
Fault-Tolerant Parallel Applications Using a

Network Of Workstations

James Antony Smith

Ph.D. Thesis

Department of Computing Science

The University of Newcastle upon Tyne

December 1997

NEWCASTLE UNIVERSITV LIBRARV
-------------------- --------

097 52119 9
----------- -----------------

Abstract

It is becoming common to employ a Network Of Workstations, often referred to as a NOW, for

general purpose computing since the allocation of an individual workstation offers good interactive

response. However, there may still be a need to perform very large scale computations which exceed

the resources of a single workstation. It may be that the amount of processing implies an inconveniently

long duration or that the data manipulated exceeds available storage. One possibility is to employ a

more powerful single machine for such computations. However, there is growing interest in seeking a

cheaper alternative by harnessing the significant idle time often observed in a NOW and also possibly

employing a number of workstations in parallel on a single problem. Parallelisation permits use of the

combined memories of all participating workstations, but also introduces a need for communication. and

success in any hardware environment depends on the amount of communication relative to the amount

of computation required. In the context of a NOW, much success is reported with applications which

have low communication requirements relative to computation requirements.

Here it is claimed that there is reason for investigation into the use of a NOW for parallel execution

of computations which are demanding in storage, potentially even exceeding the sum of memory in

all available workstations. Another consideration is that where a computation is of sufficient scale,

some provision for tolerating partial failures may be desirable. However, generic support for storage

management and fault-tolerance in computations of this scale for a NOW is not currently available and

the suitability of a NOW for solving such computations has not been investigated to any large extent.

The work described here is concerned with these issues.

The approach employed is to make use of an existing distributed system which supports nested

atomic actions (atomic transactions) to structure fault-tolerant computations with persistent objects.

This system is used to develop a fault-tolerant "bag of tasks" computation model, where the bag and

shared objects are located on secondary storage.

In order to understand the factors that affect the performance of large parallel computations on a

NOW, a number of specific applications are developed. The performance of these applications is ana­

lysed using a semi-empirical model. The same measurements underlying these performance predictions

may be employed in estimation of the performance of alternative application structures. Using services

provided by the distributed system referred to above, each application is implemented. The implement­

ation allows verification of predicted performance and also permits identification of issues regarding

construction of components required to support the chosen application structuring technique. The work

demonstrates that a NOW certainly offers some potential for gain through parallelisation and that for

large grain computations, the cost of implementing fault tolerance is low.

Contents

1 Introduction

1.1 Parallel Computations. 2

1.1.1 Decomposition 2

1.1.2 Mapping 2

1.2 Parallel Machines 3

1.2.1 Multicomputer 3

1.2.2 Multiprocessor 4

1.2.3 Large Scale Storage 5

1.3 Sharing a Parallel Machine 6

1.4 Network Computers. 7

1.5 Changing Resources 8

1.6 Fault-Tolerance .. 9

1.7 Structure of Thesis 10

2 Structuring 11

2.1 Program Models. II

2.1.1 Message Passing II

2.1.2 Distributed Shared Memory 12

2.1.3 Structured Shared Memory . 14

2.1.4 Large Grain Data Flow 15

2.1.5 Data Parallelism 16

2.2 Using Changing Resources 16

2.2.1 Supporting Transient Node Failure. 17

2.2.2 Supporting Node Replacement . . . 20

2.2.3 Supporting Node Loss or Addition. 21

2.3 Management of Secondary Storage . 22

2.-1 Using A Shared Object Store 25

2.4.1 A Static Computation. . . 25

2.4.2 A Dynamic Computation . 25

2.4.3 A Fault-Tolerant Computation 26

2.4.4 A Dynamic and Fault-Tolerant Computation. 27

2.4.5 Multiple Step Computations .. 28

2.4.6 Synchronisation By Side Effect 28

2.4.7 Multiple Level Computations 29

2.4.8 Example Applications 31

2.5 Summary · 35

3 Modelling 36

3.1 Preliminary 36

3.2 Limiting Performance . 39

3.3 Non Limiting Performance 42

3.4 Inter Task Dependencies 42

3.5 Cache Effects 45

3.6 Recovery · . 45

3.7 Multi Step Computations 47

3.8 Examples · 47

3.8.1 Matrix Multiplication. 47

3.8.2 Cholesky Factorisation 52

3.9 Summary 58

4 Implementation 60

4.1 Fault-Tolerant Bag of Tasks. 60

4.1.1 Implementation . 61

4.1.2 Performance 62

4.2 Synchronisation . 64

4.3 Data Transport 65

4.4 Shared Objects 66

4.4.1 Management of Large Objects 66

4.5 Atomicity · . 68

4.6 Experiments . 69

4.6.1 Configurations 70

4.7 Preliminary Results . . 71

4.7.1 Performance Summary 72

4.8 Validation 74

ii

4.8.1 Benchmarks.

4.8.2 Ray Tracing.

4.8.3 Matrix Computations.

4.9 Summary

5 Assessment

5.1 Computation Structures .

5.2 Computation Scaling

5.3 Benefit from Caching

5.4 Configuration Upgrades.

5.5 Overlapping Communication

5.5.1 Server.

5.5.2 Slave .

5.6 Exploiting Patterns

5.7 Another Example: LU Factorisation

5.8 Summary

6 Conclusions

6.1 Further Work

A Cholesky Factorisation Performance

A.I single-bag

A.l.1 Single Slave Time

A.1.2 Minimum Parallel Time

A.2 muIti-step(1)

A.2.1 Single Slave Time

A.2.2 Minimum Parallel Time

B LU Factorisation Performance

B.l Crout Factorisation

B.I.I Single Slave Time

B.l.2 Minimum Parallel Time

III

81

83

87

88

88

90

93

101

107

107

110

II-l

12-l

133

135

139

)-w

140

140

142

144

144

145

148

148

149

151

List of Figures

1.1 Example structure of a multicomputer

1.2 Example structure of a multiprocessor

2.1 Possible distribution of a static computation

2.2 Possible distribution of a dynamic and fault-tolerant computation.

2.3 Example fault-tolerant computation

2.4 Example fault-tolerant computation

2.5 Matrix multiplication by bag of tasks.

2.6 Dependencies in left looking blocked Cholesky

2.7 Cholesky factorisation by bag of tasks

2.8 Synchronisation alternatives in Cholesky factorisation.

3.1 Example bag of tasks computations

3.2 Example bag of tasks computations

3.3 Example bag of tasks computations

3.4 Bounds on parallel execution with dependencies.

3.5 Alternate bounds on parallel execution with dependencies.

3.6 Recovery from a task failure

3.7 Dependencies in single-bag organisation of Cholesky

3.8 Dependencies in multi-step(l) organisation of Cholesky

3.9 Dependencies in multi-step(2) organisation of Cholesky

4.1 Operation of a recoverable queue

4.2 Possible implementation of a recoverable queue

4.3 Performance of a local fault-tolerant computation

4A Example ray tracing scene description

4.5 Performance of fault-tolerant parallel ray trace.

4.6 Performance of parallel fault-tolerant matrix multiplication

4.7 Performance of parallel fault-tolerant Cholesky factorisation

IV

4

4

26

28

29

30

33

33

.H

.'14

37

38

42

43

44

46

53

54

56

61

62

63

71

72

73

73

4.8 Tuning in core matrix multiplication to HP71 0 . 76

4.9 Performance of in core matrix primitives . 77

4.10 Performance of data access operations . 78

4.11 Performance of software RAID system . 79

4.12 Performance of basic communications transfers 79

4.13 Performance of small disk transfers for HP71 0 . 81

4.14 Speedup of parallel ray trace of example scene. 82

4.15 Computing bounds on parallel performance .. 85

4.16 Potential of matrix multiplication for varying block size . 86

4.17 Potential of Cholesky factorisation for vaying block size 86

5.1 Potential of synchronisation alternatives in fast configuration 89

5.2 Potential of synchronisation alternatives in ATM configuration 90

5.3 Maximum performance in the fast configuration. 91

5.4 Maximum potential of caching at slave level . 94

5.5 Potential of file system caching at server level 96

5.6 Optimum memory partitioning for server caching 97

5.7 Potential of file system caching with optimum memory partitioning. 98

5.8 Potential of user directed caching. 99

5.9 Potential of user directed caching in large matrix multiplication. 100

5.10 Potential of processor upgrade in the fast configuration . . 102

5.11 Potential of interconnect upgrade in the fast configuration. 103

5.12 potential of interconl)ect and disk upgrade in the fast configuration 104

5.13 Potential of the ATM configuration. . . 105

5.14 Potential of the ATMl400 configuration 105

5.15 Potential of double buffering at server level 109

5.16 Multi-threading to overlap communications at the slave level 110

5.17 Potential of multithreading in ATMl400 configuration. . . . Il2

5.18 Potential of combining multithreading and double buffering. 113

5.19 Matrix multiplication by data parallel alternative. . . 114

5.20 Potential of single threaded data parallel computation 116

5.21 Potential of double buffering in data parallel computation . 117

5.22 Potential of multithreading in data parallel computation 118

5.23 Matrix multiplication by data parallel alternative. . . . 119

5.24 Potential of data parallel computation for fixed problem size 120

5.25 110 cost of data parallel computation for fixed problem size . 122

v

5.26 Crout's LU factorisation

5.27 Order of computations in Crout factorisation.

5.28 Blocked implementation of Crout's LU factorisation

5.29 Crout's LU factorisation with partial pivoting by column

5.30 Task dependencies for blocked LU factorisation ..

5.31 Blocked Crout LU factorisation using bags of tasks.

5.32 Performance of LU factorisation in HP configuration

B.l Computation steps in Crout LU factorisation

vi

125

126

126

128

131

132

133

148

List of Tables

3.1 Bag of tasks basic operations 37

3.2 Primitive matrix operations . .+~

3.3 Potential of cache reuse strategies in matrix multiplication 51

3.4 Potential of cache reuse strategies in Cholesky factorisation 58

4.1 Cost of recoverable queue requests 63

4.2 Fault-tolerant parallel performance in HP configuration 7.+

4.3 Fault-tolerant parallel performance in fast configuration. 75

4.4 Derivation of maximum performance for ray tracing 82

4.5 Parameters to performance model for the matrix computations 8.+

4.6 Fault-tolerant parallel performance in ATM configuration. 87

YII

Acknowledgements

I thank Professor Santosh Shrivastava for suggesting that I look at the problems of parallel applications

over a NOW, for his subsequent patient supervision and his helpful criticism of early writings.

I thank members of the Arjuna group, particularly Doctor Mark Little, Doctor Graham Parrington

and Doctor Stuart Wheater for help with Arjuna specific implementation issues; Mark and Stuart also

for sharing their office for what is now a long time.

I thank family and friends for support and encouragement. I thank especially Pauline Pretzel who

has done much to make completion attainable.

I thank also the Engineering and Physical Sciences Research Council for financial support in the

form of a studentship grant.

Vlll

Chapter 1

Introduction

After a long history of development and achievements parallel computing remains the exception rather

than the norm. It tends to be harder to implement a parallel algorithm to solve a given problem than it is

to implement a sequential one. The motivation then tends to be the increase in performance which can

be achieved.

Following long experience in parallel computing there is a clear trend to build parallel machines out

of commodity workstation units as far as possible. At the same time, much technology developed for

parallel machines has translated to the general purpose environment, in particular the network techno­

logy. Thus more and more attention is being paid to the use of network machines such as a Network

of Workstations (NOW) for running parallel computations. As this process continues it is reasonable to

consider performing ever wider classes of computation in a NOW environment. One class of computa­

tions which are not well suited to parallel execution in a very low specification NOW is that of out of

core computations, where problem data is so large that it must be based outside of primary memory.

Other than typically a lower specification interconnect a network machine is also distinguished

by a greater autonomy of management, raising issues regarding security, load management and fault­

tolerance. In the typically single site NOW environment studied the weight of concern is with the latter

two issues. On the one hand a NOW typically executes a rather greater variety of jobs with considerable

requirement for interactive response. On the other hand there is a rather greater potential for individual

component machines being taken out of service or failing separately and at the same time for detecting

such events. Both of these events may be regarded as changing resources.

This thesis describes the problems of performing parallel computations on the changing resources

of a NOW and a practical approach to addressing these problems both for traditional NOW oriented

applications and also for the out of core problems referred to before.

CHAP7ER 1. INTRODUCTION 2

1.1 Parallel Computations

Some brief mention of certain terminology is included here for the sake of completeness. For a fuller

background in parallel computing see e.g. [55,74].

1.1.1 Decomposition

A single problem is first decomposed into a number of sequential components which can be executed

concurrently.

If the problem is characterised by a significant data structure, such as an array, domain decompos­

ition emphasises the partitioning of the data. A component of computation is that which is associated

with a particular data partition. For example a finite difference computation is typically decomposed by

partitioning the difference array between the available processors with each processor being responsible

for performing iterations of updates and boundary value communications for its own data partition.

Functional decomposition takes the alternative approach of partitioning the work to be performed

and letting the data requirements of each resulting computation component be governed by the work

partitioning. The well known traveling salesman problem entails finding an optimal tour which visits

each of a group of cities once. One approach to solving this problem is branch and bound whereby

possible full tours are evaluated from a selection of currently known partial tours and the search bounded

by comparison with the currently best known full tour length. A functional decomposition approaches

the parallelisation of this problem by defining the unit of work as evaluation of a single partial tour.

It is possible that there may be alternative decompositions and that a choice between them can only

be made in the context of a particular target environment. A complex problem may offer opportunities

for both domain and functional decomposition at different levels. One example would be a physical

simulation comprising separate components, such as a coupled ocean and atmosphere model.

1.1.2 Mapping

Having identified a set of concurrent tasks, it is necessary to establish a mapping of them to the avail­

able processors. In a simple case all tasks are of the same size and can be initiated at the start of the

computation. In other cases where different tasks have different workloads and may have dependencies

it may be possible to derive a satisfactory schedule in advance of execution. In some computations the

load distribution between processes changes unpredictably between a reasonably fixed set of tasks and

it is possible to incorporate a periodic redistribution of load between the processes. Other computations

have very variable load characteristics.

CHAnBRI. llnRODUCTION 3

1.2 Parallel Machines

Historically the development of parallel programs has been meshed closely with the development of

parallel architectures since the primary goal is performance. More recently there has been a tendency

to try to move away from such a close coupling, but as yet the target architecture still influences the

choice between parallel programming structures. A recent overview of parallel architectures may be

found in e.g. [66]. The many different types of parallel machines may be classified in various ways, but

a particularly well known system is presented in [54]. Machines in this case are distinguished by the

number of instruction and data streams. Briefly the classifications are:

SISD Single Instruction Single Data machines are uniprocessors.

SIMD Single Instruction Multiple Data machines include array and vector processors.

MISD Multiple Instruction Single Data machines have multiple processor units receiving distinct in­

structions yet operating on the same data stream.

MIMD Multiple Instruction Multiple Data machines are general purpose parallel machines.

Data parallelism is obtained by assigning computation data elements to separate processors and ex­

ecuting the same instructions in each, i.e. in a SIMD machine. It is possible to exploit data parallelism

in an MIMD machine by relaxing the synchronisation, so that while processors execute the same pro­

gram they do not do so in lockstep. The resulting model is referred to as Single Program Multiple Data

(SPMD), but in either case a program which obtains parallelism predominantly through data partitionmg

is referred to as data parallel.

The alternative to data parallelism is control parallelism, which is obtained by concurrently execut­

ing multiple instruction streams, such as in a pipeline, and is suited to MIMD or MISD machines.

Interest here is focussed on the MIMD class of machines which may be further classified as to

whether or not they have hardware support for shared memory.

1.2.1 Multicomputer

A multicomputer provides no hardware support for a shared address space. All inter processor commu­

nication is through message passing and these machines are sometimes referred to as No Remote Access

(NORMA). An example of a multicomputer is shown in figure 1.1. Since resources are distributed, it

is relatively easy to scale up the number of nodes and practical machines with very large numbers of

nodes have been built. However, to exploit such a machine the user must partition the computation

between the separate nodes. It is possible to create a virtual shared address space in software, giving a

Distributed Shared Memory (DSM), but the access cost is not uniform.

CHAPTER 1. INTRODUCTION

Interconnection Network

Figure 1.1: Example structure of a multicomputer

1.2.2 Multiprocessor

A simple example of a multiprocessor is shown in figure 1.2. The ideal for a shared memory machine.

Interconnection Network

Memory

Figure 1.2: Example structure of a mUltiprocessor

expressed in the well known PRAM model, is of uniform access cost by any processor to all memory.

This is a Uniform Memory Access (UMA) machine which may for instance be based on a bus inter­

connection. Preserving acceptable memory access cost as the number of nodes is scaled up requires

a proportionate increase in bandwidth of the interconnection network. Furthermore. even ignoring the

effect of caching, the uniform cost model is ultimately limited by physical dimensions.

While there is certainly increased complexity at the hardware level in a multiprocessor. the mapping

problem is much simplified. Processes can be moved at will between processors since the processor ad­

dressing required in a message passing multicomputer is not needed. Thus processes can be scheduled

automatically by an operating system similar to those which might be found on a uniprocessor worksta­

tion. A multiprocessor is particularly attractive for irregular problems centred around a dynamic shared

data structure.

It is possible to achieve scalability in the number of nodes by distributing memory amongst the

CHAPTERl. INTRODUCTION 5

nodes. The overall structure is then similar to that of the multicomputer in figure 1.1. so that again the

machine is composed largely of self contained units but with special hardware in each node to suppon

the global address space. Such machines are referred to as Non Uniform Memory Access (NUMA) or

DSM machines. Achieving both programmability and scalability is the subject of ongoing work in this

area.

1.2.3 Large Scale Storage

Beyond primary memory, at one time "core", there is always a need for large scale and possibly longer

lasting storage, to hold program sources, documentation, computation input and output data and po­

tentially large intermediate data. The storage hierarchy extends beyond cache memory and primary

memory down to secondary storage, typically disk, and subsequently to tertiary storage such as tape

or optical jukebox. While random access is possible at any level of the hierarchy. the lower levels are

characterised by nonuniform and generally higher access costs. In this work concern is with the large

data sets manipulated in out of core computations. This data is assumed to be based at the highest level

in the storage hierarchy at which it can be accommodated, typically disk.

Overview coverage of issues related to 110 in parallel computations panicularly with regard to

achieving high performance in large scale multicomputers may be found in [42.53].

A widely used approach to increasing disk throughput is to construct a Redundant Array of Inex­

pensive Disks (RAID) [35] which simulates a single disk with higher performance and/or availability.

Various configurations, known as RAID levels, are possible including level 0 (RAID-O) which im­

plements no redundancy, level I (RAID-I) which implements disk mirroring. In a multicomputer the

parallel processes have to access common secondary storage which is attached to an 110 Processor (lOP)

through the interconnection network. To overcome the limiting effect of the single node connection it

is typical to stripe data over multiple lOP.

In a conventional general purpose file system, e.g. in UNIX [II], it is reasonable to assume that a

file is accessed by a single process at a time. Other than for a database application the concurrency

control required for files is quite limited. In parallel computations it is likely that multiple processes

manipulate the same data on secondary storage. One option is to structure the data in multiple files, but

this introduces a relationship between the file structure and number of processes and the latter may vary

between parallel programs or runs of the same program.

To facilitate certain common access patterns by processes of a parallel program to single files, a

parallel file system typically allows an access mode to be specified when a file is opened. Typically

one such mode defines a single file pointer which is shared between all processes opening the file. This

mode can be used to automatically schedule pans of a computation. An alternative allows data to be

scattered to, or gathered from, all processes opening the file based on their individual process numbers.

In the former case the concurrent access is controlled through the single pointer but in the latter case

CHAPTERl. INTRODUCTION 6

it is necessary for all processes accessing the file to synchronise before an access. Such collecti\'e I/O

operations which imply barrier synchronisation points are suited particularly to data parallel program

structures. Various strategies may be employed to improve throughput when mapping between different

data layouts on disk and memory e.g. [41,73,98].

1.3 Sharing a Parallel Machine

As a way of increasing throughput for sequential jobs, a UMA multiprocessor may support a similar

operating system interface to that of a uniprocessor, such as UNIX. In NUMA and distributed memory

machines it is less straight forward to construct such an operating system. Furthermore there is some

contention regarding the notion of sharing a paraJlel machine. Where a user invests in paraJlelising a

significant application, it is not surprising if he seeks exclusive use of a paraJlel machine. In many cases,

the application may justify the cost of a dedicated resource but in the course of an extensive survey [52]

makes a case for the growing importance of multiprogramming in paraJlel systems.

A distinction is drawn between scheduling systems as to whether they are based on space or time

slicing. The concept of time slicing is familiar from uniprocessor systems, but in parallel machines it

is possible also to partition processors between jobs, this being referred to as space slicing. In space

slicing, a paraJlel job is allocated to a partition of the machine. In principle such a parallel job then

has exclusive access to a more restricted machine, but in particular architectures there may still be

contention for network resources. In [52] partitioning is classified on the degree to which the partition

size is fixed.

fixed partitioning entails a system administrator selecting partitions which remain unchanged until the

next configuration.

variable partitioning sets the partition size to contain a job's requested paraJlelism, possibly selecting

jobs for execution out of queued order to maximise overall machine use.

adaptive partitioning is similar to variable partitioning as described above, but also takes account of the

load already present on the machine and may load a job into a smaller partition than the degree

of parallelism requested. Jobs which fit this computation model are described as moldable.

dynamic partitioning requires ajob to be malleable such that its partition size can be varied even during

execution.

In a fixed partitioning scheme while no requirement is placed on the parallel jobs submitted frag­

mentation can lead to wastage of the parallel resource. On the other hand a dynamic scheme cannot

give rise to fragmentation, but of the various alternatives this scheme places the greatest constraint on

submitted jobs, which must at any time be able to adapt to a varying number of processors. A well

CHAPTER 1. INTRODUCTION 7

known application structure which fits this requirement is referred to by many alternative names in­

cluding "workpile", "task queue", "master slave", "farming" and in the remainder of this work "bag of

tasks". Essentially the problem is divided into a number of tasks which may each be executed by any of

a collection of worker processes. Some central coordinating entity administers the dynamic allocation

of tasks to workers.

Time slicing offers the prospect of minimal direct intrusion while allowing full resource utilisation,

but there is inevitably an overhead incurred in the scheduling system. Schemes based on time slicing

may be categorised as to whether processing elements are scheduled independently or not. An option

suited to a UMA machine is to schedule all threads from a central queue. It is also possible to employ

local queues or a combination of local and global queues, but separate provision needs to be made for

thread placement, i.e. mapping, and load balancing.

It is possible to coordinate processor scheduling in gang scheduling. Typically this achieves time

slicing between whole or partial parallel jobs though sharing can be accomplished by space slicing

instead. While simultaneous execution of threads supports fine grain interaction as in variable parti­

tioning, the distinguishing feature is that jobs can be preempted so that short jobs can be guaranteed

a quick response. In order to accomplish this preemption it is necessary to implement a coordinated

context change and the cost of this operation should be small compared to the quantum in a time slicing

scheme. Scheduling decisions are typically made at regular intervals, but in lazy gang scheduling jobs

execute freely until a waiting job has been delayed for longer than some threshold.

Multiple scheduling disciplines can be combined, for instance supporting different time slicing

schemes within different partitions.

Discussion of sharing so far has implicitly assumed that all processes of a job are active whilst

the job is scheduled. In a uniprocessor many jobs include a substantial number of blocking requests

and if a process issues an 110 request for instance, it waits and another process is readily scheduled to

use the processor while the 110 request completes. This carries through to queue based time slicing

systems, such as the simple global queue mechanism. In a purely space slicing system however it is

up to the application itself to overlap computation with 110. Gang scheduling systems similarly have no

knowledge of application 110, but again it is possible to ensure overlap between computation and 110 at

the application level.

1.4 Network Computers

As it has become the norm to allocate a complete machine as a single user resource the possibility of

using the spare time on a network of such machines, a NOW, for large scale computations has been

considered. The common vision is of essentially free supercomputer scale resources, e.g. [6].

At the scale of a Wide Area Network (WAN), impressive results have been obtained for very large

CHAPTER 1. INTRODUCTION 8

granularity problems such as number factoring [99]. More recently scientific data processing requiring

large scale data transport have been investigated on multiple clusters of workstations distributed over a

wide area [34], and interactive wide area supercomputing, particularly incorporating high specification

remote visualisation [40].

For a given network computation there is some assembly of separate computers distributed over a

local or wide area and connected by a network. When compared with a closely integrated machine, such

a resource has a number of identifiable characteristics.

• The individual machines may be of different architecture, or at least of different specification.

• The bandwidth of the interconnection network may be lower than that found in a highly integrated

machine. While high speed interconnects such as ATM switches are being used more widely,

many existing general purpose clusters are connected via 10 Mbitls ethernet links. There are

some higher speed links available over a wide area.

• The various machines are likely to be administered separately. This means that security may be

an issue, but also perhaps that access may be withdrawn at any time, e.g. through reboot. As well

as the separate administration it is possible that the machines which are more widely distributed

will be more likely to fail independently. In a long running computation machines may be added

into the computation at any time.

1.5 Changing Resources

Of the various classes of network computer, it is the NOW which this thesis is concerned with. Typically

all the machines are at a single site belonging to a single administration. Developments in technology

and costs have led to consideration of different models for a NOW. In a commonly used model all a

user's interactive processing is performed locally and the user has exclusive rights to the local machine

while logged on. In an alternative model, users access a pool of compute processors from a range of

machines which would typically be X-terminals but may include workstations which perform jobs such

as editing locally. When a user initiates a computation which is to be run remotely, any command if the

interface is an X-terminal, that command is scheduled to one of the pool processors. Such a model is

assumed for instance in the design of Amoeba [III].

In the first model, if individual users have administrative authority over their machines then it must

be assumed that the machines may be rebooted without notice, but in the second model machines can

still fail. While exhibiting definite patterns in a particular system, the level of interactive use in a

network of privately owned workstations varies considerably [83]. It seems reasonable to assume that

there would be significant variation in user activity in the pool of the alternative model. In any case the

users may be assumed to expect a response appropriate to interactive work. These considerations make

CHAPTERl. ThnRODUCTION 9

management of even a constant load of parallel jobs hard since it must be assumed that the resources

available to those jobs are changing. The focus of this work lies in the investigation of approaches for

utilising resources which are assumed to be changing, but particularly in the context of jobs which make

heavy use of non-primary storage.

A change in resources may be notified to the computation, in which case the computation may

respond by migrating from one machine. Alternatively if the change occurs and then the computation

detects it, the computation must rely on having taken some prior precautionary action, i.e. the provision

of fault-tolerance. It is possible to respond to a notified resource change through a fault-tolerance

mechanism, but the notification and the likely higher frequency of migration events gives impetus to

a search for optimisations not possible in fault-tolerance mechanisms. While these considerations are

touched on, this work takes the minimal approach leaving the optimisations for future consideration.

1.6 Fault-Tolerance

While fuller discussions of fault-tolerance principles may be found in e.g. [76], certain background is

introduced here. A fault can originate in the design or implementation phase and persist undetected

until conditions contrive to uncover it. This is typical of software faults whose tolerance is addressed by

approaches such as design and data diversity. A fault may instead arise through the in service failure of

a correct component. In this case it is sufficient to provide redundancy such that service may continue

in the presence of some number of faults and to avoid a fault affecting all redundant components. When

a fault is detected it is necessary for some recovery action to be taken to bring the system into a correct

state from where correct service can be continued. Recovery actions may be classified as forward where

some compensating action is taken to bring the system into some new correct state or backward where

execution is resumed from a recovery point where sufficient information had previously been saved

to allow restoration. Forward recovery mechanisms are typically employed to respond to particular

anticipated faults. In this work provision is for backward recovery.

A distributed system such as a NOW offers potential for such fault-tolerance since the loss of one

component can be compensated by those remaining. A common approach to fault-tolerance provision

in distributed systems [82] is to define likely failure scenarios, in a failure model, and then include such

provision as is necessary to recover from faults which fit the specified model. It may be possible for

faults to occur which are outside the chosen model and then recovery is not guaranteed, but this repres­

ents a cost trade off. In the Byzantine failure model a fault is regarded as being capable of giving rise to

quite arbitrary behaviour, whereby a machine can produce incorrect output or messages. Mechanisms

which permit recovery from such faults tend to be quite expensive, so various more restrictive failure

models are defined. One such model which is commonly used is the processor crash model. where it is

assumed that a failing processor simply stops.

CHAPTER 1. INTRODUCTION 10

In considering fault detection a distinction can be made between asynchronous and svnchronolls

systems. In the former no assumption is made regarding the delay in message passing nor about the

relative execution speeds of processes. It is then not possible to employ timeouts as a means for accurate

failure detection. In the latter it is assumed that both are bounded so as to alJow suitable timeouts to

be defined for accurate failure detection. In the case where it is impossible to distinguish between a

process which is running slow and one which has failed it is necessary to ensure that the recovery action

is safe in the event that the diagnosis of a fault was incorrect. This can be accomplished by structuring

the computation as a colJection of repeatable, or idempotent, operations.

1.7 Structure of Thesis

Chapter 2 considers the issues involved in executing paralJel computations in an environment compris­

ing changing resources present in a NOW, outlining typical application environments. approaches used

to accommodate resource changes, and the difficulties with managing state on secondary storage. Fi­

nalJy a practical structure based on a shared persistent object store is presented and some example com­

putations described. These example computations are reused throughout the thesis. Chapter 3 presents

an approach to modelling computations structured in the way described in chapter 2. This modelJing

approach can be used both for explaining experimental results and predicting the performance of the

applications in different hardware configurations. Chapter 4 describes implementation of the example

applications in different workstation configurations and compares performance measured with that pre­

dicted. Chapter 5 builds on the work of the previous two chapters in order to make some assessment

of the potential for the structuring approach developed. The chapter begins by addressing issues re­

lated to organisation of the computation and configuration of hardware including task synchronisation.

data caching, problem and hardware scaling and potential benefits of multithreading to overlap commu­

nications. After this attention is turned to alternative computation structures and applications. FinaIly

chapter 6 presents some concluding remarks and directions for future work.

Chapter 2

Structuring

This chapter considers the execution of a computation in a NOW and what are the implications of the

changing resources. Existing work in the various related areas is examined before the emphasis of this

work and the practical computation structure are outlined.

2.1 Program Models

In physical terms a NOW is certainly a multicomputer, each workstation having its own local memory.

Parallel computing over a NOW is commonly based on message passing directly. However. just as a

virtual shared address space can be created in software on a closely coupled multicomputer. so too can it

be done over a NOW. These approaches can be regarded as supporting parallel programs at a low level.

It is also possible to implement an environment at a higher level, either in a structured shared memory

or in a certain program structure. The remainder of this section outlines a range of ,uch alternatives.

2.1.1 Message Passing

Message send and receive primitives are sufficient for all required communication but there are inev­

itably certain communication patterns which are used frequently. Furthermore, even if each parallel

machine and workstation defines a proprietary message passing interface there is scope for trading off

some measure of performance for a degree of portability. Such considerations have led to a number of

message passing interfaces.

The p4 system [24] evolved from a need for a higher level interface to synchronisation mechan­

isms on a shared memory multiprocessor, but now supports a cluster model where groups of processes

(clusters) share memory and coordinate internally via monitors but communicate with other clusters via

message passing and fits a network of shared memory mUltiprocessor machines. There is no support for

virtual shared memory so that in a NOW where all machines are uniprocessor all communication is via

11

CHAPTER 2. STRUCTURllVG 12

message passing. A broadcast operation employs a tree rather than a series of unicasts. Global opera­

tions such as sum and max and min are implemented by gathering values up a tree and broadcasting the

result.

PVM [58] is a widely used message passing system which aims to facilitate interconnection of

heterogeneous networked machines into a single Parallel Virtual Machine. Individual machines may

be powerful multiprocessors. A computation is divided up into tasks, and each scheduled to a separate

machine. As in the case of p4, individual tasks can be parallel computations. Each task has an identifier

which can be used to direct communications. Similar global operations are available to those in p4.

Shared memory support such as the monitors of p4 is not provided. The popularity of PVM arises

because it permits programs to be portable between a wide range of architectures, while the underlying

proprietary message passing and task manipulation interfaces vary widely.

MPI [45] represents a standardisation of message passing interfaces, but also places some emphasis

on a need for scoping communications activities to facilitate development of parallel software librar­

ies. To this end the standard specifies communicators and contexts which may be passed into library

functions or created on the fly within a library function to ensure that communication within a library

routine does not conflict with communication outside the routine. The standard refrains from specifying

process manipulation mechanisms.

2.1.2 Distributed Shared Memory

DSM aims to provide transparent access to any location in a global shared address space simply by

address. Separate to the page management there must exist mechanisms to support local and remote

process creation and synchronisation, but ideally there is no need to specify the location of data.

The fine granularity at which data is shared makes support for heterogeneity hard to provide. One ap­

proach is described for Mermaid [120] where each memory page is restricted to a single type. However

special checks are still needed where individual data formats differ between machines and alignment of

complex objects to avoid errors in accessing components which might lie in different pages on different

machines leads to waste of space.

A simple technique for achieving a global shared address space is to partition the whole address

space and locate each partition on a certain node as in Amber [33]. It is then necessary for a thread to

move to remote data in order to access it, in Amber by means of RPC calls inserted by a preprocessor.

More often data is migrated to a thread in the form of pages. The virtual memory management software

may be modified such that a fault to a remote page is intercepted. If the page is not stored locally

then it is accessed from its remote location. Read and write faults may be distinguished to enable the

DSM support to take different actions in the two cases. It is then necessary to establish mechanisms

for finding any desired page and a policy governing its migration. Clearly it is undesirable to transfer a

whole page for each separate access, but the alternative of caching a page at the requesting node on first

CHAPTER 2. STRUCTURflVG
J3

access leads to the possibility of there being multiple copies. When such a replicated page is updated. it

is necessary to either update or invalidate other cached copies, thereby maintaining cache coherence.

The first software implementation of DSM is IVY [77, 110] which experimented with various

schemes for managing the page table which tracks movement of shared pages. In a centralised sys­

tem, a unique manager at a well known location services all requests. By devising a mapping from

pages to processors, for instance through block allocation, it is possible to distribute the manager func­

tion. The page address can be operated on by the appropriate mapping function to obtain the identity

of the manager node. A possible extension allows the ownership of a page to migrate from one node to

another, such that the mapping function may only identify the initial owner of the page. The local page

table stores a hint to the location of the owner, so that by following such pointers it is possible to locate

the page owner.

In the event of local memory exhaustion the policy is to select pages for replacement in the order; not

owned, read copies, read owned, write owned, and then according to an LRU policy within each class.

It is possible to page to another node's memory rather than disk, and this can be cheap when it entails

a simple ownership transfer. Since address space encompasses the network it is allocated on a system

wide basis, through a centralised manager, possibly with local managers in addition. A centralised pool

of locks is provided for inter process synchronisation.

IVY allowed concurrent readers to cache local copies of the same page and invalidated all out of

date copies on a write. This achieves sequential consistency [75] whereby a value read is always the

latest value written. However the update mechanism can be costly, particularly if the writing process is

immediately going to update the same page again. Furthermore it is possible for two separate variables

which are updated repeatedly by separate processes to have been placed on the same page at compile

time. This situation termed false sharing is analogous to the false sharing of cache lines in a shared

memory machine. The outcome is that the page or cache line thrashes between the two processes.

There is then some incentive to relax the strict consistency requirement and allow writes to be buffered

and also to allow concurrent updates to the same page, but the eventual update is more complex.

An example of how this may be done is demonstrated in the Munin system [30]. Munin implements

mUltiple consistency protocols at the level of user objects and provides annotations which the program­

mer may specify on a per-object basis to tune an application according to the access patterns expected

for those particular objects. Programs are written in terms of threads sharing passive objects in a shared

memory environment. A shared object is a single variable, though it is possible for objects to be glued

together by a special annotation. All synchronisation between threads must be done using the primitives

provided by Munin since these contain calls to invoke the underlying consistency protocols. The imple­

mentation comprises a preprocessor, a modified linker, library routines and some kernel modifications

to support page fault handling and page table maintenance.

Munin introduces the notion of release consistency, defined for use in the Stanford DASH processor.

CHAPTER 2. STRUCTU~G 14

to software DSM. Release consistency guarantees that the results of all writes perfonned by a processor

prior to a release be propagated before a remote processor acquires the lock which was released. The

idea is that where the programmer knows there will be many updates to an object before other threads

need to see any of them, he can control the point at which changes are propagated. A thread may use

the acquire primitive to force through any pending updates from other threads, but the intention is that

a thread gains a write share copy of the object through the page faulting mechanism and consequent

concurrent modifications are merged at the time of release.

Munin supports such write sharing by propagating updates as a set of differences to the altered

pages. Thus if two objects are marked as write share, then they cannot give rise to thrashing even if the

compiler places them on the same page. If many updates are made to the same object before a release

these are all coalesced into a single set of differences. The cost incurred is the extra processing required

to generate the differences.

The definition does not prescribe that all modifications be propagated at the point of release. Such

an eager release consistency is implemented in Munin however. By contrast lazy release consistency [4)

defers change propagation until the lock associated with the data item is requested through the acquire

primitive. This technique allows for reduction in message traffic, but entails maintenance of a preced­

ence relation so that the requesting processor can detennine which data needs to be fetched. As in

Munin the actual changes are propagated as differences to pages to allow for concurrent writes.

Midway defines entry consistency [19] which is similar to lazy release consistency in delaying

propagation of altered data until it is actually requested. In Midway however, the programmer defines

synchronisation objects for shared data. Then when a process acquires one of these variables only the

data associated with that variable is fetched.

An alternative approach to supporting a uniform shared address space is to require the user to dis­

tinguish between local and global data and local and global accesses. This is the approach taken in

Split-C [38] which is a parallel extension to C. The granularity of access is no longer restricted to a page

and can be as small or as large as required. Thus at the loss of transparency false sharing is eliminated.

Assignment between local and global objects can effect bulk transfer and extra operators support split

phase, i.e. asynchronous, get and put operations. The language also supports a variety of synchronisa­

tion mechanisms, including barrier. In order to support fine granularity access Split-C typically assumes

low latency communications such as Active Messages [115].

2.1.3 Structured Shared Memory

Rather than accessing individual addresses in the shared space it is possible to restrict access to be by

name to higher level objects. Such objects may be passive data structures or may encapsulate an active

element. In this case, false sharing is eliminated because data is accessed by name. Inevitably it is

necessary to alter the application level interface, but this can be done without employing a compiler.

CHAP1ER 2. STRUCTURING 15

Orca [14] is a complete parallel language which supports a shared object programming model where

access to shared objects is via method calls. A method which updates the object is guaranteed exclus­

ive access, though to enable synchronisation a method which begins with a guard statement may be

concurrently active in the same object. To allow shared object methods to be identified as read only or

update, Orca makes restrictions; specifically prohibiting gotos, pointers and global variables. A graph

construct is available to support linked structures. This compile time analysis allows Orca to employ

shared object replication to implement either update or invalidate strategies and even to switch between

the two dynamically according to usage.

Mentat also supports a shared object style of programming since persistent Mentat objects retain

state in memory between function invocations.

In SAM [96] each shared object is classified as either value or accumulator. The former have single

assignment semantics while updates to the latter are serialised. The implementation is in the form of a

runtime library so functions are provided to delineate shared object creation and update. parameterised

by the particular shared object. When a shared object update is begun, the object is copied to the

requesting processor. In the case of an accumulator update, mutual exclusion is first ensured. A process

can read an out of date copy of an object cached on the local processor. SAM provides a mechanism

for pushing an object to a remote processor where it will be cached ready for use. Thus SAM supports

programming with message passing or shared objects.

Linda [29] defines a small number of extensions to a host language to coordinate access to an

associative shared memory space known as tuplespace. This space contains tuples which are coIlections

of either values or locations specified by type. Tuples are accessed by matching types and values with

the specification in the request. To change an entry in tuplespace, it is necessary first to remove the tuple

and then place a new entry in tuplespace with the modified parameters. In this way consistent access to

tuplespace is ensured. ConceptuaIly, the tuple matching described above is quite inefficient. However.

it is possible to perform significant optimisations in a preprocessor. It is only necessary to seek a match

against tuples having the same number and type of parameters as those supplied by the caIler; indeed

tuples pace may be partitioned by tuple type. Further, it may be that tuple structures may be simplified

to reduce or eliminate costly matching. For example. the operations: out('faa") and in('faa") may be

reduced to a semaphore.

