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Abstract 

This thesis is concerned with the analytical modelling of computing and other dis­

crete event systems, for steady state performance and dependability. That is carried 

out using a novel solution technique, known as the spectral expansion method. The 

type of problems considered, and the systems analysed, are represented by certain 

two-dimensional Markov-processes on finite or semi-infinite lattice strips. A sub set 

of these Markov processes are the Quasi-Birth-and-Death processes. 

These models are important because they have wide ranging applications III 

the design and analysis of modern communications, advanced computing systems, 

flexible manufacturing systems and in dependability modelling. Though the matrix­

geometric method is the presently most popular method, in this area, it suffers from 

certain drawbacks, as illustrated in one of the chapters. Spectral expansion clearly 

rises above those limitations. This also, is shown with the aid of examples. 

The contributions of this thesis can be divided into two categories. They are, 

• The theoretical foundation of the spectral expansion method is laid. Stability 

analysis of these Markov processes is carried out. Efficient numerical solution 

algorithms are developed. A comparative study is performed to show that the 

spectral expansion algorithm has an edge over the matrix-geometric method, 

in computational efficiency, accuracy and ease of use . 

• The method is applied to several non-trivial and complicated modelling prob-

III 



lems, occuring in computer and communication systems. Performance mea­

sures are evaluated and optimisation issues are addressed. 

Key-Words: Spectral Expansion, Markov Processes, Multi-processors, Perfor­

mance, Reliability, Dependability, Networks of Queues, 
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Chapter 1 

Introduction 

1.1 Performance and reliability modelling 

Computers have become very important not only in industry and business but also 

in everyday living. When we draw cash from a cash point we use computers, travel 

reservation systems and air traffic controls use computers, hospitals have them in 

diagnostic equipment and in patient monitoring systems. At present, there is a 

growing emphasis not only on the design aspects but also on how to use them 

effectively and efficiently. Reliability is clearly a measure of effectiveness. Fault 

tolerant computing systems are designed for greater reliability and dependability. 

Ultra-high reliability requirements are demanded in critical applications such as 

aircraft control and nuclear plant control systems. 

Computer reliability is usually achieved by hardware or component reliability, 

hardware redundancy, using repairable systems and reliable architectures. On the 

software side, producing reliable software and employing software fault tolerance are 

the key to achieve reliable computation. Multiprocessor systems are more reliable 

over single processor ones because processor failures(not all of them) do not result 

in system failure but only in a degraded mode of operation. Multiprocessors are 

1 



Chapter 1 Introduction 2 

very important for parallel processing applications also. 

A fault tolerant computing system is not only to be designed, but needs to 

be evaluated for its performance. Reliability, speed of computation, throughput 

rate, and response time distributions are some of the measures that are usually 

sought. Performance modelling is essentially probablistic and mathematical mod­

elling. There are several different as well as complementary techniques of this, 

namely bench marking, measurement based analysis and extrapolation [3, 29, 61], 

analytical modelling employing queueing theory and Markov chain analysis [20], 

simulation of the system's working by a computer program and also a recent and 

highly promising method based on perturbation analysis on simulated or real data 

[27]. In highly reliable systems the failures of components are rare events. In such 

systems naive simulation is inefficient and at times even impossible due to the rar­

ity of system failure events. Importance sampling is used to simulate such systems 

approximately [58, 23]. Also, contributions exist to simulate discrete event systems 

efficiently using parallel algorithms on parallel processors [24]. 

The present thesis work falls in the category of analytical modelling. Analytical 

methods employ certain simplified assumptions of the system to achieve mathemati­

cal tractability. In queueing systems, these include assumptions regarding the prob­

ablistic distributions of job arrivals, service times, failure and repair characteristics. 

Past experience has shown that analytical queueing models are extremely effective 

and accurate enough to analyse or predict system performance, in spite of these not 

so realistic assumptions [59]. Techniques such as probablistic analysis, representing 

the behaviour of the system by finite or infinite Markov or semi-Markov processes, 

use of queueing theoretic models, optimization techniques form the basis for ana­

lytical modelling. The advantage of analytical modeling over other techniques is 

their computational efficiency. Quite often, simulation and other techniques need a 

great deal of computation and other resources that make the optimal system design 
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difficult or even impossible. The flexibility and applicability of analytical modelling 

is somewhat limited. 

1.2 Systems of interest 

The systems that are being considered for a detailed study and research in this thesis 

can be modelled by a class of Markov processes. These are two dimensional Markov 

processes on finite or semi-infinite strips. Several practical examples can be thought 

of in this frame work. Consider as our first example, a multiprocessor system serving 

a stream of incoming jobs. The multiprocessor consists of N homogeneous processors 

that are prone to independent failures. A processor, when fails, is immediately set 

into repair, and once repaired the processor is back in service. Thus, at any given 

time the multiprocessor is operative with a number of processors ranging from 0 

to N. We can call these N + 1 states, the operative states of the multiprocessor. 

There is an unbounded queue which the incoming jobs join. Processed jobs leave 

the system. Jobs are homogeneous and served one at a time by a processor. If a job 

is pre-empted due to the processor failure, its service starts whenever a processor is 

available. In this case the service policy is either resume or repeat with re-sampling. 

The arrivals of jobs is governed by a Poisson process and the processor service, 

failures, repairs are exponential. In such a system, it can be easily seen that the 

state of the system at any given time can be sufficiently described by two integer­

valued random variables. The first of them is a finite one, ranging from 0 to N, 

indicating the operative state of the multiprocessor. The second random variable 

represents the number of jobs present in the system, and ranges from 0 to 00. Thus, 

all the states of this system form a Markov process on a semi-infinite rectangular 

lattice strip with a width of N + l. 
Another illustration of the type is possible through the example of a serial trans-



Chapter 1 Introduction 4 

fer line with two machines, Ml and M2, and a finite buffer, B, between them [35]. 

Each job is to be processed by Ml and then by M2, in order. Jobs to be processed 

arrive at Ml and form an unbounded queue. After being processed by Ml they are 

placed in the buffer B in order to wait to be processed by M2 when the latter is 

available. The size of B is finite, hence when B is full Ml stops working. Hence, 

Ml is blocked due to finite buffer. Processed jobs from M2 leave the system. Job 

arrivals to Ml are assumed Poisson, service times exponential and service discipline 

FCFS. Clearly, the state of this system at any given time can be represented by 

just two integer-valued random variables. The first of them, a finite one, is the 

number of jobs held in the buffer including the one, if any, currently processed by 

M2. The second random variable is the number of jobs in the queue before Ml 

including the job held by M1. If the size of the buffer B is N, including the one 

held by M2, then the first random variable ranges from 0 to N. The second random 

variable has the range from 0 to 00 . Thus, here again we get a Markov process on 

a semi-infinite lattice strip of width N + 1. The possible transitions from a given 

state into different other states can be worked out easily by studying the system's 

working. If the queue before Ml is bounded, then the Markov process would be on 

a finite rectangular strip. Some of the performance measures that can be sought 

are, the distribution of queue lengths before each of the machines, utilisations of 

the machines, mean waiting time and total turn-around time of jobs. If the Markov 

process can be analysed for the state probabilities, then the required performance 

measures can be computed using the state probabilities. This Markov model can be 

extended to transfer lines with more than two machines, but with an increase in the 

computational complexity. For example, in 3 machine tranfer line, if Nl and N2 

are the sizes of the two buffers respectively, then the resulting Markov process will 

be on a semi-infinite strip of width (Nl + 1) * (N2 + 1). 

Perhaps yet another example is worth illustrating in order to see the wide range 
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of problems captured by these Markov processes [14]. As the third and the last 

example, we take up the case of a machine shop. This machine shop has two 

machines, Ml and M2, that are different from each other. Jobs arrive at the machine 

shop according to a Poisson distribution. Waiting jobs form an unbounded queue. 

Jobs are homogeneous and are served in FCFS order. Each job consists of two tasks, 

namely Task 1 and Task 2. Task 1 has to be performed first and then only Task 2 

is to be performed. Once the Task 2 of a job is completed, it leaves the system as a 

finished job. Ml performs only Task 1 and M2 can perform either of the tasks. M2 

is faster than Ml in performing Task 1. After Task 1 is completed, a job is to be 

scheduled for Task 2 on M2 when the latter is available. Thus, at any given time Ml 

can be either idle or performing Task 1 on a job, and, M2 can be idle or performing 

Task 1 on a job or performing Task 2 on a job whose Task 1 is already completed. 

Several alternate strategies can be thought of regarding the scheduling of jobs on 

Ml and M2. We choose the following strategy: 

(a) When the Task 1 of a job is completed on M2, then the job is automatically 

scheduled for Task 2 on M2. 

(b) When the Task 1 of a job, say Jl, is completed on Ml, then its Task 2 is 

scheduled immediately if M2 is either available or performing Task 1 of a 

different job, J2. In the latter case, J2 is scheduled on Ml with either resume 

or repeat with re-sampling service policy. 

(c) When the Task 1 of a job, Jl, is completed on Ml, if M2 performing Task 2 

of a different job, then Jl is retained by Ml till M2 is available. Here Ml is 

idle but retains J1. When M2 becomes available, Jl is scheduled on M2 and 

Ml goes for Task 1 of a new job if available. 

(d) When there is only one job in system with Task 1 to be performed, it IS 

scheduled on M2 only since it is faster than M1. 
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Clearly there are six performing or operative states of the machine shop. They 

are, (M1-idle, M2-idle), (M1-idle, M2-Task 1), (M1-Task 1, M2-Task 1), (M1-idle, 

M2-Task 2), (M1-idle & retaining ajob, M2-Task 2), (M1-Task 1, M2-Task 2). The 

state of the system can then be represented by two integer valued random variables, 

one of them representing the operative state of the machine shop and the other the 

number of jobs in the system. The second random variable varies from 0 to 00. Once 

again we get a Markov process on a semi-infinite strip, with width 6, that models the 

system in consideration. If the queue is bounded, then the Markov process would 

be on a finite rectangular strip. 

1.3 Literature survey 

The type of systems described above are all modelled by twcrdimensional Markov 

processes on semi-infinite or finite strips. In the case of the former, let I, J be 

the finite and infinite integer valued random variables respectively. These processes 

occur often in modelling computing systems, communication systems and several 

other discrete event systems. Significant research work has been carried out in this 

area [52] and there is a sufficient need for further work. 

Our primary interest is a sub-class that has the following properties: 

(a) the instantaneous transition rates out of state (i,j) do not depend on j when 

the latter is sufficiently large, say for j > M. 

(b) the jumps of the random variable J are of limited size. 

There are many sub-classes of this that have widely appeared in the literature. 

When the jumps of the random variable J, in a transition, are either 1 or 0 or 

-1, these processes are known as Quasi-Birth-and-Death type [66]. In the QBD 

process, if the non-zero jumps in J are not accompanied with changes in I, then 
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these processes are known as Markov-modulated Birth and Death processes [53]. The 

infinite number of states involved makes the solution of these models non-trivial. 

There are several methods of solving these models, either the whole class of 

models or any of the sub-classes. Seelen has analysed a Ph/Phi c queue in this 

frame work [55]. Seelen's method is an approximate one, the Markov chain is first 

truncated to a finite state which is an approximation of the original process. The 

resulting finite state Markov chain is then analysed, by exploiting the structure in 

devising an efficient iterative solution algorithm. 

The second method is to reduce the infinite-state problem to a linear equation 

involving vector generating function and some unknown probabilities. The latter 

are then determined with the aid of the singularities of the coefficient matrix. A 

comprehensive treatment of that approach, in the context of a discrete-time process 

with a general M/G/1 type structure, is presented in [17]. 

The third method, which is the main technique that is applied throughout this 

thesis, is known as spectral expansion method. It is based on expressing the invariant 

vector of the process in terms of eigenvalues and left eigenvectors of a certain ma­

trix polynomial. Some of the ideas concerning spectral expansion method have been 

known for some time [51, 60], but there have not been many examples in the perfor­

mance literature. Takacs's [60] works concentrate mostly on one-dimensional Markov 

processes, with one random variable. Neuts [51] does deal with two-dimensional 

ones, yet has not given efficient computational algorithms for spectral expansion. 

Some recent works on it have been reported in [13, 45]. An efficient algorithmic 

implementation for probability distribution is reported in [45, 5]. Earliest numerical 

results using this solution algorithm are in [5, 7]. The generating function and the 

spectral expansion methods are closely related. However, the latter produces steady­

state probabilities directly using an algebraic expansion while the former provides 

them through a transform. 
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The fourth way of solving these models is the well known matrix-geometric 

method, first proposed by Evans [15, 66, 51]. In this method a non-linear matrix 

equation is first formed from the system parameters and the minimal nonnegative 

solution R of this equation is computed by an iterative method. The invariant vec­

tor is then expressed in terms of the powers of R. Neuts claims this method has 

probablistic interpretation for the steps in computation. That is certainly an ad­

vantage. Yet, this method suffers from the fact that there is no way of knowing how 

many iterations are needed to compute R to a given accuracy. It can also be shown 

that for certain parameter values the computation requirements are uncertain and 

formidably large. 

1.4 Organisation of the thesis 

This thesis is concerned with the performance evaluation of computer and other 

discrete event systems that can be modelled by two dimensional Markov processes 

on semi-infinite or finite lattice strips. The contributions of this thesis are two­

fold. Firstly, we develop and present the spectral expansion method and an efficient 

algorithmic implementation for the performance analysis of the type systems and 

the Markov processes, described in the preceding section. In this framework, a 

number of important and non-trivial problems are modelled and detailed analysis 

is made. In all these problems, spectral expansion is extensively made use of, apart 

from using other operations research techniques. Secondly, we make a systematic 

comparison of the effectiveness and applicability of the spectral expansion method, 

with that of the presently most popular method, the matrix-geometric method. This 

comparative study would be quite useful for modellers. 

The organisation of the thesis is as follows. Chapter 2 describes in a good detail, 

the development of the spectral expansion method for infinite Markov processes, 



Chapter 1 Introduction 9 

stability and spectral analysis, efficient computational algorithms, some aspects of 

implementation and also certain generalisations. Chapter 3 presents two non-trivial 

examples in order to illustrate the application of spectral expansion. An important 

extension of the method to solve Markov processes of large, finite state space, is 

developed in Chapter 4, and that is explained along with an example. In Chap­

ter 5, a comparative study of the effectiveness of spectral expansion and the matrix­

geometric method is carried out. In Chapter 6, a heterogeneous multiprocessor with 

breakdowns is analysed for performance measures, using spectral expansion. The 

importance of the repair strategy is illustrated and certain nearly optimal strategies 

are conceived. A performance study of these strategies is also done. The modelling 

and analysis of queues with breakdowns and bursty arrivals is taken up in Chap­

ter 7. The bursty arrivals are represented by Markov-modulated arrival processes. 

Steady state analysis is made using the spectral expansion method. Also, a simple 

and and computationally effective model is suggested for the departure process of 

such a queue. The subject of Chapter 8 is a complex modelling problem: that of 

open queueing networks with breakdowns and repairs. There has not been any ex­

isting exact solution or acceptable approximate solution to this problem. Several 

approximate numerical solution techniques are developed for this problem, achieving 

considerable accuracy. In these solutions, the spectral expansion method is exten­

sively used. Chapter 9 presents conclusions and directions for further research work, 

in this and related areas. 

1.4.1 Publications 

Many of the original contributions of thesis are either published already, or accepted 

for publication. Some of these papers are given in the Bibliography. They are, 

[4,5,6, 7,8,9, 10,47]. 



Chapter 2 

Spectral Expansion 

2.1 Introduction 

Spectral expansion is an emerging solution technique useful in performance and 

dependability modelling of discrete event systems. It solves Markov models of certain 

kind that arise in several practical system models. The reported applications and 

results include, performability modelling of several types of multiprocessors [5, 7], 

multi-task execution models [14], networks of queues with unreliable servers [10] 

and many other practical systems [13]. Though some preliminary ideas were known 

earlier [51], an efficient solution algorithm for spectral expansion was developed in 

[45, 5]. The earliest numerical results on this algorithm are reported in [5, 7]. This 

algorithm seems to fare better than the matrix-goemetric method in accuracy, speed 

and ease of use [47, 10]. In this chapter, we develop the mathematics of the spectral 

expansion method and present the solution algorithm. 

10 
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2.2 The Markov model 

The systems that are of interest are modelled by two-dimensional ~larkov processes 

on semi-infinite lattice strips. The state of the system at time t is denoted by two 

integer valued random variables, I(t), J(t); I(t) taking a finite set of values and J(t), 

an infinite set of values. Without loss of generality, we can assume the minimum 

value of J(t) is 0 and N, the maximum. The minimum value of the random variable 

J(t) is 0 and it can take values from 0 to 00. The Markov process is denoted 

by X = {[J(t), J(t)] ; t ~ O}. We assume this is irreducible with a state space 

{O, 1, ... , N} x {O, 1, ... }. For a convenient representation, it is assumed that I(t) 

varies in the lateral or horizontal direction and J(t) is represented in the vertical 

direction of the semi-infinite rectangular lattice strip. The possible transitions that 

underlie this Markov process are given by : 

(a) Aj - purely lateral transitions - from state (i,j) to state (k,j), (0 < i, k < 

N ; i =1= k; j = 0,1, ... ); 

(b) Bj - one-step upward transitions - from state (i,j) to state (k,j + 1), (0 < 

i,k:::; N; j = 0,1, ... ); 

(c) Cj - one-step downward transitions - from state (i,j) to state (k,j - 1), 

(0 :::; i, k :::; N; j = 1,2, ... ); 

As it is seen above, the possible change in J in any transition is either + 1 or 0 

or -1. Later in this chapter, we shall also consider the Markov process Y in which 

multi-step jumps in J are possible. Aj, Bj and Cj are the transition rate matrices, 

square matrices each of size (N + 1) x (N + 1), associated with (a), (b) and (c) 

respectively. Thus, Aj(i, k), (i =1= k) is the transition rate from state (i,j) to state 

(k,j), and Aj(i,i) = O. Bj(i,k) is the transition rate from (i,j) to (k,j + 1). 

Cj(i, k) is the transition rate from (i,j) to (k,j - 1), and Co = 0, by definition. 
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We assume the process has a threshold, an integer M, (M ~ 1) such that 

the instantaneous transition rates of (a), (b) and (c) do not depend on j when 

j ~ M in the case of (a), j ~ M - 1 in the case of (b), and when j ~ M 

for (c). In the examples given in the following chapters, it can be seen that such a 

threshold does exist in a large variety of real world problems occuring in computing 

and communication systems. Thus, we have 

Aj = A, j ~ M; Bj = B, j ~ M - 1 j Cj = C, j ~ M j (2.1) 

The states spanned by the finite r.v. I(t) can be conveniently termed as the 

operative states of the system in consideration. The transitions in (a) are purely 

among the operative states, without any change in J, whereas the transitions in (b) 

and (c) are also among the operative states but with a fixed change in J by +1 and 

-1 respectively. 

When the process is irredicible and the corresponding balance equations of the 

state probabilities have a unique normalizeable solution, we say the process is ergodic 

and there exists a steady state for that process. The objective of this analysis is to 

determine the steady state probability Pi,j of the state (i, j) in terms of the known 

parameters of the system. Pi,j is defined as: 

Pi j = lim P(I(t) = i, J(t) = j) j i = 0,1, ... , N j j = 0,1,. . . (2.2) 
, t-+oo 

Let D1, Df and Dr be the diagonal matrices, of size (N + 1) X (N + 1) each, 

defined by their ith diagonal element as, 
N N N 

D1(i,i)=L:Aj(i,k); Df(i,i)=L:Bj(i,k)j Dr(i,i) = L:Cj(i,k)j (2.3) 
k=O k=O k=O 

In other words, the ith diagonal element of each of these diagonal matrices is the 

ith row sum of the corresponding transition rate matrix. Then we also get similar 

diagonal matrices DA, DB and DC for A, Band C respectively. 
N N N 

DA(i,i) = L:A(i,k)j DB(i,i) = L:B(i,k)j DC(i,i) = L:C(i,k)j (2.4) 
k=O k=O k=O 
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2.3 The solution 

All the states in a row of the lattice Markov process have the same value j for the 

unbounded r.v. J(t). Similarly, any column consists of states with same i. Here, it 

is mathematically convenient to define the row vectors Vj as, 

Vj = (Po,i, Pl,j,"" PN,j) j j = 0, L ... (2.5 ) 

Thus, the elements of Vi are the probabilities of all states in a row, where J = 

J. In order to solve for the probability distribution {Pi,j}, it is necessary to solve 

the balance equations. It is mathematically more elegant to work with vectors Vj 

compared to Pi,i' The steady state balance equations satisfied by the vectors Vj are: 

V-I = 0 by definition. And, for j 2': M 

These equations (2.7) are infinite in number. In addition to them, we have another 

equation resulting from the fact that all the probabilities Pi,j sum to 1.0: 

00 

LVie = 1.0, (2.8) 
i=O 

where e is the column vector of N + 1 elements each of which is equal to 1. This 

definition of e is valid throughout this thesis. 

It is the set of equations (2.7) that are infinite in number. Essentially, spec­

tral expansion is the solution technique to solve these equations. The difference 

between the set (2.6) and the set (2.7) is that the former has coefficient matrices 

that are j-dependent whereas in the case of the latter the coefficient matrices are 

j-independent. The latter can be rewritten as 

(2.9) 
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where Qo = B, Ql = A - DA - DB - DC and Q2 = C. This is a homogeneous vector 

difference equation of order 2, with constant coefficients. Q(~) is the characteristic 

matrix polynomial associated with this difference equation. 

(2.10) 

We also refer to Q(~) as the characteristic matrix polynomial of the Markov 

process X. The solution of (2.9) is closely related to the eigenvalues and the left­

eigenvectors of Q(A). Henceforth, throughout this thesis, an eigenvalue means a 

finite eigenvalue and an eigenvector means a non-zero finite left-eigenvector. Let 

(~, "p) be an eigenvalue-eigenvector pair of Q (~), thus satisfying the equation: 

"pQ(~) = 0 ; det[Q(~)] = 0 . (2.11) 

~ can be real or complex. If ~ is real then "p also is real, if ~ is complex then "p 

is complex. This is because the matrices Qo, Ql and Q2 are real. Also, if (~, "p) is 

a complex eigenvalue-eigenvector pair, then its conjugate pair (~., "p*) also satisfies 

(2.11). Q(~) may also possess either a null eigenvalue or a multiplicity of null 

eigenvalues. Null eigenvalues are also refered as zero-eigenvalues throughout this 

thesis. If Qo is non-singular then Q( ~) will have no zero-eigenvalues. However, if Qo 

is singular with a rank N + 1- ro (1 ::; ro ::; N + 1) then it will have zero-eigenvalues 

with a multiplicity of ro and corresponding non-zero independent eigenvectors, if 

the sum of all principal minors of order N + 1 - ro of Qo is non-zero [37]. That 

condition is usually the case, hence, we assume the same. We also assume if Q2 has 

a rank N + 1- r2, then the sum of all the principal minors of Q2 of order N + 1- r2 

IS non-zero. 

For a non-zero eigenvalue-eigenvector pair, (~k' "pk), by substituting Vi = "pk~i 

(j ~ M - 1) in the equations (2.7, 2.9), it can be easily seen that this set of infinite 

number of equations is satisfied. Hence, that is a particular solution. The expression 

may even be "pk~i+lk for any reallk. These two expressions are equivalent since "pk 
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can always be scaled without affecting its property of being an eigenvector. If zero­

eigenvalues do exist, let them be ro in number denoted by >'z,k, (k = 0, 1, ... , ro - 1) 

and the corresponding eigenvectors by tP z,b (k = 0,1, ... ,ro - 1). Then clearly, for 

every k, (k = 0,1, ... , ro -1), Vj = tPz,k>'~J.M+t, (j ~ M -1) satisfies (2.7, 2.9). It 

is assumed 00 = 1. That expression can also be written as Vj = 0, if j of M - 1 and 

"p z,k, if j = M - 1. This also is a particular solution. Yet, what is necessary is the 

general solution of these equations that also satisfy (2.6, 2.8). 

Let us assume that Q(>.) has d pairs of eigenvalue-eigenvectors. These can be 

real or in pairs of complex-conjugates. There can be simple or multiple eigenvalues. 

However, an assumption is made that when an eigenvalue is of multiplicity n, it 

does have n independent eigenvectors. In all our applications and experiments with 

several system models, this is what has been observed. Let (>'k, tPk) be the kth 

eigenvalue-eigenvector pair, where k varies from ° to d - 1. Then it is easy to see 

the general solution for Vj of the equations (2.7,2.9) can be a linear sum of all the 
. M+1 

factors ("p k>.r ). In other words, 

d-l 
"" ,,/. d-M+l . M 1 M Vj = L.Jak'f"k/\k ; J = -, , ... (2.12) 
k=O 

In the state-probability form: 

d-l 

Pi,j = L ak"pk(i)>.{-M+l ; j = M - 1, M, ... (2.13) 
k=O 

where ak (k = 0,1, ... , d -1) are arbitrary constants, some of them can be complex 

too. 

In order to get the relevant solution from the general solution, let us consider 

some of the known steady state properties of the probability distribution. We know 

the sum of the probabilities of all states in any column is less than 1 though these 

states are infinitely many. Now consider the probability sum, 

00 00 d-l 

L Pi,j = L L aktPk(i)>.{-M+1 
j=M-l j=M-l k=O 
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The above is the sum of probabilities of all states in the ith column that are above 

j 2 M - 1. It can be easily seen that the necessary condition that this sum is 

bounded is 

With this, by suitably numbering the eigenvalues, the general solution is modified 

as, 
c-l 
" ~/. \i-M+l . M M Vj = L...ak'Pk/\k ; J = -1, , ... (2.14) 
k=O 

This is equivalent to: 

c-l 

Pi,j = L ak1/Jk(i)>.{-M+1 ; j = M - 1, M, ... (2.15) 
k=O 

where c is the number of eigenvalues that are present strictly within (also termed as 

within, strictly inside or inside) the unit circle. These eigenvalues appear some as real 

and others as complex-conjugate pairs, and as do the corresponding eigenvectors. 

When the eigenvalues are complex-conjugate the corresponding constants also are 

complex-conjugate. This is so because, then only the right-hand side of equations 

(2.14, 2.15) would be real. We also have another condition to be satisfied always. 

That condition is the right-hand sides of equations (2.14, 2.15) are also positive. 

This can happen if the real parts of >'k, 1/Jk and ak are positive. Indeed, this is what 

has been observed in all our experiments. 

Now it remains to determine the constants ak that are still unknown, to complete 

the solution. Their number c also is not known so far. Yet, we can now find 

VM-l, VM, ... as linear expressions in the c unknowns, ak, (k = 0,1, ... , c-1). The 

other unknowns are, Vo, Vl, ... , VM-2. To get these unknowns, we have equations 

(2.6) for j = 0,1, ... , M -1. This is a set of M x (N + 1) linear equations with (M-

1) x (N + 1) unknown probabilities (all the probabilities in vj, (j = 0,1, ... , M - 2)) 

plus the c unknown constants ak. However M x (N + 1) - 1 of these equations are 

linearly independent, since the generator matrix of the Markov process is singular. 
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On the other hand, an additional independent equation is provided by (2.8). Hence. 

the number of independent linear equations is M x (N + 1). 

Clearly, this set of M x (N + 1) independent linear equations with (M - 1) x 

(N + 1) + c unknowns has a unique solution if, and only if, M x (N + 1) = (M -

1) x (N + 1) + c. Or, that condition is c = N + 1. Here, we make the following 

hypothesis: 

• If c > N + 1, there are more unknowns than the the number of equations 

to be satisfied. That means infinitely many different solutions of the balance 

equations are possible and hence many different steady states. Since, in reality, 

the process can have only a unique steady state if it is stable, it can be said 

that c can not be greater than N + 1. On the other hand, if c < N + 1, a feasible 

solution does not exist for the balance equations and hence that corresponds 

to the instability of the process. 

In fact, this is what has been found in all our examples. This analysis, together 

with the fact that an irreducible Markov process has a steady-state distribution if, 

and only if its balance and normalisation equations have a unique solution, implies 

Proposition 1 The condition c = N + 1 (the number of eigenvalues of Q()..) strictly 

inside the unit disk is equal to the number of operative states of the Markov process), 

is necessary and sufficient for the ergodicity of the Markov process X. 

It is interesting to note, from proposition 1, as long as the process X is irreducible, 

the stability or ergodicity of this process is determined purely by the matrices A, B 

and C, and does not depend on the j-dependent matrices Ai, Bi and Ci · This is 

because the eigenvalues and eigenvectors depend purely on A, Band C. 
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2.4 Spectral analysis 

In this section the nature of the eigenvalues of Q(>.) is examined. The eigenvalues 

and eigenvectors of Q(>.) satisfy, 

(2.16) 

We get the following results. 

Theorem 1 If Qo is non-singular, then Q(>.) does not have zero-eigenvalues. 

Proof Let>. = 0, then we get, from (2.11), det[Q(>.)] = det[Qo] =I- o. Hence, 

the result. <> 

Theorem 2 If Qo is singular with a rank N + 1 - ro, then (i) Q(>.) has zero­

eigenvalues of multiplicity ro if the sum of all principal minors of Qo of order N + 
1 - ro is non-zero. (ii) it has ro corresponding independent eigenvectors. 

