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Abstract

It is becoming common to employ a Network Of Workstations, often referred to as a NOW, for
general purpose computing since the allocation of an individual workstation offers good interactive
response. However, there may still be a need to perform very large scale computations which exceed
the resources of a single workstation. It may be that the amount of processing implies an inconveniently
long duration or that the data manipulated exceeds available storage. One possibility is to employ a
more powerful single machine for such computations. However, there is growing interest in seeking a
cheaper alternative by harnessing the significant idle time often observed in a NOW and also possibly
employing a number of workstations in parallel on a single problem. Parallelisation permits use of the
combined memories of all participating workstations, but also introduces a need for communication, and
success in any hardware environment depends on the amount of communication relative to the amount
of computation required. In the context of a NOW, much success is reported with applications which
have low communication requirements relative to computation requirements.

Here it is claimed that there is reason for investigation into the use of a NOW for parallel execution
of computations which are demanding in storage, potentially even exceeding the sum of memory in
all available workstations. Another consideration is that where a computation is of sufficient scale,
some provision for tolerating partial failures may be desirable. However, generic support for storage
management and fault-tolerance in computations of this scale for a NOW is not currently available and
the suitability of a NOW for solving such computations has not been investigated to any large extent.
The work described here is concerned with these issues.

The approach employed is to make use of an existing distributed system which supports nested
atomic actions (atomic transactions) to structure fault-tolerant computations with persistent objects.
This system is used to develop a fault-tolerant “bag of tasks” computation model, where the bag and
shared objects are located on secondary storage.

In order to understand the factors that affect the performance of large parallel computations on a
NOW, a number of specific applications are developed. The performance of these applications is ana-
lysed using a semi-empirical model. The same measurements underlying these performance predictions
may be employed in estimation of the performance of alternative application structures. Using services
provided by the distributed system referred to above, each application is implemented. The implement-
ation allows verification of predicted performance and also permits identification of issues regarding
construction of components required to support the chosen application structuring technique. The work
demonstrates that a NOW certainly offers some potential for gain through parallelisation and that for

large grain computations, the cost of implementing fault tolerance is low.
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Chapter 1

Introduction

After a long history of development and achievements parallel computing remains the exception rather
than the norm. It tends to be harder to implement a parallel algorithm to solve a given problem than it is
to implement a sequential one. The motivation then tends to be the increase in performance which can
be achieved.

Following long experience in parallel computing there is a clear trend to build parallel machines out
of commodity workstation units as far as possible. At the same time, much technology developed for
parallel machines has translated to the general purpose environment, in particular the network techno-
logy. Thus more and more attention is being paid to the use of network machines such as a Network
of Workstations (NOW) for running parallel computations. As this process continues it is reasonable to
consider performing ever wider classes of computation in a NOW environment. One class of computa-
tions which are not well suited to parallel execution in a very low specification NOW is that of out of
core computations, where problem data is so large that it must be based outside of primary memory.

Other than typically a lower specification interconnect a network machine is also distinguished
by a greater autonomy of management, raising issues regarding security, load management and fault-
tolerance. In the typically single site NOW environment studied the weight of concern is with the latter
two issues. On the one hand a NOW typically executes a rather greater variety of jobs with considerable
requirement for interactive response. On the other hand there is a rather greater potential for individual
component machines being taken out of service or failing separately and at the same time for detecting
such events. Both of these events may be regarded as changing resources.

This thesis describes the problems of performing parallel computations on the changing resources
of a NOW and a practical approach to addressing these problems both for traditional NOW oriented

applications and also for the out of core problems referred to before.
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1.1 Parallel Computations

Some brief mention of certain terminology is included here for the sake of completeness. For a fuller

background in parallel computing see e.g. [55, 74].

1.1.1 Decomposition

A single problem is first decomposed into a number of sequential components which can be executed
concurrently.

If the problem is characterised by a significant data structure, such as an array, domain decompos-
ition emphasises the partitioning of the data. A component of computation is that which is associated
with a particular data partition. For example a finite difference computation is typically decomposed by
partitioning the difference array between the available processors with each processor being responsible
for performing iterations of updates and boundary value communications for its own data partition.

Functional decomposition takes the alternative approach of partitioning the work to be performed
and letting the data requirements of each resulting computation component be governed by the work
partitioning. The well known traveling salesman problem entails finding an optimal tour which visits
each of a group of cities once. One approach to solving this problem is branch and bound whereby
possible full tours are evaluated from a selection of currently known partial tours and the search bounded
by comparison with the currently best known full tour length. A functional decomposition approaches
the parallelisation of this problem by defining the unit of work as evaluation of a single partial tour.

It is possible that there may be alternative decompositions and that a choice between them can only
be made in the context of a particular target environment. A complex problem may offer opportunities
for both domain and functional decomposition at different levels. One example would be a physical

simulation comprising separate components, such as a coupled ocean and atmosphere model.

1.1.2 Mapping

Having identified a set of concurrent tasks, it is necessary to establish a mapping of them to the avail-
able processors. In a simple case all tasks are of the same size and can be initiated at the start of the
computation. In other cases where different tasks have different workloads and may have dependencies
it may be possible to derive a satisfactory schedule in advance of execution. In some computations the
load distribution between processes changes unpredictably between a reasonably fixed set of tasks and
it is possible to incorporate a periodic redistribution of load between the processes. Other computations

have very variable load characteristics.
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1.2 Parallel Machines

Historically the development of parallel programs has been meshed closely with the development of
parallel architectures since the primary goal is performance. More recently there has been a tendency
to try to move away from such a close coupling, but as yet the target architecture still influences the
choice between parallel programming structures. A recent overview of parallel architectures may be
found in e.g. [66]. The many different types of parallel machines may be classified in various ways, but
a particularly well known system is presented in [54]. Machines in this case are distinguished by the

number of instruction and data streams. Briefly the classifications are:
SISD Single Instruction Single Data machines are uniprocessors.
SIMD Single Instruction Multiple Data machines include array and vector processors.

MISD Multiple Instruction Single Data machines have multiple processor units receiving distinct in-

structions yet operating on the same data stream.
MIMD Multiple Instruction Multiple Data machines are general purpose parallel machines.

Data parallelism is obtained by assigning computation data elements to separate processors and ex-
ecuting the same instructions in each, i.e. in a SIMD machine. It is possible to exploit data parallelism
in an MIMD machine by relaxing the synchronisation, so that while processors execute the same pro-
gram they do not do so in lockstep. The resulting model is referred to as Single Program Multiple Data
(SPMD), but in either case a program which obtains parallelism predominantly through data partitioning
is referred to as data parallel.

The alternative to data parallelism is control parallelism, which is obtained by concurrently execut-
ing multiple instruction streams, such as in a pipeline, and is suited to MIMD or MISD machines.

Interest here is focussed on the MIMD class of machines which may be further classified as to

whether or not they have hardware support for shared memory.

1.2.1 Multicomputer

A multicomputer provides no hardware support for a shared address space. All inter processor commu-
nication is through message passing and these machines are sometimes referred to as No Remote Access
(NORMA). An example of a multicomputer is shown in figure 1.1. Since resources are distributed, it
is relatively easy to scale up the number of nodes and practical machines with very large numbers of
nodes have been built. However, to exploit such a machine the user must partition the computation
between the separate nodes. It is possible to create a virtual shared address space in software, giving a

Distributed Shared Memory (DSM), but the access cost is not uniform.
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Processor Processor Processor

Memory Memory Memory

Interconnection Network

Figure 1.1: Example structure of a multicomputer

1.2.2 Multiprocessor

A simple example of a multiprocessor is shown in figure 1.2. The ideal for a shared memory machine,

Processor Processor Processor

Interconnection Network

Memory

Figure 1.2: Example structure of a multiprocessor

expressed in the well known PRAM model, is of uniform access cost by any processor to all memory.
This is a Uniform Memory Access (UMA) machine which may for instance be based on a bus inter-
connection. Preserving acceptable memory access cost as the number of nodes is scaled up requires
a proportionate increase in bandwidth of the interconnection network. Furthermore, even ignoring the
effect of caching, the uniform cost model is ultimately limited by physical dimensions.

While there is certainly increased complexity at the hardware level in a multiprocessor, the mapping
problem is much simplified. Processes can be moved at will between processors since the processor ad-
dressing required in a message passing multicomputer is not needed. Thus processes can be scheduled
automatically by an operating system similar to those which might be found on a uniprocessor worksta-
tion. A multiprocessor is particularly attractive for irregular problems centred around a dynamic shared

data structure.

It is possible to achieve scalability in the number of nodes by distributing memory amongst the



CHAPTER 1. INTRODUCTION 5

nodes. The overall structure is then similar to that of the multicomputer in figure 1.1, so that again the
machine is composed largely of self contained units but with special hardware in each node to support
the global address space. Such machines are referred to as Non Uniform Memory Access (NUMA ) or
DSM machines. Achieving both programmability and scalability is the subject of ongoing work in this

area.

1.2.3 Large Scale Storage

Beyond primary memory, at one time “core”, there is always a need for large scale and possibly longer
lasting storage, to hold program sources, documentation, computation input and output data and po-
tentially large intermediate data. The storage hierarchy extends beyond cache memory and primary
memory down to secondary storage, typically disk, and subsequently to tertiary storage such as tape
or optical jukebox. While random access is possible at any level of the hierarchy, the lower levels are
characterised by nonuniform and generally higher access costs. In this work concern is with the large
data sets manipulated in out of core computations. This data is assumed to be based at the highest level
in the storage hierarchy at which it can be accommodated, typically disk.

Overview coverage of issues related to /O in parallel computations particularly with regard to
achieving high performance in large scale multicomputers may be found in [42, 53].

A widely used approach to increasing disk throughput is to construct a Redundant Array of Inex-
pensive Disks (RAID) [35] which simulates a single disk with higher performance and/or availability.
Various configurations, known as RAID levels, are possible including level 0 (RAID-0) which im-
plements no redundancy, level 1 (RAID-1) which implements disk mirroring. In a multicomputer the
parallel processes have to access common secondary storage which is attached to an I/O Processor (10P)
through the interconnection network. To overcome the limiting effect of the single node connection it
is typical to stripe data over multiple IOP.

In a conventional general purpose file system, e.g. in UNIX [11], it is reasonable to assume that a
file is accessed by a single process at a time. Other than for a database application the concurrency
control required for files is quite limited. In parallel computations it is likely that multiple processes
manipulate the same data on secondary storage. One option is to structure the data in multiple files, but
this introduces a relationship between the file structure and number of processes and the latter may vary
between parallel programs or runs of the same program.

To facilitate certain common access patterns by processes of a parallel program to single files, a
parallel file system typically allows an access mode to be specified when a file is opened. Typically
one such mode defines a single file pointer which is shared between all processes opening the file. This
mode can be used to automatically schedule parts of a computation. An alternative allows data to be
scattered to, or gathered from, all processes opening the file based on their individual process numbers.

In the former case the concurrent access is controlled through the single pointer but in the latter case
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it is necessary for all processes accessing the file to synchronise before an access. Such collecrive /O
operations which imply barrier synchronisation points are suited particularly to data parallel program
structures. Various strategies may be employed to improve throughput when mapping between different

data layouts on disk and memory e.g. [41, 73, 98].

1.3 Sharing a Parallel Machine

As a way of increasing throughput for sequential jobs, a UMA multiprocessor may support a similar
operating system interface to that of a uniprocessor, such as UNIX. In NUMA and distributed memory
machines it is less straight forward to construct such an operating system. Furthermore there is some
contention regarding the notion of sharing a parallel machine. Where a user invests in parallelising a
significant application, it is not surprising if he seeks exclusive use of a parallel machine. In many cases,
the application may justify the cost of a dedicated resource but in the course of an extensive survey [52]
makes a case for the growing importance of multiprogramming in parallel systems.

A distinction is drawn between scheduling systems as to whether they are based on space or time
slicing. The concept of time slicing is familiar from uniprocessor systems, but in parallel machines it
is possible also to partition processors between jobs, this being referred to as space slicing. In space
slicing, a parallel job is allocated to a partition of the machine. In principle such a parallel job then
has exclusive access to a more restricted machine, but in particular architectures there may still be
contention for network resources. In [52] partitioning is classified on the degree to which the partition

size is fixed.

fixed partitioning entails a system administrator selecting partitions which remain unchanged until the

next configuration.

variable partitioning sets the partition size to contain a job’s requested parallelism, possibly selecting

jobs for execution out of queued order to maximise overall machine use.

adaptive partitioning is similar to variable partitioning as described above, but also takes account of the
load already present on the machine and may load a job into a smaller partition than the degree

of parallelism requested. Jobs which fit this computation model are described as moldable.

dynamic partitioning requires a job to be malleable such that its partition size can be varied even during

execution.

In a fixed partitioning scheme while no requirement is placed on the parallel jobs submitted frag-
mentation can lead to wastage of the parallel resource. On the other hand a dynamic scheme cannot
give rise to fragmentation, but of the various alternatives this scheme places the greatest constraint on

submitted jobs, which must at any time be able to adapt to a varying number of processors. A well
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known application structure which fits this requirement is referred to by many alternative names in-
cluding “workpile”, “task queue”, “master slave”, “farming” and in the remainder of this work “bag of
tasks”. Essentially the problem is divided into 2 number of tasks which may each be executed by any of
a collection of worker processes. Some central coordinating entity administers the dynamic allocation
of tasks to workers.

Time slicing offers the prospect of minimal direct intrusion while allowing full resource utilisation,
but there is inevitably an overhead incurred in the scheduling system. Schemes based on time slicing
may be categorised as to whether processing elements are scheduled independently or not. An option
suited to a UMA machine is to schedule all threads from a central queue. It is also possible to employ
local queues or a combination of local and global queues, but separate provision needs to be made for
thread placement, i.e. mapping, and load balancing.

It is possible to coordinate processor scheduling in gang scheduling. Typically this achieves time
slicing between whole or partial parallel jobs though sharing can be accomplished by space slicing
instead. While simultaneous execution of threads supports fine grain interaction as in variable parti-
tioning, the distinguishing feature is that jobs can be preempted so that short jobs can be guaranteed
a quick response. In order to accomplish this preemption it is necessary to implement a coordinated
context change and the cost of this operation should be small compared to the quantum in a time slicing
scheme. Scheduling decisions are typically made at regular intervals, but in lazy gang scheduling jobs
execute freely until a waiting job has been delayed for longer than some threshold.

Multiple scheduling disciplines can be combined, for instance supporting different time slicing
schemes within different partitions.

Discussion of sharing so far has implicitly assumed that all processes of a job are active whilst
the job is scheduled. In a uniprocessor many jobs include a substantial number of blocking requests
and if a process issues an I/O request for instance, it waits and another process is readily scheduled to
use the processor while the I/O request completes. This carries through to queue based time slicing
systems, such as the simple global queue mechanism. In a purely space slicing system however it is
up to the application itself to overlap computation with I/O. Gang scheduling systems similarly have no

knowledge of application I/O, but again it is possible to ensure overlap between computation and I/O at

the application level.

1.4 Network Computers

As it has become the norm to allocate a complete machine as a single user resource the possibility of
using the spare time on a network of such machines, a NOW, for large scale computations has been
considered. The common vision is of essentially free supercomputer scale resources, e.g. [6].

At the scale of a Wide Area Network (WAN), impressive results have been obtained for very large
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granularity problems such as number factoring [99]. More recently scientific data processing requiring
large scale data transport have been investigated on multiple clusters of workstations distributed over a
wide area [34], and interactive wide area supercomputing, particularly incorporating high specification
remote visualisation [40].

For a given network computation there is some assembly of separate computers distributed over a
local or wide area and connected by a network. When compared with a closely integrated machine, such

a resource has a number of identifiable characteristics.
e The individual machines may be of different architecture, or at least of different specification.

o The bandwidth of the interconnection network may be lower than that found in a hi ghly integrated
machine. While high speed interconnects such as ATM switches are being used more widely,
many existing general purpose clusters are connected via 10 Mbit/s ethernet links. There are

some higher speed links available over a wide area.

o The various machines are likely to be administered separately. This means that security may be
an issue, but also perhaps that access may be withdrawn at any time, e.g. through reboot. As well
as the separate administration it is possible that the machines which are more widely distributed
will be more likely to fail independently. In a long running computation machines may be added

into the computation at any time.

1.5 Changing Resources

Of the various classes of network computer, it is the NOW which this thesis is concerned with. Typically
all the machines are at a single site belonging to a single administration. Developments in technology
and costs have led to consideration of different models for a NOW. In a commonly used model all a
user’s interactive processing is performed locally and the user has exclusive rights to the local machine
while logged on. In an alternative model, users access a pool of compute processors from a range of
machines which would typically be X-terminals but may include workstations which perform jobs such
as editing locally. When a user initiates a computation which is to be run remotely, any command if the
interface is an X-terminal, that command is scheduled to one of the pool processors. Such a model is
assumed for instance in the design of Amoeba [111].

In the first model, if individual users have administrative authority over their machines then it must
be assumed that the machines may be rebooted without notice, but in the second model machines can
still fail. While exhibiting definite patterns in a particular system, the level of interactive use in a
network of privately owned workstations varies considerably [83]. It seems reasonable to assume that
there would be significant variation in user activity in the pool of the alternative model. In any case the

users may be assumed to expect a response appropriate to interactive work. These considerations make



CHAPTER 1. INTRODUCTION 9

management of even a constant load of parallel jobs hard since it must be assumed that the resources
available to those jobs are changing. The focus of this work lies in the investigation of approaches for
utilising resources which are assumed to be changing, but particularly in the context of jobs which make
heavy use of non-primary storage.

A change in resources may be notified to the computation, in which case the computation may
respond by migrating from one machine. Alternatively if the change occurs and then the computation
detects it, the computation must rely on having taken some prior precautionary action, i.e. the provision
of fault-tolerance. It is possible to respond to a notified resource change through a fault-tolerance
mechanism, but the notification and the likely higher frequency of migration events gives impetus to
a search for optimisations not possible in fault-tolerance mechanisms. While these considerations are

touched on, this work takes the minimal approach leaving the optimisations for future consideration.

1.6 Fault-Tolerance

While fuller discussions of fault-tolerance principles may be found in e.g. [76], certain background is
introduced here. A fault can originate in the design or implementation phase and persist undetected
until conditions contrive to uncover it. This is typical of software faults whose tolerance is addressed by
approaches such as design and data diversity. A fault may instead arise through the in service failure of
a correct component. In this case it is sufficient to provide redundancy such that service may continue
in the presence of some number of faults and to avoid a fault affecting all redundant components. When
a fault is detected it is necessary for some recovery action to be taken to bring the system into a correct
state from where correct service can be continued. Recovery actions may be classified as forward where
some compensating action is taken to bring the system into some new correct state or backward where
execution is resumed from a recovery point where sufficient information had previously been saved
to allow restoration. Forward recovery mechanisms are typically employed to respond to particular
anticipated faults. In this work provision is for backward recovery.

A distributed system such as a NOW offers potential for such fault-tolerance since the loss of one
component can be compensated by those remaining. A common approach to fault-tolerance provision
in distributed systems [82] is to define likely failure scenarios, in a failure model, and then include such
provision as is necessary to recover from faults which fit the specified model. It may be possible for
faults to occur which are outside the chosen model and then recovery is not guaranteed, but this repres-
ents a cost trade off. In the Byzantine failure model a fault is regarded as being capable of giving rise to
quite arbitrary behaviour, whereby a machine can produce incorrect output or messages. Mechanisms
which permit recovery from such faults tend to be quite expensive, so various more restrictive failure
models are defined. One such model which is commonly used is the processor crash model. where it is

assumed that a failing processor simply stops.
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In considering fault detection a distinction can be made between asynchronous and svnchronous
systems. In the former no assumption is made regarding the delay in message passing nor about the
relative execution speeds of processes. It is then not possible to employ timeouts as a means for accurate
failure detection. In the latter it is assumed that both are bounded so as to allow suitable timeouts to
be defined for accurate failure detection. In the case where it is impossible to distinguish between a
process which is running slow and one which has failed it is necessary to ensure that the recovery action
is safe in the event that the diagnosis of a fault was incorrect. This can be accomplished by structuring

the computation as a collection of repeatable, or idempotent, operations.

1.7 Structure of Thesis

Chapter 2 considers the issues involved in executing parallel computations in an environment compris-
ing changing resources present in a NOW, outlining typical application environments, approaches used
to accommodate resource changes, and the difficulties with managing state on secondary storage. Fi-
nally a practical structure based on a shared persistent object store is presented and some example com-
putations described. These example computations are reused throughout the thesis. Chapter 3 presents
an approach to modelling computations structured in the way described in chapter 2. This modelling
approach can be used both for explaining experimental results and predicting the performance of the
applications in different hardware configurations. Chapter 4 describes implementation of the example
applications in different workstation configurations and compares performance measured with that pre-
dicted. Chapter S builds on the work of the previous two chapters in order to make some assessment
of the potential for the structuring approach developed. The chapter begins by addressing issues re-
lated to organisation of the computation and configuration of hardware including task synchronisation,
data caching, problem and hardware scaling and potential benefits of multithreading to overlap commu-
nications. After this attention is turned to alternative computation structures and applications. Finally

chapter 6 presents some concluding remarks and directions for future work.



Chapter 2

Structuring

This chapter considers the execution of a computation in a NOW and what are the implications of the
changing resources. Existing work in the various related areas is examined before the emphasis of this

work and the practical computation structure are outlined.

2.1 Program Models

In physical terms a NOW is certainly a multicomputer, each workstation having its own local memory.
Parallel computing over a NOW is commonly based on message passing directly. However, just as a
virtual shared address space can be created in software on a closely coupled multicomputer, so too can it
be done over a NOW. Thesc approaches can be regarded as supporting parallel programs at a low level.
It is also possible to implement an environment at a higher level, either in a structured shared memory

or in a certain program structure. The remainder of this section outlines a range of such alternatives.

2.1.1 Message Passing

Message send and receive primitives are sufficient for all required communication but there are inev-
itably certain communication patterns which are used frequently. Furthermore, even if each parallel
machine and workstation defines a proprietary message passing interface there is scope for trading off
some measure of performance for a degree of portability. Such considerations have led to a number of
message passing interfaces.

The p4 system [24] evolved from a need for a higher level interface to synchronisation mechan-
isms on a shared memory multiprocessor, but now supports a cluster model where groups of processes
(clusters) share memory and coordinate internally via monitors but communicate with other clusters via
message passing and fits a network of shared memory multiprocessor machines. There is no support for

virtual shared memory so that in a NOW where all machines are uniprocessor all communication is via

11



CHAPTER 2. STRUCTURING 12
message passing. A broadcast operation employs a tree rather than a series of unicasts. Global opera-
tions such as sum and max and min are implemented by gathering values up a tree and broadcastung the
result.

PVM (58] is a widely used message passing system which aims to facilitate interconnection of
heterogeneous networked machines into a single Parallel Virtual Machine. Individual machines may
be powerful multiprocessors. A computation is divided up into tasks, and each scheduled to a separate
machine. As in the case of p4, individual tasks can be parallel computations. Each task has an identifier
which can be used to direct communications. Similar global operations are available to those in p4.
Shared memory support such as the monitors of p4 is not provided. The popularity of PVM arises
because it permits programs to be portable between a wide range of architectures, while the underlying
proprietary message passing and task manipulation interfaces vary widely.

MPI [45] represents a standardisation of message passing interfaces, but also places some emphasis
on a need for scoping communications activities to facilitate development of parallel software librar-
ies. To this end the standard specifies communicators and contexts which may be passed into library
functions or created on the fly within a library function to ensure that communication within a library
routine does not conflict with communication outside the routine. The standard refrains from specifying

process manipulation mechanisms.

2.1.2 Distributed Shared Memory

DSM aims to provide transparent access to any location in a global shared address space simply by
address. Separate to the page management there must exist mechanisms to support local and remote
process creation and synchronisation, but ideally there is no need to specify the location of data.

The fine granularity at which data is shared makes support for heterogeneity hard to provide. One ap-
proach is described for Mermaid [120] where each memory page is restricted to a single type. However
special checks are still needed where individual data formats differ between machines and alignment of
complex objects to avoid errors in accessing components which might lie in different pages on different
machines leads to waste of space.

A simple technique for achieving a global shared address space is to partition the whole address
space and locate each partition on a certain node as in Amber [33]. It is then necessary for a thread to
move to remote data in order to access it, in Amber by means of RPC calls inserted by a preprocessor.
More often data is migrated to a thread in the form of pages. The virtual memory management software
may be modified such that a fault to a remote page is intercepted. If the page is not stored locally
then it is accessed from its remote location. Read and write faults may be distinguished to enable the
DSM support to take different actions in the two cases. It is then necessary to establish mechanisms
for finding any desired page and a policy governing its migration. Clearly it is undesirable to transfer a

whole page for each separate access, but the alternative of caching a page at the requesting node on first
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access leads to the possibility of there being multiple copies. When such a replicated page is updated, it
is necessary to either update or invalidate other cached copies, thereby maintaining cache coherence.

The first software implementation of DSM is IVY [77, 110] which experimented with various
schemes for managing the page table which tracks movement of shared pages. In a centralised sys-
tem, a unique manager at a well known location services all requests. By devising a mapping from
pages to processors, for instance through block allocation, it is possible to distribute the manager func-
tion. The page address can be operated on by the appropriate mapping function to obtain the identity
of the manager node. A possible extension allows the ownership of a page to migrate from one node to
another, such that the mapping function may only identify the initial owner of the page. The local page
table stores a hint to the location of the owner, so that by following such pointers it is possible to locate
the page owner.

In the event of local memory exhaustion the policy is to select pages for replacement in the order; not
owned, read copies, read owned, write owned, and then according to an LRU policy within each class.
It is possible to page to another node’s memory rather than disk, and this can be cheap when it entails
a simple ownership transfer. Since address space encompasses the network it is allocated on a system
wide basis, through a centralised manager, possibly with local managers in addition. A centralised pool
of locks is provided for inter process synchronisation.

IVY allowed concurrent readers to cache local copies of the same page and invalidated all out of
date copies on a write. This achieves sequential consistency [75] whereby a value read is always the
latest value written. However the update mechanism can be costly, particularly if the writing process is
immediately going to update the same page again. Furthermore it is possible for two separate variables
which are updated repeatedly by separate processes to have been placed on the same page at compile
time. This situation termed false sharing is analogous to the false sharing of cache lines in a shared
memory machine. The outcome is that the page or cache line thrashes between the two processes.
There is then some incentive to relax the strict consistency requirement and allow writes to be buffered
and also to allow concurrent updates to the same page, but the eventual update is more complex.

An example of how this may be done is demonstrated in the Munin system [30]. Munin implements
multiple consistency protocols at the level of user objects and provides annotations which the program-
mer may specify on a per-object basis to tune an application according to the access patterns expected
for those particular objects. Programs are written in terms of threads sharing passive objects in a shared
memory environment. A shared object is a single variable, though it is possible for objects to be glued
together by a special annotation. All synchronisation between threads must be done using the primitives
provided by Munin since these contain calls to invoke the underlying consistency protocols. The imple-
mentation comprises a preprocessor, a modified linker, library routines and some kernel modifications
to support page fault handling and page table maintenance.

Munin introduces the notion of release consistency, defined for use in the Stanford DASH processor.
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to software DSM. Release consistency guarantees that the results of all writes performed by a processor
prior to a release be propagated before a remote processor acquires the lock which was released. The
idea is that where the programmer knows there will be many updates to an object before other threads
need to see any of them, he can control the point at which changes are propagated. A thread may use
the acquire primitive to force through any pending updates from other threads, but the intention is that
a thread gains a write share copy of the object through the page faulting mechanism and consequent
concurrent modifications are merged at the time of release.

Munin supports such write sharing by propagating updates as a set of differences to the altered
pages. Thus if two objects are marked as write share, then they cannot give rise to thrashing even if the
compiler places them on the same page. If many updates are made to the same object before a release
these are all coalesced into a single set of differences. The cost incurred is the extra processing required
to generate the differences.

The definition does not prescribe that all modifications be propagated at the point of release. Such
an eager release consistency is implemented in Munin however. By contrast lazy release consistency [4]
defers change propagation until the lock associated with the data item is requested through the acquire
primitive. This technique allows for reduction in message traffic, but entails maintenance of a preced-
ence relation so that the requesting processor can determine which data needs to be fetched. As in
Munin the actual changes are propagated as differences to pages to allow for concurrent writes.

Midway defines entry consistency {19] which is similar to lazy release consistency in delaying
propagation of altered data until it is actually requested. In Midway however, the programmer defines
synchronisation objects for shared data. Then when a process acquires one of these variables only the
data associated with that variable is fetched.

An alternative approach to supporting a uniform shared address space is to require the user to dis-
tinguish between local and global data and local and global accesses. This is the approach taken in
Split-C [38] which is a parallel extension to C. The granularity of access is no longer restricted to a page
and can be as small or as large as required. Thus at the loss of transparency false sharing is eliminated.
Assignment between local and global objects can effect bulk transfer and extra operators support split
phase, i.e. asynchronous, get and put operations. The language also supports a variety of synchronisa-
tion mechanisms, including barrier. In order to support fine granularity access Split-C typically assumes

low latency communications such as Active Messages [115].

2.1.3 Structured Shared Memory

Rather than accessing individual addresses in the shared space it is possible to restrict access to be by
name to higher level objects. Such objects may be passive data structures or may encapsulate an active
element. In this case, false sharing is eliminated because data is accessed by name. Inevitably it is

necessary to alter the application level interface, but this can be done without employing a compiler.
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Orca [14] is a complete parallel language which supports a shared object programming model where
access to shared objects is via method calls. A method which updates the object is guaranteed exclus-
ive access, though to enable synchronisation a method which begins with a guard statement may be
concurrently active in the same object. To allow shared object methods to be identified as read only or
update, Orca makes restrictions; specifically prohibiting gotos, pointers and global variables. A graph
construct is available to support linked structures. This compile time analysis allows Orca to employ
shared object replication to implement either update or invalidate strategies and even to switch between
the two dynamically according to usage.

Mentat also supports a shared object style of programming since persistent Mentat objects retain
state in memory between function invocations.

In SAM [96] each shared object is classified as either value or accumulator. The former have single
assignment semantics while updates to the latter are serialised. The implementation is in the form of a
runtime library so functions are provided to delineate shared object creation and update, parameterised
by the particular shared object. When a shared object update is begun, the object is copied to the
requesting processor. In the case of an accumulator update, mutual exclusion is first ensured. A process
can read an out of date copy of an object cached on the local processor. SAM provides a mechanism
for pushing an object to a remote processor where it will be cached ready for use. Thus SAM supports
programming with message passing or shared objects.

Linda [29] defines a small number of extensions to a host language to coordinate access to an
associative shared memory space known as tuplespace. This space contains tuples which are collections
of either values or locations specified by type. Tuples are accessed by matching types and values with
the specification in the request. To change an entry in tuplespace, it is necessary first to remove the tuple
and then place a new entry in tuplespace with the modified parameters. In this way consistent access to
tuplespace is ensured. Conceptually, the tuple matching described above is quite inefficient. However,
it is possible to perform significant optimisations in a preprocessor. It is only necessary to seck a match
against tuples having the same number and type of parameters as those supplied by the caller; indeed
tuplespace may be partitioned by tuple type. Further, it may be that tuple structures may be simplified
to reduce or eliminate costly matching. For example, the operations: out( “foo”) and in( “foo”) may be

reduced to a semaphore.

2.14 Large Grain Data Flow

Because of their relatively low level, it is not surprising that message passing systems should easily
find widespread application. Again because of the low level though, there may be significant reuse of
structuring code possible from one application to another, suggesting scope for higher level program-
ming environments. One approach is based on structuring programs as data flow graphs. Typically a

node in such a graph may consist of sequential code which is to be executed as a separate process and
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the connecting arcs are communication flows between these processes. The user interface to program
development can be through a graphical tool as in Hence [17] or Paralex [9], or a textual language such
as PCN [56]. In PCN processes communicate through definitional or single-assignment values which
are shared through parameter passing. An advantage of such systems is the potential for reusing exist-
ing sequential code segments potentially of multiple different languages. PCN also facilitates reuse of
the parallel structuring components. Mentat [61] also supports a large grain data flow model. through

extensions to Ct++, but doesn’t provide support specifically for code reuse.

