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Abstract 

This thesis evaluates the use of a loadtime metaobject protocol as a practical mechanism 

for enforcing access control policies upon applications distributed as user-level compiled 

code. 

Enforcing access control policies upon user-level compiled code is necessary because 

there are many situations where users are vulnerable to security breaches because they 

download and run potentially untrustworthy applications provided in the form of user-level 

compiled code. These applications might be distributed applications so access control for 

both local and distributed resources is required. Examples of potentially untrustworthy ap­

plications are Browser plug-ins, software patches, new applications, or Internet computing 

applications such as SETI@home. Even applications from trusted sources might be mali­

cious or simply contain bugs that can be exploited by attackers so access control policies 

must be imposed to prevent the misuse of resources. Additionally, system administrators 

might wish to enforce access control policies upon these applications to ensure that users 

use them in accordance with local security requirements. Unfortunately, applications devel­

oped externally may not include the necessary enforcement code to allow the specification 

of organisation-specific access control policies. 

Operating system security mechanisms are too coarse-grained to enforce security poli­

cies on applications implemented as user-level code. Mechanisms that control access to 

both user-level and operating system-level resources are required for access control poli­

cies but operating system mechanisms only focus on controlling access to system-level 

objects. 

Conventional object-oriented software engineering can be used to use existing security 

architectures to enforce access control on user-level resources as well as system-resources. 

Common techniques are to insert enforcement within libraries or applications, use inheri­

tance and proxies. However, these all provide a poor separation of concerns and cannot be 

used with compiled code. 



In-lined reference monitors provide a good separation of concerns and meet criteria for 

good security engineering. They use object code rewriting to control access to both user­

level and system-level objects by in-lining reference monitor code into user-level compiled 

code. However, their focus is upon replacing existing security architectures and current 

implementations do not address distributed access control policies. 

Another approach that does provide a good separation of concerns and allows reuse of 

existing security architectures are metaobject protocols. These allow constrained changes 

to be made to the semantics of code and therefore can be used to implement access con­

trol policies for both local and distributed resources. Loadtime metaobject protocols allow 

metaobject protocols to be used with compiled code because they rewrite base level classes 

and insert meta-level interceptions. However, these have not been demonstrated to meet 

requirements for good security engineering such as complete mediation. Also current im­

plementations do not provide distributed access control. 

This thesis implements a loadtime metaobject protocol for the Java programming lan­

guage. The design of the metaobject protocol specifically addresses separation of concerns, 

least privilege, complete mediation and economy of mechanism. The implementation of 

the metaobject protocol, called Kava, has been evaluated by implementing diverse security 

policies in two case studies involving third-party standalone and distributed applications. 

These case studies are used as the basis of inferences about general suitability of using 

loadtime reflection for enforcing access control policies upon user-level compiled code. 



Chapter 1 

Introduction 

"It is what I sometimes have called "the separation of concerns". which. ewn if 

not perfectly possihle, is yet the only available technique for effectiw ordering 

of onc's thoughts that I know of." (E. W. Dijkstra in "On the role of scientific 

thought" [Dijkstra 1976]) 

System administrators are responsible for ensuring site-specific acces ... control policie ... 

are adhered to by all llsers to ensure that local resources are not misu ... ed. Ideally the ac­

cess control policic ... should be enforced using the site's local security architecture [Butler, 

Welch, Engert, Foster, Tuecke, Volmer & Kesselman 2000] and should follow thc "'CCLI­

rity engineering principles of least privilege, complete mediation and economy of mccha­

nism [Saltzer & Schroeder 1975]. Unfortunately, operating ... ystem security i ... insufficient to 

implement these principles with respect to applications distributed a ... compiled code, ... uch 

as email attachments. dynamic web content, and so forth. Conventional object-oriented 

software engineering techniques cannot be used to modify the applications so the) are con­

strained by the local security architecture because they do not provide a clean separation of 

concerns [Dijkstra 1982] or require access to source code. More recent approacheli. such as 

in-lined reference monitors [Erlingsson & Schneider 2000. Evans & T\\yman 1999. Sirer, 

Grimm. Gregory & Bershad 1999, Pandey & Hashii 1999, Hashii. \;lalabarba, Pandey & 

Bishop 2000] do implement the principles and provide a clean separation of concern ... but 

do not allow Lise of the local site \ security architecture and do not addre ...... distributed 

access control. 

3 



CHAPTER 1. INTRODUCTION 

Metaobject protocols (MOPs) are object-oriented implementations of reflection [Maes 

1987, Kiczales, des Rivieres & Bobrow 1991]and provide a mechanism wh ich can be used 

to enforce access control for objects and distributed objects [Riechmann & Hauck 1997, 

Riechmann & Hauck 1998, Oliva & Buzato 1999, Caromel & Vayssiere 2001. Caromel, 

Huet & Vayssiere 2001, Caromel & Vayssiere 2003, Fabre, Nicomette, Perennou, Wu & 

Stroud 1995, Killijian, Fabre, Ruiz-Garcia & Chiba 1998, Killijian & Fabre 2000, Benantar, 

Blakley & Nadain 1996, Ancona, Cazzola & Fernandez 1999]. Furthermore, a loadtime 

MOP allows enforcement of access control policies upon compiled code using techniques 

that allow security engineering principles to be satisfied. However, existing loadtime MOPs 

do not explicitly address the implementation of complete mediation, or have been evaluated 

by using them to enforce access control policies upon remotely developed applications 

using a local security architecture. 

This thesis describes the design and implementation of a loadtime metaobject protocol 

called Kava for Java designed to provide complete mediation and two case studies where 

Kava is evaluated by comparing conventional enforcement with using Kava for enforce­

ment. 

The remainder of this chapter is structured as follows. Section 1.1 introduces the thesis 

of this dissertation. Section 1.2 provides the motivation for the thesis. Section 1.3 details 

the contributions of this thesis. Finally, Section 1.4 provides an overview of the thesis itself. 

1.1 The Thesis 

The thesis of this work is that loadtime MOPs can implement a clean separation between 

concerns for compiled code allowing reuse of existing security architectures and are able 

to completely mediate all accesses to base-level objects. A clean separation allows the 

modularisation of security concerns providing the benefits of reuse, reduced development 

time and improved comprehensibility. While, complete mediation is required for assurance 

that access control policies are correctly enforced. 

The thesis presents a loadtime MOP called Kava and the results of two case studies 

that contrast the use of Kava with conventional software engineering techniques. Although 

there are now other implementations of loadtime MOPs [Chiba 2000, Caromel et al. 2001], 
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Kava was the first to be developed for security enforcement [Welch & Stroud 1999a], can 

enforce access control policies upon resources implemented by application Java library 

code, and the first to explicitly address how it meets the security engineering principles. 

The design and implementation of Kava is discussed and an argument for complete 

mediation by metaobjects bound at loadtime is presented. The first case study shows that 

using Kava leads to a better separation of concerns compared to conventional techniques 

such as relying upon system-level enforcement or manually inserting enforcement code into 

application code. The second case study shows that this improvement is also found when 

the use of Kava is compared with conventional techniques such as proxies and inheritance. 

1.2 Motivation 

This section provides the motivation for the thesis and presents an overview of the argu­

ments for using loadtime metaobject protocols for security enforcement. The discussion 

found in the overview is amplified in Chapter 2 that discusses related work and develops a 

set of goals for the thesis. 

1.2.1 New Problem Domains 

Security needs have evolved with the move away from the tightly controlled multi-user 

timesharing systems of the 1960s and 70s to today's wide-area, open distributed sys­

tems [Colouris, Dollimore & Kindberg 2001]. Today there is widespread use of appli­

cations developed remotely that may not conform to local security requirements whereas, 

in the past, there was tighter control over the development of applications because they 

were either developed in-house or in conjunction with trusted suppliers. Unlike centrally 

managed systems of the past, modern applications can be installed and executed by users 

without requiring the involvement of system administrators. This has created a requirement 

for tools that automatically enforce site-specific access control policies upon applications 

installed by either system administrators or ordinary users. Some contexts where thi" prob­

lem arises include: 

Email attachments Most email programs allow users to receive applications in the form 
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of compiled code contained within email attachments. These applications may be 

buggy or have been developed by malicious individuals for the purpose of damaging 

the user's system or stealing valuable details such as financial information. For ex­

ample, the W32/Bagle-F virus [Sophos Anti-Virus 2004] sends itself as a password 

protected ZIP file. When executed it exploits the user's own privileges to harvest 

email addresses from the hard disk andre-sends itself via its own SMTPengine. It 

may also provide a backdoor for remote attackers who wish to access resources on 

the infected machine. Although viruses are a continuing problem email attachments 

remain an important and valued aspect of email functionality. An improved approach 

is to enforce site-specific access control policies that prevented or curtail exploitation 

of user privileges by an email attachment. 

Dynamic web content Most browsers allow the viewing of dynamic web content in web 

pages consisting of static content and executable compiled, for example ActiveX 

controls or the popular Shockwave plug-in. Code distributed in this way may contain 

viruses or Trojan programs that appear to the user as benign but are performing ma­

licious actions in the background. They usually execute with the same privileges as 

the user so they can misuse any resource that a user has access to. Viruses delivered 

in this way have been implemented in recent "Phishing" attacks in which attack­

ers attempt to steal the account name and password for a user's electronic banking 

system [Anti-Phishing Working Group 2004]. These attacks succeed because rogue 

programs have unrestricted access to the user's hard-drive and can search for these 

details or collect them with dialog boxes that mimic those displayed in pages de­

livered to a browser by a bank's legitimate web server. Legitimate programs often 

require few of the many many system privileges allowed them and a solution to the 

general problem is the imposition of access control policies that curtail privileges 

granted to any downloaded program. 

Mobile code The two examples provided earlier can be seen as examples mobile code. 

Mobile code is code produced on one host and executes on a different host. Mobile 

code may be used to dynamically extend a thin client's functionality, [Yoshikawa, 

Chun, Eastham, Vahdat, Anderson & Culler 1997] or it may be a convenient way to 
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distribute an application across a group of hosts. The motivation for its use include 

better resource utilisation or improved performance [Chess, Harrison & Kershen­

baum 1995]. In all of these cases, it is desirable that site-specific policies are im­

posed upon the code and, because mobile code executes as user-level code. imposing 

security enforcement at the operating system level is insufficient because code may 

need to directly invoke other code at this level rather than services at the kernel level 

of the system. 

Standalone applications Organisations increasingly use third-party commercially-produced 

or open-source applications rather than developing their own applications. These ap­

plications may be untrustworthy or buggy, requiring site-specific policies to be en­

forced upon them to restrict the damage that they can cause. For example, a chat 

application with unrestricted functionality may be installed on users' PCs though se­

curity concerns required that access is limited to approved channels or chat servers. 

In order to enforce a suitable security policy, the application may need modification 

because it will not possess the necessary hooks for this to be accomplished externally 

since it has has been designed for a large and indeterminate user-base. 

Component-oriented programming In the same way that use is made of third-party ap­

plications, organisations may also make use of sub-applications or components that 

are assembled together to build something larger [Szyperski 1998]. At runtime com­

ponents would be linked into application code and execute in the same address space. 

Though programmers have access to specifications for the interface to these compo­

nents, as with mobile code, interaction between these, other components and the 

application code cannot be mediated solely at the level of the operating system. 

Computational grids Organisations may choose to share computational resources by al­

lowing users to upload compiled code to remote hosts for execution, for example 

in a computational grid [Foster 2001]. A computational grid is made up of het­

erogeneous resources belonging to multiple administrative domains. Resources may 

be applications, data or computational services. Although individual organisations 

may be distrustful, they share resources in a limited way to achieve some mutual 

purpose. This can mean sending an application to a data source and returning the 
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results to the application's originator. Obviously, the host where the application is 

executed would prefer to constrain its interaction with system resources, other local 

programs and with remote resources. This requires imposing site-specific policies 

upon applications that may not contain the appropriate enforcement code. 

The security problem shared by all of these cases is how to enforce site-specific ac­

cess control policies upon applications distributed as compiled code. To prevent misuse of 

resources, access to resources implemented as user-level code as well as resources imple­

mented by kernel-level code must be controlled by access control policies. What constitutes 

misuse might be defined relative to what is considered the minimum required privileges for 

the application to perform as expected. Additionally, what constitutes misuse might also 

be defined in terms of an organisation's norms. 

Generally, there are two types of access control policy considered in this thesis. The 

first are application-specific policies where the organisation imposes security policies gov­

erning access to resources provided by the application. The second are general policies 

where the organisation imposes security policies upon the use of resources provided by the 

organisation. 

1.2.2 Man-machine Scale 

Before discussing different approaches to enforcement of access control policies in these 

domains it is essential to establish a layered model of the computer system. Enforcement 

can be placed in any layer and the choice of layer governs the expressiveness of access 

control policies. Much of the rationale for loadtime MOPs depends upon which layer in 

the computer system that enforcement code is placed. 

Gollmann calls this the man-machine scale because it is assumed that the upper layers 

of the computer system are more closely tailored to an individuars needs whilst the lower 

layers are general purpose and tied to the constraints of the hardware. Figure 1.1 shows a 

layered model of an IT system due to Gollman [Gollmann 1999]. Users run applications 

that make use of resources provided by other applications, services or libraries. The ser­

vices or libraries may be middleware or provide access to the resources implemented by the 

underlying operating system. Applications and services both execute as user-level code, so 
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their access to each other may not be mediated by the operating system. Depending upon 

the language runtime, the services mayor may not be modifiable or protected from the 

application. The operating system executes as kernel-level code and is protected against 

tampering by either applications or services. 

Applications 

User-level 

Services and Libraries 

Operating System Kernel-level 

Figure 1.1: Layers of an IT system (based upon Figure 1.2 from Gollmann's book [Goll­
mann 1999]) 

1.2.3 Criteria for Evaluation 

This thesis uses four main criteria for evaluating the effect of placing enforcement at dif­

ferent layers within the computer system. The first was was coined by Dijkstra [Dijkstra 

1976] and the last three are Saltzer and Schroeder's famous principles for good security 

engineering [Saltzer & Schroeder 1975]: 

Separation of concerns To provide reduced development time, improved system flexibil­

ity and increased comprehensibility the best way to tackle implementation of com­

plex systems is to separate the system into separate concerns that can be addressed 

in isolation to each other. With regard to security enforcement this means separating 

enforcement code from application code to allow separate development, testing and 

reuse. 

Least privilege Least privilege limits the impact of failure. Every program and every user 

of the system should operate using the least set of privileges necessary to complete 

the job. 
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Complete mediation Complete mediation ensures that policies are enforced as intended. 

Every access to every object subject to a security policy must be checked for author­

ity. 

Economy of mechanism Economy of mechanism deals with the practical problem of en­

suring that enforcement mechanisms behave as intended. A recommendation is that 

code should be as simple and small in scale as is reasonable. 

1.2.4 Operating System Enforcement 

One approach to imposing site-specific access control policies is to rely upon the architec­

ture of the operating system. Although operating systems separate mechanism from policy, 

which allows policies [Wulf, Cohen, Corwin, Jones, Levin, Pierson & Pollack 1974] to 

reflect user requirements, the approach suffers from three major drawbacks from the per­

spective of the application. The first is the principle of least privilege, the second is that 

economy of mechanism is violated and the third belongs to the realm of complete media­

tion. The first two are described by Schneider and his colleagues [Schneider, Morrisett & 

Harper 2000] and the third is related to problems associated with least privilege. 

Least privilege is violated in the first instance because the privileges given to the appli­

cation are usually the same as the user and access controls enforced by the kernel are too 

coarse grained. Complete mediation depends upon mediation by the kernel in all accesses 

to protected resources and this is assured because of address space partitioning. However, 

in many of the problem domains in Section 1.2.1, applications that may be untrustworthy 

are loaded into the same address space as the user-level code implementing the resources 

we wish to protect. Finally, economy of mechanism simply may no longer apply in many 

operating systems because more and more functionality is included within their kernels. 

This makes it difficult to ensure that they enforce security correctly. 

1.2.5 Conventional Object-Oriented Techniques 

Schneider argues [Schneider et al. 2000] in favour of language-level enforcement in order 

to meet the challenges presented by these new problem domains. By placing enforcement at 
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the language level, access control can be formulated in terms of the operations provided by 

application or library objects rather than being restricted to the operations provided hy the 

system-call interface. Object-oriented languages appear ideal for language-level enforce­

ment because they provide information hiding because an object's encapsulate state is only 

accessible via the object's interface. Enforcement code can be placed at the interface by 

inserting access control checks into the object's methods. These access control checks can 

invoke components of the existing security architecture. This satisfies complete mediation 

because information hiding requires that all accesses take place via the object's interface. 

Least privilege is satisfied because access control policies can be specified in terms of the 

operations provided by the objects, and this is varied upon a per-application basis. 

Where resources are implemented by libraries, or libraries are used to implement com­

munication between applications (i.e. middleware), placing fixed enforcement code within 

libraries might seem attractive. However, this approach suffers from similar problems as 

those faced by enforcement at the level of the operating system. The end-to-end argu­

ment [Saltzer, Reed & Clark 1984] implies that libraries are designed to service a range 

of applications otherwise the functionality would be included at the application level. This 

means that libraries have coarse grained interfaces in order to satisfy a range of applications 

acting as clients to the library. This leads to the problem of least privilege. Implementing 

distributed access control may be easier to implement because all remote method invo­

cations follow a generic pattern. However, as discussed by Blair and colleagues [Blair, 

Coulson, Andersen, Blair, Clarke, Costa, Duran-Limon, Fitzpatrick, Johnston, Moreira, 

Parlavantzas & Saikoski 200 I], middleware tends to implement fixed strategies for non­

functional concerns that cannot be adjusted on a per-application basis. For example, au­

thentication and confidentiality protocols might be hardwired making it difficult to imple­

ment new application-specific protocols. Furthermore, local applications may still be able 

to invoke each other directly without mediation by the libraries, thereby violating the prin­

ciples of complete mediation. 

An improved approach to dealing with these problems is to manually add enforce­

ment code as required. However, manually inserting enforcement code is a laborious and 

error-prone process. So object-oriented software engineering techniques such as capabili­

ties [Dennis & Earl C. 1966], proxies [Redell 1974] and inheritance are typically used to 
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simplify this programming task. However, each of these techniques has drawback.... In­

heritance leads to a tight coupling between enforcement and functional code. Similarly. 

capabilities and proxies both require modification of the application code and have other 

problems such as the confinement problem or self problem. The tight coupling and need 

to change application code means that there is not a clean separation of concerns between 

the enforcement code and application code. As discussed by Stroud and Wu [Stroud & Wu 

1995] the lack of a clean separation of concerns between security and application func­

tionality means that changing either requires changes to the other. This reduces system 

flexibility, maintainability, reduces reuse and reduces comprehensibility. 

Aside from the lack of a clean separation of concerns, a major problem with applying 

these object-oriented engineering techniques is the requirement to have access to source 

code. For example, source code is not available for Java applets nor for some libraries. 

Since all conventional object-oriented techniques require some access to source code, these 

techniques only have limited application. 

1.2.6 In-lined Reference Monitors 

In-lined reference monitors and related tools pre-process compiled code before execution 

and insert enforcement code under the control of an access control policy [Pandey & Hashii 

1999, Evans & Twyman 1999, Erlingsson & Schneider 2000, Sirer et al. 1999, Hashii et al. 

2000]. Enforcement code monitors runtime behaviour and terminates execution if violation 

of an access control policy is detected. Unlike conventional object-oriented techniques, no 

access to source code is required. 

Depending upon the particular implementation, low-level language events can be moni­

tored allowing the property of least privilege to be satisfied. Also, as long as it can be shown 

that the enforcement code cannot be removed or tampered with, complete mediation can 

be shown. In fact, complete mediation is easier to show for in-lined reference monitors 

than conventional object-oriented techniques because the semantics of compiled code is 

simpler [Erlingsson & Schneider 2000]. Another benefit of in-lined reference monitors 

is a better economy of mechanism [Saltzer & Schroeder 1975] compared to comentional 

object-oriented techniques. This is because inserting access checks into source code relie ... 
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upon trusting the language compiler to correctly implement the checks in the compiled 

code thereby making the language compiler part of the trusted computing base. 

Although current applications of this technique are able to implement a wide-range of 

access control policies, for example Erlingsson shows how to re-implement Java's stack in­

spection policy [Vlfar Erlingsson & Schneider 2000], nonetheless, the focus is upon local 

access control rather than distributed access control. Implementing distributed access con­

trol would require re-implementing the tools, permitting them to change program outputs 

for example to implement encryption of network communications. 

More fundamentally, the focus of this approach is upon replacing or emulating existing 

security architectures rather than modifying compiled code to make use of existing security 

architectures. The motivation is to make analysis of the correctness of the security enforce­

ment more tractable. However, for many of the problem domains discussed earlier, system 

administrators prefer to apply existing security architectures to new application code be­

cause of the investment in existing code. Though this approach provides a clean separation 

of concerns and meets the requirements for good security engineering but is not flexible 

enough to allow reuse of existing security architectures. 

1.2.7 Metaobject Protocols 

An alternative approach to separating concerns between enforcement and code functional­

ity is behavioural reflection. An advantage of behavioural reflection over code rewriting is 

that a wider range of policies can be enforced because the focus is at the level of program 

behaviour rather than program structure. Behavioural reflection [Maes 1987] is a technique 

for opening up the implementation of a system in a controlled way using a process called 

reification. An abstraction of the system's internal state, structure and behaviour is made 

visible via a meta-level programming interface. This abstraction is causally connected to 

the underlying system in the sense that any changes made to this model or reification of 

the system at the meta level, are reflected back into the actual system. Thus, it is possible 

to customise the behaviour of a system transparently by changing the abstraction of the 

system. 

Metaobject protocols are an object-oriented implementation of reflection. Here, the 
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meta level is implemented as a metaobject that is bound to a base-level object. The interface 

of the metaobject defines the metaobject protocol. Different metaobjects can be bound to 

different objects providing different customisations of object behaviour. It is therefore 

natural to consider placing enforcement code within a metaobject. 

A clean separation of concerns is provided by the use of a MOP. The security metaobject 

can be developed independently of the base-level object and bound to the base-level before 

application execution. Modularising the different concerns leads to the improvement of 

software quality [parnas 1972]. Development and testing time can be reduced because 

work can be divided between domain specialists. Reusability is improved because security 

concerns are implemented once and reused with multiple applications. Comprehensibility 

is improved because, with this approach, security concerns are considered independently 

of the application. System flexibility is also improved because changes at the meta level do 

not necessarily impact the base level and vice-versa. 

1.2.8 Loadtime Metaobject Protocols 

The requirement to be able to enforce access control policies upon compiled code means the 

binding between objects and metaobjects must take place after compilation. The most ap­

propriate type of MOP providing this type of binding is referred to as a loadtime metaobject 

protocol [Welch & Stroud 1999a]. A loadtime MOP binds the metaobject to the object at 

loadtime, this can be achieved by pre-processing the compiled code before loading. Load­

time MOPs can be used where MOPs requiring access to source code are not and a loadtime 

MOP has better economy of mechanism and greater portability compared to a runtime MOP 

where modification to the interpreter is required. With the exception of the Simple Security 

MOP for Java [Caromel et al. 2001], most existing security architectures are not loadtime 

MOPs [Benantar et al. 1996, Riechmann & Hauck 1997, Riechmann & Hauck 1998, An­

cona et al. 1999]. Though the Simple Security MOP provides a limited metaobject protocol 

and is a proof-of-concept of an improvement to loadtime metaobject protocols, it cannot be 

used to enforce access control policies on the use of system-resources by applications. 
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Making use of a loadtime metaobject protocol to implement security enforcement en­

sures that the requirements of least privilege, complete mediation and economy of mecha­

nism are met. Kava [Welch & Stroud 1999a, Welch & Stroud 2000a, Welch & Stroud 200 I] 

is a loadtime metaobject protocol designed with these requirements in mind, combining the 

best of MOPs and IRM techniques, making use of existing security architectures, and ful­

filling the requirements of least privilege, complete mediation and economy of mechanism. 

1.3 Contributions 

This thesis makes three main contributions: development of a loadtime metaobject proto­

col, analysis of the limitations of conventional security engineering techniques for security 

enforcement and evaluation of how these limitations can be addressed using a loadtime 

metaobject protocol. 

1.3.1 Design and Implementation of a Secure Loadtime Metaobject 

Protocol 

First, the thesis describes the design and implementation of a loadtime metaobject protocol 

for Java called Kava. Arguments for least privilege, complete mediation and economy of 

mechanism are presented and analysed so that users of Kava can have confidence that se­

curity enforcement implemented using Kava can be trusted. Kava is a loadtime metaobject 

protocol for Java, implemented as part of the experimental work for this thesis, and repre­

sents a proof-of-concept for using behavioural reflection to enforce access control policies 

upon compiled code. Kava was the first loadtime metaobject protocol [Welch & Stroud 

1999a] although other loadtime metaobjects have subsequently been developed [Caromel 

et al. 2001]. Java was chosen for the implementation because it is a popular language for 

exploring program mobility due to its first-class support for dynamic class loading and link­

ing. Nonetheless, Java places some constraints upon implementation techniques that Kava 

must address, for example enforcing access control policies upon the use of system-level 

resources and dealing with Java's inheritance model. 
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Figure 1.2 shows the Kava architecture. The standard Java compiler is used to com­

pile both the target Java program and Kava Metaobjects. The metaobjects allow the local 

redefinition of the semantics of the Java language, for example method execution can be 

locally redefined to include Java security permission checking before execution is permit­

ted. The resulting byte code is then processed by Kava itself, either by applying Kava to 

the class files or by intercepting the loading of the compiled classes into the JVM. Kava 

uses a byte code rewriting toolkit to insert hooks into the program byte code that bring the 

runtime objects under the control of metaobjects. Where these hooks should he added is 

governed by a binding specification that is encoded using XML. The binding specification 

tells Kava which program classes and Java semantics should be under the control of an 

associated metaobject class. The transformed reflective program is then loaded as normal 

by the standard JVM. 

Access control policies are represented in Kava by a combination of the binding spec­

ification and the enforcement code that is encapsulated by metaobjects. When used to 

implement security using the Java permission-based security model, the security policies 

are specified by a combination of a Java security policy file, the enforcement code encap­

sulated by metaobjects and a binding specification that effectively indicates when enforce­

ment checks should be made. 

Enforcement upon compiled code is possible because Kava requires no manual changes 

or access to source code of the application classes. This is a feature that has been absent 

from existing reflective implementations unless they have modified the JVM implementa­

tion. In addition, an approach based upon code rewriting has the benefit that it is easier to 

make the argument for complete mediation of security related operations by enforcement 

code compared to other approaches to implementing reflection in Java. 

Reuse of access control policies is supported because the set of metaobjects containing 

enforcement code can be generic and parameterised for a particular application through 

the creation of an application-specific binding specification. This binding specification 

goes further than indicating individual methods to be controlled by a security policy but 

also allows control over field access, method invocation, method execution and exception 

handling. The ability to control the invocation of methods at the caller side in addition to 

the traditional control over method execution at the callee side allows security policies to he 
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Figure 1.2: Overview of Kava. Classes are loaded by an application-level class loader. The 
class file structure is then passed to Kava for rewriting. After hooks have been added the 
class is verified and loaded as normal. 
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applied to classes that cannot be rewritten by Kava due to constraints of the Java language. 

1.3.2 Demonstration of the Limitations of Conventional Object-Oriented 

Techniques 

Second, this thesis provides a demonstration of the limitations of conventional objeLt­

oriented software engineering techniques for implementing acce,>,> control policies. Two 

case studies are analysed where access control policies are enforced upon third-party appli­

cations, the first case study is a standalone application that uses the Java security architec­

ture and the second case study is a distributed application that use,> the self-defence '>ecurit) 

architecture. These case studies enforce security through a combination oj manual editing 

of source code, enforcement placed in system-level libraries, proxiel., and inheritance. 

