
Component replication in application servers

Thesis by

Achmad Imam Kistijantoro

In partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY
---------- ------------------

205 36626 6
------- -------------- -------

University of Newcastle upon Tyne

Newcastle upon Tyne, UK

September 2006

Acknowledgement

First of all, I would like to thank my supervisor Santosh Shrivastava for his

help and guidance throughout my Ph.D. work. I would also like to thank

Graham Morgan for his advice and fruitful discussions. and Ms. Shirky Craig

for her assistance in finding references for the thesis.

Personal thanks go to my parents, my brother and sister. and my parents-in­

law for their constant supports throughout my life. and to my family.

especially my wife Vera for her support and understanding during the difficult

times we experienced for completing the thesis.

This work was supported by scholarship from QUE Project, Department of

Informatics, ITB - Bandung, Indonesia.

Abstract

Three-tier middleware architecture is commonly used for hosting large-scale

distributed applications. Typically the application is decomposed into three

layers: front-end, middle tier and back-end. Front-end ("Web ser\,er·) is

responsible for handling user interactions and acts as a client of the middle

tier, while back-end provides storage facilities for applications. Middle tier

(' Application server') is usually the place where all computations are

performed, so this layer provides middleware services for transactions,

security and so forth. The benefit of this architecture is that it allows flexible

configuration such as partitioning and clustering for improved performance

and scalability.

On this architecture, availability measures, such as replication, can be

introduced in each tier in an application specific manner. Among the three tier

described above, the availability of the middle tier and the back-end tier are

the most important, as these tiers provide the computation and the data for the

applications.

This thesis investigates how replication for availability can be incorporated

within the middle and back-end tiers. The replication mechanisms must

guarantee exactly once execution of user request despite failures of application

and database servers. The thesis develops an approach that requires

enhancements to the middle tier only for supporting replication of both the

tiers. The design, implementation and performance evaluation of such a

middle tier based replication scheme for multi-database transactions on a

widely deployed open source application server (1Boss) are presented.

Table of Content

1 Introduction .. 1

1.1 Thesis organization .. 4

2 Component Middleware Infrastructure .. 6

2.1 Overview of component middleware architecture .. 8

2.2 Containers and application servers .. 10

2.3 Client interaction ... 12

2.4 Component persistence ... 13

2.5 Transactions .. 14

2.6 Architecture of J2EE application servers implementation 17
2.6.1 JBoss J2EE Application Server 3.2.x 18

2.7 Summary .. 22

3 Availability measures for component-oriented middleware 23

3.1 Background ... 23

3.2 Assumptions and requirements .. 25

3.3 Availability measures in existing application servers 27
3.3.1 Limitation in existing application servers availability... 30

3.4 State Replication ... 31
3.4.1 Database replication in general............... 32
3.4.2 Middleware-based data replication 34

3.5 Computation replication ... 40
3.5.1 Transactional queue 41
3.5.2 Transactional client............... 42
3.5.3 E-transactions............. 42
3.5.4 Interaction contract............................ 45
3.5.5 J2EE replication framework........... 48
3.5.6 Stateful EJB replication ... 50

3.6 The approaches developed in this thesis .. 52
3.6.1 Failure assumptions............... 53
3.6.2 State replication approach................. 53
3.6.3 Computation replication approach..54
3.6.4 Comparison with other approaches......... 55

IV

3.7 Summary .. 57

4 State replication: improving the availability in database tier 58

4.1 Issues in state replication for component middleware 58

4.2 Single server implementation ... 61

4.3 Clustering configuration .. 62

4.4 Performance evaluation ... 64
4.4.1 Implementation and Setup..................... 64

5 Computation replication: improving the availability of the application
servers .. 69

5.1 Model .. 69
5.1.1 Different types of components: stateless, session and persistent
component. .. 71

5.2 Fail-over implementation ... 72
5.2.1 Client interface maintenance74

5.3 Session state replication .. 75

5.4 Handling transaction .. 77
5.4.1 Determining when to replicate the transaction... 79
5.4.2 Handling chained session invocations..... 79

5.5 Replication service implementation ... 80
5.5.1 Group membership... 80
5.5.2 Replica state propagation 80
5.5.3 State transfer 81

5.6 Load balancing .. 81

5.7 Failure scenarios .. 82

5.8 Performance evaluation ... 83

6 Conclusions .. 88

6.1 Summary of thesis contributions .. 88

6.2 Further Work ... 90

v

List of Figures

Figure 1-1 N-tier architecture 1
Figure 2-1 Component middleware architecture....................................... . .. 9
Figure 2-2 Interaction between the application server, the container and the
components.. 11
Figure 2-3 EJB Remote access and local access............................... 12
Figure 2-4 Java Transactions APi 15
Figure 2-5 Transaction processing... 16
Figure 2-6 EJB Container and its relationship with other components in JBoss 19
Figure 2-7 Proxy object 20
Figure 2-8 Processing client request in J Boss 21
Figure 3-1 Three-tier architecture.. 28
Figure 3-2 ADAPT framework (Babaoglu, Bartoli et al. 2004) 48
Figure 3-3 intercepting points on ADAPT framework (Babaoglu, Bartoli et al. 2004).49
Figure 4-1 An application server without state replication 59
Figure 4-2 An application server with state replication........ 60
Figure 4-3 State replication in clustering configuration ... 62
Figure 4-4 Replica manager for maintaining available resource managers information
...63
Figure 4-5 Configuration........ 64
Figure 4-6 Result....................... 67
Figure 5-1 Client interaction70
Figure 5-2 System Architecture......................... 71
Figure 5-3 Replicated EJB implementation of a remote interface...... 73
Figure 5-4 Fail-over invoker proxy state chart.................................... 73
Figure 5-5 Server state .. ··· .. 74
Figure 5-6 Augmenting application server with replication service.......... 75
Figure 5-7 A typical interaction for a transaction processing in EJB............. 77
Figure 5-8 - Performance figures 84
Figure 5-9 Performance figures with failures ... 85
Figure 5-10 Throughput for entry order application with varying number of servers .. 85
Figure 5-11 Response time for entry order application with varying number of servers
... 86
Figure 5-12 Throughput for entry order application with varying number of servers in
load balancing configuration 86
Figure 5-13 Response time for entry order application with varying number of servers
in load balancing configuration .. ································· 87

III

List of Tables

Table 3-1 E-transaction properties 43
Table 3-2 State replication approaches 55
Table 3-3 computation replication approaches 56
Table 6-1 State replication approaches ...88
Table 6-2 computation replication approaches 88

1/11

1 Introduction

Modem client-server distributed computing systems may be seen as

implementations of an N-tier architecture. Typically, the first tier consists of

client applications containing browsers, with the remaining tiers deployed

within an enterprise representing the server side; the second tier (Web tier)

consists of web servers that receive requests from clients and passes on the

requests to specific applications residing in the third tier (middle tier) consists

of application servers where the computations implementing the business

logic are performed; the fourth tier (database tier) contains databases that

maintain persistent data for the applications (Figure 1-1).

Figure 1-1 N-tier architecture

Web
tier

Middle
tier

Database
tier

Applications in this architecture typically are structured as a set of interrelated

components hosted by containers within an application server. Various

services required by the applications, such as transaction, persistence, security,

and concurrency control are provided via the containers, and a developer can

simply specify the services required by components in a declarative manner.

This relieves the developers from the complex task of handling them directly

in the components code.

Chapter1 - Introduction

Furthermore, this architecture also allows flexible configuration such as

partitioning and clustering for improved performance and scalability.

Availability measures, such as replication, can also be introduced in each tier

in an application specific manner. In a typical n-tier system such as illustrated

in Figure 1-1, the interactions between clients to web server tier are performed

across the Internet. The infrastructure supporting these interactions is

generally beyond the direct control of an application service provider that

normally only manages the web server tier and the tiers afterwards. The

availability of a service can be increased by making each tier available.

Among the tiers described above, the middle tier and the database tier are

arguably the most important, as it is on these tiers the computations are

performed and data storage and persistency are provided. Data as well as

object replication techniques for improving the availability have been studied

extensively in the literature, so our task is not to invent new replication

techniques, but to investigate how existing techniques can be migrated to

middle tier and database tier.

One important concept related to availability measures is that of exactly once

transaction or exactly once execution. For example, in a typical online shop

where a customer may browse catalogue, select items into hislher shopping

cart, and finally make an order and pay the order by hislher credit card. These

activities involve transactionally accessing data (stock items, card payment

validation, and customer details) which are hosted by different database

servers. Here, the system must guarantee exactly once execution of user

requests despite system failures. Without this, the client may end up with

duplicated orders or he/she may lose the order without noticing it. One

approach would be to make the entire interaction from client to databases

transactional. Problem arise as the clients in such systems are usually not

transactional, thus they are not part of the recovery guarantee provided by the

underlying transaction processing systems that support the applications. When

failures occur, clients often do not know whether their requests have been

processed or not. Resubmitting the requests may result in duplication, and on

the other hand it is also possible the requests have not been processed at all.

2

Chapter1 - Introduction

Many vendors for middle tier application servers provide clustering primarily

as a solution for improving the performance (through load balancing) and

scalability (ability to deal with large number of clients) and rely on propriety

replication mechanisms of database vendors for database availability. Cluster

systems allow the employment of multiple servers to service clients

concurrently thus improve the throughput of the system. Cluster systems

typically also provide limited/ailover capability, allowing client requests to a

failed server to be redirected automatically to another available server.

Stateless computation requests (i.e. requests that do not cause modification of

the state stored on the application server) can safely be re-executed on another

server. However, failover is not straightforward for stateful computation

requests, where the application server may keep the session state produced by

previously executed requests. One may circumvent this by requiring all state

to be stored at a database, yet this makes unnecessary performance overhead,

as the state is usually needed for short term, within the scope of current client

interactions only. Some implementations provide session replication in

application servers, removing the requirement to store session state in a

database, but they are unable to salvage the active transactions from the failed

server, causing the abortion of the client session. Furthermore, there is a more

serious limitation: when an application server fails while in the process of

committing a transaction. For single database access, the other application

servers do not know whether the transaction from the failed application server

has been committed successfully or not, and reprocessing the client request on

another application server may violate the exactly once execution property.

For multi-database access, this may result in databases and other shared

resources becoming unavailable to the other servers 1 , causing other available

servers cannot continue servicing clients request even if they already have an

updated session state for servicing the request. Normally this requires some

manual operations to rectify the problem.

We thus see that introduction of availability measures in multi-tier systems

poses challenging system design problems, namely transparent failover,

1 A failure that happens in the middle of the two phase commitment protocol can cause the backend
database blocked, waiting for the transaction coordinator (which is located at the crashed application
server) to be available again, so that it can find out the outcome of the transaction.

3

Chapter1 - Introduction

exactly once execution of client requests, non-blocking distributed transaction

processing, ability to work with load balancing and open, non proprietary

solution.

For this reason, there has been much recent research work on increasing

availability whilst supporting exactly once transactions through replication in

commonly used application servers. However, none of the works that we know

meets all the system design problems stated above.

This thesis investigates how replication for availability can be incorporated

within the middle and back-end tiers. The replication mechanisms developed

in the thesis guarantee exactly once execution of user requests, masking

failures of application and database servers, ensuring continued client request

processing despite failures during the committing process; furthermore they

also support load balancing features for clustering configurations. In short, the

design and implementation presented in the thesis solves all the system design

problems stated above. The thesis develops an approach that requires

enhancements to the middle tier only for supporting replication of both the

tiers. Therefore, database server failure can also be masked without having to

rely on the proprietary database vendor replication. The design,

implementation and performance evaluation of such a middle tier based

replication scheme for multi-database transactions on a widely deployed open

source application server (JBoss) are presented.

1.1 Thesis organization

Chapter 2 discusses basic concepts of component middleware architecture and

the platform that will be used as the basis for implementing our replication

algorithms. It describes common components of an application server and how

they interact with each other to provide service to clients.

Chapter 3 provides a literature review of existing approaches to availability on

three-tier architecture. Each approach is evaluated and compared with the

replication mechanisms described in this thesis. Those approaches are

classified into two groups: the ones that focus on the availability of the

4

Chapter1 - Introduction

application state (backend-tier) and the ones that focus on the availability of

the computations (middle-tier).

Chapter 4 describes application state replication approach implemented using

mechanisms within the middle tier that works seamlessly with existing load

balancing clustering configuration in application servers and presents the

benchmark result of the implementation.

Chapter 5 describes the implementation of computation replication that is able

to continue multi-databases transactions on backups when the primary fails.

Exactly once semantics is ensured. The replication implementation also

includes the load balancing version that distributes client requests among

existing servers.

Chapter 6 summarises the contributions of the thesis and outlines areas into

which the work done in this thesis could be extended and researched further.

5

2 Component Middleware Infrastructure

Large class of distributed applications map on to client-se[\'er architecture.

where applications are separated into clients, in which computers are used for

managing the interaction with the users, and into servers, in which the data is

located and processed. This architecture gives flexibility as data can be shared

among many clients running on heterogeneous platforms. For applications that

need to store large amount of data and perform complex information

processing of client requests, a server soon gets overloaded as the number of

clients increase. To solve the problem, the function of the server is split into

two tiers: one tier is for performing computation and another tier is for

handling data. The computation tier, which is referred to as an application

server, is also responsible for pooling the connections to the database servers,

and shares these connections to service client requests, therefore reduce the

number of connections required to the back-end servers. Application server

belongs to a class of software known as middleware, a software layer between

network operating systems and application components.

Many organizations today have a variety of computing applications running on

heterogeneous hardware and software systems. These systems are often

difficult to integrate as they have different platforms and architectures and

support different protocols. Middleware can be used to help these systems to

interoperate, by allowing a program on one system accessing data and

programs provided by other systems. Middleware is also seen as a solution to

speed up application development, by providing higher abstraction that hides

the difficulties in dealing with many aspects of distributed systems, such as

security, communication protocols, transaction management and concurrency

control.

Software components, as a concept, has been in existence since a long time

ago. Douglas McIlroy (Naur and Randell 1969) has proposed in 1968 that

future software industry should be built based on software components. where

6

Chapter 2 - Component Middleware Infrastructure

one can build software out of its components \\hich can be provided from a

number of software components suppliers, just like in other industries. such as

electronics and mechanical industries.

The idea of software component is also reflected in object oriented approach

to software, which became popular in 1990s. This approach views software

objects as representation of real world entities, and are considered as the key

to solve software crisis problem, as it enforces software developers to employ

good design principles in developing software such as modularity,

encapsulation and software reuse. Software objects are abstractions containing

both data (which is called object state or object attributes) and a set of

methods for manipulating the data. These objects are then used as the basic

components to build applications. Objects communicate with other objects by

message passing (this is implemented as method calls to other objects), and

application can be seen as a set of interacting objects.

The nature of object oriented approach to software fits perfectly with the goal

of software component, especially for supporting software reuse. However, the

small granularity of objects makes them difficult to reuse on different projects

and on different context. Object oriented approach also does not address the

issue of composing software from software components coming from different

platforms. Component oriented development, which is seen as the next drive

after object oriented approach (Kozaczynski and Booch 1998). addresses this

specific problem, focusing on how a component interacts with its environment

and how a component can be used on different context by specifying its

dependency explicitly as a contract. Component, in this context, is defined as a

piece of software which has explicit specifications of what it requires and

provides, can be independently deployable, and subject to third-party

composition (Szyperski 2002).

Middleware adopts object oriented approach and software component

technologies by developing standards for component oriented infrastructure,

such as Sun Enterprise JavaBeans (EJB) specification and Common Object

Request Broker Architecture (CORBA) specification.

Chapter 2 - Component Middleware Infrastructure

2.1 Overview of component middleware architecture

We can look at component middleware architecture as n-tier architecture that

consists of client, web servers, application servers and backend data stores.

Figure 2-1 describes this architecture. A client can access the service provided

by the system via the Internet, by using a web browser, which provide the

display representation of the application to the client. Alternatively, the

applications at the client's side may access directly to middle tier application

servers. The interaction from the client applications to the middle-tier software

can be either session-oriented or sessionless-oriented, using protocols such as

Hypertext Transfer Protocol (HTTP), Java Remote Method Invocation (RMI),

and Simple Object Access Protocol (SOAP).

Web servers manage the representation of the service so that the clients can

access the service by using web browsers. Application servers constitute the

middle-tier that provides containers for hosting the components and supporting

services, such as security, communication, persistence and transactions. The

backend databases provide the persistent state of the application.

8

Web
servers '--------"

Middle tier
application
servers

Figure 2-1 Component middleware architecture

Chapter 2 - Component Middleware Infrastructure

clients

All interactions between components and their environment, including the

clients and backend datastores are mediated by the containers. To support

various types of business logic, several types of components are normally

provided. EJB specification defines components as stateless session beans,

stateful session beans, entity beans and message-driven beans. Stateless

session beans refer to components that represent processing client requests that

does not require conversational state, therefore can be instantiated per client

request basis. Stateful session beans are for processing conversational client

requests, and maintain conversational state for requests from the same client.

Entity beans represent and manipulate persistent data of an application, which

are stored in the backend data store. Message driven beans allow developer to

implement asynchronous components that act as listeners for Java Messaging

Services (JMS).

9

Chapter 2 - Component r,1Iddleware Infrastructure

The other specification, CORBA Component Model (CC~l). provides similar

categories: Service (corresponds to stateless session beans), Session

(corresponds to stateful session beans), Entity (corresponds to entity beans).

Process (unique to CCM, represents business process and has persistent state

across multiple sessions). The rest of this chapter will focus on EJB model that

will be used as the target implementation for replication mechanism.

2.2 Containers and application servers

As explained in section 2.1, containers manage all interaction between

components and their environment. A container starts hosting a component

through a process called deployment. In this process, the container gathers all

information required for deploying the component from the component

descriptor. The descriptor contains information such as the component type.

access authorization, transaction attributes for each method, the name of the

bean, persistence management, and external resources required. Based on this

information, the container then creates an instance that represents the

component home interface, and registers this instance to the naming ser\'ice,

so that clients can find the component via this service.

Home interface is an instance that allows clients to create. find and destroy an

instance of the component. This is necessary as clients do not have direct

access to the component instance, therefore cannot directly invoke the

constructor of the component to create an instance. The home interface object

is created by the container, and acts as the primary point of contact to the

clients. Upon receiving create invocation, for example, the container can set or

unset the transaction context. inspect access authorization, invoke necessary

code on the component for creating a new instance, then create a

representation for the bean instance, the bean interface, to return back to the

client.

