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Abstract 

This thesis is concerned with maximising the efficiency of hosting of service 

provisioning systems consisting of clusters or networks of servers. The tools 

employed are those of probabilistic modelling, optimization and simulation. 

First, a system where the servers in a cluster may be switched dynamically 

and preemptively from one kind of work to another is examined. The demand 

consists of two job types joining separate queues, with different arrival and 

service characteristics, and also different relative importance represented by 

appropriate holding costs. The switching of a server from queue i to queue 

j incurs a cost which may be monetary or may involve a period of unavail

ability. The optimal switching policy is obtained numerically by solving a 

dynamic programming equation. Two heuristic policies - one static and one 

dynamic - are evaluated by simulation and are compared to the optimal 

policy. The dynamic heuristic is shown to perform well over a range of pa

rameters, including changes in demand. The model, analysis and evaluation 

are then generalized to an arbitrary number, M, of job types. 

Next, the problem of how best to structure and control a distributed com

puter system containing many processors is considered. The performance 

trade-offs associated with different tree structures are evaluated approxi-



ii 

mately by applying appropriate queueing models. It is shown that. for a 

given set of parameters and job distribution policy, there is an optimal tree 

structure that minimizes the overall average response time. This is obtained 

numerically through comparison of average response times. A simple heuris

tic policy is shown to perform well under certain conditions. 

The last model addresses the trade-offs between reliability and perfor

mance. A number of servers, each of which goes through alternating periods 

of being operative and inoperative, offer services to an incoming stream of 

demands. The objective is to evaluate and optimize performance and cost 

metrics. A large real-life data set containing information about server break

downs is analyzed first. The results indicate that the durations of the oper

ative periods are not distributed exponentially. However, hyperexponential 

distributions are found to be a good fit for the observed data. A model 

based on these distributions is then formulated, and is solved exactly using 

the method of spectral expansion. A simple approximation which is accu

rate for heavily loaded systems is also proposed. The results of a number of 

numerical experiments are reported. 
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Chapter 1 

Introduction 

1.1 Motivation 

This thesis is motivated by recent developments in distributed processing, 

and in particular by' the emerging concept of hosting or SfTl'lce provision

ing systems. Advances in high performance hardware and the widespread 

availability of ultra-fast network access have enabled the connection of pre

viously isolated computing resources, giving users access to remote sen'CfS 

with computing and storage capabilities which may be positioned anywhere 

on a local or wide network. For example, a Computing Grid is defined as 

the technology enabling the coupling of such resources which may be both 

geographically and administratively dispersed. Hence, heterogeneous clus

ters of servers may provide a variety of services to widely distributed user 

communities. It is proposed to determine strategies for maximizing the ef

ficiency in hosting environments which may be widely distributed. as in the 

example of a Computing Grid, or locally distributed within a service cluster. 

1 



1.1. Motivation 2 

A more efficient environment is defined as one which makes the best possi

ble use of all available resources. This may be analysed using performance 

measures such as the average number of waiting jobs present in the system 

or, following a request for service, the average response time. The latter is 

defined as the elapsed time between the arrival of the service request and the 

completed service. Greater efficiency is analogous to fewer waiting jobs or a 

faster response time. 

An example of a service provisioning system is illustrated in figure 1.1. 

Demands for service arrive into a management system which is responsible 

for the allocation of service requests or jobs to available computing resources. 

The management system may also be responsible for the structuring and 

maintenance of the computing resources. These resources may be distributed 

across a very wide area network (possibly global) or may be grouped into a 

local cluster. 

A static allocation of computing resources is likely to lead to poor uti

lization within the provisioning system. The random nature of user demand 

may lead to certain services being over-subscribed, and hence increased queue 

lengths would lead to longer response times. Other available resources may 

at the same time be under-utilized; these may be more efficiently allocated 

elsewhere. Similarly, a static configuration of the underlying network struc

ture may not always be efficient. The speed of routing decisions within a 

large network of available resources may vary with time. Also, the number 

of choices between possible destinations for a service request will vary when

ever the amount of available resources changes. Both of these factors will 

affect the efficiency of a particular network configuration. 
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management 

local or global 
resources 

3 

Figure 1.1 : A service provisioning system with local and global re ource 

How many servers to allocate to a part icular service in the light of reliabil-

ity issues is another interesting problem when aiming to maximize efficiency. 

On the one hand, enough servers need to be provided to ensure a certain 

quality of service. However , knowledge of t he minimum number of server 

necessary to guarantee a desired level of performance would be desirable. 

Hence, the objectives of t his t hesis include: 

1. to determine policies for the dynamic allocation of servers to a partic-

ular service or job type as demand changes; 
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2. to determine optimal topological structures of available computing re

sources for maximum efficiency; 

3. to determine strategies for efficient service provision when reliability 

may affect performance. 

In chapters 2 and 3 a service provisioning system is considered which 

may contain a large number of computational resources. These may be geo

graphically distributed and are allocated into different conceptual pools, each 

responsible for offering a particular service or serving a particular job type. 

An example with three pools, two of which are located in the same local 

cluster and one which is more geographically distant, is illustrated in figure 

1.2. The manager is responsible for deciding upon the allocation of resources 

between pools. Requests for a particular service or job type are routed to the 

appropriate pool. A static allocation of resources to service pools is likely 

to lead to over-utilization of some resources and under-utilization of others. 

Strategies for dynamic allocation of resources are investigated. 

In chapter 4 the structure of a large set of computing resources in con

sidered. The performance trade-offs associated with different tree structures 

are evaluated. Two example tree structures are shown in figure 1.3. A man

ager at a particular level is responsible for deciding which is the best possible 

route for a particular service request or job traversing the tree. Strategies for 

deciding upon the most efficient tree structure for a particular environment 

or system are explored. 

In chapter 5 the effect that server breakdowns and other outages have 

on the performance of a service provisioning system is investigated. This 
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pool 1 

00 
pool 2 

00 
OO(lO 

pool3 0 

Figure 1.2: Comput ing resources allocated into conceptual pool 

5 

research was init iated following discussions with Sun Microsy tern who pro-

vided a large real-life data set for analysis. Conclusions and future work are 

presented in chapter 6. 

The cont ribut ion of t his t hesis is in t he analysis , evaluation and optimiza-

t ion of a variety of operating strategies for large scale service provisioning 

systems. The novelty of t he work resides in its inclusion of (a) models with 

many servers, (b ) dynamic decision making and (c) realistic treatment of 

breakdowns and repairs. 
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Figure 1.3: Computing resources configured into conceptual network tree 

1.2 Related Work 

1.2.1 Server Allocation 

6 

Despite an extensive literature on dynamic opt imization (some good general 

t exts are [1 , 43, 47]) , the multi-server problem addressed within chapters 2 

and 3 does not appear to have been studied before. 

There was some preliminary research into the opt imal control of queue

ing syst ems wit h two heterogeneous servers by Lin and Kumar [27]. They 

address the system of a single queue of Poisson arrivals served by two hetero-

geneous servers. Both servers have exponent ially distributed service times, 

although these may be with different means. The aim is to minimize the 

mean response time of customers, which by Little's theorem is equivalent to 
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minimizing the mean number of customers in the system. It is shown that if 

the faster server is idle, then it is optimal to supply it with a customer if one 

is waiting for service in the queue. Of more interest is the question: when 

to supply the slower server with a customer? It is proven that the optimal 

policy is of a threshold type, i.e. the slower server should be supplied with a 

customer when the queue has built up beyond a computable level. An algo

rithm is supplied to readily calculate this threshold. This work only models 

one queue supplying the two servers, and switching costs are zero. It is sur

mised that this threshold policy will not be generalised to the multi-server 

case, when the threshold for each server may be dependent on which other 

servers are busy. 

There is also a body of work on optimal allocation in the context of polling 

systems, where a server visits several queues in a fixed or variable order, with 

or without switching overheads. 

Hofri and Ross [19] consider the problem of two unbounded queues fed 

by Poisson arrival processes which are served by a single server. The service 

may not be interrupted, and when the server wants to switch from one queue 

to the other, a setup time is incurred. It is assumed that the service time 

distribution is the same for each queue. The goal of this paper is to find the 

optimal non-preemptive server assignment policy which minimizes the sum 

of the holding costs and switching charges. 

For both the discounted cost and the long-run average cost criterion, it 

is found that the optimal policy is exhaustive, i.e. if the server is at a given 

queue, it is best to remain there at least until that queue is emptied. It 
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remains to specify when to reassign a server at an empty queue. Here. it 

is found that the server should remain in this queue until the other queue 

length achieves or exceeds a pre-determined threshold. The policy is then 

specified by these two thresholds, one for each queue. These threshold values 

are found by numerical analysis as a function of system parameters. It is 

suspected that this threshold policy in the case with more queues cannot be 

captured in a simple characterization. 

Duenyas and Van Oyen [15] investigate the allocation of a single server 

to a system of queues with set-up times when switching the server from one 

queue to another. Each queue represents a class of jobs and possesses a 

holding cost rate. The services have a general distribution as do the set-ups. 

The objective of the research is to minimize the average holding cost per unit 

time. The special case of zero switching times corresponds to the ell-rule [4] 

mentioned below. 

This is considered within the paper as a difficult problem, and the optimal 

policy is only partially characterized. However, a very good heuristic is 

introduced first for the case of 2 queues and further developed for the general 

case of N queues. This heuristic cannot be compared to an optimal policy 

because this has not been formulated. Instead, the heuristic is compared 

in simulation runs with other widely used policies in the literature, such as 

exhaustive, threshold policies and the ell-rule [4]. The heuristic is found to 

substantially outperform those other policies to which it is compared in many 

different scenarios. The optimal policy is not characterized or approximated 

by numerical methods 
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In a later paper, Duenyas and Van Oyen [14] investigate the allocation 

of a single server to a system of queues with switching costs incurred when 

switching the server instantaneously from one queue to another. This is 

again considered to be a difficult problem, and the optimal policy is also 

only partially characterized. A very good heuristic is introduced first for the 

case of 2 queues and further developed for the general case of K queues. 

A numerical study is made comparing the heuristic to other policies within 

the literature (exhaustive policies, gated policies and the cJ.l-rule [4]). The 

optimal policy is computed numerically with a truncated state space. This 

is computationally extremely expensive, and the heuristic is compared to 

the optimal pure Markov policy only for systems with 2 or 3 queues. The 

heuristic is found to compare favourably with the numerically computed op

timal policy, and to outperform the other policies from the literature. This is 

an unlikely model with instantaneous switching and yet non-zero switching 

costs. The optimal policy is not characterized fully. 

Koole [23] models a single server assigned to two heterogeneous queues, 

with the objective of minimizing holding costs and switching costs. The 

optimal policy for the preemptive dynamic assignment of the server to the 

queues with respect to long-run discounted or average costs is partially char

acterized. 

The policy is computed numerically using dynamic programming tech

niques for a truncated state-space. It does not appear that the policy will 

be easy to describe. Switching away from the queue with the highest value 

of CJ.l only occurs if that queue is empty (i.e. it is served exhaustively once 
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the server is there, as also found by Hofri and Ross [19]). Switching to the 

queue which would have had higher priority under the eJL-rule occurs when 

the length of this queue has reached some threshold level. This is intuitively 

because switching to this queue will reduce holding costs at a faster rate than 

remaining in the current queue, but must also overcome the switching costs. 

Hence, a certain threshold must be passed to justify the switch. It is proven 

that a threshold-like policy is optimal for a large enough queue length at the 

server with the lower value of eJL. 

This threshold policy is computed numerically and expressed in the form 

of a table for look-up. The optimal policy is compared to the threshold poli

cies in simulation runs comparing long-run average costs. It is found that as 

switching costs increase, the eJL rule performs worse and the threshold policy 

performs better. Indeed, the threshold policy is quite close in performance 

to the optimal policy. However, switching times are instantaneous, whereas 

switching costs are non-zero. This is an unlikely model and the optimal pol

icy is not characterized fully. 

Results for optimal policies of various queueing and resource sharing mod

els are again studied by Koole [24]. This paper models optimal admission 

control with geometric arrivals, which is a different problem to that with 

unbounded queue lengths. Customers may be rejected with associated costs 

and these together with holding costs are to be minimized. A threshold pol

icy is again proven to be optimal for the discrete time model of one server, 

one queue. Most results found here by Koole are for a single server - however 

this is extended to the extra server of Lin and Kumar [27] mentioned earlier. 
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Liu, Nain and Towsley [29] prove some important results for polling sys

tems. Again, the system is modelled as N queues attended by a single server. 

Switch over times are strictly positive, and the aim is to find polling policies 

that stochastically minimize the unfinished work and the number of cus

tomers in the system at all times. The optimal policy is proven to be both 

greedy and exhaustive, that is when the server is at a non-empty queue, it 

should neither idle nor switch until that queue is empty. Also, in the spe

cial case where the polling system is symmetric (arrival patterns and service 

time distributions are stochastically identical at all queues) the routing pol

icy which moves the server to the queue with the largest queue length is 

optimal. If not all the queue lengths are known, a cyclic routing policy is 

optimal if the only information available is that of the previous decision. If 

in this special symmetric case the server empties a queue, the optimal policy 

is patient, i.e. the server always stays idling at the last visited queue when

ever the system is empty. Important and interesting as these results for the 

polling system are, they do not address the issue of differing priority levels 

for different queues implied by variable unit storage costs. Holding costs in 

one queue are equal per job per unit time as at any other queue. 

To summarize the polling literature, even in those cases of a single server, 

it has been observed by both Duenyas and Van Oyen [15, 14], and Koole 

[23, 24], that the presence of non-zero switching times makes the optimal 

policy very difficult to characterize explicitly. This necessitates the consid

eration of heuristic policies. 
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The only general result available for multiprocessor systems applies when 

the switching times and costs are zero: then the cJ.t-rule is optimal, i.e. the 

best policy is to give absolute preemptive priority to the job type for which 

the product of holding cost and service rate is largest. Buyukkoc et al [4] 

show this rule to be optimal for arbitrary arrival processes when storage costs 

are zero, provided that the service times are geometric and the service disci

pline is preemptive. The cJ.t-rule is work-conserving i.e. it is not optimal to 

keep a server idle when customers are present and not being served. 

A model similar to the one presented in this thesis was analyzed by Fayolle 

et al [16]. There the policy is fixed (servers are switched instantaneously, and 

only when idle), and the object is to evaluate the system performance. The 

solution is complex and rather difficult to implement. The more realistic 

model of multi-server clusters and non-zero switching times is not addressed. 

1.2.2 Dynamic Provisioning 

Following publication of the work presented here in chapters 2 and 3 on dy

namic server allocation [40, 41], a body of work has appeared in the area 

of dynamic provisioning. Chase et al. [6] consider the possibility of switch

ing servers between services to cope with demand. They propose an ad-hoc 

policy which does not take either costs or QoS requirements into account. 

A cluster management architecture is described called Cluster-on-Demand 

(COD). COD controls local resources, and dynamic policy-based allocation 
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of cluster resources across different application environments is made possible 

(i.e., across different offered services or jobs). Experimental results are pre

sented to demonstrate simple priority allocation policies (allocating resources 

to higher priority clusters whenever necessary, although a guaranteed min

imum may be specified for the number of nodes allocated to any specific 

request type). The paper concentrates on the mechanisms for dynamic re

source management rather than the policies used. An optimal policy for 

the dynamic provisioning is not discussed, and hence there is no benchmark 

for the performance results other than as an improvement upon a system 

without any dynamic reallocation of resources. 

More recently, several companies have introduced products to the market 

which offer dynamic provisioning in order to increase resource utilization. 

Of particular interest are the systems described by Sun Microsystems and 

IBM. Although details of the dynamic resource allocation are limited, these 

represent the importance of policy-based management of resources in a Grid 

hosting environment. 

Sun Microsystems describe their N1 Grid System [31] as an architec

ture capable of delivering what is referred to as Just in Time Computing. 

This is in essence a grid hosting environment which includes the flexibil

ity of dynamic and automatic resource provisioning, enabling service level 

management. The importance of such flexibility is highlighted as having the 

potential to transform the way in which large clusters of computing resources 

are managed. The details of any policies used for such dynamic provisioning 

of resources are omitted. 

IBM have released a provisioning on demand system known as the IB~1 
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Tivoli Intelligent Think Dynamic Orchestrator [30]. This promises to increase 

resource utilization and achieve dynamic infrastructure allocation. Resources 

can be allocated and managed dynamically without intervention through an 

architectural layer called Policy-Based Orchestration. Different business poli

cies may be defined and the provisioning of resources will respond dynami

cally accordingly as conditions change. It is stated that peaks in demand are 

sensed automatically and responded to by allocating resources to the most 

important processes based on a business policy. However, once again, details 

of policies or heuristics used are omitted. 

Clark et al. [7] describe the possibility of migrating operating system 

(OS) instances across distinct physical hosts. The majority of the migra

tion is carried out while operating systems continue to run, and impressive 

performance is obtained for service downtimes, in the order of magnitude of 

milliseconds. Hence, live migration of operating systems is shown to be a 

practical tool. The paper is concerned mostly with the implementation of 

this live OS migration, demonstrating its viability. However, an application 

of the described work is within cluster management: there are opportunities 

for dynamic load balancing of processor resources. A challenge is highlighted 

within the paper to develop cluster control software capable of making in

formed decisions as to the placement and movement of virtual machines. 