1.3.3 Evaluation of Separation of Concerns 

Third, the thesis evaluates whether Kava can be used to implement a clean ,>eparation of 

concerns between security enforcement code and application code. This allowed an eval­

uation of the effectiveness of using a loadtime metaobject protocol to enforce local and 

distributed access control upon remotely developed applications that may be distributed as 

compiled code. At the most general level, the approach offers a highly practical solution, 

even through there is a requirement to understand application semantic,> and '>tructure for 

enforcing application-specific access control policies. Where access control policie-. aim 

to prevent abuse of local resources, there is a similar requirement to understand library 

semantics and structure. Additionally, to make the approach easier to use, work must be 

done on a more declarative binding specification and higher-level language for specifying 

policies. 

1.4 Thesis Overview 

The remainder of this thesis is structured as follows. 

Chapter :2 revie\\s general security policy enforcement, conventional object-oriented 
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enforcement, in-lined reference monitors and metaobject protocols before defining the 

goals of the thesis in greater detail. Some of the analysis of the limitations of conventional 

object-oriented techniques has been presented previously and published [Welch 1997. Welch 

& Stroud 1998a, Welch & Stroud 1999b]. 

Chapter 3 provides an overview of the design and implementation of Kava. Much of the 

work in this chapter has been published in a series of papers charting the evolution of Kava 

from an initial prototype called Dalang [Welch & Stroud 1998b, Welch & Stroud 1999a. 

Welch & Stroud 2000a, Welch & Stroud 2001, Welch, Stroud & Romanovsky 2001]. This 

chapter addresses goals related to enforcement of access control upon compiled user-level 

code and satisfying the requirements of separation of concerns, least privilege, complete 

mediation, economy of mechanism. 

Two chapters describe case studies undertaken to demonstrate that using a loadtime 

metaobject protocol to enforce access control provides a better separation of concerns than 

conventional object-oriented techniques. Chapter 4 reports upon a case study where ac­

cess control polices are enforced upon a third-party standalone IRC chat application named 

Lirc. It contrasts conventional object-oriented techniques based upon manually placing en­

forcement code with a loadtime metaobject approach. Chapter 5 reports upon a case study 

where access control policies are enforced upon a third-party distributed application named 

System K. It contrasts conventional object-oriented techniques based upon modifying sys­

tem libraries, inheritance and proxies with a loadtime metaobject protocol approach. These 

two chapters draw upon papers describing the Lirc and System K case studies [Welch & 

Stroud 2000b, Welch & Stroud 2002, Welch & Stroud 2003]. 

Chapter 6 uses the experience of the case studies to make inferences about general 

applicability of loadtime metaobject protocol such as Kava to enforcing access control 

policies. It summarises the results of the two case studies and discusses constraints upon 

applying the approach to other applications or within the context of other languages. 

Finally, Chapter 7 summarises the thesis, the contributions made by the thesis and dis­

cusses future work. Some of the future work relating to metaobject libraries for enforce­

ment of Clark-Wilson policies has already been presented elsewhere [Welch 1999] and as 

has work on a prototype policy compiler for Kava [Lu 2004]. 
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Related Work 

The goals of this the~i~ have been developed by ~ystematically evaluating exi~tillg sel'urit) 

engineering techniques against a set of criteria, The criteria used for e\ aluation are hO\\ 

well the technique provides a clean separation of concerns and confomls to the three cla~..,ic 

principles of security engineering. 

This chapter is organised as follows, Section 2,1 prmides an overview of acce..,.., con­

trol policies, The XACMLlSAML framework is introduced, which i.., a frame\\ork for 

implementing a wide range of acce~~ control policie..,. This framework facilitates compar­

ison of the different security engineering techniqlle~ di..,cu..,..,ed in thi.., chapter. Section 2.2 

explains the set of criteria used to evaluate the different security engineering technique~. 

Sections 2,3-2,6 apply the criteria to operating system enforcement. cOll\cntional object­

oriented software engineering, in-lined reference monitors and metaobject protocols, Each 

of the existing techniques or applications of the techniques either have a different goal (in­

lined reference monitors) or do not satisfy all of the criteria, This lead~ naturally to the 

development of a set of goals for the thesis in Section 2,7, The goab of the thesis are to 

develop a loadtime metaobject protocol for Ja\a that allows enforcement of acce~s control 

policies O\cr objects and distributed objects. Unlike existing loadtime metaobject proto­

cob. this metaobject protocol should demonstrate that it meets the requiremenh of least 

privilege, complete mediation and economy of mechanism, Furthermore, the metaobject 

protocol's applicability to enforcing access control policies upon user-level compiled code 
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should be demonstrated through case studies involving enforcing existing security archi­

tectures upon third-party applications. 

2.1 Access Control Policies 

A security policy comprises of both security goals and rules [MAffIA Project 2003]. Se­

curity goals correspond to the traditional view of security properties such as confidentiality. 

integrity and availability [Pfteeger 1997]. Security goals provide a high-level view of a se­

cure system; security rules are lower-level constraints on system behaviour that ensure the 

system is robust against accidental or deliberate misuse. Rules may regulate both social 

and technical systems, where social rules consist of prohibitions, duties and obligations. 

and technical rules usually take the form of access control rules. The assumption is that 

both sets of rules will be correctly formulated to ensure that the security goals of the system 

are guaranteed. 

The focus of this thesis are a subset of security policies called access control policies. 

Access control policies are enforced by access control mechanisms that mediate all access 

to resources [Lampson 1974, Lampson, Abadi, Burrows & Wobber 1992]. Conceptually. an 

access control mechanism can be thought of as a device that monitors system behaviour and 

blocks any action that would result in a violation of a technical rule [Schneider et al. 2000j. 

As evidenced by work on standards for building access control systems [Rutt, Curtis, Hop­

kins, Fairthorne, Hartman, Nessett, Vleck, Frantz, Lejeune, Blakley, Mukerji, Ammon, 

Salmond & Allred 1995, Anderson, Parducci, Adams, Flinn, Brose, Lockhart, Beznosov, 

Kudo, Humenn, Godik, Andersen, Croker & Moses 2003], access control policies are suffi­

cient to describe the security requirements of many real world systems despite being unable 

to enforce availability and some confidentiality properties [Schneider 2000]. 

The OASIS XACML (eXtensible Access Control Markup Language) standard [Ander­

son et al. 2003] and SAML (Security Assertion Markup Language) standard [Lorch, Proc­

tor, Lepro, Kafura & Shah 2003] provide a useful framework for understanding how access 

control policies are implemented. XACMLlSAML can be used to enforce access policies 

upon both local and distributed objects. The framework's terminology is used throughout 

the rest of this chapter. 
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XACML provides a framework for implementing a wide range of security policies. 

XACML focuses upon the framework components. It defines the responsibilities of each 

component, the content of access control queries and responses. XMACL does not de­

fine the communication protocols used for communication, these are defined by the SAML 

framework. SAML is a standard XML-based framework for exchanging authentication and 

authorisation information [Philpott 2004]. How the authentication and authorisation infor­

mation is derived is beyond the scope of the SAML framework [OASIS Group 2004]. For 

example, the SAML framework may describe how to represent the statement "X is authen­

ticated" but it does not describe the protocol for authenticating X, this must be handled by 

some platform-specific component. 

The XACMLlSAML framework components act together to implement a rcference 

monitor [Anderson 1972] that mediates all requests for access by an application to a rc­

source according to an access control policy. 

The main components in the framework are: 

Policy Enforcement Point PEP performs access control by making decision request and 

enforcing authorisation decisions. The PEP is application-specific. 

PDP Policy Decision Point evaluates the applicable policy and makes an authorisation 

decision. The PDP is application-independent. 

Context Handler Context handler acts as a intermediary between the PEP and the PDP, 

it maps application-specific attributes associated with requests to an abstract syntax 

and adds additional context if required. 

Figure 2.1 shows how the components work in concert with each other to enforce an ac­

cess control policy. In the figure, an application attempts to access a resource. A resource 

may be a service provided by libraries or a service provided by another application pro­

gram. Essentially each access is mediated by a PEP that delegates the access decision to a 

PDP. The general notion is that of policy/mechanism separation with policy being encoded 

within a PDP and mechanism implemented by a PEP. 

Although XACMLlSAML can be applied to controlling access to local resources by 

local applications the main application for the framework is securing distributed appli­

cations. When using XACMLlSAML to secure a distributed system there are additional 
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Figure 2. 1: ( I ) An applicati on program reque t acce to a re ource fr m a PEP (Policy 
Enforcement Point). (2) The PEP sends the reque t to an appropri at cont t hand ler. (3) 
The context handler sends the translated reque t (dec ision reque t) to th PDP (Policy De­
cision Point). The PDP identifies the applicab le policy (using the 'emantic defined by the 
framework) by searching its policie and determine which poli cy (or po licie ) apply to the 
request. The PDP evaluates the policy rule. (4) The PDP retum the reo pon e context ( in­
cluding the authori sati on dec i ion) to the contex t handler. The authori sati on deci . ion may 
be permit, deny or intermed iate. (5) The contex t handler tran late the re pon e contex t 
to the native response format of the PEP. (6) The PEP ful fi l the obligati on . If acce 
permitted, then the PEP permits access to the re ource; otherwi e, it denie access. 
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problems that arise from the threats particular to a distributed system that must be solved 

by implementers. For example, the possibilities of eavesdropping. replay. message inser­

tion, message deletion, message modification, etc. The SAML specification does not define 

protocols or mechanisms for preventing this but it does specify the support required from 

transport-level protocols that can defeat these threats. In particular the standard proposes 

using TLS/SSL [Dierks & Allen 1999] to provide message confidentiality and authentica­

tion. 

2.2 Criteria for Evaluation 

We are interested in security engineering techniques that allow the use of existing security 

architectures to enforce access control policies upon compiled user-level code. This section 

discusses the criteria for evaluating the different techniques reviewed in this chapter. An 

ideal technique should meet these criteria and allow reuse of existing security architectures. 

The criteria are: 

• Clean separation of concerns. 

• Least privilege. 

• Complete mediation. 

• Economy of mechanism. 

Table 2.6 on page 55 summarises the result of evaluating operating system, conven­

tional object-oriented, in-lined reference monitors and metaobject protocols against the 

criteria. The only technique allowing reuse of existing security architectures and meeting 

the majority of criteria are loadtime metaobject protocols. In-lined reference monitors also 

meet the majority of criteria but do not allow reuse of existing security architectures. 

2.2.1 Separation of Concerns 

According to Dijkstra [Dijkstra 1976], the ideal way to tackle implementation of a complex 

system is to partition the system into separate concerns that can be addressed in isolation to 
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each other. Each concern can be designed, implemented and tested independently modules 

before being combined together within a single application. This ideal is known as a clean 

separation of concerns. 

Besides making implementation tractable, a clean separation of concerns provides the 

benefits associated with good modularisation. These benefits are reduced development 

time, improved system flexibility and comprehensibility [Parnas 1972]. Development time 

is improved because the modules can be developed independently of each other. System 

flexibility is improved because changes to one module will not impact upon another mod­

ule. Comprehensibility can be improved because one module can be studied in isolation 

without requiring understanding of the system as a whole. 

A good example of a clean separation of concerns from an operating system perspective 

is the Hydra operating system [Wulf et al. 1974]. Hydra implemented policy decision mak­

ing in user-level code and policy enforcement in kernel level code. This separation allowed 

new policies to be implemented without requiring modifications to the operating system. 

There are problems with this separation of concerns from an application perspective as will 

be discussed in Section 2.3. 

The problem domains identified in Section 1.2.1 require a security technique that pro­

vides a clean separation of concerns. For example, enforcing a local access control pol­

icy upon a third-party application requires developing enforcement code separately and 

somehow imposing it upon the application. The concerns are already separate because 

the application has been developed independently of the security requirements. Ad-hoc 

modification of the application may not be possible because the source code of the applica­

tion may not be available. Additionally, if the source code was available then upgrades to 

the application would require modification again. Besides being tedious, this would be an 

error-prone process. Ideally the two concerns should be kept separate and an appropriate 

technique used to automatically combine them together as required. 

A security engineering technique providing this degree of separation of concerns may 

still require knowledge of the semantics of either the application or the resource being 

protected. Where there is a specification for the application, application-specific policies 

can be defined in terms of the application interface. Where there isn't a specification, for 

example dynamic web content, the policies can be defined in terms of the interfaces of the 
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resource being protected. 

Separation of concerns is a desirable property of any security engineering technique and 

the remainder of this chapter uses the concept as a means of evaluating a range of different 

security engineering techniques. 

2.2.2 Security Engineering Principles 

The XACMLlSAML framework provides an architecture with a degree of separation of 

concerns for implementing security policies. However, the correct implementation of se­

curity policies in a computer system is difficult due to non-trivial dependencies upon the 

mechanism's components allied to the difficulties associated with finding the right mapping 

from policy abstractions to the concrete enforcement mechanisms [Samarati & Vimercati 

2000]. However, there is some agreement upon basic principles that designers of enforce­

ment mechanisms should follow to increase confidence in their design, these principles are 

the ones adopted in this thesis. They were first discussed by Saltzer and Schroeder [Saltzer 

& Schroeder 1975] in their paper on the basic principles of data protection and the main 

ones are listed below: 

Least privilege Least privilege limits the impact of failure. Every program and every user 

of the system should be allocated the least set of privileges necessary to complete the 

job. Least privilege limits damage created when a subject abuses their privileges. For 

example, granting a doctor the right to request information only about the patients 

slhe treats protects the privacy of other patients on a hospital records database. 

Complete mediation Complete mediation ensures that policies are always enforced as in­

tended. Any access to an object subject to a security policy must be checked for 

authority. Complete mediation means that a reference monitor that enforces a secu­

rity policy intercepts every request to a resource being protected. Unless this property 

holds, a request that leads to the violation of a security policy would be allowed. 

Economy of mechanism The principle of economy of mechanism, by keeping the design 

as simple and small as possible, is an attempt to assure that the mechanism beha\es 

as intended by limiting the unintended effects associated with needless complexity. 



CHAPTER 2. RELATED WORK 27 

When applied to a reference monitor this means minimising its size makes fonnal 

verification of its correctness tractable. 

These three principles provide criteria for evaluating the effectiveness of a particular 

security engineering technique. 

2.3 Operating System Enforcement 

The traditional approach to enforcing security in operating systems is to place PEPs within 

lower system layers. This has the advantages that it is easier to show complete media­

tion of accesses by the PEP and it reduces the perfonnance overheads caused by security 

checks [Gollmann 1999]. In these circumstances there is no need for access to source 

code when enforcing an access control policy upon an application. Some operating sys­

tems, for example OTOS [Secure Computing Corporation 1997] or Flask [Spencer. Smal­

ley, Loscocco, Hibler, Andersen & Lepreau 1999], provide policy/mechanism separation 

to provide system flexibility. Here, PEPs are protected from tampering by placing them 

within the operating system kernel and as a result policy decisions can be delegated to a 

component at the user level, allowing per-user access control policies [Wulf et at. 1974]. 

This then allows new policies to be specified without requiring changes to the kernel. Un­

fortunately, from an application-level perspective, operating system security enforcement 

violates the principle of least privilege and complete mediation is limited to operating sys­

tem resources provided by the kernel. More generally, modem operating systems do not 

satisfy the principles of economy of mechanism. Each of these three problems will be dealt 

with in turn in the following sections. 

2.3.1 Evaluation 

Table 2.1 summarises the evaluation of operating system security techniques against the set 

of criteria. Although providing a good separation of concerns, from an application-level 

perspective, operating system mechanisms do not meet the requirements of least privilege. 

complete mediation or economy of mechanism. 
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Table 2.1: Evaluation of operating system enforcement. 

Technique Description Separation Least Complete Economy 
of Privilege Mediation of 
Concerns Mechanism 

Operating system Fixed placement of Good Coarse Limited control Complex 
enforcement code over user-level 
within kernel. code 

Separation of' Concerns 

The security concern as represented by the enforcement code is completely separated from 

the functionality of the application that is the subject of an access control policy. Changes 

to the application do not require rewriting the enforcement code while changes to the en­

forcement code have no impact upon the application's code. No access to an application's 

source code is required to enforce access control policies upon the application. 

Least Privilege 

Least privilege is violated for two reasons. First, the privileges given to the application are 

the same as those of the user but the user needs many more privileges than the application. 

This permits the application to perform many actions that are not strictly necessary for it 

to implement its functionality. A misbehaving application will do far more harm than one 

with more constraints placed upon it. Second, access controls enforceable by the kernel 

may be too coarse grained. For example, the operating system can grant access to an 

individual file but cannot control what or how much data is written to the file or can grant 

access to the network but cannot distinguish between invocations sent across the network. 

This is because control can only be enforced at the kernel's interface and this interface is 

much coarser grained than the application's interface. This leads to the conclusion that the 

lower the layer in which the enforcement is placed then the less able security policies are 

to reflect user requirements [Gollmann 1999]. 
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Complete Mediation 

Complete mediation is violated because the operating system only mediates accesses to 

the kernel. Although address space isolation in traditional operating systems may force 

interactions between user-level code to go via the kernel, the advent of extensible systems 

such as Java or component-oriented programming leads to a situation where code is not 

isolated from other code in processes and can invoke each other without mediation by the 

kernel. 

Economy of Mechanism 

Depending upon the operating system implementation, the property of economy of mecha­

nism may not be satisfied due to the migration of user-level functionality into system-level 

code. Schneider and his colleagues use the example of Windows 2000, which contains 

many millions of lines of code because of the inclusion of windowing and other libraries 

within the kernel [Schneider et al. 2000]. 

2.4 Conventional Object-oriented Security 

As discussed by Gollman [Gollmann 1999], object-oriented systems provide some useful 

features to support security. Objects encapsulate data and only allow access via a well­

defined interface. This is guaranteed by the language interpreter or a combination of checks 

provided by compilers and execution environment. Java [Gong, Mueller, Prafullchandra & 

R. 1997] is one example of a security architecture built using object-oriented principles 

that can enforce access control policies, and CORBA [Rutt et al. 1995] is an example of 

a security architecture for distributed object systems that can enforce distributed access 

control policies. 

These features provide a useful basis for implementing security. However, there must 

also be some means of enforcing a specific access control policy. One way is to insert PEPs 

at the start of code implementing methods. These cannot be bypassed if all invocations are 

guaranteed to be via a well-defined interface and no other access to an object's code or state 

is possible. 
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2.4.1 Examples 

Thi s section evalu ates di fferent conventi onal object-ori ented oft are engineering te h­

niques for enforc ing access control policie . For implicity, it i a umed that en h In er 

below the current layer being considered satisfi e the principle of complete m diation and 

economy of mechanism. 

Place Enforcement within Libraries 

One approach to language-level enforcement i to pl ace PEP within the librar od im­

plementing the serv ices that application u e, for example midd leware or y tern libra ri e . . 

The Java security architectu re fo llows thi s model. Java prov ide ex ten ible fin e-grained 

access control for compi led u er-Ievel code while providing upport for a eparati on be­

tween policy and enforcement. In previous versions, new security policie required th 

rewriting of the security manager but now policy is specified in a fil e that can be adjusted 

independently of the app li cation allow ing per-applicat ion acce s control policie . 

[ Compiled Code 

1 
W 

JVM 

( Domain A ) 

( Domain 8 ) 

Secunty policy 
set of permissions' 

SecurityManager (permission. 
source 01 code, 
signer 01 code. 

I AccessConlroller I 
pnncipal executing 
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System-level Resources 
(lites. network connections. elc.) 

Figure 2.2: Overview of the Java securi ty architecture 

Figure 2.2 hows the Java Security Architecture. Compiled code in the form of cia e 

is loaded by a class loader into the Java Virtual Machine (Java VM). A SecureClassloader 

loads each class and ass ign it to a protection domain depending upon who igned the code, 
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who is executing the Java VM, and where the class was loaded from. Unlike operating sys­

tem security architectures, enforcement of protection domains is not achieved by isolating 

code within a process only able to communicate with other processes via the kernel. In­

stead, namespace management and type safety provide the isolation properties. This has 

the advantage of efficiency, since a process-based mechanism requires expensive context 

switches when communicating between processes. Requiring a process per-class would 

make Java unusable because of the communication overheads. 

The Java core class libraries playa role similar to a kernel in operating systems such 

as DTOS or Flask. Java system classes must be invoked to access services or operating 

system resources and this provides a natural place to enforce access control policies. When 

a method of a compiled class tries to access resources such as the filesystem or the network, 

the SecurityManager is invoked. This is because each resource is encapsulated by a class 

whose methods contain hardwired security enforcement code that delegates the decision as 

to whether access is allowed by the SecurityManager. The SecurityManager itself delegates 

the access control decision to an AccessControlier class that makes the decision depending 

upon the current Java security policy. The Java security policy assigns permissions to 

protection domains and the AccessControlier evaluates the access decision by checking if 

the requested permission is held by every protection domain on the current call stack. 

With regard to least privilege and complete mediation, library-level enforcement suffers 

from the same problems as operating system enforcement. The granularity of the library's 

interface determines the granularity of the access rights that can be granted to applications. 

Additionally, not all accesses to application resources will require invoking services con­

taining enforcement code thereby making it impossible to impose access control policies 

governing access to application resources. Furthermore, middleware services will imple­

ment fixed protocols that can only be changed by rewriting the middleware [Coulson 2002]. 

The effect of these problems can be illustrated using two simple examples. First, con­

sider preventing malicious email attachments from subverting the user-level email applica­

tion and using it to send spam. Libraries such as Java's JavaMail API [Sun Microsystems 

1999-2004] may mediate access to services allowing the sending of email but the services 

do not have the application-knowledge required to distinguish between user-initiated email 
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and virus-initiated email. Second, consider using a remotely developed standalone appli­

cation or component lacking the necessary access controls for enforcing an organisation \ 

local policies. For example, an organisation might wish to enforce a local acceptable use 

policy upon the use of a third-party IRC (Internet Relay Chat) application. This might 

require restricting IRC access to approved chat channels. However, there is no way for 

the libraries used by the IRC application to distinguish between access to particular chat 

channels and simply providing access to a server. 

Manually Place Enforcement within the Application 

The solution to the problems stated above is to insert PEPs directly into the application it­

self. For example, Java's security architecture allows access control checks to be manually 

inserted into application code. The checks themselves can make use of the standard per­

mission framework and architectural components such as the AccessControlier. But placing 

the access control checks at the level of the application's interface allows enforcement to be 

tailored to the application itself thereby providing least privilege and ensuring that all ac­

cesses are mediated by enforcement code. Unfortunately, manually inserting access control 

checks is laborious and error prone. 

Treat Objects as Capabilities 

One way to avoid requiring addition of PEPs to existing code is to adopt a capability-based 

architecture. Capabilities [Dennis & Earl C. 1966] represent access rights as unforgeable 

pointers to resources and their possession represents the right to invoke the services or 

methods of the resource. Originally developed for secure operating systems, capabilities 

have since been used to provide security for applications [Wallach, Balfanz, Dean & Felten 

1997] and some languages provide special facilities for implementing capabilities. For 

example, Java provides a Guard class that hands out capabilities to subjects possessing 

the appropriate permissions. A client requests the capability by invoking a method of the 

Guard object, this method performs an access check to see if the client is allowed access to 

the capability before returning the capability. Once the client has the capability then it can 

invoke methods of the protected object. 
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There are two drawbacks to using a capability-based architectures. First, although it 

requires fewer changes to application source code than simply inserting PEPs within each 

method of an object, it still requires changes to the application. This doesn't provide a 

clean separation of concerns because changing the application still requires changes to en­

forcement code and vice-a-versa although it is more modularised and ad-hoc than manually 

inserting enforcement code. For example, using a Guard requires inserting code to request 

access to the object protected by the Guard. Second, the application must ensure confine­

ment [Lampson 1973] of capabilities. But once a capability has been released to a client 

there is always a possibility that it can be in turn be given to a client who shouldn't have 

access or that an error in implementation might expose capabilities to clients who similarly 

should not have access. The problem is that possession allows clients to further delegate 

access as they wish. 

Place Enforcement within Proxies 

Redell's Caretaker pattern ([Redell 1974] as discussed in Miller and Shapiro's paper on 

implementing capabilities [Miller & Shapiro 2003]) is a specialisation of the proxy pat­

tern [Gamma, Helm, Johnson & Vlissides 1995] that is similar to the Java Guard except 

allows revocation. A proxy object plays the role of a surrogate for an object implementing 

a resource. The client using the proxy believes it is invoking the methods of the resource 

object but it is really interacting with the proxy. The proxy enforces the security policy by 

performing an access check before delegating the method invocation to the real resource 

object. Hence, the proxy is described as playing the Caretaker role. Unlike a simple ca­

pability model, the Caretaker can revoke the access rights granted to a client at any time. 

Because the client must always go through the Caretaker there is no way for the client to 

simply bypass the proxy. Obviously the proxy is acting as a fine-grained PEP for individual 

objects. However, there a four main drawbacks to the use of Caretaker. 

First, proxies raise the self problem that was first described by Lieberman [Lieberman 

1986]. Lieberman claims inheritance-based languages cannot implement delegation. The 
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problem is with the rebinding of the self1 variable that takes place when the method in­

vocation is delegated. It is possible to work around this by passing the self variable as an 

additional argument in all method invocations and then making all self invocations use this 

passed variable instead of the default. This requires that affected classes follow a partic­

ular programming convention. However, since the classes being wrapped are constructed 

independently of the proxy with which they are used, it is unlikely that they would support 

such a convention unless we could transform the compiled classes' methods. 

Second, using proxies to add functionality to existing classes requires logical wrap­

ping [Holzle 1993] to ensure that the proxy and proxied instances are always associated 

with each other. Any class that returns an instance of the proxied class must be modified 

(or itself proxied) to ensure that it returns a proxy instance. This requires programmers to 

introduce logic into the application in addition to the definition of the proxy class itself. 

Other implementations are possible, for example, the proxy could be automatically gen­

erated at the client side. However, there must always be additional processing in order to 

maintain the association between the proxy and the proxied class. 

Third, in a reasonably complex application, it is possible that an instance of a proxied 

class returned by a method invocation might not be replaced with an instance of its proxy. 

Such an unwrapped instance would then allow the proxied instance to be invoked directly 

bypassing the proxy. This is simply a variant of the confinement problem [Lampson 1973] 

and is a possibility that always exists whenever a proxy is used. 

Fourth, an interface gap exists because of the introduction of an extra proxy c1a'is 

that must maintain the same interface as the proxied class. Whenever the interface of the 

proxied class changes, the interface to the proxy class must also be updated. 

Successfully implementing proxies requires changes to the objects being proxied and 

this detracts from the separation of concerns gained. In addition, problems remain regard­

ing the leakage of pointers to the unprotected object and this complicates implementation. 

I In Java the self variable is represented by the this keyword. 
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Place Enforcement within a Superclass 

Another approach to implement security functionality or security state is to implement 

these in a subclass and have classes implementing resources subject to a security policy 

inherit this functionality or state. For example, a SecureObject class could be implemented 

that includes a checkAccess method and fields able to track access-relevant state. All 

classes implementing resources subject to a security policy would inherit from SecureOb­

ject and call checkAccess wherever appropriate. This reduces the burden on programmers 

because they no longer need to re-implement checkAccess for every class or add extra 

fields to each class definition. 

The main drawback is that this approach imposes an obligation on the implementer of 

the secure class that leads to tight coupling between functional and enforcement code [Stroud 

& Wu 1995]. In the example given, this consisted of calling inherited methods at particular 

points and it might also involve defining extra class-specific methods. This causes the code 

implementing the functionality of the secured class to become intertwined with the code 

enforcing security. As discussed earlier this makes it difficult to reuse enforcement code. 

It also hardwires choice about the types of enforcement that can be implemented. Chang­

ing enforcement requires changing the superclass. Changing the superclass is problematic 

because it forces all subclasses to change because the changes may introduce new methods 

or change the arguments of existing method calls. 

2.4.2 Evaluation 

Table 2.2 summarises the evaluation of conventional object-oriented techniques against the 

set of criteria. Conventional object-oriented techniques are able to satisfy least privilege 

and also complete mediation but do not necessarily provide good economy of mechanism 

nor provide a clean separation of concerns. 

Separation of Concerns 

Implementing PEPs within library code provides a clean separation of concerns because 

enforcement code is independent of application code. All of the others share a lack of 

clean separation of concerns. Changing either enforcement code or application code will 
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Table 2.2: Evaluation of conventional object-oriented techniques. 

