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Abstract 

Three-tier middleware architecture is commonly used for hosting large-scale 

distributed applications. Typically the application is decomposed into three 

layers: front-end, middle tier and back-end. Front-end ("Web ser\,er·) is 

responsible for handling user interactions and acts as a client of the middle 

tier, while back-end provides storage facilities for applications. Middle tier 

(' Application server') is usually the place where all computations are 

performed, so this layer provides middleware services for transactions, 

security and so forth. The benefit of this architecture is that it allows flexible 

configuration such as partitioning and clustering for improved performance 

and scalability. 

On this architecture, availability measures, such as replication, can be 

introduced in each tier in an application specific manner. Among the three tier 

described above, the availability of the middle tier and the back-end tier are 

the most important, as these tiers provide the computation and the data for the 

applications. 

This thesis investigates how replication for availability can be incorporated 

within the middle and back-end tiers. The replication mechanisms must 

guarantee exactly once execution of user request despite failures of application 

and database servers. The thesis develops an approach that requires 

enhancements to the middle tier only for supporting replication of both the 

tiers. The design, implementation and performance evaluation of such a 

middle tier based replication scheme for multi-database transactions on a 

widely deployed open source application server (1Boss) are presented. 
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1 Introduction 

Modem client-server distributed computing systems may be seen as 

implementations of an N-tier architecture. Typically, the first tier consists of 

client applications containing browsers, with the remaining tiers deployed 

within an enterprise representing the server side; the second tier (Web tier) 

consists of web servers that receive requests from clients and passes on the 

requests to specific applications residing in the third tier (middle tier) consists 

of application servers where the computations implementing the business 

logic are performed; the fourth tier (database tier) contains databases that 

maintain persistent data for the applications (Figure 1-1). 

Figure 1-1 N-tier architecture 

Web 
tier 

Middle 
tier 

Database 
tier 

Applications in this architecture typically are structured as a set of interrelated 

components hosted by containers within an application server. Various 

services required by the applications, such as transaction, persistence, security, 

and concurrency control are provided via the containers, and a developer can 

simply specify the services required by components in a declarative manner. 

This relieves the developers from the complex task of handling them directly 

in the components code. 
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Furthermore, this architecture also allows flexible configuration such as 

partitioning and clustering for improved performance and scalability. 

Availability measures, such as replication, can also be introduced in each tier 

in an application specific manner. In a typical n-tier system such as illustrated 

in Figure 1-1, the interactions between clients to web server tier are performed 

across the Internet. The infrastructure supporting these interactions is 

generally beyond the direct control of an application service provider that 

normally only manages the web server tier and the tiers afterwards. The 

availability of a service can be increased by making each tier available. 

Among the tiers described above, the middle tier and the database tier are 

arguably the most important, as it is on these tiers the computations are 

performed and data storage and persistency are provided. Data as well as 

object replication techniques for improving the availability have been studied 

extensively in the literature, so our task is not to invent new replication 

techniques, but to investigate how existing techniques can be migrated to 

middle tier and database tier. 

One important concept related to availability measures is that of exactly once 

transaction or exactly once execution. For example, in a typical online shop 

where a customer may browse catalogue, select items into hislher shopping 

cart, and finally make an order and pay the order by hislher credit card. These 

activities involve transactionally accessing data (stock items, card payment 

validation, and customer details) which are hosted by different database 

servers. Here, the system must guarantee exactly once execution of user 

requests despite system failures. Without this, the client may end up with 

duplicated orders or he/she may lose the order without noticing it. One 

approach would be to make the entire interaction from client to databases 

transactional. Problem arise as the clients in such systems are usually not 

transactional, thus they are not part of the recovery guarantee provided by the 

underlying transaction processing systems that support the applications. When 

failures occur, clients often do not know whether their requests have been 

processed or not. Resubmitting the requests may result in duplication, and on 

the other hand it is also possible the requests have not been processed at all. 

2 
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Many vendors for middle tier application servers provide clustering primarily 

as a solution for improving the performance (through load balancing) and 

scalability (ability to deal with large number of clients) and rely on propriety 

replication mechanisms of database vendors for database availability. Cluster 

systems allow the employment of multiple servers to service clients 

concurrently thus improve the throughput of the system. Cluster systems 

typically also provide limited/ailover capability, allowing client requests to a 

failed server to be redirected automatically to another available server. 

