figure 8.

95

There follows a table of correspondences bet~een display

identification numbers and subject node numbers:

display no.

2
3
4
5
6
7

subject node no.

26
27
31
34
43
46

It can be seen that some of the items in the display

(1, 4 and 7) are not in the context graph. Let us suppose

that, in responge to the display, the user types:

not 2,4

It is assumed that he is not interested in subject nodes

26 and 31; no assumption can be made about the document

node (10) or any other associated node. Subject node 26

is removed from the context graph, which becomes

unconnected (figure 9). The other rejected subject node

(31) is not in the context graph, but the program will

remember that it has been rejected and will not allow it

to join the context graph at any later stage, unless the

user subsequently requests or selects it, i.e. changes

his mind.

44~12

27

43

Figure 9.

96

DVUCO ~~~~C~cU from the display by the u:er will ~e

added to the context graph, if they are not alre&~y

contained in it. If their use had previo~sly been inhi~itE~,

it would no longer be so. As with no1eE 2orres~onding to

the user's textual requests, selected nodes are given

special status for use in future manipulations of the

context graph, choices of nodes for display, and interpret­

ations of the user's responses. In addition to the actual

nodes selected, which are subject and author nodes, the

program incorporates in the context graph any dJcu~ent node

which is associated with a selected node and which is not

already in the model. Now, this rule needs qualification.

It was found that the "check tags" (see section 3.1.1)

once more caused trouble. If a check tag is selected, and

all its associated document nodes brought into the context

graph, the model becomes very large and much of its bulk

is irrelevant. I.Iany documents are linked to several checK

tags, and could have a high involvement measure within the

context graph purely on the basis of the check tags. The

program, therefore, only incorporates in the context graph

document nodes associated with selected nodes which are

not check tags. We should ~ake it clear that check tag

nodes may occur in the context graph and be taken into

consideration when calculating the involvement of document

nodes. They are not, however, used to bring new doc~ents

into the model.

The action taken with requested nodes is similar.

The nodes themselves are included in the context graph,

and so are all non-inhibited nodes, whatever their type,

which are associated with those among them that are not

97

check tags. If, for example, the reguest is for

"searching", the nodes incorporated in th!.:' context graph

(from "IR collection") would' be document :'"". - des 9, 11 and

15, and subject nodes "file searching"(22), "heuristics"

(28), "matching"(38) and "searching"(47). A result of

the method of handling requested check tags is that if

the user's initial request is for one of these very highly

posted terms, then the program responds in very such the

same way as a man would - it will not attempt to refer to

the literature until a more specific request has been

made. Suppose, for instance, that "information storage

and retrieval" is a check tag: it is the most highly

posted term in "IR collection". If the user types just

that term, the context graph created is simply the single

node:

31
o

Since there are no document nodes to choose from, Thomas

will try to stimulate the user to give more topics of

interest, with the display:

Consider these subjects:

1. information storage and retrieval, 2. information
system, 3. query answering

When the searcher's statement has been interpreted

and used to influence the model, the context graph is

checked for connectedness. We have already argued the

98

case r5~ t~~inE t5 ~~intain a connected csnt0xt [r~ph

(section 3.1). Before selecting a reference for display,

the program attempts to join up the connected components

of the context graph, if there are more tLc~ one of them,

by incorporating new nodes from the network data case.

The method used by Thomas is described in section 3.2.5

of Chapter 4. Before any attempt is made to find paths

between components (an expensive process), the context

graph is examined with the object of discarding very

small components of no particular interest. These are

defined to be components of less than three nodes, none

of which have been requested or selected by the user.

Such components are usually separated from the main body

of the context graph when rejected nodes are deleted. In

figure 9, two small components have been formed in just

this way. If subject 44 l"reallocation") has been request­

ed or selected by the user, but 40 (I'open hashing") has

not, the context graph would be reduced to that shown in

figure 10. Reference number 10 has been displayed, and

subject nodes 26 and 31 are inhibited from joining the

context graph.

44

27 15

43

Figure 10.

99

~ ~ .. v ~ v ... ~ .Ao~ to find a short pat~ t'2:w(-(::1 the tv:c

components. The path length is restricted to two line~ in

our program; firstly to limi t the amount of co:~putation

needed, and secondly to ensure a hieh lij~0:;'.'hood of creat­

ing a useful bridge. The procedure employed starts by

finding, for each component, the set of nodes adjacent to

the non-check tags in the component, excluding inhibited

nodes, and nodes already in the component. For the two

components in figure 10, the sets are:

{Bays, 18,46, 50}

and {Lum, Brent, 9, 1 9, 22, 31, 36 , 37, 46, 47, 54} .

The numbers are all subject node numbers. These sets are

intersected, and an element chosen from the meet, giving

preference to document nodes. This element forms the

bridge between the two components: it is associated with

at least one node in each. Note that when there are more

than two components to join together, it is not necessary

to find a bridge between each pair. In our example the

bridge must be subject node 46. This is added to the

context graph in the same way as selected nodes are, i.e.

accompanied by associated document nodes:

44

27

Figure 11.

100

The document node most involved in the context ~raph in

figure 11 (after 10, which has already been displayed) is

no. 13, so the next display will be:

The reallocation of hash-coded table Ea CAC!' 16 s. ; ys, •. , ,
1973.
1. C.Bays, 2. dynamic storage, 3. hashing, 4. realloc-
ation, 5. scatter storage I

I..---_______________ J

4. A search (example)

We conclude this account with an example, using IIIR

collection". Any search in such a sInall collection is

bound to appear artificial, or contrived. On the other

hand, one can follow the processes easily. ~e add a little

more information to the specification of the data base:

the two most frequently posted terms l"hashing" and

"information storage and retrieval ") are designated check

tags.

The search 1S for documents which may have a bearing

on techniques for inexact watching of data. Let us say

that the user will judge documents 1 and 2 to be relevant.

A glance at the collection-induced clustering given in

section 2.1 will show that these two documents are quite

widely separated, and that a retrieval technique based on

that clustering would not be satisfactory for this search.

In fact, the two document descriptions have no subject

terms or authors in common. The search which follows lacks

realism largely because so many terms are associated with

only one document.

101

User: 'inexact string matching'

Thomas:1 Do you mean string?

The program has not been able to find a better

phrase, and the user accepts 'string' as an

aspect of his enquiry.

User: Yes

Thomas: Initial context graph is the star surrounding

subject node 52 (' string'). l~ote that the

aspects "inexact" and "matching" are not jet

known by the program as being of interest.

5 3 rr----~:a

38 17

The most highly "involved." document node is

chosen for display. (It is luck that in this
I

case it is a relevant one).

On Harrison's substring testing technique.;
Bookstein, CACM, 16, 1973.
1. A.Bookstein, 2. hashing, 3. information
storage and retrieval, 4. string, 5. substring

User: Yes

Thomas: All numbered items-in the display are added to

the context graph. No new document nodes are

added, because subjects 26 and 31 (2 and 3 in the

display) are check tags, and the other items are

only linked to document 1.

102

User:

Bookstein

(}-----;c.r------(J 26

31

38

The program looks for a document (in the whole

collection) similar to no.1 - and fails.

There is no other document in the context graph,

so the program suggests subjects adjacent to 52

('string'):

Consider these subjects:

1. string, 2. data structure, 3. matching,
4. substring

2,3,4 He is interested in all

of them.

Thomas: Subject nodes 17, 38 and 53 (2, 3, 4 in the dis:p~ -y)

are added to the context graph with their associated
-

document nodes:

Bookstein

53o-______ ~~----~

;8
2

103

\

User: -

Involvement measures of undisplayed docwnent

nodes are:

doc.9 ·25
doc.12 ·167
doc.2 ·143

Document 9 represents the data structure aspect

of the topic.

Design of tree structures for efficient querying.;
Casey, CACM, 16, 1973.
1. R.G.Casey, 2. clustering, 3. data management,
4. data structure, 5. information storage and
retrieval, 6. query answering, 7. searching,
8. tree

7,8 He is non-committal about

the reference; 'searching'

and 'tree' could lead to

references.

Thomas: Subject nodes 47 and 55 (7 and 8 in the display)

are added to the context graph with associated

document nodes:

Bookstein

2 .~Y/,;1-----a

11

104

Invol venent measures of undisplayed. docu..:,e!lt

nodes are:

doc.11 ·429
doc.6 ·222
doc.15 ·2
doc.12 ·167
doc.2 ·143

Now we follow up the hashing aspect of document

no. 1, with document no. 11:

Comment on Brent's scatter storage algorithm.;
Feldman, et aI, CACil'l, 16, 1973.
1. J.A.FeIQman, 2. J.R.Low, 3. hashing,
4. information storage and retrieval, 5. scatter
storage, 6. searching, 7. symbol table

(Note that, although 'hashing' and 'information

storage and retrieval' have contributed to the

selection of this reference, as check tags they

played no part in bringing it into the model)

User: No

Thomas: Document node 11 and subject nodes 26 and 31 are

removed from the context graph. Use of the

following nodes will be inhibited: doc.11, names

Feldman and Low, subjects 26,31,46,54.

Bookstein

6

105

User:

Involvement measures:

doc.12 ·167
doc.2 ·143
doc.6 ·111
doc.15 ·1

Note how the hashing aspect has subsided. We

return to data structuring with document no. 12:

A data definition and mapping language.; Sibley,
et aI, CACM, 16, 1973.
17 E:H.Sibley, 2. R.W.Taylor, 3. data base
management, 4. data definition language, 5. data
structure, 6. file translation

No The only topic of

interest is 'data

structure', and he has

already indicated that.

Thomas: Document node 12 is removed from the context

2

graph. Use of the following nodes will be

inhibited: doc.12, names Sibley and Taylor,

subjects 14,15,23.

Bookstein

6

Involvement measures:

doc.2 ·143
doc.6 ·111
doc.15 ·1

106

User:

Some a~proaches to best-match file searc~i~G.;
Burkhard, et aI, CACI,l, 16, 1973.
1. W.A.Burkhard, 2. R.M.i:eller, 3. best ;;;atc!1,
4. file organization, 5. file seerc~ing,
6. heuristics, 7. matching

Yes, not 4 This is the second

relevant document.

Thomas: All of the items in the display, except that

numbered 4 (subject node 19), are added to the

context graph, with associated document ~o1es.

Subject node 19 is inhibited from further use.

1

5
n------I~6

Burkhard

We shall leave the dialogue at this point, and give a

summary of the state of the model by listing the subjects

in the context graph:

53 substring
52 string
17 data structure
55 tree

5 best match
38 matching
47 searching
28 heuristics
22 file searching

and the subjects whose use is inhibited:

14 data base management
15 data definition language
19 file organization

107

23 file translation
26 hashing
31 information storage and retrieval
46 scatter storage
54 symbol table

5. SUI':mary

We have given, in this chapter, a description of a

program, called Thomas, with which a man can conduct a

dialogue, serving to assemble a set of references relevant

to his problem in hand. The philosophy behind the design

of the program has been discussed: the concepts of (i) a

dynamic model of the user's interest, (ii) browsing among

document surrogates rather than through an indexing

language thesaurus, and (iii) thereby doing away with

coherent query formulation. The program represents

another approach to the integration of man and 2achine in

one system.

In the next chapter, the rather informal description

given above is complemented by a more precise definition

of the important functions of the program.

108

Chapter 4

FUHCTIOlIAL DESCRIPTION OF TEOif.AS

In this chapter, we give a detailed dsscription of

the reference retrieval program, without giving much

attention to techniques or considerations of implement­

ation. The program has undergone one major upheaval and

several minor ones to reach its present state, but very

little will be said about its history. Similarly there are

many ways in which one could tinker with the program, none

of which will be discussed here.

Broadly speaking, there are three components to the

system: (i) the "data base", or bibliographic file, which

is its stored knowledge of the literature, and is, for the

present experiment, static; (ii) the model of the searcher's

interest, which exists only for the duration of a search

and develops as the dialogue progresses; (iii) the program,

which uses the data base and the searcher's input to create

and maintain the model, and uses that to select helpful

references.

1. The "data base"

The bibliographic data which the program handles should

be regarded as being attached to the nodes of an undirected

graph. Let us call this the supergraph, because we shall

frequently want to talk about parts of it (subgraphs and

subsets of its nodes); it is a labelled graph.

Formally, the supergraph, S, is a triple (N,L,A), in

which:

N = { n1 ,n2 , • • • np}' a set of p points,

109

L = {11,12' ••• Ip}' a set of p labels, one for

each point in N (i.e. there is a function, f,

mapping N onto L; f:U L),

A = {{n,m} : n,mEU and {n,m} is pre':;(;':'ibed a:lG n:;!::1},

i.e. a set of unordered pairs of distinct points

in N (not necessarily all such pairs) - the

lines of the graph.

We shall be particularly interested in the sets, Si

(1'-i'p), of points adjacent to each point, n., inN:
1.

1.1 Labels

The labels, 1 1 , 12 , etc., are bibliographic. Some

stand for documents, and contain the type of information

which usually occurs in a citation, some consist of the

names of authors, and others stand for subjects or topics.

In the data base under consideration all labels are derived

from the biblioeraphic description of a collection of

documents in the field of medicine and the indexing VOCE: -~-

ulary associated with that l~edical Subject Headings from

I.~EDLARS and synonyms from the I,Tedusa system).

A label is structured data, or, in traditional term-
-

inology, a record. There are three types of label,

distinguished by a type indication; they are as follows:

Type 1 (author label): contains a name (usually a

surname) and initials.

Type 2 (document label): contains the title (a

phrase), a reference to the document's

location in, e.g., a journal (a character

110

string), and the "citation n:.liT;ber" of the

record in the f.:EDLARS file from which the label

was derived (an integer).

Type 3 (subject label): contains a tern or phrase.

With the exception of the citation number, all the components

of the various labels are character strings of arbitrary

length.

As bibliographic records go, our "labels" are exceed­

ingly simple. Library cataloguing methods typically

distinguish 50 "fields", from which an individual record

may have a selection of some 20. The supreme example of

complexity in record design in this area is surely the

MARC (Machine Readable Cataloguing) record developed by the

Library of Congress and the British National Bibliography

(Gorman & Linford,1971). But that record structure was

intended for an indefir.itely large number of applications,

and the label we are discussing is not. There are no more

types of label nor subdivisions of data within labels tha~

are required by the program.

Some examples of labels:

(i) author labels:

(name: "HeVletson" , initials: "JF"),

(name: "Schulte-HoI thausen", initials: "HI!).

(ii) document labels:

(title:"Distinct projections to the red nucleus froIn

the dentate and interposed nuclei in the monkey",

reference: II Flumerfelt et al,Brain Res,50,408-14,

28 Feb 73",

citation number:144189),

111

(title:"<Systemic venous insufficiency. A new ani

rare syndrome)",

reference: "Groen et al,Phlebologie,25,399-t06,

Oct-De c 72",

citation number:143603).

The angle-brackets in the second example indicate

that the title is a translation from a language other

than English.

(iii) subject labels:

"hemagglutination inhibition tests",

"rabbits",

"brain injuries t acute".

The way in which the collection of labels present in the

experimental supergraph were chosen and obtained is described

in section 2 of Chapter 7.

The mapping f:H-+-L mentioned above can be regarded

as the "accessing function". The points n i are "addresses"

which the function f uses to access the labels Ii.

1.2 Lines in the supergraph

As the definition of A, above, implies, any distinct

pair of points may be associated. There is no reference to

the label set, L, and it should be noted, in particular

that there is no restriction on the combinations of types

of points that are linked (the type of a point is the type

of the label attached to it). In the experiment, certain

combinations happen to be absent, e.g. author-subject,

but this should be regarded as a quirk in the data

conveniently available for constructing the supergraph.

112

Unlike a point, a line has no label Ettached to it.

Figure 12 is a pictorial imaee of ~ of tile neichbGurhJoj

of a document node in the supergraph used for the

experiments. Points and lines have their 0(vious

representations. It should be remarked that a relatively

sparse part of the supergraph was chosen for this figure,

and even then ruthless pruning was necessary to produce a

readily assimilable figure. 72 distinct points adjacent to

those in the figure have been omitted (includi~g all with

au thor labels).

2. The model

The supergraph described above is the program's entire

"knowledge" of the literature which a user may peruse. l-.

model of an enquirer's interest developed by the program

must be in terms of that "knowledge": something which is

derivable from it, and which can be used to determine what,

in the data base, should be shown to the user. In addition,

it must be such as can be modified to reflect information

gained from the user's responses. Ve shall now list th~

co~ponents of the model; further details on how they are

maintained will be given later when the progra~'s operation

is described. The definitions which follow are in ten,s of

the supergraph S = (N,L,A) - see section 1, above.

(i) context graph. This is an unlabelled sub graph of S.

It is the maximal sutgraph induced l::y a subset of

the points in s. Formally, the context graph is a

pair of sets Ge = (Ne,ile), where He c l~ and

Ae = {{n,m}: {n,m} EA and, n,m E Ue}. In other words,

113

S7 S8 D4

Key (i) document labels (title parts only):

DO: "(Design of an evaluation questionnaire for ped­
iatric nursing students)"

D1: "Toward defining the end product of medical
education"

D2: "Reliability and validity of subjective evaluati0TI
of baccalaureate program nursing students"

D3: "Introduction of concepts of rneasurerrent and
statistics to sophomore nursing students"

D4: "Quality-of-care assess~ent: choosing a method for
peer review"

D5: "Evaluation of the hlnerican board of pediatriCS
oral examination by candidates after completing it"

(ii) subject labels:

S1:"Education measurement"
S2:"Faculty, nursing"
S3:"Students, nursing"
S4:"Curriculum"
S5:"Evaluation studies"

S6:"Achieve;:nent"

S7:"Psychology"
S8:"Judgement"
Sg:"Problem solving"
S10:"Education, medical"
S11:"Education, nursing,

baccalaureate"
S12:"Education, medical,

undergraduate"

Figure 12. The neighbourhood of'a document node (no) in
the supergraph. (See text).

114

•

the context graph contains some sul:et of the poi~t~

in the supergraph, together with all the lines

which cormect those points in the supergraph. A

change to the context graph can be ~~2cified ~i:,ply

by giving the set of points to be added to, or

removed from it; the lines to be added or removed

can be deduced.

(ii) unity. A truth value indicating whether the context

graph is connected, or not.

(iii) explicit reguests. This is a set NEc:~ Jf points

either matching the user's expression of his interest

(see section 3.2.4) or selected by him from displays.

(iv) inhibit list. A set NIeN of points explicitly or

implicitly (by heuristics given below) rejected by

the user. ~hen points are being added to the context

graph, those belonging to Nr are inhit~ted.

(v) last selected. A set of points selected by

the user (sometimes implicitly) from the last

display.

(vi) good documents. This is a set of points with

document labels, DGcN, which have been displayet

to the user and elicited explicit approval from him.

(vii) accepted documents. A set of document points,
.

DA eN, which have been displayed, and a~out which

the user has been non-committal.

(viii) reviewed nodes. There are occasions when the program

chooses to display a node for the second time for

the user's reconsideration. The set, HR, of

re-displayed nodes is maintained by the program.

(ix) performance. A number reflecting the history of the

115

user's reactions to the progra~15 c~cices ~f what

to show him.

At the beginning of a searc~, all the sets in the r:J,~'~el

are made empty. The following relationships betwee::1 the

sets are then maintained:

NO n Nl = Y1

NEcNO

NL n Nl = Y1

DG n NI = Y1

DA () HI = Y1

DG n DA = Y1

In other words, none of the points in the inhibit list are

also in the context graph, all explicit requests are in the

context graph, and the inhibit list, last selected, good

documents and accepted documents are mutually disjoint sets

of points.

3. Program function

The reader is reminded that this chapter is not

concerned with implementation details, but rather to giv~

a reasonallly comprehensive understanding of the prograrr.'s

design. Decisions made during the design were made on the

basis of such factors as the results and experience of

others as reported in the literature, feasibility of

effective implementation, and common sense (which still

seems to have a significant role to play in this subject).

SOQe of the features which govern the effectiveness of the

system have been parameterized for convenient adjustment

in experiments. The program was, designed from the top,

downwards, i.e. by progressive refinement, and this

116

description will follow the program struct~re ttrough the

top few levels.

There is very little to say about the top-~ost level

of the program: it opens the disk files containing t~e data

base and calls upon the topic search procedure as Ti.any

times as the user requires. We move straieht on to the

topic search procedure (an Algol-like notation is used for

the description of algorithms):

procedure TOPIC_SEARCH;

begin SET_UP_MODEL;

repeat Ij.:FROVE_I.;ODEL

until USER SATISFIED

end.

At the beginning of each search, all the sets in the model

are made empty by SET_UP_il.ODEL. The program is saying, in

effect, "I know nothing about this user's interest". The

structure of, and terminology used in the above procedure

indicate the nature of the goals which the program tries

to achieve - to improve its model, and thus, eventually, ~o

-
get the user to express satisfaction. One l!ligr.t '2ay th2.t

it is incidental to the main goal of n;PROVE_t:ODEL that it

shows the user references to the literature. The user's

reactions to those references are instrumental in improving

the model. "EJ>ROVE_h.ODEL" is not always a very truthful

label for the process it stands for, for a variety of

reasons. If, for example, a user has seen all that the

data base has on his interest, then either the model cannct

be improved or, if it can, there is no purpose i~ doing so.

117

The sooner the user realises this and expresses

"satisfaction", the better. In this case, alot depends ~~

the user's confidence in the system, but there is a feature

which prompts him (without compulSion) to stop the se2rch.

Here, then, is the high-level definition of

IMPROVE MODEL:

procedure IJ'tlPROVE.J~10DEL;

begin message m;

m:=GET_USER_ViliSSAGE;

I~FLUE~CE_STATE_OF_MODEL(m);

RESPOND_TO_USER(m)

end.

We describe the three processes invoked by IM.PROVE_;,~ODEL in

the next three sections (3.1, 3.2 and 3.3).

3.1 The user1s statement: GET USER MESSAGE

The function-procedure GET USBR MESSAGE is of type

message. Chapter 6 (sections 2.1, 2.2) explains the use 0:
such type names for data structures in the development of

the program. The value returned by the proced~re is a

representation of the userls statement, interpreted as a

response to what the program last displayed. (The proc­

edure is responsible for reading the statement). We must

anticipate the section on RESPOND_TO_USER, and say what

the components of a display are. Normally the program will

display a reference using the label of a document node,

followed by a numbered list of all the nodes adjacent to

it. For example:

118

Misleading tests for glycosuria.; Feld",an ~t al
J

Lancet,1,1246,2 Jun 73 ----
1. J.M.Feldman, 2. F.L.Lebovitz, 3. false ne~ative
reactions, 4. glycosuria, 5. human, 6. methods

Sometimes the reference part of the display is atsent; the

display may be a collection of related subjects. Occasion­

ally, there is neither reference nor numbered list (e.g. at

the start of a dialogue).

The user's statement may be an instruction to stop

the search, or it may give any of the following information:

(i) A relevance judgement on the reference sh~y'.-n (YES or

NO),

(ii) An indication of what aspects he likes (or dislikes),

using the numbers in the display,

(iii) One or more phrases or names related to his interest.

All parts ~f the statement are optional; in fact the user

may make a null statement~

A message structure, m, produced by GET US3R LESSAGE

has four parts:

(i) reaction(m). This takes one of four values, which

we shall denote STOP, YES, NO and NONE. If the

value is STOP, the other three parts of m do not

apply, otherwise it corresponds to the user's

relevance judgement (NONE means that he did not give

one).

(ii) select_list(m). A set of points which the user has

explicitly or implicitly (see below) selected from

the previous display.

(iii) reject_list(m). A set of points which the user has

explicitly or implicitly rejected, from the previous

display.

119

(iv) request_list(m). A list of items derived from the

textual requests in the user's statement, structured

for searching and matching with node labels in the

supergraph. This is the only part of a message

which has any meaning at the very beginning of a

topic search.

The values of select list{m) and reject list(m) are derived - -
from the last display, the user's statement and certain

aspects of the model. The model is also modified. The

actual algorithm is giien below. We use the following

symbols:

Nd is the set of points whose labels occur in the

numbered list in the last display,

J = reaction(m),

C C Nd is the set of points explicitly chosen by the

user,

ReNd is the set of points explicitly re j ected by the

user,

NE is the set of "explicit requests" in the model,

NL is the set "last selected" in the model.

¢, u and - denote the empty set, the set union

operator, and the asymmetric set differen2~

operator, respectively.