10

Client request

Chapter 2 - Component Middleware Infrastructure

Application server

Container

Other support
(transactions, security,
persistence)

External resources

Figure 2-2 Interaction between the application server, the container and the components

As clients always access components indirectly, the container has various

choices of implementation. Figure 2-2 depicts an example of typical

interaction between application server, container and components. For

components that do not maintain conversational state such as stateless session

beans, a common implementation approach is by creating a pool of ready bean

instances. These instances are allocated to clients requests, and are returned

back to the pool after the processing finishes. For components that maintain

state, such as stateful and entity beans, the states are kept separately, and the

container attaches this state to a bean instance every time it has to service a

specific client request.

The home interface, the bean interface and the bean instance access external

resources via the support provided by the container. On some cases, the

interaction between container, components and external resources are defined

through standard interfaces, such as transactions are standardized by Java

Transaction API (JTA) and Java Transaction Service (JTS) specification, and

databases access are standardized by Java Database Connectivity (JDBC) and

J2EE Connector Architecture (JCA).

11

Chapter 2 - Component Middleware Infrastructure

2.3Client interaction

The EJB specification specifies three mechanisms to access EJBs: Jaya

Remote Method Invocation (RMI), local access (for clients located on the

same Java Virtual Machine (JVM)), and web services2.

Client

invoke method

Registry

Figure 2-3 EJB Remote access and local access

Server

application

interface
(RMI Object)

register the object

RMI provides basic functionalities for invoking methods on remote objects.

The server that provides objects for remote access makes the object stubs

available via an object registry or a naming service. Clients then access the

object via these stubs that will be responsible for delegating the invocation,

marshalling the parameters and the result of the invocation (Figure 2-3). In

most EJB implementations, vendors do not simply provide stubs for client

access, but they also wrap the stub object as well with a client-side object

implementation, to allow some computation performed on the client side. This

implementation allows the stub to directly process some requests at the client

side without having to contact the server.

2 Only stateless session beans are allowed to provide access via web service

12

Chapter 2 - Component Middleware Infrastructure

Clients that are located at the same process as the components can access the

component using a local interface to that component. The local interface

provides faster access than the remote interface such as RMI, as it removes the

requirements for marshalling the parameters and also removes the need for

messaging during the invocation.

As illustrated in Figure 2-1, clients can access middle tier components directly

over the Internet, without the use of a web server and a web browser. These

interactions are made possible via web services. A web service is a software

component that can be accessed via network and has an interface that is

described in a machine-processable format (e.g. WSDL - Web Services

Description Language) (W3C W3C Consortium 2004). In EJB specification,

web services client can access stateless session bean via SOAPIHTTP

protocols. The application server is responsible for generating the class for the

web service end point to access the bean and the service description (in

WSDL) for the stateless session bean so that the web service client can find

out about the services (how to access, interface/methods available for access,

etc.).

2.4Component persistence

There are two way to manage the state for entity beans: container managed

persistence (CMP) and bean managed persistence (BMP). CMP allows the

developer to delegate the maintenance of bean persistent state to the container.

In this scheme, the container generates the SQL (Structured Query Language)

commands and queries for retrieving and storing the bean state to the database.

Alternatively, the developers can also specify or modify some of the SQL

commands for some methods. On the other hand, BMP lets the developer to

manage the bean persistent state directly by inserting explicit database SQL

queries in the bean code.

From the component development perspective, CMP is preferable as it relieves

the developer to code the SQL directly, thus make the component

development and maintenance easier. However, the performance of CMP

based components will be highly dependent on the application servers that are

13

Chapter 2 - Component Middleware Infrastructure

used for the implementation (Cecchet, Marguerite et aI. 2002; Gorton and Liu

2003).

In CMP, the containers are responsible for mapping the bean field into the

database. This can either be done automatically by the container or by

explicitly declaring the bean fields to database table mapping in the

deployment descriptor. The containers are also responsible for synchronizing

the bean state with the database, so that the component developers do not have

to deal with this issue directly.

For managing consistency, the specification lays out three strategies

depending whether the container has exclusive access to the database state

(DeMichiel, Yalyinalp et al. 2000). For containers that have exclusive access

to the database state (i.e. if the same database state is not used by other

applications besides these containers), they can use commit option A, which

keeps the instance ready in the containers, thus the containers does not have to

reload it from the database again at the start of the next transaction. On the

other hand, if the containers do not have exclusive access, they can still keep

the instance ready in the cache, but they must reload it at the start of the next

transaction. This scenario is called commit option B. Another implementation

does not keep ready instances at all, and immediately passivates the instance

as soon as the transaction finish. The last scenario is called commit option C.

Brebner and Ran (2001) studied the performance of different commit options.

They concludes that commit option A can give better performance up to 60%

than commit option C, and commit option B gives better performance by 30%

to commit option C. However, these results are product, version and

application specific.

2.5 Transactions

A transaction manager IS hosted by the application server and assumes

responsibility for enabling transactional access to EJBs. The transaction

manager does not necessarily have to reside in the same address space as the

application server; however, this is frequently the case in practical systems.

14

Chapter 2 - Component Middleware Infrastructure

The interface between containers, the transaction manager and database

resources are specified via JTA (Cheung and Matena 2002) and the

Connectors APIs .

Application

Figure 2-4 Java Transactions API

Application
Server

JTA
Transa tionManager

Transaction
Manager L-_-

Resource
Manager

XAResource

Figure 2-4 shows the interactions defined in JT A specification. JT A specifies

four parties commonly involved in transactions: Application, Transaction

Manager, Application Server and Resource Manager. In the three-tier

architecture, the application is either a client that uses the system or a

component that is hosted on an application server. The transaction manager

and the application server are part of the middle tier; and the resource manager

is the database on the back-end tier .There are three elements of API defined in

JTA: UserTransaction is an interface for the application to control

transaction boundaries, TransactionManager is an interface to allow the

application server to control the transaction boundaries on behalf of the

application and XAResource is a java mapping of the industry standard XA

interface (X/Open 1992). XAResource allows the transaction manager to

associate a global transaction to a transactional resource managed by the

15

Chapter 2 - Component Middleware Infrastructure

resource manager. JTA also specifies Transaction interface, a

representation of a transaction context that can be accessed by an application

or an application server.

Transaction
Manager

Figure 2-5 Transaction processing

An application server such as EJB server maintains information about

components that it hosts, including the transaction attributes of each method of

the components and resource managers that are responsible for the

components. Figure 2-5 depicts a sample scenario of a single transaction

involving three enterprise beans and two resource managers. A session bean

receives a client invocation. The application server (via the container)

determines3 that this invocation should be executed within a transaction. The

application server then instructs the transaction manager to create a

transaction, say Tl, and associate it with current thread. After that, an

appropriate code from the session bean is executed. This execution, may for

example issue a number of invocations on two entity beans (X and Y). Upon

these invocations, the application server determines that those invocations are

associated with the same transaction as the invoker, i.e. Tl. The application

server also enlists the resources used by the entity beans X and Y to

transaction TI. The application server is also responsible for passing the

3 The container detennines this by inspecting the transaction attribute for the accessed method in the
deployment descriptor

16

Chapter 2 - Component Middleware Infrastructure

'transaction context' of Tl to the JOBC drivers in all its interactions, which in

tum ensure that the resource managers are kept informed of transaction starts

and ends. In particular: (i) retrieving the persistent state of X (y) from RDMSA

(RDMSB) at the start of Tl will lead to that resource manager write locking

the resource (the persistent state, stored as a row in a table); this prevents other

transactions from accessing the resource until Tl ends (commits or rolls back);

and (ii) XA resources (XAA and XAB) 'register' themselves with the

transaction manager, so that they can take part in two-phase commit.

Once the session bean has indicated that TI is at an end, the transaction

manager attempts to carry out two phase commit to ensure all participants

either commit or rollback TI. In our example, the transaction manager will

poll RDBMSA and RDBMSB (via XAA and XAB respectively) to ask if they

are ready to commit. If a RDBMSA or RDBMSB cannot commit, they inform

the transaction manager and roll back their own part of the transaction. If the

transaction manager receives a positive reply from RDBMSA and RDBMSB it

informs all participants to commit the transaction and the modified states of X

and Y becomes the new persistent states.

In this example, all the beans are in the same application server. Support for

distributed transactions involving beans in multiple containers (on possibly

distinct application servers) is also straightforward if the transaction manager

is built atop a CORBA transaction service (Java Transaction Service), since

such a service can coordinate both local and remote XA resources. Such a

transaction manager will also be able to coordinate a transaction that is started

within a client and spans EJBs, provided the client is CORBA enabled.

2.6Architecture of J2EE application servers implementation

This section describes an example of J2EE application server using a popular

open source J2EE application server, JBoss AS.

17

Client

HTTP,
RMI,
RMI-1I0P

Chapter 2 - Component Middleware Infrastructure

r·· _ _ ,

containers

RMI, RMI 1I0P, local

Transaction
Manager

Application server(s)

Jose. vendor
specific

XAResource,
vendor specific

os

1 ... 1

Database layer .

... .1

2.6.1 JBoss J2EE Application Server 3.2.x

JBoss application server is an implementation of J2EE specification developed

by JBoss company. JBoss application server centres around Java Management

Extension (JMX) (Sun Microsystems Inc 2002), where a microkemel called

JMX MBean server hosts a number of pluggable services, presented as JMX

MBeans. The role of the microkemel is to initialize all services and configure

them in the right order, Other components of J2EE server, such as the Java

Naming and Directory Interface (JNDI) server, EJB containers, transaction

manager, persistence manager, database accesses are all implemented as

MBean services, and these services can enquire the JMX MBean server about

other available services so that they can interact with each other. When an

MBean services relies on the service of provided by another MBean service,

one can specify this dependency in a configuration file, and the JMX MBean

server is responsible for creating and initializing those services in the right

order.

2.6.1.1 JBoss EJB Containers

JBoss EJB containers host the EJB components and provide them access to

other services in JBoss. The components are deployed by a service called

EJBDeployer (orgjboss.ejb.EJBDep/oyer). The deployer first inspects the

18

Chapter 2 - Component Middleware Infrastructure

deployment descriptor file4 to find out the configuration of the component.

Based from that information, the deployer then creates the container that will

host that component, and initializes the container according to the

specification of the component. The containers themselves are deployed as

services that depend on other components such as transaction service, proxy

factory (factory for creating proxy objects), persistence manager and lock

manager (see Figure 2-6).

Container

nterceptors

Proxy
Factory

Instance
Cache

Instance
Pool

Persistence
Manager

BeanLock
Manager

Figure 2-6 EJB Container and its relationship with other components in JBoss

During the initialization of the container (as part of component deployment),

the container creates a representation of the component, an object proxy that

will be used by clients to access the component (see Figure 2-7). The container

creates the proxy by using a component named as Proxy Factory. The proxy

contains a set of interceptors that intercept client's request at the client's side

and an invocation context that contains the identity of the container, the JNDI

name of the component, the EJB meta data, and the invoker. The invoker is the

one that relays client's request to the server.

4 In JBoss 3.2, the deployment descriptor is described in three files: ejb-jar.xml. jaws.xml and jboss.xml.
These files are included in the jar file that contains the components and they describe the configuration of
those components.

19

Chapter 2 - Component Middleware Infrastructure

org.jboss.proxy.ejb.Homelnterceptor

I nvocationContext
• container id
• JNDI name

I org.jboss. proxy. Securityl nterceptor

• EJB metadata
org.jboss. proxy. Transactionl nterceptor • invoker

org.jboss.invocation.lnvokerlnterceptor

Figure 2-7 Proxy object

On the server side, requests from clients are handled by an invoker service.

This service inspects the invocation context on each request, and delegates the

processing of the request to the appropriate container.

In JBoss, A container hosts a specific type of enterprise bean component. A

container has a set of interceptors, and different types of enterprise bean

component (entity beans, stateless session beans etc.) have different set of

interceptors. For example, a stateful session bean container has a set of the

interceptors as below:

• ProxyFactoryFinderInterceptor: this interceptor is responsible for

setting the proxy factory on the target container to match the proxy

factory from the invocation.

• LogInterceptor: this interceptor is responsible for handling the logging

for the invocation.

• TxInterceptorCMT: this interceptor is used for components with

container managed transactions. It checks the transaction attribute of

the invoked method, and sets a proper transaction context according to

the transaction attribute of that method, then passes the invocation to

the next interceptor.

• org.jboss.ejb.plugins.MetricsInterceptor: this interceptor measures the

time for invoking the method and send the result via a message queue

so that it can be read by other application.

20

Chapter 2 - Component Middleware Infrastructure

• org.jboss.ejb.plugins.StatefuISessionInstancelnterceptor: this

interceptor is specific to stateful session bean. It gets an instance

context that contains the state of the accessed bean from the cache

whenever available; otherwise it creates a new context for the

invocation.

• org.j boss.resource.connectionmanager. CachedConnectionInterceptor:

this interceptor checks for any previous connections opened during the

previous invocations, and reopens the connections again so that they

can be used in current invocation.

• org.jboss.ejb.plugins.SecurityInterceptor: this interceptor is responsible

for checking the authorization for accessing this method and throws an

exception if it is not authorized.

In the container, an invocation is processed first by interceptors, then the

container invokes the appropriate method on the bean instance, and after that

the result is passed back through the interceptors again, and sent back to the

client. The details on how an client request is processed in JBoss are described

in the next section.

2.6.1.2 Processing client request in JBoss

Client Dynamic Invocation Itt Invoker Invoker Container Interceptor EJB
.... p.r.Q~ t!.~n9!.~L ~ .. :.r.~:~ .. ~.~ p..r.Q~ .. , ... ~.~~~~ ~~.~.~D............... ,

j i • + __ ~~
--~ ~ ~ Ln. _ invoca.ron he"",ng ~ ~ ~ ~ ~ ~ -T ~ ~ t~'~~-in~~~ hendNng • - - - - -

:.. .. ' :. .. __ ,

Figure 2-8 Processing client request in JBoss

Figure 2-1 provides an overview of the client and server side handling of an

invocation in JBoss. When a proxy receives an invocation from a client, the

proxy first checks whether the invocation is a local invocation or a remote

invocation. Local invocations are optimized so that they do not have to pass

through the invocation marshalling process. If the invocation is a remote one,

21

Chapter 2 - Component Middleware Infrastructure

then the invocation is marshalled and forwarded to the appropriate container in

the application server. The initial step in this process is the marshalling of the

invocation by the invocation handler, which in turn forwards the marshalled

invocation through a series of client side interceptors to an invoker proxy. The

interceptors perform some necessary processing (see previous section) and the

invoker proxy handles protocol specific communications (common invoker

proxy types are Java RMI or CORBA nOP), sending marshalled client

invocations and receiving associated replies to/from a JBoss server. At the

server side, the invoker MBean handles all incoming requests. It first

unmarshalls the invocation, and passes them to the appropriate container

where the EJB component exists where ultimately the invocation is handled by

application logic. Each container may has its own set of interceptors, which

will perform additional processing (see previous section)to the invocation

prior and after being process by the bean.

2.7Summary

This chapter provided an overview of component middleware concepts with

particular references to the middleware platform that we will use as a target for

designing and implementing the available components infrastructure. Among

other things, we have described how a client request is processed in J2EE

architecture, and the role of the transaction service in managing the transaction

over this architecture. Based on this overview, an extension to JBoss to

provide replicated components can be implemented as interceptors in both

server and client side, and also as an invoker proxy and invoker MBean as

well.

The following chapter deals with the problems and strategies for improving

the availability of these platforms. We will provide a survey of existing

techniques for improving the availability for systems similar to the one that we

have described in this chapter.

22

3 Availability measures for component-oriented
middleware

This chapter reviews strategies for improving availability in the component­

oriented middleware infrastructure. Availability is improved by employing

replication. As there are many participants involved in the infrastructure. an

integrated approach on how to implement replication in a component-oriented

middleware infrastructure is needed. The chapter provides a literature re\ie\\

on published work in this area and compare them to the work of this thesis

3.1 Background

Component-oriented middleware infrastructure, such as the one defined by

J2EE standards, provides clear separation between components that have

persistent state, and components for performing computations, that haw only

non persistent, session-oriented state. Therefore, it is natural to divide the

replication support for these components into two categories: state replication

and computation replication. State replication deals with masking data store

failures to make persistent data highly available to components, while

computation replication deals with masking application server failures where

the computations are performed. The structure of this thesis and the literature

review on this chapter therefore follows this observation.

There are two common approaches in implementing replication in distributed

systems: active and passive replication. In active replication (Schneider

1990), each server replica processes every client invocation. As long as client

requests are processed in the same order at all replicas, the replicas will

produce the same output. This naturally requires replicas to be deterministic,

that the state of a replica is determined only by its current state and the

message it processes. On the other hand, passive replication (Budhiraja,

Marzullo et al. 1993) allows nondeterminism by executing client requests only

on one server, the primary, and distributing the updates to other replicas

(backups) later on. Most server replication in component-oriented middleware

23

Chapter 3 - Availability measures for component-oriented middleware

architecture follow the latter approach, due to non detenninistic nature of most

servers (e.g. because of thread scheduling, 10 interrupts etc.).

A replication algorithm needs to make assumptions about the failure modes of

components so that specific fault-tolerant measures can be deployed. Two

widely used failure assumptions are Byzantine failures (Lamport, Shostak et

al. 1982) and crash failures. A replica exhibits Byzantine failures when it can

produce arbitrary (possibly malicious) output when a failure happens.

Conversely, if a replica stops working when a failure happens and does not

produce any output, it is called crash failure. By nature, Byzantine failures are

more difficult to handle than crash failures. However, crash failures

assumption is frequently considered sufficient for many applications, such as

applications that are not life-critical (Schneider 1990).

The task of implementing a replication scheme is considerably simplified if all

the correctly functioning replicas can be managed as a group with members

having a mutually consistent view of the order in which events (such as

message delivery, replica failures) have taken place. Design and

implementation of fault-tolerant process group systems satisfying certain order

properties has been a very active area of research during the eighties and

nineties (Chang and Maxemchuk 1984; Peterson, Buchholz et al. 1989;

Melliar-Smith, Moser et al. 1990; Binnan, Schiper et al. 1991; Dolev, Kramer

et aI. 1993; Ezhilchelvan, Macedo et al. 1995). In an asynchronous

environment where processing and communication delays cannot be estimated

accurately, accurate detection of a failed component is not possible, as it is

impossible to distinguish a failed component from a slow one (Fischer, Lynch

et al. 1985). Process group systems circumvent this impossibility by relying

on failure suspectors (Chandra and Toueg 1996). It is thus possible for a

correctly functioning component to be eliminated from its group if other

members suspect it to have failed. Well engineered systems can certainly

minimise the probability of such occurrences.

Assuming components fail independently, to tolerate Byzantine failures, a

minimum of 3f+ 1 components are needed to mask the failure of f components

and output results need majority vote from 2f+ 1 components. For crash

24

Chapter 3 - Availability measures for component-oriented middleware

failures, f+ 1 components are required to mask f components failures, assuming

functioning components can communicate (i.e. there is no network partition)

and component failures can be detected accurately; no output vote is required.