Technique Description Separation Least Complete Economy 
of Privilege Mediation of 
Concerns Mechanism 

Libraries Fixed placement of Good Coarse Limited Language 
enforcement code dependent 
within kernel. 

Manual insertion Place enforcement Poor Fine Complete Language 

as required within dependent 

application 

Capabilities Treat object Moderate Fine Limited Language 

references as dependent 

capabilities and 

control handing out 

capabilities. 

Proxies Place enforcement Moderate Fine Limited Language 

code within dependent 

proxies 

Inheritance Place enforcement Moderate Fine Complete Language 

within superclass, dependent 

all secure objects 
inherit behaviour 

and state. 
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lead to some changes in both. Manual insertion leads to the worst separation of all because 

enforcement code is intertwined with application code. Capabilities and proxies provide 

cleaner separation because enforcement code is more modularised but still requires some 

changes to application source code: (1) Capabilities require changes to the objects that 

return references to protected objects and careful programming to avoid the confinement 

problem; (2) Proxies require the generation of entirely new classes and changes to objects 

that return references to protected objects to ensure references remain wrapped. Inheritance 

imposes additional obligations upon developers of application code and require modifica­

tion of the source code in order to implement inheritance. 

Least Privilege 

Library-level enforcement suffers from the same problems as operating system enforce­

ment of access control policies because PEPs are located at the wrong level of abstraction 

and cannot be easily changed. However, placing PEPs at the application level successfully 

provides least privilege because the access control policies can now specify fine-grained 

rights on a per-method basis for application or library code. 

Complete Mediation 

Complete mediation requires that the PEPs cannot be bypassed. Placing enforcement man­

ually within application code or within the superclass provides complete mediation as the 

language ensures invocations can only take place across a well-defined interface. Capabil­

ities and proxies are more problematic because both suffer from the confinement problem. 

Libraries only offer limited complete mediation because they cannot mediate in accesses 

to application resources. 

Economy of Mechanism 

Economy of mechanism is also quite dependent upon the development and execution en­

vironment. However, it is possible to make the observation that implementing PEPs by 

inserting source code into an application does require that the compiler is trustworthy a-. 

well as the execution environment. We must be able to trust that the compiler does not 
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remove the PEPs at compilation time. This results in a larger trusted computing base than 

operating system enforcement because we now consider the compiler as well as the execu­

tion environment (and system libraries) as part of the trusted computing base. 

2.5 In-lined Reference Monitors 

In-lined reference monitors (IRMs) provide an alternative approach to operating system or 

conventional object-oriented security engineering. IRMs focus on replacing the existing 

security architecture rather than bringing applications under the control of existing security 

architectures. The main benefit of replacing existing security architecture is that the ar­

chitecture implemented by the IRM may be easier to verify as being correct. Additionally. 

existing IRMs only enforce access control upon local objects rather than distributed objects. 

To implement distributed access controls, new mechanisms to support remote authentica­

tion and confidentiality would need to be added to existing IRM toolkits because current 

IRMs do not provide facilities to implement these concerns. Nonetheless. they are worth 

reviewing because they solve the problems of clean separation of concerns for compiled 

code and meet the criteria for access control for local objects. 

IRM tools in-line automata that monitor execution of the application being secured and 

halt its execution if a violation of the security policy is detected [Erlingsson & Schneider 

2000]. Figure 2.3 describes the IRM security architecture. An application provided as 

compiled code has the enforcement code for a security policy in-lined by an IRM Rewriter. 

The resulting application is now a secure application. The key notion here is that the 

enforcement and policy decision code can be automatically generated from a security policy 

written in terms of application abstractions. Essentially the PEP and PDP is merged into 

the target application and the term in-lined reference monitor reflects this because the 

notion is that the reference monitor is not in system libraries or kernels. Instead it is in­

lined into the application itself. The inspiration for this work belongs to software based 

fault isolation [Wahbe, Lucco, Anderson & Graham 1993a] where address-space isolation 

is implemented by modifying user-level compiled code. 

Examples of IRM architectures are SASI [Erlingsson & Schneider 2000], PoETIP­

Slang [Olfar Erlingsson & Schneider 2000], Naccio [Evans & Twyman 1999], Ariel [Pande) 



CHAPTER 2. RELATED WORK 

Application 

" I I IRM Rewriter I 

Secure Application 

Security 
Policy 

39 

Fi gure 2.3: In-lined Reference M onilor archi lecture. eparalion bel een enf rcem nl and 
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forcement code at appropriate pl ace under the contro l of a ecurity polic . Thi pr duc ~ 
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least privilege, complete mediation, economy of mechani m. 

2.5.1 Evaluation 

Table 2.3 summari ses the evaluati on of IRM technique . Each example i not hown indi­

viduall y because of their similarily. IRM technique pro ide lea I privilege and economy 

of mechanism. However, il i les fl ex ible than conventional object-oriented oflware engi­

neering b caLI se it repl ace ex isting security architecture rather than pro iding a means to 

integrate appli cations with them. IRM techniques do pro ide least pri vilege with regard to 

enforcing access contro l upon user-level objects. Howe er, current IRM implementation~ 

cannot enforce access cont rol upon di stributed object . 
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Table 2.3: Evaluation of IRM techniques. 

Technique Description Separation Least Complete Economy 
of Privilege Mediation of 

Concerns Mechanism 

IRM enforcement Policy determines Good Fine Control over Good 
in-lining of user-level code 
enforcement but not 
within compiled distributed 

code. Replaces objects. 

existing security 
architecture. 

Separation of Concerns 

A clean separation of concerns can be achieved by in-lining security codes into user­

level applications [Erlingsson & Schneider 2000, Evans & Twyman 1999, Sirer et al. 

1999, Pandey & Hashii 1999, Hashii et al. 2000]. In-lined reference monitors (lRMs) 

realise access control policies by rewriting compiled applications and inserting enforce­

ment code as necessary to effect the access control policy. A clean separation of concerns 

is provided because enforcement code can be changed independently of application code. 

A new access control policy can be implemented simply by modifying the policy definition 

and using the IRM to reapply the policy to the application. Similarly, when the application 

is changed the access control policy can be reimplemented simply by rerunning the IRM 

against the application. 

Least Privilege 

All of the examples of IRM except for Naccio provide fine-grained control for all user­

level code. Naccio does not provide fine-grained control because it only intercepts access 

requests for resources implemented by library code and not application code. 

None of the IRM implementations surveyed here provide control over access to dis-

tributed objects. 
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Complete Mediation 

Schneider and Erlingsson's [Schneider 2000, Erlingsson & Schneider 2000. Ulfar Erlings­

son & Schneider 2000] argument for complete mediation by IRMs depends upon showing 

that: 

• Enforcement code mediates all the events relevant to the access control policy being 

enforced . 

• Enforcement code and its variables are protected against tampering at runtime. 

Ensuring All Relevant Events are Mediated. The enforcement code must mediate all 

events governed by the access control policy being enforced. This means the enforcement 

code must be capable of mediating an event and the IRM adding the enforcement code must 

be capable of identifying when mediation is required. Achieving confidence in the toolkit 

requires both an assessment of its code analysis capabilities and the scope of control of 

the IRM code. For example, consider an object-oriented language that allows direct access 

to an object's state without requiring the use of accessor methods. An IRM only able to 

identify method invocations or insert enforcement code to control method invocations could 

not be used with this language for controlling access to object state. 

Resisting Tampering. The integrity of the enforcement code and its variables must be 

protected from subversion. The secured application should not be able to bypass, tam­

per with or modify the values of variables controlling execution of the enforcement code. 

PoET/PSlang uses the following techniques to prevent tampering with enforcement code: 

1. The secured application is prevented from invoking methods belonging to the en­

forcement code or accessing enforcement variables because the enforcement code 

does not use names that exist within the application's namespace. For example, Po­

ET/PSLang uses names containing characters that are illegal in Java source code 

and would be rejected by a compiler. Additionally, because these names are not 

mentioned in the application's original namespace, the application could not contain 

code using these names. Note though, that care has to be taken with Java because of 
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its introspection capabilities - these must be disabled to prevent generic code making 

use of these capabilities to access variables or invoke methods. 

2. The secured application is prevented from bypassing the in-lined enforcement code 

because there is no way to branch around in-lined enforcement code. There are jump 

instructions included in the Java VM's byte code and used to implement exception 

handling and conditional branching but they cannot be used to either jump from one 

method into the body of another or make arbitrary branches within a method body. 

a. Bypassing enforcement code controlling access to a method requires being able 

to make an arbitrary jump into the middle of method from another method. 

This not possible because the Java verifier statically analyses the byte code and 

disallows jumps between methods. 

b. Bypassing enforcement code within a method requires being able to make an 

arbitrary jump within a method body. Any jump instruction that attempted to 

bypass enforcement code around an instruction that is the target of an access 

control policy would be unable to branch over the enforcement code because it 

does not exist yet. It could try to confuse the IRM by implementing a complex 

control flow but as long as the IRM can identify the correct placement of en­

forcement code then it can update the target of the jump instructions to point to 

the newly in-lined enforcement code. 

3. The secured application is prevented from viewing code as data, otherwise it would 

be able to remove enforcement code at runtime. This is guaranteed by strong type 

checking enforced by the Java compiler. Additionally, the Java verifier that forms part 

of the Java virtual machines ensures that [Yellin 1996]: (1) There are no stack over­

flows or underflows. (2) All register accesses and stores are valid. (3) The parameters 

to all byte code instructions are correct. (4) There is no illegal data conversion. 

This is not the complete story, it shows that inserted enforcement code cannot be by­

passed but what if the attacker can confuse the IRM tool and avoid in-lining of enforce­

ment code. Pandey and Hashii [Pandey & Hashii 1999] argue it is essential for an IRM 

tool, whose access control policy is based upon associating access checks with particular 
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classes, to take account of Java's inheritance model [Pandey & Hashii 1999]. In Java, the 

compiled format of a class includes only those methods defined for that class. Any inher­

ited methods are defined in the subclass and at runtime dynamic dispatch ensures that the 

correct method implementation is used. The implication of this for an IRM approach is 

that enforcement code must be added to the methods defined in superclasses as well as the 

class that is the subject of an access control policy. However, this leads to instances of 

both the superclass and the subclass being subject to access constraints. One solution is to 

create stub methods in the subclass that delegate calls to the superclass and provide a place 

to in-line enforcement code. However, Java allows classes to define some methods as final 

thereby preventing overriding. The solution to this problem is to insert an invocation in 

the superclass of an access check method defined as a null method in the superclass. The 

original method remains final but the access method can be overridden by the subclass and 

enforcement code in-lined. 

These arguments for complete mediation can be extended to C++. What is required is 

the use of additional tools to ensure that access to code is only via well-defined interfaces. 

For example, SAS I makes use of tools such as typed assembly language [Morrisett. Walker. 

Crary & Glew 1999a] to ensure type safety guarantees are maintained and Naccio relies 

upon tools implementing Software-Based Fault Isolation (SFI) [Wahbe. Lucco, Anderson 

& Graham 1993b]. 

Economy of Mechanism 

The security engineering techniques discussed in this section provide good economy of 

mechanism compared to inserting PEPs into application source code. Preprocessors could 

be used to insert enforcement code but working with compiled code has distinct advantages. 

Compiled code is easier to parse than source code and doesn't require the co-operation of 

the compiler. This implies that the compiler does not need to be treated as part of the trusted 

computing base [Schneider et al. 2000]. 
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2.6 Metaobject Protocols 

Metaobject protocols are a software engineering technique that provides the strengths of 

conventional object-oriented engineering techniques while providing a clean separation of 

concerns. Metaobject protocols are an object-oriented implementation of reflection. Re­

flection [Maes 1987] allows a system's implementation to be exposed, while hiding its com­

plexities, allowing it to be changed. A reflective system is comprised of a base and meta 

level. Reflection allows the system's base-level implementation to be opened up while 

hiding implementation details. This is achieved by providing a meta-level causally con­

nected model, which is a reification of the base-level system. The model has two important 

features. First, the model is an abstraction that hides the complexities of the base-level 

implementation. Second, changing the model also changes the base-level system because 

they are causally connected together. 

When discussing reflection there is a notion of functional and non-functional concerns. 

Normally, non-functional concerns are considered orthogonal features that can be found 

in many applications, for example persistence or distribution. In the context of this thesis, 

the non-functional concern is security and the functional concern is implemented by the 

application. 

Malenfant and colleagues [Malenfant, Jacques & Demers 1996] define two types of 

reflection: structural and behavioural. Structural reflection is concerned with providing a 

reification of an application's structure. Behavioural reflection is concerned with reification 

of the language's semantics and of its implementation, as well as a reification of the state 

and implementation of the runtime system. 

A metaobject protocol (MOP) [Kiczales et al. 1991] is an object-oriented implementa­

tion of reflection that allows for incremental, and constrained changes to a system. Object­

oriented programming allows the meta-level model to be changed locally and incremen­

tally. The base level is the object, and the meta level is implemented as a metaobject that 

is causally connected (bound) to the base-level object. The protocol defines the interaction 

between an object and metaobject, and constrains changes that may be made to the object's 

behaviour. Because the meta level is implemented as an object, techniques such as special­

isation by inheritance can be used to structure it. Though metaobject protocols can be used 
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to implement both behavioural and structural reflection, this thesis focuses upon the use of 

metaobject protocols for behavioural reflection. 

One possible implementation of a metaobject protocol for behavioural reflection is 

shown in Figure 2.4. In this example, an object is bound to a metaobject. The metaob­

ject provides a protocol that allows adjustment to the behaviour of method invocations at 

the receiver. This is implemented by transparently intercepting method invocations sent to 

the base-level object, reifying the method invocation as a first-class value and invoking the 

metaobject. This act of interception is known as a meta-level interception (MLI) [Zimmer­

man 1996]. In a CLOS style before/after metaobject protocol the metaobject can perform 

computations before and after the invocation is delegated to the base-level object for pro­

cessing. Depending on the details of the metaobject protocol, a before computation could 

change the arguments of the method invocation and an after computation could change the 

result of the invocation before it is returned to the caller. 

Meta 
Object 

Object J 
Figure 2.4: A metaobject can be conceptualised as an object associated with a base-level 
object that intercepts all operations invoked upon the base-level object. It can perform 
before or after processing and delegate the operation to the real object. Operations might 
be method invocation, state access and so on. It might also include operations performed 
by the object itself such as method execution. 

A useful way of classifying MOPs is based upon when the binding between an object 

and metaobject is implemented. Table 2.4 shows the four main types [Welch & Stroud 

1999a]: compile time, loadtime, runtime and just-in-time compile time. 

The use of reflection and metaobject protocols to implement non-functional properties 

of a system in a clean way has been proposed for sometime [Stroud 1992]. This approach is 

based upon the fact that non-functional properties can be implemented as metaobjects and 

enforced upon base-level objects using a metaobject protocol. Use of metaobject protocob 
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Table 2.4: A major way that implementations of behavioural reflection differ from each 
other is their binding time. Binding times can be classified according to when metaobjects 
are bound to objects [Welch & Stroud 1999a] by the addition of meta-level interceptions 
(MUs) [Zimmerman 1996]. In terms of the Java object lifecycle the possible binding times 
for behavioural reflection (and therefore the last moment at which new bindings can be 
established) are shown in this table 

Binding time Description 
Source code Preprocessor of class source code inserts MUs 
Compile time Metaobject protocol customises the behaviour 

of compiler so that either a runtime metaobject 
protocol is implemented by adding MUs or the 
compiler creates a customised compiled class 

that no longer has an explicit meta level but whose 
structure has been changed so that the 
non-functional concerns are realised at the base level. 

Loadtime Instead of pre-processing class source code 

the compiled representation of class is modified and 
MUs are inserted. This can happen at any point from 

after compilation to the point at which the 

class is loaded for execution. 

Runtime Metaobject protocol exists that allows 
the semantics of the language and therefore the 

interpretation of byte code to be changed at 
runtime. This is done by changing the runtime interpreter. 

lust-in-time compile time Identical to compile time binding 
except that the compilation is from 
some intermediate object code into native 

object code. 
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make reuse of code easier because MOPs provide a clean separation of concerns between 

functional and non-functional features. MOPs allow metaobjects to be developed sepa­

rately from the base-level objects, which are bound to the base level before use. Depending 

upon the type of MOP implementation binding can take place anytime from compile time 

to runtime. The notion here is that non-functional concerns such as persistence and security 

should be implemented once only and reused with different applications to customise their 

behaviour so that it meets non-functional requirements. This represents a flexible separa­

tion of concerns because not every base-level object needs to be bound to a metaobject, 

and not every behaviour of a base-level object requires interception by MUs. There are 

many examples of using MOPs to implement non-functional concerns. For example, atom­

icity [Stroud & Wu 1995], concurrency [Briot, Doi, Honda, Ichisugi, Kodama, Ohsawa, 

Shibayama, Takada, Watanabe & Yonezawa 1990], fault tolerance applications [Fabre et al. 

1995], and middleware services [Kon, Roman, Liu, Mao, Yamane, a & Campbell 2000]. 

Using metaobjects to enforce security involves defining a special type of metaobject that 

implements security enforcement by checking accesses to their base-level object. Essen­

tially, the metaobject plays the role of a PEP in relation to a base-level object by enforcing 

access checks upon accesses to the base-level object. Using a metaobject to implement 

security policy enforcement permits the enforcement to be applied to an existing object 

without requiring any co-operation by the object implementer. Late binding allows en­

forcement of security policy upon compiled applications (see Table 2.4 for a description of 

possible binding times). Implementation of enforcement code at the meta level allow~ the 

enforcement codes to be reused by requiring co-operation from the target applications. 

There are similarities between an IRM approach and using MOPs for security enforce­

ment. Both provide a clean separation between enforcement and application functionality 

that allows each to be varied independently of the other. Both mechanisms allow security 

enforcement to only be applied where needed. This means that you do not pay a per­

formance hit for enforcement that you don't need. This is because with a code rewriting 

mechanism the code can be selectively injected into the application at the interface to the 

protected code. With a metaobject protocol, the behaviour of the application can be varied 

incrementally rather than as a whole. Finally, as for IRM, the principle of complete medi­

ation of events relevant to the security policy by enforcement code must be satisfied. For 
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MOPs, this means that the binding between the base level and meta level should not tie 

able to be bypassed or removed. In addition, metaobjects containing the enforcement code 

should not be able to be tampered with at runtime. 

Unlike IRM techniques MOPs are a general purpose software engineering technique. 

sufficiently general to address multiple concerns within the same framework and capable 

of allowing existing applications to be integrated with existing security architectures. IRM 

techniques focus upon enforcing access control policies and implementing their own secu­

rity architecture. 

A security architecture based upon behavioural reflection and metaobjects. where en­

forcement is implemented in terms of changes to application behaviour, allows not only 

enforcement of security but also other concerns as the model for change is not targeted 

towards a particular concern. This is because the scope of what can be changed using the 

metaobject protocol is determined by what abstractions exist rather than the range of fore­

seen changes. The implementation of concerns is then specified in terms of the general lan­

guage abstractions rather than abstractions relating to the concern itself. This implies that 

a wider range of concerns can be implemented using the metaobject protocol than simply 

security. The general idea is that differing concerns are implemented as different metaob­

jects and these can be combined together at the meta level to implement different concerns. 

For example, the Friends reflective architecture for fault-tolerant distributed systems can 

implement not only network security but also distribution and fault tolerance [Fabre et al. 

1995]. 

2.6.1 Examples 

Examples of the application of metaobject protocols to enforcing access control policies 

fall into one of two categories: (1) Those that enforce access control policies upon objects; 

(2) Those that enforce access control policies upon distributed objects. 

The scope of this survey has been deliberately restricted to metaobject protocols that 

have been used to engineer security. This is because we were interested in those implemen­

tations of metaobject protocols that had considered at least some of our criteria. This rule" 

out reviewing MOPs such as Iguana/J [Redmond & Cahill 2002] because they have been 
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designed for a different application area or not been explored with security in mind. 

Access to Objects 

There are three examples of access control enforcement upon local applications using 

MOPs: Metaobjects for Access Control [Riechmann & Hauck 1997, Riechmann & Hauck 

1998], Guarana [Oliva & Buzato 1999] and Simple Secure MOP [Caromel & Vayssiere 

2001, Caromel et al. 2001, Caromel & Vayssiere 2003]. 

Metaobjects for Access Control [Riechmann & Hauck 1997, Riechmann & Hauck 

1998] defines security metaobjects (SMOs) that are used to implement a capability-based 

security architecture. In this security architecture, capabilities are references to objects. 

Security metaobjects are bound to these references and add behaviour such as controls on 

the delegation of capabilities, etc. Here, the security architecture is implemented by using 

a metaobject protocol provided by the MetaXa [Golm & Kleinoder 1999] reflective virtual 

machine. The metaobject is invoked whenever the base-level reference is passed as a return 

value, or a method is invoked using the reference. It can decide whether access is permit­

ted, depending on the parameters of the invocation or the principal making the invocation. 

Principals are attached to domains of objects rather than arising out of authentication of 

subjects or association with threads. The binding between references and metaobjects is 

established at runtime using an interface to the metaobject protocol, and the association 

between objects and domains is similarly achieved. The protection of the metaobject, and 

the binding between instance and metaobject instance depends on the implementation of 

the MetaXa virtual machine. The main drawback of this mechanism is that a non-standard 

virtual machine is required. 

Like MetaXa, Guarana [Oliva & Buzato 1999] is a modified Java VM that includes fea­

tures that enable runtime binding of metaobjects to objects. Although there are no examples 

of using Guarana to implement enforcement of security policies, it has been designed with 

enforcement in mind. In particular, it addresses the problem of a base-level object being 

able to interfere with the correct execution of a meta-level object and thereby avoids hav­

ing its requests mediated according to the current security policy. First, the identities of 

metaobjects bound to an object are hidden from the base-level object and other meta-l eye I 

objects. This prevents direct tampering. Second, although Guarana supports rebinding at 
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runtime this can be controlled by the metaobject itself rather than the base level. There­

fore, once the metaobject has been bound to the base-level object it cannot be arbitraril) 

removed. 

The Simple Secure MOP [Caromel & Vayssiere 2001, Caromel et al. 2001. Caromel 

& Vayssiere 2003] is a loadtime MOP implemented using code rewriting techniques. It 

allows the Java security architecture to be used to implement enforcement of access con­

trol policies. It takes special steps, the saving of AccessController context, to ensure that 

metaobjects do not need to be granted an application permission in order to check that is 

held by the application objects. Recent work [Caromel & Vayssiere 2003] has extended this 

to providing a security framework for controlling the accesses the meta level may make to 

the base level. The use of code rewriting allows the MOP to enforce access control poli­

cies upon compiled code without sacrificing portability. However, the Simple Secure MOP 

cannot enforce access controls upon the use of Java services by user-level code because it 

can only control method execution by inserting MUs into method bodies and this cannot 

be done for the Java core classes that provide the services. 

Access to Distributed Objects 

Friends [Fabre et al. 1995, Killijian et al. 1998, Killijian & Fabre 2000], DSOM [Benantar 

et al. 1996] and mCharm [Ancona et at. 1999, Cazzola 2000] are examples of enforcing 

distributed access control using MOPs. Each mechanism uses one of two ways to imple­

ment distributed access control: (1) Use a MOP to implement distributed access control by 

customising the behaviour of the components implementing remote method invocation im­

plementation. (2) Provide a MOP for remote method invocations that hides implementation 

details and allows distributed access control policies to be specified declaratively. 

In the first mechanism, the choice of abstraction level provided by the protocol con­

strains the types of policies that can be enforced. For example, distributed access control 

relies upon authentication of the remote client and this is normally done using some form of 

digital signature. Implementing this requires being able to manipulate messages as if they 

were collections of bytes. This is because a digital signature must be calculated using byte 

values. Furthermore, since the digital signature must travel with the message, the message 



CHAPTER 2. RELATED WORK 51 

abstraction must support concatenation so that the result can be added to the messaae be-
e 

fore transmission across the network. This is relatively straightforward in a non type-safe 

language like C++ as you could simply cast a message as an array of bytes. for example in 

the Friends architecture. However, it requires careful choice of abstraction in a type-safe 

language like Java because type safety may prevent manipulating a message as an array of 

bytes. In a type-safe language, the remote method invocation framework might need to be 

modified to provide the necessary access. For example, mCharm uses a replacement for 

the standard Java RMI that provides access to remote method invocations as untyped byte 

codes. 

The second mechanism doesn't expose all the details of the remote method invocation 

implementation. Instead, it provides an interface that allows the security policies to be 

specified declaratively and fixed enforcement code implements them. A reflective security 

architecture that takes this mechanism is DSOM, which is a reflective implementation of 

the CORBA security architecture. DSOM has a per-orb quality of protection object that 

specifies the type of protection for messages and access control policies to use when per­

forming remote method invocations. 

The choice of approach depends on the desired flexibility. The first mechanism allows 

arbitrary policies to be implemented but requires more skill on the part of the programmer. 

The second mechanism is easier to use but only offers a fixed set of policies because the 

programmer cannot write a metaobject that can directly manipulate messages. In particular 

it is not suitable when using MOPs as a technique to use an existing security architecture. 

2.6.2 Evaluation 

Metaobject protocols provide least privilege although existing MOPs tend to address either 

access control for objects or distributed objects rather than both. Complete mediation has 

been discussed in relation to compile-time and runtime MOPs but not for loadtime MOPs. 

None of the CUtTent implementations provide mediation of both accesses to local and dis­

tributed objects. Loadtime MOPs provide a better economy of mechanism than other types 

of MOPs. A clean separation of concerns is central to the idea of a MOP but has not been 
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demonstrated with real-world, third-party applications. Table 2.5 summarises the e\alua­

tion of the applications of metaobject protocol techniques surveyed in this section. 

The Simple Secure MOP for Java is the only example of a MOP that can be used 

to enforce access control policies upon compiled code without running into the problem 

of economy of mechanism faced by runtime MOPs. It differs from the loadtime MOP 

developed in this thesis because it is a deliberately simple MOP designed to explore issues 

of least privilege in regard to metaobjects. The Simple Security MOP for Java approach 

has not been applied to the problem of enforcing access control policies upon resources 

provided by libraries or distributed resources and doesn't explore the issues of complete 

mediation or economy of mechanism. 

Table 2.5: Evaluation of MOP techniques. 

Technique Description Separation Least Complete Economy 
of Privilege Mediation of 
Concerns Mechanism 

Compile-time MOP Metaobjects enforce Good Fine Examples of Includes 
policy at runtime control over compiler 
and bind to base distributed and MOP 
level at compile objects but implementation 

time. not local. inTCB 

Loadtime MOP Metaobjects enforce Good Fine Examples of Only include,> 

policy at runtime control over MOP 

and bind to base local objects implementation 

level at load but not inTCB 

time. distributed. 

Runtime MOP Metaobjects enforce Good Fine Examples of Includes 

policy at runtime control over runtime 

and bind to base local objects and MOP 

level at runtime but not inTCB 

time. distributed. 
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Separation of Concerns 

Implementing enforcement code within the meta layer should allow for a clean separation 

of concerns. Metaobjects can be designed, implemented and tested separately from the 

objets to which they will be bound. The examples reviewed in this chapter do not address 

how successful or not this approach is when applied to real-world applications. Example 

applications developed to demonstrate the approach suffer from being developed with a 

particular purpose in mind. This is problematic because the problem domains from Chap­

ter I make no assumptions about the structure of the application or component that will be 

subject to the policy. 

Least Privilege 

MOPs provide least privilege although the MOPs reviewed above only provide either access 

control for objects or distributed objects rather than both. At a minimum most MOPs 

provide access control at the level of individual methods. MOPs providing control over 

other aspects of object behaviour allow even finer-grained control. The Simple Security 

MOP takes the discussion of least privilege further than simply the granularity of control 

over access to base-level objects, it considers the privileges granted to base-level and meta­

level objects. The position taken is that meta-level objects should not be granted the same 

privileges because they only need to check privilege rather than use it. 

Complete Mediation 

Only mCharm and Guarana consider the problem of implementing complete mediation. 