2.1.4 Large Grain Data Flow

Because of their relatively low level, it is not surprising that message passing systems should easily

find widespread application. Again because of the low level though, there may be significant reuse of

structuring code possible from one application to another, suggesting scope for higher level program­

ming environments. One approach is based on structuring programs as data flow graphs. Typically a

node in such a graph may consist of sequential code which is to be executed as a separate process and

CHAPTER 2. STRUCTURING 16

the connecting arcs are communication flows between these processes. The user interface to program

development can be through a graphical tool as in Hence [17] or Paralex [9], or a textual language such

as PCN [56]. In PCN processes communicate through definitional or single-assignment values which

are shared through parameter passing. An advantage of such systems is the potential for reusing exist­

ing sequential code segments potentiaIIy of multiple different languages. PCN also facilitates reuse of

the parallel structuring components. Mentat [61] also supports a large grain data flow model. through

extensions to C++, but doesn't provide support specifically for code reuse.

2.1.5 Data Parallelism

As described earlier, in the purest sense data parallelism implies the SIMD model where each processor

operates on an element of the data in parallel. The attraction for the programmer is clearly the single

control flow, which also facilitates its inclusion in existing sequential programming languages. To cater

for the case where there are not enough physical processors for a large object, it is usual to allocate

data elements to virtual processors and map multiple virtual processors to a single physical processor.

While logically maintaining strictly a single instruction flow, this mechanism also achieves an increase

in computation granularity and can allow such languages to be supported on an MIMD machine which

doesn't have the instruction level synchronisation of an SIMD machine. In the same way data parallel

languages may be supported on a NOW, e.g. [113, 84]. The result of mapping many virtual processors

to a single physical processor lessens the synchronisation requirement a little. Rather than processors

running in lockstep at the instruction level, the same program runs in each machine on a different portion

of the data. This is the SPMD programming model.

It is not uncommon also to implement an SPMD program directly, using either a standard low level

message passing or shared memory environment. Rather than depending on the compiler to choose

data partitioning the programmer performs this task by hand. Amongst the enhancements to standard

C included in Split-C [38] is provision for spread arrays which gives basic support for data parallel

computations. Dome [8] demonstrates how the data mapping can be encapsulated in a class and then

evaluated at runtime to allow correct partitioning on heterogeneous machines.

2.2 Using Changing Resources

For the purpose of this work, the resource changes a parallel computation may need to be able to react

to in a NOW are categorised below.

1. A transient node failure, whereby a machine fails and is restored to service after a short delay.

2. Node replacement, whereby a node is removed from the computing resource, but the total number

of nodes is maintained constant through the inclusion of a different node.

CHAPTER 2. STRU~G
17

3. Node loss or addition, whereby a node is removed or added to the computing resource.

While a transient node failure is an un notified change, node replacement is notified. Node removal may

be notified or un notified. In general so too may be node addition. If node addition is notified then some

global scheduling service is assumed to have allocated the node to the particular computation, whereas

an unnotified node addition presumes the computation to have the capability in itself of identifying the

new node. It is assumed here that all node additions are notified.

It is correct to say that items I and 2 can be regarded as special cases of item 3. If node replacement

is not notified, then naturally a mechanism which supports a transient failure is required in addition to

that which supports migration from old to new node. Similarly one or both of these mechanisms may

be required to support node loss or addition. It is claimed that splitting the requirements in this way

permits a natural separation of the mechanisms which tend to be employed.

It is possible to respond to such resource changes either in the context of a single application or in the

context of a central scheduling authority by rescheduling whole parallel applications. It is possible that

both approaches have use at different granularities of resource change. A given job mix may comprise

some jobs which can respond to changes in resource and others which cannot. This thesis is concerned

with structuring individual parallel applications so that they can respond to resource changes. The

remainder of this section outlines existing approaches to supporting these resource changes.

2.2.1 Supporting Transient Node Failure

Tolerating a transient node failure is typically achieved through some form of backward recovery.

In the simplest case, the state of a long running process is saved to disk periodically. Following

a failure the application may be restarted from this checkpoint. Using a transparent checkpointer the

application code remains unaltered. Obviously however there is some overhead in time and space.

The time overhead is related to the amount of state to be saved, the cost of remote writes and the

frequency of checkpoints. Checkpoint size can be reduced by incremental checkpointing whereby only

modified data is copied. Even then there may be areas of dead memory checkpointed which increase the

overhead significantly. It is possible to provide user callable routines to indicate dead memory which

can be excluded [89]. At the cost of increased space, asynchronous checkpointing allows remote writes

to proceed concurrently with subsequent computation, by making a local copy of process state. It may

be possible also to employ a copy on write mechanism, whereby data is only copied locally if actually

altered.

The nonintrusive asynchronous approach to checkpointing is obviously attractive. If computation

state is small then this may be quite satisfactory, but if computation state is large it is likely that sig­

nificant optimisation wiII be obtained by tuning the checkpointing at the application level, particularly

if the computation has a regular cycle. To allow for such tuning a transparent checkpointer may define

CHAPTER 2. STRUCTURING 18

routines to call a checkpoint, if a configurable minimum time has elapsed since the last checkpoint. and

also to set a maximum time before an asynchronous checkpoint is called [89].

An arbitrary concurrent computation comprises some collection of communicating processes. If one

process fails then on recovery it is in general necessary to recover other processes in addition to the one

which failed such that the global state of the computation is consistent. Restarting from such a state.

it is guaranteed that no inter process communication will be lost. If processes are checkpointed quite

independently, then it can be necessary on failure to recover all the way to the start of the computation;

the domino effect [94]. A checkpointer for parallel computations must therefore make some provision

to ensure that recovery is bounded. One option is to flush all ongoing communications [32] prior to

checkpointing all processes. An ordered multicast primitive can be employed to implement this [68].

Alternatively a two phase approach can be employed as in [93]. The disadvantage with a coordinated

checkpoint is the need for all processes to recover to the most recent checkpoint after a failure. The

approach is conceptually simple however and the interval between checkpoints may be tuned to reduce

the failure free overhead to an acceptable level.

For certain computations where the state is evenly partitioned between processors. the checkpointed

state can be combined as a parity checkpoint. Such an approach using memory on spare machines is

described in [90]. In the simplest case a single spare machine maintains a parity copy of the main data

on all active machines such that in the event of a single failure, the lost state can be reconstructed.

Tolerance to a greater number of failures can be achieved by increasing the number of parity copies.

It is possible to avoid rollback of all processes on any failure by checkpointing at message exchanges

or by logging messages sent. In a pessimistic approach each message is logged before it is sent so that

any recovering process can replay from its last checkpoint and fetch messages received prior to the

failure from the log. An optimistic approach allows asynchronous logging of messages but maintains

sufficient state to ensure that it can be determined which processes apart from the particular one which

failed need to be rolled back. In either case, it is necessary that a recovering process replays the same

execution during recovery that it performed before failure.

Publishing [91] implements a pessimistic log based checkpointing mechanism in a broadcast based

LAN where one node is set aside for all recording functions. Manetho [50] is an example of an op­

timistic protocol. Each recovery unit, a multi threaded process, constructs a view of the Antecedence

Graph which describes a "happened before" description of the overall computation, and piggybacks

changes to its graph in messages it sends. The graph has nodes representing recovery points and arcs

defining the "happened before" relationship. Each recovery point corresponds to the occurrence of some

nondeterministic event and marks the start of a period of deterministic execution leading up to the next

recovery point. While Publishing allows independent recovery of an arbitrary number of failed nodes.

Manetho optimises the logging process but may require to roll back surviving nodes after a failure.

In a shared memory model it is necessary to ensure redundancy in the shared state. Either the state

CHAPTER 2. STRUCTURING 19

is backed up as part of a checkpointing procedure or multiple copies of the state may be maintained.

In DSM systems it is usual to take the first approach and save shared state as part of a checkpoint.

In a coordinated checkpoint, if each process backs up all pages local to itself, an incremental backup

avoids making multiple copies of read only replica pages [25]. Log based checkpointing mechanisms

rely on recording interprocess messages to ensure consistency, but inter process interactions through

shared data in DSM do not provide such convenient points to build a log. A process execution depends

on the precise time at which a request for a cached page arrives from another process. However a log

based scheme for sequentially consistent DSM has been demonstrated in [108] and the overheads in this

scheme are significantly reduced if lazy release consistency is employed.

In SAM an approach which is similar to pessimistic log based checkpointing is employed [97].

Processes checkpoint independently to memory in other machines whenever they execute one of a set

of operations which are not re-executable. Since operations on single assignment values are assured

to be re-executable this set includes operations on accumulators and certain operating system calIs.

All shared objects have a designated main copy which is that held by the owning process. For single

assignment values this is the creating process. For accumulators there is only one copy. Making a

checkpoint entails saving process local state, comprising stack etc. and all owned shared objects not

current with the last checkpoint.

The alternative approach of maintaining replica copies of the shared memory is illustrated by work in

Linda. Replication of tuplespace in memory on separate machines is considered in [119. 87]. However.

in addition to replicating shared memory it is necessary to implement some sort of process recovery and

ensure that the shared state remains consistent in the event of process recovery. In a Linda application.

removal of tuples from tuplespace implies certain work needs to be done, and either va or the generation

of new tuples to output the results of that work. This work and output should not be left incomplete

through process failure and recovery.

FT-Linda [12] implements atomic combinations of operations. the ability to define multiple tuple­

spaces, including stable tuplespaces (through replication) and atomic transfer of tuples between tuple­

spaces. In the bag of tasks structure, shared data is located in replicated tuplespace. A slave atomically

removes a task and replaces it by an in progress tuple, such that a monitor process can restore the ap­

propriate work tuple in the event of a slave failing while processing a tuple. As the slave processes a

tuple, it writes results into a scratch tuplespace and, on completion of the work. atomically replaces the

in progress tuple by the contents of the scratch tuplespace. MOM [27] partitions tuples into separate

lists, including a busy list for work tuples which are being processed and a children list for tuples gen­

erated by a worker which has yet to call Done. The busy list is then similar to the scratch tuplespace

of FT-Linda. Plinda [67] backs up tuplespace to disk to ensure availability rather than replicating it and

implements transactions as a means of enclosing a worker's operations.

Paralex applies replication to achieve fault-tolerance in data flow style computations. Each compu-

CHAPTER 2. STRUCTURING 20

tation node is a replica group with a primary actually performing the computation and the state copied

to the secondary.

2.2.2 Supporting Node Replacement

In a distributed memory environment all communications between processes on separate nodes must

make reference to some node identification. In a NOW this would be the internet number. Furthermore

the total resources such as disks etc., are partitioned between the various nodes so that a process can only

access directly those which are connected to its current node. In such an environment node replacement.

i.e. process migration, has received much attention.

In distributed operating systems, e.g. [15, 47] the aim is to create the image of a single operating

environment on top of distributed resources. The precise degree of transparency supported varies from

system to system, but is typically high such that an application can make all usual system calls yet

not include code to support migration. Ensuring that file and signal operations continue to work after

migration just as before requires provision for forwarding system calls, but in the case of a call such as

gettimeofday it is more appropriate for the call to be always local. Achieving this level of transparency

forces a close coupling between migration mechanisms and the underlying operating system. Enabling

features include system wide process identification and file name space. Typically it is necessary to

make significant changes within the operating system kernel. However, it is possible to make all required

changes at the system library level [88]. The modified system library functions maintain the required

global name space.

Recently work has been done to implement transparent process migration at a higher level which

does not necessitate operating system changes. The approach employed in [31, 103] is to implement

wrapper functions for the routines in the message passing library. These wrappers implement the tables

necessary for correct message redirection and ordering. State transfer is achieved through coordinated

checkpoint and restart. Clearly these systems do not directly support transparent migration of all ser­

vices, such as continued access to files. It is possible however to achieve such continuity of access if

file accesses are all made through the same message passing library, as they are in parallel file systems

for NOWs such as [63,95].

In a shared memory environment replacement of a node needs no extra provision over that required

to tolerate a transient failure. The failure typically leads to the program rolling back to the latest check­

point but then the displaced process is simply run on the new processor and can access shared memory

as before. In DSM the same is true at the application level, but within the shared memory support

system it may be necessary to take some action, e.g. to update directory information.

CHAPTER 2. STRUCTURllVG 21

2.2.3 Supporting Node Loss or Addition

If at a given point a parallel computation comprises a certain number of processes running one per

machine then there are simple ways of supporting node loss or addition. Node loss can be supported

by migrating the displaced process to another node. The resultant load imbalance can be avoided by

provision from the outset of spare nodes, but this extra capacity is wasted in the case of normal execu­

tion. An added node can be treated simply as an extra spare, but again this is not fully exploiting the

extra resource. These approaches may be acceptable in a closely coupled environment but in the rather

more dynamic environment of a NOW, it is desirable for a computation to be more responsive. However

supporting such responsiveness within a single parallel application inevitably impacts at the application

level. Either the application must explicitly reconfigure in response to a configuration change or it must

be implemented in a framework which will respond to the change.

If a computation incorporates dynamic load balancing then reconfiguration is readily supported. If

a computation partitions into a number of separate tasks then a convenient organisation is to employ a

single master process to schedule the tasks to an arbitrary number of slaves. The master is notified as

a slave completes a task and can then schedule a new task to that slave. The structure easily affords

tolerance to single slave failures, since control of the computation is centralised on the caller's machine,

e.g. [106]. In a batch queuing service, there is no obvious place to centralise control of a computation

so the Distributed Resource Manager [37] replicates the master for availability and employs the causal

group communications primitives of ISIS to ensure consistent message ordering in exchanges between

master and slaves, and master and user interface.

The term adaptive parallelism is used in Piranha [69] to describe a programming approach which

allows a computation to adapt to changing resources. Piranha implements a load monitor on each node

which can signal change ofresource. Computations are structured as master, termedfeeder, and slaves,

termed piranha. The computation is partitioned into a collection of tasks which may have dependencies.

The feeder administers a data structure which controls whether or not any given task may be executed

yet or not and feeds the tasks which may be executed to the piranha. The tuplespace of Linda is used

for this communication. While not supporting fault-tolerance this approach adds functionality to the

basic bag of tasks structure by defining a way of supporting task dependencies. Both Ff-Linda [12]

and Plinda [67] employ the bag of tasks structure as an example of a computation which can be made

fault-tolerant using their respective facilities.

CALYPSO [16] is based on an approach similar to the bag of tasks, an application is structured

out of parallel loops possibly separated by serial code. A parallel loop is converted by a compiler to

a collection of thread segments, each corresponding to an iteration of the loop. These are distributed

between a potentially varying collection of slaves. A slave accesses shared data from a memory server

by page faulting but at the end of a thread segment the slave computes a set of diffs for each page and

CHAPTER 2. STRUCTURING 22

sends this back to the server. A data structure on the memory server records which thread segments of

a given loop have been issued and which completed. While the same thread segment may be issued

multiple times if there are not enough for the number of slave processes, it is ensured that all operations

are idempotent. It is possible to generalise the approach to employ multiple memory servers [39).

If the number of nodes participating in a data parallel computation is altered it is necessary for the

data to be repartitioned. In a data parallel language, this implies changing the mapping of virtual to

physical processors. For example, in a Dataparallel C program [84] each processor measures the rate of

virtual processor emulations and periodically virtual processors are remapped according to the ratio of

emulations on a particular processor to the total rate of emulations over all processors. Redistribution is

only done between whole iterations.

Other systems are designed to support adaptive processing for applications implemented directly

as SPMD, e.g [8, 49, 92]. These systems operate by redistributing data at suitable remap points, i.e.

between complete iterations. It is necessary then either for data to be expressed in a way defined by the

system [8, 49] or for the user to provide some definition as to how the data is to be distributed across a

given pattern of active processors, e.g. through a procedure called by the system [92].

Many computations are not easily partitioned statically and dynamic load balancing is an inherent

feature of any implementation. Cilk-NOW [22] demonstrates how easily such computations can make

use of the changing resources of a NOW. Cilk implements a distributed scheduling mechanism for

multithreaded computations suited for instance to a game playing program. The NOW version adds a

checkpoint mechanism and some facilities to locate free machines.

2.3 Management of Secondary Storage

For single host control, RAID storage systems are available as commodity units for attachment to a

PC as well as supercomputing storage repositories. There are also implementations based partially or

totally in software.

RAID techniques have also been used to implement high performance distributed file systems for

workstation networks, such as Swift [26] to support the high data rates required for multimedia data,

in Zebra [64] which employs log structured output for higher performance writes and in Xfs [7] which

introduces also the use of cooperative caching. These systems support access to high bandwidth storage

by single processes.

There has been some development of parallel file systems for NOW environments VIP-FS [63], PI­

OUS [81], PFSLib [95]. Of these VIP-FS and PFSLib are adaptations from multiprocessor systems. All

employ a commonly available message passing library for portable transport and assume the presence

of a conventional file system, implementing a mapping from multiple component files to the overall

parallel file, but have different emphases. VIP-FS supports the two phase strategy of its parent system

CHAPTER 2. STRU~G 23

PASSION [41] but also a new strategy called assumed requests which aims to reduce the number of

network transfers in a lower bandwidth NOW environment. PIOUS employs a transaction mechanism

internally to ensure sequential consistency if multiple clients access the same file. PFSLib is part of a

larger system aiming to support Paragon emulation on a workstation cluster for early program develop­

ment phases and so emphasises support for the file access modes of the Paragon.

While there is much work published on fault-tolerant in core parallel computations very little has

been found on applying fault-tolerance to parallel computations which make significant use of secondary

storage. In the case of primary memory based shared data a common approach to providing support for

transient node failure is some sort of checkpoint mechanism. The size of data on secondary storage is

likely to be much larger however, so here the alternative approach seen in Linda systems is assumed. In

this case there is some degree of redundancy supported in the storage and also some mechanism which

can be employed to ensure application level consistency.

Redundancy at the disk level exists in single host based RAID systems. The network based RAID

systems [26, 64, 7] support recovery following failure of a whole node. Assuming that by employing

extra storage nodes as hot spares or by replicating data it is possible to achieve any required degree of

redundancy in the data, it remains necessary to support application level consistency. Furthermore the

issue of adapting to changing resources at the application level needs to be addressed, both in terms of

mechanisms and performance impact.

While a file system mechanism such as sync in UNIX can ensure a consistent state between separate

files in the same file system, it is somewhat crude. Database systems however have long addressed the

need to ensure consistency of distributed state at rather finer granularity through the atomic action (trans­

action) [60] concept. An atomic action has an associated scope within which an update of persistent data

is made in a consistent way. A consistent update which may affect multiple possibly distributed objects

is intuitively one which is "all or nothing". Through some language level mechanism the programmer

can define the scope of an atomic action, typically by some indication of "BEGIN" and "ABORT' or

"COMMIT". Formally the properties of atomic actions are described in the following well known way:

serialisabiIity, in that an execution consisting of multiple concurrent atomic actions which access

shared state appears to execute according to some serial ordering of the atomic actions,

failure atomicity, in that all effects of a computation contained within an atomic action are undone on

failure of that action,

permanence of effect, such that once a state update is committed, it is not lost, barring catastrophic

failure.

This work employs atomic actions to implement application level consistency in a series of experiments

which form part of a study into the application of a bag of tasks based structuring approach to support

exploitation of changing resources by data intensive computations.

CHAPTER 2. STRUCTVRnVG
24

A widely used extension to the basic atomic action concept is that of nesting, whereby a number of

separate atomic actions are nested within the scope of an enclosing action to achieve the overall effect

of a single atomic action [80]. Nesting may be continued to any number of levels. While the effects

of nested actions which abort may be undone immediately, effects of committed nested actions may

only be made permanent through COMMIT at the top level. A number of systems have been developed

to research the use of nested atomic action specifically in a distributed and potentially heterogeneous

environment e.g. Argus [78], Camelot [51], Clouds [36], Arjuna [86]. A target application might be a

banking system where accounts belonging to a particular branch are maintained on machines local to

that branch rather than at a centralised location on a rather larger machine. Without replication of data,

the distributed system allows continued access to all data apart from that on a particular failed node.

Many further extensions to the basic model are described in the literature, but one which is immediately

relevant in this work is the notion of a nested top level action, described in early reports on Argus. The

idea is to enable some benevolent side effect to be performed outside of the constraints of an ongoing

action hierarchy. The nested top level action steps out of the current hierarchy and begins a new one.

Control returns to the original hierarchy on completion of the nested top level action.

Possible approaches to building parallel applications using the atomic action facilities of Argus are

described in [13]. For example, a simple implementation of parallel matrix multiplication is described

where each slave is a guardian apportioned a part of the output matrix to compute by a master guardian.

A slave checkpoints each computed row to stable storage and maintains an integer value determining

the next row to be computed. This structure is chosen to optimise performance in a collection of homo­

geneous machines. However, the strategy prevents other processes from taking over the work of a failed

process and can thus degrade performance in the event of a failure occurring. Another application con­

sidered is the travelling salesman problem which is less regular than matrix multiplication. Here again

the approach suggested is to partition the work statically between slaves, with the master pre-computing

the first couple of levels of the search tree. Use of a resilient data type [116], is suggested as a possible

way of making the master fault-tolerant, though issues of dynamic load balancing are not addressed.

All the computations are structured as in core and no performance results have been published.

Another example of the use of atomic actions to structure parallel programs is Pact [79], but the

context is different. Rather than providing for access to distributed persistent state consistently, Pact

adds atomic action functions to a sequential language to facilitate fault-tolerant coordination in DSM

based programs. However the system is targeted at closely coupled multiprocessors and indeed relies

for its log based recovery system on a global clock.

CHAPTER 2. STRUCTURING

2.4 Using A Shared Object Store

The emphasis of the work described here is on implementing parallel computations on the changing

resources characteristic of a NOW. Of particular concern are large scale parallel computations which

make significant use of state which resides outside primary storage, typically on disk. The computation

model which is presented here comprises a shared space of persistent objects which may be distributed

over a number of machines. Within this object space individual objects may be replicated to increase

availability. A computation is performed by slaves which have no persistent state, but can access the

shared objects. Atomic actions are employed to control such concurrent accesses and also to ensure

consistency of updates to distributed state. Concurrency between such accesses is controlled by atomic

actions. This section begins by describing possible ways of distributing such computations and con­

cludes by introducing a small number of example applications which will be reused throughout the

remainder of the thesis.

2.4.1 A Static Computation

In a simple static organisation, each slave executes a predetermined allocation of tasks. There is no

mechanism for dynamic load balancing and no provision for fault-tolerance. A possible configuration is

shown in figure 2.1. In this case all shared data objects are shown residing on a single disk connected to

a single machine. If the interconnection bandwidth is sufficiently high, the shared objects may be dis­

tributed over multiple machines either in whole or partitioned in smaller constituent objects. Similarly

it is possible to distribute objects over multiple disks which are attached to the same machine.

The user starts a Master process, M, which controls the overall computation. The master creates

the chosen number of slaves, Sl-Ss, on separate workstations to perform the computation in parallel,

informing each slave of a unique allocation of tasks to perform. Any number of slaves may be created,

though if the number exceeds the total number of tasks defined, then some will have no work to do.

2.4.2 A Dynamic Computation

If a bag of tasks is added and initially loaded with a description of each task, the load balancing becomes

dynamic. The computation may now run more successfully on networks of nonidentical machines, and

tolerate better the presence of external load on participating machines. The bag of tasks is simply

another object to be located in the shared repository, but need not be disk based.

It is possible for an appropriate slave located on some arbitrary machine to join in an ongoing com­

putation if it knows the identity of all the main objects making up the shared state of the computation.

including the bag of tasks. It is convenient to maintain such a list in a single object which will be

referred to as a computation object.

CHAPTER 2. STRUCTURING

,
I

I
I

I

, , ,

C Computation Description
Sl- Ss Slave

Figure 2.1: Possible distribution of a static computation

2.4.3 A Fault-Tolerant Computation

In a static computation there are the following areas of concern:

26

LA:\

• A machine hosting a slave may fail. None of the other slaves will take over the unfinished work

of the failed slave. In the organisation described so far, there is no record of how much work has

been done by the slave.

• A machine hosting shared objects may fail. In the most basic configuration all shared objects are

co-located on a single machine. In this case a failure prohibits any further progress by any of the

slaves and any results not saved to secondary storage are lost.

• The machine hosting the master, which initiates and subsequently waits for completion of the

computation may fail. If the required number of slaves have been initiated before the failure,

then the result is simply that the user does not know the outcome of the computation though the

computation may progress towards completion. However, if this is not the case, then there may

be no further progress although system resources may remain in use.

It is assumed that a workstation fails by crashing and that such crashes can be detected using

timeouts in a basic communications layer. In such a crash any data in volatile storage is lost, but

that held on disk remains unaffected.

Without a mechanism for dynamic load distribution, it is necessary also to assume that a slave pro­

cess will be started after a failure to continue work originally allocated to the failed slave and remaining

CHAPTER 2. STRUCTURING '27

unfinished at the time of failure.

The following enhancements add fault-tolerance to the static computation.

1. Before starting work on a new task, a slave begins an atomic action and only completes that action

after it has finished the work and set a flag in a shared array of recoverable flags to indicate task

completion. In the event of slave failure, the action containing an in progress task is aborted and

any effects of that task undone. The task completion flag remains unset so that the task can be

re-scheduled to a new slave.

2. To ensure tolerance to loss of k copies of a shared object, alI objects are replicated on at least k + 1

machines. This option marks an extreme in a range of possible measures to ensure availability of

data. An example of a cheaper option is to depend on parity checking in a local RAID system

to tolerate loss of a single disk. The host is assumed to be restarted immediately folIowing a

software crash. In the event of a presumed unlikely host failure, it would be necessary to either

tolerate longer unavailability or reconnect the storage system to another host.

3. The computation object referred to in section 2.4.2 is sufficient to ensure decoupling of the com­

putation from the user who initiated it. OveralI computation status is represented in the array

of task status flags, but a possible optimisation is to represent it also directly in the computation

object.

2.4.4 A Dynamic and Fault-Tolerant Computation

As in section 2.4.3, a slave encloses a task execution within the scope of an atomic action, but in this

case a fault-tolerant bag of tasks is employed for task scheduling. It is then not necessary to assume

that a slave will be initiated following a failure. Instead the failed slave's unfinished work may be

automatically redistributed amongst the surviving slaves.

The slave begins an atomic action before fetching a task from the bag, and commits the action after

writing the corresponding result. If the slave fails the action aborts, all work pertaining to the current

task is recovered and the task itself becomes available again in the bag, to be performed by any other

slave. As in section 2.4.3, the shared objects may be replicated and a computation object defined both

to decouple computation and initiator and, in the presence of a bag of tasks, to permit a process to join

in an ongoing computation.

Figure 2.2 shows how an application which incorporates these fault-tolerance features may be dis-

tributed.

CHAPTER 2. STRUCTURLNG

C Computation Descri ption
T Bag of Tasks

L :\

..... -: . . _- --:-

.

Data Object
Slave

Figure 2.2: Possible distribution of a dy namic and fa ult-tolerant parall el comp utati on. The
shared objects are shown di tributed for perform ance, independent of the replicati on.

2.4.S Multiple Step Computations

A simple computati on can be implemented using a single bag of ta k . However, orn e computation

cannot be decomposed into a single set of independent ta ks. It i then possible to di vide up a com­

putati on into a number of parall el steps as illu trated in fi gure 2.3. The computation i rcpre ented in

a sequence of bags of tasks of which one bag is current at any time. All lave wait, i.e. pallse() . till

the current bag is empty before attempting to selec t a task, remove() , from the nex t in the equence.

Thus a transfer from one bag to the nex t marks a barri er synchroni sati on point. In the example code, an

atomic action is implemented as an object and its scope defi ned by ex ported operati on ; 8 eg inO, Abort()

and End(). The resulting structure which support a parallel loop programming style is imi lar to that

described in CALYPSO [1 6]. However, while in CALYPSO a sequential code egment is executed by

the master, it is possible instead to represent such a section of code by a bag contain ing only a ingle

task.

2.4.6 Synchronisation By Side Effect

In some situations it may be preferable to al low tasks to depend on the resul ts generated by other

tasks in the same bag. It is then necessary to employ some synchronising mechanism uch that a task

can be blocked until some prior ta k has completed and produced outpu t. A imple me hani m I to

employ a fl ag which indicates whether a correspondi ng task re ult has been wri tten or not. Con urrent

CHAPTER 2. STRU~G

while (TRUE) { / / dummy condition
AtomicAction A; A.Begin{};
status = b->remove{work);
if (status == EMPTY) {

5 A.Abort{};
bid = nextbagid{};

if (bid == NONE) break; / / quit enclosing loop
else { delete b; b = new Bag{bid); }

} else if (status == NONE...AVAILABLE) {
10 A.Abort{};

pause{};
} else {

dotask{work);

A.End{}; / / assume no error in task execution
15 }

}

Figure 2.3: Slave pseudo code for example multiple step fault-tolerant computation.

29

access to the flag is controlled through locks obtained within the scope of an action. Where inter task

dependencies are satisfied through side effects in this way it is clearly necessary for entries in the bag

of tasks to be ordered if deadlock is to be avoided.

2.4.7 Multiple Level Computations

Just as it is possible to structure a computation with a sequence of bags of tasks. so too is it possible to

employ a hierarchy of bags of tasks. This can be used to encourage each slave to process a sequence of

tasks. yet still ensure that all tasks are completed if the collection of slaves changes through the com­

putation. In the simplest case a single higher level bag of tasks contains only references to a collection

of bags logically at a lower level. Each slave selects a lower level bag through reference to the higher

level bag and then continues processing the tasks in the lower level bag until that is complete. It is

necessary for a slave to enclose task executions for the lower level bags in a top level atomic action so

that results of completed tasks at this level are not lost on failure of the slave while the entry identifying

the lower level bag remains in the higher level bag. In this simple example. illustrated by the slave code

in figure 2.4 bags of tasks are used at the lower level for uniformity. However it is possible to place

multiple entries in the higher level bag all referring to the same lower level bag to allow a group of

slaves to process the same lower level bag concurrently. Clearly it is feasible to generalise further to a

hierarchy of bags of tasks. It is also possible to combine elements of the three approaches.

CHAPTER 2. STRUCTURING

while (TRUE) {
AtomicAction A; A.BeginO;
status = bl->remove(bid);
if (status == EMPTY) {

5 A.AbortO; break;
} else if (status == NONE.AVAILABLE) {

A.AbortO;
pauseO;

} else {
10 delete b2; b2 = new Bag(bid);

while (TRUE) { / / process lower level bag till empty
TopLevelAction T; T.BeginO;
status = b2->remove(work);
if (status == EMPTY) {

15 T.AbortO; break;
} else if (status == NONE.AVAILABLE) {

T .AbortO;
pauseO;

} else {
20 dotask(work);

T.EndO; / / assume no error in task execution
}

}
}

25 }

Figure 2.4: Slave pseudo code for example multiple level fault-tolerant computation.

30

CHAPTER 2. STRUCTURING 31

2.4.8 Example Applications

Reported applications of a bag of tasks type structure include seismic computations [I. 65]. materi­

als science [107] and ray tracing [21]. The main memory requirements are modest and where these

examples manipulate disk based state, the data is easily managed by a single disk with all UO being

performed by the master process.

In the work reported here, three examples are employed. The first is a port of a publicly available ray

tracing package which might easily be implemented. at least with no support for fault-tolerance, over

many alternative infrastructures. The remaining applications are dense matrix computations, matrix

multiplication and Cholesky factorisation whose data requirements scale rapidly with the problem size.

The latter two serve as examples of computations which. at large scale. may exceed aggregate memory

capacity and so be managed as out of core computations.

Ray Tracing

One of a number of publicly available utilities to compute ray traced images of a scene described in

a simple textual language is rayshade. For this package. input data comprises only scene description

and output a two-dimensional array containing the red-green-blue values for each pixel. A ray tracing

computation can be quite compute intensive even for a fairly simple scene and small image size, where

neither data referred to is very large and therefore this must be a good candidate for network parallel

execution.

The currently available version of rayshade is 4.06 [72]. but while this version has attractions in its

functionality, an earlier version [71] was modified independently at Yale to run on the network Linda

system [21] and therefore offers the possibility of a comparison. Accordingly it is the earlier version

that is employed in this work.

The Linda version of the utility is organised as a bag of tasks where the master places in tuplespace

a single integer which is set to the highest scanline number. A scanline is a row of pixels in the image

and is the unit of work performed by a slave. Each worker process repeatedly reads and decrements this

counter, through in and out. and then computes the pixel values for the required scan line. The worker

puts the resulting scanline into tuplespace from where the master retrieves scanlines in the correct order

and writes them in sequence to the output file.

The bulk of the Linda code can be embedded directly in the basic master slave structure. A similar

approach to that adopted in the Linda version may be employed by wrapping the worker code of the

Linda version in a slave structure similar to that employed in the matrix computations. A task is defined

as the computation of a certain number of rows of the output array. this number then being the grain

size. Each grain of the result is stored as a separate persistent object and computed within a separate

task. The Master process which starts up the computation, also copies output data into the correct file

CHAPTER 2. STRU~G 32

fonnat, Utah Raster RLE fonnat, for further processing such as conversion to postscript.

In a static version each slave is assigned a fixed set of tasks to perfonn at start up. In an alternative

fault-tolerant version, the integer defining the last scanline in the Linda implementation is replaced by

a fault-tolerant bag of tasks, with each entry containing the index of the first and last pixel line to be

computed. The copy to RLE data fonnat by the Master is not fault-tolerant, but is of quite limited

duration compared to the main part of the computation.

Matrix Computations

Two matrix computations serve as examples of computations which manipulate large state. These arc

matrix multiplication and Cholesky factorisation. In order to maximise locality and thereby gain greatest

benefit from caching at higher levels of the memory hierarchy, it is common to layout matrices according

to smaller blocks, or submatrices, and decompose an operation on the original matrix into a combination

of operations on the constituent blocks [57]. For convenience, the arbitrary size operand matrices are

structured as a collection of square blocks which may be accommodated in slave memory. In each case,

a task corresponds to computation of a single block of the result matrix.

Matrix Multiplication

Conventional block oriented matrix multiplication is perfonned in which a convenient unit of work to

allocate to a task is computation of a block of the result matrix. These tasks may then all be computed

in parallel. In the matrix mUltiplication,

C=AB,

if the p blocks in the ith row of A are labelled ai,l, ai,2 ... ai,J" and the blocks in Band C similarly, then

P

Ci,j = L ai,k bk,j

k=l

Figure 2.5 shows the essential features of the slave operations. Since all tasks are independent it is

again possible to employ a single bag of tasks, each entry specifying the coordinates of the block to be

computed within the corresponding task.

Cholesky Factorisation

Cholesky factorisation computes from a single full matrix two triangular matrices whose product is the

oriainal full matrix and which are the transpose of each other; i.e. computing G, given A below.
b

GG' =A

CHAPTER 2. STRUCTURING 33

void matmult(int i, int j) {

sum.set(O);
for (int k=O; k<A.dJO; k++){

5 a = A(i, k);
b = B(k, j);
a *= b;
sum += a;

}
10 C(i, j) = sum;

}

Figure 2.5: Function to perform one task in matrix multiplication by bag of tasks.

The example considered here is the factorisation of a dense matrix. This is a relatively simple

factorisation to implement yet it demonstrates the potential variety of different ways of structuring a

computation which cannot be conveniently partitioned into purely independent tasks. It is convenient

to partition the operand matrices into square blocks and employ a left looking algorithm such that each

block is written only once. It is only necessary to write half of the result matrix since it is triangular.

However there are restrictions on the execution of these tasks. Each block in the output matrix depends

on the block in the same block row to its left and if not a diagonal block also on the diagonal block in

the same column as shown in figure 2.6.

go.O

gl.0 gl.1

g2.0 g2.1 g2.2

g3.0 g3.1 g3.2 g3.3

Figure 2.6: Dependencies in left looking blocked Cholesky

An algorithm which suits this organisation is given in [59, §6.6.5); the essential features of the

slave operation are shown in figure 2.7. Using the same algorithm, there are various ways in which

the inter task dependencies may be satisfied, but here just three are highlighted. Conceptually perhaps

the simplest is that based on a single bag of tasks, but a synchronisation mechanism must be defined

in addition to the bag of tasks and in addition the bag must be ordered in order that deadlock may

be avoided. The simplest implementation requires no such synchronisation mechanism but employs

CHAPTER 2. STRUCTURING

void cholesky(int i, int J) {

sum = A{i, J);
for (k=O; k<j; k++) {

5 / / wait for each block if necessary
w = G(i, k);

10 }

y = G{j, k);
w *= y.transposeO;
sum -= w;

if (i == j) {
sum.chfactorO; / / in place block cholesky

} else {
diag = G{j, j);

15 / / solve for x: x*diag = sum, overwriting sum
sum.solvel(diag .transpose{»;

}
G(i, j) = sum; / / write result

}

Figure 2.7: Function to perform one task in Cholesky factorisation by bag of tasks.

multiple bags to achieve barrier type synchronisation points. Each bag contains similar tasks. with

alternate bags in the sequence performing block factorisations and block solves. However. there are

intervals of sequential code computing the blocks on the diagonal. A third alternative aggregates the

task computing a block on the diagonal with the one computing the block immediately to its left to

try to achieve some overlap of the sequential work, at least where the preceding column is large. The

alternative allocations of tasks to bags are as shown in figure 2.8. The general outline of figure 2.3

[:~::;I,l: :] [~ .. :] [~;::] [1_2~·:]
g2 0 g2 1 g2 2 • 1· 2 4 5 • 2 - 3 - •

g3.0 g3,1 g3,2 g3,3 1 I 2 4 6 7 2 3 . 4 -

(a) single bag (b) multi-bag(l) (c) multi-bag(2)

Figure 2.8: Synchronisation alternatives in Cholesky factorisation by bag of tasks. The
order of processing is down columns from left to right. In (b), bag 3 has only a single task.
which computes gl,l but in (c) bag 3 has two tasks, the first of which computes g2,1 and
g2,2 and the second of which computes g3,2·

may be employed and the single bag of tasks option is simply the special case where the list of bags

CHAPTER 2. STRU~NG
35

specified in the computation object has just one entry. An entry in a bag contains either one or two pairs

of integers, defining the coordinates of block or blocks to be computed in the corresponding task.

2.5 Summary

This work is concerned with performing parallel computations in a NOW. Specifically the problem

addressed is that of exploiting the changing resources available to a parallel computation in a NOW. In

order to achieve this, a parallel application should be able to accommodate the unnotified loss and! or

addition of a node. In practice there are seen to be a number of mechanisms which address different

parts of this requirement. Checkpointing and replication mechanisms address transient node failures

with generally a high degree of transparency. More generally they provide basic support through which

an application can tolerate node loss. Migration systems have addressed the particular problem of

transferring a process from one machine to another. The general problem impacts all accesses to system

resources, but restricted support can be provided in the form of an interposing layer at the interface

to a message passing library. On the other hand, using a shared address space for all inter process

communication provides support for application migration transparency. Support for reconfiguration to

use fewer or more nodes is always a matter for application level structuring.

While approaches exist for structuring in core problems in a suitably dynamic and fault-tolerant way

this does not appear to be the case for out of core problems. However there is much work concerned

with maintaining availability and consistency of distributed persistent state. Here a parallel computation

is structured around a collection of objects in a shared store which are based on secondary storage. The

two basic structuring mechanisms are the atomic action and recoverable bag of tasks, the latter having

the property that an operation on the bag can be enclosed within the scope of an atomic action and be

committed only on completion of that action. Using these mechanisms it is possible to construct various

dynamic parallel structures. Three example applications are described which will be used again later.

Chapter 3

Modelling

Having defined a computation structure it is necessary to establish an approach to its evaluation. This

evaluation is concerned both with the benefit which is obtainable through parallelism and with that ob­

tainable through the fault-tolerance mechanism. In this chapter an analytical model of the computation

structure is presented to allow prediction of the overall runtime for any given number of processors. A

simple approach is developed which suffices for the class of problems studied here to allow algebraic

expressions to be derived for overall runtime in terms of low level parameters, such as disk and com­

munications transfer costs. The intention is not to make a generally applicable model, but purely to

support performance prediction for the specific applications picked as examples. In a different example,

elements of the approach may be reused, but the detail would be different. Parts of the work in this

chapter and early results from the next appear in [102].

While the analytical approach supports estimates of the computation runtime, and allows some con­

sideration of recovery cost, it makes assumptions about the costs associated with the fault-tolerance

mechanism. In practice such assumptions seem reasonable if the granularity is large enough, but con­

sideration of this issue is deferred till presentation of experimental results in the next chapter.