Proof Let>. = 0 in (2.16)' then we get 1/;Qo = O. Hence, the zero-eigenvalue 

of Q(>.) and the zero-eigenvalue of Qo have the same multiplicity. Now, refer to 

Theorem 2.1.2, Lemma of [37, pages 54-57] to complete the proof of part (i), and 

Definition (a) of [37, page 21], Theorem 1.16.2 of [37, page 45] for part (ii). <> 

Theorem 3 If Q2 is non-singular, then Q(>.) has 2N + 2 eigenvalues. 

Proof Multiply the equation (2.16) on right by Q'21, then it becomes 

where To = QoQ'21, Tl = Q1Q'21 and I is the Unit matrix. By introducing the 

auxiliary vector c.p = >'1/;, this equation can be rewritten in the equivalent linear 

form as, 

[ 
0 -To 1 [1/; '1'] = >'[1/; '1']. 
I -Tl 

(2.17) 
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This linear eigenvalue problem has 2N + 2 finite solutions for A [37]. Every (A.1/J) 

that satisfies equation (2.17) does satisfy equation (2.16), and the converse also is 

true. Hence, Q(A) has 2N + 2 eigenvalues. Note that the square matrix involved in 

equation (2.17) is simple iff multiple eigenvalues would have independent multiple 

eigenvectors. ¢ 

Theorem 4 If Qo is non-singular and Q2 is singular with rank N + 1 - r2, then 

the number of eigenvalues of Q(A) is 2N + 2 - r2' 

Proof Since Qo is non-singular, by Theorem 1, A = 0 is not an eigenvalue of 

Q(A). Let us, then, introduce the auxiliary variable, = 1/ A and, transform the 

variable to " by substitution. Then, we get, 

(2.18) 

For every (A, 1/1 ) satisfying (2.16), there exists a , = 1/>., such that b, tP) satisfies 

the new quadratic eigenvalue problem (2.18). And, for every b =f 0, t/J) satisfying 

(2.18), there exists a A = 1/" such that (A, 1/1) satisfies (2.16). Hence, the eigen­

values of (2.16) are the non-zero eigenvalues of (2.18). Applying Theorems 2, 3, 

in the case of (2.18), it can be said the non-zero eigenvalues of (2.18) are indeed, 

2N + 2 - r2. Hence, the result. ¢ 

Theorem 5 If Qo is singular with a rank N + 1 - ro and Q2 is singular with a rank 

N + 1- r2, then Q(A) has (i) ro zero-eigenvalues, and (ii) 2N + 2 - ro - r2 non-zero 

eigenvalues. 

Proof Since Qo is singular, applying Theorem 2, part (i) is proved. In order 

to prove (ii), introduce an auxiliary variable, = f:~~~, where () is arbitrary. () can 

be so chosen that, for every A from a finite set of values, the corresponding, exists. 

A can be expressed in terms of, as, 

(2.19) 
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Substituting this in (2.16), we get 

(2.20) 

The parameter () is so chosen that (Qo + ()Ql + ()2Q2) is non-singular( () =1= 0,1). 

Applying Theorem 3, we can say that equation (2.20) has 2N + 2 eigenvalues. Also, 

it can be seen by substitution, of those 2N +2 eigenvalues r2 are multiple eigenvalues 

at , = -1 and ro are multiple eigenvalues at , = l. 

Now, for every ()..,'r/J) satisfying (2.16), there exists a unique (','r/J) that satisfies 

(2.20). Also, for every (, =1= -1,'r/J), there exists a corresponding unique ()..,'r/J) 

satisfying (2.16). Hence, the )..'s corresponding to the ,'s that are not equal to -1, 

are all the eigenvalues of (2.16). When, = 1, the corresponding).. = O. Hence, the 

result. <> 

2.5 Further notes on stability and spectral anal-

• 
YSIS 

There is another way of looking at the stability problem, though it is a conjecture 

and not a rigorous proof. Let qo, ql, ... ,qN be the marginal steady state probabilities 

of the operative states. Then, 
00 

qi = LPi,j 
j=O 

Also, let the row vector v be 

00 

v = (qo, ql, ... , qN) = L v j 
j=O 

Now, consider the process X is stable, but is driven to the verge of instability. This 

can be done by tuning A, Band C accordingly. In this state, it is possible to 

assume that the process, still stable, yet only negligibly rarely visits the states that 

are below j = M. This must be true since, otherwise we can not term this as at the 
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verge of instability. In this state, a simple expression is possible for the probabilities, 

qi, given by, 

v(A - DA + B - DB + C - DC) = 0; ve = 1 . (2.21) 

The matrix (A - DA + B - DB + C - DC) is singular and normally of rank S. 

Hence, equations (2.21) can be solved uniquely for v. 

Also, since the Markov process X is stable, we also have, 

qi ~ 0 ; i = 0, 1, ... , N . (2.22) 

Since, in this state, the process is assumed to dwell in the region, j ~ M, the 

average drift up by which the process moves upwards and the average drift down 

by which the process moves downwards are v Be and vCe respectively. Since, X is 

stable, the average drift up should be strictly less the average drift down. Hence, 

we get, 

vBe < vCe. (2.23) 

Thus, we have arrived at an alternate stability condition defined by the equations 

(2.21, 2.22), together with the inequality condition (2.23). 

We feel this is a necessary condition, and not sure if it is also sufficient. Work 

is underway to prove mathematically, if this condition is necessary, or sufficient, or 

both. This condition may be equivalent to the proposition 1. Also, it is worth to 

notice this condition also does not depend on the j-dependent Aj, Bj and Cj . 

It is to be noted that A = 1 satisfies the equation (2.11) and hence it is an 

eigenvalue for all possible values of A, Band C. Numerical experiments have shown 

that an ergodic process may exhibit complex conjugate eigenvalues inside the unit 

disk. However, the eigenvalue with the largest modulus less than 1 is always real( it 

is the Perron-Frobenius eigenvalue of Neuts' matrix R [51] of the matrix-geometric 

method). When the parameters are varied in such a way the inequality (2.23) is 

violated, at the point of violation that eigenvalue leaves the unit circle, passing 
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through the point 1. Here are two eigenvalues equal to 1, exactly at the point of 

violation. <> 

2.5.1 The dual process X 

It is interesting, here, to examine a related irreducible process, X, which we call 

the dual of the process X. The j-independent upward transition rates in X are the 

j-independent downward transition rates in X, and the j-independent downward 

transition rates in X are the j-independent upward transition rates in X. The j­

independent lateral transitions are the same in both the processes. X is obtained by 

simply interchanging the matrices Band C in X. The j-dependent transition rate 

matrices of X can be quite arbitrary, but ensuring the irreducibility of the process. 

The characteristic matrix polynomial of X is then given by 

(2.24) 

The eigenvalues and eigenvectors of Q(fJ) satisfy 

4>Q(fJ) = 0 ; det[Q(fJ)] = 0 . (2.25) 

It can be shown as before that, X is ergodic if and only if Q(fJ) has N + 1 

number of eigenvalues inside its unit circle, and it can not have greater than N + 1 

eigenvalues inside its unit circle. 

It can now be conjuctured that between X and X, if one is stable, automatically 

the other is unstable. (Though it is possible that both X and X are unstable, this 

might happen, for example, when the inequality (2.23) becomes equality. And, there 

may be other situations in which both X and X are unstable.) That is so, because 

the equations (2.21) for v are the same for both the processes but the stability 

condition for X is exactly the opposite of (2.23). If (2.23) is satisfied X is stable 

and X is unstable. If (2.23) is violated and the opposite of it is valid then the reverse 

is true. <> 
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There is a close relationship between the eigenvalue-eigenvectors of Q(A) and 

those of Q((3). For every non-zero eigenvalue-eigenvector pair, (A, 1/1), of Q(A), there 

exist a unique (3 = 1/ A and a 4> = 1/1 that satisfy (2.25), hence that ((3, ¢) is an 

eigenvalue-eigenvector pair of Q((3). Thus, the number of non-zero eigenvalues of 

Q(A) is the same as those of Q((3). 

The following three statements are proved earlier, and also numerically verified 

by limited examples: 

(a) If Q2 is non-singular then Q(A) has 2N + 2 number of eigenvalues. If Qo is 

non-singular then Q((3) has 2N + 2 number of eigenvalues. 

(b) If Qo has a rank N + 1 - TO then Q(A) has TO number of zero-eigenvalues 

[37], that would also correspond to Q((3) having 2( N + 1) - TO number of 

eigenvalues. On the other hand, if Q2 has a rank N + 1 - T2 then Q((3) will 

have T2 number of zero-eigenvalues which implies Q(A) will have 2(N + 1) -T2 

number of eigenvalues. 

(c) Thus, if Qo has a rank N + 1 - TO and Q2 has a rank N + 1 - T2 then, Q(A) 

will have To number of zero-eigenvalues and 2(N + 1) - To - T2 number of 

non-zero eigenvalues, whereas Q((3) will have T2 number of zero-eigenvalues 

and 2( N + 1) - TO - T2 number of non-zero eigenvalues. 

In the following analysis, assume Qo has a rank N + 1 - TO and Q2 has a rank 

N + 1- T2, where 0 ~ TO, T2 ~ N + 1. Then, if X is stable, the number of eigenvalues 

within its unit circle is N + 1, exactly on the unit circle is one(A = 1.0), and the 

remaining eigenvalues, N - T2 in number, are outside the unit circle. The reciprocals 

of these last N - T2 eigenvalues are the non-zero eigenvalues of Q((3) within its 

unit circle. Q((3) also has T2 number of zero-eigenvalues. Thus, total number of 

eigenvalues of Q((3) that are strictly within its unit circle is N - T2 + T2 = N. Hence, 
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X is unstable. It is also possible to prove, in similar lines, that if X is stable that 

implies X is unstable. Now, we have, 

Proposition 2 Between the irreducible processes X and X, if one is ergodic that 

automatically implies that the other is unstable. 

In order to arrive at another result, let X have c number of eigenvalues inside its 

unit circle. There is one eigenvalue exactly on the unit circle. Thus, the number of 

eigenvalues strictly outside the uni t circle is 2N + 2 - r2 - 1- c. Hence, in the case of 

X, the number of eigenvalues strictly within its unit circle is, r2 zero-eigenvalues plus 

2N + 2 - r2 -1- c non-zero ones. That is a total of 2N + 2 -1- c eigenvalues strictly 

inside the unit circle of Q(f3). We have already hypothesized that this number can 

not be greater than N + 1. That is possible only if c is not less than N. Hence, the 

following assertion, 

Proposition 3 Given that X is irreducible and a unique non-negative solution ex­

ists for (2.21), X is stable if and only if its characteristic polynomial Q(~) has 

exactly N + 1 eigenvalues strictly within the unit circle, and, X is unstable if and 

only if Q(~) has exactly N eigenvalues strictly within the unit circle. 

2.6 Computation 

However, the computational aspects are not quite trivial. The spectral expansion 

procedure consists of the following steps: 

(1) Compute the eigenvalues, Ak, and the corresponding eigenvectors, "pk' of Q(~). 

If c = N, stop; a steady-state distribution does not exist. If c = N + 1, the 

process X is ergodic and a steady-state distribution does exist; proceed to 

step 2. If c =I N + 1 and c =I N, then stop; the eigenvalue computation is not 

accurate. 



Chapter 2 Spectral Expansion 25 

(2) Obtain VM-l and VM from the equation (2.14) in terms of the coeffients a/c. 

Now, solve the finite set of linear equations (2.6) and (2.8) for the constants 

ale and the vectors Vj, j ~ M - 2. The solution is done. 

(3) Use the obtained solution for the purpose of determining various moments, 

marginal distributions, percentiles and other system performance measures 

that are of interest. 

Step 1 is performed as follows: The 'brute force' approach which relies on first 

evaluating the scalar polynomial det[Q(A)], then finding its roots may be computa­

tionally inefficient and very much time consuming. An alternative which is preferable 

in most cases is to reduce the quadratic eigenvalue-eigenvector problem 

(2.26) 

to a linear one of the form yQ = AY, where Q is a matrix of size (2N + 2) X (2N + 

2). Efficient and highly accurate techniques such as the QR algorithm or the QZ 

algorithm, exist for the solution of the the latter problem. 

This linearisation can be achieved quite easily when at least one of the matrices 

Band C is non-singular. Indeed, suppose that C-1 = Q:;1 exists. After multiplying 

(2.26) on the right by Q:;I, it becomes 

(2.27) 

where To = QoQ"21 and Tl = Q1 Q"21. I is the unit matrix. By introducing the 

vector'P = A1jJ, equation (2.26) can be rewritten in the equivalent linear form as 

[ 
0 -To 1 [1jJ 'Pl = A[1jJ 'Pl· 
I -T1 

(2.28) 

The number of eigenvalues of that linear form is 2N + 2 and hence those of (2.26) 

should be 2N + 2 if Q2 is non-singular. 
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If C = Q2 is singular but B = Qo is not, then it is proposed to solve the equation 

(2.25) for {3's and the corresponding ¢'s, following the above procedure. Since Qo is 

non-singular the number of {3's would be 2N + 2 of which r2 are zeroes and others 

non-zero. The non-zero (3's, 2N + 2 - r2 in number, can then be inverted to get the 

non-zero >.'s of (2.26). Since Qo is non-singular Q(>.) can not have zer<reigenvalues. 

Hence, the total eigenvalues of Q(>'), in this case, has to be 2N + 2 - r2. 

If both Qo and Q2 are singular, then the desired result is achieved by introducing 

an auxiliary variable [31] , = (() + >')/(() - >.) by substituting the following in (2.26), 

Then, we get 

>. = Ob -1) 
b + 1) 

(2.29) 

(2.30) 

Also let S = Qo + ()Ql + 02Q2, the parameter 0 is arbitrary and it is so chosen that 

8 is non-singular(O =I 0,1). It is now easy to see that for every>. satisfying (2.26)' 

there exists a , satisfying (2.30). Hence, it is possible to get all the eigenvalues of 

Q(>.) when all the eigenvalues of (2.30) are known. Let T2 = (Qo - OQl + 02Q2)8- 1
, 

T3 = 2(Qo - ()2Q2)S-1 and r.p = ,,,p. Then, we get 

(2.31 ) 

The equation (2.31) is solved for all the ,'s and 'I/;'s. >.'s are then derived from 

,'s, by equation (2.29). It can be seen that equation (2.30) has a total of 2N + 2 

eigenvalues, of them ro are multiple eigenvalues at , = 1, r2 are multiple eigenvalues 

at , = -1. When, = 1 that corresponds to >. = 0, from equation (2.29). And, 

when, = -1, a corresponding>. does not exist, and for every other value of " a 

corresponding>. does exist. Hence, Q(>.) will have a total of 2N + 2 - r2 eigenvalues 

of which ro are zero-eigenvalues. 
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Step 2 is to compute M (N + 1) unknowns, some of them complex, from M (N + 1) 

independent linear simultaneous equations. It can be expensive if M is large. Some 

simplification is possible. From (2.14), VM and VM-l can be expressed in terms of 

the N + 1 constants, ak. If the matrices Bj (j = 0,1, ... , M - 2) are non-singular, 

then it is possible to express the vectors VM-2, VM-3, ..• , Vo in terms of VM-l and 

VM, and thus in terms of ak's, using the equations (2.6) for (j = M - 1, M, ... , 1). 

One is then left with the vector equation (2.6) for j = 0, plus (2.8). These are just a 

total of N + 1 independent linear simultaneous equations for N + 1 unknowns, ak's. 

If I is the number of real eigenvalues and m is the number of complex eigenvalues, 

strictly inside the unit circle, of Q(>.) then, Vj can also be expressed as, 

1-1 m-l 
"" ~/. >.j-M+l + "" ~/. d-M+1 

Vj = L..J ar,k'f'r,k r,k L..J ac,k'f'c,k/\c,k , (2.32) 
k=O k=O 

where ar,k, 1/;r,k' >'r,k (k = 0,1, ... , 1 - 1) are real and ac,k, 1/;c,k' >'c,k (k = 

0,1, ... , m-l) are complex. Number of unknowns are, 1 real and m complex(l +m = 

N + 1), amounting to 1 + 2m real unknowns. m is either ° or even and the com­

plex eigenvalue-eigenvectors occur in conjugates. That is to say, by suitably num-

bering, >'c,l = >.~,o , 1/; c,l = 1/;;,0 ; >'c,3 = >'~,2 , 1/; c,3 = 'Ij;~,2 ; ... ; >'c,m-l = 

Also, ac,1 = a~,o , a c,3 = a:,2 , * ... , ac,m-l = ac,m-2· 

Equation (2.32) can then be modified as, 

1-1 m/2-1 
"" ~/. ,j-M+l 2 "" [ R (~/. \j-M+1) I (~/. >.j-M+l)] 

Vj = L..J Xk'f'r,k/\r,k + L..J XI+2k e 'f'c,2k/\c,2k - XI+2k+1 m 'f'c,2k c,2k 
k=O k=O 

(2.33) 

in which, Xk are N + 1 unknowns that are real, Re stands for the real part of its 

succeeding term in brackets and 1m stands for the imaginary part. The coefficients 

Xk are related to ar,k and ac,k as: Xk = ar,k for k = 0,1, ... , 1 - 1. And, XI 

Re(ac,o) , XI+1 = Im(ac,o) ; XI+2 = Re(ac,2) , XI+3 = Im(ac,2) ; ... ; XI+m-2 

Re(ac,m-d , XI+m-l = Im(ac,m-l). The problem is now reduced to finding N + 1 

real unknowns by solving N + 1 independent linear simultaneous equations. 
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When xk '8 are known, the required performance measures of the system can be 

computed quite easily with aid of (2.33). 

2.7 Generalisations 

Several generalisations and extensions of the model described above are possible. An 

extension is presented in a later chapter. That is on extending spectral expansion 

solution to Markov processes of finite state space. A generalisation is taken up in 

this section. This generalisation incorporates bounded multi-step jumps in J, in 

either direction. 

2.7.1 Multi-step jumps in J 

This leads to a Markov process Y = {[J(t), J(t)]; t 2 O}, on the state space 

{O, 1, ... , N} x {O, 1, ... }, where the variable J(t) may jump by arbitrary, but 

bounded amounts in either direction. Y evolves due to the following possible tran­

sitions: 

(a) Aj - purely lateral transitions - From state (i,j) to state (k,j) (0 S i, k S 

N ; i =1= k ; j = 0,1, ... ); 

(b) Bj,s - bounded s-step upward transitions - From state (i, j) to state (k, j + 8) 

(0 S i, k S N; 1 S 8 S Yl ; Yl 2 1 ; j = 0,1, ... ); 

(c) Cj,s - bounded s-step downward transitions - From state (i,j) to state (k,j-8) 

(0 S i, k s N ; 8 S j ; 1 S 8 S Yz ; Yz 2 1 ; j = 1,2, ... ). 

Aj, Bj,s (8 = 1,2, ... , yI) and Cj,s (8 = 1,2, ... , Yz) are the transition rate 

matrices associated with (a), (b) and (c) respectively. Cj,s = 0 if j < 8. We assume 

there is a threshold M, M 2 Yl, such that 

(2.34) 
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for the possible values of s. 

Defining again the diagonal matrices Df, Dfs and Df.s, whose ith diagonal ele­

ment is equal to the ith row sum of Aj, Bj,s and Cj,s, respectively. Then the balance 

equations are, 

m m m m 
vj[Dt+ L: DfB+ L: Df.,,] = L: vj-sBj-s,s+vjAj+ L: vj+SCj+S,B ; j = 0,1, .... M-l 

8=1 s=1 B=1 s=1 
(2.35) 

It is assumed Vj-B = 0 if j < s. The corresponding j-independent set is, 

Yl Y2 Yl Y2 

Vj[DA + L: D~ + L: D~] = L: Vj-sBa + VjA + L: Vj+sCa , j ~ M (2.36) 
B=1 s=1 8=1 

where DA , D~ and D~ are the j-independent versions of the diagonal matrices, Df, 

D?,s and Dr.s respectively. 

In addition, we have for the sum of all probabilities, 

00 

L:vje = 1.0. (2.37) 
j=O 

As before, (2.36) can be rewritten as a vector difference equation, of order y = 

Y1 + Y2, with constant coefficients: 

Y 

L: Vj+kQk = 0 ; j ~ M - Y1 (2.38) 
k=O 

Here, Qk = By1-k for k = 0,1, ... , Y1 - 1; QYI = A - DA - E~~1 D~ - E~~1 Df ; 

and Qk = Ck- Y1 for k = Y1 + 1, Y1 + 2, ... ,Y1 + Y2· 

The corresponding matrix polynomial is, 

Y 

Q(A} = L: QkAk . (2.39) 
k=O 

The development, hence forth, is similar to that in section 2.3. The normalizeable 

solution of equation (2.36) is of the form, 

(2.40) 
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where Ale are all the eigenvalues, c in number, of Q(A) strictly inside the unit disk ..pic 

are the corresponding independent eigenvectors, and ale are the arbitrary constants 

(k = 0,1, ... , c - 1). The latter constants are determined with the aid of the state­

dependent balance equations, that is (2.35) for j :::; M - 1, and the normalisation 

equation. In this case, following the same line of thought as in section 2.6., it 

is possible to find the value of c that is necessary and sufficient condition for the 

ergodicity of Y. This time, the number oflinear simultaneous equations is M(N + 1) 

from (2.35), and 1 from the (2.37) out of which M(N + 1) are linearly independent. 

And, we have the unknowns (M - yt)(N + 1), the probabilities of states below 

(j < M - Y1), and the c unknowns. These equations can have unique solution if and 

only if (M - yt)(N + 1) + c = M(N + 1), or, equivalently c = Yl(N + 1). Thus, 

Proposition 4 The condition the number of eigenvalues of Q(A) strictly inside the 

unit disk, c = Yl (N + 1), is necessary and sufficient for the ergodicity of the irre-

ducible Markov process Y. 

It is worth having another look at the stability properties of Y. Let us define 

an irreducible process Y, the dual process of Y. In Y, the B~ (s = 1,2,···,yd 

are the downward transition rate matrices and the C~ (s = 1,2, ... , Y2) are the 

upward transition rate matrices. Since the stability condition depends only on the 

j-independent matrices A, Ba and Ca, and it does not depend on the j-dependent 

versions, we need not go at length to define the j-dependent matrices for Y. 

Define the row vector, v = (qo, q1, ... , qN). Following the same line of argument 

as in section 2.3, the necessary condition for the stability of Y is the existence of 

solution for the following equations, 

Yl ~ 

v[A - DA + 2:)Bs - D~) + L:(Cs - D~)l = 0; ve = 0; (2.41) 
s=1 8=1 

with the condition, 

qi 2:: ° j i = 0,1 ... , N ; (2.42) 
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combined with the inequality condition, 

YI Y2 

v[E sBa]e < v[E sCale . (2.43) 
a=1 

Similarly, the necessary condition for Y to be stable may be the existence of the 

solution for (2.41, 2.42), and the opposite of (2.43) being valid. Hence, we ha.ve 

Proposition 5 Between the irreducible processes Y and Y, if one is ergodic that 

automatically implies that the other is unstable. 

Also, it is possible to write the characteristic polynomial Q(>.) of Y, as 

k=O 

and analyse the relationship between the eigenvalue-eigenvectors of Q(>.) and Q(,X). 

We may workout in similar lines as in section 2.3 and conclude, 

Proposition 6 Given Y is irreducible and a unique non-negative solution exists for 

(2.41), Y is stable if and only if its characteristic polynomial Q(,X) has Yl(N + 1) 

number of eigenvalues strictly within the unit circle, and, Y is unstable if and only 

if Q( >.) has exactly Yl (N + 1) - 1 eigenvalues inside the unit circle. 

For computational purposes, the polynomial eigenvalue-eigenvector problem of 

degree t can be transformed into a linear one in much the same way as in section 

2.6. For example, suppose that Qy is non-singular and multiply (2.38) on the right 

by Q:;;t. That leads to the problem 

y-1 

'l/J[E Tk>.k + I>.Y] = 0, 
k=O 

where Tk = QkQ;1. Introducing the vectors 'Pk = >.k'l/J, k 

obtain the equivalent linear form 

o 

I 0 

(2.44) 

1,2, ... ,y - 1, we 

[~CP1 .,. cpy-d = >'[~ CPl '" cpy-d . (2.45) 

I -TY-1 
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Other transformations to linear form, quite similar to those in section 2.6, are pos­

sible when Qy is singular and Qo is not, or when both Qo and Qy are singular. 

2.8 Conclusions 

The mathematics of the spectral expansion method, in a general form, has been 

presented in this chapter. Further generalisation is also possible. For example, the 

spectral expansion solution is essentially for the equations (2.7). Hence, as long as 

these equations (2.7) are satisfied by the general solution, the probabilities below 

j < M - 1, can be more arbitrarily related than in equations (2.6) of section 2.3. 

Similar extension is possible for the model in section 2.7. 

Several useful conclusions regarding the nature of the characteristic equation and 

its eigenvalue-eigenvectors are drawn. An efficient computation algorithm has been 

described in a good detail, this can serve as a guide to modellers interested in using 

the method. Accurate eigenvalue-eigenvectors are necessary since the performance 

measures can be very sensitive to them. The eigenvalue-eigenvector routines in the 

available packages such as NAG, seem to be quite good towards this end. 

A generalisation covering multi-step jumps in the random variable J(t), has been 

described and solved. Perhaps, it is possible to further explore the relationship be­

tween the processes X and X, and, between Y and Y. In particular, it is interesting 

to see under what conditions, these are unstable. 

Several applications, extensions and analyses are presented in the later chapters. 

2.9 Contributions 

The contributions in this chapter are, 
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• Making use of the spectral expansion solution for v j, for the process X, an 

efficient procedure is developed for the computation of the steady state prob­

abilities. Required steady state performance measures can be computed using 

these probabilities. 

• The process Y is defined and its spectral expansion solution is formulated. 

Efficient computational procedure for steady state probabilities is are also 

developed. 

• The spectral and stability analyses of the processes X and Yare developed. 

Some of these contributions have appeared in our papers [4, 5]. 
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Examples 

3.1 Introduction 

The mathematics of the spectral expansion method has been described in a good 

detail in the previous chapter. This chapter is intended to illustrate how to apply this 

method to model and analyse given systems. This is done by taking two non-trivial 

examples. These systems are chosen quite different from each other, to demonstrate 

the use of spectral expansion for diverse of applications. The first example is a 

homogeneous multiprocessor system with unbounded queueing capacity, serving a 

stream of incoming jobs. The processors are prone to breakdowns from time to time, 

and failed processors are repaired. In such a sytem, the steady-state performance 

measures are computed using the formulae obtained in the previous chapter. The 

other example, is a series of two stages of service in tandem, with a finite intermediate 

waiting room, processing incoming requests sequentially in the same order. 

34 
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3.2 A homogeneous multiprocessor system 

The system under consideration is a homogeneous multiprocessor \\'ith N identical 

processors serving a common, unbounded job queue. This is illustrated in Figure 1. 

The processors break down from time to time. Single and independent failures of 

servers, as well as multiple and simultaneous failures are possible. Failed processors 

return to an operative state after being repaired. Single, independent repairs of 

processors as well as multiple, simultaneous repairs are allowed. When operative, 

each processor serves jobs, one at a time, and each job is allowed to occupy at most 

one operative processor at a time. The policy concerning services interrupted by 

breakdowns is either resume, or repeat with re-sampling. Failure, repair and service 

times are assumed to be exponentially distributed. The system is illustrated in 

figure 1. 

This sytem is modelled by spectral expanSIOn. I(t) is the operative state of 

the system, representing the number of operative processors at time t. I(t) varies 

from a to N. J(t) is the number of jobs in the system at time t, including those 

currently being served. The irreducible Markov process representing the system is 

given by, X = {[I(t), J(t)]; t ~ a}, with state space {a, 1, ... ,N} x {a, 1, ... }. Jobs 

are assumed to arrive according to an independent Poisson process with rate (7i when 

the operative state I(t) = i. Two kinds of failures are possible. One is, individual 

processors break down independently at rate e and are repaired independently at 

rate T/. In addition, there can be 'global' simultaneous breakdowns of all currently 

operative processors, at rate eo, and 'global' simultaneous repairs of all currently 

inoperative processors, at rate 'r/N. When a new job arrives or when a completed 

job departs from the system, the operative state does not change, unless there is 

an independent coincidence towards such a change. Hence, change in the operative 

state of the system is reflected only in the matrices A and Ai' 
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Processors 

departures 

• 
job arrivals ®breakdown 

• 

Figure 3.1: A homogeneous multiprocessor subject to breakdowns. 
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The one-step upward transitions are created by the arrivals of single jobs. Hence. 

Band B j , the one-step upward transition rate matrices are given by, 

(3.1) 

This is valid for all values of j (j = 0,1, ... ). 

The one-step downward transitions take place by the departures of single jobs, 

after their service completion. C and Cj are the one-step downward transition rate 

matrices. Let /-l be the service rate of an operative processor. The departure rate 

of jobs at a time t depends on I(t) = i and J(t) = j, and that is given by Cj(i,i). 

