
USING A LOADTIME METAOBJECT PROTOCOL TO

ENFORCE ACCESS CONTROL POLICIES UPON

USER-LEVEL COMPILED CODE

,\ DISSERTAIION

SUBMITTED TO THE SCHOOL OF C();-"ll'lTI~G

OF THE UNIVERSITY OF NEWCASTLE-UPON- TYNE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ian S. Welch

September 2004

NEWC~STL[UNIVCRSITY LICRARY

204 OGJ32 0

© Copyright by Ian S. Welch 200-+

All Rights Reserved

11

Dedication

To my partner Jim and,

my family especially my parents Stan and Claire.

III

Acknowledgements

I would like to express my sincere gratitude to "everal people \\ho ha\e contributed in

various ways to the completion of this thesis.

The advice and patience of my supervisor, Dr. Robert Stroud, \\ <1" crucial in the comple­

tion of this work. Also, many thank.., to the Defence and Research Agency and particularly

Dr. Peter Y. Ryan for providing the financial support, advice and encouragement needed to

fini..,h my work.

While at Newcastle, the advice and help given to me by a large number of people, in

particular Dr. G. Morgan, Mr J. Warne, Dr. A.S. McGough, Dr. B. ArieL Dr. A. Ro­

manovsky, and Dr. C. Gaciek kept me going. Since leaving Newca..,tle and coming to \\ork

at Victoria University, I have been greatly helped by the contributions of my colleagues.

Participation in the Circle of Guilt has been a great help in completing but abo staying

sane. Special thanks also to Margi Key" for helping proofread the final thesi" and keeping

me on the straight and narrow with the use of my hyphens!

Finally, I would not have started or completed this thesis if it hadn't been for the en­

couragement and support of my partner, Jim Whitman.

\\

Contents

Dedication

Acknowledgements

1 Introduction

1.1 The Thesis.

1.2 Motivation.

1.2.1 New Problem Domains .

1.2.2 Man-machine Scale.

1.2.3 Criteria for Evaluation

1.2.-+ Operating System Enforcement

1.2.5 Conventional Object-Oriented Techniques .

1.2.6 In-lined Reference Monitors

1.2.7 Metaobject Protocols

1.2.8 Loadtime Metaobject Protocols

1.3 Contributions

1.3.1 Design and Implementation of a Secure Loadtime Metaobject Pro-

iii

i,

3

-l

5

8

9

10

10

12

13

14

15

tocol IS

1.3.2 Demonstration of the Limitations of Conventional Object-Oriented

Techniques 18

1.3.3 Evaluation of Separation of Concerns 18

1.-+ Thesis 0\ enil'\\ 18

\

2 Related Work 20

2.1 Access Control Policies. 21
2.2 Criteria for Evaluation 2-l

2.2.1 Separation of Concerns . 2-l

2.2.2 Security Engineering Principles 26
2.3 Operating System Enforcement . 27

2.3.1 Evaluation 27

2.4 Conventional Object-oriented Security 29

2.4.1 Examples 30

2.4.2 Evaluation 35

2.5 In-lined Reference Monitors 38

2.5.1 Evaluation 39

2.6 Metaobject Protocols -l-l

2.6.1 Examples -l8

2.6.2 Evaluation 51

2.7 Goals of Thesis 5-l

3 Design and Implementation of Kava 57

3.1 Language Design of Kava. 58

3.1.1 Overview 59

3.1.2 Kava Metaobject Protocol 60

3.1.3 Context Parameters . 64

3.IA Binding 66

3.1.5 Meta Parameters 67

3.1.6 Meta-Level Cooperation 69

3.1.7 A Misbehaved Applet 70

3.2 Kava Implementation 71

3.2.1 Overview 72

3.2.2 Intercepting Class Loading . N

3.2.3 Adding Meta-Level Interceptions 75

3.2A Realising MUs 7R

\'\

3.2.5 Static Analysis

3.2.6 Instantiating Metaobjects .

3.2.7 Reification ..

3.2.8 Static Members

3.2.9 Implementing Complete Mediation

3.2.10 Performance

3.2.11 Example: Redefining Field Access.

79

80

80

X I

89

90

3.3 Evaluation against Goals 92

3.3.1 Enforcement upon Compiled Code. LJ2

3.3.2 Control Access to Application, Library and Operating S} -,tern Re-

sources

3.3.3 Clean Separation of Concerns

3.3.4 Least Privilege ...

3.3.5 Complete Mediation

3.3.6 Economy of Mechanism

3.4 Summary

4 Case Study One: Standalone Application

-+.1 Overview

~.2 Conventional Object-oriented Security

-+.2.1 Application Resources

~.2.2 System Resources

~.3 Loadtime MOP

~.3.1 Application Resources

-+.3.2 System Resources ..

~.~ Improvements to the Separation of Concerns.

~.5 Summary

5 Case Study Two: Distributed Application

5.1 Overview

5.2 Conventional Object-oriented Security

5.2.1 O\enie\\

\11

93

l)~

l)~

LJ5

96

96

97

97

100

104

I()~

106

110

112

113

113

115

115

5.3

5.2.2 Secure RMI ..

5.2.3 Security State .

5.2.4 Authorisation

Loadtime MOP

5.3.1 Overview

5.3.2 Secure RMI .

5.3.3 Security State .

5.3.4 Authorisation .

5.4 Improvements to the Separation of Concerns.

5.4.1 Place Enforcement within Libraries

5.4.2 Place Enforcement within Proxies .

5.4.3 Place Enforcement within a Superclass

5.5 Summary

6 Inferences from Case Studies

6.1 MOPs Provide Better Separation of Concerns than Conventional Object-

Oriented Techniques

6.2 Constraints to Consider when Using MOPs for Enforcement

116

116

118

121

121

123

12-l

125

126

126

127

129

129

131

131

132

6.2.1 Detailed Specifications may be Necessary 132

6.2.2 Expressiveness of Binding Influences Complexity of Use . 132

6.2.3 Granularity ofInterfaces Constrain Policies 133

6.2.4 Security Exceptions Break Transparency 134

6.2.5 Constraints upon Applying Kava to other Languages 134

6.3 Summary

7 Conclusions and Future Work

7.1 Summary of Thesis .

7.2 Overall Contributions

7.3 Future Work

7.3.1 Improve Static Analysis

7.3.2 Provide Least Privilege for Metaobjects

7.3.3 Improve Metaobject Composition

V III

135

136

136

140

143

1-l-l

l-l-l

I .. t~

7.4

7.3.4 Make Distribution First-Class . .

7.3.5 Improve Economy of Mechanism

7.3.6 Investigate and Improve Performance

7.3.7 Provide a Policy Language for Kava

Concluding Remarks

Bibliography

IX

1~5

146

1~6

1~7

148

149

List of Tables

2.1 Evaluation of operating system enforcement 2X

2.2 Evaluation of conventional object-oriented techniques. 36

2.3 Evaluation of IRM techniques -Hl

2.4 Classification of MOPs -+h
2.5 Evaluation of MOP techniques)2

2.6 Evaluation of security engineering techniques))

7.1 Summary of evaluation of security engineering techniques 138

7.2 Applying Kava to Problem Domains 1-+2

x

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

3.1

Layers of an IT system

Overview of Kava.

XACML authorisation.

Java security architecture

In-lined reference monitor architecture.

Metaobject and object .

Context hierarchy ...

3.2 High-level object collaboration diagram showing objects and their interac-

tions when a class is loaded into the Java VM

5.1 Class diagram for self-defence security architecture

5.2 Collaboration diagram showing steps involved in a viewer invoking a method

9

17

23

30

39

-+)

65

72

117

of a remote database 120

5.3 Collaboration diagram showing the steps involved in invoke a method of a

remote database under the reflective security architecture 122

7.1 Application model 140

XI

Listings

3.1 Kava metaobject protocol 59

3.2 IFieldContext interface. . 66

3.3 Example of overriding base-level behaviour 66

3.4 DTD for Kava binding specification 6~

3.5 Kavakava replacement for Java. . 7J

3.6 Kava's class loader. 76

3.7 Superclass containing MLI for method execution. 87

J.8 Subclass defining its own MetaObject to use for method executions. 87

3.9 A rewritten field access. 91

4.1 Defining a channel permission ()8

4.2 Grant access to join a specific channel <)<)

4.3 Explicit check for permission to create a channel 100

4.-1- Check for implication of permissions in class Write Permission. . 102

4.5 Java policy limiting Lirc's access to the network 102

4.6 Check for permission to write to the network. . 103

4.7 ChannelEnforcementMetaObject controlling access to IRC channels 105

4.8 Policy file for enforcing channel access control using Kava 107

4.9 Meta-level enforcement code tracking the creation of OutputStream in-

stances by sockets. 108

4.10 Meta-\eyel enforcement code checking whether Lirc has exceeded it'-> net-

work quota

4.11 Policy file for enforcing network quota using Kava

XII

109

I I 1

Abstract

This thesis evaluates the use of a loadtime metaobject protocol as a practical mechanism

for enforcing access control policies upon applications distributed as user-level compiled

code.

Enforcing access control policies upon user-level compiled code is necessary because

there are many situations where users are vulnerable to security breaches because they

download and run potentially untrustworthy applications provided in the form of user-level

compiled code. These applications might be distributed applications so access control for

both local and distributed resources is required. Examples of potentially untrustworthy ap­

plications are Browser plug-ins, software patches, new applications, or Internet computing

applications such as SETI@home. Even applications from trusted sources might be mali­

cious or simply contain bugs that can be exploited by attackers so access control policies

must be imposed to prevent the misuse of resources. Additionally, system administrators

might wish to enforce access control policies upon these applications to ensure that users

use them in accordance with local security requirements. Unfortunately, applications devel­

oped externally may not include the necessary enforcement code to allow the specification

of organisation-specific access control policies.

Operating system security mechanisms are too coarse-grained to enforce security poli­

cies on applications implemented as user-level code. Mechanisms that control access to

both user-level and operating system-level resources are required for access control poli­

cies but operating system mechanisms only focus on controlling access to system-level

objects.

Conventional object-oriented software engineering can be used to use existing security

architectures to enforce access control on user-level resources as well as system-resources.

Common techniques are to insert enforcement within libraries or applications, use inheri­

tance and proxies. However, these all provide a poor separation of concerns and cannot be

used with compiled code.

In-lined reference monitors provide a good separation of concerns and meet criteria for

good security engineering. They use object code rewriting to control access to both user­

level and system-level objects by in-lining reference monitor code into user-level compiled

code. However, their focus is upon replacing existing security architectures and current

implementations do not address distributed access control policies.

Another approach that does provide a good separation of concerns and allows reuse of

existing security architectures are metaobject protocols. These allow constrained changes

to be made to the semantics of code and therefore can be used to implement access con­

trol policies for both local and distributed resources. Loadtime metaobject protocols allow

metaobject protocols to be used with compiled code because they rewrite base level classes

and insert meta-level interceptions. However, these have not been demonstrated to meet

requirements for good security engineering such as complete mediation. Also current im­

plementations do not provide distributed access control.

This thesis implements a loadtime metaobject protocol for the Java programming lan­

guage. The design of the metaobject protocol specifically addresses separation of concerns,

least privilege, complete mediation and economy of mechanism. The implementation of

the metaobject protocol, called Kava, has been evaluated by implementing diverse security

policies in two case studies involving third-party standalone and distributed applications.

These case studies are used as the basis of inferences about general suitability of using

loadtime reflection for enforcing access control policies upon user-level compiled code.

Chapter 1

Introduction

"It is what I sometimes have called "the separation of concerns". which. ewn if

not perfectly possihle, is yet the only available technique for effectiw ordering

of onc's thoughts that I know of." (E. W. Dijkstra in "On the role of scientific

thought" [Dijkstra 1976])

System administrators are responsible for ensuring site-specific acces ... control policie ...

are adhered to by all llsers to ensure that local resources are not misu ... ed. Ideally the ac­

cess control policic ... should be enforced using the site's local security architecture [Butler,

Welch, Engert, Foster, Tuecke, Volmer & Kesselman 2000] and should follow thc "'CCLI­

rity engineering principles of least privilege, complete mediation and economy of mccha­

nism [Saltzer & Schroeder 1975]. Unfortunately, operating ... ystem security i ... insufficient to

implement these principles with respect to applications distributed a ... compiled code, ... uch

as email attachments. dynamic web content, and so forth. Conventional object-oriented

software engineering techniques cannot be used to modify the applications so the) are con­

strained by the local security architecture because they do not provide a clean separation of

concerns [Dijkstra 1982] or require access to source code. More recent approacheli. such as

in-lined reference monitors [Erlingsson & Schneider 2000. Evans & T\\yman 1999. Sirer,

Grimm. Gregory & Bershad 1999, Pandey & Hashii 1999, Hashii. \;lalabarba, Pandey &

Bishop 2000] do implement the principles and provide a clean separation of concern ... but

do not allow Lise of the local site \ security architecture and do not addre distributed

access control.

3

CHAPTER 1. INTRODUCTION

Metaobject protocols (MOPs) are object-oriented implementations of reflection [Maes

1987, Kiczales, des Rivieres & Bobrow 1991]and provide a mechanism wh ich can be used

to enforce access control for objects and distributed objects [Riechmann & Hauck 1997,

Riechmann & Hauck 1998, Oliva & Buzato 1999, Caromel & Vayssiere 2001. Caromel,

Huet & Vayssiere 2001, Caromel & Vayssiere 2003, Fabre, Nicomette, Perennou, Wu &

Stroud 1995, Killijian, Fabre, Ruiz-Garcia & Chiba 1998, Killijian & Fabre 2000, Benantar,

Blakley & Nadain 1996, Ancona, Cazzola & Fernandez 1999]. Furthermore, a loadtime

MOP allows enforcement of access control policies upon compiled code using techniques

that allow security engineering principles to be satisfied. However, existing loadtime MOPs

do not explicitly address the implementation of complete mediation, or have been evaluated

by using them to enforce access control policies upon remotely developed applications

using a local security architecture.

This thesis describes the design and implementation of a loadtime metaobject protocol

called Kava for Java designed to provide complete mediation and two case studies where

Kava is evaluated by comparing conventional enforcement with using Kava for enforce­

ment.

The remainder of this chapter is structured as follows. Section 1.1 introduces the thesis

of this dissertation. Section 1.2 provides the motivation for the thesis. Section 1.3 details

the contributions of this thesis. Finally, Section 1.4 provides an overview of the thesis itself.

1.1 The Thesis

The thesis of this work is that loadtime MOPs can implement a clean separation between

concerns for compiled code allowing reuse of existing security architectures and are able

to completely mediate all accesses to base-level objects. A clean separation allows the

modularisation of security concerns providing the benefits of reuse, reduced development

time and improved comprehensibility. While, complete mediation is required for assurance

that access control policies are correctly enforced.

The thesis presents a loadtime MOP called Kava and the results of two case studies

that contrast the use of Kava with conventional software engineering techniques. Although

there are now other implementations of loadtime MOPs [Chiba 2000, Caromel et al. 2001],

CHAPTER 1. INTRODUCTION

Kava was the first to be developed for security enforcement [Welch & Stroud 1999a], can

enforce access control policies upon resources implemented by application Java library

code, and the first to explicitly address how it meets the security engineering principles.

The design and implementation of Kava is discussed and an argument for complete

mediation by metaobjects bound at loadtime is presented. The first case study shows that

using Kava leads to a better separation of concerns compared to conventional techniques

such as relying upon system-level enforcement or manually inserting enforcement code into

application code. The second case study shows that this improvement is also found when

the use of Kava is compared with conventional techniques such as proxies and inheritance.

1.2 Motivation

This section provides the motivation for the thesis and presents an overview of the argu­

ments for using loadtime metaobject protocols for security enforcement. The discussion

found in the overview is amplified in Chapter 2 that discusses related work and develops a

set of goals for the thesis.

1.2.1 New Problem Domains

Security needs have evolved with the move away from the tightly controlled multi-user

timesharing systems of the 1960s and 70s to today's wide-area, open distributed sys­

tems [Colouris, Dollimore & Kindberg 2001]. Today there is widespread use of appli­

cations developed remotely that may not conform to local security requirements whereas,

in the past, there was tighter control over the development of applications because they

were either developed in-house or in conjunction with trusted suppliers. Unlike centrally

managed systems of the past, modern applications can be installed and executed by users

without requiring the involvement of system administrators. This has created a requirement

for tools that automatically enforce site-specific access control policies upon applications

installed by either system administrators or ordinary users. Some contexts where thi" prob­

lem arises include:

Email attachments Most email programs allow users to receive applications in the form

CHAPTER 1. INTRODUCTION 6

of compiled code contained within email attachments. These applications may be

buggy or have been developed by malicious individuals for the purpose of damaging

the user's system or stealing valuable details such as financial information. For ex­

ample, the W32/Bagle-F virus [Sophos Anti-Virus 2004] sends itself as a password

protected ZIP file. When executed it exploits the user's own privileges to harvest

email addresses from the hard disk andre-sends itself via its own SMTPengine. It

may also provide a backdoor for remote attackers who wish to access resources on

the infected machine. Although viruses are a continuing problem email attachments

remain an important and valued aspect of email functionality. An improved approach

is to enforce site-specific access control policies that prevented or curtail exploitation

of user privileges by an email attachment.

Dynamic web content Most browsers allow the viewing of dynamic web content in web

pages consisting of static content and executable compiled, for example ActiveX

controls or the popular Shockwave plug-in. Code distributed in this way may contain

viruses or Trojan programs that appear to the user as benign but are performing ma­

licious actions in the background. They usually execute with the same privileges as

the user so they can misuse any resource that a user has access to. Viruses delivered

in this way have been implemented in recent "Phishing" attacks in which attack­

ers attempt to steal the account name and password for a user's electronic banking

system [Anti-Phishing Working Group 2004]. These attacks succeed because rogue

programs have unrestricted access to the user's hard-drive and can search for these

details or collect them with dialog boxes that mimic those displayed in pages de­

livered to a browser by a bank's legitimate web server. Legitimate programs often

require few of the many many system privileges allowed them and a solution to the

general problem is the imposition of access control policies that curtail privileges

granted to any downloaded program.

Mobile code The two examples provided earlier can be seen as examples mobile code.

Mobile code is code produced on one host and executes on a different host. Mobile

code may be used to dynamically extend a thin client's functionality, [Yoshikawa,

Chun, Eastham, Vahdat, Anderson & Culler 1997] or it may be a convenient way to

CHAPTER 1. INTRODUCTION 7

distribute an application across a group of hosts. The motivation for its use include

better resource utilisation or improved performance [Chess, Harrison & Kershen­

baum 1995]. In all of these cases, it is desirable that site-specific policies are im­

posed upon the code and, because mobile code executes as user-level code. imposing

security enforcement at the operating system level is insufficient because code may

need to directly invoke other code at this level rather than services at the kernel level

of the system.

Standalone applications Organisations increasingly use third-party commercially-produced

or open-source applications rather than developing their own applications. These ap­

plications may be untrustworthy or buggy, requiring site-specific policies to be en­

forced upon them to restrict the damage that they can cause. For example, a chat

application with unrestricted functionality may be installed on users' PCs though se­

curity concerns required that access is limited to approved channels or chat servers.

In order to enforce a suitable security policy, the application may need modification

because it will not possess the necessary hooks for this to be accomplished externally

since it has has been designed for a large and indeterminate user-base.

Component-oriented programming In the same way that use is made of third-party ap­

plications, organisations may also make use of sub-applications or components that

are assembled together to build something larger [Szyperski 1998]. At runtime com­

ponents would be linked into application code and execute in the same address space.

Though programmers have access to specifications for the interface to these compo­

nents, as with mobile code, interaction between these, other components and the

application code cannot be mediated solely at the level of the operating system.

Computational grids Organisations may choose to share computational resources by al­

lowing users to upload compiled code to remote hosts for execution, for example

in a computational grid [Foster 2001]. A computational grid is made up of het­

erogeneous resources belonging to multiple administrative domains. Resources may

be applications, data or computational services. Although individual organisations

may be distrustful, they share resources in a limited way to achieve some mutual

purpose. This can mean sending an application to a data source and returning the

CHAPTER 1. INTRODUCTION

results to the application's originator. Obviously, the host where the application is

executed would prefer to constrain its interaction with system resources, other local

programs and with remote resources. This requires imposing site-specific policies

upon applications that may not contain the appropriate enforcement code.

The security problem shared by all of these cases is how to enforce site-specific ac­

cess control policies upon applications distributed as compiled code. To prevent misuse of

resources, access to resources implemented as user-level code as well as resources imple­

mented by kernel-level code must be controlled by access control policies. What constitutes

misuse might be defined relative to what is considered the minimum required privileges for

the application to perform as expected. Additionally, what constitutes misuse might also

be defined in terms of an organisation's norms.

Generally, there are two types of access control policy considered in this thesis. The

first are application-specific policies where the organisation imposes security policies gov­

erning access to resources provided by the application. The second are general policies

where the organisation imposes security policies upon the use of resources provided by the

organisation.

1.2.2 Man-machine Scale

Before discussing different approaches to enforcement of access control policies in these

domains it is essential to establish a layered model of the computer system. Enforcement

can be placed in any layer and the choice of layer governs the expressiveness of access

control policies. Much of the rationale for loadtime MOPs depends upon which layer in

the computer system that enforcement code is placed.

Gollmann calls this the man-machine scale because it is assumed that the upper layers

of the computer system are more closely tailored to an individuars needs whilst the lower

layers are general purpose and tied to the constraints of the hardware. Figure 1.1 shows a

layered model of an IT system due to Gollman [Gollmann 1999]. Users run applications

that make use of resources provided by other applications, services or libraries. The ser­

vices or libraries may be middleware or provide access to the resources implemented by the

underlying operating system. Applications and services both execute as user-level code, so

CHAPTER 1. INTRODUCTION 9

their access to each other may not be mediated by the operating system. Depending upon

the language runtime, the services mayor may not be modifiable or protected from the

application. The operating system executes as kernel-level code and is protected against

tampering by either applications or services.

Applications

User-level

Services and Libraries

Operating System Kernel-level

Figure 1.1: Layers of an IT system (based upon Figure 1.2 from Gollmann's book [Goll­
mann 1999])

1.2.3 Criteria for Evaluation

This thesis uses four main criteria for evaluating the effect of placing enforcement at dif­

ferent layers within the computer system. The first was was coined by Dijkstra [Dijkstra

1976] and the last three are Saltzer and Schroeder's famous principles for good security

engineering [Saltzer & Schroeder 1975]:

Separation of concerns To provide reduced development time, improved system flexibil­

ity and increased comprehensibility the best way to tackle implementation of com­

plex systems is to separate the system into separate concerns that can be addressed

in isolation to each other. With regard to security enforcement this means separating

enforcement code from application code to allow separate development, testing and

reuse.

Least privilege Least privilege limits the impact of failure. Every program and every user

of the system should operate using the least set of privileges necessary to complete

the job.

CHAPTER 1. INTRODUCTION \0

Complete mediation Complete mediation ensures that policies are enforced as intended.

Every access to every object subject to a security policy must be checked for author­

ity.

Economy of mechanism Economy of mechanism deals with the practical problem of en­

suring that enforcement mechanisms behave as intended. A recommendation is that

code should be as simple and small in scale as is reasonable.

1.2.4 Operating System Enforcement

One approach to imposing site-specific access control policies is to rely upon the architec­

ture of the operating system. Although operating systems separate mechanism from policy,

which allows policies [Wulf, Cohen, Corwin, Jones, Levin, Pierson & Pollack 1974] to

reflect user requirements, the approach suffers from three major drawbacks from the per­

spective of the application. The first is the principle of least privilege, the second is that

economy of mechanism is violated and the third belongs to the realm of complete media­

tion. The first two are described by Schneider and his colleagues [Schneider, Morrisett &

Harper 2000] and the third is related to problems associated with least privilege.

Least privilege is violated in the first instance because the privileges given to the appli­

cation are usually the same as the user and access controls enforced by the kernel are too

coarse grained. Complete mediation depends upon mediation by the kernel in all accesses

to protected resources and this is assured because of address space partitioning. However,

in many of the problem domains in Section 1.2.1, applications that may be untrustworthy

are loaded into the same address space as the user-level code implementing the resources

we wish to protect. Finally, economy of mechanism simply may no longer apply in many

operating systems because more and more functionality is included within their kernels.

This makes it difficult to ensure that they enforce security correctly.

1.2.5 Conventional Object-Oriented Techniques

Schneider argues [Schneider et al. 2000] in favour of language-level enforcement in order

to meet the challenges presented by these new problem domains. By placing enforcement at

CHAPTER 1. INTRODUCTION II

the language level, access control can be formulated in terms of the operations provided by

application or library objects rather than being restricted to the operations provided hy the

system-call interface. Object-oriented languages appear ideal for language-level enforce­

ment because they provide information hiding because an object's encapsulate state is only

accessible via the object's interface. Enforcement code can be placed at the interface by

inserting access control checks into the object's methods. These access control checks can

invoke components of the existing security architecture. This satisfies complete mediation

because information hiding requires that all accesses take place via the object's interface.

Least privilege is satisfied because access control policies can be specified in terms of the

operations provided by the objects, and this is varied upon a per-application basis.

Where resources are implemented by libraries, or libraries are used to implement com­

munication between applications (i.e. middleware), placing fixed enforcement code within

libraries might seem attractive. However, this approach suffers from similar problems as

those faced by enforcement at the level of the operating system. The end-to-end argu­

ment [Saltzer, Reed & Clark 1984] implies that libraries are designed to service a range

of applications otherwise the functionality would be included at the application level. This

means that libraries have coarse grained interfaces in order to satisfy a range of applications

acting as clients to the library. This leads to the problem of least privilege. Implementing

distributed access control may be easier to implement because all remote method invo­

cations follow a generic pattern. However, as discussed by Blair and colleagues [Blair,

Coulson, Andersen, Blair, Clarke, Costa, Duran-Limon, Fitzpatrick, Johnston, Moreira,

Parlavantzas & Saikoski 200 I], middleware tends to implement fixed strategies for non­

functional concerns that cannot be adjusted on a per-application basis. For example, au­

thentication and confidentiality protocols might be hardwired making it difficult to imple­

ment new application-specific protocols. Furthermore, local applications may still be able

to invoke each other directly without mediation by the libraries, thereby violating the prin­

ciples of complete mediation.

An improved approach to dealing with these problems is to manually add enforce­

ment code as required. However, manually inserting enforcement code is a laborious and

error-prone process. So object-oriented software engineering techniques such as capabili­

ties [Dennis & Earl C. 1966], proxies [Redell 1974] and inheritance are typically used to

CHAPTER 1. INTRODUCTION 12

simplify this programming task. However, each of these techniques has drawback.... In­

heritance leads to a tight coupling between enforcement and functional code. Similarly.

capabilities and proxies both require modification of the application code and have other

problems such as the confinement problem or self problem. The tight coupling and need

to change application code means that there is not a clean separation of concerns between

the enforcement code and application code. As discussed by Stroud and Wu [Stroud & Wu

1995] the lack of a clean separation of concerns between security and application func­

tionality means that changing either requires changes to the other. This reduces system

flexibility, maintainability, reduces reuse and reduces comprehensibility.

Aside from the lack of a clean separation of concerns, a major problem with applying

these object-oriented engineering techniques is the requirement to have access to source

code. For example, source code is not available for Java applets nor for some libraries.

Since all conventional object-oriented techniques require some access to source code, these

techniques only have limited application.

1.2.6 In-lined Reference Monitors

In-lined reference monitors and related tools pre-process compiled code before execution

and insert enforcement code under the control of an access control policy [Pandey & Hashii

1999, Evans & Twyman 1999, Erlingsson & Schneider 2000, Sirer et al. 1999, Hashii et al.

2000]. Enforcement code monitors runtime behaviour and terminates execution if violation

of an access control policy is detected. Unlike conventional object-oriented techniques, no

access to source code is required.

Depending upon the particular implementation, low-level language events can be moni­

tored allowing the property of least privilege to be satisfied. Also, as long as it can be shown

that the enforcement code cannot be removed or tampered with, complete mediation can

be shown. In fact, complete mediation is easier to show for in-lined reference monitors

than conventional object-oriented techniques because the semantics of compiled code is

simpler [Erlingsson & Schneider 2000]. Another benefit of in-lined reference monitors

is a better economy of mechanism [Saltzer & Schroeder 1975] compared to comentional

object-oriented techniques. This is because inserting access checks into source code relie ...

CHAPTER 1. INTRODUCTION 13

upon trusting the language compiler to correctly implement the checks in the compiled

code thereby making the language compiler part of the trusted computing base.

Although current applications of this technique are able to implement a wide-range of

access control policies, for example Erlingsson shows how to re-implement Java's stack in­

spection policy [Vlfar Erlingsson & Schneider 2000], nonetheless, the focus is upon local

access control rather than distributed access control. Implementing distributed access con­

trol would require re-implementing the tools, permitting them to change program outputs

for example to implement encryption of network communications.

More fundamentally, the focus of this approach is upon replacing or emulating existing

security architectures rather than modifying compiled code to make use of existing security

architectures. The motivation is to make analysis of the correctness of the security enforce­

ment more tractable. However, for many of the problem domains discussed earlier, system

administrators prefer to apply existing security architectures to new application code be­

cause of the investment in existing code. Though this approach provides a clean separation

of concerns and meets the requirements for good security engineering but is not flexible

enough to allow reuse of existing security architectures.

1.2.7 Metaobject Protocols

An alternative approach to separating concerns between enforcement and code functional­

ity is behavioural reflection. An advantage of behavioural reflection over code rewriting is

that a wider range of policies can be enforced because the focus is at the level of program

behaviour rather than program structure. Behavioural reflection [Maes 1987] is a technique

for opening up the implementation of a system in a controlled way using a process called

reification. An abstraction of the system's internal state, structure and behaviour is made

visible via a meta-level programming interface. This abstraction is causally connected to

the underlying system in the sense that any changes made to this model or reification of

the system at the meta level, are reflected back into the actual system. Thus, it is possible

to customise the behaviour of a system transparently by changing the abstraction of the

system.

Metaobject protocols are an object-oriented implementation of reflection. Here, the

CHAPTER 1. INTRODUCTION 14

meta level is implemented as a metaobject that is bound to a base-level object. The interface

of the metaobject defines the metaobject protocol. Different metaobjects can be bound to

different objects providing different customisations of object behaviour. It is therefore

natural to consider placing enforcement code within a metaobject.

A clean separation of concerns is provided by the use of a MOP. The security metaobject

can be developed independently of the base-level object and bound to the base-level before

application execution. Modularising the different concerns leads to the improvement of

software quality [parnas 1972]. Development and testing time can be reduced because

work can be divided between domain specialists. Reusability is improved because security

concerns are implemented once and reused with multiple applications. Comprehensibility

is improved because, with this approach, security concerns are considered independently

of the application. System flexibility is also improved because changes at the meta level do

not necessarily impact the base level and vice-versa.

1.2.8 Loadtime Metaobject Protocols

The requirement to be able to enforce access control policies upon compiled code means the

binding between objects and metaobjects must take place after compilation. The most ap­

propriate type of MOP providing this type of binding is referred to as a loadtime metaobject

protocol [Welch & Stroud 1999a]. A loadtime MOP binds the metaobject to the object at

loadtime, this can be achieved by pre-processing the compiled code before loading. Load­

time MOPs can be used where MOPs requiring access to source code are not and a loadtime

MOP has better economy of mechanism and greater portability compared to a runtime MOP

where modification to the interpreter is required. With the exception of the Simple Security

MOP for Java [Caromel et al. 2001], most existing security architectures are not loadtime

MOPs [Benantar et al. 1996, Riechmann & Hauck 1997, Riechmann & Hauck 1998, An­

cona et al. 1999]. Though the Simple Security MOP provides a limited metaobject protocol

and is a proof-of-concept of an improvement to loadtime metaobject protocols, it cannot be

used to enforce access control policies on the use of system-resources by applications.

CHAPTER 1. INTRODUCTION 15

Making use of a loadtime metaobject protocol to implement security enforcement en­

sures that the requirements of least privilege, complete mediation and economy of mecha­

nism are met. Kava [Welch & Stroud 1999a, Welch & Stroud 2000a, Welch & Stroud 200 I]

is a loadtime metaobject protocol designed with these requirements in mind, combining the

best of MOPs and IRM techniques, making use of existing security architectures, and ful­

filling the requirements of least privilege, complete mediation and economy of mechanism.

1.3 Contributions

This thesis makes three main contributions: development of a loadtime metaobject proto­

col, analysis of the limitations of conventional security engineering techniques for security

enforcement and evaluation of how these limitations can be addressed using a loadtime

metaobject protocol.