3.1 Preliminary

A collection of slaves is assumed to be allocated one to each of a collection of processors, which are

connected by a network. Each slave has full utilisation of its processor and the collection of slaves

have full utilisation of the communications network connecting the processors. The slaves execute

concurrently but access main data objects and bag in a shared repository. All accesses to this shared

store are serialised, such that any particular access may be delayed arbitrarily. This model is similar to

that presented in [1], but emphasises the determination of minimum parallel time and extends the earlier

work by showing how to compute bounds on this minimum time, both where there are no inter task

36

CHA PTER 3. MODELLING

dependencies and where there are dependencies.

Each slave executes a single un ique task at a time. The identity of the ne t task to perform rna be

regarded as part of the input at the start of a task and the cost of its acces as umed to be mall om pared

to the cost of reading tas k input data. A task may entail reading and updating objects in hared t reo

lt is assumed that each task compri ses three components, summari ed in table 3.1 : Figure 3.1 hO\\ a

Name Time
get T get

compute T comp

put T put

Tabl e 3.1 : Bag of task basic operati on

Descri ption
in which inpu t data required to perform the task i read from
shared storage.
in which computation en tail ed in the task i performed
within the slave machine.
in which result computed by the ta k are wrillen to hared
storage.

visual representati on of alternate bag of ta ks executi ons.

(a)

(b)

~
oet
~ompute
put

- •

• • • •
L-...l..-__ I.

Time

-

Figure 3. 1: Example bag of tasks computati on with: (a) 3 processes and (b) 5 proce es.

If there is more than one slave, the execution of the computation depends on the pallem of acce e

to the shared store. While it is reasonable to assume that the longe t waiting sla e i erved fir l. no uch

assumption can be made if two slaves requests are coi ncident. The 0 erall duration of the computation

may vary depending on the order in which sla e reque ts are served. In figure 3.2 when the fi r t proce

fini hes its fi rst task, it competes with the second for acce s to the shared store.

CHAPTER 3. MODELLING

(a)

(b)

get
compute
put

-
Time

Figure 3.2 : Example bag of tasks computation with 2 processes, ho\ ing ariat.ion in cxe­
cuti on time through di ffe rin g all ocation pattern of the shared to re.

3

The task components described above may be of identi cal durati on within different tas k or aried.

In the simplest case, they may be conti guous. It is a lso like ly for instan ce th ough th at data i fct hed

as it is needed throu gh the task computation rather than a ll at once, particularl y if the data req uired i

large.

The ideal is to determine overall executi on time for an arbitrary number of laves. Howe er in two

cases, the ana lys is is easier. The fir t is where there is one slave only, the sillgle slove pe1formollce,

when all operati ons are seri ali ed and the second is the minimum parallel execution time, the limitillg

pelformollce. The latter i certai nl y ach ieved when there i a separate s lave computing each t!l!>k , but

may be achieved by a rather smaller number of slave if there i some limiting effect , uch a due to

ne twork bandwidth .

Ideally all tasks are independent such that an object upd ated within one task is no t read or upd ated

within any other task. However, there may be occa ions when it is de irable to incorporate ynch ron­

isation mechani sms such that an access to a dependent object is blocked until that object i output by a

dependent tas k.

If there is significant reuse of computation data, it may be possible to benefi t through caching such

data. Assuming that the shared object store is implemented above a general purpose file y tem some

cachin g within the file system buffer space may be inevitable.

Finally an overall computati on may comprise a number of steps, in whjch case it is nece ary to

aggregate performance of a ll separate steps .

CHAPTER 3. MODELLING 39

3.2 Limiting Performance

First it is assumed that each task comprises get, compute and put components of identical duration and

that these components are contiguous within the task.

If there are N tasks overall, a single remote slave performs the computation in time. T1 • given by

Tl = N(Tget + Tcamp + Tput) . (3.1)

Minimum execution time, Too, is observed when there is a separate slave processor allocated for

each task. All these slaves attempt first to perform initial reads. then computation before writing results.

The resultant overall elapsed time depends on the relative values of computation and communication

times.

At any point during execution of a task, a slave must be either computing, accessing the shared store

or waiting for access to the shared store. Therefore it must be true that

Too ~ Tcamp + N(Tget + Tput) . (3.2)

Otherwise, there must be an interval during which a processor performing some task is neither com­

puting nor accessing the shared store though the task remains uncompleted and access to the store is

available. In practice Too is only equal to this upper bound for the trivial case where T get = 0 and/or

Tput = O.

Since all communication is serialised, a lower bound on Too is the sum of all communications.

Too 2: N(Tget + Tput) . (3.3)

This bound is closest when computation is dominated by communication; specifically such that

Tcamp ~ (N - l)Tput

and

Tcamp ~ (N - l)Tget .

A lower bound on Too is defined by the available parallelism,

(3.4)

= Tget + Tcamp+ Tput

If computation dominates either input or output, then it overlaps all but one of those operations. i.e.

CHAPTER 3. MODELLING 40

if

T camp ~ NT get

or

Tcomp ~ NTput

then

T= = Tcomp+N'max{Tget, Tput} + min {Tget, Tput} .

Otherwise Too is greater than this value, so it is possible to define the following bound, which is rather

closer than (3.4) above;

Too ~Tcomp+N·max{Tget, Tput} + min {Tget, Tput}. (3.5)

In general, object store accesses are fragmented through the duration of a task rather than taking

place all either at the start or at the end. If the granularity remains the same and if the values T get.

Tput and Tcomp are the total times obtained by adding up those for all reads, writes and computation

associated with a task then (3.2), (3.3), (3.4) are still valid but (3.5) no longer is.

Combining (3.2), (3.3), (3.4):

where:

Iwr{Too} = max{~, N(Tget+Tput)}

upr{Too} N(Tget + Tput) + Tcomp .

(3.6)

(3.7)

If different tasks have different read, write and compute times then the minimum parallel time is

determined by the duration of the longest task, thus:

Too ~ max {Ttask(i)} .

Which task is longest may depend on hardware characteristics, but its duration is bound to be greater

than or equal to the average task duration. It is possible then to use the average task length in place of

the maximum to determine a lower bound on parallel time. Then similar relationships may be defined

to those above. If Tget(i), Tput(i) and Tcomp(i) are the read, write and compute components for the

CHAPTER 3. MODELLING

ith task, and

N N N

TGET= LTget(i) ,TCOMP= LTcamp(i) ,TPUT= LTput(i)
;=1 ;=1 ;=1

then

Tl = TGET + TCOMP + TPUT

and

Iwr{Too} = max{~, TGET+TPUT} ,

upr{Too} TGET + TPUT + max {Tcamp(i)}

41

(3.8)

(3.9)

(3.10)

The quantities TGET, T PUT and TCOM P are the total read, write and compute times obtained by

summing those for all tasks.

Corresponding expressions for maximum algorithmic speedup may be obtained, from (3.1), (3.6),

(3.7):

N(Tcamp + Tget + Tput)
Tcamp + N(Tget + Tput) ,

Soo < min {N, 1 + TJe~+Tfrut}

Ideally, if communication cost is negligible then TG ET = T PUT = 0 and speedup is equal to the

number of tasks, i.e. Soo = N. However, if the communication costs are significant with regard to the

computation cost, then it is possible for Soo to be less than N.

The maximum number of slaves which may profitably be used is not less than Sx. If the speedup

is ideal the number is Soo.

Similarly from (3.8), (3.9), (3.10)

TCOM P + TGET + T PUT
>

max {Tcamp(i)} + TGET + TPUT '

< min {N, 1 + l'GWr~¥IUl'}

In this case if communications are negligible,

S = TCOMP
00 -m-ax-{-;-:T=-c-am-p~(;-:-;i)~}

CHAPTER 3. MODELLING

3.3 Non Limiting Performance

Where maxim um paralleli sm is reached analysis is simpli fied because either serial communi ation dom­

inates or each task is started in parallel. In the general case each sla e execute more than one task but

those execut io ns are not constrained to a particular order by the requi rements of communi ati on. It i

necessary to consider different possible orderin gs of tasks, though it can be as umed that the longe t

waiting requester is served first.

Figure 3.3 illustrates example executions for collections of s imilar task. but in thi work no attempt

(a)

(b)

(c)

~
oet
~ompute
put

•
•

• ..

-

•
•

• •
•

-
Time

Figure 3.3: Example bag of task computation with 2 proce e .

is made to determine close bounds on the durati on of such executi ons. In tead the obviou lower bound

is used exclusively.

Tl
lwr{Ts } = -

s

3.4 Inter Task Dependencies

It is possible to employ a synchronisation mechanism withi n shared data object separate to the bag of

tasks so that an access to a dependent object is blocked just until that object is ready. Clearly when

the computation is performed by a single slave , the synchroni sation imposes only an overhead co t.

It is however necessary to reconsider the calculation of the execution ti me when more than one la\e

participates in the computati on. A lower bound on minimum parallel time may be obtained by ignOring

CHAPTER 3. MODELLING

all dependencies such that all tasks execute free ly in parallel. A simplification whi h yield an upper

bound is obta ined by ti ghtenin g the dependencies such that rather than relating to data obje . the '

appl y onl y to comple te tasks. The req uired value is then the upper bound on execution time of thi

simplified computati on.

Figure 3.4 shows a parallel computation divided into three La ks where t\ 0 of the e tasks depend

(a) Possi ble

exec uti on

(b) Ignore

dependencies

(c) Simpli fied to

task dependencies

~
get
compute
put

•
•

• •
•

•
Time

Figure 3.4 : Poss ible bounds on pe rfo rm ance of parall e l computation in which La k arc nOt
all independent.

at some inte rmediate point of computation on the output of the third task . AI 0 hown are the lower

and upper bounds on computati on time obtai ned by approxjmation as described above. In thi s simple

example all task computations are all of the same duration and the computed bounds are:

max {3(T get + Tput) , Tcomp} ,

max {3(T get + Tput) + Tcomp, 2 * Tcomp}

If the computa tjon is communicati on bound , such that T comp is small then clearly the e bounds are

very close. However, in the ex treme, where commun ication cost is negligible , such that

Tcomp » Tget + Tput

CHAPTER 3. MODELLING

the upper and lower bounds on computation time may differ by up to a factor of {\\o.

If it is no t known how far into a depende nt ta k the dependency occurs then the only ure upper

bound is that obtained by assuming that the dependency occur at the very tan of the dependent

This approach leads to the task dependency approximation above. However. if the computation part of

the dependent task may be partitioned into two known amounts, preceding and following the P Int of

dependency, then a ti ghter bound is possible. The altern ati e upper boun d i obtained by pretending

that there is a barrier at the point of sy nchroni sati on. In the example of figure 3.4. the a tual execull n

is such that no process proceeds beyond the sy nchroni satio n point unLil all are ready. ju t a if a barrier

were present. However there are situations where thi s is not the c e. One uch ituati n i ' illu ·trated

in figure 3.5.

(a) Possible

execution

(b) Ignore

dependencies

(c) Simpli fied to

barrier

~
oet
~ompute
put

• •

• •

• •

Time

F igure 3.5: Example illustrating altern ate bounds on performance of parall e l computation

which has data dependencies .

In an ac tual execution the process updating the object depended upon would proceed to compute

the nex t task. Approximating the actual exec ution with a barrier construct implies pretending Lhat the

tart of the process 's next task execution is delayed till after the synchroni aLion point but thl has

the benefi t of partitioning the computation into clearly defi ned pha es. The total computation lime I

then detern1ined simpl y by add ing the computation time of each eparate phase. Between barrier . Lhe

techniques described in preced ing sections may be employed to bound performance of task e e ullng

free ly in parall el.

CHAPTER 3. MODELLING

3.5 Cache Effects

So far, all data accesses by application slaves are assumed to be to the shared store, but it is possible

to organise the overall computation to attempt to reuse data which has recently been used and may

therefore be accessed more cheaply. It is possible to conceive of other levels of storage, but here a three

level hierarchy is defined.

I. Slave memory

2. Object server memory

3. Disk

It is assumed that all writes are through to the disk, but that a read may be satisfied within either slave

or server memory. Slave memory is obviously private, but server memory is common for all slaves. In

a simple realisation of the shared store which is layered above a standard file system, a degree of object

server level caching within file system buffer space is involuntary.

In order to predict performance, it is necessary to count the number of reads from each level in the

memory hierarchy. The first performance measures to consider are the single slave time and minimum

parallel time.

It is assumed that the computation comprises N tasks of various duration and with varying com­

munications requirements. Clearly the memory required to support a given cache strategy may grow

with the number of slaves and it is possible in such a case for the execution time to increase as the

number of slaves is increased above some value. However, assuming there is sufficient memory to meet

the requirements of any chosen cache strategy, the minimum parallel time is still seen when there is

an unbounded number of processors such that each task is executed by a separate slave. As before,

there can be no time when the shared store is not busy and a slave is neither computing nor accessing

the store. The required measures are still given by (3.8), (3.9) and (3.10). However, without detailed

knowledge of which blocks are cached throughout the computation, it is no longer practical to identify

the maximum task duration. It is then necessary to use the more cautious lower bound on minimum

parallel time based on the average task length. The cost of each read which is satisfied within server

memory is lower than it would be if requiring a disk access. Each read which is satisfied in local slave

memory costs even less and moreover doesn't require access to the shared store.

3.6 Recovery

In the event of slave failure and immediate resumption, or replacement by a spare, the failure free

execution time is increased by a recovery time. Part of this time is due to the detection of the fault and

CHAPTER 3. MODELLING
-16

depends on comm unications level timeouts , but the part which is con idered here i due to the 10 of

aborted work . Figure 3.6 shows an example computation where a slave fails but recover immediatel)

(a)

(b)

get
compute
put Time

Figure 3.6: Example bag of tasks computati on showing (a) a failure free execu ti n and
(b) an execution where the slave executing the third tas k fail but i re tored! repla ed
immediately.

Clearly at worst where each slave executes onl y a si ngle task the durati on of the computatio n may

be doubl ed , but in a prac tical example it is like ly th at each slave executes a number o f La ks. The effect

of a failure on overall runtime may be mitigated to some ex tent if the total number of task i not a

mUltiple o f the number of slaves. However the worst case occurs where in a fai lure free exe Ulio n all

slaves finish at nearly the same time. Then assuming that a ll task are of equal cost the ac tu al recovery

time is the cost of between zero and one task execu ti on . If a computati on i decompo ed into ta k

of various durati ons, the recovery cost depends on which ta k fail s. If the computation ha inter task

dependencies then failure of one task may delay the completi on o f tasks whi ch are in progres at the

time of failure and depend on output from the fai led task. If data are cached at a la e whi ch fail , then

the slave that takes over the aborted task incurs an extra cost in cache misses.

If a slave fails and does not resume and there is no spare. then the increase in 0 era ll executi on

time depends on the exac t point of failure, but may be regarded as comprising two components. Fir t,

there is the cost of redoing the failed task and secondly, the executi on of the remaining tasks is slowed

since there is then one less slave. In the particular case where all survi vi ng slaves are executin g tasks

which depend on the one which has fai led , it is necessary for one of them to abort in order th at the

fa iled task may be done and deadlock avoided. In this case the recovery cost due to one sla e fail ure i

com pounded through the need to complete the task depended on before its dependents.

Clearly the cost of recovery is application specific and then may vary but intu itively if the problem

size is large so that there are many more tasks than slaves, then the loss of work on failure hould be

reasonable . For the purpose of this work a simple measure of the reco ery cost wh ich can be derived

CHAPTER 3. MODELLING
47

from the measured performance is employed as an indication of recovery cost. This measure is com­

puted as half of the maximum recovery on the assumption that all tasks in the computation are of equal

cost and is referred to as the average recovery. If the total number of tasks is a multiple of the number of

slaves then ignoring the cost of any required cache refresh the value referred to is the average expected

recovery cost if a slave fails and is immediately restored or replaced.

3.7 Multi Step Computations

A computation may comprise more than one basic step separated by barrier synchronisation points.

The execution time of each single step can be predicted in isolation and then combined to give

overall bounds on performance. For example a computation may comprise M ideally parallel steps. If

the jth step has minimum time Tstep(j)oo where

lwr {Tstep(j)oo} ~ Tstep(j)oo ~ upr {Tstep(j)oo} ,

then
M M

L)wr {Tstep(j)oo} ~ Too ~ L upr {Tstep(j)oo} (3.11)
j=l j=l

3.8 Examples

The two simple matrix examples described earlier in section 2.4.8 may be employed now to illustrate the

preceding discussion. Matrix-matrix multiplication, may be organised into a single bag of similar tasks.

i.e. having equal computation, where there are no dependencies between tasks. In contrast. Cholesky

factorisation is partitioned into a collection of non similar tasks which do have dependencies.

Table 3.2 lists primitive operations which are used in the following definitions. In much of the

discussion which follows all blocks are in fact square. It is convenient to omit the parameters indicating

block size in this case, such that the operation times can be written in shorthand tget. tput, tmult etc.

to imply that operations are performed on square blocks of size fixed for a given context. A convention

adopted in general for such examples is that overall operand matrices are square of size n 2 elements and

that each such matrix is partitioned into p x p square blocks of size b2 elements.

3.8.1 Matrix Multiplication

Section 2.4.8 describes how block oriented matrix multiplication may be organised as a bag of tasks

with a separate task for each block.

Computation of a single block of the result matrix entails performing the dot product of a block row

with a block column from the input matrices. This entails 2p block gets and 1 block put. In the simple

CHAPTER 3. MODELLING

Name

put
get
multiply

add

subtract

solve

Cholesky
factorisation

LV
factorisation

Table 3.2: Primitive matrix operations.

Operation
time

tput {bl , b2}
tget{b l ,b2}

tmult {bl , b2}

tsub {bl , b2}

tsolve {b}

tchol {b}

tlu {b}

Description

A single block of size bl x ~ is wrinen into shared store.
A single block of size bl x b2 is read from shared store.
Computes the product of matrices x, of size b1 x ~, and
y, of size b2 x blo e.g. X * = y
Computes the sum ofx and y which are both of size bl x~,

e.g. X += Y
Computes the difference of X and y which are both of size
bl x b2 , e.g. X - = y
In x*1 = y or u*x = y, where I and u are lower and
upper triangular respectively, X is found. All matrices are
of size b2 •

In 9 * g.transposeO = a. the Cholesky factor 9 of a
is computed. All matrices are of size ~ and 9 is lower
triangular.
In 1* u = a, the LV factors I and U of a arc computed.
All matrices are of size b2 , I and u are lower and upper
triangular respectively and one or other has unit diagonal.

slave implementation above, there are p block multiplications and additions. From (3.1). the value of

Tl is obtained:

Tl = p2(2ptget + tput + p(tmult + tadd))

The bounds on Too corresponding to those defined in (3.6), (3.7) are given below:

Iwr{Too } max{~, p2(2Ptget+tput)}

upr{Too} = p2(2ptget + tput) + p(tmult + tadd)

Cache Effects

(3.12)

(3.13)

(3.14)

The following examines the benefit to be gained by caching through some possible application organ­

isations for matrix multiplication. The numbers of reads from the three levels of the memory hierarchy

defined are labelled N
l

, N 2 , N 3 . It is also necessary to consider the minimum storage requirement at

each level of the hierarchy for a given application organisation and the minimum memory requirements

are labelled ml, m2, m3·

For the example computation organisations described below, the number of block reads from each of

the three possible levels in the memory hierarchy is computed. Also the minimum storage requirement,

above that needed only for access, is computed for each level in the memory hierarchy. A summary is

given in table 3.3.

CHAPTER 3. MODELLING 49

1. No attempt is made to benefit from block caching. The memory constraints are that a slave needs

to perfonn an in place multiplication and retain a sum to compute a block dot product and server

memory needs to allow transfer between disk and network.

2. If the slaves compute successive blocks of C by row and keep in step through computation of their

respective block dot products, then they are each using the same block of A, though a different

block of B. This block may be held in server memory.

If the number of slaves s is less than the number of blocks in a row, then the concurrent computa­

tion of s consecutive blocks of C entails p(s + 1) block reads from disk and p(s - 1) reads from

server memory. If the number of blocks in a row is large compared to the number of slaves. then it

is reasonable to ignore the effects of transition from one block row to another, and simply assume
2

that there are 7 groups of s consecutive blocks to be computed and hence obtain the approximate

counts for N2 and N3 given in the table.

The memory required for this degree of caching at the server is only one block. If more memory

is available, but not enough to allow caching of a whole row, then it may be possible for the slaves

to become a little out of step, but the perfonnance is the same.

The same analysis holds for the situation where the slave,> compute consecutive blocks in the

same column of C or alternatively where each slave is assigned separate block rows of C and

computes successive blocks in each of those rows in turn.

3. If as above, the slaves compute successive blocks within the same block row of C, but sufficient

space exists within server memory, then the current row of blocks of A may be retained there

through computation of a complete block row of C

Computation of a result block row entails 2p disk reads for the first block but for the remaining

p _ 1 blocks p block reads from disk and p block reads from server memory.

Assuming the storage is actually in server file system cache which employs LRU replacement

policy, it will not allow retention of the desired block row of A unless there is space for almost all

of the block columns of B which are required by s concurrent slaves. The memory requirement

is therefore for p(l + s) blocks assuming s ~ p.

However, if the caching were done at the application level, by specifically indicating which blocks

to cache, the server would need sufficient memory to accommodate a single block row plus one

block to allow access to blocks of B.

4. If the overall size of the operand matrices is small enough then both may be accommodated in

server memory.

The number of unique blocks, and therefore the number of block reads which must be from disk,

is 2p2. The remainder 2p2 (p - 1) must all be of already read, and therefore cached blocks.

CHAPTER 3. MODELLING 50

5. If slaves compute separate block rows of C, then there is potential for benefit in caching part or

all of the appropriate block row of A within slave memory. If memory size is quite small. each

slave might cache only a few, say the first c, blocks of each row read from A. Once cached, these

are reused in computation of the remaining p - 1 blocks of the block row of C

The memory constraint is for the c cached blocks and one each for; other blocks of the row of A.

blocks of the second matrix and the accumulated sum.

6. As before slaves compute separate block rows of C, but here it is assumed that there is sufficient

space to accommodate the whole of the required block row of A.

The storage required is for the p blocks of A. A similar analysis holds if the slaves compute block

columns of C and cache block columns of B.

7. Again the slaves compute separate block rows of C, but here it is assumed that there is sufficient

space to accommodate all data accessed. This allows reuse not just of the blocks in A, but also

those in B

Each row of A is only read once from remote disk. and thereafter read from slave memory.

However, each slave must read all of B into its own memory.

The slave memory must accommodate all of B and a block row of A.

The block size may be as small as required, but is constrained by an upper bound which depends for

the desired level of caching on the main memory available and should be chosen such as to minimise

parallel computation time. In table 3.3, expressions are given for the total number of block reads from

each level of the memory hierarchy and the minimum memory space required at each level apart from

the lowest. These memory requirements are not total requirements for slave and object server, since

space required for temporary storage of blocks is ignored.

Performance may be further improved by caching at both server and slave. Where the matrices are

relatively small, the best performance is obtained by caching all blocks accessed at slave and server.

The memory requirement however, is of order n 2 in all machines and highest in the server which needs

to accommodate both matrices complete.

For intermediate sized matrices where it is not possible to fit a whole matrix in available memory at

slave or server, it may be possible to cache a block row at each slave and a column at the server. Each

slave computes a separate block row of the result matrix to optimise local caching, but then the benefit

of caching a block column of B at server is reduced as this block column is only used s times before

being lost from cache. The memory requirement is of order n in the case of both server and slave.

For arbitrary sized matrices caching a whole block row or column if possible may necessitate setting

a very small block size, so an alternative option is to cache a single block at server and a small number

of blocks at slave. The memory required is then 1 block in the server and k blocks in each slave.

CHAPTER 3. MODELLING

Table 3.3: Potential benefit achievable using various strategies for exploiting cache reuse in
matrix mUltiplication by bag of tasks. The quantities N 1 , N2, N3 are the number of block
reads from the different levels of the memory hierarchy, respectively slave memory, server
memory and disk. The quantities ml, m2 are the minimum space required at levels I and
2 of the memory hierarchy.

Organisation

l. caching no blocks at
slave or server

2. caching a block of A
at server: s slaves

3. caching nominaIly a
block row at server:
s < p slaves

4. caching all blocks at
server

5. caching c < p blocks
at slave: s ~ p slaves

6. caching a block row
at slave: s ~ p slaves

7. caching all blocks at
slave: s slaves

Number of accesses and space required
Slave memory Server memory Disk

Nl N2 N3
ml m2

cp{p - 1)

8cb2

p2(P _ 1)

8nb

p2{2p-1- s)

8n(n + b)

p2(p _ 1)

8nb{1 + s)

3

7(S + 1)

p(2p2 - cp + c)

51

CHAPTER 3. MODELLING 52

The matrices used are partitioned into r blocks of size b2 . The computation cost, entailing a block

multiplication, is proportional to b3 . If b is large, the various transfer costs may be assumed proportional

to b2 . For all of the cache configurations shown in the table and the three described above, it is seen that

the total number of reads is proportional to p3. Since n = bp, the total cost of the reads, T get. is in each

case proportional to p for fixed n. Thus both the single slave time, TI • and minimum parallel time, T x.

are proportional to p, i.e. lib. Even aside from any request overhead associated with transfers it appears

profitable for any particular computation organisation to select the largest possible block size. However.

it is still necessary to select the optimal cache strategy for given matrix size. memory configuration and

primitive costs, and this choice then bounds the block size.

The performance measures for a complete matrix multiplication, i.e. the single slave time and

bounds on minimum parallel time, may now be redefined in terms of the values given in the table.

TI = NItgetl + N2tget2 + N3 tget3

+ p2{tput + p{tmult + tadd))

The bounds on Too corresponding to those defined in (3.13), (3.14) are given below:

3.8.2 Cholesky Factorisation

max {NItgetl + N2tget2 + N3 tget3

2 TI} + P tput 'p2 ,

NItgetl + N2tget2 + N3 tget3

+ p2tput + p{tmult + tadd) .

(3.15)

(3.16)

(3.17)

Section 2.4.8 describes how block oriented Cholesky factorisation may be organised as a collection of

tasks with a separate task for each block. Three alternative schemes were described which differ only

in the way in which synchronisation is achieved:

single-bag Inter task dependencies are implemented through synchronisation flags employed within

shared object methods.

multi-step(l) A separate bag of tasks is defined for each task computing a block on the diagonal and

again for the tasks computing blocks below the diagonal in each block column. The computation

starts with computation of the block at the top left, then those below i~ then the next block along

the diagonal and so on.

multi-step(2) Computation of the block on the diagonal and the one immediately to its left are com­

bined into a single task.

CHAP1ER 3. MODELLING

Some of the more lengthy analyses in thi s section are deferred to appendix A while re ults are impl)

qu oted here.

First the single slave time is deri ved . Since synchronisati on costs are assumed negligible. the time i

the same for each confi guration. However. it is separately deri ved in the single-bag and multi- tep(1)

organi sati ons in Appendi x A. 1. l and A.2 . l.

~(p + 1)(2p + l)tget + ~(p + l)tput

+ ~(P2 - l)(tmult + tsub) + ~ (p - l }tsolve + ptchol (3 .1)

single-bag

When the fac tori sati on is structured using the single-bag organi ati on. the dependency pattern i a

shown in fi gure 3.7. Eac h task is composed of a number of block multipli cati on fo ll owed by a fa -

tori sati on or solve. Where dependencies occur in a task. preceding block multiplicati on are ho\ n b

" X ". Full derivati on o f perfo rmance parameters is given in Appendix A. l .2. Here re ul ts are impl

gO.O

gl.O g 1.1

g2.0 g2 .1 g2 .2

g3 .0 g3 .1 g3 .2 g3.J

Init Di y Fact Diy Fact Diy Fact

Figure 3.7: Dependencies in single-bag organi sation of Cholesky factori sati on.

quoted .

A lower bound on minimum paralle l time may be determined from the hardware band width and

length of the longest task. e ither that computi ng the block at bottom right or the prev iou one computing

CHAPTER 3. MODELLING

the block immediate ly to its left.

lwr{Too } =

max {~(p + 1)(2p + l)tget + ~(p + l)tput ,

2ptget + (p - 1) (tmult + tsub) + tsolve tput

ptget + (p - l)(tmult + tsub) + tchol + tput} ('. 19)

An upper bound may be obtained by pretending that there are barrier a ugge ted by the da ' hed

bars in figure 3.7.

upr {Too } ~(p+ 1)(2p+ l)tget + ~(p+ l)tput

+ (p - l)(tmult + t ub + tsolve) + ptchol

If there is no bandwidth limi ting effect, a lower bound on the time for s la e t pcrform the

computati on is obtai ned by assum ing perfect speedup.

muIti-step(l)

TJ
lwr{Ts } = -

s
(3.2 1)

In the muIti-step(l) organi sati on, the dependency pattern is as shown in 3 . . nlC number hown at

the bottom o f the figure are of the bags of task , and corre pond to the number in figure 2 . (b) . Full

2 3 4 5 6 7

Figure 3 .8: Dependencies in multi-step(1) organisation of Cholesky factorisation .

derivation of performance parameters is given in Appendix A.2.2. Here results are simply qu oted .

A lower bound is obtai ned by summing the tjme spent in all serial steps and the lower bound for

CHAPTER 3. MODELLING 55

each of the parallel steps.

Iwr{Too } =
p p
2"(P + l)tget + 2"(P - l)(tmult + tsub) + ptchol + ptput

+ max {~(p2 - l)tget + ~(P - l)tput ,

PCP + l)tget + ptput + ~(p - l)(tmult + tsub) + ptsolve} (3.22)

An upper bound is obtained by summing the time spent in all serial steps and the upper bound for

each of the parallel steps.

upr{Too} = ~(P+l)(2p+l)tget+~(p+l)tput

+ p(tchol + tsolve) + PCP - l)(tmult + tsub) (3.23)

This structure of Cholesky factorisation is characterised by significant sequential components. For

a small number of slaves a first approximation to the speedup and hence the computation time may be

obtained from Amdahl's law [3]. However there is a reducing number of tasks available during each

successive current computation step and when the number of tasks falls below the number of slaves the

performance attainable during the remaining steps is limited. These latter steps will in fact contain the

longest tasks. Furthermore some of the earlier steps, in which the number of tasks is greatest, are more

likely to be bandwidth limited. So knowing the characteristics of the computation a better approximation

can be made by considering each computation step separately. A lower bound on the time for s slaves

to compute the parallel step corresponding to the jth column derives from the total communications and

the available parallelism.

lwr {Tsolve(j)s} =

max {.~, {2jtgd + tput} , ~ .~, T(i,j), ,T(i,j),}

Then a bound on the time for s slaves can be defined.

P p-l

LT(j,jh + L1wr{Tsolve(j)s} (3.24)

j=l j=l

multi-step(2)

When the factorisation is structured using multiple bags and optimisations are made to try to overlap

sequential tasks, the dependency pattern is as shown in figure 3.9. The numbers at the bottom of the

figure correspond to those in figure 2.8(c).

CHAPTER 3. MODELLING

2 3 4

Figure 3 .9 : Dependencies in muJti-step(2) organi sation of Chole ky fa tori ation.

The single slave time is the same as th at in the muIti-step(l) organi ati on. The upper bound on

minimum parallel time from tha t organisation may be used here too and the lower bound on minimum

parallel time fo r the single-bag organisation.

In the step corresponding to the j th column there is one task computing the block just below the

diagonal and the one on the diagonal in the next block co lumn and p - j tas k computing block lower

in the current block column . A lower bound on the parallel time for s slave deri ve from the longe t

task, total communicati ons and the avai lable paralle li sm. In a s ingle step

lwr {Tstep(j)s }

Summing for the p - 1 columns,

Cache Effects

max t~yJtg" + tput} + (j + I)tg't + tput

~ { T(j+l ,j + lh+ . t T(i,jh } ,
'=1+ 1

T(j+I ,jh+ T (j+ I,j +lh } .

p- I

L lwr {Tstep(j)s}
j=1

(3.25)

Potential performance improvements avai lable through caching are harder to evaluate than fo r matri x

multiplicati on, but a coupl e of example situations are described.

1. No attempt is made to benefi t from block caching. The memory constrain ts are th at a la e needs

to perform an in place multiplication and retai n an accumulator block and al 0 to perform an "in

CHAP7ER 3. MODELLING 57

place" block factorisation. Server memory needs to allow transfer between disk and network.

2. If the slaves compute successive blocks in the same block column, then they all read the block row

which contains the active block on the diagonal. For the jth block column, there are j(I+2(p- j))

total block reads, of which j (p - j) are repeats from the block row containing the active block on

the diagonal. All remaining reads must be from disk. If the appropriate number of blocks may be

accommodated in server file system cache, then it is reasonable that they should be reused.

The complication is that the number of blocks which must be cached changes during the compu­

tation, as the active point moves along the diagonal to the bottom right of the matrix. Firstly the

number of blocks in the row containing this point increases. Furthermore the number of entries

in the corresponding column decreases so that if a constant number of slaves is working on the

computation then eventually they will be working on more than one block column thus necessit­

ating caching of more than one row. However the memory required is certainly not more than 2

full block rows for each slave.

For a given memory size it is quite possible that all required entries in a block row would be

cached during early stages. Later as the computation progresses there may be insufficient space.

3. If the matrix is small enough, then it may all be accommodated in server file system cache and

only the first read of any block accesses disk. If no caching is done by the slaves. then this scenario

provides an upper bound on performance. The number of disk reads is then equal to the number

of unique blocks read, which is ~ (p + I). All remaining reads may be assumed to be from server

cache. The number of such reads is ~(p + 1)(2p + I) - ~(p + I) or ~(P2 - I).

As in the case of matrix multiplication. the performance predictors for Cholesky factorisation may

now be redefined in terms of the values given in the table above. First the single slave time. from (3.18),

is:

Nltgetl + N 2tget2 + N3 tget3

+ E(p2 _ I)(tmult + tsub) + E(p - I)tsolve + ptchol
6 2

+ ~(p + I)tput . (3.26)

As described in section 3.5, the lower bound on minimum parallel time appropriate here is that based

on average task length rather than that based on the longest task length. For the single-bag organisation

the bounds on minimum parallel time are: from (A.7)

lwr{Too }

CHAPTER 3. MODELLING

Table 3.4: Pote~tial. benefit achievable using various strategies for exploiting cache reuse in
Cholesky facton~atlOn by bag of tasks. The quantities N 1• N 2• N3 are the number of block
reads from the .dlfferent level~ ~f the memory hierarchy. respectively slave memory. server
memory and disk. The quantIties mI. m2 are the minimum space required at levels 1 and
2 of the memory hierarchy.

Organisation

1. caching no blocks at
slave or server

2. caching nominally a
block row at server:
s ~ p slaves

3. caching all blocks at
server

and from (3.20)

Number of accesses and space required
Slave memory Server memory Disk

NI N2 N3
ml m2

f(P2 - 1)

16nbs

P Tl }
+2(P + 1)tput , ~(p + 1) .

Nltgetl + N2tget2 + N3tget3

f(P + 1)(2p + 1)

f(P + 1){p + 2)

~(P + 1)

+ (p - 1){tmult + tsub + tsolve) + ptchol

+ ~(p + 1)tput .

Corresponding expressions for the other organisations may be derived in a similar way.

3.9 Summary

S8

(3.27)

(3.28)

While experimental measurements are crucial in justifying any computation structure a model helps

both in interpreting the measured results and in investigation of possible parameter changes. such as

hardware upgrades. For the bag of tasks based structure it is simple to predict single slave time and

bounds on bandwidth limiting performance. A lower bound on parallel time for some number of slaves

less than that which would lead to bandwidth limiting is obtained easily from the single slave time. For

a fault-tolerant computation an important performance measure is the cost of the fault-tolerance. While

the failure free overhead will be measured experimentally. it is easy to identify one part of the likely

cost of recovery. This is the amount of work which must be redone in the event of a task being aborted.

The remaining part which is the cost of detecting the failure is not addressed here but assumed to be

CHAPTER 3. MODELLING 59

small compared to the fonner.

In common with accepted practice, the example matrix computations are expressed in terms of

block operations to improve locality. Expressions are presented for performance indicators for these

computations in tenns of the lower level block operations.

Chapter 4

Implementation

This chapter considers further the implementation of out of core computations structured to e\ploit

changing resources and compares experimental results against performance predicted 0) the analysis

described in the previous chapter for the example computations introduced in chapter 2.

The implementation employs one of the distributed object sy,tems referred to in section 2.3. nallldy

Arjuna [86]. This particular system is implemented as a class library in C~ and supported ()\cr a

number of different versions of UNIX including HP-UX and Linux. Arjuna classes provide support for

persistent state management and concurrency control with shared read and exclusive write lods The

user encapsulates state in classes which can inherit persistence and concurrency control from certain

Arjuna classes. Atomic actions are used for scoping a set of updates. in the same way as tran,adions.

In Arjuna an atomic action is an object which is instantiated and subsequently begun and committed

or ahorted by calling appropriate operations. Distribution transparency is achieved through a separate

underlying layer based on Remote Procedure Call (RPC) [20]. An Arjuna service provides support lor

transparent replication of user objects. The system has been demonstrated over a numocr of alternate

RPC mechanisms.

4.1 Fault-Tolerant Bag of Tasks

A structure which meets the requirements for a fault-tolerant bag of tasks is described in [18] as a

recoverable queue and may be regarded as a possible implementation of a semiqueue [116]. Unlike a

traditional queue which is strictly FIFO, a recoverable queue relaxes the ordering property to suit its

use in a transactional environment. If an element is de queued within a transaction, then that element is

write-locked immediately. but only actually dequeued at the time the transaction commits. Similar U\l"

of recoverable queues with multiple servers in asynchronous transaction processing is de,cnbed in [60).

so only a brief description is given here through an example.

60

CHAPTER 4. IMPLEMENTATION
61

® (~)
1 ------

I ~ I ~ I ~I I I ~ I ~ I I I ~ I ~ I e l I e l

1 1 1

Ca) ® (b) @ (e) @
Figure 4. 1: Operation of a recoverable queue

In fi gure 4 .1 (a), two processes , 8 1 and 8 2 , are shown havi ng dequeued elements e l and e 2 re pe t­

ively from this queue . In the absence of fai lures, say 8 1 completes proces ing e 1 before 8 2 complete

processing e 2, then 8 1 processes e 3. However, fig ure 4. 1 (b) shows 8 1 hav ing fail ed and it parLia ll

completed work aborted, such that e l is unlocked and so avai lable for subsequent dequeue . Figure 4. 1 (cl

shows 8 2 having completed process ing of e 2 now process ing e l.

A slave encloses each queue access and corresponding applicaLion level task execut ion wi thin an

atomic action. This atomic ac ti on guarantees that the slave has free access to the output data corre _

ponding to the task until commit or abort . Any fa ilu re of the slave leads to abort of the ac ti on, uch that

any uncommitted output, together with the correspondi ng deq ueue operati on is recovered , leavi ng the

unfinished task in the queue to be perfo rmed by another slave .

Terminati on of the computati on is detected by testi ng whether the queue is ac tuall y empty or not, a

distinct fro m the conditi on where no element may be deq ueued but the queue i not yet empty.

4.1.1 Implementation

A restricted implementati on of a recoverab le queue has been performed as a co ll ec ti on of pe rsistent

objects in Arjuna. A contai ner class Queue acts as interface to the object which is represented as a link

list of separate ly lockable instances of Link class each with an associated In tance of Element class.

The structure of the compos ite object is indi cated in fig ure 4 .2 .

The dequeue operation entails searching along the linked list for an element which is not locked

and locking and returning that one. To avoid searching from the start of the li st each time, a poi nter is

maintai ned in the server process to the fi rst element which is locked. While correctl y supportin g isolated

enqueue and dequeue operati ons, thi s approach has the restricti on that it cannot support a si ngle client

nestin g multiple dequeue operations within the scope of a si ngle atomic action , si nce there is no way to

update this marker. However, such a fac ility is not req uired in the applications developed here.

A preferable implementation would allow update of the head pointer through nonstandard tran -

action techn iques such as coloured actions [117] . Such an implementation would not uffer from the

CHAPTER 4. IMPLEMENTATION 62

data data

Work Work _-

Element Element

head .-
• • element element -next next ~ ne.xr

Link Link Link ,
marker • :

tail

next _et------------------------------------J
Link

Figure 4 .2: Possible implementati on o f a recoverable queue. Each box i a eparately lockab le object.

performance penalty of having to start a search from the ori gin al hea.d of queue pointer after er er

failure. Furthermore, it might be poss ible to avo id makin g each link a separately lockabl e object and

instead include them all in a single lockable objec t; the write lock required for update \ ould onl y be

held for a very short time. This would ease the constructi on o f altern ati ve queue lructure. uch

a priority queue . Each element must remai n separately lockable ince it i locked by a eparate lave

throughout execution of the corresponding task.