2.1.5 Data Parallelism

As described earlier, in the purest sense data parallelism implies the SIMD model where each processor
operates on an element of the data in parallel. The attraction for the programmer is clearly the single
control flow, which also facilitates its inclusion in existing sequential programming languages. To cater
for the case where there are not enough physical processors for a large object, it is usual to allocate
data elements to virtual processors and map multiple virtual processors to a single physical processor.
While logically maintaining strictly a single instruction flow, this mechanism also achieves an increase
in computation granularity and can allow such languages to be supported on an MIMD machine which
doesn’t have the instruction level synchronisation of an SIMD machine. In the same way data parallel
languages may be supported on a NOW, e.g. [113, 84]. The result of mapping many virtual processors
to a single physical processor lessens the synchronisation requirement a little. Rather than processors
running in lockstep at the instruction level, the same program runs in each machine on a different portion
of the data. This is the SPMD programming model.

It is not uncommon also to implement an SPMD program directly, using either a standard low level
message passing or shared memory environment. Rather than depending on the compiler to choose
data partitioning the programmer performs this task by hand. Amongst the enhancements to standard
C included in Split-C [38] is provision for spread arrays which gives basic support for data parallel
computations. Dome [8] demonstrates how the data mapping can be encapsulated in a class and then

evaluated at runtime to allow correct partitioning on heterogeneous machines.

2.2 Using Changing Resources

For the purpose of this work, the resource changes a parallel computation may need to be able to react

to in a NOW are categorised below.

1. A transient node failure, whereby a machine fails and is restored to service after a short delay.

2. Node replacement, whereby a node is removed from the computing resource, but the total number

of nodes is maintained constant through the inclusion of a different node.
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3. Node loss or addition, whereby a node is removed or added to the computing resource.

While a transient node failure is an unnotified change, node replacement is notified. Node removal may
be notified or unnotified. In general so too may be node addition. If node addition is notified then some
global scheduling service is assumed to have allocated the node to the particular computation, whereas
an unnotified node addition presumes the computation to have the capability in itself of identifying the
new node. It is assumed here that all node additions are notified.

It is correct to say that items 1 and 2 can be regarded as special cases of item 3. If node replacement
is not notified, then naturally a mechanism which supports a transient failure is required in addition to
that which supports migration from old to new node. Similarly one or both of these mechanisms may
be required to support node loss or addition. It is claimed that splitting the requirements in this way
permits a natural separation of the mechanisms which tend to be employed.

It is possible to respond to such resource changes either in the context of a single application or in the
context of a central scheduling authority by rescheduling whole parallel applications. It is possible that
both approaches have use at different granularities of resource change. A given Jjob mix may comprise
some jobs which can respond to changes in resource and others which cannot. This thesis is concerned
with structuring individual parallel applications so that they can respond to resource changes. The

remainder of this section outlines existing approaches to supporting these resource changes.

2.2.1 Supporting Transient Node Failure

Tolerating a transient node failure is typically achieved through some form of backward recovery.

In the simplest case, the state of a long running process is saved to disk periodically. Following
a failure the application may be restarted from this checkpoint. Using a transparent checkpointer the
application code remains unaltered. Obviously however there is some overhead in time and space.
The time overhead is related to the amount of state to be saved, the cost of remote writes and the
frequency of checkpoints. Checkpoint size can be reduced by incremental checkpointing whereby only
modified data is copied. Even then there may be areas of dead memory checkpointed which increase the
overhead significantly. It is possible to provide user callable routines to indicate dead memory which
can be excluded [89]. At the cost of increased space, asynchronous checkpointing allows remote writes
to proceed concurrently with subsequent computation, by making a local copy of process state. It may
be possible also to employ a copy on write mechanism, whereby data is only copied locally if actually
altered.

The nonintrusive asynchronous approach to checkpointing is obviously attractive. If computation
state is small then this may be quite satisfactory, but if computation state is large it is likely that sig-
nificant optimisation will be obtained by tuning the checkpointing at the application level, particularly

if the computation has a regular cycle. To allow for such tuning a transparent checkpointer may define
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routines to call a checkpoint, if a configurable minimum time has elapsed since the last checkpoint. and
also to set a maximum time before an asynchronous checkpoint is called [89].

An arbitrary concurrent computation comprises some collection of communicating processes. If one
process fails then on recovery it is in general necessary to recover other processes in addition to the one
which failed such that the global state of the computation is consistent. Restarting from such a state,
it is guaranteed that no inter process communication will be lost. If processes are checkpointed quite
independently, then it can be necessary on failure to recover all the way to the start of the computation;
the domino effect [94]. A checkpointer for parallel computations must therefore make some provision
to ensure that recovery is bounded. One option is to flush all ongoing communications [32) prior to
checkpointing all processes. An ordered multicast primitive can be employed to implement this [68].
Alternatively a two phase approach can be employed as in [93]. The disadvantage with a coordinated
checkpoint is the need for all processes to recover to the most recent checkpoint after a failure. The
approach is conceptually simple however and the interval between checkpoints may be tuned to reduce
the failure free overhead to an acceptable level.

For certain computations where the state is evenly partitioned between processors, the checkpointed
state can be combined as a parity checkpoint. Such an approach using memory on spare machines is
described in [90]. In the simplest case a single spare machine maintains a parity copy of the main data
on all active machines such that in the event of a single failure, the lost state can be reconstructed.
Tolerance to a greater number of failures can be achieved by increasing the number of parity copies.

It is possible to avoid rollback of all processes on any failure by checkpointing at message exchanges
or by logging messages sent. In a pessimistic approach each message is logged before it is sent so that
any recovering process can replay from its last checkpoint and fetch messages received prior to the
failure from the log. An optimistic approach allows asynchronous logging of messages but maintains
sufficient state to ensure that it can be determined which processes apart from the particular one which
failed need to be rolled back. In either case, it is necessary that a recovering process replays the same
execution during recovery that it performed before failure.

Publishing [91] implements a pessimistic log based checkpointing mechanism in a broadcast based
LAN where one node is set aside for all recording functions. Manetho [50] is an example of an op-
timistic protocol. Each recovery unit, a multi threaded process, constructs a view of the Antecedence
Graph which describes a “happened before” description of the overall computation, and piggybacks
changes to its graph in messages it sends. The graph has nodes representing recovery points and arcs
defining the “happened before” relationship. Each recovery point corresponds to the occurrence of some
nondeterministic event and marks the start of a period of deterministic execution leading up to the next
recovery point. While Publishing allows independent recovery of an arbitrary number of failed nodes,
Manetho optimises the logging process but may require to roll back surviving nodes after a failure.

In a shared memory model it is necessary to ensure redundancy in the shared state. Either the state
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is backed up as part of a checkpointing procedure or multiple copies of the state may be maintained.
In DSM systems it is usual to take the first approach and save shared state as part of a checkpoint.
In a coordinated checkpoint, if each process backs up all pages local to itself, an incremental backup
avoids making multiple copies of read only replica pages [25]. Log based checkpointing mechanisms
rely on recording interprocess messages to ensure consistency, but inter process interactions through
shared data in DSM do not provide such convenient points to build a log. A process execution depends
on the precise time at which a request for a cached page arrives from another process. However a log
based scheme for sequentially consistent DSM has been demonstrated in [108] and the overheads in this
scheme are significantly reduced if lazy release consistency is employed.

In SAM an approach which is similar to pessimistic log based checkpointing is employed [97).
Processes checkpoint independently to memory in other machines whenever they execute one of a set
of operations which are not re-executable. Since operations on single assignment values are assured
to be re-executable this set includes operations on accumulators and certain operating system calls.
All shared objects have a designated main copy which is that held by the owning process. For single
assignment values this is the creating process. For accumulators there is only one copy. Making a
checkpoint entails saving process local state, comprising stack etc. and all owned shared objects not
current with the last checkpoint.

The alternative approach of maintaining replica copies of the shared memory is illustrated by work in
Linda. Replication of tuplespace in memory on separate machines is considered in [119, 87]. However,
in addition to replicating shared memory it is necessary to implement some sort of process recovery and
ensure that the shared state remains consistent in the event of process recovery. In a Linda application,
removal of tuples from tuplespace implies certain work needs to be done, and either I/O or the generation
of new tuples to output the results of that work. This work and output should not be left incomplete
through process failure and recovery.

FT-Linda [12] implements atomic combinations of operations, the ability to define multiple tuple-
spaces, including stable tuplespaces (through replication) and atomic transfer of tuples between tuple-
spaces. In the bag of tasks structure, shared data is located in replicated tuplespace. A slave atomically
removes a task and replaces it by an in progress tuple, such that a monitor process can restore the ap-
propriate work tuple in the event of a slave failing while processing a tuple. As the slave processes a
tuple, it writes results into a scratch tuplespace and, on completion of the work, atomically replaces the
in progress tuple by the contents of the scratch tuplespace. MOM [27] partitions tuples into separate
lists, including a busy list for work tuples which are being processed and a children list for tuples gen-
erated by a worker which has yet to call Done. The busy list is then similar to the scratch tuplespace
of FT-Linda. Plinda [67] backs up tuplespace to disk to ensure availability rather than replicating it and
implements transactions as a means of enclosing a worker’s operations.

Paralex applies replication to achieve fault-tolerance in data flow style computations. Each compu-
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tation node is a replica group with a primary actually performing the computation and the state copied

to the secondary.

2.2.2 Supporting Node Replacement

In a distributed memory environment all communications between processes on separate nodes must
make reference to some node identification. In a NOW this would be the internet number. Furthermore
the total resources such as disks etc., are partitioned between the various nodes so that a process can only
access directly those which are connected to its current node. In such an environment node replacement.
i.e. process migration, has received much attention.

In distributed operating systems, e.g. [15, 47] the aim is to create the image of a single operating
environment on top of distributed resources. The precise degree of transparency supported varies from
system to system, but is typically high such that an application can make all usual system calls yet
not include code to support migration. Ensuring that file and signal operations continue to work after
migration just as before requires provision for forwarding system calls, but in the case of a call such as
gettimeofday it is more appropriate for the call to be always local. Achieving this level of transparency
forces a close coupling between migration mechanisms and the underlying operating system. Enabling
features include system wide process identification and file name space. Typically it is necessary to
make significant changes within the operating system kernel. However, it is possible to make all required
changes at the system library level [88]. The modified system library functions maintain the required
global name space.

Recently work has been done to implement transparent process migration at a higher level which
does not necessitate operating system changes. The approach employed in [31, 103] is to implement
wrapper functions for the routines in the message passing library. These wrappers implement the tables
necessary for correct message redirection and ordering. State transfer is achieved through coordinated
checkpoint and restart. Clearly these systems do not directly support transparent migration of all ser-
vices, such as continued access to files. It is possible however to achieve such continuity of access if
file accesses are all made through the same message passing library, as they are in parallel file systems
for NOWs such as [63, 95].

In a shared memory environment replacement of a node needs no extra provision over that required
to tolerate a transient failure. The failure typically leads to the program rolling back to the latest check-
point but then the displaced process is simply run on the new processor and can access shared memory
as before. In DSM the same is true at the application level, but within the shared memory support

system it may be necessary to take some action, e.g. to update directory information.
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2.2.3 Supporting Node Loss or Addition

If at a given point a parallel computation comprises a certain number of processes running one per
machine then there are simple ways of supporting node loss or addition. Node loss can be supported
by migrating the displaced process to another node. The resultant load imbalance can be avoided by
provision from the outset of spare nodes, but this extra capacity is wasted in the case of normal execu-
tion. An added node can be treated simply as an extra spare, but again this is not fully exploiting the
extra resource. These approaches may be acceptable in a closely coupled environment but in the rather
more dynamic environment of a NOW, it is desirable for a computation to be more responsive. However
supporting such responsiveness within a single parallel application inevitably impacts at the application
level. Either the application must explicitly reconfigure in response to a configuration change or it must
be implemented in a framework which will respond to the change.

If a computation incorporates dynamic load balancing then reconfiguration is readily supported. If
a computation partitions into a number of sgparate tasks then a convenient organisation is to employ a
single master process to schedule the tasks to an arbitrary number of slaves. The master is notified as
a slave completes a task and can then schedule a new task to that slave. The structure easily affords
tolerance to single slave failures, since control of the computation is centralised on the caller’s machine,
e.g. [106]. In a batch queuing service, there is no obvious place to centralise control of a computation
so the Distributed Resource Manager [37] replicates the master for availability and employs the causal
group communications primitives of ISIS to ensure consistent message ordering in exchanges between
master and slaves, and master and user interface.

The term adaptive parallelism is used in Piranha [69] to describe a programming approach which
allows a computation to adapt to changing resources. Piranha implements a load monitor on each node
which can signal change of resource. Computations are structured as master, termed feeder, and slaves,
termed piranha. The computation is partitioned into a collection of tasks which may have dependencies.
The feeder administers a data structure which controls whether or not any given task may be executed
yet or not and feeds the tasks which may be executed to the piranha. The tuplespace of Linda is used
for this communication. While not supporting fault-tolerance this approach adds functionality to the
basic bag of tasks structure by defining a way of supporting task dependencies. Both FT-Linda [12]
and Plinda [67] employ the bag of tasks structure as an example of a computation which can be made
fault-tolerant using their respective facilities.

CALYPSO [16] is based on an approach similar to the bag of tasks, an application is structured
out of parallel loops possibly separated by serial code. A parallel loop is converted by a compiler to
a collection of thread segments, each corresponding to an iteration of the loop. These are distributed
between a potentially varying collection of slaves. A slave accesses shared data from a memory server

by page faulting but at the end of a thread segment the slave computes a set of diffs for each page and
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sends this back to the server. A data structure on the memory server records which thread segments of
a given loop have been issued and which completed. While the same thread segment may be issued
multiple times if there are not enough for the number of slave processes, it is ensured that all operations
are idempotent. It is possible to generalise the approach to employ multiple memory servers [39].

If the number of nodes participating in a data parallel computation is altered it is necessary for the
data to be repartitioned. In a data parallel language, this implies changing the mapping of virtual to
physical processors. For example, in a Dataparallel C program [84] each processor measures the rate of
virtual processor emulations and periodically virtual processors are remapped according to the ratio of
emulations on a particular processor to the total rate of emulations over all processors. Redistribution is
only done between whole iterations.

Other systems are designed to support adaptive processing for applications implemented directly
as SPMD, e.g [8, 49, 92]. These systems operate by redistributing data at suitable remap points, i.e.
between complete iterations. It is necessary then either for data to be expressed in a way defined by the
system [8, 49] or for the user to provide some definition as to how the data is to be distributed across a
given pattern of active processors, e.g. through a procedure called by the system [92].

Many computations are not easily partitioned statically and dynamic load balancing is an inherent
feature of any implementation. Cilk-NOW [22] demonstrates how easily such computations can make
use of the changing resources of a NOW. Cilk implements a distributed scheduling mechanism for
multithreaded computations suited for instance to a game playing program. The NOW version adds a

checkpoint mechanism and some facilities to locate free machines.

2.3 Management of Secondary Storage

For single host control, RAID storage systems are available as commodity units for attachment to a
PC as well as supercomputing storage repositories. There are also implementations based partially or
totally in software.

RAID techniques have also been used to implement high performance distributed file systems for
workstation networks, such as Swift [26] to support the high data rates required for multimedia data,
in Zebra [64] which employs log structured output for higher performance writes and in Xfs [7] which
introduces also the use of cooperative caching. These systems support access to high bandwidth storage
by single processes.

There has been some development of parallel file systems for NOW environments VIP-FS [63], PI-
OUS [81], PESLib [95]). Of these VIP-FS and PFSLib are adaptations from multiprocessor systems. All
employ a commonly available message passing library for portable transport and assume the presence
of a conventional file system, implementing a mapping from multiple component files to the overall

parallel file, but have different emphases. VIP-FS supports the two phase strategy of its parent system
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PASSION [41] but also a new strategy called assumed requests which aims to reduce the number of
network transfers in a lower bandwidth NOW environment. PIOUS employs a transaction mechanism
internally to ensure sequential consistency if multiple clients access the same file. PFSLib is part of a
larger system aiming to support Paragon emulation on a workstation cluster for early program develop-
ment phases and so emphasises support for the file access modes of the Paragon.

While there is much work published on fault-tolerant in core parallel computations very little has
been found on applying fault-tolerance to parallel computations which make significant use of secondary
storage. In the case of primary memory based shared data a common approach to providing support for
transient node failure is some sort of checkpoint mechanism. The size of data on secondary storage is
likely to be much larger however, so here the alternative approach seen in Linda systems is assumed. In
this case there is some degree of redundancy supported in the storage and also some mechanism which
can be employed to ensure application level consistency.

Redundancy at the disk level exists in single host based RAID systems. The network based RAID
systems [26, 64, 7] support recovery following failure of a whole node. Assuming that by employing
extra storage nodes as hot spares or by replicating data it is possible to achieve any required degree of
redundancy in the data, it remains necessary to support application level consistency. Furthermore the
issue of adapting to changing resources at the application level needs to be addressed, both in terms of
mechanisms and performance impact.

While a file system mechanism such as sync in UNIX can ensure a consistent state between separate
files in the same file system, it is somewhat crude. Database systems however have long addressed the
need to ensure consistency of distributed state at rather finer granularity through the atomic action (trans-
action) [60] concept. An atomic action has an associated scope within which an update of persistent data
is made in a consistent way. A consistent update which may affect multiple possibly distributed objects
is intuitively one which is “all or nothing”. Through some language level mechanism the programmer
can define the scope of an atomic action, typically by some indication of “BEGIN™ and “ABORT" or

“COMMIT”. Formally the properties of atomic actions are described in the following well known way:

serialisability, in that an execution consisting of multiple concurrent atomic actions which access

shared state appears to execute according to some serial ordering of the atomic actions,

failure atomicity, in that all effects of a computation contained within an atomic action are undone on
failure of that action,

permanence of effect, such that once a state update is committed, it is not lost, barring catastrophic
failure.

This work employs atomic actions to implement application level consistency in a series of experiments
which form part of a study into the application of a bag of tasks based structuring approach to support

exploitation of changing resources by data intensive computations.
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A widely used extension to the basic atomic action concept is that of nesting, whereby a number of
separate atomic actions are nested within the scope of an enclosing action to achieve the overall effect
of a single atomic action [80]. Nesting may be continued to any number of levels. While the effects
of nested actions which abort may be undone immediately, effects of committed nested actions may
only be made permanent through COMMIT at the top level. A number of systems have been developed
to research the use of nested atomic action specifically in a distributed and potentially heterogeneous
environment e.g. Argus [78], Camelot [51], Clouds [36], Arjuna [86]. A target application might be a
banking system where accounts belonging to a particular branch are maintained on machines local to
that branch rather than at a centralised location on a rather larger machine. Without replication of data,
the distributed system allows continued access to all data apart from that on a particular failed node.
Many further extensions to the basic model are described in the literature, but one which is immediately
relevant in this work is the notion of a nested top level action, described in early reports on Argus. The
idea is to enable some benevolent side effect to be performed outside of the constraints of an ongoing
action hierarchy. The nested top level action steps out of the current hierarchy and begins a new one.
Control returns to the original hierarchy on completion of the nested top level action.

Possible approaches to building parallel applications using the atomic action facilities of Argus are
described in [13]. For example, a simple implementation of parallel matrix multiplication is described
where each slave is a guardian apportioned a part of the output matrix to compute by a master guardian.
A slave checkpoints each computed row to stable storage and maintains an integer value determining
the next row to be computed. This structure is chosen to optimise performance in a collection of homo-
geneous machines. However, the strategy prevents other processes from taking over the work of a failed
process and can thus degrade performance in the event of a failure occurring. Another application con-
sidered is the travelling salesman problem which is less regular than matrix multiplication. Here again
the approach suggested is to partition the work statically between slaves, with the master pre-computing
the first couple of levels of the search tree. Use of a resilient data type [116], is suggested as a possible
way of making the master fault-tolerant, though issues of dynamic load balancing are not addressed.
All the computations are structured as in core and no performance results have been published.

Another example of the use of atomic actions to structure parallel programs is Pact {79], but the
context is different. Rather than providing for access to distributed persistent state consistently, Pact
adds atomic action functions to a sequential language to facilitate fault-tolerant coordination in DSM

based programs. However the system is targeted at closely coupled multiprocessors and indeed relies

for its log based recovery system on a global clock.
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2.4 Using A Shared Object Store

The emphasis of the work described here is on implementing parallel computations on the changing
resources characteristic of a NOW. Of particular concern are large scale parallel computations which
make significant use of state which resides outside primary storage, typically on disk. The computation
model which is presented here comprises a shared space of persistent objects which may be distributed
over a number of machines. Within this object space individual objects may be replicated to increase
availability. A computation is performed by slaves which have no persistent state, but can access the
shared objects. Atomic actions are employed to control such concurrent accesses and also to ensure
consistency of updates to distributed state. Concurrency between such accesses is controlled by atomic
actions. This section begins by describing possible ways of distributing such computations and con-
cludes by introducing a small number of example applications which will be reused throughout the

remainder of the thesis.

2.4.1 A Static Computation

In a simple static organisation, each slave executes a predetermined allocation of tasks. There is no
mechanism for dynamic load balancing and no provision for fault-tolerance. A possible configuration is
shown in figure 2.1. In this case all shared data objects are shown residing on a single disk connected to
a single machine. If the interconnection bandwidth is sufficiently high, the shared objects may be dis-
tributed over multiple machines either in whole or partitioned in smaller constituent objects. Similarly
it is possible to distribute objects over multiple disks which are attached to the same machine.

The user starts a Master process, M, which controls the overall computation. The master creates
the chosen number of slaves, S1—S;, on separate workstations to perform the computation in parallel,
informing each slave of a unique allocation of tasks to perform. Any number of slaves may be created,

though if the number exceeds the total number of tasks defined, then some will have no work to do.

2.4.2 A Dynamic Computation

If a bag of tasks is added and initially loaded with a description of each task, the load balancing becomes
dynamic. The computation may now run more successfully on networks of nonidentical machines, and
tolerate better the presence of external load on participating machines. The bag of tasks is simply
another object to be located in the shared repository, but need not be disk based.

It is possible for an appropriate slave located on some arbitrary machine to join in an ongoing com-
putation if it knows the identity of all the main objects making up the shared state of the computation,
including the bag of tasks. It is convenient to maintain such a list in a single object which will be

referred to as a computation object.
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Figure 2.1: Possible distribution of a static computation

2.4.3 A Fault-Tolerant Computation
In a static computation there are the following areas of concern:

* A machine hosting a slave may fail. None of the other slaves will take over the unfinished work

of the failed slave. In the organisation described so far, there is no record of how much work has

been done by the slave.

¢ A machine hosting shared objects may fail. In the most basic configuration all shared objects are
co-located on a single machine. In this case a failure prohibits any further progress by any of the

slaves and any results not saved to secondary storage are lost.

¢ The machine hosting the master, which initiates and subsequently waits for completion of the
computation may fail. If the required number of slaves have been initiated before the failure,
then the result is simply that the user does not know the outcome of the computation though the
computation may progress towards completion. However, if this is not the case, then there may

be no further progress although system resources may remain in use.

It is assumed that a workstation fails by crashing and that such crashes can be detected using
timeouts in a basic communications layer. In such a crash any data in volatile storage is lost, but
that held on disk remains unaffected.

Without a mechanism for dynamic load distribution, it is necessary also to assume that a slave pro-

cess will be started after a failure to continue work originally allocated to the failed slave and remaining



CHAPTER 2. STRUCTURING 27

unfinished at the time of failure.

The following enhancements add fault-tolerance to the static computation.

1. Before starting work on a new task, a slave begins an atomic action and only completes that action
after it has finished the work and set a flag in a shared array of recoverable flags to indicate task
completion. In the event of slave failure, the action containing an in progress task is aborted and
any effects of that task undone. The task completion flag remains unset so that the task can be

re-scheduled to a new slave.

2. To ensure tolerance to loss of k copies of a shared object, all objects are replicated on at least k+1
machines. This option marks an extreme in a range of possible measures to ensure availability of
data. An example of a cheaper option is to depend on parity checking in a local RAID system
to tolerate loss of a single disk. The host is assumed to be restarted immediately following a
software crash. In the event of a presumed unlikely host failure, it would be necessary to either

tolerate longer unavailability or reconnect the storage system to another host.

3. The computation object referred to in section 2.4.2 is sufficient to ensure decoupling of the com-
putation from the user who initiated it. Overall computation status is represented in the array
of task status flags, but a possible optimisation is to represent it also directly in the computation

object.

2.4.4 A Dynamic and Fault-Tolerant Computation

As in section 2.4.3, a slave encloses a task execution within the scope of an atomic action, but in this
case a fault-tolerant bag of tasks is employed for task scheduling. It is then not necessary to assume
that a slave will be initiated following a failure. Instead the failed slave’s unfinished work may be
automatically redistributed amongst the surviving slaves.

The slave begins an atomic action before fetching a task from the bag, and commits the action after
writing the corresponding result. If the slave fails the action aborts, all work pertaining to the current
task is recovered and the task itself becomes available again in the bag, to be performed by any other
slave. As in section 2.4.3, the shared objects may be replicated and a computation object defined both
to decouple computation and initiator and, in the presence of a bag of tasks, to permit a process to join

in an ongoing computation.

Figure 2.2 shows how an application which incorporates these fault-tolerance features may be dis-

tributed.
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Figure 2.2: Possible distribution of a dynamic and fault-tolerant parallel computation. The
shared objects are shown distributed for performance, independent of the replication.

2.4.5 Multiple Step Computations

A simple computation can be implemented using a single bag of tasks. However, some computations
cannot be decomposed into a single set of independent tasks. It is then possible to divide up a com-
putation into a number of parallel steps as illustrated in figure 2.3. The computation is represented in
a sequence of bags of tasks of which one bag is current at any time. All slaves wait, i.e. pause(), till
the current bag is empty before attempting to select a task, remove(), from the next in the sequence.
Thus a transfer from one bag to the next marks a barrier synchronisation point. In the example code, an
atomic action is implemented as an object and its scope defined by exported operations; Begin(), Abort()
and End(). The resulting structure which supports a parallel loop programming style is similar to that
described in CALYPSO [16]. However, while in CALYPSO a sequential code segment is executed by
the master, it is possible instead to represent such a section of code by a bag containing only a single

task.

2.4.6 Synchronisation By Side Effect

In some situations it may be preferable to allow tasks to depend on the results generated by other
tasks in the same bag. It is then necessary to employ some synchronising mechanism such that a task
can be blocked until some prior task has completed and produced output. A simple mechanism is to

employ a flag which indicates whether a corresponding task result has been written or not. Concurrent
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while (TRUE) { // dummy condition
AtomicAction A; A.Begin();
status = b—>remove(work);
if (status == EMPTY) {

5 A.Abort();
bid = nextbagid();
if (bid == NONE) break; // quit enclosing loop

else { delete b; b = new Bag(bid); }
} else if (status == NONE_AVAILABLE) {
10 A.Abort();

pause();

} else {

dotask(work);
A.End(); // assume no error in task execution

15 }

Figure 2.3: Slave pseudo code for example multiple step fault-tolerant computation.

access to the flag is controlled through locks obtained within the scope of an action. Where inter task
dependencies are satisfied through side effects in this way it is clearly necessary for entries in the bag

of tasks to be ordered if deadlock is to be avoided.

2.4.7 Multiple Level Computations

Just as it is possible to structure a computation with a sequence of bags of tasks, so too is it possible to
employ a hierarchy of bags of tasks. This can be used to encourage each slave to process a sequence of
tasks, yet still ensure that all tasks are completed if the collection of slaves changes through the com-
putation. In the simplest case a single higher level bag of tasks contains only references to a collection
of bags logically at a lower level. Each slave selects a lower level bag through reference to the higher
level bag and then continues processing the tasks in the lower level bag until that is complete. It is
necessary for a slave to enclose task executions for the lower level bags in a top level atomic action so
that results of completed tasks at this level are not lost on failure of the slave while the entry identifying
the lower level bag remains in the higher level bag. In this simple example, illustrated by the slave code
in figure 2.4 bags of tasks are used at the lower level for uniformity. However it is possible to place
multiple entries in the higher level bag all referring to the same lower level bag to allow a group of
slaves to process the same lower level bag concurrently. Clearly it is feasible to generalise further to a

hierarchy of bags of tasks. It is also possible to combine elements of the three approaches.
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while (TRUE) {

AtomicAction A; A.Begin();

status = bl—>remove(bid);

if (status == EMPTY) {

5 A.Abort(); break;

} else if (status == NONE_AVAILABLE) {
A.Abort();
pause();

} else {
10 delete b2; b2 = new Bag(bid);

while (TRUE) { // process lower level bag till empty
TopLevelAction T; T.Begin();
status = b2—>remove(work);
if (status == EMPTY) {
15 T.Abort(); break;
} else if (status == NONE_AVAILABLE) {
T.Abort();
pause();

} else {

20 dotask(work);
T.End(); // assume no error in task execution

25 }

Figure 2.4: Slave pseudo code for example multiple level fault-tolerant computation.
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2.4.8 Example Applications

Reported applications of a bag of tasks type structure include seismic computations [1, 65]. materi-
als science [107] and ray tracing [21]. The main memory requirements are modest and where these
examples manipulate disk based state, the data is easily managed by a single disk with all /O being
performed by the master process.

In the work reported here, three examples are employed. The first is a port of a publicly available ray
tracing package which might easily be implemented, at least with no support for fault-tolerance, over
many alternative infrastructures. The remaining applications are dense matrix computations, matrix
multiplication and Cholesky factorisation whose data requirements scale rapidly with the problem size.
The latter two serve as examples of computations which, at large scale, may exceed aggregate memory

capacity and so be managed as out of core computations.

Ray Tracing

One of a number of publicly available utilities to compute ray traced images of a scene described in
a simple textual language is rayshade. For this package, input data comprises only scene description
and output a two-dimensional array containing the red-green-blue values for each pixel. A ray tracing
computation can be quite compute intensive even for a fairly simple scene and small image size, where
neither data referred to is very large and therefore this must be a good candidate for network parallel
execution.

The currently available version of rayshade is 4.06 [72], but while this version has attractions in its
functionality, an earlier version [71] was modified independently at Yale to run on the network Linda
system [21] and therefore offers the possibility of a comparison. Accordingly it is the earlier version
that is employed in this work.

The Linda version of the utility is organised as a bag of tasks where the master places in tuplespace
a single integer which is set to the highest scanline number. A scanline is a row of pixels in the image
and is the unit of work performed by a slave. Each worker process repeatedly reads and decrements this
counter, through in and out, and then computes the pixel values for the required scanline. The worker
puts the resulting scanline into tuplespace from where the master retrieves scanlines in the correct order
and writes them in sequence to the output file.

The bulk of the Linda code can be embedded directly in the basic master slave structure. A similar
approach to that adopted in the Linda version may be employed by wrapping the worker code of the
Linda version in a slave structure similar to that employed in the matrix computations. A task is defined
as the computation of a certain number of rows of the output array, this number then being the grain
size. Each grain of the result is stored as a separate persistent object and computed within a separate

task. The Master process which starts up the computation, also copies output data into the correct file
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format, Utah Raster RLE format, for further processing such as conversion to postscript.

In a static version each slave is assigned a fixed set of tasks to perform at start up. In an alternative
fault-tolerant version, the integer defining the last scanline in the Linda implementation is replaced by
a fault-tolerant bag of tasks, with each entry containing the index of the first and last pixel line to be
computed. The copy to RLE data format by the Master is not fault-tolerant, but is of quite limited

duration compared to the main part of the computation.

Matrix Computations

Two matrix computations serve as examples of computations which manipulate large state. These are
matrix multiplication and Cholesky factorisation. In order to maximise locality and thereby gain greatest
benefit from caching at higher levels of the memory hierarchy, it is common to layout matrices according
to smaller blocks, or submatrices, and decompose an operation on the original matrix into a combination
of operations on the constituent blocks [57]. For convenience, the arbitrary size operand matrices are
structured as a collection of square blocks which may be accommodated in slave memory. In each case,

a task corresponds to computation of a single block of the result matrix.