1.3.1 Design and Implementation of a Secure Loadtime Metaobject

Protocol

First, the thesis describes the design and implementation of a loadtime metaobject protocol

for Java called Kava. Arguments for least privilege, complete mediation and economy of

mechanism are presented and analysed so that users of Kava can have confidence that se­

curity enforcement implemented using Kava can be trusted. Kava is a loadtime metaobject

protocol for Java, implemented as part of the experimental work for this thesis, and repre­

sents a proof-of-concept for using behavioural reflection to enforce access control policies

upon compiled code. Kava was the first loadtime metaobject protocol [Welch & Stroud

1999a] although other loadtime metaobjects have subsequently been developed [Caromel

et al. 2001]. Java was chosen for the implementation because it is a popular language for

exploring program mobility due to its first-class support for dynamic class loading and link­

ing. Nonetheless, Java places some constraints upon implementation techniques that Kava

must address, for example enforcing access control policies upon the use of system-level

resources and dealing with Java's inheritance model.

CHAPTER 1. INTRODUCTION 16

Figure 1.2 shows the Kava architecture. The standard Java compiler is used to com­

pile both the target Java program and Kava Metaobjects. The metaobjects allow the local

redefinition of the semantics of the Java language, for example method execution can be

locally redefined to include Java security permission checking before execution is permit­

ted. The resulting byte code is then processed by Kava itself, either by applying Kava to

the class files or by intercepting the loading of the compiled classes into the JVM. Kava

uses a byte code rewriting toolkit to insert hooks into the program byte code that bring the

runtime objects under the control of metaobjects. Where these hooks should he added is

governed by a binding specification that is encoded using XML. The binding specification

tells Kava which program classes and Java semantics should be under the control of an

associated metaobject class. The transformed reflective program is then loaded as normal

by the standard JVM.

Access control policies are represented in Kava by a combination of the binding spec­

ification and the enforcement code that is encapsulated by metaobjects. When used to

implement security using the Java permission-based security model, the security policies

are specified by a combination of a Java security policy file, the enforcement code encap­

sulated by metaobjects and a binding specification that effectively indicates when enforce­

ment checks should be made.

Enforcement upon compiled code is possible because Kava requires no manual changes

or access to source code of the application classes. This is a feature that has been absent

from existing reflective implementations unless they have modified the JVM implementa­

tion. In addition, an approach based upon code rewriting has the benefit that it is easier to

make the argument for complete mediation of security related operations by enforcement

code compared to other approaches to implementing reflection in Java.

Reuse of access control policies is supported because the set of metaobjects containing

enforcement code can be generic and parameterised for a particular application through

the creation of an application-specific binding specification. This binding specification

goes further than indicating individual methods to be controlled by a security policy but

also allows control over field access, method invocation, method execution and exception

handling. The ability to control the invocation of methods at the caller side in addition to

the traditional control over method execution at the callee side allows security policies to he

CHAPTER 1. INTRODUCTION

Kava Metaobjects
(Source Code)

\11

I
javac compiler

II

Kava Metaobjects
(Byte Code)

\11

standard JVM

Application
(Source Code)

\11

II

Application
(Byte Code)

II

Kava

\

Reflective
Application
(Byte Code)

\11

I

-

I

XML Binding
Specification

17

Figure 1.2: Overview of Kava. Classes are loaded by an application-level class loader. The
class file structure is then passed to Kava for rewriting. After hooks have been added the
class is verified and loaded as normal.

CHAPTER 1. INTRODUCTION IS

applied to classes that cannot be rewritten by Kava due to constraints of the Java language.

1.3.2 Demonstration of the Limitations of Conventional Object-Oriented

Techniques

Second, this thesis provides a demonstration of the limitations of conventional objeLt­

oriented software engineering techniques for implementing acce,>,> control policies. Two

case studies are analysed where access control policies are enforced upon third-party appli­

cations, the first case study is a standalone application that uses the Java security architec­

ture and the second case study is a distributed application that use,> the self-defence '>ecurit)

architecture. These case studies enforce security through a combination oj manual editing

of source code, enforcement placed in system-level libraries, proxiel., and inheritance.

1.3.3 Evaluation of Separation of Concerns

Third, the thesis evaluates whether Kava can be used to implement a clean ,>eparation of

concerns between security enforcement code and application code. This allowed an eval­

uation of the effectiveness of using a loadtime metaobject protocol to enforce local and

distributed access control upon remotely developed applications that may be distributed as

compiled code. At the most general level, the approach offers a highly practical solution,

even through there is a requirement to understand application semantic,> and '>tructure for

enforcing application-specific access control policies. Where access control policie-. aim

to prevent abuse of local resources, there is a similar requirement to understand library

semantics and structure. Additionally, to make the approach easier to use, work must be

done on a more declarative binding specification and higher-level language for specifying

policies.

1.4 Thesis Overview

The remainder of this thesis is structured as follows.

Chapter :2 revie\\s general security policy enforcement, conventional object-oriented

CHAPTER 1. INTRODUCTION 19

enforcement, in-lined reference monitors and metaobject protocols before defining the

goals of the thesis in greater detail. Some of the analysis of the limitations of conventional

object-oriented techniques has been presented previously and published [Welch 1997. Welch

& Stroud 1998a, Welch & Stroud 1999b].

Chapter 3 provides an overview of the design and implementation of Kava. Much of the

work in this chapter has been published in a series of papers charting the evolution of Kava

from an initial prototype called Dalang [Welch & Stroud 1998b, Welch & Stroud 1999a.

Welch & Stroud 2000a, Welch & Stroud 2001, Welch, Stroud & Romanovsky 2001]. This

chapter addresses goals related to enforcement of access control upon compiled user-level

code and satisfying the requirements of separation of concerns, least privilege, complete

mediation, economy of mechanism.

Two chapters describe case studies undertaken to demonstrate that using a loadtime

metaobject protocol to enforce access control provides a better separation of concerns than

conventional object-oriented techniques. Chapter 4 reports upon a case study where ac­

cess control polices are enforced upon a third-party standalone IRC chat application named

Lirc. It contrasts conventional object-oriented techniques based upon manually placing en­

forcement code with a loadtime metaobject approach. Chapter 5 reports upon a case study

where access control policies are enforced upon a third-party distributed application named

System K. It contrasts conventional object-oriented techniques based upon modifying sys­

tem libraries, inheritance and proxies with a loadtime metaobject protocol approach. These

two chapters draw upon papers describing the Lirc and System K case studies [Welch &

Stroud 2000b, Welch & Stroud 2002, Welch & Stroud 2003].

Chapter 6 uses the experience of the case studies to make inferences about general

applicability of loadtime metaobject protocol such as Kava to enforcing access control

policies. It summarises the results of the two case studies and discusses constraints upon

applying the approach to other applications or within the context of other languages.

Finally, Chapter 7 summarises the thesis, the contributions made by the thesis and dis­

cusses future work. Some of the future work relating to metaobject libraries for enforce­

ment of Clark-Wilson policies has already been presented elsewhere [Welch 1999] and as

has work on a prototype policy compiler for Kava [Lu 2004].

Chapter 2

Related Work

The goals of this the~i~ have been developed by ~ystematically evaluating exi~tillg sel'urit)

engineering techniques against a set of criteria, The criteria used for e\ aluation are hO\\

well the technique provides a clean separation of concerns and confomls to the three cla~..,ic

principles of security engineering.

This chapter is organised as follows, Section 2,1 prmides an overview of acce..,.., con­

trol policies, The XACMLlSAML framework is introduced, which i.., a frame\\ork for

implementing a wide range of acce~~ control policie..,. This framework facilitates compar­

ison of the different security engineering techniqlle~ di..,cu..,..,ed in thi.., chapter. Section 2.2

explains the set of criteria used to evaluate the different security engineering technique~.

Sections 2,3-2,6 apply the criteria to operating system enforcement. cOll\cntional object­

oriented software engineering, in-lined reference monitors and metaobject protocols, Each

of the existing techniques or applications of the techniques either have a different goal (in­

lined reference monitors) or do not satisfy all of the criteria, This lead~ naturally to the

development of a set of goals for the thesis in Section 2,7, The goab of the thesis are to

develop a loadtime metaobject protocol for Ja\a that allows enforcement of acce~s control

policies O\cr objects and distributed objects. Unlike existing loadtime metaobject proto­

cob. this metaobject protocol should demonstrate that it meets the requiremenh of least

privilege, complete mediation and economy of mechanism, Furthermore, the metaobject

protocol's applicability to enforcing access control policies upon user-level compiled code

20

CHAPTER 2. RELATED WORK 21

should be demonstrated through case studies involving enforcing existing security archi­

tectures upon third-party applications.

2.1 Access Control Policies

A security policy comprises of both security goals and rules [MAffIA Project 2003]. Se­

curity goals correspond to the traditional view of security properties such as confidentiality.

integrity and availability [Pfteeger 1997]. Security goals provide a high-level view of a se­

cure system; security rules are lower-level constraints on system behaviour that ensure the

system is robust against accidental or deliberate misuse. Rules may regulate both social

and technical systems, where social rules consist of prohibitions, duties and obligations.

and technical rules usually take the form of access control rules. The assumption is that

both sets of rules will be correctly formulated to ensure that the security goals of the system

are guaranteed.

The focus of this thesis are a subset of security policies called access control policies.

Access control policies are enforced by access control mechanisms that mediate all access

to resources [Lampson 1974, Lampson, Abadi, Burrows & Wobber 1992]. Conceptually. an

access control mechanism can be thought of as a device that monitors system behaviour and

blocks any action that would result in a violation of a technical rule [Schneider et al. 2000j.

As evidenced by work on standards for building access control systems [Rutt, Curtis, Hop­

kins, Fairthorne, Hartman, Nessett, Vleck, Frantz, Lejeune, Blakley, Mukerji, Ammon,

Salmond & Allred 1995, Anderson, Parducci, Adams, Flinn, Brose, Lockhart, Beznosov,

Kudo, Humenn, Godik, Andersen, Croker & Moses 2003], access control policies are suffi­

cient to describe the security requirements of many real world systems despite being unable

to enforce availability and some confidentiality properties [Schneider 2000].

The OASIS XACML (eXtensible Access Control Markup Language) standard [Ander­

son et al. 2003] and SAML (Security Assertion Markup Language) standard [Lorch, Proc­

tor, Lepro, Kafura & Shah 2003] provide a useful framework for understanding how access

control policies are implemented. XACMLlSAML can be used to enforce access policies

upon both local and distributed objects. The framework's terminology is used throughout

the rest of this chapter.

CHAPTER 2. RELATED WORK ,.)

XACML provides a framework for implementing a wide range of security policies.

XACML focuses upon the framework components. It defines the responsibilities of each

component, the content of access control queries and responses. XMACL does not de­

fine the communication protocols used for communication, these are defined by the SAML

framework. SAML is a standard XML-based framework for exchanging authentication and

authorisation information [Philpott 2004]. How the authentication and authorisation infor­

mation is derived is beyond the scope of the SAML framework [OASIS Group 2004]. For

example, the SAML framework may describe how to represent the statement "X is authen­

ticated" but it does not describe the protocol for authenticating X, this must be handled by

some platform-specific component.

The XACMLlSAML framework components act together to implement a rcference

monitor [Anderson 1972] that mediates all requests for access by an application to a rc­

source according to an access control policy.

The main components in the framework are:

Policy Enforcement Point PEP performs access control by making decision request and

enforcing authorisation decisions. The PEP is application-specific.

PDP Policy Decision Point evaluates the applicable policy and makes an authorisation

decision. The PDP is application-independent.

Context Handler Context handler acts as a intermediary between the PEP and the PDP,

it maps application-specific attributes associated with requests to an abstract syntax

and adds additional context if required.

Figure 2.1 shows how the components work in concert with each other to enforce an ac­

cess control policy. In the figure, an application attempts to access a resource. A resource

may be a service provided by libraries or a service provided by another application pro­

gram. Essentially each access is mediated by a PEP that delegates the access decision to a

PDP. The general notion is that of policy/mechanism separation with policy being encoded

within a PDP and mechanism implemented by a PEP.

Although XACMLlSAML can be applied to controlling access to local resources by

local applications the main application for the framework is securing distributed appli­

cations. When using XACMLlSAML to secure a distributed system there are additional

CHAPTER 2. RELATED WORK

Application PEP

2 5

Context
Handler

,
3 I 4

,
I PDP·-~-

Policies

6
- Resource

Figure 2. 1: (I) An applicati on program reque t acce to a re ource fr m a PEP (Policy
Enforcement Point). (2) The PEP sends the reque t to an appropri at cont t hand ler. (3)
The context handler sends the translated reque t (dec ision reque t) to th PDP (Policy De­
cision Point). The PDP identifies the applicab le policy (using the 'emantic defined by the
framework) by searching its policie and determine which poli cy (or po licie) apply to the
request. The PDP evaluates the policy rule. (4) The PDP retum the reo pon e context (in­
cluding the authori sati on dec i ion) to the contex t handler. The authori sati on deci . ion may
be permit, deny or intermed iate. (5) The contex t handler tran late the re pon e contex t
to the native response format of the PEP. (6) The PEP ful fi l the obligati on . If acce
permitted, then the PEP permits access to the re ource; otherwi e, it denie access.

CHAPTER 2. RELATED WORK

problems that arise from the threats particular to a distributed system that must be solved

by implementers. For example, the possibilities of eavesdropping. replay. message inser­

tion, message deletion, message modification, etc. The SAML specification does not define

protocols or mechanisms for preventing this but it does specify the support required from

transport-level protocols that can defeat these threats. In particular the standard proposes

using TLS/SSL [Dierks & Allen 1999] to provide message confidentiality and authentica­

tion.

2.2 Criteria for Evaluation

We are interested in security engineering techniques that allow the use of existing security

architectures to enforce access control policies upon compiled user-level code. This section

discusses the criteria for evaluating the different techniques reviewed in this chapter. An

ideal technique should meet these criteria and allow reuse of existing security architectures.

The criteria are:

• Clean separation of concerns.

• Least privilege.

• Complete mediation.

• Economy of mechanism.

Table 2.6 on page 55 summarises the result of evaluating operating system, conven­

tional object-oriented, in-lined reference monitors and metaobject protocols against the

criteria. The only technique allowing reuse of existing security architectures and meeting

the majority of criteria are loadtime metaobject protocols. In-lined reference monitors also

meet the majority of criteria but do not allow reuse of existing security architectures.

2.2.1 Separation of Concerns

According to Dijkstra [Dijkstra 1976], the ideal way to tackle implementation of a complex

system is to partition the system into separate concerns that can be addressed in isolation to

CHAPTER 2. RELATED WORK 25

each other. Each concern can be designed, implemented and tested independently modules

before being combined together within a single application. This ideal is known as a clean

separation of concerns.

Besides making implementation tractable, a clean separation of concerns provides the

benefits associated with good modularisation. These benefits are reduced development

time, improved system flexibility and comprehensibility [Parnas 1972]. Development time

is improved because the modules can be developed independently of each other. System

flexibility is improved because changes to one module will not impact upon another mod­

ule. Comprehensibility can be improved because one module can be studied in isolation

without requiring understanding of the system as a whole.

A good example of a clean separation of concerns from an operating system perspective

is the Hydra operating system [Wulf et al. 1974]. Hydra implemented policy decision mak­

ing in user-level code and policy enforcement in kernel level code. This separation allowed

new policies to be implemented without requiring modifications to the operating system.

There are problems with this separation of concerns from an application perspective as will

be discussed in Section 2.3.

The problem domains identified in Section 1.2.1 require a security technique that pro­

vides a clean separation of concerns. For example, enforcing a local access control pol­

icy upon a third-party application requires developing enforcement code separately and

somehow imposing it upon the application. The concerns are already separate because

the application has been developed independently of the security requirements. Ad-hoc

modification of the application may not be possible because the source code of the applica­

tion may not be available. Additionally, if the source code was available then upgrades to

the application would require modification again. Besides being tedious, this would be an

error-prone process. Ideally the two concerns should be kept separate and an appropriate

technique used to automatically combine them together as required.

A security engineering technique providing this degree of separation of concerns may

still require knowledge of the semantics of either the application or the resource being

protected. Where there is a specification for the application, application-specific policies

can be defined in terms of the application interface. Where there isn't a specification, for

example dynamic web content, the policies can be defined in terms of the interfaces of the

CHAPTER 2. RELATED WORK 26

resource being protected.

Separation of concerns is a desirable property of any security engineering technique and

the remainder of this chapter uses the concept as a means of evaluating a range of different

security engineering techniques.

2.2.2 Security Engineering Principles

The XACMLlSAML framework provides an architecture with a degree of separation of

concerns for implementing security policies. However, the correct implementation of se­

curity policies in a computer system is difficult due to non-trivial dependencies upon the

mechanism's components allied to the difficulties associated with finding the right mapping

from policy abstractions to the concrete enforcement mechanisms [Samarati & Vimercati

2000]. However, there is some agreement upon basic principles that designers of enforce­

ment mechanisms should follow to increase confidence in their design, these principles are

the ones adopted in this thesis. They were first discussed by Saltzer and Schroeder [Saltzer

& Schroeder 1975] in their paper on the basic principles of data protection and the main

ones are listed below:

Least privilege Least privilege limits the impact of failure. Every program and every user

of the system should be allocated the least set of privileges necessary to complete the

job. Least privilege limits damage created when a subject abuses their privileges. For

example, granting a doctor the right to request information only about the patients

slhe treats protects the privacy of other patients on a hospital records database.

Complete mediation Complete mediation ensures that policies are always enforced as in­

tended. Any access to an object subject to a security policy must be checked for

authority. Complete mediation means that a reference monitor that enforces a secu­

rity policy intercepts every request to a resource being protected. Unless this property

holds, a request that leads to the violation of a security policy would be allowed.

Economy of mechanism The principle of economy of mechanism, by keeping the design

as simple and small as possible, is an attempt to assure that the mechanism beha\es

as intended by limiting the unintended effects associated with needless complexity.

CHAPTER 2. RELATED WORK 27

When applied to a reference monitor this means minimising its size makes fonnal

verification of its correctness tractable.

These three principles provide criteria for evaluating the effectiveness of a particular

security engineering technique.

2.3 Operating System Enforcement

The traditional approach to enforcing security in operating systems is to place PEPs within

lower system layers. This has the advantages that it is easier to show complete media­

tion of accesses by the PEP and it reduces the perfonnance overheads caused by security

checks [Gollmann 1999]. In these circumstances there is no need for access to source

code when enforcing an access control policy upon an application. Some operating sys­

tems, for example OTOS [Secure Computing Corporation 1997] or Flask [Spencer. Smal­

ley, Loscocco, Hibler, Andersen & Lepreau 1999], provide policy/mechanism separation

to provide system flexibility. Here, PEPs are protected from tampering by placing them

within the operating system kernel and as a result policy decisions can be delegated to a

component at the user level, allowing per-user access control policies [Wulf et at. 1974].

This then allows new policies to be specified without requiring changes to the kernel. Un­

fortunately, from an application-level perspective, operating system security enforcement

violates the principle of least privilege and complete mediation is limited to operating sys­

tem resources provided by the kernel. More generally, modem operating systems do not

satisfy the principles of economy of mechanism. Each of these three problems will be dealt

with in turn in the following sections.

2.3.1 Evaluation

Table 2.1 summarises the evaluation of operating system security techniques against the set

of criteria. Although providing a good separation of concerns, from an application-level

perspective, operating system mechanisms do not meet the requirements of least privilege.

complete mediation or economy of mechanism.

CHAPTER 2. RELATED WORK 28

Table 2.1: Evaluation of operating system enforcement.

Technique Description Separation Least Complete Economy
of Privilege Mediation of
Concerns Mechanism

Operating system Fixed placement of Good Coarse Limited control Complex
enforcement code over user-level
within kernel. code

Separation of' Concerns

The security concern as represented by the enforcement code is completely separated from

the functionality of the application that is the subject of an access control policy. Changes

to the application do not require rewriting the enforcement code while changes to the en­

forcement code have no impact upon the application's code. No access to an application's

source code is required to enforce access control policies upon the application.

Least Privilege

Least privilege is violated for two reasons. First, the privileges given to the application are

the same as those of the user but the user needs many more privileges than the application.

This permits the application to perform many actions that are not strictly necessary for it

to implement its functionality. A misbehaving application will do far more harm than one

with more constraints placed upon it. Second, access controls enforceable by the kernel

may be too coarse grained. For example, the operating system can grant access to an

individual file but cannot control what or how much data is written to the file or can grant

access to the network but cannot distinguish between invocations sent across the network.

This is because control can only be enforced at the kernel's interface and this interface is

much coarser grained than the application's interface. This leads to the conclusion that the

lower the layer in which the enforcement is placed then the less able security policies are

to reflect user requirements [Gollmann 1999].

CHAPTER 2. RELATED WORK 29

Complete Mediation

Complete mediation is violated because the operating system only mediates accesses to

the kernel. Although address space isolation in traditional operating systems may force

interactions between user-level code to go via the kernel, the advent of extensible systems

such as Java or component-oriented programming leads to a situation where code is not

isolated from other code in processes and can invoke each other without mediation by the

kernel.

Economy of Mechanism

Depending upon the operating system implementation, the property of economy of mecha­

nism may not be satisfied due to the migration of user-level functionality into system-level

code. Schneider and his colleagues use the example of Windows 2000, which contains

many millions of lines of code because of the inclusion of windowing and other libraries

within the kernel [Schneider et al. 2000].

2.4 Conventional Object-oriented Security

As discussed by Gollman [Gollmann 1999], object-oriented systems provide some useful

features to support security. Objects encapsulate data and only allow access via a well­

defined interface. This is guaranteed by the language interpreter or a combination of checks

provided by compilers and execution environment. Java [Gong, Mueller, Prafullchandra &

R. 1997] is one example of a security architecture built using object-oriented principles

that can enforce access control policies, and CORBA [Rutt et al. 1995] is an example of

a security architecture for distributed object systems that can enforce distributed access

control policies.

These features provide a useful basis for implementing security. However, there must

also be some means of enforcing a specific access control policy. One way is to insert PEPs

at the start of code implementing methods. These cannot be bypassed if all invocations are

guaranteed to be via a well-defined interface and no other access to an object's code or state

is possible.

CHAPTER 2. RELATED WORK 30

2.4.1 Examples

Thi s section evalu ates di fferent conventi onal object-ori ented oft are engineering te h­

niques for enforc ing access control policie . For implicity, it i a umed that en h In er

below the current layer being considered satisfi e the principle of complete m diation and

economy of mechanism.

Place Enforcement within Libraries

One approach to language-level enforcement i to pl ace PEP within the librar od im­

plementing the serv ices that application u e, for example midd leware or y tern libra ri e . .

The Java security architectu re fo llows thi s model. Java prov ide ex ten ible fin e-grained

access control for compi led u er-Ievel code while providing upport for a eparati on be­

tween policy and enforcement. In previous versions, new security policie required th

rewriting of the security manager but now policy is specified in a fil e that can be adjusted

independently of the app li cation allow ing per-applicat ion acce s control policie .

[Compiled Code

1
W

JVM

(Domain A)

(Domain 8)

Secunty policy
set of permissions'

SecurityManager (permission.
source 01 code,
signer 01 code.

I AccessConlroller I
pnncipal executing

code)

System-level Resources
(lites. network connections. elc.)

Figure 2.2: Overview of the Java securi ty architecture

Figure 2.2 hows the Java Security Architecture. Compiled code in the form of cia e

is loaded by a class loader into the Java Virtual Machine (Java VM). A SecureClassloader

loads each class and ass ign it to a protection domain depending upon who igned the code,

CHAPTER 2. RELATED WORK 31

who is executing the Java VM, and where the class was loaded from. Unlike operating sys­

tem security architectures, enforcement of protection domains is not achieved by isolating

code within a process only able to communicate with other processes via the kernel. In­

stead, namespace management and type safety provide the isolation properties. This has

the advantage of efficiency, since a process-based mechanism requires expensive context

switches when communicating between processes. Requiring a process per-class would

make Java unusable because of the communication overheads.

The Java core class libraries playa role similar to a kernel in operating systems such

as DTOS or Flask. Java system classes must be invoked to access services or operating

system resources and this provides a natural place to enforce access control policies. When

a method of a compiled class tries to access resources such as the filesystem or the network,

the SecurityManager is invoked. This is because each resource is encapsulated by a class

whose methods contain hardwired security enforcement code that delegates the decision as

to whether access is allowed by the SecurityManager. The SecurityManager itself delegates

the access control decision to an AccessControlier class that makes the decision depending

upon the current Java security policy. The Java security policy assigns permissions to

protection domains and the AccessControlier evaluates the access decision by checking if

the requested permission is held by every protection domain on the current call stack.

With regard to least privilege and complete mediation, library-level enforcement suffers

from the same problems as operating system enforcement. The granularity of the library's

interface determines the granularity of the access rights that can be granted to applications.

Additionally, not all accesses to application resources will require invoking services con­

taining enforcement code thereby making it impossible to impose access control policies

governing access to application resources. Furthermore, middleware services will imple­

ment fixed protocols that can only be changed by rewriting the middleware [Coulson 2002].

The effect of these problems can be illustrated using two simple examples. First, con­

sider preventing malicious email attachments from subverting the user-level email applica­

tion and using it to send spam. Libraries such as Java's JavaMail API [Sun Microsystems

1999-2004] may mediate access to services allowing the sending of email but the services

do not have the application-knowledge required to distinguish between user-initiated email

CHAPTER 2. RELATED WORK 32

and virus-initiated email. Second, consider using a remotely developed standalone appli­

cation or component lacking the necessary access controls for enforcing an organisation \

local policies. For example, an organisation might wish to enforce a local acceptable use

policy upon the use of a third-party IRC (Internet Relay Chat) application. This might

require restricting IRC access to approved chat channels. However, there is no way for

the libraries used by the IRC application to distinguish between access to particular chat

channels and simply providing access to a server.

Manually Place Enforcement within the Application

The solution to the problems stated above is to insert PEPs directly into the application it­

self. For example, Java's security architecture allows access control checks to be manually

inserted into application code. The checks themselves can make use of the standard per­

mission framework and architectural components such as the AccessControlier. But placing

the access control checks at the level of the application's interface allows enforcement to be

tailored to the application itself thereby providing least privilege and ensuring that all ac­

cesses are mediated by enforcement code. Unfortunately, manually inserting access control

checks is laborious and error prone.

Treat Objects as Capabilities

One way to avoid requiring addition of PEPs to existing code is to adopt a capability-based

architecture. Capabilities [Dennis & Earl C. 1966] represent access rights as unforgeable

pointers to resources and their possession represents the right to invoke the services or

methods of the resource. Originally developed for secure operating systems, capabilities

have since been used to provide security for applications [Wallach, Balfanz, Dean & Felten

1997] and some languages provide special facilities for implementing capabilities. For

example, Java provides a Guard class that hands out capabilities to subjects possessing

the appropriate permissions. A client requests the capability by invoking a method of the

Guard object, this method performs an access check to see if the client is allowed access to

the capability before returning the capability. Once the client has the capability then it can

invoke methods of the protected object.

CHAPTER 2. RELATED WORK 33

There are two drawbacks to using a capability-based architectures. First, although it

requires fewer changes to application source code than simply inserting PEPs within each

method of an object, it still requires changes to the application. This doesn't provide a

clean separation of concerns because changing the application still requires changes to en­

forcement code and vice-a-versa although it is more modularised and ad-hoc than manually

inserting enforcement code. For example, using a Guard requires inserting code to request

access to the object protected by the Guard. Second, the application must ensure confine­

ment [Lampson 1973] of capabilities. But once a capability has been released to a client

there is always a possibility that it can be in turn be given to a client who shouldn't have

access or that an error in implementation might expose capabilities to clients who similarly

should not have access. The problem is that possession allows clients to further delegate

access as they wish.

Place Enforcement within Proxies

Redell's Caretaker pattern ([Redell 1974] as discussed in Miller and Shapiro's paper on

implementing capabilities [Miller & Shapiro 2003]) is a specialisation of the proxy pat­

tern [Gamma, Helm, Johnson & Vlissides 1995] that is similar to the Java Guard except

allows revocation. A proxy object plays the role of a surrogate for an object implementing

a resource. The client using the proxy believes it is invoking the methods of the resource

object but it is really interacting with the proxy. The proxy enforces the security policy by

performing an access check before delegating the method invocation to the real resource

object. Hence, the proxy is described as playing the Caretaker role. Unlike a simple ca­

pability model, the Caretaker can revoke the access rights granted to a client at any time.

Because the client must always go through the Caretaker there is no way for the client to

simply bypass the proxy. Obviously the proxy is acting as a fine-grained PEP for individual

objects. However, there a four main drawbacks to the use of Caretaker.

First, proxies raise the self problem that was first described by Lieberman [Lieberman

1986]. Lieberman claims inheritance-based languages cannot implement delegation. The

CHAPTER 2. RELATED WORK

problem is with the rebinding of the self1 variable that takes place when the method in­

vocation is delegated. It is possible to work around this by passing the self variable as an

additional argument in all method invocations and then making all self invocations use this

passed variable instead of the default. This requires that affected classes follow a partic­

ular programming convention. However, since the classes being wrapped are constructed

independently of the proxy with which they are used, it is unlikely that they would support

such a convention unless we could transform the compiled classes' methods.

Second, using proxies to add functionality to existing classes requires logical wrap­

ping [Holzle 1993] to ensure that the proxy and proxied instances are always associated

with each other. Any class that returns an instance of the proxied class must be modified

(or itself proxied) to ensure that it returns a proxy instance. This requires programmers to

introduce logic into the application in addition to the definition of the proxy class itself.

Other implementations are possible, for example, the proxy could be automatically gen­

erated at the client side. However, there must always be additional processing in order to

maintain the association between the proxy and the proxied class.

Third, in a reasonably complex application, it is possible that an instance of a proxied

class returned by a method invocation might not be replaced with an instance of its proxy.

Such an unwrapped instance would then allow the proxied instance to be invoked directly

bypassing the proxy. This is simply a variant of the confinement problem [Lampson 1973]

and is a possibility that always exists whenever a proxy is used.

Fourth, an interface gap exists because of the introduction of an extra proxy c1a'is

that must maintain the same interface as the proxied class. Whenever the interface of the

proxied class changes, the interface to the proxy class must also be updated.

Successfully implementing proxies requires changes to the objects being proxied and

this detracts from the separation of concerns gained. In addition, problems remain regard­

ing the leakage of pointers to the unprotected object and this complicates implementation.

I In Java the self variable is represented by the this keyword.

CHAPTER 2. RELATED WORK 35

Place Enforcement within a Superclass

Another approach to implement security functionality or security state is to implement

these in a subclass and have classes implementing resources subject to a security policy

inherit this functionality or state. For example, a SecureObject class could be implemented

that includes a checkAccess method and fields able to track access-relevant state. All

classes implementing resources subject to a security policy would inherit from SecureOb­

ject and call checkAccess wherever appropriate. This reduces the burden on programmers

because they no longer need to re-implement checkAccess for every class or add extra

fields to each class definition.

The main drawback is that this approach imposes an obligation on the implementer of

the secure class that leads to tight coupling between functional and enforcement code [Stroud

& Wu 1995]. In the example given, this consisted of calling inherited methods at particular

points and it might also involve defining extra class-specific methods. This causes the code

implementing the functionality of the secured class to become intertwined with the code

enforcing security. As discussed earlier this makes it difficult to reuse enforcement code.

It also hardwires choice about the types of enforcement that can be implemented. Chang­

ing enforcement requires changing the superclass. Changing the superclass is problematic

because it forces all subclasses to change because the changes may introduce new methods

or change the arguments of existing method calls.

2.4.2 Evaluation

Table 2.2 summarises the evaluation of conventional object-oriented techniques against the

set of criteria. Conventional object-oriented techniques are able to satisfy least privilege

and also complete mediation but do not necessarily provide good economy of mechanism

nor provide a clean separation of concerns.

Separation of Concerns

Implementing PEPs within library code provides a clean separation of concerns because

enforcement code is independent of application code. All of the others share a lack of

clean separation of concerns. Changing either enforcement code or application code will

CHAPTER 2. RELATED WORK 36

Table 2.2: Evaluation of conventional object-oriented techniques.

Technique Description Separation Least Complete Economy
of Privilege Mediation of
Concerns Mechanism

Libraries Fixed placement of Good Coarse Limited Language
enforcement code dependent
within kernel.

Manual insertion Place enforcement Poor Fine Complete Language

as required within dependent

application

Capabilities Treat object Moderate Fine Limited Language

references as dependent

capabilities and

control handing out

capabilities.

Proxies Place enforcement Moderate Fine Limited Language

code within dependent

proxies

Inheritance Place enforcement Moderate Fine Complete Language

within superclass, dependent

all secure objects
inherit behaviour

and state.

