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ABSTRACT

This thesis is concerned with an error analysis of approximate
methods for second order linear two point boundary value problems,
in particular for the method of collocation using piecewise polynomial
approximations.

As in previous related work on strict error bounds an operator
theoretic approach is taken. We consider operators acting between
two spaces X; and X, with uniformly equivalent metrics. The concept
of a "collectively compact sequence of operators" is examined in
relation to "pointwise convergence" - relevant to many approximate
numerical methods. The introduction of a finite dimensional
projection operator permits considerable theoretical development
which enables us to relate various inverse approximate operators
directly to a certain inverse matrix.

The application of this theory to the approximate solution
of linear two point boundary value problems is then considered.

It is demonstrated how the method of collocation can be expressed
in terms of a projection method applied to a certain operator
equation. The conditions required by the theory are expressed in
terms of continuity requirements on the coefficients of the
differential eg:ati-n and in terms of the distribution of the
collocation points. Various estimates of bounds cn the inverse
differential operator are presented and it is demonstrared that
the "residual" can be a very useful error estimate. The use of

a "weighted infinity norm" is shown to improve the applicability
of the theory for "stiff" problems. Some real prcilems are then
examined and a selection of numerical results illustrating the

theory and application are presented.
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The thesis concludes with a brief review, outlining some of
the deficiencies in the work and possible improvements and

extensions of the analysis.
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Introduction



Introduction

§1.1 An application

An operator approximation theory is developed in Chapter 2
and 3 in an attempt to unify and extend other work arising mainly
from studies of approximate solutions to integral and differential
equations. An abstract theoretical setting is maintained until
the application considered in Chapter 4. This generalised approach
is taken in order to permit the application of the theory to as
wide a range of problems as possible.

We now examine briefly an application of the work in this
thesis, the rest of the introductory chapter will consist of a
survey of related work followed by a summary of the fundamentals
and main results of each chapter.

We are primarily concerned with finding strict error bounds
for approximate solutions of linear two point boundary value
problems in ordinary differential equations. These solutions will
be the result of applying a piecewise polynomial collocation met..od.
The theory developed in Chapters 2 and 3 does, however, have auch
wider applications. Interesting error estimates arise az & o pridult
of the work in Chapter 4.

We deal with linear eguecions of the form

d%x (t) + p(v) dx (t) + (o ox (t) = ylt) S 1
at? dt

subject to the boundary conditicas.

x(-1) = x{1) =0 (1.2)



The theory also applies to any order linear equatidh provided
that the L.H.S. of (1.1) can be expressed as the sum of two
differential operators applied to x, one of which is invertible
with the given boundary conditions. This simple second order
case suffices as an example without clouding the arguments with
too much detail. The approximate solution consists of a piecewise
polynomial; conditions of continuity are not imposed on the second
derivative.

More details of this application are given in Sections 4.1,
4.2, 4.3 and 4.4 preceding Lemma 4.1 which can be read now as part

of the introduction.

§1.2 Related work

Chapter 2 consists of an operator approximation theory
essentially developed by Anselone 1 which in turn was based on
the work of the Russian school of functional analysts including
Kantorovich 21 B2akilov 22 and Krylov 23 . Other work using
similar theory includes Gilbert and Colton 16 , Phillips 35,36
Rall 38 and vainikko 48 . Coldrick 10 and Cruickshank 11
also use Anselones theory. The presentation in Chapter 2 is
devoid of any mention of the later application in order to retain
a sufficiently wide base for the development of other applications.

Chapter 3 introduces the concept of projections in a very
general manner and proceeds with the development of the theory in
Chapter 2.

Chapter 4 is an illustration of the previous theory applied
to approximate solutions of (1.1) obtained by a particular
projection method - collocation. Projection methods for differential

equations are discussed by de Boor 3 and Lucas and Reddien 31 .



Collocation methods in particular are discussed wid;ly and
references include de Bocor 4 , Cruickshank 11 , Diaz 14

’

Hangelbrook, Koper and Leaf 17 , de Hoog and Weiss 19

14

Karpilovskaja 25 , Lucas and Reddien 30 , Phillips 35

’

Reddien and Schumaker 39 , Russell and Shampine 41, Russell 42 ,
Sincovec 45 , Vainikko 46,47 and Wright 50 . Section 4.3 of
Chapter 4 describes an application of this method.

Sets of points arising as zeros of certain orthogonal
polynomials are widely used in such collocation methods, for
example the Chebychev zeros by Cruickshank and Wright 11 and
Gauss points by de Boor 4

Results from approximation theory of functions of a single
real variable will play an important part in Chapter 4. References
include Davis 13 , Natanson 33 and Powell 37 .

Other work directly concerning piecewise polynomial
approximations for differential equations includes de Boor 3,4,5
Diaz 14 , Wittenbrink 49 , Schmidt and Lancaster 44 . A series
of papers in Numerische Mathematik by Ciarlet, Shulz and varga

6,8 are also of interest.

Although not discussed in this thesis it is possible to apply
the theory to other numerical methods and to a wide range of
equations including partial differential equations in several
variables. Finite difference methods are discussed by Pereyra and
Sewell 34 and a comparison with collocation is given by Schmidt
and Lancaster 44 . Integral equations and integro-differential
equations are discussed by Anselone 1 , Coldrick 10 , Hanson and
Phillips 18,35,36 , Hangelbrook, Koper and Leaf 17 , Mikhlin

and Smolitskiy 32



It should be possible to apply the theory to éingular boundary
value problems, see de Hoog and Weiss 19 and Reddien and Schumaker
39 , by a careful choice of the "principal part" operator M. (see

§2.1). sStiff boundary value problems are examined by Flaherty and
O'Malley 15 and the work of §4.10 is relevant here. Linear
partial differential equations can be treated by the theory in
Chapters 2 and 3 but it is far more difficult to derive certain
quantities required for strict error bounds than it is in the
ordinary differential equation case, however, see Gilbert and Colton
16 and Kantorovich 20 . The work of de Boor 5 , Lentini and
Peryra 29 ,Peryra and Sewell 34 and Russell and Christiansen 43
are also relevant to the final discussions in §4.10.

Non linear equations cannot be treated directly by the theory
described here, but error bounds for each linear equation of an
iterative sequence could be found and, hopefully, combined with
further convergence results to produce a final error bound. Non
linear problems are considered by Bellman and Kalaba 2 , Clenshaw
and Norton 9 , Lucas and Reddien 30,31 , Rall 38 , Vainikko 47 .
Non linear boundary conditions are discussed by Ciarlet, Shultzand

Varga 7 and Reddien 40 .

§1.3 Summary

Sections 2.1, 2.2, 2.3 form an introduction to Chapter 2, they
contain the basic definitions of spaces, operators and norms used
throughout. The aim is to generalise and express concisely various
relations between inverse operators. Most of the theorems in this
chapter are well known in the setting of a Banach space X and the

associated space of bounded linear operators Dq.



In this chapter we consider the form of these theoféms when the

operators map elements of a space X, to another space X It turns

1 2°
out that these spaces must have essentially the same structure, but
useful results are achieved later using the extended theorems.
Anselones 1 concept of "collective compactness" is a convenient
way of expressing the convergence properties of certain numerical
procedures - which often appear in other guises.

In Chapter 3 a projection operator is introduced and various
approximations are described in terms of it. A generalised
approximation is developed from these ideas which includes for
example the "collocation method" for differential equations and
many quadrature formulae used for solving integral equations.
Sections 3.1 to 3.4 can be read as an introduction to this chapter.
The aim of this chapter is to produce bounds on an inverse ocperator
(expressing x in terms of y) in terms of quantities which are
computable. A projection onto a finite dimensional space is shown
to permit considerable development of the theory in Chapter 2,
without sacrificing generality. The bounds developed here, of
course, will not be suitable for all applications and there is much
room for more detailed investigations.

An important convergence theorem {3.7) relates the norm of
the inverse operator directly to the norm of an inverse matrix
provided certain fairly general conditions are satisfied. This
theorem is extremely valuable in justifying certain error estimates
for the approximate solutions.

In Chapter 4 a two point boundary value problem in ordinary
differential equations is defined and expressed as an operator

equation in the space of Riemann integrable functions with sup. norm.



An approximate solution generated by the method of Eollocation using
piecewise polynomials is studied. These sections 4.1 - 4.4 form the
basis of an example to which the theory in Chapters 2 and 3 can be
applied. The latter half of Section 4.4 verifies that certain
conditions of the theory are satisfied and concludes with a "plug in"
statement of a-priori bounds on the inverse approximate operator and
a-posteriori bounds on the actual differential operator. Section
4.5 verifies certain extra conditions hold in order to apply Theorem
3.7, stated here as Theorem 4.8.

Having shown that the theory is applicable to this problem
Sections 4.6 - 4.10 proceed to develop concrete numerical bounds
on various operators and from these show how it is possible to
obtain computable error bounds for an approximate solution. Particularly
of note are the improved error bounds possible using Legendre zeros
for the collocation points. The use of a weighted sup. norm is
demonstrated which enables realistic error bounds to be produced for
"stiff" problems.

It would be interesting to apply the theory to other approximate
methods such as finite difference schemes and to higher order problems
but time does not permit this.

We examine in Chapter 5 some numerical evidence which prompted
the theoretical investigations in this thesis. In particular the
behaviour of the inverse collocation matrix and the close relationship
of the error to the 'residual' are studied for a series of problems.
The chapter closes with some examples of error bounds for a small

group of problems.



CHAPTER 2

Theory of Approximation Methods



Theory of Approximation Methods

§2.1 Introduction

This chapter introduces the theoretical background for certain
operator equations and their approximate solution. Most of the
results are well known but are included for completeness. Kantorovich
and BAkilov 22 , Anselone 1 , Coldrick 10 and Cruickshank 11
cover much of the same work.

The theorems are placed in a general setting so as not to
restrict their application. Later chapters will be concerned more
specifically with collocation as a projection method for the
approximate solution of boundary value problems in ordinary differential
equations.

Let X and Y be complete normed linear (Banach) spaces and let
ll-llx, ||']|y dencte the norms in X and Y respectively. Let [X,ﬂ
denote the space of bounded linear operators mapping XY with the
subordinate norm. We will be concerned with solving equations of
the form

Mx =y yeY (2.1)
Me [X,Y]
for x € X.
It is not always possible to solve (2.1) analytically and

often a numerical method is used to approximate (2.1), e.g.

e Y (2.2)
e [%, 1]

Solving for X € i. This equation is usually set in a space of

&

I
<
L4

=2

finite dimension and corresponds to a finite set of linear algebraic

equations. Now provided X< X and M is invertible it follows that



x - % =M 1TMx - %)) = MYy - M7) (2.3)
- -1 -
or |Ix - x|l < [IM[]-]ly - mz]],

which is a strict error bound on the approximate solution.
The rest of this chapter will be concerned with the term M-l.
In all of the following theory we shall be concerned with an

operator M which may be split into two parts

M=M +M M. ,M

1 ) L e [x,¥] (2.4)

2

where Ml is invertible. Under certain circumstances we may deduce

that M is invertible. Note that equation (2.1) may now be written
+ = 2.5
(Ml M2)x y (2.5)
-1 o
where we may apply Ml € [Y,X], giving

1
= 2.6
(Ix + Ml M2)x Ml y ( )

Or we may replace x by Ml Z where z = Mlx, giving

(1, + M Ml_l)z =y (2.7)

2

The identity operator I e[x,x], denoted [X] and Iy € [YJ.
Since M is invertible, error bounds of the form (2.3) may be
recovered from (2.6) and (2.7). For example if it is known that
- -1.-1
MU, + MM ) T e [¥,x] then

-1 -1.-1 <
- % = - 2.8
x - X =M (I + MM, ) Ty (Ml + Mz)x) (2.8)

o -1 .
so that |[x - x|| < [iM) l|l'”(Iy+M2Ml ) l||-||(y—(M1+M2)x)H

10



Because Ml € [X,Y] is invertible there is a close r;lationship
between the spaces X, Y and it is often the case that error bounds
derived independently from (2.6) or (2.7) turn out to be equivalent

when suitable practical norms are used.

§2.2 Setting for Theory

Since Ml is invertible it permits a l-1 correspondence between

the elements of X and the elements of Y. It is neater to work in
one space consisting of the elements of X or Y alone, using the
equations (2.6), (2.7). It is not necessary, however, for Y and

the space M X, for example, to have the same norm - it is only

1

required that the norms are uniformly equivalent. With such norms

the metric properties of Y and M X are the same, allowing much of

1
the present published theory in this field to be generalised.

Let X, X

1 be normed linear spaces consisting of the same

2

elements but with (possibly) different norms ||-|]xl, [|'I|x2
respectively, and let [xl, X2] denote the space of bounded linear

operators mapping Xl > X2 with the subordinate norm. Both (2.6)

and (2.7) may then be expressed, with appropriate choice of spaces,

as (I - Kix =y y € X (2.9)

12
I, K ¢ [xl, x2]

It will be seen later how advantage may be taken of allowing X1 and

X2 to have different norms. We are not entirely free to choose

these norms as we like because the two (distinct) identity operators

: : . This also means
112 : xl > X2 and 121 X2 -> Xl must be bounded is

that the metrics Dl, 92 defined by

11



p100,y) =[x - yl[

pa(x,y) = |[x - YIIx2

are uniformly equivalent. That is J o, B > O such that
apy (x,y)< pa(x,y) < B p1(x,y) VY x,¥y € X)

This implies, letting u

1
=
|
=

allall, < llsll, <8 llall, Vaex  @aio

Further, as the metrics p;, pp are uniformly equivalent the open
sets of X; are the same as the open sets of X;. The definitions
of closed set, closure, continunity, completeness and compactness
can all be expressed in terms of open sets. This means that
theorems using these properties in the setting of a normed linear
space X and the space of bounded linear operators [X] may be
immediately generalised to the setting described at the beginning
of this section. For this reason proofs of some theorems are given
as references to the literature.

The distinction between the spaces Xj and X; occurs only in
the definition of the norms in these spaces. Any element x € X]
is also a member of X,, and vice-versa. Further any operator
K € [Xl’xz] is a member of [Xz,Xl], [X¥] and [Xz]- An element x or
operator XK will, however, have different norms in each case. For

example (2.10) gives

A

| x|

8 x|

X2 —

A

1
el ], < 5 Il

12



Now consider the four identity operators

I,; € [Xl] r I12 € [xl,XZJ r Io1 € [Xz, Xl] and I,z € [Xp_].

Using the subordinate norm gives

|| T11 || = sup IIXIIX = 1
=]y, =1
1o 1] = sup [1]]_ <
Il =1

r (2.11)
1
[ 220 1] = sup [Ixl]_ < =
Il =1
|| 122 || = sup ||X||x = 1
Il =1
Note also that
1
|| 112 || > @ ana || 15, || > B

Using these values and the following theorem the norm of an operator
K may be bounded in any of the spaces EX{], [xl, xz] [XZ,X1] [Xz]
given a bound in one.
Let A, B, C be normed linear spaces, not necessarily all
i i operators in
different, and let KAB' KBC and KAC be three linear op

[A, B] ' [B, C] and EA, C] respectively such that Kg. Kpp = Kic+ Then

I kaol | < T1xgal [+ [ TR p] (2.12)

13



For example Ky, = Ij; Kj; therefore
ARSI BB SHY

It will usually be clear from the context in which space an operator
is considered to be. 1If it is necessary to make a distinction for
the purpose of calculating norms subscripts will be used as in
(2.11) and the above example.

Most of the theory to be developed will require that certain
operators are compact, although for some of the earlier theorems it

is sufficient that X; and X, are complete.

,§2.3 Definitions of Compactness

Let S be a subset of a normed linear space X, then S is compact
iff every open cover of S has a finite subcover. S is said to be

relatively compact iff S is compact. S is sequentially compact iff

each sequence in S has a convergent subsequence (with limit in X).
With these definitions relative and sequential compactness are
equivalent.

When the space X is complete a useful result is that S is

totally bounded iff S is relatively compact. ( Anse Lone \ P4')

An operator K ¢ [X] is compact iff the set KB is relatively
compact, where B is the unit ball in x : B = {xex : ||x|! <1}. By
the comments in the previous section if an operator K is compact in
[X] it is compact when considered as an operator betwezn two spaces

X; and X, consisting of the same elements and with uniformly

equivalent norms.

14



§2.4 Theorems on operator inverses

In this section several theorems on operator inverses will
be stated and proved. These theorems form the basis from which
practical error bounds will be developed, as well as several weaker
convergence results. Much use will be made of norms and the ideas
of §2.2.

For simplicity we will assume throughout X; and X; are
complete; for those parts of the theory where this condition is
sufficient it will be restated for emphasis.

Theorem 2.1
If K is a compact operator in [Xl, Xz] then the following

three statements are equivalent.

-1 =1
(i) (I-K) exists and is bounded; (I-K) € [x2 xﬂ

(ii) (I-K)x = 0 = x =0

(iii) inf II(I—K)x ||x2 = M, for some M>O
[xl], =1
1

Proof

In the case X] = X, = X is a standard result, see Appendix I

of Anselone 1 . The proof generalises by the remarks of §2.2.