The algorithm:

NE := NE U 0;

if C=~ and R=¢ and J=YES then C:= Nd ;
reject_list(m):= if R~¢ then R

else if J=UO then Nd - (NE U NL) else ¥':

select_list(m):= if C#¢ then C U NL

else if J=YES then Nd - R else NL;

120

It can be seen that certain assumptions are ~adt about thE

user's intention. If he has given an unqualified YES (R

and 0 both empty), it is assumed that he likes all the

items displayed. It is assumed that he is still interested

in the items which he chose last time (note that NL is set

at the end, ready for the next application of the algorithm).

If his statement was an unqualified NO, the algorithm

assumes that he would reject all the items displayed except

those that he has chosen or explicitly requested earlier in

the dialogue.

Another task performed during the interpretation of

the user's statement is the categorization of the document

node displayed according to the reaction part of the

message. In the following algorithm,

J = reaction(m), having one of the values YES, NO or

NONE,

d is the point whose document label has been

displayed,

NC is the set of points in the "context graph ll
,

NI is the lIinhibit list",

DG is the

DA is the

case J of
begin

set

set

NO: begin

end;

of IIgood documents",

of "accepted documents":

NI := NIU {d};

NO:= NC- {d};
DG:= DG- {d};
DA:= DA- {d}

NONE: if d ¢ DG then DA:= DA U {d};

121

/cont. I

end

YES: begin DG : = DG U {d};

DA:= D).- {d}
end' --'

3.2 INFLUENCE STATE OF lWDEL

The interpreted and structured statement is now used

to modify the model as follows:

[Boolean stop_requested;]

message m;

if reaction(m)=STOP then stop requested:= true - -
else begin

end..

COMPUTE_SCORE(reaction(m»;

PRUNE_CONTEXT(reject_list(m»;

ADD_TO_CONTEXT(select_listtm»;

FIND_NODES(request_list(m»;

UNIFY CONTEXT GRAPH

We describe each of the five procedures invoked in turn.

3.2.1 Moni toring performance: COI,lPUTE SCORE

COMPUTE SCORE is responsible for updating the numerical

variable "performance" in the model to take account 0: the

user's reaction to the last display. The value of

performance is used by RESPOND_TO_USER, under certain

circumstances, to determine what should be displayed next,

122

which in turn influences the future states of the model.

Hence, the method of calculating "perfor~ance" influences

the program's effectiveness. Ne want a measure of the

program's success which "remembers" past performance, but

gives greater weight to the recent past. A simple formula

is used, which computes the (n+1)th performance, Pn+1'

from the nth value, Pn' and the success rating of the last

interaction with the user, XJ :

p 1 = hlp + XJ n+ n

M is a constant, the "memory factor", and should have a

value in the range O~ M~ 1. The value of XJ depends upon

the reaction, J, passed to CO~PUTE SCORE. One set of

values which has been used is

M = i, XNO = -1, XNONE = 0, XYES = +1, Po = O.

3.2.2 Hemoving points from the context graph:

PRUNE CONTEXT

The procedure PRUNE CONTEXT deals with the points

which the user is assumed not to like in the last display,

i.e. reject_ list(m) in message m. As usual,

NC is the set of points in the "context graph" ,

HI is the "inhibit list", and

NE is the set of "explicit requests".

procedure PRUNE_CONTEXT(rejects);

point set rejects;

begin NC:= NC- rejects;

i~ ._ ... I·- N1U rejects;

NE:= NE- rejects

end.

123

Notes: (i) Removal of points from the context graph

implies removal of lines incident with them.

(ii) It is possible to remove points from "explicit

requests". Thus a user can change his mind

about what subjects he is interested in.

Adding points to the context graph:

ADD TO CONTEXT

The procedure given below adds points to the context

graph. It also brings into the context graph document

points adjacent, in the supergraph, to the new points.

procedure ADD_TO_CONTEXT(chosen);

point set chosen;

begin NI := NI - chosen;

NC:= NC U chosen;

NC:= NC U LINKED_DOCUMENTS(chosen)

end.

To define the set that LINKED_DOCUMENTS produces, we first

recall some notation from section 1 of this chapter. The

supergraph, S = (N,L,A), where H is a set of points, L the

set of their labels and A is a set of lines. The set of

points adjacent to a point n. E N
~

is

si = {m: {ni' m} € A}.

Let C = chosen - NCh ' where NCh is the set of "check tags"

C is a subset of N, say {nk ,nk , • • • nkq}· The set

..
1 2

Check tags are subject points which are adjacent to
relatively many document points. They correspond to
terms with high postings in MeSH. See section 3.1.1,
Chapter 3, and section 2, Chapter 7.

124

* •

returned by LINKED DOCUII:El~TS consists of all the me:nbers

of the set

Usk . - HI
1~ i{ q 1

whose labels are of type IIdocument".

Incorporating textual requests: FIND NODES

The task of matching a word, phrase or name suggested

by the user with a node label in the supergraph is fairly

complicated in this program. It is more than simple string

matching. A description of the techniques used will be

found in Chapter 5. Here, we concentrate on the effect

upon the model of such initiative by the user. In the

expression of FIND_NODES that follows, we use the usual

notation for components of the model, namely HE for the

"explicit requests" set, NI for the "inhibit list" and.NC

for the set of points in the "context graph". The process

denoted by LOCATE_NODES produces the set of pOints matching

the requests. This set may be empty, or it may contain

more than one match for some of the requests. The function

STARS occurring in FIND_NODES, below, is very similar to

LIHKED_DOCUMEHTS (see section 3.2.3), but there is no

restriction as to the type of points that are included in

the result.

procedure FIlm_NODES (requests) ;

query ~ requests;

begin point set P;
)

P:= LOCATE_NODES(requests);

NE : = NE V P;

125

end.

Not only are the located points included in the context

graph, but also all the non-inhibited, non-"check tag"

points adjacent to them in the supergraph.

3.2.5 Establishing coherence: UNIFY CONTEXT GRAPH

When the context graph has been modified, points

added and removed, UNIFY CONTEXT GRAPH is executed to find

out if the context graph is connected (i.e. in one piece),

and if not to attempt to join the separate components by

adding a few appropriate points from the supergraph. If,

when it is done, the context graph is connected, the

Boolean variable "unity" in the model will be true, other­

wise it will be false. In the procedure, GC is the context

graph and IKI denotes the number of elements in the set ~.

procedure UNIFY_CONTEXT_GRAPH;

begin graph set K;

end.

~:= CONNECTED_COMPONENTSlGC);

if 1K-1~1 then uni ty:=true

else

begin DISCARD_USELESS_COMPONENTS(~);

unity:= if /t{1>1 then TRY_JOIN(t{) else true

end

126

The procedure CONNECTED_COr.:FONEHTS finds all the maxi~al

connected subgraphs of its argument, GC• It does this by

picking any point, p, in GC and locating all the points,

also in GC' reachable from p. Those points together with

p form the first component. If there are any points in G
C

which were not visited in the search, one of them is chosen

and the process is repeated to produce the next component;

and so on, until all the points in GC have been used. The

result in general is a set of graphs with mutually disjoint

sets of points. If this set has more than one member, we

should like to find paths in the supergraph which join

them together. However, implementation must be considered

at this point. We could use a technique very like that

used to determine the connected components of the context

graph. Think of the points in a component as a wavefront.

Now advance the wavefront by moving along each line which

connects a known point to an unvisited one in the super­

graph. To find a path between two components, advance th~

two "wavefronts" alternately until they meet at some point.

Backward links must be recorded everywhere throughout the

process, so that the path can be determined from the

meeting point. (Quillian,1968 implemented this method in

his semantic memory). The pro~ess is rather expensive,

and there is a user waiting for a response. Unlike the

context graph, which is stored in fast storage (virtual

memory in our implementation), the supergraph sprawls

across magnetic disk, and logically adjacent nodes will

often be widely separated in storage.

The procedure given above first tries to reduce the

problem by invoking DISCARD USELEsS COMPONENTS. Some

127

critical points (cutpoints) may have been removei from ~he

context graph, isolating small components. If a s~all

component has no points which are me~bers of N~ (ex~licit
.r.; -

requests) or NL (last selected), it is deleted from the

context graph, and from the set~. We can adjust the

meaning of "small component": it might ffiean components with

less than 3 points, for example. These deletions may have

reduced the context graph to a single connected component,

but if that is not the case a quick attempt is made to join

them by TRY JOIN. If it does not succeed, it returns the

value false and "unity" (in the model) remains false,

therefore.

Going back to the wavefront analogy, each component/

wavefront is advanced one step (from all points in the

component except "check tags" to non-inhibited points in

the supergraph). The new "wavefronts" are intersected in

pairs and single points are chosen from the non-empty

intersections, preference being given to document points.

These points are added to the context graph using

ADD_TO_CONTEXT (see section 3.2.3). TRY JOIN never

advances the "wavefronts" more than one step, so the back-

ward chaining referred to above is not needed.

This completes the description of the process named

INFLUENCE STATE OF MODEL.

3.3 RESPOND TO USER

Now that the user's statement has been used to modify

the model, a suitable response is determined by the program

from the model. The program aims to give the user

pertinent references. In order to do this it must collect

128

suitable information from the user. Someti~es it is better

to make a provocative response than to give the "best"

reference from a dubious model.

In this procedure, NC denotes the set of points in the

context graph:

[Boolean stop_reqUested;]

procedure RESPOND_TO_USER(m);

message m;

begin point d;

end.

if not stop_requested then

begin if NC=¢ then STIMULATE USER

else

end

if reaction(m)=YES then

begin if last display contained a reference, d

then DISPLAY_Slr.:lLAR(d)

else PICK A DOCUMENT

end

else

if performance is low then REVIEW COURSE

else PICK A DOCUMENT

In sections 3.3.1 - 3.3.3 we discuss PICK_A_DOCUMENT,

DISPLAY SIMILAR and REVlEiV COURSE. STIII:DLATE USER is a

simple procedure which tries to reintroduce references or

topics in which the user has previously shown interest.

129

Using the context: PICK A DOCUME3T

This procedure for determining what to show the user

is actually invoked more often than the definition of

RESPOND TO USER would suggest, because under certain

circumstances, DISPLAY_SIMILAR also calls upon it. It is

the procedure which assumes that the context graph is a

reasonable representation of the area of the user's interest,

and therefore tries to make a sensible choice from the

document nodes contained in it.

In the definition of the procedure, NC is the set of

points in the context graph GC' and unity is the truth

valued part of the model which indicates whether GC is

connected.

procedure PICK_A_DOCUlvlru"'{T;

begin point set D;

D:= illfSEEN_DOCUMENTS(NC);

if D=¢ then SUGGEST_SUBJECTS

else DISPLAY DOCillviENT(if unity then r,~OST I1~VOLVED(D) - - - -
else AVERAGE I11VOLV-S:Ll(D» - -

end..

UNSEEN_DOCUMENTS(NC) produces those members of the set

NC - (DG U DA) which have document type labels. (DG and DA

are the sets "good documents" and "accepted documents",

respectively. Documents which have been seen.and rejected

will be represented in the Hinhibit list", NI • We can

forget them because NIn NC = ¢). SUGGEST SUBJECTS

displays a collection of subjects related to one of the

user's explicit requests (see section 3.3.3 in this

130

chapter). The form of display produced by DISPLAY_

DOCUMENT has already been described (section 3.1). We co~e

to the concept of involvement in the context graph, in

order to elaborate wOST INVOLVED and AVERAGE INVOLVED.

The connect coefficient of a point, p, in the context graph.

GC' is defined to be:

degree of p in GC ------------------------------- .
degree of p in the supergraph

The degree of a point in a graph is the number of lines in

the graph which are incident with the point. The values

taken by connect coefficients range from zero, for an

isolated point, to 1 for a point all of whose immediate

neighbours in the supergraph are also in the context graph.

We use the connect coefficient to measure the involvement

of points in the model. MOST INVOLVED finds the member of

its argument which has the highest connect coefficient.

AVERAGE INVOLVED finds the point with connect coefficient

closest to the average of the coefficients of all the

members df its argument. It is used when the last atterrnt

to join up the components of the context graph failed, ani

can be regarded as the next heuristic in the effort to

form a connected context graph. By giving the user some­

thing near the periphery (but not so near that he rejects

it out of hand), we hope for guidance on how to extend the

context graph: TRY_JOIN might succeed next time.

DISPLAY SIi.iILAR

The user has approved of the last reference that was

displayed. Now the program will try to find a document

node "like" it, regardless of the context graph; i.e. it

131

will be prepared to look anywhere in the 3u;,ergrhph.

Similari ty measures between documents indexed bj- keywo::-::s

have received much attention in the liter?tare, and a

discussion of the topic in relation to our program will be

found in Chapter 3, section 3.1.1. Similarity between

documents is usually taken to mean similarity between their

sets of index terms. Typically, if two documents have

keyword sets X and Y respectively, the extent of their

similarity to each other would be given by

--------------------.
Normalizing factor

The normalizing factor is a number which takes into account

the sizes of X and Y, e.g. Ixi + Iyl.
An equivalent measure in our system would be based on

the sets of points adjacent, in the supergraph, to the two

points whose similarity is to be measured. In fact, the

measure used also takes into account the user1s expressed

interest and, in a primitive way, the usefulness of the

subject terms as distinguishers between documents.

We now define the similarity measure between two

points d
1

and d
2

in the.supergraph S = (N,L,A).

Firstly, d1 € Nand d2 EN.

Now let 11 be the set of points adjacent to d1 , and I2 be

the set adjacent to d2 , i.e.

I1 = {n: {n,d1} E A}

I2 = { n: {n , d 2} E A}

Let E = I1 nNE' where NE is the "explicit requ.ests" set in

the model.

Let T = I1 - (NI U NCh U E), where NI is the "inhibit list"

132

in the model, and NCh is the set of "check tags" (which

are regarded as not very useful for this purpose).

The similarity function is

ex, IE () I 2 ' + ~ IT n 121

, 1 2 '

where ~ and ~ are adjustable constants, which determine the

relative importance given to explicit requests. The

numerator is actually symmetrical with respect to d1 and d2 ;

it is just. expressed in a form that corresponds q'li te

closely to the way in which the program works it out. As a

whole, however, the function is not symmetrical because the

denominator (normalizing factor) is not.

To define the action of DISPLAY_SIMILAR, we shall use

the same notation as used above. The meaning of UNSEEN

DOCUlv'l.ENTS is as given in section 3.3.1 above. 't is another

adjustable constant.

procedure DISPLAY_SIIIaUR(d1);

point d1 ;

begin point d,d i ; point set D;

D:= UNSEEN_DOCUMENTS(I 1);

ifD~¢ then DISPLAY_DOCUfuENT(any dE D)

else

begin find di E UNSEEN_lJOCU"rlENTS(N) for which sim(d 1 ,di)

is maximum;

if simtd1 ,d.)~'t then DISPLAY DOCUI,lENT(d.)
- 1. ' - 1.

else PICK A DOCUMENT

end

end.

133

The procedure first looks for documents directly related

to the parameter, d1 • If it finds any it picks one for

display, otherwise it finds the document most similar to d
1

and displays that, unless it is not similar enough, in

which case a document is chosen from the context graph.

~, the "similarity threshold", is used to determine whether

the most similar document is similar enough.

REVIE'N COURSE

We shall now deal with the action taken by the program

when its performance falls too low. The overall strategy

is as follows:

(i) Look for a reference which the user has already seen

and not rejected, and display it again, asking him to

reconsider it.

(ii) If the search for a suitable document point fails,

show the user one of his explicit requests together

with its adjacent subject nodes.

(iii) If no such point can be found, ask the user to take

the initiative and think of a new term or name.

In the procedures that follow,
-

DG is the set of tt good documents",

DA is the set of "accepted

Na is the set of "reviewed

NE is the set of "explicit

procedure REVIEW_COURSE;

begin point set D;

ADMIT_FAILURE;

D:= DG - NR;

134

documents",

nodes", and

requests", all in the model.

end.

if D#¢ then RE-DISPLAY (LEAST_INVOLVED(D»

else

begin D:= DA - NR;

end

if D#¢ then RE-DISPLAY (MOST_Il~OLVED(D»

else SUGGEST SUBJECTS

ADlHT FAILURE confesses failure to the user; it will,

however, point out that he may have seen enough if he has

approved of a few of the references shown him. The set NR

is used to ensure that nothing is reviewed more than once.

RE-DISPLAY and DISPLAY_SUBJECTS (called by SUGGEST_SUBJECTS,

below) each add their argument to NR• If there are "good

documents" to review, we assume that sometime during the

dialogue, the context graph has been allowed to "grow" in

the wrong direction. Therefore, we should give the user

maximum opportunity to indicate new directions: hence the

use of LEAST INVOLVEil when DG - NR is not empty.

proced-ure SUGGEST_SUBJECTS;

begin point set E;

E:= NE - NR;

if E#¢ then DISPLAY SUBJECTS (LEAST_INVOLVED(E»

else tell the user to give a new term or name

end.

DISPLAY_SUEJECTS produces a numbered list of subjects for

the user to inspect. The points chosen for the display are

the argument of DISPLAY SUBJECTS (if it is a subject point)

135

and all the subject points adjacent to it. A sa~ple

display (the argument of DISPLAY SUBJECTS has the label

"antibodies"):

1. antibodies, 2.anti-antibodies, 3. autoantibodies,
4. binding sites, antibody, 5. immune serums,
6. insulin antibodies, 7. immunoglobulins,
8. isoantibodies, 9. plant agglutinins

The user can respond to this with the type of statement

outlined in section 3.1, which will be read and inter­

preted by GET_USER N~SSAGE. He may even give a general

judgement (YES or NO) which will be used by the program in

the usual way, except where the last reference displayed

would normally be processed.

3.4 Other features of the program

In a full-sca~e operational system the interface with

the user would have to be very much more sophisticated
-

than in our prototype. We have, however, made three small

concessions to human engineering - the "slate", provision

of help, and automatic printing of hard copy.

Conceptually, the slate is a separate display of

limited capacity, independent of the one used for the ~ain

dialogue. For the present, rather than link two real

screens, the independence is simulated using one screen,

and the user can switch to the slate, manipulate it and

switch back to the first Hscreen", at any time. Items

(references, names, subjects) that crop up in the main

dialogue can be recorded on the slate purely for the user's

convenience, and no inferences are made by the program

about his area of interest.

Help can be obtained from t~e program by typing a

question mark (?). A display appropriate to the area of

136

dialogue that is being conducted will be shown. The user

presses a button when he is ready to go on.

At the end of each topic search, the conte~ts of the

slate, and the document labels of all the points in "good

documents" and "accepted documents" are sent to the line

printer.

The above features are for the user's benefit. There

are two more capabilities which are present for experimental

purposes - conversation logging and a model-snapshot routine.

All dialogues with the program are copied to the printer

for later inspection. At any stage in a search a request

can be made to take a snapshot of the model. A numerical

representation of the current state of the model is quickly

copied to a file, and the dialogue can continue. There

will be an indication in the log at the point where a

snapshot has been taken.

4. Summary

We have given, in this chapter, an abstract and fairly

detailed description of the bibliographic retrieval Syst2~.

The important aspects of the program have been described,

but large and complex pieces of program have been glossed

over - particularly matters of file organization and

searching - because they are not central to the topic of

this thesis. Also, we have said very little about

implementation of the processes described - either about

algorithms or about programming methodology. There have

only been scant hints of justification for the way the

program is. All these matters are dealt with in other

chapters (3, 5 and 6). What we have given is a "reference

137

manual" from which some properties of the program can be

deduced. The set- and graph-theoretic notations and

terminologies are those of Halmosl1960) and Hararyl1969),

respectively.

138

Chapter 5

DATA R.2:COGNITION Alm FILE ORGA~;IZ;'.=ION

In most information systems, the enquirer must take

the initiative at least once and indicate his area of

interest. In our system, he can do this as little or as

often as he wishes, and the effect that his actions have

is described in Chapter 4. We start now by concentrating

on the way in which textual information ltitles, personal

names, subject terms or phrases) typed by the user are

transformed into sets of points in the "supergraph" for

use in maintaining the program's "model" (see Chapter 4,

section 3.2.4).

A statement made by the user at the terminal may

contain several separate pieces of text: they are dealt

with, one after the other, by the program, which constructs

the union of the sets of points whose "labels ll (Chapter 4,

section 1.1) match them. We shall limit our consideration

here to the means of matching just one textual request.

Even so, the result may not be simply a single point; the"-'e

may be several or, of course, none at all.

Two features are required of a text (or string)

matching mechanism in the circumstances of an on-line

search. Firstly, it should be helpful; that is it should

accommodate inaccuracies and variants to some extent, so

that it does not turn away a user who cannot supply, for

example, a complete name or a title in exactly the right

form. Secondly, it should work speedily, and this natura~ly

places limits on how helpful we can make the program in

this respect. There are two reasons, however, why we need

139

not use all the sophistication of the modern computational

linguist in this problem. the first is the so called "law

of diminishing returns": we can get quite good algorithms

quite easily, but however large and complex programs become,

there is always yet another special case to deal with. The

second reason stems from the nature of the problems involved

in dealing with the more distant variants (synonyms, for

instance): we are not tackling problems in information

retrieval by vocabulary control or manipulation, but by a

new form of dialogue and representation of the searcher's

interest. However, the problem of inexact string matching

is an important aspect of systems design for non-delegated

searches, so we have given it more than passing attention.

The details of the techniques used are given in this

chapter. The file structure supporting these techniques

and the supergraph will also be discussed.

1. Matching user's requests in the data base

Text input from the user's terminal is considered by

the program to be a "stab in the dark", in the sense that

the enquirer is not expected to know the exact form of the

names and phrases stored in the system, or to use a

thesaurus. Common reasons for mismatch between what he

types and what is stored are inaccurate spelling, partic­

ularly of names, defective memory of long titles, variant

word order or grammatical form in subject terms.

With the exception of a very few systems which

perform complex linguistic analysis of queries (e.g.

LEADER~~T - Hillman,1973), on-line reference retrieval

systems tend to use exact string matching. The help given

140

to a user who is not sure of the IIvocabulary " depends vc:ry

much on the file organization already chosen to facilitate

some other aspect of system design. ¥or exa~ple, the

Retrospec I system (see Goodliffe &; Hayle::--)11j'l4), which uses

the "Computers and Control" part of the INSPEC tlnforffiation

Services in Physics, Electrotechnology, Computers and

Control) data base, accepts combinations of character

strings (written between quotes) such as

'STRI1~G t AND 'kATCHIlIG',

and scans sections of the file (as requested by the user)

for records which contain the specified combination in the

title or index term fields. The onus is entirely upon the

user to formulate a query which will not miss variants, o

such as 'BEST-MATCH SUBSTRING SEARCHIHG'. Of course, more

complicated matching is possible (in fact, a simple term

weighting scheme is implemented in Retrospec I), but with

large files the sequential search method imposes its own

limitations in the on-line situation. /

A file organization which is particularly effective

for one type of access is often inhospitable to otters.

is, for example, difficult to do inexact matching in a

large ordered index, or a list-based structure. Pre­

processing index entries (e.g. stripping word affixes) and

identically preprocessing queries can be effective.

Alternatively, predictable variant spellings, and even

synonyms, can be included in the vocabulary with references

to the "correct" terms (e.g. Medlars - Barraclough,1972;

and the European Nuclear Documentation Service vocabulary

is reported - Vernimb & Steven,1973 - to contain some

60,000 previously detected erroneous spellings). If the

141

entry vocabulary is contained in an ordered indEx (desig~~d,

perhaps, for binary searching), it is not difficult to gi~e

the user the ability to scan alphabetical neighbours. I~

the ~edusa system (see Chapter 2, section ~.4.1), for

example, the command

LIST DIAB~T

will cause all terms beginning with the characters 'DIABET'

to be displayed:

DIABETES BRONZE
DIAB~~ES FRAGILE

•

DIABETIC ACIDOSIS
•

DIABETIC RETINOPATHY

(It is a facility which is rarely used in practice).

Rickman & Walden(1973) have described an interesting (and

efficient) file structure for on-line thesaurus searching,

but even there no attempt is made to make inexact matches.

Variations on these themes are numerous and we shall

not cover them exhaustively here. The one further class

of techniques which we should mention is that of correctiY_€

misspellings by measuring the similarity of an object we

with each member of a vocabulary and pic~ing the most

similar (Alberga 1967, Blair 1960, ~or~an 1370). The prime

motivation for this work has been to produce operating

systems and compilers which are reasonably insensitive to

spelling errors (Wagner,1974). These techniques are,

however, unsuitable for very large vocabularies, and

although Szanser(1973) has tackled the size problem, it is

doubtful that this approach would be very productive in

the bibliographic search environment in view of the nature

of the more troublesome inaccuracies.