If accurate failure detection is not possible, then 2f+ 1 replicas are necessary to

mask up to f failure suspicions, with the majority f+ 1 components not

suspecting each other.

3.2Assumptions and requirements

Participants involved in component middleware infrastructure are: clients, web

servers, application servers, and back-end databases. Application servers

provide services to support components, such as transactions, persistence,

security, etc. These services usually reside at the same process as the

application server. Throughout this thesis we assume crash failure of

computing nodes (application servers, database machines). After a crash, a

node is repaired within a finite amount of time and is made active again. We

choose to implement our replication approaches on application servers

supporting J2EE architecture; hence it should provide the same correctness

criteria as single J2EE application server. We also assume that back-end

databases support ACID transactions.

One of the key concept of component middleware is to allow developers to

focus on the specific business task of the components that they have to

implement, thus the component developers should be relieved from the task

such as managing access authorizations, persistence, and transactions, and the

responsibility of managing replication to improve the availability as well.

These tasks belong to the container implementers. Therefore, component

replication should also be transparent to both clients and components. The

transparency requirement imposes the following constraints: (a) no

modifications to the API between client and component; (b) no modifications

to the API between component and the container; (c) no modification to the

existing middleware services and API. In later chapters we will explain in

detail how replication can be introduced under above constraints.

One can take a look at each tier separately, and implement replication at each

tier to enhance the availability of the system. Failure at the database tier makes

25

Chapter 3 - Availability measures for component-oriented middleware

the persistent data becomes unavailable, and as a result, the whole system is

also unavailable. Existing application servers as yet do not provide any

support for managing persistent state replication. This means that they must

rely on database vendor specific approaches for tolerating database failures

(e.g. vendor specific database replication techniques).

At the middle tier, an application server failure causes the computations that

were active to be lost. Commercial application servers make use of multiple

application servers deployed over a cluster of machines to mask server failures

so that these computations can be restarted on any other available server. For

stateless computations, these scheme works perfectly, but for stateful

computations, transactions are not supported and there are some limitations

that are examined in detail in section 3.3.

At the client tier, a client crash usually does not pose critical issue to the

availability of the system, as normally it does not cause other clients to be

blocked from the service.

One important concept related to availability measures is that of exactly once

transactions or exactly once executions (Little and Shrivastava 1998a; Little

and Shrivastava 1998b; Tygar 1998; Frolund and Guerraoui 2000a; Barga,

Lomet et al. 2002; Frolund and Guerraoui 2002). The concept is particularly

relevant in web-based e-services where the system must guarantee exactly

once executions on user requests despite system failures. The problems arise

as the clients in such systems are usually not transactional, thus they are not

part of the recovery guarantee provided by the underlying transaction

processing systems that support the web-based e-services at the server side.

When failures occur, clients often do not know whether their requests have

been processed or not. Resubmitting the requests may result in duplication,

and on the other hand it is also possible the requests have not been processed

at all. As we discuss in the next section, while existing application servers for

Enterprise Java Bean (EJB) components do use replication, they do not

adequately support exactly once transaction capability. For this reason, there

has been much recent works on replication for supporting exactly once

transactions over commonly used application servers. Howe\'er.

26

Chapter 3 - Availability measures for component-oriented middleware

implementation work reported so far has dealt with transactions that update a

single database only, so do not require two-phase commit.

The next section describes existing implementations for providing availability

by employing multiple application servers over a cluster of machines, which is

suitable for stateless computations. In here we explain why it is not sufficient

for stateful computations and other limitations of the approach.

Several approaches on improving the availability by employing state

replication are presented in section 3.4. The review focuses on approaches that

improve the database availability by the use of middleware. The concept of

exactly once transactions and several works that target this problem are

discussed in section 3.5.

3.3Availability measures in existing application servers

Most application server products available on the market currently support

clustering. Clustering employs multiple servers (web servers, application

servers) together with a load balancer to mask server failures. A cluster usually

consists of several commodity low cost PCs located on the same LAN (Figure

2-1). At the front-end (PT - presentation tier), web servers receive queries

from clients that usually access applications via web browsers. Before the

requests reach web servers, typically they are processed by a web switch or

load balancer (LB) to distribute the load among web servers (Cardellini,

Casalicchio et al. 2002). In this approach, clients access a server by using a

virtual IP, which is actually the address of the web switch or load balancer

device. The device then distributes the load using a mechanism known as

network address translation (NAT) (Egevang and Francis 1994). The

mechanism works by editing the IP headers of packets to change the

destination address for incoming packet and change the source address for

outgoing packet. Load-balancing can also be employed at DNS (Domain

Name System) level, by using round-robin DNS which gives different IP

addresses for the same site name (Brisco 1995). More detail about this

mechanism can be found in (Cardellini, Colajanni et al. 1999).

27

Chapter 3 - Availability measures for component-oriented middleware

c: client
lB: load balancer
PT: presentation tier
AT: application tier
DT: data tier

Figure 3-1 Three-tier architecture

...... ~----- ..

;/ LAN

nlnllB I

..........

Behind the load balancer components, there are several servers, which make

up the n-tier system: presentation tier (PT) - web servers, application tier (AT)

and data store tier (DT). On this system, one tier becomes a client for the next

tier, for example, PT is the client for AT, and AT is the client for DT. This

composition into tier is a logical one, and it is not necessarily reflected in

hardware. One can, for example, configure a server machine as both

presentation tier and application tier.

In practical situations one can either co-locate the presentation tier and the

application tier on the same machine or separate the presentation tier and the

application tier on different machines. The data store tier is usually located on

a different machine. Co-locating the presentation tier and application tier

reduces the latency for calls from the presentation tier to the application tier.

However, one may need to scale the presentation tier only or the application

tier only, and in this case, separating the presentation tier and the application

tier is the only way to make this possible. The tier separation makes it more

flexible to choose which tier needs to be scaled up.

28

;

J

.. /

Chapter 3 - Availability measures for component-oriented middleware

At the application tier, a naming server or resource locator plays the similar

role as the DNS for the Internet. For Java-based systems, such as J2EE

application servers, this role is provided by a JNDI server. The JNDI server

gives component home interface references to the web servers (the

presentation tier), which are the clients of J2EE application servers, so that

they can send requests to the components hosted by the application servers.

Remote calls from the presentation tier are always initiated by queries to the

JNDI server, in order to get a home interface of the accessed component.

There are three possibilities in configuring the JNDI server in a cluster

environment. One can configure centralized servers (one or more) designated

as JNDI servers, one can put independent JNDI server on each machine that

host the application server and one can configure each JNDI server on each

machine to share global reference to all components from all servers (Kang

2001). For the first approach, the main problem is if all of the JNDI servers

crash, the system becomes unavailable even if there are some application

servers still available. Furthermore, binding remote references from all servers

to JNDI servers needs some significant time during recovery or initiation

phase. On the other extreme, having each application server has its own JNDI

server independently running on the same machine may increase the

availability, but as each JNDI server does not know the existence of other

application servers, there should be a mechanism to enable clients to find out

other JNDI servers in case of failure. In third approach, each application server

has its own JNDI server, like in the second approach, but each JNDI server

maintains references to other application servers as well, thus clients can fail­

over directly without contacting other JNDI server when the server that a

client contacted fails. This approach has the same approach as the first one, i.e.

requires significant time during the recovery or the initiation phase for the

binding process.

Application server clustering typically are characterised for:

Scalability: the proposed configuration should allow the overall system to

service a higher client load than that provided by the simple basic single

29

Chapter 3 - Availability measures for component-oriented middleware

machine configuration. Ideally, it should be possible to service any given load.

simply by adding the appropriate number of machines.

Load-balancing: the proposed configuration should ensure that each machine

or server in the configuration processes a fair share of the overall client load

that is being processed by the system as a whole. Furthennore, if the total load

changes over time, the system should adapt itself to maintain this load­

balancing properties

Failover: if anyone machine or server in the system were to fail for any

reason, the system should continue to operate with the remaining servers.

Transparent failover (failures are masked from a client, who minimally might

need to retransmit the current request) is an ideal, but rarely achievable with

the current technology, for the reasons to be outline below. However, the

important thing in current systems is that forward progress is possible

eventually and in less time than would be the case if only a single machine

were used.

3.3.1 Limitation in existing application servers availability

At the application server side, there are three types of components: stateless

components, session-oriented conversational components and persistent

components. In general, clustering provides limited fail-over capability for

components hosted in application servers. For a stateless component, it is

straightforward, as it has no state. The application server only needs to ensure

that there is no duplication of execution when it tries to re-execute the query

on a different server. For session components, many vendors employ in­

memory replication for the session state among application servers. This is

perfonned by propagating the session state to other servers on each invocation.

However, handling session state replication is not a trivial task. Session

components may involve in transactional invocation accessing database via

entity beans, and when they fail, most clustering implementations simply

create new sessions on a new server, and the client invocations are re-executed

from the beginning as new transactions. This may result in inconsistency of

the session state, as the updated state of the session from previous transaction

is also wiped off, as the session is created as a new one. When the failure

30

Chapter 3 - Availability measures for component-oriented middleware

happens in the middle of transaction commitment process, the outcome of this

process is not known to other application servers. For single database access,

the associated client invocation may either be executed twice (the transaction

commits successfully in the failed application server and the backup assumes

the transaction fails and re-executes the invocation) or may not be executed at

all (the transaction fails to commit in the failed application server and the

backup assumes it commits successfully), violating the exactly once execution

property. For multi-database access, this may results in unnecessary blocking

as the old transactions on the failed server may still have a hold on some

resources. New sessions that are started may be blocked since they may

require that same resources. The details of the problems and solution related to

this approach will be discussed when we describe the implementation of

computation replication in chapter 5. A summary of existing approaches that

handle the same issue is provided in the literature review of exactly once

execution in section 3.5.

One can also avoid in-memory replication for session state by always

maintaining the state on an external database. The server failure is handled by

restarting the component on a new server with the state from the database.

This way, conversational components and persistent components are handled

the same way, as persistent state. By this mechanism, the main focus now is

how to make the database-tier fault tolerant. This will be the focus of chapter

4, when we discuss state replication on component middleware. A summary of

existing approach for state replication is described in the section 3.4.

3.4 State Replication

Replication has long been researched in both database and distributed systems

communities. Research on data replication in distributed systems has

emphasized different targets and requirements than the one in database

community (Wiesmann, Pedone et al. 2000b). In distributed systems research

the focus has been mainly to provide fault tolerance. Database replication

work has always assumed transactional data, while on distributed systems this

is not a primary assumption. The following sections provide literature review

31

Chapter 3 - Availability measures for component-oriented middleware

of database replication works that are relevant for our state replication

approach, focusing on works that target middleware-based replication.

3.4.1 Database replication in general

Transactional data replication has also been widely researched (Bernstein,

Hadzilacos et al. 1987; Gray, Helland et al. 1996). Many database replication

strategies have been devised, but few only ever applied in commercial

products (Kemme and Alonso 2000). The reason for this is that most

approaches are not practical due to performance and scalability reasons.

However, some vendors now provide database replication as part of their

solution. A summary of these implementations and a discussion on how they

can be used to support three tier architecture can be found in (Vaysburd 1999).

To guarantee consistency, the replicated system must appear to the client as if

it only has a single copy. This correctness property is known as one-copy

serializability (Bernstein and Goodman 1985). Many algorithms satisfy this

property at all times by employing eager replication scheme, i.e. by

propagating state update to all replicas eagerly before the transaction commit.

In this way, all replicas will always be up to date with the latest committed

transaction.

Available copies algorithm performs eager replication by sending write

operations to all available replicas and sending read operation to any (nearby)

replica. Performing transactions concurrently on different replica may lead to

deadlocks that can only be detected later when the transaction is about to

commit. To avoid this, one replica can be assigned as a primary copy, and all

updates are performed first on this copy to determine any conflict with other

transactions and then the updates are propagated to other replicas before the

transaction commits.

As opposed to eager replication schemes, propagating state update to replicas

can also be done lazily, i.e. after the transaction commit. This scheme is called

lazy replication scheme. With lazy replication algorithms, it is possible that

serializability violation is detected after some transactions commit, and these

transactions cannot be aborted anymore. To keep the database consistent, the

32

Chapter 3 - Availability measures for component-oriented middleware

effect of these transactions must be undone either by performing compensating

transactions that can undo the effect of committed transactions or by

performing manual intervention by a human operator. Despite this downside,

many commercial products choose to implement lazy replication algorithms as

they have higher performance compare to eager replication ones (Gray,

Helland et al. 1996).

Recently, following the success of group communication approach in

distributed systems, researchers have started to investigate the use of group

communication for enhancing database replication (Agrawal, Alonso et al.

1997; Pedone, Guerraoui et al. 1998; Stanoi, Agrawal et al. 1998; Holliday,

Agrawal et al. 1999; Kemme and Alonso 2000). A study in (Wiesmann,

Pedone et al. 2000a) provides classifications of database replication schemes

and suggests that group communications can be used for developing better

eager replication schemes. Group communication, for example, can be used to

define the order of conflicting transactions and to simplify the commitment

protocol (Kemme 2003). (Kemme 2003) describes some of the issues In

employing group communication for database replication as follows:

• The replication mechanism should allow concurrent execution of

transactions as long as they do not conflict. This is a difficult task as it

requires extensive access to other components within the database

systems.

• Most implementations only allow a simplified transaction model, for

example by only allowing a single SQL statement for each transaction.

Multi-statements transaction execution requires the replication

subsystem to track all changes performed by a transaction that might

lead to a considerable overhead without adequate support from the

database system.

• More investigations are still needed to defme weaker transaction

models that can still be acceptable for practical use and to develop a

more adaptive failure-handling and recovery mechanism.

33

Chapter 3 - Availability measures for component-oriented middleware

Integrating group communication sub-system into the database architecture

requires access to the internals of the database, and this makes such schemes

difficult to work with existing commercial databases. To relieve this problem,

a middleware layer has been proposed to provide the required functionality for

integrating group communication based eager replication schemes into

existing commercial databases (Jimenez-Peris, Patino-Martinez et al. 2002).

However, middleware approach to database replications has some drawbacks.

First, it cannot access the internal databases being replicated, meaning that it

cannot access the locking mechanism used by the database, and possibly it has

to perform redundant concurrency control mechanism that has already been

performed at the database. The middleware layer must also have the ability to

extract the concurrency unit information (e.g. tables, records) from the client

queries (i.e. from SQL queries) so that it can perform its own concurrency

control. But, on the other hand, middleware-based database replication is more

suitable for middleware-based application architecture, such as web server

clusters, J2EE-based and CORBA-based e-services.

3.4.2 Middleware-based data replication

Following the term used in (Patino-Martinez, Jimenez-Peris et al. 2005), we

can classify middleware-based database replication into two categories: black

box approach and grey box approach. Black box approach treats databases as

black boxes and does not require any modification from existing database

implementation, while grey box approach assumes the middleware replication

has limited access to the database and therefore this approach may require

some modification from existing database implementation. There are some

research projects investigating middleware-based database replication, and

these will be discussed in the next sub chapters.

3.4.2.1 Middle-R

Middle-R is a set of group communication based replication protocols that are

implemented at the middleware layer developed as part of ADAPT project

(Patino-Martinez, Jimenez-Peris et al. 2005). It requires some access to the

internals of the database to support the replication, hence this approach is

considered as grey box approach. In Middle-R, the database needs to be

34

Chapter 3 - Availability measures for component-oriented middleware

modified to provide support for obtaining the write-set of a transaction and for

applying the write-set into the database.

The model assumes that the middleware layer is located as the same site as the

database. Thus there is one to one correspondence between a middleware layer

and a database instance. The system runs on an asynchronous system

augmented with failure detectors that can provide reliable multicast with

strong virtual synchrony.

Data in Middle-R is partitioned into basic conflict classes (Bernstein, Shipman

et al. 1980). A conflict class is a unit of concurrency control; this can be a

record, a table or even a database partition. Each basic conflict class is

associated with a queue. A transaction that requires access to more than one

basic conflict class is said to access a compound conflict class (a set of

nonempty basic conflict classes). Each conflict class (either basic or

compound) has a master site that will execute all transactions that access this

conflict class. Therefore, each transaction will have a master site that executes

the transaction and transactions that access the same set of conflict classes will

always be executed at the same site.

The basic algorithm works as follow: a client can submit a request to any

middleware layer. The request contains all operations that are to be performed

within a transaction. Hence all accessed data items are also known. Upon

receiving the request, the middleware layer broadcast the request to all sites.

The master site for that transaction puts the request on a queue for the basic

conflict class (or basic conflict classes) that is accessed by that transaction.

The master site always executes the transaction that comes up as the first on

all queues of basic conflict classes that it access. After the transaction finish,

the master multi casts the update write set for that transaction to all sites. Read­

only transactions are processed by reading from a database snapshot; therefore

they can be executed directly at the site that receives the request from the

client.

There are three different protocols described in (Patino-Martinez, Jimenez­

Peris et al. 2005). The first protocol, DISCOR, limits transactions by only

allowing them to access one basic conflict class only. The second protocol,

35

Chapter 3 - Availability measures for component-oriented middleware

NODO, allows transactions to access multiple basic conflict classes but it may , -
abort transactions whenever a possible non serializable execution is detected.

The third protocol, REORDERING, reduces the amount of transaction aborts

by performing transactions reordering on non master sites so that those

transactions are still serializable hence are not aborted.

The first protocol, DISCOR, orders all conflicting transactions at their master

sites, and upon finishing those transactions, the master sites multicast the write

set to other sites using FIFO ordering. As each transaction can only accesses

one basic conflict class and each basic conflict class has a unique master site,

there will be no overlapping/conflict between transactions that are executed on

different sites. Hence, the execution is serializable since all conflicting

transactions will always have the same order defined by their master sites.

The second protocol, NODO, allows transactions to access more than one

basic conflict class by defining compound conflict classes that contain all

basic conflict classes accessed by those transactions. In this protocol, requests

from clients are multicast to all sites using total order, so that each server

receives client requests in the same order. To allow executing transactions as

soon as possible, the protocol employs optimistic total order multicast

(Kemme, Pedone et al. 2003). Under optimistic total order multicast, each

multicast message is delivered twice, i.e. the message is first delivered

optimistically (OPT -delivered) as soon as possible after the message is

received by a site and later on the message is delivered again for the second

time (TO-delivered) after the total ordered has been computed. When the

transaction is optimistically delivered on a site, the transaction is added to all

basic conflict class queues that it accesses. The master site executes the

transaction that is ready, i.e. it comes up as the first on the queues of all basic

conflict classes that the transaction access. However, the transaction cannot be

committed yet. It must wait for the TO-delivery for the transaction, the one

that define its total order. If the TO-delivery for a transaction arrives but that

transaction is still blocked by other transactions, then the blocking transactions

are either aborted (if they are local transactions) or reordered (if they belong to

other sites).