Matrix Multiplication

Conventional block oriented matrix multiplication is performed in which a convenient unit of work to
allocate to a task is computation of a block of the result matrix. These tasks may then all be computed

in parallel. In the matrix multiplication,
C=AB,

if the p blocks in the ith row of A are labelled a; 1, a; »...@;,p, and the blocks in B and C similarly, then

14
Cij = _ikby,;
k=1

Figure 2.5 shows the essential features of the slave operations. Since all tasks are independent it is
again possible to employ a single bag of tasks, each entry specifying the coordinates of the block to be

computed within the corresponding task.

Cholesky Factorisation

Cholesky factorisation computes from a single full matrix two triangular matrices whose product is the

original full matrix and which are the transpose of each other; i.e. computing G, given A below.

GG' =A
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void matmult(int i, int j) {

sum.set(0);
for (int k=0; k<A.dI(); k++){
5 a = A(, k);
b = Bk, j);
a *= b;
sum += a;

}

10 C(i, j) = sum;

Figure 2.5: Function to perform one task in matrix multiplication by bag of tasks.

The example considered here is the factorisation of a dense matrix. This is a relatively simple
factorisation to implement yet it demonstrates the potential variety of different ways of structuring a
computation which cannot be conveniently partitioned into purely independent tasks. It is convenient
to partition the operand matrices into square blocks and employ a left looking algorithm such that each
block is written only once. It is only necessary to write half of the result matrix since it is triangular.
However there are restrictions on the execution of these tasks. Each block in the output matrix depends
on the block in the same block row to its left and if not a diagonal block also on the diagonal block in

the same column as shown in figure 2.6.

0,0 810 81,1

w0 ) Oe0w0

g0 &L - - 820 871 822
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Figure 2.6: Dependencies in left looking blocked Cholesky

An algorithm which suits this organisation is given in [59, §6.6.5]; the essential features of the
slave operation are shown in figure 2.7. Using the same algorithm, there are various ways in which
the inter task dependencies may be satisfied, but here just three are highlighted. Conceptually perhaps
the simplest is that based on a single bag of tasks, but a synchronisation mechanism must be defined
in addition to the bag of tasks and in addition the bag must be ordered in order that deadlock may

be avoided. The simplest implementation requires no such synchronisation mechanism but employs
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void cholesky(int i, int j) {

sum = A(i, j);
for (k=0; k<j;, k++) {
5 // wait for each block if necessary
w = G(i, k);
y = G(, k);
w *= y.franspose();
sum —= w;
10 }
if (=) {
sum.chfactor(); // in place block cholesky
} else {
diag = G(j, j);
15 // solve for x: x+diag = sum, overwriting sum

sum.solvel(diag.transpose());

}

G(i, j) = sum; // write result

Figure 2.7: Function to perform one task in Cholesky factorisation by bag of tasks.

multiple bags to achieve barrier type synchronisation points. Each bag contains similar tasks, with
alternate bags in the sequence performing block factorisations and block solves. However, there are
intervals of sequential code computing the blocks on the diagonal. A third alternative aggregates the
task computing a block on the diagonal with the one computing the block immediately to its left to
try to achieve some overlap of the sequential work, at least where the preceding column is large. The

alternative allocations of tasks to bags are as shown in figure 2.8. The general outline of figure 2.3

80,0 . . ] ° ¢ o 1] = o o 1 » ¢ o
810 811 « 1 1 = - 2 3 -2- 0
820 821 822 - 1 11 ° 2 4 5 ° 2 -3-
830 83,1 832 833 1 111 2 4 6 17 2 3 -4

(a) single bag (b) multi-bag(1) (c) multi-bag(2)

Figure 2.8: Synchronisation alternatives in Cholesky factorisation by bag of tasks. The
order of processing is down columns from left to right. In (b), bag 3 has only a single task,
which computes g1 ; but in (c) bag 3 has two tasks, the first of which computes g3, and
g2,2 and the second of which computes g3,2.

may be employed and the single bag of tasks option is simply the special case where the list of bags
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specified in the computation object has just one entry. An entry in a bag contains either one or two pairs

of integers, defining the coordinates of block or blocks to be computed in the corresponding task.

2.5 Summary

This work is concerned with performing parallel computations in a NOW. Specifically the problem
addressed is that of exploiting the changing resources available to a parallel computation in a NOW. In
order to achieve this, a parallel application should be able to accommodate the unnotified loss and/ or
addition of a node. In practice there are seen to be a number of mechanisms which address different
parts of this requirement. Checkpointing and replication mechanisms address transient node failures
with generally a high degree of transparency. More generally they provide basic support through which
an application can tolerate node loss. Migration systems have addressed the particular problem of
transferring a process from one machine to another. The general problem impacts all accesses to system
resources, but restricted support can be provided in the form of an interposing layer at the interface
to a message passing library. On the other hand, using a shared address space for all inter process
communication provides support for application migration transparency. Support for reconfiguration to
use fewer or more nodes is always a matter for application level structuring.

While approaches exist for structuring in core problems in a suitably dynamic and fault-tolerant way
this does not appear to be the case for out of core problems. However there is much work concerned
with maintaining availability and consistency of distributed persistent state. Here a parallel computation
is structured around a collection of objects in a shared store which are based on secondary storage. The
two basic structuring mechanisms are the atomic action and recoverable bag of tasks, the latter having
the property that an operation on the bag can be enclosed within the scope of an atomic action and be
committed only on completion of that action. Using these mechanisms it is possible to construct various

dynamic parallel structures. Three example applications are described which will be used again later.
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Modelling

Having defined a computation structure it is necessary to establish an approach to its evaluation. This
evaluation is concerned both with the benefit which is obtainable through parallelism and with that ob-
tainable through the fault-tolerance mechanism. In this chapter an analytical model of the computation
structure is presented to allow prediction of the overall runtime for any given number of processors. A
simple approach is developed which suffices for the class of problems studied here to allow algebraic
expressions to be derived for overall runtime in terms of low level parameters, such as disk and com-
munications transfer costs. The intention is not to make a generally applicable model, but purely to
support performance prediction for the specific applications picked as examples. In a different example,
elements of the approach may be reused, but the detail would be different. Parts of the work in this
chapter and early results from the next appear in [102].

While the analytical approach supports estimates of the computation runtime, and allows some con-
sideration of recovery cost, it makes assumptions about the costs associated with the fault-tolerance
mechanism. In practice such assumptions seem reasonable if the granularity is large enough, but con-

sideration of this issue is deferred till presentation of experimental results in the next chapter.

3.1 Preliminary

A collection of slaves is assumed to be allocated one to each of a collection of processors, which are
connected by a network. Each slave has full utilisation of its processor and the collection of slaves
have full utilisation of the communications network connecting the processors. The slaves execute
concurrently but access main data objects and bag in a shared repository. All accesses to this shared
store are serialised, such that any particular access may be delayed arbitrarily. This model is similar to
that presented in [1], but emphasises the determination of minimum parallel time and extends the earlier

work by showing how to compute bounds on this minimum time, both where there are no inter task

36
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dependencies and where there are dependencies.

Each slave executes a single unique task at a time. The identity of the next task to perform may be
regarded as part of the input at the start of a task, and the cost of its access assumed to be small compared
to the cost of reading task input data. A task may entail reading and updating objects in shared store.

It is assumed that each task comprises three components, summarised in table 3.1: Figure 3.1 shows a

Table 3.1: Bag of tasks basic operations

Name Time  Description

get Tget  in which input data required to perform the task is read from
shared storage.

compute  Tcomp in which computation entailed in the task is performed
within the slave machine.

put Tput  in which results computed by the task are written to shared
storage.

visual representation of alternate bag of tasks executions.

,.H

& |

(b) @

get
compute .
P Time
put —

Figure 3.1: Example bag of tasks computation with: (a) 3 processes and (b) 5 processes.

If there is more than one slave, the execution of the computation depends on the pattern of accesses
to the shared store. While it is reasonable to assume that the longest waiting slave is served first, no such
assumption can be made if two slaves requests are coincident. The overall duration of the computation
may vary depending on the order in which slave requests are served. In figure 3.2 when the first process

finishes its first task, it competes with the second for access to the shared store.
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(a)

get
compute )
put Time

Figure 3.2: Example bag of tasks computation with 2 processes, showing variation in exe-
cution time through differing allocation patterns of the shared store.

The task components described above may be of identical duration within different tasks or varied.
In the simplest case, they may be contiguous. It is also likely for instance though that data is fetched
as it is needed through the task computation rather than all at once, particularly if the data required is
large.

The ideal is to determine overall execution time for an arbitrary number of slaves. However in two
cases, the analysis is easier. The first is where there is one slave only, the single slave performance,
when all operations are serialised and the second is the minimum parallel execution time, the limiting
performance. The latter is certainly achieved when there is a separate slave computing each task, but
may be achieved by a rather smaller number of slaves if there is some limiting effect, such as due to
network bandwidth.

Ideally all tasks are independent such that an object updated within one task is not read or updated
within any other task. However, there may be occasions when it is desirable to incorporate synchron-
isation mechanisms such that an access to a dependent object is blocked until that object is output by a
dependent task.

If there is significant reuse of computation data, it may be possible to benefit through caching such
data. Assuming that the shared object store is implemented above a general purpose file system some
caching within the file system buffer space may be inevitable.

Finally an overall computation may comprise a number of steps, in which case it is necessary to

aggregate performance of all separate steps.
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3.2 Limiting Performance

First it is assumed that each task comprises get, compute and put components of identical duration and
that these components are contiguous within the task.

If there are NV tasks overall, a single remote slave performs the computation in time, T} . given by
Ty, = N(Tget + Tcomp + Tput) . 3.1

Minimum execution time, T, is observed when there is a separate slave processor allocated for
each task. All these slaves attempt first to perform initial reads, then computation before writing results.
The resultant overall elapsed time depends on the relative values of computation and communication
times.

At any point during execution of a task, a slave must be either computing, accessing the shared store

or waiting for access to the shared store. Therefore it must be true that
T < Tcomp+ N(Tget + Tput) . (3.2)

Otherwise, there must be an interval during which a processor performing some task is neither com-
puting nor accessing the shared store though the task remains uncompleted and access to the store is
available. In practice T, is only equal to this upper bound for the trivial case where T get = 0 and/or
Tput = 0.

Since all communication is serialised, a lower bound on T, is the sum of all communications.
T > N(Tget + Tput) . (3.3)
This bound is closest when computation is dominated by communication; specifically such that
Tcomp < (N — 1)Tput

and

Tecomp < (N — 1)Tget .
A lower bound on T, is defined by the available parallelism,

T
To > _Nl_ 3.4)
Tget + Tcomp+ Tput .

1l

If computation dominates either input or output, then it overlaps all but one of those operations, 1.e.
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if

Tcomp > NTget
or

Tcomp > NTput
then

Tx = Tcomp+ N - max {T'get, Tput} + min {Tget, Tput} .
Otherwise T is greater than this value, so it is possible to define the following bound, which is rather
closer than (3.4) above;

Teo > Tcomp+ N - max {Tget, Tput} + min {Tget, Tput} . (3.5)

In general, object store accesses are fragmented through the duration of a task rather than taking
place all either at the start or at the end. If the granularity remains the same and if the values Tget,
Tput and T comp are the total times obtained by adding up those for all reads, writes and computation
associated with a task then (3.2), (3.3), (3.4) are still valid but (3.5) no longer is.

Combining (3.2), (3.3), (3.4):

Iwr{Too} < Too < upr{Tu}

where:

lwr{Tw} = max{%, N(Tget+Tput)} , (3.6)
upr{Te} = N(Tget+ Tput)+ Tcomp . (3.7)

If different tasks have different read, write and compute times then the minimum parallel time is

determined by the duration of the longest task, thus:
Teo > max {T'task(i)} .

Which task is longest may depend on hardware characteristics, but its duration is bound to be greater
than or equal to the average task duration. It is possible then to use the average task length in place of
the maximum to determine a lower bound on parallel time. Then similar relationships may be defined

to those above. If T'get(i), Tput(i) and Tcomp(i) are the read, write and compute components for the
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ith task, and

i=1

N N N
TGET = Tget(i) , TCOMP = > Tecomp(i) , TPUT = > Tput(i)

i=1 i=1
then
Ty =TGET +TCOMP +TPUT (3.8)
and
Wwr{Tw} = max{%, TGET+TPUT} , 3.9
upr{Tw} = TGET + TPUT + max{Tcomp(i)} . (3.10)

The quantities TGET, TPUT and TCOM P are the total read, write and compute times obtained by

summing those for all tasks.
Corresponding expressions for maximum algorithmic speedup may be obtained, from (3.1), (3.6),

3.7
N(Tcomp + Tget + Tput)

Seo Tcomp + N(Tget + Tput) ’
5 . Tcom
S < mln{N, 1+TgeT+T%} .

Ideally, if communication cost is negligible then TGET = T PUT = 0 and speedup is equal to the
number of tasks, i.e. Sooc = IN. However, if the communication costs are significant with regard to the

computation cost, then it is possible for So, to be less than N.
The maximum number of slaves which may profitably be used is not less than S... If the speedup

is ideal the number is Sqo.
Similarly from (3.8), (3.9), (3.10)

S TCOMP + TGET + TPUT
® = max{Tcomp(i)} + TGET + TPUT ’

min{N, 14 TG%%OI%’,’UT} :

IN

Soo

In this case if communications are negligible,

_ TCOMP
" max {Tcomp(i)}
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3.3 Non Limiting Performance

Where maximum parallelism is reached analysis is simplified because either serial communication dom-
inates or each task is started in parallel. In the general case each slave executes more than one task but
those executions are not constrained to a particular order by the requirements of communication. It is
necessary to consider different possible orderings of tasks, though it can be assumed that the longest
waiting requester is served first.

Figure 3.3 illustrates example executions for collections of similar tasks, but in this work no attempt

iz W O

(a) : :
L I —

i i I m—

R N a—

get
compute .
Time

put o

Figure 3.3: Example bag of tasks computations with 2 processes.

is made to determine close bounds on the duration of such executions. Instead the obvious lower bound
Ty
Wy =——
s

is used exclusively.

3.4 Inter Task Dependencies

It is possible to employ a synchronisation mechanism within shared data objects separate to the bag of
tasks so that an access to a dependent object is blocked just until that object is ready. Clearly when
the computation is performed by a single slave, the synchronisation imposes only an overhead cost
It is however necessary to reconsider the calculation of the execution time when more than one slave

participates in the computation. A lower bound on minimum parallel time may be obtained by ignoring
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all dependencies such that all tasks execute freely in parallel. A simplification which yields an upper
bound is obtained by tightening the dependencies such that rather than relating to data objects, they
apply only to complete tasks. The required value is then the upper bound on execution time of this
simplified computation.

Figure 3.4 shows a parallel computation divided into three tasks where two of these tasks depend

(a) Possible

execution

(b) Ignore

dependencies

(c) Simplified to

task dependencies

get
compute

Time
put -

Figure 3.4: Possible bounds on performance of parallel computation in which tasks are not
all independent.

at some intermediate point of computation on the output of the third task. Also shown are the lower
and upper bounds on computation time obtained by approximation as described above. In this simple

example all task computations are all of the same duration and the computed bounds are:

lwr{Tow} = max{3(Tget+ Tput), Tcomp} ,

upr{To} = max{3(Tget+ Tput)+ Tcomp, 2*Tcomp} .

If the computation is communication bound, such that T'comp is small then clearly these bounds are

very close. However, in the extreme, where communication cost is negligible, such that

Tcomp > Tget + Tput
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the upper and lower bounds on computation time may differ by up to a factor of two.

If it is not known how far into a dependent task the dependency occurs then the only sure upper
bound is that obtained by assuming that the dependency occurs at the very start of the dependent task.
This approach leads to the task dependency approximation above. However., if the computation part of
the dependent task may be partitioned into two known amounts, preceding and following the point of
dependency, then a tighter bound is possible. The alternative upper bound is obtained by pretending
that there is a barrier at the point of synchronisation. In the example of figure 3.4, the actual execution
is such that no process proceeds beyond the synchronisation point until all are ready, just as if a barrier
were present. However there are situations where this is not the case. One such situation is illustrated

in figure 3.5.

(a) Possible

execution

(b) Ignore

dependencies

(c) Simplified to [ . 1 ] -
barrier S : :
s o = |
BE| cet
| | compute Time
put —

Figure 3.5: Example illustrating alternate bounds on performance of parallel computation
which has data dependencies.

In an actual execution the process updating the object depended upon would proceed to compute
the next task. Approximating the actual execution with a barrier construct implies pretending that the
start of the process’s next task execution is delayed till after the synchronisation point but this has
the benefit of partitioning the computation into clearly defined phases. The total computation time is
then determined simply by adding the computation time of each separate phase. Between barriers, the

techniques described in preceding sections may be employed to bound performance of tasks executing

freely in parallel.
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3.5 Cache Effects

So far, all data accesses by application slaves are assumed to be to the shared store, but it is possible
to organise the overall computation to attempt to reuse data which has recently been used and may
therefore be accessed more cheaply. It is possible to conceive of other levels of storage, but here a three

level hierarchy is defined.
1. Slave memory
2. Object server memory
3. Disk

It is assumed that all writes are through to the disk, but that a read may be satisfied within either slave
or server memory. Slave memory is obviously private, but server memory is common for all slaves. In
a simple realisation of the shared store which is layered above a standard file system, a degree of object
server level caching within file system buffer space is involuntary.

In order to predict performance, it is necessary to count the number of reads from each level in the
memory hierarchy. The first performance measures to consider are the single slave time and minimum
parallel time.

It is assumed that the computation comprises N tasks of various duration and with varying com-
munications requirements. Clearly the memory required to support a given cache strategy may grow
with the number of slaves and it is possible in such a case for the execution time to increase as the
number of slaves is increased above some value. However, assuming there is sufficient memory to meet
the requirements of any chosen cache strategy, the minimum parallel time is still seen when there is
an unbounded number of processors such that each task is executed by a separate slave. As before,
there can be no time when the shared store is not busy and a slave is neither computing nor accessing
the store. The required measures are still given by (3.8), (3.9) and (3.10). However, without detailed
knowledge of which blocks are cached throughout the computation, it is no longer practical to identify
the maximum task duration. It is then necessary to use the more cautious lower bound on minimum
parallel time based on the average task length. The cost of each read which is satisfied within server
memory is lower than it would be if requiring a disk access. Each read which is satisfied in local slave

memory costs even less and moreover doesn’t require access to the shared store.

3.6 Recovery

In the event of slave failure and immediate resumption, or replacement by a spare, the failure free

execution time is increased by a recovery time. Part of this time is due to the detection of the fault and
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depends on communications level timeouts, but the part which is considered here is due to the loss of

aborted work. Figure 3.6 shows an example computation where a slave fails but recovers immediately

(a)

(b)

i
|
ﬂ

get

compute 4
put Time

Figure 3.6: Example bag of tasks computation showing (a) a failure free execution and
(b) an execution where the slave executing the third task fails but is restored/ replaced
immediately.

Clearly at worst where each slave executes only a single task the duration of the computation may
be doubled, but in a practical example it is likely that each slave executes a number of tasks. The effect
of a failure on overall runtime may be mitigated to some extent if the total number of tasks is not a
multiple of the number of slaves. However the worst case occurs where in a failure free execution all
slaves finish at nearly the same time. Then assuming that all tasks are of equal cost the actual recovery
time is the cost of between zero and one task executions. If a computation is decomposed into tasks
of various durations, the recovery cost depends on which task fails. If the computation has inter task
dependencies then failure of one task may delay the completion of tasks which are in progress at the
time of failure and depend on output from the failed task. If data are cached at a slave which fails, then
the slave that takes over the aborted task incurs an extra cost in cache misses.

If a slave fails and does not resume and there is no spare, then the increase in overall execution
time depends on the exact point of failure, but may be regarded as comprising two components. First,
there is the cost of redoing the failed task and secondly, the execution of the remaining tasks is slowed
since there is then one less slave. In the particular case where all surviving slaves are executing tasks
which depend on the one which has failed, it is necessary for one of them to abort in order that the
failed task may be done and deadlock avoided. In this case the recovery cost due to one slave failure is
compounded through the need to complete the task depended on before its dependents.

Clearly the cost of recovery is application specific and then may vary but intuitively if the problem
size is large so that there are many more tasks than slaves, then the loss of work on failure should be

reasonable. For the purpose of this work a simple measure of the recovery cost which can be derived



CHAPTER 3. MODELLING 47

from the measured performance is employed as an indication of recovery cost. This measure is com-
puted as half of the maximum recovery on the assumption that all tasks in the computation are of equal
cost and is referred to as the average recovery. If the total number of tasks is a multiple of the number of
slaves then ignoring the cost of any required cache refresh the value referred to is the average expected

recovery cost if a slave fails and is immediately restored or replaced.

3.7 Multi Step Computations

A computation may comprise more than one basic step separated by barrier synchronisation points.
The execution time of each single step can be predicted in isolation and then combined to give
overall bounds on performance. For example a computation may comprise M ideally parallel steps. If

the jth step has minimum time T'step(7)o Where

lwr {T'step(5)oo} < Tstep(j)oe < upr {T'step(j)oc} »

then
M M
ler {Tstep(§)oo} < Too < Zupr {T'step(3)oo} - (3.11)
j=1 =1

3.8 Examples

The two simple matrix examples described earlier in section 2.4.8 may be employed now to illustrate the
preceding discussion. Matrix-matrix multiplication, may be organised into a single bag of similar tasks,
i.e. having equal computation, where there are no dependencies between tasks. In contrast, Cholesky
factorisation is partitioned into a collection of nonsimilar tasks which do have dependencies.

Table 3.2 lists primitive operations which are used in the following definitions. In much of the
discussion which follows all blocks are in fact square. It is convenient to omit the parameters indicating
block size in this case, such that the operation times can be written in shorthand tget, tput, tmult etc.
to imply that operations are performed on square blocks of size fixed for a given context. A convention
adopted in general for such examples is that overall operand matrices are square of size n? elements and

that each such matrix is partitioned into p x p square blocks of size b? elements.

3.8.1 Matrix Multiplication

Section 2.4.8 describes how block oriented matrix multiplication may be organised as a bag of tasks

with a separate task for each block.
Computation of a single block of the result matrix entails performing the dot product of a block row

with a block column from the input matrices. This entails 2p block gets and 1 block put. In the simple
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Table 3.2: Primitive matrix operations.

48

Name Operation  Description
time

put tput {b1,b2} A single block of size b; X by is writien into shared store.

get tget {b1,b2} A single block of size by x by is read from shared store.

multiply tmult {b1,b,} Computes the product of matrices X, of size b; x by, and
y,of size by X b1, e.g. X x=Y

add tadd {b;,b2} Computes the sum of X and y which are both of size b, x b,
egX+=Y

subtract tsub{b;,b2} Computes the difference of x and y which are both of size
by x by,eg. Xx—=y

solve tsolve {b} Inx*l = yoruxx = Yy, whereland u are lower and
upper triangular respectively, X is found. All matrices are
of size b?.

Cholesky tchol {b} In gxg.transpose() = a. the Cholesky factor g of a

factorisation is computed. All matrices are of size b and g is lower
triangular.

LU tlu {b} Inlxu = a, the LU factors | and u of a arc computed.

factorisation All matrices are of size b?, | and u are lower and upper

triangular respectively and one or other has unit diagonal.

slave implementation above, there are p block multiplications and additions. From (3.1), the value of

T; is obtained:

T, = p*(2ptget + tput + p(tmult + tadd)) (3.12)
The bounds on T corresponding to those defined in (3.6), (3.7) are given below:
T 9
lwr{Tw} = max ? , p°(2ptget + tput) (3.13)
upr{Te} = p*(2ptget + tput) + p(tmult + tadd) (3.14)

Cache Effects

The following examines the benefit to be gained by caching through some possible application organ-
isations for matrix multiplication. The numbers of reads from the three levels of the memory hierarchy
defined are labelled Ny, N2, N3. It is also necessary to consider the minimum storage requirement at
each level of the hierarchy for a given application organisation and the minimum memory requirements
are labelled m;, m2, ms.

For the example computation organisations described below, the number of block reads from each of
the three possible levels in the memory hierarchy is computed. Also the minimum storage requirement,

above that needed only for access, is computed for each level in the memory hierarchy. A summary is

given in table 3.3.
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1. No attempt is made to benefit from block caching. The memory constraints are that a slave needs

to perform an in place multiplication and retain a sum to compute a block dot product and server

memory needs to allow transfer between disk and network.

2. If the slaves compute successive blocks of C by row and keep in step through computation of their
respective block dot products, then they are each using the same block of A, though a different

block of B. This block may be held in server memory.

If the number of slaves s is less than the number of blocks in a row, then the concurrent computa-
tion of s consecutive blocks of C entails p(s + 1) block reads from disk and p(s — 1) reads from
server memory. If the number of blocks in a row is large compared to the number of slaves, then it
is reasonable to ignore the effects of transition from one block row to another, and simply assume
that there are ”; groups of s consecutive blocks to be computed and hence obtain the approximate

counts for Ny and N3 given in the table.

The memory required for this degree of caching at the server is only one block. If more memory
is available, but not enough to allow caching of a whole row, then it may be possible for the slaves
to become a little out of step, but the performance is the same.

The same analysis holds for the situation where the slaves compute consecutive blocks in the
same column of C or alternatively where each slave is assigned separate block rows of C and

computes successive blocks in each of those rows in turn.

3. If as above, the slaves compute successive blocks within the same block row of C, but sufficient
space exists within server memory, then the current row of blocks of A may be retained there
through computation of a complete block row of C
Computation of a result block row entails 2p disk reads for the first block but for the remaining
p — 1 blocks p block reads from disk and p block reads from server memory.

Assuming the storage is actually in server file system cache which employs LRU replacement
policy, it will not allow retention of the desired block row of A unless there is space for almost all
of the block columns of B which are required by s concurrent slaves. The memory requirement
is therefore for p(1 + s) blocks assuming s < p.

However, if the caching were done at the application level, by specifically indicating which blocks
to cache, the server would need sufficient memory to accommodate a single block row plus one

block to allow access to blocks of B.

4. If the overall size of the operand matrices is small enough then both may be accommodated in
server memory.

The number of unique blocks, and therefore the number of block reads which must be from disk,

is 2p%. The remainder 2p?(p — 1) must all be of already read, and therefore cached blocks.
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5. If slaves compute separate block rows of C, then there is potential for benefit in caching part or
all of the appropriate block row of A within slave memory. If memory size is quite small, each
slave might cache only a few, say the first ¢, blocks of each row read from A. Once cached, these

are reused in computation of the remaining p — 1 blocks of the block row of C

The memory constraint is for the ¢ cached blocks and one each for; other blocks of the row of A,

blocks of the second matrix and the accumulated sum.

6. As before slaves compute separate block rows of C, but here it is assumed that there is sufficient

space to accommodate the whole of the required block row of A.

The storage required is for the p blocks of A. A similar analysis holds if the slaves compute block

columns of C and cache block columns of B.

7. Again the slaves compute separate block rows of C, but here it is assumed that there is sufficient
space to accommodate all data accessed. This allows reuse not just of the blocks in A, but also

those in B

Each row of A is only read once from remote disk, and thereafter read from slave memory.

However, each slave must read all of B into its own memory.

The slave memory must accommodate all of B and a block row of A.

The block size may be as small as required, but is constrained by an upper bound which depends for
the desired level of caching on the main memory available and should be chosen such as to minimise
parallel computation time. In table 3.3, expressions are given for the total number of block reads from
each level of the memory hierarchy and the minimum memory space required at each level apart from
the lowest. These memory requirements are not total requirements for slave and object server, since
space required for temporary storage of blocks is ignored.

Performance may be further improved by caching at both server and slave. Where the matrices are
relatively small, the best performance is obtained by caching all blocks accessed at slave and server.
The memory requirement however, is of order n? in all machines and highest in the server which needs
to accommodate both matrices complete.

For intermediate sized matrices where it is not possible to fit a whole matrix in available memory at
slave or server, it may be possible to cache a block row at each slave and a column at the server. Each
slave computes a separate block row of the result matrix to optimise local caching, but then the benefit
of caching a block column of B at server is reduced as this block column is only used s times before
being lost from cache. The memory requirement is of order n in the case of both server and slave.

For arbitrary sized matrices caching a whole block row or column if possible may necessitate setting
a very small block size, so an alternative option is to cache a single block at server and a small number

of blocks at slave. The memory required is then 1 block in the server and & blocks in each slave.
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Table 3.3: Potential benefit achievable using various strategies for exploiting cache reuse in
matrix multiplication by bag of tasks. The quantities N}, Ny, N3 are the number of block
reads from the different levels of the memory hierarchy, respectively slave memory, server
memory and disk. The quantities m;, m; are the minimum space required at levels 1 and

2 of the memory hierarchy.

Number of accesses and space required

Organisation Slave mlemory Server n;emory I?\iék
my my
1. caching no blocks at 2p°
slave or server
2. caching a block of A %s(s -1 %a(s +1)
at server: s slaves 8b2
3. caching nominally a pi(p-1) pi(p+1)
ls)l;cl; srl(:://e:t server: gnb(1 + s)
4. caching all blocks at 2p%(p — 1) 2p°
server 16n2
5. caching ¢ < p blocks cp(p—1) p(2p® —cp+c)
at slave: s < p slaves 8ch?
6. caching a block row PPp-1) PP(p+1)
at slave: s < pslaves 8nb
7. caching all blocks at  p?(2p—1-) P?(1 +s)

slave: s slaves

8n(n +b)

N
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The matrices used are partitioned into p? blocks of size b2. The computation cost, entailing a block
multiplication, is proportional to b®. I bis large, the various transfer costs may be assumed proportional
to b2. For all of the cache configurations shown in the table and the three described above, it is seen that
the total number of reads is proportional to p*. Since n = bp, the total cost of the reads, Tget. is in each
case proportional to p for fixed n. Thus both the single slave time, T}, and minimum parallel time, T,
are proportional to p, i.e. 1/b. Even aside from any request overhead associated with transfers it appears
profitable for any particular computation organisation to select the largest possible block size. However.
it is still necessary to select the optimal cache strategy for given matrix size, memory configuration and
primitive costs, and this choice then bounds the block size.

The performance measures for a complete matrix multiplication, i.e. the single slave time and

bounds on minimum parallel time, may now be redefined in terms of the values given in the table.

Ty = Nitgetl + Natget2 + Nitget3

+ p*(tput + p(tmult + tadd)) . (3.15)

The bounds on T corresponding to those defined in (3.13), (3.14) are given below:

lwr{To} = max {Nltgetl + Nytget2 + Nstget3
+ p*tput ﬁ} (3.16)
* pz b .
upr {Teo} = Nitgetl + Natget2 + Nstgetd
+ p*tput + p(tmult + tadd) . (3.17)

3.8.2 Cholesky Factorisation

Section 2.4.8 describes how block oriented Cholesky factorisation may be organised as a collection of
tasks with a separate task for each block. Three alternative schemes were described which differ only

in the way in which synchronisation is achieved:

single-bag Inter task dependencies are implemented through synchronisation flags employed within

shared object methods.

multi-step(1) A separate bag of tasks is defined for each task computing a block on the diagonal and
again for the tasks computing blocks below the diagonal in each block column. The computation

starts with computation of the block at the top left, then those below it, then the next block along

the diagonal and so on.

multi-step(2) Computation of the block on the diagonal and the one immediately to its left are com-

bined into a single task.
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Some of the more lengthy analyses in this section are deferred to appendix A while results are simply
quoted here.

First the single slave time is derived. Since synchronisation costs are assumed negligible, the time is
the same for each configuration. However, it is separately derived in the single-bag and multi-step(1)

organisations in Appendix A.1.1 and A.2.1.

I = g(p+ 1)(2p + 1)tget + g(p+ 1)tput
- g(p2 — 1)(tmult + tsub) + g(p — 1)tsolve + ptchol (3.18)

single-bag

When the factorisation is structured using the single-bag organisation, the dependency pattern is as
shown in figure 3.7. Each task is composed of a number of block multiplications followed by a fac-
torisation or solve. Where dependencies occur in a task, preceding block multiplications are shown by

“%”_ Full derivation of performance parameters is given in Appendix A.1.2. Here results are simply

Init Div Fact Div Fact Div Fact

Figure 3.7: Dependencies in single-bag organisation of Cholesky factorisation.

quoted.