The heuristics described here in chapters 2 and 3 could be applied for such 

a decision making process. 
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1.2.3 Network Configuration 

The problem of load balancing across a network of available resources has 

been discussed in distributed systems literature for more than two decades. A 

comprehensive discussion of diffusion techniques for dynamic load balancing 

can be found in [8]. The objective of load balancing is to enable each available 

resource to perform an even share of the network load. Work is quantified 

in terms of tasks, each of which require an amount of processing time to 

be completed. Tasks may be reallocated from one processor to another, 

balancing the load across multiple servers. The aim is to minimise the overall 

execution time, using specified load balancing algorithms. A description of 

customized load balancing strategies for a network of workstations is given 

by Zaki et al [48]. Hine and Holzer [18] present their results on different 

scheduling algorithms for load balancing. More recently, Houle et al [20] 

consider algorithms for static load balancing on trees, assuming that the 

total load is fixed. 

Koole [11, 12] describes some recent work on dynamic load balancing in 

the context of parallel applications running in a grid environment. The first 

paper presents the impact of fluctuations in processing speeds on running 

times in a grid environment, while the second paper presents results of ex

tensive load-balancing experiments. In particular, the research focuses on 

fluctuations in processing speeds and the associated challenge of balancing 

the load of dependent iterations across heterogeneous processors. Forecasts 

of processor speed are obtained via the method of exponential smoothing. 

Dynamic load balancing decisions are made whereby the number of rows of 
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a parallel application (which could be considered to be jobs) assigned to any 

particular processor is proportional to its predicted processor speed. 

In all of these studies, the network configuration is treated as fixed and 

immutable. Instead, the approach outlined in this thesis considers the dy

namic reconfiguration of the underlying tree structure as load changes, rather 

than the reallocation of jobs across a fixed tree. This does not appear to have 

been studied before. 

1.2.4 Breakdowns and Repairs 

When considering the addition of server breakdown to a model of a grid 

provisioning system for analysis, perhaps the simplest model to analyse is 

one where all servers are statistically identical, all breakdowns and repairs 

are independent of each other, and the operative and inoperative periods are 

distributed exponentially. Indeed, some results are already available for that 

special case (see [35]). 

An example of a generalization where breakdowns and repairs are not 

necessarily independent of each other, but still may occur at exponentially 

distributed intervals, is presented in [5]. Having specified a model of interest, 

programs are provided that solve this exactly. These can then be invoked with 

different parameters for purposes of optimisation. However, models in which 

the breakdowns and repairs occur at intervals which are non-exponentially 

distributed, or models of the size and complexity as here described in chapter 

5 have not previously been considered. 



Chapter 2 

Dynamic Server Allocation: 

Two Job Types 

2 .1 Introduction 

The provision of a Grid service involves the hosting of heterogeneous clusters 

of servers. These may provide a variety of seryices to widely distributed 

user communities. Users submit jobs without necessarily knowing, or caring, 

where they will be executed. The system distributes those jobs among the 

servers, attempting to make the best possible use of the available resources 

and provide the best possible quality of service. 

The random nature of user demand, and also changes of demand pat

terns over time, can lead to temporary oversubscription of some services. 

and underutilization of others. In such situations, it could be advantageous 

to reallocate servers from one type of provision to another. even at the cost 

of switching overheads. The question that arises in that context is how to 

Ii' 
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decide whether, and if so when, to perform such reconfigurations. 

Posed in its full generality, this is a complex problem which is most un

likely to yield an exact and explicit solution. This first approach is to examine 

a simple, yet non-trivial special case, where the optimal dynamic realloca

tion policy can be computed numerically. Some heuristic policies are then 

proposed which, while not optimal, perform reasonably well and are easily 

implementable. The quality of the heuristics, compared to the optimal policy, 

is evaluated by simulation. 

The system under consideration contains a pool of N servers. split into 

two heterogeneous clusters of sizes K and N - K respectively. Cluster 1 is 

dedicated to a queue of jobs of type 1 (e.g., short web accesses), while cluster 

2 serves a queue of jobs of type 2 (e.g., long database searches). Type 1 

jobs have different response time requirements (e.g., they are less tolerant of 

delays) than type 2. It is possible to reassign any server from one queue to 

the other, but the process is generally not instantaneous and during it the 

server becomes unavailable. In those circumstances, a reconfiguration policy 

would specify, for any given parameter set (including costs), and current 

state, whether to switch a server or not. 

2.2 The Model 

The model is illustrated in Figure 2.1. Jobs of type i arrive according to 

an independent Poisson process with rate Ai, and join a separate unbounded 

queue (i = 1,2). Their required service times are distributed exponentially 

with mean 1/ J1+ The cost of keeping a type i job in the system is Cj per 
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unit time (i = 1,2). These 'holding' costs reflect the relatiye importance, or 

willingness to wait, of the two job types. 

f---+- /12 

r--+- /12 

Figure 2.1: Two reconfigurable heterogeneous clusters 

Any server currently allocated to queue 1 may be switched to queue 2. 

Such a switch costs Cl,2 and takes an interval of time distributed exponentially 

with mean 1/~, during which the server cannot serve jobs. Similarly, a server 

allocated to queue 2 may be switched to queue 1, at the cost of C2,1 and taking 

an interval of time distributed exponentially with mean liT!. It is assumed 

that switches are initiated at job arrival or departure instants. Indeed, it is at 

those instants that switches may become advantageous, and if they do, they 

should be performed without delay. Also, it is assumed that the switching 

policy employed is memory less , i.e., switching decisions may depend on the 

current state but not on past history. 

Any job whose service is interrupted by a switch returns to the appropri-

ate queue and resumes service from the point of interruption when a server 

becomes available for it. 

The system state at any time is described by a quintuple of integers, 
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8 = (jl, 12, kl' ml,2, m2,1), where ji is the number of type i jobs present 

(i = 1,2), kl is the current number of servers allocated to queue 1. ml.2 is 

the number of servers currently being reallocated from queue 1 to queue 2. 

and m2,1 is the number of servers currently being reallocated from queue 2 to 

queue 1. Only states satisfying kl + ml.2 + m2.1 :s; N are valid. The number 

of servers currently allocated to queue 2 is equal to k2 = N - kl - m 1.2 - m2.1· 

Under the above assumptions, the system is modelled by a continuous 

time Markov process. The transition rates of that process depend on the 

switching policy, i.e. on the decisions (actions) taken in various states. De

note by rd(8, 8') the transition rate from state 8 to state 8' (8 i= 8'). given 

that action d is taken. The possible actions are (a) do nothing, (b) initiate 

a switch from queue 1 to queue 2 (if kl > 0) and (c) initiate a switch from 

queue 2 to queue 1 (if k2 > 0). These actions are represented by d = 0, d = 1 

and d = 2, respectively. 

by 

The values of rd(8, 8'), for 8 = (jl, 12, kl' ml.2, m2.d and d = 0, are given 

ro(8,8') = 

if 8' = (jl + 1,12, k1, m1,2, m2.d 

if 8' = (jl,12 + 1, k1, ml,2, m2.d 

min(jl, k1)J..Ll if 8' = (jl - 1,12, k1, ml.2, m2.d 

min(12, k2)J..L2 if 8' = (jb 12 - 1, kb ml.2, m2.1) 

if 8' = (jl,12,k1,ml.2 -1,m2.d 

if 8' = (jl,12, kl + 1, m1.2, m2.1 - 1) 

otherwise 
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The corresponding rates for d = 1 are obtained by replacing, in S', kl 

by kl - 1 and ml,2 by ml,2 + 1. Similarly, the rates for d = 2 are obtained 

by replacing m2,1 by m2,1 + 1. Note that, in cases d = 1 and d = 2, there 

is a zero-time transition which changes kl or k2' and then an exponentially 

distributed interval with mean 1/Td(S, S'), after which the state jumps to S'. 

The total transition rate out of state S, given that action d is taken, 

Td(S), is equal to: 

Td(S) = L Td(S, S') . 
S' 

2.3 Computation of the Optimal Policy 

For the purposes of optimization, it is convenient to apply the technique 

of uniformization to the Markov process (e.g., see [10]). This entails the 

introduction of 'fictitious' transitions which do not change the system state, 

so that the average interval between consecutive transitions ceases to depend 

on the state, and then embedding a discrete-time Markov chain at transition 

instants. First, find a constant, A, such that Td(S) ~ A for all S and d. A 

suitable value for A is 

(2.1) 

Next, construct a Markov chain whose one-step transition probabilities 



2.3. Computation of the Optimal Policy 

when action d is taken, qd(S, S'), are given by 

qd(S, S') = { Td(S, S')/A if S' =I d(S) 

1- Td(S)/A if S' = d(S) 

22 

where d(S) is the state resulting from the immediate application of action d 

in state S. This Markov chain is, for all practical purposes, equivalent to the 

original Markov process. 

Without loss of generality, the unit of time can be scaled so that the 

uniformization constant becomes A = 1. 

The finite-horizon optimization problem can be formulated as follows. 

Denote by Vn(S) the minimal expected total cost incurred during n con-

secutive steps of the Markov chain, given that the current system state is 

S. The cost incurred at step l in the future is discounted by a factor at 

(l = 1,2, ... ,n - 1; 0 ~ a :::; 1). Setting a = 0 implies that all future costs 

are disregarded; only the current step is important. When a = 1, the cost of 

a future step, no matter how distant, carries the same weight as the current 

one. 

Any sequence of actions which achieves the minimal cost Vn(S), consti

tutes an 'optimal policy' with respect to the initial state S, cost parameters, 

event horizon n, and discount factor a. 

Suppose that the action taken in state S is d. This incurs an immediate 

cost of c(d), equal to Cl,2 if d = 1 and C2,1 if d = 2. In addition, since the 

average interval between transitions is 1, each type 1 job in the system incurs 

a holding cost Cl and each type 2 job in the system incurs a holding cost C2· 
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The next state will be 8', with probability Qd{8, 8'), and the minimal cost of 

the subsequent n - 1 steps will be QVn - 1{8'). Hence, the quantities \~(8) 

satisfy the following recurrence relations: 

Thus, starting with the initial values Vo(8) = 0 for all 8, one can compute 

Vn (8) in n iterations. In order to make the state space finite, the queue sizes 

are bounded at some level,)1 < J, 12 < J. Then, if Vn - 1(8) has already been 

computed for some n and for all 8, the complexity of computing Vn (8), for a 

particular state 8, is roughly constant. Three actions need to be compared, 

and the best action to take in that state, and for that n, is indicated by 

the value of d that achieves the minimum in the right-hand side of (2.2). 

Since there are on the order of O{J2 N 3
) states altogether, the computational 

complexity of one iteration is on the order of O{J2 N 3 ), and hence overall 

complexity of solving (2.2) and determining the optimal switching policy 

over a finite event horizon of size n, is on the order of O{J2 N3n ). 

If the discount factor Q is strictly less than 1, it reasonable to consider 

the infinite-horizon optimization, i.e. the total minimal expected cost, V(8), 

of all future steps, given that the current state is 8. That cost is of course 

infinite when Q = 1, but it is finite when Q < 1. Indeed, in the latter case it 

is known (see [2]), that under certain rather weak conditions, Vn (8) ---+ V(8) 

when n ---+ 00. When the optimal actions depend only on the current state, 

8, and not on n, the policy is said to be 'stationary'. 

An argument similar to the one preceding (2.2) leads to the following 
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equation for V (S): 

The optimal policy (i.e. the best action in any given state) is specified by 

the value of d that achieves the minimum in the right-hand side of (2.3). 

Equation (2.3) can be solved by performing the finite-horizon iterations, 

stopping when the difference in cost functions between two consecutive it

erations becomes sufficiently small. Alternatively, if the policy is of greater 

interest than the cost function, the iterations may be stopped when the policy 

becomes stationary. 

Equation (2.3) may also be solved by applying the 'policy improvement' 

algorithm [13]. This iterative process is later described for the generalized 

model in chapter 3. 

2.4 Experimental results 

For initial analysis, consider a simple system with N = 2, where switches 

cost money but do not take time. Although this case is not of great practical 

interest, it is included as an illustration. The system state is described by 

a triple, S = (jl,j2, k l ). The number of servers allocated to type 2 is k2 = 

N - kl . The uniformization constant is now A = Al + A2 + N{/1l + /12)' If 

action d = 1 or d = 2 is taken in state S, the value of kl changes immediately, 

and then a new state is entered after an exponentially distributed interval 

with mean l/A. 
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In this example, the arrival and service parameters of the two job types 

are the same, but waiting times for type 2 are twice as expensive as those for 

type 1. The discount factor is a = 0.95. The stationary optimal policy for 

states where kl = k2 = 1 is shown in table 2.1. The truncation level used in 

the computation was J = 30, but the table stops at jl = j2 = 10; the actions 

do not change beyond that level. 

12 
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 1 1 1 1 1 1 
2 0 0 0 0 0 1 1 1 1 1 1 
3 0 0 0 0 0 1 1 1 1 1 1 
4 0 0 0 0 0 1 1 1 1 1 1 

jl 5 2 0 0 0 0 1 1 1 1 1 1 
6 2 0 0 0 0 1 1 1 1 1 1 
7 2 0 0 0 0 1 1 1 1 1 1 
8 2 0 0 0 0 1 1 1 1 1 1 
9 2 0 0 0 0 1 1 1 1 1 1 

10 2 0 0 0 0 1 1 1 1 1 1 

Table 2.1: Optimal actions: zero switching times, N = 2, kl = 1, >'1 = >'2 = 
0.086, J-ll = J-l2 = 0.207, Cl = 1, C2 = 2, Cl,2 = C2,1 = 10.0 

As expected, the presence of switching costs discourages switching; a 

server is sometimes left idle even when there is work to be done. Note that 

the cJ-l-rule in this case would give preemptive priority to type 2: it would 

take action d = 1 whenever j2 2:: 2, and action d = 2 when 12 = 0, jl 2:: 2. 

The optimal policy for kl = 0 (all servers currently allocated to job type 

2) is shown in table 2.2. This table shows that it is now optimal to take 

action d = 2 when jl = 1 and j2 = 0, or when jl > 1 and 12 < 2. The 

optimal policy for kl = 2 (all servers currently allocated to job type 1) is 
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12 
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 0 0 0 
2 2 2 0 0 0 0 0 0 0 0 0 
3 2 2 0 0 0 0 0 0 0 0 0 
4 2 2 0 0 0 0 0 0 0 0 0 

)1 5 2 2 0 0 0 0 0 0 0 0 0 
6 2 2 0 0 0 0 0 0 0 0 0 
7 2 2 0 0 0 0 0 0 0 0 0 
8 2 2 0 0 0 0 0 0 0 0 0 
9 2 2 0 0 0 0 0 0 0 0 0 

10 2 2 0 0 0 0 0 0 0 0 0 

Table 2.2: Optimal actions: zero switching times, N = 2, k1 = 0, Al = A2 = 
0.086, /-t1 = /-t2 = 0.207, C1 = 1, C2 = 2, C1,2 = C2,1 = 10.0 

12 
0 1 2 3 4 5 6 7 8 9 10 

0 0 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 
2 0 0 1 1 1 1 1 1 1 1 1 
3 0 0 1 1 1 1 1 1 1 1 1 
4 0 0 1 1 1 1 1 1 1 1 1 

j1 5 0 0 1 1 1 1 1 1 1 1 1 
6 0 0 1 1 1 1 1 1 1 1 1 
7 0 0 1 1 1 1 1 1 1 1 1 
8 0 0 1 1 1 1 1 1 1 1 1 
9 0 0 1 1 1 1 1 1 1 1 1 

10 0 0 1 1 1 1 1 1 1 1 1 

Table 2.3: Optimal actions: zero switching times, N = 2, k1 = 2, Al = A2 = 

0.086, /-t1 = /-t2 = 0.207, C1 = 1, C2 = 2, C1,2 = C2,1 = 10.0 
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shown in table 2.3. This table shows that it is now optimal to take action 

d = 1 when )1 ::; 1 and )2 > 0, or when )1 > 1 and 12 > 1. 

From now on, models will be examined where switching takes non-zero 

time. To keep the number of parameters low, the monetary costs of switching 

will be assumed negligible, C1,2 = C2,1 = O. The uniformization constant is 

given by (2.1), and the unit of time is chosen so that A = 1. Table 2.-1 

illustrates the stationary optimal policy when k1 = k2 = 1, for the same 

holding costs as in table 2.1. 

12 
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 1 1 1 1 1 
2 0 0 0 0 0 0 0 1 1 1 1 
3 0 0 0 0 0 0 0 1 1 1 1 
4 0 0 0 0 0 0 0 1 1 1 1 

Jl 5 2 0 0 0 0 0 0 1 1 1 1 
6 2 0 0 0 0 0 0 1 1 1 1 
7 2 0 0 0 0 0 0 1 1 1 1 

8 2 0 0 0 0 0 0 1 1 1 1 

9 2 0 0 0 0 0 0 1 1 1 1 

10 2 0 0 0 0 0 0 1 1 1 1 

Table 2.4: Optimal actions: non-zero switching times, N = 2, k1 - 1, 

Al = A2 = 0.047, J-ll = J-l2 = 0.113, Cl = 1, C2 = 2, ~ = TJ = 0.113 

Again, the observation is made that switching is discouraged, compared 

to the cJ-l-rule, even though the average switching times are no larger than 

the average job service times. 