Stateless computation requests (i.e. requests that do not cause modification of 

the state stored on the application server) can safely be re-executed on another 

server. However, failover is not straightforward for stateful computation 

requests, where the application server may keep the session state produced by 

previously executed requests. One may circumvent this by requiring all state 

to be stored at a database, yet this makes unnecessary performance overhead, 

as the state is usually needed for short term, within the scope of current client 

interactions only. Some implementations provide session replication in 

application servers, removing the requirement to store session state in a 

database, but they are unable to salvage the active transactions from the failed 

server, causing the abortion of the client session. Furthermore, there is a more 

serious limitation: when an application server fails while in the process of 

committing a transaction. For single database access, the other application 

servers do not know whether the transaction from the failed application server 

has been committed successfully or not, and reprocessing the client request on 

another application server may violate the exactly once execution property. 

For multi-database access, this may result in databases and other shared 

resources becoming unavailable to the other servers 1 , causing other available 

servers cannot continue servicing clients request even if they already have an 

updated session state for servicing the request. Normally this requires some 

manual operations to rectify the problem. 

We thus see that introduction of availability measures in multi-tier systems 

poses challenging system design problems, namely transparent failover, 

1 A failure that happens in the middle of the two phase commitment protocol can cause the backend 
database blocked, waiting for the transaction coordinator (which is located at the crashed application 
server) to be available again, so that it can find out the outcome of the transaction. 
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exactly once execution of client requests, non-blocking distributed transaction 

processing, ability to work with load balancing and open, non proprietary 

solution. 

For this reason, there has been much recent research work on increasing 

availability whilst supporting exactly once transactions through replication in 

commonly used application servers. However, none of the works that we know 

meets all the system design problems stated above. 

This thesis investigates how replication for availability can be incorporated 

within the middle and back-end tiers. The replication mechanisms developed 

in the thesis guarantee exactly once execution of user requests, masking 

failures of application and database servers, ensuring continued client request 

processing despite failures during the committing process; furthermore they 

also support load balancing features for clustering configurations. In short, the 

design and implementation presented in the thesis solves all the system design 

problems stated above. The thesis develops an approach that requires 

enhancements to the middle tier only for supporting replication of both the 

tiers. Therefore, database server failure can also be masked without having to 

rely on the proprietary database vendor replication. The design, 

implementation and performance evaluation of such a middle tier based 

replication scheme for multi-database transactions on a widely deployed open 

source application server (JBoss) are presented. 

1.1 Thesis organization 

Chapter 2 discusses basic concepts of component middleware architecture and 

the platform that will be used as the basis for implementing our replication 

algorithms. It describes common components of an application server and how 

they interact with each other to provide service to clients. 

Chapter 3 provides a literature review of existing approaches to availability on 

three-tier architecture. Each approach is evaluated and compared with the 

replication mechanisms described in this thesis. Those approaches are 

classified into two groups: the ones that focus on the availability of the 

4 
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application state (backend-tier) and the ones that focus on the availability of 

the computations (middle-tier). 

Chapter 4 describes application state replication approach implemented using 

mechanisms within the middle tier that works seamlessly with existing load 

balancing clustering configuration in application servers and presents the 

benchmark result of the implementation. 

Chapter 5 describes the implementation of computation replication that is able 

to continue multi-databases transactions on backups when the primary fails. 

Exactly once semantics is ensured. The replication implementation also 

includes the load balancing version that distributes client requests among 

existing servers. 

Chapter 6 summarises the contributions of the thesis and outlines areas into 

which the work done in this thesis could be extended and researched further. 

5 



2 Component Middleware Infrastructure 

Large class of distributed applications map on to client-se[\'er architecture. 

where applications are separated into clients, in which computers are used for 

managing the interaction with the users, and into servers, in which the data is 

located and processed. This architecture gives flexibility as data can be shared 

among many clients running on heterogeneous platforms. For applications that 

need to store large amount of data and perform complex information 

processing of client requests, a server soon gets overloaded as the number of 

clients increase. To solve the problem, the function of the server is split into 

two tiers: one tier is for performing computation and another tier is for 

handling data. The computation tier, which is referred to as an application 

server, is also responsible for pooling the connections to the database servers, 

and shares these connections to service client requests, therefore reduce the 

number of connections required to the back-end servers. Application server 

belongs to a class of software known as middleware, a software layer between 

network operating systems and application components. 