142

1.1 Partitioning the bibliographic labels

Now we come to the technique used for text matching in

the present system. As records ("labels") are added to the

data base ("supergraph"), they are organize~ into disjoint

partitions according to certain lexical features. This

organization is overlayed upon the supergraph, but is

independent of it - two members of a partition ruay or may

not be neighbours in the supergraph. One way of visualizing

the whole structure is depicted in figure 13. The

partitions have names, or codes, denoted in the figure by

P1 , P 2 , ••• , which are derived from labels by the compress­

ion algorithms described in the next few pages. These

algorithms are designed to produce a single code for many

of the variants of a piece of text. The solid, square

nodes, in the figure, act as the "centres" of partitions.

Each circular (supergraph) node is attached, by a broken

line, to exactly one square node; the partition named Pi is

the set of points adjacent to the point labelled Pi' When

a new pOint's label is compressed, the partition bearing

that name is sought. If it is found, the new point is

added to it (by drawing a new broken line, in the pictorial

analogy), otherwise a new partition is crsated (in the

picture, a new square joined to the new circle).

Incoming textual requests are processed by the same

algorithms as handled the labels before them, and a part­

ition is thus identified and searched for a best match.

There is a resemblance between this method and conventional

scatter storage of records in multiple entry buckets

(Buchho1z,1963). However, whereas most "randomizing"

functions will place otherwise unrelated records in the

143

/
D3 .-0--__

/' !,S3
/

/
/

-

p ~----
6

Key (i) author labels: Ai

(ii) document labels: Di

(iii) subject labels: s.
l.

(iv) partition names: P.
l.

Notes (i) The partition named Pi is the set of points

adjacent to the point labelled P. (i.e.
l.

joined to it by broken lines).

(ii) If the solid, square nodes and the broken

lines (incident with them, without exception)

are deleted the supergraph remains.

Figure 13. Partitions overlayed on the supergraph.

144

same bucket, we require one which collects together labels

which look similar. Another point of difference is that

our partitions are not fixed capacity "stores", tut

arbitrarily sized sets of records. Once a point ~as D0en

located in response to a text~al request, the partitions

can be forgotten - the square nodes and the broken lines

in figure 13 can be ignored - for they are not used in

subsequent supergraph manipulations.

In connection with on-line searching of a library

catalogue, Kilgour and his associates have experimented

with simple truncation of title words with a view to

partitioning the catalogue (Kilgour 1970, Long 1972).

Leading non-significant words are removed and subsequent

words truncated to lengths specified in a vector. For

example, a truncation function based on the vector

(3,1,1,1) creates keys (or partition names) cooprising

three letters from the first word and the first letter of

each of the next three words. The partitions are small

(size is roughly hyperbolically distributed; typically 99%

of partitions have less than 10 members in a collection oi

100.000 titles), and spelling mistakes have little effect

on searching. On the other hand, word order errors cause

havok, and in general there is not much orthographic

similarity within the partitions.

It was decided to treat proper names differently fro~

phrases (titles and subject terms) in the present program,

because the types of error people make are different in the

two classes of data. \.hichever of the two algori thIns is

used, the result is a four-character code, and this,

together with an indication of the type of the original

145

data (name or phrase), is the na~e of the partition to

which the label should belong, or which should be searched

for a good match in the case of a query.

1 .1 .1 Proper name compression

The most famous name compression algorithm is SOUNDEX

(Wright,1960). Its aim is to compress names into short

codes so that those with similar sounds have identical

codes. More recently, an algorithm which outperforms it

was devised by Dolby(1970), and it is the one that we use

here, with minor modification. Nugent(1968) has produced

a review of several methods, but not all will generate

partitions useful for our purpose. Dolby applied his

method to the names in a telephone directory and then

compared the equivalence classes obtained with those given,

manually, by the compilers of the directory, in the form of
-\

see also cross references. The method correctly provided

80% of the man-assigned classes and improperly split only

5·3%. The same experiment using SOUNDEX resulted in

corresponding proportions of 63·8% and 30%. As Dolby po~nts

out, these figures are not a direct gauge of perforlliance

with erroneous names, but he beleives that they provide a

good indication, and this is substantiated by the observ­

ations of Tagliacozzo et al(1970). Seventy-seven error2

collected during a survey were analyzed in some detail and

the letters involved in the errors listed. The full

context of the errors are not given in the paper, but one

can deduce that 52 (67.5%) of the errors would definitely

not have affected the code produced by Dolby's algorithm.

Of the remaining 25, some would very likely also have been

146

inconsequential.

Forenames and initials are not used and the order of

execution of certain steps of the algorithm, which follo~s,

is important.

(i) Leading I,icg, L:C, r\~ac or Mag is replaced by r.:k.

(ii) The second letter in each occurrence of dt, ld, nd,

nt, f£, rd, rt, sc, sk, st is removed. This is done - - - --
working from the rie;ht hand end of the name,

recursively.

Note: the sound of the deleted letter is usually

indistinct in these contexts.

(iii) The following replacements are performed throughout

the name:

~ by ks, ce by se, ci by si, £l by sy, ch by sh

when preceded by a consonant, any other c by k,

~ by ~, wr by r, ~ by g, .9.!! by k, sa. by k, t by £.,

E£ by f.

(iv) If a consonant, excluding 1, ~, r, occurs after the

first position in the name and immediately before ~,

it is removed.

(v) One letter is removed from every doubled consonant.

(vi) E!. at the end of the name is replaced by E.; -

E! at the beginning is replaced by f.

(vii) ~ at the end of the name is replaced by f if

preceded by a vowel, or by g otherwise;

~ anywhere else is deleted.

(viii) The first two vowel strings are replaced by a vowel

string marker (a single character, represented by the

letter ~, which has become free by virtue of this

step); subsequent vowel strings are removed. For

147

this purpose, a vo~el is one of the letters !, !, 1,

£, ~, ~ and (in all but the first position) wand h.

(ix) The four-character code is obtained: if the name now

has less than 4 characters it is padded with blanks

on the right; otherwise, the name is truncated to

6 characters and, as long as there are more than 4

characters, vowel string markers are removed, start-

ing with the right-most one. Finally, the name is

truncated to 4 characters if necessary.

The following letters cannot occur in the compressions

of names: ~, £, ~, ~, t, e, i, £, ~,~. In addition, w and

h can only occur in the first character position, and the

blank may not occur there. So one can have at most

16 X 15 X 15 X 15 = 54, 000 partitions of proper names, which

is adequate for collections of order 100,000 documents.

For larger collections the code might be increased in length

by simply modifying step (ix), above. Five characters could

generate 810,000 partitions, for instance. Table 1 shows

some examples of partitions and erroneous names which would

identify them.

Table 1. Partitions of proper names.

partition matching names code

Nilsson B.S. Nelson NLSN
Nilson K. I'Hllson

Muller M. Mahler I,iALR
Muller W. Mueller
Muller H. Mallory
Mollard P.
Miller S.A.

Stieglitz P. Siegleitz SGLD
Sziegoleit w.

/cont.

148

Kuhn R.A. Cohn KA.~:u
Kahn K. Kant
Cohen J.G.
Cohen D.
Cohen G. I

Table 1. (concluded)

1 .1 .2 Phrase compression

Ayres et al(1968) found that, in the special research

library environment, titles are given remarkably accurately

in requests and that most errors either occur after the

first few words or consist of word inversion or the omission

of commonplace words such as 'report' or 'outline'. We

treat subject requests and titles identically and, where

appropriate, a ,partition may contain both document and

subject labels. This means- that what was meant by the user

simply as a subject descriptor may best match the title of

a document; and that is beneficial to the operation of the

system. Ayres' results do not necessarily apply to subj~ct

phrases, which tend to be invented rather than recalled by

searchers. However, techniques rased on his observations

work reasonably well for subjects ruainly because the ptrases

are generally short. We can reduce the effect of erro~s

or variations in. phrases quite simply by removing non-

-significant words and suffixes, leaving a sequence of

presu~ably meaningful stems. The reliability of the stems

decreases as we go along the sequence, so we only use the

first two. Word order variation is coped with by applying

a symmetriC function to the two stems (if there are as

many as two, of course). In describing the phrase

149

compression algori thm, we shall make use of "':;','.0 '"za.;.;les

from the medical test collection:

E1: Urbanization and mental health: a reformulation

E2: Apropos of the article: "Systemi~ venous

insufficiency. A new and rare syndrome"

The first step is to select two "sienificant" words

from the phrase, scanning from the left. A dictionary of

common words is used for this task. The stop list published

in the Science Citation Index was modified to suit the

subject matter of the collection. 657 words ar~9ar in the

dictionary and are of two types: words which are always

discarded from the phrase (145 of these), and words which

are only used if there are insufficient significant words

(i.e. words not in the dictionary). Table 2 shows some of

the dictionary. - The words selected from our examples are:

E1 : Urbanization, mental

E2: Systemic, venous

Table 2. Sample from the dictionary of common words

These words

are always

ignored

These words

are only used

when

significant

words are

scarce

about, against, and, test, Total ih
but, concerning, easy, few,

-

given, have, instead, look, dictionary
make, next, other, sar.ie,
several, that, the, when, 145
with
(also all one-character words
words)

addendum, affect, apropos, Total in
assumptions, body, cell,
characteristic, clinical, dictionary
conference, definition,
device, erratum, evaluation, 512
gram, implication,
important, introduction, words
measure, medical, optimal,
organ, proceedings, quality,
standard, theoretical,
volume

150

I
i

Each selected word is then stripped of its suffixes.

Resnikoff & Dolby(1965 & 1966) have produced two very usef~l

analyses of English affixes and their lists, slightly

modified to suit the subject matter, are used. The lists

for long and short words (measured in this program by

counting vowel strings) are not identical and are given in

Table 3. The largest suffix that can be identified is

removed, and the process is repeated on the remainder of

the word until it has no identifiable suffix. Let us apply

this to the examples:

Urbaniza tion- Urbaniz - Urban _ Urb

mental--- ment

Systemic -+ System

venous -+ veno

E1: Urb, ment

E2: System, veno

The "stems" are then abbreviated to four characters,

in such a way as to preserve discrimination between

different word fragments as much as possible. Bourne &

Ford(1961) give several techniques and one has been chos(~

wpich, in therr experiment, retained discrimination for

98·2% of their vocabulary of 2082 words. Starting with the

second letter, every alternate letter is dropped until only

three letters remain. If there are still more than three

letters when the end of the word is reached, the process

is repeated. All the dropped letters are "added" together,

modulo 27, to produce the fourth character of the abbrev­

iation.

E1 : Urb , mnte

E2: Ssed, vnoe

151

Short-word suffixes (to be removed from 2-vowel-string
words)

-a -ure -al -0 -let -ic -ite -el -ar -et -ed -ue -ful -ier -ant -land -ive -um -ler -ilient -ward -e -man -er -ent -ard -ling -an -or -ot -ee -ing -en -is -ow -age -ah -in -less -ey -ie -ish -eon -ness -ly -ile -lock -ion -us -y -ine -ock -on -at -iz

Long-word suffixes (to be removed from words with nore
than 2 vowel-strings)

-ia -ine -i -at ion -at
-oma -ure -ical -ion -et
-a -ise -eal -on -it
-ic -ose -ial -0 -ant
-ed -ate -al -ar -ient
-oid -ite -el -ular -Jlent
-ance -ette -01 -eer -ent
-ence -yte -ful -er -est
-ide -ue -ism -or -ist
-ee -ive -ium -is -ly
-age -ize -um -ess -ary
-ie -e -ian -eous -ery
-able -ing -an -ious -ry
-ible -og -gen -ous -y
-ile -ish -in -us -iz

The letter s is removed from any complete word from which
no suffix can be removed.

Table 3. Suffix lists for phrase compression.

Finally, regarding the letters in the codes as digits in

the base 27 number system, add the two codes, modulo 274

to obtain one four-character code. This is a symmetric

operation, as required.

E1: HEVE

E2: OFT!

152

The number of different phrase partitions which can

be named i8 4 27 = 531,441. In conclusion, this method of

phrase-compression maintains discrimination between the

expected information-bearing parts, namely the stems of

significant words, and equates phrases which differ only

in the less memorable parts - non-significant words and

suffixes. Examples of partitions obtained are given in

Table 4.

Table 4. Partitions of phrases.

partition matching phrases code

Urbanization and mental Effect of urbanization HEVE
health: a reformulation on mental health
(document)

attitude of health attitudes to health IUYN
personnel personnel

attitude to health healthy attitudes

Does hemorrhagic shock hemorrhagic shock '-'WS
damage the lung?
(document)

shock, hemorrhagic.

alkaloids alkaline ALKL..I
alkalinity
alkeran J

1.2 The matching process

To summarize the contents of the preceding paragraphs,

the texts of the labels in the system are compressed to

form codes which generate a partitioning of the corresp­

onding points in the supergraph. The matching process

consists of similarly compressing user's text to identify

a partition, and then finding a satisfactory point within

it. The questions that arise are: which compression

153

procedure should be used? what should be done if the sedrc~

rails?

Ir a user has enclosed the string in quotation marks,

it is assumed to be a phrase, otherwise tne initial

assumption is that it is a name and the program isolates

the surname and forms a string or initials ir suitable data

is present. The appropriate compression is performed and a

search made ror a partition with the derived identirication.

If there is no such partition, a sequence of automatic

re-tries are made:

(i) Ir the string was assumed to be a proper name, then

it is re-interpreted as a phrase; the user may have

rorgotten the quotes.

(ii) rr two words were used to form a phrase compression

code, they are tried singly, the first in the phrase,

and then the second if necessary.

(iii) Failing the automatic tries, the program invites

the user to replace that part or his statement. If

he wishes he can simply have that part ignored.

The main disadvantage of the method is that a one-~)ri

query cannot match a two-word label: for example, 'carotid'

will not retrieve the partition containing 'carotid

arteries'. In the reverse situation, this may happen:

'membrane antigens' retrieves no partitions, however

'membrane' does, and the search stops there. It might be

better to look for 'antigens' so that both aspects of the

topic are represented. As the program stands, the user

would be consulted about the acceptability of 'membrane',

and can explicitly introduce 'antigens' if he feels the

need.

154

When a partition is found, the labels are aCCessei

and ranked according to similarity with the request (t~e

measure of similarity is very simple and WE shall not go

into it here). If there is one outstandi~~ match, the

corresponding point is selected without troubling the user,

and the matching process is complete. If the choice is

not obvious, the user is asked to make the decision: he

can accept as many of the displayed labels as he likes,

including none at all. In the latter case the program

behaves just as though no partition had been found and

goes on to the next "automatic re-try".

Examples:

(i) User's text: artificial respiration

System action: No quotes, so tries to find name

A.Respiration. No partition found,

so re-interprets text as a phrase and

finds a partition containing

respiration, artificial.

Match is good enough, so the corresp­

onding point is selected.

(ii) User's text: Millen

System action: Partition found containing the names

D.fuoulin

.J.h:ilin

R.Milin.

No outstanding match, so user is

shown all three and asked to choose.

User: Not happy with any of them, rejects all.

System action: Tries 'millen' as phrase without

success and invites user to try a

155

substitute.

User's new text: ~iller

System action: Partition found containing the na~es

Li.I{.uller

W.Muller

H.Muller

P.Mollard

S.A.Miller

No match is good enough (system must be

careful with names), so the user is

shown the list, headed by the best

match, S.A.Miller.

User: Chooses S.A.Miller.

Note on response time: operating upon a disk file containing

some 2,500 labels, the program's responses in the above

exchanges are usually instantaneous (on a 360/67 time­

sharing a fairly heavy university workload).

Formally, the result of the matching processes described

is a set of points in the supergraph (see Chapter 4, sectio~

1). We must now describe the file structures which support

the much sin:pler function f:N~L, i.e. mapping points o~to

labels; the lines, A, of the supergraph; and the searching

for partitions, given their codes.

2. File organization

It may seem inelegant to talk in terms of files when

we are considering the representation in storage of a

labelled graph. However, we shall continue to use this

terminology simply to serve as a reminder that whatever the

design philosophy of a small-scale experimental system, the

156

designer is under some obligation to demonstrate the

feasibility of his methods in an operational environment;

and in reference retrieval that involves large quantities

of data. We have, therefore, chosen to wr~te a proeram

which processes a graph structure stored on magnetic disk

(i.e. in a file), rather than in main memory, even though

the test data occupies a mere 360,000 bytes. In fact, the

program runs under the supervision of the liichigan Teroinal

System (MTS) and all file processing is achieved using the

standard data management services provided by that operating

system (~TS,1973).

Corresponding to each point in the supergraph there

is a node record on the disk. What we have, until now,

referred to as a point is the address of a node record in

the file. A set of points is an aggregate of addresses.

The arrangement o~ such aggregates in storage varies,

depending upon patterns of access to members; consecutive

storage, linked lists and hash tables are all used. To

return to the node record, it consists of two functional

components:

(i) the label -. see Chapter 4, section 1.1,
-

(ii) the set of points adjacent to it in the supergraph.

The second component carries the information specifying

the set of lines in the supergraph. It is a redundant

representation because each line is represented twice:

once at each end. In the jargon of data structuring, the

nodes are doubly linked. However, as is remarked in

Chapter 6, section 2.1, the representation makes for

efficient processing in this program. The parts of a

node record are contiguous in stOrage, and there is a

157

large variation in the size of the records.

Access to the node records is, so far as the file

management software is concerned, "random". In the course

of the present experiment, the file has re,~ained static

since the final stage in its creation. Nevertheless, the

design pays attention to the need, in "real life", for

frequent updating. We must allow for addition and deletion

of both points and lines, and also for "amendment to labels

which may bring about changes in the lengths of records.

For simplicity of programming, one would like to

handle the supergraph in one level of randomly addressable

memory. ·This can be achieved by building a very large,

paged, virtual memory (one should think in terms of 100

million bytes for a useful field-oriented document collect­

ion). Virtual storage access methods exist for processing

files on direct access devices such as disks (e. g. r.1urphy

1972, Organick 1972). Unfortunately, one cannot afford to

forget that there is a paging mechanism, particularly when

the virtual memory is so large. Firstly, one should take

into account accessing patterns, and secondly, if data

structures in the memory refer to each other, as ours do,

one should take care in the design of record updating

schemes which shift the position of the record in storage.

Bobrow & Murphy(1967b) discuss these problems in connection

with their implementation of BBN-LISP. In their case, it

was important to implement the CONS (list constructor)

function carefully. Since, in LISP, lists are nearly always

accessed linearly, CONS should extend existing lists within

the same page whenever possible. This policy influences

garbage collection (the periodic·amalgamation of free space

158

needed in dynamic storage allocation programs). List cells

should not be moved ~rom one page to another because that

would ruin the ef~ect o~ all the careful CO::Structint:.

After collection, then, free storage is still distributed

throughout the pages rather than being completely arr.algam­

ated. Many of the factors influencing the design of list

processing systems ~or virtual memory are relevant to our

file design, although it has been di~ficult during the

program's evolution to anticipate the access sequences in

graph processes, so that page swaps can be miniffiized. We

should certainly need to tidy up the storage quite frequent­

ly if the variable-length records were being modified, and

the reorganizations should preferably be truly local in

their influence.

Node records are variable-length regions within large

fixed-length blocks (4096 bytes). They have addresses

which are invariant under storage reorganization within

the block. The composition of a record address is as

follows:

(block number:integer 0 •• 216_1;

record number:integer 0 .• 255;

record type:integer 0 •• 255)

"Block number" identifies the block within the file (i.e.

the page) containing the record. "Record number" is a

number allocated serially when the record is added to the

block. "Record type" is the type of the label in the

addressed node record (see Chapter 4, section 1.1): there

~re many occasions when it is sufficient to know a record's

type without needing its contents, and this small field

can save a disk access. A record address is packed into

159

a single computer word (32 bits). If a record's pcsition

wi thin the block is changed, its address remains tr-le same

and it is thererore not necessary to access all the other

records with pOinters to it.

Figure 14 shows the organization or a block and

illustrates the addressing mechanism. Access within the

block is through a two-level index, itself in the block.

record
address :

determines

block in
disk file:

block number record number
r----/'-----"

i j
(4 bits) (4 bits)

fixed index (16 entries)

i

A 2nd-level index,
allocated only when
needed (16 entries)

record

record
type

Figure 14. The record addressing technique.

At retrieval time, the work required to go through the

index is insignificant in comparison to that involved in

finding the block. Blocks are initialized with a fixed

index full or null pointers, and no 2nd-level indexes.

160

When the first record is stored, a 2nd-level i~Gex is

created whose first element points to the record. The

first entry in the fixed index is set to point to the

newly allocated index. As more records a~e added to the

block, new entries are added to the 2nd-level index until

it is full; then another. 2nd-level index is created and a

corresponding entry made in the fixed index; and so on.

During execution of the program, the blocks of the file

are paged into a set of buffers in main memory using the

"least recently used" algorithm for displacing ;ages.

The format of the addresses gives an upper limit on

the file capacity of 2 16 blocks, each with 256 records,

i.e. 16,777,216 records. For reasons given in section 2.2,

below, not all of these are node records, but at least

half can be, and that would be adequate for a large

bibliographic data base. Of course the present block size

imposes a limitation on the number of records per block,

namely 120 of the smallest possible records; however, t~e

block size could be increased.

It should be emphasized at this point that short cuts

have been taken in implementing the system, particularly

in the area of file handling, in order to speed the

programming task. It is beleived, however, that the

essential principles for a viable design for a very large

file are present. One such short cut is that the record

length is arbitrarily limited by what will fit into a

block, since no provision has been made for overflow from

one block to another.

The almost exclusive reason for the existence of very

large records in this file organization is that a few

161

nodes will be the centres of large stars in ~~~ grapt,

involving up to 10 5 nodes. They correspond to the heavily

posted terms in a co-ordinate indexing system (where they

also cause problems). At the file organization level, o~e

answer is to fragment the record and chain the segments

together (Carville et al,1971 consider this type of

technique). Increasing the block size mitigates the

problem. At the higher, application level, the solution

may be to prohibit such records, just as indexers might

begin to use a set of more specific terms if it were found

that one had beco~e overused.

With the exception of the organization of the partitio~s

of labels, where access patterns were easily predictable,

little attention has been given to the problem of distrib-

ution of node records among the blocks with a view to

minimizing the number of page faults (file accesses) during

a search. Techniques exist to form clusters of references

wi th the main aim of reducing the number of records -,'10 iell

should be examined in a search (Jardine & van Rijsbergen

1971, Crouch 1973, Rettemeyer 1972). One might order

document node records in the file such that De~bers of the

same cluster occupied neighbouring pages, or blocks of the

file.- To a large extent, it would be possible to put

subject and name node records in the same region of the

file, because the cluster definitions are all founded on

similarity of descriptor sets associated with the docume~ts.

However, these clusters are collection-induced, and our

point of view is that user-induced clusters are not the

same, though they are clearly similar. The one access

pattern which has emerged is that of obtaining the records

162

for points adjacent to one recently accessed. This 2U[c ests

trying to minimize the sum:

where, as in Chapter 4, section 1, nand m are points in

the supergraph and A is the set of all lines. Ex is the

block number in the node address corresponding to the point

x. A method for obtaining an arrangement of records which

approximates the optimum might follow the general pattern

suggested by Jardine & van Rijsbergen(1971) for clustering

large collections. One first minimizes the sum over a small,

carefully selected subset of the nodes, and then stores

successive node records in blocks whose position is

optimum so far as the new nodes are concerned. If one had

to add the record for a point adjacent to some set, S, of

points already filed, one might determine the block, B, ir.

which to store the new record by minimizing

Any algorithm based on this will, of course, te complicate~

by having to cater for the possibility that the ideal block,

B, is full.

It is usually assumed that when access to a file is

"random", a large block size is wasteful of buffer size and

quantity of data transferred. The speculations in the

immediately preceding paragraphs seem to indicate that, on

the contrary, for a system of this type, there is a great

deal to be said for large blocks~,

163

2.1 File processing within kTS

MTS (the ~ichigan Terminal System) is a time-sharing

operating system designed to run on I Ell: 360 and 370

computers (MTS,1973). It enables the co~puter to be used

simultaneously by many people operating a variety of

keyboard terminals. Users may create files for their

personal use, and editing facilities are provided. h~st

commonly, a user will have a few small files on public

disk volumes containing programs under development,

frequently used data, and so on. The disk units used on

the Newcastle Uni versi ty machine are IBlri 2314' s (lBU, form

A26-3599), which consist of a nQmber of drives (up to 8)

upon which disk volumes can be mounted, interchangably.