36

Chapter 3 - Availability measures for component-oriented middleware

The third protocol, REORDERING, is a modification of NODO, by allowing

some transactions that are executed at the same master site to follow different

order from the one dictated by the total order multicast, in order to reduce the

number of aborted transactions. Not all transactions on one master site can be

reordered. If T2 blocks TI and the set of T2's basic conflict classes is not a

subset of the set of TI 's basic conflict class, then when TI arrives before T2

according to the total order delivery, T2 must still be aborted to allow the

execution of TI. Otherwise, if T2's basic conflict classes are a subset of Tl 's

basic conflict classes, then TI can wait until T2 finish and the new order is

multicast to other sites after T2 finish.

The middleware layer in Middle-R implementation runs on each database site,

which is different from J2EE model, where there is no one-to-one

correspondence between middleware layer server (i.e. the application servers)

and the databases. The approach also assumes that all operations to be

executed within a transaction are submitted as a request to the database. It

cannot be used for applications that require multi-database transactions, as two

phase commitment is not supported. Furthermore, it requires some database

modifications to support the protocol. Therefore, the approach does not appear

to be entirely suitable for J2EE application servers, such as the one being

targeted in this thesis, i.e. replicating database from the application servers

directly without any modification required for the database.

3.4.2.2 Ganymed

Ganymed (Plattner and Alonso 2004) is a middleware-based replication tool

designed to support transactional web applications. Instead of I-copy

serialization, it supports snapshot isolation (Berenson, Bernstein et al. 1995),

which is strictly weaker than I copy serializability. In snapshot isolation,

transactions read from a database snapshot (based on the value of the data at

the time the transaction started) so that they are not blocked from accessing

data that being used by other transactions. As the result, sometimes a

transaction must be aborted, i.e. when a transaction T reads data x and there is

another transaction that commits while the transaction T is still active, and also

accesses data x that is used by T.

37

Chapter 3 - Availability measures for component-oriented middleware

Ganymed architecture consists of a scheduler and a set of database replicas

that support snapshot isolation. One replica is designated as a primary copy

while the rest are backups. The scheduler coordinates client requests by

sending all update transactions to the primary copy and sending read only

transactions to the backups. The scheduler also assigns a timestamp for each

transaction at the start of the transaction, which will be used by database to

determine which data version that will be accessed by that transaction. At

commit time, after the primary copy successfully commits the transaction, the

scheduler extracts the write set for that transaction from the primary and sends

the write set to all backups.

The main limitation of Ganymed is that it reqUIres database that support

snapshot isolation. This makes the approach cannot be used directly in multi­

database transactional setting (Schenkel, Weikum et al. 2000). Furthermore, it

also requires database support for write set extraction. For implementing it on

J2EE architecture, Ganymed scheduler can be placed as an intermediate layer

between application servers and database servers.

3.4.2.3 Distributed versioning

Similar to Ganymed, Distributed versioning (Amza, Cox et al. 2003) also

implements replication tool that targets transactional web applications. In this

approach, the middleware layer performs its own concurrency control by

maintaining the version number of each table on the database. Requests from

clients are sent to databases only after they are cleared from conflicts, i.e. there

is no other transaction that accessing the table with lower version number.

Distributed versioning requires the transaction to declare all the tables that it

access at the beginning, which will be used to determine conflict among

transactions. When a client starts a transaction, it sends a list of the table

names that will be accessed by this transaction together with their access mode

(read only or write). The middleware layer assigns a new version number for

each of these tables. When the client send an operation to access a table, the

middleware layer compares the version number of the table possessed by the

transaction (the one that is assigned when the transaction starts) with the

version number of the table that is currently on operation. The middleware

38

Chapter 3 - Availability measures for component-oriented middleware

layer sends the access to the database only if the number matches. When the

transaction commits, the scheduler increases the table versions accessed by

this transaction.

Distributed versioning duplicates the concurrency control mechanism that

already been performed at the databases. It avoids deadlock by ensuring all

access to tables on the database will not contain circular. As it allows non

strict execution of transactions (Bernstein, Hadzilacos et al. 1987; Breitbart,

Georgakopoulos et al. 1991), the approach may not be suitable for distributed

transaction settings. As with Ganymed approach, it requires a single scheduler

that controls all accesses to the database, and since the scheduler performs

more tasks compare to Ganymed, it may become the source of bottleneck.

However, for implementing it on J2EE application servers, it has the same

place as Ganymed, i.e. as an intermediate layer between application servers

and database servers.

3.4.2.4 C-JDBC

Clustered JDBC (C-JDBC) (Cecchet, Marguerite et al. 2004) is a middleware

for database clustering developed by ObjectWeb consortium. It provides

transparency for clients to access a set of replicated and partitioned databases

via a standard JDBC driver. C-JDBC architecture consists of C-JDBC drivers

that run as part of clients' process, C-JDBC controller and backend databases.

C-JDBC controller, via C-JDBC drivers, provides a virtual database to clients

by relaying requests to appropriate databases transparently. C-JDBC schedules

all requests from clients by sending read operation to any single database and

sending update, commit or abort operation to all databases. C-JDBC also

queues update access to the same virtual database so that at any given time

only a single update, commit or abort operation is in progress. To allow faster

response, C-JDBC also provides support for partial replication. In this setting,

instead of replicating full database in all replicas, the database is partitioned

into several databases, which will be provided by different backend databases.

C-JDBC then parses client requests and sends those requests to the appropriate

backend database.

39

Chapter 3 - Availability measures for component-oriented middleware

Failed replica is handled by disabling it and removing it from further access.

Before a failed replica is allowed to join in again, it must update its state to the

latest state via external mechanism. C-JDBC allows configuration of several

controllers that share information about their backend databases. When one of

the controller fails, the other controllers can take over its backend databases so

that it can be used. However, the paper does not provide information about

whether the clients connected to failed controller can fail-over to the new

controller.

Among the other implementations described above, C-JDBC is the most

similar to our implementation for state replication in chapter 1. However, our

implementation is developed independently from C-JDBC, and at that time the

author did not have any knowledge about C-JDBC development. Compared to

C-JDBC, we move a step further by implementing JDBC driver replication to

allow clustering configuration, therefore the implementation described in

chapter 4 does not require the existence of a single controller to intermediate

access from application servers to databases.

3.5 Computation replication

As it has already been mentioned at the beginning of this chapter, one

important requirement that availability measures must meet m multi-tier

architecture is that of exactly once executions. The clustering approach

described in section 3.3 and the replication mechanism supported in existing

middleware products currently do not provide exactly once execution

guarantee. If a failure happens just before the server (or cluster of servers)

sends the reply back to the client, the client does not know whether its request

has actually been executed or not, and if the client resends the same request, it

may result in duplicated invocation.

If failure happens in the middle of request processing, say m application

server, the clustering approach does not guarantee that the system will

automatically failover correctly to another available server. Clustering can

only help if a server fails exactly in-between requests from clients.

40

Chapter 3 - Availability measures for component-oriented middleware

In the following sub chapters, we will describe several mechanisms and

solutions to solve the exactly once execution problem.

3.5.1 Transactional queue

The most popular approach for solving this problem is by employing

transactional queues (Bernstein, Hsu et al. 1990). In this approach, clients

submit a request to a transactional queue as a transaction. The server then

retrieves the client request from the queue, processes the request, and submits

the result to the queue as a separate transaction. The client receives the result

back from the queue as another transaction. By this way, the requests and their

results cannot be lost, as they always move from one node to another under the

control of transactions. If there is a failure, the transaction mechanism

guarantees that the request (result) is either available at the original place or

the new place.

One can make exactly-once execution of requests by making the whole

process (client submits request, server process the request and client receives

reply) as a transaction, however, this way makes the server holding all

involved resources until the transaction finishes, thus increases resources

contention. Transactional queue avoids unnecessary resource blocking by

separating the request sending, request processing and reply into separate

transactions. This approach has been supported in many On-Line Transaction

Processing (OLTP) products (e.g. IBM MQ Series, BEA Tuxedo, Microsoft

MTS).

Multi-transactions execution within one client request is supported by

extending the model to store the temporary result in-between transactions in

separate queues. For example, if an execution of a client request r1 is to be

executed as three transactions tl, t2 and t3, then the client first submits the

request to the queue for client request, then the server retrieves that request to

be executed as t1, and submits the result to another queue, which then will be

retrieved again for the execution of t2, and so on. One problem with this

approach is that if the client wants to abort the execution after the first

transaction of the multi-transactions request has committed. The only way to

cancel that committed transaction is by executing compensating

41

Chapter 3 - Availability measures for component-oriented middleware

transactions(Korth, Levy et al. 1990) to undo the effect of committed

transaction, which on some cases may violate the ACID properties of the

transactions.

However, this approach requires developers to develop applications in such

way that no state kept in the application servers between successive requests

from clients. All the state either kept in the requests themselves or in the

backend database servers. From the performance point of view, this approach

also requires at least three transactions for each client request: client submits

the request, the server processes the request and the client retrieves the result

from the queue.

3.5.2 Transactional client

(Little and Shrivastava 1998a) extends the transactional guarantee to the client

side by making the web browsers as part of the transaction processing. This is

done by making the browser as a resource which can be controlled by the

resource manager from the server side. The browser also should be able to

store its state persistently, and this can be implemented via mechanism such as

cookies. In this way, the exactly once execution problem is guaranteed as

whenever there is a failure (either on the server or on the client), the

transaction will be aborted, and all the changes at the client side will be

cancelled automatically. The drawback of this approach is that it requires the

clients to be transactional.

CORBA with Object Transaction Service also allows client to be transactional.

Felber and Narasimhan (Felber and Narasimhan 2002) implement failover

capability on the client-side by employing multi-profile lOR (object

references). This lOR enlists all available server replicas for that object. When

the primary server fails, the client-side ORB will transparently find new

available server based on the list of addresses contained in the lOR.

3.5.3 E-transactions

Frolund and Guerraoui (2002) approach the problem by first defining e­

transaction (Exactly-once transaction) that describes the semantic of

transaction execution in three-tier architecture. The specification extends the

42

Chapter 3 - Availability measures for component-oriented middleware

transactional guarantee to the client by requiring that the client will always

receive the result of its request as long as it does not fail. A client submits

requests to an application server; the application server processes requests,

interacts with databases and sends the result back to the client. Application

servers are replicated to guarantee that they are always able to compute the

result, to update the state from the database and to return the result back to the

client.

Formally, e-transactions specification is as follows. An e-transaction has three

properties: Termination, Agreement and Validity. Termination guarantees

liveness, meaning that every request will always have a result, as long as the

client that issues them does not crash. Agreement guarantees safety, that every

computation gives correct result, and Validity excludes trivial solutions to the

specification.

Properties of e-transactions

Termination. (T.I) If the client issues a request, then, unless it crashes, the
client eventually delivers a result.

(T2) If any database server votes for a result, then the
database server eventually commits or aborts the result.

Agreement. (A. I) No result is delivered by the client unless the result is
committed by all database servers.

(A.2) No database server commits more than one result for
the same request.

(A.3) No two database servers decide differently on the same
result

Validity. (V.1) If the client issues a request and delivers a result, then
the result has been computed by an application server with
the request as a parameter.

(V.2) No database server commits a result unless all database
servers have voted yes for that result.

Table 3-1 E-transaction properties

The specification relieves the client from being transactional while still

guaranteeing end-to-end reliability by requiring the correctness of e­

Transactions applies only as long as the client does not crash.

43

Chapter 3 - Availability measures for component-oriented mlddleware

There are three different implementations described for the e-transaction. In

these implementations, application servers are modelled as stateless servers.

They do not maintain state across multiple client requests. They also do not

model chained invocations, where an application server invokes services from

other application servers. The first one (Frolund and Guerraoui 2002) solves

the problem by making the application servers available as primary backup

replicated servers. When the primary fails, the client reissues the request to the

backup after timeout period and one of the backup takes over the computation

and returns the result back to the client. This solves the transaction

commitment blocking problem as the application servers take the role as

replicated transaction coordinator as in (Reddy and Kitsuregawa 1998). As

long as there is an application server available (with the assumption that the

databases are always available or will be recovered within a reasonable time),

the algorithm solves the e-transactions problem above. The protocol assumes

the existence of perfect failure detectors5 (Chandra and Toueg 1996) among

application servers, as it is required for the primary backup scheme (Budhiraja,

Marzullo et al. 1993).

The second implementation (Frolund and Guerraoui 2001) employs

application servers that relaxes the perfect failure detector requirements. This

protocol implements e-transactions on asynchronous environment augmented

with eventually perfect failure detectors between application servers. The

abstraction used for the synchronization is write-once register objects (wo­

registers). This objects record once only and subsequent read will consistently

result the first value written. There are two wo-registers used, say regA and

regD. for Upon receiving a client request, an application server (say appA)

writes a record containing the application server identity into regA. This step is

necessary to avoid other application servers execute the same request, and also

to record the fact that appA is computing the result. After computing the result

and preparing the transaction to commit, appA writes the transaction commit

outcome into regD and sends the result back to the client. If at later time appA

fails, another application server (say appB) that takes over the computation

5 Perfect failure detectors has strong accuracy and strong completeness. They never suspect correct
processes and all correct processes will eventually suspects all crashed processes.

44

Chapter 3 - Availability measures for component-oriented middleware

knows from regA that appA has probably performed the computation and

appB must check regD to find out if there is any result for that request.

The third implementation (Fro lund and Guerraoui 2000b) discusses a

pragmatic approach in single database context. In this situation, the protocol

removes the need for coordination directly at the application servers, and

pushes it back to the database layer via testable-transaction abstraction.

Testable-transaction abstraction is an abstraction mechanism that allows the

application server to check the outcome of a transaction, even after the

transaction finishes. Thus, application servers become independent against

each other, and as the result this, the system becomes more scalable.

The key issue in e-transactions and its solution lies on the model of application

servers as stateless servers. In this context, the only state that needs to be

handle when the application server fails is the transaction context (and the

transaction outcome decision, if exist). Therefore, when the system has only

one database, such as the one in the pragmatic approach above, one can even

push all the required state information to the database. This model choice also

removes the difficulties to handle chain invocation between application

servers, as they don't handle the state by themselves. Any failures can be

transferred to another application server, as long as the database has not

committed the transaction yet.

Stateless server approach is suitable for some of internet-based applications.

However, for many applications, this requires developers to structure the

applications so that no state is kept in the application server between client's

requests. The session state, if any, must also be kept in the backend database,

which incurs additional overhead. In our approach, we model the application

servers as stateful servers, capable of maintaining session state between

requests which is encapsulated in stateful session beans, in addition to the

transactional data maintained by the database.

3.5.4 Interaction contract

(Barga, Lomet et al. 2004) takes a different approach on how to guarantee

exactly once execution on internet-based e-services. They focus the study on

45

Chapter 3 - Availability measures for component-onented '"nddleware

how to do the recovery when there is a failure. In this approach. there is no

replication of servers or databases, but their solution is focused on how to

properly perform checkpoints and message logging. In order to do this.

components are classified into three types: persistent components I e.g. web

servers, application servers, and browsers), transactional components (e.g.

database servers) and external components (user displays. printers).

Persistent components have persistent state, transactional components haw

persistent guarantee only when transactions commit, and external components

do not have persistent guarantee at all. Browsers are considered as persistent

components; therefore they must have logging capabilities to support the

recovery process. All components are required to be piecewise deterministic

(PWD) (Strom and Yemini 1985), meaning that components can recowr by

restoring their state from the previous checkpoints and replaying all input

messages that arrive after the last checkpoints.

The baseline algorithm for implementing recovery guarantees for component

applications is based pessimistic logging. Components log all incoming and

outgoing messages and immediately store them in stable storage. On recO\ery.

a component can therefore start its state from its last stored state and replay the

incoming messages received after that. This baseline algorithm can be

optimised by avoiding the logging on the receiving components. When a

component fails, on recovery it can asks other components to resend the lost

messages.

Interactions between these components are specified as contracts, so that each

component can manage its logs and checkpoints independently as long as it

conforms to the specified contracts. There are four types of contracts specified

between the above three components: Committed Interaction Contract

(CIC) and Immediately Committed Interaction Contract (JCIC) for the

interaction between persistent components; External Interaction Contract

(XIC) for the interaction between external components and persistent

components; and Transactional Interaction Contract (TIC) for the

interaction between persistent components and transactional components. CIC

reduces the number of force-logging required for the interactions between

persistent components, while ICIC is similar to the baseline algorithm

46

Chapter 3 - Availability measures for component-oriented middleware

described above. XIC allows duplication for messages sent to external

components, and also allows best effort guarantee only for input messages

from external components. TIC guarantees the persistent state in persistent

components only after the transaction is expected to commit, but if the

transaction is aborted or rollback, only the transaction's effect on the

transaction component that is erased, and there is no guarantee at all at the

persistent component state.

Although this approach has the benefit of reduced numbers of forced logs

required, compared to pessimistic message logging (Alvisi and Marzullo

1998), the contract does not specify clearly about the state of the persistent

components when the transaction is not committed (aborted or cancelled). An

implementation that is simply let the uncommitted state 'poison' the persistent

component is fine, according to the specification.

The notion of component in this approach refers to a software application as a

whole, such as web servers, application servers, database servers while our

approach uses the notion of component as a smaller piece of software such as

EJB beans and servlets. To compare both approaches, we can assume that the

state and the log of a software application (e.g. an application server) as the

composite of all state and logs of the smaller components (e.g. EJB beans) that

it hosts. Therefore, the composite of EJB beans in our approach becomes the

persistent component in the interaction contract approach.

The interaction contract also assumes the interaction between persistent

components and transactional components are always on one-to-one basis.

Furthermore, it also assumes that the commitment process consists of single

commit request from the persistent component and a commit reply from the

transaction component, which rules out the two phase commitment required

for the distributed transaction setting. One can assume that two phase

commitment can be seen as a single commit request-reply interaction, i.e. the

first request that initiate the commitment process (the prepare message) is

considered as the commit request from the persistent server and the last reply

that concludes the commitment process (the transaction commit/abort

confirmation message) as the commit reply from the transactional component.

47

Chapter 3 - Availability measures for component-oriented middleware

But this does not govern the interaction between a persistent component and

two or more transactional components, which can happen in distributed

transactions. For example, when a persistent component fails in the middle of

two phase commitment which involve two other transactional components, the

transactional interaction contract (TIC) fails to distinguish the state of

transaction commitment between before taking a decision for the transaction

outcome (before the first phase of the 2PC finishes) and after taking the

decision (after the second phase of the 2PC starts). This distinction is

necessary when we replicate the persistent component (e.g. the application

server), and can avoid unnecessary blocking on the resources held by the

transactional components.