CHAPTER 2. RELATED WORK 37

lead to some changes in both. Manual insertion leads to the worst separation of all because

enforcement code is intertwined with application code. Capabilities and proxies provide

cleaner separation because enforcement code is more modularised but still requires some

changes to application source code: (1) Capabilities require changes to the objects that

return references to protected objects and careful programming to avoid the confinement

problem; (2) Proxies require the generation of entirely new classes and changes to objects

that return references to protected objects to ensure references remain wrapped. Inheritance

imposes additional obligations upon developers of application code and require modifica­

tion of the source code in order to implement inheritance.

Least Privilege

Library-level enforcement suffers from the same problems as operating system enforce­

ment of access control policies because PEPs are located at the wrong level of abstraction

and cannot be easily changed. However, placing PEPs at the application level successfully

provides least privilege because the access control policies can now specify fine-grained

rights on a per-method basis for application or library code.

Complete Mediation

Complete mediation requires that the PEPs cannot be bypassed. Placing enforcement man­

ually within application code or within the superclass provides complete mediation as the

language ensures invocations can only take place across a well-defined interface. Capabil­

ities and proxies are more problematic because both suffer from the confinement problem.

Libraries only offer limited complete mediation because they cannot mediate in accesses

to application resources.

Economy of Mechanism

Economy of mechanism is also quite dependent upon the development and execution en­

vironment. However, it is possible to make the observation that implementing PEPs by

inserting source code into an application does require that the compiler is trustworthy a-.

well as the execution environment. We must be able to trust that the compiler does not

CHAPTER 2. RELATED WORK 38

remove the PEPs at compilation time. This results in a larger trusted computing base than

operating system enforcement because we now consider the compiler as well as the execu­

tion environment (and system libraries) as part of the trusted computing base.

2.5 In-lined Reference Monitors

In-lined reference monitors (IRMs) provide an alternative approach to operating system or

conventional object-oriented security engineering. IRMs focus on replacing the existing

security architecture rather than bringing applications under the control of existing security

architectures. The main benefit of replacing existing security architecture is that the ar­

chitecture implemented by the IRM may be easier to verify as being correct. Additionally.

existing IRMs only enforce access control upon local objects rather than distributed objects.

To implement distributed access controls, new mechanisms to support remote authentica­

tion and confidentiality would need to be added to existing IRM toolkits because current

IRMs do not provide facilities to implement these concerns. Nonetheless. they are worth

reviewing because they solve the problems of clean separation of concerns for compiled

code and meet the criteria for access control for local objects.

IRM tools in-line automata that monitor execution of the application being secured and

halt its execution if a violation of the security policy is detected [Erlingsson & Schneider

2000]. Figure 2.3 describes the IRM security architecture. An application provided as

compiled code has the enforcement code for a security policy in-lined by an IRM Rewriter.

The resulting application is now a secure application. The key notion here is that the

enforcement and policy decision code can be automatically generated from a security policy

written in terms of application abstractions. Essentially the PEP and PDP is merged into

the target application and the term in-lined reference monitor reflects this because the

notion is that the reference monitor is not in system libraries or kernels. Instead it is in­

lined into the application itself. The inspiration for this work belongs to software based

fault isolation [Wahbe, Lucco, Anderson & Graham 1993a] where address-space isolation

is implemented by modifying user-level compiled code.

Examples of IRM architectures are SASI [Erlingsson & Schneider 2000], PoETIP­

Slang [Olfar Erlingsson & Schneider 2000], Naccio [Evans & Twyman 1999], Ariel [Pande)

CHAPTER 2. RELATED WORK

Application

" I I IRM Rewriter I

Secure Application

Security
Policy

39

Fi gure 2.3: In-lined Reference M onilor archi lecture. eparalion bel een enf rcem nl and
functionality. At runtime, an applicat ion is proce sed by an IRM rewriter that ins rl!'l en ­
forcement code at appropriate pl ace under the contro l of a ecurity polic . Thi pr duc ~

a ecure application containing both enforcement and policy deci . ion code (diagram ba~ed
upon a diagram from [V lfar Erlingsson & Schneider 2000].

& Hashii 1999, Hashii et al. 2000] and the Di tr ibuted Virtual Machin (0

19991·

) [1 rer I a I.

The following secti ons analy. e how IRM technique. add re. . eparat ion f c nce rn s"

least privilege, complete mediation, economy of mechani m.

2.5.1 Evaluation

Table 2.3 summari ses the evaluati on of IRM technique . Each example i not hown indi­

viduall y because of their similarily. IRM technique pro ide lea I privilege and economy

of mechanism. However, il i les fl ex ible than conventional object-oriented oflware engi­

neering b caLI se it repl ace ex isting security architecture rather than pro iding a means to

integrate appli cations with them. IRM techniques do pro ide least pri vilege with regard to

enforcing access contro l upon user-level objects. Howe er, current IRM implementation~

cannot enforce access cont rol upon di stributed object .

CHAPTER 2. RELATED WORK .to

Table 2.3: Evaluation of IRM techniques.

Technique Description Separation Least Complete Economy
of Privilege Mediation of

Concerns Mechanism

IRM enforcement Policy determines Good Fine Control over Good
in-lining of user-level code
enforcement but not
within compiled distributed

code. Replaces objects.

existing security
architecture.

Separation of Concerns

A clean separation of concerns can be achieved by in-lining security codes into user­

level applications [Erlingsson & Schneider 2000, Evans & Twyman 1999, Sirer et al.

1999, Pandey & Hashii 1999, Hashii et al. 2000]. In-lined reference monitors (lRMs)

realise access control policies by rewriting compiled applications and inserting enforce­

ment code as necessary to effect the access control policy. A clean separation of concerns

is provided because enforcement code can be changed independently of application code.

A new access control policy can be implemented simply by modifying the policy definition

and using the IRM to reapply the policy to the application. Similarly, when the application

is changed the access control policy can be reimplemented simply by rerunning the IRM

against the application.

Least Privilege

All of the examples of IRM except for Naccio provide fine-grained control for all user­

level code. Naccio does not provide fine-grained control because it only intercepts access

requests for resources implemented by library code and not application code.

None of the IRM implementations surveyed here provide control over access to dis-

tributed objects.

CHAPTER 2. RELATED WORK ~l

Complete Mediation

Schneider and Erlingsson's [Schneider 2000, Erlingsson & Schneider 2000. Ulfar Erlings­

son & Schneider 2000] argument for complete mediation by IRMs depends upon showing

that:

• Enforcement code mediates all the events relevant to the access control policy being

enforced .

• Enforcement code and its variables are protected against tampering at runtime.

Ensuring All Relevant Events are Mediated. The enforcement code must mediate all

events governed by the access control policy being enforced. This means the enforcement

code must be capable of mediating an event and the IRM adding the enforcement code must

be capable of identifying when mediation is required. Achieving confidence in the toolkit

requires both an assessment of its code analysis capabilities and the scope of control of

the IRM code. For example, consider an object-oriented language that allows direct access

to an object's state without requiring the use of accessor methods. An IRM only able to

identify method invocations or insert enforcement code to control method invocations could

not be used with this language for controlling access to object state.

Resisting Tampering. The integrity of the enforcement code and its variables must be

protected from subversion. The secured application should not be able to bypass, tam­

per with or modify the values of variables controlling execution of the enforcement code.

PoET/PSlang uses the following techniques to prevent tampering with enforcement code:

1. The secured application is prevented from invoking methods belonging to the en­

forcement code or accessing enforcement variables because the enforcement code

does not use names that exist within the application's namespace. For example, Po­

ET/PSLang uses names containing characters that are illegal in Java source code

and would be rejected by a compiler. Additionally, because these names are not

mentioned in the application's original namespace, the application could not contain

code using these names. Note though, that care has to be taken with Java because of

CHAPTER 2. RELATED WORK

its introspection capabilities - these must be disabled to prevent generic code making

use of these capabilities to access variables or invoke methods.

2. The secured application is prevented from bypassing the in-lined enforcement code

because there is no way to branch around in-lined enforcement code. There are jump

instructions included in the Java VM's byte code and used to implement exception

handling and conditional branching but they cannot be used to either jump from one

method into the body of another or make arbitrary branches within a method body.

a. Bypassing enforcement code controlling access to a method requires being able

to make an arbitrary jump into the middle of method from another method.

This not possible because the Java verifier statically analyses the byte code and

disallows jumps between methods.

b. Bypassing enforcement code within a method requires being able to make an

arbitrary jump within a method body. Any jump instruction that attempted to

bypass enforcement code around an instruction that is the target of an access

control policy would be unable to branch over the enforcement code because it

does not exist yet. It could try to confuse the IRM by implementing a complex

control flow but as long as the IRM can identify the correct placement of en­

forcement code then it can update the target of the jump instructions to point to

the newly in-lined enforcement code.

3. The secured application is prevented from viewing code as data, otherwise it would

be able to remove enforcement code at runtime. This is guaranteed by strong type

checking enforced by the Java compiler. Additionally, the Java verifier that forms part

of the Java virtual machines ensures that [Yellin 1996]: (1) There are no stack over­

flows or underflows. (2) All register accesses and stores are valid. (3) The parameters

to all byte code instructions are correct. (4) There is no illegal data conversion.

This is not the complete story, it shows that inserted enforcement code cannot be by­

passed but what if the attacker can confuse the IRM tool and avoid in-lining of enforce­

ment code. Pandey and Hashii [Pandey & Hashii 1999] argue it is essential for an IRM

tool, whose access control policy is based upon associating access checks with particular

CHAPTER 2. RELATED WORK 43

classes, to take account of Java's inheritance model [Pandey & Hashii 1999]. In Java, the

compiled format of a class includes only those methods defined for that class. Any inher­

ited methods are defined in the subclass and at runtime dynamic dispatch ensures that the

correct method implementation is used. The implication of this for an IRM approach is

that enforcement code must be added to the methods defined in superclasses as well as the

class that is the subject of an access control policy. However, this leads to instances of

both the superclass and the subclass being subject to access constraints. One solution is to

create stub methods in the subclass that delegate calls to the superclass and provide a place

to in-line enforcement code. However, Java allows classes to define some methods as final

thereby preventing overriding. The solution to this problem is to insert an invocation in

the superclass of an access check method defined as a null method in the superclass. The

original method remains final but the access method can be overridden by the subclass and

enforcement code in-lined.

These arguments for complete mediation can be extended to C++. What is required is

the use of additional tools to ensure that access to code is only via well-defined interfaces.

For example, SAS I makes use of tools such as typed assembly language [Morrisett. Walker.

Crary & Glew 1999a] to ensure type safety guarantees are maintained and Naccio relies

upon tools implementing Software-Based Fault Isolation (SFI) [Wahbe. Lucco, Anderson

& Graham 1993b].

Economy of Mechanism

The security engineering techniques discussed in this section provide good economy of

mechanism compared to inserting PEPs into application source code. Preprocessors could

be used to insert enforcement code but working with compiled code has distinct advantages.

Compiled code is easier to parse than source code and doesn't require the co-operation of

the compiler. This implies that the compiler does not need to be treated as part of the trusted

computing base [Schneider et al. 2000].

CHAPTER 2. RELATED WORK

2.6 Metaobject Protocols

Metaobject protocols are a software engineering technique that provides the strengths of

conventional object-oriented engineering techniques while providing a clean separation of

concerns. Metaobject protocols are an object-oriented implementation of reflection. Re­

flection [Maes 1987] allows a system's implementation to be exposed, while hiding its com­

plexities, allowing it to be changed. A reflective system is comprised of a base and meta

level. Reflection allows the system's base-level implementation to be opened up while

hiding implementation details. This is achieved by providing a meta-level causally con­

nected model, which is a reification of the base-level system. The model has two important

features. First, the model is an abstraction that hides the complexities of the base-level

implementation. Second, changing the model also changes the base-level system because

they are causally connected together.

When discussing reflection there is a notion of functional and non-functional concerns.

Normally, non-functional concerns are considered orthogonal features that can be found

in many applications, for example persistence or distribution. In the context of this thesis,

the non-functional concern is security and the functional concern is implemented by the

application.

Malenfant and colleagues [Malenfant, Jacques & Demers 1996] define two types of

reflection: structural and behavioural. Structural reflection is concerned with providing a

reification of an application's structure. Behavioural reflection is concerned with reification

of the language's semantics and of its implementation, as well as a reification of the state

and implementation of the runtime system.

A metaobject protocol (MOP) [Kiczales et al. 1991] is an object-oriented implementa­

tion of reflection that allows for incremental, and constrained changes to a system. Object­

oriented programming allows the meta-level model to be changed locally and incremen­

tally. The base level is the object, and the meta level is implemented as a metaobject that

is causally connected (bound) to the base-level object. The protocol defines the interaction

between an object and metaobject, and constrains changes that may be made to the object's

behaviour. Because the meta level is implemented as an object, techniques such as special­

isation by inheritance can be used to structure it. Though metaobject protocols can be used

CHAPTER 2. RELATED WORK .f5

to implement both behavioural and structural reflection, this thesis focuses upon the use of

metaobject protocols for behavioural reflection.

One possible implementation of a metaobject protocol for behavioural reflection is

shown in Figure 2.4. In this example, an object is bound to a metaobject. The metaob­

ject provides a protocol that allows adjustment to the behaviour of method invocations at

the receiver. This is implemented by transparently intercepting method invocations sent to

the base-level object, reifying the method invocation as a first-class value and invoking the

metaobject. This act of interception is known as a meta-level interception (MLI) [Zimmer­

man 1996]. In a CLOS style before/after metaobject protocol the metaobject can perform

computations before and after the invocation is delegated to the base-level object for pro­

cessing. Depending on the details of the metaobject protocol, a before computation could

change the arguments of the method invocation and an after computation could change the

result of the invocation before it is returned to the caller.

Meta
Object

Object J
Figure 2.4: A metaobject can be conceptualised as an object associated with a base-level
object that intercepts all operations invoked upon the base-level object. It can perform
before or after processing and delegate the operation to the real object. Operations might
be method invocation, state access and so on. It might also include operations performed
by the object itself such as method execution.

A useful way of classifying MOPs is based upon when the binding between an object

and metaobject is implemented. Table 2.4 shows the four main types [Welch & Stroud

1999a]: compile time, loadtime, runtime and just-in-time compile time.

The use of reflection and metaobject protocols to implement non-functional properties

of a system in a clean way has been proposed for sometime [Stroud 1992]. This approach is

based upon the fact that non-functional properties can be implemented as metaobjects and

enforced upon base-level objects using a metaobject protocol. Use of metaobject protocob

CHAPTER 2. RELATED WORK 46

Table 2.4: A major way that implementations of behavioural reflection differ from each
other is their binding time. Binding times can be classified according to when metaobjects
are bound to objects [Welch & Stroud 1999a] by the addition of meta-level interceptions
(MUs) [Zimmerman 1996]. In terms of the Java object lifecycle the possible binding times
for behavioural reflection (and therefore the last moment at which new bindings can be
established) are shown in this table

Binding time Description
Source code Preprocessor of class source code inserts MUs
Compile time Metaobject protocol customises the behaviour

of compiler so that either a runtime metaobject
protocol is implemented by adding MUs or the
compiler creates a customised compiled class

that no longer has an explicit meta level but whose
structure has been changed so that the
non-functional concerns are realised at the base level.

Loadtime Instead of pre-processing class source code

the compiled representation of class is modified and
MUs are inserted. This can happen at any point from

after compilation to the point at which the

class is loaded for execution.

Runtime Metaobject protocol exists that allows
the semantics of the language and therefore the

interpretation of byte code to be changed at
runtime. This is done by changing the runtime interpreter.

lust-in-time compile time Identical to compile time binding
except that the compilation is from
some intermediate object code into native

object code.

CHAPTER 2. RELATED WORK -l7

make reuse of code easier because MOPs provide a clean separation of concerns between

functional and non-functional features. MOPs allow metaobjects to be developed sepa­

rately from the base-level objects, which are bound to the base level before use. Depending

upon the type of MOP implementation binding can take place anytime from compile time

to runtime. The notion here is that non-functional concerns such as persistence and security

should be implemented once only and reused with different applications to customise their

behaviour so that it meets non-functional requirements. This represents a flexible separa­

tion of concerns because not every base-level object needs to be bound to a metaobject,

and not every behaviour of a base-level object requires interception by MUs. There are

many examples of using MOPs to implement non-functional concerns. For example, atom­

icity [Stroud & Wu 1995], concurrency [Briot, Doi, Honda, Ichisugi, Kodama, Ohsawa,

Shibayama, Takada, Watanabe & Yonezawa 1990], fault tolerance applications [Fabre et al.

1995], and middleware services [Kon, Roman, Liu, Mao, Yamane, a & Campbell 2000].

Using metaobjects to enforce security involves defining a special type of metaobject that

implements security enforcement by checking accesses to their base-level object. Essen­

tially, the metaobject plays the role of a PEP in relation to a base-level object by enforcing

access checks upon accesses to the base-level object. Using a metaobject to implement

security policy enforcement permits the enforcement to be applied to an existing object

without requiring any co-operation by the object implementer. Late binding allows en­

forcement of security policy upon compiled applications (see Table 2.4 for a description of

possible binding times). Implementation of enforcement code at the meta level allow~ the

enforcement codes to be reused by requiring co-operation from the target applications.

There are similarities between an IRM approach and using MOPs for security enforce­

ment. Both provide a clean separation between enforcement and application functionality

that allows each to be varied independently of the other. Both mechanisms allow security

enforcement to only be applied where needed. This means that you do not pay a per­

formance hit for enforcement that you don't need. This is because with a code rewriting

mechanism the code can be selectively injected into the application at the interface to the

protected code. With a metaobject protocol, the behaviour of the application can be varied

incrementally rather than as a whole. Finally, as for IRM, the principle of complete medi­

ation of events relevant to the security policy by enforcement code must be satisfied. For

CHAPTER 2. RELATED WORK 48

MOPs, this means that the binding between the base level and meta level should not tie

able to be bypassed or removed. In addition, metaobjects containing the enforcement code

should not be able to be tampered with at runtime.

Unlike IRM techniques MOPs are a general purpose software engineering technique.

sufficiently general to address multiple concerns within the same framework and capable

of allowing existing applications to be integrated with existing security architectures. IRM

techniques focus upon enforcing access control policies and implementing their own secu­

rity architecture.

A security architecture based upon behavioural reflection and metaobjects. where en­

forcement is implemented in terms of changes to application behaviour, allows not only

enforcement of security but also other concerns as the model for change is not targeted

towards a particular concern. This is because the scope of what can be changed using the

metaobject protocol is determined by what abstractions exist rather than the range of fore­

seen changes. The implementation of concerns is then specified in terms of the general lan­

guage abstractions rather than abstractions relating to the concern itself. This implies that

a wider range of concerns can be implemented using the metaobject protocol than simply

security. The general idea is that differing concerns are implemented as different metaob­

jects and these can be combined together at the meta level to implement different concerns.

For example, the Friends reflective architecture for fault-tolerant distributed systems can

implement not only network security but also distribution and fault tolerance [Fabre et al.

1995].

2.6.1 Examples

Examples of the application of metaobject protocols to enforcing access control policies

fall into one of two categories: (1) Those that enforce access control policies upon objects;

(2) Those that enforce access control policies upon distributed objects.

The scope of this survey has been deliberately restricted to metaobject protocols that

have been used to engineer security. This is because we were interested in those implemen­

tations of metaobject protocols that had considered at least some of our criteria. This rule"

out reviewing MOPs such as Iguana/J [Redmond & Cahill 2002] because they have been

CHAPTER 2. RELATED WORK 49

designed for a different application area or not been explored with security in mind.

Access to Objects

There are three examples of access control enforcement upon local applications using

MOPs: Metaobjects for Access Control [Riechmann & Hauck 1997, Riechmann & Hauck

1998], Guarana [Oliva & Buzato 1999] and Simple Secure MOP [Caromel & Vayssiere

2001, Caromel et al. 2001, Caromel & Vayssiere 2003].

Metaobjects for Access Control [Riechmann & Hauck 1997, Riechmann & Hauck

1998] defines security metaobjects (SMOs) that are used to implement a capability-based

security architecture. In this security architecture, capabilities are references to objects.

Security metaobjects are bound to these references and add behaviour such as controls on

the delegation of capabilities, etc. Here, the security architecture is implemented by using

a metaobject protocol provided by the MetaXa [Golm & Kleinoder 1999] reflective virtual

machine. The metaobject is invoked whenever the base-level reference is passed as a return

value, or a method is invoked using the reference. It can decide whether access is permit­

ted, depending on the parameters of the invocation or the principal making the invocation.

Principals are attached to domains of objects rather than arising out of authentication of

subjects or association with threads. The binding between references and metaobjects is

established at runtime using an interface to the metaobject protocol, and the association

between objects and domains is similarly achieved. The protection of the metaobject, and

the binding between instance and metaobject instance depends on the implementation of

the MetaXa virtual machine. The main drawback of this mechanism is that a non-standard

virtual machine is required.

Like MetaXa, Guarana [Oliva & Buzato 1999] is a modified Java VM that includes fea­

tures that enable runtime binding of metaobjects to objects. Although there are no examples

of using Guarana to implement enforcement of security policies, it has been designed with

enforcement in mind. In particular, it addresses the problem of a base-level object being

able to interfere with the correct execution of a meta-level object and thereby avoids hav­

ing its requests mediated according to the current security policy. First, the identities of

metaobjects bound to an object are hidden from the base-level object and other meta-l eye I

objects. This prevents direct tampering. Second, although Guarana supports rebinding at

CHAPTER 2. RELATED WORK 50

runtime this can be controlled by the metaobject itself rather than the base level. There­

fore, once the metaobject has been bound to the base-level object it cannot be arbitraril)

removed.

The Simple Secure MOP [Caromel & Vayssiere 2001, Caromel et al. 2001. Caromel

& Vayssiere 2003] is a loadtime MOP implemented using code rewriting techniques. It

allows the Java security architecture to be used to implement enforcement of access con­

trol policies. It takes special steps, the saving of AccessController context, to ensure that

metaobjects do not need to be granted an application permission in order to check that is

held by the application objects. Recent work [Caromel & Vayssiere 2003] has extended this

to providing a security framework for controlling the accesses the meta level may make to

the base level. The use of code rewriting allows the MOP to enforce access control poli­

cies upon compiled code without sacrificing portability. However, the Simple Secure MOP

cannot enforce access controls upon the use of Java services by user-level code because it

can only control method execution by inserting MUs into method bodies and this cannot

be done for the Java core classes that provide the services.

Access to Distributed Objects

Friends [Fabre et al. 1995, Killijian et al. 1998, Killijian & Fabre 2000], DSOM [Benantar

et al. 1996] and mCharm [Ancona et at. 1999, Cazzola 2000] are examples of enforcing

distributed access control using MOPs. Each mechanism uses one of two ways to imple­

ment distributed access control: (1) Use a MOP to implement distributed access control by

customising the behaviour of the components implementing remote method invocation im­

plementation. (2) Provide a MOP for remote method invocations that hides implementation

details and allows distributed access control policies to be specified declaratively.

In the first mechanism, the choice of abstraction level provided by the protocol con­

strains the types of policies that can be enforced. For example, distributed access control

relies upon authentication of the remote client and this is normally done using some form of

digital signature. Implementing this requires being able to manipulate messages as if they

were collections of bytes. This is because a digital signature must be calculated using byte

values. Furthermore, since the digital signature must travel with the message, the message

CHAPTER 2. RELATED WORK 51

abstraction must support concatenation so that the result can be added to the messaae be-
e

fore transmission across the network. This is relatively straightforward in a non type-safe

language like C++ as you could simply cast a message as an array of bytes. for example in

the Friends architecture. However, it requires careful choice of abstraction in a type-safe

language like Java because type safety may prevent manipulating a message as an array of

bytes. In a type-safe language, the remote method invocation framework might need to be

modified to provide the necessary access. For example, mCharm uses a replacement for

the standard Java RMI that provides access to remote method invocations as untyped byte

codes.

The second mechanism doesn't expose all the details of the remote method invocation

implementation. Instead, it provides an interface that allows the security policies to be

specified declaratively and fixed enforcement code implements them. A reflective security

architecture that takes this mechanism is DSOM, which is a reflective implementation of

the CORBA security architecture. DSOM has a per-orb quality of protection object that

specifies the type of protection for messages and access control policies to use when per­

forming remote method invocations.

The choice of approach depends on the desired flexibility. The first mechanism allows

arbitrary policies to be implemented but requires more skill on the part of the programmer.

The second mechanism is easier to use but only offers a fixed set of policies because the

programmer cannot write a metaobject that can directly manipulate messages. In particular

it is not suitable when using MOPs as a technique to use an existing security architecture.

2.6.2 Evaluation

Metaobject protocols provide least privilege although existing MOPs tend to address either

access control for objects or distributed objects rather than both. Complete mediation has

been discussed in relation to compile-time and runtime MOPs but not for loadtime MOPs.

None of the CUtTent implementations provide mediation of both accesses to local and dis­

tributed objects. Loadtime MOPs provide a better economy of mechanism than other types

of MOPs. A clean separation of concerns is central to the idea of a MOP but has not been

CHAPTER 2. RELATED WORK

demonstrated with real-world, third-party applications. Table 2.5 summarises the e\alua­

tion of the applications of metaobject protocol techniques surveyed in this section.

The Simple Secure MOP for Java is the only example of a MOP that can be used

to enforce access control policies upon compiled code without running into the problem

of economy of mechanism faced by runtime MOPs. It differs from the loadtime MOP

developed in this thesis because it is a deliberately simple MOP designed to explore issues

of least privilege in regard to metaobjects. The Simple Security MOP for Java approach

has not been applied to the problem of enforcing access control policies upon resources

provided by libraries or distributed resources and doesn't explore the issues of complete

mediation or economy of mechanism.

Table 2.5: Evaluation of MOP techniques.

Technique Description Separation Least Complete Economy
of Privilege Mediation of
Concerns Mechanism

Compile-time MOP Metaobjects enforce Good Fine Examples of Includes
policy at runtime control over compiler
and bind to base distributed and MOP
level at compile objects but implementation

time. not local. inTCB

Loadtime MOP Metaobjects enforce Good Fine Examples of Only include,>

policy at runtime control over MOP

and bind to base local objects implementation

level at load but not inTCB

time. distributed.

Runtime MOP Metaobjects enforce Good Fine Examples of Includes

policy at runtime control over runtime

and bind to base local objects and MOP

level at runtime but not inTCB

time. distributed.

CHAPTER 2. RELATED WORK 53

Separation of Concerns

Implementing enforcement code within the meta layer should allow for a clean separation

of concerns. Metaobjects can be designed, implemented and tested separately from the

objets to which they will be bound. The examples reviewed in this chapter do not address

how successful or not this approach is when applied to real-world applications. Example

applications developed to demonstrate the approach suffer from being developed with a

particular purpose in mind. This is problematic because the problem domains from Chap­

ter I make no assumptions about the structure of the application or component that will be

subject to the policy.

Least Privilege

MOPs provide least privilege although the MOPs reviewed above only provide either access

control for objects or distributed objects rather than both. At a minimum most MOPs

provide access control at the level of individual methods. MOPs providing control over

other aspects of object behaviour allow even finer-grained control. The Simple Security

MOP takes the discussion of least privilege further than simply the granularity of control

over access to base-level objects, it considers the privileges granted to base-level and meta­

level objects. The position taken is that meta-level objects should not be granted the same

privileges because they only need to check privilege rather than use it.

Complete Mediation

Only mCharm and Guarana consider the problem of implementing complete mediation.

Complete mediation is important because otherwise there is no guarantee that the desired

access control policy can be enforced. This requires non-bypassable binding between the

base-level object and the meta-level object and preventing the metaobject implementations

or state being tampered with at runtime. Should the binding be bypassed then accesses

could escape access control checks and should metaobjects be tampered with then the ac­

cess checks could be removed. The mCharm architecture [Cazzola 2000] argues that if the

metaobjects are located on separate hosts that are protected then they cannot be tampered

with. There is no discussion of how the binding to the metaobject is achieved. Because

CHAPTER 2. RELATED WORK

mCharm relies upon a compile-time protocol, which customises the compiler, the binding

relies upon correct rewriting of source code and the use of mechanisms such as class renam­

ing and language-level visibility (private, protected, etc.) to prevent bypass. No specific

argument is made about the effectiveness of the binding. Guarana provides complete medi­

ation by preventing access to the meta level by base-level objects. Metaobjccts arc invisible

to the base level (preventing tampering) and reconfiguration of the binding between meta

and base levels can be controlled thereby preventing the base level removino the bindino
~ e- e-

between the base and meta level. However, the protection of the binding relies upon correct

implementation of the Guarana virtual machine. Requiring changes to the VM introduces

the possibility of error and requires a large trusted computing base.

Economy of Mechanism

Regarding economy of mechanism, the type of behavioural reflection used has a direct

impact upon the size and complexity of the enforcement code. Remembering the argument

for object code rewriting versus source code rewriting it can be argued that source code and

compile time binding requires re-implementation of compiler semantics because they both

deal directly with application source code, a non-trivial task. Similarly, runtime requires

modification of the execution environment, also a non-trivial task. This implies a relatively

large and complex enforcement code when compared with code rewriting mechanisms.

Loadtime MOPs should have a smaller economy of mechanism because, with regard to

MUs, the compiler does not have to be part of the trusted computing base. Also, it is easier

to parse compiled code than source code leading to a smaller implementation of the tool

that realises the MOP.

2.7 Goals of Thesis

The previous sections evaluate techniques and implementations of those techniques against

criteria for aood security enoineerino and a clean separation of concerns. The results of
I:> I:> I:>

the evaluation are summarised in Table 2.6. Only in-lined reference monitors and loadtime

metaobject protocols meet all the requirements. However, in-lined reference monitors do

CHAPTER 2. RELATED WORK

Table 2.6: Evaluation of security engineering techniques
Technique Description Separation Least Complete Economy

of Privilege Mediation of
Concerns Mechanism

Operating Fixed placement of Good Coarse Limited control Complex
systems enforcement code over user-level

within kernel. code
Libraries Fixed placement of Good Coarse Limited Language

enforcement code dependent
within kernel.

Manual Place enforcement Poor Fine Complete Language
insertion as required within dependent

application.

Capabilities Treat object Moderate Fine Limited Language
references as dependent
capabilities.

Proxies Place enforcement Moderate Fine Limited Language
code within dependent
proxies.

Inheritance Place enforcement Moderate Fine Complete Language
within superclass. dependent

IRMs Policy determines Good Fine Control over Good

in-lining of local objects

enforcement. code but not

within compiled distributed

code. Replaces
existing security

architecture.

Compile-time Metaobjects enforce Good Fine Examples of Includes

MOPs policy at runtime control over compiler

and bind to base distributed and MOP

level at compile objects but impl.

time. not local inTCB

Loadtime Metaobjects enforce Good Fine Examples of Only includes

MOPs policy at runtime control over MOP

and bind to base local objects impl.

level at load but not inTCB

time. distributed

Runtime Metaobjects enforce Good Fine Examples of Includes

MOPs policy at runtime control over runtime

and bind to base local objects and MOP

level at runtime but impJ. in TCB

time. not distributed
I

CHAPTER 2. RELATED WORK 56

not meet the requirement to enforce access control policies using existing security archi­

tectures and existing implementations cannot implement distributed access control. On the

other hand, existing loadtime MOPs have not been demonstrated to meet all of the criteria

and have not been used to implement distributed access control policies.

The goals of this thesis are to design and implement a loadtime MOP for Java that can

be used to enforce both types of access control policy, enforce access control policies upon

resources provided by applications or libraries while explicitly addressing the problem of

complete mediation. The specific goals are to:

1. Implement a MOP that enforces access control policies upon compiled code.

2. Implement a MOP that controls access to both application, library and operating

system resources.

3. Implement a MOP that satisfies the requirements for:

• Least privilege

• Complete mediation

• Economy of mechanism

• Clean separation of concerns

4. Demonstrate a clean separation of concerns compared with conventional software

engineering techniques that still allows reuse of existing security architectures.

Chapter 3

Design and Implementation of Kava

This chapter provides an overview of the design and implementation of Ka\ a. Ka\ a j" a

metaobject protocol for enforcing acce"" control policies upon compiled code. It j" in­

tended to allow standard Java security features to be used for enforcement -.0 the meta

level is written using the Java programming language. Thi" allows it to make u-.e of the

Java language features and existing security architectures when implementing enforcement

code.

There are three main sections to this chapter: (I) Section 3. J prmide" an men iew or
the main elements of the Kava metaobject protocol; (2) Section 3.2 provide" an men jew or
Kava's implementation; (3) Section 3.3 evaluate" Kava against the goal-. from Section 2.7.