The optimal policy for kl = 0 (all servers currently allocated to job type 

2) is shown in table 2.5. It is now optimal to take action d = 2 when )1 > 0 

and 12 < 2 or when )1 = 12 = O. The optimal policy for k1 = 2 (all servers 
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j2 

0 1 2 3 4 5 6 7 8 9 10 
0 2 0 0 0 0 0 0 0 0 0 0 
1 2 2 0 0 0 0 0 0 0 0 0 
2 2 2 0 0 0 0 0 0 0 0 0 
3 2 2 0 0 0 0 0 0 0 0 0 
4 2 2 0 0 0 0 0 0 0 0 0 

jl 5 2 2 0 0 0 0 0 0 0 0 0 
6 2 2 0 0 0 0 0 0 0 0 0 
7 2 2 0 0 0 0 0 0 0 0 0 
8 2 2 0 0 0 0 0 0 0 0 0 
9 2 2 0 0 0 0 0 0 0 0 0 

10 2 2 0 0 0 0 0 0 0 0 0 

Table 2.5: Optimal actions: non-zero switching times, N = 2, kl = 0, 
Al = A2 = 0.047, J.ll = J.l2 = 0.113, Cl = 1, C2 = 2, ~ = TJ = 0.113 

J2 

0 1 2 3 4 5 6 7 8 9 10 

0 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
2 0 0 1 1 1 1 1 1 1 1 1 
3 0 0 1 1 1 1 1 1 1 1 1 
4 0 0 1 1 1 1 1 1 1 1 1 

Jl 5 0 0 0 1 1 1 1 1 1 1 1 
6 0 0 0 1 1 1 1 1 1 1 1 
7 0 0 0 1 1 1 1 1 1 1 1 

8 0 0 0 1 1 1 1 1 1 1 1 

9 0 0 0 1 1 1 1 1 1 1 1 

10 0 0 0 1 1 1 1 1 1 1 1 

Table 2.6: Optimal actions: non-zero switching times, N = 2. kl - 2. 

Al = A2 = 0.047, J.ll = J.l2 = 0.113, Cl = 1, C2 = 2, ~ = TJ = 0.113 
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currently allocated to job type 1) is shown in table 2.6. It is now optimal 

to take action d = 1 When)1 < 2, or it = 2,3,4 and 12 > 1, Or)1 > 4 and 

12 > 2. 

In each of the above experiments the cost matrix was initialised to the 

holding cost of the current state. Approximately 150 iterations were required 

for the cost function to converge to within a tolerance level of 0.01. The 

calculations of the table look-ups for the optimal policy have been executed 

on a Windows machine with a 3GHz Intel Pentium 4 processor, and with 2GB 

of RAM. With 2 job types, available memory space was easily sufficient, even 

when storing the results from each iteration. The calculation time for each 

set of 3 tables was approximately 300ms. 

The next question to be addressed is "How can one use dynamic opti

mization in practice 7" Ideally, the optimal policy would be characterized 

explicitly in terms of the parameters, providing a set of rules to be followed 

(like, for example, the cJ.l-rule). Unfortunately, such a characterization does 

not appear feasible for this problem. 

Another approach is to pre-compute the optimal policy for a wide range 

of parameter values, and store a collection of tables such as table 2.1 and 

table 2.4. Then, having monitored the system and estimated its parameters, 

the optimal policy could be obtained by a table look-up. This is feasible, but 

may consume quite a lot of storage. 

The third and most commonly used approach is to formulate a heuristic 

policy which (a) is simply characterized in terms of the parameters, and (b) 

performs acceptably well, compared with the optimal policy. That is what 

is proposed in the following section. 
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2.5 Heuristic Policies 

A straightforward switching policy is to do no switching at all. Allocate the 

servers to the two queues roughly in proportion to the offered load, Pi = Ai / J.I i . 

and to the holding cost, Ci, for each type. In other words, set 

if both kl and k2 are non-zero, otherwise replace 0 by 1 and N by S - 1. 

Having made the allocation, leave it fixed as long as the offered loads and 

costs remain the same. This will be referred to as the 'static' policy. It 

certainly has the virtue of simplicity, and also provides a comparator by 

which the benefits of dynamic reconfiguration can be measured. 

The idea behind this dynamic heuristic policy is to attempt to balance 

the total holding costs of the two job types. That is, the policy tries to 

prevent the quantities jl Cl and j2C2 from diverging. The following rules are 

applied: 

1. Take action d = 1 in state S = (jl, 12, kl' ml,2, m2,d if 

2. Take action d = 2 in state S = (jl, 12, kl' ml,2, m2,d if 

These rules are based on approximating the effects of a switch. If jl jobs of 
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type 1 are present and kl servers are available for them, then the average 

queue 1 increment during an interval of length x may be estimated as I[AI -

Jll min(kl' jd]· Similarly for queue 2. Thus, a server is switched if that switch 

would help to balance the holding costs, after taking account of its effect on 

the two queues. The above policy will be referred to as the 'heuristic'. 

The optimal, static and heuristic policies are compared by simulation. 

In order to model changes in demand, the simulation includes a sequence of 

alternating phases, with Al and A2 changing values from one phase to the 

next. The performance measure in all cases is the total average holding cost, 

Le. the simulation estimate of E(Cill + c2h). The following parameters are 

kept fixed: Jl = 1, t;, = TJ = 0.1, Cl = 1, C2 = 2, average phase duration 

= 100 (however, remember that parameters are renormalized to make the 

uniformization constant, A, equal to 1). 

In figure 2.2, the average cost is plotted against the number of servers, 

N. >'1 and A2 are in the ratio 1:100 during phase 1 and 100:1 during phase 2. 

Moreover, those arrival rates are increased with N so that the total offered 

load, PI + P2, is equal to 3N/4 (Le., the system is reasonably heavily loaded). 

The figure shows that the heuristic policy is almost as good as the op

timal one, for all values of N. By contrast, the static policy (which is not 

entirely static; it changes the allocation within each phase, as the arrival 

rates change), is considerably more expensive and becomes worse with the 

increase in the number of servers. 

A different comparison is illustrated in figure 2.3. Here the number of 

servers is fixed, N = 4, and the offered load increases, approaching satura

tion. The arrival rates are in the ratio 1:100 during phase 1 and 100:1 during 
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phase 2, and are increased to produce the increase in total load. 
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This experiment shows even more emphatically that dynamic reconfig

uration is advantageous. The cost of the static policy increases very fast. 

while the heuristic, which is again almost optimal, has much lower costs. 

In these experiments, 200000 job completions were simulated, and ap

proximately 1000 phase changes occurred. The longest simulation runs were 

for the optimal policy, because of the table look-ups. 

2.6 Conclusions 

This section has explored an initial problem of interest in the area of distri1:r 

uted processing and dynamic provision. The optimal reconfiguration policy 

for 2 server types has been computed and tabulated, subject to complexity 
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constraints imposed by the size of the state space and the ranges of parame-

ter values. However, for practical purposes, an easily implement able heuristic 

policy is available. The encouraging results of figures 2.2 and 2.3 suggest that 

its performance compares quite favourably with that of the optimal policy. 

A natural generalization of this problem would be to consider more than 

two job types and clusters. That would lead to a significantly more complex 

model, which is the object of the following section. 



Chapter 3 

Dynamic Server Allocation: 

M Job Types 

3.1 Introduction 

The model from the previous section is now generalized: consider a system 

consisting of a pool of I\' servers, split into J1I heterogeneous clusters of sizes 

k1, k2 , ... ,kllI , where L::~l ki = N. Cluster i is dedicated to a queue of jobs of 

type i (i = 1, ... , Af). Job types may for example include short web accesses 

or long database searches. Different types of job have different response time 

requirements (e.g., some may be less tolerant of delays than others). It is 

possible to reassign any server from one queue to another, but the process 

is generally not instantaneous and during it the server becomes unavailable. 

In those circumstances, a reconfiguration policy would specify, for any given 

parameter set (including costs), and current state, whether to s'witch a server 

or not. 

34 
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3.2 The Model 

The extended model is illustrated in Figure 3.1. Jobs of type i arrive ac

cording to an independent Poisson process with rate Ai, and join a separate 

unbounded queue (i = 1,2, ... , M). Their required service times are distrib

uted exponentially with mean 1/ /1i. The cost of keeping a type i job in the 

system is Ci per unit time (i = 1,2, ... , A1). These 'holding' costs reflect the 

relative importance, or willingness to wait, of the M job types. 

The Poisson arrivals assumption may be justified on the grounds that, in a 

Grid environment, many individual users submit jobs to the computational 

cluster. The arrival process of a given type is formed by merging a large 

number of independent sources, and is therefore approximately Poisson. 

/11 

(i,j tIM 
11~/1M-1 

---1...J....J~/1M_1 

_---'-IIL...J...JI ~o-- /1M 
I ----0--- /1M 

Figure 3.1: M reconfigurable heterogeneous clusters 

The same reasoning applies from the model with only 2 servers. Any 

server currently allocated to queue i may be switched to queue j. Such a 

switch costs Cj,j and takes an interval of time distributed exponentially with 
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mean l/(i,i' during which the server cannot serve jobs. It is assumed that 

switches are initiated at job arrival or departure instants. Indeed, it is at 

those instants that switches may become advantageous, and if they do, they 

should be performed without delay. Also, it is assumed that the switching 

policy employed is stationary, i.e., switching decisions may depend on the 

current state but not on past history. 

Any job whose service is interrupted by a switch returns to the appropri-

ate queue and resumes service from the point of interruption when a server 

becomes available for it. 

The system state at any time is described by the triple, S = (j, k, m) 

where j = (jl, 12, ... , jM) is the vector of current queue sizes (ji is the number 

of jobs in queue i, including those being served), k = (kl' k2' ... , kM ) is the 

vector of current server allocations (ki servers allocated to queue i) and m = 

(mi,j)[:;=l is the matrix of switches currently in progress (mi,i servers being 

switched from queue i to queue j, mi,i = 0). The valid states satisfy 2:~1 k i + 

"~-l miJ" = N. L...J~,J- , 

Under the above assumptions, the system is modelled by a continuous 

time Markov process. The transition rates of that process depend on the 

switching policy, i.e. on the decisions (actions) taken in various states. De

note by Td(S, S') the transition rate from state S to state S' (S =f. S'), given 

that action d is taken. The possible actions are (a) do nothing, or (b) initiate 

a switch from queue i to queue j (if ki > 0 and i =f. j). These actions are 

represented by d = 0 (do nothing) and d = 1,2, ... , M(M - 1). 

The values of Td(S, S'), for S = (j, k, m), S' = (j', k', m') and d = 0, are 

given by the following (where i, j = 1, ... , M): 
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·f·' . 1 J =J+ei 

ro(8,8') = 

·f ' d k' k 1 m = m - ei,j an = + ej 

o otherwise 

where ei is the ith unit vector, and ei,j is the matrix which has 1 in position 

(i,j) and zeros everywhere else. 

The corresponding rates when d =I- 0 and the action taken is to switch a 

server from queue a to queue b (a =I- b) are obtained by replacing, in S', k' by 

k' - e a and m' by m' + ea,b. Note that, in cases d =I- 0, there is a zero-time 

transition which changes ka and rna,b, and then an exponentially distributed 

interval with mean l/rd(S, S'), after which the state jumps to S'. 

The total transition rate out of state S, given that action d is taken, 

rd(S), is equal to: 

rd(S) = L rd(S, 8') . 
8' 

3.3 Computation of the Optimal Policy 

Once again, for the purposes of optimization, it is convenient to apply the 

technique of uniformization to the Markov process, introducing 'fictitious' 

transitions which do not change the system state, so that the average interval 

between consecutive transitions ceases to depend on the state, and then 

embedding a discrete-time Markov chain at transition instants. First, find a 

constant, A, such that rd(8) ::; A for all Sand d. A suitable value for A is 
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now 
M 

A= LAi + NJ.L + N( , (3.1) 
i=l 

where J.L = max(J.Li) is the largest service rate and ( = max( (i,j) is the largest 

switching rate. 

A Markov chain can now be constructed as described earlier in section 

2.3. The finite-horizon optimization problem can be formulated in exactly 

the same way. To recap, Vn (8) is the minimal expected total cost incurred 

during n consecutive steps of the Markov chain, given that the current system 

state is 8. The complexity of the problem has increased now because the 

state space of the system is considerably increased. Any sequence of actions 

which achieves the minimal cost Vn (8) constitutes an 'optimal policy' with 

respect to the initial state 8, cost parameters, event horizon n, and discount 

factor Q. 

Suppose that the action taken in state 8 is d. This incurs an immediate 

cost of c( d), equal to Ci,j if the action taken is to switch a server from queue 

i to queue j. In addition, since the average interval between transitions is 1, 

each type i job in the system incurs a holding cost Ci. The next state will be 

8', with probability Qd(8, 8'), and the minimal cost of the subsequent n - 1 

steps will be Q Vn- 1 (8'). Hence, the quantities Vn (8) satisfy the following 

recurrence relations: 

Thus, starting with the initial values Vo(8) = 0 for all 8, one can compute 

Vn (8) in n iterations. Once again, in order to make the state space finite, the 
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queue sizes are bounded at some level, ji < J (i = 1, .... J!). Then. if Vn - I (S) 

has already been computed for some n and for all S, the complexity of 

computing Vn (8), for a particular state 8, is roughly constant. There are no 

more than 2M + M (M -1) states 8' reachable from state 8, and J\;f (Af -1) + 1 

actions to be compared (corresponding to the M(M - 1) possible switches 

from queue i to queue j and action d = 0 to do nothing). The best action to 

take in that state, and for that n, is indicated by the value of d that achieves 

the minimum in the right-hand side of (2.2). Since there are on the order 

of O(JM NM-HM(M-I)) states altogether, the computational complexity of 

one iteration is on the order of O(JM NM-HM(M-I)), and hence the overall 

complexity of solving (2.2) and determining the optimal switching policy over 

a finite event horizon of size n, is on the order of O(nJAl NAt-HAl(Al-I)). 

Following the same reasoning from section 2.3, consider the infinite

horizon optimization when the discount factor Q is strictly less than 1. When 

the optimal actions depend only on the current state, 8, and not on n, the 

policy is said to be 'stationary'. 

An argument similar to the one preceding (3.2) leads to the following 

equation for V (8): 

The optimal policy (i.e. the best action in any given state) is specified by 

the value of d that achieves the minimum in the right-hand side of (3.3). 

Equation (3.3) can be solved by applying the 'policy improvement' algo

rithm (see Dreyfus and Law [13]). This iterative algorithm can be applied to 
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the present optimization problem as follows. 

Step 1. Start by making an initial guess about the optimal policy, i.e. 

construct an initial mapping, d = 1(8), from system states to action indices. 

This could be a simple heuristic such as the CIt-rule (see [4]). 

Step 2. Treat this guess as the optimal stationary policy, and compute the 

corresponding discounted costs, V f, by solving the large set of simultaneous 

linear equations: 

Step 3. Now try to 'improve' policy I. For every state 5, find the ac

tion d*(8) which achieves the minimum value in: 

t j;c;+ m.Jn [C( d) +a ~ qd( s, S')V f (S') 1 (3.5) 

In other words, minimize the total cost in state 5, assuming that after 

the current operation, policy 1 will be used. 

Step 4. If action d*(8) = 1(8) for all states 5, then the policy 1 can

not be improved; it is optimal. Otherwise, the next guess for the optimal 

policy is 1(8) = d*(8); repeat from step 2. 
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The computational complexity of this algorithm is determined by the com

plexity of each iteration, which is dominated by step 2, and by the number 

of iterations. The simultaneous equations can be represented in matrix and 

vector form as: 

V=C+aQF(V) (3.6) 

where V is the matrix of unknowns, C is the vector of holding and switching 

costs, Q is the matrix of transition probabilities from state S to state Sf, and 

F(V) is an appropriate rearrangement of the elements of V. 

An iterative method has been used to solve the set of simultaneous linear 

equations given in 3.6. Start with an initial approximation to V, such as 

the holding cost in the current state, Vo(S) = E~l jiCi, then at the n th 

iteration compute 

(3.7) 

Since Q is a stochastic matrix and a < 1, this schema converges geomet

rically. This iterative solution is more efficient than Gaussian elimination for 

such a large state space, unless a is very close to 1. 

3.4 Experimental results 

First, consider the optimal switching decisions for the model with N = 3 and 

M = 3. In this example, the arrival and service parameters of the three job 

types are again the same, but waiting times for type 1 are twice as expensive 

as those for types 2 and 3. The discount factor is a = 0.95. The stationary 
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optimal policy for states where k1 = k2 = k3 = 1 and j1 = ° is shown in table 

3.1. The truncation level used in the computation was J = 20, but the table 

stops at j2 = j3 = 10; the actions do not change beyond that level. Actions 

d are numbered as follows: 

d=O, do nothing; 

d=l, switch a server from queue 1 to queue 2: 

d=2, switch a server from queue 2 to queue 1; 

d=3, switch a server from queue 1 to queue 3; 

d=4, switch a server from queue 3 to queue 1; 

d=5, switch a server from queue 2 to queue 3; 

d=6, switch a server from queue 3 to queue 2. 