3.5.5 J2EE replication framework

As part of ADAPT project6, Babaoglu et al. developed a framework for

prototyping J2EE replication (Babaoglu, Bartoli et al. 2004). They approach

J2EE replication by creating a framework that provides hooks for

implementing replication algorithms on top of existing J2EE servers. The

framework intercepts client invocations, both at the client's side and also at the

server's side, performs some processing, passes the control to the replication

algorithm and returns the execution control back to the J2EE server (see

Figure 3-2).

Replication algorithm

ADAPT framework

client

J2EE server

Figure 3-2 ADAPT framework (Babaoglu, Bartoli et al. 2004)

6 ADAPT: Middleware Technologies for Adaptive and Compos able Distributed Components.

48

Chapter 3 - Ava ilability measures for component-oriented mtddleware

The framework provides hooks for intercepting request processing at three

points (Figure 3-3): at the client ' s side just before control lea es the caller (1 .

at the client's side but inside the server provided stub (2) and at the ser\' r

side before the request is processed by the component (3a and 3b).

Client Server

Figure 3-3 intercepting points on ADAPT framework (Babaoglu, Bartoli et al. 2004)

Interception point 1 is provided to handle client replication . When the client is

replicated, the framework provides the replication algorithm to synchronize

client's request with other client replicas . Interception point 2 is for handling

failover when a target server fails . Interception point 3 is to control the state

replication and propagation at the server's side. For EJB replication

interception point 3 is divided into two points: the first point (3a) is before the

component reference is resolved, and the second point (3b) is after the

reference and other properties such as security and transaction have been

resolved. Interception point 3a is useful when the replication algorithm needs

to instantiate a component itself, and interception point 3 b is necessary as the

replication algorithm may need the transaction context and other component

properties that are only available after the component reference has been

resolved. The framework also intercepts accesses to/from JNDI service and

transaction service.

ADAPT framework has been used as the basis for a stateful EJB replication

(Wu, Kemme et al. 2004) which will be described in the next section. Our

approach is similar to this project, although we de elop it independentl .

However, we think that the inception points pro ided by ADAPT framework

is not sufficient if we want to handle replication that supports distribut d

transactions. For handling distributed transactions, the replication aJgorithm

49

Chapter 3 - Availability measures for component-Oriented mlddleware

must possess the information about the last status of the transaction outcome.

especially during two phase commitment, and this information cannot be

deducted by simply intercepting the transaction manager interaction with the

resources and the application server. We argue that modifying the transaction

manager is necessary if we want to properly handle replication that support

distributed transactions.

3.5.6 Stateful EJB replication

Wu, Kemme et al. (2004; 2005) deal with the case of stateful EJB replication,

the same platform that is used in this thesis. As it has been mentioned in the

previous section, the algorithm is implemented using the ADAPT framework.

The algorithm assumes that the clients and EJBs are not multithreaded and are

blocked when sending requests to the application servers or other EJBs.

Therefore, there is no concurrency problems for stateful session beans as they

can only be used by one client with no multithreading. Our approach follows

the same assumption. The algorithm also assumes that when an application

server fails, all active connections to the database will be lost and all active

transactions are aborted by the database. While this might be incorrect for two

phase commitment that involves more than one database, this is true for single

database access with optimisation, i.e. when the transaction manager employs

one phase optimization.

There are three variant algorithms being proposed: one client request is

executed as one transaction (1-1), many client requests are executed within a

single transaction (N-l) and one client request executes many transactions (1-

N).

The algorithms implement primary backup replication, which consist of two

parts: client-side (at the interception point 1 and 2 of ADAPT framework, see

3.5.5) and server-side (at the interception point 3 of ADAPT framework). The

1-1 algorithm proceeds as follows. The client replication algorithm (for now

on this is referred as Client Replication Manager - CRM) intercepts each

request, attaches a unique id, then forwards the request to the primary. The

CRM maintains a list of server replicas and a pointer to the current primary. If

50

Chapter 3 - Availability measures for component-oriented middleware

the current primary is down or does not give a positive response, the CRM

queries other server replicas on the list asking whether they are the primary or

not. The CRM then forwards the request to the server that responds back as the

new current primary.

The primary processes the request, and before committing, it propagates the

updates to all replicas, inserts the transaction identifier txid into the database.

After receiving commit confirmation from the database, the primary again

multi casts a committed message to replicas, and send the result back to the

client.

For the N-l algorithm, the client replication algorithm stores all requests

submitted to the primary and their associated results. These requests are

associated with the transaction id within which they are executed. When the

primary fails, the client will try to replay the requests execution at the backup

site and compare the results with the ones it has. If there is no nondeterminism

(the results are the same), the computation can continue at backup site and the

client perceives exactly once execution for its requests, otherwise the

transaction must be aborted and the client is informed.

The N-l algorithm above can guarantee exactly once execution as long as

there is no nondeterminism when the replays of client requests are performed

at the backup site. Nondeterminism can happen if another transaction has

updated the same data after the first execution at the primary server but before

the requests replay at the backup. (Wu and Kemme 2005) also proposes N-I­

ordered extension for the algorithm above. In this algorithm, accesses to the

database are ordered according to the order of the original transaction requests

from the client. On replay, the requests are executed according to this order, so

that the chance of exactly once execution increases.

The I-N algorithm handles the replication similar to the 1-1 algorithm, only in

this case one request can executes many transactions, and when there is a

failure, the new primary must handle a case where some of the transactions

have already committed while some other transactions are still active. To solve

this problem, the algorithm assumes the existence of compensating

51

Chapter 3 - Availability measures for component-oriented middleware

transactions, thus all committed transactions can be compensated and the

request can be executed as a new request as is the one in the 1-1 algorithm.

The algorithms above assume single database access only. For multi databases

access, the paper suggests a solution by intercepting messages (prepare and

committing messages) from the transaction manager. In this case, the primary

does not need to insert the transaction identifier to the database, but must send

three multi casts to backup instead. Upon intercepting the first prepare message

from the transaction manager, the primary multicast a preparing message to

the backups. Upon intercepting the first commit message from the transaction

manager, the primary again multi casts a committing message (in case of

commit) to the backups. Finally, the primary multi casts a commit/abort

message after the transaction has terminated. The new primary then can handle

how to process a transaction according to the multicast messages that it has

received for that transaction, either by sending aborting messages or commit

messages to all involved databases. Therefore, this mechanism described in

the paper assumes that the new primary knows already which databases are

involved within a transaction, so that it can always follow up transactions from

a failed primary. This assumption cannot be easily upheld in EJB application

server, as it requires the developer/deployer to specify all involved databases

for each invocation at configuration time, whereas normally they are

determined at execution time.

3.6The approaches developed in this thesis

We consider replication on application server supporting J2EE architecture

with minimal change to the internal of the application server. As it has been

outlined earlier in this chapter (see section 3.2), there should be no

modification to the APIs that are used by clients, components and services on

the application server.

The replication strategy is divided into two approach:

(i) State replication for supporting persistent components: persistent

state is stored on mUltiple databases; here database failures can be

masked, so the transaction will be able to commit provided the

52

Chapter 3 - Availability measures for component-oriented middleware

application server can access a copy of the state on a database; the

approach should support clustering configurations, where multiple

application servers may execute different transactions at the same

time.

(ii) Computation replication for supporting session oriented

components: instances of session components are replicated on the

cluster of application servers; here application server failures can

be masked, and the sessions running on a failed application server

should be able to continue on different application server, including

continuing the transaction processing whenever possible.

3.6.1 Failure assumptions

We assume crash failures of application servers and databases. A transaction

manager exists on each application server, controlling the transactions running

on that application server. Hence, whenever an application server crashes, the

associated transaction manager will also crash as well. Application server

crashes can be accurately detected by the underlying group communication

system. When accurate failure detection is not possible (asynchronous

environment), a minimum of 2f+ 1 replicas will be required, otherwise f+ 1

replicas would be sufficient for the synchronous environment. In a clustered

environment, it is possible to engineer a system where accurate failure

detection is possible. Our design makes use of a group communication system

that was designed for asynchronous environment, so will also work in

synchronous environment as well.

3.6.2 State replication approach

To introduce state replication into a J2EE application server, an attractive

approach that allows minimal modification to the existing application server is

by implementing a database proxy that can be plugged in into the application

server as a JDBC driver. This proxy intercepts all interaction between an

application server and its external database resources; hence it can introduce

state replication into the application server smoothly, without any modification

to other parts of the application server. The proxy performs replication by

using 'available copies' approach to maintain replicas of state on a set of

53

Chapter 3 - Availability measures for component-oriented middleware

databases (Bernstein, Hadzilacos et al. 1987). For clustering configuration, the

proxies on different application servers coordinate with each other to ensure

the consistency of all replicas despite mUltiple transactions running on

different application servers. This is done by ensuring that all proxies use the

same replica to satisfy load requests for relevant entity beans. This replica

determines the ordering of conflicting transactions; hence preser;ing the

consistency. The state replication approach developed in this thesis works well

in distributed transaction settings, as it also handles all interactions between

application servers and databases for committing the transaction with two­

phase commit.

3.6.3 Computation replication approach

Computation replication is implemented by using primary copy replication

approach. The approach goes well with J2EE application server perfectly, as

on this server, typically stateful session beans are only used by the same client,

they are not shared among multiple clients. Session state check-pointing is

performed at the end of each client request invocation; therefore client session

can be continued on backup only by repeating the last unfinished invocation.

Transactions failover is supported by including the transaction information

(the transaction id, the information of all resources involved in that transaction

and the transaction outcome decision) in the checkpoint.

To perform computation replication, modification of the internals of the

application server is unavoidable. These modification includes:

(i) intercepting client invocations, before and after they are processed

by the application server.

(ii) retrieving the state of a session bean within an application server,

and installing it on another server

(iii) intercepting the commitment process; i.e. is right after the

transaction takes a decision about the outcome of a transaction,

prior to performing the second phase of the two phase commitment

process.

54

Chapter 3 - Availability measures for component-oriented middleware

(iv) retrieving the infonnation about current active transaction within

an invocation

Fortunately, the platfonn that is used for implementing the approach (JBoss)

provides almost all the necessary hooks for the above requirements.

Requirement (i) can be provided by implementing specific JBoss interceptors,

which will be executed on each invocation. The state of a session bean

(requirement (ii)) is also supplied as part of the interceptor mechanisms in

JBoss. However, requirements (iii) and (iv) require modification of existing

transaction manager within JBoss, as existing APIs for transactions (JT A and

JTS) do not provide access to retrieve infonnation about resources involved

within a transaction, which is maintained by the transaction manager. The

session state check-pointing and application server failure detection are

perfonned using an open source group communication implementation from

JGroups (Ban 1998).

3.6.4 Comparison with other approaches

As a summary, all the approaches are compared with each other in the

following tables (Table 3-2 and Table 3-3). On the last column of each table is

our own implementation that will be presented in chapters 4 and 5.

Aspects Middle-R Ganymed Distributed C-JOBC JOBC proxy
versioning (our approach)

Consistency 1 copy Snapshot 1 copy 1 copy 1 copy
criteria serializability isolation serializability serializability serializability
J2EE support No Possible No Yes Yes
Backend Modification Database Standard database Standard Standard
database required supporting database via database with
requirements snapshot JOBC driver strict 2PL via

isolation with JDBe driver
modification for
write set
extraction

Multi-databases No No No Yes yes
transaction
sllj:l£ort
Clustering Yes Yes Yes No yes
s~ort

Table 3-2 State replication approaches

In Table 3-2 above, we consider Middle-R, Ganymed and Distributed

versioning as do not provide support for J2EE application servers. Middle-R

approach assumes all operations within a transaction are submitted to the

database as one request, which is different from how a J2EE application server

55

Chapter 3 - Availability measures for component-()riented middleware

interacts with databases in general. Distributed versioning approach also

requires transactions to pre-declare all tables that they will access. forcing

necessary modification on existing J2EE application servers to support this

requirement. Ganymed may be used for J2EE application servers, \\ith the

exceptions that it works with a modified database and it supports snapshot

isolation consistency criteria, instead of a standard I-copy serializability.

Aspects Transactional Transactional e-transaction Interaction Stateful EJB Stateful EJB
queue client contract replication replication (ours)

Transactional client Yes Yes No No No No
requirement
Client persistency Yes Yes No No No No
requirement
Stateful server No Yes No Yes Yes Yes
Multi databases access Yes Yes Yes No No Yes
Conformance to current Yes Yes No No Yes Yes
standard
Flexibility for application No Yes No Yes Yes Yes
developers

Table 3-3 computation replication approaches

Transactional queue (Table 3-3) decouples the client transactional

requirements from the server's, by separating request submission and reply

processing transactions from the server processing transactions. Although this

approach reduces the contention for resources on the server (as oppose to

putting all of them, the client request submission, server processing and client

reply processing, into one transaction), it still incurs additional overhead by

introducing two more transactions for each client requests.

Transactional client approach, especially the one that use CORBA standard,

have full features that allows them to have many possibilities to handle client

requests, such as I-Nand N -1 transactions and also multi databases accesses.

The downside of these flexibilities is that it imposes heavy requirements on

the client side, such as it dictates the client to support the transaction service

and the persistent service.

We consider the interaction contract approach does not support multi

databases approach, as the contract treats the interaction between persistent

components and transactional components on bilateral basis. Therefore, there

is no guarantee that governs interaction between one persistent component and

two transactional components, for example, like the one that normally occurs

in distributed transaction setting.

56

Chapter 3 - Availability measures for component-oriented middleware

3.7Summary

This chapter summarizes recent progresses in replication that are relevant for

implementing replicated application servers to provide highly available

components. Compare to the above research, this thesis deals with state

replication implementation in middleware layer (chapter 4) that does not

require any modification at the backend database and with minimum

modification to existing application server implementation. Our target is to

answer whether it is possible to do state replication at the application servers,

especially on J2EE application servers, instead of having to use a specific

replicated database system.

On chapter 5, a replication strategy of application server that support

distributed transactions and provide exactly once guarantee is described. Here,

our goal is to devise mechanism for replicating application servers that can

avoid resource blocking and can fail-over the transactions to other application

servers transparently.

57

4 State replication: improving the availability in
database tier

Existing application servers do not yet provide support for managing persistent

state replication. They must rely on the replication support provided by the

database vendor, therefore they depend on the features provided by the

database vendor, and not all database products support currently replication.

In this setting, we consider of masking database server failures only. Thus. an

application server may continue to make forward progress despite failure of a

database server, as long as another database server is available.

This chapter discusses the problems, techniques and possibilities when we

want to improve the availability of the database tier without relying on the

replication feature from the database. The design presented here provides a

simple and practical way of introducing data replication into component

middleware, with minimal modification into the internals of the application

servers. The content of this chapter has also been presented as a conference

paper (Kistijantoro, Morgan et al. 2003).

4.1 Issues in state replication for component middleware

In chapter 3 we have described some issues associated with data replication in

middleware layer. Among these issues is that the middleware layer does not

have access to the internal locking mechanisms employed by the database.

However. this is unavoidable for the architecture that we consider in this

thesis, i.e. data replication in component oriented application seners such as

12EE servers. In this environment, database is an external entity that must be

assumed as a black box that can not be modified.

By replicating the data store tier, what \\'e mean is that we want to use two or

more databases (not necessarily from the same vendor) to store the same data.

The 12EE application server accesses data stores by employing resource

adapters. We modified these resource adapters so that they connect to identical

58

Chapter 4 - State replication: improving the availability in database tier

database copies and they can manage replication consistency by using the

available copies approach (Bernstein, Hadzilacos et al. 1987).

Client

Container

Transaction
Manager

Application server

Figure 4-1 An application server without state replication

1----+---:::::"'"' RDBMSB

>==~

Figure 4-1 illustrates the interaction between components within an

application server and external databases that store their state. The state of

entity bean X is stored at RDBMS A, and the state of entity bean Y is stored at

RDBMS B. Communications between an RDBMS and a container is via Java

DataBase Connectivity (JDBC) driver, referred in the J2EE specification as a

resource adaptor. To enable a resource manager to participate in transactions

originated in EJBs, a further interface is required. In J2EE architecture this

interface is referred to as the XAResource interface (shown as XA in Figure

4-1). A separation of concerns between transaction management via

XAResource interface and resource manager read/write operations via JDBC

is clearly defined. In simple terms, the transaction manager interoperates with

the resource manager via the XAResource interface and the application

interoperates with the resource manager via the JDBC driver.

59

Chapter 4 - State replication: improving the availability in database tier

Client

Container

Transaction
Manager

Application server

Figure 4-2 An application server with state replication

1----+----..1 RDBMSA1

RDBMSA2

RDBMSS1

RDBMSB2

Figure 4-2 illustrate an approach to improve the availability of data store tier

that leaves the container, transaction managers internal to resource managers

and the transaction manager of the application server undisturbed. RDBMSs A

and B (Figure 4-1) are now replicated (replicas AI, A2, and B 1, B2). Proxy

resource adaptors (JDBC driver and XAResource interface) have been

introduced (identified by letter P appended to their labels in the diagram). In

this diagram, the application consists of three beans: one session bean and two

entity beans that each are stored to different data store. For this purpose,

adapter proxies (JDBCxP and XAxP) are introduced to handle replication for

each data store.

We assume that the backend databases employ a standard concurrency control,

i.e. two-phase locking based concurrency control. To correctly implement the

replication, the adapter proxies must handle the following issues: interaction

with the transaction manager, handling the data store failure, handling updates

in the clustering configuration, and handling the application server failure in

the clustering configuration. Each of these issues will be discussed in the

following sub chapters.

60

Chapter 4 - State replication: improving the availability in database tier

4.2 Single server implementation

Available copies approach is the most common way to handle data replication

(Bernstein, Hadzilacos et al. 1987). The replication manager maintains a list of

all replicas/copies. On reading the data, one can read from any copy, and on

writing the data, it must write the data to all available copies. When a copy is

unavailable, it is removed from the list of available copies and it will not be

accessed again, until the recovery process is performed on that copy.

Suppose during the execution of a transaction, say Tl, one of the resource

manager replicas say RDBMSAI fails. A failure would result in JDBCAI and/or

XAAI throwing an exception that is caught by JDBCAP and/or XAAP. In a non

replicated scheme, an exception would lead to the transaction manager issuing

a rollback for Tl. However, assuming that RDBMSA2 is correctly functioning,

such exceptions will not be propagated to the transaction manager, allowing

Tl to continue on RDBMSA2. Therefore RDBMSAI must be removed from the

valid list of resource manager replicas until such a time when the states of

RDBMSAI and RDBMSA2 may be reconciled (possibly via administrative

intervention during periods of system inactivity). Such a list of valid resource

managers is maintained by XAAP.

As the application server may have several active connections to the same

database, there will be some write operations are executed concurrently.

However, these operations will not be in conflict with each other, as the

locking mechanism of the container controlling the bean would have

prevented this from happening. Hence, the backup replicas will always receive

conflicting operations in the same order.