21
Further we may deduce the following bound on I!(I—K) ]

Consider (I-K)x e X, with [‘(I—K)x||x2 =1

vow | aRox] = |1l ], -||<I-x>ﬂ§W
X1

X2

= 1 and so (1-K) X

But II X
le[ X1 X3 lx X1

> M from (iii)
X —

1
Il <7

1
Hence sup II(I-K) yll <

Hyll,, <1

15



The point in showing the above working in detail i; to demonstrate
that the factors a and B associated with the norms do not affect

=1
the bound on || (1-K)™ |].

Theorem 2.2

If K ¢ [xerZ] is such that ||K12|| < o and either

(a) K is compact and X;, X, are complete

or (b) X1, X, are complete

-1
Then (I-X) has a unique inverse (I—K) € [Xz, x1] and

-1 1
IX .
a0 1 < Rt (2.13)

Proof

In case (a) simply use Theorem 2.1 noting that for x € X1,

||x|| =1 we have
X1

x|l > [l - Tlxx[], 2 - [lxi2]] >0

X2

Note the appearance of the factor a associated with the operator I;;.

In case (b) we can show the convergence of the Neumann series

_1
¥ X" to (1K) .
m=0

o ) .
bIowmgo K" here is a mapping from XZ to X for this series to be

absolutely convergent it is necessary that
2] K m <
Lo KT 1] <=

1 K
vow [1%1 1| < 3 ana [[kia || = 1xo1 x50] ] < B2l <

16



. 1 1 .
So L KT I < — S = ©
wo |1¥11 Ta1ll < 3 GoRZTT = aoTRsTT < (2.14)

. < m .
Since mgo Kj1 I21 is absolutely convergent we can re-arrange the

terms in the series

m=

1
[ §o KTl_Izl] (Ilz-Klz) =I11 - K?T > I as M»> o

o]
Similarly mgo KTI I;; is a right inverse for (Ij,-Kjj).

Further from (2.14) we have
21
|| (112-K12) 7 |

1
| < ETRGTT
Theorem 2.3
Let K € [X1,X,], B e [X; X)), A€ [X;]. IfB (I-K) = I-A
with ||a]]| < 1 and K and A are compact operators then
(I-K)'1 € [xz; X)] and further

B
1-71ia

||(1-1<)'1—3|| < lk\H[[’ | [s]] (2.15)

lao™ 11 < T

Proof

X

1
I-[Tal]

-- =1
Note that (I-a) ¢ [%;] ana ['(z-8)" || <

21
Thus (I-K; naz :x .eft inverse (I-3) B € [Xz, xl]. Tt o

unique inverse provided that the image of X; under tne .eratcr <

Ay

Anselone 1 for example show. .- ..
17

is the whole sia.: XZ



whenever K is a compact operator. Xj and X; have the same topology

and that result holds here also.

_1 21
(I-x) = (I-A) B (2.16)
21
so a7 || <
1 1

Also (I-K) -B

((I-a) -I)B

_1
(I-a) (I-(1I-a))B

1

= (I-A) AB
Hence ||(I—K)—1—B|| < BB
- 1-| (A
21
The conditions for the existence of (I-K) in this theorem do

not depend on a or B because the operator I-A is in [X;]. It must
be remembered, however, that B € [Xz, Xl]and care taken that the
correct norm is used for B. Note that we have maintained the

assumption that X;, X; are complete.

Theorem 2.4
_1
Let, K, L € [xl, Xé]and suppose (I-L) € [Xz, xk]and either
(a) K, L are compact and Xj, Xp are complete.

(b) X1, X, are complete.
-1 )
If do = ||(I—L) (K-L)lli} then there exists

(I-K) - € [Xz, Xl} and
1 1

21 _ - _1 21 _ -
| (1-x) ||_<_U————|-L(I B 1L a7 - - |I1A°H(I n_|| (2.17)

1 - Ao
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Proof

1
Consider (I-K) = (I-L) (I-(I-L)  (k-1L))
21
In case (a) (I-L) (K-L) is compact. Apply Theorem 2.3 with

-1 -1
B = (I-L) and A = (I-L) (K-L) ¢ [Xl]to give

(I—(I—L)-I(K—L))-l e [x1] . Hence (I-(I—L)-I(K-L))-l(I-L)-l
as the inverse of (I-K).

In case of (b) apply Theorem 2.2 with X; = X; to show that
(I—(I—L)-l(K-—L))_l e [X1] (since 80 < 1). It is then a matter of
simple algebra to show that (I-(I—L)-l(K-L))-I(I-L)-1 is a left and

right inverse for (I-L) and hence the unique inverse.

Again the comments at the end of Theorem 2.3 apply.

Theorem 2.5

_1
Let K, L ¢ [Xl, Xz]be compact and suppose {(I-L) € [xz, xﬂ

-1
1f Ad = || (1-0) 7 (x-DK?|| < 1 for some d > 1 then

_1
(I-K) € [x?_, Xi] and

-1 _1 1g

|| (z-x)" || < ||z+k+...+K +(1-L)_ K || (2.18}
1-Ad
Proof
a-1 -1.4 -
Let B = I+K+...+K + (I-L) K in Theorem 2.3, rcting that
-1 . s

A = (I-L) (K—L)Kd is compact. Theorem 4(a) can ke interpreted ai.

a special case of Theorem 2.5 putting 4 = O.
It is nos(whether (I—A)_IB is the unique inverse of {I-¥) 1in
the case when K, L are not compact.
The caution at the end of Theorem 2.3 is important hece.
That is (I—L)_I(K-L)Kd € [Xﬂ and if we split this operator -nto
1

two parts such as (I-L) and (K—L)Kd for the purpose of avalueting

norms it is necessary to be consistent, e.g. we could take

19



(I-L)-l € [32, Xi]and (k-1 K ¢ [xl, xﬂ .

a-1 -1
Further B = I; + Kp1 + ... Kj] I +(I15-Ljj) Kczlz and the

appropriate norms must be used.

Theorem 2.4 and 2.5 can be used to bound the inverse operator
(I-K)—1 given a sufficiently close approximate inverse (I—L)_l.
Indeed these are the theorems on which the error bounds in later
chapters are based.

It is now shown how these theorems, applied with certain
convergence results, can be used to give a-priori bounds on a
sequence ||(I_Kn)—1|| of approximate inverse operators, and give

=1 -1
a-posteriori bounds on ||(I—K) Il from bounds on Il(I-Kn) || for

an operator Kn sufficiently "close" to K.

§2.5 Collective Compactness

It is convenient to define here the notion of "collective
compactness" introduced by Anselone 1 . This idea is closely
associated with the convergence of sequences of compact operators.

There are two main types of operator convergence - convergence
in norm and pointwise convergence.

Let {Kn} be a sequence of operators; then we nave ccuverge.le

in norm of ¢his operator sequence to some operator K provided
llx_ - k|l >0 asn > =
n i

This is a sufficiencly strong convergence criterion tc allow pcwerru.
convergence theorems to .. deduced from the theorems of the previous

section.
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Another form of convergence - pointwise convergence - often
arising from numerical approximations does not admit to such easy

application of these theorems. Pointwise convergence of an

operator sequence {Kn} to K means that for any given x € X
IlKn b Kx||+ Oasn—»> @

Such convergence is denoted Kn > K. Convergence in norm is a
uniform convergence (independent of any particular x) it implies
pointwise convergence, but not vice versa.

To derive certain convergence results from the theorems of
the previous section we will require the convergence in norm of
certain operator sequences. The idea of collective compactness
is a convenient vehicle for relating pointwise and norm convergence
in the context of the application of numerical methods to operator

equations.

Definition

A set K © [X] is collectively compact proviced thrat the ze.

KB = {kx : Xxe K, x € B} is relatively compact. a4 segc.ance of
operators in [X] is collectively compact whenever the correspondirgc

set is.
The important result derived by Anselone linking pointwise

and norm convergence is now stated.

Anselone's Corollary 1.9

Let K, Kn € [X], n=1,2,... Assume Kn * K (pointwise) and
{Kn} is collectively compact. Then
|l x -0kl >0 & -0x || >0

Note that convergence in norm of Kn to K is achieved on a compact

21



subset of X, not the whole of B.

Another useful result given by Anselone is

{Kn} collectively compact, K > K %K compact.
Also, trivially, any K ¢ {Kn} is compact.

It is not necessary to show {Kn} is collectively compact to
obtain a suitable convergence in norm. In a particular case, for
example, it may be known that the elements of KB satisfy a Lipshitz
condition in which case it may be possible to verify directly that
|]Kn—K|l or ||(Kn-K)K|| tends to zero with increasing n.
rather than attempt to show that {Kn}is collectively compact,
which could involve further assumptions or restrictions.

The various possible convergence results deriving from the
above discussion and theorems 2.4 and 2.5 can now be combined and

stated in one pair of theorems.

Theorem 2.6A

Let K € [?1, Xé]and {Kn}a sequence of apprcximations <o

1

with K eExl, xz]n = 1,p,.-. and suppose (I-K) e[gz, xﬂand sitrer
(a) X1 is a Banach space ; llKn - K|| + C

{b) K, X_ (n=1,;,.-.) compact ; ||($n—K)Kd|| + 0

for some {fixed) 4 - C.

(c) {Kn} collectively compact K > K.

N

then there exists N > 1 such that V n > N, ||(I-Kn) || <M for

some M > O

N.B. for (b) and (c) we still require X] complete.
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Proof

(a) Apply Theorem 2.4 (b) with 1=K, K=K .
n

21
po_ < |z |

Ik ]~ o.
so that in this case
|| (z-x )'1-(1-K)"1|| >0
. .
(b)  Apply Theorem 2.5.

(c) Apply Theorem 2.5 + Anselones Corollary 1l.9.

Theorem 2.6B

Let K € [xl, xz]and {Kn} a sequence of approximations to K
it
with K e [?1, Xé]n= 1/2/-+- and (I-K ) € [Xz, xﬂ in particular
21
||(I—Kn) |l <M for all n > N.
and either

(a) X) is a Banach space : ||Kn—K|| -0

d
(b) K, K (n=1,2,...) compact ; ||(Kn—K)K || + O for some

(fixed) ¢ > O.

(c) {Kn} collectively compact ; K+ K.

=1
then (I-K) exists and is bounded.

Proof

(a) Apply Theorem 2.4(b) with L=Kn'

so_ <M ||k k|| ~ o0
n — n !
so that ||(I—K)_ ]] < M.
(b) Apply Theorem 2.5

(c) Apply Theorem 2.5 + Anselone's Corollary 1.9.
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These theorems provide the basis for the more specific convergence
results in Chapter 3. More detailed examination of the norms of
various terms, particularly A, will enable us to produce strict

21
numerical bounds on the norm of the inverse (I-K) .
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CHAPTER 3

The Inverse Approximate Operator
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The Inverse Approximate Operator

§3.1 Introduction

The previous chapter developed theorems connecting the
operator I-K and its inverse with an approximate operator I-L. The
major problem in applying these theorems lies in verifying the
conditions of applicability. For example in Theorem 2.5 we need to
show 84 < 1 and if we split the norm into Adi||(I—L)_1||-|[(K-L)Kd||
we need to bound the inverse approximate operator and the term
(K-L)Kd - which is a measure of the difference between K and L.

The second term is dealt with in quite a straightforward way
by the approximation theory associated with the operator L.
Bounding the inverse approximate operator, however, presents some-
thing of a problem. In this chapter it is shown that fairly general
bounds on the inverse approximate operator can be obtained for a
class of approximations known as "projection methods", and some

related schemes.

§3.2 Projection Methods

A projection in a normed linear space X is an operator P € [X]
such that
P(Px) = Px V x e X
PX is a subspace of X with the property
Pl = @ V 4 e px
Project (2.9) onto PX, giving
P((I-K)u-y) = O

This may be simplified by seeking an approximate solution 4 € PX

or (I - PK)u = PY (3.1)
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This is one approximate equation arising in a very natural way
from projection methods; it is not the only possibility.
Cruickshank 11 suggested a variation analogous to the Nystr&m
extension for integral equations. In that thesis it was shown
how this extension could yield improved error bounds for
approximate solutions of boundary value problems obtained by

global polynomial collocation methods.

§3.3 The extended projection method

Suppose that the operator (I-PK) € [?x] has a unique inverse

21
(I-PK) e [PX]. For any y € X define G by

_1
(I-PX) Py

V]
(3.2)

and z by z y + Ka

Now observe that

(I-xP) (y+Kd)

(I-KP)x

!
y+(I-KP)K(I-PK) Py-KPy

_1
y+K(I-PK) (I-PK) Py-KPYy

Y-

So that arising from the projection method there is anc=her

approximate operator equation.

(I-KP)z = y (3.3)

Note that there is now ¢ imply a y on the right hand side as
required in the approach of Anselone. The solution G can be

obtained from z by noting that from (3.1)

27



4 = Py + PKQi

= Pz (3.4)

It is not proposed to discuss in this chapter whether z is a more
accurate solution than @*, the relevance of this solution lies in
the structure of the approximate inverse from which it arises.

It is easy to express the inverse operator (I-I(P)“1 € [x]

21
in terms of the inverse projection operator (I-PK) € [Px]as follows:

(I-KP)z = y
(I-KP) (y+Ki) =y
_1
(I-KP) (I+K(I-PK) P)y = vy

_1
So that I+K(I-PK) P is a right inverse for (I-KP. It is a matter

of simple algebra to establish that this operator is also a left

inverse of I-KP, hence the unique inverse.

21 -1
(I-KP) = I+K(I-PK) P (3.5)

§3.4 A generalisation

Anselone, in his treatment of Integral Equations, derives an
approximate operator Kn in terms of n linear - functionals on X.
He obtains from common quadrature formulae, operators Kn - K
(pointwise) which have certain similarities to the operator KP when
P is a projection onto a finite dimensional subspace of X. A
generalisation which includes Anselone's method and the "extended

projection method" is now described.

*See Ch.4 §4.9
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The extended projection method requires the solution of

(I-KP)z = y for z € X. The solution obtained was
21
z = (I+K(I-PK) P)y (3.6)

when (I-PK)—1 € [PX]. Since PX is in this case considered to be
finite dimensional, it is complete and the existence of the inverse
(I-PK)_1 implies its uniqueness.

It is possible to obtain this solution in a more direct

fashion as follows. Project (3.3) onto the subspace PX to give

P(I-KP)z = Py
> (I-PK)Pz = Py
-1 _1
¢$ Pz = (I-PK) Py when (I-PK) e [PX].

The solution z is retrieved from Pz by (3.2)

zZ =y + Kpz (3.7)
which is equivalent to (3.6). This latter approach is generalised
by replacing K in (3.3) by an operator K* ¢ [?X,X]. Again we

solve for z € X
(I—K*P)Z =y (3.8)

The solution is given by

N
f

Yy + K*Pz

_1 r
(I+PK*) Py

where Pz
-1 -
wherever (I-PK*) € [PX_! .

Clearly the extended projection method is included simply by
replacing K* by K. We now show the connection with Anselone's

work.

The action of K* on PX can be described uniquely by its
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action on a set of basis elements in PX. In practice K* will
often be defined in such a manner. Let {@i} = B be a (finite)

basis for PX, and let 4 € PX so that

™M

o

-
O

Clearly K*u K*Zay by =Lay (K*¢i)

¢,€B ¢ieB

Denote K*®; by K*i . {kI} is a (finite) set of elements of X
which define the action of K* with respect to a basis {¢;} of PX.

Consider K* defined by k*i = Kéi. Then K*3 = ba; Ko,
= Klaj®; = Ki. This is simply the extended projection method.

The treatment of integral equations by Anselone gives an
example in which the subspace PX is not uniquely determined -
many subspaces suffice to define the same approximate equation
and solution. In fact, in the discussion given there, PX plays
a very minor role. For the purpose of illustration we will
consider one particular projection.

Let K be an integral operator defined on the space =f

continuous functions X by

1
Kx(s) = [1k(s,t)x(t) dt

3

where k{s,t) is continuous on the unit square -i < s,t < 1.

Define linear functionals on X

1
¥x = J x(t) dt
1

n
an=i§lwni x (tni) N = 1,29 «on
where -1 < t ., < t . <1and W ., eR. Anselone (p.18) defines
— ni ni+l — ni
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an approximation to the integral operator K

1

Kx(s) = J k(s,t)x(t) dt = ¥, k(s,t)x(t)
1

n
by Ln x(s)=i§lwni K(S'tni)X(tni) = Y. k(s,t)x(t)

where the subscript t on ¥ indicates that it applies to the
following expression considered as a function of t.

This approximation is included in the generalisation as now
shown. Let an(t) be the piecewise linear interpolant to x{t)
agreeing with x(t) at the points tni' linear in-between and
constant for t < tnl and t > tnn' Take as a basis for an the

'hat' functions ¢hi(t) € an defined by

Let x € X, an is given: by

n
Prox (8 = 5 vt )0 . (t)
=] ni ni

Now define Kn by the elements ki € X i=1,2 «-»

K oy = ]
1 \S) Wni k (b,tni

Hence Knan(s) = Lnx(s), demonstrating that this approximaticn
does in fact pelong to the generalisation of the projection rethod.
Clearly any other interpolation projection through the same points
could be used to obtain the same result. Anselone chooses this
particular projection because in his spaces X, an it has the
minimum norm (=1). This helps in ﬁaintaining a reasonably tight

21
bound on ||(I-PnK) || in the space [an].
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§3.5 Approximate Inverse in PpX

The generalisation in §3.4 includes a very wide class of

numerical methods for solving operator equations and it has been

21
shown that the existence of (I-K*P) depends crucially upon the

existence of (I—PK*)-1 in the subspace[?@l It is shown in this
section that if P is a projection onto a finite dimensional
subspace PX then the operator (I-PK*) has an inverse in the
subspace[?i]if and only if a certain matrix inverse exists.
Further the norm of (I-PK*)-1 can be expressed in terms of a
certain norm of the inverse matrix.