The following features of Kava specifically addre"" the goals from Section 2.7:

• Kava's metaobject protocol includes extra metaobject method" to allow metaobjech

to control access to application, library and operating -.y"tem resource". Thi.., i.., di..,­

cussed in Section 3.1.1.

• Special care has been taken to include acces"e" that are not represented by method

invocations to ensure least priyi\ege is provided. This is di"cu..,,,ed in Section 3.1.2.

• MOPs provide a clean separation of concerns by allowing non-functional concerns tl)

be modu1arised. Additionally, Ka\a allem s specialisation through parameterisation

of MUs. This is discussed in Section 3.1 . .5 .

.57

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 58

• Kava exploits Java's loading and dynamic linking architecture to allow metaobjects

to bind to classes provided as compiled code. This is discussed in Section 3.2.1.

• Kava's MOP satisfies the principle of least privilege because all accesses that are

possible in Java can be controlled by a metaobject bound to a base-level object. This

has required special care to include the control of static members as discussed in

Section 3.2.8 .

• The arguments for complete mediation discussed in Section 2.5.1 have been applied

to Kava's implementation. However, additional questions particular to MOPs and the

implementation of Kava must be considered such as binding, the Java reflection API,

how inheritance is handled and so on. This is discussed in Section 3.2.9.

3.1 Language Design of Kava

This section provides an overview of the main elements of the Kava mctaobject proto­

col. The role of metaobjects in the protocol is to allow per-instance changes to the Java

language model. A meta-level programmer implements the standard Kava metaobject pro­

tocol or subclasses a default metaobject implementation. The metaobject protocol allows

redefinition of method invocation by an object, method execution, field access, creation of

new instances of classes by an object and exception raising.

Each object at the base level may have an associated metaobject. The association be­

tween objects and metaobjects is established at loadtime. This is declaratively specified

in a special binding specification that specifies the associations between base-level and

metaobject classes. Kava does not provide any special features for composing metaobjects

together at the meta level, though it is possible to write meta-level programs using standard

patterns for object collaboration such as the chain of responsibility pattern [Gamma et al.

1995].

Meta-level interceptions (MUs) cause control to switch from the base level to meta

level at runtime, the context of the behaviour being brought under control is reified and

made available to the metaobject. This allows the metaobject to choose a strategy ba,>ed

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

Listing 3.1: I MetaObject Java interface representing the Kava metaobject protocol.

public interface IMetaObject {
II behavioural reflection
public void beforelnvokeMethod (II nvokeContext context);
public void afterlnvokeMethod (1lnvokeContext context);
public void beforeExecuteMethod (I ExecuteContext context);
public void afterExecuteMethod (I ExecuteContext context);
public void beforePutField (I FieldContext context);
public void afterPutField (I FieldContext context);
public void beforeGetField (I FieldContext context);
public void afterGetField (I FieldContext context);
public void beforeNewOperator (INewContext context);
public void afterException (IExceptionContext context);
II introspection
public Object getBase ();
public boolean boundToClass ();
public String getClassname();

59

upon the context of the MLI and modify the context if required. For example, changing the

results of a method invocation or field access.

Reuse is facilitated in Kava because each MLI may have a meta parameter associated

with it. This allows specialisation of a metaobject for a new object by modifying the bind­

ing specification and goes beyond the usual notion of specialisation of mctaobjects through

inheritance.

3.1.1 Overview

The Kava metaobject protocol is represented by a Java interface as shown in Listing 3.1.

Each Java method on the interface represents a base-level behaviour that can be redefined

by Kava.

To provide least privilege and complete mediation, all possible accesses to an object

must be represented. Only controlling callee-side invocation (method execution) i" insuffi­

cient because the Java VM allows direct access to an object"s state and there is a technical

difficulty in binding metaobjects to Java libraries or services provided to Java applications.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 60

Therefore, the Kava MOP includes methods that do not necessarily appear upon a C++

MOP or other Java MOPs.

In addition to methods that allow redefinition of base-level behaviour, others support

introspection using the java.lang.reflect package.

The Kava MOP uses the convention that each type of access (or behaviour that rna) be

changed at the meta level) has a before and after metaobject method. The before metaob­

ject method defines what happens before the base-level behaviour and the after metaobject

method defines what happens after the base-level behaviour.

Every Kava metaobject must implement this interface. To ease the programming task

for a meta-level programmer a default implementation of the interface is provided that im­

plements the introspection methods. Normally, programmers will extend the (MetaObject)

class and override the before/after methods that correspond to the base-level behaviour that

they want to modify. Note that each method takes a single argument representing the reified

base-level context. The context is particular to the type of interception, for example when a

switch to the meta level takes place upon interception of a field access, the context is rei fled

as a context object with an lFieldContext.

Kava metaobjects can invoke any code written in Java because they are themselves writ­

ten in Java. In particular the metaobjects can make use of any existing security architecture

implemented in Java.

3.1.2 Kava Metaobject Protocol

The following sections discuss each type of metaobject method and how they relate to

enforcement of access control policies. The metaobject methods are:

• Invoke metaobject methods

• Execute metaobject methods

• PutField and GetField metaobject methods

• New metaobject method

• Exception metaobject method

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 61

• Introspection metaobject methods

Invoke Metaobject Methods

The metaobject methods beforelnvokeMethodO and afterlnvokeMethodO allow a meta-level

programmer to write code that executes before an invocation takes place and after an invo­

cation has taken place, and the result of the invocation is about to be returned to the caller.

This allows policies to be imposed that change the arguments being used in an invocation,

control whether a method can be invoked, change the result of an invocation or prevent an

invocation from taking place.

Invoke and execute metaobject methods are duals of each other; invoke methods im­

pose constraints upon which methods a base-level object may invoke, and execute methods

impose constraints upon which methods belonging to the base-level object may be invoked

by other objects. In theory, either could be used in place of the other. Enforcing controls

over what methods may be invoked by others is more straightforward because its imple­

mentation simply requires no more than the transformation of the method being invoked,

rather than all possible methods performing this action. However, the requirement for an

invoke metaobject method arises because it is impossible in Java to intercept the loading of

some classes and transform them. The reasons for this are discussed in Section 3.2.1.

Execute Metaobject Methods

The metaobject methods beforeExecuteMethodO and afterExecuteMethod) allow a meta­

level programmer to write code that executes before and after a method body is executed.

It allows implementation of policies, which are similar to the invoke methods, but enforces

them on the object being invoked rather than the object making the invocation. This method

implements the same functionality as the invoke metaobject methods in reflective languages

such as OpenC++ [Chiba & Masuda 1993]. Note that a constructor of an object is an

ordinary method, so this method can be used to redefine object initialisation.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 62

PutField and GetField Metaobject Methods

Some access control policies require control over access to the state of the target object.

For example, a Bell-LaPadula [Bell & LaPadula 1976] style policy may require that the

label associated with an object is changed, depending upon the clearance of the subject

associated with an update of an object's state.

The metaobject methods beforePutFieldO and afterPutFieldO allow code to be executed

before and after fields are updated. For example, the code can be used to update the labels

associated with objects when their state is changed. The metaobject methods beforeGet­

FieldO and afterGetFieldO allow code to be executed before and after fields are read.

Note that the fields that are the target of these methods do not necessarily belong to the

object that is bound to the metaobject defining PutField or GetField. This is an artefact of

the Kava implementation. There is no way to intercept state update other than wrapping the

byte code instructions for PutField or GetField. Subject to the visibility of the target field

(public, protected, package or private), any object can access the state of another object

without invoking an accessor method belonging to the target object's interface. Therefore

to implement least privilege and complete mediation, the metaobject protocol must allow

these operations to be redefined at the meta level. The metaobject can redefine how the

object to which it is bound accesses other object's state.

New Metaobject Method

As mentioned above, the execution of a constructor can be intercepted and redefined at the

meta level by redefining the execute metaobject method. This is useful when adding extra

initialisation steps to a base-level object or initialising a metaobject. However, it may be

impossible to do this if the object is implemented as system-level code or the allocation of

space for the new object might itself represent a violation of an access policy.

Alternatively, another approach might be to specify the constructor of the target ob­

ject's class when binding a metaobject that redefines the invoke metaobject method. The

problem is that the byte code for creating a new instance is different from simply invok­

ing a constructor. The Java VM will create a new instance of an object and then calls its

constructor. This could result in static code being executed and this code might subvert the

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 63

access control policy.

Therefore, the Kava MOP goes beyond controlling execution and invocation. It allows

requests for new instances of objects to be intercepted and redefined. This is done by im­

plementing the beforeNewOperatorO metaobject method. which allows code to be executed

before a new instance of an object is created. The metaobject redefining the creation of new

instances is bound to any object attempting to create one of the target objects.

Exception Metaobject Method

The Kava MOP allows exception raising to be redefined because not including exception

raising as a redefinable behaviour would introduce a covert channel. Otherwise, the de­

veloper of an object that will be have its behaviour constrained by the Kava MOP could

bypass the MOP simply by raising exceptions and using them to return results to a client.

Kava allows exception raising to be intercepted at runtime but only permits changes to

the raised exception rather than allowing exception raising to be suppressed. This is be­

cause programmer's develop their programs with a termination model in mind and Kava

should not confound programmer's expectations. This is why, in Kava, only an afterEx­

ception metaobject method is provided. This allows additional behaviour to occur when an

exception is raised and the exception instance to be substituted by another that is a subtype

of the original instance.

Introspection Metaobject Methods

In order to implement an access control policy, a metaobject may need to introspect upon

the state of the object to which it is bound. For example, in a health record context where

access decisions must take into account the age of the patient recorded within the record

itself.

The three introspection methods are designed to support these operations and default

implementations for these methods are provided in Kava. They do not provide the intro­

spection capability themselves, but provide the information needed to use the java.lang.reflect

package for introspection.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

As a metaobject can be bound either to a class (to support static members. see Sec­

tion 3.2.8) or an instance of a class there needs to be a means of detecting the fact. A

metaobject can determine what it is bound to by invoking boundToClassO. Either true \\ ill

be returned, indicating that it is bound to a class, or false will be returned. indicating that it

is bound to an instance of a class.

A metaobject bound to an object can obtain a reference to the object that it is bound

to by invoking getBaseO. The metaobject can then use the java.lang.reflect package to

introspect upon the state of the instance. A metaobject bound to a class can get the name

of the class by invoking getClassnameO. As for the case of being bound to an instance. the

java.lang.reflect package can be used to introspect upon the state of the class. Note that in

Java, classes can define static members that maintain per-class state.

To support complete mediation, metaobjects are hidden from the base level to prevent

tampering (see Section 3.2.9) although meta-level programmers can implement their own

mechanism if they wish. For example, a registry class can be used for metaobjects to

register themselves with when initialised. Base-level objects could lookup their associated

metaobject by using their own object pointer as a key. The important point. however. is by

default, Kava does not expose the meta level that is enforcing security policies.

3.1.3 Context Parameters

All base-level behaviours have a context that must be accessible for the implementation of

access control policies. Depending upon the base-level behaviour being redefined. the con­

text's content will vary. Kava uses the concept of Context objects to simplify the metaobject

protocol, which allows the possibility of lazy reification [Masuhara, Matsuoka, Watanabe

& Yonezawa 1992]. In Kava there is a partial implementation of lazy reification in that run­

time instances of java.lang.reflect.Method, java.lang.Class or java.lang.reflect.Field are only

created on demand. This is achieved by reifying only the minimum information needed to

derive them at runtime. Ideally, even this minimal information would have its reification

deferred until the meta-level program actually needs to access them but because the Java

language does not provide direct access to a thread's stack, the current implementation of

Kava cannot do this.

CHAPTER 3. DESIGN AND IMPLEME TATIO OF KAVA

K ava differs from other Java MOPs that simpl repre ent conte t e pli ill) in the

metaobject methods. For example, Javassist [Chiba 2000] reifie the conte t of interc pt­

ing field accesse as the field name and value being et or read . Th i \\a e\pl red in

Dalang [Welch & Stroud I 999a], a predecessor of Ka a, but it led to t\i 0 pr blem, . Fir. t.

it lead to method interfaces that were unwie ldy becau 'e of the number of c nle 1 param­

eters. Second, i t meant that it would be more difficult to implement laz rein ati n if lhe

parameters were ordinary Java classes such a Object or String, becau e th re is n \\'a

to redefine their implementation. B y providing a generic Context object il i~ P . ~ib l e to

provide implementations that can take advantage of Ja a YM , UPP0rl for laz r ificati n.

Each metaobject protoco l method i pa ed an in lance f a Context obj Cl and a

it using the appropriate interface (see Figure 3. 1 to see the hierarch). F r e ample, Li~l ­

ing 3.2 shows the interface IFieldContext that pro ide acce . to the reified conte t of a

fie ld operation (e i ther a get or a put fie ld operati on). A meta-level programm r u~ ~ th

IFieldContext interface to acce s the reifi ed contex t of a field operation. Sthe i~ ab le t lnd

out the name of the fie ld (getFieldName()) , the type of the fie ld (getFieldType()), the va lu

either being returned from the field acce , or the value that i being \I rill n 1 the field

(getFieldValue()) and is able to change the va lue that i ' either being returned I' b ing u~ed

to set the field va lue (setFieldValue()).

/

/
/

/

cc interface »

lExecuteContext

7-
\
\
\

" interface »

fTllrgetContext

cc Inte rface »

IExceptlonContext

)::,1
/

/

!> \l "'-
\ "'-
\

"

«interface » «interface »

RnvokeContext lNewContext

,--' --"'--" ---,
«interface "

Wit: IdC onte x t

Figure 3. 1: Context hierarchy. All contexts implement lContext.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

Listing 3.2: IFieldContext interface.

public interface IFieldContext extends ITargetContext
public String getFieldName ();
public Type getFieldType ();
public Object getFieldValue ();
public void setFieldValue (Object 0);

66

As the metaobject protocol works with a uniform model of objects, primitive types are

not used for methods that introspect upon values or allow the setting of values. Instead, if

the field is one that has a primitive value type then wrapper classes must be used to coerce

primitive values into objects and vice-versa.

Unlike a standard CLOS before/after metaobject protocol [Attardi, Bonini, Boscotre­

case, Flagella & Gaspari 1989], Kava allows some behaviours to be overridden. Base-level

behaviours can be overridden where the behaviour's reified context object implements the

method overrideBaseO. For example, the Listing 3.3 shows how method execution can be

overridden. Kava ensures that if the overrideBaseO method is invoked, the matching after

metaobject method will not be invoked.

3.1.4 Binding

Kava binds metaobjects to objects at loadtime. This allows Kava to be used with compiled

user-level code, a particular benefit because source code may not always be available to

meta-level programmers. Additionally, it is actually more straightforward to parse Java

compiled code than source code and working with compiled code provides a better econ­

omy of mechanism (as discussed in Section 2.5.1). In Java, all code is encapsulated by a

class. Therefore, to bring all code under the control of policies implemented at the meta

Listing 3.3: Implementation of a metaobject method that overrides execution of base-level
methods.

public void before Execute Method (I ExecuteContext context) {
context. overrideBase ();

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 67

level, each class loaded should be bound to a metaobject class. To allow per-instance poli­

cies at runtime, each instance should also be associated with a metaobject class. As Java

also supports static members and methods, the implementation of Kava for Java also allows

the binding of a metaobject to a class itself as this allows static methods and field accesses

to be brought under the control of the meta level.

Unlike compile-time metaobject protocols, Kava does not allow programmers to anno­

tate source code with binding information. Kava works with compiled code so the binding

information is supplied separately to the base-level program. The binding specification is

represented at loadtime by a BaseMetaConfiguration object and a default implementation

has been provided that parses an XML file located in the local file system. Alternative

implementations can be used that download specifications from a central server so that an

organisation's use of meta objects to enforce security could be centrally managed. The DTD

for the XML binding specification is shown in Listing 3.4.

The Kava binding specification allows metaobjects to be bound on a per class and per

behaviour basis. This means that for an object of one class, the invocation behaviour can he

intercepted and redefined by the metaobject bound to the object, while for another object

of another class, both the invocation and execution behaviours can be intercepted and rede­

fined. Since only those behaviours that are of interest to the meta level are intercepted, the

application will perform far better than one where all behaviours are intercepted. This no­

tion of fine-grained binding of metaobjects to objects is inspired by the Iguana metaobject

protocol [Gowing & Cahill 1996] that allows the customisation of metaobject protocols.

The Kava binding specification is also used to parameterise metaobjects by allowing

meta parameters to be specified for all behaviours, these are discussed in Section 3.1.5. In

addition, the specification allows optimisation hints to be passed to Kava (for example, if

not all the context is required to be reified).

3.1.5 Meta Parameters

Each metaobject is an instance of a metaobject class. Inheritance can be used to spe­

cialise metaobjects. In addition, each meta-level interception can be parameterized to al­

low metaobjects to change their tolerances or strategies according to parameters encoded

CHAPTER 3. DESIGN AND IMPLEMENTATION OF K~ v.--\

Listing 3.4: DTD for Kava binding specification

<?xml version=' 1 .0' encoding=' UTF-8'?>
<!-

OTD for kava binding specifica tion .
Version O.94a

->

<! ELEMENT binding (class *»
< ! ELEMENT c I ass (i n t e r c e p t *) >

<! ATTLIST class classname CDATA #REOUIRED>
<! ATTLIST class metaclass CDATA #REOUIRED>
<! ATTLIST class extends CDATA "" >

<!ELEMENT intercept (execute?, get?, put?, raise?, invoke?, new?»
<!ELEMENT execute (optimisations?, method?»

<! ATTLIST execute metaparameter CDATA "" >
<!ELEMENT get (optimisations?, method?, field ?»

<! ATTLIST get metaparameter CDATA "" >
<!ELEMENT put (optimisations?, method?, field ?»

<! ATTLIST put metaparameter CDATA "" >
<!ELEMENT raise (optimisations?, method?»

<!ATTLIST raise metaparameter CDATA "">
<!ELEMENT invoke (optimisations? method? targetmethod?»

<!ATTLIST invoke metaparameter CDATA "">
< ! ELEMENT new EMPTY>

<!ATTLIST new targetclass CDATA #REOUIRED>

< ! ELEMENT 0 P tim is at ion s EMPTY>
< ! ATTLIST 0 P tim is a t ion s rei f y (r e if Yin 0 rei f y) "r e i f Y ">
<!ATTLIST optimisations reflect (reflect I noreflect) "reflect ">
<!ATTLIST optimisations before (beforelnobefore) "before">

<!ATTLIST optimisations after (afterlnoafter) "after">

<! ELEMENT method (arguments ?»
<! ATTLIST method name CDATA "*" >

<!ELEMENT arguments (type *»
< ! ELEMENT t Y P e EMPTY>

<!ATTLIST type name CDATA #IMPLlED>

< ! ELEMENT fie I d EMPTY>
<!ATTLIST field class CDATA "*">
<!ATTLIST field name CDATA "*">
<!ATTLIST field type CDATA #IMPLlED>

<!ELEMENT targetmethod (arguments?»
<! ATTLIST targetmethod class CDATA "*">
<!ATTLIST targetmethod name CDATA "*">

<!ELEMENT metaparameter CDATA "*">

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 69

within the binding specification file. Each binding specification includes meta parameters

that are passed to the metaobject when a meta-level interception takes place. This allows

easier reuse of metaobjects because a metaobject can implement several different strategies

and the binding specification can encode which strategy is most appropriate for a particular

program. For example, it may be necessary to distinguish between methods that update

the state of an object from those that don't. A metaobject could be implemented that hard­

codes the names of the methods that update the state of an object. Reusing the metaobject

requires updating its list of methods to include any new methods belonging to the classes

implementing the program it is going to be reused with. In Kava, parameterisation al­

lows the list of methods to be encoded in a binding specification file that is written for the

particular program the metaobject is being reused with. At runtime, the parameters are

passed to the metaobject. This avoids the need to rewrite the metaobject. This notion of

parameterisation is based upon CodA's [McAffer 1995] approach to parameterisation.

3.1.6 Meta-Level Cooperation

Implementing access control policies may require multiple metaobjects with each metaob­

ject addressing a different security concern. Although Kava only allows one metaohject

to be explicitly bound to each object, Kava does not preclude composing metaohjects to­

gether at the meta level to cooperate in changing the behaviour of a base-level object.

This is because the chain of responsibility pattern [Gamma et al. 1995] can be used to

compose metaobjects together at the same meta level to create a complex meta architec­

ture (similar to the approach described in Mulet et al. [Mulet, Malenfant & Cointe 1995],

or Olivia [Oliva & Buzato 1999]. Another approach uses reflection recursively to build

a tower of metaobjects (the approach adopted by FRIENDS [Fabre et al. 1995, Fabre &

Perennou 1996]). The advantage of using chaining is that each metaobject may introspect

on the base-level object whereas with a metaobject tower, only the base metaobject may

introspect on the base-level object. In addition, with chaining, the cost of interception and

reification of method calls is only incurred once, because the metaobject classes involved in

the tower do not need to have meta-level interceptions added. Perhaps the tower approach

is appropriate only when moving to a higher level of abstraction such as in the ABCUR

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 70

[Briot et al. 1990] approach.

3.1.7 A Misbehaved Applet

This simple example demonstrates how Kava can be used in practice. The basic scenario

is that a badly-designed or maliciously-designed applet may crash a host system by con­

suming all its resources by creating an unbounded number of top-level windows. In order

to protect against this attack, the system should track the number of windows created and

either block or throw an exception when a predetermined limit is exceeded. The class used

to generate top-level windows is the Java library class Frame.

Using Kava, a simple preventative approach is to implement a mechanism limiting the

creation of new instances of Frame objects. This can be done by creating an implementation

of a Metaobject that monitors creation of Frame objects. A simplified implementation of

the metaobject is shown below:

import kava. *;

public class ResourceMonitor extends Metaobject
{

public void beforeNewlnvocation (INewContext context)

{
if (context. getTarget () instanceof Frame}

incrementFrameUsage () ;
if (exceededMaximumFrame () }
{

throw new
RuntimeException ("Too~many~frames~created~by~applet");

Kava performs a static analysis of the applet as it is loaded and binds a Resource­

Manager metaobject to any object invoking a new operation and the metaobject method

beforeNewlnvocation redefines how new instances are created. The process is as follows.

First, it checks if the target of the invocation is an instance of a Frame class. If this i"

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 71

the case it cal1s a method incrementUsage that increments a global count of the number

of instances of that class and its superclasses. To avoid a malicious program subcla~sing

Frame to avoid being controlled, superclasses are counted as an instance of a subclass of

a monitored class that might be created. Then it calls a method exceeded Maximum that

checks if the maximum limit for the number of instances of any monitored class has been

exceeded. If the limit has been exceeded, a runtime exception is thrown and the execution

of the applet halts.

The binding specification defining this binding is shown below:

<binding>
<class classname=" *" metaclass=" ResourceMonitor" >

<new tar get c I ass = " * " / >
</class>

</binding>

3.2 Kava Implementation

This section provides an overview of the implementation of the Kava metaobject protocol.

The main elements in the architecture are the application-level class loader used to inter­

cept class loading, the meta-configuration object that parses the binding specification and

the transformer objects that insert meta-level interceptions according to declarations in the

binding specification. The main steps are to add metaobject pointers to the base-level class,

add MUs around blocks of byte codes such as methods and add meta-level interceptions

around individual byte codes. Choosing where to add the MUs is driven by the binding

specification. The program being brought under the control of the metaobject protocol

must be analysed c1ass-by-c1ass and bytecode-by-bytecode to see if any of the declarations

in the binding specification apply. If they do then the appropriate MU is added.

CHAPTER 3. DESIGN AND IMPLEME TATIO OF KAVA

3.2.1 Overview

Kava i written purely in Java and runs using an unmodified er ion of the Java De\ el p_

ment Kit
l

and uses the BCEL (Byte code Engineeri ng Library) [Dahm 199 1 to reali 'e the

binding between metaobjects and objects.

The implementati on of Kava exploits thi . ability to intercept cia s load ing of applicati n

classes by providing an 0pp0l1unity to instrument cia fi le. before pa ' ing the c l as~ file I

the Java YM for instanti at ion. Kava wa the fir t implementati on of a meta bje t prol

for Java that exploit thi s feature [Welch & Stroud 1998b, Welch & lroud 1999 J and

builds upon existing work on addi ng new fun cti onali ty to ex i ting cia ' es [D 'lhm 199 .

Keller & Holzle 1998, Czajkowski & von Eicken 1998].

1 loadClass()

: kava ,URLClassloader

1 transform()

transform() transform()

1 transform()

: MelhodTransformer

Figure 3.2: High-level object coll abo ration di agram how ing object and their inte rac ti o n ~

when a class is loaded into the Java YM .

Figure 3.2 shows the col1 aborations between the main object making up Ka a that re­

ali se the binding. Kavakava i a replacement fo r the java SDK too l (ee Li ting 3.5). 1L

is responsible fo r load ing an application' s root clas and implementing the Ka a metaob­

ject protocol before invoking the mainO method of the cIa . CIa 'e are loaded u ' ing the

'The mos t recent ver ion or JOK used is IA . but 111 0 t of the work de cribed in Lhi s th es i~ Web done u ~i ng
JOK 1.2,

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 73

kava.URLClassloader class loader. Because the root class is loaded using the URLClass­

loader, subsequent application-level classes are also loaded using this class loader.

Listing 3.5: Kavakava replacement for Java.
public class Kavakava {

public static void main (String args []) throws Exception
II parse arguments

URLClassLoader loader =
new kava. runtime. URLClassLoader (...) ;

Class c = loader.loadClass(args[O]);

II construct arguments

II construct parameters so and look up the main method
Class [] parameters = new Class [] { arguments. getClass ()};
Method method = c. getMethod ("main" , parameters);
try {

method.invoke(null, new Object[] arguments });
catch (1llegalAccessException e)
System. err. p r in tin (e) ;
catch (I nvocationTargetException e)
System. err. println (e);

At runtime, the binding between metaobjects and objects is represented by a meta­

configuration policy object. All meta-configuration policy objects are instances of classes

that extend the BaseMetaConfiguration class. Each policy implementation can determine

the bindings in different ways. For example, in Figure 3.2 the JDOMMetaConfigHandler

object is an instance of a class that extends BaseMetaConfiguration and determines the

metaobject and object bindings by parsing an XML binding specification resident on the

local file system. As an alternative to loading the binding specification from the local file

system, an implementation of BaseMetaConfiguration might fetch the binding specification

from a remote server and verify it using a digital signature. The meta-configuration object

determines how to modify the class by parsing the binding specification and will invoke

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

the AddMetaObject transformer to add the fields and methods necessary to bind an object

to a metaobject. It then inserts hooks into method bodies (using MethodTransformer) and

around individual instructions (using InstructionTransformer). These hooks switch control

from the base level to the meta level (the associated metaobject) when the base-Ie\el ob­

jects carry out certain behaviours. Finally, after rewriting the class to include these traps,

the class loader passes an internal representation of the class to the Java VM's byte code

verifier. The significance of this is rewritten classes that must still honour rules such as type

safety.

3.2.2 Intercepting Class Loading

Kava can intercept class loading because Java allows redefinition of class loading. Class

loaders support dynamic loading of classes on the Java platform [Liang & Bracha 1998].

Classes are distributed as binary representations known as class files. Class files do not need

to be real files. A class file may be stored in a database, memory or downloaded across a

network. The Java VM uses class loaders to load class files and create class objects. Class

loaders are ordinary objects that can be defined in Java code. Every class loader is an

instance of the class Classloader. The Classloader class provides a loadClass(String name)

method that loads a specified class into the Java VM. This involves reading the byte stream

representing the compiled class and passing it to a Java native method (defineClass) that

instantiates the class within the Java VM itself.

A primordial class loader used to bootstrap class loading and load all Java core sy"­

tern libraries is implemented within the Java VM. The application-level class loaders are

implemented by extending the Classloader class and overriding 10adClassO with an imple­

mentation specific method for loading classes. Should a class loader not be able to locate a

named class, it delegates the class loading to its parent class loader. Application-level c1a~s

loaders cannot override the loading of Java's system libraries because this would allow an

attacker to substitute an untrustworthy class for a system class such as java.lang.Object or

java.lang.String.

Having to call loadClass explicitly to load classes would make programming difficult,

so Java provides a way to implicitly invoke 10adClass upon an appropriate class loader.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 75

For example, an application class referred to within a class loaded by an application-level

class loader X will be implicitly loaded by X without requiring an explicit invocation of

10adClass.

Kava provides a class loader based upon the Java URLClassLoader class for loadino and
~

rewriting application classes. This class overrides the default loadClass method and dele-

gates the loading of classes across the network or local filesystem to a ne\',' method called

defineClass. The defineClass method is shown in Listing 3.6. The method has two param­

eters: the name of the class to define and an instance of a Resource as parameters. The

Resource is a representation of the unloaded class that implements a method for fetching

the bytes representing the class and a method for getting the security certificates associated

with the class. This array of bytes is then converted into a JavaClass, which is a BCEL

representation of an unloaded class that allows manipulation of the class structure. This is

then passed to a Kava BaseMetaConfiguration class that performs the changes to the class

necessary to implement the Kava metaobject protocol. The JavaClass returned from this

method is then converted back to an array of bytes before finally being passed to the Java

VM with a set of security certificates that are used to authenticate classes.

3.2.3 Adding Meta-Level Interceptions

The Kava metaobject protocol is implemented using the technique of byte code rewriting.

Kava makes use of the Byte Code Engineering Library [Dahm 1998] toolkit to implement

the standard transformations that add the hooks necessary to switch control from the base

level to the meta level at runtime. The byte code rewriting toolkit deals with technical

details such as maintaining relative addressing when new byte codes are inserted into a

method, or determining the number of arguments a method supports before it has been

instantiated as part of a class. An earlier version of Kava used the Java Instrumentation

Object Environment (JOIE) [Cohen & Chase 1998] but this toolkit was discontinued and

Kava was rewritten to use BCEL. The particular toolkit is unimportant as long as it allows

instrumentation and deals with updating instructions that use relative addressing when new

byte codes are introduced. An abstraction layer can be used to hide the dependency upon a

particular toolkit so that it is easier to change toolkits if required to do so in the future.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

Listing 3.6: Kava's class loader.

1*
* Defines a Class using the class bytes obtained from the specified
* Resource. The resulting Class must be resolved before it can be
* used.
*1

76

private Class defineClass (String name, Resource res) throws IOException (

II package validation

II Now read the class bytes and define the class
byte [] b = res. getBytes () ;
ByteArraylnputStream is = new ByteArraylnputStream (b);

II create a class object
JavaClass clazz = new ClassParser (is, name). parse ();

II invoke Kava to rewrite the class to add binding
JDOMMetaConfiguration. setMetaConfigFile (binding);
BaseMetaConfiguration metaConfig =

JDOMMetaConfiguration. getMetaConfiguration ();
KavaClass kc = metaConfig. transform (

new KavaClass (new ClassGen (clazz)));
b = kc. getClassGen (). getJavaClass (). getBytes ();

java.security.cert.Certificate[] certs = res.getCertificates();
CodeSource cs = new CodeSource (uri, ce rts);
return defineClass (name, b, 0, b. length, cs);

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 77

Standard byte code rewritings are used to add hooks for individual methods and indi­

vidual byte code instructions. These hooks reify the context of a behaviour being trapped,

invoke the metaobject associated with an object and reflect any changes to the context back

to the base level. The metaobjects invoked are completely separate from the byte code

hooks and are developed entirely in Java. This separation means that the runtime meta

level can be adjusted dynamically at runtime although determining which behaviours are

trapped is determined at loadtime.

Kava only performs binary compatible byte code rewriting. This ensures that a rewrit­

ten class can still be linked against other classes that it references without requiring recom­

pilation or being rejected by the Java verifier. There are nine possible binary compatible

changes [Arnold & Gosling 1998]. Kava will implement only two of these. namely:

1. Re-implementing existing methods, constructors, and initializers by inserting MUs.

2. Adding new fields, methods, or constructors to an existing class or interface to bind

metaobjects to objects.

Like compile-time reflection Kava reflects upon the structure of the code in order to

implement reflection. However, Kava works at a level much closer to the Java machine

than most compile-time approaches that deal with the higher-level language. Although this

means it is impossible to extend the syntax of the higher-level language. it does mean that

Kava can implement some kinds of reflection more easily than in a traditional compile-time

MOP. For example, in the application of OpenC++ version 2 adding fault tolerance in the

form of checkpointing CORBA applications [Killijian et al. 1998], data flow analysis is

performed on the source code to determine when the state of the object is updated. With

Kava no such analysis is necessary; all that is required is to intercept the update of state of

an object by changing the behaviour of the update field operation in the Java runtime object

model. When an update has been completed a "dirty" flag is set indicating that the current

state should be checkpointed.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 78

3.2.4 Realising MLls

The following sections discuss the different types of transformation Ka\"a uses to realise

MUs.