A lower bound on minimum parallel time may be determined from the hardware bandwidths and

length of the longest task, either that computing the block at bottom right or the previous one computing
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the block immediately to its left.

Iwrd{ T} =
p p
max{g(p+ 1)(2p+ 1)tget + §(p+ 1)tput |,
2ptget + (p — 1) (tmult + tsub) + tsolve + tput ,

ptget + (p — 1)(tmult + tsub) + tchol + tput} (3.19)

An upper bound may be obtained by pretending that there are barriers as suggested by the dashed

bars in figure 3.7.

upr{Tc} =

(=] e~ ]

—(p+1)(2p+ 1)tget + 2(p+ 1)tput

+ (p — 1)(tmult + tsub + tsolve) + ptchol (3.20)

If there is no bandwidth limiting effect, a lower bound on the time for s slaves to perform the

computation is obtained by assuming perfect speedup.

T
lwr {T,} = ?‘ (3.21)

multi-step(1)

In the multi-step(1) organisation, the dependency pattern is as shown in 3.8. The numbers shown at

the bottom of the figure are of the bags of tasks, and correspond to the numbers in figure 2.8(b). Full

80.0 81,0 81,1

OxO-10

270 Q’I .::
810 q” 91’ £33
O——»O——»O+O

1 2 3 4 5 6 7

Figure 3.8: Dependencies in multi-step(1) organisation of Cholesky factorisation.

A lower bound is obtained by summing the time spent in all serial steps and the lower bound for
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each of the parallel steps.

lwr{To} =
p
i(p + 1)tget + g(p — 1)(tmult + tsub) + ptchol + ptput
+ max {g(p2 — 1)tget + g(p - 1)tput ,

p(p + 1)tget + ptput + g(p — 1)(¢tmult + tsub) + ptsolue} 3.22)

An upper bound is obtained by summing the time spent in all serial steps and the upper bound for

each of the parallel steps.

upr{Te.} = g(p+ 1)(2p + 1)tget + g(p + 1)tput

+ p(tchol + tsolve) + p(p — 1)(tmult + tsub) (3.23)

This structure of Cholesky factorisation is characterised by significant sequential components. For
a small number of slaves a first approximation to the speedup and hence the computation time may be
obtained from Amdahl’s law [3]. However there is a reducing number of tasks available during each
successive current computation step and when the number of tasks falls below the number of slaves the
performance attainable during the remaining steps is limited. These latter steps will in fact contain the
longest tasks. Furthermore some of the earlier steps, in which the number of tasks is greatest, are more
likely to be bandwidth limited. So knowing the characteristics of the computation a better approximation
can be made by considering each computation step separately. A lower bound on the time for s slaves
to compute the parallel step corresponding to the jth column derives from the total communications and

the available parallelism.

lwr {T'solve(j)s} =

p P
1 .. ..
max E {2jtget + tput} S E T@GE,5)1 ,T6E N
i=j+1 i=j+1

Then a bound on the time for s slaves can be defined.
b4 p—1
Wwr{T,} = Y T(,ih+ ) twr{Tsolve(j)s} (3.24)
j=1 =1

multi-step(2)

When the factorisation is structured using multiple bags and optimisations are made to try to overlap

sequential tasks, the dependency pattern is as shown in figure 3.9. The numbers at the bottom of the

figure correspond to those in figure 2.8(c).
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Figure 3.9: Dependencies in multi-step(2) organisation of Cholesky factorisation.

The single slave time is the same as that in the multi-step(1) organisation. The upper bound on
minimum parallel time from that organisation may be used here too and the lower bound on minimum
parallel time for the single-bag organisation.

In the step corresponding to the jth column there is one task computing the block just below the
diagonal and the one on the diagonal in the next block column and p — j tasks computing blocks lower
in the current block column. A lower bound on the parallel time for s slaves derives from the longest

task, total communications and the available parallelism. In a single step

P
lwr {T'step(j)s} = max Z {2jtget + tput} + (7 + 1)tget + tput ,
1=7+1

1M o ST S
TG +L i+ )+ D TEd g s

i=j+1

Py +1,9) TG + 1,3 +1)

Summing for the p — 1 columns,
p—1
lwr{Ts} = Z lwr {T'step(j)s} - (3.25)
j=1
Cache Effects

Potential performance improvements available through caching are harder to evaluate than for matrix

multiplication, but a couple of example situations are described.

1. No attempt is made to benefit from block caching. The memory constraints are that a slave needs

to perform an in place multiplication and retain an accumulator block and also to perform an “in
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place” block factorisation. Server memory needs to allow transfer between disk and network.

2. If the slaves compute successive blocks in the same block column, then they all read the block row
which contains the active block on the diagonal. For the jth block column, there are j(1+2(p—j))
total block reads, of which j(p — j) are repeats from the block row containing the active block on
the diagonal. All remaining reads must be from disk. If the appropriate number of blocks may be

accommodated in server file system cache, then it is reasonable that they should be reused.

The complication is that the number of blocks which must be cached changes during the compu-
tation, as the active point moves along the diagonal to the bottom right of the matrix. Firstly the
number of blocks in the row containing this point increases. Furthermore the number of entries
in the corresponding column decreases so that if a constant number of slaves is working on the
computation then eventually they will be working on more than one block column thus necessit-
ating caching of more than one row. However the memory required is certainly not more than 2

full block rows for each slave.

For a given memory size it is quite possible that all required entries in a block row would be

cached during early stages. Later as the computation progresses there may be insufficient space.

3. If the matrix is small enough, then it may all be accommodated in server file system cache and
only the first read of any block accesses disk. If no caching is done by the slaves, then this scenario
provides an upper bound on performance. The number of disk reads is then equal to the number
of unique blocks read, which is £(p + 1). All remaining reads may be assumed to be from server

cache. The number of such reads is 2(p + 1)(2p + 1) — §(p+ 1) or B(p? - 1).

As in the case of matrix multiplication, the performance predictors for Cholesky factorisation may
now be redefined in terms of the values given in the table above. First the single slave time, from (3.18),

is:

T1 = Nltgetl + Nztget2 + Ngtget3
+ %(p2 — 1)(tmult + tsub) + g(p — 1)tsolve + ptchol

+ 2o+ Dput . (3.26)

As described in section 3.5, the lower bound on minimum parallel time appropriate here is that based
on average task length rather than that based on the longest task length. For the single-bag organisation

the bounds on minimum parallel time are: from (A.7)

lwr{Tow} = max {Nltgetl + Natget2 + Nstget3
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Table 3.4: Potential benefit achievable using various strategies for exploiting cache reuse in
Cholesky factorisation by bag of tasks. The quantities N7, N, N3 are the number of block
reads from the different levels of the memory hierarchy, respectively slave memory, server

memory and disk. The quantities m;, m; are the minimum space required at levels 1 and
2 of the memory hierarchy.

Number of accesses and space required

Slave memo Se i
Organisation N & rverj\rgemory la\lls:(
my mao
1. caching no blocks at g(p-}- 1)(2p+1)
slave or server
2. caching nominally a B(p? - 1) E(p+1)(p+2)
block row at server:
s < pslaves 16nbs
3. caching all blocks at E(p* - 1) B(p+1)
server
16n?
p T;
+=(p+ Dtput , 75— - .
5P+ 1)tpu g(p+1)} (327
and from (3.20)
upr{Te,} = Nitgetl + Nytget2 + N3tget3

+ (p — 1)(tmult + tsub + tsolve) + ptchol

+ 2(p+ Dtput . (3.28)

Corresponding expressions for the other organisations may be derived in a similar way.

3.9 Summary

While experimental measurements are crucial in justifying any computation structure a model helps
both in interpreting the measured results and in investigation of possible parameter changes, such as
hardware upgrades. For the bag of tasks based structure it is simple to predict single slave time and
bounds on bandwidth limiting performance. A lower bound on parallel time for some number of slaves
less than that which would lead to bandwidth limiting is obtained easily from the single slave time. For
a fault-tolerant computation an important performance measure is the cost of the fault-tolerance. While
the failure free overhead will be measured experimentally, it is easy to identify one part of the likely
cost of recovery. This is the amount of work which must be redone in the event of a task being aborted.

The remaining part which is the cost of detecting the failure is not addressed here but assumed to be
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small compared to the former.
In common with accepted practice, the example matrix computations are expressed in terms of
block operations to improve locality. Expressions are presented for performance indicators for these

computations in terms of the lower level block operations.



Chapter 4

Implementation

This chapter considers further the implementation of out of core computations structured to exploit
changing resources and compares experimental results against performance predicted by the analysis
described in the previous chapter for the example computations introduced in chapter 2.

The implementation employs one of the distributed object systems referred to in section 2.3, namcly
Arjuna [86]. This particular system is implemented as a class library in C— and supported over a
number of different versions of UNIX including HP-UX and Linux. Arjuna classes provide support for
persistent state management and concurrency control with shared read and exclusive write locks. The
user encapsulates state in classes which can inherit persistence and concurrency control from certain
Arjuna classes. Atomic actions are used for scoping a set of updates. in the same way as transactions.
In Arjuna an atomic action is an object which is instantiated and subsequently begun and committed
or aborted by calling appropriate operations. Distribution transparency is achieved through a separate
underlying layer based on Remote Procedure Call (RPC) [20]. An Arjuna service provides support for
transparent replication of user objects. The system has been demonstrated over a number of alternate

RPC mechanisms.

4.1 Fault-Tolerant Bag of Tasks

A structure which meets the requirements for a fault-tolerant bag of tasks is described in [18] as a
recoverable queue and may be regarded as a possible implementation of a semiqueue [116]. Unlike a
traditional queue which is strictly FIFO, a recoverable queue relaxes the ordering property to suit its
use in a transactional environment. If an element is dequeued within a transaction, then that element is
write-locked immediately, but only actually dequeued at the time the transaction commits. Similar usc
of recoverable queues with multiple servers in asynchronous transaction processing is described in [60].

so only a brief description is given here through an example.

60
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(a) @ (b) @ (c)

Figure 4.1: Operation of a recoverable queue

In figure 4.1(a), two processes, S; and S,, are shown having dequeued elements e, and e, respect-
ively from this queue. In the absence of failures, say S; completes processing €, before S, completes
processing €2, then S; processes €3. However, figure 4.1(b) shows S; having failed and its partially
completed work aborted, such that e, is unlocked and so available for subsequent dequeue. Figure 4.1(c)
shows Sy having completed processing of €;, now processing e;.

A slave encloses each queue access and corresponding application level task execution within an
atomic action. This atomic action guarantees that the slave has free access to the output data corres-
ponding to the task until commit or abort. Any failure of the slave leads to abort of the action, such that
any uncommitted output, together with the corresponding dequeue operation is recovered, leaving the
unfinished task in the queue to be performed by another slave.

Termination of the computation is detected by testing whether the queue is actually empty or not, as

distinct from the condition where no element may be dequeued but the queue is not yet empty.

4.1.1 Implementation

A restricted implementation of a recoverable queue has been performed as a collection of persistent
objects in Arjuna. A container class Queue acts as interface to the object which is represented as a link
list of separately lockable instances of Link class each with an associated instance of Element class.
The structure of the composite object is indicated in figure 4.2.

The dequeue operation entails searching along the linked list for an element which is not locked
and locking and returning that one. To avoid searching from the start of the list each time, a pointer is
maintained in the server process to the first element which is locked. While correctly supporting isolated
enqueue and dequeue operations, this approach has the restriction that it cannot support a single client
nesting multiple dequeue operations within the scope of a single atomic action, since there is no way to
update this marker. However, such a facility is not required in the applications developed here.

A preferable implementation would allow update of the head pointer through nonstandard trans-

action techniques such as coloured actions [117]. Such an implementation would not suffer from the
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Figure 4.2: Possible implementation of a recoverable queue. Each box is a separately lockable object.

performance penalty of having to start a search from the original head of queue pointer after server
failure. Furthermore, it might be possible to avoid making each link a separately lockable object and
instead include them all in a single lockable object; the write lock required for update would only be
held for a very short time. This would ease the construction of alternative queue structures, such as
a priority queue. Each element must remain separately lockable since it is locked by a separate slave

throughout execution of the corresponding task.

4.1.2 Performance

Since the state of the queue resides on disk, the cost of any queue operation is affected by how much
of this state is present in file system cache at the time a request is made. Table 4.1 lists the elapsed
time of 100 requests in a number of situations. Initially an empty queue is created and then the time
taken to enqueue 100 entries, each enqueue as a separate top level action. The entry type is a pair of
integers as used in the applications considered elsewhere. The cost of dequeuing entries is measured
both immediately after the entries have been enqueued and also after an attempt has been made to flush
file system cash.

The benefit gained in dequeue operations when the whole queue is cached seems to be quite large,
but in the applications, the queue resides on the same machine as the main object server. It seems likely
that space demanded by large object states will flush the queue state from file system cache rapidly.

The measurements then suggest a cost of about 0.4 second per enqueue and 0.07 second per dequeue
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Table 4.1: Measured cost of recoverable queue requests. All times are in seconds and are
for 100 requests. In the case of the HP710 and Pentium machines the internal disk is used
but in the case of the HP730 machine the external disk is used.

Operation Machine

HP710 HP730 Pentium
enqueue 49 38 20
dequeue 11 7 7.2
dequeue (cached) 7.5 45 42

operation on the HP730 configuration. This is quite small in the context of the applications considered.
For instance in the case of the relatively small multiplication of two 3000 element square matrices, the
minimum parallel execution time measured is about 1300 seconds. If the cost of queue operations in
the application setting is as measured then the computation could be partitioned into 100 tasks and the
cost of all enqueues and dequeues would be less than 4 %. In the setting of a complete application the
variability of the measurement is quite high, partly due to external interference in a general purpose
network so it is not easy to make an accurate measurement of the cost of fault-tolerance. However, it
is possible to contain an application within a single machine and compare execution time for such runs
with and without a queue. Figure 4.3 shows such a comparison for multiplication of two 3000 element

square matrices on a HP730. The startup cost of the fault-tolerance provision appears to be roughly
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Figure 4.3: Performance of a local fault-tolerant computation

0.5 seconds per task, and the overhead during computation about 0.1-0.15 seconds per task. Both of
these measurements are a little higher than the values derived from measurements of queue operations
in isolation.

In a parallel execution, the startup cost is unchanged, but the runtime overhead might be expected

to vary with the number of slaves. The queue is locked at rather fine granularity and accessed through a
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separate server process by each client, so a degree of parallelism is anticipated between two concurrent
queue operations. This would suggest that the overall cost of employing the queue should fall as the
number of slaves is increased. Such an effect might be countered by costs associated with an increasing
number of server processors, including context switches. However, another effect is that as the number
of concurrent slaves is increased, so too is the expected number of links each dequeue operation must
search along the queue to find the next free entry. For these reasons analysis of queue performance
in a general parallel setting is not attempted here. Instead it is left to measurement to show that for a

reasonable number of slaves and for appropriate granularity the queue access cost can be small.

4.2 Synchronisation

If a computation decomposes into a set of tasks which have inter task dependencies and yet is to be
implemented with a single queue, then a synchronisation mechanism extra to the queue is required. The
requirement is for a task to be blocked until some prior task has completed and produced output. In a
correct execution, static ordering of tasks ensures that a needed object will at least be in the process of
being computed when a slave computing a dependent object attempts to access it. However, if the two
slaves begin their tasks at about the same time then a race condition arises since there is no mechanism
to ensure that the output of the task depended upon is actually locked before the other slave tries to
access it. Furthermore, if a slave fails then a dependent slave may attempt to access the output of the
aborted task which is neither locked nor ready.

The approach employed here is to allocate a separate object, a recoverable integer, to indicate status
of computation objects. Concurrent access to such an integer is controlled through locks obtained within
the scope of atomic actions. Updating the appropriate integer within the same atomic action that writes
the corresponding state ensures that the computation object remains unavatlable in the event of failure
of the slave creating it. A fault-tolerant implementation is achieved by making the state of the integer
persistent.

In any parallel application, deadlock may arise due to faulty implementation. However if individual
process failures are tolerated then any process effectively waiting for completion of such a failed task
will block. The queue is ordered so that the first slave to seek work following a failure will take the
aborted job. However, if all slaves apart from the failed one are blocked, the application stalls. Rather
than including some form of deadlock detection, a simple expedient adopted here is to ensure that slaves
do not wait indefinitely. Instead a slave waits only for some application specific interval for any object
flag, before aborting its current task and returning to seek work from the queue. This interval should
be larger than any period which the slave might genuinely have to wait for, essentially greater than the
duration of any task in this application. If a slave incurs such a timeout and then obtains the same task

again when going back to the queue, it would be reasonable to increase the timeout, but a collection of
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slaves all waiting for a single other might each fetch a different task if they all timed out at about the

same time.

4.3 Data Transport

A computation is performed in parallel primarily for an improvement in execution time, yet many
aspects of distributed systems technology tend to work against this aim, either to provide a safe and
easy to use programming environment or to support working in a heterogeneous environment.

At the operating system level, concern for protection between multiple users leads to data in transmit
between machines being copied possibly multiple times. Concern regarding this overhead has often
been expressed before and many schemes have been proposed to reduce the number of data copies.

A more recent concern regards latency in communication, being signified by the time to transmit a
small message rather than the bulk transmission rate for large transmissions. Again various schemes are
proposed to reduce the latency.

There are some computations which may be run in parallel with very low communications cost
including experiments aimed at harnessing the power of vast numbers of machines across the inter-
net [99, 28]. In such a computation, support for heterogeneity is of considerable importance and the
inevitable increase in the communication cost is tolerable because the total volume of communications
is low. However if the cost of communications is much more significant, then it is more attractive to
optimise data transfers for the assumption of homogeneity.

In distributed systems a common paradigm for communication is RPC [20], which achieves through
automatically generated stub codes a user interface to a remote function which is close to a local pro-
cedure call. The stub code at one end of the communication path takes care of packing the parameters
into a buffer from which they can be unpacked at the other end. Heterogeneity may be supported by
converting data items as they are packed into some neutral format.

No attempt is made here to implement optimisations at the operating system level. However, the
distributed system employed does allow the choice to be made at application level whether or not het-
erogeneity is supported and if heterogeneity is not to be supported then saving within the distribution
layer is maximum. An application object may define its own marshalling operations. In extreme it may
simply redefine the buffer to be a piece of memory in its own data space. This approach allows raw
transfer of a single block of memory and is employed in this work.

For complete generality, it would be possible for a user to be able to include a number of such raw
blocks together with higher level data which is marshalled in the usual way within a single call. This
may be accomplished by linking the raw data blocks into a list structure separate from but associated

with the main buffer. At a lower level where system I/O calls are made, scatter gather facilities can be

exploited.
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4.4 Shared Objects

In general to support transfers of many small messages it is desirable to maintain a connection through
the period of transfer. The application program actions of object construction, and destruction translate
to initiation and termination of a server process which manages the state on the remote machine. The
RPC supports a TCP transport option where a connection to a server is established when the corTes-
ponding object is initiated and maintained until termination of the object.

However, when making bulk transfers over a shared medium, it is desirable to arbitrate use of that
medium. The RPC allows reuse of an existing server for situations where the server does not need to
maintain state. In the current single threaded implementation, the object server can be implemented in
this way provided a separate connection is established for each call to the server. When data transfers
are large the cost of these extra connections is tolerable.

It is possible to increase throughput to the shared object store in many ways. Since the object store
is layered above a standard file system one possibility is to employ a proprietary RAID system and
stripe files across a number of disks within a single node. Each object store request is then translated
to multiple concurrent disk operations, so that a gain is made in the presence of only a single slave.
Alternative approaches which exploit parallelism at the granularity of whole requests, make a benefit
only when multiple slaves are making concurrent requests.

One alternative is to perform the partitioning within a node at the level of objects. This may be
achieved by creating separate object stores on a number of disks. The simplest implementation es-
tablishes a separate server process for each store, but in the environment of a shared communications
medium, the desired arbitration of that medium achieved by the single process is lost. It is possible
however to employ multiple threads to achieve the parallelism, but with a single thread serving the mul-
tiple input streams. This option may entail a greater memory usage than the RAID option which seeks
parallelism within a single request.

The highest level at which parallelism may be obtained in object store access is the machine level.
The objects are distributed between multiple machines and managed by a separate object store server
on each machine. In this case, it is necessary to ensure good balance of requests over the separate

machines.

4.4.1 Management of Large Objects

In common with [80] a state based recovery system is employed in Arjuna. When an object is modified
under the control of atomic actions it is necessary to retain multiple state copies in order to support
recovery in the event of such actions aborting. For optimal performance in recovery it is desirable to
retain these copies in primary memory, but in the work described here these object states can be very

large; indeed performance of the matrix computations is best when all physical memory is employed to
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support the largest possible block size. There are however various possible strategies for locating these
copies.

When an object is updated it is necessary to preserve a snapshot of the state prior to the update to
support eventual abort. However on abort of a top level action the state of each object in the action
should revert to that before the action started. This is precisely the state which is current for that object
on disk throughout the action, so that no volatile state snapshot need be retained through a top level
action. While it is necessary to retain separate snapshots through a nested action, the amount of memory
retained can be conveniently reduced by updating different objects within different nested actions. By
distinguishing between overwrite and update operations, e.g. through different locks, it is possible to
avoid an unnecessary initial read of a large state.

When an object is modified within an atomic action, atomicity requires preservation of the newest
state of that object in a tentative form up till top level commit. In general there is nothing to stop an
application making further updates to any such modified object right up till top level commit, though in
practice it may be the case that a series of different objects are updated in sequence. In current Arjuna as
in [80] the tentative state of an object is that of the memory resident copy of the object and is written to
permanent storage only during top level commit processing. If a number of large objects are updated in
the same transaction then it is feasible for memory to be used up leading to undesirable paging. In [80]
the possibility of writing state to permanent storage at nested action commit (early writing) is considered
as a way of supporting more graceful recovery from failure, and as a simplified form of atomic action
checkpointing. However it is there noted that in either case it is necessary to store rather more than
simply the object state in order to allow atomic action recovery from that point. Clearly if object state
is written to disk at nested action commit and the same object is modified in a number of nested actions
within the same top level atomic action then the cost of repeated writes is undesirable. Here however,
the application need is to achieve a single early transfer of current state to disk, all be it in a tentative
form during the course of a top level action. If this state is not to act as a checkpoint then the issue of
saving atomic action context does not arise so it is only necessary to identify a suitable control which is
available to the application. Clearly enclosing the object update in a nested top level action achieves the
write to permanent storage, but such an action unnecessarily compromises serialisability.

In Arjuna a persistent object is represented by a server in order that operations of that object may
be called. This active representation is created at the time of constructor call and removed at the time
of destructor call. The call to the object destructor might be a suitable control by which the user can
achieve the desired early write. If the object is not locked in the scope of a nested atomic action then
the only possible rollback must be to the state current just before the start of the current top level action
so that the only actions which need be taken with regard to this object are to either commit the current
tentative state or to revert to the latest permanent state on disk. If at the time of the call to the destructor

the object is locked within the scope of a nested action then it may be necessary to revert to the state
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existing before the start of that nested action. In this case writing the tentative state might be deferred
till resolution of the nested action. Similarly if a copy of state current Jjust before the start of the current
top level action is preserved in memory at all during that action it could be removed at the point of
destructor call. In the example computations studied here there is only one instance where two blocks

are written in the same task; in one of the implementations of Cholesky factorisation.

4.5 Atomicity

In database terms, the slave is coordinator for the atomic action and the machines hosting shared objects
are participants. The coordinator has responsibility for ensuring consistency between distributed state
which is updated during the course of an atomic action. Through the well known mo phase commit pro-
tocol [60] the coordinator can ensure that all distributed state is correctly updated eventually regardless
of intervening participant failures. In this work however it is important to be able to tolerate failure of
the coordinator, i.e. slave. In a simple database system tolerance to coordinator failure can be achieved
through the coordinator writing locally a persistent record called an intentions list which details the
updates to be committed. In the event of coordinator failure it is then possible to ensure that eventual
commit is consistent with notification to a human operator, but such failure can lead to “blocking” such
that the database items locked during that transaction remain unavailable until the failed coordinator is
restored. The general problem of tolerating coordinator failure without the need for such blocking is
addressed by nonblocking commit protocols [10]. Here however the application characteristics can be
exploited so as to minimise the cost of tolerating coordinator failure without blocking. In the bag of
tasks structure the user is concerned only with the outcome of the overall computation, not individual
actions. A simple solution then is to always abort any incomplete work in the event of a slave failure
and let an alternative slave redo the corresponding task.

The correctness requirement is that each task description must remain in the bag until corresponding
work is completed. Assuming each task entails computing, from read only parameters, a unique output
and then writing it, idempotency is guaranteed and correctness may be ensured by careful ordering of
updates during commit processing. It is sufficient to commit objects in the reverse of the order in which
they were touched within the action. By contrast in the case of the asynchronous transaction processing
referred to earlier, the use of a response queue to reliably inform a human operator of completion status
of each queued transaction ensures that operations are not idempotent. In such a case it is possible to
use sequence numbers to avoid duplication of queue entries [18]. The RPC subsystem is responsible for
detecting orphan processes and terminating them cleanly [85].

If dependencies exist between tasks of a single bag of tasks or if operations are not idempotent the

situation is less straight forward.

e In the simplest case, an object is not depended upon and a write to it can therefore be completed
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at any time prior to task completion, i.e. completion of the dequeue operation.

e Alternatively, an object may be depended upon by a task other than that which created it. In this
case a flag may be associated with the object and any write to the object must be completed no
later than update of the flag. The flag update itself is idempotent and must be completed no later

than task completion, i.e. completion of the dequeue operation.

o Finally, an object may be written within a task which is not idempotent. An example of a compu-
tation where such tasks can arise is an in place factorisation. In this particular example an output
object is depended upon by tasks other than that which created it, so it will have an associated
synchronisation flag. It is then necessary that completion of a write to the object must be consist-
ent with update to the corresponding flag. To avoid need for such strong consistency requirement,
a slave can avoid a repeat execution by explicitly testing the flag status as it begins a task. The
consistency requirement is then reduced such that it can be satisfied by ordering the updates as in

the previous case.

The same explicit test on a flag object can be used to ensure correctness where an object is not
depended upon, but is not strictly necessary. It is for instance sufficient for the required status to

be represented within the object itself.

Overall, it is desirable to achieve a close integration between an object and its associated status flag.

It is typically convenient to structure a computation such that a single object is updated in each task,
and therefore each separate top level action. However, it is possible to update multiple objects within
a single task. If each update is idempotent then the requirement is that the queue be updated last and
that an associated status flag be updated after the corresponding object. If some object update is not
idempotent then it must be consistent with the corresponding status flag update, unless a specific check
is made as described earlier.

In the case of the object store used in this work, it is easy to be certain of what is an update and what
is an overwrite. In general the same approach can be used, but only through reliance on information
concerning the particular object store used.

One possible way of overcoming the difficulties associated with operations which are not idempotent

is to always transfer commit to a particular machine such as that hosting the recoverable queue.

4.6 Experiments

The three applications introduced in section 2.4.8 are implemented. Preliminary results of these experi-
ments were presented in [101]. The first is a port of a publicly available ray tracing package which might
easily be implemented, at least without provision for fault-tolerance, over many alternative infrastruc-

tures. The remaining applications are dense matrix computations, matrix multiplication and Cholesky
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factorisation. These both manipulate large amounts of data and may therefore exceed aggregate memory

capacity.

4.6.1 Configurations

A major part of the university’s general purpose computing provision comprises clusters of HP710 ma-
chines connected by separate 10 Mbit/s ethernet segments, the clusters being connected via routers to a
common link. A few of these clusters have also one or two HP730 machines. The HP710 and HP730 are
both based on the PA-7000 processor but are clocked at differing speeds of 50 and 66 MHz respectively.
The installed machines all run HP-UX 9.01 and have 32 and 64 Mbytes of physical memory, 64 and
256 Kbytes of cache memory respectively.

A number of Viglen genie PCI P5/133 machines having 32 Mbytes main memory and 256 Kbytes
secondary cache are installed in an experimental laboratory and connected by two alternative networks.
In the first case, connection is via Fast Etherlink (PCI) Adaptor from 3Com to LinkBuilder FMS 100
Stackable Fast Ethernet Hub from 3Com. There are two hub units giving a total of 24 ports. Alternative
connection is via EN155p-MF ATM Adaptors from Efficient Networks to a single ForeRunner ASX-
200WG ATM switch from Fore systems. The switch is configured with 16 155 Mbit/s ports. Hard disks
are connected via fast SCSI 2 controllers. Most of the machines have 1 Gbyte IBM Pegasus disks on
which a 256 Mbyte scratch partition is defined. Two of the machines have in addition a pair each of
MAXTOR MXT-540-SL disks. All the machines are running Linux with kernel version 2.0.23.

Three experimental configurations are employed:

HP The first experiments attempt to employ the general purpose computing facility. In the case of the
ray tracing application, the data manipulated is small so that the object store can be located in
the rather small temporary space available on one of the HP710 workstations. However for the
matrix computations, sufficient temporary space for even moderate size examples exists only on

the HP730 workstations. In the matrix experiments reported all objects are co-located on a HP730

machine.

fast In a relatively small scale experiment using the Pentium machines, the object store is located on
the scratch partition of the IBM disk connected to a single machine and communications between

slaves and object store is exclusively via the fast ethernet.

ATM In the third configuration, which also uses the Pentium machines, the object store is distributed
between the four MAXTOR disks, providing an aggregate 2 Gbytes of storage. On each of the
two machines hosting objects, the md [121] software is used to manage the two local disks as a

RAID-0. Communications between slaves and object store is in this case via the ATM network.
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A master process is employed directly for computation start up and shutdown, but not actively during
the computation. In these experiments, no object is replicated.

Since the HP workstations form part of the university’s general purpose computing provision, access
is never exclusive. Experiments are performed during off-peak hours within any of the few clusters
which is mostly free, and results from multiple runs averaged. By contrast while there is some teaching

use of the Pentium based cluster, it is possikle to obtain near exclusive access to the cluster for periods.

4.7 Preliminary Results

Figure 4.4 shows one of the example scene descriptions included in the rayshade distribution. This

scene is employed in the experiments described here. Version 3 of rayshade was ported to Linda at

/*
* This file is the result of feeding “balls” from Eric Haines’
* SPD through nff2shade.awk and then hand-tweaking things.
*
/
5 maxdepth 3
eyep 2.1 1.3 1.7
lookp 0 0 O
up 0 O 1
fov 45
10 screen 256 256
background 0.078 0.361 0.753
surface s/ 0.15 0.1 0.045 1. 075 033 0. 0. 0. 0. 0. 0. 0.
plane s/ 0 0 1 00 -5
surface s2 0.035 0.0325 0.025 0.5 0.45 0.35 0.8 0.8 0.8 3. 05 0. 0.
15 sphere s2 0.5 0 O O texture bump 0.3 scale 0.04 0.04 0.04
sphere s2 0.166667 0.272166 0.272166 0.544331
sphere s2 0.166667 0.643951 0.172546 0
sphere s2 0.166667 0.172546 0.643951 O
sphere s2 0.166667 —0.371785 0.0996195 0.544331
20 sphere s2 0.166667 —0.471405 0.471405 0
sphere s2 0.166667 —0.643951 —0.172546 0
sphere s2 0.166667 0.0996195 —0.371785 0.544331
sphere s2 0.166667 —0.172546 —0.643951 0
sphere s2 0.166667 0.471405 —0.471405 O
25 light 0.288675 point 4 3 2
light 0.288675 point 1 —4 4
light 0.288675 point -3 1 5

Figure 4.4: Example ray tracing scene Description “balls”.

Yale, and a small number of HP710 workstations here have support for Network Linda version 2.4.5, so
it is possible to compare the performance of the fault-tolerant implementation with the Linda version in

the same configuration.
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Figure 4.5 shows the measured parallel performance of the ray tracing computation for an output
image size of 5122 both with and without fault-tolerance and also shows a comparison with the Linda

version.