It is now shown how the equation in the n-dimensional
subspaca[?nX]is related to the solution of a finite system of
linear algebraic equations. We use the vector space “xw.The
identity operator iann will be denoted by In and an element

n
X.E’R in component form by a column vector

Vi
V2

<
I

< e

Let {¢ .} be a basis for an' An element 4 € F X can oo expressed
ni A

I

as a linear combination of the basis elements ¢ni

by

(3.10)
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The general equation in the subspace is
- *i = U
(1 PnK Ja v

Because we have now fixed[?ng]as an n-dimensional subspace K*
becomes a finite dimensional operator in [P X, X] and will be
n

denoted by Kn.

(I—Pn Kn)a =3 (3.11)

The operator Hn and its inverse Jn give a 1-1 correspondence

between the space P X and R" so that

<l

(3.11) € H_(I-P_ K )i =H
n n'n n

<© (H - HPK)(T
n nnn n—

I
p<

< (H J -HPKJ)u=y¥
n n nnnn—

- X = 3.12)
< (In Kn)l_l_ Y (

where X =HPKJ (3.13)
n nnnn

- e |p x| <= (1 -E')-l e[m\n] Moreover when
So that (I-P K) € [n] K .

. |
(I - K) exists
n n

1
4 =J (I-K Y
4=J ( n n) H ¥

1 _ 1
J (I -K) H
n n n n

or (I-P K )~
nn
(3.14)

1 21
H (I-P. K ) J
n nn n

and (I - X))
n n

There exists an interesting alternative expression for
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1 1

(In-Kn) involving (I-KnPn) . Note from (3.8), (3.9) that
-1 _1
P (I-K P ) = (I-P K ) P
n nn nn n
so that
1 1

HP (I-KP) J =H (I-PK) P J
nn nn n n nn nn

Extend H_ to X by H H P and note that PJ = J so that
n n nn nn n

-1 _1
H(I-KP) J H (I-PK) J
n nn n n nn n

— 1 _1
or (I -K ) = H (I-KP) J (3.15)
n n n n n n

This argument can be extended as follows.

Let J* ¢ Dkn, x] be such that
n

P J* =47 (3.16)
nn n
=1 21
Then HP (I-KP ) J*=H (I-PK) P J*
nn n n n n nn n n

-1 _1
H(I-k P) J*=H (I-PK) J
n nn n n nn n

giving

(I -K) =E (I-X. P ) J* (3.17)
n n nn n

§3.6  Bounds on the approximate inverse

To proceed to investigate bounds on Il(I_PnKr) II in detail
requires explicit definition of X; and Xy, in particular the
definition of the norms in these spaces, and is better left to a

discussion of the application of the theory to a particular example.
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Nevertheless there are some results that can be herived for quite
a general class of norms which at least illustrate what can be
achieved.

Suppose that the norm of an element i € Pn X can be related

in the following manner to a norm based on the camponents with

respect to the basis {¢ni}

w el < Hall < v |la]] (3.18)
n p p l/p
wnere |18l =| 2, lugIP -lle 7] p> o
It is easy to verify that ||.||p satisfies the properties required
of a norm. Note that un, Vn (may) depend on n. Suppose further

that the norms in the spaces anl and anz are related as follows

||<bni||xl = wnil|¢ni||xl W, >0i=1,5,...n (3.19)

N.B. This in no way defines the norms - it is merely a property

of the norms induced on anl from X;. We are now in a position to

relate the norm of an element in anl to that in an2 . Denote the
||-||p norm of an element in X; by ||'||p.
In P X)
1 n p 1/p
[1al1, = Bl Pl1eg, 1R )

1
n P /p
((BluglPon, 1ongl12, )

n,o . p
g o e (2.20)

TR
I, )

X2
It remains to verify for tnese norms that (2.10) holds.

Multiply (3.20, by L
max Wp

1 n 11
max Wp; p max W,. [ i£|wniui]p.||¢ni||§2 | /p
n: ny l 7
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W
_ n ni . /s -
= [ iillw uilP. e ||R, ] i

n 1 2
< [ B P ol 18 )72 < i)

! 2
So that ]|u||p < max W ullp (3.21)

ni |

Now multiply (3.20) by EISLW—— to give
ni

1 - 1
s Ml = [ 2

W_.
ni u,
—_— 1

1
/p
p
min W . '||¢nillgz ]
ni

1 2
So that ||i] lp > min W_. ||g] |p (3.22)

1

Inequalities (3.18), (3.21), (3.22) can now be combined to give

Hn

A\Y)
T E—— |lallxy  (3.23)
n ni

[allxy < |la}]x, < U, min W_;
as required.

21
It is a simple procedure to relate the norm of (I-PnKn)

S |
to that of (In—Kn) using this p-norm, as follows.

Assume that the basis {¢,;} has been normalised in X; -
this is not necessary but makes the algebra tidier.

1?2 1/
then [[all, = [lull, = =l [P 7"

-1 1
Now ||(I—PnKn) 1= sup I](I—PnKn) Gl lx

. 112 i 1
Buc [Jalfxe < 1% [fall) < == llall, <
i.e. llHnﬁII i_l—
p Un
- -1
Using the p-norm for the inverse matrix (In—Kn) now gives

D | _ 1
Mz -x) v dl| < |lax-k) || 1
n n n P — n n p E—
n

from which we can proceed if the coarse bound in (3.23) is used
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-1 -
to relate the norm for (I-P_K P i
(I-P K )™ ¢ [nx?_]to that in [pnxz, anl]
using the ideas in 82.2. It is far better, however, to notice
that this is a convenient stage to introduce the "weighted" norm
1

||'||p which will give directly the norm of (I-PnKn)- considered

as an operator in [?nxz, anﬂ.

1
The norm ||-||P is found in the same way as the norm ||-||
modified by multiplying the elements of the corresponding vector

norms by the weights wni’ i.e.

1 1 1
ol = [ 4F [y wal®) 72 5 il = (2 [ 7] e
p i=;{'ni P i=]71
- 1 - n 1 .
Now ((In—Kn) H Q) = jgl (1 - n)ij (Hn u)J
. _ol
so that Wni ((In—Kn) Hn u)i = 351 Wni (In—Kn) ij (Hn u)j
—_ 21
Define the matrix Wij = Wni (In—Kn) ij
1 1
N -k s all_ < [Iwl] =
n'n n P P n i
-1 Yn
so finmally ||(1-p k)™ || f—q l|w||p (3.24)

-1 .
Note that this bound for ||(I-PnKn) ||applies only in the sunspace
[? X2, P xi]. The following identity can be used to extend tre
n n

result to [Xz, Xy-

- = I 4+ (I-2 K P K (3.:5)
(2 PnK:) ( “r n) nn
| -1 ‘ : ) T
Hence |!{I-2 X_) | 2 ir:!|~ (norm in subspace) [ P K |wnaze
! noa —! - o
(I-P_K )-‘ ar® P © zre now considered as operators on Xz.
nn t A

The roregoing analysis can be expressed more concisely as

follows.
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-1 — 1 -
I- = -
( PnKn) Jn(In Kn) Hn from (3.14)

n
Let er denote the space R™ with the p norm

1
pJ /p

X,
1

n
Il lga = [ .2

l=l
n
LetRl denote the space R" with weighted p norm
p]l/p

S
ni 1

Il lgg = [ .2
2 71

Consider H € [anz, RE‘] then IIHnH < %— from (3.18)
n

1

|

|1z -k )™ || = ||wl|p by definition.

And J, F{'fll' an] so that HJnH <y, from (3.18).

The fact that Pn_xl has a weighted norm does not alter this bound
on HJnH because the weighting is component wise and is removed

by virtue of the range space being Rlil rather than simply R".

Hence
_1
- x )" || < [la [l k)™ |]-|]e ]
v
n ’/
< ||w||p (3.24)
From (3.14) we also have
. : -t 3.26
a -x)™ |1 < Ha |1 [Ta-ex )™ [-Ha [] 3.26)
Vn 1
Hence IIWHp iH ||(I—PnKn) [ ]
Note that here {I-P K} « [2 Xy, anﬂ .

Another bound for !wiip can be obtained which involves an operator
defined on X; rather than P_X,; and which offers some flexibili.y in
the choice of operator Jn'

n . N
Recall (3.17) we can choose any J* € [R ,X] which satisries
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o
[}

»
1

Jn and write

-1 _1
H (I-x P ) J=*
n nn n

(In—Kn)

. n
Now consider J_* ¢ ERl, xl] and IIJn*|| < v,*, we have

— -1 _1
(x -k ) || < [1a_| ] ”'HJn*ll (3.27)
vk
n -1
[Hence ||w|| i—- ||(I—KnPn) ]l]

§3.7 The Behaviour of ||w]|]

In the previous section certain bounds on |lw|| were obtained
using the weighted p norm. A striking feature of ||w|| observed in
examples in later chapters is the apparent convergence to a certain
value. Further, for those examples, I|w|| seems to approach the
same constant irrespective of the interpolation scheme used (e.g.
polynomial interpolation at Chebychev zeros, Legendre zeros,
piecewise polynomial interpolation, etc.). Implied in this
observation is the use of the same norm in each scheme and for each
degree of approximation. In fact to study convergence of '3w|§ we

need to fix the norms in X; and X, and we will drop the subscrigt p

of the previous chapter to indicate this. The suspicion arcse from

M

-
-y

the observed pshaviour of I!%'_ “hat perhaps 'IW!! -> || L2
but this is ntt easy tc | sove in general - we prove it 1is thc case
when the ccaditi:as in Theorem 7 (to follow) are sa. isZied.

Certain pasic zssumpt cnas will first be stated wh.ch encure
that the theorems ia Chapter 2 apply. (X; and Xp; are fixed)

(a) K is compact

(b) (I-K)_1 exists (and is bounded)

(c) {KnPn} callectively compact

(@) KP K % (a)
nn
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Recall the definition of the matrix Wn = (I -K 3

1

= - - *
Wn Hn (I Kn Pn) Jn from (3.17)

Now suppose that Hn and Jn* satisfy the following conditions in

addition to those stated in their definitions.

W gl =1 |
G o rall = llall Vo e® el]a+]] = b
[ (3.28)
Let S = J *H_ (W+ii) = [ls || <1
(iii) H(I—Sn)xll >0 V¥ fixed x € X. )
=1 _1
Choose Y, € X with ||y€||_i 1 such that II(I-K) ||—||(I-K) yell < e

Yo will be considered fixed below.

Let Xne =H vy

W
Zn n Ine
=1 i
i * - (I-
Consider ||Jn Z e (I-K) Yl

21 21 _1
= IIJn*EnE - sn((I-K: ye—(I-K) ye)-(I-x) yell

| A

[l vz - s (-0 vy, i+l l@-s) @07 vl

_1 _1 _1
|ls_(1-x P )" s y_ - S (I-K) y€||+||(I-Sn)(I-K) v |

1 1 1
l]Sn(I—KnPn) (s -Dy, + S {{I-K P )Y (I-K) ye}ll
_1
+| ] (x-s_) (1-K) y€|l

21
||s_ (1-K P ) (1-s )y_| | (a)

| A

+

21 1
|ls_{(1-k P )" y - (1-K) vy I (B)
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=1
+ la-sp) a0y, ] (c)

21
Consider (C); (I-K) Yy € X is fixed so by (iii) (c) -+ o.

Consider (A); Theorem 2.6A tells us for n > N,II(I-K P )-1|| <M
- n' n
Further ||Sn|| < 1 and H(I—Sn)yE |] - O hence (A) -+ O.
Consider (B); Theorem 1.10 (Anselone P8) (Also see §4.9) gives
21 _1
[z P )7y -(1-0" v ||

_1 _1
<Ml -k ey - xy ||+ 8]0yl

nne
1 -a
1
if A= |](I-K7 kP -x)k P || <1
nn nn

From conditions (b), (c), (d) above, & + 0O; also (KnPn—K)ye > 0,

_1

giving II(I-KnPn)yE—(I—K) y€|| -+ 0. Again IISn|| <1lso (B) O
_1

Finally |3 *z _ - (I-K) yell > 0. (3.29)

vow [1z, 11 < 1w |11y 1 bue [y 1< 1y l] <2

therefore using (ii) and (3.29)

21
w11 e 1= oz 1= T vl

€ is arbitrary so in the limic }jwn]| is bounded below by || (I-X) |-

Suppose that in addition to conditions (i), (ii) and (iii’ PnKn and
Jn' Jn* satisfy the followi:ag

. X - N

v e x - x[] >0

(3.30)

(v) |anKn(Jn—Jn*)|l + 0
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Then we can derive an asymptotic upper bound on 1|w|| as follows

21
Recall (3.17), W =H (I-PK ) J
n n nn n

21
Let *= - *
e Wn Hn (1 PnKn) Jn (3.31)

21
Consider W -wW * H (I-P K ) (T =3 *)
n n n n n n n

_1
H (I-(I-P. XK ) P K )(J -J *)
n nn nn n n

fl

_1

H (I-P K ) (P K )(J =-J *)
n nn n n n n
Since HJ =HJ *=1

nn n n n
From condition (iv) and Theorem 4 we have

21 21
||(z-p x )~ - (1-x) " || >~ 0 (3.32)
nn

_1 _1
so that |[(z-p k)" || > ||(x-x)7 ]

Applying condition (v) and (i) we have

[lw -w *|| >~ o (3.33)
n n
_1 _1
sut (el < [Jaex)” || > @ ||
, i,
So that in the limit ||Wn]! i5 bounded above by || (I-K) .
Together with the asymptotic lower limit on !iwn|i A€ have

Theorem 3.7
(In the context of previous chapters) Suppose
() (1-%" exists
(c) {KnPn} collectively compact

(d) KP =K
nn

@ |le |l =1

42



(ii) ||Jn*|| =1

(iii) ||(I-Jn*Hn)x|| + O for any fixed x ¢ X
(iv) HPnKn -k]] »o0
v) |lpk (3 -3 %]|] +o0
nn n n 1
Then Hw > 1o ]

We shall find that all the conditions of Theorem 3.7 are satisfied
by the problem examined in Chapter 4.

We can obtain the result of Theorem 3.7 from the result in
§3.6 in the particularly simple case of ||Jn|| =1; IlHn|| = 1 plus
(b), (c), (d), (iv) for then (3.24)' + (3.26) gives
i

- 21
w11 = 1eame )7 1]+ e ||

Note also from (3.32) and (3.33)
_1
[lw -8 (1-x)” g *|| »o0 (3.34)
n n n

_1
W € DRn] is a discrete analogue of the operator (I-K) on the
n

n
J * .
space J_ R
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CHAPTER 4

Theory of Application to Two Point Boundary Value Problems
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Theory of Application to Two Point Boundary Vaiue Problems

§4.1 Introduction

Chapters 2 and 3 have developed an abstract theory concerning
approximate operator inverses and bounds. The theory can be
applied to any problems for which the conditions of the theorems are
satisfied. The rest of this thesis will be concerned with the
application to linear two point boundary value problems of the
second order in ordinary differential equations. In this chapter
we will define the problem precisely, define the approximations
that will be studied and verify the conditions of the theorems in
previous chapters. At the end of the chapter various error
estimates will be discussed which involve somewhat less work than
the strict error bounds for the examples in Chapter 5.

The theory could be applied to higher order problems with
various boundary conditions and to linear partial differential
equations with ..o changes. However, the derivation of certain
constants required for strict bounds can be extremely lengthy anc
time corswrir.7. Error estimates, however, could be produced in &«
similar m. .ac. to this cnapter with far less effort.

Althcuon tle theory dnes not apply directly to ncn~linear
problems, the resulits obtalined in the linear case could form a
useful starting opoint for further investigations.

We use the space of Riemann integrable functions for X to

allow the use of piecewise polynomial approximations.
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§4.2 Form of Problem

We consider problems of the form

"

x (£) + plt) x'(t) + q(t) x (t) = y(t)

(4.1)
x(-1) = x(1) =0

with p, q, y e C [:—l, l] R [—l, l] (Riemann integrable on [ -1, 1]
2
x e R "[-1, 1]

The interval Edq l] will be dropped from further notation. 1In
order to develop strict bounds we shall generally require that p,
d, Y have a bounded modulus of continuity or possess higher order
of continuity thanC .
The equation (4.1) can be expressed in the form (2.5) by
2

noting that D is invertible with the boundary conditions in (4.1).

The inverse can be expressed as the well known integral operator

1

(G x)(s) = J gl(s,t) x (t)dt (4.2)
1
L(s+1l) (t-1) s <t
where g(s,t) = (4.3)
L(s-1) (t+1) s>t ,
Then D2G x = x almost everywhere for x € R

x for x € R{%2) satisfying the boundary cunditicas.

GD? x
Keller (26, »108) gives the Greens functions (4.3) f>r a varicty
of differential operatcrs and boundary conditions.

Consider the integral operator K defined by

(Kx) s = J k(s,t)x(t) 4t
1
where - k(s,t) = p(s)-%f (s,t) + q(s) g (s,t) (4.4)

If x satisfies the boundary conditions of (4.1) it can be shown
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that )

_ dzx ' ’
s = - k(s,t) —= dt = p(s) x'(s) + q(s)x(s), x &R
1 dt2

(4.5)
and equation (4.1) can be expressed in the integral form
(I-K) u =y (4.6)

"
where u = x e R.