A disk volume has a maximum capacity of about 29 million

bytes. The read/write mechanism is of the movable-head

variety. The tracks have a capacity of 7294 bytes, though

the full capacity is rarely used, because some space is

taken by inter-record gaps. There is a track overflow

mechanism, so that records (i.e. physical, as opposed to

logical records) need not be constrained to lie within ~

sir..gle track.

MTS supports two distinct file types - li~e files and

sequential files (MTS,1973). A line file is an indexed

sequential file in which the keys must be numerical. The

lines, or records, can be of variable length, which ~ay not

exceed 255 bytes. Access, both for reading and writing,

may be either sequential (i.e. in line number order) or

random, by specifying the line number. With the facilities

available for handling them in MTS, line files are

extremely versatile and very convenient to use on-line for

164

tasks such as program development. This organization is

not so suitable, however, for storing large blocks of iata

and implementing a paging algorithm for them. The sequent­

ial file organization provides a better basis. Seque~tial

files stored on a direct access device, such as a disk, a~e

processed using a set of pointers, which indicate the

position of the next record to be read, where the next

record should be written and where the end of the file is.

Normally, one would go through the file consecutively and

the pointers would be updated automatically. 3ut a very

limited form of direct access is possible: at any time,

the values of the pointers can be saved, and then used to

replace the current ones at a later stage. (One is warned

not to calculate the pointer values, so that programs

remain valid when modifications are made to ~TS file

software).

The test file is a standard UTS sequential file, on a

disk volume, whose records are all 4096 bytes long (that

is our block- or page-size). There are 80 blocks, numbered

o - 79, and the relationship between block numbers and file

pointers is set up in a table at the beginning of each run,

by scanning the whole file sequentially noting the read

pointer value before each read operation. This implement­

ation has been perfectly adequate for experimental purposes,

but in a full-scale system a specially designed (but

relatively simple) data management package would be

desirable.

2.2 Partition organization

It will be recalled that a partition is a set of points

165

whose composition is determined by the code obtai~ed by

compressing their labels. The compression of incoming

labels induces a true partitioning of the points; in other

words, the partitions are mutually disjoint and cover the

whole set of points.

The representation of a partition in storage is simply

an array of node record addresses contained in a partition

record (see figure 13 in section 1.1 again; there is a

correspondence between partition records and the square

nodes). Partition records are stored in the file that we

have just described, along with the node records; and are

addressed in exactly the same way. As far as possible, it

is arranged that a partition record and the node records to

which it pOints are all in the same block (here is a case

when we .have known the accessing pattern all along). It

now remains to describe the method of finding the partition

record address, given the partition's type (name or phrase)

and code.

A hash table is used and, since it is potentially very

large, it is held in a disk file and searched from there.

In fact, another MTS sequential file is used, also with

4096 byte records which are paged into main rneruory. There

is a large literature on hashing, otherwise known as scatter

storage or key-to-address transformation (Knuth 1973,

pp506-549 and Morris 1968 are good accounts). The technique

has been used in file organization for some time (Buchholz

1963, Lum 1971), and in bibliographic work it is not

uncommon (~urray 1970, Higgins 1971, Bookstein 1972). We

ihall not include a general discussion of the topic here,

but merely describe the way in which hashing has been used

166

for seeking partitions.

The search key consists of a type indicator (there are

two possible types, which are represented by 0 and 1) and

four characters from the set {space and letters A - Z},

which are represented by the numbers 0 - 26. The key is

passed to the hashing function as a 21-bit binary number,

K: 1 bit for the type and four 5-bit numbers for the code.

The hashing function is as follows:

(i) The 21-bit key is squared to give S,

i. e. S+-K2

(ii) Bits 0 - 19 are combined with bits 20 - 39 to give

a 20-bit virtual hash address, V,

i.e. V -{S I [2~ciJ} (mod 220)

(! denotes the exclusive or operation on the binary

representations of its two operands)

(iii) The least significant n bits of V form the real

hash address, R,

i.e. R+-V

R is used to address a table of 2n entries. The value of

n can change during the life of a growing file.

A non-empty entry in the hash table contains a virtual

hash address and a partition record address, but not a copy

of the key. The table is searched for V, starting at entry

R and using a linear scan with increment 1 in cases of

collision of real hash addresses. The reason for using

this, the sirr.plest overflow technique, even with its

clustering problem, is to avoid as much as possible the

costly crossing of page boundaries in the table. Collisions

of virtual hash addresses are not detected, because the keys

167

are not recorded in the table (for reasons of Et~rage

economy). The result of the latter type of collision is

that partitions are merged. There is no real loss of

information here since the total contents of a pa~tition

are not indiscriminately selected by the protram. l:orris

(1968) explains the concept of virtual hash coding: so

long as n is significantly less than 20, the table is

equivalent to a much larger, very lightly loaded table

referenced directly by V, in which collisions should occur

relatively rarely. The reason for using the virtual hashing

idea was the ease with which a table can be doubled in size

without the need to re-hash the whole file or change the

hashing function (Bays,1973 goes into the problem of extend­

ing hash tables by re-hashing). ':[hen the real table is

loaded beyond acceptable levels (say, more than i full),

the file containing the table is doubled in size and n is

increased by one (thus absorbing a further bit from the

stored virtual hash address into the real address). The

existing entries are redistributed (keys are not needed for

this), and values of R for new entries are found using P.'

new value of 2n.

The size chosen for the vir~ual hash table (220 =
1,048,576 entries) limits the size of the real hash table.

Ultimately, as the number of partitions grows, n will reach

20 and the.virtual table will coincide with the real one.

In this case there will be no collisions in the real table;

partitions will simply be merged. The compression

algorithms described earlier in this chapter can produce

54,000 name codes and 531,441 phrase codes; so the key

space has 585,441 elements. We can get an approximate idea

168

of the extent of partition merging by assuming that the

hashing function assigns the keys to table e~tries

according to a Poisson distribution, which is reasonable

if the function is a good "randomizer". The probatility

that any entry has been assigned k keys is

P(k;A) = -).
e . --,

k~

where A = Kp, the product of the total nu'Oloer of keys

assigned, K, and the (uniform) probability, p, that any

particular key will be assigned to any particular entry.

If the table size is N, then p = 1/N, so ~ = K/~. The

probability that a typical entry is empty (k=O) is

P(O;K/N). Now, since K is large (585,441) we can invoke

the Law of Large Numbers and say that the expected number

of unoccupied entries is

N X P(O;K/N) = He-K/ N

and that the expected number of occupied entries is,

therefore,

When N = 1,048,576 and K = 585,441, this formula works

out to be close to 449,000. (This does not imply that the

final table size - 220 - is twice as large as it need be,

because the actual number of occupied entries 8ight lie

between 524,288 (219) and 585,441). One can, thus, expect

the partitioning scheme to work for files having order 106

node records, and that represents a very large field­

oriented document collection.

We conclude with a few statistics concerning partitions

formed in the test file. Further details and an account of

169

*

the test file will be found in Chapter 7, section 2.

(i) Number of node records:

(ii)

Document type 225

Name type 537

subject type 1905

2667 total

number of partitions:

containing 1 node 2373

containing 2 nodes 11 ~.

containing 3 nodes 14

containing 4 nodes 4

containing 5 nodes 2

2506 total

Note 1. Three partitions (all with two nodes) were

for~ed "erroneously" by the phrase compression

algorithm, in that dissimilar phrases cenerated the

* same code:

{
<Blood volume receptors and

pulmonary diffusing capacity

_ {mOrPhine
marihuana

{
chimpanzees

cephalosporinase

>

Note 2. Four pairs of partitions (all with one node)

were merged as a result of collisions in the virtual

The same effect, of course, can cause occasional erron­
eous matching during a search. One medical user typed
'DEFOR1~TION' during a trial run, and was asked by the
program if he meant I MEDIL~ RHOll.BOID GLOSSITIS I •

Before the present author could explain what had
happened, the user exclaimed that he could see why the
program had chosen that term: median rhomboid glossitis
is a deformation of the tongue!

170

hash table. One would expect 3' 01 J;;E:rGcs ~ :"0;]'; 25 ')5

partitions.

(iii) Hash function performance:

Table size

No. of entries

Load factor, 0(.

No. of collisions

4096

2506

·612 (= 2506/4096)

(in real table) 734

Distribution of search length, by linear probing,

over all partitions:

no. of no. of keys no. of no. of keys
probes probes

1 1772 12 8
2 350 13 2
3 168 14 1
4 82 15 1
5 42 16 2
6 27 17 1
7 15 18 1
8 10 19 o·
9 13 20 0

10 7 21 1
11 3 over 21 0

All partitions can be located once in a total of

4210 probes; average 1·68 probes per search. In

2506 searches, page boundaries in the table were

crossed 8 times. Knuth(1973, p521) and ~orris(1968)

give equivalent formulae for the theoretical average

search length for successful searches, using linear

probe open hashing:

~(1 + 1)
2 1 -()(, ,

where oc is the load factor, ·612 in our case. The

value y~elded by the formula is 1·79.

171

3. Summary

We have described the file organization a~d access

methods which support the interactive refere~ce retrieval

program. The object of implementing an ex~erirnental system

in this way has been to ensure that the type of retrieval

dialogue proposed will not break down for want of

techniques for handling involved structures in bulk storage,

which are viable in the on-line situation. No attempt has

been made to review file organization techniques - a topic

which has received a great deal of attention in ~ecent years.

Dodd(1969) has written one of the better tutorial reviews,

while Senko et al(1973) have recently contributed an out­

standing three-part article on the subject. Lefkovitz(1969)

has written a well known text which gives a broad view of

file design for interactive programs.

The two important features of the file organization are

these:

(i) It is possible to reach a pertinent point in the

structure without being able to reproduce, exactly,

the vocabulary of the system. This is done by lexic~l

partitioning. It is not claimed that the algorithms

are optimal; though they are based on the empirical

results of others. Further experi~entation could well

lead to great improvements in performance, but one is

in danger of meeting some of the fundamental problems

of information retrieval, namely those involved in

obtaining matches between mental concepts through the

use of symbols (in our case index terms). We are

concerned at the moment, with only one part of the

system and tackling those problems here would

172

constitute recursion in the system as a whole.

(ii) The data base is regarded as a paged Dleruory in which

records (or data structures) within pages are the

addressable units, as opposed to the word, byte, or

any other rigid storage cell. In this way storage

management for dynamic data can be efficient.

An important problem that we have not been able to

tackle adequately is that of arranging records to suit the

access patterns. Some suggestions have been made on an

approach to a solution, and significant performance

improvements can probably be made, particularly for present

day high capacity magnetic storage media. Reference

retrieval systems are built for communities of users, and

one should therefore design a data base which can be

accessed efficiently by several users simultaneously. The

construction of a paged, virtual memory as outlined in (ii)

above, but also capable of being shared, is a topic that

merits further study.

173

Chanter 6 .

nlPLEJ;~EHTATI011

1. Programming languages

In this work, we have concentrated on an engineering

approach to reference retrieval, as opposed to a theoretical

one. Ideas for the design of an interactive, mechanical

aid to bibliographic searching have been incorporated in an

actual program. Even in its illustrative, prototype form,

the program is substantial. It has also undergone extensive

modification in its brief evolution. The previous system

designing experience of the present author, and of many

others, shows plainly that it is only too easy to under­

estimate the size of a system implementation task. Some

attention was therefore given, at the outset, to the

methodology of program design, and we shall discuss this

aspect of the problem in this chapter.

It is traditional among documentation programmers to

bemoan the fact that there are no really suitable

programming languages, or that the machinery was not

designed with their purposes in mind. Two discussions of

this topic are given by Salton(1966) and Dolby(1971). If,

however, we regard programming not as the implementation

of existing solutions, but as one means of disc?vering

solutions, it is not at all surprising that no satisfactory

special purpose language has emerged. We shall not dwell

long on this question here.

The well-known programming languages are frequently

classified according to the types of application for which

they were designed. Fortran, Algol 60 and the early

174

autocodes were intended to be used to specify n~~erical

algori thIns: the emphasis w~s placed upon concise J~.eans of

writing arithmetic expressions and iterative processes.

For symbol manipulation, such as is needed in processing

text, COMITlYngve,1963) and SNOBOL(Farber et al 1964)
--'

facilitate character string (sequence) bandling, and IPL

(Newell, 1961) and LISP (Il:cCarthy et aI, 1962) provide list

and tree-structure devices. COBOL is the most commonly

used of all languages and is designed for commercial and

administrative data processing, where the entities of

interest are records and files. These are merely a few of

the languages available; many others have been developed

for more specific application areas: languages used for

writing problem solving programs have recently been

surveyed by Bobrow & Raphael(1974), for instance.

~or experimental information retrieval work, we can

benefit from facilities and means of expression present in

all three of the broad categories of language mentioned

above. IBM's PL/I sets out to combine them all, and it is

expensive to use. On the other hand, it is inadvisable tc

write various parts of a program in different languages

because (1) there are practical difficulties in combining

translated code and communicating data, and (ii) program

maintenance and documentation are much too complicated. A

third approach is to use a low-level language, which avoids

the problem by favouring no particular application; but

rather the machinery being used. Finally, new facilities

can be grafted onto existing, more general purpose

languages; for example, list processing onto Fortran -

SLIP (Weizenbaum,1963) - string proceSSing onto Algol

175

(Johnson,1974), graph manipulation onto PL/I (Santos &

Furtado,1972). In view of the wide range of probramming

language features which are potentially valuable in this

application area, the choice of one particular language,

augmented or not, is felt to impose undesirable co~straints

on the solution of problems.

More promising than any of these conventional

programming methods are those founded on the concept of

abstract data structures, as discussed by Hoare\1972) and

by Earley(1971). A program is written in terms of objects

which correspond to, i.e. are abstractions of, entities in

the problem. Implementation of such a programmed solution

is achieved by finding another concrete form for the data

structures, this time oriented towards the machine, instead

of the problem. Broadly speaking, this is the technique

used in the present project. Languages which embody this

philosophy include Algol 68 {Woodward & Bond,1974) with its

mode and operator declarations, and Simula 67 (Dahl & Hoare,

1972) which permits a very flexible procedural definition

of new objects using the "class" construction. These

languages possess a more powerful generality than PL/I, in

that the programmer regards a data structure as an abstract­

ion of some aspect of his problem which has its own

appropriate operators, rather than as a record or aggregate

of fields, which is an implementation-bound way of thinking.

The implementation language chosen for the program

described in this thesis is a low-level language for the

IBM System/360 computers, which has an Algol-like structure:

it is called PL360 (Wirth,1968; University of Newcastle

upon Tyne,1972). The major benefit obtained from being

176

able to write statements corresponding to ~achine

instructions is that the range of design concepts which one

can contemplate is very broad. In addition, PL360 is a

convenient language to use interactively on a heavily loaded

university machine because it has a fast one-pass compiler.

The disadvantages of low-level programming which are frequ­

ently cited - obscurity in the program, and inefficient use

of programmer time - are largely overcome by the methods

which we describe in the next few paragraphs. McCracken &

Garbassi(1970) write:

"With COBOL, or any similar high-level language, •••
changes are relatively simple to make ••• With
machine-language programs there are actual examples
of cases in which adding one more digit to'a
deduction has required weeks of reprogramming.- - p81.

This comment is either a gross exaggeration or an unwitting

observation of bad programming practice. (It is ironic

that this claim should occur in an introductory text on

COBOL, a language which certainly does not encourage good

programming habits, even if it does have useful facilities

for commercial data processing).

2. The structure of the program

The explicit aim of the method of programming given

here is to make the bridge between problem and machine as

clear as possible. The method also makes that bridge

shorter. We benefit in three main ways:

(i) Program development is fast, at both the writing

and the testing stages, because the risk of errors

is low (by normal programming standards). It is

important to have a low error-rate when implementing

heuristics, where unsatisfactory output can be

177

attributed either to coding errors or to poor

heuristics, thus adding to the complexity of testing.

No precise measurements of program;ne- performance

were made in this project, and there is no clear

distinction between design and coding phases, but

rough estimates can be made. The programs are written,

first, in what we might refer to as a design notation,

which is the basis for the PL360 coding. If we

consider all tasks performed from (and including) the

writing of the design notation to the accepta~ce of

the PL360 coding as "correct", this particular

programming job was done at a rate of about 100 PL360

statements per 8-hour working day. Only one incon-

sequential, and easily corrected, error was discovered

in the complete final version of the program during
-

some 300 dialogues with Thomas.

(ii) When our ideas on the problem change it is possible

to identify, quickly, those parts of the program

which will be affected.

\iii) Documentation of the program is aided by the method.

The design~otation provides a precise and well

organized description of what the PL360 procedures

do, and there is a close notational correspondence

between the two. In fact, the description of the

program Thomas given in Chapter 4 follows the design

notation, and its writing was aided considerably by

having that specification to hand.

The structure of the program is, on the whole,

hierarchical; we have used the "~op-down" approach advocated

by Dijkstra(1972). There are many interesting discussions

178

on the topic in the literature (Wirth,1971; Hencerson &

Snowdon,1972; for instance), and Snowdon(1974) has put

forward an interactive program development tool which

encourages the conscious use of the prinGiples involved in

clearly structured programming. we shall not therefore

embark on a lengthy discussion here, but show how the

principles have been applied in building Thomas.

2.1 The "top-down" approach in use

We should like to write programs that have a structure

which makes them readily understandable. The most desirable

attributes that an algorithm (i.e. a procedural program)

should have to achieve this aim are as follows:

(i) It should be seen to be of the form

"First do A, then do B, then do C, ••• "

(ii) It should be short,

(iii) The data objects that it handles should resemble, in

the notation, the "problem" entities of which they

are abstractions.

A programmer can be confident that such an algorithm does

what he intends it to do. The first attribute can be

achieved, very nearly, with the Algol program control

devices: procedure calls, for, while and repeat statements

(for making loops into lido X"), and if and case statements

* (for alternative paths). To achieve the second attribute,

the programmer should build his system out of short (e.g.

less than a written page) procedures - modular programming.

The third attribute of a clearly written procedure can ce

* A good source of information on Algol 60 is Dijkstra
(1962). It includes a copy of the "Report on the
algorithmic language Algol 60". For later suggestions,
including the case statement, see Wirth & Hoare(1966). -

179

achieved by inventing data types as needed, to£ethe~ with

appropriate operators and programming constructs. It leads

to obscurity if we use an integer type of variable ~o

denote, for example, a file address consis~ing of ~h~ee

numbers which we have decided to store, packed, in one

computer word.

These considerations, added to the fact that the

implementation language, PL360, is Algol-like in its

structure, led to the choice of Algol 60 as the basis of

the design notation. Because this notation was intended

to be open-ended, there has never teen any intention to

automate the generation of programs from it. So, the

technique amounts to writing programs in an extending

Algol, and translating them by hand into PL360.

Let us follow part of the development of program

Thomas. Some of these procedures are described in Chapter

4, starting in section 3, and the reader may wish,

occasionally, to refer back to the accounts given there.

We shall start with the requirement to write a program that

creates and maintains a model of its user's interest, to

help him search for references on a particular topic. To

start with, we simply state the requirement a little more

formally, as a process:

procedure TOPIC_SEARCH;

begin SET_UP_l\~ODEL;

repeat IitlPROVE_MODEL

until USER SATISFIED

end.

180

Firstly, an initial model will be created by a process

named SET UP l .. On:CL. The model will be modified. in stages,

as the dialogue proceeds, until the user has seen as much

as he wants. IliJ'ROVE_I,10DEL is a process w~1ich resul ts in

a change in the model, and USER SATISFIED is a Boolea~­

-valued function which determines whether the user has

comnanded the dialogue to stop. All the symbols in

upper-case letters are names of separate processes. The

procedure TOPIC_SEAHCH acts as a manager which has delegated

the various jobs and which coordinates the activities of

its subordinates. Most of the processes introduced would,

at some stage, be defined in the Algol design notation in

terms of further processes. Each Algol procedure is finally

translated into PL360 using conventions which evolved early

in the project. Some processes named in the Algol proced­

ures are close enough to the capabilities of the machine

not to need an Algol definition themselves. In these cases,

we can either write a procedure directly in PL360, or put

the appropriate code in-line when translating the calling

procedure. There follows an outline of the PL360 versio~

of TOPIC SEARCH. Because the reader is assumed not to be

familiar with PL360 nor with the conventions referred to

above, this will be the only example given and, even so, i:

will be simplified. Procedure naoes are abbreviated to

eight letters in the PL360 translations:

global procedure TOPICSEA(R14);

begin

external procedure SETUPUOD(R14); null;

external procedure IMPROVEM(R14); !!E.ll;

181

end.

external procedure USERSATI(R14); null;

5 lines of declarations and coding for storage
management, including a declaration for the
local flag: stop

~ETUP1WD;

RESET(stop); R2:=~stop;

while -. stop do

begin IMPROVEM; USERSATI; end" --'

an instruction concerned with storage management

USERSATI is a translation of the Boolean function USER

SATISFIED and, by convention, will put its resulting value

in the flag addressed by register R2, naillely stop. The

PL360 while statement is then equivalent to the Algol

repeat.

The elaboration of initialization processes like

~ET_UP_I,jODEL should normally be deferred until more is

known about the central processes. We therefore move 0;", tc

HiPliOVE MODEL. In the mechanism we are designing, the

model is to be adjusted according to the user's input,

which will normally be his response to the program's last

display. The repeat statement in TOPIC_SEARCH takes care

of the i terati ve aspect of the dialogue.. The tasks of

giving and receiving messages, and of changing the model

are delegated to IMPROVE 1.:ODEL. Let us first define the

process quite vaguely:

182

begin

end

read a message from the user;

use it to influence the state of the model;

make a response to it

The intention is to invoke three more procedures to

perform the constituent processes in this definition.

Those procedures will be regarded as the definitions of

the meanings of the phrases, and they will be ~ritten

independently. There is, however, a link between them

which must be represented in the more formal definition -

namely the message, occurring as the pronoun "it" in the

second and third phrases. we must introduce an abstraction

of a message: a data type, one instance of which will be

made available to the procedures to formalize the link.

The message that the user types will be a simple sequence

of characters, but we judge that it will probably be best

to structure it in some way on receipt. We therefore

invent a name for the data type, message, a~d postpone

defining its properties until we know more about the way

we wish to use it. We can write the Algol definition of

IMPROVE I;iODEL now.

procedure IMPROVE_MODEL;

begin message m;

end.

m:= GET USER_MESSAGE;

INFLUENCE_STATE_OF_1l0DEL(m) ;

RESPOND_TO_USER(m)

183

A note about the implementation of the Gojel: beca~se

it forms the basis of the system, the model is reea~ded as

global to every procedure. Naturally we know q~ite alot

about the structure of the model, but we do not yet need to

make it explicit in the programming.

GET_USER_l .. ESSAGE, which is a function of type message,

must process the input in a way that is not yet decided,

so we defer its definition. Here is an informal definition

of INFLUENCE_STATE OF MODEL:

begin

end

update the performance figure in the model, accordinG

to the user's reaction;

prune rejected points from the context graph in the
model;

add selected points to the context_graph;

find and add explicitly requested points;

make sure the context_graph is connected

Each process, except the last, uses some infor~aticn WhiCh

it is assumed can be derived from the user's message. We

invent a set of functions which require a message as

argument and yield just the types of values most suitable

for feeding to the procedures that we shall invoke to

perform the required processes. They are called selector

functions. The selector functions called by the procedure

which follows are called reaction, reject_list, select_list

and request_list. We still do not have to decide precisely

in what structure the data they return should be. For each

data type that we invent, we keep a record of its selectors

184

and make a note of their types when they are k~c~~.

procedure INFLUElWE_STATE_OF_l,~ODEL(m);

message m;

begin

end.

Cm,:PUTE_SCORE(reaction(m) ;

PRUNE_CONTEXT(reject_Iist(m»;

ADD_TO_CONTEXT(select_list(m»;

FIND_NODES(request_Iist(m);

UNIFY CONTEXT GRAPH

The programming continues in this way, and we shall

show a little more below. However, we pause at this poin~

to remark on an omission in the definition of L;?LUENCE

STATE_OF_l.10DEL, which did not, in fact, come to light

until the Boolean function USER_SATISFI~ (see the definit­

ion of TOPIC_SEARCH, above) was elaborated. The problem

then was to decide how the program should determine that

the user had seen enough. The dialogue would have been

clumsy if, before accepting a substantive wessage from the

user, the program had to ask him if he wished to st0p.

