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ABSTRACT 

Some computational graph problems are considered in this thesis 

and algorithms for solving these problems are described ~n 'lftail. The 

problems can be divided into three main classes, namely, problems 

involving partially ordered sets, finding cycles in graphs, and 

shortest path problems. Most of the algorithms are based on recursive 

procedures using depth-first search. The efficiency of each algorithm 

is derived and it can be concluded that the majority of thp. proposed 

algorithms are either optimal and near-optimal within a constant factor. 

The efficiency of the algorithms is measured by the time and space 

requirements for their implementation. 
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INTRODUCTION AND BASIC DEFINITIONS 

Introduction 

Computational graph theory is an area of research which is 

related, .tn. both computing sc ience and mathematical graph theory. 

We can roughly characterize it as being the branch of computing science 

concerned with solving graph theoretic problems. This characterization 

explicitly has considered computational graph theory as part of computing 

science. However, it could be argued that computational graph theory 

should be considered as an area of graph theory concerned with finding 

algorithmic solutions for graph theoretic problems. Examining these two 

characterizations, we observe that a basic difference exists between them, 

namely the former mentions implicitly the ~ of the computer for solving 

the graph problems, wher'eas the latter is more concerned with problems 

of existence. This difference is fundamental. The time and space 

constraints imposed by the use of the computer dictate the general 

strategy to be adopted for the derivation of the solutions to the graph 

problems. A "pure graph theoretician", for instance, r;ould perhaps 

demonstrate little interest in the depth-first search of a· graph 

[Ta72] • On the other hand, some fundamental graph theoretic theorems 

as Kuratowski's planarity criterion [Ku30], have so far been of no 

relevant interest for solving graph problems with a computer. The 

implications of the use of the computer are reflected not only in the 

type of approach to be adopted for solving the probaems, but even in 

the selection of the actual problems of study. A pure graph theoretician 

for instance is not likely to be attracted by problems as "find the 

elementary cycles of a graph". 
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We mention the following quotation by Corneil [C074] in the 

section "History of the analysis of graph theoretical algorithms". 

"In the late 1800's and early 1900's the interest in graph 

theory was blossoming. The criterion for evaluating the algorithms 

designed in this period was whether or not they worked. Since the 

algorithms were designed for use 'by hand' very little consideration 

was given to the timing requirements; naturally, no consideration was 

given to storage requirements. With the advent of electronic computers, 

programmers were forced to look for effective algorithms to solve their 

graph theoretical problems. Due to the cost and lack of computer 

storage on early computers the main evaluation criterion was the 

storage requirement of the algorithms. As storage became cheaper and mor 

readily available, the timing of an algorithm became increasingly 

important." 

In this thesis we are concerned with the computational solutions 

of certain graph problems. In most cases, our primary preoccupation 

is the efficiency of the solutions, i.e. the time and space r~quired 

for a computer implementation of the proposed methods. We employ 

backtracking, or depth-first search, as a basic tool for solving 

most of the considered problems. Backtracking has been commonly 

used and described as an important strategy for solving some computational 

problems (Knuth fKn75] , Golomb and Baumert [GoBa65]). It is perhaps 

an old,' idea, but its full importanoo in solving computational graph 

theoretical problems was not completely realized until the beginning 

of this decade, when Hopcroft and Tarjan principally, initiated its 

extensive use in many different graph algorithms ([Ta72], [Ta73], 

[Ta74], [Ta74a], [Ta74b]![noT~73] , [HoTa74] , [HoTa73i], amonk.others). 

Clearly, the use of backtracking for solving graph problems started 
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before the 70's (Roberts and Flores [RoF166J, for instance). 

However its widespread use for computational graph problems has 

been during the last three or four years. 

The following are the problems that have been considered 

in this thesis: 

In chapter 1 we have examined the relationship between 

a certain class of ternary trees (ternary search trees), and topological 

sorting,. given a partially ordered set, 

Ternary search trees and ternary sequence search trees have been 

defined as natural extensions of the binary case. Topological sorting 

by ternary tree insertion has also been considered as a natural general-

ization of binary tree (complete) sorting. On the other hand, 

although the problem of quasi-topological sorting has been regarded as 

a generalization of the topological sorting problem, it has been 

shown to be soluble using ternary trees. 

topological searching is also presented. 

A possible meaning of 

Chapter 2 considers the problem of generating the complete 

set of solutions of the topological sorting problem, given a partially 

ordered set or given an acyclic digraph. A backtracking algorithm has 

been presented which enumerates the topological sorting ay,angemencs, 

in a time at most propqitional to the size of the digraph per arran~0~ 

mente Most of the contents of this chapter describe the results 

which appears in [KnSz74J. 

Some cycle problems are considered in chapter 3. We first 

approach the problem of finding the elementary cycles of a directed 

graph. The most successful extant algorithms enumerating the 

elementary cycles of a directed graph are known to be based on a 
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backtracking strategy. Such existing algorithms are discussed and 

a backtracking algorithm is proposed, whose time is at most 

proportional to the size of the digraph, per cycle enumerated. This 

part of section 3 appears in [SzLa75J. Next we examine the problem 

of generating a fundamental set of cycles of an undirected graph. 

This problem has been shown to be simpler than the former and in fact 

a backtracking algorithm has been presented, which generates such a set 

in a time linear in the size of the graph. However, the explicit 

output of the generated cycles requires a time at most proportional to 

the product of the number of vertices and edges of the graph. The 

problem of enumerating the elementary cycles of an undjrected graph is 

considered next. The strategy adopted was to modify the algorithm for 

obtaining the elementary cycles of a directed graph, so as to operate 

for undirected graphs. The modifications which were introduced did 

not alter the overall time bound. 

Chapter 4 examines some different shortest paths problems 

in acyclic digraphs. If a digraph has not cycles tten it is possible 

1n rome cases, to take advantage of this fact and present particular 

algorithms that are more efficient than corresponding strategies 

supposed to operate, in digraphs with cycles. In some cases the difference 

in efficiency is substantial. For example, an algorithm has be~n 

presented in this chapter, for finding the shortest path between two 

given vertices of an acyclic digraph visiting a given subset of vertices, 

which requires a time linear in the size of the graph. Known algorithms 

for solving the same problem for general (not necessarily acyclic) 

digraphs have a time bound exponential in the number of vertices of 

the graph. The following algorithms for acyclic digraphs, have been 

presented in this chapter: finding the shortest path between two 



5. 

given vertices; ftom· all vertices to a fixed vertex; from a fixed 

vertex to all others; between all pairs of vertices; finding the shorie~t 

path between two given vertices, visiting a specified subset of vertices: 

finding the k~~hortest paths between two given vertices; from all 

vertices to a fixed vertex; from a fixed vertex to all others; between 

all pairs of vertices; finding the longest path of the digraph: finding 

the k-Iongest paths of the digraph. The majority of these algorithms 

are based on backtracking procedures. 

The extension of the k-shortest paths algorithms, for handling 

digraphs in which cycles are allowed, is the subject of chapter 5. 

Unlike some other shortest paths problems, we found the k-shortest 

paths algorithms for general digraphs to be nearly as efficient as the 

k-shortest paths algorithms for acyclic digraphs. This result however 

applies only for the part of the algorithm for finding the second, 

third, ••. , k-th shortest path. Methods for finding the shortest 

path in general digraphs are known to be less efficient than 

corresponding algor~thms for acyclic digraphs. 

A solution to a problem related to Dilworth's decomposition 

theorem for partially ordered sets~ presented in the appendix. The 

problem consists of given a partially ordered set, obtain a minimal 

covering by disjoint chains, from maximal antichains. The arpendix 

contains an example of a derivation of a recursive algorith~ from a 

mathematical proof by induction, in opposition to qerivations of 

proofs of correctness by induction from recursive algorithms, which 

appear in some other parts of the thesis. 

The algorithms presented in this thesis have been described 

in a structured go-to-Iess ALGOL-like formulation, following Dijkstra 

in [DaDiH072J. Nearly all of them are based on recursive procedures. 
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Practical computer experiments have been carried out using ALGOLw 

([Si71], .E** 721) and MTS, in operation at the Computing Laboratory, 

University of Newcastle upon Tyne. 

Basic Definitions 

Next, we present the basic definitions which are relevant to 

the contents of -this thesis. The graph nomenclature that we haye used 

was mostly taken from Harruy rHa69] and Haray, Norman and Cartwright 

[HaNoCa651. 

A graph (V,E) is a finite non-empty set V, together with 

a set E of pairs of diJtinct elements of V. The elements of V and 

E are the vertices and edges, respectively of the graph. We denote 

by Nand M respectively the numb~r of vertices and edges of a graph. 

A directed graph (digraph) D(V, E) is a graph in which the edges are 

ordered pairs. An undirected graph G(V, E) is a graph in which the 

edges are unordered pairs. We denote an edge e by the pair of vertices 

(~, w) that forms it. At most one edge (v, w) may exist, for two 

given vertices v and w. Given an edge e = (v, w), v and ware 

adjacent and e is incident to both v and w. The degr~t of a vertex 

v is the number or vertices which are adjacent to v. 

In a digraph, an edge (v, w) is said to be from v .!E. "-j 

the indegree and outdegree of a vertex v are the number of edges 

to and from v respectively. We denote them by indegree(v) and 

outdegree(v) respectively. A source vertex 1S a vertex v with indegree(v) 

= O. while a sink vertex v has outdegree(v) = O. 

A sequence of vertices v1 ' va' ••• , vk such that for every i 

~ i < k we have (VI' VI+1 ) E E, is called a path from vlto vk • 
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The length of the path v1 ' va' ••• , Vic is defined as k - 1. Vertex 

v1 is said to reach Vic • A trivial path is composed by a sole vertex. 

A path is elementary if it contains no vertex twice. 

A 'weighted graph is a graph in which there is associated 

a finite weight d to each of its edges (v, w). 
vw 

Given a path 

v1 ' va' ••• , vk in a we~ghted graph, we define its weighted path length 

as the sum of the weigh~of the edges which form the path. By 

convention, the weighted path length of a trivial path is zero and 

if there is no path from verte~ v to w, we say that the weighted path 

length from v to w is equal to infinity. When dealing with weighted 

graphs, we may use the terminology "path length", as referring to 

"weighted path length". 

A cycle is a pathv1' va' ••• , Vic with Vic = v1 and 

containing at least two different edges. A cyc Ie v1 ' vz' ... , vk -1' vk 

is elementary if v1 ' va' ••• , vk - 1 is an elementary path. If a graph 

has no cycles it is called acyclic. Two elementary cycles involving 

exactly the same edges are considered to be identical. 

A graph (VI, E') is a partial subgraph of a given graph (V, E) 

if V I c: V and E I!;;;; E. If additionally for any v, w E VI, (v,~) E E 

implies (v, w) EEl, the graph (V I, E I) is c-alled a subgraph of (\', E). 

A partial subgraph (V I, E I) of a graph (V, E) is a spanning'pa 1 • "2.1 

subgraph of (V, E), if V VI. 

An undirected graph is connected if there is a path between 

every two vertices of the graph; otherwise it is disconnect~d. 

A graph with no edges is totally disconnected. The maximal connected 

subgraphs of an undirected graph are its connected components. A 

digraph is stronglv connected if for every (v,w) v,w,E V, there 
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is a path from v to w. The maximal strongly connected partial 

subdigraphs of a digraph are called its stronglY connected components. 

A complete graph is a graph which has a maximum number of 

edges, for the given set of vertices. A complete acyclic digraph 

is an acyclic digraph in which the addition of any new edge, between 

two of its vertices, creates a cycle. 

A tree is a connected undirected graph with no cycles. 

A set of disjoint trees is called a forest. A directed rooted tree 

or simply a rooted tree is an acyclic digraph in which exactly one 

vertex, the root, has indegree zero, whilst every other vertex has 

indegree one. If there is a path from vertex v to w, in a directed 

rooted tree, then v is an ancesto~ of w, and w is a descendant of 

v. A subtree (rooted subtree) of a tree (rooted tree) T is a partial 

subgraph of T, which is itself a tree (rooted tree). 

A spanning tree of an undirected graph G is a spanning 

partial subgraph of G which is a tree. It follows that an undirected 

graph G has a spanning tree if and only if it is connected, otherwise 

the set of spanning trees of its connected components defin~a spanning 

forest of G. 

Given an elementary cycle c, we can represent it as a vector 

(el" e:;p ••• , e J' with e i = 1 if edge i belongs to the cydt. and 

e 1 = 0, otherwise. The cycles of an undirected graph generate a 

vector space called cycle vector space, with addition of cycles 

c
1 

and ca defined as the ring sum (or boolean addition) of 

c1 and ca ' under the representation above. The ring sum of c1 

and ca may produce either another cycle or an edge disjoint union of 

cycles. A fundamental set of cycles, cor~esponding to a spanning 

forest F of an undirected graph G, is a maximal set of e.leIIl.entary cycles 
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such that each cycle of the set contains exactly one edge of G, which 

does not belong to F. If the graph has K connected components, then 

a fundamental set of cycles has precisely M-N+K cycles. This number 

of cycles is called the cycle rank of the graph. This set of 

cycles is a basis for the cycle vector space of the graph. 

The following are some matrices related to a graph 

(V, E). The adj a.ce.p.cY'1rliatrix is a.N x N matrix, such that each element 

~j is defined as a!j= 1 if (VI' vj)E E and ~ j = 0, otherwise. 

The reachability matrix is a N x N matrix, where each element a'j 

is such that a,j = 1 if vertex v, reaches vertex Vj and a ,j = ° otherwise. 

For an undirected graph, the incidence matrix is a N x M matrix, with 

each element a f j defined as a
'
·-j = 1 if edge e j is incident to 

vertex VI and alj = 0, otherwise. 

A binary (ternary) tree T is recursively defined as a finite 

set of elements called vertices, that is either empty or consists of 

a single vertex called the root, together with two (three) disjoint 

binary {ternary) trees, called left and right (left, c8ntral and right) 

subtrees of the root respectively (see iKn68 l for the definition of 

t-ary trees). A vertex is a terminal vertex if all i ts subtre.~s are 

empty. We denote by boot (T) the vertex which is the r')()t of T 

and by L(x), C(x) and R(x) respectively the left, central and right 

subtrees of vertex x of a ternary tree. A path from a vertex Xl 

to a vertex ~, is a sequence of distinct vertices xl' x2 ' ••• , ~ 

such that either xl +l is the root of a subtree of Xi' or Xl is the roo~ 

of a subtree of x l +l ' 1 ~ i < k. A path with k vertices is said to be 

of length k - 1. The level of a vertex x is the length of the path 

from x to the root. A binary (ternar~ tree is balanced when (i) No 

non-terminal vertex has any empty subtree and (ii) all terminal 
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vertices have the same level. A binary (ternary) tree is complete 

when the deletion of the vertices with maximal level produces a 

balanced binary (ternary) tree. The binary (ternary) tree consisting 

of a single vertex is also complete, by convention. The (internal) 

path length of T is the sum of the levels of all vertices of T. 

A partially ordered set (poset) (S,~ ) is a set S together 

with a binary relation ~ on S, which satisfies the following properties 

for any elements x, y, z E S:(i} reflexivity: x, x; (ii) anti-symmetry: 

x~y anrii. y~x implies x = y; and (iii) transitivity: x~y and y~ z 

implfes x ~ z. S is said to be partially ordered by ~ and the 

relation itself is called a partial ordering on S. The relation < 

de fined by x < y iff x~ y and x 1= y for every x, y E 8, satisfies 

the following properties for x, y, z E 8: (i) irreflexivity: x ~ x; 

(ii) asymmetry: x < y implies.y ~ x; and (iii) transitivity: x < y 

and y < z implies x < z. The relation < 00 fines similarly a poset 

(S, <), which can also be characterized by the relation ~ defined by 

x).. y iff y < x, for every x, y E 8. We use the following notation 

[Kn74al: x I Iy when x ~ y ~ x, where x and yare distinct el~ments of 

S. The elements x and yare called independent when xl !y. If 8 is 

finite and non-empty - and we always assume so - then a poset (S, <) 

can be represented by an inclusion diagram, in which there is a directed 

line from x to y iff x < y and there exists no z, such that x < z < y, 

for all x, y, z E 8 fMaBi67J. It follows from this definition that 

an inclusion diagram is an acyclic digraph. A source is an element 

xES such that there is no yES, with y < x. A sink is an element 

xES such that there is no yES, with x < y. A chain is a subset 

of S, in which any two elements are related by <. An antichain· 

is a subset of S, in which any two elements are independent. 
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The problem .£f topological sorting is to obtain a permutation 

X 1 X 2 ••• ~ of S, such that for every x f , Xj if XI -< Xj then i < j. 

Such a permutation is called a topological sorting arrangement of (S, -<). 

Clearly, the solution of the topologi~al sorting problem is not unique. 

In fact, for a given poset (S, -<) there is at least one topological 

sorting arrangement and at most N!, depending on the relation < 

being maxim-a,l or minimal, with regard to its number of elements, 

,respectively. 

Let D(S, E) be an acyclic digraph. Define the digraph Dt(S,-<) 

by: (x, y) E -< iff Y is reachable from x in D and x ~ y, for all 
, 

x, yES. ~ Dt is c~lled the transitive closure digraph of D. It 
• 

follows that Dt is a pos~t since -< satisfies the required conditions. 

Also any spanning partial subdigraph D' of ~ such that the reachability 

of Dt is preserved in D', can "represent" the poset (S, -<). In partie'll lar 

the inclusion diagram of the poset (S, -<) corresponds to the minimal 

s~bdigraph of Dt , which can represent the poset. Observe also that 

in terms of graphs, the topological sorting problem is equivnlent to 

the problem of finding an appropriate ordering of the vertices of an 

acyclic digraph, such that all the edges are oriented in the same 

way, from left to right, for instance, when drawing the digraph with 

the vertices represented by points and the edges by directed lines. 

There are many different ways of representing a graph in 

a computer. For example, either the adjacency or incidence matrices 

can be used for storing a graph defined as a matrix. Another usual 

and in general convenient form of representing a graph inside a 

computer, consists of storing it as a set of adjacency lists A, 

with one list A(v} per vertex v of the graph. The members of A(v) 

are the vertices w such that (v, w) E E. If there is no w such that 
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(v, w) E E, then list A(v) is empty. For some other graph representations 

see fBe73l, fWe71] for instance. 

The performances of the algorithms proposed in this thesis 

have been evaluated in terms of expressions in O-notation for the 

time and space requirements of the algorithms. Assume that f is a 

function defined ~.or the discrete variables n1 , na, ••• , np. The 

notation D(f) means that there exists a positive constant C, such that 

the number m represented by O(f), satisfies !m!~ C\f(n1 , ••• , np)1 
,I 

(!:lee [Kn68l). 

Finally, we mention that we have assumed, throughout the 

thesis, that the set V of vertices of a graph is V = [1, 2, ••• , N}, 

unless otherwise stated. The symbols U, n, s;;; and "> have their usual 

meaning of set union, intersection, inclusion and difference respectively. 
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CHAPTER 1 

TERNARY TREES AND TOPOLOGICAL SORTING 

1.1 Introduction 

In this chapter we describe certain properties of ternary 

trees, related to partially ordered and quasi-ordered sets. Ternary 

search trees are defined and topological sorting is considered to be an 

extension of the usual sorting, similarly ternary search trees are 

extensions of the binary case. A particular case of searching -

topological searching - is also presented, as an example. These 

operations are performed on (finite) partially ordered sets, or acyclic 

directed graphs, and we will use either structure, whichever is more 

convenient to our particular purpose. 

Section 1.2 defines ternary search trees and shows how they 

may be related to partially ordered sets. Ternary sequence search 

trees are also defined and considered to be natural extensions of binar~ 

sequence search trees. These trees suggest, naturally, the idea of 

topological sorting and searching. However, one of our conclusions 

is that practical implementations using these sorting and searching 

methods should be restricted to a particular class of problems (tho~2 

whose structure provides an easy and quick way for finding the type of 

relationship between any two elements). For such problems, this method 

may be efficient although our aim is AQt to present a method of sorting, 

but to point out some properties of ternary trees, when related to 

partially ordered or quasi-ordered sets. Section 1.3 presents this 

topolog~cal sorting with ternary trees. One interesting aspect of this 

method is that it works in a similar way, with respect to input and 

output, to the usual sorting, i.e. the "sort mechanism" converts an 
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input permutation into a sorted output. The meaning of topological 

searching is described in 1 .4. Finally, section 1.5 presents the case 

of quasi-topological sorting and some further general remarks are found 

in section 1.6. 

1.2 Ternary se~rch trees 

Let (S, <) be a poset. A ternary search tree associated with 

(8., <) or simply a ternary search tree is a ternary tree T whose 

vertices are the elements of S, and such that: 

y E L(x) implies y ~ x, 

y E C(x) implies y! lx, 

y E R(x) implies y > x, 

for all x, YES, where L(x), C(x) and R(x) denote, respectively, the 

left, central and right subtrees of x. 

As an example, consider the poset of figure 1.1. It is 

represented by an adjacency matrix (mI J ), with ml J = 1 if XI <: Xj and 

otherwise 0, for all XI, Xj E S. The ternary tree, sho~ in figure 

1.4, is a ternary search tree associated with this poset. Figures 

1.2 and 1.3 illustrate two different digraphs that represent the poset 

(the digraph of figure 1.3 is the minimal digraph that represents it). 

Therefore, the ternary search tree of figure 1.4 is associated with any 

of the structureeof figures 1.1, 1.2 ~ 1.3. 

If follows from the definition above, that a given poset 

does not uniquely determine a ternary search tree associated with it. 

Nor does a given ternary search tree uniquely determine a poset with 

which the ternary tree is associated. The ternary tree of figure 1.5, 

distinct from that of figure 1.4, is another ternary search tree 

associated with the poset of figure 1.1. On the other hand, the poset 
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represented by the digraph of figure 1.6 is distinct from that of 

figure 1.1, and the ternary tree of figure 1.4 is also associated with it.. 

However, the ternary search tree of figure 1.5 is not associated ~ith 

the poset given by the digraph of figure 1.6, since in the ternary 

tree, vertex E E G(G) and in the poset E -<G. 

Given a ternary search tree T associated with a poset (~, <1), 

an' element yES and a relation ~ between (YI and S, such that 

(SU(yl, <) , with < = <1 U <2' is still a poset, we can construct a 

ternary search tree T', associated with the latter poset, simply by 

properly inserting a new vertex in the ternary tree T. In fact, 

given T, y and <2' the ternary search tree T' is uniquely determined. 

The basic idea for obtaining it is similar to that used for inserting 

a new vertex y in a binary search tree [Hi62J. We find a path from 

the root of T, to a vertex z of the ternary tree, such that if x is a 

vertex of this path, then the vertex following x in the path is at 

the left, centre or right of x, in T according to whether y < x, y\ Ix 

or y). x, respectively. If the vertex so defined - which~hould follow 

x in the path - does not exist because the corresponding subtree is 

empty, then x = z and y is inserted in T, in the place of that empty 

subtree. 

Algorithm 1.1 follows the above strategy. 

procedure INSERT which finds that appropriate path. 

It uses a rprur~ive 

It is assur..~d 

that the vertices of the ternary tree T are stored in a list, with 

one 4-field node in the list for each vertex of T. If P is the address 

in the list, of a vertex x of T, then info(p) = x and left(p), central(p), 

and right(p} are the addresses of the root of the left, central and 

right subtrees of x, respectively. If a certain subtree of x is 

empty, then its address is nUll. It is also assumed that a list 
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~ contains the available memory space, from which the space .f~r a 

Dewly created vertex is to be taken. 

The following is a formulation of this algorithm. The 

symbols <., I! and >- ,correspond to the relation bet""een {y} and 

the elements of the poset with which the ternary search tree T is O15'='-

ociated. Clearly, this relation is assumed to be known. 
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ALGORITHM 1.1 : 

begin comment an algorithm for inserting a new vertex in a ternary 

search tree; 

procedure _ INSERT (pointer p, integer y); 

begin if p = null then 

end INSERT; 

begin p := address of an available space memory, from pool; 

left(p) .- central(p) := right(p) := null; 

info(p) := y 

end 

else if y < info(p) then INSERT (left(p), y) --- --
else if y\ \info(p) then INSERT(central(p), y) 

else INSERT (right(p), y) 

comment since y ~ info(P1. this last condition 
corresponds to y> info(p); 

~inter q; 

integer y; 

read the ternary search tree T; 

read the element y to be inserted in T; 

q := address of the root of T; 

INSERT (q, y) 

end 
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As a further remark about algorithm 1.1, observe that the 

computation of each invoked call of the procedure IKSERT can be performed 

in, at most, a constant number of steps (excluding the computations of 

the recursive calls that may occur in it), if the poset is given in a 

suitable representation - its &djme~~ matrix, for inst~nce. Aho 

observe that if z is the vertex of T having that empty subtree in which 

y was inserted, the total number of calls of procedure INSERT equals one 

plus the number of vertices of T in the path from the root to vertex z. 

Now, consider a poset (S, <) and a permutation Xl x2 ••• x
N 

of 

8. Construct a ternary search tree associated with S, by first 

choosing Xl as its root and afterwards, iteratively inserting x2 ' Xa, ••• ,x
N 

in the ternary search tree obtained in the previous iteration. Sinct 

the insertion of a new vertex, in a ternary search tree, is an operation 

that produces an unique new ternary search tree, we conclude that 

the final such tree - obtained after the insertion of x
N 

- is uniquely 

characterized by the poset and the permutation. We call it the 

ternary sequence search tree associated with the poset (8, <) ~ th~ 

permutation Xl x2 ••• x
N 

of S - briefly T8ST. Clearly this idea 

constitutes an extension of Hibbard's concept of binary sequence search 

tree rHi62]. 

The construction of a ternary sequence search tre~ is implemented 

by algorithm 1.2, which iteratively invokes the procedure INSERT 

defined in algorithm 1.1. 
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ALGORITHM 1.2 

begin comment an algorithm for constructing a ternary sequence search trpe: 

procedure INSERT (pointer p; integer y); 

end 

begin 

end INSERT; 

pointer q; 

integer y; 

as in algorithm 1.1 

read the poset (S, <); 

read the permutation xlxa ••• ~; 

INSERT (null, xl); 

q := address of vertex xl in the ternary search tree; 

for j := 2 step 1 until N do INSERT (q, x j ) 
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As an example, the ternary search tree of figure 1 .-~ is the 

ternary sequence search tree associated with the poset of figure 1.1 

and the permutation ABECDGF. 

As has been mentioned, a poset (S, <) and a permutation p of 

S uniquely determine the ternary search tree T associated with th~m. 

However, the same poset (S, <) and another permutation p' t p of S 

may have as their associated TSST a ternary tree T' such that T' = T. 

For instance, the poset of figure 1.1 and the permutation ACDGFEB are 

also associated with the TSST of figure 1.4. The problem that we pose 

now is to calculate the total number of such permutations that corr~spond 

to the same TSST. In fact, the following problems are equivalent: 

i) Find the n~mber a of distinct permutations p of s, 

\S\= N, which together with a poset (S, <) determine 

the same ternary sequence search tree. 

ii) Find the number ~ of distinct permutations p, of a set 

of N numbers, which correspond to the sam~ binary 

sequence search tree T, according to the usual C'on:-tlll:;t.ion 

of T, starting from p. Such a construction has been 

given by Hibbard [Hi62], Knuth rKn73] , Page and Wilsun 

[PaWi73], Harrison [Ha73], among others. 

iii) Find the number a of ways to label the N vertic€'" rf a 

binary tree T, with the labels of fl, "\lch 

that the label of each vertex is less than that belonging 

to any subtree of this vertex. 

For any of these 3 above problems, the value of a can be 

calculated by the following expression, which appears in [Kn73] , as the 

answer to the problem($ii): 

N! 
til = 

rr \T(x) I 
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where T(x) denotes the terba;ry (binary) subtree whose root i3 x, and 

I T(x) I is i ts number;~ of vertices. The basic reason why this formula 

solves those problems is that: if x is a vertex in the ternary 

(binary) tree T, and y is another vertex belonging to one of the fubtrees 

of x, then x must necessarily precede y in any of the permutations p. 

Hence, the total number of permutations p such that, in these permutatic'lls 

x precedes every vertex belonging to any of its subtrees, is N!/Ir(x) I. 

By considering all vertices of the ternary (binary) tree, we obtain 

the above formula for a. 

There are, for example 7l/7.4.3.1.1.1.1 -x 60 permutations of 

[A,B,C,D,E,F,G} which together with the poset of figure 1.1 determine 

the ternary search tree of figure 1.4. There are 6l/6.3.2.1.1.1 = 20 

permutations of [1,2, ••• ,6} which correspond to the binary search tree 

of figure 1.7. Similarly, there are 20 ways to label the tinary tree of 

figure 1.7, with the labels [1, •.• , 6}, such that the label of any 

vertex is less than that belonging to any of its subtrees. 

Once the shape of the ternary search trep is €'Ot'lb1jshed In

the poset (S, <') and a permutation p of S, the value ()! obtained h

the above formula is calculated disregarding the poset with which the 

search tree is associated. This suggests that an algorith:n for findin~ 

the complete set of permutations p of S, which - together with a (!;'."en 

digraph - are associated to the same TSST,I does not need to manip;:late 

the digraph at all (see section 1.4, for a further comment on thig 

property). 

Even when a digraph is disconnected, each as~ociated TSST 

is still well defined. In the extreme case, when the digraph is 

totally disconnected, any TSST has L(x) = R(x) = empty, for all vertices 

of x. For example, the ternary search tree of figure 1.9 is the T~~r 
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associated with the digraph of figure 1.8 and with the permutati.l1u 

ABCDEF. 

1.3 Topological searching 

The ternary search tree sug~ests a method for searching for 

i terns in a data bl!-se whose structure could be represented by an acyclic 

digraph. Consider such a case, and let T be a ternary search tree 
t 

associated with that acyclic digraph (S, E), which represents the 

poset (8, <). To search for a node x, for instance, we "compare" 

initially, x with root (T). If x ~ root(T) then aCGording to which 

of x <: root(T), x \lroot(T) or x~ root(T) is satisfied, the way 

• 
L(root(T)), C(root(T)) or R(r~ot(T)) respectively is chosen. 

Afterwards x is compared with the root of the chosen subtree, and 

Observe that the term "compare", in this context, could mean the 

computation of a function like f: 8 x 84f CO, 1 , 2, 31, with 

Xl = x2 implies f(Xl, x2 ) = ° 
xl <: X2 implies f(Xl, xa) = 

xl llX2 implies f (Xl' Xa) c 2 

Xl ~ x2 implies f(Xl, xa) == 3, for all xl' x2 ES. 

Clearly, this method of searching has practical interest only if 

so 

f 

could be easily and efficiently computed. By analogy ",i th the 1~'-,J'j1 

terminology, we call it topological searching. 

on. 