Many organizations today have a variety of computing applications running on 

heterogeneous hardware and software systems. These systems are often 

difficult to integrate as they have different platforms and architectures and 

support different protocols. Middleware can be used to help these systems to 

interoperate, by allowing a program on one system accessing data and 

programs provided by other systems. Middleware is also seen as a solution to 

speed up application development, by providing higher abstraction that hides 

the difficulties in dealing with many aspects of distributed systems, such as 

security, communication protocols, transaction management and concurrency 

control. 

Software components, as a concept, has been in existence since a long time 

ago. Douglas McIlroy (Naur and Randell 1969) has proposed in 1968 that 

future software industry should be built based on software components. where 

6 
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one can build software out of its components \\hich can be provided from a 

number of software components suppliers, just like in other industries. such as 

electronics and mechanical industries. 

The idea of software component is also reflected in object oriented approach 

to software, which became popular in 1990s. This approach views software 

objects as representation of real world entities, and are considered as the key 

to solve software crisis problem, as it enforces software developers to employ 

good design principles in developing software such as modularity, 

encapsulation and software reuse. Software objects are abstractions containing 

both data (which is called object state or object attributes) and a set of 

methods for manipulating the data. These objects are then used as the basic 

components to build applications. Objects communicate with other objects by 

message passing (this is implemented as method calls to other objects), and 

application can be seen as a set of interacting objects. 

The nature of object oriented approach to software fits perfectly with the goal 

of software component, especially for supporting software reuse. However, the 

small granularity of objects makes them difficult to reuse on different projects 

and on different context. Object oriented approach also does not address the 

issue of composing software from software components coming from different 

platforms. Component oriented development, which is seen as the next drive 

after object oriented approach (Kozaczynski and Booch 1998). addresses this 

specific problem, focusing on how a component interacts with its environment 

and how a component can be used on different context by specifying its 

dependency explicitly as a contract. Component, in this context, is defined as a 

piece of software which has explicit specifications of what it requires and 

provides, can be independently deployable, and subject to third-party 

composition (Szyperski 2002). 

Middleware adopts object oriented approach and software component 

technologies by developing standards for component oriented infrastructure, 

such as Sun Enterprise JavaBeans (EJB) specification and Common Object 

Request Broker Architecture (CORBA) specification. 
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2.1 Overview of component middleware architecture 

We can look at component middleware architecture as n-tier architecture that 

consists of client, web servers, application servers and backend data stores. 

Figure 2-1 describes this architecture. A client can access the service provided 

by the system via the Internet, by using a web browser, which provide the 

display representation of the application to the client. Alternatively, the 

applications at the client's side may access directly to middle tier application 

servers. The interaction from the client applications to the middle-tier software 

can be either session-oriented or sessionless-oriented, using protocols such as 

Hypertext Transfer Protocol (HTTP), Java Remote Method Invocation (RMI), 

and Simple Object Access Protocol (SOAP). 

Web servers manage the representation of the service so that the clients can 

access the service by using web browsers. Application servers constitute the 

middle-tier that provides containers for hosting the components and supporting 

services, such as security, communication, persistence and transactions. The 

backend databases provide the persistent state of the application. 

8 



Web 
servers '--------" 

Middle tier 
application 
servers 

Figure 2-1 Component middleware architecture 

Chapter 2 - Component Middleware Infrastructure 

clients 

All interactions between components and their environment, including the 

clients and backend datastores are mediated by the containers. To support 

various types of business logic, several types of components are normally 

provided. EJB specification defines components as stateless session beans, 

stateful session beans, entity beans and message-driven beans. Stateless 

session beans refer to components that represent processing client requests that 

does not require conversational state, therefore can be instantiated per client 

request basis. Stateful session beans are for processing conversational client 

requests, and maintain conversational state for requests from the same client. 

Entity beans represent and manipulate persistent data of an application, which 

are stored in the backend data store. Message driven beans allow developer to 

implement asynchronous components that act as listeners for Java Messaging 

Services (JMS). 

9 
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The other specification, CORBA Component Model (CC~l). provides similar 

categories: Service (corresponds to stateless session beans), Session 

(corresponds to stateful session beans), Entity (corresponds to entity beans). 

Process (unique to CCM, represents business process and has persistent state 

across multiple sessions). The rest of this chapter will focus on EJB model that 

will be used as the target implementation for replication mechanism. 