Again it is observed that switching is discouraged, compared to the C/l

rule. For example, when (j1,12,j3) = (0,2,1) the optimal decision is to do 

nothing, even though a job of type 2 is not being served whilst a server at 

queue 1 remains idle. Only when (j1, 12, j3) = (0, 3, 1) is the decision made 

to switch a server from queue 1 to queue 2. 

The stationary optimal policy for states where k1 = 1, k2 = 2, k3 = ° 
and j1 = ° is shown in table 3.2 (all other parameters remain unchanged 

from those used in table 3.1. Similarly, we see switching discouraged when 

(j1, j2, j3) = (0,0,3) or (j1, 12, j3) = (0,0,4). The optimal decision is to do 

nothing, even though jobs of type 2 are once again not being served while a 

server at queue 1 remains idle. 

Next, consider the optimal switching decisions for the model with .i.V = 4 

and M = 3. In this example, the arrival and service parameters of the three 
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j3 

0 1 2 3 4 5 6 7 8 9 10 
0 0 0 5 5 5 5 5 5 5 5 5 
1 0 0 0 3 3 3 3 3 3 3 3 
2 1 0 0 3 3 3 3 3 3 3 3 
3 1 1 1 1 3 3 3 3 3 3 3 
4 1 1 1 1 1 3 3 3 3 3 3 

j2 5 1 1 1 1 1 1 3 3 3 3 3 
6 1 1 1 1 1 1 1 3 3 3 3 
7 1 1 1 1 1 1 1 1 3 3 3 
8 1 1 1 1 1 1 1 1 1 3 3 
9 1 1 1 1 1 1 1 1 1 1 3 

10 1 1 1 1 1 1 1 1 1 1 1 

Table 3.1: Optimal actions: non-zero switching times, N = 3, M = 3, 
kl = k2 = k3 = 1, jl = 0, Al = A2 = A3 = 0.111, J-ll = J-l2 = J-l3 = 0.111, 
Cl = 2, C2 = C3 = 1, (i,j = O.l11(i =I- j) 

J3 

0 1 2 3 4 5 6 7 8 9 10 
0 5 5 5 5 5 5 5 5 5 5 5 
1 0 5 5 5 5 5 5 5 5 5 5 
2 0 3 3 3 3 3 3 3 3 3 3 
3 0 3 3 3 3 3 3 3 3 3 3 
4 0 3 3 3 3 3 3 3 3 3 3 

J2 5 1 1 3 3 3 3 3 3 3 3 3 
6 1 1 3 3 3 3 3 3 3 3 3 
7 1 1 1 3 3 3 3 3 3 3 3 
8 1 1 1 3 3 3 3 3 3 3 3 
9 1 1 1 1 3 3 3 3 3 3 3 

10 1 1 1 1 3 3 3 3 3 3 3 

Table 3.2: Optimal actions: non-zero switching times, N = 3, M = 3, kl = 1, 
k2 = 2, k3 = 0, JI = 0, Al = A2 = A3 = 0.111, J-ll = J-l2 = J-l3 = 0.111, Cl = 2, 
C2 = C3 = 1, (i,j = 0.111(i =I- j) 
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job types are again the same, and waiting times for type 1 are still twice as 

expensive as those for types 2 and 3. The discount factor is again 0: = 0.95. 

The stationary optimal policy for states where k1 = 1, ~ = 2, k3 = 1 and 

)1 = 1 is shown in table 3.3. Switching is very discouraged, with most of 

the optimal decisions shown being to do nothing. This can be explained 

since there is a job of type 1 present which is currently being served. It 

is optimal to continue to serve this job, for the truncation levels of 12 and 

Js calculated. However, the presence of non-zero switching times can also 

encourage switching compared to the cJ.l-rule. When (j1, 12, )3) = (1,0,0), 

the optimal decision is to switch a server from queue 2 to queue 1, even 

though no unserved jobs of type 1 are waiting. This seems reasonable, since 

job type 1 is the most expensive to store. There are currently 2 idle servers 

at queue 2, so the decision is made to switch one of these over to queue 1, in 

case a job of type 1 arrives. 

As the model has increased in complexity from 2 to M servers, charac

terizing the optimal policy explicitly in terms of the parameters is even less 

feasible. Instead, as in the previous section, one approach for using dynamic 

optimization in practice is to pre-compute the optimal policy for a wide range 

of parameter values, and store a collection of tables such as table 3.1. Then, 

having monitored the system and estimated its parameters, the optimal pol

icy could be obtained by a table look-up. This is still feasible, but will now 

consume even more storage. 

The third approach is again to formulate a heuristic policy which (a) is 

simply characterized in terms of the parameters, and (b) performs acceptably 

well, compared with the optimal policy. That is what is proposed in the 
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J3 
0 1 2 3 4 5 6 7 8 9 10 

0 2 2 5 5 5 5 5 5 5 5 5 
1 0 0 0 5 5 5 5 5 5 5 5 
2 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 

12 5 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 

Table 3.3: Optimal actions: non-zero switching times, N = 4, J.\! = 3. k1 = 1, 
k2 = 2, k3 = 1, j1 = 1, >'1 = >'2 = >'3 = 0.0909, /11 = /12 = /13 = 0.0909, 
C1 = 2, C2 = C3 = 1, (i,j = 0.0909(i =1= j) 

following section. 

3.5 Heuristic Policies 

The heuristic from section 2.5 is now generalized. When the number of queues 

does not exceed the number of servers, it is possible to do no switching at all. 

Allocate the servers roughly in proportion to the offered load, Pi = >'d /1i, 

and to the holding cost, Cj, for each type. In other words, set 

ki = N :;iCj + 0.5 (i = 1, ... , M - 1) ; kM = )./\/ - L kj , l J 
M-1 

Lj=l PjCj j=l 

if all ki are non-zero. If any ki is zero, replace ki with 1 and the largest kj 

(i =1= j) by kj - 1. Repeat this process until all ki are non-zero. Having made 

the allocation, leave it fixed as long as the offered loads and costs remain 
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the same. This will be referred to as the 'static' policy. It certainly has the 

virtue of simplicity, and also provides a comparator by which the benefits of 

dynamic reconfiguration can be measured. 

Once again, the idea behind this dynamic heuristic policy is to attempt 

to balance the total holding costs of the different job types. That is, the 

policy tries to prevent the quantities ji~ (i = 1, ... , M) from diverging. The 

following rule is applied: 

1. Calculate the following for each of the !l1 (!If -1) possible switches from 

queue a to queue b (a =1= band ka > 0): 

where K is a constant used to discourage too many switches from being 

initiated. The best value of K depends on the total load. For heavily 

loaded systems, K = 5 has been used. 

2. Find the maximum of all quantities calculated in 1; if it is strictly 

positive, this will be the most advantageous switch to initiate. Take 

the action d =f:.. 0 corresponding to this switch. Otherwise, take action 

d=O. 

This rule is once again based on approximating the effects of a switch. If 

jb jobs of type b are present and kb servers are available for them, then the 

average queue b increment during an interval of length x may be estimated as 

X[Ab - JLb min(kb, jb)). Similarly for queue a, except that if a server is switched 
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from queue a then the available servers for this queue drops to ka - 1. Thus, 

a server is switched if that switch would help to balance the holding costs, 

after taking account of its effect on the M queues. The above policy will be 

referred to as the 'heuristic'. 

The optimal, static and heuristic policies are compared by simulation. 

The performance measure in all cases is the total average holding cost, i.e. 

the simulation estimate of E(E~1 Cdi}. In all experiments, the parameters 

given below are renormalized to make the uniformization constant, A, equal 

to 1. 

In figure 3.2, the average cost is plotted against the number of servers, 

N when M = 3. The following parameters are used: 1000Al = A2 = A3, 

b1 = 1000b2 = 1000b3, Cl = 2, C2 = 1, C3 = 1. Switching rates are equal and 

given by (i,j = Ji2/10 = Ji3/1O. Arrival rates are increased with N so that the 

total offered load, PI + P2 + P3, is equal to 4N/5 (i.e., the system is heavily 

loaded). This models a system where type 1 jobs are long and types 2 and 3 

are much shorter. Requests of type 1 arrive at a much slower rate than for 

types 2 and 3, although the total load for each job type is the same. 

Another comparison when M = 3 is shown in figure 3.3. Here, the number 

of servers is fixed at N = 4 and the total load increases. All arrival rates 

are equal. The following parameters are used: Jil = Ji2 = Ji3 = 1, (i,j = 0.1, 

Cl = 2, C2 = 1, C3 = l. 

Figures 3.2 and 3.3 demonstrate clearly the benefit of dynamic recon-

figuration of servers when the number of job types is increased to M = 3. 

The static policy performs poorly as the number of servers or the load is 

increased, while the heuristic policy performs almost as well as the optimal 
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6 

policy. In each case, choosing dynamic reconfiguration dramatically reduces 

the average holding costs. 

In all of these experiments, 200000 job completions were simulated. Where 

phase changes were simulated, approximately 1000 phase changes occurred 

during the duration of the simulation. The longest simulation runs were for 

the optimal policy, because of the table look-ups. 

Calculations of the table look-ups for the optimal policy have been exe

cuted on a Linux machine with an Intel Xeon 2.80GHz processor and 1GB 

RAM. To calculate the optimal policy for N = 4, M = 3 and a truncated 

queue size of J = 30 requires 223MB of available memory. As an illustration 

of the complexity of the calculations and the large size of the state space, 

if the number of servers is increased to N = 6, with M = 3 and J = 30, 

calculating the optimal policy now requires 1.564GB of available memory. 
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3.6 

Each table of decisions for N = 4, M = 3 and J = 30, when calculated 

using the Policy Improvement described in Section 3.3, took approximately 

16 minutes. The Policy Improvement algorithm took 10 iterations to con

verge to the optimal policy, with the initial 'guess' of the policy set to the 

heuristic policy. Solving the large set of simultaneous equations using an 

iterative process is the most computationally expensive stage of the Policy 

Improvement algorithm. Initializing the cost matrix to the holding cost of 

the current state, this set of equations takes approximately 180 iterations to 

converge to within an accuracy of 0.01 in the first Policy Improvement iter

ation. This reduces upon each iteration. The Policy Improvement algorithm 

converges to the optimal policy within approximately 6 iterations. 
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3.6 Conclusions 

The problem of interest examined in the previous chapter 2 has been gener

alized to consider more than two job types and clusters. In this section, the 

optimal reconfiguration policy for a general number of server types, J!. has 

been computed and tabulated, subject to complexity constraints imposed by 

the size of the state space and the ranges of parameter values. The heuris

tic from section 2.5 has been extended. This is easily implement able and 

practical to use. Once again, encouraging results suggest that its perfor

mance compares quite well with that of the optimal policy. These results are 

presented in figures 3.2 and 3.3. 

The experiments reported here were carried out for systems with rela

tively small numbers of servers and job types. The main constraint is the 

complexity of computing the optimal policy, which is necessary as a yardstick 

of comparison with the heuristics. The latter can be implemented and/or 

simulated easily in much larger systems. 



Chapter 4 

Optimal '"free Structures 

4.1 Introduction 

The context for this chapter is again a large service provisioning s)'stem such 

as the Computing Grid: a network consisting of large clusters of resources 

(servers) offering services to a large community of users, Incoming service 

requests (jobs) do not have to be executed on a particular server but may be 

sent anywhere; their destination is transparent to the user. 

Within such provision of services, it is important that the clusters and 

their controllers are configured in an efficient manner. In the previous chapter 

the dynamic allocation of resources to incoming job types was discussed, 

Now for consideration is the underlying structure of these compute resources, 

regardless of the type of service or job offered. 

Conceptually, the nodes in the network are divided into masters. who 

make routing decisions, and servers, who execute jobs. In practice, a mas

ter and a server may be co-located on one processor; in that case some of 

51 
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the latter's processing capacity is used for purposes of control and some for 

serving jobs. 

A simple and convenient network structure that accommodates these dif

ferent types of nodes is the tree. The non-leaf nodes are masters who distrib

ute jobs among nodes under their control; the leaf nodes are servers. Other, 

more complex organizations are possible, but attention shall be restricted to 

trees for reasons of clarity and tractability. 

There are performance trade-offs between different tree configurations. 

They arise from the fact that the average processing time of a job at a 

master node is roughly proportional to the number of nodes under the latter's 

immediate control. Those nodes (they may be either masters or servers), will 

be referred to as the master's dependents. That proportionality is due to the 

nature of the processing carried out by a master: it must check the state 

of its dependents (an example of a query mechanism can be found in the 

Condor system [44], [28]). Hence, the 'flatter' the tree, the more dependents 

a master node has, the longer its average processing times. ~odes with many 

dependents can easily become bottlenecks when demand is high; their queues 

grow long, leading to large response times. 

The bottleneck problem can be alleviated or avoided by making the tree 

'taller', introducing more master nodes, with fewer dependents per master. 

However, the consequent speeding up of processing times must then be set 

against an increase in the number of times a job has to be processed, plus 

additional transfer delays. 

The evaluation of the above trade-offs is the subject of this chapter. The 

'dual' problem will be focussed upon: given the overall rate of demand, how 
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should the network be configured in order to optimize its performance? This 

problem does not appear to have been studied before. It is interesting because 

recent developments in Grid technology have made it possible to reconfigure 

the underlying tree structure dynamically. To simplify the analysis, it shall 

be assumed that the necessity for reconfiguration occurs rarely. That is, the 

load remains reasonably constant for a sufficiently long period to allow the 

system to reach steady-state. Also, since reconfigurations are rare, their cost 

will be ignored. 

The performance measure used as an optimization criterion is the average 

response time, i.e. the interval between the arrival of a job into the system 

and the completion of its service. That interval may include waiting and 

processing at one or more master nodes, transfer delays between nodes, and 

waiting and processing at a server node. Different policies for distributing 

jobs among the nodes in the tree (both master and server) will be examined. 

For some of them, the analytical evaluation of average response times is 

approximate. 

4.2 Two-Level Tree Structures 

4.2.1 The Model 

The preliminary model considers i levels of master nodes (i E (1, 2) ). A fiat 

structure where i = 1 is illustrated in figure 4.1. It is assumed that the single 

master node on level 1 will take a longer time to make a routing decision the 

greater the number of dependent service nodes beneath it. Indeed, the time 
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for this decision to be made has been modelled as proportional to the number 

of dependent nodes. Hence, this flat structure may often not be optimal: the 

master node may become over-loaded if this decision making process is too 

slow. Introducing a further tier of nodes helps to relieve this problem: now 

each master node has fewer dependents between which to choose. A tree 

structure to be optimized in this section with i = 2 is illustrated in figure 

4.2. 

A + 
U 

level 1 0 -.£l. 
J-ll - N master node 

u 

999 N service nodes 

V V V V V 

Figure 4.1: Flat structure 

A + 
U 

level 1 0 .£l. 
J-ll = k master node 

A 
k 

level 2 k master nodes 

k sub-clusters of service nodes 

It nodes It nodes It nodes 

Figure 4.2: Service cluster split into k sub-clusters 
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Jobs arrive according to an independent Poisson process with rate A. 

Their required service time is distributed exponentially with mean 1/v. The 

average service rate J1i of a master at a given node of the tree at level i is 

inversely proportional to the number of dependents of that node, i.e. 

c; 
J1i = - , 

n 
(4.1) 

where Ci is a constant of proportionality at level i and n is the number of 

dependents. It is also assumed that these constants of proportionality may 

be different at different levels of the tree. This is particularly likely for a large 

scale Computing Grid, across which the querying of geographically distant 

nodes at the master level will take more time on average than a cluster 

manager querying its local service nodes. In addition, independent transfer 

delays 1i are assumed when sending jobs from one node to another. Jobs 

arrive into a FIFO queue in front of each master node. Following a routing 

decision, the master node distributes jobs among its dependents. Different 

policies for distributing jobs among the nodes in the tree may be considered. 

These include 

1. Each dependent has a separate queue; the master places new jobs into 

those queues in random order. 

2. Each dependent has a separate queue; the master places a new job into 

the queue which is currently shortest. 

3. Each dependent has a separate queue; the master places new jobs into 

those queues in cyclic order. 



4.2. Two-Level Tree Structures 56 

4. Dependents at a final service cluster level have a joint queue 

Simulation results have shown that, at the service cluster level. n paral

lel separate queues using policies 2 or 3 may be approximated by a single 

MIMln queue (described further in section 4.3.4) so long as n is reason

ably large. This assumption is appropriate for any realistic Grid hosting 

environment. The model will continue to be formulated using an lU/Afin 

queue at each final sub-cluster. Each master node will perform a query to 

determine where a job should be routed, the service rate of which is inversely 

proportional to the number of its dependents. If a master node is also head 

of a final sub-cluster, the job service is modelled by an MIAfln queue with 

service rate 1/. 