Now SUppOSB we have an acyclic digraph D(S, E), 8 = {Xl' ••. , Xn}, 

1n which we want to search for an element of 8 and let us examine some 

basic differences, between a binary and topological searching. The 
,,,. 

binary case, is well known: Abtain a one-to-one mapping g: S4R, with R 

a subset of the reals, and construct an optimal binary search tree, with 

vertices g(Xl ), ••• , g(xn ). The average number of operations tv 
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perform ;his search is 0(10g2n). 
.1 

For the topological searching, ~e 

would consider, instead a ternary search tree associated ~ith D, _ith 

path length minimized. Unlike the binary case, a ternary search tree 

which minimizes path length is not necessarily complete (the elements of 

S, being considered equiprobably, with respect to searching), but is 

the "nearest" possible to a complete one, which still maintains it.s 

association with the digraph. For this reason, the average number of 

operations to perform a topological searching depends also upon the 

structure of D. Let M be the number of elements of the partial 

ordering represented by the digraph D. If M = min = 0 then the 

topological searching is equivalent to a linear search, and we have O(n) 

average operations. If M = max = n(n-1)/2, then the topological 

searching is equivalent to the binary search. However, there is an 

optimal intert~l for M, in which the average number of operations is 

minimum, being 0(10g3n). As an example, consider the case where the 

elements to be searched for constitute the set S, of the poset (S, <), 

where: 

S _ set of positive integers, which divide 120 

x < y if and only if x divides y for all distinct x, yES. 

Figure 1.10 illustl'ates a digraph that represents this p'-'''et. 

Figure 1.11 presents a classical binary search tree, with minimal pat,h 

length, in which a binary search would be performed. The vert:i,::<=-;.; "f 

this binary tree are the elements of S, and therefore, the function g, 

in this case, is the identity function. Figure 1.12 pictures a ternary 

search tree, associated with the digraph of figure 1.10 with minimal 

path length, for accomplishing a topological searching. Observe that, 

in this example, the topological searching would provide a search tree 

with less path length than the binary searching. 
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1.4 Topological Sorting 

Given a ternary tree, we define its A-order traversal. 

recursively, by: do nothing if the ternary tree is empty; other~is~: 

i) Traverse the left subtree in A-order 

ii) Visit the root 

iii) Traverse the central subtree in A-order 

iv) Traverse the right subtree in A-order 

Actually this definition constitutes a slight extension of Knuth's 

definition of symmetric traversal of binary trees [KQ68J. We 

assert that if T is a ternary search tree, associated with a poset (S, <), 

then the A-order traversal of T produces a topological sorting arrangement 

of (S, -<). A proof of this fact is presented in the next section. A 

topological sorting arrangement of the poset represented in figure 1.1 

obtained by the A-order traversal of the ternary tree of 1.4 is BAECDGF. 

Observe that items ii) and iii) of the definition, can be swapped, and 

the new permutation produced by such a traversal is still a topological 

sorting arrangement. The particular solution of the topological 

sorting problem obtained with this method, depends on the particular 

TSST which was used, i.e. depends on the permutation used for build.ing 

that ternary tree. 

If we consider a TSST T corresponding to a poset (S, <), and we 

define a relation 6 on S, by x 6 Y if and only if y E T(x), for all 

x, yES, (which is clearly a partial ordering) then the value a, given 

1n section 1.2 corresponds to the total number of distin~t topological 

sorting arrangements of the poset (S, 6). Also a permutation pof S 

is a topological sorting arrangement of (S, 6) if and only if T is the 

TSST associated with (S, <) and p. This means that the problem of 
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generating all permutations p of S, which together with the po~<?t (~. <' 

are associated with the same TSST T, is equivalent to th~ problem of 

generating all topological sortings of the po set (3, ~). 

for solving this problem is presented in Chapter 2. 

An algori ttL-l 

The average number of comparisons required to constl'uct a 

TSST associated with a given poset (S, .... ) and a random permutatl_,n p 

of S depends on (S, .... ) (note that the average number of comparison" to 

build a binary sequence search tree for (1, 2, ••• , N1 and a random 

permutation of this set, depends only on N). The worst case for the 

TSST corresponds, clearly, to a ternary tree having N - 1 vertires I...t.h 

exactly 2 empty subtrees each and 1 terminal vertex (a "zig-zag" 

tEl-rnary tree). In this case the number of comparisons is approximate!) 

proportional to N2. The best case corresponds to a complete ternary tree 

in which approximately Nlog3N comparisons are required in average. 

Since the A-order traversal of a ternary tree can be performtd in O(N) 

steps, these two figures, O(N2) and O(Nlog3 N) respecti~ely, gi\e us an idba 

of upper and lower bounds for the timing of a t'Jp(llogica] ",orting al~')Ii.thn, 

using this method, if WE; consider that the computat ion of a f'Uil': r.con lil.f' 

f (of section 1.3) can be performed in a constant numb&r of St.~3 (fl.;-

is true if f were already available as the adjaceney matrix of the p"~( 1, 

for instance). 

1.5 Quasi-topological sorting 

Given a set S and a binary relation Q on 8 which sati~fies 

only reflexivity and transitivity, the pair (8, Q) is called a quasi 

ordered set. Again we can relate a finite quasi-ordered set (8, Q) 

to a digraph by a similar construction to that used for posets: the 

quasi-ordered set (S, Q) can be represented by a digraph D(S, E). 
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Possibly with cycles, where D is a partial subdigraph of the digraph 

D'(S, Q), such that reachability is preserved. We can also think 

about a minimal digraph representing the quasi-ordered set, although, 

unlike the poset case, this minimal digraph is no longer unique. We 

adopt a notation which is similar to that used for posets: 

x <. y when xQy and y~x 

x;>y when x~ y and yQx 

xii· y when x~ and yi1x 

x <.> y when xQy and yQx, 

and therefore for any x, yES there are exactly five possibilities: 

x -< y, x;> y, x Ily, x -< ~ y or x = y. Observe, however that they 

are not exclusive, since x = y implies x -<;> y. Given a quasi-

ordered set (S, Q) a permutation X1XZ"'~ of S, is called a quasi-

topological sorting arrangement when 

Xi -< Xj implies i < j, 

for all i, j 1, ••• , N. We define a ternary search tree associated 

with the quasi-ordered (S, Q) as a ternary tree T such that: ----
if Y E L(x) implies y -< x 

y 6 C(x) implies yllx or y -<> x 

y E R(x) implies y).. x, 

for all x, y E T~ and S being the set of vertices of T. As an example, 

the ternary search tree of figure 1.14 is a ternary search tree 'J2,,', ·.;:ated 

with the quasi-ordered set, given by the digraph of figure of 1.13. 

The notion of a quasi-ordered set suggests a partition in the 

set gJ of all directed graphs. Consider the digraphs D 1 (V l' E1 ), 

Dz(Vz , Ez ) E SO and define the binary relation ~Q by: 

vertex vl reaches v~ in D, iff 

vertex v1 reaches vertex v~ in ~ 
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It follows that the relation ~Q is an equivalenoorelation and the 

quotient set ~/_Q is isomorphic to the set of all finite quasi-

ordered sets. The digraph with maximal number of edges in each class is 

a quasi-ordered set and the class itaelf corresponds precisely to all 
I . 

digraphs that represent this quasi-ordered set. Any minimal digraph 

in a class is clearly a minimal digraph representation of the c(~rr.'sponding 

quasi-ordered set. A similar construction can also be defined for 

posets considering (obviously) the set of all acyclic digraphs, instead 

of the set 8D of all digraphs. 

The following theorem gener,lizes the topological sorting 

property of ternary trees, presented in the last section. 

Theorem 1.1: 

If T is a ternary search tree associated with a quasi-ordered 

set (S, Q) then the A-order traversal of T produces a quasi-topological 

';·orting arrangement of (S, Q). 

Proof: 

The proof is by induction on the traversal of the silbtr~f'~ of' 

T. Consdder a subtree T' of T, with x = root(T'). If T' is empty t-hnn 

there is no questionp about whether or not their vertices are in all lil'prop-

riate ordering. Otherwise, assume that 

Yl ••• Yr' 

are the A-order traversals of L(x), C(x) and R(x), respectively, any 

of these possibly empty. By the iDduction hypothesis, each of these 

selluen.ces·' satisfies the definition of a quasi-to.!.>ological sorting, 

i.e., in the first sequence 

if YI < YJ then i < j, 

for all i, j = 1, ... , r. Similarly for the other two sequences. 
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The A-order traversal of T' would produce a sequence of the form 

and the proof consists of showing that any two vertices of it satisfy 

the definition of quasi-topological sorting. From the definition of n 

ternary search tree, we conclude that pairs of the form (y" x), 

(x, Zj)- or (x, wk ) are in an appropriate relative ordering in t.he 

sequence. Now, we should examine the relative ordering between vertices 

belonging to different ~ubtrees of T': 

i) Yt and Zj : 

ii) 

The definition of quasi-topological sorting is not 

satisfied only if Yl ~ zJ • Assume then that Yl~ zJ • 

'. Since Yl < X' it follows that 
,f 

x:> YI and y, >- zJ implies x >- ~J' 

which contradicts Zj E C(x). 

Yl and wk : 

The definition is not satisfied only when Yt ~ wk' 

Assume then that YI ~ "'Ie • Since "1t"" x, il. follows 

YI ~ wk and wk ;> x implies y, >- x, 

which contradicts YI E L(x). 

The definition is not satisfied only when z· r wk' 

But since wk ~ x it follows that 

Zj ~ wk and wk ~ x implies zJ>- x, 

which contradicts Zj f C(x). 

Observe that the transitivity of ~ follows from the transitivity ofirQ. 
I 

Hence the theorem is tr~e for any subtree T' and therefore is true for 

T ! T'. 
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CI~arly, a poset is alParticular case of a quasi-ordered set, 

in which anti-symmetry holds. Thus, we h~e also shown the topological 

sorting property of the ternary search tree. A complete (or linear) 

ordered set is a particular case of a poset in which trichotomy (i.e. 

a~ two elements are related) hGlds. So this also extends the.--knovn 

usual sorting property of binary search trees, with respect to symmetric 

order traversal. Finally, we mention that the concept of quasi-topolo-

gical searching could be introduced, as a natural extension of 

topological searching. 

1 .6 Conclusions 

We have pointed out some properties of ternary trees, relating 

these siruc~~~ to quasi-ordered or partially ordered sets, and quasi, 
topological or topological sorting. Topological sorting is an important 

operation that we may wish to perform in acyclic digraphs - or partially 

ordered sets. For example, in some cases a topological sorting is 

performed as an initial step in an algorithm, for solving '1 more 

complex problem. Some algorithms have been devised for obtaining 

one solution for the topological sorting problem: [Kn68] , [Ka63] 

[La61], rKa62], among others. However, the premises for applying the 

topological sorting method, presented in this chapter are sltghtl~ 

different from those other algorithms, since as in usual (complete) 

sorting the algorithm is given an input sequence and must produce a 

sorted output sequence from it. Practical applications of the presented 

methods - for both topological and quasi-topological sorting - should be 

restricted to those cases for which there exists an easy and efficient way 

of determining the type of relationship between two given elements of 

the set. 
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One aspect that we would emphasize is the close relation 

which exists between this method for performing topological or quasi-

topological sorting and tree insertion (complete) sorting. The latter 

method can be considered as a particular case of the former - whilst the 

problems of topological sorting and (complete) sorting are generallY 

considered separately. In fact, the ordering of a set is complete if 

and only if an associated ternary search tree has all it.s central 

subtrees empty. In that case, the tarnary search tree is equivalent 

to the usual binary search tree, the topological sorting becorne~ the 

usual sorting, the solution Gf the sorting problem is unique, the presented 

method of topological sorting becomes the usual tree insertion sorting. 

and - what is relevant - the structure of the input/output data and the 

algorithm work exactly in the same way. 
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CHAPTER 2 

GENERATION OF ALL TOPOLOGICAL SORTINGS 

Introduction 

11" mentioned in chapter 1, some algorithms are kno"n that 

obtain one solution far the topological sorting problem. 

the algorithm in [Kn68] requires O(N+M) time for producing one tc.pobgl:::al 

sorting arrangement, of an acyclic digraph with N vertices and M 

edges. 

The present chapter describes an algorithm which extends 

that of Knuth, and finds all solutions of the topological sorting 

problem, for a given acyclic digraph. Most of the ideas explained in 

this chapter are the result of a joint ~ork with D. E. Knuth, reported 

in [KnSz74J. In that paper, the algorithm for obtaining all topological 

sorting arrangements was used as an example of structured programming 

and a discussion of some techniques for changing recursion into 

iteration. A more detailed appreciation of the recursion-iteration 

translation can be found in [~74J. Section 2.2 of this chapt~r 

presents the algorithm for all topological sorting arrangements, and 

a description of the method on which it was based. Its correctness aId 

performance constitute sections 2.3 and 2.4, resp",·tively. Furihf- t 

remarks concerning the proposed method are found in section 2.'5, hnd 

some conclusions form the last section. 

2.2 The algorithm 

The algorithm in [Kn68], for one topolcgical sorting 

arrangement, assumes the acyclic digraph D(V, E) to be represented 

by a set of adjacency lists A. The additional data structures used 

are a vector cOHnt and a queue qlink. For any vertex v E V, count(v} 
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is initialised with the number of vertices w, such that (w, v) E E. 

At any stage of the process, count{v) contains the number of above 

vertices w which were not scheduled for output ~.A vertex v is 

considered to be scheduled for outpu,; "When all vertices w, such that 

(w, v) E E, have also been scheduled, some time before. The vertices 

that are at a given moment, awaiting output are kept in the queue 

qlink. This queue is therefore initialised as containing the vertices 

with zero indegree in the digraph. Consider, now the exploration 

of the first vertex v, in qlink. Since there is no vertex w, such 

that (w, v) E E, v can be output, according to the rules of topological 

sorting. The algorithm proceeds by erasing all edges from v. 

This is accomplished simply by decreasing by one, each count(w), 

for each vertex w E A(v). Now, if the newly decremented count(w) 

dropped to zero, this means that all vertices v', such that (VI, w) E E, 

have already been scheduled for output (i.e., all edges to ~ have already 

been explored.) Therefore, these vertices w can be transferred to qlink. 

The vertex that now stands at the front of the queue qlink is after~ 

wards output and explored, and so on, until all vertices ha.e b""n 

explored and output, which is given by the condition th~t qljnk 

becomes empty. The implementation has assigned to the count and 

qlink structures the same space in memory. This can be done be<:a11c,e 

of the fact that the vertices are not inserted in qlink, whilst 

count(v)~O. 

The algorithm [KnSz74] finds all solutions of the tOPJlogical 

sorting problem by extending this scheme. A recursive backtracking 

procedure ALLTOPSORTS(k) is used. This procedure will output all 

topological sorting arrangements, which begin with a sequence of vertices 

v 1 v2 ••• vk ' that has already been output. The count vector is ret3.11l.,i 

from the original algorithm, but the queue qlink is replaced by an 
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output-restricted ~eque li, where all deletions from D occur at its 

~~t, and insertions may occur at either of its ends. At the 

entry of the computation of ALLTOPSORTS(k), de que U contains precisely 

those vertices v, for which count{v} = O. The computation of this 

procedure may change the contents of d1que U, or those of count 

fields, however both are restored to their entry values,'upGn exit. 

The vertices for output are taken from the right of U and assigned 

to a variable q. The output of the k-th vertex, of a topological 

sorting sequence is performed by procedure ALLTOPSORTS{k-l), which has 

depth k. A variable base is used for storing the value of the 

rightmost vertex of U (when U is non-empty), at the start of each 

computation of the recursive procedure. 

Assume that v1 v2 ••• vk is the current topological sorting 
t 

subsequence that has already been output, and let us examine the 

computation of ALLTOPSORTS(k}. 

(i) If U is empty then there are no more vertiCtJ to be 

output in the present sequence. The depth of this call 

is therefore equal to N+l. Exit. from the procedure 

occurs. 

(ii) If U is not empty and contains Yl'" Yr a.n ,:,ntry 1(, 

ALLTOPSORTS (k) , the procedure will set- base . --- ::If ard 1 

Then it will erase all edges of the form (q, j) by 

decreasing each count(j} by: one for each vertex j EA{q}; 

if zl' ••• , ~ZS are the values of j whose count drop to 

.-

zero at this time, U wilrbe changed to Yl ... Yr_lzl'" ~ 

After outputting Yr and performing ALLTOPSORTS, beginning 

with subsequence v1 vkYr' the strategy consists of 

retrieving all edges of the form (q, j), with j E A(q). 

Yr' 
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by adding one to each such count (j), and U is changed to Y:;. ••• v r _!. 

The same process occurs again, with q = Yr-l' Yr _2 , ••• , Yl until, 

finally all topological sorting arrangements beginning with v1 Vor ••• Y k 

will have been produced, and U is ~gain Yl ••• Yr • 

therefore, occurs. 

Exit from ALLTOPSORTS(k) 

The following is an ALGOL-like formulation of this algorithm. 

The erasure and retrieval of the edges, which appear in the formulation 

of t4e algorithm refer to those operations which were described in the 

text of this section. 
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ALGORITHM 2.1 [KnSz74] 

begin comment an algorithm for all topological sorting arrangements; 
procedure ALLTOPSORTS (integer value k); 

end 

comment this procedure will output all topological sorting aT'in<;e
ments which begin with a sequence v1 ••• VII' that has 
already been output. Let R =: (1, ••• ,N}\(-Vl' •••. "\"k} 
be the set of all vertices not yet output. The proCeltUrt 
assumes that, for all y E R, the current ,alue of global 
variable count(y) is the number of edges (z, y) for 
z E R, and that there is a linear list C (ontainiug 
precisely those elements y E R such that count(y) = 0; 

begin integer q, base; 
if U not empty then 
begin base :=: rightmost vertex of Dj 

repeat set q to rightmost vertex of U and delete it. 

until 
end 

end ALLTOPSORTS; 

from U; 
erase all edges of the form (q, j)j 
output q in column K + 1; 
if k = N - 1 then start a new output line; 
ALLTOPSORTS(k+~ 
retrieve all edges of the form (q, j); 
insert q at the left of Uj 
rightmost vertex of U =: base; 

read the digraph and construct its adjacency lists A; 
initialise count(v) values; 
comment count(v) = indegree(v) , for all vertices Vj 
for v := 1 step 1 until N do 

if count(v) =: 0 then insert v at the right of U; 
ALLTOPSORTS ( 0) ; 
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A previous version of the algorithm took base and q from t·he 

left of U, while all insertions in U were performed on the right 

only. This made U an input-restricted deque, sothat a two-way linking 

for the implementation of U was originally needed. Thus, a slight mod

ification of the strategy turned the deque to an output-restrict.ed 

one with only one-way linking required for its implementation. 

2.3 Correctness 

The correctness of the above strategy can be shown by the 

following lemmas: 

Consider an acyclic directed graph D(V, E), with N vertices, 

input to algorithm 2.1: 

Lemma 2.1: 

If v1 •.• vk is the topological sorting subsequence, already 

output at the start of ALLTOPSORTS(k), then deque U contains precisely 

those vertices v, v f:. v1 ' va' ••. , vk such that count(v) :::: 0, at that 

moment. 

Proof: 

Induction on k. If k = 0 the lemm~ holds trivially, since the 

initiali:sation of the process ensures that the vertices v with CfUIlt.(V) = 0 

are precisely the vertices that constitute deque U. By the in((uction 

hypothesis, if v1 ••• vk_1 is the topological sorting subsequence already 

output at the entry of ALLTOPSORTS(k-1), then U contains those vertices v, 

v f:. v1' ••• , vk -1 such that count(v) = O. Suppose that the content of U, 

at that moment, is Y1 ••• Yr' and assume without loss of generality 

that Yr = v~ The computation of ALLTOPSORTS(k-1) then sets base := vk' 

q := vk and deletes vk from U. Afterwards, all edges of the for~ 

(v"' j), for j E A( vk ), are erased and if zl' ••• , Zs are such vertices 
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j whose count dropped to zero, then U is changed to YI'" 

In what follows, vk is output and the call AL~TOPSORTS(k} occurs. .At, 

that moment, deque U contains precisely those vertices v, such that 

v 1= vI' ••• , vk and count(v} = O. 

Lemma 2.2: 

If vI'" vk is the topological sorting subsequence, alread\" 

output at the entry of ALLTOPSORTS(k}, then at the exit of this computation, 

all topological sorting arrangements that begin with vI'" vk have been 

output. 

Proof: 

Induction on decreasing k. If k = N then by lemma 2.1 deque 

U is necessarily empty, which will produce an imrrediate exit from 

ALLTOPSORTS(k). Consequently, the lemma holds trivially, in this case. 

By the induction hypothesis, if vI ••• vk Vk +1 is a topological sorting 

subsequence that has already been output at the entry of All.TOI.:::/)Rf:::i (l. + I), 

then all topological sorting arrangements starting with vI'" Vk VkT 1 

have been output, at the exit of thi$ computation. Now assume 

the computation of ALLTOPSORTS(k}, with deque U containing y! y~ 

and vI ••• vk beting the subsequence already output, at the entry ')f rh.8 

procedure: the computation sets base := Yr and q := Yr' The t~a~ure 

of all edges (Yr' j) occurs for all j E A(Yr)' Assume zl' ••• , Zs 

to be those vertices j whose count drop to zero during this erasure. 

Therefore U is changed to YI ••• Yr-I zl ••• Zs and Yr is output. 

The call ALLTOPSORTS(k + 1) occurs and by the induction hypothesis, all 

topological sorting arrangements, starting with vI'" vkYr have been 

output, upon exit of this call. Next, the retri~val of the edges 
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(Yr , j) occurs for all j E A(y r ), which means that U is changed to 

Afterwards, Y r is inserted in the left of T..-, which 

becomes YrYl ••• Yr-l' The same process occurs again with q = Yr-1' 

Yr_2' ••• , Yl which cause calls ALLTOPSORTS(k+1) whose computations 

output all topological sorting sequences starting with v1 ••• vkJr-:' 

By return of the last 

of such calls and after retrieving the edges of the form (Yl' j) 

for all j E A(Yl)' and inserting Yl at the left of U, the contents 

of the deque is Yl Yr , which ensures exit from ALLTOPSORTS(k), 

since base = Yr is the rightmost vertex of U. Since, as a consequpnce 

of lemma 2.1, the vertices of deque U, at the entry of ALLTOPSORTS(k) are 

I 

precisely those vertices which - by the definition of topological sorting 

arrangement - can follow vertex vic in such an arrangement, we conclude 

that all topological sorting arrangements starting wi th v, ••• vic 

have been output at the exit of this procedure. 

2.4 Performance 

The performance of the method presented can be ev.'J.Luated b) 

the following theorem: 

Theorem 2.1: 

Let D(V, E) be an acyclic digraph of N vertices an'l M edge.;;, 

input to algorithm 2.1. Let T by the total number of distinct 

topological sorting arrangements, of the vertices of D. Then the 

algorithm requires O(N+M) space and O«N+M)T) time, for the output of 

all such T arrangements. 
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Proof: 

The space bound follows from the fact that the representaticl. 

of the digraph by a set of adjacency lists requires O(~-~!) space. and 

the remaining data structures require O(N) space. For the time bound. 

we observe that the cost of the output of one vertex v, in any 

topological sorting arrangement corresponds, at most, to the cost of the 

execution of one iteration of the repeat block - without considering 

the recursive call of ALLTOPSORTS inside this block, whose cost is 

charged to the corresponding vertices that are output in its computation. 

The cost of each such iteration is O«outdegree(v» and corresponds to 

the erasure and retrieval operations, since all other computations, 

inside this block, can be executed in a constant number of steps. 

Since in each topological sorting arrangement, at most N vertices are 

output - and they are all distinct - we conclude that O(N+M) time is 

required, at most, per arrangement. On the other hand, precisely one 

call of the type ALLTOPSORTS(N) is invoked for each arrangement; these 

calls find deque U empty and therefore require O( T) time, for the '.'!11)1E' 

process. Since O(N+M) time is spent by the algorithm, outBid.; the 

recursive procedure, we conclude that the total time bound, for thE- i~", 1i r.· 

computation, is O«N+M)T). 

2.5 Further remarks 

As mentioned in section 2.2, the algorithm Suppll:,es that the 

input digraph is represented as a set of adjacency lists. Clearly, t,,·c) 

acyclic digraphs that correspond to the same partially ordered set ~ill 

cause the algorithm to produce identical sets of topological sorting 

arrangements. However from theorem 2.1 we conclude that tht fewer 

the number of edges of the input digraph, the faster the process is 1 ih.· ly 
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to be. Therefore, for a given partially ordered set, the best result£ 

are obtained when the input corresponds to the minimal digraph represenT

ing the poset. 

The ordering in which the topological sorting arrangemt'nts ar~ 

output depends on the ordering of the vertices in the adjac&ncy list~. 

For instance, if zl' ••• , Zs are the vertices whose count dropped to 

zero during the erasure of the edges of the form (y, j), for j E A(y) 

which occured when the subsequence already output was v
1 

••• v
k 

- and 

assuming that if Zl precedes zJ in the adjacency list A(y) then i < j, 

thus we can conclude that the ordering in which those vertices z\ are 

inserted in deque U is precisely zl' Z2' However, as they are 

inserted at the right end of U, and also taken for output at its right 

we conclude that the first topological sorting arrangement to be output 

is of the form 

V 1 •• 0 vk y ... Zs Zs -1 ••• Zl ••• 

The digraph of figure 2.1, if input as the folluwing sequen,~e 

of edges 

(1, 3), ( 2, 1), ( 2, 4), ( 4, 3) and (4, 5 ) 

is represented by the set of adjacency lists show~ in figUl~ 2.2 ~nd 

causES ,algorithm 2.1 to print the five topological sorting a rranW'f!1,~nt" 

as displayed in figure 2.3. Observe that redundant printing has b~en 

suppressed. Note also that the amount of work required to cutput a 

certain arrangement is proportional to the number of vertices actually 

printed in this arrangement plus the sum of their outdegrees. For 

instance, in the output 

1 J 5 

of figur~ 2.3 - which corresponds to the topological sorting 24135 -

neither the vertices 2 and 4 nor the edges from them are manipulated. 
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Figure 2.2 

2 4 3 5 1 : 2 4 3 

5 3 
2: 5 3 

4 5 3 3 : 4 5 

3 5 
4: 1 see line! 

5 3 

Figure 2.3 
Figure 2.4 
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In fact, the number of times in the entire process that the upper tim~ 

bound O(N~M) per output arrangement is attained equals the number of 

source vertices in the digraph. This value also equals the number of 

arrangements which are "fully" printed, i.e. in which all N YE'rti.;E's or .. 

explicitly printed. For the output of all other arrangements the bound 

is not ,attained. 

If the set of edges of the digraph is empty, Le. M -= O. an' 

permutation of N is a topological sorting arrangement. Therefore, the 

algorithm operates as a permutation generator and outputs all T = N! 

permutations of N. Observe that, in this case, the total number of 

elements (vertices) that are actually printed is 

N + N(N-1) + N(N-1) (N-2) + ••• + N! = ~!~ - 1. 

This follows from the fact that there are exactly N permutations in 

which the first element is printed, exactly N(N-1) permutations in 

which the second element' is printed, and so on. From this result, 

we conclude that the average number of elements that are printed per 

permutation, is about~, alld perhaps surprisingly, it is independent 

of N. For instance, when N = 4 a total of 64 element~ arr. printed 

for the 24 permutations, and the average number of printings per 

permutation is 64/24, about 2.66. When N = 5, a total of 125 element~ 

are printed, and the average is 325/120, about 2.70. The total time 

bound O( (N~-M)T), for the output of all T=N! permutations, b~c:,[;Je:; 

simply O(N!). This means that, within a constant factor, algorithm 2.1 

is also efficient, as a permutation generator. 

If N is large, the volume of output can be v-ery large, as it 

may be concluded from the above case. For this sort of digraphs an 

interesting way of reducing the output has been suggested by Knuth in 

[KnSz74J. The idea is to allocate 0(2N) more memory cells and to 
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modify the recursive procedure so that it "remembers" similar past 

situations. A new global variable, which corresponds t,o the current 

value of the set fV1 , ••• ,Vk} has to be added and the procedure 

ALLTOPSORTS ought to remember which sets it has seer before and ... here 

it occurred in the output. Whenever a set is repeated, the output 

can now be replaced by a simple cross-reference to the appropriate 

line. Figure 2.4 illustrates this new scheme of output, corrp~ponding 

to the input digraph of figure 2.1. 

The feature of "remembering" past situations can be applied to 

the problem of generating permutations with some additional ~implif;cations, 

suggesting therefore a scheme for obtaining all permutations of a given 

set with reduced output. In fact, suppose we want the permutations 

of [1, 2, ••• , N} using a strategy similar to that of algorithm 2.1, 

i.e. at every stage we are looking for permutations starting with the 

sequence xlx2 ••• ~ that has already been output. 

then this is the first appearance of this pattern. 

the smallest j ,1 <:j<N, such that x j _
1 > Xj • Thus, 

the first output of the type x 1 Xj shculd 

I f xl < xa <... <xk 

Otherwise, consider 

the pern,ll t,a 1", ion that 

rempmbGl' 1 ,0; precise:i,\ 

the first appearance of the pattern Pl Pj , where Pl· •• 1 : 
and 

Thi.3 can be 

easily detected in the algorithm if we do not allow Xl 0 o. xK to (,(;!h2,in 

Therefore, the algorithm can remEIntJ<'r if a .oiwi1-ar 

pattern occurred before simply by applying this test. Th<c re;-, a in ing 

problem is to find where that similar pattern occurred before, in the 

output. 

stored. 

This is also computable and therefore no patterns need to be 

To every permutation printed, a numeric label " is attached, 

calculated by: 

(i) s 1, for the first permutation printed 
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(ii) If s is the label of the current permutation xl'" ~ •••. 

then the next printed permutation will be labelled 

s + (N - j)!, 

where j is the smallest index such that x
J

_
1 

> x
J

• 

If~no such j exists, then s = 1, and define j to be equal 

to N. 

Observe that if all permutations had been printed applying 

a strategy similar to algorithm 2.1, then s would have been the sequent,ial 

line number of the corresponding permutation. Now the permutation 

Pl"· Pj which ought to be remembered and referenced from xl'" XJ ' 

has as label s, the value computed by: 

s (Pl' •• Pj) = 1 + ~ (N-i) ~ (PI - PI -1 -1), with Po - O. 
1=1 

This sch~me, therefore, can be implemented using just O(N) space. 

As an example, with N = 5, instead of printing the permutation, 

say (5)2341 ,-digits within parenthesis represent the redundant printing 

mentioned earlier -the following would Q0cur: since 5 > 2. we have 

We know that the pat 1A'rns (;crrespundi.ng 

to the set of permutations starting with 52 have al1E:a,l) been princ"d 

before, and there are a total of (N-j)! = 6 such patterns, startIng "'ith 

the label s, computed by: 

s(25) = 1 + 41(2-0-1) ~ 31(5-2-1) = 37~ 

Therefore, the printing of the permutations 

(5) :"2 J' 4 

(5) (2) (3) 4 

(5) (2) 4 3 

(5) (2) (4) 3 

(5) (2) 3 4 

(5) (2) (1) 4 3 
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which would have occurred in an algorithm like 2.1, would be repla~ed 1.

the single line 

(5) 2 ••• ~ 6 permutations from label 37 

and label 37 would be: 

37: (2) 5 1 see 2 permutations from label 5 

39: (2) ( 5) 3 see 2 permutations from label ?-
-I 

41 : (2) (5) 4 see 2 permutations from label 31 

label 5 would be: 

5 : (1 ) (2) 5 3 4 

6: (1) (2) (5 ) 4 3 

label 27 would be: 

27: ( 2) (3) 5 4 

28: (2) (3) (5 ) 4 1 

and label 31 would be: 

3·1 : ( 2) 4 5 3 

32: (2 ) (4) (5) 3 1 • 

2.6 Conclusions 

An algorithm for obtaining all topological sorting arrangement· 

for a given acyclic digraph has been presented. The algorithm 'ltili-of''' 

a recursive backtracking procedure which outputs each arrangement in at most 

O(N+M) time. An iterative machine-oriented translation of the ~lgQrithm 

appears in rKnSz74J. Both versions of it - recursive and iterative - have 

been implemented and as expected, the iteIauve version produced bett~r 

running times than the recursive one when both were applied to identical 

inputs. 