2.2 Containers and application servers 

As explained in section 2.1, containers manage all interaction between 

components and their environment. A container starts hosting a component 

through a process called deployment. In this process, the container gathers all 

information required for deploying the component from the component 

descriptor. The descriptor contains information such as the component type. 

access authorization, transaction attributes for each method, the name of the 

bean, persistence management, and external resources required. Based on this 

information, the container then creates an instance that represents the 

component home interface, and registers this instance to the naming ser\'ice, 

so that clients can find the component via this service. 

Home interface is an instance that allows clients to create. find and destroy an 

instance of the component. This is necessary as clients do not have direct 

access to the component instance, therefore cannot directly invoke the 

constructor of the component to create an instance. The home interface object 

is created by the container, and acts as the primary point of contact to the 

clients. Upon receiving create invocation, for example, the container can set or 

unset the transaction context. inspect access authorization, invoke necessary 

code on the component for creating a new instance, then create a 

representation for the bean instance, the bean interface, to return back to the 

client. 

10 
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Application server 

Container 

Other support 
(transactions, security, 
persistence) 

External resources 

Figure 2-2 Interaction between the application server, the container and the components 

As clients always access components indirectly, the container has various 

choices of implementation. Figure 2-2 depicts an example of typical 

interaction between application server, container and components. For 

components that do not maintain conversational state such as stateless session 

beans, a common implementation approach is by creating a pool of ready bean 

instances. These instances are allocated to clients requests, and are returned 

back to the pool after the processing finishes. For components that maintain 

state, such as stateful and entity beans, the states are kept separately, and the 

container attaches this state to a bean instance every time it has to service a 

specific client request. 

The home interface, the bean interface and the bean instance access external 

resources via the support provided by the container. On some cases, the 

interaction between container, components and external resources are defined 

through standard interfaces, such as transactions are standardized by Java 

Transaction API (JTA) and Java Transaction Service (JTS) specification, and 

databases access are standardized by Java Database Connectivity (JDBC) and 

J2EE Connector Architecture (JCA). 

11 
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2.3Client interaction 

The EJB specification specifies three mechanisms to access EJBs: Jaya 

Remote Method Invocation (RMI), local access (for clients located on the 

same Java Virtual Machine (JVM)), and web services2. 

Client 

invoke method 

Registry 

Figure 2-3 EJB Remote access and local access 

Server 

application 

interface 
(RMI Object) 

register the object 

RMI provides basic functionalities for invoking methods on remote objects. 

The server that provides objects for remote access makes the object stubs 

available via an object registry or a naming service. Clients then access the 

object via these stubs that will be responsible for delegating the invocation, 

marshalling the parameters and the result of the invocation (Figure 2-3). In 

most EJB implementations, vendors do not simply provide stubs for client 

access, but they also wrap the stub object as well with a client-side object 

implementation, to allow some computation performed on the client side. This 

implementation allows the stub to directly process some requests at the client 

side without having to contact the server. 

2 Only stateless session beans are allowed to provide access via web service 

12 
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Clients that are located at the same process as the components can access the 

component using a local interface to that component. The local interface 

provides faster access than the remote interface such as RMI, as it removes the 

requirements for marshalling the parameters and also removes the need for 

messaging during the invocation. 

As illustrated in Figure 2-1, clients can access middle tier components directly 

over the Internet, without the use of a web server and a web browser. These 

interactions are made possible via web services. A web service is a software 

component that can be accessed via network and has an interface that is 

described in a machine-processable format (e.g. WSDL - Web Services 

Description Language) (W3C W3C Consortium 2004). In EJB specification, 

web services client can access stateless session bean via SOAPIHTTP 

protocols. The application server is responsible for generating the class for the 

web service end point to access the bean and the service description (in 

WSDL) for the stateless session bean so that the web service client can find 

out about the services (how to access, interface/methods available for access, 

etc.). 

2.4Component persistence 

There are two way to manage the state for entity beans: container managed 

persistence (CMP) and bean managed persistence (BMP). CMP allows the 

developer to delegate the maintenance of bean persistent state to the container. 

In this scheme, the container generates the SQL (Structured Query Language) 

commands and queries for retrieving and storing the bean state to the database. 

Alternatively, the developers can also specify or modify some of the SQL 

commands for some methods. On the other hand, BMP lets the developer to 

manage the bean persistent state directly by inserting explicit database SQL 

queries in the bean code. 

From the component development perspective, CMP is preferable as it relieves 

the developer to code the SQL directly, thus make the component 

development and maintenance easier. However, the performance of CMP 

based components will be highly dependent on the application servers that are 

13 
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used for the implementation (Cecchet, Marguerite et aI. 2002; Gorton and Liu 

2003). 