If i > j, then every job has a processor for getting service, and not all operative 

processors are occupied, hence the departure rate, Cj(i, i) = j/-l. On the other hand, 

if i ~ j, then all the operative processors are occupied by jobs, hence the departure 

rate, Cj(i, i) = i/-l. Notice, Cj(i, i) does not depend on j if j ~ i. Hence, Cj does 

not depend on j if j ~ N. So, we have, 

Cj diag[O, min(j, 1)/-l, min(j, 2)/-l, ... , min(j, N)/-l] ; ° < j < N , 

C diag[O, /-l, 2/-l, ... , N /-l] ; j ~ N . (3.2) 

Co is equal to 0. 

In order to facilitate a comparison study, in addition to the performance eval­

uation, we take up three different types. Each of these three is distinguished by 

its breakdown and repair environment, i.e. by the form of the matrices A and A j • 

These three environment types are: 

• Type 1. In this environment, processors breakdown independently with a rate 

~ per processor. Each inoperative processor is repaired at rate 1]. There are 

no simultaneous or correlated breakdowns or repairs, of multiple processors. 
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The matrices Ai and A are then given by, 

o NTJ 

~ 0 (N - l)TJ 

A = Ai (j = 0,1, ... ) = o 

TJ 

N~ 0 

38 

(3.3) 

• Type 2. Independent breakdowns and repans as in Type 1, plus, 'global' 

breakdowns occuring at rate ~o. i.e, all currently operative processors break 

down together at this rate, apart from their independent breakdowns. Here: 

0 NTJ 

~o + ~ 0 (N-1)TJ 

A = Ai (j = 0,1, ... ) = ~o 2~ 0 (3.4) 

TJ 

~o N~ 0 

• Type 3. As in Type 2, but in addition, it is possible for all currently inoperative 

processors to be repaired simultaneously. This 'global' repair occurs at a rate 

"IN, on the inoperative processors: 

0 NTJ TJN 

~o + ~ 0 (N-1)TJ TJN 

A = AJ· (j = 0,1, ... ) = ~o 2~ 0 (3.5) 

TJ + TJN 

~o N~ 0 

The threshold, M, is then given by M = N. And, the spectral expansion solution 

is valid from j = M - 1 = N - 1. 

In these examples, since the operative state changes are caused only by the 

matrix A, it is possible to find simple expressions for the steady state distribution 
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of the number of operative processors, and the total average service rate of the 

multiprocessor. Let v be the marginal distribution of the number of operative 

processors. Then, 

v = (QO,Ql, ... ,QN) = LVj. 
j=O 

This is the stationary probability vector of the matrix A - DA, and can be obtained 

by solving the equations, 

v( A - DA) = 0 ; ve = 1 . (3.6) 

Then, the total average service rate, termed as the service capacity of the multipro­

cessor, is vCe and the average incoming load is v Be. It can be asserted that the 

system is stable if, and only if, the average incoming load is less than the average 

service capacity: 

vBe < vCe. (3.7) 

3.2.1 Performance measures and comparisons 

Several sets of examples are considered to illustate the method. The results of each 

set is plotted in a figure. In order to make the comparisons as fair as possible, the 

parameters of the different systems that are compared, are chosen in such a way that, 

(i) they have the same number of processors of the same service rate, (ii) the service 

capacity of these, i.e. the right-hand side of (3.7), are the same. We have chosen 

to achieve this by judicious changes in the repair parameters. Thus, in Type 2, the 

introduction of global breakdowns eo is compensated by an appropriate increase in 

"7; in Type 3, eo is compensated by a suitably chosen "7N, instead. Consequently, 

given identical arrival streams, the processing capacity and hence the ergodicity 

conditions, are the same for the three systems. Hence, these systems are comparable. 

The arrival rates are independent of the operative state, in Figures 3.2-3.6. Sys­

tems with 10 processors are considered in Figures 3.2, 3.4, 3.5, 3.6, 3.7. 
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Figure 3.2: Average queue size as a function of the arrival rate. Service capac-

ity=6.66667. 
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• E(J) 
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Figure 3.3: Average queue size as a function N, with Nfl fixed. Service capac-

ity=6.66667. 



Chapter 3 Examples 42 

Figure 3.2 illustrates the effect of increasing the arrival rate, (7, on the average 

number of jobs, E( J), in all the systems. In Types 2 and 3, the average failure 

rate and repair rate of a processor are higher than in Type l. This fact reduces the 

variance of the total processing rate in Types 2 and 3, when compared to Type l. At 

the same time, the correlated nature of failures in Types 2 and 3, and the correlated 

nature of repairs in Type 3 tend to increase the variance of the total processing rate 

of Syatem 3 in comparison to that in Type l. In the examples in Figure 3.2, the 

latter factor dominates the former one. This results in an increased variance of the 

total processing rate in Type 3 over that of Type 2, and the latter over Type 1. 

Hence, the queue lengths in Type 1 are the lowest, and the queuelengths in Type 3 

are highest. 

In Figure 3.3, the number of processors and the service rate are varied together, 

so as to keep the product N J..L fixed. The resulting graphs show that, for each 

system, there is an optimal number of processors that minimises the average queue 

size. That fact has been observed before [44], in the case of Type l. The present 

results have two points of interest: First, for low values of N, Types 2 and 3 perform 

better than Type 1, whereas the reverse is true for large N. The likely explanation 

for this is that (i) increasing both the breakdown and repair rates tends to reduce 

the variance of processor availability, while (ii) increasing N tends to make it larger. 

Apparently, (i) is dominant for small Nand (ii) is dominant for large N. 

The second point of interest in Figure 3.3, is that the optimal value of N is larger 

for Type 1 than for Types 2 and 3. This seems counterintuitive, but perhaps the 

explanation lies again with the above trade-off. 

Figures 3.4, 3.5 and 3.6 show conditional and unconditional 95-percentiles, to­

gether with E( J), as functions of the arrival rate, for Types 1, 2 and 3, respectively. 
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Figure 3.4: Conditional and unconditional 95-percentiles, and E(J), as functions of 

the arrival rate, for Type 1. Service capacity=6.66667. 
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Figure 3.5: Conditional and unconditional 95-percentiles, and E(J), as functions of 

the arrival rate, for Type 2. Service capacity=6.66667. 
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Figure 3.6: Conditional and unconditional 95-percentiles, and E( J), as functions of 

the arrival rate, for Type 3. Service capacity=6.66667. 
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The unconditional percentile, J95, is defined by P(J ~ J95) = 0.95, while in 

the conditional percentiles the conditioning is upon the number, m, of the operative 

processors. The figures demonstrate that, in all these systems, the mean can be a 

very poor predictor of the percentiles. Also, it is interesting to observe that although 

Type 1 has the best average performance, it has the worst percentile conditioned 

upon all processors being inoperative (m = 0), as well as the largest spread of 

percentiles. 

In all the above examples, the arrival rate 0' is constant and independent of the 

operative state of the multiprocessor. Figure 3.7 deals with the case of operative 

state dependent arrival rates. In this example, Type 2 with 10 processors is consid­

ered. The arrival rate O'j depends on the operative state i, where i is the number 

of processors in working condition. Hence, the mean arrival rate 0' is given by, 

0' = Ef:o O'j * qi. The arrival rate during operative state i consists of two parts. One 

is the operarive state independent part O't, the other is the operative state dependent 

part i0'2. The latter is taken as proportional to i. The graph is E(J) vs. 0', where 

0' = 0'1 + 0'2. Clearly, O't/O' is the portion of arrival rate the is independent of the 

operative state. In the different graphs, this portion is different. As this portion 

reduces the E( J) reduces. This is quite intuitive. 

It is possible to work out more performance analysis and measures. Since the 

purpose is primarily to demonstrate the method, further analysis is not carried on. 
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Figure 3.7: E(J) vs. (J", with operative state dependent arrivals. Service capac-

ity=6.66667. 
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3.3 Two servers in tandem 

In this section, we take up a two-stage queueing network with a feedback. and a 

finite intermediate waiting room. This network, shown in Figure 3.8, is an expo­

nential service system. Requests arrive at the system as single independent arrivals 

according to a Poisson process. The arrival rate is given by (7. The service rates 

in stages 1 and 2 are J.1,1 and J.1,2, respectively. Each stage has a single server, that 

can process only one request at any time. The principal characteristic of the service 

in this network is blocking. Stage 1 has unbounded waiting room, where as stage 2 

has a finite buffer. When N requests are queued or in service in the second stage, 

the server in the first stage is blocked and ceases to offer service. Service in the first 

stage is resumed when the queue length in the second stage falls to N - l. When 

a request is processed by the server in stage 2, it either comes out of the system, 

or is fed back to stage 1 for re-service, with probabilities 1 - £J and £J, respectively. 

This network was studied by Konheim and Reiser [35]. Neuts [49] studied two-stage 

blocking networks, without feedback, under more general statistical hypothesis. 

This system is modelled in this section, for spectral expansion solution. I (t) 

represents the number of requests in the queue in stage 2, including the one in 

service. I( t) can be considered as the operative state of the Markov process that 

represents the system. We assume this Markov process is irreducible. J(t) is the 

number of requests queued up in stage 1, including the one being served by the 

server. The matrices A and Aj are given by, 

A(i,j) - J.1,2(1 - £J) ; i = 1,2, ... , N ; j = i -1 ; 

A( i, j) 0 , otherwise, and, 

A· J A; j=O,1, .... (3.8) 
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e 

Figure 3.8: Two servers in tandem, with a feedback 
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A is then written as, 

A = Aj (j = 0,1, ... ) = o (3.9) 

One-step upward transitions occur (i) when a new request arrives at stage 1, 

or, (ii) when a request after having processed by stage 2 is fed back to stage 1 for 

re-service. In (i), there is no change in the operative state of the process, whereas, in 

(ii) a change in the operative state occurs along with the one-step upward transition. 

The matrices Band Bj can then be written as, 

B = Bj (j = 0,1, ... ) = (3.10) 

1l2() a 

The one-step downward transitions happen when a request goes from stage 1 to 

stage 2, after its service in stage 1. The C and Cj matrices are, 

o III 

C = Cj (j = 1,2, ... ) = 

with Co = O. Clearly, the threshold, M = 1. 

o III 

o 

III 

o 

(3.11) 
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3.3.1 Numerical results 

Two example networks that fall in this framework are considered. In the first exam­

ple, the first-stage server is much faster than the second-stage server. This would 

need a large buffer space for good utilization. The values we have chosen are: 

iLl = 50.0, iL2 = 2.0, 0 = o. Two different values for the buffer capacity are con­

sidered, N = 50,100. The steady state performance measures computed are, the 

expected number of jobs waiting for service (E(J)) at stage 1, expected number of 

jobs in the buffer (E(I)) waiting for service at stage 2 and the blocking probabil­

ity. Blocking probability, Pb, is the steady state joint probability that the buffer at 

stage 2 is full and the number of jobs waiting for stage 1 service is non-zero. 

Figure 3.9 shows the plot, E(J) vs. u, for the cases with N = 50 and N = 100. 

Figure 3.10 shows the plot E(I) vs. u for the same cases. And, figure 3.11 shows 

the blocking probability vs. u. 

The second example is the same as the example considered by Konheim and 

Reiser [35]. Here, the parameter values are, iLl = 2.0, iL2 = 1.1, 0 = o. Three 

different job arrival rates are considered, u = 0.5,1.0,1.05. The same performance 

measures, as above, are computed for different values of N. These results are shown 

in Figures 3.12, 3.13 and 3.14. 
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Figure 3.10: E(I) VS. a for the example with III = 50, 112 = 2, () = O. 
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Figure 3.11: Blocking probability VS. (J for the example with J1.1 = 50, J1.2 = 2, 0 = O. 
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3.4 Conclusions 

This Chapter is intended to demonstrate the use of spectral expanSIOn solution 

discussed in Chapter 2. This is accomplished by taking up two non-trivial examples. 

The first one is a homogeneous multiprocessor with general failures and repairs of 

processors, serving a Poisson stream of jobs. Several types of failure and repair 

environments are considered. These systems are evaluated for performance and 

dependability. Some of the results are plotted in figures, though more results can 

be generated. However, the model can be generalised, by allowing more complex 

operative states for the multiprocessor, to include arrivals, services, failures and 

repairs, all these of Phase type and operative state dependent. 

The other example is the two stage network considered by Konheim and Reiser 

[35]. This network is evaluated for several sets of parameter values. The numerical 

performance results are shown in the figures. 

More complicated applications of spectral expansion are dealt with, successfully 

in the following Chapters. There are many other applications and examples solved 

by other authors, some of them can be found in [13, 14]. Looking at the very 

distinct problems solved by spectral expansion, it can be said that the method is 

quite general and has a wide range of applicability. 

3.5 Contributions 

The contributions of this chapter are concerned with the application of spectral 

expansion method to two non-trivial problems. They are, 

• A homogeneous multiprocessor system serving a stream of jobs, with un­

bounded queueing capacity is analysed for steady state performance and de­

pendability. This is done in the presence of independent, as well as correlated 
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failures and repairs of the processors. Several types of systems are considered 

and some of their performance characteristics are plotted . 

• The other example is the two stage network considered by Konheim and Reiser 

[35]. This network is evaluated for several sets of parameter values. 

The work on homogeneous multiprocessor system, has appeared in our paper [5]. 



Chapter 4 

Spectral Expansion for Markov 

Processes of Finite State Space 

4.1 Introduction 

The spectral expansion methodology for the steady state solution of ergodic, irre­

ducible Markov processes of unbounded state space, has been the subject in Chap­

ter 2. Stability and eigen analysis of those Markov processes has also been carried 

out. Chapter 3 has presented some illustrative applications on how to apply those 

solution techniques. As has been said earlier, several extensions of spectral expan­

sion are possible. One such extension is the subject of this Chapter. 

The Markov models of many practical systems have a finite state space, rather 

than infinite one. For example, if the homogeneous multiprocessor system has a 

fini te buffer where the incoming jobs queue up, and if the incoming jobs are rejected 

or lost when this buffer is full, then what results is a Markov process of a finite state 

space. More practical systems are of this type, compared to the types covered in 

Chapters 2 and 3. Hence, it is important to find efficient solution techniques to such 

problems, if they exist. The following section describes the Markov model of such 

60 
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processes. In section 4.3 and 4.4 the steady state solution and computational aspects 

of such a model are developed. Section 4.5 briefly describes two alternate methods 

with some comparative remarks. We illustrate the application of this solution by 

an example system, this time a finite capacity homogeneous multiprocessor system 

with breakdowns and repairs. This example is presented in section 4.6. 

4.2 The Markov model 

Let us recall the Quasi-Birth-and-Death process X described in Chapter 2. The 

random variable J (t) of X is unbounded. Let this process be modified by imposing 

a limit on the maximum value of J(t), and let that limit be L. This results in a 

Markov process Z, Z = ([I(t), J(t)] ; t 2:: O}, of finite state space. We assume Z is 

irreducible, with a state space {O, 1, ... , N} x {O, 1, ... , L}. This can be represented 

on a finite rectangular lattice strip, with I(t) varying in the lateral or horizontal 

direction and J(t) in the vertical direction. The possible transitions in this Markov 

process are: 

(a) Aj - purely lateral transitions - from state (i,j) to state (k,j), (0 < i, k < 

N; i -# k j j = 0,1, ... , L)j 

(b) Bj - one-step upward transitions - from state (i,j) to state (k,j + 1), (0 < 

i, k ~ N; j = 0,1, ... , L - 1 ); 

(c) Cj - one-step downward transitions - from state (i,j) to state (k,j - 1), 

(0 ~ i, k ~ N; j = 1,2, ... , L); 

Here too, the possible change in J in any transition is either +1 or 0 or -l. 

A' B, and C
3
' are again the transition rate matrices, square matrices each of size 

3' 3 

(N + 1) x (N + 1), associated with (a), (b) and (c) respectively. Thus, Aj(i, k), (i =f 

k) is the transition rate from state (i,j) to state (k,j), and Aj(i, i) = O. Bj(i, k) is 
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the transition rate from (i,j) to (k,j + 1). Cj(i,k) is the transition rate from (i,j) 

to (k,j - 1), and Co = 0, by definition. We assume the process has a threshold, 

an integer M, (M ~ 1) such that the instantaneous transition rates of (a), (b) and 

(c)donotdependonjwhenL ~ j ~ Minthecaseof{a),L-l ~ j ~ M-l 

in the case of (b), and when L ~ j ~ M for (c). Thus, we get 

Aj A; L ~ j ~ M, 

Bj B; L -1 ~ j ~ M -1, 

C· ) C; L ~ j ~ M. (4.1) 

Clearly, if L -+ 00, the process Z becomes X. For notational convenience, we 

call X, the parent process of Z. In Chapter 2, it was explained that X is stable or 

ergodic if, and only if certain conditions (2.21) and (2.23) are satisfied. Whereas, 

these conditions are not necessary for Z to be stable. If Z is irreducible, Z is stable 

or ergodic. We need to find the steady state probability Pi,j of the state (i,j) in 

terms of the known parameters of the system. Pi,j is defined as: 

Pij = lim P(I(t) = i,J(t) =j); i = O,I, ... ,N; j = O,I, ... ,L. (4.2) 
, t-+oo 

Dt, Df and Df are diagonal matrices defined just as in Chapter 2, but this time 

for j = 0,1, ... ,L. DA, DB and DC are the ones corresponding to the j-independent 

matrices A, Band C respectively, as in Chapter 2. 

4.3 The solution 

The vector Vj is again as defined in Chapter 2, but here, for j = 0,1, ... , L. The 

steady state balance equations, in terms of Vj, can now be written. They are: 

Vj[Dt + Df + Dr] = vj_1Bj _ 1 + vjAj + Vj+lCj+l ; j = 1,2, ... , M -1, (4.4) 
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Vj[DA+DB+DC]=Vj_lB+VjA+Vj+1Cj j=M,M+1, ... ,L-l, (4.5) 

vL[DA + DC] = VL-1B + vLA . (4.6) 

The above are the steady state balance equations, totally L + 1 in the vector 

form, i.e. in v/s, and (L + 1) * (N + 1) in scalar form, i.e. in Pi/so Of them, only 

(L + 1) * (N + 1) - 1 are linearly independent. This is because, the generator matrix 

of Z is singular. For the solution of the probability distribution {PiJ}, we also have 

a normalizing equation, given as, 

L 

LVje = 1.0. (4.7) 
j=O 

The balance equations (4.5), with j-independent coefficients, are finite in number, 

equal to L - M in the vector form in terms of Vj'S, and (L - M) * (N + 1) if written in 

the scalar probability form, i.e. in terms of Pi/so Note, the j-independent balance 

equations of the process X in Chapter 2 are infinite. If L is large, then these 

equations (4.5) would be large in number, though finite. Spectral expansion solution 

for the finite Markov processes is essentially the solution to these j-independent 

balance equations. These equations can be rewritten as, 

VjQo + Vj+1Ql + Vj+2Q2 = 0 j j = M -1, M, ... , L - 2, (4.8) 

where, Qo, Ql and Q2 are as defined in Chapter 2. 

Now, let us write the charactestic matrix polynomials of the processes X and X, 

as given in Chapter 2. They are, respectvely, 

(4.9) 

(4.10) 

The solution of (4.5), and hence the steady state solution of Z, is related to the 

eigenvalue-eigenvectors of Q(>.) and those of Q(f3). As we have seen in Chapter 2, the 

non-zero eigenvalues of Q( >.) are the reciprocals of the non-zero eigenvalues of Q(f3), 
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with the same corresponding eigenvectors. Let p.o., 1/1) be any eigenvalue-eigenvector 

pair of Q(,x), and (13,4» be that of Q(f3). Then, we have, 

1/JQ(,x) = 0 ; det[Q(,x)] = 0 , (4.11) 

4>Q(f3) = 0 ; det[Q(f3)] = 0 . (4.12) 

We have analysed at length in Chapter 2, the nature of the eigenvalues and 

eigenvectors of both Q(,x) and Q(f3). These analyses hold good here too. The 

number of eigenvalues is related to the ranks of matrices Qo and Q2. Let the rank 

of Qo be N + 1 - ro, and the of Q2 be N + 1 - r2, as in Chapter 2. We have 

seen earlier, the number of eigenvalues of Q(,x) is, d = 2N + 2 - r2. If Q(,x) has 

an eigenvalue of multiplicity n, this is counted as n eigenvalues. Also, we assume, 

such a multiple eigenvalue has n independent eigenvectors. We have found that so 

in practice. The number of zero-eigenvalues of Q(f3), is then r2. It can be easily 

seen, following similar analysis as in Chapter 2, for any eigenvalue-eigenvector pair, 

(,xk, 1/Jk)' of Q(,x), Vj = 1/Jk,x{-M+l, for j = M -1, M, ... , L, satisfies equations (4.5). 

This is, then, a particular solution. Hence, for all the d eigenvalue and eigenvector 

pairs of Q(,x), we have d particular solutions of (4.5). 

Let (13k = 0, 4>k) be a zero-eigenvalue and corresponding eigenvector pair of Q(f3). 

Then, Vi = 4>kf3f-i , for j = M - 1, M, ... , L, also satisfies (4.5). Hence, this is a 

particular solution. There would be r2 = 2N + 2 - d number of particular solutions 

of this type, since the number of zero-eigenvalues of Q(f3) is, r2 = 2N + 2 - d. 

Consider ({3k -=1= 0, 4>k), a non-zero eigenvalue and corresponding eigenvector pair 

of Q(f3). Then, there exists a non-zero eigenvalue and corresponding eigenvector 

pair, (,xk,1/Jk)' of Q(,x) such that ,xk = J" and 1/1k = 4>k· Then, Vj = 4>kf3f-i is 

obviously a particular solution of equations (4.5), because it satisfies those equa­

tions. But, this solution is redundant, since this is already reflected or appeared 

in the particular solution given by Vj = 1/Jk,x{-M+1, that uses (,xk,1/1k). Hence, the 
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particular solutions using non-zero eigenvalues of Q(fJ) need not be considered for 

the general solution, if all the non-zero eigenvalues of Q(;\) are considered. 

Therefore, the general solution should involve, every zer<reigenvalue of Q(;\) 

along with its corresponding eigenvector, every zero-eigenvalue of Q(fJ) along with 

its corresponding eigenvector, and every non-zero eigenvalue of Q(;\) or its reciprocal, 

the eigenvalue of Q(fJ), and the corresponding eigenvector. 

The general solution can now be given by, 
d-l r2-1 

. - "" .. /. \j-M+l "" b A.. aL-j . . - M M L v J - L...J ak'f'k/\k + L...J k'f'z,k}Jz,k ,J - - 1, , ... , . (4.13) 
k=O k=O 

where, (oAk, "pk)' k = 0,1, ... ,d - 1, are all the eigenvalue-eigenvector pairs of Q(;\), 

and, (fJz,k, cPz,k)' k = 0,1, ... , r2 - 1, are all the zero-eigenvalue and corresponding 

eigenvector pairs of Q(fJ). ak, k = 0,1, ... , d - 1, and bk, k = 0,1, ... , r2 - 1, 

are arbitrary constants to be determined, so as to satisfy all the remaining balance 

equations and the normalizing equation. Obviously, if r2 = 0, then the second 

summation term in (4.13) vanishes. 

For computational convenience, this general solution can be modified further as 

follows. We have seen in Chapter 2, if X is ergodic, then X is unstable. In such a 

case, Q(oA) has N + 1 eigenvalues with absolute values less than 1.0, and Q(fJ) has 

N + 1 eigenvalues with absolute values less than or equal to 1.0 (one of them equal 

to 1.0). 

On the other hand, if X is ergodic, then X is unstable. In this case, Q(;\) has 

N + 1 eigenvalues with absolute values less than or equal to 1.0 (one of them equal 

to 1.0), and Q(fJ) has N + 1 eigenvalues with absolute values less than 1.0. 

It is possible that both X and X are unstable. For example, that happens if 

(A - DA + B - DB + C - DC) has a rank equal to N - 1. In this case, each of 

the matrix polynomials, Q(;\) and Q(fJ), has N eigenvalues inside the unit circle 

and two eigenvalues equal to 1.0. The eigenvectors corresponding to these two unity 

eigenvalues are different, though they -are the same for both the matrix polynomials. 
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The numerical properties of the solution would be better if care is taken to avoid 

large numbers resulting from the positive powers of eigenvalues greater than 1.0. 

Making such changes, the general solution is modified as, 

N N 
. - ~ ,.1. Ai - M+1 ~ b A.. (3L-i. . - M 1 M L v, - L.Jak'Yk k + L.J k'l'k k ,J - -, , ... , . (4.14) 

k=O k=O 

Here, Ak, k = 0,1, ... , N, are the N + 1 eigenvalues, ofleast absolute values, of Q(A). 

These A's, usually, are all the eigenvalues within the unit circle, and in addition, 

mayor may not include the one on the unit circle. And, (3k, k = 0,1, ... , N, are 

the N + 1 eigenvalues, of least absolute values, of Q({3). These (3's, usually, are, all 

the eigenvalues within the unit circle, and may not or may include the one on the 

unit circle. If Q(A) and Q({3) have two eigenvalues equal to unity, then one of these 

eigenvalues appears as a A and the other appears as a {3. 

The vectors Vii j = M -1, M, ... , L, are known if ak's and bk'S are known. The 

unknown arbitrary constants ak's and bk's are, 2N + 2 in total. Also, the other 

unknowns are, the vectors Vii j = 0,1, ... , M - 2. These M - 2 vectors consist of 

(M - 1) * (N + 1) unknown scalar probabilities. Hence, the total number of scalar 

unknowns are (M + 1) * (N + 1). To get these unknowns, we have equations (4.3, 

4.4,4.6) and the normalizing equation (4.7). These are (M + 1) * (N + 1) + 1 scalar, 

linear, simultaneous equations of which (M + 1) * (N + 1) are independent. Hence, 

a unique solution exists for the unknowns. 

4.4 Computation 

The computational aspects are quite similar to those described in Chapter 2. First, 

all the eigenvalues and eigenvectors of the matrix polynomial Q(A) are obtained, by 

following the linearisation procedure given in Chapter 2. The A's that are greater 

than or equal to 1.0 in absolute value are inverted to get the required non-zero (3's 

of Q({3). The zero-eigenvalues and corresponding eigenvectors of Q({3) are just the 
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zero-eigenvalues and corresponding eigenvectors of the matrix C. These are obtained 

easily, if required, without resorting to quadratic eigenvalue problem. 

Computing (M + 1) * (N + 1) unknowns from (M + 1) * (N + 1) equations 

can be time consuming. Just as in Chapter 2, simplification is possible in com­

putation. From (4.14), VM and VM-l can be expressed linearly in terms of ak's 

and bk's, using the values of the computed eigenvalues and eigenvectors. If Bj's 

(j = M - 2, M - 3, ... ,0) are non-singular, then it is possible to express the vectors 

VM-2, VM-3, ... , Vo, one by one, linearly in terms of ak's and bk's, using the equa-

tions (4.4) for (j = M - 1, M - 2, ... ,1). We have, thus, got all the vi's expressed 

in terms of ak's and bk's. Hence, we just need to compute the 2N + 2 unknown 

arbitrary constants ak, bk (k = 0,1,. " ,N), using the remaining equations (4.3, 4.6, 

4.7). Equations (4.3, 4.6), after substituting for vo, VI, vL and VL-l, are 2N + 2 

linear scalar equations in ak's and bk's. Of them, only 2N + 1 are independent. The 

independent equation (4.7) can also be written in terms of ak's and bk's, by suitable 

substitution. Hence, we now have 2N + 2 independent linear equations with 2N + 2 

If >"k is real then, 'l/Jk and ak would be real. If >"k and >"k+l are complex conjugate 

eigenvalues, then the corresponding eigenvectors, 'l/J k and 'l/J HI' and the correspond­

ing arbitrary constants, ak and aHl, are also complex conjugate pairs. Then, it is 

possible to write, 

. M+l 
2 * Re(ak)Re('l/Jk>..r )-

2 * Im(ak)Im('l/Jk>..r
M

+
1

) • 

Let II be the number of real eigenvalues and ml be the number of complex 

eigenvalues of the N + 1 eigenvalues of Q(>..) that are under consideration. Also, 

let l2 and m2 be those of Q(f3). We know, 11 + ml = l2 + m2 = N + 1 and ml, m2 

are even. Following the same simplification procedure as in Chapter 2, the general 
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solution can be modified as, 

Vj= 

11-1 mt/2-1 

L: Xk1jJr,k)..~~M+t + 2 L: [XIl+2kRe(1jJc,2k)..~;~+t) - Xll+2k+tlm(1jJc,2k)..~;Z'+1)] 
k=O k=O 

h-1 m2/2-1 

+ L Yk4>r,k{3~kj + 2 L [YI2+2kRe(4)c,2k{3~~1) - YI2+2k+dm(4)c,2k{3~:;n] . 
k=O k=O 

( 4.15) 

where Xk, Yk (k = 0,1, ... ,N) are the real arbitrary constants. As before, the suffix 

{r, k} stands for real and {c, k} for complex parameters. 

With all these simplifications, it boils down to determining 2N +2 real unknowns, 

Xk'S and Yk'S, from that many linear simultaneous equations. As can be seen, the 

computational requirements do not depend on L. This is the advantage of this 

method. 