1500 T

T T
fault-tolerant r!aul(-mler.m; _—
\ non fault-tolerant ------- Network Linda

Elapsed time (seconds)

0 1 1

[}

4 6 8
Number of slaves Number of slaves

Figure 4.5: Measured performance of parallel ray trace of example image “balls” at size
512 x 512 pixels, using task sizes 2 and 8, and showing the cost of fault-tolerance.

The comparison with the Linda version is not completely fair in that the Linda version was designed
to employ the somewhat small task size of 1 row and this remains unaltered. However, communication
cost in the Linda version is considerably lower than in the fault-tolerant version where output is to disk.
The intent is to demonstrate that the implementation is not totally unreasonable in terms of absolute
performance so long as the granularity is appropriate.

Figures 4.6 and 4.7 show the performance of the fault-tolerant multiplication of two 3000% matrices

and Cholesky factorisation of a 4800% matrix

4.7.1 Performance Summary

Table 4.2 summarises the performance of the parallel implementations measured in the HP configura-
tion. The table shows for each application a measure of the performance achieved and estimate of the
average recovery time. The table also indicates the total data: input (input), written (put) and read (ger)
collectively by slaves during the computation.

For all three experiments it is seen that increasing the task size improves the performance. In the
matrix computations, the increase in total data read with decreasing block size seems to be the over-
whelming effect. In the ray tracing example little data is read, but at 25 Kbyte and 98 Kbyte the task
output is not so large as to be bandwidth limited and so the larger task is cheaper proportionally.

Noting that the data format conversion for ray tracing mentioned earlier takes about 23 and 13 sec-

onds respectively for the task sizes of 2 and 8, the performance of this easy application appears prom-
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Figure 4.6: Measured performance of fault-tolerant parallel matrix multiplication of 3000
element square matrices, with block sizes 300 and 750, in the HP and fast configurations.

(a) HP (b) fast
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Figure 4.7: Measured performance of fault-tolerant parallel Cholesky factorisation of a
4800 element square matrix, with block sizes 300 and 600, in the HP and fast configura-

tions.
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’I"ab]e 4.2: Measured performance of fault-tolerant parallel applications in HP configura-
tion. Element sizes are 24 bytes for ray tracing and 8 bytes for the matrix computations.

Ray tracing Matrix Cholesky
(5122) multiplication factorisation
(3000?%) (4800%)
Task size 2x512 8x512 3002 750? 300° 6007
(elements)
Number of tasks 256 64 100 16 136 36
Data input small 144 98 104
(Mbyte) ger small 1440 576 1077 588
put 6.3 72 98 104
Single slave time 1502 1237 4214 3015 3559 2613
(seconds)
Minimum time 519 213 2248 937 1887 1106
(seconds)
/O (Mbyte/s) 0.01 0.03 0.67 0.69 0.62 0.63
Average recovery 3.0 9.9 22 92 13 36
(seconds)
Performance absolute speedup maximum execution rate (Mflop/s)

22 5.3 24 58 20 33

ising.

In this environment the absolute performance of the matrix computations is not exciting, though
the out of core implementations do exceed the peak performance of the lower level in core operations
measured at about 33 Mflop/s for matrix multiplication and 25 Mflop/s for Cholesky factorisation.
Table 4.3 summarises the measured performance of parallel implementations of the matrix computations
in the fast configuration. The performance is seen to be rather better than that observed in the HP
configuration, but the observations regarding block size still apply.

Figures 4.6 and 4.7 show that the cost of fault-tolerance is quite low in both configurations. For
this scale of computation and particularly in the fast configuration the overall runtime is quite small.
However, the structure is intended to scale to larger problems where the total runtime would be much
greater. Overall the experiment suggests that for sufficiently large granularity the cost of fault-tolerance

should be small.

4.8 Validation

This section describes how the performance model introduced in chapter 3 is calibrated and validated
through measurements in a number of modest experimental configurations. This is intended to support
the use of the model in extrapolating to various alternative configurations in the next chapter. In the case

of the matrix computations a small number of low level functions are readily benchmarked to allow
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Table 4.3: Measured performance of fault-tolerant parallel applications in fast configuration.

Application Matrix Cholesky
multiplication factorisation
(30002%) (4800?)
Task size (elements) 3002 7502 3002 6002
Number of tasks 100 16 136 36
Data (Mbyte) input 144 98 104
get 1440 576 1077 588
put 72 98 104
Single slave time 2984 2390 2539 2071
(seconds)
Minimum time 986 386 925 543
(seconds)
/O (Mbyte/s) 1.5 1.7 1.3 1.3
Average recovery 15 75 9 29
(seconds)
Performance (Mflop/s) 55 140 40 68

use of the specific models developed for these computations in chapter 3. However, the ray tracing
application is largely existing code used in “black box” fashion. Furthermore the amount of computation
involved depends on the particular scene, varying within the scene depending on the number of objects
in that region. It is still possible to make some use of the basic model by first estimating average values

for variable parameters.

4.8.1 Benchmarks

Before actual values can be derived for the performance estimates, it is necessary to measure the various
primitive operation times, tadd, tsub, etc. This section describes these primitive operations and the

benchmark measurements. The operations themselves are intended to be reasonable given the systems

used, rather than necessarily optimal.

Computation

The primitive computations, i.e. multiplication, addition etc. are implemented as members of a C+
template class, Matrix, instantiated for double. Instances of this class are blocks of the matrices which
are operands of the whole computation. The member functions' described are themselves block struc-
tured, the lower level blocks being referred to as sub-blocks, so as to increase locality and thereby gain

from processor caching. The operator*=() function computes each block row of the product in a tem-

!'The implementation of the member functions is based on a source for a matrix multiplication function publicly available via
fip in Netlib, due to T. Maeno, Tokyo Institute of Technology
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porary space before overwriting the source matrix. In this way, it is only necessary to hold a little over
three blocks in memory in order to compute a block dot product.

Figure 4.8 shows how the matrix multiplication is tuned to the HP710 machine. It is seen that there

30

20

Execution rate (Mflop/s)

0 L 1 1 1 L 1

0 20 40 60 80 100 120 140
Matrix sub-block width (elements)

Figure 4.8: Tuning the in core matrix multiplication primitive to the HP710. Separate plots
are shown for different matrix sizes. The values plotted in the graph are average of at least 4
measurements. The floating point execution count for multiplication of two square matrices
of size n is assumed to be 2n3.

is a reasonably consistent peak of about 29 Mflop/s in the performance of matrix multiplication for lar-
ger matrix sizes, at a sub-block size of about 28 and consequently, the sub-block size is set to this value,
or the matrix width if smaller. The resulting performance is plotted against matrix size in figure 4.9(a)
and is seen to be fairly constant apart from a noticeable peak for small data size. Corresponding meas-
urements for the same code on the HP730 show a peak in performance of 43 Mflop/s for the same block
size which is also fairly constant for a large range of matrix sizes, and a maximum performance for
smaller matrix sizes at least approaching 47 Mflop/s. Also shown in figure 4.9 are the other primitive
matrix operations employed, and similar measurements made on a 133 MHz Pentium also with the same
code, but employing the slightly smaller block size of 24.

Of the other primitive operations, the Cholesky factorisation and solve operations are tuned in the
same way as matrix multiplication. However, no attempt is made to improve performance of the block
addition or subtraction operations above that of the simplest loop. There is little to gain from localisation
in these operations since there is only one floating point operation to perform per matrix element. The
resulting performance of these latter two operations is seen to be quite inferior, at roughly 1.6 Mflop/s on
the HP710 and 4.5 Mflop/s on the Pentium. However, the cost of either is of order n? flop, as compared
to n® for the other operations. Using the rates from the graph, it is seen that the cost of a block addition
is under 5% of that for a block multiplication for a block size of 200, and a lower percentage for larger

block sizes. In this work, these primitives are used in two large scale computations in both of which the



CHAPTER 4. IMPLEMENTATION 77

(a) HP710 (b) Pentium
40 T 40 T
1

\% 30 - Operation
o P ~ == muliply ——
= solve -------
2 : it cholesky
& A 20 i e - add
z 7 e subtract ----
5 10 ~ E 10 b 4

ol ———— I 0 L

0 500 1000 0 500 1000
Matrix Width (elements) Matrix Width (elements)

Figure 4.9: Measured performance of in core matrix primitives on the HP710 and Pentium
machines. The values plotted in the graph are average of at least 4 measurements. For
matrix size n the floating point execution counts assumed are as follows; for multiplication
2n3, for solve n®, for Cholesky factorisation ';—3 for addition and subtraction n?.

number of block additions or subtractions is matched by the number of block multiplications.

For comparison, the performance of a HP730 machine running the Linpack benchmark for matrices
of width 1000, with the code tuned to the machine, is reported as 49 Mflop/s in [43]. A single precision
Linpack measurement of 14.7 Mflop/s is presented in [62] for a 66 MHz Pentium machine with the same
cache configuration as in the machines used here. Overall, it is claimed that the primitives as used are
of fairly realistic performance, though it is not claimed that no further performance improvement may
be gained, either through further levels of blocking or faster algorithm. Ultimately rather than tuning by

hand, it would be preferable to employ library primitives, such as from Lapack [5].

Data Access

Figure 4.10 compares the performance of local data access operations on HP machines and for the one
disk type on Pentium machines.

The operations measured are; read file from file system cache, write new file data to, and read
file from locally mounted disk. These basic operations correspond to the object level accesses which
are made in the application. A technical specification obtained for the IBM disk quotes a minimum
sustained data rate of 3.2 Mbyte/s.

The bandwidth available in a single ATM link greatly exceeds that available to a single disk.
However, two of the Pentium machines have a pair of MAXTOR MXT-540-SL disks, so to make better
use of the available link bandwidth in larger scale experiments, data is striped over such a pair of disks.
The pair of disks are configured as RAID-0, using a software package md [121] freely available for

Linux. This package implements a pseudo device redirecting I/O requests from the file system layer to
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Figure 4.10: Measured performance of data access operations. Both axes are logarithmic.
The values plotted in the graph are average of at least 3 measurements. A block of width b
corresponds to a file size of 862 bytes.

multiple individual disk devices. The system supports a linear mode which allows simple concatenation
of multiple disks with no redundancy and no performance gain and also RAID levels 0 and 1. Fig-
ure 4.11 shows benchmark measurements of various combinations of MAXTOR disks and compares
these with the IBM disk.

The MAXTOR disk exhibits different behaviour from either the HP or IBM disks in that the cost of
writes is much greater than that of reads. It is speculated that the disk implements a buffered read ahead
protocol, though supporting documentation has not yet been located. The maximum read throughput
from a single disk is 3.8 Mbyte/s which is rather better than from the IBM disk. A technical specific-
ation obtained for the MAXTOR disk quotes a disk transfer rate of between 2.8 and 4.0 Mbyte/s. The
performance of writes is somewhat inferior, reaching a maximum of about 2.2 Mbyte/s.

Connecting two disks in linear mode yields effectively a single disk which has the same performance
but twice the capacity. The theoretical bandwidth expected over a fast SCSI 1I link is 10 Mbyte/s. So
ideally the throughput to and from a RAID-0 pair should be double that for a single disk. In practice the
RAID configuration gives no performance improvement for write operations but improves the maximum

read performance to about 5.5 Mbyte/s.

Communication

Figure 4.12 shows how the transfer rate varies with data size over the three network configurations and

for the two request types put and get.
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Figure 4.11: Measured performance of the software RAID system using various disk configurations.
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Figure 4.12: measured performance of communications (a) get and (b) put transfers for the
three experimental configurations employed.
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The operation timed is equivalent to a single RPC call to the shared object store server. The client
first establishes a connection to the server, then sends a buffer to the server which returns a separate
buffer and finally disconnects. The operation is similar to a single exchange from client to a serial TCP
server as described in [104]. In the case of put the former is of variable length while the latter is fixed.
The reverse is true in the case of get.

In all cases the performance is poor for small transfers but this is to be expected since a connection
is made for each call. The computations described in this work are marked by large data transfers where
the overhead of these connections is hopefully tolerable.

On a 10 Mbit/s ethernet, the maximum theoretical transfer rate is 1.25 Mbyte/s. A part of this
bandwidth is taken up with protocol overheads however. The maximum rate observed for transfers
between HP workstations of 0.2 Mbyte upwards is about 1 Mbyte per second. This is not inconsistent
with a study of communication rates in a range of network parallel programming environments [46].
Similar rates are observed in transfers between two HP710 machines and between HP710 and HP730.

Over the fast ethernet the communications bandwidth reaches a maximum of only 4.6 Mbyte/s. As
the nominal bandwidth of the medium is 100 Mbit/s this measurement gives some cause for concern,
though validation of the model is still possible. At this time it is not clear where the performance
degradation occurs, but a simple echo test using UDP over the same fast ethernet connection achieves
also a maximum of 4.6 Mbyte/s.

The performance for transfers between a single client server pair over the ATM network gives only
partial indication of the performance that is attainable. The link and switch bandwidths are nominally
155 Mbit/s and 2.5 Gbit/s. Transfers between a single client server pair are therefore bounded by the
former. For raw ATM, the maximum throughput is 135.6 Mbit/s [2]. The measured bandwidth over TCP
is seen to peak at 9 Mbyte/s or 72 Mbit/s. Using an earlier installation of Linux based on kernel version
1.3.71, a peak throughput of 12.5 Mbyte/s was measured, which at 100 Mbit/s is not inconsistent with
the basic value reported in [2]. At this point it is not clear what change may have lead to the performance
loss.

A high overhead in processing communications requests is widely acknowledged. The overheads
divide into two types. One is proportional to data size and includes buffer copying which is performed
within the kernel to isolate users from the network interface and each other. Various schemes have been
proposed to eliminate these buffer copies, eg [2]. Even in the absence of any buffer copies there remains
a cost which is dominated by the cost of transferring a message through the various protocol layers.
This latency can be observed as the time taken to transfer even a small message between application
and network. This issue has attracted some attention recently particularly as the idea of employing “off
the shelf” workstation clusters, perhaps with retargeted multiprocessor networks such as Myrinet [23],
for general parallel computing tasks has lead to comparisons between the communications infrastructure

in the two environments. A portable user level communications interface, eg U-Net [114]. addresses the
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high latency through reducing kernel involvement in message transfer. Such a system is not currently

available for the hardware used here?.

4.8.2 Ray Tracing

The cost of the total computation component is roughly equal to that of the sequential implementation,
where the disk output is done in parallel with computation. The time for the unmodified software to
complete the specific example computation is measured at 1130 seconds. The bulk of the communic-
ation is that entailed in writing the completed rows. It is possible therefore to estimate the maximum
parallelism as the average task computation divided by the cost of writing the output to shared store.
Each row of the output matrix contains 512 color entries, each containing 3 double values. The size of
a double here is 8 bytes, and so each row occupies 12 Kbyte. The cost of writing to disk is shown in
figure 4.10 and the cost of writing a few rows of the output, say up to 8, is within the leftmost region

of the graph which exhibits significant variation with data size. Figure 4.13 shows in greater detail the
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Figure 4.13: Performance of small data transfers to and from HP710 internal disk.

cost of small disk accesses to the HP710 internal disk. It is seen that there is a peak in transfer rate at
each multiple of 8192 bytes, the physical block size. While the data contained in 2 and 8 rows is the
same size as 3 and 12 disk blocks respectively, the actual data written is slightly larger. This is because
each row is stored in a general array structure and the current size of the array is stored with the data
itself. The effective transfer rate is thus the value corresponding to the dip just after the appropriate
peak. Table 4.4 shows derivation of the expected performance for a range of task sizes.

Figure 4.14 shows the measured performance of the application for grain size of 1, 2 and 8 both as

’In particular U-Net version 2.0 does not support HP-UX and supports Linux only with a Fore Systems ATM adapter or
DECChip 21140 “Tulip” fast ethernet adapter
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Table 4.4: Derivation of maximum performance for ray tracing.

Tasksize  Tcomp Disk Write  Tput Ty lwr{Tx} upr{S.}

(elements) (seconds) (Mbyte/s) (seconds)
1% 512 2.21 0.0658 0.187 1226 955 13
2 x 512 441 0.125 0.197 1180 50.4 23
4 x 512 8.83 0.226 0.217 1158 27.8 42
8 x 512 747 0.375 0.262 1147 16.8 68
16:%512 333 0.555 0.354 1141 11.3 101
32 % 512 70.6 0.774 0.508 1138 8.1 140
(a) Elapsed time (seconds) " (b) Algorithmic speedup . (b) Corrected speedup
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Figure 4.14: Measured speedup of parallel ray trace of example image “balls™ at size 512 x
512 pixels.
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elapsed time and algorithmic speedup. The algorithmic speedup is seen to level off as expected, but at a
much lower value than predicted. Similarly the single slave time is somewhat higher than the expected
value. However, as remarked before with regard to the matrix computations, the cost of constructing
the empty output object on disk is not accounted for in the model. Again. the cost of constructing this
object is proportional to the total number of tasks, and not directly to the size of the data. In the three
instances described here where the task size is 1, 2 or 8 rows, the cost of constructing the output object
is approximately 160, 80 or 20, i.e. about 0.3 seconds per task. Furthermore, there is an extra cost
which is not accounted for in the model, namely the conversion of output data to Utah raster format. For
the three task sizes referred to, this cost is roughly 44, 22, 5 seconds, i.e. about 0.09 seconds per task.
Figure 4.14(c) shows the algorithmic speedup again, but after the initialisation and data reformatting

cost have been deducted from the measured time.

4.8.3 Matrix Computations

As for ray tracing, it is possible to make a precise comparison for each separate experimental config-
uration between measured and predicted performance. Though such an exercise verifies the model. it
doesn’t facilitate extrapolation to alternative configurations or to larger or alternative problems. For this
purpose it is more useful if a simple cost function can be defined for each of the primitive operations.
In general it is not possible to guarantee that upgrading disk say will lead to the relevant performance
curve being altered by a simple multiplicative factor, but the matrix computations studied earlier admit

particularly simple expressions. The discussion that follows is in terms of these two computations.

Processor

Previously, the computation rate was measured for each of the basic matrix operations. Given such
a detailed set of measurements for a particular processor, it is possible to use them to attain greatest
prediction accuracy. However, a comparison between different machines is less obvious as the number
of parameters is increased. For such a purpose, a compromise is desirable

One of the aims of deriving a block oriented expression of a matrix computation is to concentrate
a large proportion of the effort into highly tuned routines such as the BLAS, and in particular matrix-
matrix multiplication. It is then tempting to make the simplification that all block matrix operations
run at the rate of matrix multiplication. In such computations the HP710 and Pentium are then of
nearly equal performance. Referring back to the measured performance, figure 4.9, it is seen that the
computation rate for the tuned matrix primitives are generally not very different. The addition and
subtraction operations do have much worse performance, but as noted earlier the operation count in
these cases is proportional to the square rather than cube of the block width. For these computations

then the parameter describing machine speed is taken as the execution rate for matrix multiplication.
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and as observed in practice this rate is assumed to be sustained over most of the possible range of block
£~

sizes.
Disk

For large transfers the disk transfer rate is roughly constant. While transfer rates for read and write
transfers are nearly equal in the case of the HP and IBM disks, they differ considerably for the MAXTOR
disk. However, in the case of the HP disks the performance of small read requests is rather better than
that of small write requests. The cost of a cache read is much smaller than the cost of a disk read and so

is conveniently ignored.

Communication

As in the case of disk large transfers are seen to be at roughly constant rate.

Model Parameters

For large block sizes, the three bandwidths are all constant, but a convenient approximation for model-
ling behaviour when the bandwidth is small is to employ piecewise linear models, so that each parameter
is represented by a bandwidth and a threshold. Below the threshold the bandwidth is assumed to be pro-
portional to the size of the data for the transfer costs and to the number of basic operations in the case
of the processor cost. The values corresponding to the three practical configurations are summarised in

table 4.5. In each case, the bandwidth and threshold are given.

Table 4.5: Measured parameters for the various hardware configurations to the performance
model used for the matrix computations.

Configuration HP fast ATM
Computation (Mflop/s:ops) P 30:30° 27:30°
Network (Mbyte/s:Mbyte) c 1:005 4.6:025 9.0:0.11
Disk (Mbyte/s:Mbyte) Dget 1.6:0 28:0.11 5.5:03

Dput 1.6:03 28:0.11 2.4:03

Computation
3 3 3

2b b
_ - - — 4.1
trult = P tsolve = P tchol 3P 4.1)

4.2)

2
tadd = tsub = P

Data Access

1 1 1 1 >
— Qp2 put = 2 _ 4+ = (4.3)
tget = 8b (Dget C) » tput = 8b <Dput (
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Figure 4.15 shows how the estimates of single slave and minimum parallel execution time provide

bounds on limiting and nonlimiting performance.
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Figure 4.15: Computing bounds on parallel performance of 3000% matrix multiplication.
In the nonlimiting example s is the number of slaves. %} is the granularity bound, i.e.

max{T comp() }, for matrix multiplication.

Figures 4.16 and 4.17 compare expected performance of each of the two matrix computations with
measured results. Performance of matrix multiplication is computed using (3.15) to (3.17) and Cholesky
factorisation using (3.26) to (3.28). In each case the comparison is made in two alternative hardware
configurations.

As well as supporting the validity of the analysis, the graphs show that the greatest uncertainty of
prediction occurs where the block size is less than but not much less than the matrix size. Both when
the block size is very much smaller than the overall matrix size and in the trivial case when these two
sizes are equal, the upper and lower bounds are close together. Obviously in the latter case, there is no
parallelism and hence no uncertainty. In the former case, the parallelism is greatest and is therefore only
restricted by the number of processors. In realistic large scale computations it is likely that the block
size would be significantly smaller than the overall matrix size.

A small number of measurements have been made using the ATM configuration for larger scale
computations. Table 4.6 summarises the performance of the fault-tolerant parallel implementations,
showing for each application a measure of the performance achieved and estimate of the average recov-
ery time. As in the case of earlier results, the table also indicates the total data accessed by slaves. In
this configuration it was only possible to make 5 slaves available for the experiment, and clearly band-
width limits are not reached. The lower bound for the nonlimiting case is used as predicted ime and

shown in parentheses. The efficiency quoted is simply the ratio of measured time for the fault-tolerant

implementation to the expected time.



CHAPTER 4. IMPLEMENTATION

(b) fast
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Figure 4.16: Potential limiting performance of 3000? matrix multiplication for varying
block size with some measured values.
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Figure 4.17: Potential limiting performance of 4800% Cholesky factorisation for varying
block size with some measured values.
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Table 4.6: Measured performance of fault-tolerant parallel applications in ATM configuration.

Application Matrix Cholesky
multiplication factorisation
(9000%) (15000%)
Task size (elements) 6002 7502 6002 7502
Number of tasks 225 144 325 210
Data (Mbyte) input 1296 936 945
get 19440 15552 15912 12915
put 648 936 945

13179 12611 11521 10922

Time for 5 slaves (11620)  (11462)  (9853)  (9792)

(seconds)
Efficiency (%) 88 91 86 90
/O (Mbyte/s) 1.5 1.3 1.5 1.3
Average recovery 146 219 89 130
(seconds)
Performance (Mflop/s) 111 116 98 103

In this experiment the computations are of about 4 hours duration, so fault-tolerance is certainly
desirable. The efficiency, based on measured performance of a fault-tolerant computation and computed
estimate of the single slave time in the absence of fault-tolerance demonstrates that the application
of fault-tolerance to this computation structure is successful. Clearly too however, the distribution
of computation data is successful, and it is in the consistent update of distributed persistent data that

transaction technology is most needed.

4.9 Summary

The three example computations have been implemented in various experimental networks. The ray
tracing example demonstrates that while there is a cost inherent in this fault-tolerance mechanism as
in any other this overhead may be reduced in significance if the granularity is large. Clearly if the
problem size increases then in such a computation even a fault-tolerance mechanism such as that used
here which relies on disk access will be cheap though the benefit will be significant. The structuring
approach used in this work is of more direct benefit to the matrix computations which may exceed main
memory capacity. In these cases the failure free cost of fault-tolerance provision is seen to be small
provided the granularity is large.

The performance models are calibrated through benchmark measurements and used to show that the
measured performance of each of the three computations is close to that predicted. In absolute terms
it is seen that significant benefit through parallelism can be gained for the matrix computations in the

higher specification network.



Chapter 5

Assessment

Previous chapters have described a technique for distributing a parallel application over a collection of
workstations using a shared persistent store and using atomic actions to implement various levels of
fault-tolerance. Implementation of three large grain examples has shown that the cost of fault-tolerance
can be small and yet still allow significant benefit, particularly as the scale of computation grows. This
chapter employs the simple modelling techniques described in chapter 3 in an attempt to extend the
study beyond the limits of experiment to make some assessment of the potential for the structuring ap-
proach. First a comparison between alternate computation structuring approaches is performed in the
context of Cholesky factorisation. Following is an analysis of the effect of scaling problem size. Much
of the subsequent description is in the context of the simpler application, matrix multiplication, and
begins by studying the potential benefit of data caching and continues by addressing issues of scaling
hardware configuration. The potential application of multithreading techniques to overlap communic-
ations is addressed next, and subsequently a comparison with a data parallel structure. Finally some

consideration is given to the potential for further application of the approach.

3.1 Computation Structures

It is seen earlier that the dependencies inherent in Cholesky factorisation may be satisfied in various
different ways. This issue inevitably arises in a nontrivial application and is clearly specific to each
application. While it is possible to define a set of synchronisation mechanisms which are sufficient
in general, it is important to understand the impact on performance that a choice of synchronisation
mechanism may have. In the case of the example algorithm for Cholesky factorisation which is suited
to an out of core computation, three implementations are derived which differ only in the mechanism
employed to achieve correct synchronisation. These can be employed both to study the implementations

of the alternative structuring techniques and also as an example of the issues arising in selecting a

88
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synchronisation mechanism for a particular application. A brief record of this work appears in [100].
First the bounding performance is compared, specifically that of the multi-step(1) and single-bag

organisations. Subtracting (A.10) from (A.14) and ignoring the second major term of (A.14) the differ-

ence is

lwr {T'multibl .} — upr {Tsingleb.. }

=1
> pT((p—2)(tmult+tsub) — 2tsolve) . (5.1)

This quantity is positive if p > 2 and
tmult + tsub > 2tsolve .

In the model (4.1) tmult = 2tsolve and this is found in measurement too, figure 4.9. So for practical
factorisation problems, an upper bound on minimum parallel time in the single-bag organisation is
exceeded by a lower bound on minimum parallel time in the multi-step(1) organisation. This algebraic
comparison is valid for all hardware configurations.

Figure 5.1 compares the maximum performance for the three computation structures for a matrix
size of 48007 in the fast configuration. Both upper and lower bounds on maximum performance are
shown and so are a number of measurements actually made in this configuration. The computation rate
assumes an overall operation count of "Ta The performance is greatest for the single-bag organisation,

and the performance of the multi-step(2) organisation is not much better than that of the multi-step(1)

organisation.
(a) Single queue (b) Homogeneous (c) Optimised
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Figure 5.1: Potential performance of parallel Cholesky factorisation using three different
synchronisation structures in the fast configuration. All measured values are for fault-
tolerant implementations.
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A study of larger scale computations is based on the ATM configuration. Figure. 5.2 shows how the

performance varies for increasing matrix size and separately for increasing number of slaves. The graph

plotted for each structure derives from the lower bound on the predicted parallel time (3.21), (3.24)

(3.25). A number of measurements made in the ATM configuration are also plotted.

(a) 15000, S slaves

(b) 30000, 5 slaves

(c) 45000, 5 slaves

0 - . 0

1 1

200 400 600 800 200
Block size

(d) 45000, 8 Slaves

400 600
Block size

(e) 45000, 12 Slaves

0 L 1
400 600
Block size

800 800

(e) 45000, 16 Slaves

200 300

0 1 1 0 1 1 0 1 1
200 400 600 800 200 400 600 800 200 400 600 800
Block size Block size Block size
Measured Estimated
Single-bag ---o-- Single-bag --
multi-bag(l) --m- multi-bag(l) ——
multi-bag(2) ----e--- multi-bag(2) -------

Figure 5.2: Potential performance of parallel Cholesky factorisation using three different
synchronisation structures in the ATM configuration. All measured values are for fault-
tolerant implementations.

Overall, significantly better performance can be obtained using the single-bag, though if the number
of slaves is small with regard to the problem size it is possible for the performance of multi-step(2)
organisation to approach that of the single-bag organisation. It is noted that even the fault-tolerant

implementations achieve performance which is close to that predicted, so that even with the assumptions

made, the modelling process is not unrealistic.

5.2 Computation Scaling

It is seen already that the limiting performance for the matrix computations increases as the operand

size increases. This peak performance is related to the inverse of the total I/O cost. The relationship 1s
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shown more clearly in figure 5.3. Only the upper bound on performance is plotted and it is assumed that

(a) Matrix multiplication (b) Cholesky factorisation
S(X) Sm T T T
4800
8000 -------
L 12000 ------
400 16000 ]
30000 ----
300 - 4

Execution rate (Mflop/s)

0 500 1000 1500 2000 0 500 1000 1500 2000
Block width (elements) Block width (elements)

Figure 5.3: Maximum potential performance for the two matrix computations in the fast
configuration for varying block size.

no caching takes place. An asymptotic performance which is proportional to the block size is apparent
for each computation. It is not surprising that the lower bound on performance, while not plotted here,
does in fact tend towards the same performance. It is simple to derive an expression for this asymptotic
performance from the earlier analysis.

The maximum execution rate is R, and bounds may be derived from those on minimum parallel

time.

() 0
wpr{To} = Re < Iwr {7}

where O is the overall operation count.
For large n, the operation count for matrix multiplication is taken as 2n3, i.e. 2b°p>. For large block
size, the model parameters C, Dget, Dput, P are constant. The maximum performance for matrix

multiplication is derived from the expressions for minimum parallel time, (3.13), (3.14).

R & 2P3b3

T T 285 + g + (2 +67) 3
= 2p°b3

© = 852 8h2

2P3 Bget L P2 Bput

B L) 2b3p3

T i )

where:
1 1 1




CHAPTER 5. ASSESSMENT 92

and

1o 1 .1
Bget = Dget ' C -

If p — oo, the first expression continues to grow and is always greater than the second. However,

the second and third expressions tend to the same value, which is

3
lim Ry = 2b
P00 2 x 852 (gl + %)

This asymptotic performance can be interpreted as the maximum rate at which matrix multiplication
can be performed when the data is fetched from shared store. In the case of the fast configuration,
the asymptotic execution rate for a block size of 7502 is then 163 Mflop/s. In the case of the HP
configuration, the corresponding figure is 58 Mflop/s. In the case of the ATM configuration, the disk
read and write costs are different, but ultimately only the read cost is relevant. Since the object store is
distributed over two machines, the limiting bandwidth is twice that for a single node, i.e. 11 Mbyte/s
for disk and 18 Mbyte/s network. The asymptotic performance for block size 750 is then 641 Mflop/s.
For Cholesky factorisation, the overall operation count is taken as 2- e ——L , for large n. Expres-
sions for limiting execution rate are defined for the single queue configuration from those for minimum

parallel time, (3.19), (3.20).

p3b3
Roo 8b2 3 2 3\ 1
3(2pBget + Bpur T (P — 1)(20° +82) + b%) 5)
Re < il
T T 3 ES + L+ (-2 +0) + 5)E)
3b3
Re <
T 3B+ 1)@+ 1)EE + B+ 1)EL)
R < p3b3
3
T BB+ 1)(2p+ )R + 2+ 1) 2L + (- 1)(30° +52) + 2) 5)

As p — oo the first and second expressions grow, but the remaining two approach the same asymptotic
performance as seen for matrix multiplication.

It is possible to repeat the exercise for a computation where blocks are cached either at slave or
server. As an example the case of matrix multiplication where a block row is cached at server level is

considered. From (3.16) and (3.17) bounds on maximum execution rate can be defined as before.

3b3
R
© T -1 +(p+1)§;;+;}:it+p(2b3+b2)%
3b3
R

< 552
Pp— 1) +p2(p+ 1) B + PP oy
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2p3p°
20 (p - 1)%& +p2(p+ 1) 2L + P2 22 + (263 + 12) L

o

where, as before:

111
Bput ~  Dput *teT
and
111
Bget ~  Dget tT-

In this case as p — oo the latter two equations both tend to a different limit

3
lim Ry = ﬁZlb .
—> 00 2
i 8b2 (Dget + 6)

This can be interpreted as the maximum rate at which matrix multiplication can be performed when one
of the matrix operands must be fetched from remote disk and the other from remote memory.