Complete mediation is important because otherwise there is no guarantee that the desired 

access control policy can be enforced. This requires non-bypassable binding between the 

base-level object and the meta-level object and preventing the metaobject implementations 

or state being tampered with at runtime. Should the binding be bypassed then accesses 

could escape access control checks and should metaobjects be tampered with then the ac­

cess checks could be removed. The mCharm architecture [Cazzola 2000] argues that if the 

metaobjects are located on separate hosts that are protected then they cannot be tampered 

with. There is no discussion of how the binding to the metaobject is achieved. Because 
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mCharm relies upon a compile-time protocol, which customises the compiler, the binding 

relies upon correct rewriting of source code and the use of mechanisms such as class renam­

ing and language-level visibility (private, protected, etc.) to prevent bypass. No specific 

argument is made about the effectiveness of the binding. Guarana provides complete medi­

ation by preventing access to the meta level by base-level objects. Metaobjccts arc invisible 

to the base level (preventing tampering) and reconfiguration of the binding between meta 

and base levels can be controlled thereby preventing the base level removino the bindino 
~ e- e-

between the base and meta level. However, the protection of the binding relies upon correct 

implementation of the Guarana virtual machine. Requiring changes to the VM introduces 

the possibility of error and requires a large trusted computing base. 

Economy of Mechanism 

Regarding economy of mechanism, the type of behavioural reflection used has a direct 

impact upon the size and complexity of the enforcement code. Remembering the argument 

for object code rewriting versus source code rewriting it can be argued that source code and 

compile time binding requires re-implementation of compiler semantics because they both 

deal directly with application source code, a non-trivial task. Similarly, runtime requires 

modification of the execution environment, also a non-trivial task. This implies a relatively 

large and complex enforcement code when compared with code rewriting mechanisms. 

Loadtime MOPs should have a smaller economy of mechanism because, with regard to 

MUs, the compiler does not have to be part of the trusted computing base. Also, it is easier 

to parse compiled code than source code leading to a smaller implementation of the tool 

that realises the MOP. 

2.7 Goals of Thesis 

The previous sections evaluate techniques and implementations of those techniques against 

criteria for aood security enoineerino and a clean separation of concerns. The results of 
I:> I:> I:> 

the evaluation are summarised in Table 2.6. Only in-lined reference monitors and loadtime 

metaobject protocols meet all the requirements. However, in-lined reference monitors do 



CHAPTER 2. RELATED WORK 

Table 2.6: Evaluation of security engineering techniques 
Technique Description Separation Least Complete Economy 

of Privilege Mediation of 
Concerns Mechanism 

Operating Fixed placement of Good Coarse Limited control Complex 
systems enforcement code over user-level 

within kernel. code 
Libraries Fixed placement of Good Coarse Limited Language 

enforcement code dependent 
within kernel. 

Manual Place enforcement Poor Fine Complete Language 
insertion as required within dependent 

application. 

Capabilities Treat object Moderate Fine Limited Language 
references as dependent 
capabilities. 

Proxies Place enforcement Moderate Fine Limited Language 
code within dependent 
proxies. 

Inheritance Place enforcement Moderate Fine Complete Language 
within superclass. dependent 

IRMs Policy determines Good Fine Control over Good 

in-lining of local objects 

enforcement. code but not 

within compiled distributed 

code. Replaces 
existing security 

architecture. 

Compile-time Metaobjects enforce Good Fine Examples of Includes 

MOPs policy at runtime control over compiler 

and bind to base distributed and MOP 

level at compile objects but impl. 

time. not local inTCB 

Loadtime Metaobjects enforce Good Fine Examples of Only includes 

MOPs policy at runtime control over MOP 

and bind to base local objects impl. 

level at load but not inTCB 

time. distributed 

Runtime Metaobjects enforce Good Fine Examples of Includes 

MOPs policy at runtime control over runtime 

and bind to base local objects and MOP 

level at runtime but impJ. in TCB 

time. not distributed 
I 
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not meet the requirement to enforce access control policies using existing security archi­

tectures and existing implementations cannot implement distributed access control. On the 

other hand, existing loadtime MOPs have not been demonstrated to meet all of the criteria 

and have not been used to implement distributed access control policies. 

The goals of this thesis are to design and implement a loadtime MOP for Java that can 

be used to enforce both types of access control policy, enforce access control policies upon 

resources provided by applications or libraries while explicitly addressing the problem of 

complete mediation. The specific goals are to: 

1. Implement a MOP that enforces access control policies upon compiled code. 

2. Implement a MOP that controls access to both application, library and operating 

system resources. 

3. Implement a MOP that satisfies the requirements for: 

• Least privilege 

• Complete mediation 

• Economy of mechanism 

• Clean separation of concerns 

4. Demonstrate a clean separation of concerns compared with conventional software 

engineering techniques that still allows reuse of existing security architectures. 



Chapter 3 

Design and Implementation of Kava 

This chapter provides an overview of the design and implementation of Ka\ a. Ka\ a j" a 

metaobject protocol for enforcing acce"" control policies upon compiled code. It j" in­

tended to allow standard Java security features to be used for enforcement -.0 the meta 

level is written using the Java programming language. Thi" allows it to make u-.e of the 

Java language features and existing security architectures when implementing enforcement 

code. 

There are three main sections to this chapter: (I) Section 3. J prmide" an men iew or 
the main elements of the Kava metaobject protocol; (2) Section 3.2 provide" an men jew or 
Kava's implementation; (3) Section 3.3 evaluate" Kava against the goal-. from Section 2.7. 

The following features of Kava specifically addre"" the goals from Section 2.7: 

• Kava's metaobject protocol includes extra metaobject method" to allow metaobjech 

to control access to application, library and operating -.y"tem resource". Thi.., i.., di..,­

cussed in Section 3.1.1. 

• Special care has been taken to include acces"e" that are not represented by method 

invocations to ensure least priyi\ege is provided. This is di"cu..,,,ed in Section 3.1.2. 

• MOPs provide a clean separation of concerns by allowing non-functional concerns tl) 

be modu1arised. Additionally, Ka\a allem s specialisation through parameterisation 

of MUs. This is discussed in Section 3.1 . .5 . 

.57 
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• Kava exploits Java's loading and dynamic linking architecture to allow metaobjects 

to bind to classes provided as compiled code. This is discussed in Section 3.2.1. 

• Kava's MOP satisfies the principle of least privilege because all accesses that are 

possible in Java can be controlled by a metaobject bound to a base-level object. This 

has required special care to include the control of static members as discussed in 

Section 3.2.8 . 

• The arguments for complete mediation discussed in Section 2.5.1 have been applied 

to Kava's implementation. However, additional questions particular to MOPs and the 

implementation of Kava must be considered such as binding, the Java reflection API, 

how inheritance is handled and so on. This is discussed in Section 3.2.9. 

3.1 Language Design of Kava 

This section provides an overview of the main elements of the Kava mctaobject proto­

col. The role of metaobjects in the protocol is to allow per-instance changes to the Java 

language model. A meta-level programmer implements the standard Kava metaobject pro­

tocol or subclasses a default metaobject implementation. The metaobject protocol allows 

redefinition of method invocation by an object, method execution, field access, creation of 

new instances of classes by an object and exception raising. 

Each object at the base level may have an associated metaobject. The association be­

tween objects and metaobjects is established at loadtime. This is declaratively specified 

in a special binding specification that specifies the associations between base-level and 

metaobject classes. Kava does not provide any special features for composing metaobjects 

together at the meta level, though it is possible to write meta-level programs using standard 

patterns for object collaboration such as the chain of responsibility pattern [Gamma et al. 

1995]. 

Meta-level interceptions (MUs) cause control to switch from the base level to meta 

level at runtime, the context of the behaviour being brought under control is reified and 

made available to the metaobject. This allows the metaobject to choose a strategy ba,>ed 
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Listing 3.1: I MetaObject Java interface representing the Kava metaobject protocol. 

public interface IMetaObject { 
II behavioural reflection 
public void beforelnvokeMethod (II nvokeContext context); 
public void afterlnvokeMethod (1lnvokeContext context); 
public void beforeExecuteMethod (I ExecuteContext context); 
public void afterExecuteMethod (I ExecuteContext context); 
public void beforePutField (I FieldContext context); 
public void afterPutField (I FieldContext context); 
public void beforeGetField (I FieldContext context); 
public void afterGetField (I FieldContext context); 
public void beforeNewOperator (INewContext context); 
public void afterException (IExceptionContext context); 
II introspection 
public Object getBase (); 
public boolean boundToClass (); 
public String getClassname(); 
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upon the context of the MLI and modify the context if required. For example, changing the 

results of a method invocation or field access. 

Reuse is facilitated in Kava because each MLI may have a meta parameter associated 

with it. This allows specialisation of a metaobject for a new object by modifying the bind­

ing specification and goes beyond the usual notion of specialisation of mctaobjects through 

inheritance. 

3.1.1 Overview 

The Kava metaobject protocol is represented by a Java interface as shown in Listing 3.1. 

Each Java method on the interface represents a base-level behaviour that can be redefined 

by Kava. 

To provide least privilege and complete mediation, all possible accesses to an object 

must be represented. Only controlling callee-side invocation (method execution) i" insuffi­

cient because the Java VM allows direct access to an object"s state and there is a technical 

difficulty in binding metaobjects to Java libraries or services provided to Java applications. 
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Therefore, the Kava MOP includes methods that do not necessarily appear upon a C++ 

MOP or other Java MOPs. 

In addition to methods that allow redefinition of base-level behaviour, others support 

introspection using the java.lang.reflect package. 

The Kava MOP uses the convention that each type of access (or behaviour that rna) be 

changed at the meta level) has a before and after metaobject method. The before metaob­

ject method defines what happens before the base-level behaviour and the after metaobject 

method defines what happens after the base-level behaviour. 

Every Kava metaobject must implement this interface. To ease the programming task 

for a meta-level programmer a default implementation of the interface is provided that im­

plements the introspection methods. Normally, programmers will extend the (MetaObject) 

class and override the before/after methods that correspond to the base-level behaviour that 

they want to modify. Note that each method takes a single argument representing the reified 

base-level context. The context is particular to the type of interception, for example when a 

switch to the meta level takes place upon interception of a field access, the context is rei fled 

as a context object with an lFieldContext. 

Kava metaobjects can invoke any code written in Java because they are themselves writ­

ten in Java. In particular the metaobjects can make use of any existing security architecture 

implemented in Java. 

3.1.2 Kava Metaobject Protocol 

The following sections discuss each type of metaobject method and how they relate to 

enforcement of access control policies. The metaobject methods are: 

• Invoke metaobject methods 

• Execute metaobject methods 

• PutField and GetField metaobject methods 

• New metaobject method 

• Exception metaobject method 
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• Introspection metaobject methods 

Invoke Metaobject Methods 

The metaobject methods beforelnvokeMethodO and afterlnvokeMethodO allow a meta-level 

programmer to write code that executes before an invocation takes place and after an invo­

cation has taken place, and the result of the invocation is about to be returned to the caller. 

This allows policies to be imposed that change the arguments being used in an invocation, 

control whether a method can be invoked, change the result of an invocation or prevent an 

invocation from taking place. 

Invoke and execute metaobject methods are duals of each other; invoke methods im­

pose constraints upon which methods a base-level object may invoke, and execute methods 

impose constraints upon which methods belonging to the base-level object may be invoked 

by other objects. In theory, either could be used in place of the other. Enforcing controls 

over what methods may be invoked by others is more straightforward because its imple­

mentation simply requires no more than the transformation of the method being invoked, 

rather than all possible methods performing this action. However, the requirement for an 

invoke metaobject method arises because it is impossible in Java to intercept the loading of 

some classes and transform them. The reasons for this are discussed in Section 3.2.1. 

Execute Metaobject Methods 

The metaobject methods beforeExecuteMethodO and afterExecuteMethod) allow a meta­

level programmer to write code that executes before and after a method body is executed. 

It allows implementation of policies, which are similar to the invoke methods, but enforces 

them on the object being invoked rather than the object making the invocation. This method 

implements the same functionality as the invoke metaobject methods in reflective languages 

such as OpenC++ [Chiba & Masuda 1993]. Note that a constructor of an object is an 

ordinary method, so this method can be used to redefine object initialisation. 



CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 62 

PutField and GetField Metaobject Methods 

Some access control policies require control over access to the state of the target object. 

For example, a Bell-LaPadula [Bell & LaPadula 1976] style policy may require that the 

label associated with an object is changed, depending upon the clearance of the subject 

associated with an update of an object's state. 

The metaobject methods beforePutFieldO and afterPutFieldO allow code to be executed 

before and after fields are updated. For example, the code can be used to update the labels 

associated with objects when their state is changed. The metaobject methods beforeGet­

FieldO and afterGetFieldO allow code to be executed before and after fields are read. 

Note that the fields that are the target of these methods do not necessarily belong to the 

object that is bound to the metaobject defining PutField or GetField. This is an artefact of 

the Kava implementation. There is no way to intercept state update other than wrapping the 

byte code instructions for PutField or GetField. Subject to the visibility of the target field 

(public, protected, package or private), any object can access the state of another object 

without invoking an accessor method belonging to the target object's interface. Therefore 

to implement least privilege and complete mediation, the metaobject protocol must allow 

these operations to be redefined at the meta level. The metaobject can redefine how the 

object to which it is bound accesses other object's state. 

New Metaobject Method 

As mentioned above, the execution of a constructor can be intercepted and redefined at the 

meta level by redefining the execute metaobject method. This is useful when adding extra 

initialisation steps to a base-level object or initialising a metaobject. However, it may be 

impossible to do this if the object is implemented as system-level code or the allocation of 

space for the new object might itself represent a violation of an access policy. 

Alternatively, another approach might be to specify the constructor of the target ob­

ject's class when binding a metaobject that redefines the invoke metaobject method. The 

problem is that the byte code for creating a new instance is different from simply invok­

ing a constructor. The Java VM will create a new instance of an object and then calls its 

constructor. This could result in static code being executed and this code might subvert the 
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access control policy. 

Therefore, the Kava MOP goes beyond controlling execution and invocation. It allows 

requests for new instances of objects to be intercepted and redefined. This is done by im­

plementing the beforeNewOperatorO metaobject method. which allows code to be executed 

before a new instance of an object is created. The metaobject redefining the creation of new 

instances is bound to any object attempting to create one of the target objects. 

Exception Metaobject Method 

The Kava MOP allows exception raising to be redefined because not including exception 

raising as a redefinable behaviour would introduce a covert channel. Otherwise, the de­

veloper of an object that will be have its behaviour constrained by the Kava MOP could 

bypass the MOP simply by raising exceptions and using them to return results to a client. 

Kava allows exception raising to be intercepted at runtime but only permits changes to 

the raised exception rather than allowing exception raising to be suppressed. This is be­

cause programmer's develop their programs with a termination model in mind and Kava 

should not confound programmer's expectations. This is why, in Kava, only an afterEx­

ception metaobject method is provided. This allows additional behaviour to occur when an 

exception is raised and the exception instance to be substituted by another that is a subtype 

of the original instance. 

Introspection Metaobject Methods 

In order to implement an access control policy, a metaobject may need to introspect upon 

the state of the object to which it is bound. For example, in a health record context where 

access decisions must take into account the age of the patient recorded within the record 

itself. 

The three introspection methods are designed to support these operations and default 

implementations for these methods are provided in Kava. They do not provide the intro­

spection capability themselves, but provide the information needed to use the java.lang.reflect 

package for introspection. 
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As a metaobject can be bound either to a class (to support static members. see Sec­

tion 3.2.8) or an instance of a class there needs to be a means of detecting the fact. A 

metaobject can determine what it is bound to by invoking boundToClassO. Either true \\ ill 

be returned, indicating that it is bound to a class, or false will be returned. indicating that it 

is bound to an instance of a class. 

A metaobject bound to an object can obtain a reference to the object that it is bound 

to by invoking getBaseO. The metaobject can then use the java.lang.reflect package to 

introspect upon the state of the instance. A metaobject bound to a class can get the name 

of the class by invoking getClassnameO. As for the case of being bound to an instance. the 

java.lang.reflect package can be used to introspect upon the state of the class. Note that in 

Java, classes can define static members that maintain per-class state. 

To support complete mediation, metaobjects are hidden from the base level to prevent 

tampering (see Section 3.2.9) although meta-level programmers can implement their own 

mechanism if they wish. For example, a registry class can be used for metaobjects to 

register themselves with when initialised. Base-level objects could lookup their associated 

metaobject by using their own object pointer as a key. The important point. however. is by 

default, Kava does not expose the meta level that is enforcing security policies. 

3.1.3 Context Parameters 

All base-level behaviours have a context that must be accessible for the implementation of 

access control policies. Depending upon the base-level behaviour being redefined. the con­

text's content will vary. Kava uses the concept of Context objects to simplify the metaobject 

protocol, which allows the possibility of lazy reification [Masuhara, Matsuoka, Watanabe 

& Yonezawa 1992]. In Kava there is a partial implementation of lazy reification in that run­

time instances of java.lang.reflect.Method, java.lang.Class or java.lang.reflect.Field are only 

created on demand. This is achieved by reifying only the minimum information needed to 

derive them at runtime. Ideally, even this minimal information would have its reification 

deferred until the meta-level program actually needs to access them but because the Java 

language does not provide direct access to a thread's stack, the current implementation of 

Kava cannot do this. 
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K ava differs from other Java MOPs that simpl repre ent conte t e pli ill) in the 

metaobject methods. For example, Javassist [Chiba 2000] reifie the conte t of interc pt­

ing field accesse as the field name and value being et or read . Th i \\a e\pl red in 

Dalang [Welch & Stroud I 999a], a predecessor of Ka a, but it led to t\i 0 pr blem, . Fir. t. 

it lead to method interfaces that were unwie ldy becau 'e of the number of c nle 1 param­

eters. Second, i t meant that it would be more difficult to implement laz rein ati n if lhe 

parameters were ordinary Java classes such a Object or String, becau e th re is n \\'a 

to redefine their implementation. B y providing a generic Context object il i~ P . ~ib l e to 

provide implementations that can take advantage of Ja a YM , UPP0rl for laz r ificati n. 

Each metaobject protoco l method i pa ed an in lance f a Context obj Cl and a 

it using the appropriate interface (see Figure 3. 1 to see the hierarch ). F r e ample, Li~l ­

ing 3.2 shows the interface IFieldContext that pro ide acce . to the reified conte t of a 

fie ld operation (e i ther a get or a put fie ld operati on). A meta-level programm r u~ ~ th 

IFieldContext interface to acce s the reifi ed contex t of a field operation. Sthe i~ ab le t lnd 

out the name of the fie ld (getFieldName()) , the type of the fie ld (getFieldType() ), the va lu 

either being returned from the field acce , or the value that i being \I rill n 1 the field 

(getFieldValue()) and is able to change the va lue that i ' either being returned I' b ing u~ed 

to set the field va lue (setFieldValue()). 
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Figure 3. 1: Context hierarchy. All contexts implement lContext. 
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Listing 3.2: IFieldContext interface. 

public interface IFieldContext extends ITargetContext 
public String getFieldName (); 
public Type getFieldType (); 
public Object getFieldValue (); 
public void setFieldValue (Object 0); 

66 

As the metaobject protocol works with a uniform model of objects, primitive types are 

not used for methods that introspect upon values or allow the setting of values. Instead, if 

the field is one that has a primitive value type then wrapper classes must be used to coerce 

primitive values into objects and vice-versa. 

Unlike a standard CLOS before/after metaobject protocol [Attardi, Bonini, Boscotre­

case, Flagella & Gaspari 1989], Kava allows some behaviours to be overridden. Base-level 

behaviours can be overridden where the behaviour's reified context object implements the 

method overrideBaseO. For example, the Listing 3.3 shows how method execution can be 

overridden. Kava ensures that if the overrideBaseO method is invoked, the matching after 

metaobject method will not be invoked. 

3.1.4 Binding 

Kava binds metaobjects to objects at loadtime. This allows Kava to be used with compiled 

user-level code, a particular benefit because source code may not always be available to 

meta-level programmers. Additionally, it is actually more straightforward to parse Java 

compiled code than source code and working with compiled code provides a better econ­

omy of mechanism (as discussed in Section 2.5.1). In Java, all code is encapsulated by a 

class. Therefore, to bring all code under the control of policies implemented at the meta 

Listing 3.3: Implementation of a metaobject method that overrides execution of base-level 
methods. 

public void before Execute Method (I ExecuteContext context) { 
context. overrideBase (); 
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level, each class loaded should be bound to a metaobject class. To allow per-instance poli­

cies at runtime, each instance should also be associated with a metaobject class. As Java 

also supports static members and methods, the implementation of Kava for Java also allows 

the binding of a metaobject to a class itself as this allows static methods and field accesses 

to be brought under the control of the meta level. 

Unlike compile-time metaobject protocols, Kava does not allow programmers to anno­

tate source code with binding information. Kava works with compiled code so the binding 

information is supplied separately to the base-level program. The binding specification is 

represented at loadtime by a BaseMetaConfiguration object and a default implementation 

has been provided that parses an XML file located in the local file system. Alternative 

implementations can be used that download specifications from a central server so that an 

organisation's use of meta objects to enforce security could be centrally managed. The DTD 

for the XML binding specification is shown in Listing 3.4. 

The Kava binding specification allows metaobjects to be bound on a per class and per 

behaviour basis. This means that for an object of one class, the invocation behaviour can he 

intercepted and redefined by the metaobject bound to the object, while for another object 

of another class, both the invocation and execution behaviours can be intercepted and rede­

fined. Since only those behaviours that are of interest to the meta level are intercepted, the 

application will perform far better than one where all behaviours are intercepted. This no­

tion of fine-grained binding of metaobjects to objects is inspired by the Iguana metaobject 

protocol [Gowing & Cahill 1996] that allows the customisation of metaobject protocols. 

The Kava binding specification is also used to parameterise metaobjects by allowing 

meta parameters to be specified for all behaviours, these are discussed in Section 3.1.5. In 

addition, the specification allows optimisation hints to be passed to Kava (for example, if 

not all the context is required to be reified). 

3.1.5 Meta Parameters 

Each metaobject is an instance of a metaobject class. Inheritance can be used to spe­

cialise metaobjects. In addition, each meta-level interception can be parameterized to al­

low metaobjects to change their tolerances or strategies according to parameters encoded 
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Listing 3.4: DTD for Kava binding specification 

<?xml version=' 1 .0' encoding=' UTF-8'?> 
<!-

OTD for kava binding specifica tion . 
Version O.94a 

-> 

<! ELEMENT binding (class *» 
< ! ELEMENT c I ass (i n t e r c e p t *) > 

<! ATTLIST class classname CDATA #REOUIRED> 
<! ATTLIST class metaclass CDATA #REOUIRED> 
<! ATTLIST class extends CDATA "" > 

<!ELEMENT intercept (execute?, get?, put?, raise?, invoke?, new?» 
<!ELEMENT execute (optimisations?, method?» 

<! ATTLIST execute metaparameter CDATA "" > 
<!ELEMENT get (optimisations?, method?, field ?» 

<! ATTLIST get metaparameter CDATA "" > 
<!ELEMENT put (optimisations?, method?, field ?» 

<! ATTLIST put metaparameter CDATA "" > 
<!ELEMENT raise (optimisations?, method?» 

<!ATTLIST raise metaparameter CDATA ""> 
<!ELEMENT invoke (optimisations? method? targetmethod?» 

<!ATTLIST invoke metaparameter CDATA ""> 
< ! ELEMENT new EMPTY> 

<!ATTLIST new targetclass CDATA #REOUIRED> 

< ! ELEMENT 0 P tim is at ion s EMPTY> 
< ! ATTLIST 0 P tim is a t ion s rei f y (r e if Yin 0 rei f y) "r e i f Y "> 
<!ATTLIST optimisations reflect (reflect I noreflect) "reflect "> 
<!ATTLIST optimisations before (beforelnobefore) "before"> 

<!ATTLIST optimisations after (afterlnoafter) "after"> 

<! ELEMENT method (arguments ?» 
<! ATTLIST method name CDATA "*" > 

<!ELEMENT arguments (type *» 
< ! ELEMENT t Y P e EMPTY> 

<!ATTLIST type name CDATA #IMPLlED> 

< ! ELEMENT fie I d EMPTY> 
<!ATTLIST field class CDATA "*"> 
<!ATTLIST field name CDATA "*"> 
<!ATTLIST field type CDATA #IMPLlED> 

<!ELEMENT targetmethod (arguments?» 
<! ATTLIST targetmethod class CDATA "*"> 
<!ATTLIST targetmethod name CDATA "*"> 

<!ELEMENT metaparameter CDATA "*"> 
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within the binding specification file. Each binding specification includes meta parameters 

that are passed to the metaobject when a meta-level interception takes place. This allows 

easier reuse of metaobjects because a metaobject can implement several different strategies 

and the binding specification can encode which strategy is most appropriate for a particular 

program. For example, it may be necessary to distinguish between methods that update 

the state of an object from those that don't. A metaobject could be implemented that hard­

codes the names of the methods that update the state of an object. Reusing the metaobject 

requires updating its list of methods to include any new methods belonging to the classes 

implementing the program it is going to be reused with. In Kava, parameterisation al­

lows the list of methods to be encoded in a binding specification file that is written for the 

particular program the metaobject is being reused with. At runtime, the parameters are 

passed to the metaobject. This avoids the need to rewrite the metaobject. This notion of 

parameterisation is based upon CodA's [McAffer 1995] approach to parameterisation. 

3.1.6 Meta-Level Cooperation 

Implementing access control policies may require multiple metaobjects with each metaob­

ject addressing a different security concern. Although Kava only allows one metaohject 

to be explicitly bound to each object, Kava does not preclude composing metaohjects to­

gether at the meta level to cooperate in changing the behaviour of a base-level object. 

This is because the chain of responsibility pattern [Gamma et al. 1995] can be used to 

compose metaobjects together at the same meta level to create a complex meta architec­

ture (similar to the approach described in Mulet et al. [Mulet, Malenfant & Cointe 1995], 

or Olivia [Oliva & Buzato 1999]. Another approach uses reflection recursively to build 

a tower of metaobjects (the approach adopted by FRIENDS [Fabre et al. 1995, Fabre & 

Perennou 1996]). The advantage of using chaining is that each metaobject may introspect 

on the base-level object whereas with a metaobject tower, only the base metaobject may 

introspect on the base-level object. In addition, with chaining, the cost of interception and 

reification of method calls is only incurred once, because the metaobject classes involved in 

the tower do not need to have meta-level interceptions added. Perhaps the tower approach 

is appropriate only when moving to a higher level of abstraction such as in the ABCUR 
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[Briot et al. 1990] approach. 

3.1.7 A Misbehaved Applet 

This simple example demonstrates how Kava can be used in practice. The basic scenario 

is that a badly-designed or maliciously-designed applet may crash a host system by con­

suming all its resources by creating an unbounded number of top-level windows. In order 

to protect against this attack, the system should track the number of windows created and 

either block or throw an exception when a predetermined limit is exceeded. The class used 

to generate top-level windows is the Java library class Frame. 

Using Kava, a simple preventative approach is to implement a mechanism limiting the 

creation of new instances of Frame objects. This can be done by creating an implementation 

of a Metaobject that monitors creation of Frame objects. A simplified implementation of 

the metaobject is shown below: 

import kava. *; 

public class ResourceMonitor extends Metaobject 
{ 

public void beforeNewlnvocation (INewContext context) 

{ 
if (context. getTarget () instanceof Frame} 

incrementFrameUsage () ; 
if (exceededMaximumFrame () } 
{ 

throw new 
RuntimeException ("Too~many~frames~created~by~applet" ); 

Kava performs a static analysis of the applet as it is loaded and binds a Resource­

Manager metaobject to any object invoking a new operation and the metaobject method 

beforeNewlnvocation redefines how new instances are created. The process is as follows. 

First, it checks if the target of the invocation is an instance of a Frame class. If this i" 
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the case it cal1s a method incrementUsage that increments a global count of the number 

of instances of that class and its superclasses. To avoid a malicious program subcla~sing 

Frame to avoid being controlled, superclasses are counted as an instance of a subclass of 

a monitored class that might be created. Then it calls a method exceeded Maximum that 

checks if the maximum limit for the number of instances of any monitored class has been 

exceeded. If the limit has been exceeded, a runtime exception is thrown and the execution 

of the applet halts. 