Deadlock may still be happened as it could happen on any database with two

phase lock based concurrency control. When this happens, the database proxy

receives aborting message from the primary database, and then the proxy

informs other replicas to abort the same transaction on those replicas.

The transaction manager controls the execution of the transactions on the data

store by sending instructions to start, to end, to commit or to abort the

transactions. The XA connection proxy intercepts these instructions and treats

61

Chapter 4 - State replication: improving the availability in database tier

them in the same manner as the JDBC proxy handles the write operations to

the data store.

4.3Clustering configuration

For clustering configuration, each application server has its own database

proxy for each database unit used by that application server. In this

configuration, concurrent access to data stores from application servers may

break the serializable property of the data store. This problem is illustrated in

the following scenario.

G~s;> 8-~~~

~~y~~~~~~~~~~

ransaction
anager

,,',, ',,'"' ~-:'..-'8 ~ I ~":-

,', " '" RDBMSB1 9 8 r-----..".'"," ',,' ...

seSS~ion Entity X ~ - ~ ~ J:~;:,:;/ /',: '>(:~'8
Entity Y ~ ~ ~ ~ _ _ _ ,,' -: ~ - ~ > RDBMSB2

--- " ~~~- " ---- -- ... t-I------.t ,
'-------------+' " """, :",41'

Figure 4-3 State replication in clustering configuration

In Figure 4-3, a cluster contains two application servers (AS 1 and AS2) that

are accessing shared resource manager replicas. To make the diagram simple,

only the resource adaptor proxies are shown.

Let us assume that transaction Tl is executing on AS 1 and T2 is executing on

AS2 and both Tl and T2 require invocations to be issued on entity bean X.

Without proper coordination, there is a possibility that AS 1 manages to obtain

the state of X from RDBMSA1 while AS2 manages to obtain the state of X

62

Chapter 4 - State replication: improving the availability in database tier

from RDBMSA2• This will break the serializable property of transactions. To

overcome this problem, a single resource manager replica that is the same for

all application servers should satisfy load requests for relevant entity beans

(we call such a resource manager a primary read resource manager). This \\ill

ensure all load requests serialized, causing conflicting transactions to block

until locks are released. To ensure resource managers remain mutually

consistent the store request is issued to all resource manager replicas.

Within clustering configuration, resource adaptor proxies from different

application servers have to agree on the primary read resource manager. This

is done by introducing a replica manager that is responsible for propagating

information about the primaries and available resource managers for each

adaptor proxy among application servers. The replica manager multicast the

resource managers' availability by making use of a group communication

system that supports the abstraction of a virtually synchronous process group.

Ge~s? 0t~ V- ~ ~ ~
~nti~~~~~~~~~~~

Transaction r--=-------+I
Manager '----"----'

0~V~~~~

~ntit~~~~~~_~~~
~~H---~

\ I

RepHt:a
manager

Figure 4-4 Replica manager for maintaining available resource managers information

When an adaptor proxy detects failure of a resource manager replica, the

failure information is multicast to other application servers by the replica

manager. All resource adaptors on all application servers will then remove the

63

Chapter 4 - State replication: improving the availability In da abase ber

failed resource manager replica from the list of a ailable resource manag r .

The list of available resource managers is an ordered list ·th the primary read

resource manager at the top . Therefore, when the primary resource manager of

a resource adaptor fails , all other resource adaptors will choose the next

available resource manager as the primary, which will be the same to all

resource adaptors.

The identification of the primary read resource manager needs to be a ailabl

to an application server after a restart. The new restarted application erv r

may retrieve the list of available resource adapter proxies and the primar

from existing application servers, if there are any. Otherwise for th fir t

application server to start, it should get the information from some here

i.e. from a persistent store. We assume the set of resource manager are fixed ,

so that this information can be inserted as part of the application server'

configuration.

4.4Performance evaluation

Experiments were carried out to determine the performance of our system over

a single LAN. JGroups (Ban 1998) was used as the group communication sub­

system in our clustered experiments.

4.4.1 Implementation and Setup

Client

f
Application

Server

,
Resource
manager

(i) Single application server no replication
of resource managers

(iii) Clustered appl ication server
configuration (2) wi th no replication of

resource managers

Figure 4-5 Configuration

f ~
(ii) Single application server with

replication of resource managers (2)

(iii) Clustered application server
configuration (2) with replication of

resource managers (2)

64

Chapter 4 - State replication improving the availability in database tier

Four experiments were carried out (configuration described in Figure 4-5) to

determine the performance of the clustered (using JBoss clustering) and non­

clustered approaches with and without state replication:

1. Single application server with no replication - To enable comparative

analysis of the performance figures, an initial experiment was carried out to

determine the time required to satisfy a client request issued to the

application server using a single resource manager \\ithout state replication

(Figure 4-5.i).

2. Single application server with state replication - Experiment 1 was

repeated, with replica resource managers accessed by our resource adaptor

proxy (Figure 4-5.ii).

3. Clustered application server with no replication - Two application

servers constituted the application server cluster with a single resource

manager providing persistent storage (Figure 4-5.iii).

4. Clustered application server with state replication - We repeated

experiment 1 with replica resource managers accessed by resource adaptor

proxies from each of the application servers (Figure 4-5.iv).

The application server used was JBoss 3.2.0 with each application server

deployed on a Pentium III 1000 MHz PC with 512MB of RAM running

Redhat Linux 7.2. The resource manager used was Oracle 9i release 2

(9.2.0.1.0) with each resource manager deployed on a Pentium III 600 MHz

PC with 512MB of RAM running Windows 2000. The client was deployed on

a Pentium III 1000 MHz PC with 512MB of RAM running Redhat Linux 7.2.

The LAN used for the experiments was a 100 Mbit Ethernet. Figure 4

describes the different configurations used in our experiments.

ECperf (Subramanyam 2002) was used as the demonstration application in our

experiments and was deployed as described in figure 4. For the purposes of

our experiments we now provide a brief description of ECperf. For more detai I

relating to ECperf the reader is referred to (Subramanyam 2002). ECperf is a

benchmark application provided by Sun to enable vendors to measure the

performance of their J2EE products. ECperf presents a demonstration

application that provides a realistic approximation to what may be expected in

a real-world scenarIO \'1 a a demonstration system that represents

65

Chapter 4 - State replication improving the availability in database tier

manufacturing, supply chain and customer order management. The system is

implemented using EJB components and deployed on a single application

server (commonly described as the system under test (SUT). In simple terms.

an order entry application manages customer orders (e.g., accepting and

changing orders) and a manufacturing application models the manufacturing

of products associated to customer orders. The manufacturing application may

issue requests for stock items to a supplier. The supplier is implemented as an

emulator (deployed in a java enabled web server). In our configuration the

supplier emulator is deployed on the same machine as the application server

(when using the clustered approach only one of the application servers needs

to run the supplier emulator). The client machine runs the ECperf driver. The

driver may represent a number of clients and assumes responsibility for

issuing appropriate requests to generate transactions within the order entry and

manufacturing applications.

The ECperf driver was configured to run each experiment with 9 different

injection rates (l though 9 inclusive). At each of these increments a record of

the overall throughput (transactions per minute) for both order entry and

manufacturing applications is taken. The injection rate relates to the order

entry and manufacturer requests generated per second. Due to the complexity

of the system the relationship between injection rate and resulted transactions

is not straightforward.

66

400

350 ,

~ 300'
~ 250 I
~

~ 200 ~
o
'Ii 150"

J 100 I
50"

Chapter 4 - State replication: improving the availability in database tier

Order Entry Transaction Throughput

123456789

Injection Rate

--.- Clustered .;rhotf
replication

~CbBtacd"llb

R.cpliclllion

250 -

Manufactumg Transaction Throughput

123456789

Injection

(i) Order entry application throughput (ii) Manufacturing app. throughput

Figure 4-6 Result

700 ,

~600
I .~ 500 J

~ ,

!t4OO
o
:5300

! ~ 200"
~

~ 100 1
0;

l _____ _

Overall Throughput (Order Entry &
Manufacturing Transactions)

.-*-- Smpe ",III rcplJA1IOD :
I

repiJcahon

~ Chatcro.:! "'llh rc:pIJUllon

123456789

Injection rate

(iii) overall throughput

The performance benefit associated with clustering is shown by our

experiments as higher injection rates result in a lowering of transaction

throughput for single application server scenarios (indicating application

server overload). The introduction of clustering prevents such a slowdown.

The slowdown experienced by the single server is most visible in the

manufacturing application (where injection rates of over 5 reduce transaction

throughput significantly). However, when state replication is introduced the

single server does not experience such a slowdown in performance, indicating

that saturation of the system has not yet been reached. In fact, the transaction

throughput of the clustered approach with replication is similar to that of a

single application server without state replication in the manufacturing

application when the injection rate is 9.

67

Chapter 4 - State replication: improving the availability in database tier

The experiments show that clustering of application servers benefits systems

that incorporate our state replication scheme. Clustering of application servers

using state replication outperform single application servers that use state

replication by approximately 25%. This is the most important observation, as

state replication does not negate the benefits of scalability associated to the

clustered approach to system deployment.

68

5 Computation replication: improving the
availability of the application servers

This chapter discusses the replication of application servers to improve the

availability of the system. As it has been explained on chapter 3. our focus is

how to provide exactly once execution for invocation of components hosted on

the application servers/middle tier. The content of this chapter is an expanded

version of (Kistijantoro, Morgan et al. 2006)

5.1 Model

Our approach to component replication is based on a passive replication

scheme, in that a primary services all client requests with a backup assuming

the responsibility of servicing client requests when a primary fails.

We assume servers with crash failures. Each EJB server hosts both EJB

containers and a transaction manager within one process, which serve as a unit

of failure. This means that whenever an EJB container fails, the associated

transaction manager will also fail. Messages are reliable, and each message

will eventually arrive at its destination, as long as both the sender and the

receiver remain operational. Processes fail by stop executing (crash failures).

Once it fails all sub component in that process. i.e. EJB containers and the

transaction manager, will not send any message or do any action before they

perform the necessary recovery procedure.

A typical scenario of interactions between a client and a server is that the

client first enacts a session on an application server, then it sends a series of

non transactional requests, and it ends the interaction by sending a

transactional request to set the modification persistently (Figure 2-1).

69

Chapter 5 - Computation replica tion: improving the availabil 0 e apphca 0 se ers

Client Session Bean Entity Bean X Entity Bean Y

.....

I""""

t-- -----.
I""""

r------.
I""""

.... Begin

....
....

End Transaction
~

Figure 5-1 Client interaction

Transactions are managed by containers, i. e. , all enti ty beans are as um d to

have container managed transactions, which are spec ified per bean method

invocation basis . Therefore, the unit of transaction always correspond to a

single invocation that encompasses that transaction and thi s invocati on ma

invoke other invocations which will be executed under the same tran ac ti on .

When the primary application server fail s, the backup takes 0 er the e cut ion

of unfinished requests from the primary. Each applicati on server has its own

transaction manager, which runs in the same address space as the application

server. Therefore, the associated transaction manager will also fa il when the

application server fails . To allow minimal modificati on to ex isting code we

make use of interceptor mechanism available at JBoss server. in JBoss

interceptor is a piece of code that can be configured to be executed each time a

client invokes a method on an EJB bean instance. One can confi gure several

interceptors to be executed as a chain, before and after the application server

invokes the method on the bean instance. The detail of the interceptor

mechanism in JBoss can be found in section 2.6.1.2.

70

Chapter 5 - Computation rep lica tion: improving the availability of the appltca llon servers

Transaction
Manager

Figure 5-2 System Architecture

:=:::===~f-+--__ ~

Figure 5-2 illustrates again the basic principles of how an app lication erv r

processes a request. A client invokes a method on a session bean (hich can

be either a stateless session bean or a stateful session bean), and thi s

invocation can invoke other invocations on other beans, which can be any type

of beans (stateful, stateless or entity). The container intercepts all in ocation

on the beans and performs necessary actions required to process the in ocation

correctly. There are two interception points occur on JBoss, one is at the cli ent

side and another one is at the server side.

The interception point at the client side is used for implementing fai lover

mechanism, which wi ll be explained in section 5.2. The interception point at

the server side is used for implementing state update propagation fro m the

primary to the backup. There are two types of state update propagati on :

transactional and non transactional. Both types are described in section 5.6 and

5.3.

5.1.1 Different types of components : stateless, session and persistent
component

There are three kinds of EJB objects: session beans, entity beans and message

driven beans. Session beans can be either stateful or stateless . This chapter

mainly focus on stateful session beans. Entity beans are not replicated

explicitly, but they are supported by the backend databa e. hence the can

71

Chapter 5 - Computation replication: improving the availability of the application servers

always be revived by the backup by retrieving their last state from the

database. Stateless components can also be easily restarted on different

machine as they do not maintain state in between client requests. Howe\"er.

stateless session beans may modify persistent state via persistent component.

On this case, we require that any modification to the persistent state must be

performed under transaction, and the correctness of stateless session bean

invocation that access the persistent state will by upheld by the transaction

processing mechanism.

Session retains state between requests. Therefore, the state of the component

must be propagated to backup on every invocations in order to allow the

backup to continue the session after the primary fails.

5.2 Fail-over implementation

The fail-over mechanism is implemented by utilising JBoss client-side

interceptor mechanism. A new interceptor is implemented to give a unique id

for each request submitted by a client. This id is needed to prevent duplication

of execution at the backup when the primary fails. The invoker proxy on the

client side is also modified to contain a list of available server (one primary

and one or more backups) together with its version number of the group

membership (Figure 5-3). The application servers are maintained as a view

synchrony group. On each invocation, the server will check the version id with

their own view-id. When there is a mismatch between the client group

membership version number and the server's own view id, the new view of the

server group is then piggybacked to the client.

72

Chapter 5 - Computation replication: improving the availability of the application servers

Client

Client remote
interface

Reque.tlD interceptor

Client interceptor

! Client interceptor

! Client interceptor

..............
.......

EJB Server ES I

EJB Server ES2

,,' .. y
.......

.. -............... .

EJB Server ES3

Figure 5-3 Replicated EJB implementation of a remote interface

The invoker proxy always sends invocations to the primary server. When the

primary crashes, the proxy receives a time out and then resends the invocation

to a backup. Meanwhile, the other group member reconfigures and installs a

new view for the group. After a new view is installed, the backup contacted by

the proxy informs the proxy about the new view and the new primary. If the

contacted backup is the new primary, it processes the invocation directly;

otherwise, the proxy must again resend the invocation to the new primary.

recv request
.. __ !.!!/in:.::vn:.!:k~p.~Pn~·m:.!:;!!!.:rv:....-~ invoking Primary (.......:..:~r:::;,;;~~:,;:..:~>t

recv not primary excepti n
lupdatePrimary.
invokePrimary

recv server failure exception
[next backup available]

IinvokeBackup

Figure 5-4 Fail-over invoker proxy state chart

recv server failure exception
[no other backup available]

Ithrow exception

Figure 5-4 displays the state chart of the invoker proxy implementation. On

normal condition, it sends the invocation to the primary by invoking the

73

Chapter 5 - Computation replication: improving the availability of the application servers

invokingPrimary method. If the primary is available and is able to respond

with a result, the invoker proxy checks if there is any new piggybacked group

information from the server, updates the list of available servers information,

and returns the result back to the client. If the primary fails or cannot be

contacted, the proxy receives a ServerFailureException7, and invokes

the invokingBackup method to send the invocation to a backup. The

invokingBackup method iterates through the list of available servers, and

sends the invocation to a backup server on the list one by one. If the contacted

backup server has become a new primary server, it processes the invocation

directly and returns the result. Otherwise, the backup server responds with a

NotPrimaryException and provides the information about the new primary

server. Figure 5-5 describes the state chart for a replica implementation.

primary

recv client request
/send

NotPrimaryException

Figure 5-5 Server state

5.2.1 Client interface maintenance

recv client request
/send

ServerFailureException

The client retrieves an interface for accessing a bean from a naming server.

Each application server maintains its own naming server, and a client can

connect to any naming server from any application server that hosts the bean

to access. When a client retrieves an interface from a naming server, the

naming server serializes the interface via standard java serialization, and

retrieves the current list available servers and primary server information from

the application server, and includes this information as part of the serialization

7 The ServerFailureException is raised by the system when a connection to a server cannot be made, or
when an existing connection is lost.

74

Chapter 5 - Computation replica tion: improving the avallabil rty 0 the applica 0 se ers

data. Therefore, the interface retrieved from any se er should point to the

latest primary server information and the latest list of a ailable server at the

time that the client retrieves the interface.

5.3 Session state replication

Session state replication is implemented on JBoss appl ication erver by

utilising container interceptors, MBeans and JMX technologies avai lable on

JBoss .

C
in

lient
,,,,,",,,,,,",,,11

Application Server

/ :..
conta iner

I Retry interceptor I S
E inspeclor inle rCePlo~~e~~ Entity X

I tx interceptor I

IReplica interceptor I E~ V
Transaction Replication

Manager Service

Figure 5-6 Augmenting application server with replication service

Figure 5-6 shows the interceptors and associated services that implement our

replication scheme in JBoss application server. The interceptors perfo rm the

fo llowing tasks:

• Retry interceptor - identifies if a client request is a duplicate and handles

duplicates appropriately

• Txinspector interceptor - determines how to handle invocations that are

associated to transactions

• Tx interceptor - existing interceptor that is implemented on JBoss to

implement transaction handling

• Replica interceptor - ensures state changes associated with a completed

invocation are propagated to backups.

The replication service distributes and processes session state updates to/from

other application servers. To manage the session state the service maintains

several logs :

75

Chapter 5 - Computation replication: improving the availability of the application servers

(i) invocation result log: each entry on this log contains an invocation

id, the updated state of session beans resulted from the invocation

and the result object returned to the client. When the invocation is

transactional, the log also contains the transaction id together v.ith

information on all resources involved in that transaction.

(ii) Transaction log: each entry on this log contains a transaction id

and a transaction outcome decision (commit or abort)

Invocations from clients are initially processed by the invoker MBeans (see

Figure 2-8 on chapter 2). The invoker MBeans on a backup server always

responds with a NotPrimaryException and provides information about

current primary and current group membership (see Figure 5-5). On the

primary server, the invoker MBeans determines and passes the invocation to

the appropriate container. The container passes the invocation through a set of

interceptors, including our interceptors above.

Duplicated invocations are handled by the retry interceptor. This is done by

comparing the id from the incoming client invocation with the invocation id

from the invocation result log. When the invocation id is found on the log, the

invocation has been executed and the retry interceptor simply returns the result

from the log to the client. Otherwise the invocation is processed through the

next interceptor, and ultimately by the bean itself.