Much better that he could say "stop" in place of the norffial

message. We required, therefore, a means of recognizing

the stop message by GET_USER_ll.ESSAGE, and of passing the

request on so that INFLUEiWE_STATE_OF_MODEL and RESPOIID_TO_

USER should not execute in the normal way, and so that

USER_SATISFIED should return the result true. The method

chosen was to record in message a special value for

reaction, denoted by STOP, and modify INFLUENCE STATE_OF_

185

br10DEL to the form given in section 3.2 of Chapter 4.

We return to work down the hierarchy of processes a

little further, to illustrate the handling of the model

and of graphS at this high level of descri~ Jion. A ;rla th­

ematical description of what we mean by the supergraph and

the model are given in Chapter 4 sections 1, 1.1, 1.2 and.

2: it is, very largely, in terms of sets of points. We

define FIND NODES:

procedure FIND_NODES(requests);

query list requests;

begin global point set explicit_requests, inhibit_list,

end.

context_graph;

point set addresses;

addresses:= LOCATE_NODES(requests);

explicit_requests:= explicit_requests U addresses;

inhibit list:= inhibit list - addresses;

context_graph:= context_graph U addresses

U STARS(addresses)

There are several remarks to make about this procedure:

(i) The parameter, requests, is the value returned by

the selector function request_list acting on a

message. We have given this type of data a name,

query list, but have still not needed to decide on

the details of its structure, except what is implied

by the use of the word list; i.e. that the query's

are organized in a sequence, so that the order in

which the user provided the texts is maintained.

186

(ii)

(iii)

','Ie have invented another data type, point, and J1CiVE-

specified that the aggregates of point's .j,:;ntioned

should display the properties of set:::.

For manipulation of sets, the operators U (union)

and (asymmetric set difference) have been

introduced. In the PL360 translation, one would

expect these to be implemented by procedures, but we

shall only become concerned with that when a concrete

representation for sets is chosen.

(iv) Because the Algol procedures are defined i~dlp8ndently,

it is necessary to state that the model components

explicit_requests, inhibit list and context_graph

are the same variables as those accessed by other

procedures. The symbol global is used for this

purpose.

(v) The procedures LOCATE NODES and STARS are point set

valued functions.

We now define STARS, a procedure which computes a set

of points adjacent in the supergraph to the points in itE

argument set.

point set procedure STARS(centres);

point set centres;

begin global point set inhibit_list, context_graph,

check_tags;

point set result;

point p,q;

result:= empty;

for each p in centres - check_tags do ---
for each q in LINKED_TO(p) do --

187

end.

if q ¢ inhibi t_list U context_graph U centres tr:en

result:= result U{q}

STARS:= result

The construct for each ••• permits us to specify that a

process should be performed for each member of a set,

without straying into implementation questions concerned

with the order of the elements in storage. The operator

¢ means "is not a member u , and the brackets { } turn their

contents into a set.

To access neighbouring points in the supergraph we

use the procedure LINKED TO:

point set procedure LINKED_TO(p);

point p;

LINKED TO:= node_links (NODE_AT(p» •

The procedure NODE_AT is responsible for finding the data

object containing information relating to a point in the

supergraph(the label - see Chapter 4, section 1.1 - ar.1 t~e

set of adjacent points). Objects of this type are referrci

to in other parts of the program as ~'s. Here, we need

the set of points adjacent to the ~, and decide that

they should be available through a selector function called

node links. We have not, at this stage, explicitly

considered implementation of the supergraph (although, of

course, that question is certainly in the back of one's

mind). It may be noted, however, that we already have a

hint of some of the details of file organization given in

188

Chapter 5, section 2. The point's are beginning to look

like file addresses, and to make the selector node links

(and thus the procedure Ln~KED TO) work fast the data - ,
structure retrieved from the file by NODE_AT should

contain the addresses of all adjacent nodes.

We shall leave the program development at this point.

Regarding the treatment of sets in the "Algol" definitions,

it should be pointed out that more elegant notations can be

used if non-procedural programming is adopted (e.g. Elcock

et al,1971).

Top-down programming is not an infallible method for

effortless problem-solving. It is often necessary to know

how the machine will do a task before writing the high-level

procedures, in order to obtain a satisfactory breakdown of

the design. Bottom-up programming starts near the computer

and works up towards a solution to the problem. It is

often necessary, even when the approach claimed is top-down,

and is sometimes explicit but more often implicit. Sub-

conscious bottom-up programming probably permeates every

stage in a feat of top-down programming; it is the progr2m­

mer's use of his experience. Conscious, though not

necessarily explicit, bottom-up programming occurs when we

decide, for example, whether a search is best done by hash­

ing or binary search, or when we choose one Algol definit­

ion rather than another because it can be rendered easily

into PL360. There is, however, a basic difference between

the two approaches. In constructing a system, we do not

know the solutions to all our problems in advance, and it

is natural to start by working from the top. The proced­

ures we write will then be those'actually needed in the

189

system.

2.2 Data structures

Once again, we must avoid a general discussion and

refer to Hoare(1972) for a comprehensive treatment of the

subject of data structuring. What we require for the top­

-down programming method we are using is the ability to

invent any data structure, and not necessarily all at

once. In the procedure, IMPROVE_MODEL, in the previous

section, it is acknowledged that we need a structure of a

type called message, but no further details are given -

rightly so, because they would only obscure the meaning of

the process. In INFLUENCE_STATE_OF_i.:ODEL, certain aspects

of the message type are introduced: reaction, reject_list,

select_list and request_list. The attributes of each of

these come to light at various stages in the development,

as does the need for yet more components of the data

structure representing a processed user input string.

In general, if we wish to introduce a concept as a

structured aggregate of information, then we just inven~ a

name for it (made into a basic symbol by underlining it)

and use it as a data type in a declaration of one or more

instances of that concept. When we wish to get at some of

the information which we understand to be part of the

concept, we invent a selector function, which selects

data of a particular type and in a particular semantic

role from the total abstract object. As programming

proceeds, details of the original concept are filled in,

and thus a collection of selector functions is built up.

At any point the entity is understood in terms of the

190

collection of selectors invented for it. When a collection

of Algol procedures is translated, the new data structures

are implemented simply by arranging for all the selectors

to work easily - this usually means no more than setting

out corresponding fields (or pointers) one after the other

in a storage map.

Examples:

(i) node N; Many instances of this data type

reside in the data base, and collect-

ively define the supergraph.

selector functions:

nOde_kind(N) takes one of the values NA..I.;E, DOC,

SUBJECT

If node_kind(N) = NA~m,
node_name(N) is a string, representing a

surname, and

node_initials(N) is a string, the initials of

the forenames.

If node_kind(N) = DOC,

node_phrase(N) is a string, the title of a

document,

node_ref(N) is a string, the location in a

journal.

If node_kind(N) = SUBJECT,

node~hrase(N) is a string representing a

subject term.

node_links(N) is a point set containing all the

adjacent points (addresses).

In Hoare's terminology, this example is a discrimin­

ated union of Cartesian pr~ducts - we have joined

191

into one data structure three composite structures

("products" or more elementary types). The selector

function node kind simply serves to discri~inate

between them.

(ii) string tree T; Thisl structure is used to

identify suffixes on words.

selector functions:

left_member(T) is a string,

left_subtree(T) is a string tree,

right_subtree(T) is a string tree.

A pictorial representation of a string tree is as

follows:

r­
I
I
I
I I
L ______ J

left_subtree(T)

T

L- ______ _

-,

I

---~

right_subtree(T)

It should be emphasized that this definition of a

tree arose purely from the introduction of the

selector functions in the program; it was not

decided upon in advance.

2.3 Implementation of data structures

Hoare(1972) discusses in detail the considerations

which influence the implementation of abstract data

192

structures. In a large system of procedures, we also n;-_ve

to decide whether to establish syste~ standards for the

various concrete data structures, or whether represent­

ations can vary according to local needs. Because data is

passed from procedure to procedure in parameters and

function values, standardization is the predominant policy

in this project; there are exceptions. When storing

structures with pointers (containing variable length strings,

for instance) on the disk, the representation must be re­

locatable, so the pointers are stored as offsets from the

start of the region (or "record"). At other times the links

are absolute addresses for simpler access and, more import­

ant, so that we can incorporate certain existing structures

into others simply by making reference to them, wherever

they happen to be, instead of moving them in storage.

On the coding of data structures, we shall not go into

the details, which are generally very straightforward, but

merely remark that most structures have two components - a

fixed part containing fixed length data and pointers, and

a variable part containing such things as linked list

structures and sequences of characters.

The representation of sets deserves mention, however.

Sets differ from other abstract data objects in that there

are no selector functions; all processes are specified, in

If Algol", by means of set operators (U, n, -, E, and so

on) and the for each ••• construct. Underlying these

operations are four basic ones: (i) determining whether an

element is a member of a set, which is a search operation,

(ii) scanning a set, i.e. considering every member, (iii)

adding an element to a set, and (iv) taking an element

193

away from a set. For sets that are frequen~ly searcheQ, a

hash table representation is efficient. In this program,

we have a limited number of global sets (in the model),

which must remain accessible throughout execution of the

program. If a point belongs to any of these, there will

be an entry for it in a globally accessible hash table,

indicating by means of a short bit vector which sets it

belongs to. Elements can be added and removed very easily,

but the scanning process is very inefficient. If the

program requires to scan a set, a linked list structure is

used to represent the set, sometimes in addition to the

hash table representation in the case of global sets.

These structures are kept in a large globally accessible

storage area, with the exception of sets declared locally

within the Algol procedures. The "node_links" portions of

the node structures in the data base are put into the same

area when called for. While they remain in that area they

can be accessed through the same hash table that holds

information for searching the global sets.

2.4 Use of storage

We have chosen an Algol program structure, so storage

must be organized in a stack (except for that used for

global variables). The stack must accommodate lists and

any other volatile linked or variable length structures we

care to invent. According to the conventions developed

for this project, the stack is maintained in contiguous

storage locations in virtual memory. A PL360 procedure is

told where it may star~ to store local data, and before

returning control must destroy its local variables by

194

adjusting the top of the stack downwards again. The

details of the technique are different from, but compatible

with normal IBM 360 subroutine linkage conventions to the

extent that MTS library routines can be called without

trouble.

The problem arises when the result produced by a

procedure (corresponding to an Algol function procedure) or

a new value assigned to a parameter is of unpredictable

size. Conventions, making use of a second stack, allow the

main stack to be handled in such a way that, while the

fixed part of a resulting data structure is provided by the

calling procedure, the called procedure is responsible for

ensuring that, on return, the variable part of the structure

is stored within the stack as known by the calling procedure.

3. Management and documentation of the programming

With 228 procedure and selector function names in the

Algol definition of the program, it is inevitable that an

appreciable amount of time had to be spent on managing and

documenting them. The system has been constructed in

several sections, typically defined by 15 - 20 Algol

procedures. These are translated into a set of PL360

global procedures, and tested. Usually, there are calls on

procedures which have not yet been defined and simple

temporary substitutes must be written for these. Also a

main program must be written to run the test.

A difficulty which arises when testing pieces of a

file processing system is that large, complex, test data

structures are sometimes needed. Construction of these by

hand can be so laborious and error-prone as to be impract-

195

icable. To construct the data automatically often requires

the definition of another part of the system, which in turn

requires extra programs to independently check the data and

validate the structural representation. To make matters

worse, it is often not possible to define the data structu~e

to be produced by the building sUb-system before the

processing sub-system has been written and its requirements

are fully known. We must resort to a complicated ad hoc

testing of the two sUb-systems in parallel, in which quite

alot of extra programming is necessary.

Program testing has been done on-line, and debugging

has assumed a much less prominent place in the development

of this system than is traditional in programming. t:ost

errors cause PL360 compiler diagnostics and are simple

slips in translation or typing. One subtle logical error

in the Algol definition was due to the awb/ard ordering

relation among English suffixes while they are still

attached to the words. The first method of identifying a

word's maximal suffix which was tried comprised reversing

the letters in the word and searching a sorted reverse­

-suffix dictionary using the binary search technique. It

cannot be done that way because the length of the suffix,

if any, is not known until it has been identified. A tree

searching method was used instead. ~nen testing is

"complete", the object modules are added to a program

library, and the final version of the PL360 source in

printed form and on punched cards is filed away.

An analysis of the means of implementation of all

the procedures and functions called in the Algol-defined

part of the program follows:

196

(i) Selector functions for a variety of data

structures are irr.plemented:

a) by simple reference to a field in a

storage map

b) by minor manipulation

(sub-total)

(ii) Other functions/procedures are implemented:

a) by translation of Algol procedure into

44

9

53

corresponding PL360 procedure 125

b) by small in-line code sequence

(i.e. 1 - 5 instructions) 27

c) by definition directly in PL360 23

(sub-total) 175

(total) 228

In addition there are 53 PL360 procedures which have no

Algol equivalent. These perform tasks such as storage

management and set operators, and, like the Algol definit­

ions, they are short and hierarchically org2nized.

The program documentation consists of the hlgol

procedures themselves, lists of all invented data types

and their selectors, descriptions of the representations

of data in the machine, and an index to procedures, record­

ing how they are defined, which other procedures they call,

which other procedures call them and, in the case of

selectors, which data type they operate upon. This

information has been found adequate for development. For

example, if it is required to change the implementation of

a data structure, one first makes a list of all its

197

selector functions. Looking them up in the index will

yield a list o~ all the procedures which call them, and

these will determine which PL360 procedures need be

changed.

Questions of managing design and i!?1ple:-:-;entation

decisions in a flexible way are considered by Parnas(1972).

His answer is the concept of "information hiding", and his

conclusion is

"that it is almost always incorrect to begin the
decomposition o~ a system into modules on t~e basis of
a ~lowchart. We propose instead that one begins with
a list of difficult design decisions or design
decisions which are likely to change. Each module is
then designed to hide such a decision from the others.
Since, in most cases, design decisions transcend time
of execution, modules will not correspond to steps in
the processing." - p1058.

Clearly, Parnas' systems will be well-structured, but not

hierarchically, from the top, down. His wethods seem, at

first sight, to be rather different from those described

here. However, inherent in the system presently under

consideration, there is a sort of dynamic modularization,

which can have Parnas' desirable information hiding

property when needed. Y.re handle design decis ions end

document the system in such a way that modules (in Parnas l

sense) can be temporarily assembled out of procedures, for

specific purposes. Any retrieval criterion can be applied

to the program documentation, in principle.

4. Summary

In this chapter we have given an account of the

methodology of the implementation of the illustrative

reference retrieval program, Thomas. The method described

is not proposed as the only sensible one, even for experi-

198

ments, because a great deal depends on the procrammer's

past experience and what might be referred to as his taste

in programming styles. Nevertheless the method has very

useful properties for our purposes. The design and

programming aspects of the job are not clearly separated,

programming is quite fast and debugging is very fast,

documentation is facilitated, and, as a result of all

these, changes of mind on the designer's part are relatively

painless. The technique is one interpretation of the top­

-down programming method (Dijkstra,1972); and we have, in

this chapter, illustrated its use by quoting from, and

commenting upon part of the actual development of Thomas.

199

Chapter 7

PERFOHMAIWE OF THE PROGRA1~

1. General remarks

A great deal of the literature on reference retrieval

is concerned with methods of evaluating systems: the basic

measurable units and the performance statistics derivable

from them. Firstly, we should distinguish retrieval

performance and notions like efficiency and cost. We are

concerned in this chapter with the former. Most workers

in this field associate retrieval performance with a

system's ability to pick documents which are relevant to

the queries put to it. Consequently, most performance

measures are based on the 2 X 2 contingency table showing

how the system's relevance decisions compare with the user's.

If, in a collection of N references, there are C relevant

to a particular query, and the system retrieves L refer­

ences, of which R are among the relevant ones, the system's

performance in response to that query can be shown as

follows:

Relevant

Not
relevant

Totals

Retrieved

R

L - R

L

Not
Retrieved

C - R

N - L - C + R

N - L

To tals

C

N - C

N

Note that in any realistic collection, the value of C is

not known; it is, in fact, the size of the set A that was

introduced into the discussion in Chapter 2, section 1.1.

200

"Laboratory experiments" in reference retrieval

(prominent current examples are the work of Sparck Jones

and of Salton; important earlier work was done by Cleverdon)

make use of a small document collection, a set of queries,

preformulated or formulated by the system from natural

language questions, and, for each query, the set of

"relevant" documents. In other words, in these experiments,

C is known, and the table can be compiled, completely, for

each query. By adjusting some parameter of the system

under test, the values of Rand L are varied a~Q, in order

to assess the relative merits of different values of the

parameter, the contingency tables obtained are summarized.

A normalization technique must be combined with the averag­

ing process so that systems, or variations in search

strategy, can be compared. We can combine the figures

obtained for a set of searches (by addition) and then

normalize, presenting ratios (named "micro evaluation" by

Rocchio,1971). Alternatively, and this reflects the view­

point of the individual user, we can work out some rat~os

from each table first, and then average them ("macro

evaluation"). The most commonly used ratios are called

recall and precision. In terms of a single contingency

table, these are defined:

recall R

C
, precision R = - •

L

Combining the ratios over several contingency tables can

be done in two ways:

201

or:

2: Ri
micro recall = _i __

LC i i

micro precision =
LR.
i ~

LL. '
i ~

=
'\' Ri

macro recall ~
. C.
~ ~

__ ~ Ri • macro precision L
i Li

In spite of the fact that recall and precision have

been vigorously attacked as an unsuitable pair of measures

(Fairthorne 1964, Robertson 1969, for example) they cont­

inue to be the most widespread criteria for retrieval

system worth, probably because they correspond to the

supposed aim of reference retrieval - to find as many as

possible of the relevant documents, and to avoid picking

up irrelevant ones in the process. They are even the most

frequently used basis for evaluating fully operational

systems, where C is unknown, and thus true recall is

unobtainable. In these cases, methods have been devised

for estimating recall, or using a similar ratio which, in

comparative evaluations, provides an indication of recall

lLancaster,1969; McCarn & Stein,1967). The criticisms have

been founded on the mathematical interdependency of the

ratios and the validity of the averaging processes (which

inevitably lose information).

202

Another type of criticism, for example t~at by

Cooper(1973), is that measures depending upon (perhaps

dubious) collection dichotomies are not necessarily

related to system utility. The alternative is some form

of subjective evaluation - the user attaches a value to

the service he has received. In Cooper's proposal, the

user states what price he would pay for a relevant reference,

and how much he would pay to avoid seeing a non-relevant

one. In a recent paper on this topic, Cleverdon(1974) has

argued the need for the evaluation of the utility of

information systems, while at the same time recognizing the

power of recall, precision and other such measures in the

laboratory. Cooper is criticized for confusing value with

performance: it is conceivable that a system which performs

very well, may be unusable, and therefore of little value,

because people cannot easily express their information

need in the required form. The distinction which Cleverdon

draws is problematic, now that the enquirer can conduct his

own search on-line. The user now plays a major role within

the system itself. Is it still sensible to atte~pt an

evaluation of the mechanical part of the system in

isolation?

The diversity of views concerning methods of evaluating

a reference retrieval technique is probably attributable to

differences of opinion on the nature of the retrieval

problem, and what qualities enqqirers look for in a system.

It seems sensible to seek measures which will enable us to

state how well our program performs the tasks which we

designed it to tackle. Rather than prolong the discussion

of evaluation in general, therefare, we shall turn to the

203

attributes that should be tested in the retrieval method

proposed in this thesis.

No matter how a library user approaches the literature,

whether straight to the books, or through the ~ost advanced

retrieval system, he views a small part of the totality o~

literature. There is no doubt that some users, on some

occasions, would like their view to be accurately and

efficiently restricted to one small area. This requirement

falls at one end of the search/browse spectTIlID, and our

program, Thomas, may not be valued very highly by such

users. Most searches, however, have an element of browsing

in them (Herner,1970), and the user's view should include

a certain amount that is peripheral to the strictly

relevant. Imprecision in retrieval is not without value.

It may increase the user's awareness of potentially

interesting work or information sources,_ and can help him

state or decide what really is pertinent to his own work.

On the other hand, high recall is also not necessarily

required by users. Cleverdon(1974Y suggests that, "for

many subjects, a recall ratio of 25% or less of the relevant

documents will give a complete 100% recall of information."

- p174. These points should be borne in mind when using

recall and precision to describe the performance of an

interactive retrieval system.

A major deficiency of the evaluation in this chapter

is that it has not been possible to conduct extensive trials

with real users. The scale of such experiments is beyond

the resources of this project.

204

2. The test collection

The collection of references used to test the retrieval

methods described in this thesis is a subset of the refer­

ences added to the r.:edusa current awareness file (see

Chapter 2, section 2.4.1) in September 1973. Out of about

19,000 references we have chosen 225. Firstly, searches

conducted by medical scientists and biochemists, on the

Medusa system, were selected if they had resulted in any

retrievals from the September section of the file. By

search, we mean the complete query formulation process,

which may contain several "SEARCH" commands. All references

so retrieved by Medusa, whether relevant or not, were

selected. The important point about this method of select­

ion is that we have queries and corresponding relevance

judgements made by practitioners with genuine information

needs. In addition, if the Boolean search strategies

formulated with Medusa's aid were to be put to the subset,

the output would be precisely the same. The figures so far:

1. Number of searches,

(1) retrieving no relevant references: 14

(ii) retrieving 1 or more relevant ref.: 32

Total 46

2. Number of different references: 225

3. Total no. of relevant references: 91

A network of records (the "supergraph") was built up

from these 225 references. All the authors and index terms

associated with the references were extracted from the

Medusa files and linked to the document records. In the

MEDLARS records used by Medusa, some terms are accompanied

205

by qualifiers (see displays in Chapter 2, section 2.4.1);

the qualifiers have been dropped for Thomas· data case.

The distinction between "print" and "non-print" terms is

also ignored.

Using the MeSH (Medical Subject Headings) category

structure, many links were inserted between index terms.

There are several categories, each is a hierarchy of terms,

and many terms occur in more than one place in this arrange­

ment. Because there are a large number of terms missing

from our test file, the tree structures were disconnected

in places. Simple conventions were adopted for linking

them up. The following picture illustrates the rules:

missing terms: e

missing links: /1
inserted links: II

I

Terms were not linked if the shortest path between them

had more than two lines.

Several thousand synonyms have been added to Medusa's

dictionary. Those attached to terms already selected for

the supergraph were included, except where the phrase

compression algorithm (Chapter 5, section 1.1.2) would have

caused the synonyw to be recognized correctly. N.any of the

synonyms in Medusa are word permutations of the correct

term, and our program can deal with these without the need

to store them separately.

206

Here are some further figures describing the test file:

Number of references: 225

Number of authors: 537

Number of MeSH terms: 1357

Number of synonyms: 551

The distribution of the MeSH term postings follows (a

posting is equivalent to a line joining a subject node to

a document node in the supergraph):

Terms No. of postings

HUMAN 150
MALE 87
FEl..ALE 84
ANII.'.AL EXPERIMENTS 77
ADULT 51
l.:IDDLE AGE 44
1I.ETHODS 40
1'IME FACTORS 36
ENGLISH ABSTRACT 30
CHILD 30
RATS 27
AGED 27
ADOLESCENCE 27
CHILD, PRESCHOOL 20
MICROSCOPY, FLUORESCENCE 16

No. of terms

4
3
6
5
3
6
8

15
7

19
35
46
83

- 238
864

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Average no. of postings per reference: 15

Average no. of postings per term: 2·48

With the exception of MICROSCOPY, FLUORESCENCE, the narned

207

terms in the above table are all check tags. (As we have

already said in section 3.1.1 of Chapter 3, check tags are

terms which the indexer must consider posting to each

document). The remaining check tags in the test file are

AGE FACTORS
CASE REPORT
CATS
CATTLE
COMPARATIVE STUDY
DOGS
GUINEA PIGS

IliFANT

INFANT, NENBORN

IN VITRO
MICE
PROGNOSIS
RABBITS
REVIEW

There are a few more in MeSH which happen not to occur in

the test file.

We should now satisfy ourselves that there is a

sUbstantial amount of overlap between the subject areas

represented by the queries. If this were not so, our

method of assembling the test collection would lead to

performance figures distorted in favour of program Thomas.

We need to know that there is a choice for the program to

make, in order to see how discriminating it really is.