How the routing decision is made will affect average response times, par

ticularly for a heavily loaded system. Simulations have been used to compare 

pure random choice with that of querying the shortest queue or using a cyclic 

order. The latter two methods of decision making give very similar average 

response times, both performing significantly better than random choice. In 

this preliminary model, detailed analysis has been performed for a model 

using only random choice. The other methods are described in more detail 

in section 4.3. 

Any server may be assigned as either a master node or a service node. 

Known theoretical results [22] for average response times have been used to 

compare different configurations of the tree structure shown in figure 4.2. 

The service nodes are split into k different sub-clusters, each with its own 

master node responsible for routing an incoming job to an appropriate service 
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node in its cluster. Of interest is the particular value of k, which for a given 

number of servers N, arrival rate A, service rate v, transfer times Ti and 

constants of proportionality ~, minimizes the overall average response time 

of the system. 

4.2.2 Computation of The Optimal Tree Structure 

The average response time may be evaluated as follows. The master node 

at level i querying its dependents is an M/M/1 system, with service rate J.li 

inversely proportional to the number of dependents. The average sojourn 

time (sojourn times include waiting and processing at a particular level of 

the tree) for an M/M/1 system with offered load Pi (which is in this case 

equal to A/ J.li' i = 1,2) is given by 

(4.2) 

Each final service cluster of n nodes is modelled as an M / M / n system. 

The average sojourn time for an M / M /n system with arrival rate A and 

offered load P (which now is equal to A/V) is given by 

. _~[~ pi pn(n2-np+p)][~pi + pn ]-1 
W/mal - A f=: (j - 1)! + (n - 1)!(n - p)2 f:o' j! (n - 1)!(n - p) 

(4.3) 

A flat structure, as shown in figure 4.1, is possible so long as the master 

node is not saturated, i.e. PI < 1 where PI = A/ J.ll = AN / Cl· So, for a 

non-saturated flat structure Cl > AN is required. When this condition holds, 
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the average response time for the flat structure is given by 

(4.4) 

If the condition Cl > )"N does not hold, the master node in the flat 

structure will be over-loaded. It is now necessary to introduce a second 

network layer of k master nodes, as shown in figure 4.2, thereby reducing 

the service time for a master node to query its subset of dependents. The 

average response time will now be given by 

(4.5) 

The objective is to minimise the right-hand side of (4.5) with respect to k. 

The optimal value of k is difficult to obtain in closed form, but is easily and 

quickly computed numerically. At a service cluster, the arrival rate is )..Ik 

and the available service rate is N v I k, so the offered load is )..1 N v regardless 

of k. If the overall system is not to be saturated, first required is )..1 N v < 1. 

Then, for a given parameter set, k has upper and lower bounds so that no 

master node within the network becomes saturated. For the tree structure 

to be possible, Pi < 1 is required at each master node. At the first master 

node this gives k < cd)... At the next master node this gives k > v')"N I C2· 

Hence, possible values of k are within the range 

(4.6) 

Average response times for each value of k within this range are evaluated 
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and compared to find the minimum response time, and hence the optimal 

value for k. This gives the optimal network configuration with a single layer 

of master nodes. As A increases, the range of possible values for k given in 

(4.6) diminishes and eventually there will be no acceptable value of k. The 

system will be saturated and will not cope with the demand. At this point. 

another network layer could be introduced, and this is a topic discussed in 

section 4.3. 

4.2.3 A simple heuristic 

Although evaluating and comparing all feasible configurations of the network 

is not difficult, it may be a time-consuming task when the number of fea-

sible possibilities is large. It is therefore useful to offer a simple heuristic 

configuration rule which, although possibly sub-optimal, provides acceptable 

solutions. 

Consider the total offered load, f (k ), at the level 1 master node and one 

of the level 2 master nodes. It is given by 

(4.7) 

This total load may be minimized with respect to k to find an initial value for 

k given the number of service nodes N and the constants of proportionality 

Cl and C2, which represent the speed at which routing decisions may be made 

at different network levels. Differentiation of (4. 7) and equating with zero to 
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determine a minimum leads to 

(4.8) 

This value for k matches the numerically obtained optimal value for k 

quite closely when the overall network load is low, and may be used as a 

starting configuration of the network. The numerical calculation to obtain 

the optimal value for k described in the previous section is relatively simple 

and can be used for dynamic network configuration. 

4.2.4 Results 

Graphs of average response time as k varies clearly show the benefit of care

fully choosing the configuration of the tree. Figure 4.3 shows the effect of 

varying the number of master nodes in a system with N = 100, Cl = C2 = 100, 

Tl = 0.001, A = 8 and 1/ = 0.1. This system is reasonably heavily loaded, 

with an offered load of 0.8. A 'fiat' structure is not feasible, since Cl < AN. 

Introducing a second level of master nodes, the possible values for k are 

3 ::; k ::; 12, according to (4.6). The optimal value for k which minimises 

the average response time is k = 4. It performs considerably better than 

the 'poor' configurations with k = 3 or k = 12. The heuristic (4.8) suggests 

k = 6; its performance is only slightly worse than the optimum. 

Figures 4.4 and 4.5 compare the optimal value of k with that predicted 

by the simple heuristic given in (4.7). In figure 4.4, the load is fixed at 0.8. 

The parameters are 1/ = 0.1, Tl = 0.01, Cl = C2 = 100. The number of 

servers N increases, with the arrival rate A increasing in proportion in order 
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Figure 4.3: Performance of different configurations 
N = 200, Cl = C2 = 100, Tl = 0.001, A = 8, v = 0.1, load= 0.8 

to keep the load constant. The heuristic is observed to predict a consistently 

higher value for k than the optimum at this load. However, the difference in 

average response times between the heuristic and the optimal configurations 

is minimal. 

In figure 4.5, the number of servers is fixed at N = 100, and the load 

increases with A. Here Cl = C2 = 100, while the other parameters are the 

same as before. The heuristic yields k = 5, which is observed to under-

estimate the optimum k when the load is low, and over-estimate it when the 

load is high. Again, the difference in performance between the heuristic and 

the optimal configurations is very small. 
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4.2.5 Conclusions 

Through numerical analysis, a tree structure with a maximum of two levels 

has been decided upon which minimizes the overall average response time of 

the service provisioning system. The encouraging results of figures 4.4 and 

4.5 suggest that the benefits of dynamic reconfiguration of the network as 

load changes will reduce long term average response times and help make 

such a hosting environment commercially viable. A simple heuristic is avail

able for the configuration of a network with a given number of service nodes 

and specified decision making speeds. This heuristic gives an adequate con

figuration which may be improved upon as the network load increases. 

As network load increases further, a further tier of master nodes will be 

necessary to avoid saturation. This is a problem of considerably increased 

complexity, and is discussed in section 4.3. 

The model assumption that the routing decision made by a master node is 

one of random choice is not particularly realistic. Different models need to be 

considered in more detail, and their effect on overall average response times 

noted. It is more likely that a master node would make an intelligent decision 

based on shortest queue or round-robin. Theoretical results are available for 

the round-robin method of routing decision. This is also discussed in the 

following section 4.3. 



4.3. M-Level Tree Structures 64 

4.3 M-Level Tree Structures 

4.3.1 The Model 

The previous model from section 4.2.1 is extended to include further tiers 

of master nodes. The network again consists of a number of master nodes, 

arranged in a tree with m levels, and a total of N server nodes. At one 

extreme, when m = 1, a single master node controls all N servers, illustrated 

previously in figure 4.1. At the other extreme, the master nodes form a 

binary tree, each controlling either 2 master nodes, or 2 or 3 servers (there 

is no point having a node with just 1 dependent). 

Jobs arrive into the master node at the root of the tree according to a 

Poisson process with rate A. Whether arriving at the root, or at a master 

node at level i in the tree, jobs join an unbounded queue and are processed 

in FIFO order. The processing times for masters at level i who have nj 

dependents are distributed exponentially with mean 1/ J1.i{ni), where 

(4.9) 

Here Ci is a constant of proportionality which may depend on the level. The 

constant Ci reflects the difficulty of querying dependents at level i; also, if 

a master node is physically co-located on a processor that is used to serve 

jobs, it takes into account the fraction of processing capacity available for 

purposes of control. 

If the dependents of a master node are other masters, jobs are routed 

to one of them; the transfer from level i to level i + 1 is assumed to be an 
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independent random variable with mean Ii (i = 1. 2, .... m - 1). That is. 

the average transfer time does not depend on the number of jobs which are 

in transit. 

On the other hand, if the dependents of a master form a (presumably 

local) sub-cluster of server nodes, they share a common queue. Processing 

times at server nodes are distributed exponentially with mean 1/l/. 

An example of a tree structure with three levels of master nodes (m = 3) 

is illustrated in figure 4.6. 

level 1 
master node 
/1-1 = ~ 

~ ~ ... ~ 
level 2 0 0 o k1rnaster nodes 

£.a. 

~k2 (k,k2) 

~ ~ ~ 
k2rnaster nodes 

0 0 0 level 3 Ca 
/1-3 = (N/(k,k 2 ) 

~ ~ ~ 
/\ /\ /\ 

k2sub-clusters 0 .. 0 0 .. 0 0 .. ·0 
+ + + + + + 
v v v v v V 

(k~2) nodes (k~2) nodes (k~2) nodes 

Figure 4.6: A tree with three levels of master nodes 

The total average response time, W, in a network with m levels of master 
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nodes is given by 
m m-l 

W= LWi + L1i+Sm, (-1.10) 
i=l i=l 

where Wi, i = 1,2, ... ,m, is the average sojourn time at a master node at 

level i, 1i is the average transfer time from level i to level i + 1. and Sm is 

the average sojourn time at a service sub-cluster at level m (sojourn times 

include waiting and processing). 

Master nodes may use different routing policies to distribute jobs among 

dependent master nodes. Three such policies are now considered. 

1. Uniform random routing: each dependent master is equally likely to be 

chosen as a destination for a job, regardless of previous decisions. 

2. Shortest queue routing: send the job to the master whose queue is 

currently shortest. 

3. Cyclic routing: if there are n dependent masters and the last job was 

sent to master j, send the next job to master (j + 1) mod n. 

All three policies aim to balance the load; the arrival rate at a dependent 

master is I/nth of the arrival rate at the parent (if there are n dependents). 

However, the traffic processes are different, and those differences have per-

formance implications. 

Under policy 1, if the arrival process at the parent master is Poisson, 

then so is the arrival process at each of the dependents. Hence, all master 

nodes behave like MIMII queues, and a service sub-cluster containing n 

servers behaves like an M/Mln queue. That is the only model where the 
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total average response time in a network with m > 1 can be determined 

exactly. 

Policy 2 is more efficient, but also more difficult to implement, since 

it requires queue size information about dependents. Moreover, it is very 

difficult to analyze. Although there are some numerical algorithms that 

may be applicable when the number of dependents is small (e.g., see [3]), 

simulation appears to be the only feasible evaluation tool in a general network 

setting. 

Policy 3 is a good compromise in terms of both performance and analyt

ical tractability. Simulation results (section 4.3.4) show that, for reasonable 

loads, cyclic routing is almost as efficient as the shortest queue policy. A v

erage response times under cyclic routing can be estimated quite simply, by 

making a single approximating assumption: that the departure process from 

the parent node is Poisson (section 4.3.2). For those reasons, most of the nu

merical results in section 4.3.4 are obtained for networks with cyclic routing 

at master nodes. 

4.3.2 Computation of the Optimal Tree Structure 

Consider a master node at level i, with ni dependents and ni-l siblings, 

including itself (Le., its parent node has ni-l dependents; if i = 1, then 

ni-l = 1). Assume that the departure process from the parent node is 

Poisson (this mayor may not be an approximation). 

If the job distribution policy at the parent node is uniform random rout

ing, then this node behaves like an MIMll queue with service rate J.Li(nd, 
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given by (4.9), and arrival rate Ai, obtained from Ai - Ai-I!ni-l (with 

Al = A). The average sojourn time, Wi, is equal to 

(4.11) 

where Pi = Ad J-li(ni) is the offered load. 

The other case where a simple solution exists for Wi is when the parent 

node employs the cyclic routing policy. Then there are exactly ni-l - 1 

departures from the parent node between consecutive arrivals at this node. In 

other words, the interarrival interval is the sum of ni-l i.i.d. random variables 

distributed exponentially with parameter Ai-I. Hence, this node behaves like 

a GI/M/1 queue with an Erlang interarrival distribution (parameters Ai-l 

and ni-l), and service rate J-li(ni). The solution is (see [22]) 

(4.12) 

where (Ji is the unique root of 

Ai-l ( \ )ni
-

1 

(4.13) 

in the range 0 < (Ji < 1. This equation is solved iteratively. 

A service sub-cluster whose master node is at level m, and which consists 

of n servers, is modelled as an M / M / n queue with arrival rate Am and service 

rate v. The offered load is equal to P = Am/V. The average sojourn time, 
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8m , is given by 

S _ 1 p.1 pn{n2_np+p) 
[

n-l . ] 

m - Am ~ (j - I)! + {n - l)!{n - p)2 Po· (4.14) 

where 

[

n-l pi pn ]-1 
Po = L'1 + ( -1)'( _) . 

j=O J. n . n p 

Since the external arrival rate into the network is A, and there is a total 

of N service nodes available, each with service rate v, the condition A < S v 

is necessary for stability. However, it is not sufficient. Each master node and 

each service sub-cluster must be stable, and those conditions depend on the 

structure of the tree. For example, if a single master node controls all S 

servers, i.e. m = 1, then, in addition to the condition A < Nv, the following 

must all hold: PI = AI III = ANI C1 < 1, or A < cd N. When both inequalities 

are satisfied, the average response time is equal to 

( 4.15) 

with WI and 8 1 given by (4.11) and (4.14), respectively. 

If the condition A < cd N does not hold, a single master node will be 

overloaded, but a two-level tree may be stable. Introduce a second network 

layer of kl master nodes, assigning Nlk l servers to each master (if kl is not 

a factor of N, make the sub-clusters as equal as possible). The master at 

level 1 is now stable if A < cd kb while those at level 2 (assuming that the 

load is split equally) are stable if AI kl < c2kd N. Thus, the feasible 2-level 



4.3. M-Level Tree Structures 70 

network configurations are the ones that satisfy 

( 4.16) 

Within that range, some configurations are better than others. The av-

erage response time is given by 

( 4.17) 

where WI, W2 , and 82 are obtained from (4.11), (4.12) (assuming cyclic 

routing), and{4.14), respectively, with ni = kl and n2 = N/k1. This metric 

can be minimized with respect to ki . The optimal value of kl is easily and 

quickly computed numerically. Some results are shown in section 4.3.4. 

Note that, as long as both the job stream and the server nodes are split 

equally among the sub-clusters, the traffic intensity at each sub-cluster is 

)../(Nv) , regardless of k1 • This is true also for trees with multiple levels of 

master nodes. 

As ).. increases, the range of possible values for kl given in (4.16) dimin

ishes and eventually there will be no acceptable value of k1. The 2-level 

network will be saturated but, as long as the server capacity is sufficient 

().. < N v), a configuration with 3 levels of master nodes may be able to 

cope with the demand. Assign kl nodes to level 2; each of them controls k2 

masters at level 3, each of which is in turn responsible for N/(k1k2 ) servers. 

The requirement that all master nodes are stable restricts the possible 

configurations. For each value of ki in the range 2 :s; kl < cd).., k2 must 
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satisfy the inequalities 

( 4.18) 

Again, for each feasible pair (kl' k2 ), one can evaluate the corresponding 

average response time 

(4.19) 

These values are compared to find the minimum response time, and hence 

the optimal network configuration for m = 3. 

This process can be generalized for the computation of optimal values 

for kl' k2, ... ,km - 1 for a system with m levels of master nodes. The feasible 

values for kl are 2 ~ kl < cd A, and those for kr (r = 2,3, ... , m - 1) must 

satisfy the inequalities 

(4.20) 

4.3.3 A simple heuristic 

The number of feasible configurations of an m-level network is likely to be 

large. Once again, evaluating and comparing the average response times for 

each of these configurations will be time-consuming, and hence the simple 

heuristic for networks with m = 2 from section 4.2.3 may be extended. 

The idea is to (a) restrict consideration to trees where all master node 

levels except the last are binary, and (b) choose the configuration of the last 
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master node level so as to minimize the total load on the master nodes yisited 

by a job traversing the tree. 

Step (a) consists in finding the smallest m > 1, such that ~ = 2 for 

r < m - 1 and there are integers that satisfy (4.20) for r = m - l. 

Consider, for example, the case where the range (4.16) is non-empty, i.e. 

m = 2 (the set of binary levels is empty). Now, for a given kl' the total load, 

p{k1), of the level 1 master and a level 2 master is equal to 

(4.21) 

This total load may be minimized with respect to kl (the load at the service 

sub-cluster is not included because it does not depend on kl)' Differentiating 

(4.21) and equating to zero yields 

(4.22) 

Choosing the nearest integer to the right-hand side of (4.22) as the value 

for kl matches the numerically obtained optimum quite closely, particularly 

when the network is heavily loaded. 