After bean execution (i.e. when a reply to an invocation is generated and

progresses through the interceptor chain towards the client) the replica

interceptor informs the replication service of the current snapshot of bean

state, the return parameters and the invocation id. The replication service

multi casts this information in one message (STATE _ UPDATE message) to

other backups. Upon delivery confirmation received from the group

communication service, the replication service updates the invocation result

log and returns the control back to the replication interceptor. Finally, the

result is delivered to the client.

76

Chapter 5 - Computation replication: improving the availability of the applica:on servers

5.4Handling transaction

We assume container managed demarcation. For each inn'cation. the

container decides (based on the transaction attribute of the invoked method)

whether or not to create a new transaction for the im-ocation. Based on this

mechanism, a single invocation of a method can be: a single transaction unit (a

transaction starts at the beginning of the invocation and ends at the end of the

invocation), a part of a transaction unit originated from other invocation. or

non transactional (e.g. the container can suspend a transaction prior to

executing a method, and resume the transaction afterwards).

Primary application server

Container

Client -+-+-~

DB1

Container

0~0 B DB2

®
Replication Transaction
Service Manager

Figure 5-7 A typical interaction for a transaction processing in EJB

Figure 5-7 illustrates the execution of a typical transaction (for brevity,

resource adaptors are not shown). This will be used as an example to highlight

the enhancements made to handle transaction failover. All methods on the

beans have a Required tag as their transaction attribute, indicating to the

container that they must be executed within a transaction. The invocation from

the client initially does not contain a transaction context. At (l), a client

invokes a method on a stateful session bean SFSBl. The container (i.e_ the tx

77

Chapter 5 - Computation replication: improving the availability of the application servers

interceptor on JBoss application server) determines that the invocation

requires a transaction and calls the transaction manager to create a transaction

TI for this invocation (2). The container proceeds to attach a transaction

context for TI to the invocation. The invocation of the method on SFSBI calls

another invocation (3) on EBI and also an invocation (5) on EB2. At (3) and

(5), the container determines that although the invocations need to be executed

within a transaction, it does not have to create a new transaction for them as

the invocation has already been associated with a transaction context. The

invocation on EB I requires access to a database DB 1 (4) and at this point, the

container registers DB I to the transaction manager as a resource associated

with TI. The same process happens at (6) where the container registers DB2 to

be associated with Tl. After the computation on SFSB 1, EB 1 and EB2

finishes, before returning the result to the client, the container completes the

transaction by instructing the transaction manager to commit Tl. The

transaction manager then performs two phase commit with all resources

associated with TI (8). After the transaction commit, the result is then returned

to the client.

Points (7a), (7b), (8a) and (8b) are the modifications to handle transaction

fail over. Right after the computation and prior to two-phase commitment

process (7), the replica interceptor (7a) informs the replica manager to

multicast (7b) the computation result (STATE UPDATE message) to backups.

The multicast includes the transaction id, the latest state of all session beans

involved in that transaction, the result object to return to the client and

information on all resources involved in that transaction. This is to ensure that

the backups have all necessary information to continue the computation should

the primary fail. If the primary fails prior to this multicast, a backup must retry

to execute the invocation from the beginning, otherwise the backup should try

to perform the commitment process for the transaction.

During the two-phase commit, after the transaction manager takes a decision

based on the vote result returned by the resources (8), the transaction manager

informs the replica manager (8a) to multicast (8b) the transaction outcome

decision (TX OUTCOME message) to backups. The multicast consists of the

transaction id and the decision. If the primary fails after this point, a backup

78

Chapter 5 - Computation replication: improving the availability of the applicatIon servers

will try to finish the commit process according to the decision that has been

taken by the failed primary.

5.4.1 Determining when to replicate the transaction

The replication service must be able to detect when the transaction starts and

ends. It is possible to modify the transaction manager or existing JBoss

interceptor to add a hook for this purpose. However, we choose to implement

this mechanism as a separate set of interceptors. This task is performed by the

txinspector interceptor (see Figure 5-6) that processes the invocation before

the JBoss tx interceptor associates the invocation with a transaction. The

txinspector interceptor compares the transaction context from the incoming

invocation and the transaction attribute for the invoked method (which is

available from the bean metadata). When a method with a Required

transaction attribute matches an invocation that has no transaction context, this

means that the container should create a transaction at the start of the

invocation and it should end the transaction at the end of the invocation. The

txinspector flags this invocation with a TRANSACTION_UNIT flag, so that

later on the replica interceptor (at point 7a on Figure 5-7) knows that it has to

multicast the state update together with the transaction information.

5.4.2 Handling chained session invocations

So far we have described how to handle transactional invocation that involves

one session bean invocation and several entity beans invocations. Now the

model is extended to include invocation on session bean that invoke another

session bean. When a session bean SFSB2 is invoked by another session bean

SFSB 1, the state of SFSB2 is not immediately multicast to all backups after

the invocation on SFSB2 finishes. The replica interceptor simply adds SFSB2

session state on the list of updated session, and later on when SFSB 1 finishes,

the state of SFSB 1 together with the state of SFSB2 are multicast to backups.

We do not handle concurrent access on SFSB explicitly, as the container has

always serialized access on stateful session bean. Furthermore, the EJB

specification also state that stateful session beans are not shared between

clients, and clients are not allowed to make concurrent calls on the same bean

(section 4.3.13 on EJB 3.0 specification (DeMichiel and Keith 2006».

79

Chapter 5 - Computation replication: Improving the availability of the application servers

5.5 Replication service implementation

Replication service is an abstraction of group communication library for

propagating messages and group membership information to all servers. The

service is responsible to maintain group membership information, the replica

state propagation and state transfer for new member.

5.5.1 Group membership

We use JGroups (Ban 2006), a virtual synchronous group communication

library that provides the following features:

Virtual synchrony: every non-faulty member of the group will receive

the same sequence of views and they will receive the same set of

messages between views. Every view is uniquely identified by view id.

If a member is disconnected from a group, the next time it reconnects

to the group, it will be treated as a new member. If the disconnected

member is the primary, another member will become the new primary

and when the old primary reconnects, it becomes a backup.

5.5.2 Replica state propagation

The replication service maintains logs associated with the replication (see the

details on section 5.3 above), including current membership configuration.

Upon requests from containers, the replica service multi casts the updates to

other replicas and upon delivery it keeps the update in the appropriate log.

The replication service on backups also performs translation on each incoming

session state received from the primary. The translation is necessary to convert

all bean references found in the session state that originally point to other

beans on the primary server to become references that point to the beans on

the receiving server. For example, if SFSBI on application server API

contains a reference to SFSB2 on AP I, then when the state of SFSB I is

received by application server AP2, the reference to SFSB2 must be translated

so that it will refer to SFSB2 on AP2.

80

Chapter 5 - Computation replication: improving the availability of the application servers

5.5.3 State transfer

Before a new replica (or formerly disconnected replica) can join as a backup,

it must first perform a state transfer to bring its state to the most recent

updates. This state consists of invocation result log and transaction log (see

section 5.3). The state of a replica is defmed as the request log and tx log. The

state transfer mechanism is provided by the group communication library

(JGroups). The group communication service is responsible for queuing

messages delivered to the new member until it successfully retrieves the state.

5.6 Load balancing

The scheme described above assumes a single primary that services all clients.

This scheme can be easily extended to support load balancing for processing

client requests, as each session is accessed by a specific client only, and EJB

specification does not allow concurrent access to a session bean. To support

load balancing, each session bean has its own primary, which can be any of

the available application server. The assignment of session beans to servers

can be either decided by the application server or by the clients. This

assignment is permanent, i.e. a session bean is attached to an application

server as long as that server has not crashed.

The replication service maintains the mapping between session beans and their

primaries, so that each server knows which sessions that use it as the primary.

When a server fails, the replication service distributes all session beans on that

server to other servers. To avoid duplicated executions of client requests, we

use the following scenario. The invoker proxy on the client side (see 5.2)

maintains a variable that represents current primary server for that session. For

home interface invocation, the primary is determined on the first client

invocation, and for remote interface invocation, it is determined when the

session is created. If a client fails to connect to its primary server, the invoker

proxy resends the request to any other server, together with the identity of the

original primary of the session bean. The contacted server then inspects

whether the original primary of that invocation is still a member of the current

group view. As long as an application server is still a member of the current

group view, other application servers cannot process any invocation that

81

Chapter 5 - Computation replication: improving the availability of the application servers

belongs to that server, and they must respond to the invocation with a

NotPrimaryException, as described in section 5.2. On the other hand, if an

application server receives a failed over request from an application server that

has been removed from the current group view, then it becomes the new

primary for that session, and process the invocation as usual.

To see that the mechanism described work correctly, we have to ensure that

for each session bean, at any time only one primary server exists. The primary

server for a session is determined at the first invocation to the bean. The client

will use the same primary server for this session, and as only one unique client

accessing a certain session bean, this will guarantee the same primary server is

used throughout the session bean lifetime, unless that client receives a failure

exception from the invocation which can be caused either by a server failure or

a temporary communication problem. The client changes to a different

primary server only after the old primary is removed from the group view of

the application servers which is happened when the application server process

group decides that the old primary server has crashed.

5.7 Failure scenarios

As a result of the primary crashing a client that is waiting for a result will be

timed out. The client then resends the request to a backup server. The

contacted backup server then responds with the information on a new primary

or it processes the request immediately if the contacted server itself is the new

primary. For non transactional invocations, there are only two conditions that

may happen: the primary fails before the STATE UPDATE message is

delivered (section 5.3) or after the STATE UPDATE is delivered. If the

primary fails before the message is delivered, the client request is re-executed

on the new primary as a new request. The new primary has the previous state

of the session bean, and other replicas have not received the result as well, so

it will be safe to ignore the computation on the failed primary. If the primary

fails after the message is delivered, the new primary simply returns the

outcome of the computation previously done on the failed primary.

For transactional invocations, there are three cases to consider: (a) the primary

fails before the STATE UPDATE message is delivered; (b) the primary fails

82

Chapter 5 - Computation replication: improving the availability of the application servers

after the STA TE UPDATE message is delivered but before the TX

OUTCOME message is delivered; (c) the primary fails after the TX

OUTCOME message is delivered. Case (a) is handled in similar way to the

non transactional invocations; the request is re-executed on the new primary as

a new request. For case (b) and (c), the new primary will try to finish the

commitment process without violating the decision that may has been taken by

the failed primary.

5.8 Performance evaluation

We carried out our experiments on the following configurations: (1) Single

application server with no replication; (2) Two application server replicas with

transaction failover. Both configurations use two databases, as we want to

conduct experiments for distributed transaction setting. We also carried out

experiments with up to five servers and experiments with load balancing

configuration.

The application server used was JBoss 3.2.5 with each application server

deployed on a Pentium IV 2.8 GHz PC with 2048MB of RAM running Fedora

Core 4. The database used was Oracle 9i release 2 (9.2.0.1.0) (Cheevers 2002)

with each database deployed on a Pentium IV 2.8 GHz PC with 2048MB of

RAM running Fedora Core 4. The client was deployed on a Pentium IV 2.8

GHz PC with 2048MB of RAM running Fedora Core 4. The LAN used for the

experiments was a 100 Mbit Ethernet. ECperf (Subramanyam 2002) was used

as the demonstration application in our experiments. ECperf is a benchmark

application provided by Sun to enable vendors to measure the performance of

their J2EE products. For our experiments, we configured the ECperf

application to use two databases instead of just a single database (as is the

default configuration).

Four experiments are performed. First, we measure the overhead of our

replication scheme introduces into application performance. The ECperf driver

was configured to run each experiment with 10 different injection rates (1

though 10 inclusive). At each of these increments a record of the overall

throughput (transactions per minute) for both order entry and manufacturing

applications is taken. The injection rate relates to the order entry and

83

Chapter 5 - Computation replica tion: improving the availabir of e apphca on servers

manufacturer requests generated per second. Due to the complexity of th

system the relationship between injection rate and resulted transaction i not

straightforward . The second experiment measures ho our repli ated

algorithm performs in the presence of fai lures. In this experiment we ran th

ECperf benchmark for 20 minutes, and the throughput of the s stem every 30

seconds is recorded . After the first 12 minutes, we kill the primary serv r to

force the system to failover to the backup server. The third experiment

measures how our replication algorithm scales with additional backups. In thi

experiment we ran the ECperf benchmark ith up to 5 server' confi guration.

The fourth experiment measures the perfo rmance of the replication algo rithm

in a load balancing configuration. This experiment is simj lar to the third

experiment, with up to 5 servers ' configuration.

Order tnnslctlon throughput Orde r transaction re sponse urn.

20 . "-
~ . 1 t '.

I 2 3 4 5 6 7 8 i 10 1 2) t 5 6 1 8 I 0

Injection rate Injec1ion ril't.

(i) throughput for entry order app. (ii) response time for entry order app.

Figure 5-8 - Performance figures

Figure 5-8 presents two graphs that describe the throughput and response time

of the ECperf applications; figure 5(i) identifies the throughput fo r the entry

order system, fi gure 5(ii) identifies the response time fo r the entry order

system. On first inspection we see that our replication scheme lowers the

overall throughput of the system. This is to be expected as additional

processing resources are required to maintain state consistency across

components on a backup server.

84

Chapter 5 - Computation replica tion: improving the availabil of e apphca on se ers

Failover throughput
• SIn::n

• L • r .- .
/ -

o

t: O J-r-~~~~~~~~~ __ ~~ • • ••••••••••••

nm< I"')
'--------------------- -

Figure 5-9 Performance figures with failures

Figure 5-9 presents a graph that describes the throughput of our s t m and th

standard implementation over the time of the benchmark. fter 720 econd

running (12 minutes), we crash the primary server. When no replication i

present the failure of the application server results in throughput decreas ing t

zero, as there is no backup to continue the computation. When replicati on i

present performance drops when failure of the primary is initiated. Ho e er,

the backup assumes the role of the primary allowing for throughput to ri

again. An interesting observation is that throughput on the new primary i

higher than it was on the old primary. This may be explai ned by the fac t that

only one server exists and no replication is taking place. The initial peak in

throughput may also be explained by the completion of transactions that

started on the old primary but finish on the new primary. Thi s adds an

additional load above and beyond the regular load generated by injection rates.

throughput
180

160

140

120

100

80

60

40

20

Throughput for entry order application

_ tx=1

.....-tx =5

~tx=10

o +----~------------

2 number Jf servers 4
5

Figure 5-10 Throughput for entry order application with varying number of servers

85

Chapter 5 - Computation replica tion: improving the availability 0 e apphca on se ers

Iresponse Response time for entry order application

time
40

35

30

25

20

15

10

5

'"-_----K

o +-----•• -----I.J----_.----....
234

number of servers
5

_ tx = 1

---.- tx = 5

~tx=10

Figure 5-11 Response time for entry order application with varying number of servers

Figure 5-10 and Figure 5-11 present two graphs that descrl be the throughput

and the response time of the ECperf appli cations with aryi ng number of

servers as backups. In this configuration, only one server is the primary fo r aJI

client requests, and the rests are backups. For low transaction rate (tx= l),

adding backup servers does not incur much overhead, the throughput and

response time differences between two server configuration and fi e erver

configuration are negligible. However, for higher transaction rate, uch a tx=5

and tx= 1 0, the differences become obvious. One explanation for thi s i that on

higher transaction rate, the network becomes more saturated and takes longer

time to multicast message to more servers.

throughput

400

350

300

250

200

150

100

50

Throughput for entry order application

... • • •

l _ tx = 1

~tx =5

~ tx=10

o +----~--------~--~

2 3 4
number of servers

5

Figure 5-12 Throughput for entry order application with varying number of servers in
load balancing configuration

86

response
time

25

20 ~
15 ~

Chapter 5 - Computation replica tion: improving the avallabilrty of the applica on servers

Response time for entry order application

- tx = 1

---.- tx = 5
~~)('------~)(i------~X ~ tx=10

O +I----.·========.·========~.======~.
2 number ~fservers 4 5

Figure 5-13 Response time for entry order application with varying number of servers in
load balancing configuration

Figure 5-12 and Figure 5-13 present two graphs that describe the throughput

and the response time of the ECperf applications, with varying number of

servers in a load balancing configuration. In thi s setup, client sessIOn ar

distributed among available servers, and when an applicati on server fa il ,

other available servers have the same probability to become the nev server fo r

the sessions hosted on the failed server (the new primar server fo r each

session is determined randomly). For low transaction rate (tx rate= l) adding

more servers do not increase the performance. Two servers are enough to

handle this rate. For the transaction rate = 5, the total throughput of the system

increases when new servers were added up to four servers. However adding a

new server (number of server=5) makes the total throughput decreases. For the

transaction rate = 10, adding more servers do not increase the throughput of

the system. We predicted that this is because of the network saturation that

causes multicast messages to take longer time to arrive to their destination.

The experiments show that our replication scheme does not incur high

overhead compared to a non replicated system, and is able to perfo rm qu ick

failover when the primary crashes.

87

6 Conclusions

6.1 Summary of thesis contributions

The replication schemes developed in this thesis are based on a combination of

several existing techniques that have been published. The focus of this thesis

has been to combine existing techniques to provide a complete working

solution on a real platform (J2EE application servers, In our case). The

solution solved the system design problems described in chapter I, namely,

transparent failover, exactly once execution of client requests, non-blocking

distributed transaction processing, ability to work with load balancing, and

open, non proprietary solution. Tables Table 6-1 and Table 6-2 from chapter 3

are again presented here to provide a summary of comparison between our

approaches and others.

Aspects Middle-R Ganymed Distributed C-JOBC JOBC proxy
versioning (our approach)

Consistency 1 copy Snapshot 1 copy I copy I copy
criteria serializability isolation serializability serializabilitY serializability
J2EE support No Possible No Yes Yes
Backend Modification Database Standard database Standard Standard
database required supporting database via database with
requirements snapshot JOBC driver strict 2PL via

isolation with JOBC driver
modification for
write set
extraction

Multi-databases No No No Yes yes
support
Clustering Yes Yes Yes No yes
support

Table 6-1 State replication approaches

Aspects Transactional Transactional e-transaction Interaction Stateful EJB Stateful EJB
Jiueue client contract rg>lication replication (ours)

Transactional client Yes Yes No No No No
requirement
Client persistency Yes Yes No No No No
r~9uirement
Stateful server No Yes No Yes Yes Yes
Multi databases access Yes Yes Yes No No Yes
Conformance to current Yes Yes No No Yes Yes
standard
Flexibility for application No Yes No Yes Yes Yes
developers

Table 6-2 computation replication approaches

88

Chapter 6 - ConduslOn

First, the problem of replication of the backend database tier \vas investigated.

Our goal was to implement black-box database replication entirely using

mechanisms of the middle tier. Our solution essentially required the state

replication to be introduced into the application server as a resource adaptor.

While it is feasible to replicate the backend database tier solely at the middle

tier level, performing recovery on failed database will require techniques to

transfer the state from a functioning database to the recovering one. These

were not investigated, but there are well known solutions that are available

(Gray and Reuter 1993; Weikum and Vossen 2002).