4.1.2 Performance

Since the state of the queue res ides on di sk, the cost of any queue operati on i affec ted by how much

of this state is present in file system cache at the time a request is made. Table 4.1 Ii t the elap ed

time of 100 requests in a number of situations. Initi ally an empty queue is created and then the time

taken to enqueue \00 entries, each enqueue as a separate top level ac ti on. The entry type is a pai r of

integers as used in the applications considered elsewhere. The cost of dequeuing entries i measured

both immediately after the entries have been enqueued and also after an attempt has been made to fl u h

file system cash.

The benefi t gained in dequeue operati ons when the whole queue is cached seems to be quite large ,

but in the applicati ons, the queue res ides on the same machine as the mai n object server. It eem likely

that space demanded by large object states wi ll flu sh the queue state from file system cache rapidly.

The measurements then suggest a cost of about 0.4 second per enqueue and 0.07 second per dequeue

CHAPTER 4. IMPLEMENTATION

Table 4.1: Measured cost of recoverable queue requests. All times are in seconds and are
for 100 requests. In the case of the HP71 0 and Pentium machines the internal disk is used
but in the case of the HP730 machine the external disk is used.

Operation Machine
HP710 HP730 Pentium

enqueue 49 38 20
dequeue 11 7 7.2
dequeue (cached) 7.5 4.5 4.2

63

operation on the HP730 configuration. This is quite small in the context of the applications considered.

For instance in the case of the relatively small multiplication of two 3000 element square matrices. the

minimum parallel execution time measured is about 1300 seconds. If the cost of queue operations in

the application setting is as measured then the computation could be partitioned into 100 tasks and the

cost of all enqueues and dequeues would be less than 4 %. In the setting of a complete application the

variability of the measurement is quite high, partly due to external interference in a general purpose

network so it is not easy to make an accurate measurement of the cost of fault-tolerance. However. it

is possible to contain an application within a single machine and compare execution time for such runs

with and without a queue. Figure 4.3 shows such a comparison for multiplication of two 3000 element

square matrices on a HP730. The startup cost of the fault-tolerance provision appears to be roughly

400
Total --

4000

----------------- '"
In queue creation -------

os
... " 300
EO 3000 il .= --- ~~ "' .. I"''''
:!!'" "",

"'''' u C o.C
§ 8 200 ..s§ 2000 ~ " _

" .. " .. --"i!~ ~- --
~ ---

1000 -; 100 -
" -"- ---Fault-tolerant -- --Non fault-tolerant ------- '

0 0
0 100 200 300 400 0 100 200 300 400

Number of tasks Number of tasks

Figure 4.3: Performance of a local fault-tolerant computation

0.5 seconds per task, and the overhead during computation about 0.1-0.15 seconds per task. Both of

these measurements are a little higher than the values derived from measurements of queue operations

in isolation.

In a parallel execution, the startup cost is unchanged, but the runtime overhead might be expected

to vary with the number of slaves. The queue is locked at rather fine granularity and accessed through a

CHAPTER 4. IMPLEMENTATION

separate server process by each client, so a degree of parallelism is anticipated between two concurrent

queue operations. This would suggest that the overall cost of employing the queue should fall as the

number of slaves is increased. Such an effect might be countered by costs associated with an increasing

number of server processors, including context switches. However, another effect is that as the number

of concurrent slaves is increased, so too is the expected number of links each dequeue operation must

search along the queue to find the next free entry. For these reasons analysis of queue performance

in a general parallel setting is not attempted here. Instead it is left to measurement to show that for a

reasonable number of slaves and for appropriate granularity the queue access cost can be small.

4.2 Synchronisation

If a computation decomposes into a set of tasks which have inter task dependencies and yet is to be

implemented with a single queue, then a synchronisation mechanism extra to the queue is required. The

requirement is for a task to be blocked until some prior task has completed and produced output. In a

correct execution, static ordering of tasks ensures that a needed object will at least be in the process of

being computed when a slave computing a dependent object attempts to access it. However. if the two

slaves begin their tasks at about the same time then a race condition arises since there is no mechanism

to ensure that the output of the task depended upon is actually locked before the other slave tries to

access it. Furthermore, if a slave fails then a dependent slave may attempt to access the output of the

aborted task which is neither locked nor ready.

The approach employed here is to allocate a separate object, a recoverable integer. to indicate status

of computation objects. Concurrent access to such an integer is controlled through locks obtained within

the scope of atomic actions. Updating the appropriate integer within the same atomic action that writes

the corresponding state ensures that the computation object remains unavailable in the event of failure

of the slave creating it. A fault-tolerant implementation is achieved by making the state of the integer

persistent.

In any parallel application, deadlock may arise due to faulty implementation. However if individual

process failures are tolerated then any process effectively waiting for completion of such a failed task

will block. The queue is ordered so that the first slave to seek work following a failure will take the

aborted job. However, if all slaves apart from the failed one are blocked, the application stalls. Rather

than including some form of deadlock detection, a simple expedient adopted here is to ensure that slaves

do not wait indefinitely. Instead a slave waits only for some application specific interval for any object

flag, before aborting its current task and returning to seek work from the queue. This interval should

be larger than any period which the slave might genuinely have to wait for, essentially greater than the

duration of any task in this application. If a slave incurs such a timeout and then obtains the same task

again when going back to the queue, it would be reasonable to increase the timeout. but a collection of

CHAPTER 4. IMPLEMENTATION
65

slaves all waiting for a single other might each fetch a different task if they all timed out at about the

same time.

4.3 Data Transport

A computation is performed in parallel primarily for an improvement in execution time, yet many

aspects of distributed systems technology tend to work against this aim, either to provide a safe and

easy to use programming environment or to support working in a heterogeneous environment.

At the operating system level, concern for protection between multiple users leads to data in transmit

between machines being copied possibly mUltiple times. Concern regarding this overhead has often

been expressed before and many schemes have been proposed to reduce the number of data copies.

A more recent concern regards latency in communication, being signified by the time to transmit a

small message rather than the bulk transmission rate for large transmissions. Again various schemes are

proposed to reduce the latency.

There are some computations which may be run in parallel with very low communications cost

including experiments aimed at harnessing the power of vast numbers of machines across the inter­

net [99, 28]. In such a computation, support for heterogeneity is of considerable importance and the

inevitable increase in the communication cost is tolerable because the total volume of communications

is low. However if the cost of communications is much more significant, then it is more attractive to

optimise data transfers for the assumption of homogeneity.

In distributed systems a common paradigm for communication is RPC [20], which achieves through

automatically generated stub codes a user interface to a remote function which is close to a local pro­

cedure call. The stub code at one end of the communication path takes care of packing the parameters

into a buffer from which they can be unpacked at the other end. Heterogeneity may be supported by

converting data items as they are packed into some neutral format.

No attempt is made here to implement optimisations at the operating system level. However, the

distributed system employed does allow the choice to be made at application level whether or not het­

erogeneity is supported and if heterogeneity is not to be supported then saving within the distribution

layer is maximum. An application object may define its own marshalling operations. In extreme it may

simply redefine the buffer to be a piece of memory in its own data space. This approach allows raw

transfer of a single block of memory and is employed in this work.

For complete generality, it would be possible for a user to be able to include a number of such raw

blocks together with higher level data which is marshalled in the usual way within a single call. This

may be accomplished by linking the raw data blocks into a list structure separate from but associated

with the main buffer. At a lower level where system 110 calls are made, scatter gather facilities can be

exploited.

CHAPTER 4. IMPLEMENTATION
66

4.4 Shared Objects

In general to support transfers of many small messages it is desirable to maintain a connection through

the period of transfer. The application program actions of object construction. and destruction translate

to initiation and termination of a server process which manages the state on the remote machine. The

RPC supports a TCP transport option where a connection to a server is established when the corres­

ponding object is initiated and maintained until termination of the object.

However, when making bulk transfers over a shared medium. it is desirable to arbitrate use of that

medium. The RPC allows reuse of an existing server for situations where the server does not need to

maintain state. In the current single threaded implementation. the object server can be implemented in

this way provided a separate connection is established for each call to the server. When data transfers

are large the cost of these extra connections is tolerable.

It is possible to increase throughput to the shared object store in many ways. Since the object store

is layered above a standard file system one possibility is to employ a proprietary RAID system and

stripe files across a number of disks within a single node. Each object store request is then translated

to multiple concurrent disk operations, so that a gain is made in the presence of only a single slave.

Alternative approaches which exploit parallelism at the granularity of whole requests. make a benefit

only when multiple slaves are making concurrent requests.

One alternative is to perform the partitioning within a node at the level of objects. This may be

achieved by creating separate object stores on a number of disks. The simplest implementation es­

tablishes a separate server process for each store, but in the environment of a shared communications

medium, the desired arbitration of that medium achieved by the single process is lost. It is possible

however to employ multiple threads to achieve the parallelism. but with a single thread serving the mul­

tiple input streams. This option may entail a greater memory usage than the RAID option which seeks

parallelism within a single request.

The highest level at which parallelism may be obtained in object store access is the machine level.

The objects are distributed between multiple machines and managed by a separate object store server

on each machine. In this case, it is necessary to ensure good balance of requests over the separate

machines.

4.4.1 Management of Large Objects

In common with [80] a state based recovery system is employed in Arjuna. When an object is modified

under the control of atomic actions it is necessary to retain multiple state copies in order to support

recovery in the event of such actions aborting. For optimal performance in recovery it is desirable to

retain these copies in primary memory, but in the work described here these object states can be very

large; indeed performance of the matrix computations is best when all physical memory is employed to

CHAP1ER 4. IMPLEMENTATION
67

support the largest possible block size. There are however various possible strategies for locating these

copies.

When an object is updated it is necessary to preserve a snapshot of the state prior to the update to

support eventual abort. However on abort of a top level action the state of each object in the action

should revert to that before the action started. This is precisely the state which is current for that object

on disk throughout the action, so that no volatile state snapshot need be retained through a top level

action. While it is necessary to retain separate snapshots through a nested action. the amount of memory

retained can be conveniently reduced by updating different objects within different nested actions. By

distinguishing between overwrite and update operations, e.g. through different locks. it is possible to

avoid an unnecessary initial read of a large state.

When an object is modified within an atomic action. atomicity requires preservation of the newest

state of that object in a tentative form up till top level commit. In general there is nothing to stop an

application making further updates to any such modified object right up till top level commit. though in

practice it may be the case that a series of different objects are updated in sequence. In current Arjuna as

in [80] the tentative state of an object is that of the memory resident copy of the object and is wrillen to

permanent storage only during top level commit processing. If a number of large objects are updated in

the same transaction then it is feasible for memory to be used up leading to undesirable paging. In (80)

the possibility of writing state to permanent storage at nested action commit (early writing) is considered

as a way of supporting more graceful recovery from failure, and as a simplified form of atomic action

checkpointing. However it is there noted that in either case it is necessary to store rather more than

simply the object state in order to allow atomic action recovery from that point. Clearly if object state

is written to disk at nested action commit and the same object is modified in a number of nested actions

within the same top level atomic action then the cost of repeated writes is undesirable. Here however,

the application need is to achieve a single early transfer of current state to disk, all be it in a tentative

form during the course of a top level action. If this state is not to act as a checkpoint then the issue of

saving atomic action context does not arise so it is only necessary to identify a suitable control which is

available to the application. Clearly enclosing the object update in a nested top level action achieves the

write to permanent storage, but such an action unnecessarily compromises serialisability.

In Arjuna a persistent object is represented by a server in order that operations of that object may

be called. This active representation is created at the time of constructor call and removed at the time

of destructor call. The call to the object destructor might be a suitable control by which the user can

achieve the desired early write. If the object is not locked in the scope of a nested atomic action then

the only possible rollback must be to the state current just before the start of the current top level action

so that the only actions which need be taken with regard to this object are to either commit the current

tentative state or to revert to the latest permanent state on disk. If at the time of the call to the destructor

the object is locked within the scope of a nested action then it may be necessary to revert to the state

CHAPTER 4. IMPLEMENTATION 68

existing before the start of that nested action. In this case writing the tentative state might be deferred

till resolution of the nested action. Similarly if a copy of state current just before the start of the current

top level action is preserved in memory at all during that action it could be removed at the point of

destructor call. In the example computations studied here there is only one instance where two blocks

are written in the same task; in one of the implementations of Cholesky factorisation.

4.5 Atomicity

In database terms, the slave is coordinator for the atomic action and the machines hosting shared objects

are participants. The coordinator has responsibility for ensuring consistency between distributed state

which is updated during the course of an atomic action. Through the well known two phase commit pro­

tocol [60] the coordinator can ensure that all distributed state is correctly updated eventually regardless

of intervening participant failures. In this work however it is important to be able to tolerate failure of

the coordinator, i.e. slave. In a simple database system tolerance to coordinator failure can be achieved

through the coordinator writing locally a persistent record called an intentions list which details the

updates to be committed. In the event of coordinator failure it is then possible to ensure that eventual

commit is consistent with notification to a human operator, but such failure can lead to "blocking" such

that the database items locked during that transaction remain unavailable until the failed coordinator is

restored. The general problem of tolerating coordinator failure without the need for such blocking is

addressed by nonblocking commit protocols [10]. Here however the application characteristics can be

exploited so as to minimise the cost of tolerating coordinator failure without blocking. In the bag of

tasks structure the user is concerned only with the outcome of the overall computation, not individual

actions. A simple solution then is to always abort any incomplete work in the event of a slave failure

and let an alternative slave redo the corresponding task.

The correctness requirement is that each task description must remain in the bag until corresponding

work is completed. Assuming each task entails computing, from read only parameters, a unique output

and then writing it, idempotency is guaranteed and correctness may be ensured by careful ordering of

updates during commit processing. It is sufficient to commit objects in the reverse of the order in which

they were touched within the action. By contrast in the case of the asynchronous transaction processing

referred to earlier, the use of a response queue to reliably inform a human operator of completion status

of each queued transaction ensures that operations are not idempotent. In such a case it is possible to

use sequence numbers to avoid duplication of queue entries [18]. The RPC subsystem is responsible for

detecting orphan processes and terminating them cleanly [85].

If dependencies exist between tasks of a single bag of tasks or if operations are not idempotent the

situation is less straight forward .

• In the simplest case, an object is not depended upon and a write to it can therefore be completed

CHAPTER 4. IMPLEMENTATION
69

at any time prior to task completion, i.e. completion of the dequeue operation.

• Alternatively, an object may be depended upon by a task other than that which created it. In this

case a flag may be associated with the object and any write to the object must be completed no

later than update of the flag. The flag update itself is idempotent and must be completed no later

than task completion, i.e. completion of the dequeue operation.

• Finally, an object may be written within a task which is not idempotent. An example of a compu­

tation where such tasks can arise is an in place factorisation. In this particular example an output

object is depended upon by tasks other than that which created it, so it will have an associated

synchronisation flag. It is then necessary that completion of a write to the object must be consist­

ent with update to the corresponding flag. To avoid need for such strong consistency requirement,

a slave can avoid a repeat execution by explicitly testing the flag status as it begins a task. The

consistency requirement is then reduced such that it can be satisfied by ordering the updates as in

the previous case.

The same explicit test on a flag object can be used to ensure correctness where an object is not

depended upon, but is not strictly necessary. It is for instance sufficient for the required status to

be represented within the object itself.

Overall, it is desirable to achieve a close integration between an object and its associated status flag.

It is typically convenient to structure a computation such that a single object is updated in each task,

and therefore each separate top level action. However, it is possible to update multiple objects within

a single task. If each update is idempotent then the requirement is that the queue be updated last and

that an associated status flag be updated after the corresponding object. If some object update is not

idempotent then it must be consistent with the corresponding status flag update. unless a specific check

is made as described earlier.

In the case of the object store used in this work, it is easy to be certain of what is an update and what

is an overwrite. In general the same approach can be used, but only through reliance on infonnation

concerning the particular object store used.

One possible way of overcoming the difficulties associated with operations which are not idempotent

is to always transfer commit to a particular machine such as that hosting the recoverable queue.

4.6 Experiments

The three applications introduced in section 2.4.8 are implemented. Preliminary results of these experi­

ments were presented in [101]. The first is a port of a publicly available ray tracing package which might

easily be implemented, at least without provision for fault-tolerance, over many alternative infrastruc­

tures. The remaining applications are dense matrix computations, matrix multiplication and Cholesky

CHAP1ER 4. IMPLEMENTATION
70

factorisation. These both manipulate large amounts of data and may therefore exceed aggregate memory

capacity.

4.6.1 Configurations

A major part of the university's general purpose computing provision comprises clusters of HP71 0 ma­

chines connected by separate 10 Mbitls ethernet segments, the clusters being connected via routers to a

common link. A few of these clusters have also one or two HP730 machines. The HP71 0 and HP730 are

both based on the PA-7000 processor but are clocked at differing speeds of 50 and 66 MHz respectively.

The installed machines all run HP-UX 9.01 and have 32 and 64 Mbytes of physical memory. 64 and

256 Kbytes of cache memory respectively.

A number of Viglen genie PCI P5/l33 machines having 32 Mbytes main memory and 256 Kbytes

secondary cache are installed in an experimental laboratory and connected by two alternative networks.

In the first case, connection is via Fast Etherlink (PCI) Adaptor from 3Com to LinkBuilder FMS 100

Stackable Fast Ethernet Hub from 3Com. There are two hub units giving a total of 24 ports. Alternative

connection is via ENI55p-MF ATM Adaptors from Efficient Networks to a single ForeRunner ASX-

200WG ATM switch from Fore systems. The switch is configured with 16 155 Mbitls ports. Hard disks

are connected via fast SCSI 2 controllers. Most of the machines have I Gbyte IBM Pegasus disks on

which a 256 Mbyte scratch partition is defined. Two of the machines have in addition a pair each of

MAXTOR MXT-540-SL disks. All the machines are running Linux with kernel version 2.0.23.

Three experimental configurations are employed:

UP The first experiments attempt to employ the general purpose computing facility. In the case of the

ray tracing application, the data manipulated is small so that the object store can be located in

the rather small temporary space available on one of the HP710 workstations. However for the

matrix computations, sufficient temporary space for even moderate size examples exists only on

the HP730 workstations. In the matrix experiments reported all objects are co-located on a HP730

machine.

fast In a relatively small scale experiment using the Pentium machines, the object store is located on

the scratch partition of the IBM disk connected to a single machine and communications between

slaves and object store is exclusively via the fast ethernet.

ATM In the third configuration. which also uses the Pentium machines, the object store is distributed

between the four MAXTOR disks, providing an aggregate 2 Gbytes of storage. On each of the

two machines hosting objects, the md [121] software is used to manage the two local disks as a

RAlD-O. Communications between slaves and object store is in this case via the ATM network.

CHAPTER 4. IMPLEMENTATION 71

A master process is employed directly for computation start up and shutdown, but not actively during

the computation. In these experiments, no object is replicated.

Since the HP workstations form part of the university's general purpose computing provision, access

is never exclusive. Experiments are performed during off-peak hours within any of the few clusters

which is mostly free, and results from multiple runs averaged. By contrast while there is some teaching

use of the Pentium based cluster, it is possible to obtain near exclusive access to the cluster for periods.

4.7 Preliminary Results

Figure 4.4 shows one of the example scene descriptions included in the rayshade distribution. This

scene is employed in the experiments described here. Version 3 of rayshade was ported to Linda at

/*
* This file is the result of feeding "balls" from Eric Haines'
* SPD through nff2shade.awk and then hand-tweaking things.

*/
5 maxdepth 3

eyep 2.1 1.3 1.7
lookp 0 0 0
up 0 0 1
fov 45

10 screen 256 256
background 0.078 0.361 0.753
surface s1 0.15 0.1 0.045 1. 0.75 0.33 O. O. O. O. O. O. O.
plane s1 0 0 1 0 0 -.5
surface s2 0.035 0.0325 0.025 0.5 0.45 0.35 0.8 0.8 0.8 3. 0.5 O. O.

15 sphere s2 0.5 0 0 0 texture bump 0.3 scale 0.04 0.04 0.04
sphere s2 0.166667 0.272166 0.272166 0.544331
sphere s2 0.166667 0.643951 0.172546 0
sphere s2 0.166667 0.172546 0.643951 0
sphere s2 0.166667 -0.371785 0.0996195 0.544331

20 sphere s2 0.166667 -0.471405 0.471405 0
sphere s2 0.166667 -0.643951 -0.172546 0
sphere s2 0.166667 0.0996195 -0.371785 0.544331
sphere s2 0.166667 -0.172546 -0.643951 0
sphere s2 0.166667 0.471405 -0.471405 0

25 light 0.288675 point 4 3 2
light 0.288675 point 1 -4 4
light 0.288675 point -3 1 5

Figure 4.4: Example ray tracing scene Description "balls".

Yale and a small number ofHP7lO workstations here have support for Network Linda version 2.4.5, so ,

it is possible to compare the performance of the fault-tolerant implementation with the Linda version in

the same configuration.

CHAP7ER 4. IMPLEMENTATION

Figure 4 .5 shows the measured parallel performance of the ray traci no computau' f
o on or an output

image size of 512
2

both with and without fau lt- tolerance and also sho~ s a compari on \\ ith the Linda

version.

1500 ,---,----,----,--_-,
fault-tolerant -­

non fault-t olerant ---- -- -

2

o '---'-__ -'-__ -'-__ -..1

2 4 6 8
Number of slaves

1500 ,---,----, ___ ,--__ -,

1000

500

fault-tolernnt -­
Net" ork undo -

O '---'-----1. __ --' __ ---.!

.j 6
umber of l3\es

Figure 4 .5: Measured performance of parall e l ray trace of example image "ball .. at Ize
512 x 512 pixels, using task sizes 2 and 8, and showing the co t o f fault-t olerance.

The compari son with the Linda vers ion is not completely fair in th at the Linda ver ion \ a de ig ncd

to employ the somewhat small task size of I row and th i remains unalte red . However. communicati on

cost in the Linda version is cons iderab ly lower than in the fault-tolerant ver ion where output i to di k.

The intent is to demonstrate that the im plementation is not totall y unrea on able in term of abso lute

perform ance so long as the granularity is appropriate.

Figures 4.6 and 4.7 show the performan ce of the fault-to lerant multi plicati on of two 30002 matri ces

and Cholesky factori sation of a 48002 matri x

4.7.1 Performance Summary

Table 4.2 summarises the performance of the paralle l implemen tati ons meas ured in the HP config ura­

ti on. The table shows for each application a measure of the performance achieved and estimate of the

average recovery time. The table also indicates the total data: input (input), written (put) and read (get)

co ll ectively by slaves during the computation.

For all three experiments it is seen that increasi ng the task size improves the perform ance. In the

matr ix computations, the increase in to tal data read with decreas ing block size seems to be the over­

whelming effect. In the ray tracing example little data is read. but at 25 Kbyte and 98 Kbyte the task

output is not so large as to be bandwidth limited and so the larger task i cheaper proporti onally.

Notin g that the data forma t conversion fo r ray traci ng mentioned earlier takes about 23 and 13 e -

onds respective ly for the task si zes of 2 and 8, the performance of thi s eas application appear prom-

CHAPTER 4. IMPLEMENTATIO

(a) HP
5000

4000
~

"'2
(5

" 3000 !
'J

.§
300

-c 2000
It.
a.
" iii 750

1000

0
2 4 6

Number of slaves

(b) fasl
3000 '--'--~-'--~--T-~--~

1000

8 2

fauh·lOlerani -­
non fauh·loleranl -------

750

~ 6
umber of sla \ '"

Figure 4.6: Measured performance of fault-toleran t parall el matri x multipli aLio n of 3000
element square matrices, wi th block sizes 300 and 750, in the HP and fast configuration .

4000

~ 3000
-0

" 0
<.)

~
" 2000 ·E
-c
~
a.
" iii 1000

<a) HP

-- 300

600 .. _---

2 4 6
Number of slaves

8

fauh-lOleram -­
non fauh-Ioleranl -------

(b) rasl

300

600

~ 6
umber of 513\ es

Figure 4.7: Measured performance of fault-tolerant parallel Cholesky factorisation of a
4800 e lement square matrix , with block sizes 300 and 600, in the HP and fast configura-

tions.

3

CHAPTER 4. IMPLEMENTATION

ising.

~able 4.2: Me~ured perfonnance of fault-tolerant parallel applications in UP configura­
tIOn. Element SIzes are 24 bytes for ray tracing and 8 bytes for the matrix computations.

Ray tracing Matrix Cholesky
(5122) multiplication factorisation

(30002) (48002)
Task size 2x512 8x512 3002 7502 3002 6002

(elements)
Number of tasks 256 64 100 16 136 36
Data input small 144 98 104
(Mbyte) get small 1440 576 1077 588

put 6.3 72 98 104
Single slave time 1502 1237 4214 3015 3559 2613
(seconds)
Minimum time 519 213 2248 937 1887 1106
(seconds)
110 (Mbyte/s) 0.01 0.03 0.67 0.69 0.62 0.63
Average recovery 3.0 9.9 22 92 13 36
(seconds)
Perfonnance absolute speedup maximum execution rate (Mftop/s)

2.2 5.3 24 58 20 33

74

In this environment the absolute perfonnance of the matrix computations is not exciting, though

the out of core implementations do exceed the peak perfonnance of the lower level in core operations

measured at about 33 Mftop/s for matrix multiplication and 25 Mftop/s for Cholesky factorisation.

Table 4.3 summarises the measured perfonnance of parallel implementations of the matrix computations

in the fast configuration. The perfonnance is seen to be rather better than that observed in the HP

configuration, but the observations regarding block size still apply.

Figures 4.6 and 4.7 show that the cost of fault-tolerance is quite low in both configurations. For

this scale of computation and particularly in the fast configuration the overall runtime is quite small.

However, the structure is intended to scale to larger problems where the total runtime would be much

greater. Overall the experiment suggests that for sufficiently large granularity the cost of fault-tolerance

should be small.

4.8 Validation

This section describes how the perfonnance model introduced in chapter 3 is calibrated and validated

through measurements in a number of modest experimental configurations. This is intended to support

the use of the model in extrapolating to various alternative configurations in the next chapter. In the case

of the matrix computations a small number of low level functions are readily benchmarked to allow

CHAPTER 4. IMPLEMENTATION

Table 4.3: Measured performance of fault-tolerant parallel applications in fast configuration.

Application

Task size (elements)
Number of tasks

Data (Mbyte) input
get
put

Single slave time
(seconds)
Minimum time
(seconds)
110 (Mbyte/s)
Average recovery
(seconds)
Performance (Mftop/s)

Matrix
multiplication

(30002)

3002 7502

100 16
144

1440 576
72

2984 2390

986 386

1.5 1.7
15 75

55 140

Cholesky
factorisation

(48002)

3002 6002

136 36
98 104

1077 588
98 104

2539 2071

925 543

1.3 1.3
9 29

40 68

75

use of the specific models developed for these computations in chapter 3. However, the ray tracing

application is largely existing code used in "black box" fashion. Furthermore the amount of computation

involved depends on the particular scene, varying within the scene depending on the number of objects

in that region. It is still possible to make some use of the basic model by first estimating average values

for variable parameters.

4.8.1 Benchmarks

Before actual values can be derived for the performance estimates, it is necessary to measure the various

primitive operation times, tadd, tsub, etc. This section describes these primitive operations and the

benchmark measurements. The operations themselves are intended to be reasonable given the systems

used, rather than necessarily optimal.

Computation

The primitive computations, i.e. multiplication, addition etc. are implemented as members of a C++

template class, Matrix, instantiated for double. Instances of this class are blocks of the matrices which

are operands of the whole computation. The member functions I described are themselves block struc­

tured, the lower level blocks being referred to as sub-blocks, so as to increase locality and thereby gain

from processor caching. The operator*=() function computes each block row of the product in a tem-

I The implementation of the member functions is based on a source for a matrix multiplication function publicly available via
ftp in Netlib, due to T. Maeno, Tokyo Institute of Technology

CHAPTER 4. IMPLEMENTATION
6

porary space before overwriting the so urce matrix . In thi s way, it is only nece ary to hold a little o \er

three blocks in memory in order to compute a bl ock do t product.

Figure 4 .8 shows how the matri x mUltiplication is tuned to the HP7l 0 machine . It is een that there

~

C5..
0

<::

~
" e
" .g
c
" ><

UJ

40

30

20

10

50 --
250 ----- --
500

fC;~::~:;-'~: : --
("'. 0:

...
i
\ .
i'
\.~':.-.: -:.~: ~~~-..:

o ~~~-L~-L~~~L-~~~
o 20 40 60 0 100 120 140

Matri.x sub- block wIdth (elements)

Figure 4 .8: Tuning the in core matrix multiplicati on primitive to the HP71 O. Separate plOLS
are shown for different matrix sizes . The values plotted in the graph are a erage of at lea t 4
measurements . The fl oatin g point executi on count for multiplication of two square matrice
of size n is assumed to be 2n3 .

is a reasonably consistent peak of abo ut 29 Mflop/s in the performance of matrix multipli ati on ~ r lar­

ger matrix s izes, at a sub-block s ize of about 28 and consequentl y, the ub-block ize i et to thi alue.

or the matri x width if small er. The res ulting performance is plotted agains t matrix iLe in figure 4.9(a)

and is seen to be fairly constant apart from a noticeab le peak for mall data ize. Corre ponding mea -

urements for the same code on the HP730 show a peak in performance of 43 Mflop/ for the arne block

size which is a lso fairly constant for a large range of matri x izes, and a maximum perform ance for

smaller matrix sizes at least approachin g 47 Mflop/s. Also shown in figure 4.9 are the other primitive

matri x operations employed, and similar measurements made on a 133 MHz Pentium al 0 with the arne

code, but employ ing the slightly smaller block size of 24.

O f the othe r primitive opera ti ons, the Cholesky factorisation and solve operation are tuned in the

same way as matrix multiplication. However, no attempt is made to improve performance of the block

addition or subtraction operations above that of the simplest loop. There is little to gain from locali sati on

in these operations since there is onl y one floating point operation to perform per matrix element. The

resulting performance of these latter two operati ons is seen to be quite inferior, at roughly 1.6 Mflop/ on

the HP71 0 and 4.5 Mflop/s on the Pentium. However, the cost of either is of order n 2 fl op. as compared

to n 3 for the other operations. Using the rates from the graph. it i seen that the cost of a block addition

is under 5% of that for a block multiplication fo r a block size of 200, and a lower percentage for larger

block sizes . In this work , these primjtives are used in two large scale computation in both of which the

CHAPTER 4. IMPLEMENTATION

(a) HP71 0
4O r--~----'--~----,

--, ----- -_._._------------
O '---~---L--~_-l

o SOO 1000
Matrix Width (eleme nts)

(h) Penoum
4O r--~----,---~-.,

30

" ~? -
:.:
1

10 ~ ,-. -', ' ..
--------:1

O '---~--L--~_~

Operation
mulopl} - ­

sohe -------
tholes ')

add -
subtract - - - -

o SOO 1000
Matri x Wldlh (elements)

Figure 4.9: Measured performance of in core matrix primiti e on the HP71 0 and Pentium
machines . The values plotted in the graph are average of at least 4 measuremen . F r
matrix size n the floating point execution count a sumed are a follow: for multipli ation

2n3
, for solve n 3 , for Cholesky fac tori sati on ~3 , for addition and subtraction n 2

number of block additi ons or subtractio ns is matched by the number of block multipli cation .

For compari son, the performance of a HP730 machine running the Linpack benchmark f r malri ce

of width 1000, with the code tuned to the machine, is reported as 49 Mflop/s in [43). A si ngle preci i n

Linpack measurement of 14.7 Mflop/s i presented in (62) for a 66 MHz Pentium mach ine with the ame

cache configuration as in the machines used here. Overall , it is claimed th at the primiti e a u ed are

of fairly reali stic performance, though it is not claimed th at no further performance impro ement may

be gained , ei ther through further levels of blocking or fa ter a lgorithm . Ultimately rather than tuning by

hand , it would be preferable to employ library primitives, such as from Lapack [5J.

Data Access

Figure 4.10 compares the performance of local data access operations on HP machine and for the one

disk type on Pentium machines.

The operations measured are; read file from fil e system cache, write new file data to , and read

file from locally mounted di sk. These basic operati ons correspond to the object level accesses which

are made in the applicati on. A technical specification obtained for the IBM disk quote a minimum

sustained data rate of 3.2 Mbyte/s.

The bandwidth avai lable in a single ATM link greatly exceeds that available to a si ngle di k.

However, two of the Pentium machines have a pair of MAXTOR MXT-540-SL disks, so to make beller

use of the available link band width in larger scale experiments , data is stri ped over such a pair of di k .

The pair of di sks are configured as RAID-O, using a software package md [121) freely a ai lable for

Linux. This package implements a p eudo device redi recti ng VO req uests from the file y tem la er to

CHAP7ER 4. IMPLEMENTATION

~~..-..,~Cache read

__ ~ ..;~ . __ ,....-.-4 ... ___ _ • .-::-____________ _____ ____ ____________ _

Dis~/e~,., __ " .. _ , ... :: ::.::.:: .. ::::::::.::: .
... :: .--

0.1

0.0 1 0.1 I 10
File size (Megabytes)

MaduDe
Iype

hp 30-­
hp 10 - --­

p:

Figure 4. 10: Measured performance of data acce operations. Both axe are logarithmic.
The values plotted in the graph are average of at least 3 measurement . A block of width b
corresponds to a file size of 8b2 by tes .

multipl e individual disk devices . The system support a linear mode which allow imple concatena ti on

of multipl e disks with no redu ndancy and no performance gain and al 0 RA1D leve l 0 and I. Fio­

ure 4. 11 shows benchmark measurements of various combinations of MAXTOR di k and compare

these with the IBM disk .

The MAXTOR disk exhibits different behaviour from either the HP or IBM disk in that the co t of

writes is much greater than that of reads. It is specul ated that the disk implements a buffered read ahead

protocol , though supportin g documentation has not ye t been located. The maximum read throughput

from a single disk is 3.8 Mbyte/s which is rather better th an from the IBM di k. A technica l pecific­

ation obtai ned for the MAXTOR disk quotes a disk tran fer rate of between 2. and 4.0 Mbytel . The

performance of wri tes is somewhat inferior, reaching a maximum of about 2.2 Mbyte/s.

Connecting two disks in linear mode yields effectively a single disk which has the same performance

but twice the capac ity. The theoretical bandwidth expec ted over a fast SCSI 1I link is 10 Mbytel . So

ideall y the throughput to and fro m a RAID-O pair should be double that for a single disk. In practice the

RAID configuration gives no performance improvement for write operations but improves the maximum

read perfom1a nce to about 5.5 Mbyte/s .

Communication

Figure 4. 12 shows how the transfer rate varies with data size over the three network configuration and

for the two request types put and get.

CHAP7ER 4. IMPLEMENTATION

4

2

0.01 0.1

, ---

, / __ i

Read

Write

configurati on
md RAID-O with two MAXTOR disks

md linear wIth two MAXTOR disks
ingle MAXTOR dIsk

Single IBM di sk

10
File size (Megabytes)

Figure 4. 1 I : Measured perfo nnance of the software RAID sys tem using vari ou di k configuratio n .

~
;;,
.0

~
" ;;

c.:

~
c:

" I-

(a) get requests
10

6

4

2)l~ r
,..1 fW!····· .. ·· ··· "--"-""--'- -.-

o l.:~':':" _" ~- '~' ..L_~L-_......J._~....J

0.001 0.01 0.1 I 10
Data Size (Mbyte)

(b) put requestS

8

6

4

2

0.01 0.1 1
Data Size (Mbyte)

10

Confi gurauon
ATM

fas t
HP

Figure 4.12: measured perfonnance of communications (a) get and (b) put transfers for the

three experimental configurations employed.

9

CHAPTER 4. IMPLEMENTATION
80

The operation timed is equivalent to a single RPC call to the shared object store server. The client

first establishes a connection to the server, then sends a buffer to the server which returns a separate

buffer and finally disconnects. The operation is similar to a single exchange from client to a serial TCP

server as described in [104]. In the case of put the former is of variable length while the latter is fixed.

The reverse is true in the case of get.

In all cases the performance is poor for small transfers but this is to be expected since a connection

is made for each call. The computations described in this work are marked by large data transfers where

the overhead of these connections is hopefully tolerable.

On a 10 Mbitls ethernet, the maximum theoretical transfer rate is 1.25 Mbyte/s. A part of this

bandwidth is taken up with protocol overheads however. The maximum rate observed for transfers

between HP workstations of 0.2 Mbyte upwards is about I Mbyte per second. This is not inconsistent

with a study of communication rates in a range of network parallel programming environments (46).

Similar rates are observed in transfers between two HP71 0 machines and between HP71 0 and HP730.

Over the fast ethernet the communications bandwidth reaches a maximum of only 4.6 Mbyte/s. As

the nominal bandwidth of the medium is 100 Mbitls this measurement gives some cause for concern.

though validation of the model is still possible. At this time it is not clear where the performance

degradation occurs, but a simple echo test using UDP over the same fast ethernet connection achieves

also a maximum of 4.6 Mbyte/s.

The performance for transfers between a single client server pair over the ATM network gives only

partial indication of the performance that is attainable. The link and switch bandwidths are nominally

155 Mbitls and 2.5 Obitls. Transfers between a single client server pair are therefore bounded by the

former. For raw ATM, the maximum throughput is 135.6 Mbitls (2). The measured bandwidth over TCP

is seen to peak at 9 Mbyte/s or 72 Mbitls. Using an earlier installation of Linux based on kernel version

1.3.71, a peak throughput of 12.5 Mbyte/s was measured, which at 100 Mbitls is not inconsistent with

the basic value reported in [2]. At this point it is not clear what change may have lead to the performance

loss.

A high overhead in processing communications requests is widely acknowledged. The overheads

divide into two types. One is proportional to data size and includes buffer copying which is performed

within the kernel to isolate users from the network interface and each other. Various schemes have been

proposed to eliminate these buffer copies, eg [2]. Even in the absence of any buffer copies there remains

a cost which is dominated by the cost of transferring a message through the various protocol layers.

This latency can be observed as the time taken to transfer even a small message between application

and network. This issue has attracted some attention recently particularly as the idea of employing "off

the shelf" workstation clusters, perhaps with retargeted multiprocessor networks such as Myrinet [23],

for general parallel computing tasks has lead to comparisons between the communications infrastructure

in the two environments. A portable user level communications interface, eg V-Net (114). addresses the

CHAP7ER 4. IMPLEME TATIG

hi gh latency through reducing kernel invo lvement in mes age tran fer. Su b a) ' tern i nO! urrentl)

avai lab le for the hardware used here2 .

4.8.2 Ray Tracing

The cost of the total computation component is roughl y equal to that of the equential implementauon.

where the disk output is done in parallel with computation. The time fo r the unmodified ft\\are to

complete the specific example computation is measured at 11 30 econcls. The bulk of the mmuni ' .

ati on is that entail ed in writing the completed rows. It i po si ble therefore to e timate the maximum

para ll e lism as the average task computati on di vided by the co t of \ r iti ng the ou tput to hared t re o

Each row of the output matrix contains 512 color entri e . each contai ning 3 doubl e va lue . The ize of

a double here is 8 bytes. and so each row occupies 12 Kbyte. The co t of writing to di k i hown in

figure 4 . 10 and the cost of wri tin g a few rows o f the output . ay up to . i wi th in the leftmo t regi n

of the graph which ex hibits significant vari ation with data ize. Figure 4 .13 ho\ in greater detail the

1.6

1.4

~ J.2

" >-
.0

~
" 0.8 e
~ 0.6

" ~ 0.4

0.2

0
0 32768 65536

Fi le size (bytes)
930-l 13 1071

Request type
Dtl.read -­

DI sk wnle -------

Figure 4. 13: Perform ance of mall data transfers to and from HP7 1 0 intern al di k.

cost of small disk accesses to the HP7 1 0 internal disk. It is een that there i a peak in tran fe r rate at

each multiple of 8 192 bytes. the physical block size. While the data contai ned in 2 and row i the

same size as 3 and 12 di sk blocks respectively. the actual data wrinen is sli ghtl y larger. Thi i becau e

each row is stored in a ge neral array structure and the current size of the array is stored wi th the data

itself. The effective transfer rate is thus the val ue corresponding to the dip j ust after the appropriate

peak. Table 4.4 shows derivation of the expected performance for a range of task size.