Adding Metaobject Pointers

The first transformation adds the metaobject pointers required for the metaobject bound

to each object and the metaobject bound to the class. A static private field is added that

points to an instance of a metaobject responsible for overriding class-based behaviour and

a private field that points to a per-instance metaobject is added. In addition, the get$MetaO

method that is used to support Kava's approach to integrating with the Java inheritance

model is added. The role of this method is discussed in more detail in Section 3.2.9.

Wrapping Blocks of Byte Code

The second transformation makes use of the structure of a class file to identify blocks of

byte code representing class methods, initialization methods, and finalization methods and

then adds wrappers around them. This allows the method execution and exception raising

to be intercepted and control handed to a meta layer. Method execution is simpler than

exception raising to reify. Method execution requires only the insertion of hooks at the

entry and exit points of a method whereas exception raising requires a try ... catch clause

to be synthesised for the entire method.

In order to safely insert new byte code instructions into a class, some difficult technical

issues must be solved. For example, how to handle the effects of inserting instructions on

branch instructions and on the exception table. Fortunately, the BeEL framework takes

care of these low-level issues.

Wrapping Individual Byte Codes

The third transformation is applied to byte code instructions such as those dealing with

invocation and access to state. Here fine-grained wrappers are applied around indi\'idual

instructions. This allows the MU to intercept base-level behaviour when the class itself

makes an invocation, accesses state or creates a new instance of a class. The ability to

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 79

use a byte code rewriting toolkit to insert code into method bodies makes these types of

interceptions possible. Other Java MOPS, for example Reflective Java [Wu & Schwiderski

1997] that rely upon proxying method bodies, could not provide control over operations

such as field access or new invocations.

3.2.5 Static Analysis

As a class is loaded by Kava it is analysed to determine if a metaobject should be bound to

its instances and whether any of its behaviours should be brought under the control of the

metaobject by inserting MUs. The binding specification is used to determine the answer

to these questions. Whether a binding should be established is determined by the top-level

binding declaration and specifies, for a Java class or classes, which metaobject is bound to

that class' instance. The binding specification also specifies which base-level behaviours

should be brought under the control of the metaobject. Each class method and byte code is

inspected to see if it implements any of the specified behaviours. For example. a PUTFIELD

instruction's target class and field name is tested against a <putfield> declaration to check

that it refers to the same class and field.

Where a declaration uses a type to specify whether a behaviour should be brought

under the control of meta level, for example the type of the class defining a field. the

instanceof operator is used to determine if the target is the type itself or a subclass. Here,

Kava is required to determine the inheritance relationship between classes before they are

loaded into the Java VM to ensure that classes are instrumented before they are made

immutable. The current version of Kava requires this information to be encoded in the

binding specification but a better approach would be to use static analysis to determine the

relationship between classes before loading (assuming that all classes are available or can

be retrieved at runtime). This is discussed again in Section 3.2.9.

Where a declaration uses a simple name, for example the name of a field, syntactic

matching is used. Here, names may match, or if a wildcard has been used in the declaration,

then any name may be deemed to match the declaration.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 80

3.2.6 Instantiating Metaobjects

Normally this is achieved by adding two fields: a static private field that points to an in­

stance of a metaobject that is responsible for overriding class-based behaviour, and a private

field that points to a per-instance metaobject. In addition, an accessor method is added that

uses a naming convention normally disallowed by the Java compiler.

3.2.7 Reification

The state of a base-level object is available to a metaobject via the standard Java features for

introspection provided by the java.lang.reflect package. This is accessible to the metaobject

because Kava is implemented in the Java language, making it a meta circular reflective lan­

guage [Cointe 1987] ensuring that all the features of the base-level language are available

to the meta level. All that is required is access to a pointer to the base-level object and

standard Java introspection can then be used to access the state of a base-level object or

invoke its method. This is not passed with each MLI, however, instead the Kava metaob­

ject protocol provides methods for metaobjects to discover the identity of their base-level

object.

Beyond the state of the base-level object, there are five types of reified context associ­

ated with the switch to the meta level. The context is available to the metaobject at runtime

and can be changed by the metaobject. On return to the base level, the changes to the

context are reflected in changes to the base-level state. The types of context are:

1. The Invoke context reifies the target object, the method name, arguments and return

value associated with a method invocation.

2. The Execute context reifies the method name, arguments and return value associated

with a method execution.

3. The PutField and GetField context reifies the field name and values associated with a

field access.

4. The Raise context reifies the exception being raised.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 81

5. The New context reifies the name of the target class and arguments associated with

the creation of a new instance.

There is only one implementation of Context. This results from an optimisation choice.

At the start of each method, a new Context object is allocated. It is then reused for different

types of MUs to avoid the cost of object initialization (an expensive operation that should

be minimised[Roulo 1998]). There is a context object created for each method so that multi

threading can be supported. An alternative (and possibly more efficient) way is to use the

per-thread variables that are now available in Java.

The metaobject protocol reifies each element of context as a java.lang.Object. The proh­

lem is that Java also supports primitive data types such as int, byte, etc. As these primitive

types are not objects, extra work must be done to allow them to be reified as objects. In

the initial prototypes, this was done by inserting byte code instructions that wrapped them

using the Java wrapper classes such as Integer, Short etc. This adds considerable over­

head that is not justified if the meta-level program never uses the reified arguments. To

reduce the overhead, these primitive types are reified using the ContextBuilder helper class.

This allows them to be stored as primitive types that are not wrapped unless the meta-level

programmer actually uses a Context object interface to access the argument.

3.2.8 Static Members

Java supports static members in addition to per-instance members. Therefore, to ensure

least privilege and complete mediation, the implementation of Kava had to take account of

static methods and fields.

Since the context of behaviours involving static members is different from those involv­

ing instances, an approach is to provide a different metaobject protocol when dealing with

static members. In addition, there is the question of whether a metaobject or a metaobject

class with static methods should be bound to a class with static members. This also leads

to a different metaobject protocol that has an interface made up of static methods.

One of the aims of Kava is to provide a uniform metaobject protocol, and developing

a separate metaobject protocol to deal with static members complicates this. Instead, the

same metaobject protocol is used in all cases. This has the following impact upon the

CHAPTER 3. DESIGN AND IMPLEMENTATIOS OF KAVA

design:

v ...
0_

• Some context types reify a target reference, static members d\! not ha\e taraeh "0 the eo

convention adopted uses a default value of null where there i no target reference .

• Each class (which is an object in Java) ha a metaobject bound to it in the same wa}

that an instance of the class would have a metaobject bound to it. 8:- changing the

implementation of the metaobject, the behaviour of the cla e static memhers can

be changed.

3.2.9 Implementing Complete Mediation

The argument for Kava providing complete mediation is pre ented in the following ec­

tions. The argument is based upon the following assumptions:

Trusted computing base The Java Runtime Em'ironment, the Kava implementation, the

enforcement metaobjects, the binding specification and the Java acce control poli­

cies are trusted.

Ensuring Kava is always invoked Kava always has acces to cla e heing loaded in the

Java YM so it can add MUs as required.

Enforcement mechanism is protected Attackers cannot tamper with \ILb or metaoh­

jects.

Inheritance is accounted for by Kava Attacker cannot confuse Kava· static analy-.i-. by

subc1assing protected objects.

Each of these assumptions is justified in the following: section

Trusted Computing Base

Kava assumes that the Java Runtime Environment (\\hich includes the Java ystem cla "e".

the Java YM and Ja\Cl byte code verifier), the Kma implementation itself. the metaobject"

encapsulating the permission checks, the binding specifications, and the Ja\'a acee"" control

policy files, can only be correct.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 83

The current implementation protects metaobjects against tampering by using a com­

bination of permissions and code-signing techniques. All metaobjects are packaged into

JAR files that are signed by the security developer using his or her private key, which is

associated with a X.509 certificate. The certificate must be distributed via a trusted chan­

nel to the destination system. The metaobject class has a check in its class initializer that

the current thread holds a KavaPermission permission named "initialiseMetaobjectClass".

This requires the base-level program code and the metaobjects to have been granted this

permission in the host's Java access control policy file. The entry in this file for the metaob­

jects should grant the "initialiseMetaobjectClass" permission on the basis of the identity of

the signer of the JAR file they are contained within. If the JAR file has been corrupted, or

if the metaobjects are actually provided by another provider then the permission will not

hold. The permission is checked when the metaobject class is loaded and initialised.

The Java Runtime Environment, the Kava implementation, the binding specifications

and Java access control policy files are assumed to be protected using operating-system

level protection such as ACLs on files. This at least matches the current situation with the

Java security architecture and future work might consider using cryptographic signatures

to protect the Kava implementation and the binding specifications.

Ensuring Kava is Always Invoked

Kava needs control of class loading in order to rewrite classes at loadtime. However, if a

class loader is loaded at runtime it may be possible to use it to bypass Kava's class loader.

Fortunately it is possible to use Kava's metaobject protocol in order to avoid this problem.

The general idea is to use a metaobject to intercept the act of class definition and ensure

that Kava is invoked before class definition takes place. This raises two issues: dealing

with application-level class loaders, and Java system library class loaders.

The first type is an application-level class loader. All application class loaders must

call the native method defineClass and pass it a byte code array that represents the class to

be instantiated within the Java VM. A special metaobject that is bound to the invocation

of this method by any class loader can be used to prevent the bypassing of the Kava class

loader. This metaobject simply applies Kava to the byte code and returns the transformed

byte code to the base level where the class loader passes it to the Java VM for instantiation.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

This means that any application-level class loader can be transformed into a class loader

that brings classes under the control of Kava.

The second type is a system class loader such as an URLClassloader. Since Kava cannot

rewrite system classes, this would seem to be a problem. However, a metaobject can be

bound to any invocation of a method on a system class loader. This can redirect such

method calls to a Kava version of the system class loader that actually does the job of

fetching the bytes and instantiating them as a class. When the malicious program calls

getClass, the method is not invoked on the system class loader but is dispatched by the

metaobject to a Kava version of getClassO that ensures the correct rewritings are applied.

Another benefit of using Kava recursively to bring all class loading under its control

is that this prevents malicious use of a byte code rewriting tool to remove Kava's hooks.

As Kava intercepts all calls to defineClass, it will always be the last tool to add byte code

before the class is instantiated. This means that even if another byte code rewriting tool

inserts its own byte code, these cannot have any effect on the hooks that Kava inserts. Note

that (as guaranteed by the Java platform) we assume that there is no way at runtime to inject

byte code into a loaded class.

An unresolved issue are native methods. Java permits native code to be invoked directly

by classes and this code bypasses all Java security controls. Currently, Kava does not

provide any control over these although a metaobject approach might be used to detect the

use of native methods and halt execution if these are used.

Protecting the Enforcement Mechanism

As highlighted by Erlingsson and Schneider [Erlingsson & Schneider 2000, Ulfar Erlings­

son & Schneider 2000] in their work on in-lined reference monitors, complete mediation

requires protection of the integrity of the mechanism enforcing the policy. In the context of

metaobjects and metaobject protocols, this means that the integrity of binding between the

metaobject and base-level object must be protected, and pointers to the metaobject bound

to a base-level object must be unavailable to base-level objects to prevent subversion of

the enforcement mechanism. Otherwise a program might remove the bindings at runtime,

and either branch past the meta-level interceptions implementing the bindings, or tamper

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 85

with the metaobject by invoking its methods or replacing it with a null metaobject. En­

suring non-bypassability, but not preventing an enforcement metaobject to be switched for

a metaobject that always grants access, means that access control policy enforcement will

not take place.

Erlingsson and Schneider protect the integrity of their enforcement mechanism in two

ways [Erlingsson & Schneider 2000, Vlfar Erlingsson & Schneider 2000]. First. they use

a base-level language that prevents code from being treated as data and enforces an en­

capsulation boundary preventing arbitrary branching. Preventing code from being treated

as data ensures that the program containing the in-lined reference monitor cannot remove

the enforcement code at runtime by dynamically rewriting parts of the program. Prevent­

ing arbitrary branching ensures that the program cannot simply branch around enforcement

code. Second, access to the enforcement mechanism is prevented by choosing names and

types for interception code that are invisible to the base-level code. This can be achieved

by choosing names that either are not in the base-level program's namespace and/or using

names that are illegal in source code but legal in object code.

Kava applies these techniques to the implementation of meta-level interceptions (MUs).

MUs are in-lined into the target class, these must be non-bypassable and the base-level ap­

plication must not be able to tamper with the metaobject invoked by the MUs. First, Java

was chosen as the base-level language because it offers several low-level security guaran­

tees such as lack of pointer arithmetic and type safety [Yellin 1996]. The lack of pointer

arithmetic prevents code being accessed as data, and type-safety prevents arbitrary jumps

to instructions. Furthermore, because MUs are inserted after compilation and cannot be

removed at runtime, any attempts to write programs branching within a method in order to

avoid MUs implementing either invoke or field behaviours, will be defeated because Kava

will locate all the places MUs need to be inserted and adjust branches so that they branch

to the MUs before the target instruction. Second, base-level access to the metaobject is

prevented through namespace control. When the base-level program is written, the field

names for the metaobject pointers are not in the program's namespace. This means that

no compiler can compile code that tries to use these names as they are not defined yet. In

addition, the field names contain the $ character and this character is not allowed to be used

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 86

in Java source code (although it is valid at the byte code level). However. Java doe~ pro­

vide the ability to introspect upon classes. This makes it possible to access a field \\ ithout

requiring the field's name, for example the list of fields associated with an instance can be

obtained as an array of fields and code can iterate through the array looking for one of type

IMetaObject. Therefore we assume that the use of java.lang.reflect package must be pre­

vented or controlled to avoid introspection being used to dynamically access fields. Either

the Java security architecture can be used to turn off access to metaobject fields, or Kava

can itself be used to prevent requests for access to these fields by binding a metaobject to

classes making use of classes from the java.lang.reflect package.

Dealing with Inheritance

When implementing Kava, the design required consideration of how Kava's binding model

would interact with Java's inheritance model. First, it was decided that Kava must ensure

that metaobject bindings are inherited from parent classes because choosing not to make

bindings inheritable provides a way for an attacker to bypass an enforcement metaobject

by simply subclassing the protected class. This implementation must take account of Java's

method of implementing inherited behaviour. Second, a conflict might occur between in­

herited and explicit bindings.

Implementing Inheritance of Bindings One approach to implementing inheritance of

bindings is to override every inherited method in the subclass by a stub method that simply

invokes the superclass's method. MUs are then added to the proxy methods. This will not

work where the superclass has defined a method as final because the Java verifier rejects

attempts to override a final method. This could be addressed by changing the superclass'

methods to be non-final though this might introduce a security vulnerability.

Kava uses an alternative approach derived from the work on using byte code rewriting

to enforce access control policies by in-lining enforcement code [Pandey & Hashii 1999].

The basic idea is to edit each method of the superclass and insert MUs as specified for

the subclass. This addresses problem one and two described above. For example, if the

execute behaviour of all methods of the subclass are being brought under the control of a

metaobject then the superclass R would appear as in Listing 3.7.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

Listing 3.7: Superclass containing MU for method execution.
class R {

private myMeta$Object = new MetaObject (" meta1 ");
final public void f () {

get$Meta (). beforeExecuteMethod (...);
<code for f>

private get$Meta ()
return myMeta$Object;

Listing 3.8 shows how a class, class RC in this case, subclasses then overrides the

get$MetaO method to return the appropriate metaobject.

Listing 3.8: Subclass defining its own MetaObject to use for method executions.

class RC extends R {
private myMeta$Object = new MetaObject ("meta2");
private get$Meta () {

return myMeta$Object;

This means invoking to on an instance RC will result in methods implemented by RC

and R invoking the MetaObject instance "meta2". On the other hand invoking to on an

instance of R will result in the MetaObject instance "metal" being invoked instead. This

is because Java method resolution always chooses the most specific method definition to

use [Gosling, Joy & Steele 1996].

Inserting MUs into superclasses because instances of subclasses are bound to metaob­

jects is problematic if the superclass is loaded before the subclass. After it has been loaded,

Kava cannot modify its implementation. Therefore, during the program analysis stage

Kava must identify all subclass/superclass relationships before loading any classes. This

can be done through static analysis, for example the BCEL toolkitlong-term allows classes

to be introspected upon before loading them and the BCEL Repository class allows sub­

class relationships to be examined and analysed without loading a class into the Ja\a V~1.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 88

This is quite expensive depending upon the length of inheritance relationships. The current

version of Kava simplifies this task by placing the burden upon the meta-level program­

mer who must specify the relationships between classes in the binding specification. Static

analysis is a better long-term solution because the meta-level programmer may not be able

to anticipate what classes will be loaded by Kava. This is particularly true of mobile code

or other code where a detailed specification of the application is not available. This use of

static analysis should be the focus of future work.

Dealing with Conflict The second problem of possible conflicts between explicit bind­

ings and inherited bindings needs to be considered in the context of the different possible

combinations of bindings and inheritance relationships. The relevant combinations of bind­

ings are: (1) the superclass R has a binding but the subclass RC does not. (2) the supercJass

R does not have a binding but the subclass RC does. (3) both Rand RC have bindings.

Another issue to consider is whether Kava should allow bindings on the basis of objects

implementing interfaces given that Java permits an object to implement multiple interfaces.

This can be resolved by treating it as another form of case three.

Each case is considered below:

Case one The metaobject bound to RC is used when methods defined only in RC are in­

voked upon either instances of the subclass or superclass. In the second case, the

metaobject bound to R is used when methods defined either in R or RC are invoked

upon instances of the subclass R. Attempts to invoke methods defined in RC upon

instances of RC will fail because there is no metaobject bound to RC. This can be

corrected by either checking if the metaobject pointer is null before attempting to in­

voke a method or associating a metaobject with RC instances that does nothing when

invoked. Kava currently does the latter although further investigation will determine

whether the former is more efficient. In both cases there is an overhead because

reification is done even though it may not be needed.

Case two In this case there is no conflict. The subclass retains it binding and the superclass

is not affected.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 89

Case three In this case a conflict may occur. According the scheme dt?scribed so far.

this would result in the subclass's binding overriding the superclass\ binding. Thi"

may result in a metaclass incompatibility problem because an inherited method

may rely upon being able to invoke the metaobject bound to instances of its defining

class rather than the metaobject bound to instances of the subclass [Graube 1989.

Forman, Danforth & Madduri 1994, Forman & Danforth 1999]. Note that the basc­

level programmer is unaware of the meta level but the meta-level programmer may

have intended to modify the behaviour of the superclass methods in a way that is not

implemented by the subclass' metaobject. For example, the subclass might bind to a

less restrictive metaobject thereby creating a security hole.

We could address these conflicts by applying multiple inheritance rules. as described by

Forman and Danforth [Forman et al. 1994, Forman & Danforth 1999], to the metaobjects

and synthesise a new metaobject or simply invoke each metaobject in tum. However. we

have to question whether this automatic composition of metaobjects is always appropriate

and ask "What if the behaviours of the metaobjects are incompatible'?" The current version

of Kava resolves these questions by refusing to load a class if a possible conflict is detected

and leaves it to the meta-level programmer to manually resolve the metacla"s incompatibil­

ity. Note that null metaobjects are assumed not to conflict with any other metaobject. An

improved approach might be to allow multiple inheritance and generate warnings on the

assumption that in most cases multiple inheritance will not cause a problem.

3.2.10 Performance

The focus of this thesis is upon improved software engineering rather than performance

requirements. However, some measures of the overheads introduced by using Kava were

obtained. The performance of the execution speed of an application where enforcement

code is in-lined manually and where the enforcement code is implemented by a metaob­

ject bound to application objects using Kava was measured. Where enforcement code used

multiple parameters to determine if access was allowed or denied, the metaobject imple­

mentation was on average 156% slower than in-lined code (341 ms compared to 133ms).

Where enforcement code made the decision using a single parameter, the metaobject wa"

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 90

on average 7% slower than in-lined code (403ms compared to 377ms).

Differences in performance are related to the cost of the indirection introduced by the

MU and the cost of reifying context. In both cases the cost of indirection should be iden­

tical because the same code is in-lined. Therefore, the governing factor in this simple

analysis was the cost of reification and reflection. The first fragment of enforcement code

required reification and reflection of a String object and the second required reification of

multiple primitive objects requiring expensive wrapping and unwrapping.

Initial performance results indicated the impact that reification and reflection has upon

Kava's performance. Any unnecessary reification and reflection should be avoided. These

findings have led to changes to Kava. Kava now allows hints to be passed via the binding

specification that can be used to determine if reification or reflection is required. Many per­

mission checks need neither and removing unnecessary code would improve performance.

As discussed in Section 7.3, future work must include a comprehensive performance

analysis to help identify areas for improvements to performance. It should be possihle

to reduce the costs of this approach through the application of techniques such as partial

evaluation[Masuhara, Matsuoka, Asai & Yonezawa 1995] or lazy creationlreification of

metaobjects [Maes 1987] as has been done with other reflective languages.

3.2.11 Example: Redefining Field Access

The following example provides a flavour of how Kava uses MUs to bring object be­

haviours under the control of a meta level. In the following example, the Put Field behaviour

is brought under control of the meta level and to avoid requiring the reader to parse the byte

code, this is presented using the Java language.

Consider the field access shown below2
:

myGreeting = II Kia~ora~te~ao" ;

After Kava is used to bind a metaobject to the class containing the field access. the field

access is rewritten at byte code level as shown in Listing 3.9.

In Listing 3.9 the act of updating a field is reified and handled at the meta Je\eJ. which

requires two MUs, one before and one after the actual field access. Code is added directly

2"Kia ora te ao" can be loosely translated as "Hello World".

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

Listing 3.9: A rewritten field access.

my$Context. clear ();

ContextBuilder. pushValue (my$Context, "Kia~oro~te~ao");

ContextBuilder. pushTarget (my$Context, th is);
ContextBuilder. pushTarget (my$Context , • meta-parameter");
th is. get$meta () . before P ut Fie Id (my$Context);
if (my$Context. getContinue () {

}

myGreeting = (String) my$Context. getValue ();
t his. get$m eta () . aft e r Put Fie I d (my$Context) ;

91

before and after the field assignment instruction (PUTFIELD in byte code). At runtime the

following takes place:

1 The current context object associated with the current invocation is cleared. This object

is reused to avoid initialising a new object for each MLI.

2 Prior to execution of the instruction, the stack has a reference to the object instance

encapsulating the field and the value to be stored. The value to be stored is popped

off the stack and stored in a context object making it available to the metaobject

when the metaobject methods are invoked. Note that it is not stored directly. Rather

a helper class (ContextBuilder) is used that simplifies the task of writing interceptions.

The helper class is written using the Java language and then called by inserting the

byte code instructions for invoking the necessary method. All helper class methods

are static and should this should lead to the Java JlT in-lining them.

3 The target is popped off the stack and stored in the context object.

4 Meta parameters associated with the MLI are added to the context. This enables

metaobject behaviour to be parameterised and specialised to a particular application.

5 The beforePutFieldO metaobject method of the metaobject associated with the object is

invoked causing a switch to the meta level.

6 Because the meta level can override the base-level behaviour, this step determines if the

base-level behaviour is allowed to take place. To override the base-Ie\el behaviour.

6
7
8
9

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 92

the meta-level programmer invokes my$Context.overrideBaseO before returning the

base level. This will cause my$Context.getContinueO to return false thereby causing

steps 7-8 to be skipped.

7-8 These steps are executed only if the base-level behaviour has not been overridden.

Step 7 both restores the stack and invokes the original base-level behaviour. Step 8

invokes the afterPutFieldO metaobject method bound to the base-level behaviour.

3.3 Evaluation against Goals

This section reviews whether Kava meets the goals defined in Section 2.7.

3.3.1 Enforcement upon Compiled Code

Kava exploits Java's loading and dynamic linking architecture to allow interception of class

loading. A byte code rewriting toolkit is used to insert MUs into classes before linking. The

MUs redirect control at runtime to metaobjects associated with objects through a binding

specification. The binding specification is specified in a separate file because lack of source

code and a desire for a clean separation mean code annotation cannot be used. This allows

Kava to be used with compiled code which is discussed in Section 3.2.).

3.3.2 Control Access to Application, Library and Operating System

Resources

Application and library code both reside in user-level space and are loaded using Java's

class loader. However, Java prevents direct modification of its core classes preventing

metaobjects from being bound to objects implementing library services. Therefore Kava

not only intercepts invocation of application methods at the callee-side but also intercept....

invocations made by applications. This allows metaobjects to perform access checking

before a library is invoked. This is discussed in Section 3.1.2.

All operating system resources are invoked via a Java library. This means that the

controls applied to invocation of Java libraries are able to control access to operating s) stem

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 93

resources.

3.3.3 Clean Separation of Concerns

In addition to the separation of concerns provided by a MOP, Kava promotes reusability

of metaobjects by allowing their parameterisation at the time they are bound to ba .. e-Ievel

objects. This allows specialisation beyond what is provided by inheritance. An aspect of

the clean separation of concerns is how easily a set of metaobjects can be reused with a

new application. Traditionally, reuse of metaobjects is achieved through specialisation by

inheritance. Kava also allows specialisation through parameterisation. Meta parameters

can be associated with MUs via the binding specification. This allows generic metaobjects

to be developed that are tailored to a particular application object by declaring meta param­

eters to be passed to the metaobject when a MU is activated at runtime. This is discussed

in Section 3.1.5.

3.3.4 Least Privilege

Kava provides least privilege because each object can be bound to a metaobject and the

metaobject can redefine the semantics of all operations listed as part of the object's inter­

face. Therefore all possible operations that may be executed by any code can be brought

under the control of the meta level. However, Java allows declaration of static methods

that are part of classes rather than objects and therefore these need to be controlled as well

as ordinary methods. Kava handles static methods (and fields) by binding metaobjects to

instances of class objects as well as objects, this is discussed in Section 3.2.8. Also, not all

possible operations are declared as part of an object's interface. For example, field access

does not need to be via a method belonging to the encapsulating object. Therefore the Kava

metaobject protocol provides metaobject methods allowing these operations to be reified

and handled at the meta level. This is discussed in Section 3.1.2.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 94

3.3.5 Complete Mediation

This section discusses how the principle of complete mediation is prmided by Kava. The

principle of complete mediation means that access to every object must be checked for

authority. This requires that the enforcement mechanism's integrity is not compromised.

In the context of Kava this means ensuring that the infrastructure, meta-level interceptions

and metaobjects are not compromised either at or during runtime.

The argument for Kava providing complete mediation is presented Section 3.2.9. The

argument can be summarised as follows:

• It is assumed that the Java Runtime Environment, the Kava implementation, the en­

forcement metaobjects, the binding specification and the Java access control policies

are trusted.

• It is assumed that Kava always has access to classes being loaded in the Java YM so

it can add MUs as required.

• Once MUs have been added to a class, it is assumed that the MUs or the metaobjects

cannot be tampered with. This is achieved by applying the techniques described in

Section 2.5.1.

• Attackers cannot confuse Kava's static analysis by subclassing protected objects.

This requires Kava's design to take account of how Java implements inheritance.

3.3.6 Economy of Mechanism

The Kava metaobject protocol provides improved economy of mechanism compared

to either source code or runtime MOPs. Source code MOPs require re-implementation

of the compiler to allow source code to be pre-processed and bindings added. This is a

more complex task than rewriting byte code because byte code has a more constrained

semantics than source code. Runtime MOPs require changes to the Java YM. Again, thi"

is a more complex task than rewriting byte code and requires revalidation of the entire

runtime environment.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA

3.4 Summary

This chapter provided an overview of the design and implementation of Kava before eval­

uating Kava against the goals from the previous chapter. The next three chapters motivate

the use of Kava and address the goal of evaluating the use of a loadtime metaobject protocol

for security engineering.

Chapter 4

Case Study One: Standalone Application

This chapter demonstrates that using a loadtime metaohject protocol to enforce Java "L'­

curity policies provides a better separation of concerns than using conventional ohjcL't­

oriented techniques.

Section 4.1 introduces the application that is the subject of the case study and the "L'L'­

nario for its use. Section ~.2 descrihe a conventional ohject-oriented approach to enforce­

ment and Section 4.3 descrihes using Kava, a loadtime metaobject approach. Section -l.-l

identifies qualitative improvement-. to the separation of concerns gained h) u"ing Kava.

4.1 Overview

The case study uses a third-party Java standalone application de\ eloped hy Ja"on von

Nieda, called Lirc [von Nieda 2001]. Lirc is an IRC (Internet Relay Chat) client. The

experiments were peIi'ormed with \ersion 1.0 of Lirc, which i" licen"ed under the (j,\['

General Public Licence agreement. A benefit of this licensing arrangement i" the "ource

code is available.

The scenario is an organisation that provides support for one of it" products wanh to

permit their technical staff to pro\ide support to customers via an IRe channel. For thi"

purpose the staff are given permission to run Lirc on their own work "tations. Ho\\ ever, the

nrganisation must impose upon staff the foIlowing local acces control polic):

I. Users ofLirc should only be allowed to join specificall) named channels, for examplc

96

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 97

"#help",

2. Users of Lirc should have resource limits placed on their network usage.

The organisation's security officer wishes to use the Java security architecture to enforce

these policies upon users of Lirc. There are two types of resources subject to the access

control policy: application resources and system resources. Resources of the first type

are implemented by the application itself. Resources of the second type are implemented

by Java system libraries. For the purposes of this case study, the access control policy is

assumed to be specified using a standard Java policy file.

4.2 Conventional Object-oriented Security

This section describes the conventional object-oriented approach to enforcing access con­

trol policies upon application and system resources using the Java security architecture.

Access to both types of resource is controlled by manually placing enforcement code within

the Lirc application.

4.2.1 Application Resources

In this section the conventional approach to using the Java security architecture to control

access to named IRe channels by manually placing enforcement code within the appli­

cation is described. Unlike system resources provided by Java core libraries there are no

standard Java permissions for use in granting rights to access IRe channels. Therefore the

following steps for customising the Java security architecture in order to support such a

policy [Gong 1999] must be followed:

I. Define a permission class.

2. Grant permissions.

3. Place permission checks within the code implementing the resource.

The rest of this section explains each of these steps in tum.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 98

Define a Channel Permission

First, a permission class representing the right to access a permission must be defined.

Generally, a new permission class should subclass either the java.security.Permission class

or the java.security.BasicPermission class. Subclassing from Permission allows permis­

sions that have names and actions to be defined. For example, java.net.SocketPermission

extends java.security.Permission with a constructor that requires a host specification (host­

name or IP address and a port range) and a set of "actions" specifying ways to connect

to the host. To control what rights that an application has over an IRC channel. a class

example.lirc.ChanneIPermission is defined that subclasses java.security.Permission and has

a constructor that requires the name of an IRC channel and a set of actions specifying what

rights a user has over that channel.

Listing 4.1: Defining a channel permission by declaring a new class

package example. Ii r c ;
public final class ChannelPermission extends

java. secu rity. Permission {
public ChannelPermission (String channel,
String actions) {

super(channel);
this. actions=actions;

public boolean equals (Object obj) { ... }
public int hashCode () { ... }
public String getActions () {return actions;}
public boolean implies (Permission permission) { ... }

The implementation of the new permission is shown in Listing 4.1. For reasons of

space, only the constructor and not the other methods, such as equals or implies that must

also be implemented are shown. The implies method is used to capture the notion that the

granting of one permission implies the granting of another permission.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 99

Grant Access to a Channel

Once the permission class has been implemented, then the permission must be granted

by creating a Java security policy file on the host where the application will be used. An

example policy file granting the Lirc application right of access to the "#help" IRC channel

is shown in Listing 4.2. The application is code-signed by an internal developer to ensure

that only that application is granted this right. For the purposes of this case study, the

internal developer is identified by the name "Bob". There should be an X.509 certificate

in the local keystore (in this case, "teststore") that associates "Bob" with a public key that

can be used to check the application's signature. The policy file must be protected against

tampering by users so operating system rights must be used to make it immutable by users.

In a Unix environment this can be achieved by the system administrator making the file

read-only.

Listing 4.2: Granting access to join a specific channel

keystore "teststore";
grant signedBy "Bob" {

} ;

permission example. lire. Channel Permission
"#help". "join";

Place Permission Checks in the Application

Finally, the enforcement code shown in Listing 4.3 must be added into the application

just before a channel "join" action. By inspection of the source code we determined that

the channel "join" action for the application resource "IRC Channel" is implemented in

the method ereateChannelO of the class Lire. If no source code is available then either

a debugger could be used to determine what methods are executed when a user joins a

channel or the byte code could have been inspected.