An alternative expression for K which will prove useful later

is now given. Define the operator H as follows

1

s
[HxJ(S) = fx(t)dt = Jh(s,t) x (t) dt (4.7)
1 1

1 t < s
where h(s,t) =
O s £ > s

In a similar manner to deriving (4.6) we have

[Kx](s) = P(S)[HXJ (s) + q (s)[Hzx} (s)

_[E(s) , als) (s+1) ](H‘x)(l) for x € R (4.8)
2 2

The usual sup norm will be used on R, so that R is a Banac.. space.
R takes the place of the space X in chapters Z and 3. Since mst
of this chapter will not be concerned with the details of using a
weighted sup norm we need make no distinction between tne spaces

X1 and X; for the present.

§4.3 The method of collocation

The method of collocation requires that an approximate
solution X satisfies the equation to be solved exactly at a finite
set of points. The approximate solution will generally be an
element of a finite dimensional subspace of R- yielding a finite

set of linear equations to solve for X.

47



Suppose that the equation we wish to solv; is
(I-K)x=y x, yeR, Ke [R].

-~

And the approximate solution % € R € R is obtained by requiring
((T-K0%) (s3) = y(s3)  i=l,.....m; s; ¢ [-1, 1].
This is equivalent to using an interpolation projection method to

solve the equation

R has an m dimensional basis {¥i}; construct a new basis

{¢i} such that
oi (Sj) = 613 i,j = l,...,m

we need m distinct Sj in order to form this basis.
Define a mapping P, as follows

m
[Pm xJ(t) =2, % () . x (sy)

P, is obviously a projection and gives rise to the same approximate
solution as the collocation method - albeit from a different set of

linear algebraic equations because of a change of basis perhaps.

§4.4 Piecewise polynomial method

We define here a projection of R onto a space of piecewise
polynomials on [}l,l]. Define the partition Tn of[;l,l] by the

points tj i=0,...,n

-l =t < t.< ...<t =1 (4.10)
< 1 )@

v = e - = . e - .t the
On each <f *ne .rtervals [t o,t.) i=l,...,n-1, [Fn-l n]

1
approximaticr. wil. ~onsist of a polynomial in t. The order of ezch
of these polyroiials wil: ce the same and each posynomial will pe
defined by :nterpolation within the corresponding interval on a

set of points, the relative distribution of which wil! reca.n the

same for all intervals. No conditions of continuity will be imposed

from one interval to the next, i.e. we do not assume that
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X (¢, -0) =% (ty +0)
at any partition point ty .

Let {Ej} be a set of p distinct points in Edql], (including,
possibly, the end points). The collocation, or interpolation points,

will be defined in each interval [t,_,, t, ] by

1+ £.)
Ey1 = t4p ¢ 3 (eg -ty ) (4.11)
2
i=l,...,n ; 3=1,...,p

The projection Pnp is defined on each interval [Fi—l’ ti] by

P

for i=1,...,n.
Lji is the (unique) polynomial such that Lji (Eki)zdkj for
each i=1l,...,n. Lj will denote the (unique) polynomial such that
Note that the norm of Pnp is given by the usual polynomial
projection norm corresponding to interpolation at the pcints Ej

and is independent of n.

, p
||P | = max sup Z ‘ -i(t)‘
ne i telti-1,til? 115
D |
= sun ol ) = \
L -2 P
tel:,1) 2780 Il p'l
Define
h| 1
lj = I J Li(t) dc
1

for j=1,...,p and lo=o
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In order to satisfy conditions of theorems in chapters 2 and 3

we shall restrict the projection Pp and php to those having the

following properties

+1<1, i=1,...,p
(4.13)

(ii) ||Tn|| = max |ti—t._
i=l,...,n .

l| +>0asn + »

The geometric significance of (i) and (ii) may not be
immediately obvious. The second condition simply ensures that as
n increases the width of the polynomial pieces decreases. There
is no restriction at this stage on the manner in which this happens.
Condition (i) means that each of the polynomial interpolation
points Ej of Pp lies in the interval [lj_flﬂl{ﬂ where the lj are

the sum of the integration weights (positive) for the points

gl to Ej 1° This ensures that we can determine a direct correspondence

(Lemma 4.1) between Php and a certain Riemman sum (Snp)'

Define a projection Sp on R as follows
S x](t) = _g x[E.] X [l, -1, l_-l](t) (4.14)
p J j=1 ] j-1 J

where X {a,b] (t) = J1 a<t<b

0 elsewhere

Sp x is a ziccewise constant function.

Lemmea 4.1

1 1,
J (P X](t) dt [ {S xJ (t) dt (4.15,
P 1\ P

1

Proof

1 1P ) gt
J [Pp x] (t) dt = [ j§1x [ng Lj(t)

1 1
P AL
551 X [Ej] JIL] (t) dt
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et

o 1 1
Similarly Jl [Sp x](t) dt j 1% [Ej] J X Dj—l—l' 1j-1](t) dat
i 1

1 - . =1.- = -
but Jlx [1-1710 13-1 ] (8) ae = 1 L = J 15(t) dt giving (4.15)
- 1

1 1

J [Pnp xJ(t) dt ~ J x(t) dt for any x £ R (4.16)
1 1

Proof

Extend Sp in the obvious manner to Sn on the partition Tn'

P
then

1 1

[ frep )00 e = [ i o] 0 a0

1 1

Then note that since ||Tn|| - O,[Snp x](t) is a Riemann sum so that

1 1

j [Snp x](t) dt - J x(t) dt for x ¢ R
1 1

We now introduce some notation in order to make use of §2.10 in
Anselone 1 .
t
For any kernel k(s,t) define the functions ks(t) and k (s)

as follows {(cf Anselone §2.8)

kg(t) = k' (s) = k(s,t)
A set F of functions x (t), -1 < t < 1 is regular :f for each
m
x € F and each m = 1,2,... there exist X+ X € C such that
x (8) <x (&) <x"(6) te [-1,1]

1
J [Xm(t)-xm(t)]dt + O uniformly for x € F as m > = and for
1

each fixed m, the sets

F ={xm:xeF},Fm={xm:xeF}

m

are totally bounded.
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Regular sets have the following properties. Subsets and
closures of regular sets are regular, the convex hull of a regqular
set is regular. If F and G are reqular then FuG,

F+G

{xty : x e F, y ¢ G}
F.G

{x.y : xeF, ye G}

are regular.

Lemma 4.3
(a) {kg : 1 < s <1} is regular.
(b) ||ks - ks'||1 +0ass" +s -1<s,s <1

(c) kteR,—litil
Proof

(a)  The sets {p_} = {p(s) : -1<s <1}

and {qs} {a(s) : -1 <s <1}

are regular because p(s) and g(s) are uniformly continuous on the
interval [fl, 1] and each function in {pg} or {q } is constant.
The set {gs(t)} is regular because g{s,t) is continuous.

The set {t-1} is trivially regular.

The set {hs(t)} is regular because each hs(t) is constant with a

single jump discontinuity at t=s.

Recall the definition of h(s,t) in (4.7) and note that
39 (s,£) = (t-1).h(s,t)
os ! : ’

Hence {k } = {p_} {t—l}{hs} + {qs} {gs} is regular
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1

(b) J |x(s,t) - k(s’,t)| at
1

min (s,s') 1

< | |k(s,0)-x(s' ,0) |at + Jlk(s,t)-k(s',t)l at
1

max (s,s’)

+2 Is—s'|.sup Ik(s,t)l
—lfp,tj}
For t in the intervals [?l, min (s,s'» and (max (s,s'), 1] , k(s,t)
is a continuous function of s for s>min(s,s') and s<max(s,s')
respectively. Also k(s,t) is bounded since {ks} is regular, so

that finally
[xgkgi | >0 as |ss'| 0

(c) kt(s) = l:(t—l)[—p(s)—q(s) (s+1)] for s < t
L (t+1) [-p(s)-q(s) (s-1)] for s > t
For each t ¢ [}l,l] ’ kt e R.
Now with Lemma 4.3, 4.2 and property 4.13 we have satisfied
conditions (a)-(e) required for Theorem 2.13 of Anselone which we

now state as Theorem 4.4. The proof follows that given in Anselone

with very little modification.

Theorem 4.4

K, KPnp c [R], KRecC, X is compact

{KPnp} is collectively compact (p fixed)
KPnp + K as n > ®
|[(1-P, )X >0 as e

Proof

Since {ks} is regular, k, € Ry (R with the seminorm ||x||1).
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Define f: [-1,1]+ R; by f(s)=ks. Then £ is a continuous function

on a compact set so that the convergence in Lemma 4.3 (b) is uniform.

| k) () [ <[ {xgl 1. 1%|] = {xx:]]x||< 1} is boundea

l (kx) (s)-(Rx) (s') < | Iks'ks' | |1. | le |+{Kx: | le |f_l} is equicontinuous.

Hence K € [R], KReC, K is compact.
P"P € (r] therefore Kpnp € [R] and each Kpnp is compact.
Consider the linear functionals q’ and ?n, defined on R as follows

1 1

W X = j x(t) dt ,(an = J [Pnp xJ (t) dat.

1 1

Lemma 4.2 says that ¥n > Q.

Let u be (fixed) in R. Then F= {k u} is reqular. Choose X and x"
as in the definition of a regular set. Since ®n »@ uniformly on
the totally bounded sets Fin and Fm and since (xm—xm) + O uniformly

for x € F we have Pn » @ uniformlyfor x € F. Since

)@ =0, ) ans (11 o] 0 -0 [, ]

we have| IKPnp u - KuH + O.
1
! .
Note that| [Kpnp x] (s)-[KPnp x] (s") |§_ L Iks(t)—ks t) | |[Pnp x] (t) |dt

< rg=xgo 117 ]]e x| |

np

By an argument similar to that proving K compact we have

[ , "y e
[K.Pnp x](s)—l\KPnp x](s ) >0as n~>~and s * €

uniformly for ||xH <land -1< s <1

This implies that the sequence of sets {KPnp x @ ||x|]< 1} is

asymptotically equicontinuous. These sets are bounded uniformly

- | IPnp || <M < =, Also each of these sets

becausel I np | ' <
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is totally bounded since each KPnp is compact. A construction

similar to that used in Arzela's theorem then gives

{KPpp x : n > 1, ||x|| < 1} is totally bounded, therefore
relatively compact in R. Thus {KPnp} is collectively compact.

Note that Pnp + I on C so that we have
||(I—Pnp)K[| +>0asn> o p fixed.

The conclusions of theorems 2.3 - 2.6 in Chapter 2 now

apply, for example

Theorem 4.5

21
Suppose (I-K) exists, then there exists Nj > 1 such that

_1
Vaxm [l || <m
Use theorem 2.6A(a)

Also there exists N; > 1 such that ¥Yn >N

21
[l xxe, ) ] <™

Use theorem 2.6A(c)

Theorem 4.6

Suppose there exists 1 such that either

_1 !
H (1-5 %) (K-P _K) | | <1

or ||(I—KP )”*(K—KP )Kci! < 1 for some 4 > 1
np np -

21
Then (I-K) cxists. Use theorem 2.4 or 2.5.
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§4.5 The Behaviour oflJqul

We remain in the space R = X; = X;. §3.5 - §3.7 in Chapter 3

make use of the operators Hp, J,, J,* sometimes called restriction

(H,) and extension (for J, and Jn*) operators, they must possess the

following properties in order to apply the theorems in those sections.

(4.21)

np np np
Hop ¢ [R,R7PY, 5 ¢ [R"P, Prp R], Inp* e[R™P, R]
(a) Hhp Pnp = th (e) iIanll =1
(b)  Hpp Jnp* = Iy (£) IIan*‘| =1
»  (4.17)
(€)  Ppp Jnp* Hyp = Pip (@) Jyp* Hy, > I on R
(d) Jnp Hpp = Pnp (‘¢>an = Pnp an*)
Th diti impl J = ||P
ese conditions imp y|| np|| || npll
Define th, Jhp’ an* as follows
(th x)ji = x (Eji) j=1,+..,p ; i=1,...,n (4.18)
B X [, .t) 03
(Jnp U43) (B) = i=lX t, 4t (1) j%“ai Ly (t) (4.19)
* : 3 X[ ) (t) (4.20)
u,, t) =, u,, T , T, . .
(Tnp* Y¥31) (&) i=; 3=1 3t 1,3-1 " 1,3
= - * = s in Lemmea 1.2}
where Tij tiq * lj (t; -t _,)/2 (NB an th . a )
We use the sup norm on R and the maximum norm on Rnp
Conditions (a) - (f) above are satisfied trivially by “hese
definitions. Condition {(g) uves not hold on R, but oniy on £, an:
we must mars a :l.giat addition to the proof of Theorenm 3.7.
However we now h: ., dirzcrt.. from (3.26), and (3.27) sinc=
gk |, < 1l 0l
np Pnp“ - np
11 11 < eyl gor n 2o |
< . P < P *) or n » M
ol < el o7 ] < eyl 2o |
o |
- >
and llwnllw :_lI(I KPnp) II < My for n > Np ;
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For the stronger result of theorem 3.7 we x;eed two further
conditions, namely that HPnpK(Jn-Jn*) H > 0 as n + » and that
(I—K)—1 has the same norm in the spaces [C] and [R].

Since Pnp is uniformly bounded, or from the fact that
HK—PnpKH + O, it is sufficient to show that

| K (Ipp=3np*) || > 0-

Recall the integral operator H defined by 4.7 and consider

I IH(an'an*) I I

n p
= max  sup ig Z_ a5 J(X [ti-l' ti)(t) Lji(t)—X["ci j—l'Ti )y (t) dt
layg <] se 71T, ' 3
E1,1 (4.21)
Now since J Lji (t) dt = Tij - Ti,j-l i=l,...,n
Tt , ) \
tl'-l tl J=1,---/P

we can replace the lower bound of the integral in (4.21) by the
largest element of T'h less than s call it tk' we have

|s-t, | < ||T,|| and we can simplify the bound in (4.21) to

° p
lIH(Jn—Jn*)II i'ﬁzgil:i 22%}1,1] thjgl ILji(t)‘x [Tirj'l'rij)
SR IERTR[[EEY (.22
since ||Tn|| > O we have
| [8(3p-Tpp®) || >0 asn > = (4.23)

In view of (4.23) and (4.8) we have

||K(an-an*)|| +0asn->® (4.24)
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Lemma 4.7 :

1
Let (I-K) ¢ [R] then

21 1
(-7 ||= sup |](1-x)7 y]]
yeC

Proof
Let y. € R be such that [yell < |

1
|

- !
[ -x)" | [-]] (z-%) vell < ¢ (a)

Let t_ ¢ [-1,1] such that
-1 _1
a0y -] (- v (e[| < e (B)

Let x, be a sequence of continuous piecewise linear function

defined by x_(t) = (P v.) () with &) = -1, £, = +1,
te = t; for some i=0...n.(||Pn2]|=l)
o.\ —

tin
t;q— t:.*l -
ka_, Li=ke '
By the results leading up to theorem 4.4 we have
||Kxn—Ky€|| > 0asn > o«
Since each x, € C (forced by €1 = -1, £2 = +1) we can find an Xy
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say such that

21
| egkvel | < e /1@

21
The operator (I-K) can be expressed as

=1 -1
(I-K) =1+ (I-K) K

-1 _1
Therefore (I-K) (xN-ys)(tE)=(xN(t€)—y€(te))+(I-K) (KxN-Kye)(tE)

But by construction we have Xy (ts) =y, (te)
=1 21
mence || ((1-007 yo) () | -] (x-0) T x (£ ]] <€ ()

Adding A, B, C
=1 -1
[l (x-x)" |]-|]| t((z-x) x ) (e )| <3
21 _1
But |[(I-K)" xp) (£ ) || < sup |](1-K) y|| since [|xy|] <1

yeC

As £ is arbitrary we have

-1 _1
[(z-x)" || < sup ||(z-x)" y]]
yeC

CeR so that, finally

_1 _
[(z-x)" || = sup||(z-0" y]|
yeC

Theorem 4.8
- -1
Hwgll, > 107 []

Proof

Verify conditions of theorem 3.7 hold, apart from condition
(iii). Replace y in proof of the theorem by an x_ € C
Lemma 4.7 guarantees that we can do this, and condition (iii) is

satisfied for x ¢ C.
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Wright 51 has demonstrated the conclusion of theorem 4.8
for (I-K) e C and approximations consisting of global
pelynomial collocation at the zeros of polynomials orthogonal

with respect to a weight function of the form

B

1-6% 1-6° ; -4 <a, 8 <

The result of theorem 4.8 is strong evidence that with the
infinity norm the matrix wn is a good choice for expressing the
inverse approximate operator, for, in the limit at least, it is
not dependent on the form of the approximation. We can express
the properties that an approximation must have to satisfy the
conditions required to prove theorem 4.8 concisely as:-

for any x € R, Spp X is a Riemann sum.

Theorem 4.8 together with numerical corroboration, presented
later, provides the justification for the form of bounds on the

inverse approximate operators in the next section, which are there

expressed in terms of computable quantities.