Figure 4.14 shows the measured performance o f the application for grain ize of I. 2 and both as

21n particular u- et "er.;i on 2.0 does not suppon HP·UX and suppons Linux onl) with a Fore $) tern AT~ I adapter or
DECChip 2 1 140 "Tulip" fast e themet adapter

CHAPTER 4. IMPLEMENTATIO

Table 4.4: Derivati on of maximum performance for ray tra 109.

Task size Tcomp Disk Write T put upr { - }
(elements) (seconds) (Mbyte/s)

1 x 512 2.21 0.0658 0.187 13

2 x 512 4.41 0.125 0.197 50.4 23

4 x 512 8.83 0.226 0.217 1158 27. 4_

8 x 512 17.7 0.375 0.262 11 47 16. 6

16 x 512 35 .3 0.555 0.354 1141 11.3 101

32 x 512 70.6 0.774 0.50 11 38 . 1 140

(a) Elapsed lime (seconds) (b) Algorithmic speedup (b) Correc,ed speedup

16 16

1400
14 14

1200 ¥, Sequ.e ~~i aJ
:\\""

1000 ."

800 :~\
:\ "\.

600 >.~ .. ','
400 '. ">" "- "- ... -- ---
200

12 12
" ,

10 10 , ,
r
,

8 / r

." ,
.' /

6
.,

6 ./
./

4 J
4

il;;:~----
.-.-

/
/

4 8 12 16
Number of slaves

0 0
4 8 12 16 4 12 16

umber of sla \ es umber of slaves

Task size
I --
2 _._-- -
8 .-_ -

Figure 4.14: Measured speedup of parallel ray trace of example image "ball s" at size 512 x

512 pixels.

CHAP7BR 4. IMPLEMENTATION
83

elapsed time and algorithmic speedup. The algorithmic speedup is seen to level off as expected. but at a

much lower value than predicted. Similarly the single slave time is somewhat higher than the expected

value. However, as remarked before with regard to the matrix computations, the cost of constructing

the empty output object on disk is not accounted for in the model. Again. the cost of constructing this

object is proportional to the total number of tasks, and not directly to the size of the data. In the three

instances described here where the task size is I, 2 or 8 rows, the cost of constructing the output object

is approximately 160, 80 or 20, i.e. about 0.3 seconds per task. Furthermore. there is an extra cost

which is not accounted for in the model, namely the conversion of output data to Utah raster formal. For

the three task sizes referred to, this cost is roughly 44. 22. 5 seconds, i.e. about 0.09 seconds per task.

Figure 4.14(c) shows the algorithmic speedup again. but after the initialisation and data reformatting

cost have been deducted from the measured time.

4.8.3 Matrix Computations

As for ray tracing, it is possible to make a precise comparison for each separate experimental config­

uration between measured and predicted performance. Though such an exercise verifies the model. it

doesn't facilitate extrapolation to alternative configurations or to larger or alternative problems. For this

purpose it is more useful if a simple cost function can be defined for each of the primitive operations.

In general it is not possible to guarantee that upgrading disk say will lead to the relevant performance

curve being altered by a simple multiplicative factor, but the matrix computations studied earlier admit

particularly simple expressions. The discussion that follows is in terms of these two computations.

Processor

Previously, the computation rate was measured for each of the basic matrix operations. Given such

a detailed set of measurements for a particular processor, it is possible to use them to attain greatest

prediction accuracy. However, a comparison between different machines is less obvious as the number

of parameters is increased. For such a purpose. a compromise is desirable

One of the aims of deriving a block oriented expression of a matrix computation is to concentrate

a large proportion of the effort into highly tuned routines such as the BLAS. and in particular matrix­

matrix multiplication. It is then tempting to make the simplification that all block matrix operations

run at the rate of matrix multiplication. In such computations the HP7lO and Pentium are then of

nearly equal performance. Referring back to the measured performance. figure 4.9. it is seen that the

computation rate for the tuned matrix primitives are generally not very different. The addition and

subtraction operations do have much worse performance. but as noted earlier the operation count in

these cases is proportional to the square rather than cube of the block width. For these computations

then the parameter describing machine speed is taken as the execution rate for matrix multiplication.

CHAPTER 4. IMPLEMENTATION
84

and as observed in practice this rate is assumed to be sustained over most of the possible range of block

sIzes.

Disk

For large transfers the disk transfer rate is roughly constant. While transfer rates for read and write

transfers are nearly equal in the case of the HP and IBM disks. they differ considerably for the MAXTOR

disk. However. in the case of the HP disks the performance of small read requests is rather better than

that of small write requests. The cost of a cache read is much smaller than the cost of a disk read and so

is conveniently ignored.

Communication

As in the case of disk large transfers are seen to be at roughly constant rate.

Model Parameters

For large block sizes, the three bandwidths are all constant. but a convenient approximation for model­

ling behaviour when the bandwidth is small is to employ piecewise linear models. so that each parameter

is represented by a bandwidth and a threshold. Below the threshold the bandwidth is assumed to be pro­

portional to the size of the data for the transfer costs and to the number of basic operations in the case

of the processor cost. The values corresponding to the three practical configurations are summarised in

table 4.5. In each case. the bandwidth and threshold are given.

Table 4.5: Measured parameters for the various hardware configurations to the performance
model used for the matrix computations.

Configuration HP fast ATM
Computation (Mflop/s:ops) P 30:303 27:303

Network (Mbyte/s:Mbyte) C 1:0.05 4.6:0.25 9.0:0.11
Disk (Mbyte/s:Mbyte) Dget 1.6:0 2.8:0.11 5.5:0.3

Dput 1.6:0.3 2.8:0.11 2.4:0.3

Computation
2b3 b3 b3

tmult = p , tsolve = p , tchol = 3P ,

b2

tadd = tsub = P

Data Access

(4.1)

(4.2)

(4.3)

CHAPTER 4. IMPLEMENTATION

Figure 4 .15 shows how the estimates of single sla e and mjnimum paralJel execution time prm ide

bounds on limiting and nonlimit ing performance.

250

200
-a
0

<::

E- 150

" §

. ~ 100
:;
'-'
" K

UJ 50

0
0

(a) Li miting perfonnance

2
3 ' . ./

n ,

' .. {~:.v \
,i/

,1_ 2n3

/ upr{Too }

/
!
I

.....• ~
........ ~

500 1000 1500 2000 2500 3000
Block width (e lements)

(b) Non limiting perfonnJncc
150 r-------,--=--:.-==-~

100

50

2n 3 ,/

Iwr {TocV
:.. ... -

/7
" .. "

" ,"
, "

.' / · , · " · " , " · , .:

2n 3

T!.~ '- _________ _

: :'
,/ o ~-~-_~ __ -L_~

o 500 1000 15
Block wIdth (eleme nts)

Figure 4 .15 : Computmg bounds on paralle l perfo rmance of 30002 matri x multipli cation.
In the nonlimiting example S IS the number of slaves . '{it i the granul arity bound . I.e.

max{Tcomp(i)} , for matrix multipli cati on.

Figures 4.16 and 4 .17 compare expected performance of each of the two maLri x computation wi th

measured results. Perform ance of matri x multiplicati on is computed using (3. 15) to (3. 17) and Ch Ie ky

factorisation using (3.26) to (3 .28). In each case the comparison is made in two alte rn ati e hard ware

confi gurat ions.

As well as supportin g the validity of the analys is, the graphs show th at the grea te t uncertai nty of

pred ic ti on occurs where the block size is less than but not much less than the matri x ize. Both when

the block size is very much smaller than the overall matrix size and in the tri vial case when the e two

sizes are eq ual, the upper and lower bounds are close together. Obviously in the latter case, there is no

parallelism and hence no uncertainty. In the former case, the parallelism is greatest and is therefore onl y

restricted by the number of processors. In realistic large scale computati ons it i like ly that the block

size would be significantly smaller than the overall matri x size.

A small number of measurements have been made using the ATM configurati on for larger scale

computati ons. Table 4 .6 summarises the perform ance of the fault-tolerant parallel imp lementation ,

showing for each application a measure of the performance acrueved and estimate of the average recov­

ery time . As in the case of earlier results, the table also indicates the total data accessed by slaves. In

this configuration it was only possible to make 5 slaves avill iable for the experiment. and clearly band­

width limits are not reached . The lower bound for the non limiting case is used as predicted time and

show n in parentheses . The effic iency quoted is simply the ratio of measured time fo r the fault-tolerant

implementation to the ex pected time.

CHAPTER 4. IMPLEMENTATION

(a) HP
120 r--~--'--~-.---~--,

(b) fasl
300 r--~-,-~--.-~~

100

80

60

40

250

200

150

100

50

1000 2000 3000 1000 2000
Block wi dth (e le men lS) Block wIdth (olemen!)

Measured •
Server caches all blocks ------­
Server caches block row
Server caches no bl ocks - .- - -

Figure 4 .1 6: Potenti al limiting performance o f 30002 matri x multiplication for arying
block s ize with some measured values .

(a) HP
80

200
-a 60
0 c
~
" e 40

" . ~
:;
u

" 20 >(

L.IJ

1000 2000 3000 4000
Block width (e lemenlS)

Measured •
Server caches all blocks ------ -
Server caches block row
Server caches no bl ocks - .- _._.

Figure 4 .17: Potenti al limi ti ng perfo rmance of 48002 Cholesky factori sation for varying

block size with some measured values .

6

CHAPTER 4. IMPLEMENTATION

Table 4.6: Measured perfonnance of fault-tolerant parallel applications in AT~I configuration.

Application

Task size (elements)
Number of tasks

Data (Mbyte) input
get
put

Time for 5 slaves
(seconds)
Efficiency (%)
110 (Mbyte/s)
Average recovery
(seconds)
Perfonnance (Mftop/s)

87

In this experiment the computations are of about 4 hours duration. so fault-tolerance is certainly

desirable. The efficiency, based on measured perfonnance of a fault-tolerant computation and computed

estimate of the single slave time in the absence of fault-tolerance demonstrates that the application

of fault-tolerance to this computation structure is successful. Clearly too however. the distribution

of computation data is successful, and it is in the consistent update of distributed persistent data that

transaction technology is most needed.

4.9 Summary

The three example computations have been implemented in various experimental networks. The ray

tracing example demonstrates that while there is a cost inherent in this fault-tolerance mechanism as

in any other this overhead may be reduced in significance if the granularity is large. Clearly if the

problem size increases then in such a computation even a fault-tolerance mechanism such as that used

here which relies on disk access will be cheap though the benefit will be significant. The structuring

approach used in this work is of more direct benefit to the matrix computations which may exceed main

memory capacity. In these cases the failure free cost of fault-tolerance provision is seen to be small

provided the granularity is large.

The perfonnance models are calibrated through benchmark measurements and used to show that the

measured perfonnance of each of the three computations is close to that predicted. In absolute tenns

it is seen that significant benefit through parallelism can be gained for the matrix computations in the

higher specification network.

Chapter 5

Assessment

Previous chapters have described a technique for distributing a parallel application over a collection of

workstations using a shared persistent store and using atomic actions to implement various levels of

fault-tolerance. Implementation of three large grain examples has shown that the cost of fault-tolerance

can be small and yet still allow significant benefit, particularly as the scale of computation grows. This

chapter employs the simple modelling techniques described in chapter 3 in an attempt to extend the

study beyond the limits of experiment to make some assessment of the potential for the structuring ap­

proach. First a comparison between alternate computation structuring approaches is performed in the

context of Cholesky factorisation. Following is an analysis of the effect of scaling problem size. Much

of the subsequent description is in the context of the simpler application, matrix multiplication. and

begins by studying the potential benefit of data caching and continues by addressing issues of scaling

hardware configuration. The potential application of multithreading techniques to overlap communic­

ations is addressed next, and subsequently a comparison with a data parallel structure. Finally some

consideration is given to the potential for further application of the approach.

5.1 Computation Structures

It is seen earlier that the dependencies inherent in Cholesky factorisation may be satisfied in various

different ways. This issue inevitably arises in a nontrivial application and is clearly specific to each

application. While it is possible to define a set of synchronisation mechanisms which are sufficient

in general, it is important to understand the impact on performance that a choice of synchronisation

mechanism may have. In the case of the example algorithm for Cholesky factorisation which is suited

to an out of core computation, three implementations are derived which differ only in the mechanism

employed to achieve correct synchronisation. These can be employed both to study the implementations

of the alternative structuring techniques and also as an example of the issues arising in selecting a

88

CHAPTER 5. ASSESSMENT
9

synchronisati on mechanism for a particular application . A brief record of this work appears in [I (0) .

First the bounding perform ance is compared, specifically that of the muJti-step(l) and ingle-bag

organi sations. Subtrac tin g (A . I 0) from (A .14) and ignori ng the second major term of (A. I ~) the differ­

ence is

lwr {Tmultibl oo } - upr {Tsinglebx ,}

p-l
> -2-((P - 2)(tmult + tsub) - 2tsolve)

This quantity is positive if p > 2 and

tmult + tsub > 2tsolve .

In the model (4 .1) tmult = 2tsolve and this is found in mea urement too, figure 4.9. 0 for pra tical

factorisation problems, an upper bound on minimum paral le l time in the single-bag orga ni!>ation i '

exceeded by a lower bound on minimum parallel time in the muIti-step(l) organi mion. Thi algebraic

comparison is valid for a ll hard ware co nfi gurati ons.

Figure 5 .1 compares the max imum performance for the three computatio n Iructure for a matri

size o f 48002 in the fast co nfi gurati on. Both upper and lower bounds on maximum perform ance are

shown and so are a number of measurements actuall y made in thi s co nfi gurati on. The computati on rate

assumes an overall operation count of ~3 • The perform ance is greatest for the single-bag rgani ati on,

and the performance of the muIti-step(2) organi sati on is not much be tter than that of the multi- tep(1)

organisation.

" .g
" u

" ><
UJ

125

100

75

50

25

(a) Si ngle queue (b) Homogeneous (c) Opl1mised

........ ,

.' -- ! , -- •
,.,:-;:

/' ~~;.~-.•. - • . - ---.... ~ :.=-=.:- : -:;:-
,-' ,.,.' -,.

,;: - • . - ! - - - tt . ___ ~ __ ,..
-'-'-

o ~; __ ~ __ ~ __ ~ __ ~ __ J~'~. __ ~ __ L-~ __ ~ __ ~ ~~~ __ -L __ ~~~~

o 400 8000 .j()() 8000 .j()() 00

.'

Block wid th (e lements) Block width (elements) Block width (elements)

Measured •
Estimated _._._._.

Figure 5.1 : Potenti al performance of paralle l Cholesky facto ri sation using three different
synchronisation structures in the fast configuratio n. A ll measured val ues are for fault­

tole rant implementati ons.

CHA PTER 5. ASSESSMENT
90

A study of larger scale computations is based on the ATM confiauratl'on Fl' CTure 5 h h
e . e "- ow owu~

performance varies for increasing matrix size and separately for increasing number of lave. The graph

pl otted for each structure derives from the lower bound on the predicted paraIJel time (3. _ 1). (3. _.l).

(3 .25). A number of measurements made in the ATM configuration are also plotted.

Ca) 15000. 5 slaves (b) 30000. 5 slaves (c) rooo. - sb\es 120 ,.-----,----,----, 120 ,-- --,- --.-:= _ _ -,
I~ r-- -,--,-- --,

': ('==-- :: ll-"" 100 .;/ •... --_ .. o .-- ·0

80

60

40

20

O '------'----'--- --.l
200 400 600 800

Block size

Cd) 45000. 8 Slaves
200 ,----,---.--~

50

60

40

20

0
200 400 600

Block size

Ce) 45000. 12 Slaves
300

250

200 :: ,.///.
50

00

o
60

~

20

0
200

~

350

300

250

200

150

100

50

400 600
Block SIze

(e) 45000. 16 Sla\es

o L-._--'-_ _ -L_---.l 0 '--_--'-__ -'-_ --.l 0
200 400 600 800 200 400 600

Block size

Measured
Single-bag - . & -

mu lti-bag(l)
mu lt i-bag(2)

Bl oc k size
800 200 400 600

Estimated
Single-bag . ..

multi -bag(l) --
multi-bag(2) -

Block SIze

00

00

Figure 5.2: Potential perfo rmance of parallel Cholesky factori ation u ing three different
synchronisati on structures in the ATM config uration. All measured value are for fault·
tolerant implementati ons.

Overall , significantly better performance can be obtai ned using the single-bag, though if the number

of slaves is small with regard to the problem size it is possib le fo r the performance of multi-step(2)

organisati on to approac h that of the single-bag organi sation. It is noted that even the fault·tolerant

implementati ons achieve performance which is close to that predicted, so that even with the assumption

made, the modelling process is not unrealisti c.

5.2 Computation Scaling

It is seen already that the lim iting performance for the matrix computation increases as the operand

size increases. Thi s peak perfo rmance is related to the inverse of the total VO co l. The relation hip I

CHAP1ER 5. ASSESSMENT
91

shown more clearly in figure 5.3. Only the upper bound on perform ance i ploued and it i as umed that

500
<a) Matrix multiplication

500
3000 --
4000 -- -----

400 5000 _-
.j()()

~ 6000
0- 9000 - _.- - " 0

'= ,,:/. ~ 300 300

" E 1t-.1~ft<:"2 200 200
S . ,tj. "" u

(b) Cbolesky factonsauOD

00 --
000 -- -----

11000
16000
30000 - ---

, " , , >< ,
w 100 100

o ~~ __ L-~~L-~~~~~ O ~~--L-~ __ L-~ __ ~~~

o 500 1000 1500 2000 0 500 I 000 1500
Block width (elements) Block width (e lemenLS)

Figure 5.3: Max imum potenti a l performance for the two matrix computati ons in the fa t

configuration for vary ing block size.

no caching takes place . An asy mpto ti c performance which is proportional to the block ize i apparent

for each computati on. It is not surpri sing that the lower bound on performance , while not ploued here.

does in fact tend towards the same perform ance. It is simple to deri ve an ex pres ion for this asy mptoti c

performance from the earli er analysis .

The maxi mum executi on rate is R , and bounds may be deri ved from tho e on minimum parall

time.

o < R
upr{Too } -

where 0 is the overa ll operation count.

For large n , the operati on count fo r matrix multiplicati on is taken a 2n3, i.e. 2b3p3. For large block

size, the model param eters C, D get , Dput , P are constant. The maximum performance for matri x

mu ltiplication is deri ved from the expressions for minimum paralle l time, (3.13), (3. 14).

where :

2p3 8b
2 + p2 8b

2 + (2b3 + b2) .l.
B get B put P

1

B put

1 1
--+­
Dput C

CHAPTER 5. ASSESSMENT

1
Bget

and

1 1
--+­
Dget C

92

If p -t 00, the first expression continues to grow and is always greater than the second. However.

the second and third expressions tend to the same value, which is

. 2b3

hm Roo = ---~---.,...
p-400 2 X 8b2 (_1_ + 1..)

Dget C

This asymptotic performance can be interpreted as the maximum rate at which matrix multiplication

can be performed when the data is fetched from shared store. In the case of the fast configuration.

the asymptotic execution rate for a block size of 7502 is then 163 Mflop/s. In the case of the HP

configuration, the corresponding figure is 58 Mflop/s. In the case of the ATM configuration. the disk

read and write costs are different, but ultimately only the read cost is relevant. Since the object store is

distributed over two machines, the limiting bandwidth is twice that for a single node, i.e. II Mbyte/s

for disk and 18 Mbyte/s network. The asymptotic performance for block size 750 is then 641 Mflop/s.

For Cholesky factorisation, the overall operation count is taken as ~3 , i.e. ~, for large n. Expres­

sions for limiting execution rate are defined for the single queue configuration from those for minimum

parallel time, (3.19), (3.20).

3(2p ;;:t + ;;:t + ((p - 1)(2b3 + b2) + b3)j;)

p3b3

3(~(p + 1)(2p + 1) ;;:t + ~(p + 1) ;;:t)
p3b3

3(~(p + 1)(2p + 1) ;;:t + ~(p + 1) ;;:t + ((P - 1)(3b3 + b2
) + ~)j;)

As p -t 00 the first and second expressions grow, but the remaining two approach the same asymptotic

performance as seen for matrix multiplication.

It is possible to repeat the exercise for a computation where blocks are cached either at slave or

server. As an example the case of matrix multiplication where a block row is cached at server level is

considered. From (3.16) and (3.17) bounds on maximum execution rate can be defined as before.

(p - 1) S~2 + (p + 1) ;;:t + :;:t + p(2b3 + b2)j;

2p3b3

2() Sb2 2(1) Sb2 --2 sb2 P p - 1 c + P P + Bget + l' Bput

CHAP1BR 5. ASSESSMENT
93

2p2(p -1) 8~2 + p2(p + 1) :;:t + p2 :::t + (2b3 + 1>2)1>

where, as before:

1 1 1
Bput Dput + C

and

1 1 1
Bget --+-

Dget C

In this case as p -+ 00 the latter two equations both tend to a different limit

. 2b3

hm Roo = -~---~
p--+oo 8b2 (_1_ + 1.) .

Dget C

This can be interpreted as the maximum rate at which matrix multiplication can be performed when one

of the matrix operands must be fetched from remote disk and the other from remote memory.

Clearly the performance achievable in the example computations is limited by the cost of fetching

data from shared store. Clearly also there is potential to reach a higher performance through caching

data in server or slave memory and the following section considers this issue more fully.

5.3 Benefit from Caching

Computation performance is seen already to be dependent on block size and caching pattern. In fact

these two parameters are not independent. For a given block size it is no surprise that the performance

should never be worse where some caching occurs than where no caching occurs. However. such a

comparison assumes that memory space is unbounded. A more realistic comparison fixes the memory

utilisation and determines the block size from that value.

For matrix multiplication. a comparison can be made directly between a computation where no

caching takes place and an alternative where a row of blocks is cached by each slave. It is assumed

that all machines have the same amount of memory. The memory required to support the programs

themselves is assumed constant and therefore ignored. Similarly memory which should be required for

buffering in the communications path is also ignored. The block size is assumed to be the largest which

the particular memory size can support. If the main memory size for a slave is m, the matrix size n

and the chosen block size b, then in the case where no blocks are cached three blocks must be held in

memory. Matrix elements are assumed to be 8 byte doubles so that, from table 3.3

m = 3 x 8b2
.

CHAP1ER 5. ASSESSMENT
9

This is rearranged :

In the case where a bl ock row is cached by each slave, a row of block and t\ 0 other blo k mu t be

stored by each slave so th at

m = 8(nb + 2b2
) ,

Jn2 +m-n
b=-----

4

It is then possible to compare the max imum performance achie able in lhe two configuration ". Thi

is shown fo r the fast config uration in fig ure 5.4 . The drop in performance for large blo k ize ari e "

<a) 3000 (b) 9000
250 :': 500 500

(c) 15000

~ 200 .wo Co .wo 0
<::

~ 150

"
300 300

e
0:: 100 200 200 0

.~

u

" 50 100 100 " IJ.J

0 0
;.

0
0 32 64 96 128 0 32 64 96 12 0 32 64 96 12

Slave memory <Mbyles) Slave memory (MbYles) Slave memory (lb) les)

Slave caches bloc k row " ...
No blocks are cached --

Figure 5.4: Potenti al perform ance of matrix mul tiplicati on in the fa t configuration ex ploit­
ing diffe rent pattern s of data caching in slave memory.

imply from the reduc ing para ll elism. In practice, the block size would not be increased above the poi nt

at which performance is optimal, but th is is not important here.

It is assumed that no cost is incurred by a slave in accessing a block which i cached locall y. The

benefit from caching a bl ock row at slaves is reduced if the number of slave i greater than the width in

blocks of a row because more than one slave will cache the same block row separately. The effect be­

comes more no ti ceable gradually as the number of slaves partic ipati ng increases . This effec t is ignored

however in the graph so that the perform ance of lhe cachjng option is likely to be an overe timate. Yet

still it appears the prospects fo r caching are not good. The graphs show that for a gi ven problem ize

and in a given confi guration caching a block row can not give advantage if lhe memory ize i bel ow

some threshold . Intuitively if a block row must be accommodated within a gi ven memory ize. lhen

lhe maxi mum block si ze must be smaller lhan if only a ingle block is req uired . The vo lume of va
perfo rmed through lhe computation is proporti onal to the bl ock size and thi effec t tend to ounter the

CHAPTER 5. ASSESSMENT 95

reduction in 110 requirements caused by data reuse.

In this configuration it appears with the 32 Mbyte machines in use, there is potential for benefit

through caching a block row at the slaves only for rather small matrices.

Assessing the benefit of caching at the server is not quite so straight forward, since the extra memory

for caching is only required at the server. From table 3.3 the extra memory required at the server in order

to permit a block row to be cached there is

8nb(1 + s)

where s is the number of slaves participating in the computation and is assumed no greater than p. If

s > p then to achieve the benefit of block row caching at the server, it is necessary to accommodate as

many different block rows as may be computed at once. In general this would be r ~ 1. Obviously in

the other two cases, no extra memory is required at the server. In order to compare the three caching

options on an equal cost basis, the controlling variable is the total memory across all machines. In the

slave caching options this memory is all divided between the slaves. In the server caching option some

portion is allocated to the server such that the sizes of server and slave memory are in some defined ratio

and the largest block size chosen to fit both slave and server memory sizes. Given total memory AI and

s slaves and mratio = rr::::l:~e:, if no blocks are cached

M

b

if a block row is cached by each slave

M

b =

8s(nb + 2b2
)

vs2n2 + sM - sn
4s

if a block row is cached by the object server

M s mslave + mserver

mslave
M

s + mratio

24bslave2

mratioM
mserver = s + mratio

8n bserver (f /b s 1 + s) n server

b = min{bslave, bserver} .

(5.2)

(5.3)

CHAP7ER 5. ASSESSMENT

Since

s :sf s 1< s +1
n/bserver n/bserver - n/bserver

it is argued that an upper bound on bserver is defined by the expression

such that

mserver
mratioM

s + mratio

8n bserver (s + s)
n / bserver

b <
J4n2s2 + 2s mserver - 2ns

server
- 4s

9

Since the performance is proporti onal to the block s ize, an upper bound on block ize define an upper

bound on performance.

Figure 5.5 compares the maxi mum expected performance for 5 slave executing with the three

~
Q.

0
c:
6
" e

.~
;;
u

" x
W

ISO

100

50

ji
jf ;'

(a) 3000

100

50
"

~ -- --:.;; : :.:---­
" ,

• 'I ..,.

"

(c) 15000
ISO ~~r-~r-~r-.--,

100

50
"

"
"

, ,
,,'
, ,

, - -... :' ;..:

, "

.,// o , t!
o tL-~L_~L_~_'____......-.J

o 160 320 480 640 o
TOlal memory (Mbyles)

Slave caches
bloc k row ····· .. ·
No blocks --

160 320 480 640 160 3_0 4 0 640
TOlal memory (MbYles) TOlal memory (Mbytcs)

Server caches block row
Server mem = 2-s lilve mem
Server mem = ~ ·5 Iave mem - - - -
Server mem = 6* slave mem - - - -

Figure 5.5: Potential performance of matrix multiplicati on in the fast configuration exploi t­
ing different patterns of data reuse in slave memory or server leve l file ys tem cache.

alternate cache patterns. The range of total memory is equi valent to 5 machines with 128 Mbyte . As

before memory used by the program code and system, including communications buffers in the slave

is ignored . Also ignored however is temporary buffer memory required in the server machine which i

assumed constant for each of the three configurations.

While it seems that avoiding any block caching offers greatest potential , the performance of the

server row caching opti on is quite dependent on the particular memory configuration chosen . A suming

that the overall matri x size is large enough, it is generally best to choose as large a block ize as po Ible.

Thus the optimum partitioning of a given total memory allocation is obtained by setting b laue =

CHAPTER 5. ASSESSMENT

bserver = b. The maximum block size may then be computed as belm

M = 8nb G n~b 1 + s) + 24sb
2

.

Again a bound on performance is sought from the modified expression

and hence

Since

M = 8nb (n~b + s) + 24sb2

v'n2 s2 + 2sM - ns
b=-------

8s

mslave 24b2

and

mserver
s

8nb(-;- + s)
n b

the actual memory partitioning can be computed as

mserver s (n)
---=-1+-
mslave 3 b

9

Figure 5.6 shows how the ideal ratio of slave to server memory size varies with number of lave for a

(a) 32 Mbytelslave
300 ~~rr.~~~~~

200

i ...­
.I ./

i ...-
i

/ : : ,I;'.'

': 1>/
o 5 10 15

Number of slaves

15000 -------
25000

(b) 64 Mbyte/slave
300 ~~~~~~~~

200

100

, ,

.f.":'
OICL~~~.......J~~.J...J

o 5 10
Number of slaves

15000 -------
25000 ---

15

Figure 5.6: Variation of optimum memory partitioning between slave and server with num­
ber of slaves for different instances of matrix multiplication.

range of large scale instances of matrix multiplication. Since the optimum memory partitioning depend

on the size of the matrix it is clearly difficult to exploit such server Ie el caching in general. Furthermore.

CHA P7ER 5. ASSESSMENT
9

whe n the perfonnance of the optimum configuration is compared with the other t\\ 0 a hjng opuon - in

fig ure 5.7 , it is clear th at from a perfonnance point of iew too the be t option 0 far i to avoid blo k

-a
o
c:
~ 100

" E
c
.g 50
B
" K

Ul

-a
0
c:
~
" E
C

. ~
:;
u ..,
>(

Ul

0

400

300

200

100

0

(a) 3000. 5 slaves

0 160 320 480 640

Cd) 15000. II slaves

v: /;>
........ . // ..

::;.;.://
J~/

0 352 704 1056 I~O

TOlal memory (MbYles)

Cb) 9000. 5 slaves (c) 15000. 5 sl3\es

100

50

0
160 320 ~o 640 0 160 320 ~ 0 640

(e) 15000. 15 slaves (f) 15 . 13 sla.es
500 600

~ 500

~
300

300
200

200
.... "/"

100 : . .:>" 100

0 .J 0
0 480 960 1+10 1920 0 736 1~72 no 29+l

TOial me mory (Mbyles) TOlal memory ()l.l bYlcs)

Slave caches block row
Server caches block row

No bl oc ks are cached --

Figure 5.7 : Potent ial performance of matrix mu ltipli cati on in the fast configurati n with
server level fi le system caching when the memory is partitioned optimall y between ser er

and slaves.

caching.

In (5.4), the s tenn ar ises due to the assum ption that bloc k are cached transparentl y in fi le sy tem

bu ffer space. Since the computation operands are implemented as u er pecified object , it hould be

possible to exert some fonn of control on the server level caching. In thi case for instance , it i ufficient

for one of the two input matr ices to be fl agged as permitting caching at object server Ie el , the other by

default not. The total memory requirement is then

M = 8nb r n~b 1 + 24sb
2

.

Once agajn an upper bound on perfonnance is sought from the modified expression

M
S 2

8nb n i b + 24sb

32sb2 (5.)

CHAPTER 5. ASSESSMENT
99

and hence

b={{f.
Employ ing user d irected caching, the optimum memory partitioning is seen to be

mserver s
mslave 3 '

and depends only on the number of slaves.

Figure 5.8 repeats the compari son of figure 5.7 but assuming the server level ca hing i user dire ted .

Out of the 24 ports currently availab le in the fast configurati on, one is used by the object erver. If the

(a) 3000, 5 slaves (b) 9000. 5 s laves (e) 15000. 5 slaves
150 150 150

-a.
0

r;:; ... ; .. ~
~ 100 100 100

"
":.

e .. :
"

"
0
'; 50 50 50

<.)

" >< w
0 0

0 160 320 480 640 160 320 480 640 0 160 320 4 0 640

(d) 15000. I I slaves (e) 15000. 15 slaves (I) 15000. 2J slaves
400 500 600

-a. 400 500
0 300 r;:; --_
~

/ 400
300

"../'

" ,f e 200 // 300

" 200
. ~ 200 :;
u 100

100 " 100 >< w
0 0

352 704 1056 1408 0 480 960 1440 1920 0 736 1472 220 2944
Total memory (Mbytes) Total memory (Mbytes) Total memory (Mbytes)

Slave caches block row
Server caches block row --

No blocks are cached --

Figure 5.8: Potential performance of matri x multiplicati on in the fast configuration with
user directed caching when the memory is assumed optimally partitioned between server
and slaves.

memory is 32 Mbyte per slave then there is little to be gained by usi ng more than about II slaves at

which point the computation reaches bandwidth limit. However, while the presentation has onl y been

in terms of a predicted upper bound on achievable performance , evidence suggests it is wonhwhile

partitioning application memory between server and slaves to support user directed caching rather than

distributin g the equivalent total memory purely between the slaves. In terms of computation runtime.

caching only gives a significant benefit when the computati on is bandwidth limited. This occur hen

CHAPTER 5. ASSESSMENT
100

the num ber of slaves is re latively high . Clearly when there is onl y a si ngle slave the runtime i domjnated

by computati on. The lower bound computed for Ts is T;- so clearly the influence of the ommuru alion

cost remains small and till s ex plai ns why the difference in execution rate between the organi alion

whi ch caches a block row at server and that which does no caching is smaJl if neither i bandwidth

limited . What ac tu all y happens when the computation is not bandwidth limited i that communi alion

by one slave is overl apped by computation performed by another. Figure 5.9 how ho> the different

caching options compare for the larger problem size of 30K2
, but al 0 the percentage util i ation of the

interconnec t,

100 x lwr {T co } .
T1 /s

If the to ta l memory size is modest there is a signifi cant benefit to be gained through the u e of erve r

<a) 5 s laves (b) " slaves
150 300

(c) 2J slaves
700

-a 250 :/.,.r."~'" '~.""" " "'''.:'
0
t::

100 .. 200 6
" e 150 .•..
c: /

. ~ 50 100 :;
<.)
" 50 u.J

600 "
500 1
400 ;:;

300 S
C

200
~
~

.§
100

o L.....:.----'.~--'-~...l_____...J 0 0
160 320 480 640 0 352 704 1056 1408 0 736 1~72 120 29+1

TOIaI memory (Mbyles) TOIaJ memory (Mbyles) Ta la! memory (~ I byles)

Slave caches block row
Server caches block row - -.

No bl oc ks are cached --

Figure 5.9: Potentia l perfo rmance of 30K 2 matri x multiplicati on in the fa t configurati on
with user directed cachin g when the memory is assumed optimally partiti oned between
server and slaves. For each cache reuse pattern the execution rate i hown by the fainter
line while the correspondin g heavy line indi cates the interconnect utili alion .

leve l block row caching . For instance, if the memory size is 32 Mbyte per slave and there are 23 lave

an increase in max imum perfo rmance from 493 to 568 Mflop/s can be expected , implying a potential

reducti on in runtime from over 30 hours by 4 hours. For larger memory sizes the performance of the e

two organisations is very similar, since band width limiting does not occur, but there remains a signi ficant

di ffe rence in interconnect util isati on.

While the object store is contai ned withjn a single machine the memory available fo r erver level

caching is fixed . If the server machine is config ured with rather more memory than the sia e machine

then for any matri x multipli cati on which is structured in thjs way, it i possible to pred ict ho much

memory is required to support thj s degree of caching. It is possible to increase the erver Ie el memory

avai lable fo r caching by di stri buting the object store over multiple machines, as in the experiments In

CHAPTER 5. ASSESSMENT
101

the ATM configuration.

It is recalled though that to benefit from caching a block row at slave level it is necessary for each

slave to be computing a different block row. Yet when all tasks are contained in a single bag any

slave may get any task. It is necessary to implement a structure which allows each slave to retrieve a

predictable sequence of tasks in the normal case, yet allows correct recovery in case a slave fails. One

possible approach is to use the two level bag of tasks structure of section 2.4.7. A slave would select a

block row by removing an entry from the first level bag, within an atomic action. Before committino
e

that action, the slave would complete all tasks for that block row, each within a separate top level action.

If the slave fails completed tasks for that block row are not undone, but the block row task itself remains

available in the higher level bag for continuation by another slave.

5.4 Configuration Upgrades

So far, in order to perform a larger problem size within a reasonable time, the number of processors has

been increased, but an alternative is to increase the processing rate of each machine.

Some increase in the benchmark processor rate may be expected with more careful tuning, particu­

larly in the case of the Pentium machine for which less corroborative published results have been found.

The potential for such improvement may be quantified through consideration of instruction level timings

and memory access rates, but this is not attempted here.

An upgrade of processor may imply in the simplest case only a change in clock speed. Pentium

processors similar to those used in experimental work may now be clocked at 200 MHz. If suitable

published benchmark data is unavailable, a gross simplification for modelling purposes is to assume

that increasing the clock speed by 1.5 times in this way translates to increasing the processor rate P

used in the model by the same factor. In practice memory or system bus access costs could reduce the

impact of the clock rate increase. However, it is reasonable anyway to investigate the performance of the

applications in a network of machines of some defined processor rate, perhaps based on measurements

such as Lapack [43]. A multiprocessor may be employed simply as a single component within the

distributed computation, using parallelism locally to compute a single task at a time.

Figure 5.10 shows the effect on the performance of a large scale matrix multiplication in the fast

configuration of two alternative processor upgrades. The first assumes a speed increase of a factor of

1.5, which is the best that can be expected from a simple change in clock speed from 133 to 200 MHz.

The second alternative assumes the speed increases by a factor of 2 again. The mythical machine is

labelled a P5/400, but this is not important. It is in the class of a 50 MHz RS6000 [43], and operates in

an equivalent environment to the fast configuration.

For the presentation, the number of processors employed is scaled so that the total nominal cpu rate

is the same in each case and the range of total memory configurations is 0-128 Mbyte per processor

CHAPTER 5. ASSESSMENT
102

(a) 9 li mes P51l 33 (b) 15 limes P51l33 (c) 1 I times PS/ 133
250 500 600

-a.
0 200

.---- .-

400 500
c:

6 150 300
400

" / E 300
c: 100 200

. ~ 100 :;
<)

50 100 " >< 100
UJ

0
288 576 864 11 52 480 960 14-10 1920 0 672

(d) 6 limes P51200 (e) 10 urnes P51200 (0 I ~ urnes P511
250 500 600

-a. 200 400 500
0

c:
6 150
"

400
300

~ 300
c: 100 200

. ~ 200 :;
<)

50 100 " 100 ><
UJ

192 384 576 768 320 MO 960 12 0 13+1 1791

(g) 3 limes P5/400 (h) 5 urnes P5 /400 (.) 7 urnes P5/~00
250 500 600

-a. 200 400 500
0
c:

~ 400

"
150 300

~
...- 300

c: 100 200
. ~ 200
B
" 50 100 100 ><

UJ

0 0
96 192 288 38~ 0 160 320 ~ 0 MO 0 22~ +18 672 96

TOlal memory (Mbyles) TOlal memory (MbYles) Total memory (Ibyles)
Slave caches block row " -. - _ ..

Server caches block row --_.
No blocks are cached --

Figure 5. 10: Potential perfo nnance of 15K2 matrix multiplicatio n in the fast configuration

when alternate processor upgrade are made.

CHAPTER 5. ASSESSMENT 10

as before . A lso as before, the server caching opti on assumes optimum memory partitioning. In e

the memory confi gured per slave remains the same through the upgrade , 0 too doe the ranae f
e

block s izes. Thus the band width limiti ng performance is not altered . However the ingle lave lime

depends on both the local computation ti me and the va co t. While the forme r drop in pr p rtion

to the processor rate upgrade, the latter remai ns unchanged so the ingle lave lime doe n't redu e in

proporti on to the increase in processor rate. Hence the bound on nonlimiling executi on rate fall a little

with each processor upgrade in thi s scaled study. Similarl y, since lhe va co t become more ignifi ant

in the nonlimiting executi on rate , the difference between the di ffe rent organi alion for ca he reu "e

becomes more significant as the processor rate is upgraded.

Increas ing the problem size permits a higher executi on rate, and lherefore a greater potcntlal for

paralleli sm, but in secti on 5 .2 it was shown th at for a given cache utili alion pattern and given bl k.

and therefore memory, size there is a max imum executi on rate whi ch i independent of pr blem iLc .

This asymptotic executi on rate is dependent on the aggregate bandwidth of acce e to t re and will

therefore be dominated by the small est of the bandwidth o f communicalion and di k.

Figure 5 . 11 mode ls the effec t o f replac ing the interconnect in the fa t configu rati on by an TM

switch, but using the IBM di sks as before. Comparing the graphs pec ificall y wi th (c)-(e) in figure ..