The enforcement code consists of a calling the SecurityManager method checkPermis­

sionO to check if Lire has been granted permission to "join" the IRC channel represented

by the argument channel. The method returns silently if access is granted, otherwbe an

AeeessControlExeeption exception is raised. Because this is a runtime exception, it doe ...

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATIOS 100

not need to be declared in the method signature and so the exception is propagated up­

wards through the call stack until either a handler is found or the thread terminates \\ ith an

uncaught exception.

Listing 4.3: Explicit check for permission to create a channel.

public void createChannel (String channel) {
SecurityManager sm =
System. getSecurityManager ();

if (sm != nUll) {

sm. checkPermission (new example. Ii rc . ChannelPermission (channel,
" j 0 in")) ;

4.2.2 System Resources

Placing resource limits on network usage is an example of a dynamic access control policy

for ensuring availability [Millen 1992]. Availability is guaranteed by limiting the total

number of bytes an application may transmit across the network. Java represents access to

the network as an OutputStream object created by opening a network socket.

The conventional object-oriented technique for enforcing access control upon system

resources is to place enforcement code within the libraries implementing the resource. As

discussed in Section 2.4.1, Java applies this technique to control access to system resources.

Unfortunately, Java provides neither permissions nor enforcement code within its system

libraries that allows a dynamic access control policy to be expressed and enforced.

The problem here is that the enforcement for access of system resources is not fine­

grained enough for this application-specific policy. Instead the security enforcement tech­

nique described in Section 4.2.1 must also be applied to controlling Lirc's access to the

network. The rest of this section describes how this is achieved.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 101

Define a Write Permission

The right to write a certain number of bytes using a resource is represented by the permis­

sion class WritePermission. This is similar to the permission defined to control access to an

IRe channel. However, unlike Channel Permission, access is not a binary decision. What is

required is a mechanism that allows the AccessControlier to determine whether holding a

permission to write x bytes implies that a request to write x or fewer bytes is allowed. Note

that the permission to write x bytes is immutable and granted in the Java policy file.

The java.security.Permission class provides an abstract impliesO method for comparing

granted permissions with requests for permissions that can be overridden by any subclass

that needs to define itself in relationship to other permissions. For example, holding one

type of permission might imply a set of other permissions. In this case it is used to define

a relationship between granting the right to write a certain quota of bytes with a request to

check if the current number of bytes has been exceeded or not.

Listing 4.4, shows the implementation of impliesO for WritePermission. The permission

being checked at runtime is only implied as being held if it is a Write Permission granting

access to the network and the quota of bytes written so far has not been exceeded. When

determining if the permission being checked is a WritePermission, the name is taken into

account. This is to allow the Write Permission to be used to control access to streams other

than just the network. This provides some future compatibility, because the same permis­

sion could be used to impose quotas on access to files as well as networks in the future.

Grant a Write Limit

The next step is to define a Java policy file as shown in Listing 4.5. This policy file grants

the application Lirc the right to write a maximum of 1.000.000 bytes to the network is

shown below. Again, we assume the application developer is "Bob" and the system admin­

istrator should make the policy file write protected to prevent users increasing their own

quotas.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION

Listing 4.4: Check for implication of permissions in class WritePermission.

public fi n a I class Write Permission extends java. secu rity . Permission

{
II check if permission is implied
public boolean implies (Permission p) {

if (! (p instanceof Write Permission))
return false;

Write Permission wp = (Write Permission) p;
if (! getName () . eq uals (wp. getName ())) {

return false;
else if (getNumBytes() < (wp.getNumBytes())

return false;

return true;

II convert the string representation of number of bytes to long

private long getNumBytes () {

Listing 4.5: Java policy limiting Lirc's access to the network.

keystore "teststore";
grant signedBy "Bob" {

permission example. general. WritePermission "network", n 1000000·;

} ;

102

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 103

Place Permission Checks in the Application

The final step is to identify where the application invokes the system resource and insert

enforcement code. Writing to a socket is achieved by invoking one of two write methods

on an output stream associated with a socket. Again by inspecting the source code. the

places where the application writes bytes to a socket connection are located and permission

checks added as shown in Listing 4.6.

Listing 4.6: Check for permission to write to the network.

SeeurityManager sm = System. getSeeurityManager ();
if (sm != nUll) {

Li re . eurrBytes += requestedBytes;
sm. eheekPerm ission (new Write Perm i ssion (" network" . Li re . eu rrBytes)) :

}
return true;

Here, the number of bytes to be written must be added to a running total of bytes written

by the application as a whole. Therefore a static field belonging to the application (the Lire

class), eurrBytes, is used. This is updated by the number of bytes to be written. This

running total is used to create an instance of a WritePermission representing a request to

continue writing to the network. The impliesO method will return silently if the quota ha!'.

not been exceeded, otherwise a runtime exception will be raised and the application will

halt.

The use of a static field to maintain the total bytes written to the network would al­

Iowa user to defeat security enforcement by simply restarting the application afresh when

the user's quota is reached. A better solution would be a centralised quota manager on

initialisation and update it as the application executes. This would prevent this loophole

being used and also allow a quota to be imposed over all instances of Lire used within the

organisation.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 1(»

4.3 Loadtime MOP

The conventional approaches discussed above suffer from an intertwining of application

and enforcement code. Changing one requires changing the other. for example should a

new version of Lirc be released then the enforcement code would have to be added aoain
t:'

manually. Also, the process is laborious and error-prone. It relies upon manual inspection

of application code and it would be quite easy to miss out a necessary piece of enforcement

code. Overall the conventional approach leads to increased development time. decreased

system flexibility and comprehensibility.

An alternative security engineering technique is to use a loadtime MOP. in particular

Kava because it meets the other criteria for least privilege. complete mediation and econ­

omy of mechanism. The aim is to reuse the permissions. enforcement code and policies

instead of replacing them.

This section shows how Kava can be used to achieve this by implementing the same

policies described above using the Java security architecture but instead of checks being

manually added they are implemented by metaobjects. The binding configuration fik spec­

ifies where the access control checks should be enforced in the application and the security

policies are specified using a Java security policy file. Section -+.3.1 describes how this can

be applied to an application resource while Section 4.3.2 describes how this can be applied

to a system resource.

4.3.1 Application Resources

To control who can join an IRC channel when using the Lirc application, Kava must be used

to ensure that possession of ChannelPermission is checked before the base-le\eJ application

attempts to access an IRC channel. This requires that the meta-level programmer must

implement a metaobject to encapsulate this enforcement code and bind it to the right base­

level object. Additionally, the Java policy file must be modified to take into account the use

of Kava and the metaobjects. Each of these steps is detailed below.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 105

Define a Metaobject

The ChannelEnforeementMetaobjeet class redefines beforeExecuteMethod provided by the

standard Kava metaobject class, thus ensuring that the check is performed before the method

is executed. The code for the actual security check is similar to the code shown in List­

ing 4.3. However, the enforcement code shown earlier refers to the variable representing

the channel name whereas this code takes the first argument from the execution context and

uses it to construct the permission.

Listing 4.7: ChannelEnforeementMetaObjeet controlling access to IRe channels.

package example. Ii r c ;
public class ChannelEnforcementMetaObject

extends kava. metaobjects . MetaObject {

public void
beforeExecuteMethod (IExecuteContext context) {

String joinChannel
= (String) context. getArgs () [0];

SecurityManager sm =
System. getSecurityManager ();

if (sm != nUll) {
sm. checkPerm ission (new Channel Permission (joinChannel ,
II j 0 i nil)) ;

Specify a Binding

The meta-level programmer must define a binding specification that ensures the Channe­

IEnforeementMetaObjeet is bound correctly at loadtime. Instead of providing the XML

version of the binding specification, an English version is shown for readability below.

"Bind the metaobject class ChannelEnforeementMetaObjeet to the base-level

class Lire and intercept calls to the method ereateChannel."

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION 106

Modify the Policy File

Finally, the meta-level programmer must write a new policy file. The polic) file must grant

access to all the code involved in the permission checking at runtime because Java requires

that the permissions checked at the meta level must be granted to every protection domain

that is on the call stack when the check is performed. The policy file must therefore grant

appropriate permissions to the application itself plus the metaobject and Kava implemen­

tation.

The new policy file is shown in Listing 4.8. Note the inclusion of principals representing

the application developer (named "Bob"), the meta-level programmer (named "Alice") and

the developer of Kava itself (named "Kava"). The policy file is structured in three parts:

(1) "Bob" is granted the same rights as before; (2) "AI ice" is granted the same rights as

"Bob" as well as the right to allow any metaobjects signed by "Alice" to be initialised

("initialiseMetaobjectClass"); (3) "Kava" is granted the same rights as "Alice" plus any

rights it needs such as the right to install an application-level class loader.

4.3.2 System Resources

To control resource usage by the Lirc application using Kava, the same steps as taken in

Section 4.3.1 must be applied. However, unlike the previous section this requires the usc

of a metaobject that redefines two base-level behaviours: method invocation and method

execution. The metaobject is then bound to the application classes that create and write to

network sockets.

Define a Metaobject

Writing to a socket is achieved by invoking one of the write methods on an OutputStream

associated with a socket and Kava ensures that a permission check is made before any of

these methods are invoked. The simplest approach would be to redefine the execution of the

write methods. However, Kava cannot do this because the OutputStream is implemented as

a system class and cannot be rewritten. However, this problem can be overcome by inter­

cepting invocations of the write methods made by Lirc. Unlike the application-specific IRe

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION

Listing 4.8: Policy file for enforcing channel access control using Kava.

keystore "teststore";
grant signedBy "Bob" {

} ;

permission example. Ii rc . ChannelPermission
"#help", "join";

grant signedBy "Alice"

} ;

permission example. Ii rc . ChannelPermission
"#help", "join";

permission kava. runtime. KavaPermission
"initialiseMetaobjectClass" ;

grant signedBy "Kava" {

} ;

perm ission example. Ii r c . Channel Permission
"#help" , "join";

permission kava. runtime. KavaPermission
"initialiseMetaobjectClass" ;

permissions required only by Kava

107

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATIO.V 108

channel access policy, intercepting calls to standard system classes does not require knowl­

edge of the semantics of the application that is being constrained because any application

that attempts to communicate over a socket must use these standard methods.

Unfortunately, redefining all invocations of OutputStream write methods will not onl~

affect writing to sockets but also writing to files and memory as well because these also

create OutputStream instances for writing and reading bytes. Therefore, when determining

whether to check permission to write a number of bytes the parent of the OutputStream

must be taken into account to distinguish those used to access sockets from other types.

Unfortunately, this is not a straightforward task because an ObjectStream method or field

that provides a reference to its parent does not exist. The solution is to implement extra

meta-level code using a table to track the creation of OutputStream instances by sockets.

When an invocation of an OutputStream write method takes place the object identity of the

target object can be checked against the table of known socket-created output streams. The

code implementing this is shown in Listing 4.9. The metaobject method afterlnvokeMethod

watches for invocations of getOutputStream on a socket. The returned value is stored in a

hashtable along with a reference to the socket that created it. This allows LIS to watch for

the creation of output streams and determine the socket that created it.

Listing 4.9: Meta-level enforcement code tracking the creation of OutputStream instances
by sockets.

public class WriteEnforcementMetaObject extends
kava. metaobjects . MetaObject {
II keep track of the output streams created by the socket
private static Hashtable ostreams = new Hashtable ();
II keep track of the current number of bytes private

static long currBytes = 0;

public void afterlnvokeMethod (IInvokeContext context) {
if (context. getMetaParam (). equals ("open~output~stream ")) {

WriteEnforcementMetaObject. ostreams.
put (context. getReturnValue (), context. getTarget ());

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATIOS 109

A check of the security policy is perfonned before any write method belonging to an

OutputStream object is invoked. As described earlier, this only takes place if the Output­

Stream was created by a socket. Listing 4.10 shows the enforcement code encapsulated

within the metaobject. The details of the enforcement is identical to Listing 4.6 except that

the number of bytes to be written is extracted from the reified context.

Listing 4.10: Meta-level enforcement code checking whether Lirc has exceeded its network
quota.

public class WriteEnforcementMetaObject extends
kava. metaobjects . MetaObject {

public boolean beforelnvokeMethod (IinvokeContext context) {
Object target = context. getTarget ();
if (isSocketOStream(target)) {

Object [] args = context. getArgs ();
if (context. getMetaParam () . equals ("write ~bytes"))

currBytes += ((byte[])args[O]).length;
else if (context. getMetaParam (). equals (" write~byte"))

currBytes += 1;

SecurityManager sm = System. getSecurityManager ();

if (sm != nUll) {
sm. checkPermission (

new WritePermission (" network" , Long. to String (currBytes)));

return true;

II is the output stream in the table?
protected stati c boolean
isSocketOStream (Object ostream) {

return ostreams. containsKey (ostream);

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATlO;\" 110

Specify a Binding

Again, the meta-level programmer must define a binding specification that ensures the

WriteEnforcementMetaObject is bound to the correct base-level objects at loadtime. In this

case, the binding is to objects creating sockets and to objects invoking the write metlwds

of the ObjectStream objects. Unlike a manual approach this can be done automatically

because Kava can statically analyse the application code. A high-level view of the hinding

specification is shown below:

"Bind the metaobject class WriteEnforcementMetaObject to any application

base-level class, where either:

1. the method getOutputStreamO is invoked on a class Socket (associate this

with the meta parameter "open output stream");

2. the method write(byte[] ...) is invoked on a class OutputStream (associate

this with the meta parameter "write bytes");

3. the method write(byte ...) is invoked on a class OutputStream (associate

this with the meta parameter "write byte")."

Modify the Policy File

Finally, the Java security policy must be specified. As before the policy file must allocate

the appropriate rights to "Bob", "Alice" and "Kava". The policy file is shown in List-

ing 4.11.

4.4 Improvements to the Separation of Concerns

The conventional security engineering technique of placing enforcement code within the

application manually led to an intertwining of enforcement and application code. This case

study showed, for two different types of resources and access control policies, that the

enforcement code could be modularised and implemented as metaobjects. This leads to the

following benefits:

• No access to application source code is required.

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATION

Listing 4.11: Policy file for enforcing network quota using Kava.

keystore "teststore";
grant signedBy "Bob" {

} ;

permission example. general. WritePermission
"network", "1000000";

grant signedBy "Alice" {

} ;

permission kava. runtime. KavaPermission
"initialiseMetaobjectClass" ;

permission example. general. WritePermission
"network", "1000000";

grant signedBy "Kava" {

} ;

permission kava. runtime. KavaPermission
"initialiseMetaobjectClass" ;

permission example. general. WritePermission
"network" , "1000000";

permissions required by Kava

III

CHAPTER 4. CASE STUDY ONE: STANDALONE APPLICATIOS 112

• The application code can now be read and modified independently of the enforcement

code. The enforcement code can also now be read and modified without requiring

changes to the application code.

• Should the application code change, there is no need to reapply enforcement code

manually_ Kava will be able to insert the necessary MUs automatically. Automatic

rather than manual changes reduce the chances of introducing errors into the imple­

mentation.

• The metaobjects can be reused with a new application; all that is required is to mod­

ify the Java policy file and possibly the binding specification. Whether the binding

specification changes depends upon the generality of the policy. The IRe channel

policy is closely tied to the application and would require rereading the application

specification and making appropriate changes. However, the network quota polic) is

application-independent requiring no changes to the binding specification.

4.5 Summary

This chapter demonstrates that using a loadtime metaobject protocol provides a cleaner

separation of concerns than manually placing enforcement code within applications. The

next chapter demonstrates that using a loadtime metaobject protocol provides a cleaner

separation of concerns than placing enforcement within libraries or proxies.

Chapter 5

Case Study Two: Distributed

Application

This chapter demonstrates that using a loadtime metaobject protocol to enforce acce con-

trol policies upon a distributed application provide'. a better separation or concern than

using conventional object-oriented techniques such as modifying librar) code, inheritdll\:e

or proxies.

Section 5.1 introduces the System K distributed application that i the subject ot the

case study and the scenario for its use. Section 5.2 de'.cribes a conventional object-oriented

approach to enforcement and Section 5.~ de cribes u ing Ka\ a, a loadtime metaobject ap­

proach. Section 5.4 identifies qualitatiye improvements to the eparation of concerns gained

by using Kava. Finally, Section 5.5 summarises this chapter.

5.1 Overview

This section introduces the third-party application, referred to a-, 5) stem K I developed as

a security demonstrator with the the objective of illustrating a security architecture using a

distributed, heterogeneous, hypertext document serwr \\Titten in Ja\a.

The functional part of System K is a Computer Aided Soft\\ are Engineering (C.\SE)

I The full details of S) stem K are not a\ailahle hecause the ,) stem W<l' provided under a confidenlialil)

agreement

113

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 1I.t

tool implemented as a hypertext document server. Users manipulate CASE modeb repre­

sented as diagrams via viewers. A viewer allows a user to access a remote database and

download a model for local editing. New elements and links to other models can be added

or modified locally. Links may also be made to models that exist in other databases. When

a user has finished editing the model object then it can be uploaded via the viewer to the

database.

System K requires a security architecture able to enforce access control policies upon

client-server interactions (between Viewers and Databases) and weakly-mobile code (Mod­

els are downloaded to the same host as the viewer and edited locally). For the purposes of

this case study, it is assumed that the local host is trusted so that security can be enforced

locally and that the remote host is also trusted. However, the network is assumed to be

untrusted.

The functional part of System K comprises sixty-four Java classes, and approximately

4,000 lines of code. At runtime, System K consists of multiple viewers interacting with

multiple remote databases.

The security architecture used by the demonstrator is based on work introduced by Bull

and his colleagues [Bull, Gong & SoB ins 1992] and has the characteristic that each ob­

ject is responsible for its own security - hence the model is termed self-defence. Each

object that provides access within the context of a security policy makes access control

decisions on a per-request basis, and may delegate this decision to other objects such as

authorisation servers. Additionally, each object may delegate authentication tasks to au­

thentication servers. This provides a global view, even though security decisions are made

on a per-object basis. It also provides support for heterogeneous policies in the same system

because each object may either use its own policy to make an access decision or delegate

the decision to an appropriate authorisation server.

Security for a distributed system relies upon authentication of communicating par­

ties whilst protecting the integrity and/or confidentiality of communications. Like Ker­

beros [Neuman & Ts'o 1994], System K provides a trusted third party to assist client'>

in setting up a secure channel with servers. A trusted authentication server maintains an

association between each principal's unique identifier and a unique symmetric key used

for authentication and communication between the authentication server and the principal.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 115

The symmetric key is established using a modified version of the Otway-Rees protocol lOt­

way & Rees 1987] and communications are encrypted using the IDEA algorithm [Schneier

1995].

Again like Kerberos, System K allows delegation of authorisation decisions to trusted

third-parties to allow for scalability and ease of administration. There are several authori­

sation servers, one for each policy type. This approach provides a global view for security

and allows management of rights and clearances by security officers.

Each secured object in System K may be subject to access control policies that attempt

to ensure the integrity of objects and prevent undesirable information flow. Originator­

Control (ORCON) [McCollum, Messing & Notargiacomo 1990] access control policies are

used to ensure that integrity is maintained, these are essentially variants on access control

lists where the owner of an object can decide which principals may access the object.

Undesirable information flow is implemented by an access control policy based upon the

Bell-laPadula multilevel security policy [Bell & LaPadula 1976].

5.2 Conventional Object-oriented Security

The following sections describe how the self-defence security architecture was imple­

mented in System K using standard object-oriented techniques such as modifying system

libraries, using inheritance and the proxy design pattern [Gamma et al. 1995]. The design­

ers of System K chose these techniques because they offered a better separation of concerns

than manually placing enforcement code within applications.

5.2.1 Overview

The following sections describe how secure RMI, association of security state with secure

objects and authorisation have been implemented by placing enforcement code within li­

braries, within superclasses and within proxies.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 116

5.2.2 Secure RMI

System K places enforcement code within system libraries to implement authentication.

integrity, confidentiality and initial authorisation checks for remote invocations and requires

adherence to a programming convention that differs from the standard conventions when

using Java RMI.

A modified RMI protocol stack is created that mutually authenticates client" and "ener".

generates session keys, manages the passing of security parameters with invocations and

transparently encrypts and decrypts byte streams encoding remote invocations. Clas"es rep­

resenting remote invocations, remote references and the UnicastObject have been modified

to include extra code and members to support secure RMI.

The changes are almost transparent to the developer of a server because the modified

protocol stack automatically encrypts and decrypts the remote method invocations with the

current session key to provide authenticity, integrity and confidentiality. Also from the

point-of-view of a client, the changes are transparent because the modified protocol stack

automatically encrypts and decrypts the remote method invocations to provide authenticity.

integrity and confidentiality.

Had System K been developed with JDK 1.2 or greater, Secure RMI over SSL [Java

Team 1996-1999] could have been used to provide authentication. integrity and confiden­

tiality although it would require some changes to the implementation of servers.

5.2.3 Security State

Each client and server in System K has security-related behaviour and state associated with

it, namely a unique identifier, a secret key for each principal and active labels used to imple­

ment authorisation. This is achieved by requiring these classes to extend the SecureObject

class as shown in Figure 5.1.

Principal Identifier

The principal identifier is a string that must be globally unique and persistent. The case

study assumes that this can be achieved by issuing a smartcard with a global identifier.

The identifier is read from a smartcard at the time of object creation and a'>sociate'> the

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 117

SecureObject

key: Byte(] ~ - - I
integrityPolicy: Policy <::::- 1 .. 2
information Policy: Policy
principal: String • check~ access(Slnng)

~ f
I I I

Viewer Db Model MLSPolicy OIConPoky

-- -~--

~.
l ____ -- !.

Figure 5.1: Class diagram for self-defence security architecture. Two classes under the
control of the security architecture are shown: Viewer and Db. These extend Secure­
Object which maintains security-related meta data. Each SecureObject contains pointers
to an information flow policy and an integrity policy. The abstract Policy class defines
a check_access method that is implemented by each type of policy. The check_access
method is invoked to determine whether a particular action is authorised.

object with its creator. This provides each object such as a server or mobile objects with

a principal identifier allowing authorisation servers to model access control policies based

upon the identity of a principal. For example, all objects created by Alice may acces., all

objects created by Bob.

The principal identifier is passed with all remote method invocations sent by clients or

servers acting as clients. It is not added to invocations by the RMI protocol stack. Instead

a client-side proxy is used to add the principal identifier to invocations as discussed in

Section 5.2.4.

Secret Key

A secret key associated with the user is read from the user's smartcard at the time of object

creation. The secret key is a symmetric key shared with an authentication server that acts

as a trusted third-party between the client and servers. The RMI protocol stack uses the key

in a mutual authentication and key establishment protocol.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 118

Active Labels

Active labels are a concept particular to System K. They share features similar to systems

such as those specified in the Orange book [US Department of Defense 1985]. where each

object protected by the system reference monitor has a label. But unlike a traditional sys­

tem, where the interpretation of the labels is fixed within the infrastructure and are simply

state, active labels encapsulate both state and logic for interpreting their meaning. This is

achieved by requiring each label to inherit from a Policy class that defines a checkO method

with a string argument representing the name of a principal. The check method determines

whether the object with the particular label will allow access to a named principal.

Self-defending objects encapsulate active labels and whenever an object's method is

invoked it implements authorisation policies by calling the check methods of its active

labels. Some security policies such as MLS require the labels associated with objects to

change following a policy check, active labels implementing these types of policies require

implementation of an addO method that allows a new label to be created by adding the

current label to another label.

System K has implemented two types of policies that may be used as active labels: Or­

ConPolicy and MLSPolicy representing Originator Control and Multilevel Security respec­

tively. Both policy classes delegate their decisions to remote servers - a Groupld server

in the case of OrConPolicy and MLSServer in the case of MLSPolicy. Each server has a

maintenance interface that allows a security officer to implement a particular organisa­

tion's security policy. Servers must be protected so that only authorised uscrs can change

the current policy in effect, achieved by applying the self-defence architecture recursively.

5.2.4 Authorisation

System K uses proxies to implement the Caretaker pattern discussed in Section 2.4.1. For

each server that has security policies enforced upon it there is a client-side and server-side

proxy. The client-side proxy implements transmission via RMI of principal identity, and

the server-side proxy acts as a PEP enforcing security policies on servers. The original

implementation of System K required a proxy to be generated manually for each clas" that

is the target of an authorisation check. The authors did suggest that a better approach would

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 119

be to generate the proxy automatically, so as to reduce the possibility of error when coding

proxies, but this approach was never implemented.

The normal flow of control for a secure policy-controlled invocation on a database

server is shown in Figure 5.2. Note, it is assumed that a reference to the database's securit\

proxy has already been obtained by invoking the openO method of the database's manager

object. The diagram also shows the proxies and skeleton classes automatically generated

by the Java RMI compiler that provide distribution and implement authenticity, integrity

and confidentiality.

The Viewer object invokes a method on a remote Db object by invoking the method on a

client-side security proxy (Db_CIiStub). This proxy adds the principal identifier to the invo­

cation and then invokes the method on the client-side RMI proxy (Db_SvrStub_Stub). The

RMI stub marshals the method, the arguments and the principal's identity and encrypts it

using a session key obtained during the initial interaction with the remote Java RMI skele­

ton for the server's security proxy (Db_SvrStub_Skel) before sending the encrypted method

call. The RMI skeleton decrypts the byte stream and unmarshals the method, arguments

and principal. After unmarshalling the RMI skeleton invokes the server's security proxy

(Db_SvrStub) that enforces any security policies before passing the method call on to the

Db server object. The steps involved in checking if access is allowed depend on the type,>

of policies being enforced on the secured object by the proxies.

In the case of an integrity security policy, Db_SvrStub invokes the check_access method

of the policy object using the principal's identity. If access is denied, the policy object will

raise an exception, otherwise it will return silently. On return, the appropriate method of

the Db object is invoked. In the case of an information flow security policy, the steps are the

same as for an integrity security policy, except that if access is allowed, the security state

of the server may need to be updated. This decision is hard-coded into the Db_SvrStub. If

an update is required because the execution of the method results in a change to the server

state, a new information flow policy is generated by adding the existing policy to one that

is created using the principal's identity. Integrity policies such as OrConPolicy require only

that an access check is performed, whereas information-flow policies such as MLSPolicy

require both an access check and update to the server's security state.

The conventional implementation requires these checks and updates to be hard coded

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATIOS 120

I

Viewer Db
7

- Policy f.<~ i AuthonsatlonServer

I
1 5 10

6 I
9 ,

I

I

I

DbCIiStub Db SvrStub

2 4

3
Db SvrStub Stub Db SvrStub Skel

Host A Host B HostC

Figure 5.2: Collaboration diagram showing steps involved in a viewer invoking a method
of a remote database under the self-defence security architecture. Step I: Viewer object in­
vokes a Db object method. Step 2: A DbCIiStub proxy receives the invocation and adds the
identity of the principal associated with the Viewer. The DbCliStub proxy i.., only respon­
sible for access control, not with enforcing confidentiality, it invokes the DbSvrStub_Stub
proxy. Step 3: The DbSvrStub_Stub proxy encrypts the invocation and send.., it across the
network. Step 4: The Db_SvrStub_Skel receives the encrypted invocation and decrypts
it before invoking the Db_SvrStub. Step 5: The Db_SvrStub retrieves a reference to the
Policy object associated with the Db object. Step 6: The check_access method of the
Policy object is invoked to determine if the method may be invoked. Step 7: The Policy
object delegates the access check to the appropriate AuthorisationServer object. Thi.., may
actually be a stub used to contact a remote authorisation server. Step 8: Either the access i..,
allowed or disallowed. Step 9: The Policy object returns the decision. Step 10: Assuming
that access is granted, the Db_SvrStub invokes the appropriate method of the Db object.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 121

into the security proxy such as Db_SvrStub.

System K uses the same approach as used for protecting remote servers to protect Model

objects that are downloaded for local editing. Although this allows the same infrastructure

to be used for both local and distributed access control it leads to an overcomplicated im­

plementation because security proxies must be downloaded with the Model objects. This

requires that when a request is made to download a Model from a database. a security pro,)

is returned instead. The security proxy then downloads the real Model object and acts as

a local proxy for it. Subsequently. when the Model object is to be uploaded. the security

proxy ensures that the Model object is uploaded to the database and the proxy is garbage

collected.

5.3 Loadtime MOP

This section describes how Kava can be used to implement access control policies with­

out modifying system libraries or using inheritance or proxies. Section 5.3.1 provides

an overview of the Kava implementation of access control and the different metaobjects

used. Section 5.3.2 describes how a metaobject can be used to ensure that secure RMI

is implemented and Section 5.3.4 describes how authorisation is implemented through a

combination of access checking and passing information about principals across "ecure

RMI.

5.3.1 Overview

This section outlines how the Kava metaobjects co-operate together to implement the self­

defence security architecture. Figure 5.3 shows how the metaobjects co-operate to provide

secure RMI between a Viewer object (the client) and a Db object (the server) under the con­

trol of access control policies. Two metaobjects cooperate in realising distributed acces"

control: (I) The MetaAuthorisation metaobject bound to methods of classes that must be

brought under the control of a security policy enforce security decisions: (2) The MetaAu­

thentication metaobject is bound to the marshalling and unmarshaling method" of the stubs

and skeletons that implement RMI for server classes. A RMI method invocation goe,

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION

. foiost;:•........................... ":

2:intercept t! 3:add principal :

4:+e(method(a!gs)+
pnnapal). f·············· ·;i~r~;;···· •••••••••••••••••••• '" ••••••••••••••••••••••• : --:. . .

I --l1li> :
'--_---l----+-+. -I MetaAuthenticabon ----.

••• ~:.1ethOd(args) 9get.J)lV1OpaJ(I t ~ 'Opnf'opal

Figure 5.3: Collaboration diagram showing the steps involved in invoking a method of a
remote database under the control of Kava metaobjects.

through the following steps:

1. On the client side, the Viewer object invokes a method on the local stub (Db_Stub)

that represents the remote Db object. Before the Db_Stub marshab the argument'>.

control is switched to the MetaAuthentication metaobject, which marshals the princi­

pal's identity. Control is returned to the Db_Stub, which then sends the byte stream

to the remote skeleton (Db_Skel) across an encrypted socket connection. Note that

secure communications are established as a result of the MetaConfidentiality metaob­

ject's intervention during the startup of the remote Db object, and that the metaobject

is not otherwise involved in the communication between the client and server objects.

2. On the server side, the Db_Skel unmarshals the arguments and invokes the appro­

priate Db method. The MetaAuthentication metaobject takes control and unmarshals

the principal's identity which it stores. Control is returned to the Db_Skel and the

appropriate Db method is invoked using the unmarshaled arguments.

3. If the method is specified as being under reflective control in the binding specifica­

tion, its execution is reified and handled at the meta !e\e) b) the MetaAuthorisation

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 123

metaobject.

4. If the execution of the method has been specified in the binding specification as being

under the control of an integrity or information flow policy, the MetaAuthorisation

metaobject invokes the check_access method of the policy object.

(a) In the case of an integrity policy, invoking check_access may cause the access

decision to be delegated to a remote authorisation server. If access is denied.

a runtime exception is raised, and this is converted to a RemoteException and

propagated all the way back to the Viewer object. Otherwise, the check_access

method silently returns.

(b) In the case of an information-flow policy, the check_access method is invoked

as described above. However, if the method returns silently (indicating access

is allowed), the information-flow policy associated with the server is updated

by invoking the policy object's add method.

(c) In the case that both types of policy apply, then both of the steps described

above apply. As long as an exception is not raised due to an access control

check, control will return to the base level and the method is executed.

Note that the diagram doesn't show the MetaConfidentiality metaobject that is bound to

any class that registers a server object with the RMI registry. This metaobject ensures that

a socket factory implementing SSLffLS is used for RMI.

5.3.2 Secure RMI

The MetaConfidentiality metaobject ensures confidential communications between clients

and servers. It uses standard Secure RMI facilities provided by JDK 1.2 [Sun Microsystems

2000] for securing communications and providing authentication rather than the infrastruc­

ture developed as part of System K. Using Secure RMI is a more portable solution making

use of the Transport Level Security protocols [Dierks & Allen 1999] that have been widely

tested.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 12-l

The developers of System K did not use Secure RMI for two reasons. First, System K

was developed using JDK 1.1 rather than the more recent development kits that can pro­

vide facilities for secure RMI. Second, developers wished to avoid US export restrictions

upon the use of public key technology [Apache Week 1997] by using a key establishment

protocol based upon oneway functions. These restrictions were lifted in September 1999.