§4.6 Bounds cn the Inverse Approximate Operator

In order . develop practical error bounds for approxiiate
solutions arisi.:z from equacions such as (3.1) or (3.3) :t is
necessary to desive bounds on the inverse approximate operators

=1 _:
(I—Pnp K) or (I-K Pnp) .

It will not be sufficient to know that
such bounds will exist, we shall want to be able to compute a
numerical value for the bound for any given n. The theorems in

1
Chapter 2 will be of no use since we have no bound on (I-x)

instead we will use the results in §3.6 to relate these inverse

approximate operators to the matrix Wn.
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Recall (3.24)
=1
=y 07 || < [1pgpl |- 11wy

The inverse approximate operator here has range space php R and to

bound (I-Ppp K) on the whole of R we can use the identity (3.25).

-1
|| (1-Ppp ®) Il:1+lI(I—PnmeP.npRII-IIP;,PKII
Giving
-1
ey 07 1L <1+ Hegll-10 1112 x| (4.25
» . . —1
Since |!Pnp|| is independent of n, llwhll > II(I—K) || and

||Pnp Kll j_]l(Pnp—I)K|l+|lK]| > |IK]|, (4.25) is a fairly satis-
factory bound.
Recall that (I-K PbP) can be expressed in terms of (I-P K)
np

from (3.5).

=1 -1

(I-x Pnf) =1+ K(I—Pnp X) P"P
Giving
_1
=k ey )7 [ < 1+l x| Tl 1w, T (4.26)
Cruickshank, deriving bounds similar to (4.:z2) a..2 (4.26)

notes that for the global polynomial case IIPlpII increasecs with p
when Chebychev or Legendre collocation points are used ianp?!
remains constant with n|. Bounds which do not increase with

Ilplp H are derived by considering ||K(I—Plp K) Plp H in more
detail and making use of the fact that the collocation points are
zeros of orthogonal polynomials. The result achieved for Chebychev

polynomials is

el

1
PnE R’



m

_1
||1<(I-1>lp K Pyoll < suplk(s,t) ]

IENIN
-1<s,t<1 2
For Legendre polynomials > (4.27)
21
||1<(I-1>lp K) Plpll < suplk(s,t)|-2||wn|lm J
—lis,ti;

-1 1
To express a bound for (I-Plp K) in terms of K(I-Plp K) P._ we

use the identify

1 1

K) =1+ P K (I-Plp K)

(I-P 1p

l1p

1 1

K) + 1((1-1?lp K)

I+ (Plp—I)K(I—Plp

Then, provided ||(Plp—I)K|] Sp < 1 note that

1
-1 - -
fa-e 07l <1t Ikt P19 Pipll

1p 1 - GP

(4.28)

Then use (3.25)
All these expressions (4.25) - (4.28) depend on the integral
operator K as well as I]Wnllm, which is not very satisfactory when

K is large. It is easy to show that
=1 21
||(xz-p>_ K~ -(1-x)" || »0asn~> =
np

In view of the fact that ||Wn|l°° -+ II(I—K)—III we must have
asymptotically H(I—Pnp K)-lll v Hwnll°° but for the present we
must rely on (4.25) and (4.26). A small improvement ir the bound
(4.26) might be achieved for the piecewise polynomial case by
similar analysis to that for (4.27) but for small values of p it is

probably not worthwhile.
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§4.7 Bounds on Kd, (I-p )Kd )
np

The bounds in the previous section, together with bounds on
d a .
K, (I—Pnp) K~ will enable us to use theorems 2.4 and 2.5 of
-1
Chapter 2 to obtain strict bounds on II(I-K) Il.

Recall the definition of K as an integral operator

e oo

1
J k(s,t)x(t) dt
1

1
Il xx || = sup ’ J k(s,£)x(t) dt‘
sel-1,1] ' /4
1
< sup J {k(s,t)‘dt . ||x|| (4.29)
se [-1,1] 1

we can use (4.29) to bound IIK]'. From 4.4 we have

1 1
el < s fpeor|]'] 32 s, fae +jacol [ fste0 fac]
se [1,1] 1 1

It is easy to show that

1 1
[ ‘g(s,t)'dt = &(1-s2) ; [ g%-(s,t)|dt = & 1+s?) (¢ 210
21 21
for g(s,t) defined by (4.3).
To bound Kd, note that
] < [ 1k )@ (ae02)

P is an interpolation projection so that (I-Pnp)x is the
n
‘error' in interpolating a given function x. Most of the error
bounds for interpolation are given in terms of higher derivatives

r
of x. For that reason we now consider the operator DK 1 <r i.d
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defined by
r

[DrKd x](S) =2 _ ¥« (9 (4.33)
b o
ds

We will develop bounds k:; on IIDrKd”

Define Pj(s) = |P(j)(s) ’ qj(s) = |q(j)(s)| when p,qu(j)
Define k{(s) = p,(s)4(l+s ) + qo(S)B(l-sz) (4.34)
Then ||K|| < sup k‘.’(s)
se [-1,1]
. “ “ (1)
Consider —[DKx ](s) , x €R;pqgqeC

1
3
g—s-Jl [P(S) 'a'% (s,t) + q(s)g(s't)]xn(t) dt

d ’
s [p(s) x (s) + q(s) x (s)]

p(s) x" (s) + [p'(s) + q(s)} x'(s) + q'(s) x (s}

\

1

p(s) x" (s)+J [(P'(s)m(s)%(s,t)«;' (s)q(s,t)]i" (t) at
1

(The fact that x (-1) = x(1) = O in no way restricts x”)
Define
: _ (1+s?) ., (1-s® )
ki(s) = p (si + (pi(s)+q (s)) =5+ q,'8) =5 (4.29)
1
Then HDKH < sup ky (s)
se -1,1]

Consider - (DK2x), make the substitution Kx =y
then

(DK2x) (s) = (DK y) (s)
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1

1 .
Define kjy(s) = kj(s)- ]k?||
2 ! o
Then IIDK || < sup kl(s)‘|]k1|| (4.36)
se[-1,1]

n
similarly define k_(s) = k(s)*||k{]]

Then | K] < sup kS(s)- | [KS| | @.37)
se[-1,1]
We lose something in the bounds (4.36) and (4.37) by failing to
take into account the form of (Kx) (s), but the extra algebra
involved for higher order cases (e.g. D3K5) might outweigh the
reductions in bounds.
Consider (Drer) (s), r > 2

- +
Make the substitution K- e = v" ., ve c(r+D)

satisfies BC.
(D°Kx) (s) = (D'K

D" (p(s)y”(s) + qls)y(s))

This can be expanded in a binomial series involving Jerivatives

of p and q and y. Note that

Dr+ly - Dr—lyu - Dr—lKr—lx

- - -2 r-2
Dry - Dr 2Kr 1x= Dr Kr (Kx)
yl/ = K (KI—Z %)

! 1
y'(s) = [ %Z—(s,t) [Kr- x] (t) dt

_1
1
r-1

y(s) = J g(s,t) [K x} (t) dt

1

r-1
So that from the expressions k(s) up to kr-l(S) and po(S), qo(S)

r .
up to pr(s) gg(s) we can derive an expression for kr(S) with
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A

| ID"k" || < sup x© (s) .
se 1,17

d_
sup k. (s)-][x7] ] 1 <r<d
se [£1,1])

Trivially | |p"k%||

| A

This recursive definition of ki(s) is readily implemented as
a recursive procedure call in a computer program. The s-dependence
of the terms of ki(s) could be dropped, giving somewhat poorer bounds.
2 3

As examples consider kj(s), kj3(s)

2
ko (s)

po(s) y3(s) + 2p1(s)ya(s) + pa(s)y;(s)

+ qo(s)yz(S) + 2q)(s)y; (s) + gz(s)y (s)

1

where y3{s) = kj(s)
yo(s) = k?(s) (4.38)
y1(s) = h(1+s?) - |[x7}]
Y, (s) = B(l—sz)'||k?||

ka(s) = Ro(s)yu(s) + 3p1(s)ys3(s) + 3pa(s)ya(s) + p3(s)y1(s)

+ qo(S)y3(S) + 3q;(s)ya(s) + 3qa(s)yy(s) + q3(s)y:(s,

where yu(s) = ki(s)
ysis) = x-Sl
ya(s) = k5(s)"||x7]] (4.39)
y1(s) = %(1l+s )-||k?|[1
y(s) = m-s )| [x§] "

d
Error bounds for the interpolant Php K x can be found from Jacksons
d ) . ~
Theorem, which states that if u € C( ) there exists a polynomial u

of degree n-1 with

(d)
- = wid ll u ]l 1
[lu-s 1] :-[EJ Ae-l). . .ad+ D " a2z
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In the notation of this chapter this gives, provided P/q € C(r)

T |y o5& a+lle ||
r-py ] < [ n ] |1+ npll o
P - 4 p(p-1l)...(p-xr+l) ' 4

where we can take

o | < sup  xi(s)
" se[-1,1] d

The Peano kernel expression of the remainder for polynomial
interpolation has smaller constants of proportionality than does
Jacksons theorem, particularly for larger p and r as can be seen
in Tables 38 and 39 . Unfortunately the computed Peano constants
are not strict theoretical bounds as the processes of numerical
integration and maximisation are not exact. Strict bounds on the
errors in computing the Peano constants could, in principle, be
found but this would involve considerably more effort.

_1
§4.8 Bounds on (I-K)

i

We now have all the terms required for bounding (1-¥)
from theorems 2.4 or 2.5 applied to approximations 2f che Ioux {3.1)
or (3.3) in a computable form. Call approximations of the forn
(3.1 ) "projection" and (3.3) "extended". We can ncw compare tnae

usefulness of the "projection" and "extended" approximations.

"projection" approximation

Theorem 4.9

Suppose that for some n, p, d > 1, Wn exists and

a
p=(u+] o |- g - Lkl [+ 1] amp ol D) [T a-p)xtf < 1

Then

21
(I-K) exists and
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a-1 . .
Z I+ I (-1 w | ] o] k] |+] ] (z-p Y| | 1d-1

_1 iZo )}lelf

-0 || < ®_n i

1l -4

where ,IKIIO = 1 and the summation is empty if 4 < 2

"extended" approximation

Theorem 4.10

Suppose that for some n, p, d >1, wn exists and

a={a+ | =] [-Tleyp T 13Tl ][] g )6 ] <

Then

21
(I-K) exists and

21 a-
[tz || < .z

1 .
< E I+t el - Tleg - g 113 x|

1 -A

Proof of the above theorems, substitute (4.25), (4.26) into theorem

(2.4) and (2.5). llK||i and ]I(I—Pnp)Kdll are computed from (4.36)
and (4.40). The expression (I]Kl[ + Il(I—Pnp)KII) is used instead
of IIP II-IIKII for IIP KI] in theorem 4.9 because in most

np np

practical applications where A < 1 it is generally true that
II(I—Pnp)KII < (IIPnpll—l)-IIKII. (A notable exception is when
]IPanl = 1, e.g. a continuous piecewise linear interpolant).

If l]KI] < 3% it will generally be better to use theorem 2.2,
and certainly much easier. The above theorems will be most useful
when K >> %. The "projection" approximation bound will generally
be applicable with less work (smaller n) and give smaller bounds on
(I--K)-1 than the "extended" approximation. The situation for global
polynomial collocation (Plp) is somewhat more complicated by poorer
bounds on II(I—P 'K)—1||.

1p
21
Since llwnll - ||(I—K) || these bounds leave a lot to be
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desired, but alternative bounds for the errors in the approximate

solutions mitigate this to some extent.

§4.9 Error Bounds

Define the residual of any approximate solution X of
(I-K)x = y
by
r, =y - (I-K) x,
If (I—I()-1 exists then
ry, = (I-K) (x-x;) = (I-K) e,

and we have the following error bound on x,.

ExE (4.41)

_1
[Ix = xnll = [leal | < Ttz-x07 [ ]

We can calculate r from X ¢+ Yi P and g and bounds on
Il(I—K)_III are available from theorems 4.9 and 4.10.

Unfortunately we are not yet in a position to say that
||rn|| tends to zero for the approximations described in this
chapter.

Note the identity

i | =1 21 _1
T - S =T (s-T) S
Applied to an approximation such as (I—KPnp)zn =y (4.42)
gives
21 21 _1 _1
- ) = (I- = - - I-K
[(I KPnP) (I-K) Y (1 KPnp) (K KPnp)( ) Yy
21
z - x = (I-KP_ ) (K-KP.__)x
n np np

Since x is fixed ||Kx—KPhpx|] + O (from Theorem 4.4).
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_1
Also ||(I—KPnp) I] 1s bounded uniformly for n sufficiently large
{(Theorem 4.5), therefore
llzn - x|| > 0 as n > «
But zn =y + Kxn where xn is given by

(I-p pK)xn =P

n ¥ (4.43)

P
giving ||Kxh -kx|| >0 asn-> o

Note that the residual for x  can be expressed as follows

r, =y- (I—K)xn
=y - (I-Pnpl()xn + (I-Php)l(xn
= (I—Php)(y + Kxn) (4.44)
So
eIl < Tha-p oyl [+ sz 1D ] Trec-re ]+ [T ex-p x| ]-1x] |
and provided y is sufficiently "smooth", II(I‘Pnﬁ)Y|| tends to zero,
giving Ilrn|| + 0 and |lxn—x]| -+ 0 as n > @

Note that we have convergence of the "extended" solution z, without
this restriction on y.

It can be seen from (4.44) that r, will behave like the
remainder for interpolation of the function y+Kx  and useful

properties of r, can be obtained from this fact.

It was discovered during the course of numerical experiments

that the error term e, for piecewise polynomial solutions was

approximately equal to the residual. This "property"” was remarkably
consistent over a wide range of problems and held to a high degree

of accuracy for large n. 1In view of the error bound (4.41) which
depends significantly on a bound for ||(I—K)_1|| an attempt at a
theoretical justification of this "property" was prompted. We
start with an identity which expresses (I-—l()"1 in terms of the

21
resolvent operator (I-K) K.
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1 1 .

(I-K) = I+(I-K) K

21
Hence e (I+(I-K) K)rn

r, +(I-K)—1Krn (4.45)
If we can show that |IKrn|| tends to zero faster than Ilrn|| we
have enﬁ:rn for n sufficiently large. We now examine the behaviour
of r, and Krn in terms of the derivatives of y and Kxn.

Suppose that f(p+r) is uniformly continuous on the intervals
(ti-l’ ti) i =1,...n. Then by Jacksons theorem there exists

polynomials ui(t) of degree p+r-1 with

{p+r)
ﬂ(ti—ti_l)fwr ti_l<§3€i|f B l
[[E®) - uje)]] < (ﬁ— o =€i  (4.46)
for t ¢ [ii—l' ti) i=1l,...,n.
Denote (I—Pnp)ui(t) = vi(t) for t € [ti-l’ti)'
Then
||(I—Pnp) £(e) - v (&) |] < & (1+] |pnp,|| an
and |[vi ) ]] <[] (1-B, ) £(t) || + €i(1+| Ipnpl |

Now, for f substitute y+Kx_ ~and recall (4.44).
Equation (4.47) tells us that provided y and Kxn are sufficiently

can be expressed as a piecewise polynomial

(2)

differentiable, X,

"principal part" plus a remainder. For example if ||f (t)]| <1,

[1£ &) |] < 30.p=2, n=50 and each (t,-t, ,)=0.04 then (4.47) tells

us that the interpolation error (I-%q))f(t) is with?n r prorﬁfately
1+ |P
np

0.25% of a piecewise polynomial v; (t) of magnitude 5000

This effect becomes more pronounced as r and r. increase. 1In a
computer program one could use Jacksons theorem and evaluate f(t)

at various points in order to obtain a tighter bound on v; (t).
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The piecewise polynomial v;(t) is zero at ;ach point Eji
j=1,...,p ; i=l,...,n and is of degree p+r-1 in each interval
[ti—l' tj), also an overall bound is given by (4.47). We hope
to use this information to obtain better bounds on Kv(t) than
we can achieve on K(I—Pnp)f(t). A particularly interesting
example is given by using the Gauss-Legendre zeros for Ej. For
such points it is known that the integral of any polynomial of
degree up to 2p-1 is given by a weighted sum of the values at the

points Ej' therefore

t .
[Hv](ti) = Jv(t) at = jil ij(t)dt =0 i=o0,...,n
! [tj—lltj)
since vj(t) = 0 at every Eji' Further, since we have a bound on
]|Vi|| we can say that
Iz ||
e v < DI(I—Pnp-)f(t)II v e asllzlD (4.48)

where e = max (€1 reees en)
we then have the following bound on K(I—Pnp)f(t)

| |
HK(I-Pnp)fH < (p +2q) —2———[]!(I-pnp)f||+e(1+||pnp||)] (4.45.

+ |1k [-e-+]le 1D

Since the polynomials forming vi(t) can have degree at most 2p-l
it follows that we must take r < p. Equation (4.49) shows that if
we use Legendre zeros (p>1) ||K(I—Pnp)f|| tends to zero faster than
does ||(I—Php)f||’ provided f is sufficifntly differentiable
(piecewise).

In order to apply the above argument to Kr  we need bounds
on high order derivatives of y and Kx,. Bounds on high order

derivatives of Kx, exist in the open intervals (t;_j,ty) and since
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X, is known we can compute them by a similar process to that

described for bounding IlDrKd|| in §4.7.