Second, the thesis investigated the problem of replicating the middle tier itself,

focusing on how to handle different types of states managed by the application

servers. There are four different types of states:

(I) transactional state cached by the application servers.

(2) session state which is client specific.

(3) the state that is related to the transaction processing, such as the

transaction id and involved resources.

(4) volatile state which exists only within a single request.

The strategy for the middle tier replication is to discard the volatile state and

the cache of transactional state on the failed server, and to replicate only the

session state and the transaction related state to backups by employing primary

backup mechanism.

The thesis described precisely when and how to propagate the session state

associated with clients and the state associated with the transaction processing,

and how the backup can use that information to continue the processing

without aborting the transaction. Session state is propagated using a standard

primary backup algorithm, i.e. the state update is first multicast to backups

after the primary computes the result, then the result is delivered to client.

Transaction related state is divided into two parts: (i) the transaction id and

information on involved resources that are multicast together with the other

session state; (ii) the transaction outcome information that is multicast after the

89

Chapter 6 - ConcluSion

transaction manager on the primary takes the decision in the first phase of the

two phase commit protocol.

By multicasting the transaction related state to backups, our replication

algorithm allows the backup to continue the transaction that was previously

executed on the failed primary. This technique is similar to the idea described

in several papers (Hammer and Shipman 1980; Reddy and Kitsuregawa 1998:

Jimenez-Peris, Patino-Martinez et al. 2001; Zhao, Moser et al. 2002) for

implementing a non blocking commitment protocol by replicating the

transaction coordinator. However, it has some differences as they target

different platforms and employ different assumptions. For example, in

(Jimenez-Peris, Patino-Martinez et al. 2001) algorithm, it is the transaction

participants that multicast their votes to a group of transaction coordinators in

the first phase of the two phase commit protocol, not the primary as in our

algorithm. Similar approach is also used in (Zhao, Moser et al. 2002). We

assume the backend databases do not know the identity of the transaction

managers/coordinators; hence they cannot multicast their vote directly to the

coordinators.

Our techniques for replicating the database tier and that for replicating the

middle tier are not dependent on each other, and can be used together without

any difficulties. From the middle tier replication perspective, a replicated

database resource appears as a single entity, and all operations issue by the

transaction manager or containers from either the primary or backups are

translated by the proxy wrappers to database replicas.

6.2 Further Work

The replication approaches described in this thesis assume container managed

transaction only, where transactions are always initiated and completed within

a scope of a single client request. When bean managed transaction is

supported, it is possible to have a scenario where a client invokes a method

which initiates a transaction, and afterwards the client invokes a series of

invocations, and finally the client invokes another method that commits the

transaction. In this situation, the fact that a client may see the state resulting

from a partially executed transaction makes it difficult to provide consistent

90

Chapter 6 - ConduslOll

state when an application server fails in the middle of this interaction. The

problem lies in that the transaction processing management always

automatically aborts the transaction, and we cannot mask this abortion from

the client as executing the request as another transaction on another server

may produce result that is different from the one which has already seen by the

client. To avoid this, one could investigate mechanism so that the transaction

processing management does not abort the transaction automatically, by

developing a fault tolerant resource adaptor, which can survive the

transaction even if the connection to the database is lost in the middle of a

transaction. Another alternative is by investigating different transactional

semantic, such as transactions with savepoints (Gray and Reuter 1993), so that

the backup can continue the transaction from the last savepoint (which is made

on each bean invocation), and use the state of the bean from the previous

invocation.

One possible further work is to incorporating the replication approaches on

other open source J2EE application servers, such as Apache Geronimo and

Jonas. Although we believe that the approaches can be implemented on any

other application servers, it would be interesting to see how it could be

adapted to others.

91

References

Agrawal, D., G. Alonso, et al. (1997). Exploiting atomic broadcast in
replicated databases. Euro-Par '97 Parallel Processing, Third

.. International Euro-Par Conference, Passau, Gennany, Springer.
AlvISI, L. and K. Marzullo (1998). "Message logging: Pessimistic, optimistic,

causal, and optimal." Ieee Transactions on Software Engineering 24(2):
149-159.

Arnza, C., A L. Cox, et al. (2003). Distributed versioning: consistent
replication for scaling back-end databases of dynamic content web
sites. Middleware 2003, ACMlIFIPIUSENIX International Middleware
Conference, Rio de Janeiro, Brazil, June 16-20,2003, Proceedings.

Babaoglu, 0., A Bartoli, et al. (2004). A framework for prototyping J2EE
replication algorithms. Distributed Objects and Application.

Ban, B. (1998). JavaGroups - group communication patterns in Java
Department of Computer Science, Cornell University,

Ban, B. (2006). JGroups User Manual: Reliable Multicasting with the JGroups
Toolkit accessed on July 9, 2006
http://www . j groups.org/j avagroupsnew/ docs/manuallhtml/index.html

Barga, R., D. Lomet, et al. (2004). "Recovery guarantees for Internet
applications." ACM Trans. Inter. Tech. 4(3): 289-328.

Barga, R., D. Lomet, et al. (2002). Recovery guarantees for general multi-tier
applications. 18th International Conference on Data Engineering, 2002.

Berenson, H., P. A Bernstein, et al. (1995). A Critique of ANSI SOL Isolation
Levels. Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, California, May 22-25,
1995, San Jose, California.

Bernstein, P., D. Shipman, et al. (1980). "Concurrency control in a system for
distributed databases (SDD-l)." ACM Trans. Database Syst. 5(1): 18-
51.

Bernstein, P. A and N. Goodman (1985). "Serializability theory for replicated
databases." Journal of Computer and System Sciences 31(3): 355-374.

Bernstein, P. A, V. Hadzilacos, et al. (1987). Concurrency control and
recovery in database systems, Addison-Wesley.

Bernstein, P. A, M. Hsu, et al. (1990). Implementing recoverable requests
using queues. Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, Atlantic City, New Jersey, United
States, ACM Press.

Birman, K., A Schiper, et al. (1991). "Lightweight causal and atomic group
multicast." Acm Transactions on Computer Systems 9(3): 272-314.

Brebner, P. and S. Ran (2001). Entity Bean A, B, C's: Enterprise Java Beans
Commit Options and Caching.

Breitbart, Y., D. Georgakopoulos, et al. (1991). "On rigorous Transaction
Scheduling." IEEE Transactions on Software Engineering 17(9): 954-
960.

Brisco, T. (1995). DNS support for load balancing.RFC 1794

92

Budhiraj~, N:, K. Marzullo, et al. (1993). The Primary Backup Approach.
DIstrIbuted Systems. S. Mullender, Addison-Wesley.

Cardellini, V., E. Casalicchio, et al. (2002). "The state of the art in locally
distributed Web-server systems." Acm Computing Surveys 34(2): 263-
311. '

Cardellini, V., M. Colajanni, et al. (1999). "Dynamic load balancing on web­
server systems." Internet Computing 3(3): 28-39.

Cecchet, E., J. Marguerite, et al. (2002). Performance and scalability ofEJB
applications. OOPSLA '02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages. and
applications, ACM.

Cecchet, E., J. Marguerite, et al. (2004). C-JDBC: Flexible database clustering
middleware. USENIX Conference.

Chandra, T. D. and S. Toueg (1996). "Unreliable failure detectors for reliable
distributed systems." Journal of the Acm 43(2): 225-267.

Chang, J.-M. and N. F. Maxemchuk (1984). "Reliable broadcast protocols."
ACM Transactions on Computer Systems (TOCS) 2(3): 251--273.

Cheevers, S. (2002). Oracle 9i Database Summary. An Oracle White Paper
http://otn.oracle.com!products/oracle9i/pdflOracle9i Database summa
IY&M

Cheung, S. and V. Matena (2002). Java Transactions API Specifications,
version 1.0.1B, Sun Microsystems, Inc.

DeMichiel, L. and M. Keith (2006). JSR 220: Enterprise JavaBeans version
3.0. EJB Core Contracts and Requirements, Sun Microsystems.

DeMichiel, L. G., L. U. Yalcyinalp, et al. (2000). Enterprise Java Beans
Specification 2.0 Proposed Final Draft, Sun Microsystems Inc.

Dolev, D., S. Kramer, et al. (1993). Early delivery totally ordered multicast in
asynchronous environments. The Twenty-Third Annual International
Symposium on Fault-Tolerant Computing (FTCS).

Egevang, K. and P. Francis (1994). The IP Network Address Translator
(NAT). RFC 1631.

Ezhilchelvan, P. D., R. A. Macedo, et al. (1995). Newtop: a fault-tolerant
group communication protocol. Proceedings of the 15th International
Conference on Distributed Computing Systems (ICDCS).

Felber, P. and P. Narasimhan (2002). Reconciling replication and transactions
for the end-to-end reliability of CORBA applications. On the Move to
Meaningful Internet Systems 2002. CoopIS, DOA, and ODBASE.
Confederated International Conferences CoopIS, DOA, and ODBASE
2002 Proceedings (Lecture Notes in Computer Science Vo1.2519).
Springer-Verlag. 2002.

Fischer, M. J., N. A. Lynch, et al. (1985). "Impossibility of distributed
consensus with one faulty process." Journal of the Acm 32(2): 374-
382.

Frolund, S. and R. Guerraoui (2000a). Implementing e-transactions with
asynchronous replication. Dsn 2000 : International Conference on
Dependable Systems and Networks, Proceedings: 449-458.

Frolund, S. and R. Guerraoui (2000b). A pragmatic implementation of e­
transactions. Reliable Distributed Systems, 2000. SRDS-2000.
Proceedings The 19th IEEE Symposium on.

93

Frolund, S. and R Guerraoui (2001). "Implementing e-Transactions with
asynchronous replication." Ieee Transactions on Parallel and
Distributed Systems 12(2): 133-146.

Frolund, S. and R Guerraoui (2002). lie-transactions: End-to-end reliability for
three-tier architectures." Ieee Transactions on Software Engineering
28(4): 378-395.

Gorton, I. and A. Liu (2003). "Evaluating the Performance ofEIB
Components." IEEE Internet Computing 7(3): 18-23.

Gray, I., P. Helland, et al. (1996). The dangers of replication and a solution.
SIGMOD '96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data.

Gray, I. and A. Reuter (1993). Transaction Processing: Concepts and
Techniques, Morgan Kaufmann.

Hammer, M. and D. Shipman (1980). "Reliability mechanisms for SDD-l:A
system for distributed databases." Acm Transactions on Database
Systems 5(4): 431--466.

Holliday, I., D. Agrawal, et al. (1999). The performance of database
replication with group multicast. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing.

Iimenez-Peris, R., M. Patino-Martinez, et aI. (2001). A Low-Latency Non­
blocking Commit Service. 15th International Conference on
Distributed Computing, DISC.

Jimenez-Peris, R, M. Patino-Martinez, et al. (2002). Improving the scalability
of fault-tolerant database clusters. Distributed Computing Systems,
2002. Proceedings. 22nd International Conference on.

Kang, A. (2001). J2EE clustering, Part 1: Clustering technology is crucial to
good website design; do you know the basics? JavaWorld. February
2001 http://www.javaworld.comljw-02-200 1 /jw-0223-
extremescale.html

Kemme, B. (2003). Database replication based on group communication:
implementation issues. Future Directions in Distributed Computing.
Research and Position Papers (Lecture Notes in Computer Science
Vol.2584). Springer-Verlag. 2003.

Kemme, B. and G. Alonso (2000). "A new approach to developing and
implementing eager database replication protocols." Acm Transactions
on Database Systems 25(3): 333-379.

Kemme, B., F. Pedone, et aI. (2003). "Using optimistic atomic broadcast in
transaction processing systems." Ieee Transactions on Knowledge and
Data Engineering 15(4): 1018-1032.

Kistijantoro, A. I., G. Morgan, et al. (2006). Transaction manager failover: a
case study using IBOSS application server. Reliability in Decentralized
Distributed Systems (RDDS 2006), Montpellier, France.

Kistijantoro, A. I., G. Morgan, et al. (2003). Component replication in
distributed systems: a case study using Enterprise Java Beans. 22nd
International Symposium on Reliable Distributed Systems, Florence,
ItaIy, IEEE Computer Society.

Korth, H., E. Levy, et aI. (1990). A formal approach to recovery by
compensating transactions. The VLDB.

Kozaczynski, W. and G. Booch (1998). "Component-based software
engineering." Software, IEEE 15(5): 34-36.

94

Lamport, L., R. Shostak, et al. (1982). "The Byzantine generals problem."
Acm Transactions on Programming Languages and Systems 4(3): 382-
401.

Little, M. C. and S. K. Shrivastava (1998a). Integrating the object transaction
service with the web. IEEE Proc. Second Int'l Workshop Enterprise
Distributed Object (EDOC).

Little, M. C. and S. K. Shrivastava (1998b). "Java Transactions for the
Internet." lEE Distributed Systems Engineering 5(4): 156-167.

Melliar-Smith, P., L. Moser, et al. (1990). "Broadcast protocols for distributed
systems." IEEE Transactions on Parallel and Distributed Systems 1(1):
17-25.

Naur, P. and B. Randell (1969). Proceedings, NATO Conference on Software
Engineering, Garmish, Germany, October 1968. Brussels, NATO
Science Committee.

Patino-Martinez, M., R. Jimenez-Peris, et al. (2005). "MIDDLE-R: Consistent
database replication at the middleware level." ACM Trans. Comput.
Syst. 23(4): 375--423.

Pedone, F., R. Guerraoui, et al. (1998). Exploiting atomic broadcast in
replicated databases. Euro-Par '98 Parallel Processing. 1470: 513-520.

Peterson, L. L., N. C. Buchholz, et al. (1989). "Preserving and using context
information in interprocess communication." Acm Transactions on
Computer Systems 7(3): 217-246.

Plattner, C. and G. Alonso (2004). Ganymed: scalable replication for
transactional web applications. Middleware '04: Proceedings of the 5th
ACMlIFIPIUSENIX international conference on Middleware, Toronto,
Canada, Springer-Verlag New York, Inc.

Reddy, P. K. and M. Kitsuregawa (1998). Reducing the blocking in two-phase
commit protocol employing backup sites. Proceedings of Third IFCIS
Conference on Cooperative Information Systems (CoopIS'98). IEEE.

Schenkel, R., G. Weikurn, et al. (2000). Federated transaction management
with snapshot isolation. Transactions and Database Dynamics. Berlin,
Springer-Verlag Berlin. 1773: 1-25.

Schneider, F. B. (1990). "Implementing fault-tolerant services using the state
machine approach: a tutoriaL" Acm Computing Surveys 22(4): 299-
319.

Stanoi, I., D. Agrawal, et al. (1998). Using broadcast primitives in replicated
databases. Proceedings of 18th International Conference on Distributed
Computing Systems. Amsterdam, Netherlands.

Strom, R. and S. Yemini (1985). "Optimistic recovery in distributed systems."
ACM Trans. Comput. Syst. 3(3): 204-226.

Subramanyam, S. (2002). JSR 4: ECperfBenchrnark Specification Java
Community Process. 16 March, 2006 http://jcp.orglen/jsr/detail?id=4

Sun Microsystems Inc (2002). Java Management Extensions Instrumentation
and Agent Specification, vl.2, Sun Microsystems, Inc.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented
Programming. London, Addison-Wesley.

Tygar, J. (1998). Atomicity versus Anonymity: Distributed Transactions for
Electronic Commerce. VLDB '98: Proceedings of the 24rd
International Conference on Very Large Data Bases, Morgan.

95

Vaysburd, A. (1999). Fault tolerance in three-tier applications: focusing on the
database tier. Proceedings of the 18th IEEE Symposium on Reliable
Distributed Systems., Lausanne, Switzerland, IEEE.

W3C Consortium (2004). Web Service Architecture W3 Consortium.
http://www.w3.org/TRl2004INOTE-ws-arch-200402111

Weikum, G. and G. Vossen (2002). Transactional information systems:
Theory, algorithms, and the practice of concurrency control and
recovery, Academic Press.

Wiesmann, M., F. Pedone, et al. (2000a). "Database replication techniques: a
three parameter classification." Proceedings of the IEEE Symposium
on Reliable Distributed Systems: 206-215.

Wiesmann, M., F. Pedone, et al. (2000b). Understanding replication in
databases and distributed systems. Proceedings - International
Conference on Distributed Computing Systems, IEEE: 464-474.

Wu, H. and B. Kemme (2005). Fault-tolerance for Stateful Application
Servers in the Presence of Advanced Transactions Patterns. SRDS '05:
Proceedings of the 24th IEEE Symposium on Reliable Distributed
Systems (SRDS'05), IEEE.

Wu, R., B. Kemme, et al. (2004). Eager Replication for Stateful J2EE Servers.
Distributed Objects and Application.

XlOpen (1992). Distributed Transaction Processing: The XA Specification,
XlOpen Company Ltd. The Open Group.

Zhao, W., L. E. Moser, et al. (2002). Unification of replication and transaction
processing in three-tier architectures. Proceedings 22nd International
Conference on Distributed Computing Systems.

96

	433192_0001
	433192_0002
	433192_0003
	433192_0004
	433192_0005
	433192_0006
	433192_0007
	433192_0008
	433192_0009
	433192_0010
	433192_0011
	433192_0012
	433192_0013
	433192_0014
	433192_0015
	433192_0016
	433192_0017
	433192_0018
	433192_0019
	433192_0020
	433192_0021
	433192_0022
	433192_0023
	433192_0024
	433192_0025
	433192_0026
	433192_0027
	433192_0028
	433192_0029
	433192_0030
	433192_0031
	433192_0032
	433192_0033
	433192_0034
	433192_0035
	433192_0036
	433192_0037
	433192_0038
	433192_0039
	433192_0040
	433192_0041
	433192_0042
	433192_0043
	433192_0044
	433192_0045
	433192_0046
	433192_0047
	433192_0048
	433192_0049
	433192_0050
	433192_0051
	433192_0052
	433192_0053
	433192_0054
	433192_0055
	433192_0056
	433192_0057
	433192_0058
	433192_0059
	433192_0060
	433192_0061
	433192_0062
	433192_0063
	433192_0064
	433192_0065
	433192_0066
	433192_0067
	433192_0068
	433192_0069
	433192_0070
	433192_0071
	433192_0072
	433192_0073
	433192_0074
	433192_0075
	433192_0076
	433192_0077
	433192_0078
	433192_0079
	433192_0080
	433192_0081
	433192_0082
	433192_0083
	433192_0084
	433192_0085
	433192_0086
	433192_0087
	433192_0088
	433192_0089
	433192_0090
	433192_0091
	433192_0092
	433192_0093
	433192_0094
	433192_0095
	433192_0096
	433192_0097
	433192_0098
	433192_0099
	433192_0100
	433192_0101
	433192_0102
	433192_0103