Clearly the performance achievable in the example computations is limited by the cost of fetching
data from shared store. Clearly also there is potential to reach a higher performance through caching

data in server or slave memory and the following section considers this issue more fully.

5.3 Benefit from Caching

Computation performance is seen already to be dependent on block size and caching pattern. In fact
these two parameters are not independent. For a given block size it is no surprise that the performance
should never be worse where some caching occurs than where no caching occurs. However, such a
comparison assumes that memory space is unbounded. A more realistic comparison fixes the memory
utilisation and determines the block size from that value.

For matrix multiplication, a comparison can be made directly between a computation where no
caching takes place and an alternative where a row of blocks is cached by each slave. It is assumed
that all machines have the same amount of memory. The memory required to support the programs
themselves is assumed constant and therefore ignored. Similarly memory which should be required for
buffering in the communications path is also ignored. The block size is assumed to be the largest which
the particular memory size can support. If the main memory size for a slave is m, the matrix size n
and the chosen block size b, then in the case where no blocks are cached three blocks must be held in

memory. Matrix elements are assumed to be 8 byte doubles so that, from table 3.3

m=23x8b .
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This is rearranged:

b=/ .
24
In the case where a block row is cached by each slave, a row of blocks and two other blocks must be

stored by each slave so that

m = 8(nb+ 2b?%) |
vVnZ+m—n
4

b=

Itis then possible to compare the maximum performance achievable in the two configurations. This

is shown for the fast configuration in figure 5.4. The drop in performance for large block size arises

250 —

Execution rate (Mflop/s)

0 L 1 1

2 o
0 32 64 96 128 0 32 64 9% 128 0 32 64 9 128
Slave memory (Mbytes) Slave memory (Mbytes) Slave memory (Mbytes)

Slave caches block row
No blocks are cached

Figure 5.4: Potential performance of matrix multiplication in the fast configuration exploit-
ing different patterns of data caching in slave memory.

simply from the reducing parallelism. In practice, the block size would not be increased above the point
at which performance is optimal, but this is not important here.

It is assumed that no cost is incurred by a slave in accessing a block which is cached locally. The
benefit from caching a block row at slaves is reduced if the number of slaves is greater than the width in
blocks of a row because more than one slave will cache the same block row separately. The effect be-
comes more noticeable gradually as the number of slaves participating increases. This effect is ignored
however in the graph so that the performance of the caching option is likely to be an overestimate. Yet
still it appears the prospects for caching are not good. The graphs show that for a given problem size
and in a given configuration caching a block row cannot give advantage if the memory size is below
some threshold. Intuitively if a block row must be accommodated within a given memory size, then
the maximum block size must be smaller than if only a single block is required. The volume of /O

performed through the computation is proportional to the block size and this effect tends to counter the
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reduction in [/O requirements caused by data reuse.

In this configuration it appears with the 32 Mbyte machines in use, there is potential for benefit
through caching a block row at the slaves only for rather small matrices.

Assessing the benefit of caching at the server is not quite so straight forward, since the extra memory
for caching is only required at the server. From table 3.3 the extra memory required at the server in order

to permit a block row to be cached there is
8nb(1 + s)

where s is the number of slaves participating in the computation and is assumed no greater than p. If
s > p then to achieve the benefit of block row caching at the server, it is necessary to accommodate as
many different block rows as may be computed at once. In general this would be [%] Obviously in
the other two cases, no extra memory is required at the server. In order to compare the three caching
options on an equal cost basis, the controlling variable is the total memory across all machines. In the
slave caching options this memory is all divided between the slaves. In the server caching option some
portion is allocated to the server such that the sizes of server and slave memory are in some defined ratio
and the largest block size chosen to fit both slave and server memory sizes. Given total memory A and

s slaves and mratio = Z22P¥ELif no blocks are cached

M = 24sb® (5.2)
M
b= Vags o

if a block row is cached by each slave

M 8s(nb + 2b?) (5.3)
b = Vvs2n?2 + sM — sn
- 4s ’

if a block row is cached by the object server

M = smslave + mserver
M

s + mratio

= 24bslave®
mratio M

mslave =

mserver = ———————
s + mratio

= 8n bserver ([————S -I + s)
n/bserver

b = min{bslave,bserver} .
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Since

s s s
m e S
n/bserver — [n/bserver.l ~ n/bserver i

it is argued that an upper bound on bserver is defined by the expression

mratio M
mserver = -
s + mratio
s
= 8nbserver | —— — 1+ ¢
n/bserver
such that
V4n2s? + 2s mserver — 2ns
bserver <

4s
Since the performance is proportional to the block size, an upper bound on block size defines an upper
bound on performance.

Figure 5.5 compares the maximum expected performance for 5 slaves executing with the three
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block row -------- Server mem = 2*slave mem
No blocks —— Server mem = 4*slave mem - ---

Server mem = 6*slave mem - - - -

Figure 5.5: Potential performance of matrix multiplication in the fast configuration exploit-
ing different patterns of data reuse in slave memory or server level file system cache.

alternate cache patterns. The range of total memory is equivalent to 5 machines with 128 Mbytes. As
before memory used by the program code and system, including communications buffers in the slaves
is ignored. Also ignored however is temporary buffer memory required in the server machine which is
assumed constant for each of the three configurations.

While it seems that avoiding any block caching offers greatest potential. the performance of the
server row caching option is quite dependent on the particular memory configuration chosen. Assuming
that the overall matrix size is large enough, it is generally best to choose as large a block size as possible.

Thus the optimum partitioning of a given total memory allocation is obtained by setting bslave =
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bserver = b. The maximum block size may then be computed as below

S
M = 8nb ([n—ﬁ-’ +s) + 24sb% . (5.4)

Again a bound on performance is sought from the modified expression

M = 8nb (i +s> + 24sb% |
n/b

and hence
Vn2s2 + 2sM — ns
8s

b=
Since
mslave = 24b°
and
mserver = 8nb(ni/b +5s),
the actual memory partitioning can be computed as

mserver S n
mslave 3

Figure 5.6 shows how the ideal ratio of slave to server memory size varies with number of slaves for a

(a) 32 Mbyte/slave (b) 64 Mbyte/slave

300 7! |‘ T | id | 300 T T T

/

Optimum Mserver/Mslave

15 0 S 10 15
Number of slaves
------- 15000 ———
25000

Figure 5.6: Variation of optimum memory partitioning between slave and server with num-
ber of slaves for different instances of matrix multiplication.

range of large scale instances of matrix multiplication. Since the optimum memory partitioning depends

on the size of the matrix it is clearly difficult to exploit such server level caching in general. Furthermore,
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when the performance of the optimum configuration is compared with the other two cachine options in

figure 5.7, it is clear that from a performance point of view too the best option so far is to avoid block
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150 —— 150 ——r————p P

E
=
2
= i
£ ;
2 4
E ;
2 Z :
g : : »

ol ! 1 0 £ 1 i 1 o L& L ! !

0 160 320 480 640 0 160 320 480 640 0O 160 320 480 640
(d) 15000, 11 slaves (e) 15000. 15 slaves (f) 15000, 23 slaves
4(x) T * T T Sm T T T 6(» T T T

Ig 400 i ]
s
S 300
B
£ g
= L
2 100
() ; y

0 < 1 1 1 o0 L= 1 1 1 0 1 1 1

0 352 704 1056 1408 O 480 960 1440 1920 O 736 1472 2208 2944
Total memory (Mbytes) Total memory (Mbytes) Total memory (Mbytes)

Slave caches block row ---
Server caches block row
No blocks are cached

Figure 5.7: Potential performance of matrix multiplication in the fast configuration with
server level file system caching when the memory is partitioned optimally between server
and slaves.

caching.

In (5.4), the s term arises due to the assumption that blocks are cached transparently in file system
buffer space. Since the computation operands are implemented as user specified objects, it should be
possible to exert some form of control on the server level caching. In this case for instance, it is sufficient
for one of the two input matrices to be flagged as permitting caching at object server level, the other by
default not. The total memory requirement is then

S

M = 8nb {n/b

1 +24sb° .
Once again an upper bound on performance is sought from the modified expression

S 2
—— + 24sb°
8nbn/b + 24s

32sh% | (5.5)

M
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and hence

o [
V32

Employing user directed caching, the optimum memory partitioning is seen to be

mserver S

mslave 3

and depends only on the number of slaves.

99

Figure 5.8 repeats the comparison of figure 5.7 but assuming the server level caching is user directed.

Out of the 24 ports currently available in the fast configuration, one is used by the object server. If the
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Figure 5.8: Potential performance of matrix multiplication in the fast configuration with
user directed caching when the memory is assumed optimally partitioned between server

and slaves.
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memory is 32 Mbyte per slave then there is little to be gained by using more than about 11 slaves at

which point the computation reaches bandwidth limit. However, while the presentation has only been

in terms of a predicted upper bound on achievable performance, evidence suggests it is worthwhile

partitioning application memory between server and slaves to support user directed caching rather than

distributing the equivalent total memory purely between the slaves. In terms of computation runtime,

caching only gives a significant benefit when the computation is bandwidth limited. This occurs when
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the number of slaves is relatively high. Clearly when there is only a single slave the runtime is dominated
: . Ly F

by computation. The lower bound computed for T} is 75 so clearly the influence of the communication

cost remains small and this explains why the difference in execution rate between the organisation

which caches a block row at server and that which does no caching is small if neither is bandwidth

limited. What actually happens when the computation is not bandwidth limited is that communication

by one slave is overlapped by computation performed by another. Figure 5.9 shows how the different

caching options compare for the larger problem size of 30 K2, but also the percentage utilisation of the

interconnect,

If the total memory size is modest there is a significant benefit to be gained through the use of server
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Figure 5.9: Potential performance of 30 K2 matrix multiplication in the fast configuration
with user directed caching when the memory is assumed optimally partitioned between
server and slaves. For each cache reuse pattern the execution rate is shown by the fainter
line while the corresponding heavy line indicates the interconnect utilisation.

level block row caching. For instance, if the memory size is 32 Mbyte per slave and there are 23 slaves
an increase in maximum performance from 493 to 568 Mflop/s can be expected, implying a potential
reduction in runtime from over 30 hours by 4 hours. For larger memory sizes the performance of these
two organisations is very similar, since bandwidth limiting does not occur, but there remains a significant
difference in interconnect utilisation.

While the object store is contained within a single machine the memory available for server level
caching is fixed. If the server machine is configured with rather more memory than the slave machines
then for any matrix multiplication which is structured in this way, it is possible to predict how much
memory is required to support this degree of caching. It is possible to increase the server level memory

available for caching by distributing the object store over multiple machines, as in the experiments in
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the ATM configuration.

It is recalled though that to benefit from caching a block row at slave level it is necessary for each
slave to be computing a different block row. Yet when all tasks are contained in a single bag any
slave may get any task. It is necessary to implement a structure which allows each slave to retrieve a
predictable sequence of tasks in the normal case, yet allows correct recovery in case a slave fails. One
possible approach is to use the two level bag of tasks structure of section 2.4.7. A slave would select a
block row by removing an entry from the first level bag, within an atomic action. Before committing
that action, the slave would complete all tasks for that block row, each within a separate top level action.
If the slave fails completed tasks for that block row are not undone, but the block row task itself remains

available in the higher level bag for continuation by another slave.

5.4 Configuration Upgrades

So far, in order to perform a larger problem size within a reasonable time, the number of processors has
been increased, but an alternative is to increase the processing rate of each machine.

Some increase in the benchmark processor rate may be expected with more careful tuning, particu-
larly in the case of the Pentium machine for which less corroborative published results have been found.
The potential for such improvement may be quantified through consideration of instruction level timings
and memory access rates, but this is not attempted here.

An upgrade of processor may imply in the simplest case only a change in clock speed. Pentium
processors similar to those used in experimental work may now be clocked at 200 MHz. If suitable
published benchmark data is unavailable, a gross simplification for modelling purposes is to assume
that increasing the clock speed by 1.5 times in this way translates to increasing the processor rate P
used in the model by the same factor. In practice memory or system bus access costs could reduce the
impact of the clock rate increase. However, it is reasonable anyway to investigate the performance of the
applications in a network of machines of some defined processor rate, perhaps based on measurements
such as Lapack [43]. A multiprocessor may be employed simply as a single component within the
distributed computation, using parallelism locally to compute a single task at a time.

Figure 5.10 shows the effect on the performance of a large scale matrix multiplication in the fast
configuration of two alternative processor upgrades. The first assumes a speed increase of a factor of
1.5, which is the best that can be expected from a simple change in clock speed from 133 to 200 MHz.
The second alternative assumes the speed increases by a factor of 2 again. The mythical machine is
labelled a P5/400, but this is not important. It is in the class of a 50 MHz RS6000 [43], and operates in
an equivalent environment to the fast configuration.

For the presentation, the number of processors employed is scaled so that the total nominal cpu rate

is the same in each case and the range of total memory configurations is 0—128 Mbyte per processor
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Figure 5.10: Potential performance of 15K 2 matrix multiplication in the fast configuration
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as before. Also as before, the server caching option assumes Optimum memory partitioning. Since
the memory configured per slave remains the same through the upgrades, so too does the range of
block sizes. Thus the bandwidth limiting performance is not altered. However the single slave time
depends on both the local computation time and the I/O cost. While the former drops in proportion
to the processor rate upgrade, the latter remains unchanged so the single slave time doesn’t reduce in
proportion to the increase in processor rate. Hence the bound on nonlimiting execution rate falls a little
with each processor upgrade in this scaled study. Similarly, since the /O cost becomes more significant
in the nonlimiting execution rate, the difference between the different organisations for cache reuse
becomes more significant as the processor rate is upgraded.

Increasing the problem size permits a higher execution rate, and therefore a greater potential for
parallelism, but in section 5.2 it was shown that for a given cache utilisation pattern and given block,
and therefore memory, size there is a maximum execution rate which is independent of problem size.
This asymptotic execution rate is dependent on the aggregate bandwidth of accesses to store and will
therefore be dominated by the smallest of the bandwidths of communications and disk.

Figure 5.11 models the effect of replacing the interconnect in the fast configuration by an ATM

switch, but using the IBM disks as before. Comparing the graphs specifically with (c)—(e) in figure 5.8,
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Figure 5.11: Potential performance of 15K 2 matrix multiplication in the fast configuration
when the interconnect is replaced by an ATM switch.

the obvious difference is the increase in limiting performance. There is a small difference in nonlimiting
performance, but since most communications is overlapped in this region the difference is not obvious.
However, there will be a significant reduction in utilisation of the interconnect. If the memory configured
is 32 Mbyte per slave and there are 15 slaves the potential performance when using server caching is
379 Mflop/s; a runtime of under 5 hours. Since the communications bandwidth is significantly greater

than the disk bandwidth, the benefit to be gained through server level caching is clearly greater. In the
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same instance as above, if no blocks are cached the potential performance is 297 Mflop/s; a runtime of
over 6.3 hours. However the computation is almost bandwidth limited at this point and is certainly so
without the block row caching. An obvious step is to replace the IBM disk by a pair of MAXTOR disks

configured as RAID-0, whereupon the performance is as shown in figure 5.12. The read throughput
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Figure 5.12: Potential performance of 15K 2 matrix multiplication in the fast configuration
when the interconnect is replaced by an ATM switch and the single disk by a pair of MAX-
TOR disks managed using the software RAID system at level 0 but still connected to the
single node.

using the RAID configuration is just about twice that of the single IBM disk, but the network throughput
is also nearly doubled so network bandwidth remains significantly higher than disk throughput.

While it is to be hoped that further development might yield a higher disk throughput on a single
machine, it is ultimately necessary for reasons of throughput or space to distribute the object store. The
example configuration used here is then obtained by matching the single machine store configuration on
one other machine so the object store is distributed over four MAXTOR disks in all, two per machine.
It might be possible to decluster individual objects between object store nodes and obtain parallelism
within a request for a single object. Here however this distribution is done at the granularity of whole
objects, so each request for a single object communicates with only a single object store node. Con-
sequently, a single slave doesn’t benefit from the distribution. When there are two or more slaves, the
parallel execution time still cannot be less than the single slave time divided by the number of slaves.
However, the minimum achievable execution time is reduced. In calculating this minimum execution
time both disk and interconnect bandwidths are multiplied by the number of nodes making up the object
store. Using a single ATM switch it is only possible to connect a maximum of 14 slaves, so the max-
imum performance shown in figure 5.13 is lower than in the previous configuration. Specifically with
14 slaves and 32 Mbyte memory per slave the potential performance in the organisation which caches

a row at server level has dropped from 385 to 360 Mflop/s but the computation is now far from being
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Execution rate (Mflop/s)

Figure 5.13: Potential performance of 15K % matrix multiplication in the ATM configuration.
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bandwidth limited so it is possible to consider using higher processing resources. Figure 5.14 indicates

performance that may be attainable if up to 14 of the faster processors, nominally P5/400 are used.

This configuration is referred to as ATM/400. At 32 Mbyte memory per slave, the maximum expected
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Figure 5.14: Potential performance of 15K 2 matrix multiplication in the ATM/400 configuration.

computation rate using 14 slaves and caching a block row at server level is 988 Mflop/s and the overall

runtime about 1.9 hours. At this point the computation is once again close to bandwidth limit.

The summary is hardly surprising. To obtain greater performance it is necessary to increase the

processing resource, i.e. add more Mflop/s. For a given memory size it is only possible to achieve

a certain maximum performance which is determined by the store access bandwidth. In the example

computation described increasing memory size allows a larger granularity which reduces the total com-

munication requirement and thereby allows a higher performance for a fixed processing resource and
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store access bandwidth. However, ultimately it is necessary to increase store bandwidth in order to
utilise a greater processing resource.

The fast ethernet allows easy expansion in that extra hub modules can simply be stacked together
to provide an increased number of ports. However this doesn’t provide an increased bandwidth. The
higher bandwidth of the ATM switch comes with a smaller number of ports. The port arrangement
is configurable though, in that the total bandwidth of 2.5 Gbit/s is split evenly between four network
modules each of which can be a single 622 Mbit/s link, four 155 or six 100 Mbits links [109]. The unit
installed here has four of the intermediate network modules and hence 16 155 Mbit/s links. In view of
the relatively low bandwidth of the disk configuration, better performance in this application might be
achieved through employing the larger number of slower links.

There are more expensive single unit switches which support a greater number of ports, but in
scaling the number of processors the point comes eventually when it is necessary to move towards
use of multiple switches. The highest speed network link is intended for coupling multiple switches,
but simply connecting two units leaves an unbalanced network. A high cost option is to attempt to
achieve a large scale well balanced high performance interconnect through mimicking multiprocessor
interconnects. Alternatively it may be possible to partition some computations such as to achicve high
performance in a less well connected network, even at the cost of replicating some computation data.
Full investigation of these issues lies outside the scope of this work however.

In these scaling studies it is possible also to verify that the computation granularity remains appro-
priate. In the example of figure 5.14 for example, if the memory is 32 Mbyte per slave and a block row
is cached at server level, the maximum block size is 1000, so there are p> = 225 tasks. The single slave
time is 26.6 hours so the length of each task is %} which is about 7 minutes and the expected average
recovery time would be half this value. If there are 14 slaves, the potential parallel execution time is just
under 1.9 hours and the single task time is about 6% of the parallel execution time. The average interval
between queue requests over the duration of the computation is %g which is 30 seconds. In practice all
slaves would be making queue requests at about the same time, but the significance of this figure is that
the time to dequeue a task should be significantly less than it. If the memory size is 128 Mbyte per node
then the maximum block size is 2000 and there are then about 57 tasks. The single slave time is just
over 25 hours and the parallel time for 14 slaves just under 1.8 hours. The increased granularity reduces
the load on the queue as the expected interval between requests is 114 seconds However the average
recovery time at 13 minutes is over 12% of the parallel execution time; the worst case recovery time is
nearly a quarter of the parallel execution time.

The significance of the average recovery time can be seen in the fraction 5%, where N is the total
number of tasks and s the number of slaves. The expected interval between queue requests is % For
example, if the matrix size is 20K 2 and the configuration has 32 Mbytes memory per node with a block

row cached at server level then the block size is 1000 again but the total number of tasks is 400. For the
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average recovery time to be less than 5% of the parallel run time the number of slaves is s < 400 x 0.1
which is 40. The single slave time is 62.7 hours so if the average interval between queue requests is lo
be more than 30 seconds for instance the number of slaves must be less than $27X3800 _ 18 ¢ With

400x 30
18 slaves the best expected execution time is 3.5 hours and the recovery time which js 82.7x3600

400x2x60 OF
4.7 minutes is 2.2% of the parallel execution time.

For both improved performance and lower load on the queue it is desirable to increase the granularity
of computation, but for a given problem size this tends to reduce the effectiveness of the recovery mech-
anism, effectively setting a limit on the degree of parallelism that can be employed. If the granularity
remains constant as the problem size increases the number of tasks increases and so the significance of
the recovery time for a given degree of parallelism decreases. The structure considered here for matrix
multiplication has the desirable property that increasing the problem size allows not just the number of

tasks to increase but also the single task time, %&. This in turn permits the degree of parallelism to be

increased without increasing the load on the queue.

5.5 Overlapping Communication

5.5.1 Server

One obvious way to increase the bandwidth to shared store is to employ multiple buffering in the server.
Each slave must take the same time to perform each task, but a greater number of slaves can be ac-
commodated before the computation becomes bandwidth limited. If there is a constant stream of read
requests for disk data arriving at the server, then using double buffering it is possible to achieve a max-
imum 100% increase in throughput if disk and communications bandwidths are equal. The benefit is
lessened however if the bandwidths are different. For modelling purposes it is clear that the single slave
time is unaltered since it is only possible to achieve overlap at the server in the presence of multiple
slave requests. The minimum parallel time is reduced however and a lower bound on the total time to
complete all accesses to the shared store is now the maximum of the total cost of all transfers across the
communications interconnect and the total cost of all server local disk transfers. Assuming that the cost

of fetching a block from slave cache is zero and writing

tget = tdget+tcom ,

tput tdput + tcom ,

where tdget and tdput are the local storage access components of corresponding accesses to remote

object store and tcom is the cost of the network transfers entailed in such a request, the lower bound on
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minimum parallel time, corresponding to (3.16) may be written

lwr{Too} =

max {ma.x {(N2 + N3 + p?)tcom , Nstdget + p’tdput} , %} . (5.6)

The values for N3, N3 are taken from table 3.3 as before.

To implement such overlapping it is necessary to employ a larger number of buffers. For a single
node store, the minimum number required is two, i.e. one more than previously. For the purpose of
this analysis it is assumed that two buffers is sufficient in this case. Then, if the store is distributed
over v server nodes, the number of buffers required to support double buffering at server level is v. A
very simple server architecture defines a single thread to monitor for the incoming requests and spawn
a separate thread to handle each one, with access to the pair of buffers controlled by locks. The memory
then required to support overlap of communications and disk requests at the server are as follows. If no

blocks are cached, from (5.2)

M = 24sb® + 8vb? (5.7
p = M
8(3s+v)

When a block row is cached by each slave, from (5.3)

M = 8s(nb+ 2b?) + 8uvb® , (5.8)
b V4s2n? +2(2s + v)M — 2sn
4(2s +v) '

When a block row is cached at the server, from (5.5)

M = 32sb® + 8ub® | (5.9)
and hence
b= M
“V8ds+v)

Figure 5.15 shows the potential of such double buffering in the configuration of figure 5.8. Clearly, a
significant benefit is evident. Without double buffering the largest configuration proved to be bandwidth
limited for each of the three caching options and for memory size up to 128 Mbytes per slave. Using
double buffering and 32 Mbyte memory per slave it is possible to achieve over 550 Mflop/s. This
exceeds considerably the performance expected in the ATM configuration, figure 5.13 but not that of

the ATM/400 configuration, figure 5.14

There is a much more noticeable potential benefit available in server level caching than in previous
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Figure 5.15: Potential performance of matrix multiplication in the fast configuration when
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configurations. This arises because of the assumption that all disk and communications transfers can
be overlapped throughout the computation. In the experimental configuration a disk access is rather
slower than a communications transfer, but can be overlapped by a number of accesses to server level
cache which do not need to access disk. If the server employs only two buffers then two successive
disk requests can occupy those buffers, potentially blocking a series of cache read requests. One way
of avoiding such a situation is to allocate a specific buffer just for cache read requests. This would only
be required if blocks are cached at server level, but is unlikely to make a great impact on the potential

performance since the expression for b in (5.9) changes only slightly to
M = 32sb* + 16vb” .

As the number of slaves s increases in this expression the effect of the rightmost term becomes less
significant. In order to maximise the benefit from double buffering in practice it is desirable for requests

for cached data to be fairly evenly dispersed amongst requests for data on disk.

5.5.2 Slave

It is also possible to overlap computation and communications at the slaves, but the effect on memory
requirement is more noticeable. One approach is to run two separate threads in each slave processor.

Figure 5.16 shows how running two threads in a slave processor can achieve communications overlap.
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Figure 5.16: Example illustrating potential benefits of employing two threads in a single
slave to overlap communication and computation.

In practice, the benefit achieved depends on the relative costs of computation and communication If

the communications cost is not significant with respect to the computation cost the maximum achievable
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performance is reduced because of the enforced serialisation of two tasks within each slave. Therefore

for a computation comprising N tasks
Ty
T > — .
*=N/2

The limit imposed by store access bandwidth remains unchanged, but the single slave time is altered.
The effect is for each thread to be able to overlap the other’s communications with computation. The
slave has only a single processor so all local computation is serialised, as is all communication by the
network. Therefore, a lower bound on the time for a single slave with two threads to perform .V similar

tasks is
N N N
max {Z Tcomp(t), Z Tget(i) + Z Tput(i)}
1 1 1

Achieving significant benefit from such multithreading in practice depends on the actual distribution of
1/O operations through the computation. Matrix multiplication is a favourable example where /O is
regularly spaced.

Assuming as before tgetl = 0 the expression corresponding to (3.15) for matrix multiplication is

Ty = max {Ngtget2 + Nstget3 + p*tput |

p*(tmult + tadd)} .

Again the values for N and N3 can be taken from table 3.3.
Each thread requires the same amount of memory as a single slave in the equivalent single threaded

computation. If no blocks are cached, from (5.2)
M = 48sb? , (5.10)
| M
b —_— 4_8_s .

When a block row is cached by each slave, from (5.3)

M = 16s(nb+2b%) , 5.11)
4s2n2 + 2sM — 2sn
b = .
8s

When considering the memory requirement to support block row caching at server level there are effect-
ively twice as many slaves and therefore twice as many blocks being computed at once as in the single
threaded organisation. Thus it is not only the slave memory requirement which doubles but also that in
the server, so from (5.5)

M = 16nb—— + 48sb?
n/b



CHAPTER 5. ASSESSMENT 12

= 64sb® , (5.12)

el L
64s

Figure 5.17 shows the effect of employing such techniques in the ATM/400 configuration. Assum-
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Figure 5.17: Potential performance of 15K 2 matrix multiplication in the ATM/400 con-
figuration when two threads are employed at slave level to overlap communications with
computation.

ing that full overlap is achievable in each slave the computation rate can in this case approach the total
processor resource. Thus when 14 processors are employed, the maximum computation rate is 14 x 81
or 1134 Mflop/s. The graphs are then flat because of the assumption that machine speed in the primitive
block operations is constant with block size, as observed in practice for large block size. The poten-
tial performance for the equivalent single threaded computation is shown in figure 5.14. The greater
memory requirement in each slave to support communication overlap ensures the computation is band-
width limited with fewer slaves than in the earlier configuration. However, it is possible to combine the
overlapping mechanisms at server and slave. The memory requirement then increases slightly, such that

when no blocks are cached, from (5.7) and (5.10)

M = 48sb® + 8uvb® | (5.13)

(5.14)
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When a block row is cached by each slave, from (5.8)and (5.11)

M = 16s(nb+ 2b?) + 8ub? | (5.15)
b /165202 + 2(4s + v)M — 4sn
4(4s +v)
(5.16)

When a block row is cached at server level, from (5.9) and (5.12)

M = 16nb— + 8ub? + 48sb?
n/b
= 8(8s+v)b? , (5.17)
p = M
8(8s + v)

(5.18)

The potential performance is then as shown in figure 5.18. The performance is now limited by individual
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Figure 5.18: Potential performance of 15K 2 matrix multiplication in the ATM/400 con-
figuration when two threads are employed at slave level to overlap communications with
computation and in addition extra buffering is employed at server level to overlap disk and
network transfers.

low level parameters. Other than changing these parameters the only way to improve on the performance
is to restructure the computation to reduce the quantity of data accessed to enable use of a greater
processor resource.

In the 14 slave configuration with 32 Mbyte memory per node and caching a block row at server
level, the block size is 703 and the number of tasks approximately 454. The single slave ime is a little

over 23 hours and the potential parallel time 1.7 hours. The average interval between queue requests
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is rather lower than in the earlier scenario at 13.1 seconds. However if the problem size is larger and
the block size the same this interval would also increase. Because two tasks are performed concurrently
by each slave machine, the average recovery time must be equal to half the time taken to perform two

. L7X3600 1t i - -
tasks; =—z7— which is just over 3 minutes, i.e. about 3% of the parallel execution time.

5.6 Exploiting Patterns

The bag of tasks structure is very attractive from the point of view of fault-tolerance and load balancine.
However, in order to implement such a dynamic execution structure, inter slave cooperation has been
minimised. This section examines an alternative more tightly coupled structure described in [112]. This
alternative is a data parallel algorithm which caches a block row across the slaves during computation

of a block row of the result as shown in figure 5.19. The algorithm partitions the matrices such that a

get
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Time
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Figure 5.19: Example to illustrate the operation of a data parallel organisation of matrix
multiplication using three slaves.

block row of one matrix and block column of the other matrix are accommodated in aggregate memory
of available processors, each processor holding the pair of blocks, one from each matrix, which are to
be multiplied. After these pairs of blocks are multiplied locally in parallel, a single block of the output
matrix is computed by a global sum operation. The computation is coordinated by a master which
is here assumed to reside on the same machine as one of the slaves. The key requirement is that the
number of blocks across the width of the matrix be determined by the number of processors. For initial
analysis the easiest approach is to scale the problem size to fit the number of slaves and total memory
configuration. The procedure will then be to fit the problem size to the hardware configuration and
compare performance of the bag of tasks and data parallel structures for this problem size. As before
each matrix is partitioned into p? blocks, but here p = s, the number of slaves.

In order to compute a block row of the result matrix, it is necessary (o load a block row of A into
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the slaves, and then step through the block columns of B, loading each column into the slaves at a time.
with each slave performing a product. After each such product, the master performs the global sum and
writes the result block. The number of disk reads entailed in reading the block row of A is p and that
in reading the p block columns of B is p?, the total is then p(p + 1). Assuming a need for p — 1 block
transfers over the interconnection network to perform each global sum, and a single write for each block
of the result matrix, the I/O count is then the same as in the bag of tasks configuration which employed
user directed caching at server level. In this case however it is only necessary to accommodate two
blocks in slave memory.

In performing the global sum, the master clearly cannot fetch all the blocks concurrently due to
space restrictions. If the master can accommodate two blocks it has to iterate through the slaves one by
one, fetching a block at a time and adding this locally to the total. As noted before, the cost of a block
addition is proportional to b while the cost of a block multiplication is proportional to 5%. In terms of
scaling, the cost of additions may be small. However in implementing addition, it is more difficult to
achieve the very high computation rate of multiplication due to the lower locality. So in practice the
cost of p serial block additions may not be insignificant, particularly if p, i.e. s is large. A distributed
approach to performing a global sum is to perform £ local additions of a block with the block in the
neighbouring slave, then & sums of these intermediate results, and so on, reducing the total cost to
[log, p] additions. In the presence of an interconnect such as ATM which supports parallel transfer it is
also possible to reduce the communications cost entailed in the global sum, at best from p—1 to [log, p]
single block transfers. In the case of a bus type network this is obviously not the case.