4.5 Alternate methods 

There are alternate methods for this problem, i.e. the steady state solution of the 

process Z. Three methods are briefly explained in this section. One is Seelen's 

method [55], second is the matrix-geometric solution, and the third one is by Meier­

Hellstern [41] using block Gauss-Seidel iteration. 

4.5.1 Seelen's method 

This algorithm is based on the iterative solution of linear simultaneous equations 

by using successive overrelaxation and aggregation. Large number of equations 

can be handled. All the balance equations (4.3, 4.4, 4.5, 4.6, 4.7) are taken up 

together, for the simultaneous solution of all the state probabilities. A dynamically 

adjusted relaxation factor and a simplified structure due to an adaptation of the 
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disaggregation step are used [55]. In each iteration, each of the state probabilities 

is computed. Hence, the computational time requirement for each iteration may 

well be proportional to L + 1. Note that, computation time requirement in the 

case of spectral expansion does not depend on L. However, it is claimed that the 

number of iterations needed for accurate results does not very much depend on L. 

The convergence is not proved. There is another drawback of this method. That 

is, the use of appropriate value for the relaxation parameter is important to achieve 

computational efficiency. There is no definite method to determine the optimal value 

of this relaxation parameter. This method has been extensively applied to a large 

number of queueing models that have been tabulated [56]. 

4.5.2 Matrix-geometric solution 

Another method that is applicable for this problem is the matrix-geometric method. 

The matrix-geometric solution [51, 50], for the process X is briefly stated in Chap-

ter 5. Similar to the case of spectral expansion, the matrix-geometric solution IS 

essentially for the equations (4.5). That solution is given by, 

- Rj-M+I RL - j .. - M 1 M L Vj - WI I + W2 2 ,J - -, , ... , . (4.16) 

Here, WI and W2 are real unknown vectors of size N + 1 each. Hence, these are 

2N + 2 real scalar unknowns. RI and R2 are an appropriate solution pair of the 

respective quadratic matrix equations, 

o. (4.17) 

It is to be noted, not all pairs of solution of equations (4.17) are sui table for 

the matrix-geometric solution (4.16). One solution that is appropriate is, the one in 

which RI and R2 are minimal non-negative. An iterative matrix-geometric solution 
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for computing Rl and R2 from (4.17), is explained in Chapter 5. An algorithm for 

obtaining of an appropriate solution of equations (4.17) is also given in the recent 

paper [65]. 

It can be seen, the expressions for Vj in (4.16) satisfy the equations (4.5). Once, 

RI and R2 are known, the unknown vectors WI and W2 can be determined using 

the remaining equations (4.4, 4.5, 4.7). That procedure is quite similar to that of 

spectral expansion, with 2N + 2 real unknowns and 2N + 2 linear simultaneous 

equations. 

However, the computation time requirements for computing Rl and R2 are much 

greater than for computing the eigenvalues and eigenvectors in the spectral expan­

sion solution. Here too, the computational requirements do not depend on £. And, 

it is shown is Chapter 5, this solution technique is less efficient compared to spectral 

expanSIOn. 

4.5.3 Block Gauss-Seidel iteration 

This method was used by Meier-Hellstern [41], for solving all the linear simultaneous 

equations (4.3,4.4,4.5,4.6,4.7), iteratively, in order to compute all the vj's. This 

was done in the context of analysing a queueing submodel, in the study of overflow 

models in teletraffic networks. The number of operations required in each iteration 

is of the order, 0((£ + l)(N + 1)2). The paper does not mention about dependence 

of the number iterations needed, for a specified accuracy, on £ and N. Still, the 

computational efficiency depends on £. 

4.6 Numerical examples 

As an illustration of the method, just as in Chapter 3, a homogeneous multipro­

cessor system is considered. But here, the multiprocessor has a finite buffer and 
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hence the job queue is bounded, unlike the example in Chapter 3. This system is 

represented by the process Z, and not by X. The multiprocessor has N processors. 

with individual independent breakdowns and repairs of the processors. In addition, 

'global' breakdowns and 'global' repairs are possible. This corresponds to Type 3 

multiprocessor of Chapter 3. The number of operative states are N + 1, designated 

o to N. Operative state i means the number of processors in working condition are 

z. 

The other parameters of this system are: L is the size of the buffer, J-L is the 

service rate of each processor, ~ is the independent failure rate of each processor, 

~o is the global simultaneous failure rate of all working processors at any time, 11 is 

the independent repair rate of each of the processors, 11N is the global simultaneous 

repair rate of all the broken processors at any time. The arrival rate of jobs to 

the multiprocessor is (J'. The service, failure and repair times are exponentially 

distributed. 

Jobs that arrive are placed in the bounded queue, if the buffer is not full at their 

arrival epoch. On the other hand, if the buffer is full when a new job arrives, then 

that job is lost or discarded by the system. Hence, not all jobs are processed by the 

system. Notice, there is no ergodicity condition on (J', a steady state exists for all 

values of (J'. The job service disciple is the same as in Chapter 3. 

The parameters of the Markov process Z representing this system are given as 

follows. M is the threshold given by, M = N. The matrices A and Aj are as in 

equation (3.5), but for j = 0,1, ... , L. The matrices Band Bj are as given by, 

B = Bj (j = O,I, ... ,L -1) = diag[(J',(J', ... ,(J'] ( 4.18) 

and, BL can be assumed equal to O. The matrices C and Cj are as given in equation 

(3.2), but for j = 1,2, ... , L. Co = 0, and Cj = C for j ~ N. 

The spectral expansion solution for Vj, hence, is valid for L ~ J ~ N - 1. Some 

example systems are solved and the numerical results are presented in the figures. 
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Figures 4.1 and 4.2 show some of the results for the multiprocessor with finite 

capacity. The multiprocessor has 10 processors. The other parameters are, J.l = 1.0, 

e = 0.05, eo = 0.05, rJ = 0.1, rJN = 0.1. Figure 4.1 shows the E(J), expected number 

of jobs in the system vs. (J, the arrival rate of jobs. This is done for various values 

of L. Figure 4.2 is a plot between the percentage of jobs lost unserviced, PloU! as a 

function of the buffer the capacity L, for various values of (J. 

4.7 Conclusions 

In this section, the spectral expansion method is successfully extended as a solution 

technique for certain Markov processes of finite state space. These processes are very 

useful in modelling frequently occuring problems in computer and communication 

systems [41]. The method is exact, and is preferable to many other popular methods 

due to better computational efficiency. In order to demonstrate this method, a finite 

capacity multiprocessor example is taken up. Some interesting numerical results 

are presented via graphs. The method is applicable, by suitable modelling, to the 

multiprocessor in a general Markovian environment, for example with phase type 

breakdown and repair distributions, and for phase type arrival processes. 

4.8 Contributions 

This chapter has two contributions. They are, 

• Spectral expansion method has been successfully extended to Markov processes 

of finite state space. An efficient algorithm for numerical solution, is suggested. 

The method is exact. Some conclusions on the computational efficiency of this 

method, when compared with other methods, are drawn. The advantages of 

the method are explained. 
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Figure 4.1: Average queue size as a function of the arrival rate. 
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• In order to demonstrate the application of this method, a homogeneous multi­

processor with finite queueing capacity, serving a Poisson stream of jobs, with 

independent or correlated server failures and repairs, is analysed for steady 

state performance and dependability. The numerical results are plotted. 

Parts of the contributions of this chapter have been presented in our paper [9]. 



Chapter 5 

A Comparison with the 

Matrix-Geometric Method 

5.1 Introduction 

Three Markov models, X, Y and Z, have so far been described, analysed, and 

solved in Chapters 2 and 4, using spectral expansion method. They have a great 

deal of utility in many complex modelling problems in the design and evaluation 

of computing systems, modern communication systems and flexible manufacturing 

systems. These models can also be solved by the presently most popular method, the 

matrix-geometric method [51, 50]. Obviously, the question of comparing these two 

methods, spectral expansion and the matrix-geometric method, would now arise. 

That is the objective of this chapter. This is done for the process X. Section 5.2 

describes the matrix-geometric solution of X. 

76 
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5.2 Matrix-geometric solution 

The matrix-geometric method [15, 66, 51] is presently the most popular method for 

the solution of the Quasi-Birth-and-Death process X. Referring to Chapter 2, the 

balance equations remain the same, and matrix-geometric method also is essentially 

for the solution of the infinitely many equations (2.7). That solution [51] is given 

by, 

. - Ri-M +1.· > M 1 v J - VM-l , J _ -, (5.1 ) 

where R is the minimal non-negative solution of the quadratic matrix equation given 

by, 

(5.2) 

Once R is known, it is possible to express vi's, j > M - 1, in terms of the unknown 

vector VM-l multiplied to the right by a known matrix. This is equivalent to ex-

pressing those vectors linearly in terms of the unknown probabilities contained in 

There is a close relationship between the matrix equation (5.2) and the eigenvalue­

eigenvector equation (2.11). If a matrix R satisfies (5.2), and 1/JR = )..1/J for some 1/J 

and ).., then those 1/J and)" satisfy (2.11). Conversely, any N + 1 numbers )..k and 

independent vectors 1/Jk that satisfy (2.11), determine a matrix R which has them as 

eigenvalues and eigenvectors, and satisfies (5.2). For an ergodic system, the minimal 

solution of (5.2) is the one whose eigenvalues are the N + 1 solutions of (2.11) that 

are inside the unit disk. 

In the more general case of section 2.7, that is for the process Y, the matrix­

geometric solution is still of the form (5.1), but the matrix R is obtained as the 

minimal non-negative solution of a matrix equation of a higher order equal to y = 

Yl + Y2· 
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5.2.1 Computation 

The computational steps in the matrix-geometric method are: 

(1) Compute the minimal non-negative solution, R, of the quadratic matrix equa­

tion 5.2. 

(2) Obtain VM from the equation (5.1) in terms ofthe unknown vector VM-l' Now, 

solve the finite set of linear equations (2.6) and (2.8) for the vector VM-l and 

the vectors Vj, j ::; M - 2. The solution is done. 

(3) Use the obtained solution for the purpose of determining various moments, 

marginal distributions, percentiles and other system performance measures 

that are of interest. 

There are several iterative procedures for solving equation (5.2). We have used 

the popular method, so-called modified 55 method [25, 501: 

(5.3) 

where Rn is the computed value of R after nth iteration, starting with Flo = O. The 

number of iterations depend on the model parameters and on the desired accuracy. 

The computational effort needed for this step is discussed in the following sections. 

Step 2 can be simplified, as in the case of spectral expansion. That is, once vi's, 

j ~ M, are expressed in terms ofvM-b it is possible to express all the remaining vi's, 

j ::; M - 2, in terms of VM-l using the equations 2.6, if Bj, j = M - 2, M - 3, ... ,0, 

are non-singular. It then remains to solve for the N + 1 scalar probabilities in VM-l 

using the N + 1 remaining scalar linear simultaneous equations. This part of the 

solution is very similar to step 2 of the spectral expansion procedure in section 2.6, 

and has the same order of complexity. 
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5.3 A comparison 

Thus the main operational difference between the two approaches is that spectral ex­

pansion involves the computation of eigenvalues and eigenvectors of a given matrix, 

whereas the matrix-geometric method requires the determination of an unknown 

matrix R by solving a matrix equation. To evaluate the impact of that difference, 

we have taken up an example and performed a series of experiments where the same 

models were solved by both the methods. That example is the homogeneous multi­

processor system of Chapter 3. It is of Type 3, that is, with individual and global 

failures, and individual and global repairs. The parameters of the system that are 

same in all these experiments are, J1 = l.0, ~ = 0.05, ~o = 0.05, 1] = 0.1, 1]N = O.l. 

The performance measure that is computed, in these comparison experiments, is 

E(J), the average number of jobs in the system. The aim of these experiments 

is to examine the issues of efficiency, accuracy, numerical stability and limits of 

application in both the solutions. 

The tasks that are similar in both methods are, whenever possible, carried out by 

the same piece of software. For instance, the solution of a set of simultaneous linear 

equations is performed by routine F04ATF from the NAG numerical algorithms 

package [48]. That program produces diagnostic messages if the input matrix is 

singular or ill-conditioned. Other NAG routines are used for matrix inversion and, 

to find eigenvalues and eigenvectors (in the case of spectral expansion). No attempt 

is made, in either method, to optimize the code or to exploit particular model 

features. Double precision arithmetic is used throughout (except inside the NAG 

routines, which sometimes employ extended precision). All the programs are run on 

a SUN SPARC station. 

It should be emphasized that both solution methods are exact in principle. That 

IS, if the eigenvalues and eigenvectors on the one hand, and the matrix R on the 
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other, are determined exactly, and if the respective sets oflinear equations are solved 

exactly, then in both cases the values of the resulting probabilities and performance 

measures would be correct. In practice, the accuracy of the results depends on many 

factors and varies between the methods. 

The routine that solves the linear eigenvalue-eigenvector problem proceeds as 

follows: (i) the matrix is transformed into upper Hessenberg form; (ii) the QR 

algorithm is applied to bring it into real Schur form, with 1 x 1 and/or 2 x 2 blocks 

on the main diagonal; (iii) the real eigenvalues (and corresponding eigenvectors) are 

obtained from the 1 x 1 blocks, and the pairs of complex-conjugate ones from the 

2 x 2 blocks. Step (ii) involves iterations, but their number is small (an average 

of 2 per diagonal element). In fact, if the QR algorithm, which works to machine 

precision, does not complete after a total of 30 * (N + 1) iterations, the routine quits, 

producing a diagnostic message. This has never happened in our experiments. 

The overall computational complexity of determining all eigenvalues and eigen­

vectors is O(N3
). Moreover, that complexity is more or less independent of the 

parameters of the model. Even when two eigenvalues coincide, or almost coincide, 

the algorithm finds linearly independent eigenvectors if the latter exist. The ac­

curacy of the spectral expansion solution is limited only by the precision of the 

numerical operations. When there is no diagnostic about an ill-conditioned set of 

linear equations, the value of E( J) computed by this method is observed to be cor­

rect to about 10 significant digits in the case of a 10-processor system. It is exact 

for all practical purposes. This can be seen from the following experiment. 

In the 10-processor Type 3 example system, the mean queuelength E(J) is com­

puted by the spectral expansion method. Also, E(J) is computed by the matrix­

geometric method, for varying number of iterations. It is observed for these systems, 

with any number of processors, the E(J) computed by the matrix-geometric method 

increases with the number of iterations initially, and approaches a constant value 
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when the number of iterations become large or tend to infinity. That constant or 

saturated value can then be considered as the exact value of E(J), ignoring the 

inaccuracies caused by limitations of the computed used. Table 5.1 shows the E(J) 

computed by both the methods. 

Table 5.1: Accuracy of the spectral expansion solution. 

(J' = 6.0 ; E(J)(spect.exp.) = 50.405820557249727 

iterations E( J)(mat.geom.) 

10 19.245439820303740 

100 38.222381352764109 

1000 50.404747588612197 

2000 50.405820524441811 

3000 50.405820557253413 

4000 50.405820557253413 

5000 50.405820557253413 

6000 50.405820557253413 

7000 50.405820557253413 

8000 50.405820557253413 

9000 50.405820557253413 

10000 50.405820557253413 

100000 50.405820557253413 

1000000 50.405820557253413 

After nearly 3000 iterations E( J)(mat.geom.) approaches a constant value and does 

not change upto 15 decimal points. Hence, that value E(J) = 50.405820557253413 

can be considered exact. E( J)(spect.exp.) coincides with this upto the first 10 decimal 

points. 
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The matrix-geometric solution relies on the matrix R , which is computed approx­

imately by the iterative procedure described earlier. The criterion for terminating 

that procedure would normally include some trade-off between computation time 

and accuracy. The situation is illustrated in Table 5.2, where a 10-server model, 

i.e. one of the examples in Chapter 3, is solved by both the methods. The iterative 

procedure (5.3) is terminated when 

for a given value of Eo The performance measure that is computed is the average 

queue size, E( J), for three different values of the arrival rate, (7. The spectral 

expansion solution is of course independent of Eo Column 4 gives the percentage 

relative difference 100 * [E(J)(spect.exp.) - E( J)(mat.geom.)]/ E( J)(spect.exp.) . 

The table confirms that when E decreases, the matrix-geometric solution ap-

proaches the spectral expansion one. However, it is important to observe that the 

accuracy of R is not related in any obvious way to the accuracy of E(J). Thus, 

taking E = 10-6 yields an answer whose relative error is 0.0004% when (7 = 3, 0.06% 

when (7 = 6, and 6.3% when (7 = 6.6. Another important aspect of the table is 

that, for a given E, the number of iterations required to compute R increases with (7. 

Hence, in any of these experiments, there is no way of knowing a priori a suitable 

value for E, to a specified accuracy requirement of the performance measures. 

The computational complexity of the two solutions is compared in Figure 5.1. In 

both cases, the time taken to compute E( J) is plotted against the arrival rate, (7. 

For the spectral expansion solution, that time is independent of (7 and is about 0.6 

seconds. The plots for the matrix-geometric solution are obtained as follows: First, 

the program is run with varying numbers of iterations, in order to establish the 

exact number of iterations which yields the value of E( J) with the desired accuracy 

(relative to the spectral expansion result). A run with that fixed number of iterations 
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is then timed. (In the absence of an exact result, one would have to rely on internal 

accuracy checks for the termination criterion.) 

Table 5.2: Trade-off between accuracy and complexity. 

(J = 3.0 ; E(J)(spect.exp.) = 5.199710420277 

( iterations E( J)(mat.geom.) % difference 

10-3 29 5.175072879090 0.4738252555 

10-6 93 5.199686527032 0.0004595110 

10-9 158 5.199710396767 0.0000004521 

10-12 223 5.199710420254 0.0000000004 

(J = 6.0 ; E(J)(spect.exp.) = 50.4058205572 

( iterations E( J)(mat.geom.) % difference 

10-3 77 35.0382555318 30.4876795091 

10-6 670 50.3726795846 0.0657483051 

10-9 1334 50.4057872349 0.0000661080 

10-12 1999 50.4058205241 0.0000000657 

(J = 6.6 ; E( J)(spect.exp.) = 540.46702456 

( iterations E( Jhmat.geom.) % difference 

10-3 77 58.19477818 89.23250160 

10-6 2636 506.34712584 6.31303986 

10-9 9174 540.42821366 0.00718099 

10-12 15836 540.46698572 0.00000719 
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Figure 5.1: Mean queue length computation times for different arrival rates. Service 

capacity = 6.66667. 
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The most notable feature of Figure .5.1 is the steep deterioration of the matrix­

geometric run time when u increases. For a heavily loaded system, that run time 

may be many orders of magnitude larger than the spectral expansion one. The extra 

time is almost entirely taken up by the procedure that calculates the matrix R. The 

corresponding numbers of iterations are plotted in Figure 5.2. It seems clear that, 

even when the accuracy requirements are modest, the computational demands of 

the iterative procedure have a vertical asymptote at the saturation point. Even 

here, in all these experiments there is no simple way of knowing before, the number 

of iterations needed to compute R in order to get performance measures of a pre­

specified accuracy. 

It can be argued that a different procedure for computing R may yield better re­

sults. A number of such procedures have been compared in [25], and improvements 

have indeed been observed. However, the results reported in [25] indicate that all 

iterative approaches suffer from the drawbacks exhibited in Table 5.2 and Figure 5.1, 

namely that their accuracy and efficiency decrease when the load increases. Perhaps 

the fastest existing method for computing R is not by iterations, but via its eigen­

values and eigenvectors (this was done in [12] for a model with real eigenvalues and 

a non-singular, diagonal matrix C). If that method is adopted, then one might as 

well use spectral expansion directly, and avoid the matrix R altogether. 

In our experience, using different starting points for the iterations (rather than 

flo = 0), does not bring significant benefits and may be dangerous. The procedure 

could diverge or it could, conceivably, converge to a non-minimal solution of (5.2). 
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Figure 5.2: Number of iterations needed for computing R, for different arrival rates. 

Service capacity = 6.66667. 
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The next set of experiments concerns the behaviour of the two algorithms when 

the size of the problem, chiefly determined by the number of processors, increases. 

It is perhaps worth restating the effect of the parameter N. 

• Spectral expansion: The characteristic polynomial is of degree at most 2N + 2 ; 

finding the eigenvalues and left eigenvectors is a task of complexity O(N3 ). 

The coefficients of the N + 1 term expansion are determined by solving a set of 

N + 1 simultaneous linear equations, which is also a task of complexity O(N3
). 

• Matrix-geometric solution: The matrix R is of dimensions (N + 1) x (N + 1) . 

Each iteration in the iterative procedure is of complexity O(N3). Still, the 

dependency of the number of iterations needed on N, for a desired accuracy, is 

not known. An unknown vector with N + 1 elements is determined by solving 

a set of N + 1 simultaneous linear equations (complexity O(N3
)). 

The results of the experiments are displayed in Figures 5.3, 5.4 and 5.5. In all 

cases, constant load is maintained by increasing the arrival rate in proportion to N . 

When timing the matrix-geometric runs, the number of iterations for matrix R is 

chosen so as to achieve 99% accuracy in E( J), relative to the spectral expansion 

value. Figure 5.3 shows the run times of the two algorithms when the system is quite 

lightly loaded, (0" = 0.3N), whereas Figure 5.4 deals with a more heavily loaded 

queue (0" = 0.6N). The matrix-geometric run times are greater than the spectral 

expansion ones by a factor of about 2 in the first case, and by a factor of more 

than 20 in the second (as before, the spectral expansion times do not depend on 

the load). This is consistent with the previous observations on the way the iterative 

procedure is influenced by the offered load. However, if the number of iterations is 

considered as a function of N, with the load fixed (see Figure 5.5), then the increase 

is seen to be linear. If that is a general phenomenon, then the overall computational 

complexity of the iterative procedure for computing R is O(N4). 
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Figure 5.3: Mean queue length computation times for different N. Service capacity 

= O.66667N. 
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The second step in both algorithms (solving a set of linear equations), is where 

emerging numerical problems begin to manifest themselves. The observable symp­

tom of such problems is usually an ill-conditioned matrix. It should be emphasized 

that neither the spectral expansion nor the matrix-geometric algorithm is immune to 

ill-conditioned matrices. We have observed them generally when the number of pro­

cessors is large and the system is lightly loaded. For example, taking N = 50, (J < 15 

(other parameters as in the figures), leads to ill-conditioned matrices in both algo­

rithms. This may be due to the limitation of the NAG routine F04ATF. The method 

used in this routine is, LU factorization with partial pivoting and iterative refine­

ment. Perhaps, there may be more robust methods available, and it is worth trying 

with them, though we have not done so. 

In many cases, the problem of ill-conditioning can be alleviated by appropriate 

scaling (e.g. multiplying certain vectors by suitable constants). We have tried a few 

scaling techniques in connection with the spectral expansion algorithm, and have 

had some success. However, it is a reasonable guess that, within the constraint 

of double precision arithmetic, neither method can handle accurately models with 

more than about 100 processors. Of course, that range can be extended considerably 

by using extended precision, but then the choice of programming language and/or 

compiler would be restricted. 

A question of relevance to the spectral expansion solution concerns its application 

when two or more eigenvalues coincide, or are very close to each other. We have 

attempted to construct some examples of this type. Consider a moderately large 

system with N = 30. By examining the 31 eigenvalues in the unit disk for different 

values of the arrival rate it is noticed that when (J changes from 14.6128383 to 

14.6128384, two real eigenvalues, 0.649104533666 and 0.649107441313, change to a 

pair of complex conjugate ones: 

0.649105990110 - 0.000001630665i and 0.649105990110 + 0.000001630665i . 
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Hence, there is a value of a in that interval which would produce a double 

eigenvalue. The nearest we were able to get to it is the interval: 

a E (14.61283834428,14.61283834429) , 

where the two real eigenvalues, 0.649105971264 and 0.649106006036, change to a 

pair of complex conjugate ones: 

0.649105988650 - 0.000000016211i and 0.649105988650 + 0.000000016211i . 

Even in this last case, where the distance between two eigenvalues is on the order of 

10-7
, the algorithm works well: the equations are not ill-conditioned and a correct 

value for E( J) is obtained. 

Having repeated the above exercise for different other models [10], other than the 

multiprocessor problem, (e.g. giving rise to a double eigenvalue at 0), with similar 

results, we feel justified in saying that multiple eigenvalues present an interesting 

theoretical problem, but not a practical one. 

5.4 Conclusions 

The Markov models considered in the previous chapters can also be solved by the 

presently most popular method, the matrix-geometric method. That solution for 

the model X is presented in this chapter. These two solutions, viz. spectral ex­

pansion and the matrix-geometric method, are compared through the example of a 

multiprocessor system, for compuational efficiency, accuracy and numerical stability. 

When comparing the spectral expansion and the matrix-geometric solutions, a 

strong case can be made for the former. Spectral expansion offers considerable 

advantages in efficiency, without undue penalties in terms of numerical stability. 

The speed gains are especially pronounced, and indeed appear to be unbounded, 

when the system approaches saturation. However, further comparisons, perhaps 

with different methods for computing R, or with other methods such as Seelen's [55], 
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would be desirable. It would also be interesting to compare the different methods 

on problems where the jumps of J are greater than 1. 

The numerical stability in all our experiments has been limited partially because 

of the robustness and accuracy limitations of the NAG routines we have used. We 

believe, that numerical stability can be improved further by resorting to more accu­

rate and more robust algorithms and procedures, for eigenvalue-eigenvector compu­

tation and for solution of linear simultaneous equations, available in the literature. 

However, that experimentation is beyond the scope of this thesis. 

5.5 Contributions 

The contribution of this chapter is, 

• The matrix-geometric method for the QBD process X is presented. A de­

tailed comparison study is made between the spectral expansion method and 

the matrix-geometric method. This is done through the example of a ho­

mogeneous multiprocessor system with general failures and repairs, serving a 

Poisson stream of jobs. Meticulous experiments are performed for comparing 

computational efficiency, accuracy and numerical stability of the methods. A 

strong case is established for the spectral expansion method, over the matrix­

geometric method. 

This contribution is to appear in our paper [47]. Part of these results have been 

reported in our paper [8]. 



Chapter 6 

Heterogeneous Multiprocessor 

Systems with Breakdowns: 

Performance and Optimal Repair 

Strategies 

6.1 Introduction 

Several non-trivial example systems have been modelled and solved in the previous 

chapters using spectral expansion. It is now time to turn to even more complex 

systems. These systems may need, in addition to spectral expansion, several other 

systems engineering techniques for an in-depth analysis and solution. Such are 

the systems considered in this chapter, and in the later ones. This chapter deals 

with a heterogeneous multiprocessor system serving an incoming job stream. The 

multiprocessor has K non-identical processors that are prone to breakdowns and 

repaIrs. 

The general topic of modelling systems which are subject to interruptions of 

94 
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service has received considerable attention in the literature. Some of the work has 

concentrated on single-processor models [1, 19, 57, 62, 67], and some on multipro­

cessor ones where all the processors are statistically identical [5, 42, 44, 50]. How­

ever, very little progress has been made in modelling heterogeneous multiprocessor 

systems with breakdowns. Although Markov-modulated queueing systems [53, 69] 

provide a rather general framework in which this problem may be placed, there are 

no existing solutions. Some of the difficulty of the analysis stems from the fact that, 

at any moment in time, the total rate at which service is given depends both on the 

state of the processors and, to a limited extent, on the number of jobs present. 

This chapter has a two-fold contribution. First, we study the problem and model 

the system by the Markov model X. This is done in the next section. In section 

6.3, we solve that system using the spectral expansion method, for steady state 

performance and dependability measures. 

The second contribution concerns optimization. If the number of repairmen is 

less than K, thus restricting the number of processors that can be repaired in parallel, 

then the repair scheduling strategy (i.e. the order in which broken processors are 

selected for repair), has an important effect on performance. In section 6.4, we 

study that effect at some length, concentrating on the case of a single repairman. 

An interesting problem which, to our knowledge, has not been addressed before, is 

to find the repair strategy that maximizes the average processing capacity of the 

system. A related problem was considered and solved by Kameda [32] in the context 

of a finite-source queue with different customers. This is regarding the maximization 

of a weighted sum of the utilisation factors of the CPU, for different classes of jobs, 

in the finite-source queue, under a restricted condition. That problem is equivalent 

to maximizing a weighted sum of the utilizations of the repairman, for different 

processors, in our model, when the breakdown rates of all processors are equal. We 

use the results of Kameda, to find the optimal capacity strategy for the same special 
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case. 

The general optimal capacity problem still lacks an exact solution. \Ye propose 

several heuristics and examine their performance empirically. This is done in section 

6.5 

6.2 The model 

Jobs arrive into the system in a Poisson stream at rate a, and join an unbounded 

queue. There are K non-identical parallel processors numbered 1,2, ... , K. The 

service times of jobs executed on processor k (k = 1,2, ... ,K) are distributed ex­

ponentially with mean 1/ !lk. However, processor k executes jobs only during its 

operative periods, which are distributed exponentially with mean 1/ ~Ic. At the end 

of an operative period, processor k breaks down and requires an exponentially dis­

tributed repair time with mean 1/1]1c. The number of repairs that may proceed in 

parallel could be restricted: if so, this is expressed by saying that there are R repair­

men (R ~ K), each of whom can work on at most one repair at a time. Thus, an 

inoperative period of a processor may include waiting for a repairman. No operative 

processor can be idle if there are jobs awaiting service, and no repairman can be idle 

if there are broken down processors. All inter-arrival, service, operative and repair 

time random variables are independent of each other. 