A simple test can be added to the strategy to enable it to 

detect the presence of cycles in the input digraph which is supposed t 
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be acyclic. If deque U is empty in any computation of ALLTOPSORTS(k) 

except ALLTOPSORTS(N), this means that the subdigraph forr..ed by the 

subset of vertices not yet output is such that no vertex has outdegree 

zero in it. Hence a cycle must exist. If a digraph D containiI.o! C\",- J ef. 

is input to algorithm 2.1 as it stands, then the output (;btained is the 

set of all topological sorting arrangements of a subdigraph D' of D 

such that D' is the maximal subdigraph of D which does not contain any 

cycle nor any vertex which is reachable from a vertex belong~ng to u 

cycle of D. 
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CHAPTER 3 

SOME GRAPH CYCLE ALGORITHMS 

3.1 Introduction 

Some problems, such as determining whether a grap'1 has cert ain 

properties, or constructing a set of objects related to the grapL admit 

of algorithmic solutions which have a time bound linear in the size of 

the graph. These include the p~oblems of finding: the strongly connected 

components of a directed graph [Ta72J, the biconnected components of a 

graph [Ta72J, the graph from its given line graph [R073], [Le74J, 

partitions of a graph into simple paths rHoTa73]. Testing planarity 

of a graph can be performed in a time just proportional to the number of 

its vertices fHoTa74]. Clearly, any algorithm for obtaining and 

explicitly listing, a set of objects related to the graph mURt be at 

least proportional to the total number of such objects. If this number 

grows exponentially with the size of the graph, the algorithm has an 

exponential running time. For such problems, a given algulithm may 

be additionally characterized by introducing a time bound per object 

obtained, and two algorithms can be compared according to their bounds 

per object. The problem of finding all elementary cycles of a directed 

graph falls into this category. Among the great number of eye 1,· d. '.gL'ri thms 

surveyed by Prabhaker and Deo [D" De74 ] the algorithm by Johnsr)n C"(73a. ] 

presents the best time bound, namely a linear bound in th~ ~jL~ of the 

graph, per cycle. This algorithm was devised by imposing further constrain 

on the backtracking performed by an alrea4y constrained backtracking 

algorithm rTa73]. 

The present thesis proposes a cycle finding algorithm that has a 

similar (worst case) time bound as [J073aJ. However, while maintauiil'6 
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all the constraints of [J073aJ, we a . t t· . _ re proposIng new s ra ·egles t.lat ref: ",!?nt 

further restrictions to the backtracking. 

The elementary cycles algorithm for digraphs has been also 

adapted for handling undirected graphs, resulting in an algorithm for 

solving the problem of finding all elementary cycles for undirected gra}!ls. 

So far this method has been shown to be more efficient. than '11gorithms 

specially devised for undirected graphs. 

Another cycle problem considered in this chapter consists of a 

method for finding a fundamental set of cycles for an undirected graph. 

This problem is less complex than finding all the elementary cycles, as 

it can be verified from the discussion of the problem, later in this 

chapter. Our proposed solution may be regarded as a variation of an 

algorithm by Paton rPa69J. 

Section 3.2 to 3.6 of this chapter, handles the problem of finding 

the elementary cycles of a digraph: a discussion of some pxisting methods 

is the subject of section 3.2; section 3.3 presents our proposed 

algorithm, which is shown to be correct in 3.4: the evaluati,Hl of jts 

performance appears in section 3.5; a more detailed appreciation of 

Johnson's algorithm [J073a] and its comparison with our propLsed m~thod 

constitute section 3.6. Finding a fundamental set of cycles of an 

undirected graph is the subject of sections' 3.7 to 3.10: an overyiew 

of some existing methods appears in section 3.7; our propcs<'cl strategy 

is described in 3.8; and its correctness and performance are discussed 

in sectio~s3:9 and 3.10, respectively. The problem of finding the 

elementary cycles in an undirected graph is handled in sections 3.11 to 

3.14: a general appreciation of the problem is presented in section 3.11; 

our proposed method is described in section 3.12; remarks about its 

correctness and an evaluation of its performance constitute sections 3.' 
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and 3.14 respectively. Finally, some further comments about th~ result

which appear in this chapter form the content of section 3.15. As already 

mentioned, the contents of 3.2 to 3.6 was reported in [SzLa75]. 

3.2 Elementary cycles in directed graphs 

Tiernan rTi70] finds all elementary paths vl, ••• , vk ' 

vl < VI' 1 < i $ k and 1 $ k $ N. If (vk , v1)E E then the c)cle 

Vl' ••• , vk ' vl is enumerated. This strategy corresponds to an 

essentially unconstrained backtracking and was also presented by Roberts 

and Flores rRoFl661 and Berztiss rBe711. Floyd [F1671 has described a 

non deterministic version of this algorithm. Weinblatt [We72] also 

searches for elementa~y paths, but proposes to improve execution time by 

storing cycles already found and constructing new ones from these. In 

[Ta72], Tarjan gives examples illustrating that the algorithms [Ti70] and 

[We72] may take exponential time in the number of cycles enumerated. 

Lauer rLa73] discusses the generalisation of Tiernan!s algorithm to 

different representations of digraphs, improves storage requirements 

and proposes alternate proofs. Another backtracking algor.:. t·hm presented 

by Berztiss [Be73] has been shown by Prabhaker and Deo fPrDe74 j also to 

have a time bound exponential in the number of cycles. The algorithm 

by Syslo [Sy73~ Sy75] is also based on a backtracking strategy aQd 

constitutes a variation of Tiernan's method. 

Tarjan's algorithm [Ta73] is based on Tiernan's dep~h-first method. 

It makes use of two stacks, the point stack for stroing the path currently 

being examined and a ~ stack, as well as a boolean vector called mark 

vector. The mark stack is used as a set of pointers to the mark vector. 

Whenever a new cycle is found, all vertices in the current point stack 

will eventually be unmarked when popped from this stack. 
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If no cycle: is found involving a vertex, it will be deleted fror. the 

point stack, but continue to be marked. Some of the unnecessary work 

done by Tiernan is avoided by the condition that if a vertex is reached 

but is found marked, then it is not re-explored at this stage. However, 

we mention two points where this algorithm' still does unnecessary work. 

First, whenever a vertex v is going to be unmarked because a cycle 

involving it was found, all the vertices that are above v ill th~ mark 

stack will also be unmarked, even if some of them are involved in no 

cycle. Second, Tarjan follows Tiernan's principle of only searching 

for elementary cycles v.l' ••• , vk with v.l < vi' 1 < i :a k, where Vj 

is the vertex at the bottom of the stack, called start vertex. The 

inefficiency involved in this is discussed in section 3.6. 

rTa73] is bounded by O(N.M(C+1)) time and O(N+M) space. 

The algorithm 

Another method was developed by Ehrenfeucht, Fosdick and 

Osterweil rEhFoOs73] which includes both breadth-first and depth-first 

search, and makes use of an additional phase for collecting information 

about the digraph. This pre-processing requires O(N3) time and the actual 

process enumeration of the elementary cycles is bounded by O(N. M) tim~ 

per cycle. 

The algorithm by Read and Tarjan rReTa73] first determine~ the 

set of all start vertices, to be used later during the search. r.:a~h 

strongly connected component is processed separately, and ~ vertex s ~ill 

be used as a start vertex if there exists an edge (r,s) wh~re r lS a 

descendant of s in a directed rooted tree, generated by a depth-first 

search. For each start vertex s the algorithm invokes a recursive 

backtracking procedure gACKTRACK~s), which inQtiates the construction 

of an elementary path from s. If a recursive call BACKTRACK(v) occurred 

then v had been added to the current path before, and is the end of thi" 
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path. Assume the computation of BACKTRACK(vk ) and v1 , v:a' ••• , vk 

the current path. Initially, the set of connectable vertices is 

determined. A vertex w is connectable if there exists a path from w t~ 

s which does not involve any vertex of the current path. The path may 

only be extended with a connectable vertex w such that (vk , w)E E and 

therefore any addition to the path is sure to lead to a new elementary 

cycle. If w=s then such a cycle has been found. Otherwise a recursive 

call BACKTRACK(w) occurs, unless there is exactly one edge (w,x) from w, 

such that x is connectable. In this last alternative, x is assigned to 

wand is added directly to the path, with no call BACKTRACK(x). This 

process is iterated until either w=s or there is more than one connectable 

vertex x, with (w,x) E E. 

The above strategy is therefore simple and elegant. However, 

it has an important drawback, which is the cost of the determination of 

the connectable vertices. Consider the digraph of figure 3.1, with 

N=K2 -K+1 vertices, M=K2+K-2 edges and C=2K-2 elementary cycles, and a 

numbering of the vertices as obtained by a depth-first search fTa72J. 

The algorithm would find [1,2, ••• ,K} to be the set of start. vertice'3. 

Let us examine the computation with start vertex 1. When a vertex 

v E[2, ••• ,Kl is added to the current path, at any stage of the 

computation, there exist exactly two vertices w,(v,w) E E, 

which are connectable, namely, a vertex from the subdigraph B , rJwl 
V 

vertex v+1 if v ~ K or vertex 1 otherwise. Consequently, ea~h ~lme a 

vertex v~1 is added to the current path, a call BACKTRACK (v ) (I,' ~urs. 

Therefore, for the enumeration of the K-2 elementary cycles (1,2,3,4, ••• , 

K,1; 1,3,4, ••• ,K,1; ••• ;1,K-1,K,1) with start vertex 1, a total of 

(K2 -K)/2 calls of BACKTRACK occur. Since for the computation of the 

connectable vertices, in each of these calls, everyone of the K2 -K+1 

vertices is explored (Le. marked unconnectable), the algorithm rf:'q:.lir .~ 
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at least 0(K4) time. 

bound 0(N+(C+1)M). 

This contradicts [ReTa73l which mention.;; the tim· 

However, the algorithm [ReTa73] could be implemented in such 

a way that by introducing a convenient scheme of lists, vertices tbat w.cre 

already unconnectable at the beginning of the computation for the GUrr9nt 

connectable vertices, would not need to be marked unconnectable again. 

For evaluating the performance of the algorithm in this case, consider the 

digraph of figure 3.2. It was obtained from figure 3.1 by appending 

K subdigraphs to the sUbdigraph 1\, as indicated. Any subdigraph Ex 

of figure 3.2 is isomorphic to any subdigraph BJ , of figure 3.1, hence 

we still have, for the digraph of figure 3.2, N=0(K2 ),M=0(K2 ) and C = O(K). If 

vertex 1 is the start vertex, again a call BACKTRACK(v), vf1, follows 

the addition of vertex v to the current path and therefore (K2_K)/2 

calls of the procedure are invoked. Upon exit of any of the 0(K2) 

calls of BACKTRACK(v) , with vfK and start vertex 1, all 0(K2) vertices 

of 1\ , 1\ +1' . " . , B2k are connectable and therefore they ought to be 

explored in every one of those O(Ka) computations. Therefore 0(K4 ) 

time is required for this digraph and we conclude that the time bound 

is not 0(N+(C+1)M) even if this more efficient implementation is 

realized. A time bound for this algorithmis O(N+M+NMC). 

The algorithm by Johnson r Jo73a] also employs the tecbn'q'J,<c 

of constructing elementary paths from a start vertex, in a stach. Foe 

each strongly connected component, the start vertex is chosen so as to be 

the least vertex of this component. Subsequently, a new maxim~l strongly 

connected partial sUbdigraph is obtained, which does not contain that 

vertex. The new start vertex is chosen to be the least in this partial 

subdigraph and so on. For each start vertex s, a recursive backtracking 

procedure is invoked and its computation is similar to that of T~rjnn'~ 
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algorithm, except for the marking system, which was considerably enhanc~d. 

A vertex v is marked each time it enters the stack. Upon leaving the 

stack, if an elementary cycle wits found involving v and the start verte-, 

5, then v is unmarked. Otherwise, it remains marked until another vertex 

u is popped from the staCk and such that an elementary cycle existed 

involving u and s, and there exists a path from v to u consisting of 

vertices that are marked and not in the stack. Johnson implements this 

strategy efficiently, using ascheme of lists B, one list B(v) per vertex 

. v. At any given moment, B(v) contains those vertices u such that 

(u,v) E E and u is marked and not in the stack. The actuaJ unmarking 

is performed by a procedure UNBLOCK(v) which will recursively call 

, UNBLOCK(u) , if uEB(v). This algorithm is bounded by 0(N+(C11)M) time 

and O(N+M) space. Further remarks concerning this method and comparisons 

with the proposed algorithm can be found in section 3.6. 

3.3 The Proposed Algorithm 

Our algorithm also uses a recursive backtracking procedure but 

a more efficient system for detecting elementary cycles. This dete;tj.)n 

occurs as soon as the elementary cycle is generated anywhere in the 

current path under examination. This path is kept in a stack (Tarjan's 

point stack). The boolean vector is retained but not the mark stack. 

Instead, we have utilised and slightly modified Johnson' s ma ... ~k:inl~ ".y 0 <,em 

using one Imt E{v) , per vertex v. A vertex u is inserted in lis~ B(v) 

if (u,v)E E and the exploration of edge (u,v) has not lead to 3. new 

elementary cycle. In addition to these structures, we use a ~osition 

vector and a boolean reach vector. If a vertex v is the j-th vertex 

from the bottom of the stack, then position (v)=j; when v is deleted 

from the stack then position (v)=N+1. If a vertex v has not yet left 

the stack for the first time, then reach(v) = false, otherwise reach(v) 
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= true. A vertex v is marked v,hen it enters the stack, and the mark i~ 

kept at least as long as this vertex remains in the stack. Upon leaving 

the stack, v is unmarked only if a new elementary cycle was found with 

v but not necessarily with the vertex at the bottom of the stack (start 

vertex). If v leaves the stack with the mark on, then it will be 

unmarked when a vertex zlis popptld from the stack in such a l-.ay tnat 

a new elementary cyc~e was found with Zl' and there exists a path 

zk' ~_l' ••• , zl,(zk = v) such that zl+l E B(zl), k< i ~ 1, at that 

time. 

The digraph is represented by a set of adjacency lists with one 

list A(v) per vertex v. A pre-processing is performed to find the strongly 

connected components of the digraph, using the method described in [Ta72J. 

Fo~ each strongly connected component a start vertex is chosen to be the 

vertex with maximal indegree in this component. The present method 

ensures that, when this start vertex is deleted from the stack, all 

the elementary cycles of this component have been enumerated. Therefore 

only one start vertex per component is required. As it can be obs8rved 

from the proposed strategy, if a start vertex would have beei' chosen t(\ l)c 

an arbitrary vertex of the digraph - instead of a vertex with maxima] 

indegree in a strongly connected component - the algorithm could be 

easily modified so as to avoid finding the strongly connected con'pnne:'. t <;. 

The modified algorithm would have the same time bound as the UE" 

currently described. 

The basic idea of the algorithm is similar to all preyiously 

described methods, namely to try to extend the current elementary path 

under examination. Consider the case where the content of the stack is 
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If vk is not marked then necessarily vic is not in the s~aek, 

the elementary path will be extended with vic' and an edge frl"," 

vk will be examined. 

(ii) If vk is marked and not in the stack then necessarily, there 

(iii) 

can be no new elementary cycles generated from the path 

v1 , vz, ••• , vlc - 1 , vic and therefore vic is not rE-explored, 

at this stage. Vertex vlc _ 1 is inserted in list B(v
lc

) and 

vic is deleted from A(vlc _ 1 ). 

If vk is marked and lies in the stack then an elementary 

cycle was found, and it can be recorded at once. The algorithms 

rWe72l and [Be73] also consider this cycle at that stage. 

However, some efficient algorithms as rTa73], rEhFoOs73], 

[J073a] and r ReTa73l disregard it, if vic is not the start 

vertex. The problem that arises when considering such a 

cycle with vk~l' is that a mechanism for detecting duplicate 

cycles must be set up. The nature of this mechanism 

follows from the observation that a cycle is a ~ cycle, 

if and only if at least one of its verticps had never been 

deleted from the stack. The fact thai it has nut been deleted 

before is indicated by setting a variable q, local to the 

recursive procedure. For a given computation of this proc1·dIU'., 

q indicates the top most vertex of the stack that has n8V~1 

been deleted from it. Therefore, if pos i L "n (v
k

) :s; q a 

new elementary cycle is found. Otherwise, thIS is a duplicate 

cycle: vk -1 is inserted in B (vic) and vic is deleted from A( Vic -1) • 

In cases (ii) and (iii), when Vic is marked the elementary path 

is not extended. If a certain elementary path cannot be extended any 

more, the algorithm backtracks to the previous vertex in the stack, and 
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so on. When the start verteK is deleted from the stack, a new strongl~ 

connected component is considered,and so on, until alIt such components 

have been processed. 

Below is an ALGOL-like formulation of the proposed algorithm. 

The combined action of variables f and g ensures the correct propagation 

of the information that a new elementary cycle was found with a certain 

vertex v at the top of the stack, for all vertices that are below v in 

the stack. The following procedure CYCLE processes only non-trivial 

strongly connected components (those which have more than one vertex). 

If this condition is relaxed then the algorithm would still be correct, 

but corollary 3.1 of section 3.5 would have to be reformulated. 
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ALGORITHM 3.1 

begin comment algorithm for finding the elementary cycles of a digraph; 

procedure CYCLE (integer value v,q; logical result f); 

begin procedure NOCYCLE (integer value x,y); 

begin insert x in B(y); 

delete y from A(x) 

end NOCYCLE; 

procedure UNMARK (integer value x); 

begin mark(x) ,- false; 

for y E B(x) do 

begin insert x in A(y); 

if mark(y) then UNMARK(y) 

end; 

empty B(x) 

end UNMARK; 

logical G; 

mark(v) .- true; f:= false; 

insert v in the stack; 

t := number of vertices in the stabk; 

position(v) ,- t; 

if ~ reach(v) ~ q ,- t; 

for w E A(v) do 

if ~ mark(w) then 

begin CYCLE (w,q,g); 

if g then f := true else NOCYCLE(v,w) 

end 

else if position(w) S q then 

begin output cycle w to v from stack, then w; 

f := true 

end else NOCYCLE(v,w); 

delete'v'f~om stack;. 

if f then '-lJN!'1A.RK( v) ; 

reach(v) := true; 

position(~) :=\N~1. 

end CYCLE; 

read the digraph D; 

find the adjacency lists A of the strongly connected components of D; 

for j:=1 step 1 until N do mark(j):= reach(j) := false; 

for each non-trivial strongly connected componen~ do 

begin s := vertex with maximal indegree in this component; 

CYCLE (s, dummy, dummy) 
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3.4 Correctness 

Let D(V,E) be an input digraph with no trivial components. 

Lemma 3.1 : 

Eve~y vertex v E Venters the stack at least once. 

Proof: 

Let S denote the strongly connected component of D which 

v belongs to, and s E V denote the chosen start vertex of S. Clearly 

the call CYCLE(s, dummy, dummy) occurs and thus s enters the stack. 

Since all vertices v, vfs of S are unmarked at the time of this call; 

and since s reaches v, by induction it can be shown that every vertex 

will eventually be added to the stack. 

Lemma 3.2: 

If vI ••• vk constitutes the stack at a given moment, and a 

new elementary cycle is found with vk then all vertices vI , ••• , vk 

are unmarked upon leaving the stack. 

Proof: 

At the time this cycle is detected, variable f is set to true, 

which ensures that vk is unmarked upon leaving the stac~. Becau~e of 

the statement 1£ g then f := true executed at the return of each 

recursive call of CYCLE, an inductive argument show~ that a call ~""M.ARK(vl ) 
.. 

1~i~ occurs when V f is popped from the stack. Therefore, each VI 

is unmarked at that time. 

Lemma 3.3 

Let vI' ••• ,vk ' vI be an elementary cycle, such that vI ••• v k 

or a cyclic permutation of it have already appeared in thE: k top positions 

of the stack at some earlier time, and at least one of the~e vertices 

has b~en deleted from it before. If vI ••• vk now occupy the k top 

positions of t~e stack, then all vI' ••• , vk have already been deleted 

from it. 
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Proof: 

If exactly the configuration vl ••• vk appeared before as th~ 

k_ top positions of the stack, this means that the configuration of 

the stack below vl on that occasion was different from that below 

vl on the present one, because the backtracking search strategy ensures 

that a given configuration of the stack can never be repeated once its 

top vertex is deleted. Therefore, all vl , ••• , v
k 

have already left 

the stack. If instead, a cyclic permutation vJ ••• v
k 

vl ••• V J -1 (j~1) 

appeared before as the k top positions of the stack, we also conclude 

that all these vertices later left the stack, since vl is above vJ 

in that configuration and below vJ in the present one. 

Lemma 3.4: 

Let zl , ••• , ~ be an elementary path, (~,v) E E, where v is 

a vertex in the stack that has never been deleted from it. 

zl , ••• , ~ are not in the stack, zl is unmarked. 

Proof: 

Then j.f 

By induction on the inde_x k. For zk the lemma holds, because 

before the first time ~ is reached, ~ is unmarked (by the initialisation) 

and because (zk ,v) E E by lemmas 3.3 and 3.2, we c(;lldude that ~ is 

unmarked each time it leaves the stack. By the induction hypothesis, 

if za' ••• , ~ are not in the stack, za is unmarked. Assume now tl~at 

Zl' za, ••• , zk are not in the stack. If zl has not been explored yet 

or a new elementary cycle was found with zl in its la~t exploration, then 

Zl is unmarked, and the lemma is satisfied. Suppose Hen that no new 

cycle was detected with zl at the last time zl was in the stack. Therefore, 

the exploration of edge (Zl' za) would cause zl to be inserted in B(za), 

and at the time zl left the stack with the mark on, za was also marked. 

Hence if zl , za, ••• , ~ are now not in the stack, we can apply the inductioI, 

hypothesis and conclude that a call of UNMARK(za ) occurred for unmarking z~. 
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Since zl E B(za) a recursive call UNMARK(zl) also occurred and zl 

is unmarked. 

Lemma 3.5: 

Let Vl , ••• , vk ,vl be a convenient cyclic permutation for an 

elementary cycle, such that vl was the first among Vj' 1~j~k to ever 

enter the stack. Then there exists a configuration of the stack, such 

that before v1 leaves the stack for the first time, v1va ••• v j ' 1$j~k 

appear in the j top positions of the stack. 

Proof: 

Induction on j. For j=1 the lemma holds, trivially by its 

hypothesis. By the induction hypothesis, v1 ••• Vj_l occupy the j-1 

top positions of the stack and vl has not yet left the stack. 

Since (Vj_l' Vj) E E this edge will eventually be reached. Because 

Vj _1 can only leave the stack after all the edges from it have been 

examined, we conclude that when (Vj_l' v j ) is going to be examined 

the j-1 top positions of the stack are still v1 ••• Vj_l and v1 has not 

yet left the stack. Also no vp ' j$P~, at that moment is in the stack, 

because otherwise vp would be llnderneath vl' which contradicts t.he fact 

that Vl entered the stack before vp and has not left it. In addItion, 

v j ' ••• , vk is an elementary path and (vk ' vl)E E. Therefore, by lemma 

3.4 we conclude that Vj is unmarked and hence will be plac~d on top of 

v j _1 , in the stack. 

Comment: Because of lemma 3.1, the hypothesis of lemma 3.5 

that vl was the first among Vj ever to enter the stack, is consistent. 

Lemma 3.6: 

If a vertex is in the stack, it is marked. 
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Proof: 

If a vertex enters the stack it becomes marked. 

then to prove that it is not unmarked while in the stack. 

We have 

Note that an 

unmarking process can only be initiated by a call UNMARK(z} where z is a 

vertex which is presently being deleted from the stack, and which was 

involved in a newly detected elementary cycle. Assume this is the 

case and the problem is to show that UNMARK{z} will not unmark any vertex 

in the stack. Suppose vertex wl is in B{z} at the time of this call. 

Then when w1 entered B{z}, either w1 was above z in the stack, or z ,,-as 

marked and not in the stack. The latter alternative cannot occur, since 

later z entered the stack, which ensures that z was unmarked and its 

unmarking emptied B{z). Therefore w1 was not in the stack when it was 

unmarked. By an inductive argument it can be shown that if the call 

UNMARK(z) invoked recursive calls UNMARK(w,}, then all w, entered the 

stack necessarily after z, and hence are not in the stack at the time the 

call UNMARK(z) occurs. 

Lemma 3.7: 

Each elementary cycle of D is listed at least 0~~e. 

Proof: 

Let v1 , ••• , vk ' vl be an elementary cycle of D, ?Ilch that 

vl was the first among v1 , ••• , vk ever to enter the stack. By lemma 

3.5, VJ v
k 

will eventually occupy the k top positions of the stack 

before Vl leaves the stack for the first time. If v1 has not yet 

left the stack, at the start of the computation of CYCLE with v = v:' 

reach (Vl) = false and therefore q was set to position (v1 ). Thus, we 

can conclude that parameter q passed to the computation of CYCLE with 

v = vk satisfies position (v1 ) ~q. In addition, by lemma 3.6 we conclude 

that the examination of edge (vk , v1 ) in this last comput~tion will find 

mark (Vl) = true. Hence, the cycle v1 , ••• , vk ,v1 is listed. 



69. 

Lemma 3.8: 

Each elementary cycle of D is listed at most once. 

Proof: 

Let v1 , ••• , vk ,v1 be an elementary cycle of D which has 

already been generated and assume v1 ••• vk occupy the k top positions 

of the stack. By lemma 3.3 we conclude that all v
1 

, ••• , vII: have 

already been deleted from the stack some time before. Therefore, 

reac4 (v1 ) = ~ at the start of any of the current computations of 

CYCLE with v :;:: v J ' for 1~j~. Consequently, position (v
1

) > q in any 

of these computations. Thus, the exploration of the edge (v
k

' v
1

) 

will not Qause the cycle v1 ' ••• , vk ' vl to be listed. 

Theorem 3.1: 

The proposed algorithm for finding all elementary cycles 

of D, is correct. 

Proof: 

Lemmas 3.7 and 3.8. 

3.5 Performance 

Lemma 3.9: 

Let D be a strongly connected component of a digraph input 

to the program., If a vertex v changes from marked to unmarked twi I:e, a 

new elementary cycle is enumerated. 

Proof: 

If v is in the stac~ and a new elementary cycle was found with 

v the lemma is satisfied. Assume then that v left the stack" i th the 

mark on, and let z denote the top most vertex of the stack with which 

a new elementary cycle was later found, and whose unmarking would 

eventually invoke a recursive call of UNMARK(v). Assume this call 
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occurred and denote by u2 and ul respectively the top and bottom 

vertices of the cycle to which z belongs (figure 3.3). Thus, there 

exists an elementary path v, ••• , z, ••• , ~, whose vertives are all 

unmarked by the return of this call. Therefore, if venters the stack 

afterwards, so does ~. Assume this case, and suppose that ul has not 

left the stack in the meantime. Then the exploration of edge (~, ul) 

would lead to a new elementary cycle ul ' ••• ,u2 'Ul • If on the other 

hand, ul had left the stack when ul? is reached, this means that at. least 

one new edge from a vertex w, below the first position of ul in the stack 

was explored for the first time. Since the processed digraph is strongly 

connected, a new elementary cycle ••• ,w, ••• is detected with this edge. 

ua 

• 
-• , 0 0 

"'" z 
v 

0 

• 
• 
/I 

• vertices 

• not yet 
ul deleted from 

the stack 
• • 
~ 

w 

• • 
• 

Figure 3.3 
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Theorem 3.2: 

Let D be a directed graph with N vertices, M edges and C 

elementary cycles, input to the program. Then 0(N+(C+1)M) time and 

o (N+M) space are required to enumerate C elementary cycles. 

Proof: 

The space bound follows from the fact that the representation 

of the digraph by adja~ency lists requires O(N+M) cells, the B lists 

require also O(N+M) cells and the remaining data structures require O(N). 

The time bound follows from lemma 3.9. A vertex can enter the stack 

at most twice between the output of two new elementary cycles. Conse-

quently, a given edge can be explored at most twice during this time. 

Also because of lemma 3.9, a recursive call UNMARK(v) from the computation 

of UNMARK(w) , for (v,w)~ E, can oq~y occur at most twice between the 

detection of new elementary cycles. The same results apply for the 

situations be~ore the first cycle is output and after the last one. 

Also we observe that any deletion or insertion in lists A and B occurring 

during the process can be performed in a constant number of steps. Thus 

a time bound per cycle is O(N+M). If D1, ••. ,Dp are th~ strongly connected 

components of D, having respectively, ~ vertices, ~~ edges 9.nd C1 

elementary cycles, 1~i~p, then an upper bound for the output of the C1 

cycle s of D1 is 0 ( (Nt + Ml ) (C, + 1». If D, is non-trivial then MI~ N" 

otherwise ~ = 0, and consequently, this bound can be expressed by 

O(Nt + ~CI)' Since finding strongly connected components of D, in the 

initia~isation of the process, consumes O(N+M) time, we ~onclude that the 

total time bound is 0(N+M(C+1». 

Corollary 3.1: A time bound per cycle is O(M) for any elemental'.\' cycle, 

except for the first enumerated, whose bound is O(N+M). 
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3.6 Critical Remarks 

Prabhaker and Deo [PrDe74] have already shown that so far, the 

most successful cycle-finding algorithms are those based on a baoktracking 

search strategy. Tiernan's algorithm adopts an essentially unconstrained 

backtracking. The main difference between the algorithms of Tiernan and 

Tarjan is that the latter has introduced a marking mechanism which avoids 

the exploration of a vertex if this vertex is found marked when it is 

reached. This situation can occur even if this vertex does not lie in the 

path currently under examination. As a result the backtracking becomes 

constrained. The basic difference between the algorithms by Tarjan and 

Johnson is that the latter has modified and improved the marking system. 

If an elementary cycle is found with a c-ertain vertex v, then upon v 

leaving the stack, Tarjan unmarks v and all vertices of a set Z which is 

the set of vertices which are marked, not in the stack, and which entered 

the stack for the last time, after v. Instead, Johnson unmarks v and only 

s~ch vertices zEZ for which there exists a path from z to v, involving 

solely vertices of Z. Also, all N vertices become start vertices in 

Tarjan's algorithm. In Johnson's method, for each strongly connected 

component the number of start vertices equals the numliE'r of vertices 

v such that there exists an edge to v, from a descendant of v in a 

directed rooted tree, obtained by a depth-first search of this component. 

These conditions represent further constraints to the backtracking. 

The principal difference between Johnson's algorithm and the 

present one is that we detect an elementary cycle, as soon ~s it appears 

in the top positions of the stack. Consequently, while exploring a 

vertex v we do not seek exclusively cycles involving v and the start 

vertex, but any other new cycle is considered. Since this earlier 

detection means that the algorithm will not initiate an explicit ne" 

search aimed to find this c~cle, as [Jo73a] does, this new strategy 
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imposes a further constraint on the backtracking. Also unlike iJ073a' 

for each non-trivial strongly connected component the present algorithm 

considers exactly one start vertex. Another difference between the tl.O 

strategies lies in the marking system: if w:is a vertex that is marked 

and (v,w)E E then in the proposed method only one unsuccessful exploration 

of edge (v,w) can occur whilst w remains marked. In rJ073a] each time 

vertex v is found unmarked, an exploration of edge (v,w) certainly occurs. 