The property (Hv) (t;) = O for various degrees of piecewise
polynomial holds for many sets of points other than Legendre zeros -
for example any symmetrical arrangement of the Ej about O with p
odd will suffice for v of degree p. What is particularly interesting
about the Legendre polynomials P, (t) is that all the integrals from
the first up to the i th over [-1,1] are zero. This is easily seen

from the orthogonality relationship.

1

J Pi(t) Py(t) dt =0 i#3
1

Then since {Hj—llJ(t) is a polynomial of degree j-1,

1

o= J Py (t) [Hj—ll] (t) dt 3=1,...,1
1
» 1 » 2
= [le (t){H]—llJ(t)l - J HPi](t)[HJ_ l](t) at
=1 _

o .

1 . .

. J[HJ_lPiJ (t) = [HJPi](l) = 0, j=l,...,4  (4.50;

Using (4.49) we have e = r,. Then apply (4.49) again to (4.45)

2
taking p=1, @=0 and p=0, g=1 to give improved bounds for Hen and Hen;

these are related to, respectively, the errors in first derivative
and actual approximate solution of the qriginal differential
equation (4.1). From the above observations we can produce error
bounds much more in keeping with actual measured errors than the

bounds given by (4.41). Indeed we can obtain a higher order of
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accuracy for first derivative and actual error bounds from this
analysis (see also De Boor & Swartz for a proof based on "order"
arguments [4].)

Perhaps the most important conclusion of this section is
that provided p, q, and y are sufficiently differentiable we may
take the norm of the reéidual r as an error estimate for the
approximate solution X - This estimate is likely to be in better
keeping with the actual error than the bound (4.41).

Unfortunately it is not possible to determine how large n must
be in order that this estimate is valid without entering again into
a discussion on strict error bounds. Further investigation might
reveal other criteria upon which some measure of confidence in this
estimate could be based.

See the results in Chapter 5 for a comparison of T, and e

for some sample problems.

§4.10 Use of weighted norm

We keep the definitions of the previous sections in this
chapter but extend the examination of the results to use a weighted
norm as introduced in §2.2. By the comments there most of the
theory extends trivially but particular care must be exercised in
extending any convergence proofs and where norms are caiculeced.

We will make the following assumptions about the weighted noua and

the approximations used in conjunction with it.
The norm in X, will be the usual sup norm

The norm in X) will be defined by
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[Ix]1,, = max Woose k@] |
i=l,...m te [si—l’si)
with O < € :_Wi <1 i=l,...,m r (4.51)
-l=so<sl <.,..% Sm=l J

The points s, and weights Wi will be considered as fixed in any
convergence results (increasing n). Further any approximation

using this weighted norm will be such that {s;} € {t;}. That is

the set of partition points of the piecewise éolynomial approximations
contains the set of points defining the weighted norm (hence m < n)

We may note that 2.10 becomes

1 1

ma Vel < Vi, < e Vil (4.5
21

We have seen in §3.6 how the norms of (I—PnKn) and are related

when using weighted norms but first we return to the basic equations
in Chapter 2 in order to see how advantage may be taken of this
weighted norm.

Recall Ao and Ad used in Theorems 2.4 and 2.5

1
po = ||(1-L)" (x-L) ||

Ad

1
|| (1-1) (x-1) K% |

Our ability to make use of Theorems 2.4 and 2.5 for producing error
bounds depends critically on finding an approximate operator L
sufficiently "close" to K to make Ao or Ad less than 1. Consider
the operator (I-K) € [X;, Xz]so that (I.-L)--1 € [Xz, X1] and

(K-L) ¢ [xl, X2] -
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Instead of computing the values of Ao and Ad in the usual manner of

1
po < || (x-w" ||+ ||k-L]|

=1
with (I-L) and (K-L) considered both in X (X;) we are at liberty

to use instead the norm of (I-L)_l considered as an operator in
[Xz, xl]and the norm of (K-L) considered as an operator in [Xl, Xﬂ .
(Note we may consider Kd € Xj for the purposes of calculating
II(K—L)Kd|I). In particular we consider this technique applied to
Theorem 4.6.

Bounds on (I—PnpK)_llpl g are given in §4.6 in terms of w

np
and other factors, also

-1 -
) |]<1+]]@-p K

| -, ; IPPRII-HPnp k]| and

P n

_1|
| (z-2, ®) - 2l

21
Ilz-xe, )7 || <1 +][x][

P

To express this in [xz, xl:' terms we evaluate HPnpKH in [x,}
|1x|| in [Xi] and use the now weighted form of ||W_|| developed in
§3.6 (Note also ||Ip || < 1).

Summarising, we find bounds in [X, Xj] for 4.25 and 4.26

simply by using the weighted row'norm described in §3.6 - the
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appropriate weight is determined simply by examining which interval
Fi-ll Si) the collocation point corresponding to that row falls
into.

To develop bounds on (I-Pnp)K in the space [?1, Xz]we must
re-examine the analysis of §4.7. Let w(t) be the piecewise constant

function defined by

w(t) =w, te [s; 4, s;) (4.53)

Recall the expression for DKx

1

_[DKX](S)=p(s)x(S)+ J [(p'(s)+q(s»%%(s,t)+q'(s)g(s,t)]x(t) dt
1

Substitute z(t) = x(t)-w(t) with |[x|| <1 (so that |[z}[ <D
' 2

1
—[DKX] (s)=p(s) 2L 4 J [(p' (S)+q(5)}%% (s,8)+q’ (S)g(s't)]i&; de

w(s)

Taking norms in the space [xﬂ .
1 1

3 w(s)
ol < o [ouirsoniren) | [emtigtoca o] Jrenzgf
s [—1,1
‘1 -1
1
. w(s) (4.54)
Consider lg(S,t)w(t) dat
21
s 1
) w(s) _yis)
= | B(l-s) (L+t) oy at + | R+ (1 Riaraails
-1 S
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w(s)

e(s O ey wit) | a4t (4.55)

v [ 2

1

1
w(s)
w(t)

J 1z(l+t)w(s; at + J

S

Now provided

. 1 1 , 1
@ wity =M [1+t l—t]

(4.56)
and (ii) w(s) < w(t) for 's > ‘tl
we have
1+t
wit) = for t <o
1-t
wit) <1 for t >0
w(s)
ML <1 gor s| 2 e
Giving the following bounds for (4.54) and (4.55)
1 s|
g w(s) S
3 4.57
J 5o (s,t) v (D) dt <1 + > ( )

dt<l_+li.|__sz (4.58)

2

w(s)
Jg(s ATy

If (i) and (ii) are not satisfied bounds still exist but may be much
larger.

Finally, in [X;] terms,

|Iox|| < sup |p (S)+[PI(S)+qo(s)][1+|—§|-]+ql(s) [iz'—sl- s2) (4.59)
SE[l,.\.]

The fact that the bound on (DKx) (s) is larger in an interval with
small weight is offset by the fact that due to (4.56) this interval

must be narrower and the interpolation error bounds correspondingly
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smaller. The inequalities (4.57) (4.58) give thé following bound
on K in [Xﬂ .

x| < s [p (o u+l§l>+qo<s><éﬂﬂ-sz>] (4.60)

se [-1,1] 2

Using these results the analysis of §4.7 extends quite simply to
give bounds on (I—Pnp)Kd in Ekl, Xﬂ . Unfortunately ||K|| in [?1, xﬂ
is not bounded with m and this places a further restriction on the
weights if we wish to use this analysis in higher order cases (d > o).

To bound K in [xl, X2] note that if we take

Woo=h (s; -85 ) (4.61)

1
then noting that J 1/w(t) dt < 2m, we have
1

J g(s,t)ﬁ dt < m (4.62)
21
1
3g 1
J aS(s,t)w(t)'dt < 2m (4.63)

We are now in a position to select the points Si in such a manner
that the weights wi reduce the effect of large modulus row sums of
the matrix Wn. The elements in rows of Wn corresponding to points
near *1 can grow alarmingly as K increases in size due to the
boundary layer effect. The above analysis shows that we can improve
the applicability of error bounds, that is obtain strict error
bounds for fewer collocation points, at the expense of larger error
bounds on the second derivative near the points *l. Error bounds

on the actual approximate solution values are not greatly increased

since from (4.62) we have, in the space [?1, Xﬂ

ol <2 (-6

79



If these procedures for producing error bounds for approximate
solutions were part of a computer program for solving the differ-
ential equation it would be a simpie matter to arrange that should
large modulus row sums in W occur, then small intervals with small
weights (subject to (4.56) ) are introduced to improve the conditions
of applicability. Also, since {Si} < {ti}, this would suggest using
smaller intervals for the piecewise polynomial approximation near
-1 or +1 or both if the inverse matrix Wh has large row sums in
these "positions". In view of (4.56) it would seem logical to
distribute these intervals in inverse proportion to the modulus row
sums of W,. Since m may be much smaller than n it is possible that
one weight would apply to several rows of wn.

The effect of wn on the error bounds in the weighted norm is
particularly interesting in view of the close relationship between
W and (I—l()—1 established in (3.34), which would again suggest that

poorer error bounds on the second derivative might be expected in

positions corresponding to large modulus row sums of wn.
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CHAPTER 5

Examples
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§5.1 Introduction

In this chapter we present a selection of numerical results
illustrating both the motivation for the investigations in previous
chapters and their consequences. All calculations were performed
in double precision arithmetic on an IBM 360/370 computer.

A brief description of the program, written in ALGOLW, is
now given. The program basically sets up and solves the linear
algebraic system for the piecewise polynomial collocation method,
producing the approximate solution X and the residual rn for any
given p, g and y. This program represents a considerable fraction
of the work involved in this thesis and was developed over an
extended period. It consists of a sequence of procedures, or
subroutines, each of which can perform one well defined operation.
These are followed by the program proper which calls into action
the procedures required to solve a particular problem. An assortment
of short procedures generates various arrangements of points in
the interval El,ﬂ , another procedure translates these to any given
interval [}, kﬂ. These are the "collocation" points used in
generating the approximate solution. Much of the computation involving
the polynomial forms of the piecewise sections is performed in
terms of Chebychev series for reasons of numerical stability. Two
further procedures define the coefficients of the problem, p and
q in (4.1), and the boundary conditions.

The algebraic problem, corresponding to the approximation
arising from the collocation projection (§4.3), is expressed in
terms of a block matrix. Each of the blocks of this matrix relates
the point values of the second derivative of the approximation X
to the point values of the right hand side y. There are cross

conditions coupling these blocks which represent the continuity
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requirements of X and x;. These extra equations could be
eliminated by constructing basis polynomi als for x which
n

automatically satisfy the continuity requirements.

Block matrix structure:

The values in regions A represent the collocation conditions within
each sub interval. The values in regions B represent the boundary
conditions x (#1) = O. The values in regions C represent the cross
conditions required to ensure continuity of X and x;. Since there

are an equal number of collocation points within each sub interval
each block A is the same size. Regions. B and C have similar structures
each expressing the values of X and x; at the end points of the

sub intervals in terms of the values of X at the collocation points.
The vector corresponding to the right hand side y has zeros at the

ends and zeros in between each sub interval to account for the
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boundary and continuity

NP entries (L=(P+2)-N).

conditions. The vector'Bf x: values has

The inverse point collocation matrix W which expresses x.”’
—— n

in terms of y is a full matrix.

W matrix structure :

77 |
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\ J e )

X,

X2

The maximum modulus row sums are computed for the rectangular sub-

matrix (shaded) for the sub intervals contained within a weighted

interval [?i-l Si)’ The block matrix equation is represented in
14

terms of a three dimensional array, one dimension each for the
partitions, collocation points and coefficients of x . Much of

setting up of these equations is achieved by generating simpler

the

three dimensional arrays representing the coefficients and boundary

conditions then performing a three dimensional matrix multiplication

with another, fairly simple, array representing, in effect, the

differential operators dr/kdt)r. The resulting block matrix is
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then passed to a forward elimination procedure. This procedure was
carefully written to take full advantage of the block structure of
the matrix. A back substitution procedure then finally yields the
approximate solution for any given right hand side vy. Repeated
calls of this procedure are used to generate the inverse of the
original block diagonal matrix.

A small procedure at the end computes the residual, and "error"

by comparison with a high order approximate solution.

§5.2 The behaviour of IIW]L

The point inverse matrix W exhibits some remarkable properties.
For any given (soluble) problem the matrix norm is largely
unaffected by the particular form of the piecewise polynomial
collocation scheme, provided this scheme satisfies the requirements
of Theorem 4.8. Four second order problems are examined in detail
to illustrate this behaviour. A comparison of unweighted infinity
norms is made using equispaced polynomial sections in [}l,q.
Chebychev points are usually used as the collocation points in each
sub interval. Further results show the behaviour for one problem
using other partitions and other sets of collocation points, in
particular the breakdown of the conclusion of Theorem 4.8 when

certain of its conditions are not satisfied.

Problem 1
" /
X + xXx + X =Y
x (-1) = x(1) = 0
Problem 2
" 2
X + 2 (1+t )x =y
x (-1) = x(1) = O
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Problem 3

Problem 4

N represents the number

X

the approximation.

P represents the number

=Y
x (-1) = x(1) = ©
+ 2 xl 2%
- =y
t+3 (t+3)2
x (1) =x(1) = 0

of piecewise polynomial sections used for

of collocation points in each section.

In tables 1 - 4 we use Chevbchev collocation points

Problem 1 : lell values
TABLE 1

> 5 10 15 20 25
1 2.000 2.818 2.923 2.958 2.975 2.985
2 2.688 2.963 2.995 3.006 3.011 3.014
5 2.975 3.016 3.021 3.023 3.023
10 3.013 3.023 3.025
15 3.020 3.023
25 3.024

86



Problem 2 : liw]] values

TABLE 2

1 5 10 15 20 25

1 singular 11.814 12.950 13.249 13.354 13.407
2 4.000 12.329 13.208 13.368 13.427 13.452
5 13.436 13.500 13.500 13.500 13.500
10 13.468 13.500 13.500
15 13.500 13.500

25 13.500

These relatively large values for ||W|| occur because problem 2

is nearly singular : the equation

A x" + (l+tz)x

L]
<

x (-1) = x(1)

n
(@)

has an eigen value near A= 0.46.

Problem 3 : l]wll values

TABLE 3

1 5 10 15 20 25

1 0.500 1.113 1.306 1.382 1.419 1.444
2 0.857 1.308 1.428 1.459 1.480 1.491
5 1.035 1.483 1.520 1.525 1.530

10 1.184 1.512 1.536

15 1.296 1.518

25 1.389
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Problem 4 : IIW]I values

TABLE 4

1 5 10 15 20 25

1 0.900 1.694 1.919 2.008 2.056 2.085
2 1.607 2.037 2.180 2.150 2.166 2.175
5 2.057 2.181 2.198 2.203 2.206
lQ 2.173 2.206 2.210
15 2.196 2.211

25 2.208

As further illustration consider Problem 1 using Legendre zeros

as the collocation points in each of the equispaced sub intervals.

TABLE 5

1 5 10 15 20 25

1 2.000 2.818 2.923 2.958 2.975 2.985

2 2.474 2.934 2.982 2.997 3.004 3.009

5 2.924 3.007 3.016 3.020

10 3.000 3.021 3.023

15 3.014 3.024

25 3.021

Also consider Problem 1 using Chebychev zeros for both the

collocation points and defining the location of the sub intervals.
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TABLE 6

1 2.000 3.004 3.022 3.024 3.025 3.025
2 2.688 3.016 3.024 3.025 3.025 3.026
5 2.975 3.024 3.026 3.026 3.026

10 3.013 3.025 3.026

15 3.020 3.026

25 3.024

As a further illustration consider again Problem 1 with
equispaced sub intervals and with equispaced collocation points
within each sub interval (end points not included). For greater
than a few points in each sub interval this approximation scheme
does not satisfy condition (i) in (4.13) and the conclusion of

Theorem 4.8 does not apply.

TABLE 7

1 5 10 15 20 25

1 2.000 2.818 2.923 2.958 2.975 2.985
2 2.336 2.916 2.973 2.991 3.000 3.006
5 2.789 2.984 3.006 3.012 3.016

10 3.130 6.100 5.177

15 21.06 173.3

25 562.6

Now consider the case P=2 with &) = -0.8, £ =-0.7 for N=1 to 30.
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TABLE 8

1 5 10 15 20 25 30

71.06 34.08 32.64 32.21 32.00 31.88 31.79

Also consider P=3 with £] = -0.1, &3 = 0.0, &3 = 0.1

TABLE 9

1 5 10 15 20 25 30

27.29 118.28 126.78 129.35 130.58 131.30 131.77

Although convergence to 3.026 is not observed in the last two
examples, ||W(l does appear to be approaching some limiting
value. No further studies of this phenomenon have been made.

It is possible that the conclusion of Theorem 4.8 does
hold for slightly weaker conditions than those given but these
have not been determined. Theorem 4.8 is applicable to many of
the commonly used approximation schemes.

In order to study the behaviour of a "stiff" problem and
the later application of the weighted norm we now introduce a

parameter o into Problem 1 as follows.

Problem 1A

L] !
X + ax + ox =y

I
O

x (-1) = x(1)

We study the behaviour of the matrix W for an approximation
consisting of 5 equispaced sub interval§ in EJJIJ and a variable
number P of Chebychev collocation points within each sub interval.
The maximum modulus row sums are shown separately for each sub

interval.