If there are more operative processors than jobs in the system, then the busy 

processors are selected according to some service priority ordering. That ordering 

can be arbitrary, but it is clearly best to execute the jobs on the processors whose 

service rates are highest. Such a result, but in the absence of breakdowns, has been 

proved in [39]. This is therefore assumed to be the case, unless specified otherwise. 

It is further assumed that jobs can migrate instantaneously from processor of lower 

service priority to processor of higher service priority, in the middle of a service, 
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if the latter is available. Services that are interrupted by breakdowns are eventu­

ally resumed (perhaps on a different processor and hence at a different rate), from 

the point of interruption (or, it can be repeat with re-samp/ing, both these service 

interruption policies are equivalent). Similarly, if R < K and the repair strategy 

allows preemptions of repairs, then those are eventually resumed from the point of 

interruption and there are no switching delays. 

The system is illustrated in Figure 6.l. 

The system state at time t can be described by a pair of integers, I(t) and 

J(t), specifying the processor configuration (can also be termed, operative state 

of the multiprocessor) and the number of jobs present, respectively. The precise 

meaning of "processor configuration", and hence the range of values of I(t), depend 

on the assumptions. For example, if the processors are identical, as in the case of 

the example in Chapter 3, then it is sufficient to specify how many of them are 

operative: I(t) = 0,1, ... , K. In the heterogeneous case, if R = K, or if the repair 

strategy is pre-emptive priority or processor sharing, the processor configuration 

should specify, for each processor, whether it is operative or broken down. This can 

be done by using a range of values I(t) = 0,1, ... , 2K - 1 (e.g., each bit in the 

K -bit binary expansion of I(t) can indicate the state of one processor). If, on the 

other hand, R < K and the repair strategy is non-preemptive, then it is necessary 

to specify both the processors that are broken down and the ones among them that 

are being repaired. That would require an even wider range of values for I(t). 

In general, let there be N + 1 processor configurations, represented by the values 

I(t) = 0,1, ... ,N. These N + 1 configurations are the operative states of the model. 

The model assumptions ensure that I(t), t ~ 0, is an irreducible Markov process. 

J(t) is the total number of jobs in the system at time t, including the ones in service. 

Then, X = {[I(t), J(t)]; t ~ O} is an irreducible Markov process that models the 

system. Its state space is, {O, 1, ... , N} x {O, 1, ... }. 
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Figure 6.1: Heterogeneous multiprocessor system with a common unbounded queue. 
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Let Aj be the matrix of instantaneous transition rates from state (i, j) to state 

(r,j) for that process (i, r = 0,1, ... , N ; i =I r), with zeros on the main diagonal. 

These are the purely lateral transitions of the model X. The elements of Ai depend 

on the parameters ek and Tlk (i = 1,2, ... , K ) and, if R < K , on the repair strategy 

also. For example, consider a system with 3 processors and 1 repairman, under 

a preemptive priority repair strategy with priority ordering (1,2,3) (i.e., processor 

1 has top preemptive priority for repair, while processor 3 has bottom priority). 

There are now 8 processor configurations, J(t) = 0,1, ... ,7, representing the oper­

ative states (0,0,0), (0,0,1), ... , (1, 1, 1) respectively (ktll bit, from left, is ° when 

processor k is broken, 1 when operative). In this case, the matrix A and Aj are 

given by 

(0,0,0) 

(0,0,1) 

(0,1,0) 

(0,1,1) 

(1,0,0) 

(1,0,1) 

(1,1,0) 

(1,1,1) 

A = Aj = 

° ° ° ° 
6 ° ° ° 
6 ° ° ° 
° 66° 
el ° ° ° 
° 6 ° ° 
° ° el ° 
° ° ° el 

TIl ° ° ° 
° TIl ° ° 
° ° TIl ° 
° ° ° TIl 

° ° Tl2 ° 
6 ° ° Tl2 

6 ° ° Tl3 

° 66° 

; j ~ 0. (6.1 ) 

Instead, if the repair strategy is one of static non-preemptive priority, it can be shown 

that the matrix Aj would be of size 13 x 13, for the 3-processor system. Those 13 

processor configurations are, are: (O,O,Oh, (O,O,Oh, (O,O,Oh, (O,O,lh, (O,O,lh, 

(O,I,Oh, (O,I,Oh, (I,O,Oh, (I,O,Oh, (0,1,1)' (1,0,1), (1,1,0) and (1,1,1). Here, 

the suffix indicates the index of the broken processor that is being repaired, if the 

number of broken processors is more than 1. 

FCFS repair strategy also can be modelled. That would need much more number 

of processor configurations. In the case of K = 3, those configurations, 16 in num-
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ber, are: (0,0,0)1,2,3, (0,0, 0h,3,2, (0,0, 0h,1,3, (0,0, Oh,3,1, (0,0, Oh,1,2, (0,0, 0h.2,1, 

(0,0,1h,2, (0,0, Ih,}, (0,1, 0h.3, (0,1, Oh,l, (1,0, 0h,3, (1,0, 0h,2, (0,1,1), (1,0,1), 

(1,1,0) and (1,1,1). Here, the suffix indicates the order in which the broken pro-

cessors are to be repaired, if their number is more than 1. For several other kinds 

of repair strategies, it is possible to work out the Aj matrix quite easily, if not for 

all possible repair strategies. 

It can be seen that the transi tions in the processor configuration are not ac­

companied by changes in the number of jobs, unless the latter is an independent 

coincidence. Hence, for all repair strategies and number of repairmen, it can be 

assumed, Aj = A; j ~ 0. Let also DA be, as defined in Chapter 2, the diagonal 

matrix whose ith diagonal element is the ith row sum of A. The matrix A - DA is 

the generator matrix of the process I (t). 

Denote by qi the steady-state probability that the processor configuration is i . 

The vector v = (qO, ql, ... , qN) is determined by solving the linear equations, 

v(A - DA) = 0 ; ve = 1 , (6.2) 

where e is the column vector with N + 1 elements, all of which are equal to 1. That 

solution is not too expensive, even for large values of N, because the matrix A is 

very sparse. Having obtained v, one can find the steady-state probability, D:k, that 

processor k is operative. It is given by 

a.k = L qi ; k = 1, ... , K , 
iESk 

(6.3) 

where Sk is the set of processor configurations in which processor k is operative. 

The linear combination 
K 

'Y = L a.kl-lk (6.4) 
k=l 

will be referred to as the processing capacity or service capacity of the system. This 

is the maximum average rate at which jobs can be executed. It is then intuitively 
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clear that the system is stable if and only if cr < I. However, the rigorous proof of 

this statement is beyond the scope of this thesis. 

In order to compute performance measures involving jobs, it is necessary to study 

the two-dimensional Markov process, X. Assuming that the stability condition 

holds, our next task is to compute the steady-state probabilities, Pi,), that the 

processor configuration is i and the number of jobs in the system is j. Let, as in 

Chapter 2, the vector Vj = (PO,j,Pl,j, ... ,PN,j). 

6.3 Spectral expansion solution 

As we have seen in the previous section, the process X models the given system 

exactly. X is the Quasi-Birth-and-Death process described in Chapter 2, as we 

examine from its parameters. The one-step upward transition rate matrices, Band 

B j , of size (N + 1) x (N + 1), are given by, 

Bj = B = diag[cr,cr, ... ,crj; j ~ O. (6.5) 

Let the one-step downward transition rate, Cj ( i, r), from state (i,j) to state (r, j -1), 

j ~ 1, is equal 0 if i #- T, and li,j if i = T. This is because when a job departs there 

is no reason why the processor configuration should change, unless the latter is an 

independent coincidence. Cj (i, i) or li,j is the average processing rate of the system 

when J(t) = i and J(t) = j. Cj(i, i) or li,j, when j 2:: K, is the processing capacity 

of the configuration i, and does not depend on j. Hence, let li,j = Ii for j 2:: K. 

It is possible to work out Cj(i, i) or li,j for j < K. This is done below, for the 8 

processor configurations of the 3-processor example with pre-emptive priority repair. 

Assuming that, J.ll 2:: J.l2 2:: J.l3 and service priority order is (1, 2, 3), the values of 

li,j are, 
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configuration li,l li,2 li,j(j ~ 3) = Ii 

(0,0,0) ° ° ° 
(0,0,1) J13 J13 J13 

(0,1,0) J12 J12 J12 

(0,1,1) J12 J12 + J13 J12 + J13 

(1,0,0) J-li J-li J-li 

(1,0,1) J1I J1I + J13 J1I + J13 

(1,1,0) J1I J1I + J-l2 J1I + J-l2 

(1,1,1) J1I J-li + J-l2 J11 + J-l2 + J-l3 

Hence, the matrices Cj and C are given by, 

Cj C = diagbo,/l, ... ,IN] ; j ~ K, 

Co 0. (6.6) 

The threshold, M, of this system is given by, M = K. Note that, this threshold 

should be the same for any repair strategy, since the the average processing rate, 

li,j in a given configuration i with a given number of jobs j, does not depend on j 

if j ~ K. 

DA, D1, DB, D?, DC and Df are the diagonal matrices, defined as in Chapter 

2, with respect to A, Aj, B, Bj, C and Cj respectively. And, Qo = B, Ql = A­

DA - DB - DC, and Q2 = C. 

Then the valid spectral expansion for Vj is, 

N 

Vj = L a(lPi A1 ; j ~ K - 1 . 
i=O 

(6.7) 

where, (Ai, 1/;;), i = 0,1, ... , N, are the eigenvalue-eigenvectors of Q(A) that (eigen­

values) are inside the unit circle(when the ergodicity condition is satified). 
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The system can be solved for the required vj's and steady state performance 

measures, using the procedure in Chapter 2. 

Figure 6.2 shows the plot of average number of jobs in the system, E(J), as a 

function of the job arrival rate u. This is done for a 3-processor system with a single 

repairman, for several different repair strategies. 

It may be noted, the system can be solved even if the job arrival rates depend 

on the processor configuration i. In such a case, the matrices B and Bj's need to 

be modified accordingly. It is also possible to model systems in which a job is lost 

when its service is interrupted by the server failure. That requires a modification of 

the matrices C and Cj's accordingly. 

It is possible to incorporate job arrivals in batches of bounded sizes. That requires 

modelling, by the process Y, permitting bounded multi-step jumps in the random 

variable J of Y. However, numerical examples of this type are not dealt in this 

thesis. 

6.4 Repair strategy optimization 

When the number of repairmen is less than the number of processors, the order 

in which processors are selected for repair has an influence on the performance of 

the system. Different repair strategies can lead to different values of the processing 

capacity, " and hence to arbitrarily large differences in performance measures like 

the average queue size or the average response time. This situation is illustrated in 

Figure 6.2. 

In this figure, the average number of jobs, E( J), in a 3-processor system with one 

repairman, is plotted against the job arrival rate, u. Five different repair strategies 

are compared, three of which are of the preemptive-resume type, allowing repairs 

to be interrupted at an arbitrary point without any overheads. One of the remain-
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240~==============~~----~~~~~~~ 

• E(J) 

N=3 ; R=l 
~1 =3.0 ; ;1 =0.4 ; Ttl =0.5 
~2=2.0; ;2=0.6; Tt2=0.7 
~3=1.0 ; ;3=0.8; Tt3=0.9 

• Preemptive priority (123) 
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• Non-Preemptive priority 
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Figure 6.2: Importance of repair strategy: A 3-processor system example. 
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ing two is of non-preemptive type with priorities, and the other is of FCFS repair 

strategy. In all cases, the values of E( J) are determined by applying the spectral 

expansion procedure described in the previous section. 

The parameters in this example may have not been chosen to be realistic; never­

theless, the behaviour that is displayed in the figure is quite typical. The important 

feature of all such performance curves is that they have a vertical asymptote at 

the point where the arrival rate is equal to the processing capacity. Any difference 

in /, no matter how small, caused by a change in the repair strategy, implies dif­

ferent vertical asymptotes. Hence, given a sufficiently heavy traffic, there will be 

unbounded differences in performance. In particular, on the interval between the 

two processing capacities pertaining to two different repair strategies, the system is 

non-ergodic and the queue becomes saturated under one strategy and stable under 

the other. 

Clearly, it can be very important to use a repair strategy that maximizes the 

processing capacity. We shall consider the problem of finding such strategies, in 

the case where K heterogeneous processors are attended to by a single repairman 

(R = 1). This is obviously the case with the greatest practical relevance, since 

increasing the number of repairmen can only reduce the effect of the repair strategy 

on the processing capacity. 

In the next section, we take the case of a two-processor system, and later go on 

to the general K-processor system. 

6.4.1 Two-processor system 

A system, with two different processors, is considered. The question is to find the 

repair strategy that maximizes /. Three different repair strategies are considered. 

They are, (i) preemptive priority, (ii) non-preemptive priority or HOL(head on line), 

and (iii) generalised round robin repair strategy. 
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Preemptive priority 

The processors are numbered as 1 and 2. Let the processing capacities under the two 

preemptive priority strategies (1,2) and (2,1) be ,(1,2) and ,(2,1), respectively. By 

solving equations (6.2) explicitly (there are now 4 processor configurations: (0,0), 

(0,1), (1,0) and (1,1)), and then using equations (6.4), we find 

(1,2) _ TJ1 [ + J-L2TJ2(S - TJ2)] 
, - t J-L1 t ' 

1,,1 + TJ1 1,,2 S + TJl TJ2 
(6.8) 

where S = 6 + 6 + TJ1 + TJ2. The expression for ,(2,1) is similar, with the indices 1 

and 2 interchanged. A little further manipulation yields 

,(1,2) _,(2,1) - 66s [J-L1TJl _ J-L2TJ2] (69) 
- (el + TJd(6 + TJ2) 6s + TJITJ2 6s + TJ1TJ2 . 

Thus, when K = 2, the optimal priority allocation, in the case of preemptive 

priority, depends on the quantity 

d - J-Ll TJ1 
12 -
, 6s + TJITJ2 

(6.10) 

Processor 1 should have higher repair priority than processor 2 if d1,2 > 0, and lower 

priority if d1,2 < ° . 

HOL 

In this repair strategy, when a broken processor is allocated to the repairman, that 

repair continues till it is completed, without preemption. Here, there are 5 processor 

configurations. These can be represented as, (0, 0h, (O,Oh, (0,1), (1,0), (1,1). 

(O,Oh means both the processors are broken and processor 1 is being repaired. In 

(0, 0h, processor 2 is being repaired, instead. 

Here again, it is possible to find the qj'S and Clk'S by solving equations (6.2), and 

the processing capacity ,(HOL) by equation (6.4). When that is done, we have, 

,(HOL) = J-L2TJ2(TJl + ed + J-LITJl(TJ2 + 6) 
(TJl + 6)(TJ2 + 6) + e16 

(6.11) 
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Now, it is obviously interesting to see how ,(HOL) compares with the best of 

,(1,2) and ,(2,1). For this, let us assume ,(1,2) > ,(2,1), by assuming d1,2 > o. Then, 

from equations (6.8, 6.11), we have, 

,(1,2) _ ,(HOL) = 66~11]1(6s + 1]11]2) - J-L21]2(C1 S + 1]11]2)] 

(1]1 + 6)[(1]1 + 6)(1]2 + 6) + 6C2](1]1172 + 6s) 
(6.12) 

Since d1,2 > 0, from equation (6.10), it implies that ~11]1(1711]2+C2S)-J-L2172(171172+ 

6 s )] > o. Hence, ,(1,2) - ,(HOL) > o. 

That proves, the best preemptive repair policy is better than the non-preemptive 

repair policy. Note that, in the case of K = 2, the FCFS repair strategy is the same 

as the HOL repair strategy. 

Generalised round robin repair strategy 

We rather consider the generalised processor sharing repair strategy as an approxi-

mation to the generalised round robin repair strategy. In this repair strategy, when 

both the processors are broken, the repairman works on both of them simultane­

ously. This is done by allocating a fraction, x (0 ~ x ~ 1), of repairman's time, for 

repairing processor 1 and the rest, i.e. fraction (1 - x), is allocated to the repair 

of processor 2. Here too, there are 4 processor configurations, (0,0), (0,1), (1,0), 

(1,1). But the transition rates are different from those of the preemptive priority 

repair case. In this case too, by solving equations (6.2, 6.4), the processing capacity, 

,(grr) is worked out. That is given by, 

,(grr) = 

X17dJ-Ll(6s + 1]1172) + J-L21]2(S -1]2)] + (1 - X)1]2 [J-L2 (6s + 1]1172) + J-Ll1]I(S - 17d] 

x1]I(6s + 1]1172 + 1]2Ct) + (1 - x)1]2(6 s + 1]1172 + 1716) + 66s 
(6.13) 

Now let us compare ,(grr) with ,(1,2) assuming, d1,2 > O. 
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Differentiating ,(grr) with respect to x, we get, 

~{,(grr)} = 66s(j.t1''71(6 s + "71"72) - J.L2"72(6 s + "71"72)] 
ax [x"71(6s + "71"72 + "72~d + (1 - x)"72(6 s + "71"72 + "716) + 66s]2 

(6.14) 

As can be seen, :x {,(grr)} is always positive, since d1,2 > O. Hence, ,(grr) is 

an increasing function of x, its minimum is when x = 0, and maximum at x = l. 
However, when x = 1, then ,(grr) = ,(1,2) and the round robin service becomes the 

same as preemptive priority (1,2). 

Hence, it may be said, the best repair strategy, for K = 2, is one of the preemptive 

priority ones. 

6.4.2 K -processor system 

Let us now come back to the K-processor system. For a given strategy, let Uic 

be the fraction of time that processor k spends being repaired (k = 1,2, ... , K); 

alternatively, this is the repairman utilisation factor due to processor k. Let also Tic 

be the average period between two consecutive instants when processor k becomes 

operative (i.e. the average operative-inoperative cycle for processor k). Then we 

can write 

1/"71c 
Uic = --y;;; k = 1,2, ... ,K. (6.15) 

Similarly, the probability that processor k is operative can be written as 

1/~1c 
alc = Tic ; k = 1,2, ... ,K . (6.16) 

Hence, we have the relation alc = ("7Ic/(Ic)UIc. This allows us to rewrite the expression 

for the processing capacity (6.4) in the form 

K 

, = L CIcUIc, 
1c=1 

(6.17) 

where Cic = /-lkT/Ic/(Ic. Thus, the problem of maximizing the processing capacity can be 

reduced to that of maximizing a linear combination of repairman utilisations. This 
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latter problem has been studied by Kameda [32, 33]' in the context of a finite-source 

queue with different jobs, multiple peripherals and a single CPU. He considered 

the special case where the job service rates at the peripherals (which correspond 

to our breakdown rates of processors) are equal: 6 = e2 = ... = eK. Under that 

assumption, and using our terminology, Kameda's main result can be summarized 

as follows (i.e. when the breakdown rates of processors are equal): 

( a) When the number of repairmen is 1 (R = 1, is already assumed), and the repair 

rates of different servers can be different, then the strategy that maximizes the 

right-hand side of (6.17) is one of the K! static preemptive priority strategies. 

(b) In the optimal preemptive priority strategy, processor k is given higher priority 

for repair than processor m if Ck > Cm . 

Thus, when the breakdown rates are equal, the highest processing capacity is 

achieved by a static repair strategy which gives processor k preemptive priority over 

processor m, if /-lk'r/k > /-lm'r/m. 

In the general case of unequal breakdown rates, it may be that, in order to achieve 

global optimality, one has to allow dynamic scheduling decisions which depend in a 

complex way on the current processor configuration. Nevertheless, we shall confine 

our search to the set of K! static preemptive priority policies. Even so, it seems 

that there is no simple rule for determining the optimal allocation of priorities. A 

straightforward application of the recipe contained in statement (b), to the general 

case, leads to the following: 

Heuristic 1 Give processor k preemptive priority for repair over processor m, if 

/-lk'r/k/ek > /-lm'r/m/em. 

This heuristic seems to be a reasonable guess, even considering the equation (6.17) 

that is valid for the general case. The thing this heuristic suggests is, to allocate 
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the repairman to the broken processor with the largest value of Ck, that too on a 

pre-emptive basis, only with a hope that might maximize the r.h.s. of equation 

(6.17). 

Other heuristics can be suggested, based on the results obtained on the tw<r 

processor system, discussed earlier. It has been shown there, that the preemptive 

priority has been the best. That result suggests some heuristic ways of ranking the 

processors in a general K-processor system. Define, for any pair of processors k and 

m, the quantity 

J.lmTfm 
(6.18) 

where Sk,m = ek + em + Tfk + Tfm. Also define the indicator 

{ 

1 if dk,m > 0 
Okm = , 

o if dk,m ~ 0 

Processor k is said to be preferable to processor m if Ok,m = 1 . 

Two heuristics based on this notion of preference are: 

Heuristic 2 Assign to processor k an integer weight, Wk, equal to the number of 

processors to which it is preferable: 

K 

Wk = L: Ok,m ; k = 1,2, ... , K . 
m=l 

Give processor k higher priority than processor m if Wk > Wm . 

Heuristic 3 Assign to processor k a real weight, Wk, equal to the accumulated dif-

ferences (20), for all processors to which it is preferable: 

K 

Wk = L: Ok,mdk,m ; k = 1,2, ... ,K . 
m=l 

Give processor k higher priority than processor m if Wk > Wm . 
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Heuristic 2 concentrates on the existence of preference relations, whereas Heuris­

tic 3 attempts to take into account their extent. Of course, both produce the optimal 

allocation in the case K = 2. 

The relation preferable is not transitive. For example, it may happen that pro­

cessor i is preferable to processor j, processor j is preferable to processor k, and 

processor k is preferable to processor i. Heuristic 2 could then assign equal weights 

to those three processors, necessitating some tie-breaking rule. We have simply used 

the processor indices to break ties. It should be pointed out that these occurrences 

are very rare (less than 1 % of all cases examined). 

One can put forward other heuristics which, while being intuitively weaker, do 

not seem unreasonable. For example: 

Heuristic 4 Give processor k priority over processor m, if J.lk'flk > J.lm 17m· 

Heuristic 5 Give processor k priority over processor m, if J.lk > J.lm. 

Heuristic 6 Give processor k priority over processor m, if ~k < ~m. 

Heuristic 7 Give processor k priority over processor m, if 17k > 17m· 

In the absence of theoretical results with general validity, the only way of evalu­

ating all these heuristics is by experimentation. Some empirical results are reported 

in the next section. 

6.5 Evaluation of the heuristics 

Several experiments are conducted in order to evaluate these heuristics. The first 

of them, i.e. Experiment 1, involves a lOO-processor parameterized system where 

the breakdown rates are about an order of magnitude smaller than the repair rates, 

which are in turn a couple of orders of magnitude smaller than the service rates. The 
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experiment consists of generating 100 example systems or sample systems at random, 

i.e. random sets of values for the parameters J-Lk, ~k and 7Jk (k = 1,2, ... ,100). 

The latter are uniformly distributed within prescribed ranges: J-Lk E (1000,100000), 

~k E (0.01,0.4) and 7Jk E (1.0,39.0). For each example or sample system, the 

processing capacities under all the seven heuristics of the previous section, and 

also under the First-Come-First-Served repair strategy, are estimated by simulation 

(exact solutions are not feasible, due to the large state spaces of the Markov chains). 

The above is repeated in Experiments 2 and 3, with different ranges for TJk, 

keeping the other parameter ranges the same as in Experiment 1. The results of 

these three experiments are shown in Figures 6.3 and 6.4. 

The bar chart in Figure 6.3 shows, for each heuristic, the number of sample sys­

tems in which it produced the highest processing capacity among the eight heuristics 

(Heuristic 8 is the FCFS strategy). We observe that Heuristic 1 is most frequently 

best, while Heuristics 5, 6 and 8 are never best. However, the dominance of Heuris­

tic 1 diminishes when the mean and variance of 7Jk increase (in Experiments 2 and 3), 

and hence the average utilisation of the repairman decreases. A somewhat surprising 

feature of this figure is the poor performance of Heuristic 3, and the relatively good 

performance of Heuristic 4. 

It is interesting to note the improvement in processing capacity achieved by 

each heuristic, compared to FCFS. This is shown in Figure 6.4, where each bar 

measures the quantity bheuristic - 'YFCFS )/'YFCFS, averaged over the 100 sample 

systems. It is rather remarkable that, with the exception of 5 and 6, all heuristics 

achieve roughly the same average relative improvement. More predictable is the 

fact that, the heavier the load on the repairman, the greater the magnitude of that 

improvement (however, even in the Experiment 3, a 25% average improvement is 

achieved by most heuristics). 

Another strategy that can be used as a standard of comparison instead of FCFS 
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heuristic number" 

Figure 6.3: Performance of the heuristics in experiment with large K: number of 

cases in which each heuristic performed best . 
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Figure 6.4: Performance of the heuristics in experiment with large K: improvements 

of capacity compared with FCFS repair policy. 
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is the random repair strategy, whereby at every scheduling decision instant, every 

one of the broken processors is equally likely to be selected for repair. This was 

tried, but no appreciable difference between the random and the FCFS strategies 

was observed. 

The above results do not tell us how close to optimal are the heuristics, since 

they are compared only among themselves. On the other hand, in a 100-processor 

system, an exhaustive search of all permutations in order to find the optimal priority 

allocation is obviously out of the question. Therefore, we have carried out some 

experiment with a 6-processor parameterized system. 

Again, in each experiment, 100 random example systems are generated, sampling 

the parameters /-lk, ~k and T]k (k = 1,2, ... ,6) uniformly from prescribed ranges. 

In Experiment 4, those ranges are: /-lk E (5000, 95000), ~k E (0,30), 7Jk E (5,145). 

The breakdown and repair rates are now much closer together, so that there is 

still some competition for the repairman. For each example system, the processing 

capacity, is computed (exactly, by solving the appropriate Markov chain), under 

all 6! = 720 possible preemptive priority allocations. The seven heuristics are of 

course among them, and so is the optimal allocation. The following performance 

measures of each heuristic are determined, for every example system: 

b = number of allocations that are better than the heuristic 

h = (,optimal - ,heuristic)/,optimal 

a = 100(,heuristic -,FCFS)/,FCFS 

(The processing capacity of the FCFS strategy is again estimated accurately by long 

simulation. ) 

A rough comparison between the heuristics is displayed in Table 6.1, where the 

quantities b, h and a are averaged over these 100 example systems. 

The table shows that in this experiment the first three heuristics perform consid­

erably better than the others. Their average relative distances from the optimum, h, 
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Table 6.1: Average performance of the heuristics in Experiment 4. 

heuristic average b average h average a 

1 13.26 0.0027 33.0 

2 1.44 0.0006 33.2 

3 3.08 0.0018 33.0 

4 22.28 0.0095 32.1 

5 155.40 0.0891 19.3 

6 247.23 0.1270 13.0 

7 94.73 0.0368 28.2 

are very small indeed. However, even the lease performing two heuristics, 5 and 6, 

yield processing capacities within about 12% of the optimum. The average relative 

improvement in capacity with respect to the FCFS strategy is considerable: it is on 

the order of 30% for all heuristics except 5 and 6. 

The frequency histograms for band h are displayed in Figures 6.5 and 6.6, respec­

tively. Here, we have considered only the first three heuristics, for finer comparison. 

It can be seen that Heuristic 2 finds the best allocation in about 63% of the example 

systems, Heuristic 3 is optimal in about 45% of the example systems, and heuristic 1 

is optimal in less than 30% of the example systems. Figure 6.6 demonstrates very 

clearly that, even when the best allocation is not found, the processing capacity 

achieved by all three heuristics is very close to optimal. In almost 90% of the exam­

ple systems for Heuristic 2, 75% for Heuristic 3 and 50% for Heuristic 1, the relative 

error as measured by h is less than O.OOl. 

A similar experiment, i.e. Experiment 5, with a more heavily loaded repairman 

produced similar results, except that there the order of the first three heuristics was 

reversed: 1 was slightly better than 3, which was slightly better than 2. Again, the 
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Figure 6.5: Performance of the heuristics 1-3 in Experiment 4, with K = 6: number 

of better allocations. 
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Figure 6.6: Performance of the heuristics 1-3 in Experiment 4, with K = 6: relative 

errors. 
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relative errors of all heuristics apart from 5 and 6 were very small. The results of 

this experiment are shown in Figures 6.7 and 6.8. 

In Experiment 6, the number of repairmen is increased to 2. The parameter 

ranges for the service and repair rates are the same in Experiment 4, while the 

range for the breakdown rates is doubled, in order to maintain a similar load of each 

repairman as in experiment 1. Here, the ranges are: J.lk E (5000,95000), ek E (0,60), 

'l}k E (5,145). The experiment is again done on 100 example systems. The results 

are shown in the histograms in Figures 6.9 and 6.10. Comparing these with the 

results of Experiment 4, we observe the performance of all the three heuristics has 

improved. In general, it is intuitively obvious that the more repairmen are available, 

the less important is the effect of repair strategy. 