The effect of these differences in the actual manipulation of digraphs may 

be appreciated in the following examples. 

The digraph of figure 3.4 has N vertices, 2N-3 edges and N-2 

elementary cycles. It has the property that certain vertices (1,2 and 3 

in the example) are involved in every possible existing cycle. Digraphs 

with this property seem to provide favourable examples for Johnson's 

algorithm because if one of these special vertices is the start vertex 

then each elementary cycle is generated only once. In fact, for such 

digraphs both algorithms (rJ073a] and the present) may perform exactly 

the same number of steps, for identical adjacency lists. In figure 3.4 

the start vertex is vertex 1 for both algorithms, and both ~ould explore 

each edge exactly once in the search for the N-2 elementary cycles, 

thus requiring 2N-3 steps, for termination. Note that by number of 

steps we mean the frequency of execution of a given statement which has the 

highest frequency among all by the end of the process (this corn'iponds 

to the number of edge explorations). If the digraph is re-Iabelled 

such that the new vertex 1 is the previous vertex 2, John"'ln's algorithm 

would take 3N-6 steps, because the previous vertex 1 (and the edge 

from it to the new vertex 1) suffers N-3 additional exploration:3. Since 

this vertex is the vertex with maximal indegree, the present algorithm would 

always consider it as start vertex and consequently would find all elementar.Y 
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Figure 3.4 
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cycles in 2N-3 steps. For this class of digraphs, the worst case for 

Johnson's algorithm occurs when the vertices are labelled as in figure 

3.5, in which the subdigraph composed of vertices N, N-l, N-2, is 

explored N-2 times, the subdigraph composed of N, N-l, N-2, N-3 is explored 

N-3 times, and so on. A total of N(N-2) steps are required for the 

enumeration of the elementa~y cycles of this digraph, using [J073a] 

compared with 2N-3 using the present method. 

Concerning the choice of the start vertex, we have adopted 

a different strategy from [J073a] which always chooses the least vertex as 

start vertex o Our approach is based on the fact that if Vl, v2"'" vk ' vl 

and v{, v~, ••• , v~, v{ are elementary cycles involving precisely the same 

vertices, v1 = v{ and there exists an index j, such that vJ ~ vI, then this 

information is sufficient to recognise those cycles as non identical 

(Johnson has imposed as a further condition - following [Ti70]- that vl 

to be the least vertex of vl' v2 ' ••• , vk ). The alternative that has been 

adopted in the present method consists of choosing for the start vertex, 

one that is likely not to produce many unfruitful explorations of other 

vertices, in the search for elementary c~Tcles involving the start vertex. 

If vl is the start vertex and vJ is such that (vJ' Vl) E E, then every exploration 

of Vj lea~s to a new elementary cycle, hence is not unfruitful. 

Therefore, the choice. for the start vertex to be a vertex with maxiffial 

indegree among the vertices of the considered strongly connected component 

seems to be perhaps more appropriate. Observe that a similar choice 

could be made, as to which vertex to explore, among the vertices VZ,(Vl,V2)E E 

and vl the start vertex. Also, extend 
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this strategy to which vertex vJ to explore, among the vertices 'J 

such that (vJ _1 , vJ)E E, vJ - 1 being the vertex of the top of the stack 

and not having been deleted from it yet. 

Next consider the digraph of figure 3.6, with N vertices, 2~-2 

edges and N-1 elementary cycles. Johnson's algorithm woujl.d consider 

vertex 1 as start vertex, explore the path 1 N g tall , ••• , , enera e 

elementary cycles of the digraph, but since this algorithm only considers 

cycles involving the start vertex, only the cycle 1,2,1 is enumerated, at 

this Siage. Next, vertex 1 is deleted and a similar process occurs for 

the resulting subdigraph, with vertices 2, ••• , N. Vertex 2 is the new 

start vertex, path 2, ••• ,N is again reconsidered, and so on. It takes 

N(N-1) steps for enumerating all N-1 elementary cycles using the above 

strat~gy. The present algorithm would find all such cycles in the course 

of exploring the paths j,j+1, ••• ,N and j,j-1 , ••• ,1, where j is the start 

vertex, consuming precisely 2N-2 steps, for termination. Digraphs of 

this class have the additional property that for any start vertex chosen, 

the present algorithm requires 2N-2 steps, whilst in [J073a] there is no 

possible choice of the start vertex for which the algorithm requirP'5 

just O(N) steps. 

Consider now the complete digraph Ku, with n vertices. Sinc<-

a new elementary cycle exists with every possible exploration of a given 

vertex, any vertex is found unmarked, when reached, and this is true for 

both algorithms. Therefore, in the course of finding the elementary 

cycles involving the start vertex, all elementary cycles of f~ are 

generated, but rJ073a] would only enumerate those with the start vertex. 

Assume now, a modified version of fJo73a] with the marking system of the 

present algorithm incorporated. If Tn is the total number of steps required 

by the present algorithm to enumerate all elementary cycles of Kn then 
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II 

this modified version of rJ073al would require ~ T.1 steps, fer the 
.1=2 

digraph,Kn·Consequently, the total number of steps T; required by the 

actual Johnson's algorithm for enumerating all elementary cycles of ~ 
n 

satisfies T; > ~ Tj' n > 2. 
.1 =2 

as n increases. 

II 

Observe however, that L Tj tends to Til 
.1=2 

It should also be noted that in rJ073a] it is stated that this 

algorithm unmarks a vertex v, only if appending v again to some elementary 

path is sure to lead to finding an elementary cycle, which includes the 

path followed by v. However, we observe that in both rJ073a] and in the 

proposed algorithm, a vertex can be unmarked many times, without being 

involved in an elementary cycle when explored afterwards as can be seen 

in1the digraph of figure 3.7. The example of figure 3.7 with 3K+3 

vertices, 6K+2 edges and 3K elementary cycles, was shown by Johnson 

to be a worst case for Tarjan's algorithm. We can observe that both 

algorithms would unmark and explore each vertex of the subdigraph composed 

by vertices 2K+2, 2K+3, ••• , 3K+3, fov each elementary cycle existing with 

vertex 1 as start vertex, although no vertex of this subdigraph is 

involved in such cycles. For the enumeration of the 3K e le'T!':!ll ~,d.r'y 

cycles of this digraph, Johnson's algorithm requires 6K2+11K-1 steps, 

while the present algorithm requires 2K2 + 6K or 7K+1 steps, depending 

on which vertex, K+2 or 2K+2 respectively, was chosen for the 

start vertex. Note that in this last fortunate case (vertex 2K+2 the 

start vertex), each edge of the digraph is explored ju,' tJnce during 

the entire process, with the exception of edge (3K+3, 2K+2) which is 

explored K times. 

3.7 Fundamental set of cycles 

We consider now the problem: Given an undirected graph, find 



79. 

a fundamental set of cycles of this graph. A strategy for solving thi~ 

problem, commonly adopted by some existing methods, consists of 

performing the following steps: 

(i) Find a spanning forest of the graph 

(ii) Obtain the fundamental set of cycles, from the spanning 

forest, by successively considering edges from the 

graph, which do not belong to the forest. 

Welch rWe66] assumes the graph to be represented by an incidence 

matrix B=(b1J ). For each column j of the matrix if possible, a row i 

is chosen, such that i was previously unchosen and blJ = 1. If row i 

was chosen label the edge of the j-th column by i, and replace any other 

row k, such that ~J= 1, by the sum module 2, of rows il and k. This 

corresponds to the step (i) mentioned above. Each cycle of the 

fundamental set (step (ii» is obtained by combining an unlabelled edge, 

corresponding to column j, with edges labelled k, such that ~ J = 1. 

According to the analysis of Welch's algorithm by Gotlieb and Corneil 

[GoCo67l, the time and space bound for this method are O(N2M) and 

O(NM) , respectively. Gotlieb and Corneil have also presented a modif'jf'd 

version of Welch' s algorithm, which impro'ved running time whilst adding 

some extra space. However, the modifications introduced did not alter 

the most significant figures in the expressions of time and space bounds, 

and those remained the same: O(N2 M) and O(NM) , respectively. 

The algorithm rGoCo67] operates with the graph G, assumed to be 

connected, represented by an adjacency matrix A = (afJ ).- Like rWe66], 

this algorithm also performs the steps (i) and (ii) explicitly. For 

obtaining a spanning tree, the algorithm first constructs a N x ~ mat~ix 

B = (bIJ ), such that: for i~j, bfJ = 1 if ~J= 1 and ~k= O~ for all 
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k i~<j, and otherwise b'J = O. For i > j, it is defined bl : = b
JI

• 

Matrix Bcorresponds to an adjacency matrix of a forest, which is a 

partial subgraph of G. Then a T x N matrix C = (cIJ ) is constructed 

where T is the number of trees in that forest. This matrix is defined 

as follows: CI J = 1 if vertex j belongs to tree i, and Cl j = 0 otherwise. 

Vertex 1 is defined as belonging to tree 1 and if vertex k belongs to 

tree j, then clearly, all vertices reachable from k in B, also belong 

to ~ree j. The next step consists of transforming B into an adjacency 

matrix of a spanning tree of G by adding T-1 edges to it. This is 

accomplished by examining the T-1 rows of C, with fewest 1 'so There 

must be one edge for each of these T~l rows which joins the tree corresponding 

to this row to another tree in the forest. Therefore, when examining row 

i, if Clj = 1 with a jk = 1 and bJk = 0 then edge (j,k) is added to B, 

The spanning tree is now complete. Each 

edge that is now added to matrix B will produce a cycle in the fundamental 

set. However, note that the cycles ought actually to be traced back from 

B since, the simple addition of the edge in the matrix does not make the 

cycle explicit. Clearly, if the gr~ph is not connechd, then the al g'(Jri thm 

is asplied separately to each of the connected componentp. Gotlieb al1d 

Corneil have presented a detailed analysis of the algorithm from which it 

is deduced that the t~me and space bounds are 0(N3 M) and 0(~2), rebper.tj,ely. 

The algorithm by Paton [Pa691 also utilise 0< the graph rcprr.~sented 

by an adjacency matrix A=(aIJ ) but constructs the spanning tree using links 

from each vertex to its ancestor in the rooted version of lhe tree. 

Unlike the two previous methods, in rPa69] step (ii) - obtaining the 

fundamental cycles - is performed in parallel with step (i) - finding 

a spanning tree. The idea of the algorithm is as follows: The first 

vertex of the graph is considered to be the root of the spanning tree 



and each vertex in this tree is examined once. When one vertex i 

is examined, all vertices j such that alJ= 1 are considered. If 

j is already in the tree, then a cycle of the fundamental set has 

been detected. This cycle consists of the path from j to i in 

t~e tree, plus the edge (i,j). Otherwise, if j is not in the tree, 

tpen j is added to the tree, with the link corresponding to vertex j 

pointing to i, the ancestor of j. After the examination of edge (i,j), 

aJ1 is set to zero to avoid considering this edge twice. After all the 

edges incident to i have been examined, a new vertex already in the tree 

but not yet considered, is chosen. Paton points out that the Hest 

method for selecting this new vertex is the last element method, which 

consists of always selecting a non examined vertex which entered the 

tree last. This method has the advantage of simplifying the task of 

tracing the cycles which have been detected. From Paton's analysis of 

the algorithm, we conclude that both the time and space bounds are 

O(N2 ). The time bound includes the input of the graph and the generation 

of the cycles, but not its output. The actual output requires O(NM) 

time, since there are O(M) cycles in a fundamental set., eacL cycle wii.h 

O(N) vertices. A modification to this algorithm has beRn sugg~sted 

by Jovanovich [J074] which requires N cells less of memory. 

3.8 The proposed algorithm 

The basic idea of our algorithm for finding a fundamental 

set of cycles is similar to the three methods described, JJiu,ely to 

find a spanning forest of the graph and obtain the fundamental set of 

cycles by successively considering edges of the graph which do not 

belong to the forest. Like Paton's algorithm, we detect the cycles 

concurrently with the construction of the forest. 

points. 

The strategy of the present algorithm is based on two main 

First, since any spanning tree corresponding to a given 
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connected component of the graph, may be used to find the funda:nental 

set of cycles of this component, the simpler and more efficient the 

method for finding such a tree, the better the process. Second, 

since our aim is to generate a fundamental set of cycles and obtaining 

the spanning forest is just a step towards that aim, we do not need to 

construct the forest explicitly. Instead, when a given vertex v of 

the digraph is being considered, we only store, the information that is 

relevant to our purpose, namely the path from v to the root of the 

spanning tree under consideration. 

In relation to the first of the above points, observe that 

a depth-first search of the graph, as stated by Tarjan [Ta72] produces 

a spanning tree in O(N+M) time. Starting from the algorithm rTa72] we 

add a mechanism for detecting the fundamental set of cycles and also, 

we simrlify the process slightly by avoiding the explicit construction 

of the tree. 

Our variation of Tarjan's depth-first search algorithm uses 

a stack for storing dynamically the paths to the root of the trl'E. 

We represent the graph as a set of adjacency lists A, ,,-lith each edge 

(v, w) of the graph represented twice, namely vertex v in A(w) and vertex 

w in A(v). A vector position is also used. Before a vertex v is 

examined, we have position(v) = O. If v belongs to the stack an~ is 

its t-th vertex from the bottom, then position(v) = t. When y lea-,-es 

the stack, position(v) is set to N and remains unchanged unTil the end 

of the process. The algorithm makes use of a recursive backtlacking 

procedure BASIS which attempts to extend the path kept in the ~t~ck. 

Suppose that vertex v is at the top of the stack and edge (v,w) is 

reached. The following cases may occur: 
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If position(w) ; 0 then necessarily w is not in the sta~h 

and w has not been examined yet. A call BASIS(w) will occur 

which will insert w in the stack, so extending the path under 

examination. An edge incident to w is then examined. 

(ii) If position(w) = N then w has already been explored before 

(iii) 

and has been deleted from the stack. Since a vertex only 

leaves the stack after all the edges incident to it hav~ been 

explored, we conclude that edge (w,v) has already been consider~d 

when w was at the top of the stack and v was underneath w, 

in the stack. Therefore, we can noW disregard this edge 

and choose another edge incident to v, for examination. 

If position(w) = t-1, where t is the number of vertices 

in the stack, then w is present in the stack, immediately 

underneath v. This means that v has been inserted in the 

stack during the computation of BASIS(v), whose call occurred 

while exploring edges incident to w. Thus edge (v, w) 

has already peen considered before and can now be disregarded. 

Another edge incident to v is then selected. 

(iv) If 0 < position(w) < t-1 then necessarily w is 3un"'\"'11~r<' in 

the stack, not immediately below v. Hence this is the fir~t 

appearance of the edge (v,w) and a cycle of the fundamental 

set has been detected. This cycle can be considered at 

once and no extra work is required to trac~ it. 

consists of w, the vertices above it in the s 1 ack, then w. 

Again, the next edge incident to v is selected. 

After the examination of all edges incident to v, vertex v is del~tel 

from the stack and the algorithm backtracks to the vertex immediat,~ly 

below v, in the stack. When the vertex at the bottom of the stack is 

deleted, a fundamental set of cycles, corresponding to the connected 
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component of the graph which this vertex belongs to, has been obtained. 

Another vertex not yet explored, becomes the root of the spanning tree of 

the new connected component and so on, until all such components are 

considered. Observe that case (i) above corresponds to the exploration 

of an edge that is part of a spanning tree. Case (iv) corresponds to 

an edge that does not belong to a spanning tree in the forest and _hich 

produces a cycle in the fundamental set to be enumerated. Cases (ii) 

and (iii) correspond to the second instance of the exploration of an 

edge. Such exploration occurs since every edge is represented twice in 

the adjacency lists of the digraph. It follows from these observations 

that if the input graph has N vertices, M edges and K connected components, 

then exactly N-K edges are explored in case (i), a total of M edges are 

explored in (ii) and (iii), and exactly M-N+K are examined in case (iv). 

Below we present an ALGOL-like formulation of the strategy. 
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ALGORITHM 3. 2 

begin comment an algorithm for obtaining a fundamental set of cycles 

of an undirected graph; 

procedure BASIS (integer value v); 

begin insert v in the stack; 

end; 

t := number of vertices in the stack; 

position(v) ,- t; 

for w E A(v) do 

if position(w) = 0 then BASIS(w) 

else if position(w) < t-1 then 

output cycle w to v from stack, then ~; 

position(v) := N; 

delete v from the stack; 

read the digraph and construct the adjacency lists; 

for j:= until N do position(j) := 0; 

for j '- until N do 

if position(j) = 0 then BASIS(j) 

end 
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3.9 Correctness 

Let G(V, E) be a connected graph with N vertices, input to algorithm 

3.2 (if the graph is not connected we can assume, without loss of 

generality that each connected component is handled separately): 

Lemma 3.10 

There exists a spanning tree T of G, such that. at any 

arbitrary point of the computation of the algorithm the content of 

the stack between any two vertices v and w which belong to the stack, 

corresponds to the path in T between these vertices. 

Proof: 

Consider the graph T(X, Y), where X is the subset of V, 

whose vertices are at sometime inserted in the stack and for p, q·E X, 

(p,q)EY iff P and q occupy consecutive positions in any possible 

configuration of the stack through the process. By inspecting the 

algorithm, we'conclude that a recursive call BASIS(w) can only occur 

from the computation of BASIS(v) if w(EA(v) i.e. if (v, w)E E. 

Therefore, Y c E and T is a partial subgraph of G. Next K·· note 

that since the graph is connected, any of its vertices i.-.; TP d~hu,,: ... i:um 

the vertex at the bottom of the stack. Becau38 every vertex is inserted 

in the stack after being reached for the first time, we conclude that 

all vertices of G are eventually inserted in the stack, i.e. V=X and T 

spaqs G. Finally, since the call BASIS(w) can only occur if ., hao; 

not been present in the stack before and since the content ~ of the slack 

between wand a fixed vertex z below it, remains unchanged "Hil w is 

deleted from it, we conclude that there is an unique path in T between 

w and z, given by S. Therefore T is a spanning tree of G. 
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Lemma 3.11: 

Let (v,w) be an edge of G, which is not in the considered 

spanning tree T. Then when (v, w) is first explored, both v and w 

belong to the stack. 

Proof: 

Let (v,w) be first reached when v is at the top of the stack. 

If w does not belong then to the stack and has not been present in it 

before, we have position(w) = 0, Therefore w will be inserted in 

the stack, and the path between v and w in T, of lemma 3.10, will 

include edge (v, w) since these vertices are consecutive in the stack. 

This contradicts edge (v, w) not belonging to T. On the other hand, if 

w does not belong to the stack and has already been present in it before 

we have position(w) = N. Therefore, all epges incident to w had been 

explored sometime before, which contradicts the fact that edge (v, w) 

has not been considered yet. Thus w' also belongs to the stack. 

Theorem 3.3: 
i 

Each cycle of the fundamental set .9f,G, correspopding to the 

considered spanning tree T, is enumerated exactly once. 

Proof: 

Let (v, w) be an edge of the digraph which does not belong to 

T and suppose (v, w) is first reached when exploring the edges of v. 

Then when this edge is examined, v is at the top of the stack and 

by lemma 3.11, w is somewhere underneath v, in the stack. Therefore, 

position(v) = t and 0 < position(w) < t, where t is the fj~'rr,te r of 

vertices in the stack. Since we are considering the first eAploration 

of (v, w), we conclude that w~is not immediately below v in the stack 

and therefore position(w) < t-1. Thus, the cycletof the fundamental 

set, corresponding to edge (v, w) is enumerated at least once. Now, 

after all erges incident to v have been explored, exactly once each, 
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v is deleted from the stack and position(v) is set to N. Since " 

still belongs to the stack at that moment, w will eventually occupy 

the top position and another exploration of edge (v,w) occurs. 

However, because position(v) = Nand N ~ t, it follows position(v) > t-l 

and therefore the cycle containing edge (v,w) is not enumerated again. 

When w leaves the stack, position(w) is set to N and since po~ition(v) 

and position(w) are now 4both different from zero, v and w can not be 

explored again. Therefore, no re-exploration of edge (v,w) can occur 

and we conclude that the cycle of the fundamental set, corresponding to 

edge (v,w) is enumerated exactly once. 

Theorem 3.4: 

Only cycles belonging to the fundamental set, corresponding to 

a spanning tree T, are enumerated by the algorithm. 

Proof: 

Let "I •. . ,VjV be a cycle enumerated by the algorithm. Since 

~ •• • /v is taken from the stack, by lemma 3.10 we conclude that 

is the path in T, between wand v. Therefore all edges of ~ •• ~v 

belong to the spanning tree. On the other hand, the edge (", w) can 

not belong to T, because T has no cycles. Thus, ·'i •• • /v,'n i ~ a cyc Ie 

with exactly one edge of the graph which does not belong to the spanning 

tree. 

to T. 

3.10 

b I to the fundamental set of c-ycles, corre5'ponding Hence Wj •• ~VjV e ongs 

Performance: 

Theorem 3.5: 

Let G(V,E) be a connected graph with N vertices and M edges, 

input to algorithm 3.2. Then a total of O(N+M) space and O(N+M) time 

h t " ('LT1." thout listing) of the cycles belonging are required for t e enumera l.on " 

I 
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to a fundamental set of the graph G. 

Proof: 

The space bound follows immediately from the fact that the 

representation of the graph by adjacency lists requires O(K+M) space 

and the remaining data structures require O(N) space. For the timE> 

bound, observe that a vertex v can only be explored if it has not been 

reached before, i.e. if position(v) = O. Once v is reached, position(v) 

becomes different from zero and since there is no way of re-setting 

position(v) to zero, v can not be explored again. Since the 

exploration of a vertex produces the exploration of all edges incident 

to it, we conclude that the N exploration of vertices (once each), 

produces 2M explorations of edges (twice each). Therefore a total of 

o (N+M) time is required for enumerating (without listing) the cycles 

of a fundamental set. 

As already mentioned in section 3.7 the explicit output of 

the cycles of the fundamental set requires O(NM) time. Therefore, if 

this explicit output is desired, then algorithm 3.2 takes O(~~) time 

for termination, although the actual generation of thE C,\ cl..:s n::lui re< 

only O(N+M) time. 

Alternatively, we can modify algorithm 3.2, so as to prodll~e 

a reduced output of the cycles, with the aim of reducing the output 

time. Consider the graph of figure 3.8. If we assume that its verti ces 

are in ascending order in the adjacency lists representation of the graph 

then algorithm 3.2 would implicitly find the tree of figure 3.9, as a 

spanning tree of the graph. Now let us consider the following alteration 

to algorithm 3.2, in which each vertex is output by the time it leaves 

the stack: if vertex v is being deleted from the stack and it occupied 

a position in the stack lower than vertex w (w being the vertex output 
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immediately before v), then vertex v is output underlined (~): 

if vertex v occupied a position in the stack higher than w, then 

vertex v is output with a bar (v); if v and w occupied the same 

relative position in the stack Or v is the first vertex in the sequence, 

then vertex v is output neither underlined or barred. With such a 

scheme, the output corresponding to the graph of figure 3.8 would be: 

5 8 4 9" I 3 6 2 

The above sequence uniquely determines the tree of figure 

3.9. The ancestor of any given vertex v (v not being the root) is 

the first underlined vertex w to the right of v in the sequence, such that 

the number of underlines - from the right of v until and including w -

exceeds the number of bars. Now, let us consider the information 

concerning the cycles. If Vl ,va, ••• ,vk , v1 is a cycle in the fundamental 

set, with V1 preceding V1+1 in the output sequence (1 ~ i < k) then this 

cycle is perfectly characterized by that output sequence with underlines 

I 

and bars &nd by the pair Vl'Vk • Therefore, we can simply add (vk ) to the 

sequence, immediately after v 1 , with the parenthesis distillguishing the 

notation of the cycle from the occurrence of the actual ~ert~x v~, 1n 

the sequence. With this scheme of output, the fundamental set of 

cycles of the graph of figure 3.8 is represented by the sequence: 

Each vertex between parenthesis in the sequen~e correspnnds 

to a cycle in the fundamental set. In the example above, therefore 

there are 8 cycles in the set. For obtaining the explicit f0rm of 

say the first cycle in that example, we proceed as follows: the 

5(1) in the beginning of the sequence, indicates that there is a cycle 

whose "first" vertex is 5 and "last" vertex is 1. Consequently, 

starting from 5 we successively find the ancestors of the verticeE in 
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the cycle, until 1 is reached. The first vertex after 5, sue!. that the 

number of underlines exceeds the number of bars is 4 and therefore 4 

is the ancestor of 5. Similarly, we find 3 as the ancestor of 4; 

2 the ancestor of 3; and 1 the ancestor of 2. Hence the desired 

cycle is 543215. 

Using this technique, we can output a fundamental set of 

cycles in O(N+M) time. Alternatively, we can decide to eliminaLe from 

the output, the vertices that are involved in no cycles, which brings 

the output time bound to O(M). Consequently, the whole process of 

finding a fundamental set of cycles can be accomplished in O(N+M) 

time, which makes the proposed strategy optimal within a constant 

factor. 

3.11 Elementar;z:- cycles in undirected graI?hs 

Given an undirected graph G(V,E) we consider now the problem 

of finding the elementary cycles of the graph. 

One possible approach to this problem consist,:, of modifying 

an algorithm for finding the elementary cycles of a digraph (-;Ections 

3.2 to 3.6) to operate for undirected graphs. Basically, any elementary 

cycle finding algorithm for digraphs can be adapted to handle undirected 

graphs. This method is discussed in the next section. 

Another way of solving the present problem c·,' ~i"ts :)i 

finding the elementary cycles of the graph, by computing tti< elements 

of the cycle vector space of the graph. The basic idea is fiy",t to 

obtain a fundamental set of cycles (sections 3.7 to 3.10)~ Next, 

the elements of the cycle vector space are computed, starting from 

that set. A test is performed to verify whether a newly computed 

element of the space is an elementary cycle and if so the cycle can be 
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output. Welch [We66] has attempted to produce all elementary cycles 

of the graph, without considering all possible elements of the vector 

space, by conveniently ordering the cycles of the fundamental set. 

Gibbs [Gi69] has shown however, that the ordering of [We66] does not 

necessarily exist and as a consequence, Welch's method fails to enumerat,<,-

all elementary cycles, in some cases. Hsu and Honkanen [HsH072] have 

described a method for finding the cycles that [We66]misses. Prabhaker 

and Deo [PrDe74] also find the elementary cycles by trying to reduce 

the number of computations of elements of the vector space. However, 

as it is shown in i PrDe 74], there exist worst cases for which this 

algorithm has an exponential time bound. In this same paper, it is 

pointed outthat all known methods for finding elementary cycles through 

the cycle vector space, have also exponential time bounds. 

3.12 The proposed algorithm 

Our strategy consists of modifying algorithm 3.1 for finding 

the elementary cycles of a digraph, to handle undirected graphs. Ttis 

approach is justified by the fact that so far all ate'nI)t~ to produce 

a "pure undirected graph cycle finding algorithm", based upon computations 

of elements of the cycle vector space, have been shown to have an 

exponential time bound, as mentioned above. 

Let G(V,E) be an undirected graph with N verti~es and M edges. 

Consider the digraph version D of G, which is obtained by l'cplacing 

each undirected edge of G, by two directed edges having opposit~ 

directions. Figure 3.11 illustrates the digraph version of the 

undirected graph of figure 3.10. Comparing the cycles of G and D, 

we observe that D contains all cycles of G, plus two additional classes 

of cycles, which are not present in G: The first is composed by 
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the cycles of D having exactly two edges. These cycles correspond to 

single edges in G and clearly there are precisely M such cycles. For 

characterizing the other mentioned class, consider an elementary cycle 

Clearly, D also contains the 

ci are distinct cycles in D. However, both cycles ci and c~ of D 

correspond to the single cycle c of G. We name c{ and c2 as opposite 

cycles each to the other. For example, the cycle 12341 of the undirected 

graph of figure 3.10 corresponds to the opposite cycles 12341 and 14321 

of the digraph of :t:igure 3.11. Thus, if G contains C elementary cycles 

D will contain the total of C' = 2C + M. 

Now let us suppose that an algorithm for finding the elementary 

cycles of a digraph is applied to D, aiming to obtain the c)-cles of G. 

The problem that arises when proceding so is concerned with those two 

classes of cycles which are in D, but not in G. The basic alterations 

required, in order to make the algorithm operate correctly, consist of 

finding a sui table way of detecting these classes of c,'--cles and 

their output. The cycles composed by exactly two edges can be easily 

recognised, simply by testing the number of edges in each newly genpratAd 

cycle. As for the other class of unwanted cycles, we wish to find a way 

of detecting that a newly generated cycle c~ of D is the opposite c~cle 

of another cycle c{ of D, which either has already been generated or 

which eventually will be generated. The constraint that ~e impose 

on the method of checking opposite cycles, is that the mechanism of 

detection should ~ increase the time bound, i.e. the time bound of 

the algorithms that find elementary cycles in directed and undirected 

graphs should be the same. In order to descFi~e this mechanism of 
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detection, it is convenient to represent every cycle of G as 

v1,va, ••• ,vk ,vl (k>2), with vl fixed and va<vk • The elementary cycles 

of the graph of figure 3.10, using this representation, are 12341, 

12431, 13241, 1231, 1241, 1341 and 2342. Using this representation 

we can divide all elementary cycles vl,V2 , ••• ,vk , v1 of D, with more 

than two edges, into two sub-classes: those with va < vk and those 

wi th v;:: >vk ' since v;::1= Vk because k > 2. Clearly, the opposite cycle 

of a cycle of one of these sub-classes, belongs necessarily to the other 

sub-class. Therefore our problem of generating duplicate cycles can 

be solved simply by testing whether va < vk or vk > va in each newly 

generated cycle and rejecting it if the latter is satisfied, for instance. 

Clearly to each accepted cycle there corresponds a rejected one and a 

cycle can be accepted either before or after the generation of its 

opposite rejected one. 

The implementation of this mechanism in algorithm 3 .1 is 

straightforward. 

begin 

We replace the following block of that algorithm 

end 

output cycle w to v from stack, then w; 

f := true 

by the following: 

begin 

end 

z 0- vertex immediately above w in the stack; 

if z < v then output cycle w to v from stack, th~n w; 

f := true 
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The above implementation is justified by the fact that 

every newly generated cycle v1 ,v2 , ••• ,vk ,vl corresponds to the 

configuration of the stack being ••• v1 v2 ••• Vk ' with vk at the top. 

Therefore, in terms of variables of algorithm 3.1, variable v contains 

the value of vk ' variable w contains the value of v1 and conseq~ently 

the vertex above w in the s~ack which is assigned to variable z, corresponds 

Observe also that storing the stack in sequential allocation 

form, seems to be advantageous since z can be immediately determined 

in this case, by z := stack(position(w) +1). Finally, we mention 

that in practical terms, one single comparison has been added to algorithm 

3.1. This single test also solves the problem of rejecting the cycles 

which have exactly two edges, because for these cycles v2 = vk and 

consequently z = v. 

3.13 Correctness 

The correctness of the proposed strategy follows directly 

from the correctness of algorithm 3.1 and from the observations of the 

previous section, concerning the introduction of the me~hanism fOl 

detecting and rejecting cycles of the digraph version of the given 

undire~ted graph G, which do not belong to G. 