The standard approach for using secure RMI is to ensure that a secure sockets layer

(SSL) factory is used by the RMI protocol stack instead of a standard socket factory. Un­

fortunately, this cannot be done by setting a Java property in the version of 1DK:! used for

the case study and requires extra code to be added to any client that is going to communicate

securely with a server. To avoid changes to the application source code, we encapsulate this

code in a metaobject class and bind it to the RMI startup code for the remote object on the

server, and intercepts the Naming.rebind method to ensure that a secure socket factory is

registered for the remote object. This ensures that SSL sockets are used for both client and

server-side connections. As a side effect of using SSL, clients and servers are authenticated

before confidential communication takes place. Note that the role of the MetaConfiden­

tiality metaobject is simply to intervene in the initialisation of the RMI layer, and that the

metaobject does not otherwise intercept method invocations between user-level objects.

5.3.3 Security State

Instead of placing enforcement code relating to security state in a superclass, the MetaAu­

thorisation metaobject controls access to server methods and applies the information and

integrity security policies as appropriate. As methods differ as to which security po\icie<,

are applied, the binding specification file parameterises the metaobject protocol and indi­

cates whether the method is under the control of an information-flow or integrity security

policy. In addition, in the case of an information flow policy, it indicates whether the exe­

cution of the method results in a change to the security state of the server. This is necessary

for security policies such as Bell-LaPadula, where the security state of the server must be

updated to reflect interaction with a principal.

2JDKl.2 was used.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 125

5.3.4 Authorisation

Using a metaobject to perform authorisation avoids problems associated with using a sep­

arate proxy class for this purpose. As there is no proxy and no reference to be leaked. it

is possible to provide direct access to the protected server without the need for a securit~

manager object. Also, in the case of the Model class, there is the benefit that there is no

need to add extra steps that maintain the presence of a proxy, even when the Model object

is downloaded for local editing. This is because metaobjects are automatically downloaded

with the base-level object because they are pointed to by the base-level object and defined

to be serializable.

The MetaAuthentication metaobject implements the passing of a principal's identity

from the client to the server with a remote invocation. The metaobject is designed to be

bound to the server's RMI stub and skeleton because being bound to these objects exposes

interfaces for marshalling and unmarshaling arguments that are passed with RMI method

invocation. At the client side, the MetaAuthentication metaobject adds the principal's iden­

tity to the byte stream, representing the marshalled arguments. before it is sent over the

encrypted socket connection to the skeleton, and at the server side it removes the principal

from the byte stream before unmarshaling the arguments from the decrypted byte stream.

The current implementation must use JDK 1. I-compliant proxies because the metaob­

ject requires access to the byte stream representation of remote methods calls and JDK 1.2

does not generate proxies at all. This makes this implementation technique dependent upon

current features of Java. An improved approach is to use a generic interface that provides

access to representations of remote-method invocations as byte streams. Even if this is not

provided by Java, the metaobjects can be insulated from these dependencies by hiding the

implementation details behind a fixed interface to the RMI protocol stack. In early versions

this would be implemented as described here whilst later versions could take advantage of

any opening up of the Java protocol stack.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 126

5.4 Improvements to the Separation of Concerns

This section discusses how using Kava provided a better separation of concerns than the

conventional techniques used in this chapter.

Before discussing the improvements on a case-by-case basis it is useful to reflect upon

the reduction on code size gained by using Kava to secure System K rather than conven­

tional object-oriented techniques. The Kava version reduced the size of application classes

by between approximately 15% and 45% through the removal of explicit access checks.

proxies and removal of code to update meta data.

The conventional and Kava versions of the System K code base were normalised to re­

duce the impact of programmer style. Normalising the code involved removing all whites­

pace and comments from the code. This allowed the size of the codebases to be compared

without worrying about different programmer styles with respect to code formatting or

commenting. Additionally, because the focus of the case study was to see if the engineer­

ing of application code was improved, only the size of application code used to invoke

either secure RMI or authorisation was compared. The code implementing the secure RMI

protocol stacks was excluded from the counts because this is assumed to be system-level

code and the authorisation servers were excluded because they are common to both the

conventional and Kava versions of System K.

The rest of this section discusses the improvements gained by using Kava on a case-by­

case basis.

5.4.1 Place Enforcement within Libraries

In this case study the RMI protocol stack was changed to implement authenticity, integrity

and confidentiality. Although providing a good separation of concerns from an application

point-of-view because it requires no changes to applications, in the context of the case

study there are three main drawbacks to this approach:

• All servers must use the RMI protocol stack. This means that all server implemen­

tations, even those that do not require Secure RMI were forced to make use of it. It

is true that this could have been avoided by adding options to standard RMI cla.,.,e"

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATIOS 1~7

that could control which protocol implementation was used but it does point out the

difficulties in engineering a solution that will fit all possible applications.

• Changing the RMI protocol stack was a non-portable solution requiring changes to

the Java runtime environment. This may not be possible in all environments for good

security reasons.

• Inserting enforcement code into the protocol stack may overcomplicate its design

and lead to problems when it changes at a later stage.

Kava was used to address implementing Secure RMI by using standard facilities and

invoking them by encapsulating the necessary code within a metaobject.

This addresses the first problem because the metaobject did not have to be oound to

all server objects. Some server objects could make use of it to implement Secure RMI

but other objects did not have to make use of it. This is a benefit of the clean separation

of concerns provided by a loadtime MOP. The second problem is addressed because Kava

doesn't require modification of system libraries due to its ability to redefine invocations

by inserting MUs into application code. The third problem is actually an indication that

adding enforcement code leads to an intertwining of enforcement code and library code that

makes maintainability difficult. Again, by modularising the changes to the RMI protocol

stack within a metaobject protocol the separation of concerns is improved.

5.4.2 Place Enforcement within Proxies

As discussed in Section 5.2.4, System K makes use of the Caretaker pattern and implements

it using proxies. Using proxies avoids changing the implementation of the proxied object.

However, it does require writing additional classes and manually inserting code to update

the active labels as required for the type of policy being implemented. The following

describes how the problems described in Section 2.4.1 can be seen in this case study:

Self problem. Self-invocations within System K are not intercepted by the security proxy.

Should an implementation error permit a method that should be subject to an autho­

risation check to be invokable via an unprotected method then authorisation \\ould

be bypassed.

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 128

Logical wrapping problem System K suffers from the logical wrapping problem because

the architecture is complicated by the need to add extra code to support enforcement

of access control on mobile objects as described in Section 5.2.-1..

Confinement problem. Should a direct reference to a Db or Model object escape then the

security proxies protecting them might be bypassed. This only occurs with a Db

object if it implements a remote interface because it is only invoked using RMI. On

the other hand, Model objects are downloaded into the local NM so possessing an

object reference allows its security proxy to be bypassed.

Interface gap problem. System K suffers from the interface gap that exists because of

the introduction of an extra proxy class. Whenever the interface of an object that is

the subject of security proxy changes, the security proxy must also be modified so

it reflects the changes to the secured object. This complicates maintenance because

two classes must be updated and points to a poor separation of concerns.

Essentially, using Kava avoids these problems because there is no longer any need to

maintain a separate proxy. The role of proxy is played by a metaobject but this is not visible

from the point of view of any client of the base-level object. The problems are addressed

as follows:

Self problem. Self-invocations within System K are always intercepted by the mctaobjcct.

Therefore other methods that are not subject to an access control policy cannot be

used to bypass protection.

Logical wrapping problem Avoiding the use of a separate proxy removes the requirement

to maintain extra code to support enforcement of access control.

Confinement problem. Should a direct reference be made to a Db or Model object, the

security of the system is not compromised. There simply is no protected direct refer­

ence to a base-level object that can escape.

Interface gap problem. There is no need to change the interface to ensure that proxied

versions of objects are returned because the metaobject is associated with the object

itself and will always be invoked.

CHAPTER 50 CASE STUDY TWO: DISTRIBUTED APPLICATIOl\o 129

5.4.3 Place Enforcement within a Superclass

In System K, inheritance is used to associate security state with objects. Developers of new

classes that must be secured must subclass the SecureObject class. This should present

no problems when implementing classes from scratch. However. if an existing class is to

be re-engineered, the programmer requires access to the source code in order to make the

target class subclass SecureObject. This means that classes supplied only as compiled code

cannot be re-engineered to be secure using an approach based on inheritance. although one

way to address this would be to use wrappers and delegation.

The decision as to which policies to associate with an object are hardwired into the

implementation of the SecureObject class. It would be more elegant if the detai Is of policies

applying to an object were separated out into some form of configuration file. An example

of this problem is shown in the difference between securing a Db and a Model. System K

implements both integrity and information-flow security policies for Model objects. but

only an integrity security policy for Db objects. However. both classes inherit both policie"

as part of their meta data. If an external configuration file was used. it would be possible to

specify different policies for each. These could be adjusted at loadtime without having to

change any source code.

The use of Kava avoids the requirements for inheritance because the binding between

the metaobject class and base-level class is established at loadtime allowing even compiled

classes to be brought under the control of the meta level. Additionally, different metaobject

classes providing different security functionality can be bound to those program classes

that require them rather than all classes.

5.5 Summary

This chapter contrasted conventional object-oriented techniques with use of Kava for en­

forcing access control policies upon distributed and mobile objects. It showed that Kava

provided a better separation of concerns than conventional techniques and led to a number

of improvements.

The next chapter uses the experience of the two case studies to draw some general

CHAPTER 5. CASE STUDY TWO: DISTRIBUTED APPLICATION 130

observations about using loadtime metaobject protocols to enforce access control policies.

Chapter 6

Inferences from Case Studies

This chapter makes some inferences from the specific case studies about the general LI\e of

a loadtime MOP such as Kava for security engineering.

6.1 MOPs Provide Better Separation of Concerns than Con­

ventional Object-Oriented Techniques

Chapter 4 discusses the application of Kava to a standalone application and Chapter 5

discllsses the application of Kava to an application compo"cd of distributed and mobile ob­

jects showed that it led to a cleaner separation of concerns. Furthermore it "howed concrete

benefits in terms of simplification when compared with cOll\entional object-oriented tech­

niques. This supported the abstract reasoning in Chapter :2 that loadtime metaobject pro­

tocols would provide a better approach for security engineering than conventional object­

oriented techniques. Given that both case studies were real applications and used standard

techniques for security it seems reasonable to argue that Ka\a could be u\cd with other

applications with similar success.

131

CHAPTER 6. INFERENCES FROM CASE STUDIES 132

6.2 Constraints to Consider when Using MOPs for En­

forcement

The following constraints must be considered when using MOPs to enforce access control

policies upon compiled user-level code: (1) Detailed specification may be necessary: (2)

Expressiveness of the binding specification influences success in enforcing an access con­

trol policy; (3) Granularity of interfaces also influences the success in enforcing an access

control policy; (4) Security exceptions will break the transparency of the technique and

increase the complexity of a solution; and (5) Applying a loadtime MOP such as Kava in

the context of another language requires the presence of type safety, rewriting tools and an

ability to intercept loading of classes.

6.2.1 Detailed Specifications may be Necessary

Experience with the case studies show that using Kava to enforce access controls upon

either application resources or system resources requires identifying the appropriate base­

level operations to bring under the control of the meta level because these form the vocabu­

lary of the access control policy. Application-specific policies such as controlling access to

application resources requires knowing the semantics and structure of an application. Other

policies controlling access to system resources or operating system resources provided by

library code requires knowing the semantics and structure of the library code.

6.2.2 Expressiveness of Binding Influences Complexity of Use

There is a trade-off between the expressive power of the binding specification and the com­

plexity of programming metaobjects. For example, implementation of the Lirc resource

control example required extra code to identify socket streams created to access the net­

work from other streams. The binding specification language could be extended to allow

extra context to be taken into account such as call graphs or aggregation relationships. This

would relieve the programmer from having to write code to detect these relationships at

runtime. However, it would increase the complexity of the enforcement mechanism mak­

ing verification of Kava's correctness more difficult.

CHAPTER 6. INFERENCES FROM CASE STUDIES

Extending Kava's binding specification language would bring the power of the lan­

guage closer to AspectJ's notion of a pointcut [Kiczales, Hilsdale, Hugunin. Kersten. Palm

& Griswold 2001]. AspectJ is an aspect oriented programming (AOP) language. Like

MOPs, AOP allow a clean separation of concerns. The core idea is some concerns cro",,­

cut an application's functionality and that these concerns can be separated out to provide a

better modularity than existing approaches [Kiczales. Irwin, Lamping. Loingtier & Lopez

1997]. AspectJ allows the crosscutting concerns to be implemented by defining code ex­

cerpts called advice and using declarative descriptions. called joinpoint. that determine

where the code excerpts should be woven into the final application. The joinpoints are

similar to Kava's binding specification. However. MOPs differ in that they provide a more

constrained way to modify the behaviour of an application because the protocol defines

the range of possible changes that can be applied through modifications of the language

semantics.

6.2.3 Granularity of Interfaces Constrain Policies

The case studies showed that the nature and abstraction level of security policies that can

be enforced using a MOP is governed by the capabilities of the reflective language and

the granularity of interfaces offered by the application and system classes. For example.

Kava cannot make Java system classes reflective. although it can intercept calls to Java sys­

tem classes from application code. This has had an impact on the design. Ideally, secure

RMI and authorisation would have been implemented by manipulating byte stream repre­

sentations of remote method invocations. For example. subject identifiers could have been

directly inserted and removed, access checks could have been applied by inspecting the tar­

get, method name and parameters and byte streams representing individual remote method

invocations could have been encrypted or decrypted. However, although metaobjects could

be bound to the RMI stubs and skeletons, which allowed interception of marshalling and

unmarshalling, access was not possible to the byte stream representations of the marshalled

invocations (although the level of abstraction that was available allowed extra parameters to

be inserted and removed from the remote messages). This prevented the implementation of

my own encryption/decryption and authentication algorithms and led us to rely upon SSL

CHAPTER 6. INFERENCES FROM CASE STUDIES

socket support that provides transport-level security but not middleware-Ie\ eI secLlrit\. If

Kava was able to reflect upon system classes, metaobjects could be used to provide access

to byte stream representations of RMI invocations.

6.2.4 Security Exceptions Break Transparency

Dealing with exceptions correctly is another source of complexity. When exceptions are

raised at the server side they are unchecked exceptions. These are converted into Remote­

Exceptions at the meta level and returned to the client. The client then raises them locally

as unchecked exceptions. This could lead to a halt of the program rather than a simple "ac­

cess denied" exception. To avoid this problem, it is necessary to intercept raised exceptions

at the client side and include application specific exception handling at the meta level. This

can be quite complex as a whole new error semantics was added.

One area that is worth considering for future work is how to handle exceptions. In this

implementation, a runtime exception is raised when a security policy is violated. Existing

exception handlers catch the exception and print a stack trace on the console. What if

a handler did not exist that handled runtime exceptions in a sensible way? Of course,

what is sensible is to a degree application sensitive. In some cases the virtual machine

should be halted. In others a message should be displayed and normal execution continued.

This is a complex issue that we have considered in another paper where we explore some

extensions to Kava that would support better interactions between behavioural reflection

and exceptions [Welch et al. 2001].

6.2.5 Constraints upon Applying Kava to other Languages

Could Kava be used to enforce access control policies upon compiled code other than Java

VM byte code? Although Kava itself could not be, the general approach to dc"igning

a MOP suitable for using for security enforcement could be applied to other languages.

The main requirements are type safety, rewriting tools for compiled code and the ability to

intercept class loading. A possible target language might be C# because it is object-oriented

and uses a high-level compiled format for its classes.

IJIP' ..

CHAPTER 6. INFERENCES FROM CASE STUDIES 135

6.3 Summary

This chapter attempted to stand back from the individual case studies and make some in­

ferences about using a loadtime MOP such as Kava to enforce access control policies ap­

plications.

Chapter 7

Conclusions and Future Work

This chapter provides a summary of the thesis, the contrihutions it mah.e". di"cu""es the

overall contributions of the the"is. provide an mervic\\ of po""ihle future wllrk and make."

some concluding remarks.

7.1 Summary of Thesis

Chapter 1 argued that enforcing security policies upon compiled code that mah.e" usc of ap­

plication and system resources requires more than operating ") "tern-level enlllicelllent. To

enforce access control upon both system resources and upon application re"ources rcquire"

application-level enforcement. Conventional object-oriented techniquc,> can he used to im­

plement existing security architectures but provide neither a clear separation of concern'>

nor can they be used with compiled code. In-lined reference Illonitor" are he u"ed with

compiled code but are unable to make use of existing security architectures or (currently)

implement distributed access control policies. An approach that provide,> a clean "eparation

of concerns invohes the use of metaobject protocols. E,i'>ting loadtime metaohject proto­

cols that can work with compiled code are able to provide sufficient lea"t privilege but do

not explicitly address complete mediation and economy of mechani"m. Additionall) the)

have not been used to implement distributed acce"" control. Thi" the"i" describe" an imple­

mentation of a loadtime metaobject protocol that addresse,> these problems and ime"tigates

whether a clean separation of concerns is achievable b) carr) ing out two ca"e '>LUdie'> \\ ith

136

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 137

third-party applications.

Chapter 2 introduces a set of criteria for an ideal security engineering technique for

enforcing access controls upon compiled user-level code, that is both library or applica­

tion code. The criteria are systematically applied to four candidate ~ecurity engineering

techniques: operating system enforcement, conventional object-oriented engineering, in­

lined reference monitors and metaobject protocols. Table 7.1 reproduce~ the summary of

results. Only loadtime metaobject protocols and in-lined reference monitors meet most of

the criteria. In particular in-lined reference monitors have well-developed arguments for

their satisfaction of complete mediation and economy of mechanism. However, loadtime

metaobject protocols have the advantage, with respect to the aims of this thesis. of allow­

ing existing security architectures to be used instead of replacing them. Existing loadtime

metaobject protocols do not meet all the criteria and this is used to develop a set of goals

for the thesis. The goals are:

1. Implement a MOP that enforces access control policies upon compiled code.

2. Implement a MOP that controls access to both application, library and operating

system resources.

3. Implement a MOP that satisfies the requirements for:

• Least privilege

• Complete mediation

• Economy of mechanism

• Clean separation of concerns

4. Demonstrate a clean separation of concerns compared with conventional software

engineering techniques that still allows reuse of existing security architectures.

Chapter 3 provides an overview of Kava, which is an implementation of the metaobjcct

protocol for Java designed to meet the first three goals. The first goal is satisfied because

Kava's exploitation of byte code rewriting to insert meta-level interceptions at loadtime al­

lows Kava to be used with compiled code. The second goal is satisfied because Ka\ a Java'"

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 138

, .
Technique Description Separation Least Complete Econom~' I

Table 7.1: Summary of evaluation of security engineering techniques

of Privilege Mediation of
Concerns Mechanism

Operating Fixed placement of Good Coarse Limited control Complex
systems enforcement code over user-level

within kernel. code
Libraries Fixed placement of Good Coarse Limited Language

enforcement code dependent
within kernel.

Manual Place enforcement Poor Fine Complete Language
insertion as required within dependent

application.

Capabilities Treat object Moderate Fine Limited Language
references as dependent
capabilities.

Proxies Place enforcement Moderate Fine Limited Language
code within dependent
proxies.

Inheritance Place enforcement Moderate Fine Complete Language

within superclass. dependent

IRMs Policy determines Good Fine Control over Good

in-lining of local objects

enforcement. code but not
within compiled distributed

code. Replaces
existing security
architecture.

Compile-time Metaobjects enforce Good Fine Examples of Includes

MOPs policy at runtime control over compiler

and bind to base distributed and MOP

level at compile objects but impl.

time. not local inTCB

Loadtime Metaobjects enforce Good Fine Examples of Only includes

MOPs policy at runtime control over MOP

and bind to base local objects impl.

but not inTCB I
level at load i

time. distributed I J
Runtime Metaobjects enforce Good Fine Examples of Includes !

control over
i runtime MOPs policy at runtime I
! ,

local objects and \IOP I

and bind to base
level at runtime but imp\. III TCB

time. not distributed

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 139

facility intercept the loading of application classes and Ka\a allows access to other t) pes of

classes to be controlled by intercepting application invocations of classes implementing li­

brary and operating system resources. The third goal is satisfied because of the fine-gmined

control provided by a MOP, the reuse of arguments for complete mediation and economy

of mechanism developed for in-lined reference monitors and Kava's ability to modularisl?

enforcement code within reusable metaobjects.

Demonstration of the last goal required two case studies to be carried out and these

are described in Chapter 4 and Chapter 5. The purpose of the case studies was to contrast

conventional object-oriented security engineering with a loadtime metaobject protocol ap­

proach. Each chapter describes both approaches and evaluates whether the benefits of a

good separation of concerns was used by using a loadtime metaobject protocol as opposed

to conventional techniques. The first case study application is a third-party standalone IRe

client. It allows comparison of approaches to enforcing access control policies control­

ling an application's access to application and system resources. The second case study

is a third-party distributed CASE tool that also uses weakly-mobile objects. This allows

comparison of approaches to implementing secure remote method invocations and autho­

risation. In both case studies, Kava was found to provide a better separation of concerns

than conventional techniques.

Finally, Chapter 6 makes some inferences from the specific case studies about the gen­

eral use of a loadtime MOP such as Kava for security engineering. First. it argues that

the case studies showed both an improved separation of concerns was provided by using

a loadtime MOP and these improvements would also apply if a loadtime MOP was used

with another application. Second, it discusses a set of constraints to consider when using a

loadtime MOP such as Kava with other applications. There are five constraints to consider:

(1) Detailed specification may be necessary; (2) Expressiveness of the binding specification

influences success in enforcing an access control policy; (3) Granularity of interfaces also

influences the success in enforcing an access control policy: and (4) Security exceptions

will break the transparency of the technique and increase the complexity of a solution: and

(5) Applying a loadtime MOP such as Kava in the context of another language require ... the

presence of type safety, rewriting tools and an ability to intercept loading of classes.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK lolO

7.2 Overall Contributions

The overall contributions of thesis go beyond exploring the issues in implementing a load­

time metaobject protocol for Java and applying it to two case studies. These contributions

are: (1) The lessons from the case studies allow us to show that the securit~ challenges from

Chapter 1 are met for each problem domain described there: (2) The loadtime metaobject

protocol approach can be used to implement other non-functional concerns besides -.ecu­

rity; and (3) The loadtime metaobject approach is applicable to languages other than Java.

----- - - - - - - - - - - - - - - -,

New Code Existing Code

',- --------l----------:

Services and Libraries

Application

Figure 7.1: A model of applications that may have security policies enforced upon them by
Kava. New code mayor may not be untrusted. It may interact with existing trusted code in
the form of system libraries and services. The interactions that may need to be controlled
by a security metaobject are shown as double-headed arrows.

First, we argue that the experiences with the case studies are generalisable to the secu­

rity challenges presented by new problem domains, as identified in Chapter I. The metaob­

ject protocol approach allows all accesses to both user-level and kernel-level resources by

user-level code to be mediated by metaobjects that enforce security policies. This can be

seen as enforcing a security policy upon an application composed of trusted and untrusted

compiled code components that make use of local libraries and services. Such an applica­

tion is shown in Figure 7.1. We assume that trusted code or libraries honour their interfaces

and their semantics are well specified. These specifications may be supplied with code

or derived using reverse engineering or visualisation. Security policies are enforced hy

controlling invocation of the trusted code's methods. New code components that may he

CHAPTER 7. CONCLUSIONS AND FUTURE WORK l-t I

untrusted are not assumed to be we]] specified, security policies are enforced 0) controlling

their access to trusted code.

Table 7.2 revisits each of the problem domains described in Chapter I and specifies

which code components are required to be we]] specified in order to allow a loadtime

metaobject protocol to enforce security policies. In all the cases there is new code that is be­

ing introduced into an environment that contains other user-level code executino within the e

same address space. In each problem domain knowledge differs about the specification of

the different code components. For example, untrusted mobile code can be prevented from

misusing the resources available in its new environment because Kava can prevent mali­

cious invocations of known methods whereas third-party code where there is a specification

of its own methods allows us to enforce security policies particular to the functionality of

the third-party code. Both these points are illustrated in the two case studies.

Second, we argue that the experiences of this thesis are applicable to non-functional

requirements other than security. Security is a notoriously difficult [Saltzer & Schroeder

1975] non-functional concern to implement successfully and therefore has provided a good

target for exploring the capabilities and limitations of a loadtime metaobject protocol. Fur­

ther contributions of this thesis concern how the constraints identified in Chapter 6 ap­

ply more widely. These inferences restricted themselves to the use of a loadtime MOP

such as Kava for security engineering. In fact, Kava could be used to implement other

non-functional concerns. For example, fault tolerance, real time constraints and dynamic

adaptation.

The basic requirements of least privilege, complete mediation and economy of mech­

anism also apply to the successful implementation of these other non-functional concern".

For example, consider checkpointing. Least privilege translates to a requirement to only

enforce checkpointing where required in the target application as otherwise unnecessary

saving of state will lead to reduced performance. Complete mediation translate" to a re­

quirement to intercept every possible state update. Economy of mechanism is still required

because trust in the implementation of checkpointing requires validation of the implemen­

tation and this is made easier if the implementation is small.

The argument about the need for specification and its relationship to trust also apply

to other non-functional concerns. Again, checkpointing requires some specification of the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Table 7.2: This table shows how Kava can be used to enforce security policies in all the
new problems domains described in Chapter 1. Where the code is well specified, Kava can
enforce policies related to the semantics of the code - for example the policies controlling
access to IRC channels. Where no specification exists, Kava can enforce policie~ upon the
code that limit the use of other well specified code - for example, mobile code can have ih
access to other code within the same address space controlled.

Problem domain Specification Policy Scope ----J
New Code Application Services i

and Libraries
Email attachments N Y Y Control access to

applications, ~ervice~
libraries.

Dynamic web content N Y Y Control access to
applications, ~crvices
libraries.

Mobile code N y Y Controls acces~ to
applications, services
libraries.

Third-party Y y Y Control acccs~ to

application new code,
applications, services
libraries.

Component-oriented y y y Control access to

programming new code,
applications, services
libraries.

Computational grids Y y Y Control access to
new code,
applications. services
libraries.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 143

classes where state changes take place so that they can be identified. An exprc""i\c bind­

ing specification allowing declarative specifications such as bind a metaobject class to all

classes that update a particular field simplify implementation of checkpointing. The l'Ia""c"

making up the application must be at the right level of granularity to allow interception of

state changes, too coarse grained and checkpoints become to unwieldy. Exceptions related

to checkpointing failures will break transparency and require handling at the metalevcl.

Enforcement requires the presence of type safety. rewriting tools and an ability to intercept

loading of classes.

Thirdly, the approach taken in this thesis is generalisable beyond Java. As stated about

implementation of a loadtime metaobject requires three features: (I) type safety to guaran­

tee interfaces are respected; (2) rewriting tools to allow the insertion of metalevcl intercep­

tions; and (3) an ability to intercept loading of classes to allow insertion of interceptions at

loadtime. This could be achieved for a language such as C++ by using (I) type-safe code

enforced using a toolkit such as TAL [Morrisett, Walker, Crary & Glew I 999b]; (2) use

of instrumentation libraries; and, modification of static linkers and dynamic library linking

routines.

7.3 Future Work

The main future work is to:

• Improve static analysis.

• Provide least privilege for metaobjects.

• Improve metaobject composition.

• Treat distribution as a first-class entity.

• Improve complete mediation.

• Investigate and improve performance.

• Implement a policy language.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK
I~

7.3.1 Improve Static Analysis

As discussed in Section 3.2.5, Kava's static analysis needs to be extended to allow the

superclass-subclass relationships to be determined statically. At present, the developer of

the binding specification must manually specify these relationships. This is not a good

approach when imposing access control policies upon unknown code. For example. in the

programming with Kava example (Section 3.1.7) the ResourceManager metaobject must

be bound to all classes creating an new instance of any object. The ResourceManager

must determine at runtime whether the instance is either a Frame object or a -.ubclass.

This imposes a considerable overhead upon the application that is the subject of the access

control policy. Completing the implementation of static analysis would ensure that this

could be determined at loadtime, thereby improving Kava's performance.

Additionally, Kava's static analysis could be made more expressive. For example, im­

plementing a binding keyword allowing call graph relationships to be considered when

determining whether to make a binding. In many cases this could be determined statically.

7.3.2 Provide Least Privilege for Metaobjects

The metaobject protocol approach provides least privilege except that metaobjects need

to have the same rights as the base-level objects so that checkPermissionO will succeed.

Should a metaobject not have the same rights then the check will fail because the rights or

permissions must be held by every protection domain on the stack.

In our earlier work [Welch & Stroud 2000b, Welch & Stroud 2002] it was proposed

to avoid this problem by changing the Policy implementation so that metaobjects would

always be granted the same rights as the base-level objects. However, this leads to a viola­

tion of least privilege because metaobjects do not need to exercise these right'> other than

to check the base level is entitled to use them. Granting them to the metaobject creates a

vulnerability because a hostile or faulty metaobject might go beyond checking that they are

held by abusing these rights.

Subsequent work on the Simple Security-Aware metaobject protocol show,> how thi..,

can be avoided. The idea is to change the MUs so that the base le\el AccessControlContext

is reified and passed as context to the metaobject. The access decision can then be evaluated

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 145

using this access control context rather than the meta level's access control context.

This problem raises a general question, which is "What privileges should a meta level

possess?". It seems reasonable to suppose that a set of privileges corresponding to the range

of behaviours that can be redefined at the meta level to be defined and enforced h) the Java

security architecture. Caromel and Vayssiere [Caromel & Vayssiere 2003] have proposed

a security framework for limiting the privileges of the meta level to reduce the po""ihility

of a buggy or malicious meta level subverting the behaviour of an application. Kava could

be modified to take advantage of both of these proposals.

7.3.3 Improve Metaobject Composition

The second case study required multiple metaobjects to co-operate in changing the runtime

behaviour of single object. Although the chain of responsibility [Gamma et al. 1995] can

be used with Kava to implement co-operation, it does lead to some inefficiencies because

both metaobjects do not always need to be invoked for the same MLI. This is because

each metaobject in the chain is invoked even when a behaviour that it has no interest in is

intercepted at the base level. It may ignore the behaviour but it is still invoked because Kava

intercepts the union of all behaviours that the metaobjects in the chain may need to control.

This is a consequence of implementing composition at the meta level rather than in the

construction of MUs. A more efficient approach is to modify the Kava so that it chained

the metaobjects together when implementing MUs. This means that metaobjects would

not be invoked unnecessarily. On the other hand, embedding composition rules into Kava

would limit future changes to composition rules for metaobjects. However, this can be

avoided by providing the ability to customise composition (see for example, JAC [Pawlak,

Steinturier, Duchien & Florin 200 I D.

7.3.4 Make Distribution First-Class

This thesis uses a single metaobject protocol to address both object and distributed object

access control. The case study shows that this provides a working solution but leads to an

unwieldy-looking design that may be hard to maintain. This situation can be impro\ ed if

the concern of object distribution was made first-class in Kava. thereby making it ea"ier to

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 146

apply Kava to securing distributed objects. Making distribution first-cla"" means that the

binding specification can reflect the notion of binding to the interface~ offered by distributed

objects. A first step would be to provide access to marshalling and unmarshalling of remote

method invocations via an abstract layer. This would make the implementation of the

control over RMI independent of the any particular Java RMI implementation.

7.3.5 Improve Economy of Mechanism

Although using code rewriting to implement Kava provides a good economy of mechanism

because left the compiler out of the trusted computing base, it doe~ rely upon a byte code

rewriting toolkit written in Java that is roughly 20Kloc in size. Complete mediation would

be improved by implementing a smaller byte code rewriting toolkit composed of only the

functions depended upon by Kava. Furthermore, the toolkit could be implemented in a

language with a more well-defined formal semantics than Java to make verification of its

correctness tractable.

7.3.6 Investigate and Improve Performance

There will always be a trade-off between the generality of an approach like behavioural

reflection and specific approaches such as manual implementation. Our case is that using a

general approach has benefits, in terms of reusability and reducing programmer error, that

outweigh performance costs. Only some basic performance measures have been performed

and there is scope to carry out a more thorough performance analysis. Additionally, the

current version of Kava incorporates some simple optimisations but considerably more can

be done. For example, static analysis of metaobjects to determine if they need access to

context or not. This way the costly reification of context can be avoided automatically.