The binding specification defining this binding is shown below: 

<binding> 
<class classname=" *" metaclass=" ResourceMonitor" > 

<new tar get c I ass = " * " / > 
</class> 

</binding> 

3.2 Kava Implementation 

This section provides an overview of the implementation of the Kava metaobject protocol. 

The main elements in the architecture are the application-level class loader used to inter­

cept class loading, the meta-configuration object that parses the binding specification and 

the transformer objects that insert meta-level interceptions according to declarations in the 

binding specification. The main steps are to add metaobject pointers to the base-level class, 

add MUs around blocks of byte codes such as methods and add meta-level interceptions 

around individual byte codes. Choosing where to add the MUs is driven by the binding 

specification. The program being brought under the control of the metaobject protocol 

must be analysed c1ass-by-c1ass and bytecode-by-bytecode to see if any of the declarations 

in the binding specification apply. If they do then the appropriate MU is added. 
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3.2.1 Overview 

Kava i written purely in Java and runs using an unmodified er ion of the Java De\ el p_ 

ment Kit
l 

and uses the BCEL (Byte code Engineeri ng Library) [Dahm 199 1 to reali 'e the 

binding between metaobjects and objects. 

The implementati on of Kava exploits thi . ability to intercept cia s load ing of applicati n 

classes by providing an 0pp0l1unity to instrument cia fi le. before pa ' ing the c l as~ file I 

the Java YM for instanti at ion. Kava wa the fir t implementati on of a meta bje t prol 

for Java that exploit thi s feature [Welch & Stroud 1998b, Welch & lroud 1999 J and 

builds upon existing work on addi ng new fun cti onali ty to ex i ting cia ' es [D 'lhm 199 . 

Keller & Holzle 1998, Czajkowski & von Eicken 1998]. 

1 loadClass() 

: kava ,URLClassloader 

1 transform() 

transform( ) transform() 

1 transform() 

: MelhodTransformer 

Figure 3.2: High-level object coll abo ration di agram how ing object and their inte rac ti o n ~ 

when a class is loaded into the Java YM . 

Figure 3.2 shows the col1 aborations between the main object making up Ka a that re­

ali se the binding. Kavakava i a replacement fo r the java SDK too l ( ee Li ting 3.5). 1L 

is responsible fo r load ing an application' s root clas and implementing the Ka a metaob­

ject protocol before invoking the mainO method of the cIa . CIa 'e are loaded u ' ing the 

'The mos t recent ver ion or JOK used is IA . but 111 0 t of the work de cribed in Lhi s th es i~ Web done u ~i ng 
JOK 1.2, 
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kava.URLClassloader class loader. Because the root class is loaded using the URLClass­

loader, subsequent application-level classes are also loaded using this class loader. 

Listing 3.5: Kavakava replacement for Java. 
public class Kavakava { 

public static void main (String args []) throws Exception 
II parse arguments 

URLClassLoader loader = 
new kava. runtime. URLClassLoader ( ... ) ; 

Class c = loader.loadClass(args[O]); 

II construct arguments 

II construct parameters so and look up the main method 
Class [] parameters = new Class [] { arguments. getClass ()}; 
Method method = c. getMethod ( "main" , parameters); 
try { 

method.invoke(null, new Object[] arguments }); 
catch (1llegalAccessException e) 
System. err. p r in tin (e) ; 
catch (I nvocationTargetException e) 
System. err. println (e); 

At runtime, the binding between metaobjects and objects is represented by a meta­

configuration policy object. All meta-configuration policy objects are instances of classes 

that extend the BaseMetaConfiguration class. Each policy implementation can determine 

the bindings in different ways. For example, in Figure 3.2 the JDOMMetaConfigHandler 

object is an instance of a class that extends BaseMetaConfiguration and determines the 

metaobject and object bindings by parsing an XML binding specification resident on the 

local file system. As an alternative to loading the binding specification from the local file 

system, an implementation of BaseMetaConfiguration might fetch the binding specification 

from a remote server and verify it using a digital signature. The meta-configuration object 

determines how to modify the class by parsing the binding specification and will invoke 
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the AddMetaObject transformer to add the fields and methods necessary to bind an object 

to a metaobject. It then inserts hooks into method bodies (using MethodTransformer) and 

around individual instructions (using InstructionTransformer). These hooks switch control 

from the base level to the meta level (the associated metaobject) when the base-Ie\el ob­

jects carry out certain behaviours. Finally, after rewriting the class to include these traps, 

the class loader passes an internal representation of the class to the Java VM's byte code 

verifier. The significance of this is rewritten classes that must still honour rules such as type 

safety. 

3.2.2 Intercepting Class Loading 

Kava can intercept class loading because Java allows redefinition of class loading. Class 

loaders support dynamic loading of classes on the Java platform [Liang & Bracha 1998]. 

Classes are distributed as binary representations known as class files. Class files do not need 

to be real files. A class file may be stored in a database, memory or downloaded across a 

network. The Java VM uses class loaders to load class files and create class objects. Class 

loaders are ordinary objects that can be defined in Java code. Every class loader is an 

instance of the class Classloader. The Classloader class provides a loadClass(String name) 

method that loads a specified class into the Java VM. This involves reading the byte stream 

representing the compiled class and passing it to a Java native method (defineClass) that 

instantiates the class within the Java VM itself. 

A primordial class loader used to bootstrap class loading and load all Java core sy"­

tern libraries is implemented within the Java VM. The application-level class loaders are 

implemented by extending the Classloader class and overriding 10adClassO with an imple­

mentation specific method for loading classes. Should a class loader not be able to locate a 

named class, it delegates the class loading to its parent class loader. Application-level c1a~s 

loaders cannot override the loading of Java's system libraries because this would allow an 

attacker to substitute an untrustworthy class for a system class such as java.lang.Object or 

java.lang.String. 

Having to call loadClass explicitly to load classes would make programming difficult, 

so Java provides a way to implicitly invoke 10adClass upon an appropriate class loader. 
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For example, an application class referred to within a class loaded by an application-level 

class loader X will be implicitly loaded by X without requiring an explicit invocation of 

10adClass. 

Kava provides a class loader based upon the Java URLClassLoader class for loadino and 
~ 

rewriting application classes. This class overrides the default loadClass method and dele-

gates the loading of classes across the network or local filesystem to a ne\',' method called 

defineClass. The defineClass method is shown in Listing 3.6. The method has two param­

eters: the name of the class to define and an instance of a Resource as parameters. The 

Resource is a representation of the unloaded class that implements a method for fetching 

the bytes representing the class and a method for getting the security certificates associated 

with the class. This array of bytes is then converted into a JavaClass, which is a BCEL 

representation of an unloaded class that allows manipulation of the class structure. This is 

then passed to a Kava BaseMetaConfiguration class that performs the changes to the class 

necessary to implement the Kava metaobject protocol. The JavaClass returned from this 

method is then converted back to an array of bytes before finally being passed to the Java 

VM with a set of security certificates that are used to authenticate classes. 

3.2.3 Adding Meta-Level Interceptions 

The Kava metaobject protocol is implemented using the technique of byte code rewriting. 

Kava makes use of the Byte Code Engineering Library [Dahm 1998] toolkit to implement 

the standard transformations that add the hooks necessary to switch control from the base 

level to the meta level at runtime. The byte code rewriting toolkit deals with technical 

details such as maintaining relative addressing when new byte codes are inserted into a 

method, or determining the number of arguments a method supports before it has been 

instantiated as part of a class. An earlier version of Kava used the Java Instrumentation 

Object Environment (JOIE) [Cohen & Chase 1998] but this toolkit was discontinued and 

Kava was rewritten to use BCEL. The particular toolkit is unimportant as long as it allows 

instrumentation and deals with updating instructions that use relative addressing when new 

byte codes are introduced. An abstraction layer can be used to hide the dependency upon a 

particular toolkit so that it is easier to change toolkits if required to do so in the future. 
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Listing 3.6: Kava's class loader. 

1* 
* Defines a Class using the class bytes obtained from the specified 
* Resource. The resulting Class must be resolved before it can be 
* used. 
*1 
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private Class defineClass (String name, Resource res) throws IOException ( 

II package validation 

II Now read the class bytes and define the class 
byte [] b = res. getBytes () ; 
ByteArraylnputStream is = new ByteArraylnputStream (b); 

II create a class object 
JavaClass clazz = new ClassParser (is, name). parse (); 

II invoke Kava to rewrite the class to add binding 
JDOMMetaConfiguration. setMetaConfigFile (binding); 
BaseMetaConfiguration metaConfig = 

JDOMMetaConfiguration. getMetaConfiguration (); 
KavaClass kc = metaConfig. transform ( 

new KavaClass (new ClassGen (clazz ))); 
b = kc. getClassGen (). getJavaClass (). getBytes (); 

java.security.cert.Certificate[] certs = res.getCertificates(); 
CodeSource cs = new CodeSource ( uri, ce rts ); 
return defineClass (name, b, 0, b. length, cs); 
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Standard byte code rewritings are used to add hooks for individual methods and indi­

vidual byte code instructions. These hooks reify the context of a behaviour being trapped, 

invoke the metaobject associated with an object and reflect any changes to the context back 

to the base level. The metaobjects invoked are completely separate from the byte code 

hooks and are developed entirely in Java. This separation means that the runtime meta 

level can be adjusted dynamically at runtime although determining which behaviours are 

trapped is determined at loadtime. 

Kava only performs binary compatible byte code rewriting. This ensures that a rewrit­

ten class can still be linked against other classes that it references without requiring recom­

pilation or being rejected by the Java verifier. There are nine possible binary compatible 

changes [Arnold & Gosling 1998]. Kava will implement only two of these. namely: 

1. Re-implementing existing methods, constructors, and initializers by inserting MUs. 

2. Adding new fields, methods, or constructors to an existing class or interface to bind 

metaobjects to objects. 

Like compile-time reflection Kava reflects upon the structure of the code in order to 

implement reflection. However, Kava works at a level much closer to the Java machine 

than most compile-time approaches that deal with the higher-level language. Although this 

means it is impossible to extend the syntax of the higher-level language. it does mean that 

Kava can implement some kinds of reflection more easily than in a traditional compile-time 

MOP. For example, in the application of OpenC++ version 2 adding fault tolerance in the 

form of checkpointing CORBA applications [Killijian et al. 1998], data flow analysis is 

performed on the source code to determine when the state of the object is updated. With 

Kava no such analysis is necessary; all that is required is to intercept the update of state of 

an object by changing the behaviour of the update field operation in the Java runtime object 

model. When an update has been completed a "dirty" flag is set indicating that the current 

state should be checkpointed. 
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3.2.4 Realising MLls 

The following sections discuss the different types of transformation Ka\"a uses to realise 

MUs. 

Adding Metaobject Pointers 

The first transformation adds the metaobject pointers required for the metaobject bound 

to each object and the metaobject bound to the class. A static private field is added that 

points to an instance of a metaobject responsible for overriding class-based behaviour and 

a private field that points to a per-instance metaobject is added. In addition, the get$MetaO 

method that is used to support Kava's approach to integrating with the Java inheritance 

model is added. The role of this method is discussed in more detail in Section 3.2.9. 

Wrapping Blocks of Byte Code 

The second transformation makes use of the structure of a class file to identify blocks of 

byte code representing class methods, initialization methods, and finalization methods and 

then adds wrappers around them. This allows the method execution and exception raising 

to be intercepted and control handed to a meta layer. Method execution is simpler than 

exception raising to reify. Method execution requires only the insertion of hooks at the 

entry and exit points of a method whereas exception raising requires a try ... catch clause 

to be synthesised for the entire method. 

In order to safely insert new byte code instructions into a class, some difficult technical 

issues must be solved. For example, how to handle the effects of inserting instructions on 

branch instructions and on the exception table. Fortunately, the BeEL framework takes 

care of these low-level issues. 

Wrapping Individual Byte Codes 

The third transformation is applied to byte code instructions such as those dealing with 

invocation and access to state. Here fine-grained wrappers are applied around indi\'idual 

instructions. This allows the MU to intercept base-level behaviour when the class itself 

makes an invocation, accesses state or creates a new instance of a class. The ability to 
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use a byte code rewriting toolkit to insert code into method bodies makes these types of 

interceptions possible. Other Java MOPS, for example Reflective Java [Wu & Schwiderski 

1997] that rely upon proxying method bodies, could not provide control over operations 

such as field access or new invocations. 

3.2.5 Static Analysis 

As a class is loaded by Kava it is analysed to determine if a metaobject should be bound to 

its instances and whether any of its behaviours should be brought under the control of the 

metaobject by inserting MUs. The binding specification is used to determine the answer 

to these questions. Whether a binding should be established is determined by the top-level 

binding declaration and specifies, for a Java class or classes, which metaobject is bound to 

that class' instance. The binding specification also specifies which base-level behaviours 

should be brought under the control of the metaobject. Each class method and byte code is 

inspected to see if it implements any of the specified behaviours. For example. a PUTFIELD 

instruction's target class and field name is tested against a <putfield> declaration to check 

that it refers to the same class and field. 

Where a declaration uses a type to specify whether a behaviour should be brought 

under the control of meta level, for example the type of the class defining a field. the 

instanceof operator is used to determine if the target is the type itself or a subclass. Here, 

Kava is required to determine the inheritance relationship between classes before they are 

loaded into the Java VM to ensure that classes are instrumented before they are made 

immutable. The current version of Kava requires this information to be encoded in the 

binding specification but a better approach would be to use static analysis to determine the 

relationship between classes before loading (assuming that all classes are available or can 

be retrieved at runtime). This is discussed again in Section 3.2.9. 

Where a declaration uses a simple name, for example the name of a field, syntactic 

matching is used. Here, names may match, or if a wildcard has been used in the declaration, 

then any name may be deemed to match the declaration. 
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3.2.6 Instantiating Metaobjects 

Normally this is achieved by adding two fields: a static private field that points to an in­

stance of a metaobject that is responsible for overriding class-based behaviour, and a private 

field that points to a per-instance metaobject. In addition, an accessor method is added that 

uses a naming convention normally disallowed by the Java compiler. 

3.2.7 Reification 

The state of a base-level object is available to a metaobject via the standard Java features for 

introspection provided by the java.lang.reflect package. This is accessible to the metaobject 

because Kava is implemented in the Java language, making it a meta circular reflective lan­

guage [Cointe 1987] ensuring that all the features of the base-level language are available 

to the meta level. All that is required is access to a pointer to the base-level object and 

standard Java introspection can then be used to access the state of a base-level object or 

invoke its method. This is not passed with each MLI, however, instead the Kava metaob­

ject protocol provides methods for metaobjects to discover the identity of their base-level 

object. 

Beyond the state of the base-level object, there are five types of reified context associ­

ated with the switch to the meta level. The context is available to the metaobject at runtime 

and can be changed by the metaobject. On return to the base level, the changes to the 

context are reflected in changes to the base-level state. The types of context are: 

1. The Invoke context reifies the target object, the method name, arguments and return 

value associated with a method invocation. 

2. The Execute context reifies the method name, arguments and return value associated 

with a method execution. 

3. The PutField and GetField context reifies the field name and values associated with a 

field access. 

4. The Raise context reifies the exception being raised. 



CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 81 

5. The New context reifies the name of the target class and arguments associated with 

the creation of a new instance. 

There is only one implementation of Context. This results from an optimisation choice. 

At the start of each method, a new Context object is allocated. It is then reused for different 

types of MUs to avoid the cost of object initialization (an expensive operation that should 

be minimised[Roulo 1998]). There is a context object created for each method so that multi 

threading can be supported. An alternative (and possibly more efficient) way is to use the 

per-thread variables that are now available in Java. 

The metaobject protocol reifies each element of context as a java.lang.Object. The proh­

lem is that Java also supports primitive data types such as int, byte, etc. As these primitive 

types are not objects, extra work must be done to allow them to be reified as objects. In 

the initial prototypes, this was done by inserting byte code instructions that wrapped them 

using the Java wrapper classes such as Integer, Short etc. This adds considerable over­

head that is not justified if the meta-level program never uses the reified arguments. To 

reduce the overhead, these primitive types are reified using the ContextBuilder helper class. 

This allows them to be stored as primitive types that are not wrapped unless the meta-level 

programmer actually uses a Context object interface to access the argument. 

3.2.8 Static Members 

Java supports static members in addition to per-instance members. Therefore, to ensure 

least privilege and complete mediation, the implementation of Kava had to take account of 

static methods and fields. 

Since the context of behaviours involving static members is different from those involv­

ing instances, an approach is to provide a different metaobject protocol when dealing with 

static members. In addition, there is the question of whether a metaobject or a metaobject 

class with static methods should be bound to a class with static members. This also leads 

to a different metaobject protocol that has an interface made up of static methods. 

One of the aims of Kava is to provide a uniform metaobject protocol, and developing 

a separate metaobject protocol to deal with static members complicates this. Instead, the 

same metaobject protocol is used in all cases. This has the following impact upon the 
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design: 

v ... 
0_ 

• Some context types reify a target reference, static members d\! not ha\e taraeh "0 the eo 

convention adopted uses a default value of null where there i .... no target reference . 

• Each class (which is an object in Java) ha .... a metaobject bound to it in the same wa} 

that an instance of the class would have a metaobject bound to it. 8:- changing the 

implementation of the metaobject, the behaviour of the cla ........ e ..... static memhers can 

be changed. 

3.2.9 Implementing Complete Mediation 

The argument for Kava providing complete mediation is pre .... ented in the following .... ec­

tions. The argument is based upon the following assumptions: 

Trusted computing base The Java Runtime Em'ironment, the Kava implementation, the 

enforcement metaobjects, the binding specification and the Java acce ....... control poli­

cies are trusted. 

Ensuring Kava is always invoked Kava always has acces .... to cla ........ e .... heing loaded in the 

Java YM so it can add MUs as required. 

Enforcement mechanism is protected Attackers cannot tamper with \ILb or metaoh­

jects. 

Inheritance is accounted for by Kava Attacker .... cannot confuse Kava· .... static analy-.i-. by 

subc1assing protected objects. 

Each of these assumptions is justified in the following: section ..... 

Trusted Computing Base 

Kava assumes that the Java Runtime Environment (\\hich includes the Java .... ystem cla .... "e". 

the Java YM and Ja\Cl byte code verifier), the Kma implementation itself. the metaobject" 

encapsulating the permission checks, the binding specifications, and the Ja\'a acee"" control 

policy files, can only be correct. 



CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 83 

The current implementation protects metaobjects against tampering by using a com­

bination of permissions and code-signing techniques. All metaobjects are packaged into 

JAR files that are signed by the security developer using his or her private key, which is 

associated with a X.509 certificate. The certificate must be distributed via a trusted chan­

nel to the destination system. The metaobject class has a check in its class initializer that 

the current thread holds a KavaPermission permission named "initialiseMetaobjectClass". 

This requires the base-level program code and the metaobjects to have been granted this 

permission in the host's Java access control policy file. The entry in this file for the metaob­

jects should grant the "initialiseMetaobjectClass" permission on the basis of the identity of 

the signer of the JAR file they are contained within. If the JAR file has been corrupted, or 

if the metaobjects are actually provided by another provider then the permission will not 

hold. The permission is checked when the metaobject class is loaded and initialised. 

The Java Runtime Environment, the Kava implementation, the binding specifications 

and Java access control policy files are assumed to be protected using operating-system 

level protection such as ACLs on files. This at least matches the current situation with the 

Java security architecture and future work might consider using cryptographic signatures 

to protect the Kava implementation and the binding specifications. 

Ensuring Kava is Always Invoked 

Kava needs control of class loading in order to rewrite classes at loadtime. However, if a 

class loader is loaded at runtime it may be possible to use it to bypass Kava's class loader. 

Fortunately it is possible to use Kava's metaobject protocol in order to avoid this problem. 

The general idea is to use a metaobject to intercept the act of class definition and ensure 

that Kava is invoked before class definition takes place. This raises two issues: dealing 

with application-level class loaders, and Java system library class loaders. 

The first type is an application-level class loader. All application class loaders must 

call the native method defineClass and pass it a byte code array that represents the class to 

be instantiated within the Java VM. A special metaobject that is bound to the invocation 

of this method by any class loader can be used to prevent the bypassing of the Kava class 

loader. This metaobject simply applies Kava to the byte code and returns the transformed 

byte code to the base level where the class loader passes it to the Java VM for instantiation. 
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This means that any application-level class loader can be transformed into a class loader 

that brings classes under the control of Kava. 

The second type is a system class loader such as an URLClassloader. Since Kava cannot 

rewrite system classes, this would seem to be a problem. However, a metaobject can be 

bound to any invocation of a method on a system class loader. This can redirect such 

method calls to a Kava version of the system class loader that actually does the job of 

fetching the bytes and instantiating them as a class. When the malicious program calls 

getClass, the method is not invoked on the system class loader but is dispatched by the 

metaobject to a Kava version of getClassO that ensures the correct rewritings are applied. 

Another benefit of using Kava recursively to bring all class loading under its control 

is that this prevents malicious use of a byte code rewriting tool to remove Kava's hooks. 

As Kava intercepts all calls to defineClass, it will always be the last tool to add byte code 

before the class is instantiated. This means that even if another byte code rewriting tool 

inserts its own byte code, these cannot have any effect on the hooks that Kava inserts. Note 

that (as guaranteed by the Java platform) we assume that there is no way at runtime to inject 

byte code into a loaded class. 

An unresolved issue are native methods. Java permits native code to be invoked directly 

by classes and this code bypasses all Java security controls. Currently, Kava does not 

provide any control over these although a metaobject approach might be used to detect the 

use of native methods and halt execution if these are used. 

Protecting the Enforcement Mechanism 

As highlighted by Erlingsson and Schneider [Erlingsson & Schneider 2000, Ulfar Erlings­

son & Schneider 2000] in their work on in-lined reference monitors, complete mediation 

requires protection of the integrity of the mechanism enforcing the policy. In the context of 

metaobjects and metaobject protocols, this means that the integrity of binding between the 

metaobject and base-level object must be protected, and pointers to the metaobject bound 

to a base-level object must be unavailable to base-level objects to prevent subversion of 

the enforcement mechanism. Otherwise a program might remove the bindings at runtime, 

and either branch past the meta-level interceptions implementing the bindings, or tamper 
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with the metaobject by invoking its methods or replacing it with a null metaobject. En­

suring non-bypassability, but not preventing an enforcement metaobject to be switched for 

a metaobject that always grants access, means that access control policy enforcement will 

not take place. 

Erlingsson and Schneider protect the integrity of their enforcement mechanism in two 

ways [Erlingsson & Schneider 2000, Vlfar Erlingsson & Schneider 2000]. First. they use 

a base-level language that prevents code from being treated as data and enforces an en­

capsulation boundary preventing arbitrary branching. Preventing code from being treated 

as data ensures that the program containing the in-lined reference monitor cannot remove 

the enforcement code at runtime by dynamically rewriting parts of the program. Prevent­

ing arbitrary branching ensures that the program cannot simply branch around enforcement 

code. Second, access to the enforcement mechanism is prevented by choosing names and 

types for interception code that are invisible to the base-level code. This can be achieved 

by choosing names that either are not in the base-level program's namespace and/or using 

names that are illegal in source code but legal in object code. 

Kava applies these techniques to the implementation of meta-level interceptions (MUs). 

MUs are in-lined into the target class, these must be non-bypassable and the base-level ap­

plication must not be able to tamper with the metaobject invoked by the MUs. First, Java 

was chosen as the base-level language because it offers several low-level security guaran­

tees such as lack of pointer arithmetic and type safety [Yellin 1996]. The lack of pointer 

arithmetic prevents code being accessed as data, and type-safety prevents arbitrary jumps 

to instructions. Furthermore, because MUs are inserted after compilation and cannot be 

removed at runtime, any attempts to write programs branching within a method in order to 

avoid MUs implementing either invoke or field behaviours, will be defeated because Kava 

will locate all the places MUs need to be inserted and adjust branches so that they branch 

to the MUs before the target instruction. Second, base-level access to the metaobject is 

prevented through namespace control. When the base-level program is written, the field 

names for the metaobject pointers are not in the program's namespace. This means that 

no compiler can compile code that tries to use these names as they are not defined yet. In 

addition, the field names contain the $ character and this character is not allowed to be used 
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in Java source code (although it is valid at the byte code level). However. Java doe~ pro­

vide the ability to introspect upon classes. This makes it possible to access a field \\ ithout 

requiring the field's name, for example the list of fields associated with an instance can be 

obtained as an array of fields and code can iterate through the array looking for one of type 

IMetaObject. Therefore we assume that the use of java.lang.reflect package must be pre­

vented or controlled to avoid introspection being used to dynamically access fields. Either 

the Java security architecture can be used to turn off access to metaobject fields, or Kava 

can itself be used to prevent requests for access to these fields by binding a metaobject to 

classes making use of classes from the java.lang.reflect package. 

Dealing with Inheritance 

When implementing Kava, the design required consideration of how Kava's binding model 

would interact with Java's inheritance model. First, it was decided that Kava must ensure 

that metaobject bindings are inherited from parent classes because choosing not to make 

bindings inheritable provides a way for an attacker to bypass an enforcement metaobject 

by simply subclassing the protected class. This implementation must take account of Java's 

method of implementing inherited behaviour. Second, a conflict might occur between in­

herited and explicit bindings. 

Implementing Inheritance of Bindings One approach to implementing inheritance of 

bindings is to override every inherited method in the subclass by a stub method that simply 

invokes the superclass's method. MUs are then added to the proxy methods. This will not 

work where the superclass has defined a method as final because the Java verifier rejects 

attempts to override a final method. This could be addressed by changing the superclass' 

methods to be non-final though this might introduce a security vulnerability. 

Kava uses an alternative approach derived from the work on using byte code rewriting 

to enforce access control policies by in-lining enforcement code [Pandey & Hashii 1999]. 

The basic idea is to edit each method of the superclass and insert MUs as specified for 

the subclass. This addresses problem one and two described above. For example, if the 

execute behaviour of all methods of the subclass are being brought under the control of a 

metaobject then the superclass R would appear as in Listing 3.7. 
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Listing 3.7: Superclass containing MU for method execution. 
class R { 

private myMeta$Object = new MetaObject (" meta1 " ); 
final public void f () { 

get$Meta (). beforeExecuteMethod ( ... ); 
<code for f> 

private get$Meta () 
return myMeta$Object; 

Listing 3.8 shows how a class, class RC in this case, subclasses then overrides the 

get$MetaO method to return the appropriate metaobject. 

Listing 3.8: Subclass defining its own MetaObject to use for method executions. 

class RC extends R { 
private myMeta$Object = new MetaObject ( "meta2" ); 
private get$Meta () { 

return myMeta$Object; 

This means invoking to on an instance RC will result in methods implemented by RC 

and R invoking the MetaObject instance "meta2". On the other hand invoking to on an 

instance of R will result in the MetaObject instance "metal" being invoked instead. This 

is because Java method resolution always chooses the most specific method definition to 

use [Gosling, Joy & Steele 1996]. 

Inserting MUs into superclasses because instances of subclasses are bound to metaob­

jects is problematic if the superclass is loaded before the subclass. After it has been loaded, 

Kava cannot modify its implementation. Therefore, during the program analysis stage 

Kava must identify all subclass/superclass relationships before loading any classes. This 

can be done through static analysis, for example the BCEL toolkitlong-term allows classes 

to be introspected upon before loading them and the BCEL Repository class allows sub­

class relationships to be examined and analysed without loading a class into the Ja\a V~1. 
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This is quite expensive depending upon the length of inheritance relationships. The current 

version of Kava simplifies this task by placing the burden upon the meta-level program­

mer who must specify the relationships between classes in the binding specification. Static 

analysis is a better long-term solution because the meta-level programmer may not be able 

to anticipate what classes will be loaded by Kava. This is particularly true of mobile code 

or other code where a detailed specification of the application is not available. This use of 

static analysis should be the focus of future work. 

Dealing with Conflict The second problem of possible conflicts between explicit bind­

ings and inherited bindings needs to be considered in the context of the different possible 

combinations of bindings and inheritance relationships. The relevant combinations of bind­

ings are: (1) the superclass R has a binding but the subclass RC does not. (2) the supercJass 

R does not have a binding but the subclass RC does. (3) both Rand RC have bindings. 