3.14 Performance 

Theorem 3.6: 

Let G be an undirected graph with N vertices, M edge~ and 

C elementary cycles. Then algorithm 3.1, with the modifications of 

section 3.12 incorporated, enumerates the elementary cycles of G in 

O(Nt(C+1)M) time and O(N+M) space. 
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Proof: 

The space bound is obvious. For the time bound, consider 

the digraph version D of G. According to sections 3.5 and 3.12, 

the 0' = 2C+M elementary cycles of D are generated in at most 

O(N+(C'+l)M) time. Now, let us divide the time required for gen~rating 

the C' = 2C + M cycles of D, into two parts: the time needed for generat

ing those 2C elementary cycles and that needed for those M cJcles. 

Because the latter M cycles correspond to the cycles of D which have 

exactly two edges, the time required for generating them is nat 

greater than O(N+M). On the other hand, O(N+(C+l)M) time is required 

for the generation of thos~ 2C elementary cycles. Consequently we 

conclude that the total time bound is O(N+(C+l)M). 

3.15 Conclusions 

We have presented in this chapter, algorithms for finding the 

elementary cycles in directed and undirected graphs as well as an algorithm 

for finding a fundamental set of cycles of an undirected graph. 

The latter algorithm consist.s basically of p,:,rforming a deptll

first search of the graph and requires O(N+M) timd for generating the 

cycles, excluding the time required for thffir output. The explicit 

output of the cycles consumes O(NM) time. However, an alternative 

reduced form of listing the cycles has been also presented, which requires 

O(N+M) time. The p~oposed solution is optimal, wi thin 2. ccmstant 

factor. The algorithm by Paton [Pa69] - which is the best t~ant 

algorithm for solving this problem - although it can easily be ~odified 

for generating the cycles (with no output) in O(N+M) time, as preEented 

in [Pa69] consumes O(N2 ) time for this task, plus the usual O(NM) 

time for, the explicit output of the cycles. Also another difference 
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between our algorithm and [Pa69] is that the latter is not a deptll-

first search algorithm. This contradicts what is reported in [J074]. 

The proposed strategy for finding the elementary cycles of 

an undirected graph was obtained by adapting our algorithm for the 

elementary cycles of a digraph. It should be noted that the modifica-

tions introduced in the latter, in order to make it operate for un

directed graphs, did not increase the overall time bound. 

The proposed algorithm for the elementary cycles of a digraph 

is based on work done by Tiernan-Tarjan-Johnson. Although its 

(worst case) time bound is similar to that achieved by Johnson, namely 

O{N:+ M) per cycle, we believe that the techniques for detecting an 

el,ementary cycle anywhere in the path unde r consideration and its 

enumeration as soon as the cycle is contained in this path - which 

were used in our proposed algorithm - represent some important 

features for cycle finding methods. 

The present chapter has shown examples where unne~essary 

work was done by some existing algorithmsfor finding elementary c.vcle~ 

in digraphs. The question that arises is: what about inefficiencies 

of our ptoposed algorithm? Clearly they still exist because a vertex 

or an edge may be unsuccessfully explored many times during the precess. 

However, these ~ inefficiencies are also present in the exist.Lng 

backtracking methods. Sinpe we have eliminated some of the inefficiencies 

of those methods, we bel~eve that our proposed algorithm compares 

favourably with them. 

It shbuJd be noted that a previous version of algorithm 3.1 

[SzLa74] was an unsatisfactory attempt to devise a method that would 
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explore unsuccessfully any vertex, at most once during the entire 

process. An open question still remains about the existence of an 

algorithm that would find all elementary cycles of a digraph, in such 

a way that any edge or vertex would be unsuccessfully explored at 

most a constant number of times during the entire process. 

algorithm would have an optimal time bound. 

Such an 
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CHAPTER 4 

SHORTEST PATH PROBLEMS IN ACYCLIC DIGRAPHS 

4.1 Introduction 

Shortest path problems constitutes an important area in graph 

algorithms, mainly because there is a wide range of different applications 

which make explicit use of such algorithms. Probably due to thi", fact it 

has received much research attention. In fact, an efficient solution for 

the shortest path between two given vertices of a digraph was devised 

as early as 1959 by Dijkstra [Di59]. Observe that this problem has no 

interest from the "pure mathematical" point of view, where efficiency is 

not considered. For, the following simple algorithm solves the problem: 

begin 

end 

consider all paths between the two given vertices; 

choose the path with minimal length 

In this chapter we deal with shortest paths problems in acyclic 

digraphs, with weighted edges. Obviously, algorithms for solving these 

problems in general (not necessarily acyclic) digraphs, would also operate 

correctly the acyclic ones. However, if the digraph contains no cycle 

some shortest path problems admit of more efficient algorithms. Further

more, acyclic digraphs consitute an important class of digraphs, with many 

specific applioations. 

Each of the sections of this chapter handles a diffe~~nt problem 

related with finding shortest paths in acyclic digraphs. Sadic!l 4.2 

contains an algorithm for solving the shortest path problem between two 

given vertices. The extensions of this algorithm to find the shortest 

paths from all vertices to a fixed vertex and from a fixed vertex to all 

other vertices are described in sections 4.3 and 4.4, respectivel~". A 

further extension to find the shortest paths between every pair of vertices 
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is presented in section 4.5. The problem of finding a shortest path bet"een 

two given vertices, visiting some specified vertices is the subject of 

4.6. Section 4.7 contains an algorithm for the k-shortest paths from all 

vertices to a fixed vertex. k-shortest paths from one vertex to all ot,hers, 

between every pair of vertices and between two specified vertices are 

handled in sections 4.8, 4.9 and 4.10, respectively. An algorithm for the 

longest path in an acyclic digraph is presented in section 4.11 and t.ne 

k-Iongest path in such a digraph is considered in 4.12. Some further 

remarks form the last section. 

The strategy for solving a shortest path problem - and the time 

bound of the corresponding algorithm - may vary according to whether 

or not the weights assigned to the edges assume negative values. For 

instance, there exists an algorithm to find the shortest path between 

two given vertices of a digraph (possibly with cycles) in O(~) time, 

only if all weights are non-negative. A corresponding algorithm that 

operates for digraphs with negative weights allowed requires O(NM) time. 

If the digraph contains no cycles such a difference is knowr. nJt t·) ?nod. 

Therefore, unless otherwise stated (sections 4.11 and 4.12), the wpighh 

of the considered acyclic digraphs may assume any real value. 

4.2 Shortest path between two given vertices 

Given a directed graph D(V,E) with weights d assigned cO 
1 J 

its edges, the problem consists of finding a path from a to b which 

minimizes the sum of the weights of their edges. Dreyfus [Dr69] has 

surveyed and discussed a number of algorithms for solving this and other 

related problems. The method by Dijkstra has a time bound of O(N2
) and 

was devised for digraphs with non-negative weights. Algorithms were 
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also presented or discussed by Nicholson [Ni66], Boothroyd [B067], 

Dantzig [Da63], among others. 

An algorithm for specifically finding a shortest path between 

two vertices of an acyclic digraph was presented by Elmaghraby [E170J. 

It uses a "distance matrix" (a ) for representing the digraph, where 
1 J 

if (i,j) E E then a = d otherwise a is infinite. A pre-pass is 
IJ IJ IJ 

performed when a topological sorting arrangement of the vertices of 

the digraph is obtained. This topological sorting is used for rearranging 

the distance matrix, so that it becomes upper-triangular. Now the length 

of the shortest path from vertex 1 to vertex k is computed as follows: 

label vertex 1 as ~ = 0 and at any step j consider the set of vertices 
1 

i, such that (i,j) E E; the label ~ of vertex j is found by calculating 
J 

~ = min ( ~ + d ) • 
J I 1 J 

When vertex k is finally labelled, ~ is the length of the shortest path. 
k 

For determining the shortest path itself, another pass is performed as 

follows: for each vertex j, determine vertex i, such that ~,j) E E and 

~ + d = ~ 
I 1 J J 

for j = k,k-1, ••• ,2. 

The analysis of this algorithm is straightforward. As it stands, the 

algorithms requires O(N2
) time and space for termination. This follows 

from the fact that O(~) time is required for each of the three distinct 

passes of the algorithm, namely, the topological sorting pass, ~he 

computation of the length of the shortest path and the tracing b~ck 

pass. A similar algorithm can be found in [Wa70]. It should be pointed 

out that a simple change in the representation of the digraph - by 

adopting the adjacency lists representation - can alter the time and 

space bounds to O(N+M), if the corresponding change in the strategy is 

performed. Such an algorithm, with the latter bound, was presented by 
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Johnson [Jo73]. Observe that the bound O(N+M) is realized in each of the 

three distinct passes of the method. 

Our present algorithm uses a backtracking recursive procedure 

that performs a depth-first search of the digraph. At the end of this 

search, the shortest path from vertex a to vertex b is determined. The 

adjacency lists representation is used and the weights are also stored in 

this list: d is supposed to be part of the node which contains vertex 
1 J 

j, in A(i). The vectors route and length are also used, so is the boolean 

vector mark, all of size N. At the beginning mark(v) is set to false, 

for all v,1Sv~. When vertex v is reached mark(v) becomes true, remaining 

so until the end of the process. The content of length(v) equals finally the 

length of the shortest path from v to vertex b, if there is one, and in-

fini ty, otherwise. The vector route is used to keep an updated version 

of the shortest path itself, so that the tracing back of the path does not 

require the examination of the whole digraph again. If vertex v reaches 

b and v is reachable from a then at the end route{v) contains a link to 

a vertex z,such that a shortest path from v to b is~z, •.. ;b. 

The algorithm proceeds as follows: consider the case in w hid'i 

vertex v,~b, has been reached for the first time. Then all edges frr.rn v 

will be explored. Assume edge (v,w) is reached. 

(i) If w has not been explored yet then mark(~) = false and 

a call of the recursive procedure PATH(w) occurs. On 

returning of this computation, the content of length{w) 

equals the length of the shortest path from w to band route(w) 

contains the vertex following w in this path if there is one 

or zero otherwise. Therefore if length(w) + d < length(v) 
vw 

then length(v) is set to length(w) + d and route{v) is 
vw 

set to w. 
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(ii) If w has alrea~ been explored before then mark(w) = tr~e 

and an action similar to (i) is undertaken except that no 

call of PATH(w) is invoked. 

After the last edge from v is explored, length(v) and route(v) contain 

respectively the length of the shortest path from v to b and the value of 

the vertex following v in this path or zero if no such path exists. The 

algorithm then backtracks to the vertex inwhose exploration the call 

PATH(v) was invoked and so on. In the initialization of the process 

mark(b) is set to~. Therefore no edge from b can be explored as it 

is known that they do not lead to the shortest path from a to b. Thus 

the depth-first search is not necessarily completed at the end of the 

process. 

The following is an ALGOL-like formulation of the algorithm. 

The length of the desired shortest path is stored at the end, in length(a). 

The shortest path itself is contained in the route vector: the first 

vertex is a; the vertex following any vertex v, v~b, is route(v) and the 

final vertex is b. 
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ALGORITHM 4.1 

begin comment an algorithm for the shortest path from vertE:x a to 

end 

vertex b is an acyclic digraph; 

procedure PATH (integer value v); 

begin mark(v):=true; 

for w E A(v) do 

begin if ,nark(w) then PATH(w); 

if length(w) + d < length(v) then 
- vw 

begin length(v):=length(w) + d
vw

; 

route(v) :=w 

end 

end 

end PATH; 

integer a,b; 

read the digraph and construct the adjacency lists A; 

read the valuesof a and b; 

for j:=1 until N do 

begin mark(j):=false; 

length(j):=infinity; 

route(j):=O 

end 

length(b) :=0; 

PATH(a) 
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The correctness of the proposed method can be verified by the 

following lemmas: 

Let D(V,E) be an acyclic digraph with weights d assigned 
1 J 

to its edges and a,b E V. Assume D is input to algorithm 4.1: 

Lemma 4.1 

If v ,v , ••• ,v (a=v, b=v ) is a shortest path from a to b in 
1 2 . k 1 k 

D, then at the end of the process, length(v ) contains the length of 
1 

the shortest path from vertex v to v ,1~i~. 
1 k 

Proof: 

By induction on decreasing i. For i=k the initialization of 

the algorithm sets length(v )=0 and mark(v )=true. The former is the 
k k -

correct value of the length of the shortest path from v to itself. 
k 

The latter prevents length(v ) to be altered during the process, which 
k 

completes the proof for the base. By the induction hypothesis we assume 

that at the end of the process length(v
1

) 2Si~ contaimthe value of the 

shortest path from v to v • 
1 k 

Now consider the exploration of vertex 

When edge (v ,v ) is eventually reached, if mark(v )=fal~e a call of 
122 

v • 
1 

PATH(v ) occurs. On returning, length(v ) contains i+~ final value in 
2 2 

the process, hence the length of the shortest path from v to v. The 
2 k 

algorithm then compares length(v ) + d 
2 V V 

with length(v, ), which cont,.l.ins 
~ 

1 2 

the value of the length of a previous path from v to v. If the first of 
1 k 

these values is the smallest the algorithm assigns it to lengtht ,- ). 
1 

Otherwise these values are equal and no action is taken. If mark( v )= 
2 

_true no call of PATH(v ) is invoked and length(v ) contains already its 
2 2 

final value, since the digraph is acyclic. A similar comparison and action 

as above is undertaken. In any case, after the exploration of edge 

(v ,v), length(v ) contains the value of length(v ) +dv v ' hence the 
1 2 1 2 

1 2 
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length of the shortest path from v to v. Also because of this fact, 
1 k 

length(v ) is not altered anymore after the exploration of (v ,v ) which 
1 1 2 

completes the proof. 

Lemma 4.2: 

At the end of the process, route(v )=v , route(y ):::y, ••• , 
1 2 G 3 

route(v )=v and route(v )=0, where v ,v , ••• ,v (a=v , b=v ), is a 
k -i k k 12k 1 k 

shortest path from a to b, in D. 

Proof: 

The proof is similar to that of lemma 4.1. 

Theorem 4.1: 

Algorithm 4.1 is correct. 

Proof: 

Lemmas4.1 and 4.2. 

The performance of the algorithm is verified by the fQllowing 

theorem. 

Theorem 4.2: 

Let D(V,E) be an acyclic digraph, having N vertices and ~ 

weighted edges, input. to algorithm 4.1. Then it is required O(N+M) 

space and time, for finding a shortest path from a to b, a,b E V. 

Proof: 

The space bound is obvious. For the time bound observe that 

the marking mechanism ensures that a vert.ex is explored ai: most once. 

Since the exploration of an edge (v ,v ) 
1 J 

can only occur vb~rl vertex v 
1 

is being explored, we conclude that any edge is also explored at most 

once. Therefore, o (N+M) is a time bound, for the metbod. 
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Corollary 4.1: 

Let D(V,E) be an acyclic digraph, with weighted edges, having 

N vertices and a,b E V. Define Z C V and weE, by: 
a,b - a ,b-

Za,b = {Vi E V, such that Vi ~ b and Vi is reachable from a through 

a path that does not contain b} 

w = (VI ,v )E E, such that v,v E Z }. 
a,b J 1 J a,b 

Then, excluding the input of D, the program requires O(N+lw I) time 
a ,b 

for termination and this bound is attained. 

Proof: 

This can be verified by the following: the backtracking search 

ensures that all vertices and edges which are not reachable from a are not 

explored. Also, all vertices and edges which are reachable from a only 

by a path containing b, are not explored because mark(b) is set to true 

in the initialization which prevents their exploration. Therefore, 

o(lz 1+lw I) time is required for the computation of procedure PATH. 
a ,b a ,b 

Since the initialization of the process requires O(N) time, we conclude 

that o (N+I wi) is the total time bound. Since all vertices of Z are 
a,b a,b 

explored, we conclude that this bound is attained. 

The present algorithm approaches the problem in a different way 

from the other algorithms mentioned: when computing the shorten, path 

from a to b, the paths are constructed from b backwards a, i.e. if v is 

a vertex reachable from a, such that v reaches b, then the algorithm 

computes the length of the shortest path from v to b, instead of computing 

it from a to v. Also, note that the present method avoids the computation 

of any additional pass. In particular, no computation for topological 

sorting is required. 



110. 

4.3 Shortest paths from all vertices to a given vertex 

Let D(V,E) be an acyclic digraph, with weighted edges d and 
1 J 

b a chosen vertex. The problem consists of finding the shortest paihs 

from all vertices, to vertex b. 

Only small changes are required in the algorithm of the last 

section which finds the shortest path from a vertex a to a vertex b to 

transform it into an algorithm for finding the shortest paths from all 

vertices to vertex b. 

The modification consists of maintaining the same procedure 

PATH, as in algorithm 4.1, but with a different invoking system. We 

compute the set of source vertices and afterwards find the shortest 

path from each vertex of this set to vertex b. 

Suppose (s , ••• ,s } is the set of source vertices. We first 
1 k 

find the shortest path from s to b, using a process similar to that 
1 

described in the previous section. Next, vertex s is considered and the 
:a 

objective is to find the shortest path from s to b. Suppose vertex v 
:a 

is a vertex reachable from both, sand s. Then, at that stage, v 
1 :a 

would have already been explored (mark(v)=true). This means that the 

shortest path from v to b has already been calculated and there is no need 

to recompute it again. Clearly, the same applies to all vertic~~ reachable 

from v. Therefore, at each stage j, when computing the shortest ~ath from 

s to b, the only vertices that ought to be explored are those reachable 
J 

from s through a path that does not contain b, but whi~h are not reachable 
J 

from 51' for 1$i<j, also through a path that does not contain b. 

The following is an ALGOL-like description of this method: 
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ALGORITHM 4.2 

begin comment an algorithm for finding the shortest paths from all 

end 

vertices to vertex b in an acyclic digraph; 

procedure PATH (integer value v); 

begin 

the same as in algorithm 4.1 

end PATH; 

integer bj 

read the digraph and construct the adjacency lists; 

read vertex bj 

for j:=l until N do 

begin mark(j):=falsej 

end 

length(j):=infini~; 

route(j) :=0; 

length(b):=O; 

find the set S of source vertices; 
o 

for j E s do PATH(j) 
o 
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At the end of the process, length(v) contains the length of the 

shortest path from v to b, for all v,1~SN. Also, route(v) contains the 

vertex following v, in a shortest path from v to b. If there is no path 

from v to b, then length(v)=infinii{y and route(v)=O. Observe that all 

shortest paths are stored in the single vector route, which corresponds 

in fact to a representation of a rooted tree, with each ,"ertex having a 

pointer to its ancestor. 

The proofs of co.rrectness are similar to those of the previous 

section. The same applies to the proof of performance - and algorithm 

4.2 is bounded by O(N+M) space and time, being optimal to wi~hin a 

constant factor. 

4.4 Shortest paths from a given vertex to all vertices 

Let D(V,E) be an acyclic digraph, with weighted edges and 

a E V, a chosen vertex. The problem is to compute the shortest paths 

from a to all vertices of D. This problem is similar to that of the 

previous section and in fact, it can be reduced to it, by adopting the 

following strategy. 

Define the converse digraph D of D, by inverting the direct.i.ons 

of the edges of D, i. e. n(v ,E') has (v,w) E E' iff'(w,v) E E, for all 

v,w E V and the weight of (v,w) in D is the same as the weight 'Ji' (w,v) 

in D. Now, apply the algorithm of the previous section for finding the 

shortest paths from all vertices to vertex a, in D. This so ~_ves the 

problem bscause the shortest paths from all vertices to vertex a in 

D correspond to the shortest paths from a to all vertices in D. The 

following lemma proves the correctness of this assertion. 
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Lemma 4.3: 

Let D(V,E) be an acyclic digraph with weighted edges, D its 

converse digraph and a E V. If v ,v , ••• ,v ,v (v =a) is a shorte~t 
12k -1 k k 

path from v1 to vk in D, then vk 'Vk 
-1' ••• ,v

2 
,v

1 
is a shortest path f'T0m 

v to v in D. 
k 1 

Proof: 

The length of the path v ,v , •.• ,v ,v in D is the same as 
12k -1 k 

the length of v ,v , ••• ,v ,v in D. Therefore, if there exists another 
k k -1 2 1 

path vk ,Wj , ••• ,w1,v1 in D, with a smaller length, then the path v1,w
1

' 

••• ,w ,v in D is shorter than v ,v , ••• ,V ,v, which contradicts the 
j k 12k -1 k 

hypothesis. 

As for the performance r:£ the present solution, observe that 

inverting the directions of the edges of a digraph is an O(N+M) time 

operation - if adjacency lists are used. Therefore the space and time 

bounds remain O(N+M). Note also that if no copy of the representation 

of the digraph D is required, we could construct directly the digraph 

D from the input. In this case no pre-pass would be rl:;q'J.:.i r' :,d. 

4.5 Shortest paths between every pair of vertices 

Given an acyclic digraph D(V ,E), with weighted edges the prob"l em 

consists of finding the shortest path between eye~ pair of vertic~~ of 

D. 

Several algorithms are known that solve thE- prubl':;["n fv!' gt:!neral 

(not necessarily acyclic) digraphs. Floyd [Fl62] and Dantzig [Da66] have 

presented solutions which require O(~) time. A commonly accepted form 

of measuring efficiency of algorithms for shortest paths consists of 

computing the total number of additions and comparisons performed with 

the weights of a complete digraph, when this complete digraph is input to 

the algorithm. When computing shortest paths between eve~ pair of vel,tices 
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in a complete digraph with non-negative weights, [FI62] and [Da66] are 

known torequire N(N-1)(N-2) additions and comparisons. Yen [Ye72J has 

presented an algorithm for finding all shortest paths from a single vertex 

to all others, which requires tN2 additions and ~ comparisons, for a 

comp~ digraph with non-negative weights. This method constitutes a 

variation of Dijkstra's strategy, and by applying it iteratively N times, 

Yen could solve the all shortest paths problem in tNr additions and ~ 

comparisons. A necessary correction to [Ye72J has been given by Williams 

and White [WiWh73]. The algorithm by Spira [Sp73] requires O(~log2N) 

time in average, for a digraph with non-negative weights. However, as 

mentioned in [Sp73] this algorithm has a worst case of O(NrlogN) time. 

The algorithm which presents the best time bound - which we know so far -
1 

is given by Johnson [J073]. It requires O(N2+t +NM) time - where 

k~1 is independent of N - for finding all shortest paths in a general 

digraph with N vertices and M edges. 

Now let us consider restricting this problem to acyclic digraphs. 

A first approach to the problem could consist of applying the strategy 

of section 4.3 (for finding the shortest paths from all vertices of the 

digraph to a fixed vertex b) iteratively, N times, for b=1, ••• ,~. 

After the last iteration the problem would have been solved. Since 

o (N+M) time is required per iteration, the total time bound for this 

method is O(N(N+M)). 

However, we can improve this method so that in the vorst case 

we trute a smaller total number of additions and comparisons. Basically the 

idea consists of choosing a sink vertex v and applying algorithm 4.2 for 
1 

finding the shortest paths from all vertices to vertex v
1 

and output 

them. This operation is performed in the given digraph D=D. Next, 
1 
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since v
1 

is a sink vertex, it certainly does not belong to any of the 

remaining desired paths and therefore v - and all edges leading to v -
1 1 

can be deleted. Let D denote the new digraph so obtained and choose a 
2 

sink vertex v of D. Apply algorithm 4.2 for finding all shortest pdths 
2 2 

from all vertices of D to v and output them. Delete vertex v and 
222 

all edges leading to it. D is the new digraph, and so on. 
3 

A total of 

N-1 iterations are necessary for determining all shorte~t paths and at the 

end of the (N-1)-th iteration the digraph is reduced to a single vertex. 

Observe that the order in Which the vertices are being deleted from the 

digraph corresponds to a reverse topological ordering. 

In order to maintain and update efficiently the information 

concerning which of the vertices become sink vertices, we would require 

some additional data structures. First, a vector containing the outdegrees 

of all vertices. It would be updated each time a vertex is deleted, simply 

decreasing by 1, the values corresponding to the vertices for which there 

exist edges to the newly deleted vertex. Second, a list for storing the 

s ink vertices. However, since we are deleting vertices from the digraph, 

the information that a vertex has become a sink vertex can be obtained from 

the representation of the digraph. This is indicated by the fact that the 

adjacency list of a sink vertex is an empty list. Thi.:; avoids the definition 

of that vector of outdegrees. As for the list of sink vertice~ ~ute that 

when a vertex is deleted its adjacency list is empty and 1:Lerefcl'e the 

existing pointer to it becomes idle. Therefore, these poin-r-,eT5 can be 

used for storing the list of sink vertices - and no additional storage 

is required for those structures. However, for efficiently deleting an 

edge (w,v) to a sink vertex v, we need to access the node v in the 

adjacency list of w. We then use the representation by adjacency lists of 
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the converse digraph D of D with each node w, in the adjacency list of 

v - corresponding to the edge (v,w) of D - pointing to the location of 

edge (w,v) in D. 

The following is the algorithm for solving the present problem. 

R contains the set of vertices not yet deleted in the digraph and S 
o 

contains the subset of R whose elements are source vertices. Each 

deletion that occurs in sets Rand S as well as each deletion of an edge 
o 

of the digraph, can be performed in a constant number of steps. 
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ALGORITHM 4.3 

begin comment an algorithm for determining the shortest paths between 

every pair of vertices of anacyclic directed graph; 

procedure PATH (integer value v); 

begin 

the same as in ~lgorithm 4.1 

end PATH; 

procedure INITIATE (integer value v); 

begin for z E R do 

begin mark(z):=false; 

length(z):=infinity; 

route(z):=O 

end' --' 

length(v) :=0; 

end INITIATE; 

integer bj 

read the digraph and construct the adjacency li~ts; 

S :=set of source vertices of D; 
o 

R :=set of vertices of D; 

for j :=1 until N-1 do 

begin b:= any sink vertex of D; 

end 

if b 1- S then 
- 0--

begin INITIATE(b); 

~ j E S do PATH(j); 
o 

end 

else delete b from S ; 
o 

delete b from R and from the digraph; 

output all shortest paths to vertex b; 



118. 

As an alternative, we could initially determine a reverse 

topological sorting arrangement of the vertices of the diggraph, v v ... Y , 
1 a Ie 

and iteratively set b=v;V , ••• ,v. This would slightly simplify the data 
1 a Ie 

structures used in an implementation of algorithm 4.3. 

The correctness of this method follows directly from the 

correctness of algorithm 4.2 and from the observation that a vertex that 

is deleted in an iteration j would not have been involved in any shortest 

path to be found in ~erations k, k>j. 

As for the performance, note that the algorithm requires O(N+M) 
N-1 

space and the time bound is L O(N +M ) , where Nt and M are the number 
1 =1 1 1 1 

of vertices and edges of the digraph D , immediately before the deletion of 
1 

the i-th vertex. Since we delete one vertex at each iteration, we have 
N-1 

L N = 
1 =1 1 

(N+2) (N-l ) 
2 

The contribution of the edge explorations, 

acyclic digraph with M=N(N-1)/2 edges - is 

in the worst case - a complete 
N-l N-1 

t L N (N -l)=iL (j+l)j_1(N3 _N), 
1 =1 1 1 j =1 6 

since at each iteration i with the digraph D
1

, we explore Nt (~1-1)!2 

edges. Therefore, 

N-1 
o ~ L 

1=1 

1 

M ~ 6' (~-N). 
1 

In terms of number of operations performed with the weights of an in!,-.;. t, 

1 ( -:; complete acyclic digraph, we therefore conclude that exactly 6 ~~-N) 

additions and comparisons are required. 
4.6 Shortest path visiting a specified subset of verti,:,,: 

Given an acyclic digraph D(V,E), with weighted edges, given 

vertices a,b E V and a set H C V, the problem consists of finding the shortest 

path from a to b, passing through all vertices of H. We assume that a,b ~ H. 
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Dreyfus [Dr69] discusses this problem for general digraphs and 

presents an algorithm for solving it. However in [Dr69] it is pointed 

out that the travelling-salesman problem is a particular case of the present 

one, and since no efficient solution is known to the former, the same is 

true for the latter. 

If the digraph is acyclic however, we show that the problem is 

considerably simplified - and, in fact, a simple and efficient solution is 

presented in this section. This solution is optimal within a constant 

factor. 

We first find a topological sorting arrangement v v ••• v
N 

of 
1 2 

the vertices of the digraph. Clearly, since any path from v to v i<j, 
1 J 

contains possibly only vertices v such that i~k~j, we conclude that a 
k 

necessary condition for the existence of a solution is that every vertex 

u E H is such that u lies between a and b, in a topological sorting 

arrangement. Furthermore, if v and v are vertices such that v precedes 
p q p 

v in a path from a to b, then there exists no path from a to b, which 
q 

contains v and v , with v preceding v. Therefore, if the digraph is 
p q q p 

acyclic, the ordering in which the vertices of set H may be visited, in 

any path from a to b, is unique - and it corresponds to the ordering in 

which the vertices of H appear in a topological sorting sequence. Observe 

that if two vertices u ,u E H are such that u preced~s 1.: in -i ,~artain 
1 2 1 2 

topological sorting sequence, and there exists another to~ogi(al sorting 

sequence such that u precedes u in it, then there exists no solu~ion to 
2 1 

the present shortest path problem, since u
1 

and u
2 

are mutually non-

reachable, one from the other. Note also that what. causes th!;' present 

problem toadmit an efficient solution for acyclic digraphs - in contrast 

with general digraphs - is precisely this uniqueness in the ordering in 

which the ver~es ~ H may be visited. Clearly, this does not hold if the 

digraph contains cycles. 
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Let u u ••• u be an ordering of the vertices of H, such that 
1:3 k 

this ordering is embedded in some topological sorting arrangement y v ••• v
N 1 :3 

of the vertices of D (i.e. for u =v" u =V " we have: if i<j then 
1 1 J J 

·1<· r) 1. J • If there exists a path from a to b, visiting all vertices of H, 

this path has the form u,P ,u ,P ,u , ••• ,u ,P ,u (u =a,u =b), where 
o 0 1 1:3 k k k +1 0 11:"'1"1 

P ,P , ••• ,P are (possibly empty) paths in D, such that P contains only 
o 1 II: J -

vertices that lie between u and u , in that topological sorting arrange-
J J +1 

ment, of the vertices of D. P cannot contain any vertex u E H, since 
J 1 

the digraph is acyclic. Among all such paths from a to b, the shortest is 

precisely that which contains the shortest P , for all j, O~j~k. In other 
J 

words, the shortest path from a to b, visiting u ,u , ••• ,u , in that order, 
1:3 II: . 

consists of the shortest path from a to u , followed by the shortest path 
1 

from u to u , and so on, until the shortest path from u to b is consid-
1 :3 II: 

ered. The problem therefore, can be reduced to k+1 shortest paths problems 

(k=IHI). Since O(N+M) time is required for solving each of these problems, 

the total time bound would be O( (N+M)k). 

However, by slightly modifying the strategy and applying adequate 

data structures, we can reduce the time to just O(N+M). For observe 

that only vertices that lie between u and u ,in a topological serting, 
J J+1 

ought to be explored in the computation of the shortest pa"th frc':J"' u to u + • 
J 1. 