Figure 6.9 also illustrates the fact that the number of allocations better than a 

heuristic is always even. This is explained by noting that when there are two repair­

men, for any priority allocation there is another allocation (obtained by swapping 

the priorities of the top two processors) which has the same processing capacity. 

6.6 Conclusions 

We have applied the spectral expansion method to a class of heterogeneous multi­

processor models of moderate size. The bounds on the feasibility of a solution are 

dictated by the number of possible processor configurations: when that number is 

very large, the eigenvalue-eigenvector problem becomes ill-conditioned. This can 

perhaps be overcome, to an extent, as briefed in Chapter 5, by resorting to more 

accurate and robust numerical routines than the ones we have used. 

As far as the optimal repair strategies are concerned, it is clear that anyone 

among four or five heuristics would produce acceptable results in practice. In all 

cases, the priorities allocated may be preemptive or non-preemptive. It has been 
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Figure 6.7: Performance of the heuristics 1-3 in Experiment 5, with K = 6: number 

of better allocations. 
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Figure 6.8: Performance of the heuristics 1-3 in Experiment 5 with K = 6: relative 

errors. 
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Figure 6.9: Performance of the heuristics 1-3 in Experiment 6, with K = 6: number 

of better allocations . 
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Figure 6.10: Performance of the heuristics 1-3 in Experiment 6, with K = 6: relative 

errors . 
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proved very recently, by a simple numerical counter example [36], that the optimal 

repair strategy is not always one of the static PR-priority repair strategies. However, 

our experiments provide a strong indication that the processing capacities of several 

sub-optimal strategies tend to be very close to that of the optimal one. The effort of 

searching for an optimal allocation would be justified only if the traffic rate is such 

that the job queue is close to saturation. 

The outstanding theoretical problem in this context is to find an efficient algo­

rithm for determining the optimal (as opposed to a nearly optimal) priority alloca­

tion, which may be a dynamic PR-priority repair strategy .. 

It would also be interesting to get an estimate of the rate at which the relative 

error of the heuristics grows with the number of processors. Further experimentation 

could shed some light on this, but it will be expensive (already with 7 processors, 

there are 5040 possible priority allocations). 

6.7 Contributions 

The contributions of this chapter are, 

• A complex system, viz. a multiprocessor system with non-identical processors 

with breakdowns and repairs is taken up, for an in-depth performance anal­

ysis and ways of improving the performance. Spectral expansion method is 

successfully applied for the steady state performance evaluation. It is shown 

that this modelling is possible for various service and repair disciplines . 

• It is illustrated how important the repair strategy is, especially when the con­

tention for repair is high. The optimal repair strategy is obtained under some 

conditions. In the general case, several useful and nearly optimal heuristics 

for repair strategy are suggested. These strategies are evaluated against the 
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FCFS strategy, and against the optimal one in the case of multiprocessors of 

moderate size. 

These research contributions are presented in our papers [6, 7]. 



Chapter 7 

Queues with Breakdowns and 

Markov-modulated Arrivals 

7 .1 Introduction 

In the earlier chapters, the arrivals considered have all been Poisson processes. But, 

in many practical systems, the arrival rates may vary randomly over time, quite 

sharply some times. Examples include the overflow from a finite trunk group [41], 

the superposition of packetized voice processes, and packet data [26, 28], in com­

munications modelling. The Markov-modulated Poisson process (MMPP) has been 

extensively and effectively used for modelling such arrival processes. The MMPP 

is a non-renewal, doubly stochastic process where the Poisson arrival rate is var­

ied according to the state of an independent continuous time Markov process. The 

MMPP is a Markov-renewal process, and it qualitatively models the time-varying 

arrival rates and captures some of the important correlations between the inter­

arrival times while still remaining analytically tractable. An excellent review of the 

literature on the use of MMPP, and some useful results on MMPP's are found in 

[16]. 

126 
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Spectral expansion can solve certain queueing problems involving MMPP ar­

rivals. That is the subject of this chapter. Such queues occur frequently in com­

munication systems and other practical systems. We solve a MMPP /M/l queue 

with unbounded queueing capacity, and with server breakdowns and repairs, for 

steady-state performance measures. Apart from this, we also approximately model 

the departure process from that queue, as an interrupted Poisson process (IPP) and 

solve for its parameters. 

Section 7.2 describes the queue to be analysed. It also describes the spectral 

expansion modelling of that queue, followed by some numerical results on an example 

system. Section 7.3 is on modelling the departure process, approximately, as an IPP. 

It also presents results on the validation of that model. Section 7.4 concludes this 

chapter. 

7.2 The MMPP IM/1 queue with breakdowns 

and repairs 

We are interested in the analysis of a single server queue with MMPP job-arrivals. 

The server is prone to breakdowns and the broken server is set into repair process 

immediately after it is broken. The server becomes operative again following the 

completion of its repair. The service, breakdown and repair times of the server are 

exponentially distributed, with rates J.L, ~ , and "l respectively. When operative the 

server serves jobs, one at a time. When a job's service is interrupted because of a 

server breakdown, its service is resumed when the server is available, on the basis 

of resume or repeat with re-sampling discipline. 

Let, T, be the number of phases of the MMPP arrival process, numbered as, 

0,1, ... , T - 1. That means, the associated Markov process has T states. Let e be 

the generator matrix of the associated continuous time, irreducible, homogeneous 
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Markov process, of the MMPP. 0 is of size TxT. 0(i, k) = ()i,k, 0 :::; i, k :::; T - 1 

and i -=f k, is the transition rate from phase i to phase k of the MMPP. 0( i, i) = -()i 

is given by, 

In other words, 

T-l 

0(i, i) = - L 0(i, k) ; i = 0,1, ... , T - 1 . 
k=O& k:f.i 

T-l 

()i = L (}i,k; i = 0, 1, ... , T - 1 . 
k=O&k::j:i 

Let (Ii be the arrival rate of the MMPP in phase i. Let E be the diagonal 

matrix, of size TxT, whose ith diagonal element is (Ii. Clearly, the MMPP process 

is characterized by the square matrices 0 and E. 

Let Ci, i = 0,1, ... ,T - 1, be the steady state probability that the MMPP is in 

phase i, at any given time. Then Cj'S can be computed using the following equations: 

(7.1 ) 

Hence, the total average arrival rate, 0-, of jobs to the queue is, 

T-l 

0- = L CiUj . (7.2) 
i=O 

The effective average service rate of the server, taking into consideration the 

breakdowns and repairs, is ji. This is given by, 

(7.3) 

It is then intuitively clear that the system is ergodic if, and only if ji > 0-. Regarding 

rigorous proof of this statement, the same remark as on page 101 applies here. We 

assume this condition holds good, for our steady state analysis. 

The state of the system, at any time t, can be specified completely by three 

discrete random variables. They are, (i) the phase of the arrival process, <T>(t), an 

integer random variable varying from 0 to T - 1, (ii) whether the server is broken 

or operative, a boolean random variable, O(t), broken or operative, (iii) the number 
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of jobs in the system including the one in service, if any, J(t), unbounded integer 

random variable greater than or equal to O. (i) and (ii) are of finite range, they can 

be combined into a single integer random variable I(t) , I(t) E (0,1, ... , 2T - 1), 

by appropriately defining I(t). A possible definition of I(t), the one chosen in this 

analysis, is as follows: 

The first T states of I (t) , given by I (t) = 0, 1, ... , T -1, represent the breakdown 

states of the server, with respective arrival phases of the MMPP. The remaining T 

states, numbered T, T + 1, ... , 2T -1, represent all the operative states of the server, 

along with arrival phases 0,1, ... , T - 1 of the MMPP, respectively. 

Now, we can represent the state of the system by two integer valued random 

variables, (l(t), J(t)), J(t) E (0,1, ... ), where J(t) is the random variable (iii) 

mentioned above, representing the number of jobs in the system at time t. 

This system can now be modelled by the Markov process X, as we shall see by 

its parameters. 

I(t) = 0,1, ... ,N, N = 2T - 1, are the N + 1 operative states of the model or 

system. Note that, an operative state of the system is different from the operative 

state of the server. A breakdown or a repair of the server changes the value I(t), 

but does not change the values of J( t). An arrival of a new job or a departure of a 

job after service, changes J(t), but does not change the random variable I(t). 

The purely lateral transition rate matrices, A and A j , of size (N + 1) x (N + 1), 

are given by, 

A ) 

A(i, T + i) 

A(T + i, i) 

A(i, k) 

A(T + i, T + k) 

A;j2:0, 

rt; i = O,I, ... ,T-l, 

~ ; i = 0,1, ... , T - 1 , 

O;,k ; i, k = 0,1, ... , T - 1 ; i #- k , 

O;,k ; i, k = 0,1, ... , T - 1 ; i #- k , (7.4) 
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all other elements of A are zeroes. The one-step upward transition rate matrices, B 

and Bj, of size (N + 1) x (N + 1), are diagonal matrices. They are, 

B j - B; j::::: 0, 

B(i, i) 

B(T + i, T + i) 

B(i, k) 

(7i ; i = 0,1, ... ,T - 1 , 

(7i ; i = 0, 1, ... , T - 1 , 

0; i=Jk. (7.5) 

C and Cj are the one-step downward transition rate matrices. Since, the depar­

tures do not change J(t), unless such a change occurs by an independent coincidence, 

C and Cj are diagonal matrices. They are given by, 

Co 

C· J 

C(i, i) 

C(T + i, T + i) 

C(i, k) 

0, 

o ; i = 0,1, ... , T - 1 , 

t-t; i=O,I, ... ,T-l, 

0; i=Jk. (7.6) 

Clearly, the threshold M is given by M = 1. Hence, the spectral expansion 

solution for the steady state probability Pi,j and the row vectors Vj are valid for 

j ::::: o. Pi,j and Vj are defined as, 

Pi,j 

V' J 

lim P (I ( t) = i, J ( t) = j) ; i = 0, 1, ... , N ; j = 0, 1, ... 
t--+oo 

(PO,j, PI,j,···, PN,j) ; j = 0,1, ... 

From this distribution {Pi,j}, it is possible to find the steady state probability of 

the state of the system, as, 

lim P( <p(t) = i, O(t) = broken, J(t) = j) Pi,j , 
t--+oo 

lim P( <p(t) = i, O(t) = operative, J(t) = j) - PT+i,j, (7.7) 
t--+oo 
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The steady state performance measures, such as moments of queuelengths, server 

utilization, can be computed from this probability distribution. 

7.2.1 An example 

This section is intended to illustrate the system using a simple example. The ex­

ample considered, has a 3-phase MMPP arrival process. The phases are numbered 

as, 0,1,2. Phase 1 is the normal phase of the arrival process, with arrival rate a. 

Phases 0 and 2 are abnormal phases of the arrival process. In phase 2, the arrivals 

are very high, lOa, 10 times the normal arrival rate. In phase 0, there is a highly 

diminished arrival rate given by, O.la. The transitions rates are, 01,2 = 0.0030, 

01,0 = 0.0070, O2,1 = 0.050, 00 ,1 = 0.10, O2 ,0 = 0.050 and 00 ,2 = 0.10. Thus, a and 0 

are the variable parameters of the system. 

In a transition to phase 1, the average time the arrival process spends in that 

phase, before a subsequent transition, is 1~0. Similarly, those times for phase 0 and 

2 are, ~ and 10
0

, respectively. Hence, 0 regulates the actual duration of the phases, 

though their relative durations do not depend on o. 

Using the equations (7.1, 7.2), the total average arrival rate is computed as, 

(j = 1.63761a. Notice that (j also does not depend on o. 

Let the parameters of the server be, 11 = 25.0, ~ = 0.01, TJ = 0.1. Hence, j1 = 

22.727273. The system is ergdic if (j < 22.727273, or equivalently, if a < 13.8783. 

For 0 = 1.0, the mean queuelength, E(J), is computed for various values of a. 

These results are plotted in Figure 7.1, E(J) vs. a. These results are compared 

with the queuelengths of a simplified model, an MIMll queue with breakdowns and 

repairs. The bursty arrival rates are smoothed to a Poisson, in this M/M/1 model, 

that is with uniform arrival rate equal to (j = 1.63761a. 

The results are quite clear. The M/M/1 results are gross underestimation of the 

original model, MMPP IM/1 queue. Hence, it can be concluded that the burstiness 
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Figure 7.1: Mean queuelength vs. a, in the example. 
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of the arrivals affect the performance measures greatly. .\fere approximation by a 

Poisson process, could give considerably incorrect results. Hence, the importance 

and necessity of the models considered in this chapter. 

7.3 Departure process modelling 

The system and the model analysed in section 7.2 occur sometimes as stand-alone, 

but in many practical situations, as coupled with some other systems. For example, 

in assembly lines, the departed jobs from one such MMPP IMl1 queue are often 

split into several flows, for different operations, or combined with some other flows. 

In networks of queues, the departed jobs may be fed to other relevant queues, as 

arrivals, for further servicing. Hence, there is a case for the analysis of the depar­

ture process of the system in section 7.2, and develop an exact or approximate, 

analytically tractable model for it. 

The most appropriate model for the departure process, of course, would be an­

other MMPP. But, since we are interested in a simplified model, we have chosen the 

interrupted Poisson process (IPP) as the model. The IPP is essentially an MMPP 

with two phases, and the flow rate in one of those phases is equal to o. Let the 

parameters of this departure process-IPP be (v, a, 13). That means: the IPP has 

two phases, Phase 1 and Phase 2. In Phase 1, the departure rate is v. In Phase 2, 

the departure rate is o. The transition rate from Phase 1 to Phase 2 is a, and that 

from Phase 2 to Phase 1 is 13. The question before us is how to determine, appro­

priately, the values of these parameters. This is done by computing the moments of 

the inter-departure times, from the parameters of the system, and working out the 

IPP parameters from these computed moments. 

Consider the system in steady state, and at a time t 1• Exactly at time t1, there 

mayor may not be a departure. Let the next or subsequent departure, strictly after 



Chapter 7 Queues with Breakdowns and Markov-modulated Arrivals 134 

t l , be at time t2 (t2 > tl). Let T = t2 - tl be the random variable, representing 

the interval between tl and t2. The departure process would be stationary when 

the system, or the process X, is in steady state. Let ~(s) be the Laplace transform 

of the density of inter-departure interval. If there is a departure at time t 1 , then 

O(td = operative and T would represent the inter-departure interval. In order to 

derive an expression for ~(s), let the following Laplace transforms be defined. They 

are, 

T(s) - Laplace transform of the density of the random variable T , if O(t 1 ) = broken 

and J(t 1 ) ~ 1. 

O(s) - Laplace transform of the density of the random variable T, if O(td = 

operative and J(tl) ~ 1. O(s) would be the same whether or not there is a 

departure exactly at t l . 

r i (s ) - Laplace transform of the density of the random variable T , if the state of 

the system at tl is, I(td = i and J(tt) = o. ri(s) (i = T, T + 1, ... , N) would 

be the same whether or not there is a departure exactly at t l . 

It is possible to express T(s) and O(s) in terms of the parameters of the system, 

as follows. At tt, if O(td = operative and J(td ~ 1, then the next departure may 

occur before a breakdown, or, the next breakdown may occur before a departure. 

The probabilities for these two events are I'~~' ;h, respectively. If the latter occurs, 

then the state of the system becomes O(t) = broken and J(t) ~ 1, at the time of 

the breakdown. Hence, we have 

(7.8) 

On the otherhand, if O(td = broken and J(td ~ 1, then the system reaches 

O(t) = operative and J(t) ~ 1, at a rate ry. Only after this, a departure can take 
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place. Hence, we can write, 

T(s) = _TJ_ . O(s) . 
TJ+s 

(7.9) 

From equations (7.8) and (7.9), the Laplace transforms,T(s) and O(s), can be 

expressed as, 

(7.10) 

(7.11) 

Using the similar next-event analysis, as done above, fi(S), i = 0,1 ... , N, can 

be derived as follows. 

At t l , if I(td = i (i = 0,1, ... , T - 1), J(tt} = 0, then the next significant event 

of interest, before a departure, can be, (i) arrival of a new job making the state of 

the system I(t) = i, J(t) = 1, for some value of t, or, (ii) completion of repair of the 

server leading to I (t) = T + i and J (t) = 0, or, (iii) a change of phase of the MMPP, 

from phase i to phase k (k i= i), leading to I(t) = k (k = 0,1, ... ,T - 1 ; k i= i) 

and J(t) = 0. The probabilities of the events (i), (ii) and (iii) are 0';+0';+0;' O';+~+O; 

and O';!;~~o; (k = 0,1, ... , T - 1 ; k i= i), respectively. Hence, we have 

G"j G"j+TJ+Oj .T(s)+ TJ 
~+TJ+~ ~+TJ+~+s ~+TJ+~ 

T-l 0 + + 0 + l: i,k G"j TJ j • fk(S) 

k=O&ki-i O'i + TJ + OJ O'j + TJ + OJ + s 

G"i + TJ + OJ f () 
. T+i S 

G"j + TJ + OJ + s 

(7.12) 

In case, at t l , if I(td = T + i (i = 0,1, ... , T - 1), J(tl) = 0, then the next 

significant event of interest, before a departure, can be, (i) arrival of a new job 

making the state of the system I(t) = T + i, J(t) = 1, or, (ii) a breakdown of the 

server leading to I(t) = i and J(t) = 0, or, (iii) a change of phase of the MMPP, 

from phase i to phase k (k i= i), leading to I(t) = T + k (k = 0,1, ... ,T -1 ; k i= i) 

and J(t) = 0. The probabilities of the events (i), (ii) and (iii) are 0';:£\0;' O';+~+O; 

and O';!{~O; (k = 0,1, ... , T - 1 ; k i= i), respectively. Hence, we can write 
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T-l () C () + L i,k (1i+l,,+ i .fT+k(s) 
k=O&ki=i (1i + ~ + ()i (1i + ~ + ()i + S 

(7.13) 

Equations (7.12) and (7.13) can be simplified as, 

(7.14) 

(7.15) 

Equations (7.14) and (7.15) are N + 1 linear simultaneous equations in N + 1 

unknowns, namely, fi(s)'s. Hence, the latter can be found exactly, by solving these 

equations. 

It is reasonable to say that at any departure epoch of a job, the server is in 

operative state. Now, let us assume, without loss of generality, there is a departure 

exactly at t i . Rather, this is done simply by choosing tl at a departure epoch. Then 

T represents the inter-departure time. The Laplace transform, ~(s), of the density 

of this random variable T, can now be written as, 

T-l 

~(s) = L 7l'i,ofT+i(S) + (1- 7ro)n(s) , (7.16) 
i=O 

where, 

7l'0 is the probability that J(t) = 0 at a job departure epoch. 

7l'i,O is the probability that J(t) = 0 and the arrival phase <l>(t) = i, at a job 

departure epoch. It is evident, "Lt=r} 7l'i,O = 7r0 
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1I";,0'S are related to some of the steady state probabilities computed by spectral 

expansIOn, as, 

P(<P(t) = i, O(t) = operative, J(t) = 1) . J.L 

u 
PT+;,l . J1 . 0 1 T 1 

~ ; z = , , ... , -
u 

(7.17) 

The probabilities PT+i,l (i = 0,1, ... , T -1) can be computed exactly using spectral 

expansion solution. Using these results of the spectral expansion solution, 1I";,0'S and 

11"0 can be computed exactly from (7.17). 

7.3.1 Moments of the inter-departure interval 

In order to fit an IPP for the departure process, what we need are the computed 

values of the first 3 moments of the random variable T. Let n(k) (s) and T(k) (s) 

be the kth derivatives of n(s) and T(s) respectively, with respect to s. Also, let 

r~k)(s) (i = 0,1, ... , N) be the kth derivative of r;(s), with respect to s. Then, by 

differentiating equation (7.16) 3 times, we get, 

T-l 

L 1I";,or¥~i(S) + (1 - 1I"0)n(1)(s) ; 
;=0 
T-l 

L 1I"i,Or¥~;(s) + (1 - 1I"0)n(2)(s) ; 
;=0 
T-l 

~(3)(S) = L 1I";,or~~;(s) + (1 - 1I"0)n(3)(s) ; 
;=0 

(7.18) 

(7.19) 

(7.20) 

where ~(k)(S) is the kth derivative of ~(s) with respect to s. If db d2 and d3 are the 

first 3 moments of T, then we have, 

(7.21) 

By differentiating equation (7.10), successively 3 times, and evaluating the deriva­

tives T(1)(s), T(2)(s) and T(3)(S), at s = 0, we get, 

T(l)(O) = _ (TJ + J1 + ~) 
TJJ1 

(7.22) 
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1'(2)(0) = 2[(1] + '" + 0 2 
-1]"'] . 

1]2",2 ' 

1'(3)(0) = 6[(1] + '" + ~)3 - 21]"'(1] + '" + 0] 
1]3",3 

where, 1'(k)(O) = 1'(k)(s)ls=o. 
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(7.23) 

(7.24) 

Similarly, by differentiating equation (7.11), successively 3 times, and evaluating 

the derivatives O(1)(S), O(2)(S) and O(3)(S), at s = 0, we get 

0(1)(0) = _ (1] + ~) ; 
1]'" 

0(2)(0) = 2[(1] + 02 + ",~J . 
1]2",2 ' 

0(3)(0) = _ 6[(1] + ~)3 + 21]"'~ + ",2~ + 2",eJ 
1]3",3 

where, O(k)(O) = O(k)(s)ls=o. 

(7.25) 

(7.26) 

(7.27) 

In order to compute db d2 and d3 , we also need to compute the values of r~k)(s), 

k = 1,2,3 and O:S; i:S; N, at s = O. Denote, r~k)(O) = r~k)(s)IB=O. Differentiating 

the equations (7.14, 7.15), a total of 2 . T equations with respect to s, and then 

substituting s = 0, we get the following equations. 

r~1)(0) = O"i1'(1)(O) + 1]r¥~i(O) - 1 + Lr~~&ki:i Oi,kr~1)(O) ; i = 0,1, ... , T - 1 
O"i + 1] + Oi 

(7.28) 

(7.29) 

Assuming 1'(1)(0) and 0(1)(0) are known from the equations (7.22, 7.25), the above 

are 2·T linear simultaneous equations in 2·T unknowns, r~1)(0) (i = 0,1, ... , 2T-1). 

Hence the values of these unknowns are obtained by solving the equations (7.28, 

7.29). 

Similar procedure is followed for obtaining the values of second and third deriva­

tives, r~2)(0) and r~3)(0), for all the possible values of i. This is done as follows. 
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Differentiate equations (7.14) and (7.15), twice successively, with respect to s. 

Then, substitute s = O. Then, we get, 

T (2)(0) r(2) (0) 2r(1)(0) ",T-l () r(2)(0) r~2)(0)=Ui +1] T+i - i +l..Jk=l&k#i i,k I. ; 

Ui + 1] + ()i 
i = 0,1, ... ,T - 1 (7.30) 

r(2) .(0) = Uin (2)(0) + ~r~2)(0) - 2r¥li(0) + 2::f;11& k#i ()i,kr¥lk(o) . 
T+. Ui + ~ + ()i ' 

i=0,1, ... ,T-l (7.31) 

Since T(2)(0), n(2)(0) and r~l)(O)'s are known, equations (7.30) and (7.31) rep­

resent 2 . T linear simultaneous equations in 2 . T unknowns, the ri2)(0)'s (i = 

0,1, ... ,2T - 1). Hence, these unknowns can be computed by solving the linear 

simultaneous equations. 

Third order differentiation of the equations (7.14) and (7.15), and substituting 

s = 0, leads to 

r(3)(0) = UiT (3)(0) + 1]r¥li(o) - 3r~2)(0) + 2::f;~&k#i ()i,krP)(O) ; 
t ~+1]+~ 

i = 0,1, ... , T - 1 (7.32) 

i = 0,1, ... ,T - 1 (7.33) 

Since T(3)(0), n(3)(0) and r~2)(0)'s are already known, the above equations (7.32) 

and (7.33) are 2· T linear simultaneous equations in 2· T unknowns, r~3)(0)'s (i = 

0,1, ... ,2T - 1). Hence, the latter can be computed by solving these equations. 

Denote, ~(k)(O) = ~(k)(s)ls=o. Now, we are in a position to compute the first 3 

moments of T, as 
T-l 

d1 = -~(1)(0) = - L 1l'i,or¥li(o) - (1 - 1l'o)n(l)(O) ; 
i=O 
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T-l 

d2 ~(2)(0) = L 7I"i,Or¥li(O) + (1 - 71"0)0(2)(0) ; 
i=O 

T-l 

d3 = -~ (3)(0) = - L 7I"i,Or~t(O) - (1 - 71"0)0(3)(0) . 
i=O 

It can be noted, d1 = 1/0-, simply because the average rate of arrivals and average 

rate of departures are equal in steady state. 

7.3.2 Fitting an IPP 

Having obtained the first 3 moments of the random variable T, the inter-departure 

time in the steady state, we now need to fit exactly or approximately a standard 

process for analytical modelling. Another MMPP would be ideal for this, yet we 

have chosen an IPP for simplicity at the cost of some accuracy. The IPP is a 

renewal process. //, a and (3 are the parameters of this IPP, as described earlier. 

The idea now is to estimate these parameters from the computed moments of the 

inter-departure times, and other details. 

The Laplace transform of the inter-departure/arrival time density, of this IPP is 

given by, 

F s _ //((3 + s) 
()- (3//+s(a+(3+//)+s2 

(7.34) 

The first 3 moments of this IPP's inter-departure time, -F(l)(s)ls=o, F(2)(s)I,,=0 

and -F(3)(s)ls=0, respectively, are then given by, 

where, F(k)(O) = F(k)(s)ls=o. 

a+(3 
(3// ' 

2[(a + (3)2 + a//] 
(32//2 

6[(a + (3)3 + a//(2a + 2(3 + //)] 
(33vJ 

(7.35) 
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Modell 

There are several possible ways of fitting the IPP. One way is to equate the computed 

moments of the inter-departure intervals to those of the IPP, and solve for the un­

knowns, i.e. the parameters of the IPP. Hence, the following non-linear simultaneous 

equations in 0, (3 and v, are to be solved for the latter. 

0+(3 -d . 
(3v - 1, 

2[(0 + (3)2 + ov] _ d . 
(32v2 - 2, 

6[( 0 + (3)3 + ov(20 + 2(3 + v)] _ d 
(33 v3 - 3· 

The solution for the equations given above is, 

o 

(3 

v 

Model 2 

(6df - 6d1d2 + d3 )(2d1d3 - 3~) , 

3(d2 - 2di) . 
6df - 6d1d2 + d3 ' 

2(6df - 6d1d2 + d3 ) 

2d1d3 - 3~ 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

One other way of fitting the IPP, is to equate only the first two computed moments 

of the inter-departure interval to those of the IPP, respectively. The other equation 

is got by equating the average server failure and repair cycle time to the average 

cycle time of the IPP. Hence, we use equations (7.36) and (7.37). And, the third 

equation is, 

1/0 + 1/(3 = 1/~ + l/TJ . (7.40) 

Then, by solving equations (7.36), (7.37) and (7.40), 0, (3 and v are computed 

appropriately, as, 
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where, 

a 

b 

c 

v -

a 

{3 

-:-b - v'b2 - 4ac 

2a 
TJv,d I -_. 
TJ+" 

TJv,d1 • 

(TJ + O(div - 1) , 

- 2dl (TJ + ') + d2 TJ' - 2diTJ' 

di 
4(TJ + 0 

di 
-2(TJ + ') 

<II 

7.3.3 Validation of the departure model 

(7.41) 

(7.42) 

The approximations, Model 1 and Model 2, of representing the departure process by 

an IPP, can be very useful. This is because they are computationally simple models. 

But it is necessary to see how good these models are. Several complementary ways 

of validation are posible. In this section, we deal with one validation experiment. 

Let the departure process, modelled as an IPP by Modell, be known as I P pl. 

Let the one by Model 2 be referred as I P p2. The validation is done by comparing 

the 4th moment of the actual inter-departure time, to that of I P pI, i.e. in Modell. 

And, in the case of Model 2, comparing 3rd and 4th moments of the departure process 

to those of I P p2, respectively. 

We shall consider the same example system as in section 7.2.1. This system has 

two control parameters, u and e. 

If the parameters of the IPP are (v, a, (3), then the first 3 moments of the inter­

departure interval of the IPP are given by the equations (7.35). The 4th moment of 
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this inter-departure interval of this IPP is given by, 

F(4)(0) = 24[(a + j3)4 + 3av(a + j3)2 + av
2
(3a + 2j3 + v)] (7.43) 

j340 

Hence, the 4th moment of this inter-departure interval of I P pI and I P p2 are ob­

tained by this equation (7.43). 