If step (a) produces m > 2, then the master nodes in levels 1, ... , m - 1 

form a binary tree, while each node in level m -1 has km - 1 dependents. The 

load of nodes at levels 1, ... ,m - 2 does not depend on km - 1 · The total load 

of a level m - 1 master and a level m master, p{km-d, is given by: 

(4.23) 
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Minimizing his total load with respect to km - 1 leads to 

k _ ~ Nem-l 
m-l - 2m 3 . -em 

(-1.24) 

An attractive feature of this heuristic is that it does not depend on the ar

rival rate A; the configuration is determined only by the master node process

ing parameters Ci. The trees constructed by the heuristic contain at least 2 

levels of master nodes. The optimal configuration may not belong to that 

class, but the experiments in the next section show that the loss in perfor

mance incurred by using the heuristic is not large. 

4.3.4 Results 

Before proceeding with the numerical comparison of different configurations, 

the quality of the approximations employed is evaluated by simulation. The 

first experiment compares three routing policies among master nodes: uni

form random, shortest queue and cyclic. The simulated configuration consists 

of 2 levels of master nodes (m = 2), with 3 nodes at level 2, each controlling 

a sub-cluster of 32 servers (a total of 100 nodes). The network parameters 

are Cl = 50, C2 = 100, Tl = 0.001 and v = 0.05. 

The simulation results are shown in figure 4.7. The performance measure, 

i.e. the average response time of a job, is plotted against the total offered 

load, A/(Nv); the latter is varied by increasing A. The figure confirms that 

both the shortest queue and cyclic policies perform significantly better than 

random routing; moreover, the difference between the former two is small 

under normal loading conditions (the two graphs begin to diverge only when 
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the offered load exceeds 0.9). Hence, the more easily implement able and 

analyzable cyclic routing policy may be used as a reasonable approximation 

to the shortest queue policy. 
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Figure 4.7: Comparison of different routing policies: m = 2 
N = 100, kl = 3, Cl = 50, C2 = 100, Tl = 0.001, v = 0.05 

0.95 

The next two experiments evaluate the approximation introduced by as

suming that, under the cyclic routing policy, the departures from each master 

node are Poisson. Figure 4.8 compares the simulated total average response 

times with those computed using the GI/M/1 model (with Erlang interarrival 

intervals) for master nodes at levels higher than 1, and the M/~I/n model at 

service sub-clusters. The network parameters are m = 2, N = 100, Ci = 100, 

Ii = 0.001 (i = 1,2) and v = 0.1. There are kl = 5 master nodes at level 2 

and hence each service sub-cluster contains 20 servers. The average response 

times are plotted against the offered load, A/(.r,{v), as A increases. 
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A similar experiment is illustrated in Figure 4.9 for a network with three 

levels and twice as many service nodes: m = 3, N = 200, Ci = 100, 1j = 

0.001, l/ = 0.1 There are 2 master nodes at level 2 and 5 master nodes at 

level 3. Again, each service sub-cluster contains 20 servers. 

Both sets of results demonstrate good agreement between the simulated 

and approximated performance measures, except in very heavily loaded sys-

terns. It is to be expected that each additional level of master nodes would 

make the approximation less accurate in heavy traffic. These results indi-

cate that the approximations tend to be pessimistic; they overestimate the 

average response times. This is not really surprising, since the cyclic routing 

policy tends to make both the arrival and the departure processes more reg

ular (in the sense of having a lower variance) than the Poisson process with 

the same mean. Hence, the assumption that the departure process is Poisson 
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From now on, the numerical approximation of the cyclic routing policy 

is used to evaluate and compare the performance of different network con-

figurations, and to examine the quality of the simple configuration heuristic. 

The next set of experiments concern a system with 3 levels of master nodes 

(m = 3) as shown in figure 4.6. Both kl and k2 may be varied in order to 

minimize the average response time. The number of service nodes is fixed, 

N = 200, as is their service rate, 1I = 0.1; the average transfer times between 

levels are equal, Tl = T2 = 0.001. 

Figure 4.10 shows the average response times for different configurations, 

when the master node processing parameters are the same at all levels, Ci = 

100 (i = 1,2,3). The arrival rate is >. = 16, i.e. the offered load is 0.8. 

A single level structure (m = 1) is not feasible, since Cl < >'N. The only 
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feasible 2-level tree is the one with 6 master nodes at level 2. as indicated by 

(4.16). However, the performance of that tree is worse than several of the 

configurations for m = 3. The optimal 3-level configuration is (k1 = 2, k2 = 

4), although the configurations (k1 = 3, k2 = 3) and (k1 = 2. k2 = 5) are 

almost as good. The tree suggested by the heuristic (4.24) is the latter one: 

(k1 = 2, k2 = 5). 
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Figure 4.10: Performance of different configurations: m = 3 
N = 200, Ci = 100, T = 0.001, .x = 16, v = 0.1 
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In figure 4.11, processing at levels 1 and 2 is faster, with Cl = C2 = 

200, while that at level 3 is slower, C3 = 50. The arrival rate is lower, 

.x = 12, giving an offered load of 60%. This system has a wider range of 

possible configurations. Again, an m = 1 structure is not feasible, but there 

are several 2-level configurations that are allowed by (4.16): 7::S kl ::s 16. 

However, once again it is best is to add another level of master nodes and 
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consider 3-level trees. The optimal configuration is (k1 = 2, k2 = 7). There 

are other trees, e.g. (k1 = 3, k2 = 4,5,6) or (k1 = 2, k2 = 6,8,9.10). which 

are almost as good. The heuristic (4.24) produces one of the latter: (k1 = 

2,k2=9). 
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Figure 4.11: Performance of different configurations: m = 3 
N = 200, Cl = C2 = 200, C3 = 50, T = 0.001. ). = 12, ZI = 0.1 
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Thus, both examples illustrated in figures 4.10 and 4.11 show that, even 

though feasible network configurations exist with only 2 levels of master 

nodes, better performance may be obtained by 3-level trees. 

In figure 4.12, processing at levels 1 and 2 is slower, with Cl = C2 = 100, 

while that at level 3 is significantly faster, C3 = 1000. This could represent a 

wide network of routers forwarding jobs to a local cluster for fast processing. 

The arrival rate is again). = 12, giving an offered load of 60%. This system 

also has a number of possible configurations, although the range is now not 
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so wide as for the system shown in figure 4.11. An m = 1 structure is still not 

feasible. Possible 2-level configurations allowed by (4.16) are: 2 :::; kl :::; 6. 

However, once again it is best is to add another level of master nodes and 

consider 3-level trees, even when the routing decisions at levels 1 and 2 are 

comparatively slow. The optimal configuration is (k1 = 2, k2 = 3). There are 

a few trees, e.g. (k1 = 2, k2 = 2,4) or (k1 = 3, k2 = 2,3), which are almost 

as good. The heuristic (4.24) produces one of the latter: (k1 = 2, k2 = 2). 

Since the heuristic allocation provided by (4.24) does not depend on the 

offered load, it is interesting to examine whether that allocation remains 

good at different loads. This is done in table 4.3.4, where the heuristic and 

optimal allocations are compared at offered loads varying from 0.2 to 0.9. 

The network has 200 service nodes and 3 levels of master nodes, with slower 

processing at levels 1 and 2 (Cl = C2 = 50), and faster processing at level 3 
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(C3 = 100). 

In this example, the heuristic configuration not only performs well over 

a wide range of loads; it in fact becomes optimal when the load reaches or 

exceeds 60%. 

load 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
kl 3 3 3 3 2 2 2 2 

optimal 
k2 5 5 5 5 4 4 4 4 

kl 2 2 2 2 2 2 2 2 
heuristic 

k2 4 4 4 4 4 4 4 4 

Table 4.1: Optimal and heuristic configurations: m = 3, S = 200 
Cl = C2 = 50, C3 = 100, Ti = 0.001, 1/ = 0.1 

4.3.5 Conclusions 

This chapter has demonstrated that the topological structure of a service 

network has a significant effect on its performance. For a given set of pa-

rameters, the optimal structure can be obtained numerically, using existing 

analytical results which apply to either random or cyclic routing policies. A 

simple heuristic which avoids the necessity of searching through all feasible 

configurations has been derived. 



Chapter 5 

Breakdowns and Repairs 

5 .1 Introduction 

In service provisioning systems such as a Computing Grid. t he quality of 

service, and the cost of providing it, is important both to the users and 

to the provider. A problem of particular interest is the effect that serwr 

breakdowns and other outages have on the performance of the system. That 

problem is the topic of this chapter. 

Now under consideration is a model where demands, or jobs, arflW III 

a Poisson stream into a common queue and are served by a number, .Y. of 

servers in parallel. Each server goes through alternating periods of being 

operative and inoperative, independently of the others; the events causing a 

change of server state will be referred to as breakdowns and repairs, although 

in practice they may have other causes (e.g., scheduled maintenance, or tasks 

of higher priority). A system of this type is illustrated in figure ,J,l. 

Among the questions one may wish to ask in this context are: 

81 
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jobs arrive--+- IIIII 
wait for service 

N servers 

0-
0-
§: 

0-
Figure 5.1: A multi-server system with breakdowns and repairs 
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1. How does the system perform? A common performance measure is 

the average response time or, equivalently, the average number of jobs 

present. 

2. What is the minimum number of servers that would ensure a desired 

level of performance? 

3. If there is a trade-off between the cost of making jobs wait and that of 

providing servers, what is the optimal number of servers that should 

be used? 

The answers to all those questions depend not only on rates of demand 

and service, but also on the nature of the operative and inoperative intervals. 

Moreover, that 'nature' encompasses not only the means, but also the distrib-

utions of those random variables. Exactly how one should model breakdowns 

and repairs is a point that has not received much attention in the literature. 

There are several papers on the subject of multi-server queues with service 

interruptions (e.g., see [5, 9, 36, 38, 46]). However, they all make the as-

sumption that both the operative and inoperative intervals are distributed 
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exponentially. The validity of that assumption has not been investigated. 

The contribution of this research is two-fold: First, a large real-life data 

set is analyzed containing information about server breakdowns and repairs; 

this data has been collected and made available to us by Sun 1Iicrosystems. 

The results indicate that the distribution of repair times is reasonably close 

to an exponential, but that of the operative intervals is not. A good approx

imation for the latter is the hyperexponential distribution. 

Second, how to obtain an exact solution for a model with non-exponentially 

distributed operative and/or inoperative intervals is demonstrated. This is 

done by reducing the problem to a Markov-modulated queue (with a suitably 

defined Markovian environment) and then solving it by spectral expansion. 

The solution can be computationally expensive and prone to numerical dif

ficulties when the number of servers (and/or the number of phases in the 

hyperexponential distributions) is large. In those cases, one can apply a sim

ple approximation whose accuracy improves when the offered load increases. 

The statistical analysis of the Sun data set, including the fitting and 

testing of hyperexponential distributions, is described in section 5.2. The 

mathematical model based on these distributions, together with its exact 

and approximate solutions, is presented in section 5.3. Some numerical re

sults illustrating the effects of different parameters on performance and costs 

are described in section 5.4. Section 5.5 contains a summary and brief con

clusions. 
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5.2 The data set 

The Sun Microsystems data set contains 140,000 rows of data, each row 

giving details of a particular event, corresponding to a server breakdown. 

Of immediate interest were the fields representing the time a server was 

inoperative, referred to as Outage Duration, and the time between a server 

breakdown and its next breakdown, referred to as Time Between Events. The 

lengths of operative periods can then be calculated as illustrated in figure 

5.2. 

Event n Event n+l 

Time Between Events I 
I I 
j' ., 

I I 
: Operative Period 

I' "I 

Outage Duration 

I 
II 

...----- available 

unavailable 

Figure 5.2: Alternating Periods of availability and unavailability 

A small proportion of the data set (less than 4%) contained anomalous 

entries (Time Between Events was smaller than the Outage Duration). This 

data was ignored. Empirical probability density functions (histograms) were 

generated for both the operative and inoperative periods, by grouping ob

served period lengths into appropriate intervals. 

Consider the operative periods. If the ith observation interval has a mid-
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point Xi, and Ii of the observed operative periods fall into that interval. then 

the corresponding empirical density, di , is obtained by assuming that the 

operative periods take value Xi with probability Pi = Idn. where n is the 

total number of observations; then di = pd8i , where 8i is the length of the 

ith interval. A similar procedure is followed for the inoperative periods. 

The empirical densities of the operative and inoperative periods are shown 

in figures 5.3 and 5.5, respectively (together with the fitted hypothetical 

distributions, to be described below). In each case, the observed range of 

values was divided into intervals of equal length. The time unit has been 

deliberately omitted, for reasons of confidentiality. 

The two empirical densities were used to derive estimates for the mo

ments of the corresponding distributions. The kth estimated moment, Ifh, is 

calculated as 

(5.1) 

where the sum extends over all empirical values. 

The estimated variance, V, and coefficient of variation, (;2, are given by 

(5.2) 

From the empirical densities one can also obtain the empirical cumulative 

distribution functions, 

F(xJ = LPj. (5.3) 
j=l 

The null hypothesis that an empirical cumulative distribution function, F(x), 

is consistent with a given hypothetical one, F{x), can be tested by means 
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of the Kolmogorov-Smirnov goodness-oj-fit test, [21]. The hypothesis is ac

cepted if the value of the statistic D, calculated as 

(5.4) 

is sufficiently small, for a given level of significance; otherwise it is rejected 

(the higher the level of significance, the more difficult it is to pass the test). 

On the basis of the Sun data set, the hypothesis that the server operative 

periods are distributed exponentially with a mean obtained from the sample, 

is strongly rejected. The calculated value of the Kolmogorov-Smirnov sta

tistic, using 50 points Xi, was D = 0.4742; it would have had to have been 

less than 0.19 to pass the test at 5% significance, and less than 0.23 at 1% 

significance. 

The inoperative intervals are more likely to be exponentially distributed: 

that hypothesis also fails the Kolmogorov-Smirnov test, but not so badly. 

Moreover, it shall be seen later that an exponential distribution with a 

slightly different mean passes the test quite comfortably. 

The next task is to find hypothetical distributions that do agree with the 

empirical densities for the operative and inoperative periods. An indication 

of where to look is provided by the values of the estimated coefficients of 

variation, which are both greater than 1 (62 = 4.6 for the operative periods). 

This suggests that the family of hyperexponential distributions, all of which 

have coefficients of variation greater than 1, may be a good place to start. 

An n-phase hyperexponential density function is a linear combination of n 
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exponential densities with different parameters; it has the form 

n n 

f(x) = L aj~je-f.iX aj, ~j > 0 L aj = 1 . (5.5) 
j=l j=l 

Such a density is defined by 2n -1 parameters: n 'rates' ~j and n -1 . weights ' 

aj, (the last weight is given by the normalizing condition in (5.5)). Hence, an 

n-phase hyperexponential distribution is completely determined by its first 

2n - 1 moments. Those moments are expressed in terms of the parameters 

as follows: 

~k!a. 
Mk = L...J c~ J ; k = 1,2, ... 2n - 1 . 

j=l r."J 

(5.6) 

Thus, a hyperexponential distribution can be fitted to a given empirical 

density by first choosing the number of phases, n, and then determining the 

parameters aj and ~j so that 

k = 1, 2, ... 2n - 1 . (5.7) 

The above procedure was carried out for the operative periods, with n = 

3. The empirical density provided the first 5 estimated moments, M1 , •• • , M5 • 

However, it turned out that the task of solving (5.7) is computationally 

difficult, because those equations are highly non-linear. Iterative methods 

such as Newton or Gauss-Seidel [39] failed to converge. Instead, the weights 

aj were eliminated explicitly from the first two equations in (5.7), and a 
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brute force search was used to find the rates ~j that minimize 

(5.8) 

It was observed that two of the rates thus calculated were almost equal. 

In other words, a 2-phase hyperexponential distribution fits the data as well 

as a 3-phase one (re-running the Gauss-Seidel iterations for n = 2 resulted 

in convergence). 

The 2-phase hyperexponential distribution that provides the best fit to 

the empirical density has parameters Ql = 0.7246, Q2 = 0.2754, ~1 = 0.1663 

and 6 = 0.0091. That is, approximately 72% of the operative periods are 

distributed exponentially with mean 6, and 28% of them are distributed 

exponentially with mean 110. That density is shown together with the em

pirical one in figure 5.3. Also illustrated is the density of an exponential 

distribution with the same mean (Le. mean 1/~ = Qd~1 + Q2/6 = 34.62) . 

The exponential distribution is observed to be a poor fit, and indeed fails the 

Kolmogorov-Smirnov goodness-of-fit test badly at the 5% significance level. 

The density of the hyperexponential distribution passes the Kolmogorov

Smirnov goodness-of-fit test at level of significance 5%, and also at 10% (the 

calculated statistic with 50 points Xi has value D = 0.1412. whereas the 

5% and 10% critical values are 0.19 and 0.17 respectively). The cumulative 

distributions used for this latter Kolmogorov-Smirnov test may be seen in 

figure 5.4. 