To restrict the vertices that could be explored during tLd"t CC!rTII,utation, 

we need to manipulate properly the information given by the mark vector of 

procedure PATH, in algorithm 4.1: At the beginning of the process, all 

vertices v are initialised with mark(v)=true. Before the call of that 

procedure for computing the shortest path from u to u we set mark(v)= 
j J+1 

false, thus allowing the exploration at this stage of the vertices v that 

lie between u and u in the considered topological sorting arrangement 
J J +1 



121. 

(we recall that the exploration of a vertex w is a call of PATH(v) wiH 

v=w) • If a certain vertex w lies after u ,in that topological sorting 
J +1 

arrangement, or has already been e~plored before, then mark(w)=true and 

therefore will not be explored. This strategy ensures that any Y~rtex -

and consequently the edges from it - is explored at most once, during 

the entire process. 

The following is an ALGOL-like formulation of the algoritl~. 

The visit vector maintains the information of which are the vertices v, 

such that a shortest path to v has to be computed: if v E H or v=b then 

visit (v)=true , otherwise visit(b)=false. The boolean variable solution 

is, at the end of the process, true if a,b ~ H and all computed shortest 

paths have non-infinite length. Otherwise solution is false. The exi5tence 

of a solution to the problem is guaranteed when, at the end of the process, 

the variable solution has the value true and, in addition, a total of k+1 

shortest paths were computed. The number of times the computation of a 

shortest path problem is invoked is stored in the variable~. The 

variable total contains the desired l'2ngth of the shor-test l,ath from 

a to b, passing through the vertices of H. Clearly, ih:!.,:; length is th.=-

sum of the lengths of the k+1 intermediate shortest. paths, which are 

computed. The final shortest path itself can efficiently be obtained 'lS 

before from the route vector, which is properly set within the 3C0l-~ vf 

procedure PATH. 
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ALGORITHM 4.4: 

begin comment an algorithm for finding the shortest paL.h, in an acycli.:: 
digraph D(V,E), from vertex a to b, visiting all yertices 
of a set H, H C V and a,b ~ H. 

end 

procedure PATH (integer value v); 
begin 

the same as in algorithm 4.1 

end PATH; 
logical solution; 
integer total, count, i, j; 
read the digraph D and construct the adjacency lists A; 
read the k vertices of set H and vertices a,b; 
find a topological sorting arrangement v v ••• vN' of the vertices of D; 
for w:=1 until N do 1 ;a 

b;gin mark(w):=tr~; 
visit(w):~se; 
length(w):=infinity; 
route(w) :=0; 

end 
for w E H do visit(w):=true; 
solution:~(visit(a) o;-;rsit(b)); 
visi t(b) :=true; -
total:=count:=O; 
j:=index of v in v v ••. vN' such that v =a; 

J 1 ;a J 
while v fb and solution do 

J -- --
begin 

end 

i :=j; 
repeat mark(v ):=false; 

J 
j :=j+1 

until visit(v ): J . 

length(v ):=infinity; 
1 

length(v ) :=0; 
J 

count:=count+1; 
PATH(v ); 

1 

if length(v
1 

)=infinity then solution:=fal~e 

else total:=total + length (v ) 
1 

if solution and count=k+1 then output the desired short8st path 
else output 'NO SOLUTION EXISTS(INFINITE PATH LENGTH) I; 
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The correctness of the presented strategy follows from the le~as 

enunciated below. 

Let D(V,E) be an acyclic digraph with weighted edges, a,b E V 

and H C V, with a,b ¢ H. 

Lemma 4.4: 

A shortest path from a to b, visiting all vertices of H, with 

non-infinite length has the form 

u ,P ,u ,P ,u , ••• ,u ,P ,u 
o 0 1 1.2 k k k +1 

where: uo=a; u + =b; [u ,u , ••• ,u ) = Hj u ,u , ••• ,u are such that if 
k 1 1.2 k 1.2 k 

i<j then u precedes u in a topological sorting arrangement. P ,P , ••• ,P 
1 J 0 1 k 

are (possibly empty) paths such that u Puis the shortest path from u
t 1 t 1 +1 

to u + • 
1 1 

Lemma 4.5: 

Let u ,P ,u ,P ,u , ••• ,u ,P ,u + represent a shortest path from 
0011.2 k k k1 

a to b, visiting all vertices of H, as above. Then the only possible ver-

tices that could lie in any P , O~j~, are those wh~ch are between u and 
J j 

u in a topological sorting arrangement of the vertices of D. 
J +1 ' 

The performance of the presented method can be evaluated by 

the following theorem. 

Theorem 4.3: 

Let D(V,E) be an acyclic digraph with weighted edges, a,b E V, 

H CV and a,b 1: H. Then algorithm 4.4, for finding a shortest path from 

a to b visiting all vertices of H, requires O(N+M) space and time. 

The arguments in which the proofs of the theorem and le~mas above 

are based were informally given through this section. 
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4.7 k-shortest paths from all vertices to a given vertex 

Let D(V,E) be an acyclic digraph, with weights d assigned to 
1 J 

its edges and b E V. The problem consists of finding paths from all 

vertices to b, such that each desired path from vertex v to b, ha:: the 

k-th smallest length, among all paths from v to b. 

Elmaghraby [El70J has presented an algorithm for finding the 

length of the k-shortest path from a given vertex a to a given vertex b 

in an acyclic digraph. The method [E170J is simple and short, although its 

efficiency can be well improved. Actually, it finds the lengths of the 

k-shortest paths from all vertices to vertex b. It proceeds as follows: 

let ~ denote the length of the j-shortest path from v to b; let v v ••• v 
V 1 Z p 

(v =b) represent a reverse topological sorting arrangement of ihe vertices 
1 

of D, up to vertex b; 

desired k-shortest paths are obtainable from 

with min representing the j-th minimum. 
j 

v=v ,v , ••• ,v 
2 3 P 

j=1,2, ••• ,1{ 

r=1 ,2, ••• ,j 

for all w - where (v,w) E E, 

Consider the worst case analysis of this algori too. na.rk ly a 

complete acyclic digraph with b being the sink vertex. At ~a~b step 

i (i=2,3, ••• ,p), all k-shortest paths from Vi to b are calculated. Next 

vertex v
1
+

1 
is considered and so on. Therefore, for each i a total of 

(i-1)k additions are performed. Consequently the total number of 
N 

additions of weights required is ~ (i-1)k=kN(N-1)/2. As for the number 
1=2 

of comparisons, note that ~ may be obtained from Ql=mintQ~ + d }. 
v v w vw 
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Also ~=min[{ci + d } 'del }], oP=min[{ci + d }'[cl~}J etc. 
v w vw v v w vw v' v ' 

Clearly, this is more efficient than ~l=min {~r + d }, ~=min [~r + d }, 
V lW vw v aw vw 

etc., of the original algorithm. Using the first of t.hese two schemes, 

at each stage i, ~ requires one minimization of a set. of (i-2)j+1 
Vi 

elements, which corresponds to (i-2)j+1 comparisons of weights. Therefore 

for computing k minimizations, for all 
k 

J~l (i-1)j+1=k(ki-2k+i)!2 comparisons. 

~v of a fixed vertex VI' we require 
I 

Thus the total number of comparisons 

necessary to obtain the lengths of the k-shortest paths from all vertices 
N 

to vertex v
1 

is 1~2k(ki-2k+i)!2=k(N-1 ) [(k+1 )(N+2)-4kJ/4, i.e. O(N:ak2). 

Alternatively, instead of performing the comparisons step by step as 

indicated, we can compute all additions necessary to find the k-shortest 

paths and produce all ~J , for a fixed v , by finding the k smallest values 
v I 

I 

of the set composed by those additions. Spira [Sp73] has shown that the 

minimum k values of a set with S elements can be computed using S-1 + (k-1) 

flogaSl comparisons. Therefore by adopting this strategy, a total of 

(i-1)k - 1 + (k-1)flog (i-1)kl comparisons are required for obtaining the 
2 

k-shortest paths from a fixed vertex v to v. Consequently for the 
1 1 

entire process O(kN(N+log k» comparisons are required. 

The algorithm that we propose in this thesis, for finding the 

lengths of the k-shortest paths from all vertices to 'Tsrtex b use:; a 

recursive procedure LENGTHQ and convenient data structures for d'~C1"ed,sing 

the total number of additions and comparisons required. It rrE:;y<mts the 

computation of a j-shortest path from a vertex to vertex b, if this path 

is known to have infinite length and avoids the exploration of an edge 

(v,w), in the computation of the j-shortest path from v to b, if the (non

infinite) longest path from w to b had been used before, in a i-shortest 

path from v to b, i<j. With each edge (v,w) we associat.e two variables: 
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\w and Yvw· After the computation of the j-shortest path (j>1) from v 

to b, tvw equals one plus the number of i-shortest paths from v to b, 

1~i<j, which contain edge (v,w); y equals the weight of edge (v,w) vw 

plus the length of the t -shortest path from w to b. Now, if we denote vw 

by short(v,j) the length of the j-shortest path from v to b, then the 

value of short(v,j) can be calculated simply by 

short(v,j) = min(y , w E A(v») 
vw 

A vector way is also used, with way(v) containing the vertex following 

v in the shortest path from v to w. Thus the problem consists basically 

in keeping and manipulating efficiently these quantities through the 

process. 

Initially we find the lengths of the shortest paths from all 

vertices to vertex b, using algorithm 4.2. During this phase we can 

delete from the digraph all vertices whose shortest path length to 

vertex b is infinite. Next, we initialise variables as follows: t = 
vw 

for all edges (v,w); short(v,1)=length of the shortest path from v to b; 

y =short(w,1) + d and way(v) is initialised as men1_ioned above. Next 
vw vw 

we pass to the actual computation of the k-shortest paths. The vertices 

are processed in reverse topological ordering starting from the vertex 

immediately succeeding b in this sequence. Vertex b is not proce-;sed and 

short(b,2) is set to infinity. When returning from a call LENGTH(;:J\', 2,way(v», 

invoked from the outside of the procedure, the length of the k-shortest 

paths from v to b have been determined. So, if u u ••• u. 
l:a p 

(u =b) is a 
p 

topological sorting arrangement - up to b - of the vertices of the digraph, 

we first calculate all the desired shortest paths from vertex u to b, 
P -1 

then we consider vertex u ,and so on. This strategy can be adopted 
p-:a 
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because if the digraph is acyclic any j-shortest path from a vertex u to 
q 

vertex b depends only on i-shortest paths (l$i$j) from vertices u to b, 
r 

where r>q. 

Now assume that a recursive call of the procedure was invoked and 

LENGTHQ(v,j,q) is being computed. Then the strategy ensures that all 

short(v,i), l$i<j, have already been calculated, that short (v,j-1)< infin-

ity and that all k-shortest paths from all vertices succeeding v in the 

topological sorting arrangement have already been determined. The parameter 

q corresponds to the vertex irbmediately following v in the (j-1 )-short.est 

path from v to b. Since edge (v,q) was used in this last computed (j-l)-

shortest path from v to b, t must be vq incremented by one, and y vq 

The new Y will contain the l~ngth 
vq 

of the (new) t -shortest path vq 

updated. 

from 

q to b, plus d • 
vq 

If,however, short(q,t ) is now infinite, this means vq 

that q will never again be part of any i-shortest path (i~j) from v to b 

and therefore edge (v,q) can be deleted to avoid unsuccessful searches. 

If the adjacency list of vertex v contained the sole edge (v,q),and this 

edge has been deleted, then A(v) is now empty, which means that there are 

no more unused paths from v to b, i.e. short(v,j) is infinite. In this 

case, no calls of the procedure will occur to compute the (j+l)-shortest 

path from v to b, since its length is known to be infinite. In the case 

that A(v) is not empty, the length of the j-shortest path from y to b 

is clearly the minimum of all y , for w E A(v). By adopting tbis 
vw 

strategy, we do not need to re-compute the value of the y • vw 
, s which were not 

minimum. They remain and are eventually used in an i-shortest path (i>j) 

from v to b. 

The following is an ALGOL-like formulation of this algorithm for 

computing the lengths of the k-shortest paths from all vertices of an acyclic 

digraph, to the fixed vertex b. 
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ALGORITHM 4.5: 

begin comment an algorithm for finding the lengths of the k-shortest pdths 

from all vertices of an acyclic digraph D(V,E) to a vertex b; 

procedure LENGTHQ(integer value v,j,q); 

begin comment v,q, ••• ,b was the (j-1)-shortest path from v to t; 

t :=t + 1; vq vq 

if short (q,t ) < infinity then y :=short(q,t ) + d 
vq -- vq vq vq 

else delete edge (v,q) from A(v); 

QI: if A(v) non-empty ~ 

s: begin short(v,j):=minty , wE A(v)} 
vw 

comment let z denote the minimizing w; 

if j<k then LENGTHQ(v,j+1,z) 

end 

else short(v,j):=infinity 

~ LENGTHQ; 

read the digraph and construct the adjacency li~t~ A; 

read the value of k and vertex b; 

find the shortest paths from all vertices to vertex b; 

for v:=1 until N do 

if length shortest path from v to b = infinity ~ delet.e v&rtex v 

else begin short(v,1):=length shortest path from v to t'; 

way(v):=vertex following v in a shortest path 

end 

for (v,w) E E do 

begin 

end 

t :=1; 
vw 

y :=short(w,1) 
vw 

from v to b (v~b) 

+ d 
vw 

find a topological sorting arrangement u u ..• u (u =b) of the 
1 2 P P 

remaining vertices of the digraph; 

short(b,2):=infinity; 

for i:=p-1 step-1 until 1 do LENGTHQ(u
l 

,2,way(u
t

» 
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The implementation of this algorithm is simple. .. " rhClr-!":cr,~ 

paths from all vertices to vertex b can be found by algorithm 4.2 of 

section 4.3; a topological sorting arrangement can be obtained by the 

algorithm [Kn6S]; the t and y quantities may be stored in the adjacency 
VW vw 

lists, i.e., each node of the A(v) list, corresponding to edge (v,v), would 

contain the triple (v,t ,y ). The short (v,j) quantities can be stored vw vw 

either as a Nxk matrix or as a set of lilllted lists, one list B(v) per 

vertex v, of the digraph. In the latter more economical scheme, the above 

t variables, are replaced by pointers p , to the location of the 
vw vw 

t -th node, corresponding to short(v,t ), 'in B(v); the statement corres-
vw vw 

pondingto t ::=t +1 is. r~placed by p :=location of the next node in B(v) vq vq· vq 

list, and so on. 

lemmas: 

The correctness of the proposed method is based on the folloving 

Let D(V,E) be an acyclic digraph, vith veights d associated 
1J 

with its edges, b E V, k>1, j such that 2~j~k and D' a digraph obtained 

from D, by deleting all vertices of D, vhose shortest path lengths to b 

are infinite. Let u u ••• u (u =b) be a topological sorting arrangement of 
1 2 P P 

the vertices of DI. Let short(v,j) denote the length of the j-shortest 

path from v to b in DI. Let D be input to algorithm 4.5. 

Lemma 4.6: 

If s<infinity and q is the vertex succeeding ul 1~i<p, in the 

(j-1)-shortest path from u
1 

to b, then both: 

(i) At the point a of the computation of LENGTHQ (ul,j,q) 

A(u
l

) is not empty and each tu "'_ contains one plus the 
I 

number of r-shortestpaths from'~ to b that contained 
1 

Each y contains the length of the shortest 
vw 

path from v to b through w not yet used in any comput-

ation of a r-shortest path from v to b , l~~j-l. 
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(ii) At the point a of the same computation short (u J") is 
1 ' 

set to the length of the j-shortest path from u to b. 
1 

Lemma 4.7: 

If scinfinity, then either: 

(i) If the length of the (j-1)-shortest path from u to b 
1 

is non-infinite, then a call LENGTHQ(u ,j,q) eventually 
1 

occurs with q as above. At the point a of that computation 

the list A(u
1

) is empty and therefore short(u
1
,j) is set 

to infinity. 

(ii) If the length of the (j-1)-shortest path from u to b is 
1 

infinite, then no call of LENGTHQ(u ,j,q) is ever invoked 
1 

and short (u
1
,j) is not referenced at any part of the 

process. 

Proof (lemma 4.6): 

Before the first call of the procedure is invoked, the algorithm 

finds a topological sorting u u ••• u 
1 2 P 

of D'. We now proceed by induction 

on decreasing i, increasing j. Let h<=max(i), such t,hat snort(u ,2)~infi7).ity. 

For j=2, all t and y contain their initial value~ at the entry to 
u w u W 

h h 

LENGTHQ(u ,2,q) because this is the first call with parameter v=u. FOT 
h h 

the same reason q=way(u ) is the vertex following u in ih? sho~test path 
h h 

from u to b. Since the digraph is acyclic, q=u , for some ~+1~i~! and 
h t 

therefore short(u ,2)=infinity and edge (u ,q) is deleted from .\\1.1 ). 
t h ~: 

Because there exist more than one path from u to b, Alu ) is not empty at 
h h 

the point a of that computation, and therefore at point S short(u ,2) is 
h 

set to min(y ,w E A(u )} which corresponds to the length of the second 
vw h 

shortest path from u to b. The induction step, for LENGTHQ(u ,j,q) is 
h h 

similar to the case j=2, except that at the point a of the computation 
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of LENGTHQ{u ,j,q), A{u ) contains j-2 fewer edges than at the same po~.i of 
h h 

LENGTHQ{uh,j,q). This follows from the fact that in each computation o~ 

LENGTHQ{u ,j',q), for all 2:S:j'$j, one edge is deleted, since each ve:"t.ex 
h 

in A{u ) has only one possible path to b. Now suppose the lemma holds 
h 

for vertex u ,for some i, 1~i<h, and let us verify the ca~e u. The 
1+1 1 

proof for vertex u with j=2, is similar to that for u wit1-l j=2, except that 
1 b 

the deletion of edge (u
1 

,q) does not necessarily occur. Suppose then that 

the lemma holds for vertex u
1 

with j-1 and let us verify the case ul ' with 

j~. By this induction hypothesis (i) and (ii) of the lemma are satisfied 

for LENGTHQ{u ,j-1,q), and a recursive call LENGTHQ{u ,j,q) occurs with q 
1 1 

being the vertex following u in the (j-1)-shortest path from u to b. 
1 1 

Consider now the computation of LENGTHQ(u ,j,q). The algorithm sets 
1 

t :=t + 1. The value short (q,t ) has already been computed because 
u

1
q u

1
q Ulq 

since the digraph is acyclic q=u for some t, i+1~~, and t +1~j. Now 
t u

1
q 

if short(q,t ) is infinite 
u

1
q 

then all remaining paths from u to b through 
1 

q have infinite length and therefore edge (u ,q) can be deleted. 
1 

Otherwise 

Y is updated to its appropriate value, i.e. y :=shoTt,(q.i ) + ~l • 
u

l 
q u

l 
q . u

l 
q u, 'I 

In any case, the only difference between the values of y 's at points Q' u W 
1 

and e of the computations LENGTHQ(u
l 
,j-1,q') and LENGTHQ(U

1 
,j,q) is in 

Y which either was correctly updated or whose edge 
u q' 

1 

(u
1

,q) has I)e-) 

deleted. Therefore is s<infinity there exists at least one value 0f Yu w 
1 

which has not been used yet, and consequently at point Q' of thi& last 

computation, A(u ) is not empty, t and y satisfy (i) and .shurt{u ,j) 
1 u

l 
w u

1 
W 1 

is set to the length of the j-shortest path from u
t 

to b at point e. 

The proof of lemma 4.7 can be established similarly. 

The performance of the present method can be evaluated by the 

following theorem. 
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Theorem 4.4: 

Let D(V,E) be anacyclic digraph with weighted edges: input to 

algorithm 4.5 and b E V. Then for calculating the lengths of the k-

shortest paths from all vertices to vertex b, o (Nk+M) space and O«X+H)k) 

time are required, where N and M are respectively the n umber of vertices 

and edges of the digraph. The number of additions and comparisons of weights, 

performed within the scope of LENGTHQ are O(Nk) and O(Mk), respectively. 

Proof: 

The representation of the digraph by adjacency lists requires 

o (N+M) space. Storing the short(v,j) quantities as a matrix requires 

O(Nk) space and the remaining data structures require O(N+M). Therefore 

o (Nk+M) space is needed. For the time bound, observe that, in each com-

putation of LENGTHQ(v,j,q), at most one addition of weights and at most one 

minimization are performed. This minimization consists of finding the minimum 

of [y ,w E A(v)}. Therefore, at most outdegree(v) comparisons are 
vw 

required per call of the procedure. Since LENGTHQ is invoked at lliost k 

times per vertex v, we conclude that O(Nk) additions and O(Mk) comparisons 

are requiredo Since the part of the algorithm outside LEKG1HQ requires 

o (N+M) time - finding the shortest paths from all vertices to vertex b; 

ini tiali sing the variables; obtaining a topological sorting arr Ctff{em8,-,t; 

all require O(N+M) time - we conclude that the total time boc.r,d is O( (N+M)k). 

Now let us examine in more detail the behaviour e;f the algorithm 

in the worst case, namely a complete acyclic digraph, with b being the sink 

vertex. We wish to find the length of the k-shortest paths from all 

vertices to vertex b. Assume, without loss of generality, that the numbering 

of the vertices (1, .. ,N} of this digraph is such that the topological 

sorting arrangement corresponds to the decreasing ordering of the vertices 
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(then b=1 and N=the source vertex). For any vertex ~ v~1, a maximal 

number of computations of LENGTHQ(v,j,q) equals the number of different 

paths that exist from v to b. Let p represent this number of different 
v 

paths. Ttere exist exactly p different paths from v to b through vertex 
w 

V-1 

w, where (v,w) E E. Therefore p = ~ p, with p =1. 
v 1=1 1 1 

v-a Henc,= p =2 • 
v 

Consequently, 
N 
'" N-1 is £.. P -2 

1 =2 1 

another upper bound for the total number of calls of LENGTHQ 

-1. This bound is attained only when we desire to obtain the 

lengths of all possible paths, from all vertices to vertex t. 

Since at most one addition of weights is performed p~r call of 

LENGTHQ, we conclude that 

~ { lJ-1 } total number of additions min m~, 2- -1. 

For the number of comparisons, we recall that each minimization 

at the point e of algorithm 4.5~ in the computation of LENGTHQ(v,j,q) 

is performed in a set of at most outdegree(v) elements. If we disregard 

the deletions of edges, this number is exactly outdegree(v)=v-1. In this 

case for each vertex v~1 there are at most (v_1)2
v

- z comparisons. ThEre-

N 1-- N-
fore, for the entire process we have at most ~ (i-1)2 G=(:~_2)2·';' +1 

1 =2 

comparisons. Since M=N(N-1)/2, we conclude that 

total number of comparisons ~ min("r;r(N-1 )k/2, (N-2)2
N
-:+l}. 

Now let us consider the deletions of edges. The proLlsi'l that 

arises when considering them is that the actual number of comp-:l.:c'icvns 

becomes dependent on the particular values assigned to the weights. 

This happens because of the fact that a deletion of an edge (v,w) occurs 

precisely in the computation of a j-shortest path from v to b, such that 

the {j-1)-shortest path from v to b was found to be v,w, •• ,b, and this path 
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is the last unused path from v to b through w. Consequencly the more 

the paths through ware used, the more likely it is that the edge ( ... -, ... ) 

will eventually be deleted - and this depends on the relative values of 

the weights. Clearly the sooner edges are deleted from thE digr,lph l:L~ 

smaller the number of comparisons. Therefore we can consider a "worst 

worst case" to be a complete acyclic digraph in which tne \alues oJf the 

weights are such that the deletions of the edges occur as late as T'i_'3s i ble. 

Figure 4.1 is such an example, with N=5. Underlined numbers in this 

figure correspond to the weights of the edges and the remaining n'lInbers 

correspond to the vertices. In this digraph, for each vertex v, vi', 

the v-1 longest (non-infinite) paths from v to 1 are of the form: 

v, (v-1 ) , ••• ,1 ; v , ( v-2 ) , ~ •• ,1 ; v , (v-3 ) , ••• ,1 , 0 •• ; v, 1 • Consequently, 

since every edge from v is involved in one of the v-1 last shortest paths 

from v to b, they cannot be deleted before these pa~h~ are ~onsidered. In 

fact the v-l edges from v are deleted, respectively only in the last v-1 

possible computations of LENGTHQ(v,j,q). We recall that a total of 

2V
- 2 calls of the procedure are invoked fer each vertex, (clearly we are 

considering the extreme case where all shorte,:;t path'3 ars CtEooired). He 1.ce, 

in each of the first 2v- 2 _(v_l) computations of L~GTHQ(v,j,q), v-l 

comparisons occur. Subsequently one new edge is delet~d in each of t:.8 

following v-l computations of the procedure. Therefore, f Gr eacl! v t'ytex v, 
V-1 

at most (v-1 )[2V-~-(v-1) J+ L: i= (v_1)2V- 2 _(v_1) (v-2)/2 cf;mpa.risons can 
1 =1 

occur. Hence the maximum number of comparisons that may },'O performed 

for all vertices during the entire process is 
N 
L: [(i-1)21

- 2 -(i-1)(i-2)/2J = (N_2)[2N-1_N(N-1)/6~>+1 • 
1 =2 

Thus the following is satisfied for the "worst worst case": 

total number of comparisons~in(N(N-l )k/2, (N-2) [2
N

- 1_N(N_l )/6:1+1 }. 
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There exists a "best worst case" corresponding to a compl(>t~ 

acyclic digraph in Which the deletions of edges are performed in the earliest 

possible time. The digraph of figure 4.2 is such an example \,-i th ~::.c5. It 

has the property that, for every vertex v, v~1, if v,w. ;0 •• ,1 and v,w , ••• ,1 
a 

are two paths from v to 1, then the length of '-,w ..•• ,1 L smaller than 
1" 

the length of v,w , ••• ,1, when w <w. Since edge (v,w ) can be deleted after 
a 1 2 P 

all paths v,w , ••• ,1 have been used, we conclude that it can be dele+~d 
p 

b~fore the consideration of any path v,w , ••• ,1, with q>p. 
q 

If the k-shortest paths themselves are required in addition to 

their lengths, it is not recommended trying to trace them back starting from 

the obtained lengths. Instead, the paths can be found during the actual 

process of finding the lengths. Two Nxk matrices, vertex and ~ would 

be required. For a certain vertex v, vertex (v,j) would contain the 

vertex w, which follows v, in the j-shortest path fruro v io b. The content 

of order(v,j) would be the integer i, such that the path w, ••• ,b, in the 

j-shortest path v,w, ••• ,b from v to b, is the i-shortest path from w to 

b. If the j-shortest path from v to b is infinit./:', then v<>r-t':!x(v,.j),-,:(l 

and order(v,j) is undefined. The implemention of this strategy i~ 

simple: vertex(v,1) and order(v,1) are initialised ascording to the 

resul ts obtained in the step of finding the s hortesi pa tbs from alI v to 

b with order(b,1)d>. Also, vertex(v,j) is initially zero for 8.'_1", and 

for all j, 2S:jSk. Now in algorithm 4.5 after the line 

comment let z denote the minimizing w; 

insert the following statements: 

vertex(v,j) :=z; 

order(v,j):=t ; vz 
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and this is sufficient for the purpose. The output of the j-shortest 

path from vertex v to b at the end of the process can b~ performed as 

follows: 

begin integer s; 

repeat output v; 

s:=v; 

v:=vertex(s,j); 

j:=order(s,j) 

until v=O 

end 

C~arly printing any path with such a method requires a number of 

steps equal to the number of vertices in the path. 

Instead of using the matrices vertex and order an alter~ative 

scheme for obtaining the k-shortest paths can be proposed, which utilises 

a linked list and one matrix. Each node q in the list consists of two 

fields: vertex and link. The content of vertex is the label v of a vertex 
q 

in some j-shortest path. The field link 
q 

points to the locati0D 0f 

the node in this list which contains the vertex foll.J,;ing v in that j-

shortest path. The Nxk matrix path is also defined, with path(v,<i) poin-

ting to the node in the list whose vertex is the first. in the j-sh.nie"t 

path from v to b. If this path has infinite length then path(v'J:' ",hould 

contain a special symbol indicating this situation. An implementation 

of this scheme can be easily accomplished, by a slight modification of 

the proposed algorithm. Observe that such a list constiTutes a rooted 

tree with the node containing vertex b being the root. The link field~ 

correspond to pointers to ancestors in a represent ion of the tree. The 

tree pictural in figure 4.4 shows all j-shortest paths (j=1,2,3) from all 
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vertices of the digraph of figure 4.3 to vertex f. The superscript i, 

which appears in the vertex field of a node in figure 4.4, simply denotes 

that this node would be referenced from path(v,i), as containing the 

first vertex in the i-shortest path from v to f. For example, path(g,2) 

would point to the node whose vertex field is g2, meaning that a second 

shortest path from g to f is gdef. 

We can alter the proposed algorithm so that the total number 

of comparisons of weights performed during the execution of the recursive 

procedure is in general less than that of the original version presented -

but an overhead is added to the part of the algorithm outside the procedure. 

Examining algorithm 4.5 we observe that in each call of I£NGTHQ(v,j,q) a 

minimization of y occurs. In any two consecutive recursive calls the 
vw 

corresponding sets of y 's differ by at most one element. This fact 
vw 

suggests that the nodes of the adjacency list of vertex v may be kept 

sorted according to increasing values of y • Therefore the vertex w 
vw 

for which (y ,w E A(v)} is minimized will always correspond to the first 
vw 

node of the adjacency list. 

In order to obtain the adjacency lists perman'3ntly sort.ed as 

required, two actions are necessary: first, in the initialization of tL .. , 

process, i.e. before the first call of the procedure 1 every A(v) list, must 

be sorted so that y values are in increasing order. During thi~ process 
VW 

another slight improvement can be made. Let Yvw , ••• 'Yvw iJe -tl:e Yvw'g 
1 q 

of A(v) in increasing order and q>k. Clearly in any j~shortest paths 

(2~j~) from v to b, at most the first k values of Yvw are actually used 

for computing the lengths of the paths. Therefore all Yvw ' t>k,may 
t 

be deleted from A(v) in the initialisation of the algorithm since they are 

not involved in the computation of any j-shortest path, 2Sj~. The 
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pruning of the A(v) lists will contribute to decrease the number of 

comparisons of weights performed later in the execution of the recursive 

procedure. The second action required is to maintain the lists adequately 

sorted during the actual Process of finding the j-shortest paths. 

Assume that at the start of a given call of the recursive procedure for 

finding the j-shortest path from v to b, the A(v) list is correctly 

sorted. Since q is the vertex following w in the (j-1)-shortest path, 

q is the first vertex of A(v). After increasing t qy1,if short(v,t )< 
vq vq 

infinity then the sum y :=short(q,t )+d is performed. In this case vq vq vq 

the list A(v) has to be rearranged because the new first value y of 
vq 

the y 's is not necessarily the smallest among all y 'so However, 
vw vw 

since A(v) is necessarily sorted from its second node until the last 

the rearranging of A(v) is equivalent to the problem of adequately inserting 

a new element in a sorted list in such a w~ that the appropriate ordering 

is maintained. This can be accomplished in a number of comparisons, which 

is on average less than \A(v) \, the number of nodes of A(v) - we recall 

that the minimization in algorithm 4.5 requires exactly iA(v) I comparisons. 

On the other hand, if short(v,t )=infinity then tile edge (v,q) is deleted vq 

from A(v). In this case no rearrangement of A(v) is necessary since the 

sorting is preserved after the deletion. 