Another issue to consider is whether Kava should allow bindings on the basis of objects 

implementing interfaces given that Java permits an object to implement multiple interfaces. 

This can be resolved by treating it as another form of case three. 

Each case is considered below: 

Case one The metaobject bound to RC is used when methods defined only in RC are in­

voked upon either instances of the subclass or superclass. In the second case, the 

metaobject bound to R is used when methods defined either in R or RC are invoked 

upon instances of the subclass R. Attempts to invoke methods defined in RC upon 

instances of RC will fail because there is no metaobject bound to RC. This can be 

corrected by either checking if the metaobject pointer is null before attempting to in­

voke a method or associating a metaobject with RC instances that does nothing when 

invoked. Kava currently does the latter although further investigation will determine 

whether the former is more efficient. In both cases there is an overhead because 

reification is done even though it may not be needed. 

Case two In this case there is no conflict. The subclass retains it binding and the superclass 

is not affected. 
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Case three In this case a conflict may occur. According the scheme dt?scribed so far. 

this would result in the subclass's binding overriding the superclass\ binding. Thi" 

may result in a metaclass incompatibility problem because an inherited method 

may rely upon being able to invoke the metaobject bound to instances of its defining 

class rather than the metaobject bound to instances of the subclass [Graube 1989. 

Forman, Danforth & Madduri 1994, Forman & Danforth 1999]. Note that the basc­

level programmer is unaware of the meta level but the meta-level programmer may 

have intended to modify the behaviour of the superclass methods in a way that is not 

implemented by the subclass' metaobject. For example, the subclass might bind to a 

less restrictive metaobject thereby creating a security hole. 

We could address these conflicts by applying multiple inheritance rules. as described by 

Forman and Danforth [Forman et al. 1994, Forman & Danforth 1999], to the metaobjects 

and synthesise a new metaobject or simply invoke each metaobject in tum. However. we 

have to question whether this automatic composition of metaobjects is always appropriate 

and ask "What if the behaviours of the metaobjects are incompatible'?" The current version 

of Kava resolves these questions by refusing to load a class if a possible conflict is detected 

and leaves it to the meta-level programmer to manually resolve the metacla"s incompatibil­

ity. Note that null metaobjects are assumed not to conflict with any other metaobject. An 

improved approach might be to allow multiple inheritance and generate warnings on the 

assumption that in most cases multiple inheritance will not cause a problem. 

3.2.10 Performance 

The focus of this thesis is upon improved software engineering rather than performance 

requirements. However, some measures of the overheads introduced by using Kava were 

obtained. The performance of the execution speed of an application where enforcement 

code is in-lined manually and where the enforcement code is implemented by a metaob­

ject bound to application objects using Kava was measured. Where enforcement code used 

multiple parameters to determine if access was allowed or denied, the metaobject imple­

mentation was on average 156% slower than in-lined code (341 ms compared to 133ms). 

Where enforcement code made the decision using a single parameter, the metaobject wa" 
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on average 7% slower than in-lined code (403ms compared to 377ms). 

Differences in performance are related to the cost of the indirection introduced by the 

MU and the cost of reifying context. In both cases the cost of indirection should be iden­

tical because the same code is in-lined. Therefore, the governing factor in this simple 

analysis was the cost of reification and reflection. The first fragment of enforcement code 

required reification and reflection of a String object and the second required reification of 

multiple primitive objects requiring expensive wrapping and unwrapping. 

Initial performance results indicated the impact that reification and reflection has upon 

Kava's performance. Any unnecessary reification and reflection should be avoided. These 

findings have led to changes to Kava. Kava now allows hints to be passed via the binding 

specification that can be used to determine if reification or reflection is required. Many per­

mission checks need neither and removing unnecessary code would improve performance. 

As discussed in Section 7.3, future work must include a comprehensive performance 

analysis to help identify areas for improvements to performance. It should be possihle 

to reduce the costs of this approach through the application of techniques such as partial 

evaluation[Masuhara, Matsuoka, Asai & Yonezawa 1995] or lazy creationlreification of 

metaobjects [Maes 1987] as has been done with other reflective languages. 

3.2.11 Example: Redefining Field Access 

The following example provides a flavour of how Kava uses MUs to bring object be­

haviours under the control of a meta level. In the following example, the Put Field behaviour 

is brought under control of the meta level and to avoid requiring the reader to parse the byte 

code, this is presented using the Java language. 

Consider the field access shown below2
: 

myGreeting = II Kia~ora~te~ao" ; 

After Kava is used to bind a metaobject to the class containing the field access. the field 

access is rewritten at byte code level as shown in Listing 3.9. 

In Listing 3.9 the act of updating a field is reified and handled at the meta Je\eJ. which 

requires two MUs, one before and one after the actual field access. Code is added directly 

2"Kia ora te ao" can be loosely translated as "Hello World". 
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Listing 3.9: A rewritten field access. 

my$Context. clear (); 

ContextBuilder. pushValue (my$Context, "Kia~oro~te~ao"); 

ContextBuilder. pushTarget (my$Context, th is); 
ContextBuilder. pushTarget (my$Context , • meta-parameter" ); 
th is. get$meta () . before P ut Fie Id (my$Context); 
if (my$Context. getContinue () { 

} 

myGreeting = (String) my$Context. getValue (); 
t his. get$m eta () . aft e r Put Fie I d ( my$Context ) ; 

91 

before and after the field assignment instruction (PUTFIELD in byte code). At runtime the 

following takes place: 

1 The current context object associated with the current invocation is cleared. This object 

is reused to avoid initialising a new object for each MLI. 

2 Prior to execution of the instruction, the stack has a reference to the object instance 

encapsulating the field and the value to be stored. The value to be stored is popped 

off the stack and stored in a context object making it available to the metaobject 

when the metaobject methods are invoked. Note that it is not stored directly. Rather 

a helper class (ContextBuilder) is used that simplifies the task of writing interceptions. 

The helper class is written using the Java language and then called by inserting the 

byte code instructions for invoking the necessary method. All helper class methods 

are static and should this should lead to the Java JlT in-lining them. 

3 The target is popped off the stack and stored in the context object. 

4 Meta parameters associated with the MLI are added to the context. This enables 

metaobject behaviour to be parameterised and specialised to a particular application. 

5 The beforePutFieldO metaobject method of the metaobject associated with the object is 

invoked causing a switch to the meta level. 

6 Because the meta level can override the base-level behaviour, this step determines if the 

base-level behaviour is allowed to take place. To override the base-Ie\el behaviour. 

6 
7 
8 
9 
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the meta-level programmer invokes my$Context.overrideBaseO before returning the 

base level. This will cause my$Context.getContinueO to return false thereby causing 

steps 7-8 to be skipped. 

7-8 These steps are executed only if the base-level behaviour has not been overridden. 

Step 7 both restores the stack and invokes the original base-level behaviour. Step 8 

invokes the afterPutFieldO metaobject method bound to the base-level behaviour. 

3.3 Evaluation against Goals 

This section reviews whether Kava meets the goals defined in Section 2.7. 

3.3.1 Enforcement upon Compiled Code 

Kava exploits Java's loading and dynamic linking architecture to allow interception of class 

loading. A byte code rewriting toolkit is used to insert MUs into classes before linking. The 

MUs redirect control at runtime to metaobjects associated with objects through a binding 

specification. The binding specification is specified in a separate file because lack of source 

code and a desire for a clean separation mean code annotation cannot be used. This allows 

Kava to be used with compiled code which is discussed in Section 3.2.). 

3.3.2 Control Access to Application, Library and Operating System 

Resources 

Application and library code both reside in user-level space and are loaded using Java's 

class loader. However, Java prevents direct modification of its core classes preventing 

metaobjects from being bound to objects implementing library services. Therefore Kava 

not only intercepts invocation of application methods at the callee-side but also intercept.... 

invocations made by applications. This allows metaobjects to perform access checking 

before a library is invoked. This is discussed in Section 3.1.2. 

All operating system resources are invoked via a Java library. This means that the 

controls applied to invocation of Java libraries are able to control access to operating s) stem 
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resources. 

3.3.3 Clean Separation of Concerns 

In addition to the separation of concerns provided by a MOP, Kava promotes reusability 

of metaobjects by allowing their parameterisation at the time they are bound to ba .. e-Ievel 

objects. This allows specialisation beyond what is provided by inheritance. An aspect of 

the clean separation of concerns is how easily a set of metaobjects can be reused with a 

new application. Traditionally, reuse of metaobjects is achieved through specialisation by 

inheritance. Kava also allows specialisation through parameterisation. Meta parameters 

can be associated with MUs via the binding specification. This allows generic metaobjects 

to be developed that are tailored to a particular application object by declaring meta param­

eters to be passed to the metaobject when a MU is activated at runtime. This is discussed 

in Section 3.1.5. 

3.3.4 Least Privilege 

Kava provides least privilege because each object can be bound to a metaobject and the 

metaobject can redefine the semantics of all operations listed as part of the object's inter­

face. Therefore all possible operations that may be executed by any code can be brought 

under the control of the meta level. However, Java allows declaration of static methods 

that are part of classes rather than objects and therefore these need to be controlled as well 

as ordinary methods. Kava handles static methods (and fields) by binding metaobjects to 

instances of class objects as well as objects, this is discussed in Section 3.2.8. Also, not all 

possible operations are declared as part of an object's interface. For example, field access 

does not need to be via a method belonging to the encapsulating object. Therefore the Kava 

metaobject protocol provides metaobject methods allowing these operations to be reified 

and handled at the meta level. This is discussed in Section 3.1.2. 
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3.3.5 Complete Mediation 

This section discusses how the principle of complete mediation is prmided by Kava. The 

principle of complete mediation means that access to every object must be checked for 

authority. This requires that the enforcement mechanism's integrity is not compromised. 

In the context of Kava this means ensuring that the infrastructure, meta-level interceptions 

and metaobjects are not compromised either at or during runtime. 

The argument for Kava providing complete mediation is presented Section 3.2.9. The 

argument can be summarised as follows: 

• It is assumed that the Java Runtime Environment, the Kava implementation, the en­

forcement metaobjects, the binding specification and the Java access control policies 

are trusted. 

• It is assumed that Kava always has access to classes being loaded in the Java YM so 

it can add MUs as required. 

• Once MUs have been added to a class, it is assumed that the MUs or the metaobjects 

cannot be tampered with. This is achieved by applying the techniques described in 

Section 2.5.1. 

• Attackers cannot confuse Kava's static analysis by subclassing protected objects. 

This requires Kava's design to take account of how Java implements inheritance. 

3.3.6 Economy of Mechanism 

The Kava metaobject protocol provides improved economy of mechanism compared 

to either source code or runtime MOPs. Source code MOPs require re-implementation 

of the compiler to allow source code to be pre-processed and bindings added. This is a 

more complex task than rewriting byte code because byte code has a more constrained 

semantics than source code. Runtime MOPs require changes to the Java YM. Again, thi" 

is a more complex task than rewriting byte code and requires revalidation of the entire 

runtime environment. 



CHAPTER 3. DESIGN AND IMPLEMENTATION OF KAVA 

3.4 Summary 

This chapter provided an overview of the design and implementation of Kava before eval­

uating Kava against the goals from the previous chapter. The next three chapters motivate 

the use of Kava and address the goal of evaluating the use of a loadtime metaobject protocol 

for security engineering. 



Chapter 4 

Case Study One: Standalone Application 

This chapter demonstrates that using a loadtime metaohject protocol to enforce Java "L'­

curity policies provides a better separation of concerns than using conventional ohjcL't­

oriented techniques. 

Section 4.1 introduces the application that is the subject of the case study and the "L'L'­

nario for its use. Section ~.2 descrihe a conventional ohject-oriented approach to enforce­

ment and Section 4.3 descrihes using Kava, a loadtime metaobject approach. Section -l.-l 

identifies qualitative improvement-. to the separation of concerns gained h) u"ing Kava. 

4.1 Overview 

The case study uses a third-party Java standalone application de\ eloped hy Ja"on von 

Nieda, called Lirc [von Nieda 2001]. Lirc is an IRC (Internet Relay Chat) client. The 

experiments were peIi'ormed with \ersion 1.0 of Lirc, which i" licen"ed under the (j,\[' 

General Public Licence agreement. A benefit of this licensing arrangement i" the "ource 

code is available. 

The scenario is an organisation that provides support for one of it" products wanh to 

permit their technical staff to pro\ide support to customers via an IRe channel. For thi" 

purpose the staff are given permission to run Lirc on their own work "tations. Ho\\ ever, the 

nrganisation must impose upon staff the foIlowing local acces .... control polic): 

I. Users ofLirc should only be allowed to join specificall) named channels, for examplc 
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"#help", 

2. Users of Lirc should have resource limits placed on their network usage. 

The organisation's security officer wishes to use the Java security architecture to enforce 

these policies upon users of Lirc. There are two types of resources subject to the access 

control policy: application resources and system resources. Resources of the first type 

are implemented by the application itself. Resources of the second type are implemented 

by Java system libraries. For the purposes of this case study, the access control policy is 

assumed to be specified using a standard Java policy file. 

4.2 Conventional Object-oriented Security 

This section describes the conventional object-oriented approach to enforcing access con­

trol policies upon application and system resources using the Java security architecture. 

Access to both types of resource is controlled by manually placing enforcement code within 

the Lirc application. 

4.2.1 Application Resources 

In this section the conventional approach to using the Java security architecture to control 

access to named IRe channels by manually placing enforcement code within the appli­

cation is described. Unlike system resources provided by Java core libraries there are no 

standard Java permissions for use in granting rights to access IRe channels. Therefore the 

following steps for customising the Java security architecture in order to support such a 

policy [Gong 1999] must be followed: 

I. Define a permission class. 

2. Grant permissions. 

3. Place permission checks within the code implementing the resource. 

The rest of this section explains each of these steps in tum. 
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Define a Channel Permission 

First, a permission class representing the right to access a permission must be defined. 

Generally, a new permission class should subclass either the java.security.Permission class 

or the java.security.BasicPermission class. Subclassing from Permission allows permis­

sions that have names and actions to be defined. For example, java.net.SocketPermission 

extends java.security.Permission with a constructor that requires a host specification (host­

name or IP address and a port range) and a set of "actions" specifying ways to connect 

to the host. To control what rights that an application has over an IRC channel. a class 

example.lirc.ChanneIPermission is defined that subclasses java.security.Permission and has 

a constructor that requires the name of an IRC channel and a set of actions specifying what 

rights a user has over that channel. 

Listing 4.1: Defining a channel permission by declaring a new class 

package example. Ii r c ; 
public final class ChannelPermission extends 

java. secu rity. Permission { 
public ChannelPermission (String channel, 
String actions) { 

super(channel); 
this. actions=actions; 

public boolean equals (Object obj) { ... } 
public int hashCode () { ... } 
public String getActions () {return actions;} 
public boolean implies (Permission permission) { ... } 

The implementation of the new permission is shown in Listing 4.1. For reasons of 

space, only the constructor and not the other methods, such as equals or implies that must 

also be implemented are shown. The implies method is used to capture the notion that the 

granting of one permission implies the granting of another permission. 
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Grant Access to a Channel 

Once the permission class has been implemented, then the permission must be granted 

by creating a Java security policy file on the host where the application will be used. An 

example policy file granting the Lirc application right of access to the "#help" IRC channel 

is shown in Listing 4.2. The application is code-signed by an internal developer to ensure 

that only that application is granted this right. For the purposes of this case study, the 

internal developer is identified by the name "Bob". There should be an X.509 certificate 

in the local keystore (in this case, "teststore") that associates "Bob" with a public key that 

can be used to check the application's signature. The policy file must be protected against 

tampering by users so operating system rights must be used to make it immutable by users. 

In a Unix environment this can be achieved by the system administrator making the file 

read-only. 

Listing 4.2: Granting access to join a specific channel 

keystore "teststore"; 
grant signedBy "Bob" { 

} ; 

permission example. lire. Channel Permission 
"#help". "join"; 

Place Permission Checks in the Application 

Finally, the enforcement code shown in Listing 4.3 must be added into the application 

just before a channel "join" action. By inspection of the source code we determined that 

the channel "join" action for the application resource "IRC Channel" is implemented in 

the method ereateChannelO of the class Lire. If no source code is available then either 

a debugger could be used to determine what methods are executed when a user joins a 

channel or the byte code could have been inspected. 

The enforcement code consists of a calling the SecurityManager method checkPermis­

sionO to check if Lire has been granted permission to "join" the IRC channel represented 

by the argument channel. The method returns silently if access is granted, otherwbe an 

AeeessControlExeeption exception is raised. Because this is a runtime exception, it doe ... 
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not need to be declared in the method signature and so the exception is propagated up­

wards through the call stack until either a handler is found or the thread terminates \\ ith an 

uncaught exception. 

Listing 4.3: Explicit check for permission to create a channel. 

public void createChannel (String channel) { 
SecurityManager sm = 
System. getSecurityManager (); 

if (sm != nUll) { 

sm. checkPermission (new example. Ii rc . ChannelPermission (channel, 
" j 0 in" ) ) ; 

4.2.2 System Resources 

Placing resource limits on network usage is an example of a dynamic access control policy 

for ensuring availability [Millen 1992]. Availability is guaranteed by limiting the total 

number of bytes an application may transmit across the network. Java represents access to 

the network as an OutputStream object created by opening a network socket. 

The conventional object-oriented technique for enforcing access control upon system 

resources is to place enforcement code within the libraries implementing the resource. As 

discussed in Section 2.4.1, Java applies this technique to control access to system resources. 

Unfortunately, Java provides neither permissions nor enforcement code within its system 

libraries that allows a dynamic access control policy to be expressed and enforced. 

The problem here is that the enforcement for access of system resources is not fine­

grained enough for this application-specific policy. Instead the security enforcement tech­

nique described in Section 4.2.1 must also be applied to controlling Lirc's access to the 

network. The rest of this section describes how this is achieved. 
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Define a Write Permission 

The right to write a certain number of bytes using a resource is represented by the permis­

sion class WritePermission. This is similar to the permission defined to control access to an 

IRe channel. However, unlike Channel Permission, access is not a binary decision. What is 

required is a mechanism that allows the AccessControlier to determine whether holding a 

permission to write x bytes implies that a request to write x or fewer bytes is allowed. Note 

that the permission to write x bytes is immutable and granted in the Java policy file. 

The java.security.Permission class provides an abstract impliesO method for comparing 

granted permissions with requests for permissions that can be overridden by any subclass 

that needs to define itself in relationship to other permissions. For example, holding one 

type of permission might imply a set of other permissions. In this case it is used to define 

a relationship between granting the right to write a certain quota of bytes with a request to 

check if the current number of bytes has been exceeded or not. 

Listing 4.4, shows the implementation of impliesO for WritePermission. The permission 

being checked at runtime is only implied as being held if it is a Write Permission granting 

access to the network and the quota of bytes written so far has not been exceeded. When 

determining if the permission being checked is a WritePermission, the name is taken into 

account. This is to allow the Write Permission to be used to control access to streams other 

than just the network. This provides some future compatibility, because the same permis­

sion could be used to impose quotas on access to files as well as networks in the future. 

Grant a Write Limit 

The next step is to define a Java policy file as shown in Listing 4.5. This policy file grants 

the application Lirc the right to write a maximum of 1.000.000 bytes to the network is 

shown below. Again, we assume the application developer is "Bob" and the system admin­

istrator should make the policy file write protected to prevent users increasing their own 

quotas. 
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Listing 4.4: Check for implication of permissions in class WritePermission. 

public fi n a I class Write Permission extends java. secu rity . Permission 

{ 
II check if permission is implied 
public boolean implies (Permission p) { 

if (! (p instanceof Write Permission )) 
return false; 

Write Permission wp = (Write Permission) p; 
if (! getName () . eq uals (wp. getName () )) { 

return false; 
else if (getNumBytes() < (wp.getNumBytes()) 

return false; 

return true; 

II convert the string representation of number of bytes to long 

private long getNumBytes () { 

Listing 4.5: Java policy limiting Lirc's access to the network. 

keystore "teststore"; 
grant signedBy "Bob" { 

permission example. general. WritePermission "network", n 1000000·; 

} ; 
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Place Permission Checks in the Application 

The final step is to identify where the application invokes the system resource and insert 

enforcement code. Writing to a socket is achieved by invoking one of two write methods 

on an output stream associated with a socket. Again by inspecting the source code. the 

places where the application writes bytes to a socket connection are located and permission 

checks added as shown in Listing 4.6. 

Listing 4.6: Check for permission to write to the network. 

SeeurityManager sm = System. getSeeurityManager (); 
if (sm != nUll) { 

Li re . eurrBytes += requestedBytes; 
sm. eheekPerm ission (new Write Perm i ssion ( " network" . Li re . eu rrBytes ) ) : 

} 
return true; 

Here, the number of bytes to be written must be added to a running total of bytes written 

by the application as a whole. Therefore a static field belonging to the application (the Lire 

class), eurrBytes, is used. This is updated by the number of bytes to be written. This 

running total is used to create an instance of a WritePermission representing a request to 

continue writing to the network. The impliesO method will return silently if the quota ha!'. 

not been exceeded, otherwise a runtime exception will be raised and the application will 

halt. 

The use of a static field to maintain the total bytes written to the network would al­

Iowa user to defeat security enforcement by simply restarting the application afresh when 

the user's quota is reached. A better solution would be a centralised quota manager on 

initialisation and update it as the application executes. This would prevent this loophole 

being used and also allow a quota to be imposed over all instances of Lire used within the 

organisation. 
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4.3 Loadtime MOP 

The conventional approaches discussed above suffer from an intertwining of application 

and enforcement code. Changing one requires changing the other. for example should a 

new version of Lirc be released then the enforcement code would have to be added aoain 
t:' 

manually. Also, the process is laborious and error-prone. It relies upon manual inspection 

of application code and it would be quite easy to miss out a necessary piece of enforcement 

code. Overall the conventional approach leads to increased development time. decreased 

system flexibility and comprehensibility. 

An alternative security engineering technique is to use a loadtime MOP. in particular 

Kava because it meets the other criteria for least privilege. complete mediation and econ­

omy of mechanism. The aim is to reuse the permissions. enforcement code and policies 

instead of replacing them. 

This section shows how Kava can be used to achieve this by implementing the same 

policies described above using the Java security architecture but instead of checks being 

manually added they are implemented by metaobjects. The binding configuration fik spec­

ifies where the access control checks should be enforced in the application and the security 

policies are specified using a Java security policy file. Section -+.3.1 describes how this can 

be applied to an application resource while Section 4.3.2 describes how this can be applied 

to a system resource. 

4.3.1 Application Resources 

To control who can join an IRC channel when using the Lirc application, Kava must be used 

to ensure that possession of ChannelPermission is checked before the base-le\eJ application 

attempts to access an IRC channel. This requires that the meta-level programmer must 

implement a metaobject to encapsulate this enforcement code and bind it to the right base­

level object. Additionally, the Java policy file must be modified to take into account the use 

of Kava and the metaobjects. Each of these steps is detailed below. 
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Define a Metaobject 

The ChannelEnforeementMetaobjeet class redefines beforeExecuteMethod provided by the 

standard Kava metaobject class, thus ensuring that the check is performed before the method 

is executed. The code for the actual security check is similar to the code shown in List­

ing 4.3. However, the enforcement code shown earlier refers to the variable representing 

the channel name whereas this code takes the first argument from the execution context and 

uses it to construct the permission. 

Listing 4.7: ChannelEnforeementMetaObjeet controlling access to IRe channels. 

package example. Ii r c ; 
public class ChannelEnforcementMetaObject 

extends kava. metaobjects . MetaObject { 

public void 
beforeExecuteMethod (IExecuteContext context) { 

String joinChannel 
= (String) context. getArgs () [0]; 

SecurityManager sm = 
System. getSecurityManager (); 

if (sm != nUll) { 
sm. checkPerm ission ( new Channel Permission (joinChannel , 
II j 0 i nil) ) ; 

Specify a Binding 

The meta-level programmer must define a binding specification that ensures the Channe­

IEnforeementMetaObjeet is bound correctly at loadtime. Instead of providing the XML 

version of the binding specification, an English version is shown for readability below. 

"Bind the metaobject class ChannelEnforeementMetaObjeet to the base-level 

class Lire and intercept calls to the method ereateChannel." 
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Modify the Policy File 

Finally, the meta-level programmer must write a new policy file. The polic) file must grant 

access to all the code involved in the permission checking at runtime because Java requires 

that the permissions checked at the meta level must be granted to every protection domain 

that is on the call stack when the check is performed. The policy file must therefore grant 

appropriate permissions to the application itself plus the metaobject and Kava implemen­

tation. 

The new policy file is shown in Listing 4.8. Note the inclusion of principals representing 

the application developer (named "Bob"), the meta-level programmer (named "Alice") and 

the developer of Kava itself (named "Kava"). The policy file is structured in three parts: 

(1) "Bob" is granted the same rights as before; (2) "AI ice" is granted the same rights as 

"Bob" as well as the right to allow any metaobjects signed by "Alice" to be initialised 

("initialiseMetaobjectClass"); (3) "Kava" is granted the same rights as "Alice" plus any 

rights it needs such as the right to install an application-level class loader. 

4.3.2 System Resources 

To control resource usage by the Lirc application using Kava, the same steps as taken in 

Section 4.3.1 must be applied. However, unlike the previous section this requires the usc 

of a metaobject that redefines two base-level behaviours: method invocation and method 

execution. The metaobject is then bound to the application classes that create and write to 

network sockets. 

Define a Metaobject 

Writing to a socket is achieved by invoking one of the write methods on an OutputStream 

associated with a socket and Kava ensures that a permission check is made before any of 

these methods are invoked. The simplest approach would be to redefine the execution of the 

write methods. However, Kava cannot do this because the OutputStream is implemented as 

a system class and cannot be rewritten. However, this problem can be overcome by inter­

cepting invocations of the write methods made by Lirc. Unlike the application-specific IRe 
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Listing 4.8: Policy file for enforcing channel access control using Kava. 

keystore "teststore"; 
grant signedBy "Bob" { 

} ; 

permission example. Ii rc . ChannelPermission 
"#help", "join"; 

grant signedBy "Alice" 

} ; 

permission example. Ii rc . ChannelPermission 
"#help", "join"; 

permission kava. runtime. KavaPermission 
"initialiseMetaobjectClass" ; 

grant signedBy "Kava" { 

} ; 

perm ission example. Ii r c . Channel Permission 
"#help" , "join"; 

permission kava. runtime. KavaPermission 
"initialiseMetaobjectClass" ; 

permissions required only by Kava 
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channel access policy, intercepting calls to standard system classes does not require knowl­

edge of the semantics of the application that is being constrained because any application 

that attempts to communicate over a socket must use these standard methods. 

Unfortunately, redefining all invocations of OutputStream write methods will not onl~ 

affect writing to sockets but also writing to files and memory as well because these also 

create OutputStream instances for writing and reading bytes. Therefore, when determining 

whether to check permission to write a number of bytes the parent of the OutputStream 

must be taken into account to distinguish those used to access sockets from other types. 

Unfortunately, this is not a straightforward task because an ObjectStream method or field 

that provides a reference to its parent does not exist. The solution is to implement extra 

meta-level code using a table to track the creation of OutputStream instances by sockets. 

When an invocation of an OutputStream write method takes place the object identity of the 

target object can be checked against the table of known socket-created output streams. The 

code implementing this is shown in Listing 4.9. The metaobject method afterlnvokeMethod 

watches for invocations of getOutputStream on a socket. The returned value is stored in a 

hashtable along with a reference to the socket that created it. This allows LIS to watch for 

the creation of output streams and determine the socket that created it. 

Listing 4.9: Meta-level enforcement code tracking the creation of OutputStream instances 
by sockets. 

public class WriteEnforcementMetaObject extends 
kava. metaobjects . MetaObject { 
II keep track of the output streams created by the socket 
private static Hashtable ostreams = new Hashtable (); 
II keep track of the current number of bytes private 

static long currBytes = 0; 

public void afterlnvokeMethod (IInvokeContext context) { 
if (context. getMetaParam (). equals ("open~output~stream ")) { 

WriteEnforcementMetaObject. ostreams. 
put (context. getReturnValue (), context. getTarget ()); 
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A check of the security policy is perfonned before any write method belonging to an 

OutputStream object is invoked. As described earlier, this only takes place if the Output­

Stream was created by a socket. Listing 4.10 shows the enforcement code encapsulated 

within the metaobject. The details of the enforcement is identical to Listing 4.6 except that 

the number of bytes to be written is extracted from the reified context. 