Similarly, for the inoperative periods, a best-fit 2-phase hyperexponential 

distribution was found with weights /31 = 0.9303 and i32 = 0.0697, and rates 
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Figure 5.3: Densities of operative periods (0 - 250) 
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Figure 5.4: Cumulative distribution of operative periods 
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250 

700 

"'1 = 25.0043 and "'2 = 1.6346. This represents a mixture where approx

imately 93% of the inoperative periods are distributed exponentially with 
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mean 0.04 and 7% are distributed exponentially with mean 0.61. The fitted 

density, together with the empirical one, is shown in figure 5.5. It passes the 

Kolmogorov-Smirnov test at both the 5% and the 10% level of significance 

(the calculated statistic with 40 points Xi is D = 0.1832; the 5% and 10% 

critical values are 0.21 and 0.19 respectively). The cumulative distributions 

used for this Kolmogorov-Smirnov test may be seen in figure 5.6. 

In view of the fact that the second component of the fitted hyperexponen

tial distribution contributes very little to the mixture, it is not unreasonable 

to model the inoperative periods as being distributed exponentially. Indeed, 

the first component on its own, i.e. the exponential distribution with mean 

0.04, passes the Kolmogorov-Smirnov test at level 5% (fails, but not badly, 

at 10%). 

A more detailed examination of the Sun data set revealed certain non

random phenomena, e.g. spikes due to regular weekend maintenance outages. 

A second analysis of the data was carried out, with these regularities removed. 

It turned out that the same conclusions were reached regarding the nature 

of the underlying distributions. 

5.3 The model and its solution 

The preceding section offers evidence that, in a realistic model of a multi

server system with breakdowns and repairs, it is appropriate to assume that 

the distribution of the operative periods is hyperexponential, with n phases 

and suitably chosen weight and rate parameters Q:j and ~j (j = 1,2, ... , n). 

Similarly, the inoperative periods can be assumed to have a hyperexponential 
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distribution with m phases and weight and rate parameters 3k and 'Tlk (k = 

1,2, ... ,m). 

Assume further that jobs arrive according to a Poisson process with rate 

,x, and their required service times are distributed exponentially with mean 

1/ f..l. The queue is unbounded. All arrival, service, breakdown and repair 

events are mutually independent. An operative server cannot be idle if there 

are jobs waiting to be served. A job whose service is interrupted by a server 

breakdown is returned to the front of the queue. \Vhen an operative server 

becomes available, the service is resumed from the point of interruption, 

without any switching overheads. 

The above assumptions ensure that the system is modelled by a ~Iarkov 

process whose state at any moment in time is described by a triple S = 

(X, Y, Z). Here, X = (Xl, X2,' .. ,xn ) is a vector whose ph element, Xl' 

indicates how many servers are in phase j of an operative period; the number 

of operative servers is X = Xl + X2 + ... + Xn. Similarly, Y is a vector whose 

kth element, Yk. indicates how many servers are in phase k of an inoperative 

period; the number of inoperative servers is Y = YI + Y2 + ... + Yrn' Finally, 

Z is the number of jobs present. The valid states must of course satisfy 

X + Y = N, where N is the total number of servers. 

The instantaneous transition rates from state S (X, Y, Z) to state 
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S' = (X', Y', Z') are equal to 

if Z' = Z + 1 

min(Z, x)J-L if Z' = Z - 1 

r(S, S') = Xj€j(3k if ' Xj = Xj - L 14 = Yk + 1 , (5.9) 

YkTJkGj if xj = Xj + 1, 14 = Yk - 1 

0 otherwise 

where all state variables that have not been mentioned have the same values 

in Sand S'. 

The stability condition for this queue has a simple form. Denote the 

average lengths of the operative and inoperative periods by 1/€ and l/TJ, 

respectively. They are given by 

(5.10) 

The long-term fraction of time that a given server is operative is equal to 

TJ / (€ + TJ)· Hence, the steady state average number of operative servers is 

N TJ / (€ + TJ); this is independent of the queue of jobs. That queue is stable iff 

the offered load is less than the average number of operative servers, i.e. 

A NTJ -<--. 
J-L €+TJ 

(5.11) 

Note that this condition depends only on the averages of the operative and 

inoperative periods; not on their distribution. However, the queue size dis-

tribution, and hence the measures of performance, depend very much on the 
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distributions of operative and inoperative periods. Computing those perfor

mance measures is the next task. 

5.3.1 Spectral expansion solution 

The model defined here is a special case of a Markov-modulated queue, i.e., 

a queue whose arrival and/or service parameters depend on the state of 

a Markovian environment. In this case, the state of the environment is 

described by the vectors X and Y, specifying the numbers of servers in each 

of the possible operative/inoperative states. The environment affects the 

queue via the number of operative servers, which determines the departure 

rate (second line in the right-hand side of (5.9)). 

Markov-modulated queues can be solved by the method of 'Spectral Ex-

pansion' (e.g., see [37]). 

The number, s, of different environment states, is equal to the number of 

ways that the integer N can be partitioned into a sum of n + m components. 

This is equivalent to the number of ways that N indistinguishable balls may 

be allocated into n + m distinguishable boxes [45]. That number is 

s= (N+n+m-1) . 
n+m-1 

(5.12) 

One can therefore enumerate the states of the environment using a single 

integer, i, called 'operational mode': i = 0,1, ... ,s - 1. For example, in a 

system where N = 2, n = 2 and m = 1, the operational mode i may take 6 
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different values: 

i=O: 2 inoperative servers 

i=l: 1 operative in phase 1 and 1 inoperative 

i=2: 1 operative in phase 2 and 1 inoperative 

i=3: 2 operative in phase 1 

i=4: 1 operative in phase 1 and 1 operative in phase 2 

i=5: 2 operative in phase 2 

95 

The system is then said to be in state (i, j) if the operational mode is i 

and there are j jobs present (i = 0, 1, ... , s - 1; j = 0,1, ... ). The transition 

rates (5.9) can be expressed in terms of the following s x s matrices: 

(a) Matrix A contains transition rates that change the operative mode but 

not the number of jobs: from state (i,j) to state (k,j) (0 ~ i. k < s, i :f k). 

The main diagonal of A is zero by definition. In the above example, with 

s = 6, the matrix A has the form 

0 2",0:1 2",0:2 0 0 0 

6 0 0 ",0:1 ",0:2 0 

6 0 0 
A= 

0 ",0:1 ",0:2 

0 26 0 0 0 0 

0 6 6 0 0 0 

0 0 26 0 0 0 

(b) Matrix B contains transitions that increase the number of jobs in the 

system by 1: from state (i,j) to state (k,j + 1). Since in this model arrivals 
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do not change the operational mode, B is diagonal: 

B =AI, 

where I is the identity matrix of order s. 

(c) Matrices Cj contain transitions that decrease the number of jobs in 

the system by 1: from state (i,j) to state (k,j -1). Since departures do not 

change the operational mode, Cj is diagonal. For the same example, Cj has 

the form 

/-lo,j 

/-ll,j 

/-ll,j 

/-l2,j 

/-l2,j 

/-l2,j 

where /-li,j = min(i, j)/-l; Note that these matrices depend on j if j < N, but 

cease to do so when j 2: N; then the index j may be dropped and Cj = C. 

Also, Co = 0 by definition. 

Let Pi,j be the steady state probability that the system is in state (i,j). 

Define also the row vectors of probabilities corresponding to states with j 

jobs in the system: 

(5.13) 

Then, the balance equations for the equilibrium probabilities can be written 
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as: 

where DA is the diagonal matrix whose i th diagonal element is equal to the 

i th row sum of A. 

When j > N, the matrices in equations (5.14) do not depend on j. The 

equations can be re-written in the form of a homogeneous vector difference 

equation of order 2: 

where Qo = B, Ql = A-DA_B-C and Q2 = C. Associated with equation 

(5.15) is the so-called 'characteristic matrix polynomial', Q{z), defined as 

(5.16) 

Let Zk be the 'generalized eigenvalues', of Q(z) in the interior of the unit 

disk, and d be their number. Denote by Uk the corresponding 'generalized 

left eigenvectors'. These eigenvalues and eigenvectors satisfy 

det[Q(Zk)] = 0 IZkl < 1 k = 1,2, ... ,d , (5.17) 

where det[Q(z)] is the determinant of Q(z). Also, 

(5.18) 
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In what follows, the qualification generalized will be omitted. 

The theory of spectral expansion shows that, when the queue is ergodic, 

the number of eigenvalues in the interior of the unit disk is equal to the 

number of states of the Markovian environment. In the case here described. 

d = 8. Moreover, experience indicates that they are simple. Then, the 

solution of (5.15) has the form 

8 

Vj = L ')'kUkZi ; j = N, N + 1, ... , (5.19) 
k=l 

where ')'1, ... , ')'8 are some (possibly complex) constants. Those coefficients, 

and the 'boundary' probabilities, Pi,j, for j < N, are determined from the 

balance equations (5.14), for j = 0,1, ... , N. This is a set of (N + 1)8 linear 

equations with N 8 unknown probabilities (the vectors Vj for j = 0,1, .... N-

1), plus the 8 constants ')'k. However, only (N + 1)8 - 1 of these equations 

are linearly independent, since the generator matrix of the Markov process is 

singular. On the other hand, an additional independent equation is provided 

by the requirement that all probabilities must sum up to 1: 

00 

L(Vj' 1) = 1, (5.20) 
j=O 

where 1 is a column vector with 8 elements, all of which are equal to 1. 

5.3.2 A simple approximation 

The exact solution is computationally intensive, and for systems with many 

operational modes (large number of servers and/or large number of phases 
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in the hyperexponential distributions), that solution may be intractable or 

prone to numerical problems. In that case, one may accept an approximate 

solution which is numerically robust and very simple to implement [34]. 

The approximation consists of discarding all terms in the spectral expan

sion solution (5.19), except the one corresponding to the eigenvalue with the 

largest modulus, Zs (which is always real and positive). That amounts to 

assuming that the queue size is distributed geometrically with parameter zs, 

and is independent of the operational mode. The approximate solution has 

the form 
Us . 

Vj = ( ) (1 - zs)z; ; j = 0, 1, . .. . 
u s ·1 

(5.21) 

It requires the computation of only one eigenvalue and its corresponding left 

eigenvector. 

It has been shown (see [34]) that the geometric approximation is asymp

totically exact when the system is heavily loaded. 

5.4 Numerical results 

The solution described in the previous section yields performance metrics 

which may be used to answer the questions raised in the Introduction. In 

particular, the average number of jobs present in the system, L, may be com

puted and hence the average response time, W = L/)" (by Little's theorem). 

Moreover, if it costs Cl per unit time to hold a job in the system, and C2 per 

unit time to provide a server, then the steady state total cost, C, associated 
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with hosting a service cluster may be expressed as 

(5.22) 

Such a cost function implies that there is a trade-off between the 'user' costs 

(measured by cIL), which decrease with N, and the 'provider' costs (mea

sured by C2N), which increase with N. It can be expected that, for each set 

of parameters, there will be an optimal number of servers. 

Several numerical experiments were carried out in the context of a system 

where the operative periods have a 2-phase hyperexponential distribution, 

while the inoperative periods are distributed exponentially (Le., n = 2, m = 

1). That is, the queue is modulated by an environment which, when there 

are N servers, has s = (N + 2)(N + 1)/2 operational modes. In all cases, the 

average required service time is 1/ J.L = 1. 

In the first experiment, the parameters of the operative and inopera

tive periods are fixed as for the fitted distributions (QI = O. 7246, ~l = 

0.1663, Q2 = 0.2754,6 = 0.0091,17 = 25), and N is varied. 

Figure 5.7 shows how the cost function (5.22) changes with N, for three 

different values of the arrival rate. The values of the cost coefficients, Cl = 

4, C2 = 1, reflect a situation where waiting is quite strongly discouraged. 

As expected, for each >. there is an optimal value of N that minimizes C. 

Moreover, the heavier the load, the larger the optimal N (the latter is 11 for 

>. = 7, 12 for>. = 8 and 13 for>. = 8.5). 

The next experiment aims to evaluate the effect of operative period 

variability on performance. The average length of the operative period, 
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17 

1/~ = aI/6 + a2/6, is kept fixed at 34.62, but the coefficient of variation is 

varied by changing aI, a2 and 6 (the operative periods in phase 1 become 

larger and less likely). In figure 5.8, L is plotted against C2 for two different 

arrival rates, A. The average inoperative period is fixed at 1/77 = 5. The 

value C2 = 1 corresponds to the exponential distribution. The first point on 

each curve, where C2 = 0 (Le., constant operative periods) was obtained by 

simulation. 

In all cases, the average queue size grows with the coefficient of varia-

tion. The effect is weak when the system is lightly loaded, but becomes 

more pronounced as the load increases. At heavy loads, an assumption of 

exponentially distributed operative periods can seriously underestimate the 

average queue size and hence the number of servers that are required in order 

to ensure a target quality of service. 



5.4. Numerical results 

L 

400 

350 

300 

250 

200 

150 

100 ++.+ 

50 

-+ 
.++ 

+ 

A= 8.5 ~ 
A = 8.6 +: 

o ~--~--~ ____ L-__ ~ __ -L __ ~ ____ ~ __ -L __ ~ 

o 2 4 6 8 10 12 14 16 
Coefficient of variation, C2 

Figure 5.8: Average queue size against coefficient of variation 
N = 10,1] = 0.2, { = 0.0289 

18 

102 

A similar effect is displayed in figure 5.9, where the distribution of the 

operative periods is kept fixed, while the availability of the servers is re

duced by increasing the average inoperative period. The figure shows the 

average queue sizes under exponentially and hyperexponentially distributed 

operative periods with the same mean. The predictions corresponding to the 

exponential distribution are seen to become more and more over-optimistic 

as the average repair time increases. 

The accuracy of the geometric approximation (5.21) is illustrated in figure 

5.10. The average queue size is plotted against the arrival rate, for a system 

with 10 servers; the other parameters are the same as in figure 5.7. The figure 

confirms the theory that as the load increases, the approximation becomes 

more accurate. 

The last experiment demonstrates how the model and its solution can be 
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used to answer questions of the type "what is the minimum number of servers 

that would ensure a certain level of performance?". In figure 5.11, the average 

response time is plotted against the number of servers. The characteristics 

of the operative and inoperative periods are the same as in figure 5.7. Both 

the exact and the approximate solutions were evaluated. As an example of 

an application of such a figure, suppose that the objective was to ensure 

that the average response time does not exceed 1.5. The results would then 

indicate that at least 9 servers should be deployed. On this occasion the 

approximate solution underestimates the average response times; in other 

cases it overestimates them. 

When N becomes large (greater than about 24), the exact solution begins 

to warn of possible numerical problems due to ill-conditioned matrices. The 

approximation does not display such problems. 

5.5 Conclusions 

In this chapter an attempt has been made to improve the realism of models 

used to evaluate and optimize multi-server systems subject to breakdowns 

and repairs. Statistical analysis of a large volume of data concerning real 

servers has shown that their operative periods are not distributed exponen

tially, but that a good fit can be obtained with a hyperexponential distri

bution. The inoperative periods may reasonably be assumed to have an 

exponential distribution, although a hyperexponential distribution would be 

more accurate for them too. 

A model with hyperexponentially distributed operative and inoperative 
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periods has been formulated and solved exactly and approximately. These 

solutions have been used in numerical experiments, addressing a number of 

cost and quality of service problems. 



Chapter 6 

Conclusions and Future Work 

It was proposed to determine strategies for maximising efficiency in service 

provisioning systems. To approach this, a number of models have been formu

lated and analysed in order to determine and evaluate a variety of operating 

strategies for the efficient deployment of computing resources. The analysis 

outlined in this thesis has been broken down into three distinct areas. 

In chapters 2 and 3, the problem under examination was the dynamic 

reconfiguration of heterogeneous clusters of resources. The provision of a 

service involves the hosting of such clusters, and reconfiguring the resources 

to respond to changes in patterns of demand is of significant importance if 

such a provision is to be financially viable. The initial problem of interest 

outlined in chapter 2 was to limit the model to only two job types, with two 

associated clusters devoted to serving each of these job requests. The optimal 

reconfiguration policy for 2 job types ,vas computed and tabulated. However, 

this computation was subject to complexity constraints imposed by the size of 

the state space and the ranges of parameter values. So, for practical purposes. 

106 



107 

an easily implement able heuristic policy has been described. This heuristic 

performed favourably when compared to the optimal policy, as suggested by 

various experiments. 

A natural generalization of the dynamic reconfiguration problem was to 

consider more than two job types and clusters. This led to a significantly 

more complex model, which was the object of study in chapter 3. Here, 

the optimal reconfiguration policy for a general number of server types, AI, 

was now computed and tabulated. The state space increased dramatically 

in size as the number of job types increased. Hence, the computation was 

subjected to greater complexity constraints than those previously mentioned 

for the simpler model of two job types. It was now even more advantageous to 

develop a suitable heuristic which, although sub-optimal, could be calculated 

quickly and easily. The previous heuristic from section 2.5 was extended for 

use in this more general case. Once again this heuristic was shown to perform 

well in a range of experiments. 

The validity of the mathematical models here described for dynamic 

server allocation, and in particular the heuristic outlined in section 3.5, 

has been demonstrated with the development of a prototype dynamic Re

source Management System using Condor [44]. Initialised as part of the 

GridSHED project [33], this prototype is fully described in [17]. The pro

totype demonstrates the functionality of server and cluster managers, and 

shows the operation of the heuristic switching policy. The heuristic is used 

as a reconfiguration policy to make switching decisions, reallocating servers 

dynamically between pools of resources as demand changes. Experiments 

with real jobs (for example, binary programs such as simulations with asso-
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ciated data and transactions) show that, for an identical workload pattern. 

response times are lower when the prototype reconfigures the compute re

sources dynamically compared to when they are not. This is encouraging, 

supporting the theoretical simulated results which predicted the benefits of 

dynamic reconfiguration outlined in section 3.4. 