90



TABLE 10

[F1.-.6 ] 29.440 67.873 60.342 64.468 65.268
[--6,-.2] 12.371 1.717 2.800 3.007 3.052
[--2, -2] 4.267 1.529  2.217  2.379  2.410
[-2, o0.q] 2.026  1.362  2.089  2.253  2.285

[0.6 1.0]  1.250 1.262  1.978  2.141  2.173

TABLE 11
a = 100

P 1 2 5 10 15

[F1,-.6 ] 2.602 1.851 250.552 512.407 575.036
[6,-.2] 2.851  1.172 14.827 6.273  2.016
2, .2] 3.163 0.713  1.769  2.029  2.000
[2, .6 ] 3.483 o0.515 1.576  2.020  1.988

[6,1 ] 3.852 0.573  1.563  2.015  1.981

Note that as o increases the maximum modulus row sums take longer
to settle down to a steady value. Also there is a marked tendency
for the largest values to occur at one end - this is in contrast
to the near eigenvalue Problem 2 where the value of 13.5 is main-

tained over the whole range.

In order to make use of the weighted norm to reduce the effect
of such large modulus row sums on the applicability of the bounds
on (I-K)_l we are forced to place more collocation points in the
region of largest modulus row sums, accordingly we now consider

the following partition of Ei, l] ; Ts = (-1, -0.95, -0.90, -0.3, 0.3, 1).

91



10 TABLE 12

[-1, -.95]47.539 118.862 65.154 65.733 65.834
[--95, -.9]30.029 75.718  41.591 41.693 42.028
[--9, -.3] 6.544 27.078 23.104 26.119 26.616

[-.3, .3] 5.019 1.605 2.104  2.335  2.379

[.3, l] 2.767 1.129 1.935 2.177 2.233
4 = 100 TABLE 13
P 1 2 5 10 15

[-1, -.95716.619 1969.922 567.940 621.682 632.284
[-.95, -.9] 6.698 23.857  6.189  6.209  6.316
[-.9, -.3] 0.300 o0.401  1.320  2.219  1.937
[--3, .3] o©0.365 0.598  1.525  2.229  2.039

[-3, 1] 0.406 0.700 1.471 2.261 2.057

Note that once over the initial "hurdle" and the approximation is
becoming reasonably good the modulus row sums n~w appear to
approach their limiting values more quickly. For a = 1O this
partition is a bit severe and is beginning to fill up parts of W
in an undesirable fashion. For o = 100, however, this partition
is still not fine enough so that finally we study the behaviour

of W using the following partitions :

(-1, -0.9, -0.8, -0.6, O, 1)

a = 10 : T§

(-1, -0.99, -0.96, -0.9, O, 1)

100: Ts

(=4
1]

(See §5.4 for further discussion of these choices).
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« = 10 TABLE 14

P 1 2 5 10 15

[-1, -.9 ] 43.046  72.133 64.474 65.551  65.753
[--9, --8] 16.190 28.942 26.419 26.868  26.953
[--8, -.6] 4.809 10.536 11.018 11.410 11.485
[-.6,0] o0.865 1.890  2.631  2.967  3.034

[ o. 1] 0.524 1.066 1.900  2.239  2.317

o = 100 TABLE 15

P 1 2 5 1y 15

[-1, -.99]110.359 1454.910 626.147 637.031 639.179
[--99, -.96]21.698 412.062 222.125 234.328 236.714
[-.96, -.9] 2.360 7.427 12.112 13.473 13.750
[--9. 9] 0.093  0.288 1.083 2.238  2.290

[o, 1 ] 0.133 0.410 1.379 2.242 2.238

There is not meant to be any implication that these choices of
partitions for these problems will necessarily give a more
accurate approximate solution. We only use such partitions in
order to demonstrate the better applicability, using the weighted
norm,of the bounds on (I—K)—l. Further research may show that
the modulus row sums of the inverse point matrix W provide an

aid to the selection of an optimum partition, in temms of the

accuracy of the approximate solution (see results in §5.6).
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§5.3 Problem constants (see §4.7)

TABLE 16
L=l Il Io22|| [[03%3]| [[o]] [ID%3[] | |oéké]|
11 1 2 3 5 8 13
2 1 4 12 40 136 560 2224
301 2 2 a 4 8 8
4 1.25 2.25 6.47  22.65  93.40  443.62 2384.43

Some cancellation has been used in obtaining bounds on lIKII, IIDKII
||D2K2|| but not for the higher order bounds. Further algebraic
manipulation would give smaller values. Note the relatively slow
rate of increase of the bounds for problems 1 and 3 with increasing
order - this is because p and q are simply constants (with zero
derivatives). We also have the following numerical bounds on G and
DG

llel| < 0.5 ; |Ipe|| < 1.0
Note that since we shall work with the spaces X2 and X; (which has
a weighted norm) as described in §4.10 we have the following bounds
on G and DG in [XJ

lle|] < .s5625 : [|pG|| < 1.5

The various bounds on DrKr must also be computed in [xﬂ . This is

done in a similar manner to the procedure described in §4.7. For

problem 1A we have:

TABLE 17
[l |lox]| [1p2x?|| [[p33{]| |[p*k*[[ [[p%>[| ||p®k®]]
1.75a|  2.5]a] 4.25|a|? 8.63|a|3 16.07|a|* 31.16|a|® 59.27|a|®

All of these constants for problems 1, 1A, 2, 3, 4 were computed by

a program based on the procedure described in §4.7. Since constants
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of all orders up to 6 were required the program Luilt up a table
of these constants in an iterative fashion rather than computing
each constant recursively which would have duplicated much of the
work involved. There is great scope for improving these bounds
using algebraic manipulation and numerical maximisation procedures.
Better bounds could be developed for the weighted norm.
The advantage of the bounds in §4.10 is that they are independent
of the partition and weights, provided that these satisfy the

conditions outlined in that section.

§5.4 Applicability

We are now in a position to compare the applicability of the
bounds in Theorems 4.9 and 4.10 on the inverse operator (I-l()-1
For applicability we must have A < 1. The number of equispaced
sub intervals required using Chebychev collocation points is now

compared for problems 2, 1A for the "projection" and the "extended"

approximation.

Problem 2 : Applicability (Projection)

TABLE 18

o d 1 2 3 4 5 6
1 58% - - - - -
2 8o* 10 - - - -
5 104* 6 4 4 4 -
10 94* 5 3 2 2 2
15 87* 4 2 2 2 2
25 75% 3% 2% 1 1 1

NB *estimate based on constancy of ||w||
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Problem 2 : Applicability (Extended)

TABLE 19

P d 1 2 3 4 5 6
1 58* - - - - -

2 57* 8 - - - -

5 50* 5 3 3 3 -
10 40* 3 2 2 2 2
15 33* 2 2 1 1 1
25 25* 2% 1 1 1 1

Note the slightly better applicability of the "extended" method
here. This is because of the bound on [lxl( being as small as
1.0. For most practical applications we would expect [IKI{ >> 1

and then the projection method would be superior.

Problem 1A : o = 10, Applicability (Projection) Estimate

TABLE 20

o 1 2 3 4 5 6
1 6610 - - - . .

2 9340 257 - - - -

5 12431 170 52 35 32 -
10 11584 118 32 20 15 14
15 10525 93 24 14 11 10
25 9079 68 17 10 7 6
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Problem 1A : a = 10, Applicability (Extended) Estimates

TABLE 21

P d 1 2 3 4 5 6
1 66100 - - - - -

2 66051 684 - - - -

5 59060 370 87 52 43 -

10 46518 236 51 27 20 17
15 38552 177 37 20 14 12
25 29881 122 25 13 9 8

It can now be seen that in order to produce strict bounds on
(I—K)—1 we could be required to find bounds on the inverse of
matrices far larger than that required to produce a "good"
approximate solution. For this reason it is important to keep
the bounds on the inverse approximate operator as small as
possible. It would be particularly useful to find an extension
from the subspace an to X which does not involve tne operator
K since the bound on ||K|l (10) and the large row sums 2I 4 are
the main cause of the poor applicability in problem 1A. Note
that it is particularly important to make use of higher derivative
bounds when these are available.

The effect of the large modulus row sums in problem 1A

(¢ >> 1) can be reduced by using the weighted norm. We compare

the result of using an unweighted equispaced partition and the

non uniform partition P : (-1, -0.99, -0.96, -0.9, O, 1) for a = 100.
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TABLE 22

P min. we w, width W w,
-1, -0.99 .01 0.01 0.0l 6.392
-0.99, -0.96 .04 0.04 0.04 9.469
-0.96, -0.9 -1 0.1 0.06 1.375
-0.9, O 1 1 0.9 2.290
o, 1 1 1 1 2.238

The column min wo indicates the minimum value we may take for w
in accordance with condition (i). We use the W, indicated in

order not to make the bounds on DK, DZK?2 inPﬁ]excessive.

TABLE 23

Term Unweighted Weighted
|| (ox)1q]] 100 250
|| (02x2) 1, ] ] 20000 42500
[ Cx-p )% 12] | 4.28 26.75
II((I-pnp)Kz)lzlj 6.90 91.59
| fwl] 575 9.47
| |x22] | 100 100
]|(1—pnpx)_;1|| 427801 7047
A 1.83'6 1.89'5
Ay 2.95'6 6.45'5

for a=10 with P : (-1, -.9, -.8, -.6, O, 1) and weights 0.1, O.1,
0.2, 1, 1 the reduction in A is not so apparent since the modulus

row sum value near -1 is not as pronounced, however we obtain

Term Unweighted Weighted
A 2082 1313
450
b4 335
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The reduction in the value of A by using a non-uniform partition
and a weighted norm in the first example is considerable. It is
difficult to demonstrate actual applicability in these cases
because K and ||W|| are so large and a very finely divided partition
would be required. We would have to compute the inverse of a very
large matrix and decide how to distribute the partition. Using
Ay for o=100 demonstrates that should we further subdivide the
partitions indicated the weighted norm would require inversion of
a matrix something less than a half the size originally required.

It would be useful to determine a procedure for making
best use of the partition and weights for improving the applicability.
The examples above are, perhaps, a little unfair in leaving the
partition so coarse away from -1.

In conclusion, it must be stated that although we can in
principle determine strict bounds on (I—K)_1 from Theorems 4.9,
4.10 these bounds will only be applicable with a reasonable amount
of work when K and W are not too large. We have achieved
applicability for problems 1-4 with PxN < 100 but not for oroblem 1A
(=10, 100). It is most important, if we are to apply this theory
to a useful range of problems, to determine better bounds on the

d . .
"approximation" error Il(I-Pnp)K || and on the inverse approximate

21 -
operators ||(I—PnpK) || or ||(I—K Pnp) ||.

1

§5.5 Bounds on (I-K)

21
We now examine the "bounds" on. (I-K) for problems 2 and

1A as given by the "projection" and "extended" approximations.
These "bounds" are really estimates since we have assumed A + O

as N + « in using Theorems 4.9 and 4.10.

99



1

Problem 2 : Bounds on (I-K) (Projection)

TABLE 24
a
P 1 2 3 4 5 6
1 14.5 - - - _ _
2 28 29 - - - -
5 60.8 61.8 62.8 63.8 64.8 -
10 84.7 85.7 86.7 87.7 88.7 89.7
15  101.4 102.4 103.4 104.4 105.4 106. 4
25  125.5 126.5 127.5 128.5 129.5 130.5
21
Problem 2 : Bounds on (I-K) (Extended)
TABLE 25
P d 1 2 3 4 5 6
1 15.5 - - - - -
2 21.1 22.1 - - - -
5 30.4 31.4 32.4 33.4 34.4 -
10 35.6 36.6 37.6 38.6 39.6 40.6
15 38.8 39.8 40.8 41.8 42.8 43.8
25 43 44 45 46 47 48
1
Problem 1A : a=10 Bounds on (I-K) (Projection)
TABLE 26
d 1 2 3 4 5 6
P
1 661 - - - - -
2 1321 13211 - - - -
5 2925 29251 292511 2.93'6¢  2.93'7 -
10 4093 40931 409311 4.09'6  4.09'7  4.09'8
15 4912 49121 491211 4.91'6 4.91'7 4.91'8
25 6086 60861 608611 6.09'6  6.09'7 6.09'8
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-1 .
Problem 1A : =10 Bounds on (I-K) Extended

TABLE 27

p d 1 2 3 4 5 6

1 6611 - - - - -

2 9341 93411 - - - -

5 13901 139011 1.39'6  1.39’7 1.39'8 -

10 16441 164411 1.64'6  1.64’7 1.64'8  1.64’9
15 18021 180211 1.80'6  1.80'7 1.80'8  1.80’9
25 20051 200511 2.00'6  2.01'7 2.01's  2.01’9
It is an unfortunate fact that the bounds on II(I—K)-1|| are largest

under precisely the conditions we need for best applicability.
Since we have not defined N in these tables we have assumed N + =
and A > 0 and the bounds given above are bounds on the numerator
in Theorem 4.9 and 4.10. To give a full description of the bounds
and estimates for each N, P, d and problem with projection and
extended methods would simply generate too much data.

Theorem 4.8 gives the following estimates for II(I-K)_III,

based on the convergence observed in tables 1 - 4.

TABLE 28
T
Problem || (z-x)" ||

1 3.03

2 13.50

3 1.5

4 2.2

_1 : :
Bounds on (I-K) using the weighted norm are obtained in a

similar manner but it must be remembered that in order to recover

21
unweighted error bounds we must multiply the bound on II(I-K)zl‘l
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by 1/w, in each corresponding i
v . po g interval [Si-l' Si)'

§5.6 Residual and Error

Finally we compare the residual and "error" in the second
derivative of the approximate solution xn (rn and en in the
terminology of §4.9). This "error" is obtained by comparison
with a high order (75) global polynomial collocation solution
using Chebychev zeros. For each problem we take the right hand
side y = 1. For each combination of N (the number of equispaced
intervals in [}1, JJ) and P (the number of Chebychev collocation
points within each interval) the upper represents a bound on e
the lower a bound on L The numbers given are the maximum of
the values obtained by comparisons at 100 equispaced points in

each interval and are not strict bounds.

Problem 1 : Exrror and residual

TABLE 29
o 1 5 10 15 20 25
0.168  1.46'-2 4.44'-3 2.09'-3 1.21'-3  7.91'-4
’ 0.164  1.47'-2 4.32'-3 2.02'-3 1.17'-3  7.59'-4
2.31'-4 2.46'-7 9.09'-9  1.23'-9
’ 2.26'-4 2.47'-7 9.09'-9  1.23'-9
9.97'-10
10
9.87 '-10
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Problem 2 : Error and residual

TABLE 30
N
P 1 5 10 15 20 25
9.56 1.39 0.382 0.172 9.67'-2 6.19'-2
2
2.26 0.726 0.214 9.80'-2 5.56'-2 3.58'-2
0.105 4.70'-4 1.66'-5 2.20'-6 5.29'-7 1.74'-7
5
0.121 4.63'-4 1.66'-5 2.19'-6 5.27'-7 1.74'-7
2.10'-4 4.82'-11
10
2.10'-4 4.47'-11
7.21'-9
15
7.18'-9

Problem 3 : Error and residual

TABLE 31
N 1 5 10 15 20 25
P

0.273 1.49'-2 4.29'-3 2.00'-3 1.15'-3 7.50'-4

2
0.332 1.60'-2 4.43'-3 2.04'-3 1.17'-3 7.58'-4
2.68'-4 5.99'-7 2.19'-8 3.04'-9 7.40'-10

5
2.75'-4 6.02'-7 2.20'-8 3.04'-9 7.41'-10
8.35'-9

10
8.36'-9

103



Problem 4 : Error and residual

TABLE 32
N
p 1 5 10 15 20 25

0.296 5.40'-2 1.77'-2 8.63'-3 5.10'-3 3.36'-3

2
0.401 5.02'-2 1.61'-2 7.84'-3 4.62'-3 3.04'-3
9.97'-3 2.67'-5 1.22'-6 1.83'-7 4.65'-8

5
9.89'-3 2.68'-5 1.21'-6 1.83'-7 4.64'-8
7.96'-6 2.89'-11

10
7.99'-6 2.88'-11
3.19'-9

15
3.22'-9

Smaller entries are omitted in order that the effect of
rounding errors does not become apparent. Note the close relation-
ship between e and r (see §4.9). As further evidence of this
property we consider problems 1 and 2 using Legendre zeros for the
collocation points in each interval and problem 4 with a modified
right hand side y= -1/(t+3).

The accuracy with which |len|| follows ||rn|| ¢or the Legendre
zeros is in accordance with the theory in $4.9. The correspondence

for Chebychev zeros is also quite good but not as striking.
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Problem 1L : Error and residual

TABLE 33
. N 1 5 10 15 20 25
; 0.217 1.99'-2  5.72'-3  2.67'-3  1.53'-3  9.93'-4
0.241 1.98'-2  5.72'-3  2.67'-3 1.53'-3  9.93'-4
4.52'-4  4.30'-7 1.58'-8
° 4.47'-4  4.31'-7 1.58'-8
1.48'-9
10
1.46'-9

Problem 2L : Error and residual

TABLE 34
N
p 1 5 10 15 20 25
7.57 1.08 0.288 0.129 6.42'-2  4.11'-2
2
7.65 1.08 0.288 0.129 6.42'-2  4.11'-2
0.278 8.15'-4 2.90'-5 1.91'-6 4.58'-7 1.51'-7
5
0.278 8.15'-4 2.90'-5 1.91'-6 4.58'-7 1.51'-7
3.10'-4 6.57'-11
10
3.10'-4 6.61'-11
1.09'-8
15
1.09'-8
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Problem 4 : y = -1/(t+3) Error and residual

TABLE 35
N
5 1 5 10 15 20 25

0.145 2.57'-2  8.37'-3  4.09'-3  2.41'-3 1.59'-3

2
0.193 2.39'-2 7.63'-3  3.71'-3  2.18'-3  1.44'-3
4.65'-3 1.24'-5 5.66'-7 8.50'-8 2.16'-8

5
4.61'-3  1.24'-5 5.63'-7 8.47'-8 2.15'-8
3.66'-6  1.33'-11

10
3.70'-6  1.33'-11
1.48'-9

15
1.49'-9

In order to demonstrate how useful the matrix W might be in studying
stiff problems we turn now to problem 1A with a=10, first we
consider an equispaced partition E and Chebychev zero as for

problems 1 - 4.