Firstly, the supergraph represented in the test dat~

base is a single connected graph; i.e. every po~nt contai~ed

in it is reachable from every other point. If we eliminate

the check tags, and restrict our consideration to paths of

the form:

D-S-D-5- --D,

where the D's are document nodes and the SIS are subject or

name nodes, then we find that no document node is more than

8 lines distant from every other document node in the super­

graph. It is therefore possible to conduct a dialogue in

which a pair of the most widely separated references are

208

displayed wi thin a few exchanges with the progra!J.

The overlap of topics covered in the test dialogues

with Thomas (which are described in the following sections)

is shown here in the form of a hierarchical clustering of

searches. The searches are those conducted with Thomas,

using the "standard rules" described in section 3, below,

and corresponding to the 32 productive Medusa searches.

For this purpose, a search is defined by the set of refer­

ences displayed, and the similarity of two searches is

measured in terms of the overlap of their defining sets.

The technique for producing a hierarchy of clusters is

that described by Jardine & van Rijsbergen(1971). We ,
calculate the similarity measure for every pair of

searches, A and B:

. S = AB

/A () BI
IAUBI

•

For any value of e, 0 ~ e ~ 1 , we can draw a graph in

which the nodes correspond to searches, and a line joins

every pair of nodes, A and B, for which SAB)e. The

clusters at level 9 are defined to be the connected

components of the graph obtained for that value of e. 'jie

set e = 0 initially, and draw the graph; then we increase

the value of G., At various values, lines disappear from

the graph. If, as a result, a cluster is split into two

or more smaller clusters, the value of e is called a

"splitting level". We present the clustering obtained in

figure 15: it can be seen that the searches overlap each

qther to a considerable extent.

209

0

......
N

t-......
r<'\
......

N
......

co

o

'" I.J'\
0
•

I.J'\
t­
o
•

Figure 15.

...-

...-

...-
•

I!\ ...-,
~ ...-,

"'I ...-

t­
N

/'C'\
N

......
•

~
I.J'\
...-
•

...-
r<'\

co ...-
...-
...-

0
......

N
N

\0
co
N
•

\0
N

co
N

\0
......

t-

N

I.J'\
-N

t-
I.J'\ I.J'\
/'C'\ ~

• •

N r<'\ ~

• . .
splitting level

Hierarchical clustering of 32 Thomas
dialogues (see text).

210

~
N

•

3. The trials

The design of the trials for our program was guided

by the desire to simulate the behaviour of real users.

Sal tone 1972), in his comparison of Sr.:"4.RT and L:::;DL..""RS, is

prepared to accept the validity of relevance judgefuents

made by subject specialists other than .those who posed the

original queries. He reports a 69% overlap in relevant

sets as judged by users and an independent assessor. The

problems of obtaining relevance jUdgements have been

studied by Cuadra et al(1967). However, in testing a

system designed for interactive use by the scientist him­

self, it seems necessary to use his own deciSions. The

example search given below shows that it is not at all

obvious how the user demarcates the output of a retrieval

system. Medusa users return relevance judgements to the

project team, and those applying to our subset of the

collection were available for use in the trial dialogues.

All references retrieved by Medusa in response to a search

are marked, by the user, in one of four ways:

A relevant, useful, already known

B looks relevant, not known, intend to read

* : not relevant but interesting in another conneciio~

(serendipity)

- : not useful

For our present purposes, we regard A and B as meaning

"relevant" - the user would respond ~ if the reference

were displayed by Thomas. The marks * and - are both taken

to mean "not relevant tl - the response to Thomas is no.

This may be a little harsh on our program because, in

reality, a user may wish to be n6n-committal about a refer-

211

ence, and in that case, a negative response may be ~islead­

ing. Also, in many cases, the decision as to ~hetter a

reference should be marked * or B is difficult to make:

one would expect a strong connection bet~'ieen a user's

various professional interests. All the analyses given

here are derived from dialogues based upon the 32 Medusa

searches which yielded relevant references.

The first thing that was necessary, in preparation for

the trials, was a summary of each Medusa search, giving an

outline of the formulation, including lists of terms

selected by the user, and a list of all the references

retrieved from the September 1973 section of the file,

together with the relevance jUdgements. In addition, the

number of postings in the test collection was noted for

each term chosen by the searcher during the Medusa session

(that is, for those terms present in the test file). An

example will show the form of the surr~aries prepared (refer

to Chapter 2, section 2.4.1, for a sample ~edusa session):

Name of search: M\'IA2 "Adrenal medulla"

Formulation:

entered by user: ADRENAL MEDULLA (m1)

SECRETION (m2)

INNERVATION (q2)

STORAGE (not in dictionary)

CATECHOLAMINES (m3)

thesaurus search from m3,

user chose: DOPA (m4)

DOPAMINE (m5)

EPINEPHRINE (m6)

212

NOREPINEPHRINE (m10)

entered by user: I .. ORPHIHA;~S (m12)

thesaurus search from m12,

user chose: CODEINE (m13)

DIACETYLIj~ORPHIUE (m14)

MORPHINE (m17)

entered by user: NICOTINE (m21)

ATROPINE (m22)

search prescription:

r6 = m1 and (m4 ££ m5 ~ m6 or m10 £E m13 or m14

or m17 or m21 £E m22)

expected return - small

Retrieved references (titles only): Relevance

1. Catecholamine storage in liver metastases of
a malignant carotid body tumour. A bio- B
chemical and morphological study.

2. Isolated chromaffin granules maintenance of B
ATP content during incubation at 31 degrees C.

3. Urinary epinephrine and norepinephrine responses
to chair restraint in the monkey.

4. Tetrahydroisoquinoline alkaloids: uptake,
storage, and secretion by the adrenal medulla
and by adrenergic nerves.

5. Catecholamine response of chickens to exogenous
insulin and tolbutamide.

6. Uptake of calcium in chromaffin granules of
bovine adrenal medulla stimulated in vitro.

7. An analysis of pulse frequency as an adrenergic
excitant in pulsatile circulatory support.

Terms in test file, with postings:

ADRENAL MEDULLA 7
CATECROLAMINES 5
DOPA 1
DOPAMINE 3
EPINEPHRINE 8
NOREPINEPHRINE 11
DIACETYThl0RPHINE 1
MORPHINE 2
ATROPINE 1

213

*

B

B

*

*

The search specification, r6, was arrived at i~ several

stages, interleaved with thesaurus searching and the entry

of new terms.

Now we are ready to conduct a search with program

Thomas. In the absence of the user, we must have a set of

rules to follow during the course of the dialogue:

Rule 1. Start the dialogue by typing the first term

entered by the user. If it is not found, try the

next, and so on.

Rule 2. In response to references displayed, ar.s":er YES

for those marked A or B by the user, NO otherwise.

Follow this general relevance judgement by a

detailed one, if appropriate: terr.,s listed with

the reference which were entered or chosen by the

user (and are therefore in the I·;edusa session

summary), should be "recognized" the first tiTTle

they occur.

Rule 3. stopping rule: stop when all A and B references

in the corresponding Medusa search have ,been

displayed.

We shall refer to these rules as the standard rules. As

an example we give a dialogue with Thomas, corresponding

to the Medusa session summarized above.

'ADRENAL MEDULLA'

Ref. no.
in summary

Isolated chromaffin granules maintenance of ATP 2
content during incubation at 31 degrees C.;
Paumgartner et aI, Eur J Pharmacol,22,102-4,Apr 73.
1. H.Baumgartner, 2. H.Winkler, 3. H.Hortnagl,
4. adenosine triphosphate, 5. adrenal glands,
6. adrenal medulla, 7. animal experiments, 8. carbon
isotopes, 9. catecholamines, 10. cattle,
11. chromaffin system, 12. in vitro, 13. magnesium,
14. norepinephrine, 15. nucleotides, 16. time
factors, 17. tritium

214

YES, 9, 14 (Remark: the te~ms

CATECHOLld,;I:;'::S and

HOREPIH~.?ERIlE have

been "recognized ll

according to rule 2)

Catecholamine storage in liver metastases of a 1
malignant carotid body tumour. A biochemical and
morphological study.; Hortnagl et aI, Virchows
Arch <Zellpathol),12,330-7,30 Mar-737
1. H.Hortnagl, 2. H.Hortnagl, 3. A.Propst, 4. H.
Schwingshackl, 5. G.Weiser, 6. H.Winkler,
7. adrenal medulla, 8. carotid body tumor,
9. catecholamines, 10. chromogranins,
11. complement fixation tests, 12. cytoplasmic
granules, 13. dopamine beta hydroxylase,
14. female, 15. human, 16. liver neoplasns,
17. membranes, 18. microscopy, 19. microscopy,
electron, 20. middle age, 21. neoplasm metastasis,
22. norepinephrine

YES

Tetrahydroisoquinoline alkaloids: uptake, storage, 4
and secretion by the adrenal medulla and by
adrenergic nerves.; Cohen, Ann NY Acad SCi,215,
116-9,3U Apr 73.
1. G.Cohen, 2. adrenal medulla, 3. adrenergic false
transmission, 4. alkaloids, 5. animal experiments,
6. dopamine, 7. epinephrine, 8. isoquinolines,
9. neural transmission, 10. norepinephrine,
11. rats, 12. sympathetic nervous system

YES, 6,-7

An analysis of pulse frequency as an adrenergic 7
excitant in pulsatile circulatory support.;
Harrison et al,Surgery,73,868-74,Jun 73.
1. T.S.Harrison, 2. J.F.Seaton, 3. adrenal medulla,
4. animal experiments, 5. assisted circulation,
6. blood pressure, 7. cardiac output, 8. carotid
sinus, 9. dogs, 10. epinephrine, 11. hydrogen-ion
concentration, 12. norepinephrine, 13. pulse,
14. vascular resistance

NO

215

(Viral hepatitis and the corresponding antigen); X
Hous ton, Med Lab tStuttg), 26,101-4, t:ay 73.
1~ R.~.Houston, 2. Australia antigen, 3. complement
flxatlon tests, 4. hemagglutination inhibition
tests, 5. hepatitis, homologous serum, 6, human,
7. methods

NO

Uptake of calcium in chromaffin granules of bovine 6
adrenal medulla stimulated in vitro.; Serck-Hanssen
et aI, Biochim Biophys Acta,307,404-14,11 May 73.
17 U7Serck-Hanssen, 2. E.N.Christiansen,
3. acetylcholine, 4. adrenal medulla, 5. animal
experiments, 6. biological transport, 7. calcium,
8. cattle, 9. chromaffin system, 10. cytoplasmic
granules, 11. EDTA, 12. epinephrine,
13. fluorescence spectrometry, 14. microsomes,
15. norepinephrine, 16. perfusion, 17. proteins,
18. spectrophotometry, atomic

NO

Catecholamine response of chickens to exogenous 5
insulin and tolbutamide.; Pittman et aI, Comp
Biochem Physiol <A),45,141-7,1 May-r3-.-
1. R.P.Pittman, 2. R.L.Hazelwood, 3. adrenal
medulla, 4. animal experiments, 5. blood sugar,
6. cattle, 7. chickens, 8. epinephrine, 9. female,
10. fluorescence spectrometry, 11. hypoglycemia,
12. insulin, 13. norepinephrine, 14. tiffie factors,
15. tolbutamide

YES (Remark: we have seen all the

"relevant" references

now)

•

•

For the purposes of analysis, the search stops with the

appearance of reference 5 - "Catecholamine response "
We shall assume that there are no relevant references in

that part of the test file which the user did not see in

the Medusa session.

216

The search can be summarized, for stati3tical

purposes, by the sequence:

R R R - - - R

meaning that we were shown 3 relevant (R) references,

followed by 3 non-relevant ones (-) and finally the fourth

relevant reference. We have assumed that the recall ratio

at the end of the sequence is 1. If we plot precision

against recall at each recall level in the sequence, we get

a graph like this:

1

Precision

·5

o
o ·5 1

Recall

The final precision is 4/7, which happens, in this case,

to be the same as that obtained by ~edusa. Having fixed

certain of the system parameters and the dialocue rules,

32 searches could be run and sequences of R's and _IS

found for each one. Graphs corresponding to the sequences

exhibit a wide variation and, although we have summarized

them below, little weight can be attached to the average

performance graphs. Figure 16 contains a few individual

performance graphs to show the extent of the variation.

The technique we use for producing the average

performance curve from a set such as that in figure 16 is

217

1

Precision

o
o -5 1

Recall

Figure 16. Some individual search perforhlances.

one of the possibilities discussed by Keen(1971) in

connection with the S~UiliT system. Firstly, because the

curves do not all extend the same distance along the recall

axis, we must extrapolate them to the left. We have to

decide what the value of precision is before the first

reference in a dialogue is displayed. Keen discusses five

possibilities and points out that for comparative eval­

uations, it does not ffiuch watter which we choose. We

follow the usual practice of assuming that precision is 1

when the recall level is O. Figure 17 shows a curve so

extended on the left. The next step is to standardize the

curve. This is necessary because the number of points on

218

1

Precision

·5

o

Figure 17.

o ·5 1

Recall

Performance curve extrapolated to the left
and standardized.

the curve varies (according to how ffiany relevant documents

there are for the query). We choose an increment of recall

(say 0·1) and interpolate in all the straight line segffie~ts

of the curve at the recall values so determined. The

points on the standardized curve are shown by crosses in

figure 17. Now the curves for a set of searches can be

averaged. The result will look like figure 18.

There are two interesting features in these curves.

The final precision, n in figure 18, is the average of the

final precision ratios of the separate searches and is

related, inversely, to the search length in retrieval

219

Precision

·5
-------------~--n

o
o ·5

Recall

Figure 18. Average performance curve.

dialogues. An average final precision of 1 would mean

that all the relevant documents come out before any non­

-relevant ones appear, for every search; i.e. the search

length is always minimum. The slope_of the left-most

segment of the curve indicates how soon the first relevant

document appears. The smaller ~ is, in figure 18, the

longer the system takes to retrieve the first relevant

reference. If ~ = 900
, the first reference displayed

would always be relevant.

The average performance curve obtained from the 32

dialogues corresponding to fruitful Medusa searches, and

220

conducted according to the standard rules given above in

this section, is shown in figure 19.

Figure 19.

1

Precision

·5

o

Average performance - basic trials,
standard rules.

32 searches

'f(. = -578

o ·5

Recall

Recall Precision

0 1
·1 ·922
-2 ·845
-3 -780
·4 ·740
-5 ·703
·6 ·687
·7 ·674
·8 ·652
·9 ·615

1.0 ·578

221

-1C

1

4. Comparison with Uedusa

We cannot produce a cOlT!patible average perfor;r;ance

curve for the l.:edusa searches, because that syste~J does

not impose an ordering on the retrieved references, so t~at

there are no sensible cutoff points. There are, however,

other ways of expressing the performance of the program,

which offer crude methods of comparison with Medusa, and

are more appropriate to the intentions in the design.

It is claimed of our program that a user can obtain

satisfactory performance at low cost in terms of his

initiative and effort. The rules of the trials are intend­

ed to be usable by an experimenter who is ignorant of

medical and biochemical vocabulary. Very little initiative

is needed. We should like to compare the efforts expended

by the users, and simulated users, in the two sets of

dialogues, and-also the effectiveness with which the two

systems select relevant references. Unfortunately, neither

comparison is entirely straightforward.

The nature of a user's effort varies from one part o~

a dialogue to another. Sometimes he ffiUSt make selectioTIP,

sometimes think of words, on other occasions assess

relevance; and, of course, there is the physical effort of

typing commands or responses. A simple approach has been

taken here to obtain a comparison: we just count "tokens"

typed in each dialogue. Medusa tokens are:

(i) command names, e.g. COMBINE, UP, SEARCH,

(ii) subject terms: multi-word phrase.s count as one token,

(iii) system-assigned codes, e.g. M9, R6, Q13; count one

each time the user types one,

liv) logical connectives: AND, OR, NOT, LI1~; each count

222

as one token.

Thomas tokens are:

(i) subject terms,

(ii) special words: YES, NO, NOT,

(iii) numbers, repeated by the user from displays,

(iv) null messages, e.g. no comment about a displayed

reference.

Effort estimates, expressed as counts of tokens, are listed

in Table 5 for the 32 Medusa searches which we are using

(eM) and for the corresponding dialogues with ~homas, using

the standard rules leT)'

The other comparison we must consider is retrieval

effectiveness. Unlike interaction with Medusa and most

other reference retrieval systems, a dialogue with Thomas

has no query formulation phase. The user should approach

the relevant references by viewing, and judging, a sequence

of references in the neighbourhood of the nodes in which he

has expressed interest. We should not expect the first

reference displayed to be relevant; in the early stages,

the program will normally have little information to act

upon. The characteristics of interest are:

(i) how quickly the ·program displays the first relevant

reference, and

(ii) to what extent its output remains pertinent up to the

point when all the relevant references have been

displayed.

The first can be measured by counting the number of

non-relevant references displayed before the first relevant

one. The second by the proportion of relevant documents

among those that follow, up to the last relevant one, i.e.

223

the precision at recall level 1, ignoring leading non­

-relevant references. In table 5, we list this precision

value (n'), the overall precision as defined in the previous

section (n), and the number of leading nou-relevant refer­

ences (X) for each of the 32 Thomas dialogues. If, for

example, a dialogue is summarized by the sequence:

--R-RR-R

the values which go into the table are:

A = 2,

1'(= 4/8 = • 5

n'= 4/6 = ·67

For comparison, the table also includes the Medusa precision

figures (~). The comparison can be made between 7t and 1'C.M,

in which case one makes no allowance for query formulation

(or the establishment of the context) in Thomas, or, regard­

ing the leading non-relevant references as equivalent to

Medusa query formulation, one compares 1\..' and 1\.1. An

appropriate, powerful statistical test for the overall

relationship between the columns, as suggested by the

averages, is the Wilcoxon matched-pairs signed-ranks test

(Siegel,1956). This is a non-parametric test (no assump­

tions about the distribution of the data need be made)

which takes acco'unt of the pairwise difference between two

samples. Application o£ the test tells us that the differ­

ence between ~ and ~M is not statistically significant,

and that 1(1 > '1tM is acceptable at the ·01 level of

significance. We can be confident that eM> e T (in fact,

every number in the eM column exceeds the corresponding

one in the eT column).

We conclude that, £or the test collection and under

224

Thomas dialogues, :,:ed-lsa
standard rules searches

Search effort effort
no. A 7t 1\,' eT c • nM .t.":'

1 1 -4 -5 6 18 -4
2 0 ·2 -2 14 25 1
3 1 -6 ·75 8 16 -6
4 0 1 1 5 13 -5

5 3 ·57 1 9 13 ·5
6 0 ·5 -5 4 28 1
7 0 1 1 11 31 -875
8 0 1 1 4 25 1

9 1 ·5 1 2 1 1 -5
10 1 ·33 -5 13 43 -25
11 2 -6 1 16 73 ·375
12 2 ·5 1 9 48 ·4

13 0 -8 -8 9 46 ·8
14 0 -625 ·625 16 68 1
15 0 -8 • 8. 8 28 ·8
16 0 ·71 -71 7 19 ·833

17 1 -33 -375 14 29 • 2

18 0 1 1 5 46 1

19 0 ·83 -83 9 20 -357
20 0 1 1 1 13 1

21 2 ·33 1 4 33 ·33
22 0 ·27 ·27 20 33 • 375

23 5 ·29 1 1 1 48 ·18
.

24 3 -29 ·5 12 52 ·22

25 6 ·14 1 15 40 ·33

26 0 ·36 ·36 19 56 ·57

27 0 1 1 6 19 1

28 1 ·5 ·67 8 25 ·5

29 1 ·6 ·75 6 19 ·75

30 3 ·6 ·86 15 47 ·5

31 0 ·67 ·67 5 24 ·5

32 7 ·13 1 14 55 1

Averages: 1·25 ·58 ·77 9·5 33-25 - 61

mphl~ ~- Thnma~ - Mpdusa comparison. (See text)
225

I ,

j

standard dialogue rules, program Thomas is aj()"L(t as effect­

ive in retrieval as Medusa, but at lower demand on user

effort and wi thou t requiring the user to for;:ula te a query.

If one wishes to regard the first few interactions (on

average 1·25) as equivalent to query forfuulation, then

Thomas is more effective than Medusa - precision is about

25% better in Thomas. As with most small scale experiments,

we cannot infer that the performance will be equally

satisfactory when Thomas (or a program like it) is operat­

ing on a realistic collection of references. Clearly, an

important factor in a large file is the generally much

higher level of term postings. If a user starts his search

with a very highly posted term, of order 1000 postings, for

eX~fiple, the initial sequence of non-relevant references

could be rather long. It is difficult to issue guidance to

the user, such as "try to avoid broad terms", because his

impression of term specificity will not always be in

accord with statistical specificity, which is what matters.

In our file; for instance, the term CATECHOLA1I:I.NES is

adjacent to 5 reference nodes; it is more s~ecific,

statistically, than either NOREPINEPHRINE (11 references)

or EPINEPHRINE (8 references), both of which are narrower

terms - i.e. lower in the thesaurus hierarchy (MeSH) and

likely to be thought of by the user as specific. It will

be recalled that the program monitors its performance

{Chapter 4, section 3.2.1) and, if it appears to be doing

badly, will return to a reference that the user has

approved of, or show him subjects related to one that he

has selected (Chapter 4, section 3.3.3). It is at this

point that suggestions could be made to him, based upon

226

term postings. Some tests have been done to ca~ge the

variations in performance due to initiating a dialogue

with terms of different specificity, and these are

described in the next section. The samples are small, and

once again no guarantee can be given that the results would

be reflected in large scale searches.

5. Further experiments

Three sets of trials have been made to determine the

program's performance under conditions of minimum effort

by the user, and also to show the effect of the specificity

of the starting point in the dialogue upon the search

length. The dialogue rules are as follows:

Rule 1. start the dialogue by typing one term: the rule

for choosing this term is discussed below.

Rule 2. In response to references displayed, answer YES

for those marked A or B by the user, NO other­

wise. Note that we do not "recognize ll any

displayed terms.

Rule 3. Abort search if the program requests the user to

supply another term. The program does this if

there are no documents in its model that the

user has not already seen, i.e. it is stuck.

Rule 4. Normal stopping rule: stop when all A and B

references in the corresponding Medusa search

have been displayed.

Now we define a family of three sets of dialogue

rules by varying the criterion for selecting the starting

term (Rule 1). The selection must always be made from

those terms typed in, or selected by the Medusa searcher.

227

Using the same example as we used in section 3, i.e. the

search entitled MWA2 "Adrenal medulla", the candidate

terms are:

term postings in
test collection

ADREUAL MEDULLA 7
CATECHOLAMINES 5
DOPA 1
DOPAMINE 3
EPINEPHRINE 8
NOREPINEPHRINE 11
DIACETYLMORPHINE 1
MORPHINE 2
ATROPINE 1

The dialogue trials:

(i) High posting rules. start with the term with highest

posting - NOREPINEPHRIUE in the example. The term

must be associated with at least 9 references in the

entire collection, and it must not be a check tag

(see section Z).

(ii) Medium posting rules. Use a term with a posting

number in the range 2 to 10, wnich is closest to the

average for terms in the list for the search under

consideration. In the example it would be

CATECHOLAMINES.

(iii) Low posting rules. Use the term with lowest posting

(must be 1 or 2). -In the example we would use

ATROPINE (in preference to DOPA and DIACETYLMORPHINE,

because the original user typed it, rather than chose

it from a thesaurus display).

The values obtained for the number of leading non-relevant

references, the overall precision, and the precision from

the first relevant reference are recorded in table 6.

Those resulting from the standard rules are repeated

228

('A.., 1(. , 1'('), and the values obtained using the high posting

rules (A..h' 1\.h' 1(~), medium posting rules ().. , 7{ ,1t') and
m m m

low posting rules (AI' ~l' ~~) are included. It is not

always possible to apply all three variants of the rules

to a search, so the number of observations in the experiment

is red~ced. In addition, some searches had to be aborted

(Rule 3):

High posting rules 2 aborted,

Medium posting rules 4 aborted,

Low posting rules - 11 aborted.

This was mainly due to the absence of relevant documents

described by the chosen terms, and the high figure (11) for

the low posting rules serves to emphasize the disparity

between statistically specific words (i.e. ones that are

used little) and conceptually specific words.