Now, let us find the actual 4th moment of this inter-departure interval. 1(4)(0) 

and n(4)(0) can be found by differentiating 4 times successively, the respective equa­

tions (7.10, 7.11), with respect to s, and finding their values at s = o. When that is 

done, we have, 

n(4)(0) = 24[(7] + 0 4 + 3J-l~(7] + 0 2 + J-l2~(27] + J-l + 30] (7.45) 
7]4 J-l 4 

To get r~4)(0)'s, differentiate the equations (7.14, 7.15) 4 times successively and 

let s = o. Then, we have 

ri4)(0) = 0";1(4)(0) + 7]r~~;(O) - 4r~3)(0) + Lr==-~&k#; O;,kr~4)(0) ; 

0"; + 7] + 0; 

i = 0, 1, ... , T - 1 (7.46) 

r(4) .(0) = 0";n(4)(0) + ~r~4) (0) - 4r~~;(0) + Lr==-~&k#; O;,kr~t(O) . 
T+I 0"; + ~ + 0; , 

i = 0,1, ... ,T - 1 (7.47) 

Equations (7.46, 7.47) are 2 . T linear equations and can be solved for the 2 . T 

unknowns, r~4),s. 

Then, d4 , the actual 4th moment of the inter-departure time, is given by, 

T-l 

d4 = ~(4)(0) = L 7r;,Or~~;(0) + (1 - 7I"0)n(4)(0) . (7.48) 
;=0 
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I(F(4)(Otd4 )I.l00 is the percentage error in the 4th moment of the IPP, in both the 

models. And, I(F(3)(O~~d3)1'100 is the percentage error in the of 3rd moment, in case 

of Model 2. 

These percentage errors in the 3rd (in case of Model 2), and 4th moments (in case 

of Models 1 & 2), of the IPP, are plotted for varying values of (j, keeping () = 1.0. 

Figure 7.2 shows these plots. Clearly, the errors in Modell are moderately small. 

In Figure 7.3, only Modell is considered. (j is fixed, and () is varied over a large 

range and represented on a logarithmic scale. The errors in the 4th moments are 

plotted against (). And, all this is done, for different values of a. The errors are 

again reasonably small. 

Hence, it may be concluded Model 1 fares well in this validation experiment. 

However, more and different validation experiments are desirable. 

7.4 Conclusions 

Bursty arrivals are much more common than Poisson arrivals, in. practical systems. 

The MMPP is an efficient, mathematically tractable and fairly accurate represen­

tative model, widely used to represent bursty arrivals. A queue with breakdowns 

and MMPP arrivals is considered. Firstly, the spectral expansion solution is de­

rived for this system, for steady state probabilities and performance measures. A 

numerical example and, through that, the necessity of representing the burstiness, 

are illustrated. 

The spectral expansion solution can be extended to the cases of, (i) multiserver 

systems, instead of a single server, (ii) general Markovian arrival process (MAP) 

[40] in place of MMPP, (iii) phase-type services, and (iv) finite buffer instead of 

unbounded queueing capacity. Such models have a great deal of applicability in 

B-ISDN research and design. 
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Figure 7.2: Evaluation of the departure IPP: Models 1 & 2. 
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Figure 7.3: Evaluation of the departure IPP: ModelL 
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A mathematically simple departure process model is conceived. That is an in­

terrupted Poisson process (IPP), a renewal process. The model parameters are 

obtained by equating the first 3 moments of the IPP to the corresponding actual 

moments. A validation procedure for this model, is also given. That model seems to 

be a fairly good fit. However, further extensive validation is desirable. This may be 

a good model, even in the case when the server is reliable, i.e. without breakdowns. 

The departure process modelling can be extended to the cases, (ii), (iii) and (iv), 

mentioned above. In the case of (i), i.e. extension to a homogeneous multi server 

system instead of single server, if K is the number of servers, then an MMPP with 

K + 1 phases is a reasonable guess for the departure process model. 

7.5 Contributions 

This chapter has two contributions. They are, 

• A queue with breakdowns and Markov-modulated arrivals, is modelled and 

analysed, by spectral expansion method, for steady state probabilities and 

performance measures. A numerical example is presented, as an illustration . 

• The departure process is modelled and approximated to an IPP. The parame­

ters of that IPP are derived, from the parameters of the system. This approx­

imation is validated through a procedure. The results of that validation are 

shown in figures. 

These contributions are used in our paper [10]. 



Chapter 8 

Open Queueing Networks with 

Breakdowns and Repairs 

8.1 Introduction 

Complex performability problems often require several other systems engineering 

techniques, along with the spectral expansion method, for wholesome solutions. Two 

such problems were considered in Chapters 6 and 7. This chapter too deals with 

one such complex performability problem: modelling and analysis of open queueing 

networks in which the servers are prone to breakdowns and repairs. 

Open queueing networks are models for networks of computers, and modern 

communication networks consisting of inter-connected nodes. These models are very 

useful in the analysis of systems, ranging from the telephone networks of today to 

the information superhighways of tommorrow. Consequently, there has been a great 

deal of research effort in the performance analysis of open queueing networks, over 

the last few decades. The pioneering work of Jackson [30] has given rise to simple 

and efficient solutions for networks, under restricted conditions. Such networks have 

product form solution [2]. However, many practical networks, e.g. networks with fi-
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nite capacity, or, with general arrival and service processes, or, with complex priority 

services, do not fall into the category of product form or BCMP networks. Usually 

approximate analytical solutions, supported by validation through simulation, are 

sought or suggested in these cases. 

When the servers in a network are prone to breakdowns and repairs, that net­

work does not have a product form solution. The irregularities caused by server 

breakdowns and repairs do have a great effect on the performance and dependabil­

ity of the network. Hence, the analysis and solution of such networks is important. 

So far, there have not been satisfactory solutions to this problem. 

In this chapter, we take up this problem of analysing open queueing networks 

with server breakdowns and repairs, for steady state performance and dependability. 

We develop several approximate models having different comptational efficiency­

accuracy trade offs. We make use of the spectral expansion method, and other 

systems engineering techniques, wherever necessary, to accomplish this task. 

This chapter is organised as follows. The next section defines the problem. 

Section 8.3 describes a model based on the reduced work rate approximation [54, 64]. 

In this approximation, each server with breakdowns and repairs is replaced by an 

equivalent reliable server, that is with reduced work rate, to take into account the 

loss of working time caused by breakdowns. The resulting network is one of product 

form, and is solved. The results of this model are compared with those obtained by 

long simulation runs. Necessary conclusions are drawn. 

Section 8.4 deals with another model, termed Poisson approximation. In this 

model, the total flow of jobs to a server, resulting from external arrivals and arrivals 

from other servers, is approximated or assumed to be Poisson. This is a computa­

tionally efficient model. The results, when compared with simulation, seem to be 

good for large networks. However, for small networks, the results of this model are 

not quite accurate. Some experimental results are plotted, and analysed. 
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Two other models are also conceived. These are computationally more involved, 

but achieving better accuracy, and especially suitable for small networks. Section 

8.5 presents one of these, called the MMPP model, involving some approximations 

and assumptions. In it, the departures from each server are assumed to form, or, 

approximated by an interrupted Poisson process (IPP). And, the job flows to a 

server from other servers, and the external arrivals to this server, are all assumed to 

be independent. With these assumptions, the overall arrivals to a server are shown 

to form an MMPP process. The network is then modelled as a coupled network of 

several MMPP IMl1 queues with breakdowns and repairs. This network is solved by 

an efficient iterative procedure, for performance and dependability measures. This 

model has given more accurate results compared to the Poisson approximation. 

The fourth model is termed as the joint-state model. This is developed in section 

8.6. In this, the overall arrival rate to a server is assumed to depend on the joint-state 

of all the servers. During any given joint-state of the servers, the overall arrival rate 

to each server is assumed constant. Each queue is, then, a Markov modulated system 

and the network is a coupled network of Markov modulated queueing systems. This 

model is solved by an efficient iterative procedure. The results of this model are also 

found to be more accurate, compared with the Poisson approximation. 

8.2 The system 

The system to be analysed is an open queueing network of K nodes, numbered as, 

1,2, ... ,K. Jobs enter the network, as external arrivals at one or more nodes. Let 

(jk, k = 1,2, ... , K, be the arrival rate of jobs into node k, from external sources. 

We assume these external arrivals are Poisson. Each node has a single server that 

serves jobs one at a time. The servers are prone to failures, and when a server is 

broken it is set into repair process immediately. Service times, failure times and 
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repair times of the servers are exponentially distributed. Let Ilk, ek and 17k be the 

service, failure and repair rates respectively, of server k. The queueing capacity 

at each node is unbounded. When a job's service is interrupted due to the server 

failure, that service is resumed immediately after that server is repaired. The policy 

concerning services interrupted by breakdowns is either resume from the point of 

interruption, or, repeat with re-sampling. After a job is serviced at node k, it is 

routed to node 1, with a probability qk,l, for service at server 1. If jobs are never 

routed from node k to node l, then qk,l = O. It is assumed, without loss of generality, 

as far as the queue length distributions are concerned, qk,k = 0 (k = 1,2, ... , K). 

Also, qk,K+1 = 1 - 'E~1 qk,l , is the probability with which a job leaves the system, 

after its service at node k. We assume, the exit probability, qk,K+1 , is non-zero for 

at least one value of k. Q is the routing probability matrix of size K x K, such 

that, Q(k, l) = qk,l (1 ~ k, 1 ~ K). This is the system to be analysed. The system is 

shown in Figure 8.1. All performance measures to be considered are of steady state, 

unless specified differently. 

Let ih be the total average flow rate of jobs to node k, consisting of external 

arrivals and arrivals from all other nodes. Then, we can write, 

K 

ch = (J"k + L (7lql,k ; k = 0,1, ... , K . (8.1 ) 
1=1 

Let 0' and iT be the row vectors, ((J"1, (J"2, ... ,(J"K) and ((71, (72, ... ,(7K), repectively. 

Let EK be the unit matrix of size K x K. Then, equations (8.1) an also be written 

as, 

(8.2) 

Equations (8.1) is a system of K linear equations in K unknowns. (Q - EK) is 

non-singular, since qk,K+1 is non-zero at least for one value of k. Hence, iT can be 

computed by solving these equations. 

Let fik be the effective average service rate of server k, taking into account the 
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Figure 8.1: Open queueing network with breakdowns and repairs. 
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loss due to breakdowns and repairs. Then, 

ILk = 
7Jk 

ILk·--'----
7Jk + ~k 

7Jk/~k 
ILk . ; k = 1,2, ... , K . 

7Jk16 + 1 
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(8.3) 

The system is ergodic if, and only if, for every node, the effective average service 

rate is greater than the total average flow rate into it. That is, Pk > ch (k = 

1,2, ... , K) (the same remark on page 101 applies here, regarding a rigorous proof 

of this ergodicity condition). 

Hence, we assume that this ergodicity condition holds good for the following 

steady state performance modelling. 

8.3 Reduced work rate approximation 

The reduced work rate approximation (RWR) has been used to analyse single server 

queues with several priority classes of jobs [54]. Also, Vinod and Altiok [64] have 

successfully used it to model closed queueing networks with server breakdowns and 

repaIrs. 

We apply this approximation to our problem. According to this, each server 

k is approximated or replaced by a reliable server with service rate equal to Pk. 

The resulting network is an open queueing network of Jackson type. And, that has 

product form solution. The total flow rate Uk to server k would then be Poisson, 

in the approximated network. Hence each node can be solved in isolation, as an 

M/M/1 queue. Thus, the mean queue length at node k, Lk , is given by, 

Uk 
Lk = ~ ~; k = 1,2, ... , K . 

ILk - Uk 
(8.4) 

The response time of a job, i.e. the average time the job remains in the network, is 

given by, 

(8.5) 
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8.3.1 Evaluation of the RWR approximation 

In order to find out how well the RWR approximation performs, some experiments 

are done. We take up a tandem network with two servers. The servers have the same 

service, failure and repair rates. Hence, Ji1 = Ji2 = Ji, 6 = 6 = ~, and "71 = "72 = "7. 

We also have chosen.,., = 1O~, in order to keep .,.,/~ constant. Server 2 has no 

external arrivals. Hence, 0'2 = o. Jobs enter node 1, as Poisson, with arrival rate 

0'1. After their service at node 1, jobs enter node 2 for service by Server 2. Hence, 

Q1,2 = 1.0. Jobs leave the network after their service at node 2. Hence, Q2,3 = 1.0. 

For such a network, it is possible compute the mean queue length at node 1, £1, 

exactly, using the simple formulae in [42]. Hence, what remains is to estimate £2. 

This is done using the RWR approximation, and also by long simulation, for some 

sets of parameter values. The results of the RWR approximation are compared to 

the simulation results, since the latter are accurate. Typically, we have fixed Ji = 

2.0, and varied ~ and 0'1 over considerable ranges. The performance characteristics 

obtained by RWR approximation and by simulation, are shown in Figures 8.2, 8.3 

and 8.4. 

Figure 8.2 shows the simulation plots, £2 vs. 0'1, in three example networks. 

These examples are chosen with three different values of ~ = (0.001, 0.1,10.0)' indeed 

of different orders of magnitude. However, in all these three examples, .,.,/~ remains 

unchanged. Hence, PI and P2 also remain unchanged, though ~ changes. Hence, 

the RWR approximation gives the same result for £2, for a given value of 0'1, in 

all these three examples. That common plot, of the RWR approximation, for these 

three examples is also shown in the figure. Noticeably, the RWR plot coincides only 

with one of the simulation plots, the one with ~ = 10.0. The other two simulation 

plots show up very differently from the RWR plot. Hence, it can be seen that the 

RWR approximation is a very inaccurate model. 

In the third example, since ~(= 10.0) and .,.,( = 100.0) are very high, by orders 
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Figure 8.2: Evaluation of the RWR approximation: Experiment 1. 
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of magnitude, compared to /1 and 0"1, no significant build up of queue takes place 

during the server breakdowns. That is the reason why RWR approximation almost 

coincides with the simulation result, in this example. 

Figures 8.3 and 8.4 show the performance plots for another experiment, Experi­

ment 2. Here, /11 = /12 = 2.0, 6 = 6 = ~, and TJl = TJ2 = TJ. Again, the ratio 7J/~ 

is fixed, TJ = 5~, this time. 0"2 = 0, and 0"1 is fixed at 1.0. With this, L2 is plotted 

against varying ~. In Figure 8.3, ~ is small, by orders of magnitude, compared to I' 

and 0"1, and varies linearly on the horizontal axis. Where as, in Figure 8.4, ~ varies 

exponentially on the horizontal axis, varying from very small values to large values, 

when compared to the fixed /1 and 0"1. In the figures, though plots of other approxi­

mations (dealt later) are also given, we are concerned only with the simulation and 

RWR plots, in this section. It is clear that the RWR approximation differs greatly 

from simulation results, normally. And, only when ~ and TJ are much higher than /1 

and 0"1, the RWR results compare well or coincide with simulation results. 

Hence, it can be concluded, for all practical purposes, the RWR approximation 

is very inaccurate. 

It is, however, quite surprising and interesting to know the RWR approximation 

has been reported to perform fairly well in the case of closed queueing networks with 

server breakdowns and repair [64]. 

8.4 The Poisson approximation 

In this approximation, the total flow of jobs to server k from external arrivals and 

from all other nodes, is assumed to be Poisson, with rate ch. There is some justi­

fication of this assumption, in certain cases. There have been results to show that 

the superposition of many independent and relatively sparse processes converges to 

Poisson, as the number of component processes tends to infinity [11]. This approx-
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Figure 8.3: L2 vs. e in the two-server network. 
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imation was reported, but not evaluated in [43]. 

With the above assumption, the problem reduces to, (i) computing the total 

average flow rates, (1). 's, to nodes (ii) Analysing each node separately, as a MIMl1 

queue with breakdowns and repairs of the server, for queue length distribution. 

For task (ii) above, Mitrani and Avi-Itzhak have derived a simple mathematical 

formula [42]. Using that formula, Lk'S can be computed as, 

(8.6) 

Once, Lk'S are known, the equation (8.5) can be used to compute the response 

time. 

8.4.1 Evaluation of the Poisson approximation 

Evaluation study is performed on a number of randomly generated sample or ex-

ample networks. In the first experiment, i.e. Experiment 1, random networks of 

four different sizes, K = (3,5,10,15), are generated. For each of those sizes, eight 

different sample or example networks are generated. 

Each sample network is generated, by choosing its parameter values randomly, 

as follows: First, ek'S are generated by sampling uniformly as, ek E (0.001,0.01). 

Then, 'r/k'S are generated as, Z! E (1.0,10.0). The external arrivals are generated as, 

Uk E (0.1,3.0). The exit probabilities, qk,K+l'S, are generated as, qk,K+l E (0.1,0.5). 

Once the exist probability of server k is chosen, the transition probabilities from 

server k to all other servers are determined randomly. This is done by splitting the 

quantity, 1 - qk,K+l, unformly and randomly, into K -1 parts. These, latter K -1 

quantities form the K - 1 transition probabilities, qk,1 (1 ~ l ~ K, l =/:. k). With 

these parameter values, the total average flow rates to servers, o-k'S, are determined, 

solving the equations (8.1). The service rates of the servers, J.Lk'S are now chosen as, 

>< rflk ) E (1.1,3.0). The sample network generation is now complete. 
(fk ek+l1k 



Chapter 8 Open Queueing Networks with Breakdowns and Repairs 160 

Each sample network is analysed using the Poisson approximation and also by a 

long simulation run, the latter producing accurate results. These results are, then, 

compared. Let Rpoi88on and R8imuiation be the response times computed by the Pois­

son approximation and simulation respectively. Then I<Rpoiuon-
R

.imu/ationll·
1OO is the 

R •• mulat.on 

percentage error in the response time computation, using the Poisson approximation. 

Figure 8.5 shows the percentage error in response time computation by the Pois­

son approximation, vs. the size of the network, K. Each point (dot) concerns with 

one sample network. There are eight sample networks for each K = (3,5,10,15). It 

is clearly evident, the larger the size of the network is, the Poisson approximation 

seems to fit better. The line joining the average of these errors for each K, is also 

shown. 

To confirm this trend, another experiment, Experiment 2, also is conducted. 

This is done in a slightly different way, and on just one sample network of size, 

K = 20. The network parameter values are generated again randomly as follows: 

First ek'S are chosen as, ek E (0.0001,0.001); then, 'f/k'S as, Z! E (10,10.0); the exit 

probabilities as, Qk,K+1 E (0.1,0.5). The transition probabilities from each server k 

to the other servers are then sampled, just as in the case of Experiment 1 of this 

section. This is done by splitting the quantity, 1 - Qk,K+1, randomly and uniformly, 

into Qk,/'S (1 :s 1 :s K, 1 =1= k). 

The external arrivals are a single Poisson arrival stream of jobs, with arrival 

rate u. u is the variable in this experiment. This stream splits into K streams, 

Uk (k = 1,2, ... ,K), unformly and randomly. This is done, by randomly choosing 

the split probabilities, Jk (k = 1,2, ... , K), of u, uniformly. Also, 2:{;=1 Jk should 

be equal to 1.0. These chosen or sampled split probabilities are now fixed. Stream 

k, with arrival rate Uk = uJk , enters node k, as an external Poisson arrival stream. 

The maximum value of u is fixed as 10.0. 

The service rates, Jlk'S, are chosen as follows. With u = 10.0, the maximum value 
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Figure 8.5: Evaluation of the Poisson approximation: Experiment 1. 
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of u, the streams to individual nodes, Uk'S, are computed. Then, using equations 

(8.1), the total average flows to the nodes, <h's, are computed. Then, the service 

rates, Ilk'S, of servers are randomly chosen as, >< Uk?: ) E (1.01,1.5). With this, all 
tTk k 11k 

the parameters of the network are fixed. The network would be ergodic, if U < 10.0. 

This network is analysed by the Poisson approximation, and also, by long sim­

ulation, for varying values of u. All the other network parameters are kept fixed. 

The response times Rpoisson and Rsimuiation are computed, in each case. 

Figure 8.6 shows the response time plots against u, the total external arrival 

rate, for the Poisson approximation and for the simulation. The confidence intervals 

of the simulation results are also shown. The Poisson approximation seems to be a 

good fit, in this experiment. The error in the response time computation, for this 

example system, is even smaller than the average error for the example systems of 

size K = 15 considered in Experiment 1. 

It can now be said that the Poisson approximation gives fairly accurate results 

in large networks in which the nodes receive arrival streams from a number of other 

nodes. That is because, the superposition of all those arrivals to a node, including 

the external arrivals, can then be approximated as Poisson for the sake of queue 

length computations, without losing a great deal of accuracy. 

Also in networks, small or large, if the external Poisson arrivals to each node are 

much larger compared to the sum of other arrivals (from other nodes) to that node, 

then also the Poisson approximation would work well. This situation occurs if the 

exit probabilities of nodes are large, compared to the transition probabilities to the 

other nodes. 

Two more approximate models are presented in the following sections. In these 

models, the attention is towards small networks, since Poisson approximation has 

given satisfactory results for large networks. 
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8.5 The MMPP model 

The Poisson approximation does not seem to work well for networks, with consid­

erably small number of nodes. This is because, in small networks, the nodes receive 

fewer number of arrival streams, external as well as from other nodes. The superpo­

sition of these streams does not tend to be Poisson. The MMPP approximation or 

the MMPP model, is developed in order to improve over the Poisson approximation, 

by accounting for this trend. Let Sk be the set of nodes to which the departures 

from node k are routed. That is, if qk,1 > 0 then, node I E Sk. Let Gk be the set of 

nodes from which node k receives jobs. That is, if ql,k > 0 then, node L E Gk. Let 

Sk be the cardinality of Sk and, gk that of Gk. 

The MMPP model is based on the following underlying assumptions and ap­

proximations: 

(a) The departure process from node k (k = 1,2, ... , K), is approximated by an 

interrupted Poisson process(IPP), with parameters (Vk' Qk, (3k). The definition 

of these parameters is the same as in Chapter 7. We name this process, 

individually as, I P Pk • 

(b) The split process, of the departure IPP from node k, entering node l (node L E 

Sk), is also assumed or approximated to an IPP with parameters (Vk,l, Qk,l, (3k,I)' 

We name this process, individually as, I P Pk,I' 

(c) The departure IPP's from all the nodes, the arrival IPP processes to all the 

nodes, and the external Poisson arrival processes to all nodes, are all assumed 

to be independent of one another. 

With these assumptions, node k receives gk independent IPP's from the nodes 

belonging to Gk , plus, an independent external Poisson arrival stream. The su­

perposition of these independent streams entering node k, is then an MMPP. We 
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name this process as, M M P Pk • Each node, thus, reduces to an MMPP IM/1 queue 

with with server breakdowns and repairs. That can be solved using the model and 

analysis described in Chapter 7. It can be noted, if gk = 0, then M M P Pk can be 

considered as merely the Poisson process with rate Uk. 

Now, what need to be determined or estimated are, (i) parameters of IPPk , 

the departure process from node k, (Vk' Cik, 13k) (i = 1,2, ... , K), (ii) parameters 

of I P Pk,l, the arrival process at node l from node k, (Vk,l, Cik,/' 13k,l) (1 ~ k, l ~ 

K; qk,l > 0), and, (iii) parameters of M M P Pk 's (k = 1,2, ... , K). 

This is done as follows. 

8.5.1 Probablisic splitting of 1PPk 

The parameters of I P Pk, the departure IPP from node k, are (Vk' Cik, 13k)' This 

process is split into Sk(~ K - 1) split processes, each of which enters another ap­

propriate node. The arrival process to node I (E Sk), from node k, approximated 

as an IPP, is obtained by sampling the departures from node k with probability 

qk,/. Let L\k( s) be the Laplace transform of the distribution of the inter-departure 

interval of I P Pk. And, let L\k,/( s) be the Laplace transform of the distribution of 

the inter-arrival time of I P Pk,/. Then, we have, 

(8.7) 

L\k,/(S) can be expressed in terms of L\k(S) and qk,l as follows. Let, at time tt, 

there be an arrival at node l from node k. Let the next or subsequent arrival at 

node l, from node k, be at time t 2 • During the interval between these two events, 

there may be 0 or more departures (not counting the ones at tl and t 2) from node k 

that were not routed to node l, as a result of probablistic sampling. The probability 

that such departures from node k are exactly n is given by (1 - qk,l)nqk,l' In such 

a case, the Laplace transform of the distribution of the random variable (t2 - td is 
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~k+l(S). Therefore, the Laplace transform of the distribution of the time (t2 - tt}, 

for any value of n, can be written as, 

00 

L (1 - qk,lrqk,l~k+l(S) . (8.8) 
n=O 

From equations (8.7, 8.8), ~k,I(S) can be derived as, 

(8.9) 

We have assumed the arrival process to node l from node k is an IPP. Hence, 

~k,I(S), derived as above, is the Laplace transform of the inter-arrival interval of 

I P Pk,l. Looking at its structure, it can be inferred the parameters of this I P Pk,l, 

(Vk,I' Ok,l, j3k,I), can be given by, 

(8.10) 

8.5.2 Constructing M M P Pk 

The arrivals at node k are the arrivals from all the nodes in Gk, that is, I P PI,k'S 

(ql,k > 0), plus, the external Poisson arrivals with rate O"k. These are 9k + 1 indepen­

dent arrival processes at node k. The superposition of all these arrivals is an MMPP 

process with Tk = 29k phases. This process, individually, is referred as M M P Pk • 

The parameters of M M P Pk can be derived quite easily, using the results in [16]. 

If gk = 0, then node k has only external arrivals. And, the M M P Pk, in this 

case, can be thought of as the Poisson process with rate O"k. 

If gk > 0 then, let the nodes in Gk be designated as, (1, k), (2, k), ... , (gk, k), 

in any order. Each of these ordered pairs, (m, k) for any m (:::; gk), represents or 

corresponds to a unique or distinct node l (E Gk ), and hence, is synonymous with 

the latter. Also in such a case, i.e. if node l and node (m, k) are synonymous, let 
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lI(m,k) = 1I1,k, a(m,k) = al,k and f3(m,k) = f3l,k. Similarly, let I P P(m,k) mean the same 

as I P PI,k. Let E(m,k), 8(m,k) be matrices of size 2 x 2 each, given by, 

[ 

lI(m,k) 0 1 
E(m,k) = 0 0 ; m = 1,2, ... ,9k ; (8.11) 

8 
[ 

-a(m,k) 
- (m,k) = 

f3(m,k) 

a(m,k) 1 
j m = 1,2, ... ,9k . 

-f3(m,k) 

(8.12) 

Let the phases of the M M P P k be numbered as, 0,1, ... , Tk -1, with Tk phases. 

Let the arrival rate in phase n (n = 0,1, ... , Tk -1) be O"k,n. Let Ek be the diagonal 

matrix, of size Tk x T k , whose nth diagonal element is O"k,n. Let 8k be the generator 

matrix, of size Tk x T k , of M M P P k . Now, we need to relate Ek and 8 k to the 

parameters of the I P Ei,k'S (node I E Gk ). From the results in [16], that can be 

written as, 

(8.13) 

(8.14) 

where, EB stands for the Kronecker sum [16], and ETk is the unit matrix of size 

Tk x T k . 

Thus, the parameters of M M P Pk are now expressed in terms of the parameters 

of all the I P PI'S (node I E Gk ). 

8.5.3 The iterative procedure 

So far, we have been able to express the parameters of all the M M P Pk's and those 

of the I P Pk/s, in terms of the parameters of all the I P P k 's (k = 1,2, ... , K). If 

the parameters of the M M P Pk 's are computed, then the steady state mean queue­

lengths, utilizations and many other dependability measures can be computed, using 

the analysis in Chapter 7. Hence, we need to compute, (Vk, ak, 13k) (k = 1,2, ... ,K). 
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We have used an iterative procedure to compute these parameters and the perfor­

mance measures. That procedure is as follows: 

(1) Compute the total average arrival rates to all the nodes, <h's (k = 1,2, ... , K), 

using the equations (8.1). Solve each node k as an MMPP IM/1 queue with 

breakdowns and repairs. In this first iteration, this is done considering the 

M M P P" is just a Poisson process with rate (iJ<. Compute the queue lengths 

L", for each node k, in this iteration. Also, compute the departure process, 

I P P", from each node k. Go to step (2). 

(2) Using the IPPk's (k = 1,2, ... ,K) computed in the previous iteration, re­

construct the M M P Pk's in this iteration, using the procedure in sections 8.5.1 

and 8.5.2. Again, solve each node k, as an MMPP IM/1 queue with breakdowns 

and repairs, but with the newly computed or constructed M M P Pk as the 

arrival process. That is done using the results of Chapter 7. Also, compute 

the new values of Lk'S, in this iteration. Find out, E, the sum of the absolute 

values, of the differences between the corresponding queuelengths, in this and 

the previous iteration. That is, E = Ef=l 1 Lknew) - Lkold
) I. Go to step (3). 

(3) If E, computed in the previous step, is greater than a specified value E(tol). then, 

go to step (2) for futher iteration. However, if E is less than E(tol), then, go to 

( 4). 

(4) Stop further iteration. Compute all the required steady state performance and 

dependability measures using the most recently computed parameters. 

We have no proof for the convergence of this iterative procedure, for steady state 

performance measures. Yet, in all the example networks we have analysed, we have 

observed fast convergence even for very low values of the specified tolerance, E(tol). 