<a) 5 s laves (b) II slaves (e) 15 la\e
150 400 500

"'&
0

c:: 300
400

! 100
300

.....
" E 200

" . ~ 50 :;
" "

200

100 100
><

LlJ

O '--'-~-'--~-'--~-'--~

160 320 480 6-W 352 70-1 1056 1-10 0 -I 0 960 1-1-10 19_0
TOial memory (Mbytes) TOlal memory (Mbytes) TOlal memo!") (~lbyles)

Slave caches block ro\
Server aches block row

No blocks are cached --

Figure 5. 11 : Potentia l performance of 15K2 matri x multiplication in the fast config uration
when the interconnect is replaced by an ATM switch.

the obv ious difference is the increase in limiting performance. There is a small difference in nonlimlling

performance, but since most communicati ons is overl apped in thi s region the difference is not obviou .

However, there will be a significant reduction in utilisati on of the interconnect. If the memory configured

i 32 Mbyte per slave and there are 15 s laves the potenti al performance" hen u ing erver caching i

379 Mflop/s; a runtime of under 5 hours. Since the commu nication bandwidth is ignificantl greater

than the disk bandwidth, the benefit to be gai ned through server level cachi ng i clearly greater In the

CHAPTER 5. ASSESSMENT

same instance as above, if no blocks are cached the po tenti al pe rform ance i _97 [flop/: a runtime of

over 6 .3 hours . However the computation is almost bandwidth limited at thi poi nt and i ertainl) a

without the block row cachin g. An obvious step is to replace the IBM di k by a pai r ofAXTOR di k

confi gured as RAID-O, whereupon the performance is as hown in fig ure 5 . 12. The read throughput

150

Q.
0
c
6 100

" e
. ~ 50 :;
u

" K
Ul

(a) 5 slaves (b) II slaves
400

6 '"

300

200

100

160 320 480 640 352 704 1056 140
Total memory (Mbytes) Total memory (lbytes)

Slave caches block ro"
Server caches block row

o bl ocks are cached --

(cl 15 sla'es
-00

400 / /i 300

200

100

O '--~'---""""";'---.........J'---.........J

o 4 0 960 1+10 19~O
TOlal mem ry (Ib)tes)

Figure 5.12: Po tential performance of 15K2 matrix multipli cati on in the fa t config urati n
when the interconnec t i replaced by an ATM switch and the ingle di k by a pair of 1
TOR di sks managed u ing the software RAID system at level 0 but till co nn ected to the
sing le node.

using the RAID confi gurati on is just about twice that of the ingle IBM di k, but the ne t\ o rk throughput

is also nearly doubled so network bandwidth remains ignifi cantly hi gher th an di k throughput.

While it is to be hoped th at further development might yie ld a hi gher di sk throughput on a ingle

machine , it is ul timate ly necessary fo r reasons of throughput or space to di tribute the obj ec t tore. The

example configuration used he re is then obtai ned by matching the single machine store config urati on on

one other machine so the objec t store is distributed over four MAXTOR di k in all. two per machine .

It might be possible to decluster individual objects between objec t tore node and obtai n parall e li m

within a request for a single object. Here however this distributi on is done at the granul ari ty of whole

objects, so each request for a single object communicates with only a single object tore node. Con­

sequently, a single slave doesn ' t benefit from the distributi on. When there are two or more lave, the

para lle l execution time still cannot be less than the si ngle slave time di vided by the number of lave .

However, the minimum achievable execution time is reduced . In calculating thi s min imum executi on

lime both di sk and interconnect bandwidths are multiplied by the number of nodes making up the object

store. Using a single ATM swi tch it is only possible to connect a maximum of 14 slave , 0 the max­

imum performance shown in figure 5 .13 is lower than in the previous confi gurati on. Specificall with

14 slaves and 32 Mbyte memory per slave the potential perform ance in the organi ation hich a he

a row at e rver level has dropped from 385 to 360 Mflop/s but the computation i n o~ far fr m being

CHAPTER 5. ASSESSMENT

i ~
! 100

" "§

. ~
:;
<J

" K
UJ

50

160 320 480
TOlal memory (MbYles)

300

V
200

100

O '-'-~L.......'--'~----'~-.J

400

300 rr :···
200

100

O L..:.-~L.....'--'~----,~-.J
o 352 704 1056 1-lO8 o 96 1.1+1 179_

TOlal memory (Mbytes)
Slave caches block row

Server caches block row -­
No blocks are cached --

Total memo') (Mb}les)

Figure 5.13 : Potenti al performance of 15K2 mauix multiplication in the ATM co nfi guratio n.

10

bandwidth limited so it is possible to cons ider using higher processing resources. Figure 5. 14 indi ate

performance that may be attainable if up to 14 of the faster processor , nominall y P5/400 are u cd.

This configuration is referred to as ATMl400. At 32 Mbyte memory per slave. the max imum e pected

500

-a. 400 0
c
6
"

300

e
" 200
.!2
:;
u

100 " ><
UJ

(a) 5 s laves (b) I I s laves

800 __ ... _ 1000
. ...,-

600

400

200

o '--'--'---L~---L~-'--~

800

600

400

200

160 320 480 640 0 352 704 1056 140
TOlal memory (Mbyles) TOlal me mory (MbYles)

Slave caches block row
Server caches block row -_ .­

No blocks are cached --

(I) 14 slaves

4-18 896 I 3+1 1792
TOla l memory (Mbytes)

Figure 5. 14: Potential performance of 15K2 matrix multiplication in the ATMl400 confi gurati on.

computation rate using 14 slaves and caching a bl ock row at server level is 988 Mflop/s and the overall

runtime about 1.9 hours. At this point the computation is once again close to bandwidth limit.

The summary is hardly surpri sing. To obtai n gTeater performance it is necessary to increase the

processing resource, i.e. add more Mflop/s. For a given memory size it is only poss ible to achi eve

a certain maxi mum performance which is determjned by the store access bandwidth . In the example

computation described increasing memory size allows a larger gTanularity which reduce the total com­

munication requirement and thereby allows a higher performance for a fixed proce si ng re ource and

CHAPTER 5. ASSESSMENT
106

store access bandwidth. However, ultimately it is necessary to increase store bandwidth in order to

utilise a greater processing resource.

The fast ethernet allows easy expansion in that extra hub modules can simply be stacked together

to provide an increased number of ports. However this doesn't provide an increased bandwidth. The

higher bandwidth of the ATM switch comes with a smaller number of ports. The port arrangement

is configurable though, in that the total bandwidth of 2.5 Gbit/s is split evenly between four network

modules each of which can be a single 622 Mbit/s link, four 155 or six 100 Mbit/s links [109]. The unit

installed here has four of the intermediate network modules and hence 16 155 Mbit/s links. In view of

the relatively low bandwidth of the disk configuration, better performance in this application might be

achieved through employing the larger number of slower links.

There are more expensive single unit switches which support a greater number of ports. but in

scaling the number of processors the point comes eventually when it is necessary to move towards

use of multiple switches. The highest speed network link is intended for coupling multiple switches.

but simply connecting two units leaves an unbalanced network. A high cost option is to attempt to

achieve a large scale well balanced high performance interconnect through mimicking multiprocessor

interconnects. Alternatively it may be possible to partition some computations such as to achieve high

performance in a less well connected network, even at the cost of replicating some computation data.

Full investigation of these issues lies outside the scope of this work however.

In these scaling studies it is possible also to verify that the computation granularity remains appro­

priate. In the example of figure 5.14 for example. if the memory is 32 Mbyte per slave and a block row

is cached at server level, the maximum block size is 1000, so there are p2 = 225 tasks. The single slave

time is 26.6 hours so the length of each task is ~ which is about 7 minutes and the expected average

recovery time would be half this value. If there are 14 slaves, the potential parallel execution time is just

under 1.9 hours and the single task time is about 6% of the parallel execution time. The average interval

between queue requests over the duration of the computation is m which is 30 seconds. In practice all

slaves would be making queue requests at about the same time, but the significance of this figure is that

the time to dequeue a task should be significantly less than it. If the memory size is 128 Mbyte per node

then the maximum block size is 2000 and there are then about 57 tasks. The single slave time is just

over 25 hours and the parallel time for 14 slaves just under 1.8 hours. The increased granularity reduces

the load on the queue as the expected interval between requests is 114 seconds However the average

recovery time at 13 minutes is over 12% of the parallel execution time; the worst case recovery time is

nearly a quarter of the parallel execution time.

The significance of the average recovery time can be seen in the fraction 2~' where N is the total

number of tasks and s the number of slaves. The expected interval between queue requests is !Ii. For

example, if the matrix size is 20K2 and the configuration has 32 Mbytes memory per node with a block

row cached at server level then the block size is 1000 again but the total number of tasks is 400. For the

CHAPTER 5. ASSESSMENT
107

average recovery time to be less than 5% of the parallel run time the number of slaves is s < 400 x 0.1

which is 40. The single slave time is 62.7 hours so if the average interval between queue requests is to

be more than 30 seconds for instance the number of slaves must be less than 62.7x3600 = 188 With
400x30 " I

18 slaves the best expected execution time is 3.5 hours and the recovery time which is 62.7x3600 or
400x2x60

4.7 minutes is 2.2% of the parallel execution time.

For both improved performance and lower load on the queue it is desirable to increase the granularity

of computation, but for a given problem size this tends to reduce the effectiveness of the recovery mech­

anism, effectively setting a limit on the degree of parallelism that can be employed. If the granularity

remains constant as the problem size increases the number of tasks increases and so the significance of

the recovery time for a given degree of parallelism decreases. The structure considered here for matrix

multiplication has the desirable property that increasing the problem size allows not just the number of

tasks to increase but also the single task time, Jf. This in turn permits the degree of parallelism to be

increased without increasing the load on the queue.

5.5 Overlapping Communication

5.5.1 Server

One obvious way to increase the bandwidth to shared store is to employ multiple buffering in the server.

Each slave must take the same time to perform each task, but a greater number of slaves can be ac­

commodated before the computation becomes bandwidth limited. If there is a constant stream of read

requests for disk data arriving at the server, then using double buffering it is possible to achieve a max­

imum 100% increase in throughput if disk and communications bandwidths are equal. The benefit is

lessened however if the bandwidths are different. For modelling purposes it is clear that the single slave

time is unaltered since it is only possible to achieve overlap at the server in the presence of multiple

slave requests. The minimum parallel time is reduced however and a lower bound on the total time to

complete all accesses to the shared store is now the maximum of the total cost of all transfers across the

communications interconnect and the total cost of all server local disk transfers. Assuming that the cost

of fetching a block from slave cache is zero and writing

tget tdget + team

tput tdput + team

where tdget and tdput are the local storage access components of corresponding accesses to remote

object store and team is the cost of the network transfers entailed in such a request, the lower bound on

CHAPTER 5. ASSESSMENT 108

minimum parallel time, corresponding to (3.16) may be written

Iwr{Too} =

max { max {(N2 + N3 + V)tcom , N3tdget + Vtdput} , ~} (5.6)

The values for N 2 , N3 are taken from table 3.3 as before.

To implement such overlapping it is necessary to employ a larger number of buffers. For a single

node store, the minimum number required is two, i.e. one more than previously. For the purpose of

this analysis it is assumed that two buffers is sufficient in this case. Then, if the store is distributed

over v server nodes, the number of buffers required to support double buffering at server level is v. A

very simple server architecture defines a single thread to monitor for the incoming requests and spawn

a separate thread to handle each one, with access to the pair of buffers controlled by locks. The memory

then required to support overlap of communications and disk requests at the server are as follows. If no

blocks are cached, from (5.2)

M = 24sb2 + 8vb2
,

b V 8(3:: v)

When a block row is cached by each slave, from (5.3)

M = 8s(nb + 2b2) + 8vb2

J4s2n2 + 2(2s + v)M - 2sn
b = 4(2s + v)

When a block row is cached at the server, from (5.5)

M = 32sb2 + 8vb2 ,

and hence

b=V8(4::V) .

(5.7)

(5.8)

(5.9)

Figure 5.15 shows the potential of such double buffering in the configuration of figure 5.8. Clearly, a

significant benefit is evident. Without double buffering the largest configuration proved to be bandwidth

limited for each of the three caching options and for memory size up to 128 Mbytes per slave. Using

double buffering and 32 Mbyte memory per slave it is possible to achieve over 550 Mftop/s. This

exceeds considerably the performance expected in the ATM configuration, figure 5.13 but not that of

the ATMl400 configuration, figure 5.14

There is a much more noticeable potential benefit available in server level caching than in previous

CHAPTER 5. ASSESSME T

(a) 3000. 5 s laves

.......

160 320 480 640

(d) 15000. I I s laves
300

~ 250 Co
0

c::
~ 200

" e 150
c

. ~ 100 ;;
u

" 50 ><
Ul

100

50

500

400 ,.
300

200

100

(b) 9000. 5 s laves (e) 15000. 5 sl3\es

1--- .. ··········
100 V ···

50

O '-'---'---'L.....---'~--'-~---.J

160 320 .. 80 640 0 160 320 .. 0 640

(e) 15000. 15 slaves (I) 15000. 23 s l", es
700 r-~r-~r-~r-~

600

500

.+00

300

200

100

o ~---'~--'-~--'-~-.J
352 704 1056 1 .. 08 .. 80 960 1 0 1920 0 736 1 .. 72 120 19

TOlal memory (MbYles) TOlal memory (Mbyles)

Slave caches block row ········
Server caches block row

No blocks are cached --

Towl memory (tb)'les)

Figure 5. 15 : Potential perfonnance of matrix multiplication in the fas t configuration when

double buffering is employed at the server level.

109

CHAPTER 5. ASSESSMENT
110

configurati ons. This ari ses because of the assumption that all di sk and commun i ation tran fe an
be overl apped throughout the computation. In the experimental configuration a di k a e i rather

slower th an a communications transfer, but can be overl apped by a number of ac es e to ener le\ el

cache whi ch do not need to access disk. If the server employ only t 0 buffer then two u e I\'C

di sk req uests can occupy those buffers, potentiall y blocking a series of cache read reque lS. One wa)

of avoiding such a situation is to allocate a specific buffer just for cache read reque lS. Thi would on I)

be req uired if blocks are cached at server level, but is unlikely to make a great impact on the potential

performa nce since the expression for bin (5.9) changes onl y lightly to

M = 32sb2 + 16vb2
.

As the number of slaves s increases in thi s express ion the e ffec t of the ri ghtmo t term become Ie

significant. In order to maximi e the benefit from double buffering in practice it i de irable for reque t

for cached data to be fairly even ly di spersed am ongst request for data on di sk.

5.5.2 Slave

It is also poss ible to overl ap computati on and communication at the slave, bu t the effec t n mem ry

requirement is more no ticeab le. One approach is to run two se parate thread in each la e pr e ~o r.

Figure 5 .16 shows how runnin g twO threads in a slave proce o r can achieve communicati n 0 erlap.

(a)

C=::J

(b)

D

(c)

C=::J -
~ oet ~ompute

Time put •
Figure 5.16: Example illustrating potential benefits of employing two thread in a single

slave to overlap communicati on and computation.

In practice, the benefit achieved depends on the relati ve costs of computation and communication If

the comm unications cost is not significant with respect to the computation co tthe maximum a hie\'ablc

CHAP1ER 5. ASSESSMENT III

performance is reduced because of the enforced serialisation of two tasks within each slave. Therefore

for a computation comprising N tasks

T > Tl
00 - Nj2

The limit imposed by store access bandwidth remains unchanged, but the single sla\e time is altered.

The effect is for each thread to be able to overlap the other's communications with computation. The

slave has only a single processor so all local computation is serialised, as is alI communication hy the

network. Therefore, a lower bound on the time for a single slave with two threads to perform S similar

tasks is

{

N N N }
max LTcamp(i), LTget(i) + L Tput(i) .

1 1 1

Achieving significant benefit from such multithreading in practice depends on the actual distribution of

I/O operations through the computation. Matrix multiplication is a favourable example where I/O is

regularly spaced.

Assuming as before tgetl = 0 the expression corresponding to (3.15) for matrix multiplication is

Tl = max {N2tget2 + N3tget3 + p2tput

p3(tmult + tadd)} .

Again the values for N2 and N3 can be taken from table 3.3.

Each thread requires the same amount of memory as a single slave in the equivalent single threaded

computation. If no blocks are cached, from (5.2)

M = 48sb2
, (5.10)

b J4~S
When a block row is cached by each slave, from (5.3)

M = 16s(nb + 2b2
) (5.11)

J4s2 n 2 + 2sM - 2sn
8s b =

When considering the memory requirement to support block row caching at server level there are effect­

ively twice as many slaves and therefore twice as many blocks being computed at once as in the single

threaded organisation. Thus it is not only the slave memory requirement which doubles but also that in

the server, so from (5.5)

M 16nb~j + 48sb2

n b

CHAPTER 5. ASSESSMENT

and hence

b= VM
64s .

Figure 5.17 shows the effect of empl oying such techn ique in the AT MJ400 onfiguralion.

(a) 5 slaves (b) II slaves (e) 14 sl3\es
500 1000 1_00

.:a. 400 800 1000
0
r.:
;
"

300 600
00

"§ 600

" 200 400 .::: 400 ::;
u

100 200 " " 100 Lll

0 0 0
0 160 320 480 640 0 352 704 1056 140 0 +l 96 1J+l 1791

TOlal memory (MbYles) TOlal memory (MbYles) TOlal memo,) (~Ib)les)
Slave caches block row

Server caches bloc k row
No blocks are ca hed --

Figure 5.17: Potential performance of 15K 2 matrix multip licati on in the T IVU400 con­
fi guration when two threads are employed at slave level to overl ap communication \ ith
computation.

um-

ing that full overl ap is achievable in each slave the computation rate can in thi ca e appr ach the LOlal

processor resource. Thus when 14 processors are employed, the max imum computation rate i 14 x 1

or 11 34 Mflop/s. The graphs are then fl at because of the a sumption that machine speed in the primi tive

block operati ons is constant with block size, as observed in practice for large block izc. The p ten­

tial performance for the equivalent single threaded computati on i hown in fig ure 5.14. The greater

memory requirement in each slave to support communicati on overl ap en ure the computation i band­

width limited with fewer slaves than in the earlier config urati on. However, it i po ib le to combine the

overl apping mechanisms at server and slave. The memory requirement then increases lightly, uch that

when no blocks are cached, from (5.7) and (5.10)

M 48sb2 + 8vb2 (5. 13)

b
/ 8(6':: v) .

(5 14)

CHAPTER 5. ASSESSMENT

When a block row is cached by each slave, from (5.8) and (5.1 1)

M

b

16s(nb + 2b2
) + 8vb2

J 16s2n 2 + 2(4s + v)M - 4sn
4(4s+ v)

When a block row is cached at server level, from (5 .9) and (5. 12)

M

b

s
16nb-; + 8vb2 + 4 sb2

n b

8(8s + vW ,

J 8(8:: v) .

113

C . IS)

(.17)

(5 . 1)

The potenti al performance is then as shown in fi gure 5. 18. The performance i now limited by individua l

(a) 5 slaves (b) I I slaves (c) I ~ sla\ es
500 1000 1200

-a. 400 800 1000
0
c
6 300 600

00

" § 600

" 200 ~oo
.~ ~ :;
" 100 " 200 200 ><

u.J .. ,:
0 0 0

0 160 320 480 640 0 352 7~ 1056 1~8 0 +l 96 13+l 1792
TOlal me mory (MbYles) TOlal memory (MbYles) TOlal memory (MbYIc:5)

Slave caches block row "
Server caches block row

No blocks are cached --

Figure 5. 18: Potenti al performance of 15K2 matrix multiplicati on in the ATM/400 con­
fi gurati on when two threads are employed at slave level to overlap communicati on with
computation and in addition ex tra bufferi ng is employed at erver level to 0 erlap di k and
network transfers.

low level parameters. Other than changing these parameters the only way to improve on the performance

is to restructure the computation to reduce the quantity of data accessed to enable use of a greater

processor resource.

In the 14 slave config urati on wi th 32 M byte memory per node and caching a block row at erver

level, the block size is 703 and the number of tasks approximately 454. The single lave Lime i a litlle

over 23 hours and the potenti al paralle l time 1.7 hours. The a erage interval bet een queue reque t:,

CHA PTER 5. ASSESSMENT II

is rather lower than in the earlier scenario at 13 .1 seconds However 'If th bl . . I . e pro em Ize I arger and

the block size the same this interval would also increa e Becau e two task rf d . are pe orme on urrenlh

by each slave machine, the average recovery time must be equal to half the t' tak rf -Ime en to pe orm t\\

tasks ' 1.7 x 3600 h' h ' . t 3 ' .
, 454 W IC IS JUs over minutes , I.e . about 3% of the parallel execution time.

5.6 Exploiting Patterns

The bag of tasks structure is very attractive from the point of iew of fault-toleran e and load balan -in" "'.
However, in order to implement such a dy namic execution lrUcture, inter la e cooperation has been

minimised. This section examines an alternati ve more tightl y coupled tructure des ribcd in [I I_I . Thi

alternative is a data parall el algori thm which caches a block row acro the lave during computall n

of a block row of the result as shown in figure 5. 19. The algorithm partition the maLrice u h that a

~111111111111~11111111 1 111 ~llllllllllllm

l oet
~ompute
outpu t Time

~
.

........

. . . . '.' . . . '.' x • --
Figure 5.19: Example to illustrate the operation of a data parallcl organi ation of matri
multiplicati on using three slaves.

block row of one matri x and block column of the other matrix are accommodated in aggregate memory

of avru lable processors, each processor holding the pai r of block , one from each matri x, which are to

be multiplied. Aft er these prurs of blocks are mu ltiplied locally in parallel. a single block of the ou tput

matrix is computed by a global sum operation. The computation i coord inated by a master which

is here assumed to reside on the same machine as one of the slaves . The key requirement is that the

number of blocks across the width of the matrix be determined by the number of proce ors. For initial

analysis the easiest approach is to scale the problem size to fit the number of slaves and total memory

configuration. The procedure wi ll then be to fi t the problem size to the hardware configuration and

compare performance of the bag of tasks and data parallel structures for thi problem ize. A before

each matrix is partitioned into p2 blocks. but here p = s. the number of slaves.

In order to compute a block row of the result matrix . it i nece sary to load a blo k ro'" of A Into

CHAPTER 5. ASSESSMENT
115

the slaves, and then step through the block columns of B, loading each column into the slaves at a time.

with each slave performing a product. After each such product, the master performs the global sum and

writes the result block. The number of disk reads entailed in reading the block row of A is p and that

in reading the p block columns of B is p2, the total is then pcp + 1). Assuming a need for p - 1 block

transfers over the interconnection network to perform each global sum, and a single write for each block

of the result matrix, the 110 count is then the same as in the bag of tasks configuration which employed

user directed caching at server level. In this case however it is only necessary to accommodate two

blocks in slave memory.

In performing the global sum, the master clearly cannot fetch all the blocks concurrently due to

space restrictions. If the master can accommodate two blocks it has to iterate through the slaves one by

one, fetching a block at a time and adding this locally to the total. As noted before. the cost of a block

addition is proportional to b2 while the cost of a block multiplication is proportional to bJ . In terms of

scaling, the cost of additions may be small. However in implementing addition. it is more difficult to

achieve the very high computation rate of multiplication due to the lower locality. So in practice the

cost of p serial block additions may not be insignificant, particularly if p, i.e. s is large. A distributed

approach to performing a global sum is to perform ~ local additions of a block with the block in the

neighbouring slave, then ~ sums of these intermediate results, and so on, reducing the total cost to

rlog2 p 1 additions. In the presence of an interconnect such as ATM which supports parallel transfer it is

also possible to reduce the communications cost entailed in the global sum, at best from p-l to rlog2 p 1
single block transfers. In the case of a bus type network this is obviously not the case.

First, the block size is determined by the total configured memory

It is assumed the master and a slave can share the same two buffers within a single machine. Since the

matrix width in blocks is equal to the number of slaves, p = s, then the matrix size is n = sb. Assuming

a bus type network, the total time to compute a single block row of the result is

Tbrp = p(p + l)(tdget + tcam) + ptmult

+ p fiOg2 P 1 tadd + p2 team + ptdput

where tdget and tdput are the costs of local block disk accesses and team is the cost of a block trans­

fer between local and remote memory as before. The cost of the entire computation is p times this.

Figure 5.20 compares a single threaded data parallel computation with the equivalent bag of tasks com­

putation, from figure 5.8. The bag of tasks structure offers best potential performance, presumably

because of the need in the data parallel structure for the serial computation of the global sum and block

CHAPTER 5. ASSESSMENT

(a) II s laves
300

-a 250
0

<::::

~ 200

~
150 e

c: ." 100 ;;
u

" 50 " til

0
0 352 704 1056

Total memory (MbYles)

(b) 15 slaves
500 700

400 600

500
// 300

/ .j()()

200 ./ ---.-' 300

_00
100

100

0 0
1408 0 480 960 1+10 1920

Total memory (MbYles)

Data parallel - - - ­
Server caches block row

No bl ocks are cached --

0

fe) 23 sla\es

,
;

736 1~72 12
TOlal memo!) (Mb)les)

F igure 5.20: Potenti a l perfo rmance o f single threaded data paralle l matrix multiplicati n
and equi valent bag of tas ks computati on in the fast configuration when the problem ize I '

scaled according to the agg regate memory size .

output.

116

If double bufferin g is employed at the server then it i poss ible to overl ap di k and network trc n fer

components of all get requests. It is necessary to all ocate extra buffer space at se rver level a de crlbed

earl ier in the case of the bag of ta ks structure, so the block ize is now

b-~
-V~

where the object store is di stri buted over v nodes a before. The di tributed g lobal sum i performed

between the phases o f para ll e l multiplicati on so no overl ap occ urs be tween the two. imilarl y, output

of the result block is performed seri a ll y by the master 0 no overl ap there i po ib le. A umin g as

before a bus based interconnect, a lower bound on the cos t of computi ng a sing le block row of the re ult

is

p(p + l }max {tdget team} + ptmult

+ p flog2 P 1 tadd + p2 team + ptdput (5 . 19)

Agajn, the cost of the entire computati on is p times thi s. Figure 5.2 1 compares the performance of

such a computation with an equivalent bag of tasks style computation running in the fas t config uration,

imil ar to that portrayed in figure 5. 15. Agaj n, presumab ly due to the serial component the bag of task

structure offers the best potenti al perform ance.

If the block size is reduced, it i possible to overlap the communications fo r one output block With

the computation for another by runnjng two threads in each slave. Each et of thread compute a

CHAPTER 5. ASSESSMENT

Ca) I I slaves
300 r-~.-~.-~.--..,.......,

400 600

300 ~ T- __ .-------:
200 r/" -- 300

:: v(~---- - - -
~ '

100

50 100

O '--~L-~L-~.L-~ O '-~L-'---'c........---,~-.J

o 352 704 1056 1408 o -180 960 I -1-10 1920
O '-'---..JL----'~__L~.....J

o 736 1-171 220
Total memory CMbytes) Total memory CMbytes)

Data parallel - - - -
Server caches block row

o blocks are cached --

Total memo'} IMb)1)

Figure 5.2 1: Potential perfonnance of single threaded data parallel matrix mulupli ation
employing double buffering at server level and equi valent bag f task computation in the
fast configuration when the problem size is caled accord ing to the aggregate mem ry ile .

II

different block row of the output matri x, so there are two block row ca hed a ro the Ime, at an

time. The block size is given by

b=~ VWs+0 '
Once again the overall time is assumed to be the greater of total communicat ion and total c mputalJon

so, now assuming a switch type network , a lower bound on the cost of comput ing a ingle blo k r wof

the result is

max {p (p + l)max {tdget, team}

+ p POg2 P 1 team + p(team + tdput) ,

ptmu lt + p POg2 P 1 tadd} . (5.20)

It is assumed that when the object store is distributed 0 er a number of node the data parallel organi a­

tion can potentially achieve a proportionate increase in throughput of data acce e to the object tore.

The parallelism of the switch is already taken account of in the communicati ons entai led in the global

sum . Figure 5.22 compares the perfonnance of such a computati on with that of the approach developed

earlier. It turns out that the perfonnance achievable in the data parall el organi sation i simi lar to that

achievable in the bag of tasks organisati on which caches a block row at server Ie el.

Rather than scaling the problem size to the total memory size a more general anal i begin \\ ith

the operand matrix size and number of slaves and computes from the e the block ize. One approa h

i to partition the matrices into rectangular blocks, b1 by b2 where b2 = ~. Then a block r \\ n x b1

is ca hed and all output corresponding to that block ro\ i computed in ~ tep . Figure - - - ho\\

CHAPTER 5. ASSESSMENT

-a.
0

'" ~
" '§

. ~
;;
" " " LJJ

500
(a) 5 processors

1000
(b) I I processors

400

W
800

300 600

200 400 I

100 200

o 0 '---~L-'---'L.....---l~.....J

o 160 320 480 640 0 352 70-1 1056 1-10
Total memory (Mbytes) Total memory (Mbytes)

Data parallel - - - -
Server caches block row

No blocks are cached --

(c) 1-1 processors
I 200 r-;:::;:=:::r::::==:C=:::::j
1000

800

600

.j()()

200

o '--'---'~-l..~.....L........J

o

Figure 5.22: Potential performance of multithreading to overl ap communicati on \ ith om­
putati on at slave leve l in the data parallel matrix multiplication and equi alent bag of t k
computation in the ATMl400 configuration when the problem size i ca led acc~rd i n g t
the aggregate memory size -

11

a simi lar computation to that of fig ure 5. 19 but ru nni ng with two laves instead of three. In prac tice

the area of the rectangular block in the two in put matrices can be lightly larger than that of the quare

blocks in the earl ier example because the block size in the result matrix i mall er, but thi i not h n

in the example.

In a single threaded computati on which exploi ts double buffering at erver Ie el,

and so
b1 M5 2

b2 8(25+ v)n2

If M 52 > 8(25 + v)n2 then b1 > b2 . The matrix blocks are configured so that a ingle block multiplic­

ation fill s memory, in order to minimise overall communication, but if b1 > b2 the product, of ize bi,

is larger than either inpu t block and so cannot be accommodated in memory. If parallel Lhread are em­

ployed to achieve overl ap of communicati on at the slaves the relevant condition is M 52 > 8(45 + v)n2
.

For example if there are 14 slaves perfo rming a 15K2 mul tiplication and the object store is di tributed

over two nodes, there wi ll be no space problem of thi s type provided M < 276 Mbytes in the ingle

threaded case, or M < 533 Mbytes in the multithreaded case. The e values corre pond to 20 and

38 Mbytes per slave respectively.

The bound can al ternatively be interpreted as defi ning a minimum number of la e fo r a given

matrix size and memory per slave config uration or a minimum matrix size for gi en nu mber of la e

CHAP1ER 5. ASSESSMENT

®-~ 111111111111Wf'J'2a IIII II IIIIIIWPdW4llllllllll llm

1 . b2 .
, '~' b.\.C1J
f ;

--

. ~ -

•
11

~ ~~~pute
~ output _____ T_im_e ___

-- um··· · ,. · , . . · . . .
. -: ... : ... : ... ; .

· .. . · · ...

Figure 5.23: Example to illustrate the operation of a data parall e l organi ali on of matri x
multipli cati on using two slaves.

and aggregate memory size. In the case of the single threaded computati on above

n >
8(28 + v)

119

In the fast co nfi gurati on for example if the aggregate memory ize is 2944 Mbyte and the number of

slaves 23, the minimum matri x size is

2944 X 106 x 232

8(2 x 23 + 1) = 64359

In the ATMl400 confi gurati on using 14 slaves with aggregate memory ize of 1792 Mbyte the min­

imum matri x s ize is

1792 X 106 x 142 --,-------,-- = 27513
8(4 x 14 + 2)

If the bound is passed, one option is not to increase the block size proporti onate ly, but thi would

have an adverse effect on overa ll perform ance. Another poss ibiljry is to compute more than one block

row at a time. However, provided the operand matri x size is large enough this issue doe not ari e. The

fo ll owing analysis makes thi s simplifying assumpti on in a comparison at fixed problem size between

the bag of tasks and data parall e l structures.

In computing the performance of the data paral lel structu re where blocks are no longer nece ari ly

square the full er notati on which includes the block dimensions as shown in table 3.2 but abbreviated up

till now is employed . The edges of a block are labelled b1 and b2 uch that with reference to (4. 1). (4.2)

CHAPTER 5. ASSESSMENT
LO

and (4.3)

2bib? b h?
tmult{bI , b2 } = P , tadd{b i b2 } = ~ - , (._1)

tget{ bI , b2 } = 8bI b2 (D~et + ~) , tput{ bI , b2 } = 8b1 b2 (D~t + ~)
It is then possible to write an expression for the minimum parallel time for s = i;- pro e or running

a data parall e l structure, in the fi rst instance si ngle threaded, with no double buffering and u ing a bu

type interconnect:

lwr {Tn / b2 }

.2)

As before, an expression can be deri ved for a multipl e threaded computati on whi h doe emplo crver

level double bufferin g arid uses a switch type network.

~ max{ ~ (1+ ~) max {tdget{b j , b2 } , tcam{bj ,bd}

+ ~ U1og2 ~ 1 tcom{ bl , bI} + tput{ bl , bI})

+ ~ (tmUlt{bl , b2 } + 110g2 ~ 1 tadd{bl , bI}) } (5.24)

Figure 5.24 compares the performance of the data parall e l structure with that of the bag of ta k for

constant problem size of 30K in the ATMl400 config urati on. In thi ca e, the bag of ta k tructure

(a) 5 processors (b) I I processors
500 1000 1200

~ 1000 Q. 400 800 0
c:

00 ~ 300 600
~ 600
c 200

. ~ .j()()
:;
<..)

100 200 " 200 ><
UJ

0 0
160 320 480 tHO 0 352 7Q..1 1056 I-W 0 448 96 13+1 1792

Total memory (Mbytes) Total memory (Mbytes) Total memory (Mbytes)
Data parallel - _.- -

Server caches block row -~
No blocks are cached --

Figure 5.24: Potential performance of data paralle l organisation of matrix multiplication
with multiple threadin g at slave level and double buffering at server level computing a

fixed problem size of 30K2 in the ATMl400 confi guration.

CHAP7ER 5. ASSESSMENT
121

perfonns better than the data parallel structure. Apparently the communications bandwidth affects the

data parallel structure before the bag of tasks Structure. This suggests that the 110 cost is higher in the

data parallel computation. From (5.6) and (5.24) the total communications cost is picked out for the bag

of tasks computation where a row is cached at server level and the data parallel computation.

Tcbot

Tcdatap

(~r max { (2; + 1) tcom{b, b} , (~+ 1) tdget{b, b} + tdput{b, b} }

~ (~ (1+ ~) max{tdget{bl,b2},tcom{bI,~}}
+ ~ (flOgZ ~ 1 tcom{bl , bl } + tput{bl , bt}))

Substituting for the various low level primitives from (4.2) and (4.3). (5.21) and (5.22). and writing

Tcdatap - Tcbot =

{ II} 8n2 8n2

8n
2

(PI + 1) max Dget' C + C (flog2 P21 + 1) + Dput

z { 2p + 1 P + II} (5.25)
- 8n max -C' Dget + Dput

In order for the 110 cost to be higher in the data parallel computation it would be necessary for

Tcdatap - Tcbot > 0 .

Commonly the disk bandwidth is lower than communications bandwidth so that

If the difference is significant such that

1 1
-->­
Dget - C

p + 1 1 2p+ 1
--+-->--
Dget Dput - C

i.e. roughly C ~ 2Dget, then from (5.25)

Tcdatap - Tcbot =
8n2 8n2

--(PI - p) + - (flOg2 pzl + 1)
Dget C

This expression is positive for PI ~ p, and in practice this condition will generally hold.

CHAP1ER 5. ASSESSMENT

If the difference between communications and disk bandwidth is not so great uch that

P + 1 1 2p + 1 - - + - - < - -
Dget Dput C

i.e . roughl y Dget ~ C ~ 2Dget , then from (5.25)

Tedatap - Tebat =
2(PI+ l 2P +l) 8n2 n2

8n Dget - -C + C (flOg2 P21 + 1) + Dput

In thi s case the expression is posi ti ve fo r certain values of P and PI dependent on the relaLi e value of

C and Dget . For large P, PI thi s re lati o nship can be expressed a

~ > 2p
Dget - PI

If C = 2Dget then as before the condition is simpl y PI 2: p. If C = Dget then the ondi ti on i

PI 2: 2p. Analys is of the ex tent to whi ch th is condi tion holds in general i deferred to future work. bu t

certainl y the point will be reached as the prob lem size grows. Where the number of la e and t tal

memory size is modest the po int wi ll be reached sooner.

In the ex perimental config urati on C is 9 .1 Mby tel and Dget at 5.5 Mbyte/s is 0 er hal f th i aluc.

Figure 5.25 compares the VO cost in the altemaLive computations for the experiment of figure 5.24. I 0

~
0

<5-

0
0

~

(a) 5 processors (b) II processors
25 ",--,--r-,---,---,

20

15-

10
....... ><:.

..•.

.... o ~==--'-----'----' .- , ..
160 320 480 640 352 70-1 1056

Total memory (Mbytes) Total memory (Mbytes)

VO cost
Data parallel - -- -- -- ­

Server caches block row -----­
No bl ocks are cached --

(c) 14 processors

14

I 1

0 2

0
96 134-1 1792

Total memory (Mbytes)

Block size ratio
bllb ----­

bl1b2 _._._._-

" E
'-'
~ .,
~
.2
."

Figure 5.25: Computed VO cost of data parallel organisation of matri x multiplicaLion with
mUltiple threadin g at slave level and double bufferi ng at server level computing a fixed
problem size of 30[(2 in the ATMl400 configuratio n. A fainter line indicates a total VO
cost while a heavy line ind icates a block size ra tio_

hown is the raLio of the smalle r block dimension in the data paralle l organi ali on to the blo k ize in the

baa of tasks oraani saLion which caches a row at server level and the raLio of the two block dlmen Ion In o 0

CHAPTER 5. ASSESSMENT
123

the data parallel computation. In this configuration the 110 cost of the data parallel structure falls below

that of the bag of tasks structure as the ratio of smaller block dimension in the former to block size in

the latter approaches 1.2. In this example the matrix size is such that it would be necessary to configure

more memory to reach the point at which the block shape in the data parallel organisation is square.

As described before it is not possible for b1 > b2 so if the matrix size were reduced or memory size or

number of slaves increased such that the operation moved beyond this point it would be necessary to

compute two block rows at once. Then either one block row can be computed with high performance

and one with low performance or both with some intermediate performance. As the number of slaves

is increased further it becomes possible to compute two block rows at once using square blocks. but on

yet further increase it is necessary to compute three block rows at once and the situation repeats itself.

For any particular matrix size there is a relationship between number of slaves and aggregate

memory size for which the data parallel computation uses blocks of optimum shape. For a certain

region around these optimal points the data parallel structure achieves better overall performance than

the bag of tasks structure. In other situations the bag of tasks structure can actually perform better.

One such situation is when the computational resources are modest. However. if the data parallel struc­

ture does have the advantage for a given configuration then that advantage can be lost if the resources

change during the computation. Here the actual value of the performance advantage is not pursued. It

is sufficient that the bag of tasks structure can be competitive with the data parallel structure.

It must be noted as elsewhere in this work that the analysis has tended to be in terms of max­

imum achievable performance and clearly further work is necessary not only as elsewhere in making

a more thorough analysis and in investigating further the effect of the configuration parameters on this

comparison but also in experiment to determine to what extent the predicted maximum performance is

achievable in practice. Here brief mention is made of certain obvious implementation issues. In the

data parallel structure, there is no need for a mechanism as complicated as a bag of tasks to imple­

ment fault-tolerance. Instead a user level checkpoint can be constructed which maintains on disk some

indication of how far the computation has progressed. It is necessary however for the distributed data

comprising the result matrix to be consistent with this record. In order to support tolerance of a transient

node failure or node replacement it suffices to store on disk the coordinates of the last block output, as

it is written. Then the recovery cost is essentially similar to that of the bag of tasks structure. Toler­

ating permanent loss of a slave is rather more difficult, since the granularity at which the result matrix

can be written changes. One possibility is to recover to the start of the current block row though the

recovery cost is then clearly greater. Similar difficulties arise when integrating an extra slave into the

computation. There is an added complication in the data parallel structure relating to reconfiguration.

The calculations have assumed that disk access is at maximum rate in all cases. Clearly after a recon­

figuration the accesses in the data parallel structure will be rather more fragmented and therefore may

not be at maximum rate.