The following is an ALGOL-like description of thi3 ne~ 

variation. Note that the (third) parameter q of the rec\IT~ive procedure 

has been deleted. This is because the information represented by q in 

algorithm 4.5 can be obtained from the first node of A(v) when it is 

sorted. For the same reason the use of vector way of algorithm 4.5 

can be avoided in this case. 
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ALGORITHM 4.6: 

begin comment an algorithm for finding the lengths of the k-shortest 
paths from all vertices of an acyclic digraph D!Y,E) to 
vertex b; 

end 

procedure LENGTH(integer value v,j); 
begin comment q denotes the first vertex in the A(v) li::t; 

t :=t +1: vq vq , 
if short(q,t )<infinity then 
-- vq ----
begin y :=short(q,t )+d ; 

vq vq vq 
rearrange list A(v) - by possibly moving its first 

vertex - so that A(v) remains sorted in non
decreasing values of y lSi 

vw end 
else delete edge (v,q) from A(v); 
if A(v) non-empty then 
begin comment z denotes the new first yertex of ACy); 

short(v,j):=y ; 
vz 

if j<k then LENGTH(v,j+1) 
end 
else short(v,j):=infinity; 

end LENGTH; 
read the digraph and construct the adjacency lists A; 
read the value of k and vertex b; 
find the shortest paths from all vertices to yerlex b; 
for v:=1 ste:e. 1 until N i2. 

if length shortest path from v to b - infinity then delete vertex v 
else short(v,1):=length of' shortest path from v to h; 

for (v,w) E E do 
begin t :=1; 

vw 
y :~short(w,l) + d 

vw vw end 
sort each A(v) list according to non-decreasiClg ·'aJues r.f Y., .. ,,':;; 
for v:=1 until N do 
- if \Ar;)T3k then delete the last \A(v) \-k nodes of A(v); 
find a topological sorting arrangement u u •.• '.1 (u~b), of' the 

1 2 ;0 ., 

remaining vertices of the digraph; 
short(b,2):=infinity; 
for i:=p-1 step -1 until 1 do LENGTH(u ,2) 
--- -- 1 
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The space bound for algorithm 4.6 is the same a.5 f.)r algorilfl.1T 

4.5 namely O(Nk+M). For the time bound observe that the number of 

additions of weights performed in the recursive procedure is also the same 

in both cases: O(Nk). The average number of comparisons perform2c'1 in t.he 

recursive procedure is less for algorithm 4.6. HoweYt:1r -Lf linear sear~h 

is adopted for rearranging the A(v) lists in algorithm 4.":' -~Le worst 

case is also the same for both algorithms: O(Mk) comparisons. The part 

of the algorithm outside procedure LENGTH is bounded by O(min(Mlog~, 

N2 10gN}) time, bec/tuse of the sorting of the A(v) lists. 'fher~fore, the 

iotal time bound for algorithm 4.6 is O(min(MlogM,N2 1ogN} + (N+M)k). 

However,depending on the particular input digraph, this algorithm can 

be faster. For example, in the digraph of figure 4.2, all the weights 

are such that when the 

of A(v» is altered by 

value of yvq ( which is contained in the first. node 

the sum y :=short(q,t ) + d ,then the new value vq vq vq 

of Y is still the smallest of 
vq 

all y IS. Therefore the rearranging of 
vw 

the A(v) list will not alter the ordering of the nodes. Conse-

quently in each call of LENGTH at most a constant number of compari~on5 

of weights is performed. Hence, the total number 8f c[)rnparisons, per I dl'-r!ed 

inside procedure LENGTH, with the input digra:ph of fig.<-':"('- ·1-,2 is 0(:-Jk) 

and the total time spent inside this procedure ~s also O(~~). 

Now we add some further short ~omments in Tdlation -+, -r';, algor-

ithms presented in this section. If we examine algoritl~!:" 4.~ an·-t 4.6 

we observe that the progress of the computation io: d3 follows: first., 

all j-shortest paths, 2~j~, from vertex u
p

_
1 

to up=b are found, where 

u is the vertex immediately preceding u in the topological sorting. 
p -1 P 

Next all J' -shortest paths from u to u are found, where 11 is the 
p-2 p ~-2 

vertex immediately preceding u in the topological sorting. Next 
p-1 



143. 

u is considered and so ~m. Alternatively those algoritlu" can be 
P-3 

modified to compute all second shortest paths from all vertices "to 

vertex b; after all third shortest paths, all fourth shortest paths: Hnd 

so on. As it is shown later , this alteration makes it possible 10 rr"ceS5 

the vertices in any order so avoiding the topological nrting pass. 

In the presented algorithms there is no menticn 'Jf sp:::cial 

procedures for resolving ties between different paths having the same 

lengths from a vertex v to b. Some existing algorithms for finding the 

k-shortest paths in (general) digraphs, require all paths to have different 

lengths. When this is not satisfied a special treatment for tie resolution 

is necessary in these algorithms. 

4.8 k-shortest paths from a given vertex to all others 

The problem consists of: Given an acyclic digraph D(V,E) , 

vertex a E V and an integer k, k>1, find the lengths 0f the k-shortest 

pa ths from a to all vertices of the digraph. The strateg:'>- +,') be adopted 

is similar to that of section 4.4. From the digraph D obtain the converse 

digraph D. Now simply apply the algorithms of sedior. 4.7 ","ith D c1: iT)r~lt 

digraph and b=a. Thus we obtain the lengths of the l'-1:'}-."r"-te-d pa -nL~ 1'1 1,:i. 

all vertices to a in D, which is equivalent to obt,aining th~ length" r,f 

the k-shortest paths from a to all vertices in D. 

Clearly the remarlts of the previous section concernL} t :,::- ~ 

and space bounds, finding the actual k-shortest paths in ",d:iition tc 

their lengths, discussion of alternative algorithms and ::0 or.. - are all 

valid in the present case. 

4.9 k-shortest paths between every pair of vertices 

Given an acyclic digraph D and an integer k, k>1, the problem is 

to find the lengths of the k-shortest paths between every pair of vpr+i:~~ 
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of the digraph. 

A straightforward and, in this case, efficient way of solving 

this problem consists of applying at most N-l times the method of 

section 4.7, for finding the k-shortest paths from all ,ertices to a fixed 

vertex of the digraph. When applying that method we recall that deletions 

of certain edges of the digraph may occur. However, an edg~ that i:5 

deleted in the middle of the computation for the k-shortest patbstJ vertex 

v may be needed later in the computation for the k-shortest paths to vertex 

w, w-:fv. Because of tll-is fact we have to store the input digraph D', and 

use an auxiliary digraph D. Let A' and A represent the adjacency lists 

of digraphs D' and D, tespectively. Initially we define A, as being 

A==A' • The tOp'logical sorting arrangement u u •.• \1.. of the vertices of 
1 2 N 

D' is obtained. Next for each p, p=N,N-l, ••• ,2 such that u is not a 
p 

source vertex, the method of section 4.7 is applied for finding the lengths 

of the k-shortest paths from u ,u , ••• ,u 
1 2 p-l 

to vertex u • 
p 

Note that 

the digraph to be used by procedure LENGTHQ of algorithm 4.5 is digraph 

D with adjacency list A and not the input digraph. 'Ihersfure, the deletion 

of edges by procedure LENGTHQ is performed in digraph D. Whtm th:i.s 

step is completed vertex u may be deleted from D' :;ince it is sure that 
p 

no paths can exist to u from vertices after u in the topological sorting 
p p 

arrangement. D I is re-assigned to D, vertex u is now con'5Llere,~_ and 
p-l 

so on. 

If the lengths of the k-shortest paths obtained aTe to be used 

only for output, no storing of all lengths is required. In fact when 

-t.he algorithm is computing the k-shortest paths from all yertices to 

vertex v there is no reference to the length of the j-shortest path, 

1 ii:j ='k, to any other vertex w, w=fv. 

The following is an ALGOL-like formulation of the algorithm. 
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ALGORITHM 4.7: 

begin comment an algorithm for finding the lengths of the k-shortest. 
paths between every pair of vertices of an input acyclic 
digraph; 

end ..--

procedure LENGTHQ(integer value v,j,q); 
begin 

the same as in algorithm 4.5 

end LENGTHQ; 
re;a the digraph D' and construct its adjacency lists A'; 
find a topological sorting arrangement u u ••• ~ of the 

vertices of the digraph; 1 2 

!.2!: p:=N step -1 until 2 ~ 
begin if u is not a source vertex then 

- - p 

begin A:=A'; 
comment A are the adjacency lists of an auxiliary 

digraph D(V,E) to be used by procedure LENGTHQ; 
find the shortest paths from all vertices to vertex u 

p 

end 

in digraph D; 
for r:=1 until p do 
--- if length shortest path from u to u = 

-- then delete vertex u frofu D P 
r 

infinity 

else begin short(u ,1):=length short~st path from 
-- r U to u ; 

r P 

way(u ):=vertex following u (r~) in 
r r 

a shortest path from u to u 
r p 

end 
for (v,w)TE do 
begin t :=1; 

vw 
y :=short(w,1) + d 

vw vw 

~; 
short(u ,2):=infinity; 

P 
~ r:=p-1 step -1 until 1 do LENGTHQ(u

r
,2,way(u:); 

output the values of the k-shortest paths to U
c 

; 

~; 
delete vertex u from D' 

P 
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The correctness of the algorithm follows directly from the 

correctness of the method for finding the lengths of the k-shortest patt .. s 

from all vertices to a fixed vertex. The same applies to its performaLce 

as can be seen from the theorem below. 

Theorem 4.5: 

Let D'(V,E) be an acyclic digraph with weighted edges input to 

algorithm 4.7. Then for calculating the le~hs of the k-shortest paths 

between every pair of vertices of D', o (Nk+M) space and O«N+M)~~) time 

are required. The total number of additions and comparisons performed 

within the scope of procedure LENGTHQ are O(N2k) and O(NMk) , respectively. 

Proof: 

The space bound follows directly from theorem 4.4 because the 

only additional structures that algorithm 4.7 requires, in relation to 

algorithm 4.5, are the adjacency lists A of the auxiliary digraph D, 

which require O(N+M) space. Therefore algorithm 4.7 requires O(Nk+M) 

space. The time bound also follows from theorem 4.4. Algorithm 4.7 i~ 

basically an interation of algorithm 4.5 at most N-1 times. Hence, pr~·ce

dure LENGTHQ is invoked O(N2 k) times, with O(N2 k) additions and O(~Mk) 

comparisons of weights performed. Therefore the time bound is o( (:'-i-tM)\n~). 

Now let us consider the evaluation of the algorithm in the, worst 

case, namely, when the input digraph is a complete acyclic digraph 'W'i th ~ 

vertices. Assume the weights of the digraph to be such thau the deletions 

of edges which occur during the computation of the LENGTHQ procedure are 

performed at the latest possible time, i.e., a "worst worst case", as 

in the digraph of figure 4.1. It follows from algorithm 4.7, that finding 

the lengths of the k-shortest paths between every pair of vertices of a 



147. 

complete acyclic digraph with N vertices corresponds to solving the problem 

of finding the le~ of the k-shortest paths from all vercices to the sink 

vertex for a complete acyclic digraph with N vertices, then the same 

problem for a complete acyclic digraph with N-1 vertices: then ~-_ vertices 

and so on. Consequently we can apply to this case the results of section 

4.7 for determining upper bounds for the number of additions and comparisons 

performed in the LENGTHQ procedure. From section 4.7 we know that the total 

number of additions required for finding the lengths of the k-shortest 

paths from all vertices to the sink vertex in a complete acyclic digraph 

( N-l} is less than or equal to min Nk,2 -1. Consequently, the total number 

of additions performed within LENGTHQ, for the all pairs of vertices 
N N 

Problem, is less than or equal to mine r ik, r 2
1

-
1

_1}. Hence 
1 =2 1 =2 

total number of additions S min(N-1)(N+2)k/2, 2
N

_N}. 

Similarly, we conclude that the total number of comparisons performed within 

LENGTHQ, for the all k-shortest paths, is less than or equal to 
N N 

mine r i(i-2)k/2, r (i_2)[21
-

1 _i(i_1)/6J+1}. Hence 
1 =2 1 =2 

total number of comparisons $ min(N+1)N(N-1)k/6,{N-3)2~-(N+1)N(N-1)(~-~)/ 

24+N+3}. 

Finally, we observe that it is also possible to pr8sent 8 varia-

tion of algorithm 4.7, which would make use of procedure L~&TH 01 algorithm 

4.6 (which assumes the adjacency lists to be sorted in increasing value,:; 

of y IS), instead of procedure LENGTHQ. 
vw 

4.10 k-shortest path between two given vertices 

Given an acyclic digraph D(V,E) with weights d1J associated 

with its edges, the problem consists of finding the length of the k

shortest path from a given vertex a to another given vertex b. The 

methods presented in section 4.7 for finding the lengths of the k-shortest 
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paths from all vertices to the fixed vertex b would find in part~cular 

the k-shortest path from a to b and hence may be used for solving the 

present problem. However in this case a more efficient algorithm can 

be devised that takes advantage of the simpler nature of this proble~. 

The following definition was first given by Hoffman and Pavley 

[HoPa59J: A deviation from a shortest path from a to b, in a given 

digraph, is a path that coincides with this shortest path, from a up to 

some vertex v on the path (v=a or v=b are also possible); afterwards 

deviates to some vertex w, such that (v,w) E E and w is not the vertex 

that follows v in the shortest path; and finally proceeds from w to 

b, via the shortest path from w to b. In [HoPa59] it is shown that the 

second shortest path from a to b is a deviation from the shortest path. 

Similarly, the third shortest path is a deviation either from the shortest 

path or from the second shortest path, and so on. Therefore if v ,v, ••• , 
1 ;) 

v (v =a, v =b) is a shortest path from a to b, in D, in order to compute 
p 1 p 

the second shortest path from a to b we need just to compute the second 

shortest paths to b, from all v , 1 Si<p. Henc e, if w,"v , 1 si<p, there 
1 1 

is no need to calculate the second shortest path from w to b. Similarly 

for the third shortest path, and so on. 

Our problem is to devise an algorithm that would effic~pntly 

take advantage of this property and therefore reduce the total I:'JJc"bpr of 

computations required to solve the problem. An algorit~ cn Lhe lines of 

algorithm 4.5 or 4.6 would be inadequate because those methods compute 

ill k-shortest paths from a vertex v to b in the iteration corresponding 

to vertex v. 
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Instead the algorithm that is proposed in this section initially 

seeks the computation of the second shortest path from a to b. In this 

process it also calculates the second shortest path;; to b from t.he other 

vertices that lie on the shortest path from a to b. Afterwards, it 

seeks the computation of the third shortest path from a to b. In this 

process it also computes the third shortest patlEto b from the vertices 

that belong to both the shortest path and the second shortest path from 

a to b. Also during this process the second shortest paths to bare 

calculated from the vertices that belong to the second shortest path from 

a to b, but which do not belong to its shortest path. The process is 

iterated, until the desired k-shortest path is computed. This strategy 

is similar to that used by Hoffman and Pavley. However, our algorithm 

possesses a better time bound than [HoPa59] and avoids much of the 

book-keeping existing in it. For instance we do not need to sort and 

merge paths as [HoPa59] requires. 

Basically the same data structures used in algorit.hm 4.5 are 

required in the present one. The short(v,j),tvw and Yvw quantitie:::

have the same meaning as before. However, wayl.v) has now a different 

interpretation; it now represents the vertex follow"ing v i.n the last 

j-shortest path from v to b so far computed. For example if the fo·:U'th 

shortest path from v to b has already been computed but the fif-t.}-; r,a: 

not, then way(v) contains the vertex that follows v in the fourth shortest 

path from v to b. The information short(v,j) is considered processed 

when the j-shortest path from v to b has been calculated (i.e. if a recur

sive call of the procedure occurred, for computing this j-shortes~ path, 

or the content of short(v,j) was set in the initialisation of the process). 
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otherwise if the j-shortest path from v to b has not yet been computed, the 

information short(v,j) is said to be not processed. In an actual imple-

mentation of this method the not processed state would be indicated by 

storing in short(v,j) a convenient special symbol distinguishabl~ from ~ 

path length. 

We use a recursive procedure ABLENGTHQ. An interesting aspect 

of it is that it naturally finds the vertices v and the integers j ior 

which the j-shortest path from v to b ought to be calculated in order to 

find the k-shortest path from a to b. The way of finding these values 

consists of testing whether short(q,t ) has already been processed, in 
vq 

ihe course of the computation of ABLENGTHQ(v,j). If it has not yet been 

processed then a recursive call ABLENGTHQ(q,t ) occurs that eventually vq 

computes short(q,t ). Vertex q denotes as before the vertex following 
vq 

v in the (j-1)-shortest path from v to b. We do not need to pass it as 

a parameter of the procedure because in this case q is precisely way(v). 

The following is an ALGOL-like formulation of the algorithm. 

Note that the topological sorting pass no longer exists, sin(~e the 

ordering in which the j-shortest paths are computed now is determined 

"automatically" by the actual recursive procedure. 
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ALGORITHM 4.8: 

begin comment an algorithm for finding the length of the k-shortest 
paths from vertex a to vert.ex b, in an acyc lic digraph D( \- ,E) : 

procedure ABLENGTHQ(integer value v,j)j 
begin integer qj 

q:=way(v) ; 
t :=t +1 • vq vq , 
if short(q,t )=not processed then ABLENGrHQ(q,t ); - vq --' vq 
if short(q,t )<infinity then y :=short(q,t ) d 
- vq -- vq vq vq 
else delete edge (v,q) from A(v); 
if A(v) non-empty then 
begin short(v,j):=min(y ,w E A(v)}j 

end 

vw 
comment let z denote the minimizing Wj 
way ( v) :=z; 
short(v,j+1):=not processed 

else short(v,j):=infinity 
comment short(v,j) is now processed; 

end ABLENGTHQ; 
integer ij 
read the digraph D(V,E) and construct the adjacency lists Aj 
read the value of k, and vertices a,b; 
find the shortest paths from all vertices to vertex bj 
short (a,1):=infinity; 
!£!:. v: =1 step 1 until N do 

if length shortest path from v to b = infinity then delete vertex v 
else begin short(v,1):=length shortest path from v to bj 

short(v,2):=not processedj 

end 

way(v):=vertex following v in the shortest path 
from v to b (vfb) 

i2!. (v,w)EE do 
begin t :=1; 

vw 
y :=short(w,1) + d 

vw vw 
end 
~rt(b,2):=infinity; comment short(b,2) is now processed; 
i :=1 j 

while i<k do 
if short(a,i) < infinity then 
begin i:=i+1; 

ABLENGTHQ (a, i) 

else i:=k; 
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. ,The correctness of this strategy is based on the corrrctness 

of algorithm 4.5 and on the fact that the k-shortest path from a to b 

is a deviation from a j-shortest path from a to b, for some j, 1~J~k. 

For evaluating the performance of algorithm 4.8, we observe 

that although the number of computations of the intermediate j-shortest 

paths has been lowered,in terms of upper bounds there exists a worst 

case which is similar to the worst case of section 4.7. If D(V,E) is a 

complete~yclic digraph, with a and b being respectively the source and 

sink vertices, then for a certain assignment of weights to the edges the 

computation of the k-shortest paths from a to b may be equivalent to the 

computation of the k-shortest paths from all vertices to vertex b as 

performed by algorithm 4.5. In fact O(outdegree(v» steps are performed 

per call of ABLENGTHQ(v,j) corresponding to the number of comparisons 

required for the minimization of (y ,w E A(v)}; there are at most k-1 
vw 

calls of ABLENGTHQ. from outside its body (the calls ABL8~GTHQ(a,i»; 

there are, at most, (k-1)(N-2) recursive calls of ABLENGTHQ; the part 

of the algorithm outside the recursive procedure requires o (N+M+k) time. 

Therefore, an upper bound for algorithm 4.8 is O«N+M)k) time. The 

space bound is also equivalent to algorithm 4.5, namely O(Nk+M). 

Finally, we add some more remarks about this method. The alter-

native strategy of maintaining the nodes of each A(v) list, sorted 

according to increasing values of y 's (as in algorithm 4.6), can also 
vw 

be applied to this case. Also, it is obvious that (i) an algorithm for 

finding the k-shortest paths from all vertices to the fixed vertex b, 

(ii) an algorithm for the k-shortest paths from a fixed vertex to all 

others, and (iii) an ~lgorithm for all k-shortest paths, can be devised 

based on the strategy of the present algorithm 4.8. These algorithms 

would have bounds similar to those previous~described. 
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4.11 The longest path 

Given an acyclic digraph D(V,E) with non-negative weights d 
1 • 
" 

associated with its edges, the problem consists of finding a path which 

has the longest non-infinite length among all possible paths in the digraph. 

When only positive weights are considered, such a path necessarily starts 

with a source vertex and ends with a sink vertex. 

The problem is directly related to PERT (Kroject ~aluation and 

Review !echnique) networks, for a critical path in such a network is 

precisely the longest path in the corresponding digraph. Therefore the 

present problem is also handled in the vast literature of PERT, CPM 

(Qritical Kath Method) and scheduling project networks. Klein [K167J, 

Lass [La65J, Chen and Wing [ChWi66J, Leavenworth [Le61J, Eisenman and 

Shapiro [EiSh62J, Elmaghraby [E170aJ, Charnes and Cooper [ChCo62], 

Furtado [Fu73J, Even [Ev73J, Price [Pr71J, among many others, have 

approached the critical path (or longest path) problem and solutions 

have been presented, which vary from efficient algorithms - ~u.ch as 

presented in [Fu73] or [Ev73J - to less efficient methods, a:5 presented 

in [ChWi66J. The algorithms [Fu73 , Ev73] require O(~i2j time for finding 

the longest path in an acyclic digraph, but a minor alteration (basically 

adapting them to adjacency lists) transforms them into O(N+~) meHrJd.=. 

The algorithm [ChWi66] for finding the longest path in the c.igrai.'h computes 

initially the lengths of all longest paths between every pair of vutices. 

In addition it requires the computation of the reachability matrix of the 

digraph. We can also mention that some of the methods for finding the 

longest path in a digraph require a topological sorting of its vertices 

to be performed before the actual computation of the longest path. 
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Our proposed method uses a recursive backtracking procedure F~rHL 

Which - besides some minor differences - is essentially ~imilar to procedure 

PATH of algorithm 4v1. At the end of the computation of a call PATHL(v), 

the longest path of the digraph, starting from vertex v has been calcu13ted. 

The method does not require a topological sorting to be performed. It 

starts by computing the sets S and S of sink and source vertices, res-
I 0 

pectively. The vector mark is used for preventing the exploration of each 

vertex more than once. The length and route vectors are used for storing, 

for each vertex v, the length of the longest path in the digraph, starting 

with v and the vertex that follows v in such a path, respectively. The 

initialisation is executed as follows: If v is a sink vertex then mark(v) 

is initialised with true, length(v) and route(v) are initialised with 

zero. Otherwise,mark(v) is initially set to false and length(v) to 

infinity. As before, the special symbol "zero" is used in the route 

vector to indicate the occurrence of a last (sink) vertex in a longest 

path. For each source vertex u, a non-recursive call PATHL(u) occurs, 

which will compute the longest path which starts from~. The longe5t 

path in the digraph is clearly the longest of all such paths from these 

source vertices. In each computation of an invoked PATHL(v) , mark(v) 

is set to true and all edges from v are explored. ASS~e the computation 

of PATHL(v) and the exploration of an edge(v,w). 

(i) If w is found unmarked, this means that w has not been 

explored yet and a call PATHL(w) occurs. Gn returning 

of this call, length(w) contains the length of the longest 

path in the digraph, starting from w. A test is therefore 

made as to whether the path starting with v - and proceeding 

by the longest path from w - is longer than the so far 

computed longest path from v. In the affirmative Cd.S·' , 

this path from v through w, becomes the new longest path 

from v< 



155. 

(ii) If w is found to be marked then it will not be explore~ 

again and no recursive call of PATHL(w) is invoked. In 

this case, length(w) contains already the length of 

the longest path in the digraph, starting with w. 

A similar comparison and action as in (i) is therefore 

undertaken. 

At the end of the whole process variable total contains the 

length of the longest path in the digraph and variable ~ points to the 

first vertex in the longest path. This path can be obtained in the usual 

way: if v ,v , ••• ,v is the longest path, then v = first, v =route(v) 
12k 1 j Tl J 

for 1~j<k , and route(v )=0. 
k 

The following is the algorithm for computing the longest path in 

an acyclic digraph in an ALGOL-like notation. 
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ALGORITHM 4.9: 

begin comment an algorithm for finding the longest path in an acyclic 
digraph D(V ,E); 

end 

procedure PATHL(integer value v); 
begin mark(v):=true; 

for w E A-rvr-do 
'b';,iin if I mark(w) then PATHL(w); 

if length(w) + d > length(v) then 
- vw 
begin length(v):=length(w) + d ; 

vw 

end 
end PATHL; 

route(v) :=w 

integer first, total; 
read the digraph and construct the adjacency lists A; 
for j:=1 until N do 
b;gin mark(j):=fa!;e; 

length(j):=-infinity 
end 
S :=set of sink vertices; 

1 

S :=set of source vertices; 
o 

for u E S do 
1 -

begin mark(u):=true; 
length(u) :=0; 
route(u) :=0 

end 
total:=-infinity; 
for u E So'\. S1 do 

begin PATHL(u); 
if lengt.h(u) > total ~ 
begin total:=length(u); 

f'irst:=u 
end 
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The correctness of the proposed strategy follows from the 

lemma below whose proof can be basically established by induction on 

the computations of PATHL. 

Lemma 4.8: 

Let D(V,E) be an acyclic digraph with non-negative weights 

d assigned to its edges. Consider D input to algorithm 4.9 and let 
1J 

u E V be such that u is not a sink vertex. Then, during the pxecution of 

this algorithm a call PATHL(u) occurs, and by the end of this computation 

length(u) contains the length of the longest path of the digraph starting 

from u. 

The performance of the algorithm can be evaluated by the following 

theorem, which also ensur~that the present strategy is optimal within 

a constant factor. 

Theorem 4.6: 

Let D(V,E) be an acyclic digraph with non-negati.ve weights 

d assigned to its edges. Consider D input to algGrithm 4.1. Then the 
1 j 

longest path of the digraph is computed in O(~+M) time, using O(N+M) 

space. A total of M additions and M + Is '\ s I comparisons of weights are 
o 1 

performed, where Sand S are the sets of source and ~ink vert~ces 
o 1 

respectively. 

The t.ime bound mentioned in the theorem aboye follows directly 

from the fact that if u ~ S then precisely one call PATHL(u) is invoked, 
1 

and otherwise no such call occurs. For each computation of PATHL(v) 

precisely outdegree(v) additions and comparisons of weights are performed. 

For each vertex v, such that v E S\ S , one extra comparison of weights is 
o 1 
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made outside PATHL. Furthermore, O{N} time is spent in the part of the 

algorithm outside the recursive procedure, beyond the O(N+M} time required 

for the input of the digraph. 

4.12 The k-longest path 

Given an acyclic digraph D(V,E} with non-negative weights 

d assigned to its edges and an integer k, k>1, the problem consists 
13 

of finding the length of the k-longest (non-infinite) path, from a 

source to a sink vertex, in the digraph. 

Our approach to the problem consists of applying results from 

section 4.11 in which a strategy for finding the longest path in the 

digraph was presented, combined with results from section 4.10, which 

contains a method for finding the length of the k-shortest path between 

two given vertices of the digr~h. 

The data structures of the proposed method are the following: 

we use the way(v},t and y quantitites of algorithm 4.8 with similar 
vw vw 

purposes, except that they now refer to j-longest paths t'rom v t.o sink 

vertices, instead of j-shortest paths. The short(v,j) quantitites are 

replaced by long(v,j}, which contain the lengtbsof the j-longest path in 

the digraph, starting from v and ending with a sink vertex. If there 

exists such a j-longest path, but there is no (j+1 )-longest path, tl·.en 

long(v,j+1) is defined to be equal to -infinity. In additi0n, we UE€: the 

length and index vectors. Denoting by Sand S respectively the set of 
o 1 

source and sink vertices of the digraph we have for each v E S~S1 

length(v) storing the j-longest path from v to any sink vertex so far 

computed and index(v}=j. 
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A recursive procedure LENGTHQL(v,j) is used, which is similar 

to procedure ABLENGTHQ of algorithm 4.8, except that the minimization is 

now replaced by a maximization, and the absence of a j-Iongest path from 

v to any sink vertex (which occurs when A(v) becomes empty) is now 

indicated by setting long(v,j) to -infinity, whilst in algorithm 4.8 

short(v,j):=infinity was used in the corresponding case. 

The process is initiated by finding the longest path in the 

digraph using algorithm 4.9. Next the variables are set to their initial 

values in a similar way as in algorithm 4.8 except that they should refer 

to longest paths. The long(v,2) quantities are set to "not processed", 

which has a similar meaning as in algorithm 4.8. For all vertices v E S , 
I 

the following additional initialisations occur, length(v) is set to the 

longest path from v, index(v) is set to 1 and long(v,2) is set to -infinity 

therefore becoming Itprocessed". The first call of the procedure is the 

call LENGTH(u,2) where u is the first vertex in the longest path of the 

digraph. At the end of this computation the length of the second longest 

path from u to a sink vertex is stored in long(v,2). ~ow, if w:: as~ign 

this value to length(u), then the length of the second longest path in 

the digraph from a source to a sink vertex is calculated simply by maxi-

mizing (length(v), v E S}. To calculate the length of the third 1~n~e5t 
o 

path from a source to a sink vertex of the digraph assign to 1 ... tLe value 

of the first vertex of the second such longest path, call LENGTHL(u,~ndex(u)) 

and repeat the process. The iteration is performed until the length of 

the k-Iongest path is obtained, or it is detected that no such path exists. 

The following is an ALGOL-like formulation of this strategy. At 

the end of the process, length(u) contains the length of the k-longest path 

from a source to a sink vertex if there is one. If it does not exist length(u) 

contains the length of a j-Iongest path, where j is the greatest integer 

(j>1) such that the digraph admits a j-longest path from a source to a 

sink vertex. 
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ALGORITHM 4.10: 

begin comment an algorithm for finding the k-longest path from a source 

to a sink vertex, in an acyclic digraph D(V,E;; 

procedure L~9".THQL{integer value v, j); 

begin integer q; 

q:=way(v) ; 

t :=t + 1; 
vq vq 

if long(q,tvJ=n0t processed then LENGTHQL(q,tvq); 

if long(q,t ) > -infinity then y :=long(q,t ) + d 
vq ---- vq vq vq 

else delete edge (v,q) from A(v); 

if A(v) non-empty then 

begin long(v,j):=max(y , w E A(v)}; 
vw 

comment let z denote the maximizing w; 

way(v) :=z; 

long(v,j+1):=not processed 

end 

else long(v,j):c-infinity; 

comment long(v,j) is now processed; 

end LENGTHQL; 

integer i,u; 

read the digraph and construct the adjacency lists A; 

read the value of k; 

S :=set of sink vertices; 
1 

S :=set of source vertices; 
o 

find the longest path in the digraph, from a source vertex; 

u:=first vertex in- the longest path of the digraph; 

for v:=1 until N do 

if v E S and v E S then delete vertex v 
1 0 

else begin long(v,1):=length of the longest path from Vi 

long(v,2):=not processed; 

way(v):=vertex following v in the longest path 

path from v (v ~ S 
I 
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~ (v,w) E E do 

begin t :=1; 
vw 

y :=10ng(w,1) + d 
Vw vw 

end 

for v E S do 
o 

begin length(v):=long(v,1); 

index(v) :=1 

end 

for v E SI ~ 10ng(v,2):=-infinity; 

i :=1 ; 

comment if v E S then 10ng(v,2) is processed; 
1 

begin i:=i+1; 

end 

index(u):=index(u) + 1; 

LENGTHQL(u,index(u»; 

length(u):=long(u,index(u»; 

if long(u,index(u»=-infinity then 

delete u from S ; 
o 

if S non-empty _then 
- 0 

u:=maximizing v of max(lengt.h(v), v E So} 

else i:=k 
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The correctness of the strategy follows from the correctness 

of algorithms 4.8 and 4.9. Its space requirements are O(Nk+M) cells and 

the time bound is O«N+M)k). For each pair (v,j), v E V, 2Sj~, a-t mosl 

one call LENGTHQL is invoked. For each of these cal15 at most one addition 

and maximization of weights are performed. This maximizatWn con~ist~ of 

at most outdegree(v) comparisons corresponding to the number of nodes in 

the A(v) list. Therefore in relation to the procedure LENGTHQL the 

following are valid: 

number of additions of weights S Nk 

number of comparisons of weights S ~{ 

Outside the recursive procedure, at most M additions of weights (for 

initializing the y IS) and Is Ik comparisons of weights (when returning 
vw 0 

from a non-recursive call) are performed. 