The evaluation of the MMPP model is presented in section 8.7, along with that 

of the Joint-state model described below. 
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8.6 The Joint-state model 

Let Ok(t) be the state of the server k at time t. Ok(t) is a binary random variable 

with values 0, signifying broken; or 1, implying operative. The joint-state of all the 

servers is then an ordered K -bit binary random variable, (01 , O2 , ... ,OK). The kth 

bit from the left is Ok that indicates the state of server k. The total number of 

these joint-states is 2K. Let these states be numbered in the decimal system as, 

0,1, ... ,N, where N = 2K - 1. The joint-state i, in decimal form, refers to the 

joint-state that is K-bit binary expansion of i. In it, kth bit from left indicates the 

state of server k. 

The joint-states of the servers, are N + 1, in total. Let A be the transition rate 

matrix of these joint-states. A is of size (N + 1) x (N + 1). A(i, l) is the transition 

rate from the joint-state i to the joint-state 1 (0 ~ i, 1 ~ N; I =/:- i). 

A transition in a joint-state i occurs when an operative server breaks down, or 

a broken server becomes operative after a repair. Hence, the number of different 

transitions that are possible from any joint-state i, are K. And, each of these 

transition rates is one of ek'S or "7k'S (k = 1,2, ... , K). 

For example, for a 3-node network, that matrix A would be as below: 

(0,0,0) ° "73 "72 ° "71 ° ° ° 
(0,0,1) 6 ° 0 "72 ° "71 ° ° 
(0,1,0) 6 ° ° "73 0 0 "71 ° 
(0,1,1) ° 6 6 ° ° ° ° "71 

A= (8.15) 
(1,0,0) 6 ° ° ° ° "73 "72 0 

(1,0,1) 0 6 ° ° 6 0 0 "72 

(1,1,0) ° ° 6 ° 6 ° 0 1]3 

(1,1,1) ° ° ° 6 ° 6 6 ° 
Let the joint-state i be expressed in K-bit binary form as, (OI,i,02,i, ... ,OK,i). 
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Each Ok,i is either 0 or 1. The total transition rate, ri, from joint-state i is the sum 

of all the transition rates in the corresponding (ith) row of A. Hence, the average 

time the set of nodes remain in the joint-state i is l/ri. Also, let the service rate of 

server k, during the joint-state i, be J-Lk,i' Then, obviously, J-Lk,i = J-Lk if Ok,i = 1, and, 

J-Lk,i = 0 if Ok,i = o. 
The Joint-state model is based on the following assumptions or approximations. 

(a) The total job arrival process to any node k (k = 1,2, ... , K), during any 

joint-state i (i = 0,1, ... , N) is Poisson, with rate Ch,i' 

(b) The total job departure process from node k (k = 1,2, ... , K), during joint­

state i (i = 0,1, ... ,N) is Poisson, with rate Vk,i' 

With the first approximation, each node k can be considered, in isolation, as an 

MMPP /M/1 queue, with (N + 1 )-phase MMPP arrivals, and service rates dependent 

on the phase of the arrival process. We call this an MMPP /M/1 correlated queue, 

or, a Markov-modulated queue. That queue can be solved using spectral expansion 

procedure for required steady state probabilities and performance measures. That 

solution is described in section 8.6.l. 

The network is, thus, a coupled system of K Markov-modulated queues. The 

remaining task is to estimate uk,i's and Vk,i'S, appropriately. This is done iteratively 

in section 8.6.2. 

8.6.1 Analysis of node k 

As said earlier, each node k is a Markov-modulated queue or an MMPP /M/1 cor­

related queue. The job arrival process has N + 1 phases, and they are synonymous 

with the joint-states of the servers. The service rate also depends on the phase of 

the arrival process. In phase i, the arrivals are Poisson with rate Uk,i and the service 
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rate is Ji.k,i· If node k is operative, in the joint-state i, then Ji.k,i = Ji.k, otherwise 

Ji.k,i = O. 

This Markov-modulated queue, of node k, can be represented by the Markov 

process X of Chapter 2. The parameters of this process X, then, are given as 

follows: The bounded random variable, I(t), represents the phase of the MMPP, 

0,1, ... ,N. The unbounded random variable, J(t) indicates the number of jobs at 

node k, including the one being served, if any. 

The purely lateral transition rate matrices A and A/s of X are the same as the 

joint-state transition rate matrix A. The one-step upward transition rate matrices 

Band B/s are given by, 

B = Bj (j = 0,1, ... ) = diag[a-k,O,a-k,1,'" ,ak,N] . (8.16) 

The one-step downward transition rate matrices C and C/s are given by, 

C Cj (j = 1,2, ... ) = diag[JJ.k,O, Ji.k,1, ... , Ji.k,N] ; 

Co o. (8.17) 

The threshold M is clearly equal to 1. Now, the parameters of X are clearly 

defined. Hence, the process X and the Markov-modulated queue of node k, can be 

solved, using the spectral expansion method described in Chapter 2, if the parame-

ters of process X are known. So far, the matrix B is unknown. 

Let Pi,j be the steady state probability that, at node k, the number of jobs is j 

and the arrival phase (joint-state of servers) is i. Then, ilk,i'S can be expressed as, 

~ (1 pi,O). 0 1 N Vk,i = Ji.k,i . - 00 ; t = , , ... , . 
Lj=oPi,j 

Also, a-k,i'S can be expressed in terms of ilk,i'S as, 

K 

a-k,i = E ill,;ql,k + G'k ; i = 0,1, ... ,N . 
1=1 

(8.18) 

(8.19) 
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Thus, what now remains is to estimate the unknown parameters, (h/s or Vk,i'S. 

This is done iteratively, and described in the next section. 

Notice that, the process X and its parameters, defined in this section, pertain to 

node k, though we have deliberately avoided the suffix k in these parameters. This 

is done only for making the notation simple and easily understandable. However, 

the parameters of the Markov process pertaining to any other node l (l # k) can be 

quite different from those of node k. 

8.6.2 Iterative solution 

The unknowns, <h/s and Vk/S, can be obtained iteratively. We start, i.e in the first 

iteration, with <h,i = <h. The procedure is as follows: 

(1) Compute the total average arrival rates to all nodes, ak'S (k = 1,2, ... , K). 

For each node k, let ak,i = ak (i = 0,1 ... ,N). Solve each node k as a Markov­

modulated queue, by spectral expansion, as outlined in section 8.6.1. Compute 

Lk's and the necessary steady state probabilities. Compute, for each node k, 

Vk,i'S from equation (8.18). Go to step (2). 

(2) For each node k, using the Vk,i'S computed in the previous iteration, compute 

ak/S, from equation (8.19). Solve again each node k, as a Markov-modulated 

queue, by spectral expansion, but with the newly computed ak,i'S. Compute 

Lk's and the necessary probabilities. Compute again, for each node k, Vk,i'S 

from equation (8.18). Compute ( as, ( = L:f=l I L~new) - L~old) I. Go to step 

(3). 

(3) If (, computed in the previous step, is greater than a specified value ((tal), then, 

go to step (2) for futher iteration. However, if ( is less than ((tal), then, go to 

( 4). 
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(4) Stop further iteration. Compute all the required steady state performance and 

dependability measures using the most recently computed parameters. 

Just as in the case of MMPP model, we do not have any proof for convergence 

of this iterative procedure. However, in all our example networks, we noticed fast 

convergence even for very low values of the specified tolerance, (tol). 

8.7 Evaluation of the MMPP and the Joint-state 

models 

We have evaluated these models, using long simulation runs. Since the number of 

parameters of a network is large, even for moderately small values of K, experimental 

validation of these models is possible only on a limited scale. Yet, we have evaluated 

dozens of randomly chosen example networks, of sizes K = 2,3,4,5. This is done for 

different parameter ranges. The accuracies observed are quite varied. It is normally 

observed that the accuracies are relatively lower, if the number of external arrival 

processes are smaller. Hence, the most challenging ones (rather the worst cases) are, 

in which there are external arrivals to only one of the nodes. Hence, we have chosen 

to present here some of those examples in which external arrivals exist only for one 

of the nodes. Without loss of generality, we number that node as, node 1. In the 

examples given in this chapter, we have included some our least accurate results, as 

well. 

In the two-server network of Figure 8.3, the MMPP model and the Joint-state 

model give the same results. Indeed, they perform more accurately, compared to 

the Poisson approximation. 

For K = 3, we have considered 3 examples. Figures 8.7 and 8.8 illustrate a 3-

server tandem network, i.e. Example 1. The parameters of the network are displayed 

in the figures. In all the examples, we have taken, (tol) = 0.01. As said earlier, 
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(72 = 0 and 0"3 = O. In Figure 8.7, the response time, R, is plotted against varying 

(71. The MMPP and the Joint-state models perform extremely well, and better than 

the Poisson approximation. Figure 8.8 shows L3 vs. 0"1' We have chosen L3 in 

the figure because of all the 3 queuelengths, L3 is computed in the models, with 

least accuracy. The MMPP model does best, and the Joint-state model is highly 

satisfactory. More performance measures (P.M.'s) are displayed in Table 8.7. 

Table 8.1: 3-node network: Example 1. 

(71 = 0.5 

P.M.s Poisson MMPP Joint-state Simulation 

L1 = 98.2 98.2 98.2 95.0 

L2 = 77.6 80.7 80.7 79.7 

L3 = 42.5 4604 45.9 49.5 

R= 436.5 450.7 449.6 448.4 

0"1 = 1.7 

P.M. Poisson MMPP Joint-state Simulation 

Ll = 579.3 579.3 579.3 556.9 

L2 = 430.4 523.3 523.2 564.8 

L3 = 209.2 305.2 288.7 328.9 

R= 716.9 828.0 818.3 853.3 

0"1 = 2.9 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 3724.6 3724.6 3724.6 3538.7 

L2 = 1992.7 3365.6 3365.5 2883.1 

L3 = 647.1 1280.6 1133.2 1256.8 

R= 2194.6 2886.5 2835.6 2647.8 
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3~~================,-------------------~ 
K=3 

0.0 1.0 0.0 0.0 
Q = 0.0 0.0 1.0 0.0 

0.0 0.0 0.0 1.0 

R 5.0 0.001 0.002 
6.0 0.002 0.003 

2000 7.0 0.003 0.005 

1000 

• --- Poisson 
+ -- MMPP 
• -- joint-state 
• --- simulation 

o~----------------------------------------~ 
0.5 0.9 1.3 1.7 2.1 2.9 

Figure 8.7: 3-node networks: Example 1. 
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K=3 
1200 0.0 1.0 0.0 0.0 

Q= 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 1.0 

~ J.t ; II 
L3 5.0 0.001 0.002 
900 6.0 0.002 0.003 

7.0 0.003 0.005 

~ -- Poisson 
+-- MMPP 
• -- joint-state 

• -- simulation 
600 

300 

o~----------------------------------------~ 
0.5 0.9 1.3 1.7 2.1 2.5 

01· 

Figure 8.S: 3-node networks: Example 1. 

2.9 
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With the same 3-nodes as in the previous example, but with a different topology, 

another network, i.e. Example 2, is considered. The results are shown in Figures 8.9 

and 8.10. Response time vs. 0'1 is plotted in Figure 8.9, L1 vs. 0'1 in Figure 8.10. 

Here, L1 is taken for plotting because, that seems to have least accuracy in the 

model computations. Table 8.7 displays the performance measures for some values 

of 0'1. Interestingly, the Joint-state model does very well, whereas the results of the 

MMPP model are not that accurate. It is not difficult to explain, why that is so. 

For example, in the case of L 1 , there are two streams to node 1. One is the external 

Poisson arrivals (with rate ad, the other one is I P P3 ,1. In the model, these two are 

assumed independent. But actually they are correlated. That is the reason for the 

inaccuracy in the computation of L1 by the MMPP model. 

In the next example, we further modify the 3-server network, by decreasing the 

failure rates of servers by a factor of 10. The resulting network is Example 3. The 

results of this are shown in Figures 8.11 and 8.12, and in Table 8.7. Here too, the 

Joint-state model performs well. The MMPP model and the Poisson approximation 

do not perform very well. 

Two example networks with K = 4, are taken up. Example 1 is a tandem 

network. Its parameters and results are displayed in Figures 8.13, 8.14, and in 

Table 8.7. 0'2, 0'3 and 0'4 are taken as zeroes. In the figures, Rand L4 are plotted 

against 0'1. The MMPP model and the Joint-state model have given good results. 

The last example, i.e. Example 2 for K = 4, is shown in Figures 8.15, 8.16 and 

in Table 8.7. The parameters of the networks are shown in the figures. Again, only 

node 1 has external arrivals. Rand L4 are plotted against 0'1. The MMPP model 

and the Joint-state model do well. 
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K=3 
4400 0.0 0.4 0.6 

Q= 0.0 0.0 1.0 

~ 
0.5 0.0 0.0 

R ~ S T\ 

5.0 0.001 0.002 
3400 6.0 0.002 0.003 

7.0 0.003 0.005 

• -- Poisson 
+-- MMPP 
• -- joint-state 
• -- simulation 

2400 

1400 

400L------------------------------------~ 

0.5 0.7 0.9 1.1 1.3 1.5 

Figure 8.9: 3-node network: Example 2. 
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K=3 

5100 0.0 0.4 0.6 
Q= 0.0 0.0 1.0 

~ 
0.5 0.0 0.0 

Ll Jl ~ 11 

4100 5.0 0.001 0.002 
6.0 0.002 0.003 
7.0 0.003 0.005 

A- Poisson 

3100 +-- MMPP 
• -- joint-state 

• -- simulation 

2100 

1100 

100~~~~::~------------~ 
0.5 0.7 0.9 1.1 1.3 1.5 

Figure 8.10: 3-node network: Example 2. 
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Table 8.2: 3-node network: Example 2. 

0"1 = 0.5 

P.M.s Poisson MMPP Joint-state Simulation 

L1 = 238.5 243.0 121.8 127.5 

L2 = 60.1 62.0 47.3 50.1 

L3 = 97.5 104.4 54.5 71.2 

R= 792.3 818.7 447.0 497.6 

0"1 = 0.9 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 653.3 681.4 327.5 353.3 

L2 = 120.2 127.8 104.8 110.5 

L3 = 230.1 269.2 157.8 211.9 

R= 1115.2 1198.2 655.7 750.7 

0"1 = 1.3 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 1973.2 2138.1 1143.9 1155.7 

L2 = 195.4 215.1 200.4 199.8 

L3 = 482.1 649.3 531.9 587.8 

R= 2039.0 2309.7 1443.2 1494.7 
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550rF==============~-----------------------

~ 
R 

450 

K=3 
0.0 0.4 0.6 

Q = 0.0 0.0 1.0 
0.5 0.0 0.0 

5.0 0.0001 0.002 
6.0 0.0002 0.003 
7.0 0.0003 0.005 

350 ~ --- Poisson 
+ --- MMPP 
• --- joint-state 
• --- simulation 

250 

150 

50b=:==~E==~~ ___ -~ 
0.5 0.9 1.3 1.7 2.1 

Figure 8.11: 3-node network: Example 3. 
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1000 
K=3 

• 0.0 0.4 0.6 
Q= 0.0 0.0 1.0 

Ll 0.5 0.0 0.0 

800 
Jl ; 11 

5.0 0.0001 0.002 
6.0 0.0002 0.003 
7.0 0.0003 0.005 

600 .- Poisson 
+-- MMPP 
• -- joint-state 

• -- simulation 

400 

200 

o~----------------------------------------~ 
0.5 0.9 1.3 1.7 2.1 

Figure 8.12: 3-node network: Example 3. 
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Table 8.3: 3-node network: Example 3. 

0"1 = 0.5 

P.M.s Poisson MMPP Joint-state Simulation 

L1 = 30.4 30.4 14.0 15.0 

L2 = 9.0 9.1 6.4 6.9 

L3 = 13.5 13.6 6.4 7.3 

R= 105.9 106.2 53.8 58.4 

0"1 = 1.3 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 137.6 138.4 52.5 60.5 

L2 = 26.8 27.0 18.7 18.6 

L3 = 49.2 50.1 21.3 29.1 

R= 164.3 165.7 71.1 83.2 

0"1 = 2.1 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 854.9 881.5 277.5 458.7 

L2 = 50.3 51.0 37.1 39.5 

L3 = 132.4 139.8 61.0 94.1 

R= 494.1 510.6 178.9 282.0 
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K=4 

575 0.0 1.0 0.0 0.0 

• Q= 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 1.0 

R 0.0 0.0 0.0 0.0 

I.l ; 11 
475 2.0 0.01 0.02 

2.0 0.01 0.02 
2.0 0.01 0.02 
2.0 0.01 0.02 

375 .. - Poisson 
+-- MMPP 
• -- joint-state 

• -- simulation 

275 

175 

75~~~~--------------------~ 
0.1 0.3 0.5 0.7 0.9 1.1 

Figure 8.13: 4-node network: Example 1. 
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200 K=4 
0.0 1.0 0.0 0.0 

~ 
Q= 0.0 0.0 1.0 0.0 

0.0 0.0 0.0 1.0 
L4 0.0 0.0 0.0 0.0 

~ ; Tl 

150 2.0 0.01 0.02 
2.0 0.01 0.02 
2.0 0.01 0.02 
2.0 0.01 0.02 

• -- Poisson 
+-- MMPP 

100 • -- joint-state 
• -- simulation 

50 

o~----------------------------------------~ 
0.1 0.3 0.5 0.7 0.9 1.1 

Figure 8.14: 4-node network: Example 1. 
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Table 8.4: 4-node network: Example 1. 

0"1 = 0.3 

P.M.s Poisson MMPP Joint-state Simulation 

L1 = 6.7 6.7 6.7 6.7 

L2 = 6.7 7.1 7.1 7.3 

L3 = 6.7 7.6 7.4 7.7 

L4 = 6.7 8.1 7.7 8.1 

R= 89.9 98.5 96.6 99.5 

0"1 = 0.7 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 25.7 25.7 25.7 25.6 

L2 = 25.7 31.0 31.0 31.2 

L3 = 25.7 36.3 34.1 34.8 

L4 = 25.7 40.3 35.0 37.4 

R= 146.7 190.4 179.7 184.2 

0"1 = 1.1 

P.M. Poisson MMPP Joint-state Simulation 

L1 = 109.5 109.5 109.5 112.9 

L2 = 109.5 171.5 171.4 152.2 

L3 = 109.5 199.6 179.7 178.9 

L4 = 109.5 206.2 179.3 182.0 

R= 398.1 624.3 581.7 569.0 
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R 

K=4 
0.0 0.3 0.4 0.3 

Q = 0.0 0.0 0.0 1.0 
0.0 0.0 0.0 1.0 
0.0 0.0 0.0 0.0 

Il ; 11 
350 5.0 0.001 0.010 

4.0 0.002 0.009 
10.0 0.003 0.002 
8.0 0.003 0.01 

250 

• -- Poisson 
+ -- MMPP 
• -- joint-state 
• -- simulation 

150~-----------------------------------------
0.5 1.5 2.5 

Figure 8.15: 4-node network: Example 2. 
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100 

o~----------------------------------------~ 
0.5 1.5 2.5 3.5 

°1'" 

Figure 8.16: 4-node network: Example 2. 
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Table 8.5: 4-node network: Example 2. 

0"1 = 1.0 

P.M.s Poisson MMPP Joint-state Simulation 

L1 = 11.9 11.9 11.9 12.2 

L2 = 6.8 6.8 6.8 6.9 

L3 = 133.4 133.7 133.7 133.9 

L4 = 27.7 28.9 28.9 31.6 

R= 179.9 181.3 181.3 184.5 

0"1 = 2.5 

P.M. Poisson MMPP Joint-state Simulation 

L1= 51.7 51.7 51.7 52.7 

L2 = 20.0 20.2 20.2 20.2 

L3 = 400.3 402.1 402.1 410.0 

L4 = 97.9 114.9 115.6 144.1 

R= 227.9 235.6 235.9 250.8 

0"1 = 4.0 

P.M. Poisson MMPP Joint-state Simulation 

L1= 310.4 310.4 310.4 325.5 

L2 = 38.9 39.8 39.8 39.8 

L3 = 800.7 806.8 806.8 826.0 

L4 = 265.6 414.9 421.3 500.9 

R= 353.9 393.0 394.6 423.0 
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8.8 Conclusions 

We have modelled a very complex problem: open queueing networks with server 

breakdowns and repairs, and with external job arrivals. This is an important prob­

lem occuring in computer and communication networks. There has not been any 

satisfactory solution, so far. Though we could not succeed to bring out a desir­

able exact solution, we came up with certain useful approximate models that can be 

solved by numerical algorithms. Spectral expansion is again made use of extensively. 

Four different models are suggested. 

The first, and the most simply thought of, model is the reduced work rate (RWR) 

approximation. Though the RWR model has been shown to give fairly accurate 

results in the case of closed queueing networks with unreliable servers, it fails to 

model the present problem. The results, when compared to long simulation runs, 

are found to be very inaccurate, normally. The model, however, is applicable if 

the repair rates are faster than the service rates and job arrival rates, by orders of 

magnitude. Hence, the RWR model is not a useful one. 

The second, is the Poisson approximation. This is shown to be quite accurate in 

the case of large networks. In small networks, however, if the node to node transition 

probabilities are of much smaller magnitude, compared to the exit probabilities, 

Poisson approximation can give good results. 

Two approximate models, the MMPP model and the Joint-state model, are 

suggested for small networks, i.e. for networks with small number of servers. These 

two approximations are evaluated, using several sample networks. The Joint-state 

model seems to be satisfactory in most cases. The MMPP model does work well in 

some cases. 

For simulation, the batch means method was used in the calculation of the con­

fidence intervals. The total number of job arrivals in each simulation was 107
• In 
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most of the experiments, the joint-state approximation was within the 90% confi­

dence interval. 

Much more elaborate study would be required to point out which model would 

work better, and in a given situation or network. We leave this problem, as an 

interesting open problem for the reseach community. 

As we have seen, the joint-states are 2K. That is quite limiting, to the applica­

bility of the model. However, an efficient improvement is possible in the Joint-state 

model. We call this, modified Joint-state model. It is as follows. 

Let G*(k) be the set of nodes such that, if a job after its service at node I 

(l = 1,2, ... , K j 1 #- k), has a non-zero probability of visiting node k before it 

leaves the network, then node 1 E G*(k), otherwise node 1 rt. G*(k). Obviously, 

G(k) ~ G*(k). Let the cardinality of G*(k) be 9r.. Then, K - 1 ~ 9Z ~ 9k. With 

these definitions, it is possible to model node k (k = 1,2, ... , K), as a Markov­

modulated queue with 2g;+1 arrival phases. These 2g:+1 arrival phases correspond 

to the joint-states of all the nodes in G*(k), plus node k. Hence, in this model, the 

number of arrival phases of each of the nodes, can be different. If 9i. < K - 1 for 

any of the nodes, then the computation time needed here would be less than that of 

the Joint-state model, considered earlier. However, we have not implemented this 

model. 

8.9 Contributions 

The contribution of this chapter is, 

• A complex modelling problem, open queueing networks with breakdowns and 

repairs, is considered. Four approximate models are suggested. The accuracy 

of these models is evaluated by simulation, using several sample networks. 

These models have different accuracy-efficiency trade-offs. 
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This work is presented in our paper [10]. 



Chapter 9 

Conclusions 

Finally, we intend to list the contributions of this thesis, and go on to describe some 

research topics that arise for further investigation. Section 9.1 deals with the former, 

and section 9.2 with the latter. 

9.1 Contributions 

In each chapter, the contributions have clearly been stated. Many of these contri­

butions are either already published, or accepted for publication, in leading journals 

and conferences. References to these publications are also provided. A brief sum­

mary of these contributions is, as below . 

• The Markov processes X, Y and Z are defined. Starting from the spectral 

expansion solution for the stationary probability invariant vector of the QBD 

process X, an efficient algorithmic solution is developed. The spectral expan­

sion solution of the process Y, and of the QBD process with boundary, Z, are 

developed. Efficient computational algorithms for these two, are also devised. 

The necessary stability and spectral analyses of the processes are carried out. 

This is done in Chapters 2 & 4. 

193 
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• For the process X, a comparative study of the solution algorithms of the spec­

tral expansion and that of the matrix-geometric method, is performed. This 

is done using a popular non-trivial example, the modelling of homogeneous 

multiprocessor systems with general breakdowns and repairs. The results are 

in favour of the spectral expansion method. Relative computation times are 

also given. This is done in Chapter 5. 

A number of complex modelling problems are solved, for steady state perfor­

mance and dependability. They are, 

• A homogeneous multiprocessor system, with unbounded queueing capacity, 

and with general breakdowns and repairs of processors, is considered. The sys­

tem is modelled by the process X, and solved by spectral expansion. Steady 

state probabilities and performability measures are derived. Numerical ex­

amples of typical systems are dealt, and the numerical results are shown in 

figures. This is done in Chapter 3. 

• A serial transfer line with two servers and a buffer in-between, is analysed for 

steady state performance using the spectral exapansion method. Results of 

numerical examples are displayed in figures. This is done in Chapter 3. 

• A homogeneous multiprocessor, with finite job capacity and with general 

breakdowns and repairs of processors is considered. The system is modelled 

by the process Z and sloved by spectral expansion. Some numerical results 

are presented via graphs. This is in Chapter 4. 

• A heretogeneous multiprocessor with unbounded job queue is taken up. The 

processors are prone to independent breakdowns and repairs. This system is 

modelled by the process X, and solved by spectral expansion. The importance 

of the repair policy is highlighted. In some special cases, optimal repair strate­

gies are worked out. In the general case, some nearly optimal heuristics for 
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repair strategy are suggested. These heuristics are evaluated by an extensive 

simulation study. Numerical results, through example systems, are presented. 

This is done in Chapter 6 . 

• Due to the occurrence of bursty arrivals in practical systems, an important 

queue is taken up. This is an exponential server with breakdowns and Markov­

modulated arrivals, and with unbounded queueing capacity. The system is 

modelled by the process X, and solved by spectral expansion. Numerical 

performance results, on example systems, are presented. the necessity of mod­

elling the bursty process is explained, through these results. An important 

and interesting problem is to develop a computationally simple and effective 

model for the departure process. That is done, by modelling the departure 

process as an interrupted Poisson process. That model is validated through 

examples. All this is done in Chapter 7. 

• A very complex modelling problem, that of open queueing networks with 

breakdowns and repairs is considered. Four different approximate models are 

conceived. They are, the RWR approximation, the Poisson approximation, 

the MMPP model and the Joint-state model. The last two are iterative, and 

spectral expansion is extensively used in these. These models differ in their 

accuracy-efficiency trade-off. The RWR model has a very limited applicabil­

ity. The Poisson approximation is shown to be applicable in large networks. 

The MMPP model and the Joint-state model are suitable for small networks. 

A number of numerical examples are worked out. The MMPP model works 

moderately well, and the Joint-state model works quite well. This is done in 

Chapter 8. 

Necessary discussion is presented in each chapter, in the section on conclusions. 
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9.2 Open problems 

A number of open problems arise from this research. Some of them are already 

briefed in each chapter, in the section on conclusions. They are, 

• We feel it may be possible to prove the stability condition, 2.21 and 2.23, 

mathematically. We are already working on it. In the case of process Y also, 

we are working on a mathematical proof for the stability condition. 

• We have written our programs in SIMVLA. For the eigenvalue problem and 

for the solution oflinear simultaneous equations, we have resorted to the NAG 

routines. When the number of operative states, N + 1, is large, we noticed 

some inaccuracies in the NAG results. For example, the eigenvalue at 1.0 is 

computed with considerable inaccuracy. Also, the LV-decomposition routine 

for the solution of simultaneous equations has not been robust enough, for 

large N + 1. A solution for this problem would be to develop self contained 

programs for spectral expansion, say in C++, with highest possible precision, 

without resorting to NAG routines, and using accurate and robust algorithms. 

Also, since the matrices in equations (2.28) and (2.31) are sparse, that may 

lead to some computational saving as well. 

• The M/G/1 type of Markov processes [52] is a subset of the process Y. It 

may be posible to simplify further, the spectral expansion solution of such 

processes. Our ideas are too preliminary to explain further. 

• There have been some very recent improvements in the matrix-geometric so­

lution methodology [65]. It is worth comparing this improved methodology 

with spectral expansion, for computational efficiency. 

• The analysis of the multi-server delay-loss queue, Li M APd Phi K ILls an 

important model, used in B-ISDN networks. This sytem can be modelled by 
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the process Z and can be analysed by the methodology given in Chapter 4. 

For such a queue, if K = 1, we feel the departure process can well be modelled 

as an interrupted Poisson process, following the analysis in Chapter 7. This 

can be done, when L is finite or infinite. If K > 1, then an appropriate model 

for the departure process may be an MMPP with K + 1 phases. Such study 

can be interesting and useful. 

• In the case of open queueing networks with breakdowns, the modified Joint­

state method is briefly described in Chapter 8. This may be a promising 

method, and can be computationally very effective if the transition rate ma­

trix Q is sparse. In such a case of sparse Q, the method can be applicable even 

for large networks, achieving good accuracy. Also, it is worth to check if the 

methodology outlined in this chapter, can be extended, with necessary modi­

fications, to include, joint-state dependent routing, and also to loss networks. 

epilogue 

Research in Markov modelling is important, and it has a lot more role to play in 

future, in the analysis of discrete event systems. We hope this thesis would serve to 

move that research a gentle step forward. 

Lastly, we conclude this thesis, with a sincere heart-felt wish that this research 

work would benefit mankind, in some way. 
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