CHAPTER 5. ASSESSMENT

While at this point the comparison appears favourable in terms of the bag of tasks Structure there

is scope for furthering the comparison. In the data parallel organisation each slave reads blocks in tum

from the same block row of the second input matrix for each block row of the first input matrix and could

therefore potentially gain by caching that block row of the second input matrix. In section:; .8.1. the

possibility of caching both a block row at slave level and a block column at server level was referred to

for the bag of tasks organisation, though it was noted that each block column cached at server level must

be reloaded a number of times depending on the number of slaves. Earlier analysis in this chapter for

the bag of tasks structure suggests caching a block row at slave level forces too great a reduction in the

block size to be worthwhile. However that was on the assumption that the block row was cached in slave

memory. If slaves have sufficient local disk space it is possible in either organisation to use this to cache

a block row. The cost of accessing data from this store mayor may not be cheaper than accessing it

from server memory, but there is a cost incurred in loading data into it; the cost of writing from memory

to the local disk. Enhancing the earlier cache model and pursuing the comparison between the alternate

computation structures is deferred to future work. However it is noted that the use of multithreading at

slave level in a multiple level bag of tasks structure offers an opportunity for allowing concurrent access

to the same bag of tasks at the second level since both threads running in a single slave can reuse the

same block row cached locally.

Ultimately it would be a surprising result if the bag of tasks organisation turns out to be the best

choice in general purely from a straight forward performance perspective. Here the claim is that there

is likely to be a strong case for it particularly when taken in the context of an environment of changing

resources.

5.7 Another Example: LV Factorisation

While readily adapted to a bag of tasks based structuring approach, Cholesky factorisation assumes

that the input matrix is symmetric positive definite, essentially belonging to a restricted class of well

conditioned matrices. This section gives brief consideration to the problems that arise in attempting

to structure the rather more generally applicable LU factorisation using the approach described in this

work.

In the matrix equation

AX=B

A becomes LU where L is lower diagonal and U is upper diagonal and one of Land U has unit diagonal.

There are a number of possible arrangements of the same basic operations required to perform the fac­

torisation. One such permutation, the Crout factorisation is illustrated in figure 5.26, and figure 5.27. It

is possible in all cases to overlay the operand matrix by the two result matrices and compute the factor-

CHAPTER 5. ASSESSMENT
125

isation "in place", though the example codes suggest the use of separate arm ys. All the pennutations

void lu(Matrix a, Matrix I, Matrix u)
{

for (k=O; k<sz; k++) {
/ / complete compution of column k of I

5 / / I[k:sz][k] = a[k:sz][k] -1[k:sz][O:k-ll*u[O:k-l][k]
for (i=k; i<sz; i++) {

sum = 0;
for (j=0; j<k; j++) {

sum += /[llul*u[]l[k);
10 }

1[ll[k) = a[ll[k) - sum;
}
/ / complete computation of row k of u
/ / u[k][k+ I :szl = u[k][k+ 1 :szl-l[k,O:k-ll*u[O:k-1](k+ 1 :szl

15 / / u[k][k+ I :sz] = u[k][k+ 1 :sz]/I[k,kl- assume l[k][kl != 0
for (j=k+ 1; j<sz; j++) {

sum = 0;
for (i=O; i<k; i++) {

sum +=/[k][i)*u[,l[]l;
20 }

u[k)[]l = (a[k)[]l - sum)/I[k][k);
}

}
}

Figure 5.26: Crout's LU factorisation

perfonn about 2~3 flops in factorising a matrix of n 2 elements.

It is possible as before to improve perfonnance by employing blocking techniques to increase loc­

ality and concentrate computation in block level multiplications, as illustrated in figure 5.28. It is

necessary to introduce a block level factorisation which must extend all the way to the lower edge of

the matrix, but it is possible to implement this operation as a factorisation of the square block on the

diagonal and a series of triangular solves of the upper factor and each of the square blocks below the

diagonal in the same block column.

The complication that does arise though is the need to employ pivoting to ensure numerical stability.

In an arbitrary matrix, the divisor employed in the basic factorisation, figure 5.27 line 21, can tum out to

be arbitrarily small; in the worst case it can be zero. Even if division by zero is avoided, the numerical

errors accrued in the computation increase rapidly with matrix size. Pivoting entails the application of

trivial manipulations, i.e. row or column swaps, to ensure that the value to be used as divisor is non-zero,

and ideally as large as possible. A key point is that the manipUlation must choose a suitable element

to use as divisor out of those available, just as the division is about to be perfonned. While the set of

CHAPTER 5. ASSESSMENT

2

4

6

8
I--

J 3 5 7 9

Figure 5.27: Order of computations in Crout factorisation

void blocked-lu(Matrix A, Matrix L, Matrix U)
{

for (k==O; k<p; k++) {
/ / complete compution of block column k of L

5 for (i==k; i<p; i++) {

10

15

20

}
25 }

}

sum == 0;
for U==O; j<k; j++) {

sum +== L[tllll*Ulll[k];
}
L[i][k] == A [/l[k] - sum;

factor L[k:p-1][k]
/ / complete computation of block row k of U
/ / U[k][k+ I :p] == U[k][k+ I :p] - L[k,O:k-l]*U[O:k-l J[k+ I :p]
/ / U[k][k+l:p] == U[k][k+l:p]/L[k,k]- assume L[kJ[kJ != 0
for U==k+ 1; j<p; j++) {

}

sum == 0;
for (i==0; i<k; i++) {

sum +==L[k][i]* U[i]U];
}
tmp == A[k]U1 - sum;
solve L[k][k]*U[k][;] == tmp for U[k]lll;

Figure 5.28: Blocked implementation of Crout's LU factorisation, for a matrix of p2 blocks.

126

CHAPTER 5. ASSESSMENT 127

manipulations which are perfonned under a given pivoting strategy can be equated to a set of a priori

manipulations preceding a factorisation without pivoting, it is not obvious a priori which element will

be the right one to choose as pivot at any given point in the factorisation. \\bile a definition of a priori

matrix manipulations which can alleviate the need for pivoting is highly desirable the current "eneralh
e •

accepted approach is to identify pivots on the fly during the factorisation.

The set of values from which a pivot element may be chosen depends on which organisation of the

factorisation is chosen [105]. Specifically, organisations such as the Crout factorisation which delay

writing to elements in the bottom right comer as long as possible prohibit full pivoting which allows

closest bound on error growth. Full pivoting maximises the search space for the pivot element by

searching through the whole of the lower right portion of the matrix which is not yet finally written and

then swapping both row and column to move the pivot element to the active location on the diagonal.

Clearly updates arising from the part of the matrix already factored must be fully applied to this region

for the search to be worthwhile, e.g. as in classical Gaussian elimination, but also the assured high

accuracy entails a rather high cost in identifying pivots. In practice a more generally applicable approach

is employed though the error growth is less constrained. This alternative. namely partial pivoting.

restricts the search for a pivot element to the remainder of either the current row or current column.

In the case of the Crout factorisation it is convenient to search down the current column. as shown in

figure 5.29.

It is possible to introduce pivoting into the blocked algorithm, at the appropriate point in the block

level factorisation. The pivot search should be down the whole of the remainder of the current column

and swaps made of entire rows. Recent implementors of out of core LV factorisation have tended

to organise the out of core data by full columns or column blocks [118, 70, 44]. Each phase of the

computation computes a whole block column which is sized according to aggregate memory. typically

in a data parallel organisation. Where data is accessed by whole column it is possible to search for a

pivot down a column and to apply accumulated pivot swaps to the overall matrix by column or column

block. However, such an organisation is less suited to the dynamic computation structures employed in

this work. It is not convenient to make arbitrary accesses to the out of core matrix; at times by block,

at other times by row or column. The ideal, seen in the other example computations. is where it is

possible to choose a single unifonn block shape independent of the matrix size. but this is one example

application where an optimal data structure is not so obvious. The following claims that it is possible

to employ a data organisation which pennits use of a bag of tasks based approach. The analysis and

verification are both limited however, being mainly deferred to future work; the intention being just to

indicate a starting point.

In an out of core factorisation where data is organised by full column or column block it is possible

to maintain the out of core matrix in either pivoted or unpivoted fonn [44]. The pivot swaps may be

applied to the out of core data as they are found or saved up and applied globally to the out of core data

CHAP7ER 5. ASSESSMENT

void lu(Matrix a, Matrix I, Matrix u)
{

for (k=O; k<sz; k++) {
/ / complete compution of column k of I

5 / / I[k:sz][k] = a[k:sz][k] -1[k:sz][O:k-I]*u[O:k-l][kl
for (i=k; i<sz; i++) {

10

15

20

25

}
}

}

sum = 0;
for (j=0; j<k; j++) {

sum += I[i][}l*uul[k];
}
1[/l[k] = a[/l[k] - sum;

/ / perfonn pivotting
max = 0;
for (i=k; i<sz; i++)

if (abs(l[i][kJ) > max) {max = abs(l[i][kJ); p = i;}
swaprows(k, p);
/ / complete computation of row k of u
/ / u[k][k+ I :sz] = u[k][k+ I :sz] - l[k,O:k-ll*u[O:k-1][k+ I :szl
/ / u[k][k+ I :sz] = u[k][k+ I :sz]/I[k,k] - assume l[k][kl != 0
for (j=k+1; j<sz; j++) {

}

sum = 0;
for (i=O; i<k; i++) {

sum +=/[k][i]*u[i]ul;
}
u[k]ul = (a[k]UJ - sum) / I[k][k];

Figure 5.29: Crout's LU factorisation with partial pivoting by column.

128

CHAPTER 5. ASSESSMENT
129

on completion of the factorisation. It is even possible to avoid explicitly applying derived pivot swaps to

the out of core data at all by storing an index array with the out of core data and applying the pivot swaps

to the right hand side of a system of equations when using the factorisation to solve that system. If pivot

swaps are not applied explicitly to the out of core data as they are found however. it is necessary to

apply them during factorisation, to convert between unpivoted out of core data and pivoted in core data.

This operation is easily performed if the data is always accessed by full length block coLumn. but in

the organisation described here which is intended to support an arbitrary and varying number of slaves.

accesses are by block rather than block column and it is anticipated that applying the transformation to

and from pivoted form would be costly. Instead an approach is defined for applying the pivot swaps to

the out of core matrix as they are identified. The discussion is in terms of an in place factorisation hut

adapts readily to one producing separate triangular matrices. It is assumed that the matrix is partitioned

into p2 square blocks as in other examples developed in this work. Factorisation of the [k, k] block

will in general necessitate swapping rows between block row k and all of block rows k + 1 to p. The

procedure is to apply pivot swaps by block column. For the jth such block column. the block [k,j]

is read in. Then in turn each of blocks [k + 1, j] to (p, j] is read, necessary pivot swaps applied and

the block written back. Finally block [k, j] itself is written back. There is a benefit in that it is only

necessary to access the part of the matrix which can have pivot swaps. If the cost of actually swapping

rows is ignored, then in the worst case the additional cost of these pivot updates arising from factoring

the kth block column is

p(p - k + l)(tget + tput) . (5.26)

Secondly it is necessary to identify pivot elements through full column searches. When the leading

diagonal block is factorised it i~ necessary to search down a full column, but with overall performance

considerations suggesting the use of a large square block, it seems unlikely that there will be sufficient

space to accommodate a full block column in memory. The block level factorisation may be performed

at the granularity of sub-block columns, keeping the block being factored in memory but below it only

the particular sub-block columns needed to allow full column pivot searches for a single step. While

pivot swaps may be applied to the whole block column after completion of the block level factorisation

as described before, it is necessary to write the pivot row into the active block during the factorisation.

The requirement is then for each sub-block step to read blocks below the diagonal by column but also

read blocks by row to allow update of rows within the active block. A simple approach is to perform the

block level factorisation at the granularity of sub-blocks; obtaining the data required for each step of the

block level factorisation by reading full blocks and update pivot rows before discarding the portion of

each block not required in the coming step. As elsewhere the overall matrix is assumed to be of size n2
•

and partitioned into blocks of size b = nip. As a starting point it is assumed that a full column sub-block

CHAP7ER 5. ASSESSMENT
130

of width w is to fit into the same space as a single block. Then the sub-block width is determined'

b2 n
w=-=-

n p2

For each such sub-block column in a block it is necessary to read all blocks below the diagonal. with cost

(p - k }tget. The extra cost due to searching for pivots down full columns in the block level factorisation

corresponding to the kth block column is then

b
-(p - k}tget
w

p(p - k}tget

There are possible ways of optimising these operations. If the matrix is distributed over a number

of nodes it is possible to achieve parallelism in the global pivot swapping phase by performing swaps

locally. For instance if the matrix were distributed by block column it might be possible to perform

pivot swaps for all block columns concurrently. One possible way in which the cost of implementing

the pivot searches may be reduced is to actually organise blocks on secondary storage by sub-blocks.

Data on secondary storage is only ever written by complete block, but it is possible to reduce the total

read cost, even if shorter reads will not be at full disk bandwidth. In the foIlowing analysis however.

it is simply assumed that all pivoting operations are performed by a single process with data accessed

by full blocks. Then the total additional cost due to pivoting in the kth block column is obtained from

(5.26) and (5.27).

Tpiv(kh p(p - k}tget + p(p - k + l)(tget + tput)

p(2p - 2k + l)tget + p(p - k + l}tput . (5.27)

In order to implement an LV factorisation it is also necessary to define task and synchronisation

structures. A starting point is to partition the work so that each task writes a single block as before.

A task dependency graph for such a computation is shown in figure 5.30. In this arrangement the task

which computes a block below the diagonal must access the block above it on the diagonal to compute

the final result. For instance the task computing the block L[i, kj first computes the intermediate result

k

tmp = A[i, kj- L L[i,jjU[j, kj
j=l

and then solves

L[i, kj U[k, kj = tmp

to obtain the desired result.

CHAPTER 5. ASSESSMENT

£10.3

£10.0 £10.1 £10.2 £10.3

a 1.0 al.l aU aU

Q2.0 Q2.1 a2.2 a2.3

a3.0 a3.1 a3.2 a3.3

a3.3

Figure 5.30: Task dependencies for blocked LU factorisation. If pivoting is performed. the
dashed arcs are present but not the dotted arcs. If pivoting is not performed the opposite is
true.

131

The task which computes a block on the diagonal must perform first a similar inner product then a

block factorisation. It should be possible to perform the first part of the two tasks in parallel. One way

this can conveniently be achieved is to split each such task into two and have the first write an interme­

diate value to be used in the second. It is necessary to introduce some extra indicator to discriminate

between the different tasks writing the same block, though for an initial implementation it is conveni­

ent to have the task performing the block factorisation also perform the triangular solves to update the

blocks below, in addition if required to the global pivot swaps. The example computation then has the

task graph shown in figure 5.31 A simple implementation approach is to employ a sequence of bags of

tasks to place barrier synchronisation at the indicated points.

An implementation of the computation without pivoting has been performed using the same infra­

structure as used before for matrix multiplication and Cholesky factorisation. Also an analysis of the

performance has been made to compare with the experimental results. As before the full analysis is

contained in an appendix, appendix B, but the principal results are quoted here.

The total extra cost due to pivoting is in all cases

(5.28)

CHAPTER 5. ASSESSMENT

Go.O aO.1 Go2 Go.J

aO,O al ,O a 1.1 al2 aU

~
aO.1 a 1,1 a!.O a2.1 a" G2 .J

a 1.0 G3.0 a J.1 G32 G3.J

)(aO,O

a2.0

~
Figure 5.31: Blocked Crout LV fac torisation u ing bags of task .

The single slave time and bounds on mjnimum parallel runtime without pivoting are as fo ll o\

TNOPIV1

lwr {T NOP I Voo }

~ (p + 1)(2p + l)tget + ~(3p + l)tput
p

+ 6'(p - 1)(2p - l)(tmult + tsub) + pep - l)tsolve ptLu

max {~(p + 1)(2p + l)tget + ~(3p + l)tput
p

+2'(p - l)tsolve + ptlu ,
p p
2'(5p - l)tget + 2'(3p + l)tput

(5 .29)

+(p - 1) 2(tmult + tsub) + ~ (p - 1)(P + 2)tsolve + PtIU } (5.30)

upr {T NO P I Voo } ~(p + 1)(2p + l)tget + ~(3p + l)tput

+ (p - 1)2 (tmult + tsub) + ~ (P - l)(p + 2)tsolve + ptlu (5.31)

Figure 5.32 shows the best measured performance of the Crout LV factorisation of a 30002 matri x

without pivoting in the HP confi guration. Also shown is the expected performance for thjs case and

also for the same computation with pivoting included.

While the performance is not high , it is clear th at the I/O cost is considerably greater in the L fac ­

torisation than in the simpler Cholesky factorisation and the hardware parameters of the experi mental

environmen t are modest. While possible optimisation to the pi oti ng operation have been ugge ted

CHAPTER 5. ASSESSMENT

40

~ 30 c..
/2
~
" E 20

.g
=3
" '" 10 LlJ

(a) Without pivorting

/' ~"''''''

/- -- - - ~~~~---::::====== .. ---­
:/' ...
(

1000 2000 3000
Block width (ele ments)

(bl With pl\olOng

30

20

I 0 ,,': :_::::::.ooo~~~.--

//:;--

O ~----~--~--~ __ ~~
o I 1

Block" ,dth (ele"",nlS)

Measured •
Expected -------

Figure 5.32: Perform ance o f LU factori sati on for 30002 matri x in the HP configuration .

I 3

already, it is also poss ible to seek improvements in the performance of the ba ic algorithm . One p -

sible improvement is to move the triangular so lves which compute the final re ult for block belo" the

diagonal from the sequenti a l task computing the block on the diagonal to the nex t parallel tep. Each

triangular so lve mi ght be computed by the task which i re pons ible for writing the intermediate re ult

for the block just to the ri ght. Then the solves could be executed in para ll e l rather than erially. nother

li ne of development might be to implement a left look.ing factori ati on where a whole blo k co lumn i

computed in each step. To coordinate concurrent execution o f task computing blo k in the arne block

column both above and below the di agonal it is nece ary to employ o rne addiLi onal ynchroni ati on

mec hanism, such as the array of fl ags used before, bu t the number of barri er points i red uced . It i anti ­

cipated that increas ing the prob lem size should yield a hi gher potential degree of paralle li m. Currently

it is shown that the computatio n can be adapted to a bag of tasks based tructure to facilitate use of

changing resources. However, further investigaLi on is req uired to fully asse s the potenti al performance.

5.8 Summary

The results of the previous chapter already suggest that the bag of task.s based structurin g technique

emp loyed in th is work provides an effective way to exploit the changing parallel resource of a Ow.

However it remains to consider any cos t inherent in choosing such a structure instead of another, which

might be less dynamic. First issues specific to the bag of tasks based structure are con idered. beginning

with the performance of alternative synchroni saLion structures fo r the Chole ky factori aLion example.

Subsequently the issue of problem size scaling is considered and it is hown that there i an asymp­

totic perform ance fo r each of the matri x computations which is equal to the performance of the bl ~

CHAP7ER 5. ASSESSMENT
134

level matrix multiplication operation when the operands are accessed from shared store. but reflecting

any benefit available through caching. Thus if the matrix multiplication example is organised to reuse

a block row from server memory. then the asymptotic performance is that for block level multiplica­

tion where one operand is read from remote disk and the other from remote memory. This analysis

shows that there is a potential benefit available through caching. but fails to take account of the extra

memory required to support caching so a subsequent analysis considers the benefit of caching under a

constant aggregate memory constraint. The analysis is performed in the context of matrix multiplication

and shows that while caching a block row within slave memory is unlikely to be of benefit there is a

potential gain from user directed caching of a block row in server level memory.

Following from this and again in the context of matrix multiplication the potential performance

achievable under various hardware upgrades is determined. Also considered is the appropriateness of

the recovery cost and the likely load on the bag of tasks. Consideration is then given to using the well

known technique of overlapping communications to increase exploitation of the hardware resources. In

the bag of tasks structure two points are identified where such a technique can be applied. At the server

level it is possible to overlap network and disk transfers by employing double buffering and at slave

level it is possible to overlap communications with computation by employing multithreading.

Next a performance comparison is made between the bag of tasks structure and a data parallel

alternative for the example case of matrix multiplication. Each is tuned to a similar degree though there

remains a possibility for further tuning through caching on local disk space at slave level. However it

appears so far that the bag of tasks structure can be competitive in terms of potential performance and

certainly has advantages when the number of slaves participating in a computation changes during the

course of that computation.

Finally some consideration is given to a another matrix computation. namely LV factorisation. This

example is interesting because it does not permit an overall decomposition so obviously suited to a

bag of tasks based structure. It is reasonable to expect this situation to arise in many other example

computations.

Chapter 6

Conclusions

A NOW is commonly perceived as embodying in its surplus capacity an alternative to a dedicated

parallel machine. There is a range of options open to an organisation wishing to exploit this alternative.

One example would be to administer a NOW as a dedicated high performance resource overnight. In this

case the NOW is certainly prone to partial failures where a tightly coupled machine may exhibit an all or

nothing failure pattern. An alternative allows workstations in the NOW to be used for either sequential

or parallel computations at any time leading to a highly varied job mix including both interactive and

noninteractive jobs. In either case the distinguishing feature is that the resources available to a parallel

computation are changing. This work has been directed to the exploitation of changing resources in any

NOW configuration. The resource changes addressed here are addition or removal of a workstation to

a computation running in a NOW. These changes may be notified to the computation in advance or not.

In the latter case it is not essential for the computation to have taken some prior precautionary action;

rather it is sufficient for the computation to simply reconfigure. In practice it is probably important to

optimise separately for notified and unnotified resource changes.

It turns out however that existing work tends mostly to address various parts of the overall problem.

A large amount of work exists on checkpointing and replication techniques which generally address

a transient node failure. Several distributed operating systems have addressed the problem of migrat­

ing processes from one machine to another. The main problem is ensuring correct interaction between

process and system, and thus indirectly also that between processes and thus was originally addressed

in the context of completely custom operating systems. In a multiprocessor with truly shared memory

the problem does not arise since all communication between a process and outside is through the same

shared memory wherever the process runs. Recent work has shown that kernel modifications can be

avoided and indeed if all interaction is through a message passing library it is possible to localise con­

siderably the support needed for migration. However no change at the system level can enable a given

computation to tolerate loss of a node, notified or otherwise, or exploit an extra node. The computation

135

CHAPTER 6. CONCLUSIONS
136

itself needs to be structured specifically to support this. Many computations are irregular by nature so

that support for dynamic load balancing is inherent to their solution, and elsewhere dynamic frameworks

have been developed for computations which would typically be partitioned in a static way. either to

support use of a heterogeneous collection of machines or to support withdrawal or removal of machines.

One such framework is referred to here as a bag of tasks, a term used often in Linda based publications.

though it is synonymous with work pile, task farm, master slave and many others. Generally the resource

changes are notified so that extra provision is required to tolerate failures.

Job level scheduling can address the problem of exploiting changing resources by selecting those

jobs which wiII best use the available resources. However, such an approach relies on the jobs currently

active exhibiting a sufficient range of resource requirements. It is suggested that there is a place for at

least some of the jobs submitted being able locally to fully exploit changing resources, expanding to

use more facilities or contracting to use fewer facilities. CALYPSO has addressed the overall problem

of supporting use of changing resources by creating a pre-compiler which restructures annotated user

code automatically and uses a bag of tasks type approach to execute segments in parallel. The work

here also addresses the overall problem of computing on changing resources, but provides library level

mechanisms which the user then exploits as required. The approach described in this work is also similar

to Ff-Linda and Plinda in exploiting a bag of tasks structure. However in general when compared to

existing systems the work here addresses a wider range of problems.

Any machine has a restricted physical memory size which ultimately limits the size of problem

that can be attempted. An example of a problem where this issue has been reported is a large matrix

factorisation. There is therefore a long history of work on out of core structuring techniques for such

problems where the problem data is based on secondary storage and physical memory serves only as

cache space for this data. More recently interest has mainly focussed on parallel implementations often

favouring a data parallel structure for implementation on machines with a large degree of parallelism.

This work takes an unusual approach by organising out of core computations in various ways using a

number of bags of tasks in order to investigate the potential for performing such computations on the

changing resources found in a NOW.

A disk based shared address space is constructed using a distributed object store. Accesses to these

shared objects are controlled by the use of atomic actions, employed both within object operations

and within application process code. A commit protocol ensures consistency of distributed updates.

A fault-tolerant bag of tasks is implemented using a recoverable queue, used previously in queued

transaction work. While the basic organisation provides support for simple parallel loops, a number

of simple extensions which support more complex parallel structures are described. A problem can

be partitioned into phases which can each be implemented using a separate bag of tasks. Since the

return status of the dequeue operation distinguishes the case where the queue is truly empty from that

where all entries are locked by other processes, it is easy to create the effect of a barrier synchronisation

CHAPTER 6. CONCLUSIONS
137

between computation phases. It is necessary to arrange for slave processes to move on to the next queue

only when the current one is empty. An alternative approach is to employ synchronisation variables

directly in the computation. It is necessary to ensure that such synchronisation behaves correctly in the

event of process recovery. In the case of Cholesky factorisation for example it is convenient to associate

a recoverable flag with each block of the result matrix and make updates within the operations of the

matrix object. It is also possible to define a hierarchy of bags of tasks if there is a need to encourage each

slave to follow a defined sequence of tasks, while not compromising the recoverability. It is claimed

that recoverable bags of tasks together with atomic actions make convenient building blocks with which

to construct dynamic parallel structures.

Three specific computations have been implemented in three different NOW configurations. Two

dense matrix computations, matrix multiplication and Cholesky factorisation, are data intensive. The

third, ray tracing, is much less so but enables a comparison with other infrastructures. For a small scale

ray tracing computation the fault-tolerance seems a lUXUry when the performance is compared with that

of a commercial grade implementation which is not fault-tolerant. However, for an example of realistic

scale the fault-tolerance is not only clearly going to be cheap but also necessary.

The computations have been modelled so as to verify the observed performance. and in the case of

the matrix computations to allow the effect of configuration changes to be predicted. The modelling

approach is empirical in relying on benchmark measurements of the lower level operations which the

applications are built from. These are all at the level of blocks, i.e submatrices. which are accessed

as units and include for instance read and write block. mUltiply two blocks etc. Following calibration

of the models, measurement of the performance of complete examples both validates the modelling

process and shows that worthwhile absolute performance can be achieved even in the hardware config­

urations available. For the defined program structures the additional cost imposed by the fault-tolerance

mechanism is seen to be small provided the granularity is large.

Following this initial work the next step is to use the models to assess the potential for the struc­

turing approach. First a number of alternative organisations of the same basic algorithm for Cholesky

factorisation are compared. These organisations differ only in the approach to synchronisation; in two

cases employing sequences of bags of tasks and in another employing separate synchronisation flags

manipulated in the operations of the result matrix object. In the former case the model suggests that

a structure employing a single queue and additional synchronisation integrated into the result matrix

can offer better performance than either of two alternatives which employ multiple queue steps to avoid

using the additional synchronisation in the result. Experimental measurements suggest that this higher

performance can be realised in practice.

A simple analysis of the scaling properties shows that there is an asymptotic execution rate for a

given configuration which is approached as the problem size is increased. This asymptotic rate is equal

to the rate at which block level matrix multiplication operations can be performed when the operands are

CHAPIER 6. CONCLUSIONS
138

fetched from store. If the computation is organised to reuse data and so benefit from caching then this

asymptotic rate increases proportionately. However the value of data caching is better considered in the

context of the overall memory requirement. When compared under a constant memory constraint. for

matrix multiplication it appears that caching data in slave memory is not worthwhile, but that a benefit

may be gained through user directed block row caching at server memory level.

A practical Question arises regarding the usefulness of scaling computation size arbitrarily. There

is some evidence [48] however which suggests that dense linear algebra computations of rather larger

scale than those considered in this work are performed in practice. While this work makes only a start

and tackles with any thoroughness only simple examples it may be that if a way of performing these

large scale computations is readily available then increased use will be found.

Using the performance model it is possible to predict the potential performance in the event of some

upgrade of hardware configuration. In so doing it is important to verify that the computation granularity

remains appropriate, so that recovery time is not too large and the load on a bag of tasks is not too high.

Intuitively these requirements can be satisfied if the degree of parallelism is modest and the granularity

large. However in the case of matrix multiplication at least there appears to be ample scope for gainmg

benefit through parallelism while doing so in practice.

Overlapping communications is a standard technique used to exploit more fully any hardware con­

figuration. In a bag of tasks structure this may be achieved at two levels. At server level network and

disk transfers can be overlapped through double buffering. At slave level the use of multithreading can

overlap communications with computation. Each has some impact on the total memory requirement,

ultimately reducing the granularity and so increasing the load on a bag of tasks. Again in the case of

matrix multiplication there appears to be scope in practice for exploiting such overlapping techniques

for suitably large computations.

After modelling simple hardware upgrades and the potential for overlapping communications, a

comparison is made between the bag of tasks structure and a data parallel structure in order to assess

the cost of structuring to cope with changing resources. This analysis is performed only in terms of

maximum achievable performance and only in the case of matrix multiplication so there remains scope

for developing this comparison not just in this example but also for other applications. When both

structures are tuned to the same degree, specifically employing both double buffering and multithreading

techniques, the evidence so far suggests that the bag of tasks structure can be competitive. Furthermore

when operating in an environment of changing resources there are clear advantages to the bag of tasks

structure.

Finally brief consideration is given to a new example application, LU factorisation. The significance

is that the pivoting required in LU factorisation suggests a rather finer granularity than can be achieved

in either matrix mUltiplication or Cholesky factorisation and so the centralised bag of tasks might be

expected to be a bottleneck. It is shown that an organisation based on a bag of tasks type approach is

CHAPTER 6. CONCLUSIONS
139

possible though further work is needed to evaluate the perfonnance potential.

Overall it is claimed that investigation of computation structures which can make full use of chan­

ging resources is worthwhile and the study here has made a contribution in this area.

6.1 Further Work

The Arjuna system has evolved into a second generation which can employ industry standard transpon

mechanisms and multithreading. There is then scope for porting the existing applications and optimising

servers. Such optimisation in the queue may broaden its range of applications. There is also scope for

demonstrating the fault recovery experimentally. The objects used here have been developed in response

to application needs. Development of further applications might allow identification of some useful set

of tools.

For the type of applications studied in the constrained environment of a NOW the requirement for

complex commit protocols to implement nonblocking agreement can be avoided and has pcnnitted

development of useful dynamic parallel structures. With appropriate guarantees regarding atomicity it

may be that such dynamic structures can find wider application.

As described earlier, structuring a computation using a bag of tasks achieves a fonn of adaptive par­

allelism. If the task granularity is small enough it is sufficient to simply kill the slave process executing

on a particular machine to cause migration from that machine. A mechanism which allows a slave to

save its state to enable cheaper restart would allow the task granularity to be increased.

The analysis of alternate structures for matrix mUltiplication remains incomplete. In the data parallel

structure each slave reuses the same block row of the second input matrix. It is possible to organise the

bag of tasks structure also so that each slave reuses a particular block row a number of times. Analysis

of the bag of tasks structure suggested that caching a block row in slave memory would not be beneficial

because this forces reduction of the block size. However. if slave machines have large local disk space.

it would be possible to cache a block row there in either computation structure. On the practical side.

it remains necessary to verify the operation of a two level bag of tasks structure to arbitrate separately

between block rows and blocks within each block row.

So far the structuring approach has been demonstrated in only two applications where an out of

core approach is necessary. It would be interesting to consider structuring other matrix computations

in this way and also to consider other data intensive computations. In the case of LV factorisation it is

seen that even preliminary investigation highlights areas for further study. The first question concerns

the possibility of using the dynamic structure employed here. but there is also the issue of perfonnance

particularly when compared with alternative less dynamic approaches.

Appendix A

Choiesky Factorisation Performance

A.I single-bag

The approach to modelling the single-bag organisation is to think of the computation as if there "ere

a barrier at the point of output of a block on the diagonal and at the completion of each block column.

Assuming full parallelism is reached. the 2p-l steps are as follows.

• In the first step all processes read the appropriate block of the input matrix. ai.j and in addition.

the first process computes Cholesky factor of block ao.o and writc~ it out. This is referred to as

the initialisation step.

• In the p-l even numbered steps starting with the second proces~cs computing blocks in the same

block column as the diagonal block output in the previous step read that diagonal blod. perform

the required solve and output the result block. These are referred to as solve steps.

• In the remaining p-l all processes which have not yet output a result. read blocks written during

the previous step (one if on diagonal or two otherwise) and perform a multiplication and sub­

traction. In addition. one process computes Cholesky factor and writes out the result. These are

referred to as factorisation steps.

A.1.1 Single Slave Time

Since there is no parallelism available. the duration of the first step is always

Tinitl = E(p + l)tget + tchat + tJlUt
2

(All

There are p-l solve steps for columns j = 1 to p-l. The step corresponding to column j entails

140

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE

p- j block solves. The serial time for the jth such step is

Tsolve(jh = (p - j)(tget + tsolve + tput)

and the total for all these steps

p-l

Tsolvel = LTsolve(jh
;=1
p-l

L(P - j)(tget + tsolve + tput)
;=1
P "2(P - l)(tget + tsolve + tput)

141

(A.2)

(A3)

There are also p - 1 factorisation steps, but for columns j = 2 to p. In each of these steps a

block mUltiplication and subtraction is performed for each active block and also a single Cholesky

factorisation.

In the step corresponding to column j there are a total of ~(p - j + l}(p - j + 2) blocks of the

output yet to be written. Of these (p - j + 1) lie on the diagonal and therefore require only a single

block read during the step. The remaining ~(p - j)(p - j + 1) require two block reads. The serial time

for this step is

T fact(jh = (p + 1 - j)2tget

and the total for all these steps

p

+ ~(p + 1 - j)(p + 2 - j)(tmult + tsub)
2

+ tchol + tput

T factI = LT fact(jh
;=2 t. { (p + 1 - j)2tgeH

+ ~(p + 1 - j)(P + 2 - j)(tmult + tsub)
2

+ tchol + tput}

E(p _ l)(p - 2)tget + E(p2 - l)(tmult + tsub)
6 6
+ (p - l)(tchol + tput)

(A.4)

(AS)

By summing these three components (AI), (AS). (A.3) it is possible to derive an estimate of the

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE

single slave time

Tl Tinitl + Tsolvel + T fad l

~(p + l)tget + tchol + tput + ~(p - l)(tget + tsolve + tput)

+ ~(p - 1)(P - 2)tget + ~(P2 - l)(tmult + tsub)

+ (p - l)(tchol + tput)

~(p + 1)(2p + l)tget + ~(P2 - l)(tmult + tsub)

+ ~(p - l)tsolve + ptchol + ~(p + l)tput

A.l.2 Minimum Parallel Time

Lower Bound

One lower bound on the minimum parallel time is set by hardware bandwidths.

p p
Tcomm = 6(P + 1)(2p + l)tget +"2(P + l)tput

\42

(A.6)

Another is determined by the longest duration task. This may be either the last task which computes the

bottom right diagonal block or the previous task which computes the block just to the left in the same

block row.

T(p,p - 1) = 2ptget + (p - 1) (tmult + tsub) + tsolve + tput

and

T(p,p) = ptget + (p - l)(tmult + tsub) + tchol + tput

The latter is greatest if

tchol > ptget + tsolve ,

but also trivially for p = 1 since it is then the only task.

The required lower bound is then the maximum of these separate bounds.

Iwr{Too } = max{Tcomm,T(p,p-1),T(p,p)}

An alternative lower bound may be defined based on the average task length for use when it is not

obvious which task is actually longest.

(A.7)

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE I .. B

Upper Bound

An upper bound on the minimum parallel time may be obtained by pretending that there is a barrier after

each of the computation steps described above and then summing the upper bound on the minimum

parallel time for each step.

The time taken to compute the initialisation step is Tinitl (A. I).

An upper bound on the minimum parallel time to compute the solve step corresponding to column

j is obtained from (A.2).

upr {Tsolve(j)oo} = (p - j)(tget + tput) + tsolve

An upper bound on the minimum time to compute all such solve steps is

upr{Tsolveoo }

=

p-I

L upr {Tsolve(j)oo}
j=1

p-I

L {(p - j)(tget + tput) + tsolve}
j=1

E(p - l)(tget + tput) + (p - l)tsolve
2

(A.8)

An upper bound on the minimum parallel time to compute the factorisation step corresponding to

column j is obtained from (A.4).

upr {T Jact(j)oo} = (p + 1 - j)2tget + tmult + tsub + tchol + tput

An upper bound on the minimum time to compute all such factorisation steps is

p

upr {T Jact oo } = L upr {T Jact(j)oo}
j=2

p L {(p + 1 - j)2tget + tmult + tsub + tchol + tput}

j=2

E(p - 1)(2p - l)tget
6
+ (p _ l)(tmult + tsub + tchol + tput)

Finally, the upper bound on Too is obtained by summing values from (A. I), (A.9), (A.8).

=

Tinift + upr {Tsolveoo } + upr {T Jact oo }

E(p + l)tget + tchol + tput
2
+ E(p _ l)(tget + tput) + (p - l)tsolve

2

(A.9)

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE

A.2 muIti-step(l)

p
+ 6(P - l)(2p - l)tget

+ (P - l)(tmult + tsub + tchol + tput)
p
6(P + 1)(2p + l)tget + (p - l)(tmult + tsub + tsolve)

+ ptchol + ~(P + l)tput

A.2.1 Single Slave Time

l+t

(A. 10)

For the jth diagonal block the computation time is T(j, jh- In addition to the original block at this

location, it is necessary to read j - 1 blocks, perform one block multiplication and one block subtraction

for each of these blocks and finally factor the result write the resulting factor back.

T(j,jh = jtget + (j -l)(tmult + tsub) + tchol + tput (A.l1)

The remainder of the work on this block column entails computing the blocks below the diagonal.

Computation of the i, jth block entails 2(j - 1) reads in addition to that for the original block. J - 1

multiplications and subtractions, another read and block solve and writing the result.

T(i,jh = 2jtget + (j - l)(tmult + tsub) + tsolve + tput (A.12)

The time taken by a single slave to compute the jth column is then

p

T(j,jh + L T(i,jh .
i=j+l

Finally summing for all columns gives the time taken by a single slave to complete the whole

computation.

T, t, {T(j,j),+ it;, T(;,j),}

= t, {j Iget+ (j - 1)(Imull +t,ub) +t,ho/ +tpul

+ it;, {2jlget + (j - 1)(Imult+ I,ub) + "o/vd lput} }

p

L {((2p + l)j - 2j2)tget
j=l

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE

+ «(p + 2)j - j2 - P - 1)(tmult + tsub)

+ (p - j)tsolve + tchol + (p - j + 1)tput}

P
6(P + 1)(2p + 1)(3 - 2)tget

p
+ 6(P + 1)(3p + 6 - 2p - 1 - 6)(tmult + tsub)

+ ~(2P - P - 1)tsolve + ptchol + ~(p + 1)tput

= ~(P + 1)(2p + 1)tget + ~(P2 - l)(tmult + tsub)

+ ~(P - 1)tsolve + ptchol + ~(P + l)tput

A.2.2 Minimum Parallel Time

Lower Bound

The computation consists of 2p - 1 steps .

145

(A.I3)

• The first and subsequent odd numbered steps, referred to as factorisation steps, are serial com­

putations which output a single block on the diagonal. The time taken to perform this serial

computation for the jth column is T(j, jh in (A. I I) .

• The second and subsequent even numbered steps, referred to as solve steps, are parallel compu­

tations which output all blocks below the diagonal in the same block column as the block output

in the previous step.

The jth solve step entails computing all blocks in the jth column below the block on the diagonal.

The time taken to compute one such block is T(i, jh in (A.12). A lower bound on the minimum time

taken to compute the jth solve step is therefore

A lower bound to Too may be obtained by summing the cost of the p serial steps and the p - 1 parallel

steps.