Because the performance of a retrieval system depends

very much upon the query, statistical tests to estimate the

significance of the differences between average performance

figures must be based on the differences between matched

pairs of measures. For this reason, we cannot obtain

samples from table 6 which are large enough to give

statistically significant results. This being said,

however, the table does tend to confirm our expectations

of the program's behaviour. The search length increases

with the number of postings of the term that the user

starts with. Not only is the length of search before

reaching a relevant reference larger for highly posted

terms, but the continuing search appears to be longer

(indicated by the lower preCision, T(.~). The program's

model of the user's interest starts by being large, and

229

Standard High posting Medium posting I Low posting!
rules rules rules rules i Search

A 1('\h 1(h
I

\m 11t~ Al 7({l no. i(. 7th 1lm 1\.1

1 1 .4 .5 - - - 1 .4 .5 - - -
2 0 .2 .2 2 .29 .4 8 .15 .4 0 .4 .4
3 1 .6 .75 1 .6 .75 0 .5 .5 - - -
4 0 1 1 0 .67 .67 0 .4 .4 0 .5 .5

5 3 .57 1 3 .4- .57 - - - - - -
6 0 .5 .5 3 .29 .5 - - - 0 .5 .5
7 0 1 1 0 1 1 - - - o 1 1
8 0 1 1 - - I- 0 1 1 - - -
9 1 .5 1 8 .11 1 1 .5 1 - - -

10 1 .33 .5 1 .2 .21 3 - - - - -
11 2 .6 1 1 .25 .28 0 .75 .75 o 1 1
12 2 .5 1 - - - 0 1 1 - - -
13 0 .8 .8 - - - 0 .8 .8 - - -
14 0 .625 .625 - - - 0 .625 .625 - - -
15 0 .8 .8 - - - 0 .8 .8 o 1 1
16 0 .71 .71 - - - 0 .71 .71 - - -
17 1 .33 .375 0 .21 .21 - - - - - -
18 0 1 1 - - - 0 .6 .6 0 .6 .6
19 , 0 .83 .83 1 .45 .5 0 .32 .32 - - -
20 0 1 1 - - - - - - o 1 1

-

21 2 .33 1 2 - - - - - - - -
22 0 .27 .27 0 .27 .27 - - - - - -
23 5 .29 1 4 .33 1 - - - - - - I
24 3 .29 .5 - - - 3 .33 .67 - - -

J

25 6 .14 1 3 .25 1 - - - - - -
26 0 .36 .36 0 .36 .36 3 .4 .57 - - -
27 0 1 1 - - - 0 1 1 o 1 h
28 1 .5 .67 - - - 3 .33 .67 - - -

29 1 .6 .75 - - - 1 .6 .75 - - -
30 3 .6 .86 - - - 4 .55 .86 0 .75 .75
31 0 .67 .67 - - - 0 .4 .4 0 .5 .5
32 7 .13 1 - - - 2 .33 1 - - -

Averages 1.25 .58 .77 1.81 .38 .58 11.26 .57 .70 0 .75 .75
I

No. in 32 16 15 23 22 11
sample

Table 6. Specificity tests data. (See text).

230

must be reduced: the refinement continues after the first

relevant reference is displayed. We can also see from the

table that the system's performance is acceptable, even

when the user makes very little effort indeed. Altogether,

63% of the searches conducted under these rules succeeded

in achieving 100% recall (i.e. were not aborted).

Clearly, with a collection of realistic size, a user

who contributes little initiative is likely to encounter

long searches because the terms (in a controlled vocabulary

such as we have used) will frequently be highly ?osted in

comparison to the norm in this test collection. If,

however, the user is able to give more direction to the

search by making more detailed responses to the program's

displays, the search length will then depend upon the

distance in the network from his starting point to a

relevant document node. The test collection generates a

network which is not only connected, but highly convoluted,

i.e. no node is very far from every other node (section 2).

To prove the same for a large collection is a formidable

task; but it seems very likely to be true. The subject

terms (MeSH) are arranged in several trees, known as

categories. The maximum depth of the trees is four nodes,

so the path from one leaf node to another in the same

category is at most 6 lines long. There are three means

of moving from one category to another, in very few steps:

(i) many terms belong to more than one category (no steps),

lii) there are a large number of cross references between

terms in different categories (1 step), (iii) most

documents are associated with terms from different

categories (2 steps). It would be very surprising if any

231

category of terms were completely cut off from the rest.

Finally, if there is a path between every pair of subject

nodes, then there is a path between any two document nodes.

232

Chapter 8

CO:TCLUiHr~G RL1.~RK.S

There are several topics to which further work could

be devoted: improvements to the information heuristics and

data recognition algorithms, studies of file handling for

large, rich networks of records, indexing languages with

more complicated features (involving syntax) and their use

within an on-line program of the Thomas sort, investigation

of problems arising out of file size. ~e feel that the

last of these is sufficiently important to warrant a

discussion before we conclude. Finally, we reiterate the

main theme of this work.

1. The problem of scale

It is important, in the reference retrieval field,

that the experimenter who chooses, or is constrained, to

use a small collection of documents should bear in mind the

applicability of his deSigns to realistic, large scale

collections. Can we predict the performance of Thomas, :r

a "production model" based on Thomas, operating on a data

base concerning a useful field-specific collection of,

100,000 documents? The problem is not simply one of

implementation; we should like to know whether the heurist-

ics used by Thomas will still be able to help the proble~­

-solving, browsing user. In fact, we believe that the two

aspects of the difficulty are closely related. Both the

man and the machine will run into trouble if associations

become too numerous in the network.

We shall assume that the supergraph (see Chapter 4)

233

will consist of data similar to that used in the ~xperi=~~t

discussed in Chapter 7. The document nodes are associated

with author nodes and with subject nodes cor~esponding to

the terms assigned to them from a controlled vocah~lary ty

the indexers. Links between subject nodes are derived from

the indexing language thesaurus. Under these circumstances,

the major cause of difficulty will be the highly posted

terms, which will generate very large stars in the super­

graph centred on certain subject nodes and containing

several thousands of document nodes. If such clasters are

brought into the context graph, the programls model would

become unusable. Not only would each choice of a reference

for display be a major task for the central processor, but

the likelihood of the choice being a successful one would

be greatly reduced.

'He must concentrate on the size of the J: odel of the

userls interest. In a full-scale operational system, there

must be features which restrict its size: we cannot allow

the model to grow in proportion to the size of the super­

graph. Let us examine the components of the model, as

listed in section 2 of Chapter 4, and see how points are

added to these during a dialogue. We start with the

straightforward sets of points:

(i) "explicit requests", "good documents", "accepted

documents" and "reviewed nodes" (see Chapter 4 for their

definitions) are all limited in size by the length of the

dialogue.

(ii) "last selected ll : the points selected by the user from

the last display - clearly a small set.

234

(iii) "inhibit list": the points rejected by the user,

throughout the dialogue. This set grows as tt.e dialog'J.e

progresses, but every point in it must have teen involved

in at least one display so, once again, ~he lengt~ of tte

dialogue is the limiting factor.

(iv) "context graph". Points are added by procedures

ADD TO CONTEXT (Chapter 4, section 3.2.3) and FIND_.NODES

(Chapter 4, section 3.2.4). These include a few specified,

individually, by the user, but the main bulk of points will

normally be supplied by the function procedures LINKED

1)OCUl';::ENTS (called by ADD_TO_COUTEXT) and STA...qS (called by

FIND_NODES). Both of these functions retrieve the sets of

points adjacent to those in their arguments. (The proc­

edure UNIFY CONTEXT GRAPH - Chapter 4, section 3.2.5 - also

causes these functions to be invoked on occasion).

Now, the basis of a constraining feature is already

present in the program the treatment given to the built­

-in set of check tags. These have cropped up several ti~es

in the thesis, and ~ere first mentioned in Chapter 3,

section 3.1.1. They are highly posted subject terms wh':'.::i-I

were given special status in Thomas because it was found,

in the course of development, that performance was seriouz­

ly impaired unless their use was restricted. The forc t~2t

the restriction took was simply to prevent, at all ti~es,

LINKED DOCUMENTS and STARS from fetching the neighbours of

any check tag nodes from the supergraph. The effect of

doing this is that no document node can be considered for

display solely on the basis of the presence of a check tag,

even if the user explicitly shows interest in that terQ.

If, however, a document is already in the context graph,

235

any user-selected check tags with which il is associated

will count in its favour when the program makes a choice

for display.

Check tags are defined, ~ priori, for the ~edlars

indexers, and are consequently among the more highly

posted terms. There are other terms which are used very

frequently; and if the system were applied to another file

of indexed references, there may very well be no equivalent

to the "check tag" list in Medlars. We need mo~e flexibil­

ity than is provided by a prescribed set of check tags.

Many measurements have been taken in the past few years on

the use of indexing terms, and there is remarkable consist­

ency among the various indexes: terms are posted according

to a hyperbolic distribution, i.e. a few terms are used

very frequently, and the frequency figure falls rapidly so

that many terms are used only rarely (Fairthorne,1969).

Houston & Wall(1964) studied term frequencies found in te~

indexes and fit the observations to a family of log-nor,;:("'

distributions (the points fit hyperbolic distributions

just as well). Figure 20 shows the cumulative distrit t:on

of postings_given by Houston and Wall for a collection 0:

195,000 references. We propose that, for Thomas'

successor, terms be added to the check tag set when their

frequency of use reaches some chosen level, say 400

postings. Using figure 20 as an example, approximately

15% of terms would then be restricted and about 65% of all

terffis would have fewer than 100 postings.

On the question of implementation, we note that the

restricted subject nodes are distinguished from the others

by the fact that the program never wants to know their

236

""'
~
n
ro
0
w
~
0
n
'-'

E
~
~
~ I

" W
~
~
.~

~
w
0
~

x

1000

400

100

10

1
o

Figure 20.

~

50 30

cumulative distribution:

% of terms having x or fewer

postings (linear scale)

Cumulative distribution of term

postings to 195,000 documents.

(Houston & Wall,1964). The

slope and intersect at x = 1

vary from one index to another.

237

100

immediate neighbours in the supergraph. lYe ca:t, :!'.er~!ore,

simultaneously do away with explicit mention 0: chec~ tags

in the program, and all the long lists of file a~~resses

which represent the links from restricted subjects to

documents. The supergraph is now a directed graph in

which if there is a line from point x to point y, then

there is also a line from y to x, unless x is a document

point and y a restricted subject point. When the record of

a restricted subject is retrieved, no links to documents

will be available, although links to other subj~cts may be.

Removing unwanted pointers, and marking the recor~ as

belonging to the restricted class (so that links are not

added to it in future) can be easily carried out by the

network updating procedure as soon as the number of postings

exceeds the limit.

In the present project, we have developei a progra~

to implement a particular type of mechanical assistant for

the browser. It is far from being a complete reference

retrieval system: there are no convenient aids for the

(librarian) manager of the system, for example. Problems

of size should be considered in the context of a co~plete

system. Decisions on such matters as the indexing proced:-­

and the collection weeding methods should be tackled in tte

light of file size. Hence the comments above should be

regarded merely as guide lines, and an argument in favour

of the feasibility of our technique for retrieval applied

to real-life document collections.

Before we leave the subject of size, we should

emphasize that, although the proposal to severely restrict

the role of highly posted terms would seem to lead to

238

practicable information handling, we have no reliable

evidence that it will not impair the retrieval capahili:y

of the program, when applied on a large scale. In Thonas,

28 (2·06%) of the 1357 ~eSH terms were desi~nated check

tags; we were forced to distinguish then in order to

obtain the sort of dialogues we had in mind. On the other

hand, with a large network, we may wish to restrict as many

as 1500 (15%) of the 10,000 terms in ~eSH to eliminate the

large stars. Can we be sure that the information lost is

not significant for our purposes?

There is some evidence that medium and low posted

terms are more useful for retrieval than high po~ted ones;

in small experimental collections, at least. Sparck Jones

(1972b; 1973c) has discussed, and established the utility

of, term weighting based on the frequency of occurrence of

the term in the document c~llection. The weicht of a term,

and therefore its influence in linear associative retrieval,

varies inversely as the number of times the term is poste~.

There are other ways of weighting index terms lsee Sparc~

Jones,1973c), but the use of collection frequency weightin~
I

gives the most notable improvements in perforDance over

unweighted index terms, in small-scale experiments. In

other words, if we reduce the influence of hig~ly postec

terms in relation to that of less frequently ~sec terms,

the retrieval mechanism becomes more effective. The

experiments of Salton & Yang(1973) and Svenonius(1972)

appe~r to confirm this, and it is assumed to be true on a

large scale by Williams(1969), who has incorporated

collection frequency term weights, called "information

values", in the BROWSER system.

239

2. A summing-up

The problem of reference retrieval can be 32id to be

one of communication: the transference to and interpretation

by an information system, of incompletely l'orlf.ed ideas.

The source of the ideas is the searcher, and we take the

view that searching is part of his problem-solving activit­

ies. He must at times use the information system in the

process of completing his ideas. The program design

described and discussed in the foregoing chapters acknow­

ledges the fact that under these circumstances a user

cannot easily specify his requirement, even in his own

language. If we permit the enquiry to be made in natural

language, we are faced with an interpretation problem

which, as yet, has no satisfactory solution, save within

a very tiny universe of discourse. If we simply extract

keywords from the user's question, or ask him to put the

question in a simple, rigid form using keywords, then we

must have ways of locating instances of the saflie or closely

related concepts, expressed by means of different words.

We have here the ideal application area for inter­

active computing. A search cannot usually be entirely

delegated to a machine: it is really a problem to be solv~~

by the man who, because the task contains so much tedium,

can be aided by a computer. The retrieval system should

be a synthesis of man and machine. On-line information

retrieval systems are now plentiful, and the main reason

for their success is the possibilities they offer for

interleaving human decisions and mechanical processes.

In spite of all the effort that has been expended on

these systems, however, we thought that for many searches

240

query formulation is still difficu:t ani ~~relia~le, ~nd

decided to try to do without it. mhe ~, ~ pro~~a~ ~nomas

allows a user to browse among the references tin preference

to the term thesaurus) in its data case and, because the

normal mode of operation is to show the user references,

one after another, there is no need for a "CO;:l;:iand languabe ",

as found in most on-line systems. The user ~ust, of course,

specify at least one topic of interest; but during most of

his dialogue with the machine he will be deciding upon the

pertinence of what he is shown by the program. The

computer1s actions will be determined by the decisions

which he makes known to it. Thus, the man is ~rought into

the system, doing the task for which he is particularly

suited.

In pro~ram Thomas, the dialogue structure is new.

The conceptual basis for it is the model, or ~epresentation,

that a person develops during conversation of another1s

view of the world. He does this so that he may understand

the ideas being conveyed: the meanings of words depend V(-ry

much upon the context in which they occur, and the know­

ledge against which they are set by both the speaE.er and

the listener. Our program uses the enquirer's D2ssages to

build up a picture of the bibliographic context of his

problem. The program's displays should help the user to

appreciate how the words have been used to describe the

documents, so that the man also constructs a picture of the

other1s - the program's - "viewpOint".

Thomas' knowledge consists of the names of a set of

bibliographic items and a large number of associations

between them. The model of the user's topic that it builds

241

is in terms of that; it is a small Dar~ o¥ tha~ -~~.. , f - ~ - - ,-'-' .. ",orA: 0

data - a cluster of inter-related ite~s of biblioJraphic

interest: references, subjects and authors' names. The

cluster changes as the dialogue with the ~S0r prosressea,

and it is not one of a number of clusters determined

statistically from the characteristics of the collection

as a whole and independent of any queries. The clusters

formed by Thomas to model the searcher's area of interest

are dynamic and user-induced as opposed to collection­

-induced.

Measuring the performance of a system with the

objectives that we have set ourselves is not at all

straightforward. Firstly, whatever measurements we take

on a small test data base may work out rather differently

on a large file. Secondly, it is not clear how we should

measure the success of a browse. Thirdly, we should

observe many users with real information needs. In this

project, we have had to restrict ourselves to making sure

that the program finds the relevant references in its data

base, quickly and without a great deal of effort expenj~~

by the user. As a result of the tests carried out, we can

say that, on a small collection, Thocas r~trisved relevant

references about as effectively as the Kedusa syste~

(which was the source of Thomas I data base), but the de~aand

on user effort by Thomas is much less than that demanded by

Medusa. Thomas achieved this performance without giving

the user the ability to formulate a query. If we equate

the query formulation phase of a Medusa session with the

first few interactions with Thomas, establishing the model,

the tests show that Thomas' performance is substantially

242

better than Medusa's.

The most important follow-up to thif ~ork would be

the creation of a much larger network, with a suitably

modified program. Experiments should be '~ne with ~any

different users, having genuine information needs. It ie

important that the data available to the program should be

sufficient to satisfy many of the users' requirements. An

enlarged system could be the vehicle for experiments on

size, the efficient organization of large graph structures

on disk storage, and measurements of the perfo~~ance of

man and computer together, looking for relevant references.

243

BIBLIOGRAPHY

The names of some of the journals fr~1uently referred
,

to are abbreviated in the following pages. They are:

Am.Doc

CACM

ISR

JACM

JASIS

J.Doc

JOLA

American Documentation

Communications of the Association for
Computing Machinery

Information Storage and Retrieval

Journal of the Association for Computing
Machinery

Journal of the American Society for
Information Science

Journal of Documentation

Journal of Library Automation

* * *

Alberga C.N.(1967). "String similarity and misspellings"
CACM,lQ, pp302-13.

Augustson J.G. &: J.Minker(1970). "Deriving term relatior::::
for a corpus by graph' theoretical clusters" JASIS,2-:,
pp101-11.

Austin D.(1974). "The development of PRECIS: a theoretical
and technical history" J.Doc,30, pp47-102.

Ayres F.H., J.German,'N.Loukes & R.H.Searle(1968). "Author
versus Title: a comparative survey of the accuracy of
information which the user brings to the library
catalogue" J.Doc,24, pp266-72.

Bar-Hillel Y.(1964). Language and information: selected
essays on their theory and application. Addison­
Wesley: 1964.

Barraclough E.D., A.S.Barber &: W.A.Gray(1972). Medlars
on-line search formulation and indexing. University
of Newcastle upon Tyne, Computing Laboratory, Technical
Report Series, no.34: 1972.

244

Barbe~ A.S., '~.D.Barr~clough & ·,'l.A.Gray(1973). "On-li~.e
1nformat10n retr1eval as a scientis~'5 tJol" ISR,i,
pp429-40.

Barker F.R., D.C.Veal & B.K.'llyatt(1972). "'l'owards automatic
profile construction" J.Doc,28, pp44-55.

Batten ·.'I.E.(19~7). "A.punched card system of indexing to
meet spec1al requlreGents" Report o~ the 22nd Aslib
Conference, pp37-9.

Bays C.(1973). "The reallocation of hash-coded tables"
CACM,16, pp11-4.

Belkin N.J.(1974). "Towards a definition of information
for informatics" Paper presented at Informatics 2
Aslib Co-ordinate Indexing Group Annual Conference:
25-27 March 1974, Oxford.

Blair C .R. (1960). "A program for correcting s:'elling
errors" Information and Control,3, pp60-7.

Bobrow D.G., J .:a.Fraser & i.1.R.Quillian(1967a). "Automated
language processing" Annual Review of Information
Science and Technology,2, pp161-86.

Bobrow D.G. & D.L.~urphy(1967b). "Structure of a LISP
system using two-level storage" CACl.:,1Q, pp155-9.

Bobrow D.G. & B.Raphael(1974). "l~ew programming languages
for artificial intelligence research" Comnuting
Surveys,6, pp153-74.

Bookstein A.(1972). "Double hashing" JASIS,n, pp402-5.

Borko H. & M.Bernick(1963). "Automatic document classific­
ation" JACM,1Q, pp151-62.

Borko H. & M.Bernick(1964). "Automatic document classific­
ation. Part II. Additional experLuents" JAC1A,1l,
pp138-51.

Bourne G.P. & D.Ford(1961). "b. st·...;.dy cf r:1ethc;::is for
systematically abbreviating bnglish 'words and na;nes"
JACM,S, pp538-52.

British Standards Institution(1963). Guide to the Universal
Decimal Classification (unC) B.S.1000C: 1963.

Brookes B.C.(1974) "Robert Fairthorne and the scope of
Information Science" J.Doc,30, pp139-52.

Buchholz W.(1963). "File organization and addressing"
IBM Systems Journal, 2, pp86-111.

Burnaugh H.P.(1967). "The BOLD (Bibliographic On-Line
Display) System" Information retrieval: a critical
view G.Schechter (Ed.), Thompson: 1967, pp53-66.

245

Bush V. (1945).
pp101-8.

"As we may "think" A-c-_: '='~!7_; C ~.- -.... 1--
~-- v •••. J., :", ':: • __ 0,

Carville M., L.D. Hil?gins ~ F. J .Smi th (1971) • "In teracti ',;e

reIerence retrleval 1n large files" ISR,l, pp205-10.

Cleverdon c.w. (1972). "On the relations:'-" of .i.'c.':::211 and
precision" J.Doc,28, pp195-201.

Cleverdon C.W.(1974). "User evaluation of information
retrieval systems" J.Doc,30, pp170-80.

Cleverdon C.W., J.Mills & ~.Keen(1966). Factors determin­
i the erformance of indexin s sterr.s. Aslib
Cran ie Project, ran 1e: • 0.1: Design
(Parts 1 and 2). Vol.2: Test results. (Cleverdon &
Keen) •

Coates E.J.(1973). "Some properties of relationships in
the structure of indexing languages" J . ..:Ioc,29,
pp390-404.

Cooper W.S.(1973). "On selecting a measure of retrieval
effectiveness" JASIS,24, pp87-100; "Part II.
Implementation of the philosophy" JASIS,24, pp413-24.

Crouch D.B.(1973). "A process for reducing cluster
representation and retrieval costs" Proc. ACM annual
conference, 1973, pp224-7.

Cuadra C.A., R.V.Katter, E.H.Holmes & E.~.Wallace(1967).
Ex erirnental studies of relevance 'ud effients: final
report. June 1967. TM-3520 001 00, SDC, Santa hlonica,
Calif.

Dahl O.-J., E.W.Dijks'tra & C.A.R.Hoare(1972a). structured
programming. Academic Press: 1972.

Dahl O.-J. & C.A.R.Hoare(1972b). "Hierarc}nca: program
structures" in Dahl et al(1972a) q.v., pp175-220.

van Darn A. & D.E.Rice(1970). "Computers ani publishing:
writing, editing, and printing" =Cv~nces ~n C~~Duters,
1Q., pp145-74.

Dijkstra E.W.(1962). A ~rimer of Algol 60 programming.
Academic Press: 196 •

Dijkstra E.W.(1972). "l\otes on structured programming"
in Dahl et al(1972a) q.v., pp1-82.

Dodd G.G.(1969). "Elements of data management systems"
Computing Surveys,l, pp117-33.

Dolby J.L.(1970). "An algorithm for variable-length
proper-name compression" JOLA,l, pp257-75.

Dolby J.L.(1971). "Programming languages in mechanized
documentation" J.Doc,27, pp136-55.

246

Doyle L.B.(1961). "Se:nantic road ::.aps tor li-:.;e:,c.ture
searchers" JACiI,8, pp553-78.

Doyle L.B.(1965). "Expanding the editing .f"J.r:ct~on in
language data processing" CACM,8, pp238-45.

Earley J.(1971).
structures"

"Toward an understandiY.)f cata
~,li, pp617-27. ~

Elcock ~.'~., J.W.Foster, P.'LD.Gray, J.J.;,!cGregor &:
A.H1.!.;urray(1971). "Acset, a programming language
~ased ~n sets: mot~vation and examples" Machine
ln~elllgence, 6 B.I"iel tzer & D.i.:ichie (Eds.), Edin.
Unlv. Press: 1971, pp467-92.

Englebart D.C., R.W.Watson &: J.C.Norton(1973). "The
augmented knowledge workshop" Proc. National Computer
Conference, 1973, pp9-21.

Fairthorne R.A.(1956). "The patterns of retrieve::l" Am.
Doc,l, pp65-70. Reprinted in Fairthorne(1961), q.v.

Fairthorne R.A.(1958). "Delegation of classification"
Am.Doc,9, pp159-64. Reprinted in Fairthorne(1961),
q.v.

Fairthorne R.A.(1961). Towards information retrieval.
Butterworths: 1961.

Fairthorne R.A.(1964). "Basic parameters of retrieval
tests" American Documentation Institute, Parameters
of information science: Proc. 27th annual meeting.
Spartan ~ooks: 1964, pp343-5.

Fairthorne R.A.(1969). "Empirical hyperbolic 6istributions
(Bradford - Zipf - Uandelbrot) for biblio~etric
description and predi ction" J • Doc, 25, PPY 9-43.