Additionally, lazy reification [Masuhara et al. 1992] can also be explored.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK I·n

7.3.7 Provide a Policy Language for Kava

At the moment security policies are expressed through a combination of Kava'~ binding

specification (specifying what language-level operations to control) and the policy repre­

sentation used by the security model being enforced by Kava. Separation between the

enforcement and policy is something that the current approach provide~ at the implemen­

tation level but is something that should not be separate from the user's point of ,iew,

Keeping them separate, when defining a security policy, raises the possibility of control­

ling an operation from a policy point of view but forgetting to include the operation in the

binding specification. An improved approach is to use a single high-level policy language

that automatically generates the binding specification and policy representation particular

to the security model being enforced by Kava.

As a proof-of-concept, a prototype implementation of a policy compiler that maps Pon­

der [Damianou 2002] policies to Kava binding specifications and Java security policie~

has been developed [Lu 2004]. The main problem that had to be solved were providing a

means to translate Ponder targets and actions to the required Java policy targets and per­

missions. This was solved by requiring the developers of application or library resources to

provide a resource description file that provides a resource-specific Ponder vocabulary for

specifying policies. This notion of a resource description file is based upon the concept of

resource descriptions found in Naccio [Evans & Twyman 1999] where these a dictionary

providing translations between platform-neutral abstractions and platform-specific imple­

mentations. The translator uses this to determine what permissions to add to the Java policy

file and to generate the binding specification. At present the binding specification is fixed

and encoded in the resource file and future work would be to automatically generate the

binding specification based upon the rights being granted to programs using the user-level

resources.

Ponder could also be used to specify other policies such as policies such as Clark­

Wilson [Clark & Wilson 1987]. As part of earlier work, libraries of metaobjects for imple­

menting the Clark-Wilson [Welch 1999] security policy was designed, Using the Ponder to

Kava policy translator requires defining new resource descriptions to allow Ponder abstrac­

tions to be mapped to Kava binding specifications and appropriate Ja\a security policie ... ,

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 148

7.4 Concluding Remarks

Security is a notoriously difficult non-functional concern to implement successfull). Fur­

thermore, existing attempts to implement security while maintaining a separation of con­

cerns has led to inflexible or untrustworthy implementations. The loadtime metoabject

approach described in this thesis avoids either pitfall by combining code rewriting and

metaobject protocols. Additionally, this thesis describes an approach that could he applied

to other non-functional concerns and other languages. This is a significant step forward in

allowing developers to meet the challenges arising in new problem domains such as mobile

code or component-oriented programming.

Bibliography

Ancona, M., Cazzola, W. & Fernandez, E. B. (1999). Reflective authorization systems:

Possibilities, benefits and drawbacks, in J. Vitek & c. Jensen (eds). Secure Internet

Programming: Security Issues for Distributed and Mobile Objects, Vol. 1606 of Lec­

ture Notes in Computer Science, Springer, pp. 35-50.

Anderson, A., Parducci, B., Adams, c., Flinn, D., Brose, G., Lockhart, H .. Beznosov,

K., Kudo, M., Humenn, P., Godik, S., Andersen, S., Croker. S. & Moses, T. (2003).

eXtensible access control markup language (XACML) version 1.0, Technical report,

OASIS group.

Anderson, J. P. (1972). Computer Security Technology Planning Study, Technical Report

ESD-TR-73-5 J, Electronic Systems Division, Deputy for Command and Management

Systems, HQ Electronic Systems Division (AFSC).

Anti-Phishing Working Group (2004). What is phishing? [online], Available from: ~.':.':.p:

I Iwww. antiphishing. org. [Accessed August 2004].

Apache Week (1997). Apache and secure transactions, Available from: ht ':.p: I Iwww.

apacheweek. coml features I ssl. [Accessed August 2004].

Arnold, K. & Gosling, J. (1998). The Java programming language (2nd ed.). ACM

Press/Addison-Wesley Publishing Co.

Attardi, G., Bonini, c., Boscotrecase, M. R., Flagella, T. & Gaspari. M. (1989). Metalevel

Programming in CLOS, ECOOP'89.

149

BIBLIOGRAPHY
150

Bell, E. D. & LaPadula, L. J. (1976). Secure computer system: Unified exposition and \tul­

tics interpretation, Technical Report ESD-TR-73-306, MITRE Corporation. Bedford.

MA.

Benantar, M., Blakley, B. & Nadain, A. J. (1996). Approach to object securit) in distributed

SOM, IBM Systems Journal 35(2): 192-203.

Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke. M .. Costa. F.. Duran-Limon, H ..

Fitzpatrick, T., Johnston, L., Moreira, R. Parlavantzas. N. & Saikoski. K. (2001).

The design and implementation of Open ORB 2. IEEE Distrib. Syst. Online 2. 6

(Sept. 2001). Available from: http://computer.org/dson~ir.e.[Accessed August

2004].

Briot, J.-P., Doi, N., Honda, Y, Ichisugi, Y, Kodama, Y, Ohsawa, I., Shibayama, E ..

Takada, T., Watanabe, T. & Yonezawa, A. (1990). ABCL: An Object-Oriellted COII­

current System, Computer Systems Series, MIT Press.

Bull, 1. A., Gong, L. & SoB ins, K. R (1992). Towards security in an open systems feder­

ation, Proceedings of ESORICS 92, 2nd European Symposium Oil Research in Com­

puter Security, Vol. 648 of Lecture Notes in Computer Sciellce. Springer. Toulouse,

France, pp. 3-20.

Butler, R, Welch, v., Engert, D., Foster, I., Tuecke, S., Volmer, 1. & Kesselman, C. (2000).

A national-scale authentication infrastructure, Computer 12(33): 60-66.

Caromel, D., Huet, F. & Vayssiere, 1. (2001). A simple security-aware MOP for Java,

Proceedings of REFLECTION01, Third International Conference on Metalevel Ar­

chitectures and Separation of Crosscutting Concerns, Vol. 2192 of Lecture Notes ill

Computer Science, Springer, Kyoto, Japan, pp. 118-125.

Caromel, D. & Vayssiere, J. (2001). Reflections of MOPs, components, and java ..,ecurity.

Proceedings of ECOOP 2001, European Conference on Object-Oriented Program­

ming, Vol. 2072 of Lecture Notes in Computer Science. Springer. Budape"'t. Hungar).

pp.256-274.

BIBLIOGRAPHY
151

Caromel, D. & Vayssiere, J. (2003). A security framework for reflective Java applications.

Software Practice and Experience 33(9): 821-846.

Cazzola, W. (2000). Communication-Oriented Reflection: A Way to Open Up the RAIl

Mechanism, PhD thesis, Universita degli Studi di Milano. Italy.

Chess, D. M., Harrison, C. G. & Kershenbaum, A. (1995). Mobile agents: Are they a good

idea?, Technical Report RCJ9887, T. 1. Watson Research Centre. IBM. Originally

written 12/1994, declassified 3/1995.

Chiba, S. (2000). Load-time structural reflection in Java, Proceedings of ECOOP 2000,

European Conference on Object-Oriented Programming. Vol. 1850 of Lecture Notes

in Computer Science, Springer, Sophia Antiopolis and Cannes. France. pp. 313-336.

Chiba, S. & Masuda, T. (1993). Designing an extensible distributed language with a meta­

level architecture, Proceedings of 7th European Conference on Object-Oriel/ted Pro­

gramming (ECOOP'93), Kaiserslautern. pp. 482-501.

Clark, D. D. & Wilson, D. R. (1987). A comparison of commercial and military computer

security policies, IEEE Symposium on Security and Privacy. IEEE. pp. 184-194.

Cohen, G. A. & Chase, J. S. (1998). Automatic Program Transformation with JOIE.

USENIX Annual Technical Symposium, USENIX. New Orleans, Louisiana. pp. 167-

178.

Cointe, P. (1987). Metaclasses are first class: The ObjVlisp model. Conference proceeding\'

on Object-oriented programming systems, languages and applications. ACM Pres,",.

pp. 156-162.

Colouris, G., Dollimore, 1. & Kindberg, T. (2001), Distributed Systems: Concepts and

Design, third edition edn, Addison-Wesley.

Coulson, G. (2002). What is reflective middleware?, IEEE Distrib. Syst. Online 2. 8 (Dec.

2001); available from: http://computer.org/dsonLr.e. [Accessed May 2(02).

BIBLIOGRAPHY
152

Czajkowski, G. & von Eicken, T (1998). JRes: A resource accounting interface for

Java, Conference on Object-Oriented Programming, Systems. Languages. and Ap­

plications, ACM Press, Vancouver, British Columbia, pp. 21-35.

Dahm, M. (1998). Byte code engineering with the JavaClass API, Technical Report 8-/7-

98, Friei Universitat, Berlin.

Damianou, N. C. (2002). A Policy Framework for Management of Distrihuted Systems,

PhD thesis, Department of Computing, Imperial College of Science, Technology and

Medicine.

Dennis, J. B. & Earl c., V. H. (1966). Programming semantics for multiprogrammed

computations, Communications of the ACM 9(3): 143-155.

Dierks, T & Allen, C. (1999). The TLS protocol version 1.0. Internet request for comment

RFC 2246., Internet Engineering Task Force. Available from: h::.::.p: //WWW. iet f.

org /rfc/rfc224 6. txt. [Accessed February 2003].

Dijkstra, E. W. (1976). A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ.

Dijkstra, E. W. (1982). Selected Writings on Computing: A Personal Penpective, Springer­

Verlag. Manuscript "EWD 447: On the role of scientific thought" (30th August 1974)

was published as pages 60-66.

Erlingsson, U. & Schneider, F. B. (2000). SASI enforcement of security policies: a retro­

spective, Proceedings of the /999 Workshop Oil New Security Paradigms, ACM Press,

pp.87-95.

Evans, D. & Twyman, A. (1999). Flexible policy-directed code safety, IEEE Symposium

on Research in Security and Privacy, IEEE Computer Society, Technical Committee

on Security and Privacy, IEEE Computer Society Press, Oakland, CA, pp. 32-45.

Fabre, J .-c., Nicomette, v., Perennou, T, Wu, Z. & Stroud, R. 1. (1995). Implementing

fault-tolerant applications using reflective object-oriented programming. Proceedings

of the Twenty-Fifth International Symposium 011 Fault-Tolerant Computing (FTCS-

25), Pasadena, USA, pp. 489-498.

BIBLIOGRAPHY IS3

Fabre, J .-c. & Perennou, T. (1996). Friends - a flexible architecture for implementing

fault-tolerant and secure distributed systems, Proceeding of Dependable Computing -

EDCC-2, Second European Dependable Computing Conference, Vol. 1150 of Lecture

Notes in Computer Science, Springer, Taonnina, Italy, pp. 3-20.

Forman, I. & Danforth, S. (1999). Putting Metaclasses to Work, Addison Wesley.

Forman, I. R., Danforth, S. & Madduri, H. (1994). Composition of before/after metaclasses

in SOM, Proceedings of the ninth annual conference on Object-oriented program­

ming systems, language, and applications, ACM Press, pp. ~27-B9.

Foster, I. (2001). The anatomy of the Grid: Enabling scalable virtual organizations. Pro­

ceedings of the } st International Symposium on Cluster Computing and the Grid.

IEEE Computer Society, p. 6.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, Reading, Massachusetts.

Gollmann, D. (1999). Computer Security, John Wiley & Sons Ltd.

Golm, M. & Kleinoder, 1. (1999). Jumping to the meta level: Behavioural reflection can be

fast and flexible, Proceedings of REFLECTIOND}. Third International Conference

on Metalevel Architectures and Separation of Crosscutting Concerns, Vol. 1616 of

Lecture Notes in Computer Science, Springer, Kyoto, Japan, pp. 22-39.

Gong, L. (1999). Inside Java(tm)2 Platform Security, Addison-Wesley.

Gong, L., Mueller, M., Prafullchandra, H. & R., S. (1997). Going beyond the sandbox: An

overview of the new security architecture in the Java Development Kit 1.2, USENIX

Symposium on Internet Technologies and Systems, USENIX, Berkeley, CA, Monterey.

California, pp. 103-112.

Gosling, J., Joy, B. & Steele, G. L. (1996). The Java Language Specification. The Li\ a

Series, Addison-Wesley.

BIBLIOGRAPHY 154

Gowing, B. & Cahill, V. (1996). Meta-Object Protocols for C++:The Iguana Approach.

Reflection , 96,pp. 137-152. R49.

Graube, N. (1989). Metaclass compatibility, Conference proceedings 01/ Object-oriel/ted

programming systems, languages and applications, ACM Press. pp. 305-315.

Hashii, B., Malabarba, S., Pandey, R. & Bishop, M. (2000). Supporting reconfigurable

security policies for mobile programs, Computer Networks/Proceedings of the 9th

World Wide Web Conference, Vol. 33, Elsevier, Amsterdam, The Netherlands. pp. 77-

93.

H6lzle, U. (1993). Integrating independently-developed components in object-oriented lan­

guages, Proceedings of the 7th European Conference on Object-Oriel/ted Program­

ming, Springer-Verlag, pp. 36-56.

Java Team (1996-1999).

http://java.sun.com.

JDK(tm) 2 SDK documentation. Available from:

Keller, R. & H6lzle, U. (1998). Binary component adaptation, Proceedings of the 12th

European Conference on Object-Oriented Programming. Springer-Verlag, pp. 307-

329.

Kiczales, G., des Rivieres, J. & Bobrow, D. G. (1991). The Art of the Met{lobject Protocol,

Massachusetts Institute of Technology.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M .. Palm, 1. & Griswold, W. G. (2001). An

Overview of AspectJ, ECOOP 2001, Vol. LNCS 2072, Springer, Budapest, Hungary,

pp. 327-353.

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M. & Lopez, C. (1997). Aspect-oriented

programming, Proceedings of ECOOP 97. European Conference on Object-Oriented

Programming, Vol. 1241 of Lecture Notes in Computer Science, Springer. J) vask) la.

Finland, pp. 220-242.

BIBLIOGRAPHY
155

Killijian, M.-O. & Fabre, J. C. (2000). Implementing a reflective fault-tolerant CORBA

system, 19th IEEE Symposium on Reliable Distributed Systems. IEEE Computer S()­

ciety, Nurnberg, Germany, pp. 154--163.

Killijian, M.-O., Fabre, J.-c., Ruiz-Garcia, l-C. & Chiba, S. (1998). A metaobject pro­

tocol for fault-tolerant corba applications, The Se\'ellfeellfh Symposium Oil Reliable

Distributed Systems 1998, IEEE Computer Society, West Lafayette. Indiana. L'SA.

Kon, E, Roman, M., Liu, P., Mao, J., Yamane, T., a, C. M. & Campbell. R. H. (2000).

Monitoring, security, and dynamic configuration with the dynamicTAO reflecti\\.~

orb, IFIPIACM International C01~ferellce on Distributed systems pllltfonll.~. Springer­

Verlag New York, Inc., pp. 121-143.

Lampson, B., Abadi, M., Burrows, M. & Wobber, E. (1992). Authentication in distributed

systems: theory and practice, ACM Trans. Comput. Syst. 10(4): 265-310.

Lampson, B. W. (1973). A note on the confinement problem. CommltlliclitiollS of the ACM

16(10): 613-615.

Lampson, B. W. (1974). Protection, SIGOPS Operating System Reriell' 8(1): 1 X-2-l.

Liang, S. & Bracha, G. (1998). Dynamic class loading in the Java virtual machine, Pro­

ceedings of the 13th ACM SIGPUN conference 01/ Object-oriented IJmgramming,

systems, languages, and applications, ACM Press, pp. 36---l-l.

Lieberman, H. (1986). Using prototypical objects to implement shared behaviour in object­

oriented systems, Proceedings ofOOPSU'86, ACM Press.

Lorch, M., Proctor, S., Lepro, R., Kafura, D. & Shah, S. (2003). First experiences using

XACML for access control in distributed systems. Proceedings of the 2003 ACM

workshop on XML security, ACM Press, pp. 25-37.

Lu, E (2004). Implementing Ponder policies using Kava (MCompSci report). Univcr,it)

of Victoria at Wellington, School of Mathematics, Statistics and Computer Science

(Te Tatou Kura). Supervised by Ian Welch.

BIBLIOGRAPHY 156

Maes, P. (1987). Concepts and experiments in computational reflection. Conference

proceedings on Object-oriented programming systems, languages and applicatiof/.\,

ACM Press, pp. 147-155.

MAFTIA Project (2003). Conceptual model and architecture of MAFfiA. Technical Re­

port D21, MAFTIA Project.

Malenfant, J., Jacques, M. & Demers, F.-N. (1996). A tutorial on behavioural reflection

and its implementation, First International Conference on Reflection and Metale\'el

Archtectures (Reflection '96), ACM Press, San Francisco. California, l'SA. pp. 1-20.

Masuhara, H., Matsuoka, S., Asai, K. & Yonezawa, A. (1995). Compiling away the meta­

level in object-oriented concurrent reflective languages using partial evaluation. Pro­

ceedings of the tenth annual conference on Object-oriented programming s."Stems,

languages, and applications, ACM Press, pp. 300-315.

Masuhara, H., Matsuoka, S., Watanabe, T. & Yonezawa, A. (1992). Object-oriented con­

current reflective languages can be implemented efficiently, c01lfere1lce proceedings

on Object-oriented programming systems, languages, and appliclItio1ls. ACM Pres

pp.127-144.

McAffer, J. (1995). A Meta-Level Architecture for Prototyping Object Systems, PhD thesis,

University of Tokyo.

McCollum, C. J., Messing, J. R. & Notargiacomo, L. (1990). Beyond the pale of MAC and

DAC - defining new forms of access control, IEEE Computer Society Symposium on

Research in Security and Privacy, Oakland, California, pp. 190--200.

Millen, J. K. (1992). A Resource Allocation Model for Denial of Service, IEEE Computer

Society Symposium on Research in Security and Privacy. IEEE, Oakland, California,

pp. 137-147.

MiIIer, M. S. & Shapiro, J. S. (2003). Paradigm regained: Abstraction mechanisms for ac­

cess control, in V. A. Saraswat (ed.), Advances in Computing Science - ASIA,..,' 2003

BIBLIOGRAPHY 157

Programming Languages and Distributed Computation, 8th Asian Computi"g Sci­

ence Conference, Vol. 2896 of Lecture Notes in Computer Science. Springer. Mumbai.

India.

Morrisett, G., Walker, D., Crary, K. & Glew, N. (1999a). From system F to typed assemhl)

language, ACM Transactions on Programming and La"guages Systems 21(3): 527-

568.

Morrisett, G., Walker, D., Crary, K. & Glew, N. (I 999b). From system F to typed assembly

language, ACM Trans. Program. Lang. Syst. 21(3): 527-568.

Mulet, P., Malenfant, J. & Cointe, P. (1995). Towards a methodology for explicit compo­

sition of metaobjects, Proceedings of the tenth annual conference on Object-oriented

programming systems, languages, and applications. ACM Press. pp. 316-330.

Neuman, B. C. & Ts'o, T. (1994). Kerberos: An authentication service for computer

networks, IEEE Communications 32(9): 33-38.

OASIS Group (2004). Security and privacy considerations for the OASIS security asser­

tion markup lanaguage (SAML) v2.0, Technical report, OASIS Group. Edited by

Frederick Hirsch, Rob Philpott and Eve Maler.

Oliva, A. & Buzato, L. E. (1999). The Design and Implementation of Guarana, Usexnix

COOTS, Usenix, San Deigo, California, USA, pp. 203-216.

Otway, D. & Rees, o. (1987). Efficient and timely mutual authentication, SIGOPS Oper­

ating System Review 21(1): 8-10.

Pandey, R. & Hashii, B. (1999). Providing fine-grained access control for Java programs.

European Conference on Object-Oriented Programming, Lecture Notes in Computer

Science, Springer, Lisbon, Portugal, pp. 450-473.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

ACMcomms 15(12): 1053-1058.

BIBLIOGRAPHY

Pawlak, R., Steinturier, L., Duchien, L. & Florin, G. (2001). JAC: a flexible solution

for aspect-oriented programming in Java, Proceedings of REFLECTIONOI. Third In_

ternational Conference on Metalevel Architectures and Separation of Crossmtti"g

Concerns, Springer, Kyoto, Japan, pp. 1-24.

Pfteeger, C. P. (1997). Security in Computing, second edn, Prentice-Hall International. Inc.

Philpott, R. (2004). Technical overview of the OASIS security assertion markup language

(SAML) vl.l, Technical report, OASIS Group.

Redell, D. (1974). Naming and Protection in Extendable Operating Systems, PhD thesis.

MIT. Available from: http://www .lcs. mi t. edu/publicatic:.s/ specpub. php?

id=7 0 8.

Redmond, B. & Cahill, V. (2002). Supporting unanticipated dynamic adaptation of appli­

cation behaviour, Proceedings of the 16th European Conference 0" Object-Oriented

Programming, Springer-Verlag, pp. 205-230.

Riechmann, T. & Hauck, F. J. (1997). Meta objects for access control: extending capability­

based security, Proceedings of the 1997 workshop on New security paradigms. ACM

Press, pp. 17-22.

Riechmann, T. & Hauck, F. 1. (1998). Meta objects for access control: a formal model for

role-based principals, Proceedings of the 1998 workshop on New security paradigms,

ACM Press, pp. 30-38.

Roulo, M. (1998). Accelerate your java apps!, Available from:http://www. javaworld.

com/ javaworld/ jw-09-1998/ jw-09-speed. html. [Accessed February 2004].

Rutt, T., Curtis, D., Hopkins, A., Fairthorne, B., Hartman, B., Nessett, D., Vleck, T. V ..

Frantz, D., Lejeune, H., Blakley, B., Mukerji, 1., Ammon, c., Salmond, K. & Allred.

L. (1995). Corba security specification, Specification, OMG.

Saltzer, J. H., Reed, D. P. & Clark, D. D. (1984). End-to-end arguments in system design.

ACM Transactions on Computer Systems 2(4): 277-288.

BIBLIOGRAPHY
159

Saltzer, J. H. & Schroeder, M. D. (1975). The protection of information in computer ,~ ,_

terns, Proceedings of the IEEE 63(9): 1278-1308. S64.

Samarati, P. & Vimercati, S. (2000). Foundations of Security Analysis and Design (TUTO­

rial Lectures), Springer, chapter Access Control: Policies. Models. and Mechanisms.

pp.137-196.

Schneider, E B. (2000). Enforceable security policies. ACM Transactions Oil [nfol71111tioll

System Security 3(1): 30-50.

Schneider, E, Morrisett, G. & Harper, R. (2000). A language-based approach to secu­

rity, in R Wilhelm (ed.), Informatics - 10 Years Back. 10 Years Ahead. Conference

on the Occasion of Dagstuhl's 10th Anniversary .• Vol. 2000, Springer. Saarbrucken.

Germany, pp. 86-101.

Schneier, B. (1995). Applied cryptograph)' (2nd ed.): protocols. algorithms. and source

code in C, John Wiley & Sons, Inc.

Secure Computing Corporation (1997). DTOS general system security and assurability

assessment report, Technical Report CDRL AO II, Secure Computing Corporation.

Roseville, MN.

Sirer, E. G., Grimm, R, Gregory, A. 1. & Bershad. B. N. (1999). Design and implemen­

tation of a distributed virtual machine for networked computers. Proceedings of the

seventeenth ACM symposium on Operating systems principles, ACM Press, pp. 202-

216.

Sophos Anti-Virus (2004). W32lbagle-f virus analysis, Available from: ht::'p: / /www.

sophos. com/virusinfo/ analyses/w32baglea. htm:C. [Accessed June 2004].

Spencer, R, Smalley, S., Loscocco, P., Hibler, M., Andersen, D. & Lepreau. 1. (1999). The

Flask security architecture: System support for diverse security policies. Proceedings

of the Eighth USENIX Security Symposium, USENIX, pp. 123-139.

Stroud, R (1992). Transparency and reflection in distributed systems. Proceedings of the

5th workshop on ACM SIGOPS European workshop, ACM Press, pp. 1-5.

BIBLIOGRAPHY
160

Stroud, R 1. & Wu, Z. (1995). Using metaobject protocols to implement atomic data

types, Proceedings of the 9th European Conference on Object-Oriented Program­

ming, Springer-Verlag, pp.] 68-] 89.

Sun Microsystems (1999-2004). lavaMail API, Avaliable from: ':l: p: IIja\·3.. 5:'-: .. ::'0-:::/

products/ javamail/. [Accessed September 2004].

Sun Microsystems (2000). The scoop on rmi and ssl. Available fom: r.::;-: / / java. sun.

com/j2se/l. 3/docs/guide/rmi/SSLlnfo. html. [Accessed January 2004].

Szyperski, C. (1998). Component Software - Beyond Object Oriellfed Programming,

Addison-Wesley Longman Limited.

Ulfar Erlingsson & Schneider, F. B. (2000). IRM enforcement of Java stack inspection.

IEEE Symposium on Research in Security and Primcy. IEEE Computer SociCl).

Technical Committee on Security and Privacy, IEEE Computer Society Press. Oak­

land, CA, pp. 246-255.

US Department of Defense (1985). DoD trusted computer system evaluation criteria (the

Orange book), Technical Report DOD 5200.28-STD. US Department of Defense.

von Nieda, 1. (2001). Lirc - an IRC client for Java, http; / /www. vonnieja.::;q /Lic-::.

Last accessed 17/6/02.

Wahbe, R, Lucco, S., Anderson, T. E. & Graham, S. L. (1993a). Efficient software-based

fault isolation, Proceedings of the fourteenth ACM symposium on Operating .\.nlems

principles, ACM Press, pp. 203-216.

Wahbe, R, Lucco, S., Anderson, T. E. & Graham, S. L. (1993b). Efficient Software­

Based Fault Isolation, Fourteenth ACM Symposium 011 Operating Systems Principles.

Asheville, North Carolina, pp. 202-216.

Wallach, D. S., Balfanz, D., Dean, D. & Felten, E. W. (1997). Extensible security archi­

tectures for java, Proceedings of the sixteenth ACM symposium on Operating\YSlem\

principles, ACM Press, pp. 116-128.

BIBLIOGRAPHY
161

Welch, I. (1997). Adding security to commercial-off-the-shelf software. EumpeClII Re­

search Seminar on Advances in Distributed Systems (ERSADS).

Welch, I. (1999). Reflective enforcement of the Clark-Wilson inte2:rit\ model. 21/d ~\-hrk-
~ -

shop on Distributed Object Security, OOPSLA '99.

Welch, I. S. & Stroud, R. (1999a). From Dalang to Kava - the evolution of a reflective

Java extension, Second International Conference OIl Meta-Le\'el Architectures and

Reflection, Vol. 16 16, Springer, Saint-Malo, France.

Welch, I. S., Stroud, R. 1. & Romanovsky, A. (2001). Aspects of exceptions at the meta­

level, Metalevel Architectures and Separation of Crosscutting COl/cerns, Third /1/­

ternation Conference, REFLECT/ON 2001, Vol. 2192 of Lecture Notes in Compllfer

Science, Springer, Kyoto, Japan, pp. 280-282.

Welch, 1. & Stroud, R. (1998a). Using metaobject protocols to adapt third-party

components, http://www.eamp.lanes.ae . ukl eamputing/m:dd.iewa re98h:ips.

html, last accessed 14107/02. Work in Progress paper at Middlewarc·98.

Welch, I. & Stroud, R. (2003). Re-engineering security as a crosscutting concern - experi­

ence with a third party application, The Computer ioltr1laI46(S): 578-589.

Welch,1. & Stroud, R. J. (1998b). A reflective Java class loader. ECOOP Workshops 199X.

Springer Verlag, pp. 374-375.

Welch, 1. & Stroud, R. J. (1 999b). Supporting Real World Security Models in Java, 7th

IEEE International Workshop on Future Trends of Distributed Computing Systems.

Cape Town, South Africa, pp. 155-159.

Welch, 1. & Stroud, R. 1. (2000a). Kava - a reflective Java based on bytecode rewriting. il1

W. Cazzola, R. 1. Stroud & F. Tisato (eds), Reflection and Soffl.vare Engineering. Vol.

I 826, Springer-Verlag, Heidelberg, Germany, pp. 157-169.

Welch, 1. & Stroud, R. J. (2000b). Using reflection as a mechanism for enforcing securit)

policies in mobile code, Proceedings of ESORICS 2000. 6th European Symposium

BIBLIOGRAPHY

on Research in Computer Security, Vol. 1895 of Lecture Soles in Computer Sci('I1('('.

Springer, Toulouse, France, pp. 309-323.

Welch, I. & Stroud, R J. (2001). Kava - using byte-code rewriting to add behavioral reflec­

tion to Java, Proceedings of COOTS 2001, USENIX Conference 011 Ohject-Orielltecl

Technologies and Systems, USENIX, Berkeley, CA. San Antonio. Te\a:-., pp. 119-

130.

Welch, I. & Stroud, R J. (2002). Using reflection as a mechanism for enforcing "ecurit~

policies on compiled code, Journal of Computer Security 10: 399--B2,

Wu, Z. & Schwiderski, S. (1997). Reflective Java, Technical Report APM.1931.01. Ar­

chitecture Projects Management Limited (ANSA), Cambridge. UK. Available from:

http://www.ansa.co.uk.

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R, Pierson, C. & Pollack. F. (1974).

Hydra: the kernel of a multiprocessor operating system, Comnlllll. ACM 17(6): 337-

345.

Yellin, F. (1996). Low level security in Java, Available from: h -: ': t=: : / / java. sun. c8ml

sfaq/verifier. html. [Accessed August 2002].

Yoshikawa, c., Chun, B., Eastham, P., Vahdat, A., Anderson, T. & Culler, D. (1997). Using

smart clients to build scalable services, Proceedillgs of the USENIX 1997 Annual

Technical Conference, USENIX Association, Anaheim, CA, pp. 105-117.

Zimmerman, C. (1996). Metalevels, MOPs and What all the Fuzz is All About, in C. Zim­

mermann (ed.), Advances in Object-Oriented Metalevel Architectures and Reflectioll.

CRC Press.

	417395_0001
	417395_0002
	417395_0003
	417395_0004
	417395_0005
	417395_0006
	417395_0007
	417395_0008
	417395_0009
	417395_0010
	417395_0011
	417395_0012
	417395_0013
	417395_0014
	417395_0015
	417395_0016
	417395_0017
	417395_0018
	417395_0019
	417395_0020
	417395_0021
	417395_0022
	417395_0023
	417395_0024
	417395_0025
	417395_0026
	417395_0027
	417395_0028
	417395_0029
	417395_0030
	417395_0031
	417395_0032
	417395_0033
	417395_0034
	417395_0035
	417395_0036
	417395_0037
	417395_0038
	417395_0039
	417395_0040
	417395_0041
	417395_0042
	417395_0043
	417395_0044
	417395_0045
	417395_0046
	417395_0047
	417395_0048
	417395_0049
	417395_0050
	417395_0051
	417395_0052
	417395_0053
	417395_0054
	417395_0055
	417395_0056
	417395_0057
	417395_0058
	417395_0059
	417395_0060
	417395_0061
	417395_0062
	417395_0063
	417395_0064
	417395_0065
	417395_0066
	417395_0067
	417395_0068
	417395_0069
	417395_0070
	417395_0071
	417395_0072
	417395_0073
	417395_0074
	417395_0075
	417395_0076
	417395_0077
	417395_0078
	417395_0079
	417395_0080
	417395_0081
	417395_0082
	417395_0083
	417395_0084
	417395_0085
	417395_0086
	417395_0087
	417395_0088
	417395_0089
	417395_0090
	417395_0091
	417395_0092
	417395_0093
	417395_0094
	417395_0095
	417395_0096
	417395_0097
	417395_0098
	417395_0099
	417395_0100
	417395_0101
	417395_0102
	417395_0103
	417395_0104
	417395_0105
	417395_0106
	417395_0107
	417395_0108
	417395_0109
	417395_0110
	417395_0111
	417395_0112
	417395_0113
	417395_0114
	417395_0115
	417395_0116
	417395_0117
	417395_0118
	417395_0119
	417395_0120
	417395_0121
	417395_0122
	417395_0123
	417395_0124
	417395_0125
	417395_0126
	417395_0127
	417395_0128
	417395_0129
	417395_0130
	417395_0131
	417395_0132
	417395_0133
	417395_0134
	417395_0135
	417395_0136
	417395_0137
	417395_0138
	417395_0139
	417395_0140
	417395_0141
	417395_0142
	417395_0143
	417395_0144
	417395_0145
	417395_0146
	417395_0147
	417395_0148
	417395_0149
	417395_0150
	417395_0151
	417395_0152
	417395_0153
	417395_0154
	417395_0155
	417395_0156
	417395_0157
	417395_0158
	417395_0159
	417395_0160
	417395_0161
	417395_0162
	417395_0163
	417395_0164
	417395_0165
	417395_0166
	417395_0167
	417395_0168
	417395_0169
	417395_0170
	417395_0171
	417395_0172
	417395_0173
	417395_0174