P p-1

lwr{Too} = LT(j,jh + L1wr{Tsolve(j)00}
j=1 j=1

t, TU, ih + ~ max { ""~yitg,, + tput} , T(;, ih }

In each of the parallel steps which compute the blocks below the diagonal the cost may be dominated

either by the total communications or by the computation. For example. in the case of the first block

column the cost of each task is 2tget + tsolve + tput while in the case of the second block column the

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE
146

cost is 4tget + 2(tmult + tsub) + tsolve + tput. However it is possible to simplify this expression and

yet still obtain a lower bound on the overall minimum time, though the bound may be not so close.

p

Iwr{Too } = LT(j,jh
j=l

+ max {% '=~, {2jtget + tput} , % T(i, jj, }

p

= L {jtget + (j - l)(tmult + tsub) + tchol + tput}
j=l

+ max {% {(P - j)(2jtget + tput)} ,

% {2jtget + tput + (j - l)(tmult + bub) + t,e/ve} }

E(p + l)tget + E(p - l)(tmult + tsub) + ptchol + ptput 2 2

+ max {~(p2 - l)tget + ~(p - l)tput ,

p(p - l)tget + (p - 1) (p _ 2)(tmult + tsub)
2

+ (p - l)tsolve + (p - l)tput}

= max {E(p + 1)(2p + l)tget + E (p - l)(tmult + tsub)
6 2

p
+ptchol+2"(p+1)tput,

E(3p - l)tget + (p - 1)2(tmult + tsub)
2

+ (p - l)tsolve + ptchol + (2p - l)tput}

As a check if p = 1 in this expression, it is seen that

Iwr{Too } = tget + tchol + tput .

Upper Bound

(A.14)

An upper bound on the minimum time taken to compute the solve step corresponding to the jth column

is
p

upr {Tsolve(j)oo} = L {2jtget + tput} + (j - l)(tmult + tsub) + tsolve .
i=j+l

In the same way as for the lower bound, an upper bound to Too may be obtained by summing the

APPENDIX A. CHOLESKY FACTORISATION PERFORMANCE

cost of the p serial steps and the p - 1 parallel steps.

P p-1

upr{Too} = LT(j,j) + Lupr{Tsolve(j)oo}
j=1 j=1

p

= LT(j,j)
j=1

+ ~ {.~'pjtg't + tput} + (j - !)(tmult + bub) + 'w"" }
p

= L {jtget + (j - l)(tmult + tsub) + tchol + tput}
j=1

p-1

+ L(p - j)(2jtget + tput) + (j - l)(tmult + tsub) + tsolve
j=1

E(p + l)tget + E(p - l)(tmult + tsub) + ptchol + ptput
2 2

+ E(p2 _ l)tget + (p - 1) (p - 2)(tmult + tsub)
3 2

P + (p - l)tsolve + 2(P - l)tput

= E(p + 1)(2p + l)tget + (p - 1)2(tmult + tsub)
6

p + ptchol + (p - l)tsolve + 2(P + l)tput

Again as a check if p = 1 in this expression, it is seen that

upr {Too} = tget + tchol + tput .

147

(A.IS)

AppendixB

LV Factorisation Performance

B.1 Crout Factorisation

The CROUT organisation computes in each iterati on re ult for a parti al block column and ro fr m

the diagonal dow nwards and to the ri ght. Each such iterati on compri e three steps. The organi ati n i

illustrated for the kth iteration, corresponding to the kth bl ock co lumn , in Figure B. I

k k

k

(I) mu ltiply (2) factor (3) olve

Figure B. I : Computation steps in Crout LU factori alion.

I . The first step is referred to as a multiply step and computes intermediate resul lS for block on and

below the diagonal. Overall the step performs the computati on

X[k : p, k] = A[k : p , k] - L[k : p , 1 : k - l]U[l : k - 1, k]

A si ngle task in thi s step computes a single block L [i, k] where i 2: k.

2. The second step is referred to as ajactor step as the partial block co lumn X[k : p k], computed in

the previous step, is fac torised . Full co lumn pivo ling may be performed during the fa tori alion .

and then during the same step pivot row swaps applied to the hole matrix.

148

APPENDIX B. LU FACTORISATION PERFORMANCE 1~9

3. The final step writes final result values for all blocks in the current block row but to the ri"ht of
e

the diagonal. Oearly there is no need for such a step in the final iteration. The Step computes

first

X[k, k + 1 : p) = A[k, k + 1 : p)- U[k, 1 : k - 1)L[1 : k - 1, k + 1 : pj ,

then solves

U[k, k + 1 : p)L[k, k) = X[k, k + 1 : pj

for U[k, k + 1 : pl. A single task in this step computes a single block U[k, jj where k < j :5 p.

without explicitly writing X[k, i).

B.1.1 Single Slave Time

Without pivoting the kth factorisation step may be accomplished by reading the block on the diagonal.

factoring it and writing the result back. then in tum reading each block below the diagonal. solving with

the upper half of the block on the diagonal and writing back the result.

Tfactnp(kh tget + tlu + tput + (p - k)(tget + tput + tsolve)

(p - k + l)(tget + tput) + (p - k)tsolve + tlu

The additional cost in this step due to pivoting is derived in the main text (5.27).

In the kth mUltiply step. the duration of each task is

(2k - l)tget + (k - l)(tmult + tsub) + tput

There are p - k + 1 such tasks. so the single slave time for the complete step is

(B.1)

Tmult(kh = (p - k + 1)((2k - l)tget + (k - l)(tmult + tsub) + tput) (B.2)

In the kth solve step. the duration of each task is

2ktget + (k - 1)(tmult + tsub) + tsolve + tput .

There are p - k such tasks, so the single slave time for the complete step is

Tsolve(kh = (p - k)(2ktget + (k - 1)(tmult + tsub) + tsolve + tput) (B.3)

If the computation performs no pivoting the overall single slave time is derived from (B. I), (8.2)

APPENDIX B. LU FACTORISATION PERFORMANCE

and (B.3).

P P p-l

TNOPIV1 = L {Tfactnp(kh} + L {Tmult(kh} + L {Tsolve(kh}
k=l k=l k=l

= ~ { (p - k)(tget + tput) + (p - k - l)tsolve + tlu

+ (p - k + 1) ((2k - l)tget + (k - l)(tmult + tsub) + tput) }

+ ~ { (p - k) (2ktget + (k - l)(tmult + tsub) + tsolve + tput) }

p
3(P + 1)(P + 2)tget + p(p + l)tput

p p + 6(P + l)(p - l)(tmult + tsub) + 2(P - l)tsolve + ptlu

+ ~(p + l)(p - l)tget + ~(p - l)tput

P p + 6(P - l)(p - 2)(tmult + tsub) + 2(P - l)tsolve
p p = 3(P + 1)(2p + l)tget + 2(3p + l)tput

150

+ ~(p - 1)(2p - l)(tmult + tsub) + p(P - l)tsolve + ptlu (B.4)

If pivoting is perfonned during the computation it is necessary to add in the cost of the pivot opera­

tions, in (5.27).

P

TNOPIV1 + LTpiv(kh
k=l

= ~(p + 1)(2p + l)tget + ~(3P + l)tput

+ !!. (p - 1)(2p - l)(tmult + tsub) + p(P - l)tsolve + ptlu
6

P

+ L {p(2p - 2k + l)tget + p(P - k + l)tput}
k=l

~(p + 1)(2p + l)tget + ~(3P + l)tput

+ !!.(p - 1)(2p - l)(tmult + tsub) + p(P - l)tsolve + ptlu
6

2

+ p3tget + !!.....(P + l)tput
2

~(5p2 + 3p + l)tget + ~(p2 + 4p + l)tput

+ !!.(p - 1)(2p - l)(tmult + tsub) + p(P - l)tsolve + ptlu (B.5)
6

APPENDIX B. LU FACTORISATION PERFORMANCE 151

B.1.2 Minimum Parallel Time

There are no inter task dependencies within the multiply and solve steps. Bounds on the minimum

parallel time of execution of the kth multiply step and kth solve step are defined in the usual way.

Iwr{Tmult(k}oo} = max{(p-k+1)((2k-1}tget+tput) ,

(2k - 1)tget + (k - 1)(tmult + tsub) + tput}

upr{Tmult(k}oo} = (p - k + 1) «2k -1)tget + tput)

lwr {Tsolve(k}oo}

upr {Tsolve(k}oo}

+ (k - 1)(tmult + tsub)

max{(p - k) (2ktget + tput)

2ktget + (k - 1)(tmult + tsub)

+tsolve + tput}

(p - k) (2ktget + tput)

+ (k - 1)(tmult + tsub) + tsolve

A lower bound may be obtained by summing appropriate values for all columns.

TNOPIVoo > t {Tfactnp(kh + Iwr{Tmult(k):"J
k=l

+lwr{Tsolve(k)oo} }

t {(P - k + 1)(tget + tput) + (p - k}tsolve + tlu
k=l

+ max{(p - k + 1) «2k - 1)tget + tput) ,

(2k - 1}tget + (k - 1)(tmult + tsub) + tput} }

p-I

+ L { max{(p - k} (2ktget + tput) ,
k=1

2ktget + (k - 1}(tmult + tsub) + tsolve + tput} }

It is possible to ease computation by relaxing the bound slightly.

Iwr{TNOPIVoo } = max {~{2(P - k + 1} (ktget + tput)

p-I

+(p _ k}tsolve + tlu} + L(P - k} (2ktget + tput) ,
k=1

p

L {(p + k}tget + (p - k + 2}tput
k=1

APPENDIX B. LU FACTORISATION PERFORMANCE

+(k -l)(tmult + tsub) + (p - k)tsolve}
p-l E {2ktget + (k - l)(tmult + tsub) + tsolve + tput} }

= max {~(p + 1}(P + 2}tget + PCP + l}tput

P
+ 2(P - l}tsolve + ptlu

p p
3(P + 1}(P - l}tget + 2(P - l}tput ,

~(3p + l}tget + ~(P + 3}tput

Pcp P + 2 - l)(tmult + tsub) + 2(P - l}tsolve

1
+ PCP - l}tget + 2(P - 1}(P - 2)(tmult + tsub}

+(p - l}tsolve + (p - l)tPUt}

= max {~(p + 1)(2p + l}tget + ~(3P + l}tput

p
+2(P - l}tsolve + ptlu ,

~(5p - l}tget + ~(3p + l}tput

+(p - 1}2(tmult + tsub) + ~(p - 1}(P + 2}tsolve + PtlU}

152

(B.6)

If the computation perfonns pivoting, it is necessary to add in the cost of the pivoting operations.

from (5.27).

p

lwr{TP1Voo} = lwr{TNOPIVoo } + LTpiv(kh
k=l

= max{~(p+ 1)(2p+ l}tget+ ~(3p+ l}tput

+~(p - l}tsolve + ptlu ,

!!.(5p - l)tget + !!.(3p + l)tput
2 2

+(p - 1)2 (tmult + tsub) + ~(P - l)(p + 2)tsolve + Ptlu}

p

+ L {p(2p - 2k + l)tget + PCP - k + l}tput}
k=l

= max {~(p + 1)(2p + l)tget + ~(3p + l)tput

+!!.(p - l)tsolve + ptlu ,
2

!!.(5p - l)tget + !!.(3p + l)tput
2 2

+(p - 1)2 (tmult + tsub) + ~(P - 1)(P + 2}tsolve + PtlU}

p2
+ p3tget + 2(P + l)tput

APPENDIX B. LU FACTORISATION PERFORMANCE
153

= max {~(5p2 + 3p + l)tget + ~(P2 + 4p + l)tput
p

+2(P - l)tsolve + ptlu ,

~(2p2 + 5p - l)tget + ~(P2 + 4p + l)tput

+(P - 1)2 (tmult + tsub) + ~(P - 1)(P + 2)tsolve + PtlU} (B.7)

An upper bound may be defined in a similar way.

upr{TNOPIVoo } = ~ {Tfactnp(kh + Upr{Tmult(k)oo}}

+ ~ { upr {Tsolve(k)oo} }

= t { (p - k + l)(tget + tput) + (P - k)tsolve + tlu
k=l

+(p - k + 1) «2k - l)tget + tput) + (k - l)(tmult + tSUb)}

+ ~ {(P - k) (2ktget + tput) + (k - l)(tmult + tsub) + tsolve}

p

= L {2k(p - k + l)tget + 2(p - k + l)tput
k=l

+(k - l)(tmult + tsub) + (p - k)tsolve + tlu}
p-l

+ L {(p - k)(2ktget + tput) + (k - l)(tmult + tsub) + tsolve}
k=l

~(p + l)(p + 2)tget + p(p + l)tput

+ ~(p - l)(tmult + tsub) + ~(p - l)tsolve + ptlu

+ ~(p + l)(p - l)tget + ~(p - l)tput

1
+ 2(P - l)(p - 2) + (p - l)tsolve

~(p + 1)(2p + l)tget + ~(3P + l)tput

1
+ (p - 1)2(tmult + tsub) + 2(P - 1)(P + 2)tsolve + ptlu (B.8)

If the computation performs pivoting, it is necessary to add in the cost of the pivoting operations,

from (5.27).

upr{TPIVoo }

p

upr{TNOPIVoo } + LTpiv(kh
k=l

= ~(p + 1)(2p + l)tget + ~ (3p + l)tput

1
+ (P - 1)2(tmult + tsub) + 2(P - l)(p + 2)tsolve + ptlu

APPENDIX B. LU FACTORISATION PERFORMANCE

p

+ L {p(2p - 2k + l}tget + p(p - k + l}tput}
k=l

= ~(p + 1)(2p + l}tget + ~(3p + l}tput

1
+ (p - 1}2(tmult + tsub) + -(p - 1}(P + 2)tsolve + ptlu

2
2

+ p3tget + ~ (p + l}tput

\5-l

= ~(5p2 + 3p + l}tget + ~(P2 + 4p + l}tput

1 + p(p - l)(tmult + tsub) + 2(P - 1}(P + 2)tsolve + ptlu (B.9)

Bibliography

[1] George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Benjamin! Cummings. second

edition, 1994. ISBN: 0-8053-0443-6.

[2] Werner Almesberger. ATM on Linux. In International Linux Conference. EPFL. CH-1015

Lausanne, Switzerland, May 1996. German Unix Users Group.

[3] Gene M. Amdahl. Validity of the single-processor approach to achieving large-scale computing

requirements. Computer Design, 6(12):39-40, June 1967.

[4] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu. Ramakrishnan

Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared memory computing on

networks of workstations. IEEE Computer, 29(2): 18-28, February 1996.

[5] Edward Anderson, Zhaojun Bai Bai, Christian Bischof, James Demmel. Jack Dongarra.

Jeremy Du Croz, Anne Greenbaum, Sven Hammarling. A. McKenney, Susan Ostrouchov, and

Danny Sorensen. LAPACK Users' Guide - Release 2.0. Society for Industrial and Applied Math­

ematics, September 1994.

[6] Thomas E. Anderson, David E. Culler, and David A. Patterson. A case for NOW (networks of

workstations). IEEE Micro, 15(1):54-64, February 1995.

[7] Thomas E. Anderson, Michael Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli,

and Randolph Wang. Serverless network file systems. ACM Transactions on Computer Systems.

14(1):41-79, February 1996.

[8] Jose N.C. Arabe, Adam L. Beguelin, Bruce Lowekamp, Erik Seligman, Michael Starkey, and

Peter Stephan. Dome: Parallel programming in a heterogeneous multi-user envionment. Tech­

nical Report CMU-CS-95-137, Carnegie Mellon University, School of Computer Science, April

1995.

[9] bzalp Babaoglu, Lorenzo Alvisi, Alessandro Amoroso, and Renzo Davoli. Paralex: An envir­

onment for parallel programming in distributed systems. In Proceedings of the International

Conference on Supercomputing, pages 178-187, New York, NY, USA, July 1992. ACM Press.

155

BIBLIOGRAPHY
156

[10] 6zalp Babaoglu and Sam Toueg. Understanding non blocking commit. Technical Report

UBLCS-93-2. University of Bologna, Department of Mathematics. February 1993.

[11] Maurice J. Bach. The Design Of The UNIX Operating System. Prentice Hall Inc .• Englewood

Cliffs. New Jersey 07632.1986. ISBN: 0-13-201757-1.

[12] David E. Bakken. Supporting Fault-Tolerant Parallel Programming in Linda. PhD thesis. Uni­

versity of Arizona, Department of Computer Science. August 1994.

[13] Henri E. Bal. Fault tolerant parallel programming in Argus. Concllrrency: Practice and E-cperi­

ence. 4(1):37-55. February 1992.

[14] Henri E. Bal and Frans M. Kaashoek. Object distribution in orca using compile-time and run-time

techniques. In Conference on Object-oriented Programming Systems. Langllages and Applica­

tions. pages 162-177. October 1993.

[15] Amnon Barak. Oren La'adan, and Yuval Yarom. The NOW MOSIX and its preemptive pro­

cess migration scheme. Bulletin of the IEEE Technical CommiNee on Operating Systems and

Application Environments, 7(2):5-11. Summer 1995.

[16] Arash Baratloo, Partha Dasgupta, and Zvi M. Kedem. CALYPSO: A novel software system

for fault-tolerant parallel processing on distributed platforms. In International Symposium on

High Peiformance Distributed Computing, pages 122-129. IEEE Computer Society Press. Au­

gust 1995.

[17] Adam Beguelin, Jack 1. Dongarra, AI Geist, Robert Manchek, Keith Moore, Reed Wade. and

Vaidy Sunderam. HeNCE: Graphical development tools for network-based concurrent comput­

ing. In Scalable High Peiformance Computing Conference, pages 129-136, 1109 Spring Street,

Suite 300, Silver Spring. MD 20910, USA, April 1992. IEEE Computer Society Press.

[18] Philip A. Bernstein, Meichun Hsu, and Bruce Mann. Implementing recoverable requests using

queues. ACM Special Interest Group on Management of Data, 19(2): 112-122, June 1990.

[19] Brian N. Bershad, Matthew 1. Zekauskas, and Wayne A. Sawdon. The Midway distributed shared

memory system. In IEEE International Computer Conference. pages 528-537. IEEE Computer

Society Press, February 1993.

[20] Andrew Birrell and Bruce Nelson. Implementing remote procedure calls. ACM Tranactions on

Computer Systems, 2(1):39-59. February 1984.

[21] Robert Bjornson, Craig Kolb. and Andrew Sherman. Ray tracing with network Linda. SIAM

News. 24(1). January 1991.

BIBLIOGRAPHY
\57

[22] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable parallel computing on networks

of workstations. In Annual Technical Conference. USENIX. January 1997.

[23] Nanette J. Boden. Danny Cohen, Robert E. Felderman. Alan E. Kulawik, Charles L. Seitz.

Jakov N. Seizovic, and Weng-King Suo Myrinet: A gigabit-per-second local area network. IEEE

Micro, 15(1):29-36, February 1995.

[24] Ralph M. Butler and Ewing L. Lusk. Monitors, messages. and clusters: the p4 parallel program­

ming system. Parallel Computing. 20(1):547-64. April 1994.

[25] Gilbert Cabillic, Gilles Muller. and Isabelle Puaut. The performance of consistent checkpointing

in distributed shared memory systems. In Symposium on Reliable Distributed Systems. pages

96-105, Los Alamitos, Ca., USA. September 1995. IEEE Computer Society Press.

[26] Luis-Felipe Cabrera and Darrell D. E. Long. Swift: Using distributed disk striping to provide

high 110 data rates. Computing Systems. 4(4):405-436. Fall 1991.

[27] Scott R. Cannon and David Dunn. Adding fault-tolerant transaction processing to Linda.

Software-Practice And Experience, 24(5):449-466. May 1994.

[28] Clemens Cap. Massive parallelism with workstation clusters - challenge or nonsense. In High

Peiformance Computing and Networking Conference Europe. pages 42-52. Springer. April 1994.

[29] Nicholas Carriero and David Gelernter. How To Write Parallel Programs: A First Course. MIT

Press. 1991. ISBN: 0-262-03 17 I-X.

[30] John B. Carter, John K. Bennett. and Willy Zwaenepoel. Implementation and performance of

Munin. In Symposium on Operating Systems Principles. pages 152-164. October 1991.

[31] Jeremy Casas. Dan L. Clark. Ravi Konuru, Steve W. Otto. Robert M. Prouty, and Jonathan Wal­

pole. MPVM: A migration transparent version of PVM. Computing Systems. 8(2):171-216.

Spring 1995.

[32] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of dis­

tributed systems. ACM Transactions on Computer Systems. 3(1):63-75. February 1985.

[33] Jeffrey S. Chase. Franz G. Amador. Edward D. Lasowska. and Henry M. Levy. The Amber

system: Parallel programming on a network of multiprocessors. ACM Operating Systems Review.

23(5):147-158. December 1989.

[34] Chungmin Chen, Kenneth Salem. and Miron Livny. The DBC: Processing scientific data over the

internet. In International Conference on Distributed Computing Systems. pages 673-682. IEEE

Computer Society Press. May 1996.

BIBLIOGRAPHY
158

[35] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz. and David A. Patterson. RAID:

high-performance, reliable secondary storage. ACM Computing Survevs. 26(2rI45-185.1une

1994.

[36] Raymond C. Chen and Partha Dasgupta. Implementing consistency control mechanisms in the

clouds distributed operating system. In International Conference on Distributed Computing Sys­

tems, pages 100I7.IEEE Computer Society Press, May 1991.

[37] Timothy Clark and Kenneth P. Birman. Using the ISIS resource manager for distributed. fault­

tolerant computing. Technical Report 92-1289, Cornell University. Computer Science Depart­

ment, June 1992.

[38] David E. Culler, Andrea Dusseau, Seth C. Goldstein, Arvind Krishnamurthy. Steven Lunetta.

Thorsten von Eicken. and Katherine Yelick. Parallel programming in Split-C. In Supercomputing.

pages 262-273, New York, NY 10036. USA, November 1993. ACM Press.

[39] Partha Dasgupta, Zvi M. Kedem. and Michael O. Rabin. Parallel processing on networks of

workstations: A fault-tolerant, high performance approach. In International Conference on Dis­

tributed Computing Systems, pages 467-474. IEEE Computer Society Press. May 1995.

[40] Thomas A. DeFanti, Ian Foster, Michael E. Papka, Rick Stevens, and Tim Kuhfuss. Overview

of the I-WAY: Wide area visual supercomputing. The International Journal of Supercomputer

Applications and High Performance Computing, 10(2/3): 123-131. SummerlFall 1996.

[41] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel VO via a

two-phase run-time access strategy. In Workshop on Input/Output in Parallel Computer Systems,

pages 56-70, December 1993. at International Parallel Processing Symposium.

[42] Juan Miguel del Rosario and Alok Choudhary. High performance 110 for parallel computers:

Problems and prospects. IEEE Computer, 27(3):59-68. March 1994.

[43] Jack J. Dongarra. Performance of various computers using standard linear equations software.

Technical Report CS-89-85, University of Tennessee. Computer Science Department, August

1995.

[44] Jack 1. Dongarra, Sven Hammarling, and David Walker. Key concepts for parallel out-of-core

LU factorisation. In Collaboration Workshop on Environments and Tools For Parallel Scientific

Computing, August 1996.

[45] Jack J. Dongarra, Steve W. Otto, Marc Snir, and David Walker. An introduction to the MPI

standard. Technical Report UT-CS-95-274, University of Tennessee. Department of Computer

Science, January 1995.

BIBLIOGRAPHY
15Y

[46] Craig C. Douglas, Timothy G. Mattson, and Martin H. Schultz. Parallel programming systems

for workstation clusters. Technical Report YALEUIDCSffR-975, Yale University. Department

Of Computer Science, August 1993.

[47] Fred Douglis and John K. Ousterhout. Transparent process migration: Design altemall\es and

the Sprite implementation. Software Practice and Experience, 21(8):757-785. August 1991.

[48] Alan Edelman. Large numerical linear algebra in 1994: The continuing influence of parallel

computing. In Scalable High Performance Computing Conference. pages 781-787. 1109 Spring

Street, Suite 300, Silver Spring, MD 20910, USA, May 1994. IEEE Computer Society Press.

[49] Guy Edjlali, Gagan Agrawal, Alan Sussman. and Joel Saltz. Data parallel programming in an

adaptive environment. In International Parallel Processing Symposium. pages 827-832. 1109

Spring Street, Suite 300, Silver Spring, MD 20910, USA, April 1995. IEEE Computer Society

Press.

[50] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent rollback-recovery

with low overhead, limited rollback and fast output. IEEE Transactions on Computers.

41(5):526-531, May 1992.

[51] Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector. Camelot and Malon A Distributed

Transaction Facility. Morgan Kaufmann, San Mateo, 1991.

[52] Dror G. Feitelson. Job scheduling in mUltiprogrammed parallel systems. Technical Report RC

19790 (87657), IBM T.J. Watson Research Center, Yorktown Heights, NY10598. October 1994.

Second revision, August 1997.

[53] Dror G. Feitelson, Peter F. Corbett, Yarson Hsu, and Jean-Pierre Prost. Parallel I/O systems

and interfaces for parallel computers. In Topics in Modem Operating Systems. IEEE Computer

Society Press, 1997. To appear.

[54] Michael 1. Flynn. Very high speed computing systems. Proceedings of the IEEE, 54(12): 1901-

1909, December 1966.

[55] Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

[56] Ian Foster, Robert Olson, and StevenTuecke. Productive parallel programming: The PCN ap­

proach. Scientific Programming, 1(1):51-66, Fall 1992.

[57] Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed H. Sameh. Impact of hierarchical

memory systems on linear algebra algorithm design. The International Journal of Supercom­

puter Applications, 2(I): 12-48, Spring 1988.

BIBLIOGRAPHY
160

[58] AI Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sun­

deram. PVM: Parallel Vinual Machine - A Users' Guide and Tout . lfi D II Ie' Ilona or rara e omputmg.
MIT Press, 1994.

[59] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins University Press.

second edition, 1989. ISBN: 0-8018-3772-3.

[60] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kauffman, 1993.

[61] Andrew S. Grimshaw. Easy to use parallel processing with Mental. IEEE Computer. 26(5):39-

51, May 1993.

[62] Linley Gwennap. Pentium approaches RISC performance. Microprocessor Repon. 7(4). March

1993.

[63] Michael Harry, Juan Miguel del Rosario, and Alok Choudhary. VIP-FS: A virtual. parallel file

system for high performance parallel and distributed computing. ACM Operating Srstems Re­

view, 29(3):35-48, July 1995.

[64] John H. Hartman and John K. Ousterhoul. The Zebra striped network file system. ACM Trans­

actions on Computer Systems, 13(3):274-310, August 1995.

[65] Peter Hoogerbrugge and Ravi Mirchandaney. Experiences with networked parallel computing.

Concurrency: Practice and Experience, 7(1), February 1995.

[66] Kai Hwang. Advanced Computer Architecture. Parallelism. Scalability and Programmability.

McGraw-Hili Book Company, 1993. ISBN: 0-07-031622-8.

[67] Karpjoo Jeong. Fault-Tolerant Parallel Processing Combining Linda. Checkpointing. and Trans­

actions. PhD thesis, New York University, Department of Computer Science, January 1996.

[68] Marinus Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S. Tanenbaum. Trans­

parent fault-tolerance in parallel Orca programs. In Symposium on Experiences with Distributed

and Multiprocessor Systems, pages 297-312, March 1992.

[69] David L. Kaminsky. Adaptive Parallelism with Piranha. PhD thesis, Yale University, Department

of Computer Science, May 1994.

[70] Ken Klimkowski and Robert van de Geijn. Anatomy of an out-of-core dense linear solver. In

International Conference on Parallel Processing, pages III:29-33. IEEE Computer Society Press.

August 1995.

[71] Craig Kolb. rayshade. ftp://ftp.cs.yale.edu, May 1990. version 3.0.

BIBLIOGRAPHY 161

[72] Craig Kolb. rayshade. ftp://ftp.princeton.edu, February 1992. version 4.0.6.

[73] David Kotz. Disk-directed 110 for MIMD mUltiprocessors. In Symposium on Operating Systems

Design and Implementation, pages 61-74, November 1994.

[74] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parall~1 Com­

puting: Design and Analysis of Algorithms. Benjamin Cummings, 1994. ISBN: 0-8053-3170-0.

[75] Leslie Lamport. How to make a mUltiprocessor computer that correctl) executes multiprocess

programs. IEEE Transactions on Computers, 28(9):69~91, September 1979.

[76] Peter A. Lee and Tom Anderson. Fault Tolerance Principles and Practice, volume 3 of Depend­

able Computing and Fault-Tolerant Systems. Springer-Verlag, Vienna, Austria. second edition.

1990. ISBN: 3-211-82077-9.

[77] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Trallsactions

on Computer Systems, 7(4):321-359, November 1989.

[78] Barbara Liskov. Distributed programming in Argus. Communications of the ACM. 31 (3):300-

312, March 1988.

[79] Joachim Maier. Fault-tolerant parallel programming with atomic actions. In Workshop on Fault­

Tolerant Parallel and Distributed Systems. IEEE Computer Society Press, June 1994. at Interna­

tional Symposium on Fault-Tolerant Computing.

[80] 1. Elliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. In­

formation Systems. MIT Press, 1985. ISBN: 0-262-13200-1.

[81] Steven A. Moyer and Vaidy S. Sunderam. PIOUS: a scalable parallel 110 system for distributed

computing environments. In Scalable High-Performance Computing Conference, pages 71-78,

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, May 1994. IEEE Computer

Society Press.

[82] Sape Mullender, editor. Distributed Systems. Addison-Wesley, second edition, 1993. ISBN:

0-201-62427-3.

[83] Matt W. Mutka and Miron Livny. The available capacity of a privately owned workstation envir­

onment. Performance Evaluation, 12(4):269-284, July 1991.

[84] Nenad Nedeljkovic and Michael 1. Quinn. Data-parallel programming on a network of hetero­

geneous workstations. Concurrency: Practice and Experience, 5(4):257-268, June 1993.

BIBLIOGRAPHY
162

[85] Fabio Panzieri and Santosh K. Shrivastava. Rajdoot: A remote procedure call mechanism sup­

porting orphan detection and killing. IEEE Transactions on Software Engineering. I~(I):30-37.

January 1988.

[86] Graham D. Parrington, Santosh K. Shrivastava, Stuart M. Wheater. and Mark C. Little. The

design and implementation of Atjuna. USENIX Computing Systems Journal. 8(3):225-308. Sum­

mer 1995.

[87] Lewis I. Patterson, Richard S. Turner, Robert M. Hyatt. and Kevin D. Reilly. Construction of

a fault-tolerant distributed tuplespace. In Symposium on Applied Computing, pages 279-285.

ACM, February 1993.

[88] Stefan Petri and Horst Langendorfer. Load balancing and fault tolerance in workstation clusters

migrating groups of communicating processes. Operating Systems Review. 29(~): 25-36. October

1995.

[89] James S. Plank, Yuqun Chen, Kai Li, Micah Beck, and Gerry Kingsley. Memory exclusion: Op_

timizing the perfonnance of checkpointing systems. Technical Report UT-CS-96-335. University

of Tennessee, Department of Computer Science, August 1996.

[90] James S. Plank, Youngbae Kim, and Jack J. Dongarra. Algorithm-based diskless checkpointing

for fault-tolerant matrix operations. In International Symposium on Fault-Tolerant Computing.

pages 351-360, Los Alamitos, CA, USA, June 1995. IEEE Computer Society Press.

[91] Michael L. Powell and Dave L. Presotto. Publishing: a reliable broadcast communication mech­

anism. ACM Operating Systems Review, 17(5): 100-109, October 1983.

[92] Robert Prouty, Steve Otto, and Jonathan Walpole. Adaptive execution of data parallel com­

putations on networks of heterogeneous workstations. Technical Report CSE-94-012, Oregon

Graduate Institute of Science and Technology, Department of Computer Science and Engineer-

ing, March 1994.

[93] Jim Pruyne and Miron Livny. Managing checkpoints for parallel programs. In Workshop on Job

Scheduling Strategies for Parallel Processing, New York, NY, USA, April 1996. pringer-Verlag

Inc. at International Parallel Processing Symposium.

[94] Brian Randell. System structure for software fault tolerance. IEEE Transactions on Software

Engineering, 1(2):220-232, February 1975.

[95] C. Roder, Stefan Lamberts, and Thomas Ludwig. PFSLib - An I/O interface for parallel pro­

gramming environments on coupled workstations. In J. Dongarra, M. Gengler, B. Tourancheau.

BIBLIOGRAPHY
163

and X. Vigouroux, editors, European PVM conference. pages 59-64, Paris. France. October 1995.

Hennes.

[96] Daniel 1. Scales and Monica S. Lam. The design and evaluation of a shared object Sj stem for

distributed memory machines. In Symposium on Operating Systems Design and Implemefllarion.

pages 101-114, November 1994.

[97] Daniel J. Scales and Monica S. Lam. Transparent fault-tolerance for parallel applications on

networks of workstations. In Winter Technical Conference, pages 329-341, Berkeky. CA. USA.

January 1996. USENIX.

[98] Kent E. Seamons, Ying Chen, Phyllis Jones, John Jozwiak. and Marianne Winslett. Server­

directed collective 110 in Panda. In Supercomputing, December 1995.

[99] Robert D. Silverman. Massively distributed computing and factoring large integers. Communic­

ations of the ACM, 34(II):94-103, November 1991.

[100] J. Smith. On synchronisation in fault-tolerant data and compute intensive programs over a net­

work of workstations. In Christian Lengauer, Martin Grieb!. and Sergei Gorlatch. editors. In­

ternational Euro-Par Conference, pages 1025-1029, Berlin, Gelmany, August 1997. Springer­

Verlag Inc. Appears as LNCS No. 1300.

[101] 1. Smith and Santosh Shrivastava. A system for fault-tolerant execution of data and compute

intensive programs over a network of workstatIOns. In Luc Bouge, Pierre Fraigniaud, Anne

Mignotte, and Yves Robert, editors, International Euro-Par Conference. pages 487-495, volume

I, Berlin, Gennany, August 1996. Springer-Verlag Inc. Appears as LNCS No. 1123 and 1124.

[l02] J. Smith and Santosh Shrivastava. Performance of fault-tolerant data and compute intensive

programs over a network of workstations. Theoretical Computer Science, To appear.

[103] Georg Stellner. CoCheck: checkpointing and process migration for MPI. In International Par­

allel Processing Symposium, pages 526-531, 1109 Spring Street, Suite 300, Silver Spring, MD,

April 1996. IEEE Computer Society Press.

[104] W. Richard Stevens. UNIX Network Programming. Prentice Hall, 1990.

[105] G. W. Stewart. Basic Decompositions, volume I of Matrix Algorithms. Society for Industrial and

Applied Mathematics, To Appear. Draft available online through http://www.cs.umd.edul stew­

art/.

[106] Mark P. Sullivan and David P. Anderson. Marionette: A system for parallel distributed pro­

gramming using a master/slave model. In International Conference on Distributed Computing

Systems, pages 181-188. IEEE Computer Society Press, June 1989.

BIBLIOGRAPHY
I~

[107] Vaidy S. Sunderam, George A. Geist, Jack J. Dongarra, and Robert J. Manchek. The PV\I con­

current computing system: Evolution, experiences, and trends. Parallel Computing. 20(-l):531-

546, April 1993.

[108] Guarav Suri, Bob Janssens, and W. Kent Fuchs. Reduced overhead logging for rollback recovery

in distributed shared memory. In International Symposium 011 Fault-Tolerant Computing. pages

279-288, Los Alamitos, CA, USA, June 1995. IEEE Computer Society Press.

[109] Fore Systems. ForeRunner ASX-200WG ATM Switch User's Manual. Fore Systems. Inc .• War­

rendale, PA, November 1995. MANUOO52 - Rev.C, Software Version 3.4.x.

[110] Ming-Chit Tam, Jonathan M. Smith. and David 1. Farber. A taxonomy-based comparison of

several distributed shared memory systems. ACM Operating Systems Review. 24(3):40-67. July

1990.

[Ill] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren. Gregory J. Sharp. Sape 1.

Mullender, Jack Jansen, and Guido van. Rossum. Experiences with the Amoeba distributed

operating system. Communications of the ACM, 33(12):46--64. December 1990.

[112] Rajeev 'Thakur and Alok Choudhary. An extended two-phase method for accessing sections of

out-of-core arrays. Scientific Programming, 5(4):301-317. Winter 1996.

[113] Charles 1. Turner, David Mosberger, and Larry L. Peterson. Cluster-C·: Understanding the

performance limits. In Scalable High-Peiformance Computing Conference. pages 229-238, 1109

Spring Street, Suite 300, Silver Spring, MD 20910, USA. May 1994. IEEE Computer Society

Press.

[114] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A user-level

network interface for parallel and distributed computing. In Symposium on Operating Systems

Principles, pages 303-316. ACM, December 1995.

[115] Thorsten von Eicken, David E. Culler, Seth C. Goldstein, and Klaus E. Schauser. Active Mes­

sages: a mechanism for integrated communication and computation. In International Symposium

on Computer Architecture, pages 256-267. ACM Press, May 1992.

[116] William Weihl and Barbara Liskov. Implementation ofresilient, atomic data types. ACM Trans­

actions on Programming Languages and Systems, 7(2):244-269, April 1985.

[117] Stuart M. Wheater. Constructing Reliable Distributed Applications Using Actions and Objects.

PhD thesis, University of Newcastle upon Tyne, Computing Laboratory, June 1990.

BIBLIOGRAPHY 165

[118] David Womble, David Greenberg, and Rolf Riesen. Beyond core: Making parallel computer 110

practical. In DAGS/PC Symposium, pages 56--63, Hanover, NH. USA. June 1993. Dartmouth

Institute for Advanced Graduate Studies.

[119] Andrew Xu and Barbara Liskov. A design for a fault tolerant, distributed implementation of

Linda. In International Symposium on Fault-Tolerant Computing, pages 199-206. IEEE Com­

puter Society Press, June 1989.

[120] Songnian Zhou, Michael Stumm, Kai Li, and David Wortmann. Heterogeneous distributed shared

memory. IEEE Transactions on Parallel and Distributed Systems, 3(5):54~554. September

1992.

[121] Marc Zyngier. md. ftp:l/sweet-smoke.ufr-info-p7.ibp.fr/publLinuxl,April 1996. version 0.35.

	388734_0001
	388734_0002
	388734_0003
	388734_0004
	388734_0005
	388734_0006
	388734_0007
	388734_0008
	388734_0009
	388734_0010
	388734_0011
	388734_0012
	388734_0013
	388734_0014
	388734_0015
	388734_0016
	388734_0017
	388734_0018
	388734_0019
	388734_0020
	388734_0021
	388734_0022
	388734_0023
	388734_0024
	388734_0025
	388734_0026
	388734_0027
	388734_0028
	388734_0029
	388734_0030
	388734_0031
	388734_0032
	388734_0033
	388734_0034
	388734_0035
	388734_0036
	388734_0037
	388734_0038
	388734_0039
	388734_0040
	388734_0041
	388734_0042
	388734_0043
	388734_0044
	388734_0045
	388734_0046
	388734_0047
	388734_0048
	388734_0049
	388734_0050
	388734_0051
	388734_0052
	388734_0053
	388734_0054
	388734_0055
	388734_0056
	388734_0057
	388734_0058
	388734_0059
	388734_0060
	388734_0061
	388734_0062
	388734_0063
	388734_0064
	388734_0065
	388734_0066
	388734_0067
	388734_0068
	388734_0069
	388734_0070
	388734_0071
	388734_0072
	388734_0073
	388734_0074
	388734_0075
	388734_0076
	388734_0077
	388734_0078
	388734_0079
	388734_0080
	388734_0081
	388734_0082
	388734_0083
	388734_0084
	388734_0085
	388734_0086
	388734_0087
	388734_0088
	388734_0089
	388734_0090
	388734_0091
	388734_0092
	388734_0093
	388734_0094
	388734_0095
	388734_0096
	388734_0097
	388734_0098
	388734_0099
	388734_0100
	388734_0101
	388734_0102
	388734_0103
	388734_0104
	388734_0105
	388734_0106
	388734_0107
	388734_0108
	388734_0109
	388734_0110
	388734_0111
	388734_0112
	388734_0113
	388734_0114
	388734_0115
	388734_0116
	388734_0117
	388734_0118
	388734_0119
	388734_0120
	388734_0121
	388734_0122
	388734_0123
	388734_0124
	388734_0125
	388734_0126
	388734_0127
	388734_0128
	388734_0129
	388734_0130
	388734_0131
	388734_0132
	388734_0133
	388734_0134
	388734_0135
	388734_0136
	388734_0137
	388734_0138
	388734_0139
	388734_0140
	388734_0141
	388734_0142
	388734_0143
	388734_0144
	388734_0145
	388734_0146
	388734_0147
	388734_0148
	388734_0149
	388734_0150
	388734_0151
	388734_0152
	388734_0153
	388734_0154
	388734_0155
	388734_0156
	388734_0157
	388734_0158
	388734_0159
	388734_0160
	388734_0161
	388734_0162
	388734_0163
	388734_0164
	388734_0165
	388734_0166
	388734_0167
	388734_0168
	388734_0169
	388734_0170
	388734_0171
	388734_0172
	388734_0173
	388734_0174
	388734_0175