The k-Iongest path itself can be obtained by employing techniques 

similar as described in section 4.7. Also the method of decreasing the 

number of comparisons performed inside the bo~y of the recursive procedure, 

as described in that same earlier section, can be applied for this cal>e. 

4.13 Conclusions 

We have presented algorithms for solving some different shortest 

paths problems in acyclic digraphs with weighted edges. The justification 

for developing a set of algorithms restricted to acyclic digrapl]~ is that 

these structures represent an important class of digraphs and cOLsti r·ute 

of mathematical models for some important practical problFms. Furthermore 

the algorithms which were presented in this chapter have better tilIle bounds 

than corresponding algorithms which apply to digraphs in which cycles may 

exist. These remarks do not apply to the longest and k-longest path 

algorithms, since these problems are normal~restricted to acyclic digrapts. 
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The implementation of the methods presented in ~his chapter i~ 

simple. The algorithms are based on the execution of recursive procedures 

which can be considered as short and simple. Furthermore, many of t·h::, 

algorithms presented apply procedures defined in other algorithms to 

different control structures, which simplifies the implementd.tinn of "the 

whole set of algorithms. 
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CHAPTER 5 

k-SHORTEST PATHS 

5.1 Introduction 

This chapter is devoted to the discussion and proposal of a 

strategy for solving problems of finding k-shortest paths in digraphs 

with weighted edges. As opposed to the previous chapter, the digraphs 

now considered may contain cycles. No restriction is made for the values 

that the weights can assume, except that no cycles with negative length 

are allowed. Note that there is no solution for the problem if the digraph 

contains such a cycle. 

k-shortest path problems have been the subject of research for 

some time. For instance, an efficient algorithm for the k-shortest paths 

between two specified vertices has been known since 1959 [HoPa59]. 

Dreyfus [Dr69] has discussed this algorithm and extended it for finding 

the k-shortest paths from all vertices to a fixed vertex. Dreyfus has 

also improved the algorithm by Bellman and Kalaba [BeKa60] which also 

solves the k-shortest path problem from all vertices to a fixed one. 

These two extensions were shown in [Dr69] to be equivalen '_ in time r"'llir-e

ments. Bellman and Kalaba have actually stated their algorithm for th~ 

case k=2, i. e. finding second best paths. The generaliza hon of it, ag,' i.n 

appears in [Dr69]. However, Dreyfus' algorithm for an arbitrary \" is better 

than the strict generalization of the method by Bellman and :{alat.a, since 

it requires fewer comparisons of weights. A survey paper has also been 

published on the subject by Pollack [P061]. 

As for the problem of finding the k-shortest path.;; between every 

pair of vertices, Minieka [Mi74] has presented two sulutions, corresponding 

respectively to generalizations of the algorithms by Floyd [F162] and 

Dantzig [Da66], which find all shortest paths in a digraph. The to+al 
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number of additions and comparisons required by both of Minieka's algcritnT3 

are 2Nfk2 and 2Nf(k2+k) respectively, as stated in [~i74]. Another 

algorithm was presented by Beilner [Be72], based on the solutions giYen for 

the all shortest paths problem by Hoffman and Winograd [noVi 71 J and Flo·."d 

[FI62]. Beilner's algorithm requires trf/ 2k6
/

2 + 5W/2k3
/ 2 + O(X:3,'2k.0 ':") 

additions/subtractions and O(Nfk3
) comparisons, as mentioned ir. LBe72j. 

All these algorithms refer to the problem of finding k-shorte3t 

paths such that cycles may be part of the paths. Note that every shortest 

path in a digraph contains no cycle. However, a k-shortest path k>1, 

may contain one. For instance, the second shortest path from a vertex to 

itself is a cycle. If only cycle-less paths are desired, other algorithms 

ought to be used: Clarke, Krikorian and Hausen [CIKrHa63], Pollack [Po61a], 

Yen [Ye71], Lawler [La72]. 

The problem of finding the k-shortest path between two given 

vertices is the subject of section 5.2. Finding the k-shortest paths from 

all vertices to a fixed one, from one fixed vertex to all others and 

between every pair of vertices constitute sections 5.3, 5.4 and. 5.5 

r,espectively. Some further remarks form the last section. The problerr.3 

that we have considered involve finding paths which may contain eyrIes. 

5.2 k-shortest paths between two vertices 

Given a digraph D(V,E) with weights d assigned tc iT~ edges, 
1 j 

vertices a,b E V and an integer IV1, the problem consists of finding the 

k-shortest path from a to b in D. 

Our approach consists of adapting algorithm 4.8, which finds the 

k-shortest path from a to b in an acyclic digraph, to an algorithm for 

handling digraphs possibly with cycles. Observe that the strategy in whicrJ 

are based the other k-shortest paths algorithms of Chapter 4 (alg~lrithrr.; 

4.5, 4.6 and 4.7) is inadequate for manipulating digraphs with cycles. 
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This follows from the fact that in those algorithms the progress of the 

computation is such that in each iteration corresponding to each vertex 

of the digraph all p-shortest paths (2SpSk) from the considered vertex tv 

vertex b are calculated. This strategy is satisfactory when the digraph is 

acyclic, but it does not produce the correct solution for digraphs with 

cycles, because in the latter case if the j-shortest path from vertex v 

to b contains the i-shortest path from vertex w to b, it is now possible 

that the jL.shortest path from w to b contains the i "-shortest path from v 

to b (i~j; i'Sj'; and i,j,i ' ,j'>1). Therefore, we can not compute the 

j-shortest path from v before the computation of the i-shortest path from 

w. Similarly, the j'-shortest path from w can not be compuied before the 

iI-shortest path from v. Algorithm 4.8 however iterates p for 2Sp~~, 

and within each iteration of p the vertices are recursively considered, 

for computing j-shortest paths, j~. 

The basic alteration required in algorithm 4.8 for handling 

digraphs with cycles is that the lengths of the second, third, etc. 

shortest paths from b to itself are no longer necessarily infinite, arllj 

therefore they need to be computed. In fact, the computation of' t.he 

second shortest path from b to itself ought to be the first among all 

computations for the second shortest paths to b, since the second shortest 

path from any vertex to itself depends only on shortest paths. AItother 

al teration that is obviously required is that we should not appl:-- algori tbm 

4.2 for solving the step of finding the shortest paths from all vertices 

to b since algorithm 4.2 only manipUlates acyclic digraphs. Clearly an 

appropriate algorithm (which unfortunately has a greater time bound) has 

to be used for finding all shortest paths to vertex b in a digraph which 
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may contain cycles. We recall that finding all such shortest paths 

constitutes one of the steps of algorithm 4.8. 

The following is an ALGOL-like notation of the algori tho: for 

finding the k-shortest paths from vertex a to vertex b in a digraph D 

where cycles may occur. The data structures that appear in it are 

the same - and have similar interpretations - as those used in algorithm 

4.8. 
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ALGORI THM 5. 1 

begin comment an algorithm for finding the length of the k-shortest 
path from vertex a to vertex b, in a digraph D(V,E): 

procedure ABLENGTHQ(integer value v,j); 

end 

begin 

as in algorithm 4.8 

end ABLENGTHQ; 
integer i; 
read the digraph D(V,E) and construct the adjacency lists Ai 
read the value of k, and vertices a,b; 
short(a,1):=infinity; 
find the shortest paths from all vertices to vertex b; 
for v:=1 step 1 until N do 

if length shortest path from v to b = infini~ then delete 
vertex v 

else begin short(v,1):=length shortest path from v to b; 
short(v,2):=not processed; 
way(v):=vertex following v in the shortest path 

from v to b (v~b) 
end 

for (v,w) E E do 
begin t :=1; vw 

y :=short(w,1) + d 
e~ vw vw 
if A(b) non-empty then 
b;gin short(b,2):=min (Ybw,wEA(b)}; 

end 

comment let z denote the minimizing w; 
way(b):=z; 
short(b,3):=not processed 

else short(b,2):=infinity; 
~ent short(b,2) is now processed; 
i :=1 ; 
while i<k do 

if short(a,i)<infinity then 
b;gin i:=i+1; -

ABLENGTHQ(a,i) 
end 
else i:=k 
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The correctness of this method is based on the correctness 01 

algorithm 4.8 and on the lemma below: 

Lemma 5.1: 

Let D(V,E) be a directe~ graph with weighted edges, v .b8' , 

and integer j>1. Let D be input. to algorithm 5.1. Then thto computation 

of ABLENGTHQ(v1,j) for finding the j-shortest path from v: to b does not 

caUse the recursive call ABLENGTHQ(v1,j) to .be eventual~ invoked. 
. I· 

Proof: 

It follows from the examination of the algorithm that a 

recursive call ABLENGTHQ(V ,jl), vE v, can only be invoked from the com-
a a 

putation of ABLENGTHQ(v ,j) if jl$l;j and v E A(v). Therefore a circu-
1 ::I 1 

lar~ty in this computation can only occur if there exists a cycle 

v ,v , ••• ,v ,v (p>1), such that ABLENGTHQ(v ,j) invokes ABLENGTHQ(v ,j) 
1 2 P 1 1.. 1 +1 

for all 1~i<p and ABLENGTHQ{v ,j) invokes ABLENGTHQ(v ,j). On the other 
p 1 

hand if ABLENGTHQ{v ,j) invokes ABLENG~v ,j) this means that all 
1 ::I 

i-shortest paths from v to b, 1$1;i$l;j-1, contain v. Consequently by an 
1 a 

inductive argument we conclude that if the circularity in the computation 

of ABLENGTHQ(v ~j) occurs then aU i-shortest pathf from v tf) b, 
1 1 

1Si$l;j-1, contain v and all such i-shortest paths from v to b contain 
p p 

v. This contradicts the fact that a shortest path between two vertic"''! 
1 

in D contains no cycle. 

Observe that a corresponding lemma for algorithm 4.& w01,ld be 

trivially true since the input digraph in that case is S LliJl-0sed. not to 

contain cycles. 

As for the performance, there can be at most 0(1~) calls of 

ABLENGTHQ which correspond to O(Nk) additions, and O(Mk) comparisons of 

weights. Therefore the total time spent in the computation of the 

• 
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procedure is O( (N+M)k). The part of the algori thIn outside the scope of 

the recursive procedure requires O(N+M+k} time, beyond that time required 

for finding the shortest paths from all vertices to vertex b. This last 

step requires O(N2
) time if we assume that only non-negative weights are 

allowed. Otherwise, if negative weights may also occur O(~.'1) time is required 

for this step. Therefore the total t~e bound is O(N'l+(~+N)k) or O(}'"-M+(N+M)k), 

corresponding to each of these two cases respectively. .However we emphasize 

that in addition to calculating the shortest paths from all vertices to 

vertex b, the present method requires not more than O«N+M)k) time and this 

bound is not necessarily attained. The space bound is O(Nk+M). 

5.3 k-shortest paths from all vertices to a fixed vert.ex 

Given a digraph n(V,E) with weights d assigned to its edges 
1 J 

and a vertex b E V, the problem consists of finding the k-sho"test paths 

from all vertices to vertex b. 

This problem can be solved by slightly modifying algorithm 5.1. 

In fact, we only need to alter that part of the algorithm corresponding 

to the control of the non-recursive calls of the pr0CtQ1JTe, Le. thc.se-

calls invoked outside its body. We want to ensure that calls of ABLENGTIIQ 

for computing the length of the j-shortest path from v to b only O"CT 

if this length has not been previously computed and the length of -c,,"- (j-1)-

shortest path from v to b is known to be finite. Therefore, in algorithm 

5.1, replace the (entire) statement 
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while i<k do 

by: 

S:=V; 

while i<k do 

if S = empty then i:=k 

else begin i:=i+1; 

for u E S do 

if short(u, i-1) = infinity then 

begin delete u from S; 

short(u,k):=infinity 
end 

else if short(u,i) = not processed then ABLENGTHQ(u,i) 

end 

The newly introduced set S contains initially the subset of 

vertices of the digraph for which the lengths of their sho1"test paths to 

b are finite. The deletions in S are to avoid unnec~S3ar) iterations when 

computing j-shortest paths whose lengths are already known to be infinit.::. 

Since the time required for the executi.)[; of the al ter~i_ while 

statement is O(Nk) and not more than O(N) space has been a(jded to the 

algorithm, we conclude that the time and space bounds of ~lgorithm ~.1 have 

been maintained in the present case. 

5.4 k-shortest paths from a fixed vertex to all vertices 

Given a digraph D(V,E) with weights d assigned to its edges 
1 J 

and a vertex a E V, the problem consists of finding the k-shortest paths 

from vertex a to all vertices of the digraph. 
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As before, the problem can be solved by applying the strare~

of section 5.3 for finding the k-shortest paths from all vertices 1.0 a 

certain vertex b to the converse digraph D of D, with b=a. The time al.d 

space bounds are the same as those of section 5.2 • 

5.5 k-shortest paths between eveEY pair of vertices 

Given a digraph D(V,E) with weights d assigned tc its edges, 
1 J 

we wish to obtain the k-shortest paths between every pair of verti~es of 

the digraph. 

We can solve this problem by applying the strategy of section 

5.3 - for finding the k-shortest paths from all vertices to a fixed vertex 

b - iteratively, at most N times, varying vertex b. The execution of the 

recursive procedure ABLENGTHQ in this case corresponds to O(~<k)additions 

and O(NMk) comparisons. The part of the algorithm outside the procedurE-

requires O(Nr+N2 k) time, corresponding to O(Nr) time for finding the 

shortest paths between every pair of vertices and 0(N2k) for the while 

i<k do loop (of section 5.3), which controls the non-recursive call,. of 

the procedure. The other steps involved in the initializa1ivH of tne 

process require less than O(~+Wk) time. Therefore tht tot,al -tin,>= i .l.:d 

is O(Nr+N(N+M)k). 

If D contains negative weights it is advantageou2 for tre .step 

of finding the shortest paths to vertex b, to apply once an all .:;hurhst 

path:; algorithm with overall time bound O(W). In this case, 0(:;2) extra 

space ought to be added for storing the matrix of all shortest path~. 

Therefore, since the strategy of section 5.3 requires O(~+~) srace we 

conclude that the space bound for the present case is O(~+~K). If D 

contains only non-negative weights we may choose not to apply an all 

shortest paths algorithm and instead calculate all shortest paths to 

vertex b in each iteration of b. In this last case the space bound 

• 
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of O(Nk+M) can be maintained. 

In algorithm 5.1 and in the solution of the subsequent problems 

of this chapter the decision as to whether or not a call ABLENGTHQ{"j) 

should be invoked, for computing the j-shortest path from v to b is 

taken by testing whether short(v,j) is "processed". Aliernatively we 

can adopt the following strategy described in [Dr69J. After finding the 

shortest paths from all vertices to vertex b, we find an ordering 

v v ••• vN of the vertices of the digraph, such that if the shortest path 
1 :a 

from v to b contains less vertices than the shortest path from v to b, 
p q 

then p<q. If we process the vertices of the digraph in the above ordering 

v v ••• v
N 

' for each j 2S jSk, then we can disregard the "processed" and 
1 :a 

"not processed" information of short(v,j), since the computation of each 

j-shortest path from v to b depends only on i-shortesT paths that have 

already been computed. Hence if this ordering is used no recursive call 

of ABLENGTHQ would occur, since short(q,t ) would always be found vq 

"processed" in the corresponding test inside the procedure. 

5.6 Conclusions 

We have presented in this chapter solutions to k-shorte~t 

paths problems in digraphs. These solutions were obtained by slightly 

modifying strategies presented in Chapter 4 for solving such pre;;. l ~:t3 in 

acyclic digraphs. 

One interesting aspect of the k-shortest path problem is that, 

unlike the shortest path problem, the following property does not hold: 

"If (v,w) is an edge of the digraph with weight dvw ' and 

short(v,k) denotes the length of the k-shortest path from v to 

a c'ertain certex b, then short(v,k) = min (short(w,k) + dvw ' 

forwEA(v»)." 

• 
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If k=1 this assertion is true, but in general it does not hold 

for k>1. There may exist an integer j, 1~j~ and vertex z E A(v) such 

that 

short(v,k-1) < short(z,j) + d < min [short(w,k) + d ,for 
vz vw 

w E A(v)}. 

In this case, clearly 

short(v,k) < min (short(w,k) + d ,for w E A(v)}. 
vw 

The corresponding correct expression which holds for k~1 is: 

short(v,k) = min [short(w,j) + d ,for w E A(v) and 1~j~), 
k vw 

with min denoting the k-th minimum. 
k 
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CONCLUSIONS 

This thesis has presented algorithms for sol Ying certain coml,l-'.t

ational graph theoretic problems. We have largely employed backtracking 

as the basic strategy in most of the algorithms. The use of backlracking 

as a convenient tool for treating graph problems has again b~en emphasized. 

Its importance can be assessed by the fact that in recent years a wide 

variety of graph problems have been successfully solved by algorithms based 

upon backtracking strategies. Furthermore it provides a methodical way 

of approaching a possible solution for a given problem and also tends to 

produce algorithms that in general resemble one another. This uniformity 

and resemblance of the algorithms, we suppose, are factors that contribute 

to the elegance of the solutions as a whole, and also in certain cases, 

may provide a means of ranking the difficulty of some different problems 

furough their backtracking algorithmic solutions. This evaluation would be 

undertaken by a simple examination of the algorithms~ since t.heir resem

blance to a certain extent, facilitates the task of "comparing" these 

algorithms. 

Examining the solutions to the problems ~on8 dE'r.-d in thi,; tl.el>is, 

we note that the backtracking algorithms are based on recur3ive procedures 

and most of them may be fitted essentially into the follcw:ng formuht.:-:..n. 

Each of the symbols B1, B2, ••• ,B9 denotes a (possibly empty) Sl-ql':',lP. of 

statements~ which varies according to which particular alg(rithu. i3 to be 

fitted into the formulation. 
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begin 

end 

procedure X (integer value v; .•. ); 

begin mark vertex v; 

end X; 

B7; 

insert vertex v in the stack; 

B1 ; 

for w E A(v) do 

begin B2; 

end; 

B6; 

if w is not marked then 

begin B3; 

X(w, ... ); 

B4 

end 

else B5 

delete vertex v from the stack 

read the digraph and construct the adjacency lists A: 

B8; 

X(v, ... ); 

B9 
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Another point on which we would like to comment is the way "'e 

chose to discuss the correctness of the different strate~s throughout ~he 

thesis. Essentially, we have proposed proofs ~ induction which were 

derived directly from the recursiveness of the procedures. In fact the'"e is 

a relation between them. The assumptions that are made, concerning the 

states of different variables of a recursive procedure~ at ~ne "tart of an 

arbitrary computation of it, may be associated with the assumptions corres

ponding to the inductive hypothesis of a proof by induction for the corre

ctness of this procedure. An equivalent statement could be made for 

procedures using iteration instead of recursion. However th~ generally 

shorter and clearer description of a strategy achieved by employing recursion 

tends to make such proofs more transparent. 

The technique of deriving proofs by induction from recursive 

algorithms has been commonly used through the years. However, much lpss 

common is the converse technique: the derivation of a recursive alg~rithm 

from a suitable proof by induction of a certain theorem related to an 

algorithmic problem. The application of thi3 technique is often not 

convenient nor perhaps possible, but an example where a rec'Jrsive algoY'ithlTI 

was obtained by conveniently translating a proof by induction is pre~ent~d 

in the appendix to this thesis. The example has considered the pre.)f L'y 

induction of Dilworth's decomposition theorem for partially ordel,..d -,ets. 

This theorem states that the minimum number of chains which C0v~r a paset 

equals the maximum number of elements in an antichain. The ierived algorithm 

finds a minimal chain covering for the poset from ~~ximal antichains. 

This derivation was possible because of the fact that the chosen proof 

implicitly considered the construction of a minimal chain covering. 

However the fact that it may be possible to translate directly a proof by 

induction into an algorithm by recursion emphasizes the relation~hip Cf'h.",'£'n 

them. 
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To the best of our knowledge all algorithms described in Chapters 

2 to 5 of this thesis have performances,in terms of time and space bounds, 

at least as good as existing algorithms for equivalent tasks. The bounas 

of the algorithms we have proposed have been calculated through the thtsis 

and appear in the following table, which summarizes the list of the specific 

problems that we have considered. 

Two methods mentioned in the thesis have been left out of this 

summary table. The first is a method for obtaining a topological sorting 

arrangement, which can be derived from the results described in Chapter 1, 

which showed a relationship existing between ternary search trees and 

topological sortings in a partially ordered set. Such a method would be in 

general worse for topological sorting than known methods. Therefore we do 

not consider the practical proposal of a topological sorting algorithm based 

on results of Chapter 1. However, the topological and quasi-topological 

sorting properties of ternary search trees are interesting characteristics 

of ternary trees and are therefore worth describing. The ~econd method whi~ 

has not been listed in the table is the algorithm for the problem relat~d 

with Dilworth's theorem described in the appendix. A~ already m~ntion~d 

our purpose in describing that method was to provide an example for 

illustrating how a proof by induction may be directly tran31ated ;. nto a 

recursive algorithm. 
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SECTION PURPOSE OF THE ALGORITHM TIME SPACE 
NUMBER Bon"}) BOUND 

2.2 Finding the T topological sorting O«N+M)T) O(N+M) 
arrangements of an acyclic digraph 

3.3 
Finding the C elementary cycles of O(N+M{C+1» O(~+H) 
a digraph 

Finding a fundamental set of cycles of O(N.M) l) (~+~I) 

3.8 an undirected graph (with explicit 
output) 

Finding a fundamental set of cycles of O{N+M) O(N+M) 
3.10 an undirected graph (with reduced 

edited output) 

3.12 
Finding the C elementary cycles of an O(N+M(C+1 » O(N+M) 
undirected graph 

4.2 
Finding the shortest path between two o (N-tM) o (K-r-M) 
vertices of an acyclic diagraph 

Finding the shortest paths from all O(N+M) O(N+M) 
4.3 vertices of an acyclic digraph to a 

fixed vertex 

Finding the shortest paths from a O(N+M) O(N+M) 
4.4 fixed vertex to all others in an 

acyclic digraph 

Finding the shortest paths between O( (N+M)N) O(~-h'1) 

4.5 every pair of vertices in an acyclic 
digraph I 

Finding the shortest path between two O(N+M) O(~i-,;.;)-l 
4.6 given vertices of an acyclic digraph I 

visiting a given subset of vertices 

Finding the k-shortest paths from all O( (N+M)k) r; (\K,:-'I) 

4.7 vertices of an acyclic digraph to a 
fixed vertex 

Finding the k-shortest paths from a O( (N+M)k) O(~K+M) 

4.8 fixed vertex of an acyclic digraph 
to all others I 

O( (N+M)Nk) O(~ili+M) 
1 

Finding the k-shortest paths between I 
4.9 every pair of vertices of an acyclic , 

digraph J 



180. 

SECTION PURPOSE OF THE ALGORITHM TIME SPACE 
NUMBER BOUND BOUND 

Finding the k-shortest paths between O( (N+M)k) O(Nk+M) 
4.10 two given vertices of an acyclic 

digraph 

4.11 
Finding the longest path in an acyclic O(N+M) O(N+M) 
digraph (non-negative weights) 

4.12 
Finding the k-longest path in an O«N+M)k) O(Nk+M) 
acyclic digraph (non-negative weights) 

Finding the k-shortest paths between 0(N2 +(N+M)k) * O(Nk.+M~* 
5.2 two given vertices of a digraph 

(non-negative weights) 

Finding the k-shortest paths from all O(~ +(N+M)k) * o (Nk+Mt* 
5.3 vertices of a digraph to a fixed vertex 

(non-negative weights) 

Finding the k-shortest paths from a O(N'"+(N+M)lt} * O~k+M>** 
5.4 fixed vertex of a digraph to all others 

(non-negative weights) 

Finding the k-shortest paths between 0(!f3 +(N+M)N~~ o (Nk+M)*iE 

5.5 every pair of vertices 
(non-negative weights) 

of a digraph 

* O(NM+(N+M)k) when negative weights are allowed 

** Remains the same when negative weights are allowed 

*** O(~+Nk) when negative weights are allowed 
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APPENDIX 

ON DILWORTH'S PROBLEM 

The following theorem is due to Dilworth CDi50~. 

Dilworth's decomposition theorem: 

Given a poset (p, ~ ), the minimal number of disjoint chain~ 

which cover P is equal tothe maximal number of elements in an antichain. 

Several proofs for this theorem have been published, since it 

was first formulated: Dilworth [Di50], Fulkerson rFu56] , Dantzig and 

Hoffman [DaHo56], Perles (Pe63, Pe63a], Tverberg [Tv67] , among others. 

A dual of this theorem, obtained by interchanging the roles of chains 

and antichains has been established by Mirsky [Mi71]. 

A problem related to Dilworth's theorem can be formulated 

as: given a finite poset (p, ~ ) find a covering of P by a minimal 

number of disjoint chains. The poset represented b\ figure A.l, for 

example, has (4,5,2} as a maximal antichain and a mi:1i.r.d chain covering 

i.s f 1 ,7,4 }, [9,5,8,61 and f 2,3 }. Dantzig and Hoffman rDaHoS6] hav(' solvc,d 

this problem by employing linear programming techniques. 

In this appendix, we seek a solution for a similar protle~ 

except that we employ maximal antichains in order to obta.in the !Y\.: nimal 

chains. The algorithm presently described was obtain~d by deri,ing an 

algorithmic translation from Perles' proof (Pe63] of Dilworth's theorem. 

We wish to emphasize that our principal aim in this appendix is not the 

proposal of an algorithm for solving the minimal chain problem, but to 

illustrate with an example how proofs employing induction can moti,ate 
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algorithms employing recursion. Therefore we note that efficiew:,\ is 

not our main concern in this illustration. 

The following is essentially the formulation and proof of 

Dilworth's theorem as given by Perles: 

Theorem: 

Let (p,~ ) be a partially ordered set. If the maximal number 

of elements in an antichain of (p,~) is k, then P is a union of k 

chains. 

Proof: 

The proof proceeds by induction on \PI, for all k simultaneously. 

If Ip\ = 1, there is nothing to prove. Assume, therefore, that the 

theorem holds for Ip\< n, and let IP\= n. Denote by SI and S the sets 
o 

of sinks and sources of P, respectively. 

case 1: P contains an antichain Q of k elements, different from both 

SI and S • 
o 

P1 = (p E P 

P;a = (p E P 

Define 

such that q~ 

such that p~ 

It is easily verified that 

Pa ~ P (the first relation 

p, for some q E QI, 

q, for some q F Q3· 

P1 n P;a = Q, P1. L P2 = P, P1 ~ P hnd 

follows from the fact that Q l.5 an 

antichain, the second from the maximality of Q, the third from 

Q f S and the fourth from Q ~ SI)· 
o 

N In\<IP\ Ip i<lp\ By induction hypothesis, P1 and ow, . .101 . ' a:.. 

Pa decompose into k chains: 

The elements of Q, being the sources of P1 and the sinks of Pa , 

are the sources of the chains U1 and the sinks of the chains 
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Lt • Let Q = [q1' ••• , ~} and assume without los-" uf 

generality that qt is the source of Ut and the sink of L1 

(1 ~ i ~ k) • 

p 

Define C1 

k 

U Cf 
1 =1 

Every independent subset of P containing k elements .oincides 

with Sf or with S. Take some a E S and choose b ESI' such 
o 0 

that b~ a (b may equal a). Define ~ = fa, b~ and P
3

= i-\{a, b1. 

Ck is a chain, IP3 1<lpl and P3 contains k - 1, but not k 

mutually incomparable elements. Therefore we have, by induction 
k -1 

hypothesis, P3 = IJ C1 , where the C1 are chains, and 
t =1 

k 
U C1 • 
1=1 

From the proof above we derive the following algorithm employing 

the recursive procedure CHAIN. We assume that P = r1, ... , N1 and 

the desired minimal chains are stored, at the end of the pro(;ess, in 

vector link defined as follows: if x~ y and x immediately precedes y 

in a chain then link(y) == x; if x is the first elem",nt ill a \.~tain, 

then link (x ) = x-~ The boolean variable easel is used f:>r distingui<;hing 

between cases 1 and 2 of the proof. The meaning of th~ remaining data 

structures employed in the algorithm follows directly from the prouf. 
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ALGOIUTHM A. 1 

begin comment an algorithm for finding a minimal chain covering of a 
poset, using a procedure ANTI CHAIN , for obtaining 
maximal antichains in the poset; 

end 

procedure CHAIN (integer set P); 
begin integer a, b; 

logical case1; 
if P not empty then 
b;gin ANTICHAIN~ Q, casel); 

comment if P contains a maximal antichain ,jifferenl- from 
both the subsets of sources and sinks ~If P, then 
ANTICHAIN assigns it to Q and casel is assigned 
to true - otherwise, casel is assigned to 
false; 

if case1 then 
begin P1 := fp E P such that q~ p, for some q E Qlj 

P2 := fp E P such that p~ q, for some q E QI; 
CHAIN (P1); 

end 
else 

CHAIN (P2) 

begin a:= any source element in P; 

end 

b := sink element in P, such that b > aj 
link(b) := a; 
P3 := l\.ta, b 1; 
CHAIN (P3) 

end 
end.CHAIN; 
read the poset (p, ~ ); 
for p E:P do link (p) ,- p; 
CHAIN -(p) j-
output the minimal chain covering from link veGtor 
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The problem solved by the above algorithm can be enunciated as: 

given a poset (P,~) and a procedure ANTICHAIK for finding maximal 

antichains in posets, obtain a minimal covering by disjcint chains. 

The procedure ANTICHAIN itself is not presented, since we consider it 

as being out of scope of this appendix, in which our objec~i,e is to 

illustrate recursive algorithmic translations from inductiv~ ploofs. 

The proofs of correctness of algorithm A.1 are a direct and simp~e 

consequence of the proof by Perles of Dilworth's theorem. Finall~ 

we mention the fact that besides the computation of ANTICHAIN procedure, 

all the remaining operations that appear in the description of the algorithm 

are simple and c~n be easily implemented in a computer. 
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