Listing 4.10: Meta-level enforcement code checking whether Lirc has exceeded its network 
quota. 

public class WriteEnforcementMetaObject extends 
kava. metaobjects . MetaObject { 

public boolean beforelnvokeMethod (IinvokeContext context) { 
Object target = context. getTarget (); 
if (isSocketOStream(target)) { 

Object [] args = context. getArgs (); 
if (context. getMetaParam () . equals ( "write ~bytes" )) 

currBytes += ((byte[])args[O]).length; 
else if (context. getMetaParam (). equals (" write~byte")) 

currBytes += 1; 

SecurityManager sm = System. getSecurityManager (); 

if (sm != nUll) { 
sm. checkPermission ( 

new WritePermission (" network" , Long. to String (currBytes))); 

return true; 

II is the output stream in the table? 
protected stati c boolean 
isSocketOStream (Object ostream) { 

return ostreams. containsKey (ostream ); 
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Specify a Binding 

Again, the meta-level programmer must define a binding specification that ensures the 

WriteEnforcementMetaObject is bound to the correct base-level objects at loadtime. In this 

case, the binding is to objects creating sockets and to objects invoking the write metlwds 

of the ObjectStream objects. Unlike a manual approach this can be done automatically 

because Kava can statically analyse the application code. A high-level view of the hinding 

specification is shown below: 

"Bind the metaobject class WriteEnforcementMetaObject to any application 

base-level class, where either: 

1. the method getOutputStreamO is invoked on a class Socket (associate this 

with the meta parameter "open output stream"); 

2. the method write(byte[] ... ) is invoked on a class OutputStream (associate 

this with the meta parameter "write bytes"); 

3. the method write(byte ... ) is invoked on a class OutputStream (associate 

this with the meta parameter "write byte")." 

Modify the Policy File 

Finally, the Java security policy must be specified. As before the policy file must allocate 

the appropriate rights to "Bob", "Alice" and "Kava". The policy file is shown in List-

ing 4.11. 

4.4 Improvements to the Separation of Concerns 

The conventional security engineering technique of placing enforcement code within the 

application manually led to an intertwining of enforcement and application code. This case 

study showed, for two different types of resources and access control policies, that the 

enforcement code could be modularised and implemented as metaobjects. This leads to the 

following benefits: 

• No access to application source code is required. 
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Listing 4.11: Policy file for enforcing network quota using Kava. 

keystore "teststore"; 
grant signedBy "Bob" { 

} ; 

permission example. general. WritePermission 
"network", "1000000"; 

grant signedBy "Alice" { 

} ; 

permission kava. runtime. KavaPermission 
"initialiseMetaobjectClass" ; 

permission example. general. WritePermission 
"network", "1000000"; 

grant signedBy "Kava" { 

} ; 

permission kava. runtime. KavaPermission 
"initialiseMetaobjectClass" ; 

permission example. general. WritePermission 
"network" , "1000000"; 

permissions required by Kava 

III 
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• The application code can now be read and modified independently of the enforcement 

code. The enforcement code can also now be read and modified without requiring 

changes to the application code. 

• Should the application code change, there is no need to reapply enforcement code 

manually_ Kava will be able to insert the necessary MUs automatically. Automatic 

rather than manual changes reduce the chances of introducing errors into the imple­

mentation. 

• The metaobjects can be reused with a new application; all that is required is to mod­

ify the Java policy file and possibly the binding specification. Whether the binding 

specification changes depends upon the generality of the policy. The IRe channel 

policy is closely tied to the application and would require rereading the application 

specification and making appropriate changes. However, the network quota polic) is 

application-independent requiring no changes to the binding specification. 

4.5 Summary 

This chapter demonstrates that using a loadtime metaobject protocol provides a cleaner 

separation of concerns than manually placing enforcement code within applications. The 

next chapter demonstrates that using a loadtime metaobject protocol provides a cleaner 

separation of concerns than placing enforcement within libraries or proxies. 



Chapter 5 

Case Study Two: Distributed 

Application 

This chapter demonstrates that using a loadtime metaobject protocol to enforce acce ........ con-

trol policies upon a distributed application provide'. a better separation or concern .... than 

using conventional object-oriented techniques such as modifying librar) code, inheritdll\:e 

or proxies. 

Section 5.1 introduces the System K distributed application that i .... the subject ot the 

case study and the scenario for its use. Section 5.2 de'.cribes a conventional object-oriented 

approach to enforcement and Section 5.~ de .... cribes u .... ing Ka\ a, a loadtime metaobject ap­

proach. Section 5.4 identifies qualitatiye improvements to the .... eparation of concerns gained 

by using Kava. Finally, Section 5.5 summarises this chapter. 

5.1 Overview 

This section introduces the third-party application, referred to a-, 5) stem K I developed as 

a security demonstrator with the the objective of illustrating a security architecture using a 

distributed, heterogeneous, hypertext document serwr \\Titten in Ja\a. 

The functional part of System K is a Computer Aided Soft\\ are Engineering (C.\SE) 

I The full details of S) stem K are not a\ailahle hecause the ,) stem W<l' provided under a confidenlialil) 

agreement 
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tool implemented as a hypertext document server. Users manipulate CASE modeb repre­

sented as diagrams via viewers. A viewer allows a user to access a remote database and 

download a model for local editing. New elements and links to other models can be added 

or modified locally. Links may also be made to models that exist in other databases. When 

a user has finished editing the model object then it can be uploaded via the viewer to the 

database. 

System K requires a security architecture able to enforce access control policies upon 

client-server interactions (between Viewers and Databases) and weakly-mobile code (Mod­

els are downloaded to the same host as the viewer and edited locally). For the purposes of 

this case study, it is assumed that the local host is trusted so that security can be enforced 

locally and that the remote host is also trusted. However, the network is assumed to be 

untrusted. 

The functional part of System K comprises sixty-four Java classes, and approximately 

4,000 lines of code. At runtime, System K consists of multiple viewers interacting with 

multiple remote databases. 

The security architecture used by the demonstrator is based on work introduced by Bull 

and his colleagues [Bull, Gong & SoB ins 1992] and has the characteristic that each ob­

ject is responsible for its own security - hence the model is termed self-defence. Each 

object that provides access within the context of a security policy makes access control 

decisions on a per-request basis, and may delegate this decision to other objects such as 

authorisation servers. Additionally, each object may delegate authentication tasks to au­

thentication servers. This provides a global view, even though security decisions are made 

on a per-object basis. It also provides support for heterogeneous policies in the same system 

because each object may either use its own policy to make an access decision or delegate 

the decision to an appropriate authorisation server. 

Security for a distributed system relies upon authentication of communicating par­

ties whilst protecting the integrity and/or confidentiality of communications. Like Ker­

beros [Neuman & Ts'o 1994], System K provides a trusted third party to assist client'> 

in setting up a secure channel with servers. A trusted authentication server maintains an 

association between each principal's unique identifier and a unique symmetric key used 

for authentication and communication between the authentication server and the principal. 
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The symmetric key is established using a modified version of the Otway-Rees protocol lOt­

way & Rees 1987] and communications are encrypted using the IDEA algorithm [Schneier 

1995]. 

Again like Kerberos, System K allows delegation of authorisation decisions to trusted 

third-parties to allow for scalability and ease of administration. There are several authori­

sation servers, one for each policy type. This approach provides a global view for security 

and allows management of rights and clearances by security officers. 

Each secured object in System K may be subject to access control policies that attempt 

to ensure the integrity of objects and prevent undesirable information flow. Originator­

Control (ORCON) [McCollum, Messing & Notargiacomo 1990] access control policies are 

used to ensure that integrity is maintained, these are essentially variants on access control 

lists where the owner of an object can decide which principals may access the object. 

Undesirable information flow is implemented by an access control policy based upon the 

Bell-laPadula multilevel security policy [Bell & LaPadula 1976]. 

5.2 Conventional Object-oriented Security 

The following sections describe how the self-defence security architecture was imple­

mented in System K using standard object-oriented techniques such as modifying system 

libraries, using inheritance and the proxy design pattern [Gamma et al. 1995]. The design­

ers of System K chose these techniques because they offered a better separation of concerns 

than manually placing enforcement code within applications. 

5.2.1 Overview 

The following sections describe how secure RMI, association of security state with secure 

objects and authorisation have been implemented by placing enforcement code within li­

braries, within superclasses and within proxies. 
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5.2.2 Secure RMI 

System K places enforcement code within system libraries to implement authentication. 

integrity, confidentiality and initial authorisation checks for remote invocations and requires 

adherence to a programming convention that differs from the standard conventions when 

using Java RMI. 

A modified RMI protocol stack is created that mutually authenticates client" and "ener". 

generates session keys, manages the passing of security parameters with invocations and 

transparently encrypts and decrypts byte streams encoding remote invocations. Clas"es rep­

resenting remote invocations, remote references and the UnicastObject have been modified 

to include extra code and members to support secure RMI. 

The changes are almost transparent to the developer of a server because the modified 

protocol stack automatically encrypts and decrypts the remote method invocations with the 

current session key to provide authenticity, integrity and confidentiality. Also from the 

point-of-view of a client, the changes are transparent because the modified protocol stack 

automatically encrypts and decrypts the remote method invocations to provide authenticity. 

integrity and confidentiality. 

Had System K been developed with JDK 1.2 or greater, Secure RMI over SSL [Java 

Team 1996-1999] could have been used to provide authentication. integrity and confiden­

tiality although it would require some changes to the implementation of servers. 

5.2.3 Security State 

Each client and server in System K has security-related behaviour and state associated with 

it, namely a unique identifier, a secret key for each principal and active labels used to imple­

ment authorisation. This is achieved by requiring these classes to extend the SecureObject 

class as shown in Figure 5.1. 

Principal Identifier 

The principal identifier is a string that must be globally unique and persistent. The case 

study assumes that this can be achieved by issuing a smartcard with a global identifier. 

The identifier is read from a smartcard at the time of object creation and a'>sociate'> the 
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Figure 5.1: Class diagram for self-defence security architecture. Two classes under the 
control of the security architecture are shown: Viewer and Db. These extend Secure­
Object which maintains security-related meta data. Each SecureObject contains pointers 
to an information flow policy and an integrity policy. The abstract Policy class defines 
a check_access method that is implemented by each type of policy. The check_access 
method is invoked to determine whether a particular action is authorised. 

object with its creator. This provides each object such as a server or mobile objects with 

a principal identifier allowing authorisation servers to model access control policies based 

upon the identity of a principal. For example, all objects created by Alice may acces., all 

objects created by Bob. 

The principal identifier is passed with all remote method invocations sent by clients or 

servers acting as clients. It is not added to invocations by the RMI protocol stack. Instead 

a client-side proxy is used to add the principal identifier to invocations as discussed in 

Section 5.2.4. 

Secret Key 

A secret key associated with the user is read from the user's smartcard at the time of object 

creation. The secret key is a symmetric key shared with an authentication server that acts 

as a trusted third-party between the client and servers. The RMI protocol stack uses the key 

in a mutual authentication and key establishment protocol. 
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Active Labels 

Active labels are a concept particular to System K. They share features similar to systems 

such as those specified in the Orange book [US Department of Defense 1985]. where each 

object protected by the system reference monitor has a label. But unlike a traditional sys­

tem, where the interpretation of the labels is fixed within the infrastructure and are simply 

state, active labels encapsulate both state and logic for interpreting their meaning. This is 

achieved by requiring each label to inherit from a Policy class that defines a checkO method 

with a string argument representing the name of a principal. The check method determines 

whether the object with the particular label will allow access to a named principal. 

Self-defending objects encapsulate active labels and whenever an object's method is 

invoked it implements authorisation policies by calling the check methods of its active 

labels. Some security policies such as MLS require the labels associated with objects to 

change following a policy check, active labels implementing these types of policies require 

implementation of an addO method that allows a new label to be created by adding the 

current label to another label. 

System K has implemented two types of policies that may be used as active labels: Or­

ConPolicy and MLSPolicy representing Originator Control and Multilevel Security respec­

tively. Both policy classes delegate their decisions to remote servers - a Groupld server 

in the case of OrConPolicy and MLSServer in the case of MLSPolicy. Each server has a 

maintenance interface that allows a security officer to implement a particular organisa­

tion's security policy. Servers must be protected so that only authorised uscrs can change 

the current policy in effect, achieved by applying the self-defence architecture recursively. 

5.2.4 Authorisation 

System K uses proxies to implement the Caretaker pattern discussed in Section 2.4.1. For 

each server that has security policies enforced upon it there is a client-side and server-side 

proxy. The client-side proxy implements transmission via RMI of principal identity, and 

the server-side proxy acts as a PEP enforcing security policies on servers. The original 

implementation of System K required a proxy to be generated manually for each clas" that 

is the target of an authorisation check. The authors did suggest that a better approach would 
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be to generate the proxy automatically, so as to reduce the possibility of error when coding 

proxies, but this approach was never implemented. 

The normal flow of control for a secure policy-controlled invocation on a database 

server is shown in Figure 5.2. Note, it is assumed that a reference to the database's securit\ 

proxy has already been obtained by invoking the openO method of the database's manager 

object. The diagram also shows the proxies and skeleton classes automatically generated 

by the Java RMI compiler that provide distribution and implement authenticity, integrity 

and confidentiality. 

The Viewer object invokes a method on a remote Db object by invoking the method on a 

client-side security proxy (Db_CIiStub). This proxy adds the principal identifier to the invo­

cation and then invokes the method on the client-side RMI proxy (Db_SvrStub_Stub). The 

RMI stub marshals the method, the arguments and the principal's identity and encrypts it 

using a session key obtained during the initial interaction with the remote Java RMI skele­

ton for the server's security proxy (Db_SvrStub_Skel) before sending the encrypted method 

call. The RMI skeleton decrypts the byte stream and unmarshals the method, arguments 

and principal. After unmarshalling the RMI skeleton invokes the server's security proxy 

(Db_SvrStub) that enforces any security policies before passing the method call on to the 

Db server object. The steps involved in checking if access is allowed depend on the type,> 

of policies being enforced on the secured object by the proxies. 

In the case of an integrity security policy, Db_SvrStub invokes the check_access method 

of the policy object using the principal's identity. If access is denied, the policy object will 

raise an exception, otherwise it will return silently. On return, the appropriate method of 

the Db object is invoked. In the case of an information flow security policy, the steps are the 

same as for an integrity security policy, except that if access is allowed, the security state 

of the server may need to be updated. This decision is hard-coded into the Db_SvrStub. If 

an update is required because the execution of the method results in a change to the server 

state, a new information flow policy is generated by adding the existing policy to one that 

is created using the principal's identity. Integrity policies such as OrConPolicy require only 

that an access check is performed, whereas information-flow policies such as MLSPolicy 

require both an access check and update to the server's security state. 

The conventional implementation requires these checks and updates to be hard coded 
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Figure 5.2: Collaboration diagram showing steps involved in a viewer invoking a method 
of a remote database under the self-defence security architecture. Step I: Viewer object in­
vokes a Db object method. Step 2: A DbCIiStub proxy receives the invocation and adds the 
identity of the principal associated with the Viewer. The DbCliStub proxy i.., only respon­
sible for access control, not with enforcing confidentiality, it invokes the DbSvrStub_Stub 
proxy. Step 3: The DbSvrStub_Stub proxy encrypts the invocation and send.., it across the 
network. Step 4: The Db_SvrStub_Skel receives the encrypted invocation and decrypts 
it before invoking the Db_SvrStub. Step 5: The Db_SvrStub retrieves a reference to the 
Policy object associated with the Db object. Step 6: The check_access method of the 
Policy object is invoked to determine if the method may be invoked. Step 7: The Policy 
object delegates the access check to the appropriate AuthorisationServer object. Thi.., may 
actually be a stub used to contact a remote authorisation server. Step 8: Either the access i.., 
allowed or disallowed. Step 9: The Policy object returns the decision. Step 10: Assuming 
that access is granted, the Db_SvrStub invokes the appropriate method of the Db object. 
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into the security proxy such as Db_SvrStub. 

System K uses the same approach as used for protecting remote servers to protect Model 

objects that are downloaded for local editing. Although this allows the same infrastructure 

to be used for both local and distributed access control it leads to an overcomplicated im­

plementation because security proxies must be downloaded with the Model objects. This 

requires that when a request is made to download a Model from a database. a security pro,) 

is returned instead. The security proxy then downloads the real Model object and acts as 

a local proxy for it. Subsequently. when the Model object is to be uploaded. the security 

proxy ensures that the Model object is uploaded to the database and the proxy is garbage 

collected. 

5.3 Loadtime MOP 

This section describes how Kava can be used to implement access control policies with­

out modifying system libraries or using inheritance or proxies. Section 5.3.1 provides 

an overview of the Kava implementation of access control and the different metaobjects 

used. Section 5.3.2 describes how a metaobject can be used to ensure that secure RMI 

is implemented and Section 5.3.4 describes how authorisation is implemented through a 

combination of access checking and passing information about principals across "ecure 

RMI. 

5.3.1 Overview 

This section outlines how the Kava metaobjects co-operate together to implement the self­

defence security architecture. Figure 5.3 shows how the metaobjects co-operate to provide 

secure RMI between a Viewer object (the client) and a Db object (the server) under the con­

trol of access control policies. Two metaobjects cooperate in realising distributed acces" 

control: (I) The MetaAuthorisation metaobject bound to methods of classes that must be 

brought under the control of a security policy enforce security decisions: (2) The MetaAu­

thentication metaobject is bound to the marshalling and unmarshaling method" of the stubs 

and skeletons that implement RMI for server classes. A RMI method invocation goe, 
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Figure 5.3: Collaboration diagram showing the steps involved in invoking a method of a 
remote database under the control of Kava metaobjects. 

through the following steps: 

1. On the client side, the Viewer object invokes a method on the local stub (Db_Stub) 

that represents the remote Db object. Before the Db_Stub marshab the argument'>. 

control is switched to the MetaAuthentication metaobject, which marshals the princi­

pal's identity. Control is returned to the Db_Stub, which then sends the byte stream 

to the remote skeleton (Db_Skel) across an encrypted socket connection. Note that 

secure communications are established as a result of the MetaConfidentiality metaob­

ject's intervention during the startup of the remote Db object, and that the metaobject 

is not otherwise involved in the communication between the client and server objects. 

2. On the server side, the Db_Skel unmarshals the arguments and invokes the appro­

priate Db method. The MetaAuthentication metaobject takes control and unmarshals 

the principal's identity which it stores. Control is returned to the Db_Skel and the 

appropriate Db method is invoked using the unmarshaled arguments. 

3. If the method is specified as being under reflective control in the binding specifica­

tion, its execution is reified and handled at the meta !e\e) b) the MetaAuthorisation 
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metaobject. 

4. If the execution of the method has been specified in the binding specification as being 

under the control of an integrity or information flow policy, the MetaAuthorisation 

metaobject invokes the check_access method of the policy object. 

(a) In the case of an integrity policy, invoking check_access may cause the access 

decision to be delegated to a remote authorisation server. If access is denied. 

a runtime exception is raised, and this is converted to a RemoteException and 

propagated all the way back to the Viewer object. Otherwise, the check_access 

method silently returns. 

(b) In the case of an information-flow policy, the check_access method is invoked 

as described above. However, if the method returns silently (indicating access 

is allowed), the information-flow policy associated with the server is updated 

by invoking the policy object's add method. 

(c) In the case that both types of policy apply, then both of the steps described 

above apply. As long as an exception is not raised due to an access control 

check, control will return to the base level and the method is executed. 

Note that the diagram doesn't show the MetaConfidentiality metaobject that is bound to 

any class that registers a server object with the RMI registry. This metaobject ensures that 

a socket factory implementing SSLffLS is used for RMI. 

5.3.2 Secure RMI 

The MetaConfidentiality metaobject ensures confidential communications between clients 

and servers. It uses standard Secure RMI facilities provided by JDK 1.2 [Sun Microsystems 

2000] for securing communications and providing authentication rather than the infrastruc­

ture developed as part of System K. Using Secure RMI is a more portable solution making 

use of the Transport Level Security protocols [Dierks & Allen 1999] that have been widely 

tested. 
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The developers of System K did not use Secure RMI for two reasons. First, System K 

was developed using JDK 1.1 rather than the more recent development kits that can pro­

vide facilities for secure RMI. Second, developers wished to avoid US export restrictions 

upon the use of public key technology [Apache Week 1997] by using a key establishment 

protocol based upon oneway functions. These restrictions were lifted in September 1999. 

The standard approach for using secure RMI is to ensure that a secure sockets layer 

(SSL) factory is used by the RMI protocol stack instead of a standard socket factory. Un­

fortunately, this cannot be done by setting a Java property in the version of 1DK:! used for 

the case study and requires extra code to be added to any client that is going to communicate 

securely with a server. To avoid changes to the application source code, we encapsulate this 

code in a metaobject class and bind it to the RMI startup code for the remote object on the 

server, and intercepts the Naming.rebind method to ensure that a secure socket factory is 

registered for the remote object. This ensures that SSL sockets are used for both client and 

server-side connections. As a side effect of using SSL, clients and servers are authenticated 

before confidential communication takes place. Note that the role of the MetaConfiden­

tiality metaobject is simply to intervene in the initialisation of the RMI layer, and that the 

metaobject does not otherwise intercept method invocations between user-level objects. 

5.3.3 Security State 

Instead of placing enforcement code relating to security state in a superclass, the MetaAu­

thorisation metaobject controls access to server methods and applies the information and 

integrity security policies as appropriate. As methods differ as to which security po\icie<, 

are applied, the binding specification file parameterises the metaobject protocol and indi­

cates whether the method is under the control of an information-flow or integrity security 

policy. In addition, in the case of an information flow policy, it indicates whether the exe­

cution of the method results in a change to the security state of the server. This is necessary 

for security policies such as Bell-LaPadula, where the security state of the server must be 

updated to reflect interaction with a principal. 

2JDKl.2 was used. 
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5.3.4 Authorisation 

Using a metaobject to perform authorisation avoids problems associated with using a sep­

arate proxy class for this purpose. As there is no proxy and no reference to be leaked. it 

is possible to provide direct access to the protected server without the need for a securit~ 

manager object. Also, in the case of the Model class, there is the benefit that there is no 

need to add extra steps that maintain the presence of a proxy, even when the Model object 

is downloaded for local editing. This is because metaobjects are automatically downloaded 

with the base-level object because they are pointed to by the base-level object and defined 

to be serializable. 

The MetaAuthentication metaobject implements the passing of a principal's identity 

from the client to the server with a remote invocation. The metaobject is designed to be 

bound to the server's RMI stub and skeleton because being bound to these objects exposes 

interfaces for marshalling and unmarshaling arguments that are passed with RMI method 

invocation. At the client side, the MetaAuthentication metaobject adds the principal's iden­

tity to the byte stream, representing the marshalled arguments. before it is sent over the 

encrypted socket connection to the skeleton, and at the server side it removes the principal 

from the byte stream before unmarshaling the arguments from the decrypted byte stream. 

The current implementation must use JDK 1. I-compliant proxies because the metaob­

ject requires access to the byte stream representation of remote methods calls and JDK 1.2 

does not generate proxies at all. This makes this implementation technique dependent upon 

current features of Java. An improved approach is to use a generic interface that provides 

access to representations of remote-method invocations as byte streams. Even if this is not 

provided by Java, the metaobjects can be insulated from these dependencies by hiding the 

implementation details behind a fixed interface to the RMI protocol stack. In early versions 

this would be implemented as described here whilst later versions could take advantage of 

any opening up of the Java protocol stack. 
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5.4 Improvements to the Separation of Concerns 

This section discusses how using Kava provided a better separation of concerns than the 

conventional techniques used in this chapter. 

Before discussing the improvements on a case-by-case basis it is useful to reflect upon 

the reduction on code size gained by using Kava to secure System K rather than conven­

tional object-oriented techniques. The Kava version reduced the size of application classes 

by between approximately 15% and 45% through the removal of explicit access checks. 

proxies and removal of code to update meta data. 

The conventional and Kava versions of the System K code base were normalised to re­

duce the impact of programmer style. Normalising the code involved removing all whites­

pace and comments from the code. This allowed the size of the codebases to be compared 

without worrying about different programmer styles with respect to code formatting or 

commenting. Additionally, because the focus of the case study was to see if the engineer­

ing of application code was improved, only the size of application code used to invoke 

either secure RMI or authorisation was compared. The code implementing the secure RMI 

protocol stacks was excluded from the counts because this is assumed to be system-level 

code and the authorisation servers were excluded because they are common to both the 

conventional and Kava versions of System K. 

The rest of this section discusses the improvements gained by using Kava on a case-by­

case basis. 

5.4.1 Place Enforcement within Libraries 

In this case study the RMI protocol stack was changed to implement authenticity, integrity 

and confidentiality. Although providing a good separation of concerns from an application 

point-of-view because it requires no changes to applications, in the context of the case 

study there are three main drawbacks to this approach: 

• All servers must use the RMI protocol stack. This means that all server implemen­

tations, even those that do not require Secure RMI were forced to make use of it. It 

is true that this could have been avoided by adding options to standard RMI cla.,.,e" 
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that could control which protocol implementation was used but it does point out the 

difficulties in engineering a solution that will fit all possible applications. 

• Changing the RMI protocol stack was a non-portable solution requiring changes to 

the Java runtime environment. This may not be possible in all environments for good 

security reasons. 

• Inserting enforcement code into the protocol stack may overcomplicate its design 

and lead to problems when it changes at a later stage. 

Kava was used to address implementing Secure RMI by using standard facilities and 

invoking them by encapsulating the necessary code within a metaobject. 

This addresses the first problem because the metaobject did not have to be oound to 

all server objects. Some server objects could make use of it to implement Secure RMI 

but other objects did not have to make use of it. This is a benefit of the clean separation 

of concerns provided by a loadtime MOP. The second problem is addressed because Kava 

doesn't require modification of system libraries due to its ability to redefine invocations 

by inserting MUs into application code. The third problem is actually an indication that 

adding enforcement code leads to an intertwining of enforcement code and library code that 

makes maintainability difficult. Again, by modularising the changes to the RMI protocol 

stack within a metaobject protocol the separation of concerns is improved. 

5.4.2 Place Enforcement within Proxies 

As discussed in Section 5.2.4, System K makes use of the Caretaker pattern and implements 

it using proxies. Using proxies avoids changing the implementation of the proxied object. 

However, it does require writing additional classes and manually inserting code to update 

the active labels as required for the type of policy being implemented. The following 

describes how the problems described in Section 2.4.1 can be seen in this case study: 

Self problem. Self-invocations within System K are not intercepted by the security proxy. 

Should an implementation error permit a method that should be subject to an autho­

risation check to be invokable via an unprotected method then authorisation \\ould 

be bypassed. 
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Logical wrapping problem System K suffers from the logical wrapping problem because 

the architecture is complicated by the need to add extra code to support enforcement 

of access control on mobile objects as described in Section 5.2.-1.. 

Confinement problem. Should a direct reference to a Db or Model object escape then the 

security proxies protecting them might be bypassed. This only occurs with a Db 

object if it implements a remote interface because it is only invoked using RMI. On 

the other hand, Model objects are downloaded into the local NM so possessing an 

object reference allows its security proxy to be bypassed. 

Interface gap problem. System K suffers from the interface gap that exists because of 

the introduction of an extra proxy class. Whenever the interface of an object that is 

the subject of security proxy changes, the security proxy must also be modified so 

it reflects the changes to the secured object. This complicates maintenance because 

two classes must be updated and points to a poor separation of concerns. 

Essentially, using Kava avoids these problems because there is no longer any need to 

maintain a separate proxy. The role of proxy is played by a metaobject but this is not visible 

from the point of view of any client of the base-level object. The problems are addressed 

as follows: 

Self problem. Self-invocations within System K are always intercepted by the mctaobjcct. 