In chapter 4, the picture of the service provisioning system was broad

ened from the dynamic reconfiguration at the cluster level (where one cluster 

may offer different services, with the cluster resources being reconfigured dy

namically if necessary) to consider a larger network of resources. ); ow under 

discussion was the underlying structure of these compute resources: how 

should the network be configured in order to optimize its performance? In 

section 4.2, two level tree structures of master nodes and dependents were 

considered. Through numerical analysis, a tree structure with a maximum of 

two levels was decided upon to minimize the overall average response time. 

Numerical results were obtained for this special case, which suggested that 

the benefits of dynamic reconfiguration of the network as load changes will 

indeed reduce long term average response times and help make the service 

provisioning system more commercially viable. A simple heuristic was de

scribed for the configuration of a network with a given number of service 

nodes and specified decision making speeds. This heuristic gave an adequate 

configuration which could be improved upon as the network load increases. 

As network load increases further, a further tier of master nodes is neces

sary to avoid saturation. This led to the problem of considerably increased 

complexity which was discussed in section 4.3. Also, the model outlined in 

section 4.2 contained the assumption that the routing decision made by a 
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master node was to be one of random choice. This was not particularly real

istic. Different models needed to be considered in more detail, and their effect 

on overall average response times noted. It was considered more likely that 

a master node would make an intelligent decision based on shortest queue 

or round-robin. This was discussed in detail in section 4.3. The extended 

model demonstrated that the topological structure of a service network has 

a significant effect on its performance. The optimal structure was obtained 

numerically for a given set of parameters, using existing analytical results 

applied to either random or cyclic routing policies. Searching through all 

possible configurations of a multi level tree structure is computationally ex

pensive (certainly time consuming). Hence a simple heuristic was derived, 

extended from the heuristic for the simpler 2-level model from section 4.2. 

Once again, this heuristic was used to give a reasonable configuration for the 

network, which could be further improved as network load increases. 

In chapter 5, the cost of providing service provisioning systems was once 

again analysed, from a different perspective. An attempt was made to im

prove the realism of models used to evaluate and optimize multi-server sys

tems subject to breakdowns and repairs. A large, real-life data set was 

analysed statistically. This analysis showed that the operative periods of 

servers were not distributed exponentially, but instead a good fit was ob

tained with a hyperexponential distribution. Further analysis showed that 

the inoperative periods of the servers were more reasonably assumed to have 

an exponential distribution, although a hyperexponential distribution would 

be more accurate for them too. 

A model with hyperexponentially distributed operative and inoperative 
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periods was formulated and solved exactly and approximately. The solution 

yielded performance metrics such as the average number of jobs present or. 

equivalently, the average response time. A number of numerical experiments 

were performed using these solutions. Various service provisioning problems 

concerning quality of service and cost were addressed. These included pre

dicting the minimum number of servers that would be required to ensure a 

desired level of performance. 

6.1 Future Work 

Service provisioning systems such as the Computing Grid continue to be a 

popular research topic. In addressing the problems outlined here, an attempt 

has been made to develop a framework for strategies which should maximize 

efficiency in generic hosting environments. 

Further work in the area of dynamic reconfiguration would be certainly 

be beneficial. The models presented in chapters 2 and 3 could be generalized 

to include service times which are non-exponentially distributed and arrival 

processes which are not Poisson. For example, requests for service may be 

prove to be bursty which would be more appropriately modelled by a Markov

modulated arrival process. Or, the application of the generalised exponential 

(GE) distribution [25] to service times may prove interesting. 

The behaviour of the 'static' policy for dynamic switching outlined in 

section 3.5 could be further investigated. This policy allocates servers to 

different job types roughly in proportion to the offered load. However, as 

load increases or the number of servers increases, the performance of this 
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simple policy is such that the system quickly becomes saturated and asso

ciated holding costs are high. The reasons for this behaviour are as yet 

undetermined. 

The results presented in chapter 4 outlined strategies for finding the op

timal configuration of a large network of compute resources. A configuration 

close to optimal could be easily predicted from a simple heuristic. It was 

assumed that such reconfigurations would be performed by a system admin

istrator. The administrator would have available to him all the parameters 

of the system, such as the average time for a routing decision to be made. In 

reality, one may wish to reconfigure the network dynamically, in response to 

changing demand. Here it was assumed that such reconfigurations are rare, 

but if they are not, then their cost should be taken into account. That would 

mean solving a much more complex dynamic optimization problem; it is a 

topic of future research. An investigation into why servers may be clustered 

together in the real-world to form trees of resources would be interesting: 

clustering may be appropriate either for geographically linked resources or in

stead for resources offering particular services. Another useful generalization 

would be to consider asymmetric configurations, with different parameters 

on different branches of the tree. That would not require different analytical 

tools, but would mean a big increase in the size of the search space. 

The optimizations presented for dynamic server allocation and optimal 

tree structures in chapters 2, 3 and 4 could be combined for another inter

esting generalization. Consider a dynamically reconfigurable tree structure 

where each service cluster is itself dynamically reconfigurable. This again 

would lead to a much more complex dynamic optimization problem; even if 
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this proved to be intractable, heuristic policies may be able to minimize the 

overall response time of a widely distributed Computing Grid. 

The optimizations presented in chapters 4 and 5 could potentially be 

applied to peer-to-peer (P2P) systems. P2P architecture describes a type 

of network in which each workstation or node has equivalent capabilities 

and responsibilities, computing power being offered from individual nodes 

throughout the entire network. Such systems may combine the idle or unused 

CPU processing power and! or free disk space of many nodes in the network. 

This is a simple architecture, but it is prone to poor performance under heavy 

loads. A challenge in P2P systems (see [26]) is optimizing the performance of 

the network as the system evolves while nodes are continuously joining and 

leaving. Many P2P systems build dynamic overlay networks that attempt to 

route requests efficiently to nodes that can satisfy them. These must adapt 

in the presence of changing loads and node failure. Therefore, it would be 

interesting to investigate whether the optimizations for network configuration 

presented in chapter 4 and the inclusion of possible breakdown patterns from 

chapter 5 could be used to improve the performance of P2P systems. 

The analysis in chapter 5 of a real-life data set containing server break

down and repair information, and the model of such a large system of servers 

yielded solutions which can be used to determine the distribution of the queue 

size. Hence the average queue size and the average response time may also 

be obtained. However, they do not provide the distribution (e.g., the 90% 

percentile) of the response time. Hence, an open problem in this area con

cerns the distribution of response times. Using real-life data sets for analysis. 

that would be an interesting topic for future research. 



Bibliography 

[1] J. Bather. Decision Theory - An Introduction to Dynamic Programming 

and Sequential Decisions. Wiley, 2000. 

[2] D. Blackwell. Discounted dynamic programming. Annals of Mathemat

ical Statistics, 26:226-235, 1965. 

[3] J.P.C. Blanc. The power-series algorithm applied to the shortest-queue 

model. Operations Research, 40:157-167, 1992. 

[4] C. Buyukkoc, P. Varaiya, and J. Walrand. The cJ.l-rule revisited. Ad

vances in Applied Probability, 17:237-238, 1985. 

[5] R. Chakka and I. Mitrani. Heterogeneous multiprocessor systems with 

breakdowns: Performance and optimal repair strategies. Theoretical 

Computer Science (Special Issue on Probabilistic Modelling), 125:91-

109, 1994. 

[6] J.S. Chase, D.E. Irwin, L.E. Grit, J.D. Moore, and S.E. Sprenkle. Dy

namic virtual clusters in a grid site manager. In Proc. 12th IEEE Inter

national Symposium on High Performance Distributed Computing, 2003. 

113 



BIBLIOGRAPHY 114 

[7] C. Clark et aL Live migration of virtual machines. In Pmc. 2nd Sym

posium on Networked Systems Design and Implementation, 2005. 

[8] G. Cybenko. Dynamic load balancing for distibuted memory multi

processors. Journal of Parallel and Distributed Computing, 7:279-301, 

1989. 

[9] J.F. Dantzer, I. Mitrani, and Ph. Robert. Large scale and heavy traf

fic asymptotics for systems with unreliable servers. Queueing Systems, 

38:5-24, 2001. 

[10] E. de Souza e Silva and H.R. Gail. Performability Modelling: Techniques 

and Tools, chapter The Uniformization Method in Performability Anal~'

sis. Wiley, 2001. 

[11] M. Dobber, G. Koole, and R. van der MeL Dynamic load balancing for 

a grid application. In Proc. HiCP 2004, pages 342-352. Springer LNCS, 

2004. 

[12] M. Dobber, G. Koole, and R. van der MeL Dynamic load balancing 

experiments in a grid. In Proc. CCGrid 2005, 2005. 

[13] S.E. Dreyfus and A.M. Law. The Art and Theory of Dynamic Program

ming. Academic Press, 1977. 

[14] I. Duenyas and M.P. Van Oyen. Stochastic scheduling of parallel queues 

with set-up costs. Queueing Systems Theory and Applications, 19:421-

444, 1995. 



BIBLIOGRAPHY 115 

[15] I. Duenyas and M.P. Van Oyen. Heuristic scheduling of parallel hetero

geneous queues with set-ups. Management Science, 42:814-829, 1996. 

[16] G. Fayolle, P.J.B. King, and I. Mitrani. The solution of certain two

dimensional markov models. Advances in Applied Probability, 14:295-

308, 1982. 

[17] M. Fisher, C. Kubicek, P. McKee, I. Mitrani, J. Palmer, and R. Smith. 

Dynamic allocation of servers in a grid hosting environment. In 

R. Buyya, editor, Proc. Fifth IEEE/ACM International Workshop on 

Grid Computing (Grid 04), pages 421-426, Pittsburgh, USA, 2004. 

IEEE Computer Society. 

[18] J. Hine and T. Holzer. Task allocation in a distributed system. In Proc. 

UniForum '97: Untangling the Web, 1997. 

[19] M. Hofri and K.W. Ross. On the optimal control of two queues with 

server set-up times and its analysis. SIAM Journal of Computing, 

16:399-420, 1987. 

[20] M. Houle, A. Symvonis, and D. Wood. Dimension-exchange algorithms 

for load balancing on trees. In Proc. 9th Int. Colloquium on Structural 

Information and Communication Complexity, pages 181-196, 2002. 

[21] F.J. Massey Jr. The kolmogorov-smirnov test of goodness of fit. Journal 

of the American Statistical Association, 46:68-78, 1951. 

[22] L. Kleinrock. Queueing Systems Volume 1: Theory. \'"Hey. 1975. 



BIBLIOGRAPHY 116 

[23] G. Koole. Assigning a single server to inhomogeneous queues with 

switching costs. Theoretical Computer Science, 182:203-216, 1997. 

[24] G. Koole. Structural results for the control of queueing systems us

ing event-based dynamic programming. Queueing Systems Theory and 

Applications, 30:323-339, 1998. 

[25] D.D. Kouvatsos. Entropy maximisation and queueing network models. 

Annals of Operations Research, 48:63-126, 1994. 

[26] D. Liben-Nowell et al. Analysis of the evolution of peer-to-peer sys

tems. In PODC '02: Proceedings of the twenty-first annual symposium 

on Principles of distributed computing, pages 233-242. ACl\I Press, 2002. 

[27] W. Lin and Kumar P. R. Optimal control of a queuing system with 

two heterogeneous servers. IEEE Transactions on A utomatic Control, 

AC-29, 1984. 

[28] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle worksta

tions. In Proc. 8th International Conference of Distributed Computing 

Systems, pages 104-111, 1988. 

[29] Z. Liu, P. Nain, and D. Towsley. On optimal polling policies. Queueing 

Systems Theory and Applications, 11:59-83, 1992. 

[30] E. Manoel et al. Provisioning on demand: Introducing IBM Tivoli In

telligent ThinkDynamic Orchestrator. http://www.redbooks.ibm.com. 

2003. 



BIBLIOGRAPHY 117 

[31] Sun Microsystems. Nl grid - introducing just in time computing. 

http://wwws.sun.com/software/solutions/nl/wp-nl.pdf. 2003. 

[32] I. Mitrani. Probabilistic Modelling. Cambridge University Press, 1998. 

[33] I. Mitrani. Research proposal: e-science solutions for grid scheduling, 

hosting and environment design, 2002. School of Computing Science, 

University of Newcastle-upon-Tyne. 

[34] I. Mitrani. Approximate solutions for heavily loaded markov-modulated 

queues. Performance Evaluation, 62:117-131,2005. 

[35] I. Mitrani and B. Avi-Itzhak. A many-server queue with service inter

ruptions. Operations Research, 16:628-638, 1968. 

[36] I. Mitrani and B. Avi-Itzhak. A many-server queue with service inter

ruptions. Operations Research, 16:628-638, 1968. 

[37] I. Mitrani and R. Chakka. Spectral expansion solution for a class of 

markov models: Application and comparison with the matrix-geometric 

method. Performance Evaluation, 23:241-260, 1995. 

[38] M.F. Neuts and D.M. Lucantoni. A markovian queue with n servers 

subject to breakdowns and repairs. Management Science, 25:849-861, 

1979. 

[39] J .M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equa

tions in Several Variables. Academic Press, 1970. 

[40] J. Palmer and I. Mitrani. Optimal server allocation in reconfigurable 

clusters with multiple job types. In Proc. Computational Science and its 



BIBLIOGRAPHY 118 

Applications (ICCSA 2004), volume 3044 of Lecture Notes in Computer 

Science, pages 76-86. Springer, 2004. 

[41] J. Palmer and I. Mitrani. Optimal and heuristic policies for dynamic 

server allocation. J. Parallel Distrib. Comput., 65:1204-1211, 2005. 

[42] J. Palmer and I. Mitrani. Optimal tree structures for large service net

works. In Proc. 1st EuroNGI Conference on Next Generation Internet 

(NGI2005), Rome, Italy, 2005. IEEE Computer Society. 

[43] S. M. Ross. Introduction to Stochastic Dynamic Programming. Academic 

Press, 1983. 

[44] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. Grid 

Computing: Making The Global Infrastructure a Reality, 2003. 

[45] N. Ya. Vilenkin. Combinatorics. Academic Press, 1971. 

[46] B. Vinod and T. Altiok. Approximating unreliable queueing networks 

under the assumption of exponentiality. J. Oper. Res. Soc., 37:309-316, 

1986. 

[47] P. Whittle. Optimisation over Time: Dynamic Programming and Sto

chastic Control, volume 1,2. Wiley, 1982. 

[48] M.J. Zaki, W. Li, and S. Parthasarathy. Customized dynamic load 

balancing for a network of workstations. In Proc. 5th IEEE Int. Symp., 

pages 282-291. HDPC, 1996. 


	427193_0001
	427193_0002
	427193_0003
	427193_0004
	427193_0005
	427193_0006
	427193_0007
	427193_0008
	427193_0009
	427193_0010
	427193_0011
	427193_0012
	427193_0013
	427193_0014
	427193_0015
	427193_0016
	427193_0017
	427193_0018
	427193_0019
	427193_0020
	427193_0021
	427193_0022
	427193_0023
	427193_0024
	427193_0025
	427193_0026
	427193_0027
	427193_0028
	427193_0029
	427193_0030
	427193_0031
	427193_0032
	427193_0033
	427193_0034
	427193_0035
	427193_0036
	427193_0037
	427193_0038
	427193_0039
	427193_0040
	427193_0041
	427193_0042
	427193_0043
	427193_0044
	427193_0045
	427193_0046
	427193_0047
	427193_0048
	427193_0049
	427193_0050
	427193_0051
	427193_0052
	427193_0053
	427193_0054
	427193_0055
	427193_0056
	427193_0057
	427193_0058
	427193_0059
	427193_0060
	427193_0061
	427193_0062
	427193_0063
	427193_0064
	427193_0065
	427193_0066
	427193_0067
	427193_0068
	427193_0069
	427193_0070
	427193_0071
	427193_0072
	427193_0073
	427193_0074
	427193_0075
	427193_0076
	427193_0077
	427193_0078
	427193_0079
	427193_0080
	427193_0081
	427193_0082
	427193_0083
	427193_0084
	427193_0085
	427193_0086
	427193_0087
	427193_0088
	427193_0089
	427193_0090
	427193_0091
	427193_0092
	427193_0093
	427193_0094
	427193_0095
	427193_0096
	427193_0097
	427193_0098
	427193_0099
	427193_0100
	427193_0101
	427193_0102
	427193_0103
	427193_0104
	427193_0105
	427193_0106
	427193_0107
	427193_0108
	427193_0109
	427193_0110
	427193_0111
	427193_0112
	427193_0113
	427193_0114
	427193_0115
	427193_0116
	427193_0117
	427193_0118
	427193_0119
	427193_0120
	427193_0121
	427193_0122
	427193_0123
	427193_0124
	427193_0125
	427193_0126
	427193_0127
	427193_0128
	427193_0129
	427193_0130
	427193_0131
	427193_0132