Farber D.J., R.E.Griswold eX I.P.Pol2.nsky(1'J64). ··~IWBOl.,
a string manipulation language" JACr,2..l, pp21-30.

Farradane J.(1967). "Concept organization :or information
retrieval" ISR,l, pp297-312.

Farradane J. t J.IJ.Russell &: P.A.Yates-I,:erc-=-r(1973).
"Problems in information retrieval: logical jumps in
the expression of information" ISR,9, pp65-77.

Foskett A.C.(1971). The subject approach to information.
2nd Ed., Clive Bingley: 1971.

Foskett D.J.(1972). "A note on the concept of 'relevance'"
ISR,8, pp77-8.

Glantz R.S.(1970). "SHOEBOX - A personal file handling
system for textual data" Proc. AFIPS,37, pp535-45.

Goodliffe E.C. & S.J.Hayler(1974). "On-line information
retrieval: some comments on the use of Retrospec I in
an industrial library" Aslib Proceedings,26,pp177-88.

247

Gorman M. & J.E.Linford(1971). Descriu-:ion of t:.<:> ~:\=·/; .. A?,C
record - a manual of practice. J:-.d:j/;, "'_~',C D')cumentation
Service - publication no.5. Council of the British
National Eibliography: 1971.

Gotlieb C.C. & S.Kumar(1968). "Selr,antic clust-?ring of
index terms" JACiI:,15, pp493-513.

Gray W.A. & A.J.Harley(1971). "Computer assisted indexing"
ISR,l, pp167-74.

Halmos P.R.(1960). Naive set theory. Van Nostrand Reinhold
Company: 1960.

liarary F.(1969). Graph theory. Addison-Wesley: 1969.

Henderson P. & R.A.Snowdon(1972). "An experiment in
structured programming" BIT,l£, pp38-53.

Herner 8.(1970). "Browsing" EnCYClo~edia of lLr~ry and
information science. Marcel~ek er: 1970.

Heyting A.(1956). Intuitionism: an introduction. North
Holland Publishing Co.: 1956.

Higgins L.D. & F.J.Smith(1969). "On-line subject indexing
and retrieval" Program,}, pp147-56.

Higgins L.D. & F.J.Smith(1971). "Disc access algorithms"
Computer Journal,14, pp249-53.

Hillman D.J.(1964). "Two models for retrieval system
design" Am.Doc,15, pp217-25.

Hillman D.J. (1968) • ".l~egotiation of inquiries in an on-line
retrieval sys tern" ISR d:., pp219-38.

Hillman D.J.(1973). "Customized user services via inter­
actions with LEADERhiART" ISR,,2., pp587-96.

Hoare C.A.R. (1972). "Notes on data structurint'S'! in Dahl
et-al(1972a) q.v., pp83- 1 74.

Houston N. & E.·,'iall(1964). "The distritution of term usagE:
in manipulative indexes" Am.Doc,.l2., pp105-14.

IBM System/360 Component descriptions - 2~14 c.ire::t access
storage facility and 2844 auxiliary storage control.
Form A26-3599.

Ide E. & G.Salton(1971). "Interactive search strategies
and dynamic file organization in information retrieval"
Chapter 18 in 8alton(1971) q.v., pp373-93.

Inforlliatics 1. Proceedings of a conference held by the
Aslib Co-ordinate Indexing Group on 11-13 April 1973
at Durham University. Aslib: 1974.

248

Jacquesson ~. &. W.D:Schieter(1973). "T-=rD 2.!:scciat,io~
analys~s on a ~arge file of bibliogr~~hic data, using
a highly-controlled indexing vocat,u~c_~:l" I:::R,2"
pp85-94.

Jardine N. & C.J.van Rijsbergen(1971). "T~e use of
hierarchic clustering in informatior_ etritval" ISR,
1, pp217-40.

Johnson R.L.~1974). "An extended ALGOL for language
process~ng" Informatics 1 q.v., pp182-93.

Jones K.P.(1971). "Basic structures for thesaural systems"
Aslib Proceedings,23, pp577-90.

Jones P.E.(1965). "Historical foundations of research on
statistical association techniques for mechanized
documentation" Statistical association methods for
mechanized documentation. S rO~f!=-jings,
as ~ngton ei~irin lEds),

pp3-e.

Katz J.J. & J.A.Fodor(1963). "The structure of a semantic
theory" Language, 39, pp170-210.

Kay M. &: K.Sparck Jones(1971). "Automatic language
processing ll Annual Review of Information Science and
Technology,~, pp141-66.

Keen E.M. (1971) • "Evaluation parameters'· Chapter 5 in
Saltonl1971) q.v., pp74-111.

Keen E.~.(1973). "The Aberystwyth-index languages test"
J.Doc,29, pp1-35.

Kemp D.A.(1974). "Relevance, pertinence and information
system development", ISR,10, pp37-47.

Kilgour F.G., P.L.Long & E.B.Leiderrr.an(1970). n?.etriev<:­
of bibliographic entries from a name-title catalog 'JY
use of truncated search keysll Proc.ASIS,l, pp79-82.

Knuth D.E.(1973). The art of comuut,f:: i:ro~ra::j'.ing. Vol.3:
Searching and sorting. Adciisc·n- .. 2s1ey: 'j j'T5.

Kraft D.H.(1973). itA decision theory view of the informat­
ion retrieval situation: an operations research
approach ll JASIS,24, pp368-76.

Kuno

Kunz

S.(1966). "Computer analysis of natural
Sym osium on mathematical as ects of com
American ~.:at ematica Society, 'ew York,
pp52-110.

W. & H.W.J.Rittel(1972). "Information science: on
the structure of its problems" !..§li,8, pp95-8.

249

Lancaster F.W.(1968). Information retrieval s";stei":_s:
characteristics, testing, and eval~a:ion.' 3i1eY:1968.

Lancaster F.W.(1969). "MEDLARS: Report on the evaluation
of its operating efficiency" Am.Doc,20, pp119-42.

Lancaster.F.N.(1972). Vocabulary control for infor=ation
retrleval. Information Resources Press: 19'/2.

Lancaster F.W. & E.G.Fayen(1973). Information retrieval
on-line. Melville Publishing Co.: 1973.

Lefkovi tz D. (1969) • File structures for on-line systelos.
Spartan Books: 1969.

Long P.L. & F.G.Kilgour(1972). "A truncated search key
title index" JOLA,Z, pp17-20.

Lord Todd(1967). "Introduction: the problem stated" in
de Reuck & Knight(1967) q.v., pp4-15.

Lum V.Y. & P.S.T.Yuen & ILDodd(1971). "Key-to-addess
transform techniques: a fundamental performance study
on large existing formatted files" CACM,!!, pp228-39.

Lyons J.(1968). Introduction to theoretical linguistics.
Cambridge Univ. Press: 1968.

Maron M.E. & J.L.Kuhns(1960). "On relevance, probabilistic
indexing and information retrieval" JAcr':,l, pp216-44.

Martin T.R., J.Carlisle & S.Treu(1973). "The user inter­
face for interactive bibliographic searching: an
analysis of the attitudes of nineteen iniorQation
scientists" JASIS,24, pp142-7.

McCarn D.B. & C.R.Stein(1967). "Intelligence systems
evaluation" Electronic handlin of in-=--or C,3.tion:
testing and evaluation. A.Kent et al lEd. • Academic
Press: 1967, pp10~-22.

McCarthy J., P.Abrahams, D.Edwards, T.Hart & ILLevin(1962).
LISP 1.5 programmer's manual. :.:IT Press: 1962.

McCracken D.D. & U.Garbassi(1970). A guide to COEOL
programming. 2nd Ed., Wiley: 1970.

11enzel H. (1967) • "Planning the consequences of unylanned
action in scientific communication" in de Reuck &
Knight(1967) q.v., pp57-77.

Miller G.A.(1968). "Psychology and information" Am.Doc,.Jj,
pp286-9.

Minker J. & S.Rosenfeld (Eds) proce~din~s of a symposium
on information storage and retrleva. ACM: 1971.

250

Minker J., G.A.",'/ilson &. E.Peltola(1973). "Loc..:.::-.eril; ,
retrieval experiments using cluster a~alysis"
JASIS,24, pp246-60

Minsky M.(1968). "Introduction" Chapter 1 in Se~antic
information processing. M.A:insky(Ed.), J:11 rress:
1968, pp1-32.

Montgomery C.A.~1969). "Automatic language processing"
Annual Rev1ew of Information Science and Technoloey,4,
pp145-74. -

Montgomery C.A.(1972). "Linguistics and information
science" JASIS,23, pp195-219.

Mooers C.N.(1951). "Zatocoding applied to mechanical
organization of knowledge" Am.Doc,2, pp20-32.

Morgan H.L. (1970) • "Spelling correction in S:"3 te:ns
programs" CACM,13, pp90-4.

Morris R.(1968). "Scatter storage techniques" CACM,ll,
pp38-44.

Moyne J.A.(1969). Information retrieval and natural
language. Report FSC-69-5005. IBM Federal Systems,
Gaithersburg: June 19, 1969.

MTS(1973). The Michigan Terminal System. Vol.1: ~TS and
the computing Center. 3rd Ed. Univ. of Michigan
Computing uenter,- Ann Arbor, Michigan: 1973.

Murphy D.L.(1972). "storage organization and management
in TENEX" Proc. AFIPS,41, pp23-32.

Murray D.Iti. (1970). itA scatter storage scheme for diction­
ary lookups" JOLA,l, pp173-201.

Needham R.hI. (1965) • 11 Applica tions of the theory of
clumps" Mechanical translation,B, p~113-27.

Hewell A.(1961). Information Processi~; Language - V
M.anual. Prentice-Hall: 1961.

Nugent W.R.(1968). I1Compression word coding techniques
for information retrieval" JO~~,l, pp250-60.

"Olney J.C.(1962). Building a concept ne~work.for
retrievin information from lar e llbrarles. Part 1.
SDC Report TM-634 001 00: Jan.1962.

Organick E.I.(1972). The Multics system: an examination
of its structure. MIT Press: 972.

Overhage C.F.J. &: J.F.Reintjes(1974). "Project Intrex:
a general review" ISR,!Q, pp157-88 •

251

Pacak M. & A.',y.Pratt(1971). "The functic!;. of E,;;~·.:;"ntlcs in
automated language processing" Proc of a symposium
on information storage and retrl·~e~v~a~l~·.~~J~~'~'~~~~=
S - .l·.lrucer Q,

.Hosenfeld{Eds), ACM: 1971, PP?-18.

Parnas D.L.(1972). "On the criteria to CF used in decomp­
oSing systems in modules" CAC;.:, 15, pp1 053-8.

Porter R.J., J~·K.Penry & J.F.Caponio(1970). "Epilepsy
Abstracts.Retrieval System(EARS), a new concept for
medical Ilterature storage and retrieval" Proc. ASIS,
7, pp171-2.

Price N.H., C.Bye & B.Niblett(1974): "On-line searching
of Council of Europe Conventions and Agreements: a
study in bilingual document retrieval" ISR,1Q,
pp145-54.

Quillian HI.R. (1968) • "Semantic Memory" (Ph.D t;~esis) in
Semantic information processing. M.Minsky(Ed.), MIT
Press: 1968, pp227-70.

Resnikoff H.L. & J.L.Dolby(1965).
in written English, Part 1"
pp84-9.

Resnikoff H.L. & J.L.Dolby(1966).
in written English, Part II"
pp23-33.

"The nature of affixing
hlechanical translation,8,

"The nature of affixing
~echanical translation,9,

Rettemeyer J.W.(1972). "File ordering and retrieval cost"
ISR,8, pp79-93.

de Reuck A. & J.Knight(Eds)(1967). Communication in
Science: documentation and automation. A eiba
Foundation Volume. Churchill, London: 1967.

Rickman J. & W.E.Walden(1973). "Structures for an inter­
active on-line thesaurus" International Journal of
Computing and Information Sciences,~, pp115-27.

van Rij sbergen C. J. (1974). IIFurther I?Yp rL:.ents with
hierarchic document clustering in Q~':t:.;nent retrieval"
ISR,10, pp1-14.

van Rijsbergen C.J. & K.Sparck Jones(1973). "A test for
the separation of relevant and non-relevant documents
in experimental retrieval collections" J.Doc,29,
pp251-7.

Robertson S.E.(1969).
retrieval tests.
Overall measures"

liThe parametric description of
Pt.1: The basic parameters"; "Pt.2:

J.Doc,25, pp1-27, 93-107.

Robinson M.G. & D.M.Yates(1973). "The Scrapbook j,nform­
ation system" Information SCientist,l, pp135-43.

252

Rocchio J.J. ,Jr. (1~71). "Evaluation vie· ... ·f.oint2 ::.n
~~~~~~;~ retrleval" Chapter 4 in Sal~Jn(1971) q.v., 

Salton G.(1962). 
retrieval" C

"Uanipulation of trees in inf:rmation 
AC;:',2, pp103-14. 

Salton G.(1966). "Data ~an~pulation and p~ogramming 
problems in automatlc In.formation retrieval" CAC~,9, 
pp204-10. 

Salton G.(1968). 
retrieval. 

Automatic infor~ation organization and 
r,~cGraw-Hill: 1968. 

Salton G.(E~.)(1971) •. The SMART retrieval syste:n: experi­
ments In automatlc document processing. Prentice-Hall: 
1971. 

Salton G.(1972). "A new comparison between co~ventional 
indexing (Medlars) and automatic text processing 
(SMART)" JASIS,23, pp75-84. 

Salton G.(1973). "Recent studies in automatic text analysis 
and document retrieval" JACIt:,20, pp258-78. 

Salton G. & E.rl.Sussenguth,Jr.(1964). "Some flexible 
information retrieval systems using structure matching 
procedures" Proc. AFIPS,25, pp587-97. 

Salton G. & C.S.Yang(1973). "On the specification of term 
values in automatic indexing" J.Doc,29, pp351-72. 

Santos C.S. & A.L.Furtado(1972). G/PL/I - Extendin PL I 
for graph processing. Monograp.s in co~puter SC1ence 
and computer applications No.11/72, Computer Science 
Dept., Pontificia Universidade Catolica do Rio de 
Janeiro: 1972. 

Science Research Council(1973). Artificial intelligence: 
a paper symposium. SRC: April 1973. ~ncluaing 
"Artificial intelligence: a general survey" by Sir 
James Liehthill. 

Senko 11.E., E • .3.Altman, :.i.~.Astrahan u: :?~.Fehder(1973). 
"Data structures and accessing in data-base systems" 
IBM Syste~s Journal,~, pp 30-93. 
"I. Evolution of information systems" pp30-44. 
"II. Information organization" pp45-63. 
"III. Data representations and the data independent 
accessing model" pp64-93. 

Siegel 8.(1956). Nonparamet~ic sta:~st~cs for the 
behavioural sciences. McGraw-lilli. 19J6. 

Simmons R.F. J.F.Burger & R.~.:.Schwarcz(1968). "A comp­
utation~l model of verbal understanding" Proc. AFIPS, 
33, pp441-56. 

253 



Simmon~ R.F. & J.Slocum(1972). "GenE:rati:: E!:~::2.ish 
d1scourse from semantic networks" CA~L- 15- 891 905 _v __ ,_, pp - • 

Simon H.A.(1965). 
management. The sha e of auto~ation for ~en and 

Harper & Row: 19 5. 

Snowdon R.A.(!974). Interactive use of a cowputer in the 
r~ ara~10n of structured ro rams. Ph.D. Thesis. 

Un1vers1ty 0 Newcastle upon Tyne: June 1974. 

Sparck Jones K.(1965). "Experiments in semantic classific­
ation" Mechanical translation,8. pp97-112. 

Sparck Jones K.(1970). "Some thoughts on classification 
for retrieval" J.Doc,26, pp89-101. 

Sparck Jones K.(1971). Automatic ke lord 
for information retrieva • 1. 

Sparck Jones K.(1972a). "Some thesauric history" Aslib 
Proceedings,24, pp400-11. 

Sparck Jones K.(1972b). "A statistical interpretation of 
term specificity and its application in retrieval" 
J.Doc,28, pp11-21. 

Sparck Jones K.(1973a). "Collection properties influencing 
automatic term classification performance" ISR.9, 
pp499-513. 

Sparck Jones K. (1973b-) • "Does indexing exhaus ti vi ty 
matter?" JASIS.24, pp313-6. 

Sparck Jones K.(1973c). "Index term weighting" ISR,9, 
pp619-33. 

• 
1964 . 

Stiles H.E.(1961). ~The association factor in information 
retrieval" JACM,8, pp271-9. 

Svenonius E. (1972). - "An experiment in index term frequE:ncy" 
JASIS,23, pp109-21. 

Szanser A.J.(1973). "Bracketing technique in elastic 
matching" Computer Journal.16, pp132-4. 

Tagliacozzo R., hl.Kochen & L.Rosenberg( 1970). "Orthographic 
error patterns of author names in catalogue searches" 
JOLA,3, pp93-101. 

Tague J.(1970). "As8ociation trails" 
library and information science. 

254 

Encyclopedia of 
Marcel Dekker: 1970. 



Treu S.(1970). Su 
interactive'~~~~~~~~~~~~~~~~~~~~ 
retrieva • 
1970. 

Treu 5.(1971). "A con:eptual framework ~.,J_ t~e searcher­
-system interface" in Walker(1971) q.~., pp53-66. 

University of Newcastle upon Tyne. Computi~g La~oratory 
(1972). PL360 programming m~~ual. 

University of Newcastle upon Tyne. Computing L:;boratory 
(1974). Medusa information retrieval serv~ce user 
manual. Prepared by J.Alan Hunter. 

Vernimb C.O. & G.Steven(1973). "'ENDS' - European Nuclear 
Documentation Service" Nuclear Enginet~r':".~C; &: Design, 
25, pp325-33. 

Vickery B.C.(1973). Information systems. Butter'.vorths: 
1973. 

Wagner R.A.(1974). "Order-n correction for regular 
languages" CACM,17, pp265-8. 

Walker D.E.(Ed.)(1971). Interactive bibliographic search: 
the user com uter interface. Proc. of a workshop on 

e user inter ace or in eractive search of biblio­
graphic data bases", Palo Alto, Calif., 'Jan.1971. 
AFIPS Press: 1971. 

Weiler G.(1973). "Relevance again" (Letter) ISR,9, p121. 

Weinberg B.H.(1974). "Bibliographic coupling: a review" 
ISR,10, pp189-96. 

Weizenbaum J. (1963). "Symmetric list processo::-" CACJ.:,.§, 
pp524-44. 

~ente, van A.(1971). 
considerations" 

"HASA/RECOU and user Llterface 
in Walker(1971) q.~., pp·~-104. 

Whitehall T.(1974). "L thesaurus for the uE2r" Informatics 
1 q.v., pp135-44. 

Federa 

BROWSER: an automatic indexinR Annual :?c8uC c:'t • lEi .. 
693 14)-.-

Williams J.H.,Jr.(1971). "Functions of a man-mac nine 
interactive information retrieval system" JASIS,22, 
pp311-7. 

Wilson P.(1973). "Situational relevance" ISR,9, pp457-71. 

Winograd T.(1972). 
Thesis, AUT). 

Understanding natural language. 
Edin. Univ. Press: 1972. 

255 

(Ph.D. 



Wirth N. (1968) • "PL360, a programming la:-1;::,:age for the 
360 computers" JACl'b,15, pp37-74. 

Wirth N. (1971). "Program development by st'~::wi~e refine­
ment" CACM,14, pp221-7. 

Wirth N. & C.A.R.Hoare(1966). "A contribution to the 
development o:f ALGOL" Cl .. C,·:,9, pp413-32. 

Woodward P.M. & S.G.Bond(1974). llgol 68-R users guide. 
2nd Ed. HMSO: 1974. 

Wright l.~.A. (1960). "Mechanizing a large index ll Computer 
Journal,l, pp76-83. 

Yngve V. (1963) • aOMIT programmers reference :::2.m: ale MIT 
Press: 1963. 

Zunde P.(1971). "Structural models of complex iLformation 
sources" ISR,l, pp1-18. 

256 


	467459_0001
	467459_0002
	467459_0003
	467459_0004
	467459_0005
	467459_0006
	467459_0007
	467459_0008
	467459_0009
	467459_0010
	467459_0011
	467459_0012
	467459_0013
	467459_0014
	467459_0015
	467459_0016
	467459_0017
	467459_0018
	467459_0019
	467459_0020
	467459_0021
	467459_0022
	467459_0023
	467459_0024
	467459_0025
	467459_0026
	467459_0027
	467459_0028
	467459_0029
	467459_0030
	467459_0031
	467459_0032
	467459_0033
	467459_0034
	467459_0035
	467459_0036
	467459_0037
	467459_0038
	467459_0039
	467459_0040
	467459_0041
	467459_0042
	467459_0043
	467459_0044
	467459_0045
	467459_0046
	467459_0047
	467459_0048
	467459_0049
	467459_0050
	467459_0051
	467459_0052
	467459_0053
	467459_0054
	467459_0055
	467459_0056
	467459_0057
	467459_0058
	467459_0059
	467459_0060
	467459_0061
	467459_0062
	467459_0063
	467459_0064
	467459_0065
	467459_0066
	467459_0067
	467459_0068
	467459_0069
	467459_0070
	467459_0071
	467459_0072
	467459_0073
	467459_0074
	467459_0075
	467459_0076
	467459_0077
	467459_0078
	467459_0079
	467459_0080
	467459_0081
	467459_0082
	467459_0083
	467459_0084
	467459_0085
	467459_0086
	467459_0087
	467459_0088
	467459_0089
	467459_0090
	467459_0091
	467459_0092
	467459_0093
	467459_0094
	467459_0095
	467459_0096
	467459_0097
	467459_0098
	467459_0099
	467459_0100
	467459_0101
	467459_0102
	467459_0103
	467459_0104
	467459_0105
	467459_0106
	467459_0107
	467459_0108
	467459_0109
	467459_0110
	467459_0111
	467459_0112
	467459_0113
	467459_0114
	467459_0115
	467459_0116
	467459_0117
	467459_0118
	467459_0119
	467459_0120
	467459_0121
	467459_0122
	467459_0123
	467459_0124
	467459_0125
	467459_0126
	467459_0127
	467459_0128
	467459_0129
	467459_0130
	467459_0131
	467459_0132
	467459_0133
	467459_0134
	467459_0135
	467459_0136
	467459_0137
	467459_0138
	467459_0139
	467459_0140
	467459_0141
	467459_0142
	467459_0143
	467459_0144
	467459_0145
	467459_0146
	467459_0147
	467459_0148
	467459_0149
	467459_0150
	467459_0151
	467459_0152
	467459_0153
	467459_0154
	467459_0155
	467459_0156
	467459_0157
	467459_0158
	467459_0159
	467459_0160
	467459_0161
	467459_0162
	467459_0163
	467459_0164
	467459_0165
	467459_0166
	467459_0167
	467459_0168
	467459_0169
	467459_0170
	467459_0171
	467459_0172
	467459_0173
	467459_0174
	467459_0175
	467459_0176
	467459_0177
	467459_0178
	467459_0179
	467459_0180
	467459_0181
	467459_0182
	467459_0183
	467459_0184
	467459_0185
	467459_0186
	467459_0187
	467459_0188
	467459_0189
	467459_0190
	467459_0191
	467459_0192
	467459_0193
	467459_0194
	467459_0195
	467459_0196
	467459_0197
	467459_0198
	467459_0199
	467459_0200
	467459_0201
	467459_0202
	467459_0203
	467459_0204
	467459_0205
	467459_0206
	467459_0207
	467459_0208
	467459_0209
	467459_0210
	467459_0211
	467459_0212
	467459_0213
	467459_0214
	467459_0215
	467459_0216
	467459_0217
	467459_0218
	467459_0219
	467459_0220
	467459_0221
	467459_0222
	467459_0223
	467459_0224
	467459_0225
	467459_0226
	467459_0227
	467459_0228
	467459_0229
	467459_0230
	467459_0231
	467459_0232
	467459_0233
	467459_0234
	467459_0235
	467459_0236
	467459_0237
	467459_0238
	467459_0239
	467459_0240
	467459_0241
	467459_0242
	467459_0243
	467459_0244
	467459_0245
	467459_0246
	467459_0247
	467459_0248
	467459_0249
	467459_0250
	467459_0251
	467459_0252
	467459_0253
	467459_0254
	467459_0255
	467459_0256
	467459_0257
	467459_0258
	467459_0259
	467459_0260
	467459_0261
	467459_0262