First, the block size is determined by the total configured memory

M
5=\ 165

It is assumed the master and a slave can share the same two buffers within a single machine. Since the
matrix width in blocks is equal to the number of slaves, p = s, then the matrix size is n = sb. Assuming

a bus type network, the total time to compute a single block row of the result is

Tbr, = p(p+ 1)(tdget + tcom) + ptmult

+ p [log, p] tadd + p*tcom + ptdput .

where tdget and tdput are the costs of local block disk accesses and tcom is the cost of a block trans-
fer between local and remote memory as before. The cost of the entire computation is p times this.
Figure 5.20 compares a single threaded data parallel computation with the equivalent bag of tasks com-
putation, from figure 5.8. The bag of tasks structure offers best potential performance, presumably

because of the need in the data parallel structure for the serial computation of the global sum and block
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Figure 5.20: Potential performance of single threaded data parallel matrix multiplication
and equivalent bag of tasks computation in the fast configuration when the problem size is
scaled according to the aggregate memory size.

onutput.
If double buffering is employed at the server then it is possible to overlap disk and network transfer
components of all get requests. It is necessary to allocate extra buffer space at server level as described

earlier in the case of the bag of tasks structure, so the block size is now

M

= 8(2s +v)

where the object store is distributed over v nodes as before. The distributed global sum is performed
between the phases of parallel multiplications so no overlap occurs between the two. Similarly, output
of the result block is performed serially by the master so no overlap there is possible. Assuming as
before a bus based interconnect, a lower bound on the cost of computing a single block row of the result

1S

lwr {Tbr,} = p(p+ 1)max{tdget,tcom} + ptmult

+ p[log, p] tadd + p*tcom + ptdput . (5.19)

Again, the cost of the entire computation is p times this. Figure 5.21 compares the performance of
such a computation with an equivalent bag of tasks style computation running in the fast configuration,
similar to that portrayed in figure 5.15. Again, presumably due to the serial component the bag of tasks
structure offers the best potential performance.

If the block size is reduced, it is possible to overlap the communications for one output block with

the computation for another by running two threads in each slave. Each set of threads computes a
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Figure 5.21: Potential performance of single threaded data parallel matrix multplication
employing double buffering at server level and equivalent bag of tasks computation in the
fast configuration when the problem size is scaled according to the aggregate memory size.

different block row of the output matrix, so there are two block rows cached across the slaves at any
time. The block size is given by

o M
8(4s+v)
Once again the overall time is assumed to be the greater of total communications and total computation

$0, now assuming a switch type network, a lower bound on the cost of computing a single block row of

the result is

lwr {Tbr,} = max{p(p+ 1)max {tdget,tcom}
+p [log, p| tcom + p(tcom + tdput) ,

ptmult + p [log, p| tadd} . (5.20)

It is assumed that when the object store is distributed over a number of nodes the data parallel organisa-
tion can potentially achieve a proportionate increase in throughput of data accesses to the object store.
The parallelism of the switch is already taken account of in the communications entailed in the global
sum. Figure 5.22 compares the performance of such a computation with that of the approach developed
earlier. It turns out that the performance achievable in the data parallel organisation is similar to that
achievable in the bag of tasks organisation which caches a block row at server level.

Rather than scaling the problem size to the total memory size a more general analysis begins with
the operand matrix size and number of slaves and computes from these the block size. One approach
is to partition the matrices into rectangular blocks, by by by where by = Z. Then a block row n x b,

n

is cached and all output corresponding to that block row is computed in - steps. Figure 5.23 shows
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Figure 5.22: Potential performance of multithreading to overlap communications with com-
putation at slave level in the data parallel matrix multiplication and equivalent bag of tasks
computation in the ATM/400 configuration when the problem size is scaled according to
the aggregate memory size

a similar computation to that of figure 5.19 but running with two slaves instead of three. In practice
the area of the rectangular block in the two input matrices can be slightly larger than that of the square
blocks in the earlier example because the block size in the result matrix is smaller, but this is not shown
in the example.

In a single threaded computation which exploits double buffering at server level,
M = 16bn + 8vbybo

and so
b1 _ AISQ

by  8(2s+uv)n?

If Ms® > 8(2s + v)n? then b; > by. The matrix blocks are configured so that a single block multiplic-
ation fills memory, in order to minimise overall communication, but if by > by the product, of size b2,
is larger than either input block and so cannot be accommodated in memory. If parallel threads are em-
ployed to achieve overlap of communication at the slaves the relevant condition is M s > 8(4s +v)n?.
For example if there are 14 slaves performing a 15K 2 multiplication and the object store is distributed
over two nodes, there will be no space problem of this type provided M < 276 Mbytes in the single
threaded case, or M < 533 Mbytes in the multithreaded case. These values correspond to 20 and
38 Mbytes per slave respectively.

The bound can alternatively be interpreted as defining a minimum number of slaves for a given

matrix size and memory per slave configuration or a minimum matrix size for given number of slaves
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Figure 5.23: Example to illustrate the operation of a data parallel organisation of matrix
multiplication using two slaves.

and aggregate memory size. In the case of the single threaded computation above

= L
—\/8(2s+uv)

In the fast configuration for example if the aggregate memory size is 2944 Mbytes and the number of

slaves 23, the minimum matrix size is

6 2
2944 x 106 x 23 — 64359 _
8(2x23+1)

In the ATM/400 configuration using 14 slaves with aggregate memory size of 1792 Mbytes the min-

Imum matrix size is

6 2
1792 x 10° x 142 _ 0
8(4 x 14+ 2)

If the bound is passed, one option is not to increase the block size proportionately, but this would
have an adverse effect on overall performance. Another possibility is to compute more than one block
row at a time. However, provided the operand matrix size is large enough this issue does not arise. The
following analysis makes this simplifying assumption in a comparison at fixed problem size between
the bag of tasks and data parallel structures.

In computing the performance of the data parallel structure where blocks are no longer necessarily
square the fuller notation which includes the block dimensions as shown in table 3.2 but abbreviated up

till now is employed. The edges of a block are labelled b; and b, such that with reference to (4.1), (4.2)
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and (4.3)
2b2b2 b b
tmult{by, by} = 113 , tadd{by, by} = ‘P- g (521)
tget{b, by} = 8byb, (L+i tput{by, by} = 8byby [ —L_ 4 1
Dget ¢ ) 7’ I L Dput+E ’ 3

It is then possible to write an expression for the minimum parallel time for s = 2 processors running

a data parallel structure, in the first instance single threaded, with no double bufferine and using a bus

type interconnect:

n n n
lwr {Tn/bz} = a (b_z (1 = H) tget{bl,bg} + %tmult{bl, bg}

n n
+ = (Etcom{bl,bl} - []ogz IH tadd{b,,b,} + tput{bl.bl})> (5.23)
2

As before, an expression can be derived for a multiple threaded computation which does employ server

level double buffering and uses a switch type network.

wr{Tnp,} = %max{% (1 + %) max {tdget{by, b} , tcom{by,bs}}

+ él ([log2 bﬁ-l tcom{by, by } + tput{bl,b1}> :
1 2

A bl (tmult{bl,bg} + {logz bE] tadd{bl, bl}) } & (5.24)
1 2

Figure 5.24 compares the performance of the data parallel structure with that of the bag of tasks for

constant problem size of 30K in the ATM/400 configuration. In this case, the bag of tasks structure

(a) 5 processors (b) 11 processors (c) 14 processors
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Figure 5.24: Potential performance of data parallel organisation of matrix mulliplicglion
with multiple threading at slave level and double buffering at server level computing a
fixed problem size of 30K 2 in the ATM/400 configuration.
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performs better than the data parallel structure. Apparently the communications bandwidth affects the
data parallel structure before the bag of tasks structure. This suggests that the I/O cost is higher in the
data parallel computation. From (5.6) and (5.24) the total communications cost is picked out for the bag

of tasks computation where a row is cached at server level and the data parallel computation.

Tcbot

( ) max{(—+1> tcom{b, b} , ( +1) tdget{b, b} + tdput{b, b}}
Tcedatap = bﬁ

(g ( B ) max {tdget{by, b2}, tcom{b, b, }}

n
+a <[10g2 E“ tCOTIl{bl, bl} + tput{bl, b1})>

Substituting for the various low level primitives from (4.2) and (4.3), (5.21) and (5.22), and writing

P1=E,P2

Tcdatap — Tcbot =
1 1 8n? 8n?
— e 1
B )+ o (ogml + 0+ o
2p+1 p+1 1
C ' Dget Dput } (5.25)

8n?(p; + 1) max {

— 8n? max {
In order for the I/O cost to be higher in the data parallel computation it would be necessary for
Tedatap — T'chbot > 0 .

Commonly the disk bandwidth is lower than communications bandwidth so that

1
Daget

2

Ql+

If the difference is significant such that

p+1 1 >2p+1
Dget Dput — C

i.e. roughly C > 2Dget, then from (5.25)
Tedatap — T'chot =

8n? 8n?
+—(Nn +1) .

This expression is positive for p; > p, and in practice this condition will generally hold.
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If the difference between communications and disk bandwidth is not so great such that

el 1 <2p+1
Dget  Dput G

i.e. roughly Dget < C < 2Dget, then from (5.25)

Tcdatap — Tcbot =
2(Pp+1 2p+1 8n? 8n2
( Dget C ¥ G (logz 2] +1) + Dput

In this case the expression is positive for certain values of p and p, dependent on the relative values of

C and Dget. For large p, p; this relationship can be expressed as

c %
Dget = p

If C = 2Dget then as before the condition is simply p; > p. If C = Dget then the condition is
p1 > 2p. Analysis of the extent to which this condition holds in general is deferred to future work. but
certainly the point will be reached as the problem size grows. Where the number of slaves and total
memory size is modest the point will be reached sooner.

In the experimental configuration C'is 9.1 Mbyte/s and Dget at 5.5 Mbyte/s is over half this value.

Figure 5.25 compares the I/O cost in the alternative computations for the experiment of figure 5.24. Also

(a) 5 processors (b) 11 processors (c) 14 processors
25 —

Block size rato

1/0 cost (hours)

0

0 :
160 320 480 640 352 704 1056 1408 48 896 1344 1792
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IO cost Block size ratio
Data parallel -—--- bl/b: o=
bl/b2 —===

Server caches block row
No blocks are cached

Figure 5.25: Computed I/O cost of data parallel organisation of matrix multiplication }u’ilh
multiple threading at slave level and double buffering at server level computing a fixed
problem size of 30K 2 in the ATM/400 configuration. A fainter line indicates a total VO

cost while a heavy line indicates a block size ratio.

shown is the ratio of the smaller block dimension in the data parallel organisation to the block size in the

bag of tasks organisation which caches a row at server level and the ratio of the two block dimensions in
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the data parallel computation. In this configuration the I/O cost of the data parallel structure falls below
that of the bag of tasks structure as the ratio of smaller block dimension in the former to block size in
the latter approaches 1.2. In this example the matrix size is such that it would be necessary to configure
more memory to reach the point at which the block shape in the data parallel organisation is square.
As described before it is not possible for by > b, so if the matrix size were reduced or memory size or
number of slaves increased such that the operation moved beyond this point it would be necessary to
compute two block rows at once. Then either one block row can be computed with high performance
and one with low performance or both with some intermediate performance. As the number of slaves
is increased further it becomes possible to compute two block rows at once using square blocks, but on
yet further increase it is necessary to compute three block rows at once and the situation repeats itself.

For any particular matrix size there is a relationship between number of slaves and aggregate
memory size for which the data parallel computation uses blocks of optimum shape. For a certain
region around these optimal points the data parallel structure achieves better overall performance than
the bag of tasks structure. In other situations the bag of tasks structure can actually perform better.
One such situation is when the computational resources are modest. However, if the data parallel struc-
ture does have the advantage for a given configuration then that advantage can be lost if the resources
change during the computation. Here the actual value of the performance advantage is not pursued. It
is sufficient that the bag of tasks structure can be competitive with the data parallel structure.

It must be noted as elsewhere in this work that the analysis has tended to be in terms of max-
imum achievable performance and clearly further work is necessary not only as elsewhere in making
a more thorough analysis and in investigating further the effect of the configuration parameters on this
comparison but also in experiment to determine to what extent the predicted maximum performance is
achievable in practice. Here brief mention is made of certain obvious implementation issues. In the
data parallel structure, there is no need for a mechanism as complicated as a bag of tasks to imple-
ment fault-tolerance. Instead a user level checkpoint can be constructed which maintains on disk some
indication of how far the computation has progressed. It is necessary however for the distributed data
comprising the result matrix to be consistent with this record. In order to support tolerance of a transient
node failure or node replacement it suffices to store on disk the coordinates of the last block output, as
it is written. Then the recovery cost is essentially similar to that of the bag of tasks structure. Toler-
ating permanent loss of a slave is rather more difficult, since the granularity at which the result matrix
can be written changes. One possibility is to recover to the start of the current block row though the
recovery cost is then clearly greater. Similar difficulties arise when integrating an extra slave into the
computation. There is an added complication in the data parallel structure relating to reconfiguration.
The calculations have assumed that disk access is at maximum rate in all cases. Clearly after a recon-
figuration the accesses in the data parallel structure will be rather more fragmented and therefore may

not be at maximum rate.
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While at this point the comparison appears favourable in terms of the bag of tasks structure there
is scope for furthering the comparison. In the data parallel organisation each slave reads blocks in turn
from the same block row of the second input matrix for each block row of the first input matrix and could
therefore potentially gain by caching that block row of the second input matrix. In section 3.8.1. the
possibility of caching both a block row at slave level and a block column at server level was referred to
for the bag of tasks organisation, though it was noted that each block column cached at server level must
be reloaded a number of times depending on the number of slaves. Earlier analysis in this chapter for
the bag of tasks structure suggests caching a block row at slave level forces too great a reduction in the
block size to be worthwhile. However that was on the assumption that the block row was cached in slave
memory. If slaves have sufficient local disk space it is possible in either organisation to use this to cache
a block row. The cost of accessing data from this store may or may not be cheaper than accessing it
from server memory, but there is a cost incurred in loading data into it; the cost of writing from memory
to the local disk. Enhancing the earlier cache model and pursuing the comparison between the alternate
computation structures is deferred to future work. However it is noted that the use of multithreading at
slave level in a multiple level bag of tasks structure offers an opportunity for allowing concurrent access
to the same bag of tasks at the second level since both threads running in a single slave can reuse the
same block row cached locally.

Ultimately it would be a surprising result if the bag of tasks organisation turns out to be the best
choice in general purely from a straight forward performance perspective. Here the claim is that there
is likely to be a strong case for it particularly when taken in the context of an environment of changing

resources.

5.7 Another Example: LU Factorisation

While readily adapted to a bag of tasks based structuring approach, Cholesky factorisation assumes
that the input matrix is symmetric positive definite, essentially belonging to a restricted class of well
conditioned matrices. This section gives brief consideration to the problems that arise in attempting
to structure the rather more generally applicable LU factorisation using the approach described in this
work.

In the matrix equation
AX =B

A becomes LU where L is lower diagonal and U is upper diagonal and one of L and U has unit diagonal.
There are a number of possible arrangements of the same basic operations required to perform the fac-
torisation. One such permutation, the Crout factorisation is illustrated in figure 5.26, and figure 5.27. It

is possible in all cases to overlay the operand matrix by the two result matrices and compute the factor-
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isation “in place”, though the example codes suggest the use of separate arrays.  All the permutations

void [u(Matrix a, Matrix I, Matrix u)

{
for (k=0; k<sz; k++) {
// complete compution of column k of |
5 /1 lk:sz](k] = a[k:sz][k] - 1{k:sz]{0:k-1]*u[0:k-1][K]

for (i=k; i<sz; i++) {
sum = 0;
for (j=0; j<k; j++) {

sum += [[i}[j]uff][k];

10 }
k] = alilk] ~ sum;

// complete computation of row k of u
// ulkl(k+1:sz] = u{k][k+1:sz] - 1{k,0:k-1]+u[0:k-1][k+1:s2]
15 // ulk][k+1:sz] = ufk][k+1:s5z]/1[k k] — assume l[k][k] '= O
for (j=k+1; j<sz; j++) {
sum = 0;
for (i=0; i<k; i++) {
sum +=I[k}[{}xul][];

}
ulkli] = (alkll] — sum)/I{k][k];

20

Figure 5.26: Crout’s LU factorisation

perform about 213'1 flops in factorising a matrix of n? elements.

It is possible as before to improve performance by employing blocking techniques to increase loc-
ality and concentrate computation in block level multiplications, as illustrated in figure 5.28. It is
necessary to introduce a block level factorisation which must extend all the way to the lower edge of
the matrix, but it is possible to implement this operation as a factorisation of the square block on the
diagonal and a series of triangular solves of the upper factor and each of the square blocks below the
diagonal in the same block column.

The complication that does arise though is the need to employ pivoting to ensure numerical stability.
In an arbitrary matrix, the divisor employed in the basic factorisation, figure 5.27 line 21, can turn out to
be arbitrarily small; in the worst case it can be zero. Even if division by zero is avoided, the numerical
errors accrued in the computation increase rapidly with matrix size. Pivoting entails the application of
trivial manipulations, i.e. row or column swaps, to ensure that the value to be used as divisor is non-zero,
and ideally as large as possible. A key point is that the manipulation must choose a suitable element

to use as divisor out of those available, just as the division is about to be performed. While the set of
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Figure 5.27: Order of computations in Crout factorisation

void blocked—lu(Matrix A, Matrix L, Matrix U)

for (k=0; k<p; k++) {
// complete compution of block column k of L
5 for (i=k; i<p; i++) {
sum = 0;
for (j=0; j<k; j++) {
sum += L[[=UUIKE

}
10 LK) = Alidk] — sum;
}
factor Llk:p—1][k]

// complete computation of block row kofU
// Ulkl{k+1:p] = Ulk][k+1:p] - L[k,0:k-1]xU[0:k-1][k+1:p]

15 // Ulk][k+1:p] = Ufk)k+1:p]/L{k.k] — assume L{K][k] = 0
for (j=k+1; j<p; j++) {
sum = 0;

for (i=0; i<k; i++) {
sum +=L[K][{]=*U{illj};
20
tmp = AlKIlj] — sum;
solve LIK][k}xUIKIj1 = tmp for U]

25 }

Figure 5.28: Blocked implementation of Crout’s LU factorisation, for a matrix of p? blocks.

126
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manipulations which are performed under a given pivoting strategy can be equated to a set of a prion
manipulations preceding a factorisation without pivoting, it is not obvious a priori which element will
be the right one to choose as pivot at any given point in the factorisation. While a definition of a prion
matrix manipulations which can alleviate the need for pivoting is highly desirable the current generally
accepted approach is to identify pivots on the fly during the factorisation.

The set of values from which a pivot element may be chosen depends on which organisation of the
factorisation is chosen [105]. Specifically, organisations such as the Crout factorisation which delay
writing to elements in the bottom right corner as long as possible prohibit full pivoting which allows
closest bound on error growth. Full pivoting maximises the search space for the pivot element by
searching through the whole of the lower right portion of the matrix which is not yet finally written and
then swapping both row and column to move the pivot element to the active location on the diagonal.
Clearly updates arising from the part of the matrix already factored must be fuily applied to this region
for the search to be worthwhile, e.g. as in classical Gaussian elimination, but also the assured high
accuracy entails a rather high cost in identifying pivots. In practice a more generally applicable approach
is employed though the error growth is less constrained. This alternative, namely partial pivoting,
restricts the search for a pivot element to the remainder of either the current row or current column.
In the case of the Crout factorisation it is convenient to search down the current column. as shown in
figure 5.29.

It is possible to introduce pivoting into the blocked algorithm, at the appropriate point in the block
level factorisation. The pivot search should be down the whole of the remainder of the current column
and swaps made of entire rows. Recent implementors of out of core LU factorisation have tended
to organise the out of core data by full columns or column blocks [118, 70, 44]. Each phase of the
computation computes a whole block column which is sized according to aggregate memory, typically
in a data parallel organisation. Where data is accessed by whole column it is possible to search for a
pivot down a column and to apply accumulated pivot swaps to the overall matrix by column or column
block. However, such an organisation is less suited to the dynamic computation structures employed in
this work. It is not convenient to make arbitrary accesses to the out of core matrix; at times by block,
at other times by row or column. The ideal, seen in the other example computations, is where it is
possible to choose a single uniform block shape independent of the matrix size, but this is one example
application where an optimal data structure is not so obvious. The following claims that it is possible
to employ a data organisation which permits use of a bag of tasks based approach. The analysis and
verification are both limited however, being mainly deferred to future work; the intention being just to
indicate a starting point.

In an out of core factorisation where data is organised by full column or column block it is possible
to maintain the out of core matrix in either pivoted or unpivoted form [44]. The pivot swaps may be

applied to the out of core data as they are found or saved up and applied globally to the out of core data
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void lu(Matrix a, Matrix I, Matrix u)
{
for (k=0; k<sz; k++) {
// complete compution of column k of |
5 // lik:sz)[k] = a[k:sz](K] - I[k:sz][0:k- 1 J*u[O:k- 1][k]
for (i=k; i<sz; i++) {
sum = 0;
for (j=0; j<k; j++) {
sum += {[{][j]*uljllk];

k] = alillk] - sum;

10

// perform pivotting
max = 0;
15 for (i=k; i<sz; i++)
if (abs(IK) > max) {max = abs(Ulk]): p = i}
swaprows(k, p);
// complete computation of row k of u
// ulkl[k+1:sz] = u[k][k+1:sz] - 1(k,0:k-1]+u[0:k-1]{k+1:s2]
20 // ulk){k+1:sz) = u[k][k+1:sz] /1[k,k] — assume I[k]{k] '= 0
for (j=k+1; j<sz; j++) {
sum = 0;
for (i=0; i<k; i++) {
sum +=I[k][i]*xuld][j];
25

}
ulkli] = (alk]l] — sum)/HK]K];

Figure 5.29: Crout’s LU factorisation with partial pivoting by column.
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on completion of the factorisation. It is even possible to avoid explicitly applying derived pivot swaps 1o
the out of core data at all by storing an index array with the out of core data and applying the pivot swaps
to the right hand side of a system of equations when using the factorisation to solve that system. If pivot
swaps are not applied explicitly to the out of core data as they are found however, it is necessary to
apply them during factorisation, to convert between unpivoted out of core data and pivoted in core data.
This operation is easily performed if the data is always accessed by full length block column, but in
the organisation described here which is intended to support an arbitrary and varying number of slaves,
accesses are by block rather than block column and it is anticipated that applying the transformation to
and from pivoted form would be costly. Instead an approach is defined for applying the pivot swaps to
the out of core matrix as they are identified. The discussion is in terms of an in place factorisation but
adapts readily to one producing separate triangular matrices. It is assumed that the matrix is partitioned
into p? square blocks as in other examples developed in this work. Factorisation of the [k, k] block
will in general necessitate swapping rows between block row k and all of block rows k + 1 to p- The
procedure is to apply pivot swaps by block column. For the jth such block column, the block [k, 7]
is read in. Then in turn each of blocks [k + 1, ] to [p, 5] is read, necessary pivot swaps applied and
the block written back. Finally block [k, j] itself is written back. There is a benefit in that it is only
necessary to access the part of the matrix which can have pivot swaps. If the cost of actually swapping
rows is ignored, then in the worst case the additional cost of these pivot updates arising from factoring
the kth block column is

p(p — k + 1)(tget + tput) . (5.26)

Secondly it is necessary to identify pivot elements through full column searches. When the leading
diagonal block is factorised it is necessary to search down a full column, but with overall performance
considerations suggesting the use of a large square block, it seems unlikely that there will be sufficient
space to accommodate a full block column in memory. The block level factorisation may be performed
at the granularity of sub-block columns, keeping the block being factored in memory but below it only
the particular sub-block columns needed to allow full column pivot searches for a single step. While
pivot swaps may be applied to the whole block column after completion of the block level factorisation
as described before, it is necessary to write the pivot row into the active block during the factorisation.
The requirement is then for each sub-block step to read blocks below the diagonal by column but also
read blocks by row to allow update of rows within the active block. A simple approach is to perform the
block level factorisation at the granularity of sub-blocks; obtaining the data required for each step of the
block level factorisation by reading full blocks and update pivot rows before discarding the portion of

2

each block not required in the coming step. As elsewhere the overall matrix is assumed to be of size n®,

and partitioned into blocks of size b = n/p. As a starting point it is assumed that a full column sub-block
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of width w is to fit into the same space as a single block. Then the sub-block width is determined;

For each such sub-block column in a block it is necessary to read all blocks below the diagonal, with cost
(p—k)tget. The extra cost due to searching for pivots down full columns in the block level factorisation

corresponding to the kth block column is then

b
E(p — k)tget
= plp— k)tget

There are possible ways of optimising these operations. If the matrix is distributed over a number
of nodes it is possible to achieve parallelism in the global pivot swapping phase by performing swaps
locally. For instance if the matrix were distributed by block column it might be possible to perform
pivot swaps for all block columns concurrently. One possible way in which the cost of implementing
the pivot searches may be reduced is to actually organise blocks on secondary storage by sub-blocks.
Data on secondary storage is only ever written by complete block, but it is possible to reduce the total
read cost, even if shorter reads will not be at full disk bandwidth. In the following analysis however,
it is simply assumed that all pivoting operations are performed by a single process with data accessed
by full blocks. Then the total additional cost due to pivoting in the kth block column is obtained from

(5.26) and (5.27).

Tpiv(k)y = p(p— k)tget + p(p — k + 1)(tget + tput)

= p(2p — 2k + 1)tget + p(p — k + 1)tput . (5.27)

In order to implement an LU factorisation it is also necessary to define task and synchronisation
structures. A starting point is to partition the work so that each task writes a single block as before.
A task dependency graph for such a computation is shown in figure 5.30. In this arrangement the task
which computes a block below the diagonal must access the block above it on the diagonal to compute

the final result. For instance the task computing the block L[z, k] first computes the intermediate result

tmp = A[i, k] — Z L3, J)UL, 4]

j=1

and then solves
L[z, k] U[k, k] = tmp

to obtain the desired result.
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ax] 3> a3,

0,0

Figure 5.30: Task dependencies for blocked LU factorisation. If pivoting is performed, the
dashed arcs are present but not the dotted arcs. If pivoting is not performed the opposite is
true.

The task which computes a block on the diagonal must perform first a similar inner product then a
block factorisation. It should be possible to perform the first part of the two tasks in parallel. One way
this can conveniently be achieved is to split each such task into two and have the first write an interme-
diate value to be used in the second. It is necessary to introduce some extra indicator to discriminate
between the different tasks writing the same block, though for an initial implementation it is conveni-
ent to have the task performing the block factorisation also perform the triangular solves to update the
blocks below, in addition if required to the global pivot swaps. The example computation then has the
task graph shown in figure 5.31 A simple implementation approach is to employ a sequence of bags of
tasks to place barrier synchronisation at the indicated points.

An implementation of the computation without pivoting has been performed using the same infra-
structure as used before for matrix multiplication and Cholesky factorisation. Also an analysis of the
performance has been made to compare with the experimental results. As before the full analysis is
contained in an appendix, appendix B, but the principal results are quoted here.

The total extra cost due to pivoting is in all cases

2
Tpiv, = pitget + %—(p + )tput (5.28)
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40,0

Figure 5.31: Blocked Crout LU factorisation using bags of tasks.

The single slave time and bounds on minimum parallel runtime without pivoting are as follows.

TNOPIV; = g(p +1)(2p + 1)tget + §(3p+ 1)tput

+ g(p —1)(2p — 1)(tmult + tsub) + p(p — 1)tsolve + ptlu  (5.29)

lwr {TNOPIV.} = ma,x{g(p+l)(2p+1)tget+g(3p+l)tput

+§(p — 1)tsolve + ptlu ,

‘g(Sp — 1)tget + §(3p + 1)tput

1|
+(p — 1) (tmult + tsub) + i(p —1)(p + 2)tsolve + ptlu} (5.30)

upr {TNOPIVy} = g(p+l)(2p+l)tget+§(3p+1)tput

1
+ (p — 1)%(tmult + tsub) + 5(1) —1)(p + 2)tsolve + ptlu (5.31)

Figure 5.32 shows the best measured performance of the Crout LU factorisation of a 3000% matrix
without pivoting in the HP configuration. Also shown is the expected performance for this case and
also for the same computation with pivoting included.

While the performance is not high, it is clear that the I/O cost is considerably greater in the LU fac-
torisation than in the simpler Cholesky factorisation and the hardware parameters of the experimental

environment are modest. While possible optimisations to the pivoting operations have been suggested
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Figure 5.32: Performance of LU factorisation for 3000 matrix in the HP configuration.

already, it is also possible to seek improvements in the performance of the basic algorithm. One pos-
sible improvement is to move the triangular solves which compute the final results for blocks below the
diagonal from the sequential task computing the block on the diagonal to the next parallel step. Each
triangular solve might be computed by the task which is responsible for writing the intermediate result
for the block just to the right. Then the solves could be executed in parallel rather than serially. Another
line of development might be to implement a left looking factorisation where a whole block column is
computed in each step. To coordinate concurrent execution of tasks computing blocks in the same block
column both above and below the diagonal it is necessary to employ some additional synchronisation
mechanism, such as the array of flags used before, but the number of barrier points is reduced. It is anti-
cipated that increasing the problem size should yield a higher potential degree of parallelism. Currently
it is shown that the computation can be adapted to a bag of tasks based structure to facilitate use of

changing resources. However, further investigation is required to fully assess the potential performance.

5.8 Summary

The results of the previous chapter already suggest that the bag of tasks based structuring technique
employed in this work provides an effective way to exploit the changing parallel resources of a NOW.
However it remains to consider any cost inherent in choosing such a structure instead of another, which
might be less dynamic. First issues specific to the bag of tasks based structure are considered, beginning
with the performance of alternative synchronisation structures for the Cholesky factorisation example
Subsequently the issue of problem size scaling is considered and it is shown that there is an asymp-

totic performance for each of the matrix computations which is equal to the performance of the block
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level matrix multiplication operation when the operands are accessed from shared store, but reflecting
any benefit available through caching. Thus if the matrix multiplication example is organised to reuse
a block row from server memory, then the asymptotic performance is that for block level multiplica-
tion where one operand is read from remote disk and the other from remote memory. This analysis
shows that there is a potential benefit available through caching, but fails to take account of the extra
memory required to support caching so a subsequent analysis considers the benefit of caching under a
constant aggregate memory constraint. The analysis is performed in the context of matrix multiplication
and shows that while caching a block row within slave memory is unlikely to be of benefit there is a
potential gain from user directed caching of a block row in server level memory.

Following from this and again in the context of matrix multiplication the potential performance
achievable under various hardware upgrades is determined. Also considered is the appropriateness of
the recovery cost and the likely load on the bag of tasks. Consideration is then given to using the well
known technique of overlapping communications to increase exploitation of the hardware resources. In
the bag of tasks structure two points are identified where such a technique can be applied. At the server
level it is possible to overlap network and disk transfers by employing double buffering and at slave
level it is possible to overlap communications with computation by employing multithreading.

Next a performance comparison is made between the bag of tasks structure and a data parallel
alternative for the example case of matrix multiplication. Each is tuned to a similar degree though there
remains a possibility for further tuning through caching on local disk space at slave level. However it
appears so far that the bag of tasks structure can be competitive in terms of potential performance and
certainly has advantages when the number of slaves participating in a computation changes during the
course of that computation.

Finally some consideration is given to a another matrix computation, namely LU factorisation. This
example is interesting because it does not permit an overall decomposition so obviously suited to a
bag of tasks based structure. It is reasonable to expect this situation to arise in many other example

computations.
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Conclusions

A NOW is commonly perceived as embodying in its surplus capacity an alternative to a dedicated
parallel machine. There is a range of options open to an organisation wishing to exploit this alternative.
One example would be to administer a NOW as a dedicated high performance resource overnight. In this
case the NOW is certainly prone to partial failures where a tightly coupled machine may exhibit an all or
nothing failure pattern. An alternative allows workstations in the NOW to be used for either sequential
or parallel computations at any time leading to a highly varied job mix including both interactive and
noninteractive jobs. In either case the distinguishing feature is that the resources available to a parallel
computation are changing. This work has been directed to the exploitation of changing resources in any
NOW configuration. The resource changes addressed here are addition or removal of a workstation to
a computation running in a NOW. These changes may be notified to the computation in advance or not.
In the latter case it is not essential for the computation to have taken some prior precautionary action;
rather it is sufficient for the computation to simply reconfigure. In practice it is probably important to
optimise separately for notified and unnotified resource changes.