Therefore other methods that are not subject to an access control policy cannot be 

used to bypass protection. 

Logical wrapping problem Avoiding the use of a separate proxy removes the requirement 

to maintain extra code to support enforcement of access control. 

Confinement problem. Should a direct reference be made to a Db or Model object, the 

security of the system is not compromised. There simply is no protected direct refer­

ence to a base-level object that can escape. 

Interface gap problem. There is no need to change the interface to ensure that proxied 

versions of objects are returned because the metaobject is associated with the object 

itself and will always be invoked. 
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5.4.3 Place Enforcement within a Superclass 

In System K, inheritance is used to associate security state with objects. Developers of new 

classes that must be secured must subclass the SecureObject class. This should present 

no problems when implementing classes from scratch. However. if an existing class is to 

be re-engineered, the programmer requires access to the source code in order to make the 

target class subclass SecureObject. This means that classes supplied only as compiled code 

cannot be re-engineered to be secure using an approach based on inheritance. although one 

way to address this would be to use wrappers and delegation. 

The decision as to which policies to associate with an object are hardwired into the 

implementation of the SecureObject class. It would be more elegant if the detai Is of policies 

applying to an object were separated out into some form of configuration file. An example 

of this problem is shown in the difference between securing a Db and a Model. System K 

implements both integrity and information-flow security policies for Model objects. but 

only an integrity security policy for Db objects. However. both classes inherit both policie" 

as part of their meta data. If an external configuration file was used. it would be possible to 

specify different policies for each. These could be adjusted at loadtime without having to 

change any source code. 

The use of Kava avoids the requirements for inheritance because the binding between 

the metaobject class and base-level class is established at loadtime allowing even compiled 

classes to be brought under the control of the meta level. Additionally, different metaobject 

classes providing different security functionality can be bound to those program classes 

that require them rather than all classes. 

5.5 Summary 

This chapter contrasted conventional object-oriented techniques with use of Kava for en­

forcing access control policies upon distributed and mobile objects. It showed that Kava 

provided a better separation of concerns than conventional techniques and led to a number 

of improvements. 

The next chapter uses the experience of the two case studies to draw some general 
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observations about using loadtime metaobject protocols to enforce access control policies. 



Chapter 6 

Inferences from Case Studies 

This chapter makes some inferences from the specific case studies about the general LI\e of 

a loadtime MOP such as Kava for security engineering. 

6.1 MOPs Provide Better Separation of Concerns than Con­

ventional Object-Oriented Techniques 

Chapter 4 discusses the application of Kava to a standalone application and Chapter 5 

discllsses the application of Kava to an application compo"cd of distributed and mobile ob­

jects showed that it led to a cleaner separation of concerns. Furthermore it "howed concrete 

benefits in terms of simplification when compared with cOll\entional object-oriented tech­

niques. This supported the abstract reasoning in Chapter :2 that loadtime metaobject pro­

tocols would provide a better approach for security engineering than conventional object­

oriented techniques. Given that both case studies were real applications and used standard 

techniques for security it seems reasonable to argue that Ka\a could be u\cd with other 

applications with similar success. 

131 
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6.2 Constraints to Consider when Using MOPs for En­

forcement 

The following constraints must be considered when using MOPs to enforce access control 

policies upon compiled user-level code: (1) Detailed specification may be necessary: (2) 

Expressiveness of the binding specification influences success in enforcing an access con­

trol policy; (3) Granularity of interfaces also influences the success in enforcing an access 

control policy; (4) Security exceptions will break the transparency of the technique and 

increase the complexity of a solution; and (5) Applying a loadtime MOP such as Kava in 

the context of another language requires the presence of type safety, rewriting tools and an 

ability to intercept loading of classes. 

6.2.1 Detailed Specifications may be Necessary 

Experience with the case studies show that using Kava to enforce access controls upon 

either application resources or system resources requires identifying the appropriate base­

level operations to bring under the control of the meta level because these form the vocabu­

lary of the access control policy. Application-specific policies such as controlling access to 

application resources requires knowing the semantics and structure of an application. Other 

policies controlling access to system resources or operating system resources provided by 

library code requires knowing the semantics and structure of the library code. 

6.2.2 Expressiveness of Binding Influences Complexity of Use 

There is a trade-off between the expressive power of the binding specification and the com­

plexity of programming metaobjects. For example, implementation of the Lirc resource 

control example required extra code to identify socket streams created to access the net­

work from other streams. The binding specification language could be extended to allow 

extra context to be taken into account such as call graphs or aggregation relationships. This 

would relieve the programmer from having to write code to detect these relationships at 

runtime. However, it would increase the complexity of the enforcement mechanism mak­

ing verification of Kava's correctness more difficult. 
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Extending Kava's binding specification language would bring the power of the lan­

guage closer to AspectJ's notion of a pointcut [Kiczales, Hilsdale, Hugunin. Kersten. Palm 

& Griswold 2001]. AspectJ is an aspect oriented programming (AOP) language. Like 

MOPs, AOP allow a clean separation of concerns. The core idea is some concerns cro",,­

cut an application's functionality and that these concerns can be separated out to provide a 

better modularity than existing approaches [Kiczales. Irwin, Lamping. Loingtier & Lopez 

1997]. AspectJ allows the crosscutting concerns to be implemented by defining code ex­

cerpts called advice and using declarative descriptions. called joinpoint. that determine 

where the code excerpts should be woven into the final application. The joinpoints are 

similar to Kava's binding specification. However. MOPs differ in that they provide a more 

constrained way to modify the behaviour of an application because the protocol defines 

the range of possible changes that can be applied through modifications of the language 

semantics. 

6.2.3 Granularity of Interfaces Constrain Policies 

The case studies showed that the nature and abstraction level of security policies that can 

be enforced using a MOP is governed by the capabilities of the reflective language and 

the granularity of interfaces offered by the application and system classes. For example. 

Kava cannot make Java system classes reflective. although it can intercept calls to Java sys­

tem classes from application code. This has had an impact on the design. Ideally, secure 

RMI and authorisation would have been implemented by manipulating byte stream repre­

sentations of remote method invocations. For example. subject identifiers could have been 

directly inserted and removed, access checks could have been applied by inspecting the tar­

get, method name and parameters and byte streams representing individual remote method 

invocations could have been encrypted or decrypted. However, although metaobjects could 

be bound to the RMI stubs and skeletons, which allowed interception of marshalling and 

unmarshalling, access was not possible to the byte stream representations of the marshalled 

invocations (although the level of abstraction that was available allowed extra parameters to 

be inserted and removed from the remote messages). This prevented the implementation of 

my own encryption/decryption and authentication algorithms and led us to rely upon SSL 
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socket support that provides transport-level security but not middleware-Ie\ eI secLlrit\. If 

Kava was able to reflect upon system classes, metaobjects could be used to provide access 

to byte stream representations of RMI invocations. 

6.2.4 Security Exceptions Break Transparency 

Dealing with exceptions correctly is another source of complexity. When exceptions are 

raised at the server side they are unchecked exceptions. These are converted into Remote­

Exceptions at the meta level and returned to the client. The client then raises them locally 

as unchecked exceptions. This could lead to a halt of the program rather than a simple "ac­

cess denied" exception. To avoid this problem, it is necessary to intercept raised exceptions 

at the client side and include application specific exception handling at the meta level. This 

can be quite complex as a whole new error semantics was added. 

One area that is worth considering for future work is how to handle exceptions. In this 

implementation, a runtime exception is raised when a security policy is violated. Existing 

exception handlers catch the exception and print a stack trace on the console. What if 

a handler did not exist that handled runtime exceptions in a sensible way? Of course, 

what is sensible is to a degree application sensitive. In some cases the virtual machine 

should be halted. In others a message should be displayed and normal execution continued. 

This is a complex issue that we have considered in another paper where we explore some 

extensions to Kava that would support better interactions between behavioural reflection 

and exceptions [Welch et al. 2001]. 

6.2.5 Constraints upon Applying Kava to other Languages 

Could Kava be used to enforce access control policies upon compiled code other than Java 

VM byte code? Although Kava itself could not be, the general approach to dc"igning 

a MOP suitable for using for security enforcement could be applied to other languages. 

The main requirements are type safety, rewriting tools for compiled code and the ability to 

intercept class loading. A possible target language might be C# because it is object-oriented 

and uses a high-level compiled format for its classes. 



IJIP' .. 

CHAPTER 6. INFERENCES FROM CASE STUDIES 135 

6.3 Summary 

This chapter attempted to stand back from the individual case studies and make some in­

ferences about using a loadtime MOP such as Kava to enforce access control policies ap­

plications. 



Chapter 7 

Conclusions and Future Work 

This chapter provides a summary of the thesis, the contrihutions it mah.e". di"cu""es the 

overall contributions of the the"is. provide an mervic\\ of po""ihle future wllrk and make." 

some concluding remarks. 

7.1 Summary of Thesis 

Chapter 1 argued that enforcing security policies upon compiled code that mah.e" usc of ap­

plication and system resources requires more than operating ") "tern-level enlllicelllent. To 

enforce access control upon both system resources and upon application re"ources rcquire" 

application-level enforcement. Conventional object-oriented techniquc,> can he used to im­

plement existing security architectures but provide neither a clear separation of concern'> 

nor can they be used with compiled code. In-lined reference Illonitor" are he u"ed with 

compiled code but are unable to make use of existing security architectures or (currently) 

implement distributed access control policies. An approach that provide,> a clean "eparation 

of concerns invohes the use of metaobject protocols. E,i'>ting loadtime metaohject proto­

cols that can work with compiled code are able to provide sufficient lea"t privilege but do 

not explicitly address complete mediation and economy of mechani"m. Additionall) the) 

have not been used to implement distributed acce"" control. Thi" the"i" describe" an imple­

mentation of a loadtime metaobject protocol that addresse,> these problems and ime"tigates 

whether a clean separation of concerns is achievable b) carr) ing out two ca"e '>LUdie'> \\ ith 
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third-party applications. 

Chapter 2 introduces a set of criteria for an ideal security engineering technique for 

enforcing access controls upon compiled user-level code, that is both library or applica­

tion code. The criteria are systematically applied to four candidate ~ecurity engineering 

techniques: operating system enforcement, conventional object-oriented engineering, in­

lined reference monitors and metaobject protocols. Table 7.1 reproduce~ the summary of 

results. Only loadtime metaobject protocols and in-lined reference monitors meet most of 

the criteria. In particular in-lined reference monitors have well-developed arguments for 

their satisfaction of complete mediation and economy of mechanism. However, loadtime 

metaobject protocols have the advantage, with respect to the aims of this thesis. of allow­

ing existing security architectures to be used instead of replacing them. Existing loadtime 

metaobject protocols do not meet all the criteria and this is used to develop a set of goals 

for the thesis. The goals are: 

1. Implement a MOP that enforces access control policies upon compiled code. 

2. Implement a MOP that controls access to both application, library and operating 

system resources. 

3. Implement a MOP that satisfies the requirements for: 

• Least privilege 

• Complete mediation 

• Economy of mechanism 

• Clean separation of concerns 

4. Demonstrate a clean separation of concerns compared with conventional software 

engineering techniques that still allows reuse of existing security architectures. 

Chapter 3 provides an overview of Kava, which is an implementation of the metaobjcct 

protocol for Java designed to meet the first three goals. The first goal is satisfied because 

Kava's exploitation of byte code rewriting to insert meta-level interceptions at loadtime al­

lows Kava to be used with compiled code. The second goal is satisfied because Ka\ a Java'" 
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, . 
Technique Description Separation Least Complete Econom~' I 

Table 7.1: Summary of evaluation of security engineering techniques 

of Privilege Mediation of 
Concerns Mechanism 

Operating Fixed placement of Good Coarse Limited control Complex 
systems enforcement code over user-level 

within kernel. code 
Libraries Fixed placement of Good Coarse Limited Language 

enforcement code dependent 
within kernel. 

Manual Place enforcement Poor Fine Complete Language 
insertion as required within dependent 

application. 

Capabilities Treat object Moderate Fine Limited Language 
references as dependent 
capabilities. 

Proxies Place enforcement Moderate Fine Limited Language 
code within dependent 
proxies. 

Inheritance Place enforcement Moderate Fine Complete Language 

within superclass. dependent 

IRMs Policy determines Good Fine Control over Good 

in-lining of local objects 

enforcement. code but not 
within compiled distributed 

code. Replaces 
existing security 
architecture. 

Compile-time Metaobjects enforce Good Fine Examples of Includes 

MOPs policy at runtime control over compiler 

and bind to base distributed and MOP 

level at compile objects but impl. 

time. not local inTCB 

Loadtime Metaobjects enforce Good Fine Examples of Only includes 

MOPs policy at runtime control over MOP 

and bind to base local objects impl. 

but not inTCB I 
level at load i 

time. distributed I J 
Runtime Metaobjects enforce Good Fine Examples of Includes ! 

control over 
i runtime MOPs policy at runtime I 
! , 

local objects and \IOP I 

and bind to base 
level at runtime but imp\. III TCB 

time. not distributed 
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facility intercept the loading of application classes and Ka\a allows access to other t) pes of 

classes to be controlled by intercepting application invocations of classes implementing li­

brary and operating system resources. The third goal is satisfied because of the fine-gmined 

control provided by a MOP, the reuse of arguments for complete mediation and economy 

of mechanism developed for in-lined reference monitors and Kava's ability to modularisl? 

enforcement code within reusable metaobjects. 

Demonstration of the last goal required two case studies to be carried out and these 

are described in Chapter 4 and Chapter 5. The purpose of the case studies was to contrast 

conventional object-oriented security engineering with a loadtime metaobject protocol ap­

proach. Each chapter describes both approaches and evaluates whether the benefits of a 

good separation of concerns was used by using a loadtime metaobject protocol as opposed 

to conventional techniques. The first case study application is a third-party standalone IRe 

client. It allows comparison of approaches to enforcing access control policies control­

ling an application's access to application and system resources. The second case study 

is a third-party distributed CASE tool that also uses weakly-mobile objects. This allows 

comparison of approaches to implementing secure remote method invocations and autho­

risation. In both case studies, Kava was found to provide a better separation of concerns 

than conventional techniques. 

Finally, Chapter 6 makes some inferences from the specific case studies about the gen­

eral use of a loadtime MOP such as Kava for security engineering. First. it argues that 

the case studies showed both an improved separation of concerns was provided by using 

a loadtime MOP and these improvements would also apply if a loadtime MOP was used 

with another application. Second, it discusses a set of constraints to consider when using a 

loadtime MOP such as Kava with other applications. There are five constraints to consider: 

(1) Detailed specification may be necessary; (2) Expressiveness of the binding specification 

influences success in enforcing an access control policy; (3) Granularity of interfaces also 

influences the success in enforcing an access control policy: and (4) Security exceptions 

will break the transparency of the technique and increase the complexity of a solution: and 

(5) Applying a loadtime MOP such as Kava in the context of another language require ... the 

presence of type safety, rewriting tools and an ability to intercept loading of classes. 
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7.2 Overall Contributions 

The overall contributions of thesis go beyond exploring the issues in implementing a load­

time metaobject protocol for Java and applying it to two case studies. These contributions 

are: (1) The lessons from the case studies allow us to show that the securit~ challenges from 

Chapter 1 are met for each problem domain described there: (2) The loadtime metaobject 

protocol approach can be used to implement other non-functional concerns besides -.ecu­

rity; and (3) The loadtime metaobject approach is applicable to languages other than Java. 

----- - - - - - - - - - - - - - - -, 

New Code Existing Code 

',- --------l----------: 

Services and Libraries 

Application 

Figure 7.1: A model of applications that may have security policies enforced upon them by 
Kava. New code mayor may not be untrusted. It may interact with existing trusted code in 
the form of system libraries and services. The interactions that may need to be controlled 
by a security metaobject are shown as double-headed arrows. 

First, we argue that the experiences with the case studies are generalisable to the secu­

rity challenges presented by new problem domains, as identified in Chapter I. The metaob­

ject protocol approach allows all accesses to both user-level and kernel-level resources by 

user-level code to be mediated by metaobjects that enforce security policies. This can be 

seen as enforcing a security policy upon an application composed of trusted and untrusted 

compiled code components that make use of local libraries and services. Such an applica­

tion is shown in Figure 7.1. We assume that trusted code or libraries honour their interfaces 

and their semantics are well specified. These specifications may be supplied with code 

or derived using reverse engineering or visualisation. Security policies are enforced hy 

controlling invocation of the trusted code's methods. New code components that may he 
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untrusted are not assumed to be we]] specified, security policies are enforced 0) controlling 

their access to trusted code. 

Table 7.2 revisits each of the problem domains described in Chapter I and specifies 

which code components are required to be we]] specified in order to allow a loadtime 

metaobject protocol to enforce security policies. In all the cases there is new code that is be­

ing introduced into an environment that contains other user-level code executino within the e 

same address space. In each problem domain knowledge differs about the specification of 

the different code components. For example, untrusted mobile code can be prevented from 

misusing the resources available in its new environment because Kava can prevent mali­

cious invocations of known methods whereas third-party code where there is a specification 

of its own methods allows us to enforce security policies particular to the functionality of 

the third-party code. Both these points are illustrated in the two case studies. 

Second, we argue that the experiences of this thesis are applicable to non-functional 

requirements other than security. Security is a notoriously difficult [Saltzer & Schroeder 

1975] non-functional concern to implement successfully and therefore has provided a good 

target for exploring the capabilities and limitations of a loadtime metaobject protocol. Fur­

ther contributions of this thesis concern how the constraints identified in Chapter 6 ap­

ply more widely. These inferences restricted themselves to the use of a loadtime MOP 

such as Kava for security engineering. In fact, Kava could be used to implement other 

non-functional concerns. For example, fault tolerance, real time constraints and dynamic 

adaptation. 

The basic requirements of least privilege, complete mediation and economy of mech­

anism also apply to the successful implementation of these other non-functional concern". 

For example, consider checkpointing. Least privilege translates to a requirement to only 

enforce checkpointing where required in the target application as otherwise unnecessary 

saving of state will lead to reduced performance. Complete mediation translate" to a re­

quirement to intercept every possible state update. Economy of mechanism is still required 

because trust in the implementation of checkpointing requires validation of the implemen­

tation and this is made easier if the implementation is small. 

The argument about the need for specification and its relationship to trust also apply 

to other non-functional concerns. Again, checkpointing requires some specification of the 
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Table 7.2: This table shows how Kava can be used to enforce security policies in all the 
new problems domains described in Chapter 1. Where the code is well specified, Kava can 
enforce policies related to the semantics of the code - for example the policies controlling 
access to IRC channels. Where no specification exists, Kava can enforce policie~ upon the 
code that limit the use of other well specified code - for example, mobile code can have ih 
access to other code within the same address space controlled. 

Problem domain Specification Policy Scope ----J 
New Code Application Services i 

and Libraries 
Email attachments N Y Y Control access to 

applications, ~ervice~ 
libraries. 

Dynamic web content N Y Y Control access to 
applications, ~crvices 
libraries. 

Mobile code N y Y Controls acces~ to 
applications, services 
libraries. 

Third-party Y y Y Control acccs~ to 

application new code, 
applications, services 
libraries. 

Component-oriented y y y Control access to 

programming new code, 
applications, services 
libraries. 

Computational grids Y y Y Control access to 
new code, 
applications. services 
libraries. 

----
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classes where state changes take place so that they can be identified. An exprc""i\c bind­

ing specification allowing declarative specifications such as bind a metaobject class to all 

classes that update a particular field simplify implementation of checkpointing. The l'Ia""c" 

making up the application must be at the right level of granularity to allow interception of 

state changes, too coarse grained and checkpoints become to unwieldy. Exceptions related 

to checkpointing failures will break transparency and require handling at the metalevcl. 

Enforcement requires the presence of type safety. rewriting tools and an ability to intercept 

loading of classes. 

Thirdly, the approach taken in this thesis is generalisable beyond Java. As stated about 

implementation of a loadtime metaobject requires three features: (I ) type safety to guaran­

tee interfaces are respected; (2) rewriting tools to allow the insertion of metalevcl intercep­

tions; and (3) an ability to intercept loading of classes to allow insertion of interceptions at 

loadtime. This could be achieved for a language such as C++ by using (I) type-safe code 

enforced using a toolkit such as TAL [Morrisett, Walker, Crary & Glew I 999b]; (2) use 

of instrumentation libraries; and, modification of static linkers and dynamic library linking 

routines. 

7.3 Future Work 

The main future work is to: 

• Improve static analysis. 

• Provide least privilege for metaobjects. 

• Improve metaobject composition. 

• Treat distribution as a first-class entity. 

• Improve complete mediation. 

• Investigate and improve performance. 

• Implement a policy language. 
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7.3.1 Improve Static Analysis 

As discussed in Section 3.2.5, Kava's static analysis needs to be extended to allow the 

superclass-subclass relationships to be determined statically. At present, the developer of 

the binding specification must manually specify these relationships. This is not a good 

approach when imposing access control policies upon unknown code. For example. in the 

programming with Kava example (Section 3.1.7) the ResourceManager metaobject must 

be bound to all classes creating an new instance of any object. The ResourceManager 

must determine at runtime whether the instance is either a Frame object or a -.ubclass. 

This imposes a considerable overhead upon the application that is the subject of the access 

control policy. Completing the implementation of static analysis would ensure that this 

could be determined at loadtime, thereby improving Kava's performance. 

Additionally, Kava's static analysis could be made more expressive. For example, im­

plementing a binding keyword allowing call graph relationships to be considered when 

determining whether to make a binding. In many cases this could be determined statically. 

7.3.2 Provide Least Privilege for Metaobjects 

The metaobject protocol approach provides least privilege except that metaobjects need 

to have the same rights as the base-level objects so that checkPermissionO will succeed. 

Should a metaobject not have the same rights then the check will fail because the rights or 

permissions must be held by every protection domain on the stack. 

In our earlier work [Welch & Stroud 2000b, Welch & Stroud 2002] it was proposed 

to avoid this problem by changing the Policy implementation so that metaobjects would 

always be granted the same rights as the base-level objects. However, this leads to a viola­

tion of least privilege because metaobjects do not need to exercise these right'> other than 

to check the base level is entitled to use them. Granting them to the metaobject creates a 

vulnerability because a hostile or faulty metaobject might go beyond checking that they are 

held by abusing these rights. 

Subsequent work on the Simple Security-Aware metaobject protocol show,> how thi.., 

can be avoided. The idea is to change the MUs so that the base le\el AccessControlContext 

is reified and passed as context to the metaobject. The access decision can then be evaluated 
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using this access control context rather than the meta level's access control context. 

This problem raises a general question, which is "What privileges should a meta level 

possess?". It seems reasonable to suppose that a set of privileges corresponding to the range 

of behaviours that can be redefined at the meta level to be defined and enforced h) the Java 

security architecture. Caromel and Vayssiere [Caromel & Vayssiere 2003] have proposed 

a security framework for limiting the privileges of the meta level to reduce the po""ihility 

of a buggy or malicious meta level subverting the behaviour of an application. Kava could 

be modified to take advantage of both of these proposals. 

7.3.3 Improve Metaobject Composition 

The second case study required multiple metaobjects to co-operate in changing the runtime 

behaviour of single object. Although the chain of responsibility [Gamma et al. 1995] can 

be used with Kava to implement co-operation, it does lead to some inefficiencies because 

both metaobjects do not always need to be invoked for the same MLI. This is because 

each metaobject in the chain is invoked even when a behaviour that it has no interest in is 

intercepted at the base level. It may ignore the behaviour but it is still invoked because Kava 

intercepts the union of all behaviours that the metaobjects in the chain may need to control. 

This is a consequence of implementing composition at the meta level rather than in the 

construction of MUs. A more efficient approach is to modify the Kava so that it chained 

the metaobjects together when implementing MUs. This means that metaobjects would 

not be invoked unnecessarily. On the other hand, embedding composition rules into Kava 

would limit future changes to composition rules for metaobjects. However, this can be 

avoided by providing the ability to customise composition (see for example, JAC [Pawlak, 

Steinturier, Duchien & Florin 200 I D. 

7.3.4 Make Distribution First-Class 

This thesis uses a single metaobject protocol to address both object and distributed object 

access control. The case study shows that this provides a working solution but leads to an 

unwieldy-looking design that may be hard to maintain. This situation can be impro\ ed if 

the concern of object distribution was made first-class in Kava. thereby making it ea"ier to 
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apply Kava to securing distributed objects. Making distribution first-cla"" means that the 

binding specification can reflect the notion of binding to the interface~ offered by distributed 

objects. A first step would be to provide access to marshalling and unmarshalling of remote 

method invocations via an abstract layer. This would make the implementation of the 

control over RMI independent of the any particular Java RMI implementation. 

7.3.5 Improve Economy of Mechanism 

Although using code rewriting to implement Kava provides a good economy of mechanism 

because left the compiler out of the trusted computing base, it doe~ rely upon a byte code 

rewriting toolkit written in Java that is roughly 20Kloc in size. Complete mediation would 

be improved by implementing a smaller byte code rewriting toolkit composed of only the 

functions depended upon by Kava. Furthermore, the toolkit could be implemented in a 

language with a more well-defined formal semantics than Java to make verification of its 

correctness tractable. 

7.3.6 Investigate and Improve Performance 

There will always be a trade-off between the generality of an approach like behavioural 

reflection and specific approaches such as manual implementation. Our case is that using a 

general approach has benefits, in terms of reusability and reducing programmer error, that 

outweigh performance costs. Only some basic performance measures have been performed 

and there is scope to carry out a more thorough performance analysis. Additionally, the 

current version of Kava incorporates some simple optimisations but considerably more can 

be done. For example, static analysis of metaobjects to determine if they need access to 

context or not. This way the costly reification of context can be avoided automatically. 

Additionally, lazy reification [Masuhara et al. 1992] can also be explored. 
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7.3.7 Provide a Policy Language for Kava 

At the moment security policies are expressed through a combination of Kava'~ binding 

specification (specifying what language-level operations to control) and the policy repre­

sentation used by the security model being enforced by Kava. Separation between the 

enforcement and policy is something that the current approach provide~ at the implemen­

tation level but is something that should not be separate from the user's point of ,iew, 

Keeping them separate, when defining a security policy, raises the possibility of control­

ling an operation from a policy point of view but forgetting to include the operation in the 

binding specification. An improved approach is to use a single high-level policy language 

that automatically generates the binding specification and policy representation particular 

to the security model being enforced by Kava. 

As a proof-of-concept, a prototype implementation of a policy compiler that maps Pon­

der [Damianou 2002] policies to Kava binding specifications and Java security policie~ 

has been developed [Lu 2004]. The main problem that had to be solved were providing a 

means to translate Ponder targets and actions to the required Java policy targets and per­

missions. This was solved by requiring the developers of application or library resources to 

provide a resource description file that provides a resource-specific Ponder vocabulary for 

specifying policies. This notion of a resource description file is based upon the concept of 

resource descriptions found in Naccio [Evans & Twyman 1999] where these a dictionary 

providing translations between platform-neutral abstractions and platform-specific imple­

mentations. The translator uses this to determine what permissions to add to the Java policy 

file and to generate the binding specification. At present the binding specification is fixed 

and encoded in the resource file and future work would be to automatically generate the 

binding specification based upon the rights being granted to programs using the user-level 

resources. 

Ponder could also be used to specify other policies such as policies such as Clark­

Wilson [Clark & Wilson 1987]. As part of earlier work, libraries of metaobjects for imple­

menting the Clark-Wilson [Welch 1999] security policy was designed, Using the Ponder to 

Kava policy translator requires defining new resource descriptions to allow Ponder abstrac­

tions to be mapped to Kava binding specifications and appropriate Ja\a security policie ... , 
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7.4 Concluding Remarks 

Security is a notoriously difficult non-functional concern to implement successfull). Fur­

thermore, existing attempts to implement security while maintaining a separation of con­

cerns has led to inflexible or untrustworthy implementations. The loadtime metoabject 

approach described in this thesis avoids either pitfall by combining code rewriting and 

metaobject protocols. Additionally, this thesis describes an approach that could he applied 

to other non-functional concerns and other languages. This is a significant step forward in 

allowing developers to meet the challenges arising in new problem domains such as mobile 

code or component-oriented programming. 
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