Problem 1A : a=10 Error and residual

TABLE 36
N
1 5 10 15 20 25
P
6l.4 30.0 8.49 4.58 2.93 2.03
2
3.67 25.9 7.04 3.65 2.26 1.54
22.9 0.134 8.75'-3 1.43'-3 3.89'-4 1.39'-4
> 7.6 0.131 8.46 '-3 1.41'-3 3.83'-4 1.36 '-4
0.124 2.15'-6 4.70'-9
10
0.126 2.11'-6 4.64 '-9
3.011-4
15
3.01'~4
4.43'-11
25
4.27'-11
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Now consider the partition P: (-1, -0.9, -0.8, —6.6 0, 1)

We

compare the solution error, second derivative error, residual using

Chebychev, Legendre collocation points.

Problem 1A : a=10 Errors and residual

TABLE 37

P 2 5 10 15 Partition Points
Error 0.328 2.97'-4 1.43'-9 7.10'-14 Equispaced Chebychev
in 2.86'-2 7.19'-5 2.44'-9 7.21'-14 P Chebychev

X 5.48'-3 2.50'-5 8.52'-10 7.35'-14 P Legendre
Error 30.0 0.134 2.15'-6 4.90'-12 Equispaced Chebychev
in 5.06 1.48'-2 1.67'-6 3.86'-11 P Chebychev

x; 2.44 1.40'-2 1.60'-6 3.02'-11 p Legendre
Residual 25.9 0.131 2.11'-6 3.11'-11 Equispaced Chebychev
2.36 1.44'-2 1.63'-6 3.56'-11 P Chebychev

2.56 1.22'-2 1.62'-6 3.05'-11 P Legendre

The errors have been

considerably reduced by using the non-uniform

partition and the error in the actual approximate solution reduced

still further by using Legendre zeros as the collocation points.

These results suggest that the most efficient way of solving stiff

problems by collocation would be to use Legendre zeros and a finely

spaced non-uniform partition.

These numerical investigations are by no means exhaustive

and further studies might point the way towards more theoretical

investigations.

It is hoped that at least they are sufficient to

illustrate the practical consequences of the theory in Chapters

2 - 4.
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CHAPTER 6

Conclusions
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§6.1 Theory

An operator approximation theory has been developed in
Chapter 2 which, using the concept of two spaces with different
norms, has enabled an improvement to be made in the applicability
of computable a-posteriori error bounds. Other work in this field
has used similar theory in the more conventional setting of a
single space X. We cannot allow these spaces to be different in
a topological sense but there is sufficient latitude in the choice
of metrics (norms) to permit us to take advantage of the form bf
certain operators especially for "stiff" problems which turn out
to be most difficult to subject to error analysis. With further
work it might be possible to produce bounds on the inverse operator
(I1-K) of a more suitable form. The major problem with the
bounds produced in this thesis is that for many practical problems
an inordinate amount of work is necessary to produce any strict
bound at all.

Approximations of the "projection” and "extended projection™
type are related in a general manner. This leads to a generalisation
which includes a very wide class of approximation methods.

Chapter 3 continues to study the particular form of the inverse
approximate operator for this generalised approximation and finally
relates this operator directly to a matrix inverse in the finite
dimensional case. So called “"rransfinite" methods are not
considered here but perhaps the theory could be developed in this

direction if desired. It is most difficult to develop satisfactory

bounds on the inverse approximate operator. The bounds developed

here might not be suitable for all applications and it is in this

area that perhaps the most profitable improvements could be made.
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This chapter concludes with a convergence theorem of
particular importance to the later discussion of error estimates.
It is also of interest in its own right since its conclusion is
both simple and highly significant : Ilwnll - l|(I-K)—1||. Some
of the conditions of this theorem raise certain problems, namely
in the selection of a Jn* to satisfy (ii), (iii) and (v). These
conditions might be better phrased or even eliminated in favour
of some more simple criteria. Perhaps the most important feature
of this chapter is that the theory is applicable to a wide range
of problems from initial value to partial differential equations

and for approximations including collocation, quadrature methods,

finite elements, etc.

§6.2 Application

Some simple boundary value problems in ordinary differential
equations are used to illustrate an application of the theory. A
piecewise polynomial approximation is used and a collocation
projection generates the approximate equation. The conditions
required by the theory in chapters 2 and 3 are expressed in simple
algebraic terms which helps to throw some light on the effectiveness
of different approximations. A slight modification is required in
order to apply Theorem 3.7, again concerning the conditions relating
to Jn*. Computable bounds are derived on II(I-K)_III which can be
used to bound the error in terms of the residual. In particular
the advantage of using Legendre zeros for the piecewise polynomial

collocation method is demonstrated. It would be most useful to

determine criteria which govern the close relationship between the

second derivative error and the residual. If this could be

i t
expressed in the general setting of the previous chapters we migh
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then have a widely applicable and highly effective error estimate.
The conditions relating to the use of a "weighted" norm are
described in simple terms and various quantities are computed which
enable a straightforward use of the previous procedures. The
weighted norm allows use to be made of the location of the partition
points of the piecewise approximation in order to reduce the effect
of large modulus row sums in the matrix W. These large rows in W
can occur near + 1 due to the "stiff" behaviour of (I-l()-1 for large
K. The improvement in applicability is considerable but this ;s at
the expense of poorer error bounds for the second derivative of
the approximate solution in the vicinity of + 1. Error bounds for
the approximate solution itself are not so much affected.

Chapter 5 completes the discussion of this application with
a selection of problems and a summary of the numerical properties
of various piecewise polynomial approximations. A study of the
relative effectiveness of these different schemes in terms of
applicability of Theorems 4.9 and 4.10, the bounds given by them
and the relation between the residual and second derivative error
is given. The conclusions are that practical bounds on (I—-l()_1
may be computed provided that K is not too large and provided that
the problem is not too near singular.

Considerable improvements could be made in the numerical
estimates of certain gquantities such as ||DrKr|| and it would be

possible to arrange for the automatic selection of cartition and

weights with the objective of minimising A. The most important

conclusion of the examination of residuals and errors for these

problems is that a very good estimate for ||en|| is given by ||rn||,

in fact we have ||en - rn|| << ||rn|] for n sufficiently large by

i i i rval.
using Legendre zeros as the collocation points in each sub inte
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Appendix 1

Interpolation Constants
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The interpolation error bounds in Table 38.are those derived

from Jacksons theorem (see (4.40) ) with n=1. Entries in column

d give bounds on the infinity norm of the interpolation error of a

. . (a)
fun po
ction £ with Ilf || < 1. Bounds on IIPlpll for interpolation

at Chebychev zeros are given by Powell 37 . These numbers are

all easily computed and are included for comparison with the
interpolation error bounds given by Peano's Theorem (Davis 13

’

p.70) :

Let L(p) = O for all p ¢ Pn' Then, for all £ ¢ C9*! [A, b]
for d <n

f(d+l)

L(f) = (t) K (t) 4dt

o

1 4
where K(t) = 37 Ly (x—t)+

In our notation we have P consequently

(q) = O for all q ¢ Pp-l

1p
we take f € Cd [;l, 1] with 4 < p. The values in the tables were
computed using exactintegration formulae and approximate maximisation

and thus are not strict bounds but these could pe determir-=3d wit.

more effort. Each entry is computed from the expression

1
1 d-1
max J I ‘(T—_l)—: PlP (x—t)+ dt

X€ [—l,l:]—1 I

where P

1 is applied to (x—t)i_l considered as a function c¢f x.
P
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TABLE 38

JACKSON CONSTANTS

g

3 4 5

1 3.140 - - - -

2 1.900 2.9800 - - -

3 1.400 1.1000 1.720000 - -

4 1.120 0.5860 0.460000| 0.722000 -
5 0.939 0.3690 0.193000| 0.152000| 0.238000
6 0.813 0.2550 0.100000| 0.052500| 0.041200
7 0.719 0.1880 0.059100} 0.023200| 0.012200
8 0.645 0.1450 0.037900| 0.011900] 0.004680
9 0.587 0.1150 0.025900| 0.006770| 0.002130
10 0.539 0.0940 0.018500( 0.004140( 0.001080
11 0.498 0.0783 0.013700| 0.002680| 0.000602
12 0.464 0.0663 0.010400| 0.001820| 0.000357
13 0.434 0.0569 0.008120( 0.001280| 0.000223
14 0.409 0.0494 0.006460| 0.000923| 0.000145
15 0.386 0.0433 0.005230( 0.000685| 9.78'-05
16 0.366 0.0383 0.004300{ 0.000520| 6.80'-05
17 0.348 0.0342 0.003580( 0.000401| 4.85'-05
18 0.332 0.0307 0.003010] 0.000315| 3.54'-05
19 0.317 0.0277 0.002560| 0.000251| 2.63'-05
20 0.304 0.0251 0.002190| 0.000203| 1.99'-05
21 0.292 0.0229 0.001890| 0.000165| 1.53'-05
22 0.281 0.0210 0.001650{ 0.000136; 1.19'-05
23 0.270 0.0193 0.001440| 0.000113| 9.38'-06
24 0.261 0.0178 0.001270| 9.52'-05{ 7.47'-06
25 0.252 0.0165 0.001130| 8.04'-05| 6.02'-06
26 0.244 0.0153 0.001000| 6.85'-05| 4.89'-06
27 0.236 0.0143 0.000897| 5.87'-05| 4.01'-06
28 0.229 0.0133 0.000805| 5.06'-05| 3.31'-06
29 0.222 0.0125 0.000726{ 4.39'-05| 2.76'-06
30 0.216 0.0117 0.000657| 3.82'-05| 2.31'-06
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TABLE 39

CHEBYCHEV ZEROS (INTEGRAL |uU})

P 1 2 3 4 5 6 7 8 9 10

1 1.000 - - - - - - - - -

2 0.707 0.25000 - - - - - - - -

3 0.547 0.11300 | 0.083300 - - - - - - -

4 0.495 0.07320 | 0.031900 | 0.031300 - - - - - -

5 0.425 0.04900 | 0.015600 | 0.009800] 0.012500 - - - - -

6 0.391 0.03790 | 0.009700 | 0.004470| 0.003520( 0.005210 - - - -

7 0.351 0.02900 | 0.006280 | 0.,002370| 0.001390; 0.001300{ 0.002230 - - -

8 0.327 0.02400 | 0.004540 | 0.001450| 0.000691 ' 0.000482| 0.000517| 0.000977 - -

9 0.301 0.01950 | 0.003290 [ 0.000923| 0.000375! 0.000215| ©0.000174 | 0.000208 0.000434 -

10 0.283 0.01680 | 0.002560 | 0,000640| 0.000228 | 0.000111| 7.35'-05| 6.63'-05| 8.71'-05 | 0.000195
11 0.264 0.01420 | 0.001980 | 0.000448 | 0.000143 | 6.16'~05| 3.49'-05| 2.60'-05 | 2.58'-05| 3.69'-05
12 0.251 0.01250 | 0.001610 | 0.000332| 9.60'-05| 3.17'-05| 1.85'-05| 1.18'-05| 9.66'-06 | 1.04'-05S
13 0.237 0.01090 | 0.001300 | 0.000242| 6.55'-05| 2.31'-05| 1.04'-05} 5.84'-06 | 4.12'-06 | 3.67'-06
14 0.226 0.00973 | 0.001080 | 0.000192 | 4.70'-05] 1.52'-05| 6.21'~-06 | 3.15'-06 | 1.96'-06 | 1.51'-06
15 0.214 0.00862 | ©0.000900| 0.000149 | 3.39'-05} 1.02'-05{ 3.82'-06{ 1.77'-06 | 9.94'-07 | 6.77'-07
16 0.206 0.00782 | 0.000770 | 0.000120] 2.55'-05| 7.12'-06 ] 2.48'-06 | 1.06'-06 [ 5.43'-07 | 3.33'-07
17 0.197 0.00704 | ©0.000655| 9,56'~05| 1.92'-05| 5.02'-06 | 1.64'-06 | 6.47'-07 | 3.07'-07 | 1.72'-07
18 0.189 0.00644 | ©.000569 | 7.87'-05| 1.49'-05{ 3.68'-06 | 1.12'-06 | 4.15'-07 | 1.83'-07 | 9.47'-08
19 0.182 0.00586 | 0.000492 | 6.45'-05| 1.16'-05| 2.70'~06 | 7.77'-~07 | 2.70'-07 | 1.11'~-07 { 5.37'-08
20 0.176 0.00541 | 0.000434] 5.41'-05| 9.25'-06| 2.04'-06 | 5.56'-07 [ 1.82'-07 | 7.06'~08 | 3.19'-08
21 0.169 0.00495 | 0.000379| 4.51'-05| 7.34'-06 | 1.54'-06 | 3.99'-07 | 1.24'-07 | 4.53'-08 | 1.93'-QG8
22 0.164 0.00462 | 0.000339| 3.86'-05| 6.00'-06 | 1.20'-06 | 2.96'-07 | 8.74'-08 | 3.03'-08 | 1.22'-08
23 0.158 0.00427 | 0.000301| 3.27'-051 4.87'-06 | 9.34'-07} 2.20'-07 | 6.18'-08 | 2.04'-08 | 7.77'-09
24 0.154 0.00399 | 0.000271 | 2.83'-05| 4.04'-06 | 7.42'-07 | 1.67'-07 | 4.49'-08 | 1.41'-08 | 5.12'-09
25 0.149 0.00371 | 0.000242 | 2.43'-05| 3.34'-06 | 5.88'-07 | 1.27'-07 | 3.26'-08 { 9.82'-09 | 3.40'-09
26 0.145 0.00349 | 0.000220| 2.13'-25! 2. 81'—0g | 4.76'-07 | 9.88'-08 | 2.44'-08 | 7.03'-09 | 2.33'-09
27 0.141 0.00327 | 0.000198 ) 1.85'-05}| 2.36'-06 | 3.84'-07 | 7.67'-08 1.82'-08 | 5.04'-09 | 1.60'-09
28 0.137 0.00308 | 0.000181| 1.63'-05| 2.01'-06 | 3.16'-07 | 6.08'-08 | 1.39'-08 | 3.70'-09| 1.13'-09
29 0.133 0.00288 | 0.000164 | 1.42'-05| 1.69'-06 | 2.58'~07 | 4.78'-08 | 1.05'-08 | 2.70'-09 | 7.94'-10
30 0.131 0.00274 | 0.000151| 1.27'-05| 1.47'~06 | 2.16'-07 | 3.87'-08 | 8.24'-09 | 2.04'-09 | 5.78'-10




911

LEGENDRE ZEROS (INTEGRAL |ul)

TABLE 40

4 2 3 4 5 6 7 8 9 10
1 1.000 - - - - - - - - -
2 0.845 0.3330 - - - - - - - -
3 0.742 0.1570 0.13300 - - - - - - -
4 0.668 0.0991 0.04930| 0.057100 - - - - - -
5 0.612 0.0707 0.02580] 0.017800} 0.025400 - - - - -
6 0.568 0.0540 0.01580| 0.008010| 0.006930| 0.011500 - - - -
7 0.532 0.0430 0.01060| 0.004330| 0.002790| 0.002840| 0.005330 - - -
8 0.502 0.0354 0.00757| 0.002600| 0.001360| 0.001040| 0.001200| 0.002490 - -
9 0.476 0.0298 0.00564| 0.001690| 0.000749| 0.000465| 0.000405{ 0.000521| 0.001170 -
10 0.454 0.0256 0.00434| 0.001150| 0.000447| 0.000237| 0.000169] 0.000164( 0.000230| 0.000554
11 0.435 0.0223 0.00343| 0.000817| 0.000283| 0.000132( 8.04'-05| 6.40'-05| 6.79'-05| 0.000103
12 0.418 0.0196 0.00277| 0.000600}| 0.000188) 7.82'-05| 4.20'-05| 2.87'-05| 2.50'-05{ 2.88'-05
13 0.403 0.0175 0.00227) 0.000452| 0.000129| 4.88'-05| 2.35'-05| 1.42'-05| 1.06'-05] 1.01'-05
14 0.389 0.0157 0.00189| 0.000348| 2.19'-05| 3.18'-05| 1.39'-05| 7.52'-06| 5.00'-06| 4.07'-06
15 0.377 0.0142 0.00160| 0.000274| 6.70'-05| 2.14'-05] 8.58'-06| 4.23'-06| 2.53'-06| 1.83'-06
16 0.366 0.0129 0.00136| 0.000218] 4.99'-05| 1.48'-05} 5.50'-06| 2.50'-06| 1.36'-06| 8.86"'-07
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