It turns out however that existing work tends mostly to address various parts of the overall problem.
A large amount of work exists on checkpointing and replication techniques which generally address
a transient node failure. Several distributed operating systems have addressed the problem of migrat-
ing processes from one machine to another. The main problem is ensuring correct interaction between
process and system, and thus indirectly also that between processes and thus was originally addressed
in the context of completely custom operating systems. In a multiprocessor with truly shared memory
the problem does not arise since all communication between a process and outside is through the same
shared memory wherever the process runs. Recent work has shown that kernel modifications can be
avoided and indeed if all interaction is through a message passing library it is possible to localise con-
siderably the support needed for migration. However no change at the system level can enable a given

computation to tolerate loss of a node, notified or otherwise, or exploit an extra node. The computation
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itself needs to be structured specifically to support this. Many computations are irregular by nature so
that support for dynamic load balancing is inherent to their solution, and elsewhere dynamic frameworks
have been developed for computations which would typically be partitioned in a static way, either to
support use of a heterogeneous collection of machines or to support withdrawal or removal of machines.
One such framework is referred to here as a bag of tasks, a term used often in Linda based publications.
though it is synonymous with work pile, task farm, master slave and many others. Generally the resource
changes are notified so that extra provision is required to tolerate failures.

Job level scheduling can address the problem of exploiting changing resources by selecting those
Jjobs which will best use the available resources. However, such an approach relies on the Jjobs currently
active exhibiting a sufficient range of resource requirements. It is suggested that there is a place for at
least some of the jobs submitted being able locally to fully exploit changing resources, expanding to
use more facilities or contracting to use fewer facilities. CALYPSO has addressed the overall problem
of supporting use of changing resources by creating a pre-compiler which restructures annotated user
code automatically and uses a bag of tasks type approach to execute segments in parallel. The work
here also addresses the overall problem of computing on changing resources, but provides library level
mechanisms which the user then exploits as required. The approach described in this work is also similar
to FT-Linda and Plinda in exploiting a bag of tasks structure. However in general when compared to
existing systems the work here addresses a wider range of problems.

Any machine has a restricted physical memory size which ultimately limits the size of problem
that can be attempted. An example of a problem where this issue has been reported is a large matrix
factorisation. There is therefore a long history of work on out of core structuring techniques for such
problems where the problem data is based on secondary storage and physical memory serves only as
cache space for this data. More recently interest has mainly focussed on parallel implementations often
favouring a data parallel structure for implementation on machines with a large degree of parallelism.
This work takes an unusual approach by organising out of core computations in various ways using a
number of bags of tasks in order to investigate the potential for performing such computations on the
changing resources found in a NOW.

A disk based shared address space is constructed using a distributed object store. Accesses to these
shared objects are controlled by the use of atomic actions, employed both within object operations
and within application process code. A commit protocol ensures consistency of distributed updates.
A fault-tolerant bag of tasks is implemented using a recoverable queue, used previously in queued
transaction work. While the basic organisation provides support for simple parallel loops, a number
of simple extensions which support more complex parallel structures are described. A problem can
be partitioned into phases which can each be implemented using a separate bag of tasks. Since the
return status of the dequeue operation distinguishes the case where the queue is truly empty from that

where all entries are locked by other processes, it is easy to create the effect of a barrier synchronisation
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between computation phases. It is necessary to arrange for slave processes to move on to the next queue
only when the current one is empty. An alternative approach is to employ synchronisation variables
directly in the computation. It is necessary to ensure that such synchronisation behaves correctly in the
event of process recovery. In the case of Cholesky factorisation for example it is convenient to associate
a recoverable flag with each block of the result matrix and make updates within the operations of the
matrix object. It is also possible to define a hierarchy of bags of tasks if there is a need to encourage each
slave to follow a defined sequence of tasks, while not compromising the recoverability. It is claimed
that recoverable bags of tasks together with atomic actions make convenient building blocks with which
to construct dynamic parallel structures.

Three specific computations have been implemented in three different NOW configurations. Two
dense matrix computations, matrix multiplication and Cholesky factorisation, are data intensive. The
third, ray tracing, is much less so but enables a comparison with other infrastructures. For a small scale
ray tracing computation the fault-tolerance seems a luxury when the performance is compared with that
of a commercial grade implementation which is not fault-tolerant. However, for an example of realistic
scale the fault-tolerance is not only clearly going to be cheap but also necessary.

The computations have been modelled so as to verify the observed performance, and in the case of
the matrix computations to allow the effect of configuration changes to be predicted. The modelling
approach is empirical in relying on benchmark measurements of the lower level operations which the
applications are built from. These are all at the level of blocks, i.e submatrices, which are accessed
as units and include for instance read and write block, multiply two blocks etc. Following calibration
of the models, measurement of the performance of complete examples both validates the modelling
process and shows that worthwhile absolute performance can be achieved even in the hardware config-
urations available. For the defined program structures the additional cost imposed by the fault-tolerance
mechanism is seen to be small provided the granularity is large.

Following this initial work the next step is to use the models to assess the potential for the struc-
turing approach. First a number of alternative organisations of the same basic algorithm for Cholesky
factorisation are compared. These organisations differ only in the approach to synchronisation; in two
cases employing sequences of bags of tasks and in another employing separate synchronisation flags
manipulated in the operations of the result matrix object. In the former case the model suggests that
a structure employing a single queue and additional synchronisation integrated into the result matrix
can offer better performance than either of two alternatives which employ multiple queue steps to avoid
using the additional synchronisation in the result. Experimental measurements suggest that this higher
performance can be realised in practice.

A simple analysis of the scaling properties shows that there is an asymptotic execution rate for a
given configuration which is approached as the problem size is increased. This asymptotic rate is equal

to the rate at which block level matrix multiplication operations can be performed when the operands are
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fetched from store. If the computation is organised to reuse data and so benefit from caching then this
asymptotic rate increases proportionately. However the value of data caching is better considered in the
context of the overall memory requirement. When compared under a constant memory constraint, for
matrix multiplication it appears that caching data in slave memory is not worthwhile, but that a benefit
may be gained through user directed block row caching at server memory level.

A practical question arises regarding the usefulness of scaling computation size arbitrarily. There
is some evidence [48] however which suggests that dense linear algebra computations of rather larger
scale than those considered in this work are performed in practice. While this work makes only a start
and tackles with any thoroughness only simple examples it may be that if a way of performing these
large scale computations is readily available then increased use will be found.

Using the performance model it is possible to predict the potential performance in the event of some
upgrade of hardware configuration. In so doing it is important to verify that the computation granularity
remains appropriate, so that recovery time is not too large and the load on a bag of tasks is not too high.
Intuitively these requirements can be satisfied if the degree of parallelism is modest and the granularity
large. However in the case of matrix multiplication at least there appears to be ample scope for gaining
benefit through parallelism while doing so in practice.

Overlapping communications is a standard technique used to exploit more fully any hardware con-
figuration. In a bag of tasks structure this may be achieved at two levels. At server level network and
disk transfers can be overlapped through double buffering. At slave level the use of multithreading can
overlap communications with computation. Each has some impact on the total memory requirement,
ultimately reducing the granularity and so increasing the load on a bag of tasks. Again in the case of
matrix multiplication there appears to be scope in practice for exploiting such overlapping techniques
for suitably large computations.

After modelling simple hardware upgrades and the potential for overlapping communications, a
comparison is made between the bag of tasks structure and a data parallel structure in order to assess
the cost of structuring to cope with changing resources. This analysis is performed only in terms of
maximum achievable performance and only in the case of matrix multiplication so there remains scope
for developing this comparison not just in this example but also for other applications. When both
structures are tuned to the same degree, specifically employing both double buffering and multithreading
techniques, the evidence so far suggests that the bag of tasks structure can be competitive. Furthermore
when operating in an environment of changing resources there are clear advantages to the bag of tasks
structure.

Finally brief consideration is given to a new example application, LU factorisation. The significance
is that the pivoting required in LU factorisation suggests a rather finer granularity than can be achieved
in either matrix multiplication or Cholesky factorisation and so the centralised bag of tasks might be

expected to be a bottleneck. It is shown that an organisation based on a bag of tasks type approach is
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possible though further work is needed to evaluate the performance potential.

Overall it is claimed that investigation of computation structures which can make full use of chan-

ging resources is worthwhile and the study here has made a contribution in this area.

6.1 Further Work

The Arjuna system has evolved into a second generation which can employ industry standard transport
mechanisms and multithreading. There is then scope for porting the existing applications and optimising
servers. Such optimisation in the queue may broaden its range of applications. There is also scope for
demonstrating the fault recovery experimentally. The objects used here have been developed in response
to application needs. Development of further applications might allow identification of some useful set
of tools.

For the type of applications studied in the constrained environment of a NOW the requirement for
complex commit protocols to implement nonblocking agreement can be avoided and has permitted
development of useful dynamic parallel structures. With appropriate guarantees regarding atomicity it
may be that such dynamic structures can find wider application.

As described earlier, structuring a computation using a bag of tasks achieves a form of adaptive par-
allelism. If the task granularity is small enough it is sufficient to simply kill the slave process executing
on a particular machine to cause migration from that machine. A mechanism which allows a slave to
save its state to enable cheaper restart would allow the task granularity to be increased.

The analysis of alternate structures for matrix multiplication remains incomplete. In the data parallel
structure each slave reuses the same block row of the second input matrix. It is possible to organise the
bag of tasks structure also so that each slave reuses a particular block row a number of times. Analysis
of the bag of tasks structure suggested that caching a block row in slave memory would not be beneficial
because this forces reduction of the block size. However, if slave machines have large local disk space,
it would be possible to cache a block row there in either computation structure. On the practical side,
it remains necessary to verify the operation of a two level bag of tasks structure to arbitrate separately
between block rows and blocks within each block row.

So far the structuring approach has been demonstrated in only two applications where an out of
core approach is necessary. It would be interesting to consider structuring other matrix computations
in this way and also to consider other data intensive computations. In the case of LU factorisation it is
seen that even preliminary investigation highlights areas for further study. The first question concerns
the possibility of using the dynamic structure employed here, but there is also the issue of performance

particularly when compared with alternative less dynamic approaches.
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Cholesky Factorisation Performance

A.1 single-bag

The approach to modelling the single-bag organisation is to think of the computation as if there were
a barrier at the point of output of a block on the diagonal and at the completion of each block column.

Assuming full parallelism is reached, the 2p—1 steps are as follows.

o In the first step all processes read the appropriate block of the input matrix. a, ; and in addition,
the first process computes Cholesky factor of block ag ¢ and writes it out. This is referred to as

the initialisation step.

¢ Inthe p—1 even numbered steps starting with the second processes computing blocks in the same
block column as the diagonal block output in the previous step read that diagonal block. perform

the required solve and output the result block. These are referred to as solve steps.

¢ In the remaining p—1 all processes which have not yet output a result. rcad blocks written during
the previous step (one if on diagonal or two otherwise) and perform a multiplication and sub-
traction. In addition, one process computes Cholesky factor and writes out the result. These are

referred to as factorisation steps.

A.1.1 Single Slave Time

Since there is no parallelism available, the duration of the first step is always
Tinit; = g(p+1)tget+tchol+tput (A

There are p— 1 solve steps for columns j = 1 to p—1. The step corresponding to column j entails

140



APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE

p—J block solves. The serial time for the jth such step is

T'solve(j)1 = (p — j)(tget + tsolve + tput)

and the total for all these steps

p—1
Tsolvey, = Z Tsolve(j);

Jj=1
r—1

= Z(p — j)(tget + tsolve + tput)
i=1

= g(p — 1)(tget + tsolve + tput)
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(AD)

(A3)

There are also p— 1 factorisation steps, but for columns j = 2 to p. In each of these steps a

block multiplication and subtraction is performed for each active block and also a single Cholesky

factorisation.

In the step corresponding to column j there are a total of %(p — 7+ 1)(p — j + 2) blocks of the

output yet to be written. Of these (p — j + 1) lie on the diagonal and therefore require only a single

block read during the step. The remaining %(p — 7)(p - j + 1) require two block reads. The serial time

for this step is

T fact(§)1

and the total for all these steps

Tfact; =

(p+1—j)°tget
1 .
+ §(p+ 1—j)(p+ 2 - j)(tmult + tsub)

+ tchol + tput

P
> " Tfact(j):
=2
P
2:{@+1—jFMd+
j=2
+ %(p +1—j)(p+2 - j)(tmult + tsub)

+ tchol + tput}

g(P —1)(p — 2)tget + %)(pz — 1)(tmult + tsub)

+ (p — 1)(tchol + tput)

(A4)

(A.5)

By summing these three components (A.1), (A.5). (A.3) it is possible to derive an estimate of the



APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE 142

single slave time

Ty = Tinity + Tsolve; + T fact,
= g(P‘l' 1)tget + tchol + tput + g(p —1)(tget + tsolve + tput)
+ g(P —1){p — 2)tget + %(p2 — 1)(¢tmult + tsub)
+ (p — 1)(tchol + tput)
= E(p+1)(p+ tget + 2" - 1)(emult + tsub)

+ g(p — 1)tsolve + ptchol + g(p + 1)tput (A.6)

A.1.2 Minimum Parallel Time
Lower Bound

One lower bound on the minimum parallel time is set by hardware bandwidths.
_P p
Tcomm = g(p +1)(2p + 1)tget + —2-(p + 1)tput

Another is determined by the longest duration task. This may be either the last task which computes the
bottom right diagonal block or the previous task which computes the block just to the left in the same
block row.

T(p,p—1) = 2ptget + (p — 1) (tmult + tsub) + tsolve + tput

and

T (p,p) = ptget + (p — 1)(tmult + tsub) + tchol + tput .

The latter is greatest if
tchol > ptget + tsolve ,

but also trivially for p = 1 since it is then the only task.

The required lower bound is then the maximum of these separate bounds.
Wwr{Tw} = max{Tcomm,T(p,p— 1), T(p,p)} -

An alternative lower bound may be defined based on the average task length for use when it is not

obvious which task is actually longest.

Ty }
wr{Tsx} = max{Tcomm,s——¢ - (A7)
wr {Too} m { Ep+1)
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Upper Bound

An upper bound on the minimum parallel time may be obtained by pretending that there is a barrier after

each of the computation steps described above and then summing the upper bound on the minimum

paraliel time for each step.

The time taken to compute the initialisation step is Tinit; (A.1).

An upper bound on the minimum parallel time to compute the solve step corresponding to column

J is obtained from (A.2).

upr {Tsolve(j)oo} = (p — j)(tget + tput) + tsolve .

An upper bound on the minimum time to compute all such solve steps is

p—1
upr {Tsolve} = Z upr {T'solve(j)eo}
i=1

p—1

= Z {(p — 7)(tget + tput) + tsolve}
i=1

= g(p — 1)(tget + tput) + (p — 1)tsolve .

(A.8)

An upper bound on the minimum parallel time to compute the factorisation step corresponding to

column j is obtained from (A.4).
upr{T fact(j)oo} = (P+1-— 7)%tget + tmult + tsub + tchol + tput

An upper bound on the minimum time to compute all such factorisation steps is

P
upr{T fact} = Z upr {T fact(j)oo}

j=2

p
= Z {(P + 1 — j)%tget + trult + tsub + tchol + tput}
i=2

= g(p — 1)(2p — 1)tget

+ (p — 1)(tmult + tsub + tchol + tput) .

Finally, the upper bound on T is obtained by summing values from (A. 1), (A.9), (A.8).

upr{T} = Tinit; +upr {Tsolvec} + upr {T factoo}

= g(p + 1)tget + tchol + tput

+ g(p — 1)(tget + tput) + (p — 1)tsolve

(A9)
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+ g(p —1)(2p — 1)tget
+ (p — 1)(tmult + tsub + tchol + tput)
= %(p + 1)(2p + 1)tget + (p — 1)(tmult + tsub + tsolve)

+ ptchol + g(p + Dtput (A.10)

A.2 multi-step(1)

A.2.1 Single Slave Time

For the jth diagonal block the computation time is 7'(j, j);. In addition to the original block at this
location, it is necessary to read j — 1 blocks, perform one block multiplication and one block subtraction

for each of these blocks and finally factor the result write the resulting factor back.
T(5,7)1 = jtget + (7 — 1)(tmult + tsub) + tchol + tput (A.11)

The remainder of the work on this block column entails computing the blocks below the diagonal.
Computation of the 7, jth block entails 2(j — 1) reads in addition to that for the original block, j — 1
multiplications and subtractions, another read and block solve and writing the result.

T(i,7)1 = 2j5tget + (5 — 1) (¢mult + tsub) + tsolve + tput (A.12)

The time taken by a single slave to compute the jth column is then

TG,in+ », TG -

i=j+1

Finally summing for all columns gives the time taken by a single slave to complete the whole

computation.
P P
Ty = » TG+ Y, TG
j=1 i=j+1

P
= Z jtget + (j — 1)(tmult + tsub) + tchol + tput
Jj=1

P
+ Y {2jtget+ (j — 1)(tmult + tsub) + tsolve + tput}
i=j+1

4
= Y {(@p+1)j — 2)tget
J=1
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+((p+2)j - 3% —p—1)(tmult + tsub)
+ (p — j)tsolve + tchol + (p — j + 1)tput}
= g(p +1)(2p+ 1)(3 - 2)tget
+ g(p +1)(3p+ 6 — 2p — 1 — 6)(tmult + tsub)
+ g(Zp — p — 1)tsolve + ptchol + g(p + 1)tput
= g(p +1)(2p + 1)tget + Ié(pz ~ 1)(tmult + tsub)

+ g(p — 1)tsolve + ptchol + g(p + 1)tput (A.13)

A.2.2 Minimum Parallel Time
Lower Bound

The computation consists of 2p — 1 steps.

o The first and subsequent odd numbered steps, referred to as factorisation steps, are serial com-
putations which output a single block on the diagonal. The time taken to perform this serial

computation for the jth column is T'(4, 7); in (A.11).

o The second and subsequent even numbered steps, referred to as solve steps, are parallel compu-
tations which output all blocks below the diagonal in the same block column as the block output

in the previous step.

The jth solve step entails computing all blocks in the jth column below the block on the diagonal.
The time taken to compute one such block is T'(Z, §); in (A.12). A lower bound on the minimum time

taken to compute the jth solve step is therefore

»
lwr {T'solve(j)oo } = max Z {2jtget + tput} , T(i,j)l}
i=j+1

A lower bound to T, may be obtained by summing the cost of the p serial steps and the p — 1 parallel

steps.

W {Tw} = 70+ 3 Iwt {Tsolveli)oo)

=1 J
P p—1 p
= T(j,jh+ Zma.x Z {2jtget + tput} , T(i, i1
j=1 j=1 i=j+1

In each of the parallel steps which compute the blocks below the diagonal the cost may be dominated
either by the total communications or by the computation. For example. in the case of the first block

column the cost of each task is 2tget + ¢solve + tput while in the case of the second block column the
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costis 4tget + 2(tmult + tsub) + tsolve + tput. However it is possible to simplify this expression and

yet still obtain a lower bound on the overall minimum time, though the bound may be not so close.

wr{Tw} = > T(jn
Jj=1

p~1 p p-1
+max{ > S {2jtget + tput} | > TG, i)
j=1li=j+1 i=1

P
= Z {itget + (5 — 1)(tmult + tsub) + tchol + tput}
=1

p—1
+ max {Z{(p — j)(2jtget + tput)} ,

i=1

p—1
Z{2jtget + tput + (j — 1)(trmult + tsub) + tsolve}}
=1

= g(p + 1)tget + zé(p — 1)(tmult + tsub) + ptchol + ptput
+ max {g(p2 — 1)tget + g(p - Dtput ,
p(p — 1)tget + @(p — 2)(tmult + tsub)
+ (p — 1)tsolve + (p ~ 1)tput}

= max {g(p +1)(2p + 1)tget + Ig(p — 1)(tmult + tsub)
+ ptchol + g(p + 1)tput ,
§(3p — 1)tget + (p — 1)%(tmult + tsub)

+ (p — 1)tsolve + ptchol + (2p — l)tput} (A.14)
As a check if p = 1 in this expression, it is seen that
lwr {To} = tget + tchol + tput .

Upper Bound

An upper bound on the minimum time taken to compute the solve step corresponding to the jth column
is
P
upr {T'solve(§)oo } = Z {2jtget + tput} + (j — 1)(tmult + tsub) + tsolve .
i=j+1

In the same way as for the lower bound, an upper bound to T, may be obtained by summing the
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cost of the p serial steps and the p — 1 parallel steps.

upt {Too }

14 p—1

> T(G,5) + Y upr{Tsolve(j)oo}

=1

[y

S,

P
T(,4)
-1

<,

i=1 |i=j+1

p—1 P
+ Z { Z {2jtget + tput} + (j — 1)(tmult + tsub) + tsolve}
g

4

Z {jtget + (7 — 1)(tmult + tsub) + tchol + tput}
j=1

p—1

+ Z(p — 7)(2jtget + tput) + (5 — 1)(tmult + tsub) + tsolve
i=1

g(p + 1)tget + 12—)(;0 — 1)(tmult + tsub) + ptchol + ptput

-1
+ g(l’z — 1)tget + QP—Z——)(p — 2)(tmult + tsub)
+ (p — 1)tsolve + g(p — D)tput
g(p +1)(2p + 1)tget + (p — 1)%(tmult + tsub)

+ ptchol + (p — 1)tsolve + g(p + 1)tput (A.15)

Again as a check if p = 1 in this expression, it is seen that

upr {To } = tget + tchol + tput .



Appendix B

LU Factorisation Performance

B.1 Crout Factorisation

The CROUT organisation computes in each iteration results for a partial block column and row from
the diagonal downwards and to the right. Each such iteration comprises three steps. The organisation is

illustrated for the kth iteration, corresponding to the kth block column, in Figure B.1

(1) multiply (2) factor (3) solve

Figure B.1: Computation steps in Crout LU factorisation.

1. The first step is referred to as a multiply step and computes intermediate results for blocks on and

below the diagonal. Overall the step performs the computation
X[k:p k] =A[k:p,k]—Lk:p,1:k—1JU[1: k—1,k]

A single task in this step computes a single block L[i, k] where i > k.

2. The second step is referred to as a factor step as the partial block column X[k : p, k], computed in
the previous step, is factorised. Full column pivoting may be performed during the factorisation,

and then during the same step pivot row swaps applied to the whole matrix.

148
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3. The final step writes final result values for all blocks in the current block row but to the right of

the diagonal. Clearly there is no need for such a step in the final iteration. The Step computes
first

Xksk+1:p] =Alk,k+1:p] —Ulk,1:k—1L[1:k—1,k+1:p]

then solves

Ulk,k +1: p|L{k, k] = X[k, k + 1 : p|
for U[k, k + 1 : p]. A single task in this step computes a single block U[k, j] where k < j < p,
without explicitly writing X[k, j].
B.1.1 Single Slave Time

Without pivoting the kth factorisation step may be accomplished by reading the block on the diagonal.
factoring it and writing the result back, then in turn reading each block below the diagonal, solving with

the upper half of the block on the diagonal and writing back the result.

T factnp(k); = tget+ tlu + tput + (p — k)(tget + tput + tsolve)

(p — k + 1)(tget + tput) + (p — k)tsolve + tlu (B.1)

The additional cost in this step due to pivoting is derived in the main text (5.27).

In the kth multiply step, the duration of each task is
(2k — 1)tget + (k — 1)(tmult + tsub) + tput .
There are p — k + 1 such tasks, so the single slave time for the complete step is
Tmult(k), = (p — k + 1)((2k — )tget + (k — 1)(tmult + tsub) + tput) . (B.2)
In the kth solve step, the duration of each task is
2ktget + (k — 1)(tmult + tsub) + tsolve + tput .
There are p — k such tasks, so the single slave time for the complete step is
Tsolve(k), = (p — k)(2ktget + (k — 1)(tmult + tsub) + tsolve + tput) . (B.3)

If the computation performs no pivoting the overall single slave time is derived from (B.1), (B.2)
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and (B.3).

TNOPIV, = {T factnp(k),} + Z {Tmult(k),} + Z {Tsolve(k),}

k=1

M'u |l M'e

{(p — k)(tget + tput) + (p — k — 1)tsolve + tlu

x
||
-

+ (p— k+1) ((2k — 1)tget + (k — 1)(tmult + tsub) + tput) }

+ Z {(p — k) (2ktget + (k — 1)(tmult + tsub) + tsolve + tput) }

= g(p + 1)(p + 2)tget + p(p + 1)tput

+ g(p +1)(p — 1)(tmult + tsub) + g(p — 1)tsolve + ptlu
+ g(p+ 1){p — )tget + g(p — 1)tput

+ g(p —1)(p — 2)(trnult + tsub) + g(p - 1)tsolve

= g(p + 1)(2p + 1)tget + §(3p+ 1)tput

+ g(p —1)(2p — 1)(tmult + tsub) + p(p — 1)tsolve + ptlu (B.4)

If pivoting is performed during the computation it is necessary to add in the cost of the pivot opera-

tions, in (5.27).

14
TPIV; = TNOPIVi +)_ Tpiv(k)
k=1

= g(p+ 1)(2p + 1)tget + g(3p+ 1)tput

+ %’(p —1)(2p — 1)(tmult + tsud) + p(p — 1)tsolve + ptlu

P
+ > {p(2p — 2k + 1)tget + p(p — k + 1)tput}

k=1
g(p +1)(2p + 1)tget + 2(3p + 1)tput

+ (p — 1)(2p — 1)(tmult + tsub) + p(p — 1)tsolve + ptlu

6
p2

+ pitget + -2—(p + 1)tput

g(pz +4p + 1)tput

+ g(p —1)(2p — 1)(tmult + tsub) + p(p — 1)tsolve + ptiu (B.5)

= §(5p2 + 3p + 1)tget +
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B.1.2 Minimum Parallel Time

There are no inter task dependencies within the multiply and solve steps. Bounds on the minimum

parallel time of execution of the kth multiply step and kth solve step are defined in the usual way.

lwr {Tmult(k)oo} = max{(p—k+1)((2k — 1)tget + tput) ,

(2k — 1)tget + (k — 1)(tmult + tsub) + tput}

upr {Tmult(k)} = (p—k+1)((2k — 1)tget + tput)
+ (k — 1)(tmult + tsub)

lwr {T'solve(k)es} = max{(p— k) (2ktget + tput) ,
2ktget + (k — 1)(tmult + tsub)
+tsolve + tput}

upr {Tsolve(k)os} = (p— k) (2ktget + tput)

+ (k — 1)(tmult + tsub) + tsolve

A lower bound may be obtained by summing appropriate values for all columns.

p
TNOPIVy, > Z{Tfactnp(k)l+1wr{Tmult(k)x}
k=1

+lwr {Tsolve(k)oo}}

p

Z {(p — k + 1)(tget + tput) + (p — k)tsolve + tlu
k=1

+ max {(p — k + 1) ((2k — D)tget + tput) ,

(2k — 1)tget + (k — 1)(tmult + tsub) + tput} }
p—1

+ Z {ma,x{(p — k) (2ktget + tput)
k=1

2ktget + (k — 1)(tmult + tsub) + tsolve + tput} }

It is possible to ease computation by relaxing the bound slightly.

P
lwr {TNOPIV,} = max { Z {2(p — k+ 1) (ktget + tput)

k=1
p—1
+(p — k)tsolve + tlu} + Z(p — k) (2ktget + tput) .
k=1

p
3" {(p+ k)tget + (p - k + 2)tput
k=1
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+(k — 1)(tmult + tsub) + (p - k)tsolve}

r—1
Z {2ktget + (k — 1)(tmult + tsub) + tsolve + tput} }
k=1

= max {g(p + 1)(p + 2)tget + p(p + 1)tput
+ g(p — 1)tsolve + ptlu
g(p+ 1)(p — Dtget + g(p— 1)tput ,
g(Sp +1)tget + g(p + 3)tput

+ g(p — 1)(tmult + tsub) + g(p — 1)tsolve

1
+p(p — tget + §(p - 1)(p — 2)(tmult + tsub)
+(p ~ 1)tsolve + (p — l)tput}

= max {%)(p+ 1)(2p + 1)tget + g(3p+ 1)tput
+§(p — 1)tsolve + ptiu ,

g(sp — 1)tget + g(Bp + 1)tput

1
+(p — 1) (tmult + tsub) + E(p — 1)(p + 2)tsolve + ptlu} (B.6)

If the computation performs pivoting, it is necessary to add in the cost of the pivoting operations,

from (5.27).

P
wr{TPIVe} = Iwr{TNOPIVo}+  Tpiv(k):

k=1

= max{g(p +1)(2p + 1)tget + !2-)(3p+ 1)tput

+§(p — 1)tsolve + ptlu ,

‘;(Sp - 1)tget + Z57(3;) + 1)tput

1
+(p — 1)*(tmult + tsub) + E(p —1)(p + 2)tsolve + ptlu}

p
+ S {p(2p — 2k + 1)tget + p(p — k + 1tput}
k=1

= max {g(p +1)(2p + 1)tget + g(Bp + 1)tput
+§(p — 1)tsolve + ptlu ,
g(Sp — 1)tget + §(3p + 1)tput
1
+(p — 1)*(tmult + tsub) + §(p - 1)(p + 2)tsolve + ptlu}

2
+ pitget + I—;—(p + 1)tput
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= P 2
= max{g(5p +3p + 1)tget + g(p2 +4p + 1)tput
+g(p — D)tsolve + ptiu |

P
5(2p° +5p — 1)tget + g(pz +4p + 1)tput

1
+(p — 1)*(tmult + tsub) + 5(}) = 1)(p + 2)tsolve + ptlu} (B.7)

An upper bound may be defined in a similar way.

p
upr {TNOPIV,} = Z{Tfactnp(k)1+upr{Tmult(k)°°}}

k=1

+ Iil {upr {Tsolve(k)w}}

k=1
p

= Z {(P —k + 1)(tget + tput) + (p — k)tsolve + tlu
k=1

+(p— k + 1) ((2k — 1)tget + tput) + (k — 1)(tmult + tsub)}

p—1
+3° { (p — k) (2ktget + tput) + (k — 1)(tmult + tsub) + tsolve}
k=1

P
= ) {2k(p— k+ L)tget + 2(p — k + 1)tput
k=1
+(k = 1)(tmult + tsub) + (p — k)tsolve + tlu}
p—1
+ Z {(p — k)(2ktget + tput) + (k — 1)(tmult + tsub) + tsolve}
k=1

= L(p+1)(p+2)tget + plp + tput
+ g(p — 1)(tmult + tsub) + z5)(17 — 1)tsolve + ptlu
+ g(p+ 1)(p — 1)tget + g(p — 1)tput

+ %(p —1){p—2) + (p — 1)tsolve

= g(p+ 1)(2p + 1)tget + g(3p+ 1)tput

1
+ (p — 1)*(tmult + tsub) + 5(}7 — 1)(p + 2)tsolve + ptlu (B.8)

If the computation performs pivoting, it is necessary to add in the cost of the pivoting operations,

from (5.27).

b 4
upr {TPIV,,} = upr{TNOPIVo}+ Y Tpiv(k)
k=1

= g(p + 1)(2p + 1)tget + §(3p + 1)tput

1
+ (p — 1)*(tmult + tsub) + E(p — 1)(p + 2)tsolve + ptlu
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P
+ Z{p(2p — 2k + 1)tget + p(p — k + 1)tput}
k=1

= g(p +1)(2p + 1)tget + §(3p+ 1)tput
1
+ (p — 1)*(tmult + tsub) + §(p —1)(p + 2)tsolve + ptlu
o
+ pitget + 7(}) + 1)tput
= §(5p2 +3p+ 1)tget + g(p2 + 4p + 1)tput

+ p(p — 1)(tmult + tsub) + %(p —1)(p + 2)tsolve + ptlu

(B.9)
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