In CMP, the containers are responsible for mapping the bean field into the 

database. This can either be done automatically by the container or by 

explicitly declaring the bean fields to database table mapping in the 

deployment descriptor. The containers are also responsible for synchronizing 

the bean state with the database, so that the component developers do not have 

to deal with this issue directly. 

For managing consistency, the specification lays out three strategies 

depending whether the container has exclusive access to the database state 

(DeMichiel, Yalyinalp et al. 2000). For containers that have exclusive access 

to the database state (i.e. if the same database state is not used by other 

applications besides these containers), they can use commit option A, which 

keeps the instance ready in the containers, thus the containers does not have to 

reload it from the database again at the start of the next transaction. On the 

other hand, if the containers do not have exclusive access, they can still keep 

the instance ready in the cache, but they must reload it at the start of the next 

transaction. This scenario is called commit option B. Another implementation 

does not keep ready instances at all, and immediately passivates the instance 

as soon as the transaction finish. The last scenario is called commit option C. 

Brebner and Ran (2001) studied the performance of different commit options. 

They concludes that commit option A can give better performance up to 60% 

than commit option C, and commit option B gives better performance by 30% 

to commit option C. However, these results are product, version and 

application specific. 

2.5 Transactions 

A transaction manager IS hosted by the application server and assumes 

responsibility for enabling transactional access to EJBs. The transaction 

manager does not necessarily have to reside in the same address space as the 

application server; however, this is frequently the case in practical systems. 

14 
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The interface between containers, the transaction manager and database 

resources are specified via JTA (Cheung and Matena 2002) and the 

Connectors APIs . 

Application 

Figure 2-4 Java Transactions API 

Application 
Server 

JTA 
Transa tionManager 

Transaction 
Manager L-_-

Resource 
Manager 

XAResource 

Figure 2-4 shows the interactions defined in JT A specification. JT A specifies 

four parties commonly involved in transactions: Application, Transaction 

Manager, Application Server and Resource Manager. In the three-tier 

architecture, the application is either a client that uses the system or a 

component that is hosted on an application server. The transaction manager 

and the application server are part of the middle tier; and the resource manager 

is the database on the back-end tier .There are three elements of API defined in 

JTA: UserTransaction is an interface for the application to control 

transaction boundaries, TransactionManager is an interface to allow the 

application server to control the transaction boundaries on behalf of the 

application and XAResource is a java mapping of the industry standard XA 

interface (X/Open 1992). XAResource allows the transaction manager to 

associate a global transaction to a transactional resource managed by the 

15 
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resource manager. JTA also specifies Transaction interface, a 

representation of a transaction context that can be accessed by an application 

or an application server. 

Transaction 
Manager 

Figure 2-5 Transaction processing 

An application server such as EJB server maintains information about 

components that it hosts, including the transaction attributes of each method of 

the components and resource managers that are responsible for the 

components. Figure 2-5 depicts a sample scenario of a single transaction 

involving three enterprise beans and two resource managers. A session bean 

receives a client invocation. The application server (via the container) 

determines3 that this invocation should be executed within a transaction. The 

application server then instructs the transaction manager to create a 

transaction, say Tl, and associate it with current thread. After that, an 

appropriate code from the session bean is executed. This execution, may for 

example issue a number of invocations on two entity beans (X and Y). Upon 

these invocations, the application server determines that those invocations are 

associated with the same transaction as the invoker, i.e. Tl. The application 

server also enlists the resources used by the entity beans X and Y to 

transaction TI. The application server is also responsible for passing the 

3 The container detennines this by inspecting the transaction attribute for the accessed method in the 
deployment descriptor 
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'transaction context' of Tl to the JOBC drivers in all its interactions, which in 

tum ensure that the resource managers are kept informed of transaction starts 

and ends. In particular: (i) retrieving the persistent state of X (y) from RDMSA 

(RDMSB) at the start of Tl will lead to that resource manager write locking 

the resource (the persistent state, stored as a row in a table); this prevents other 

transactions from accessing the resource until Tl ends (commits or rolls back); 

and (ii) XA resources (XAA and XAB) 'register' themselves with the 

transaction manager, so that they can take part in two-phase commit. 

Once the session bean has indicated that TI is at an end, the transaction 

manager attempts to carry out two phase commit to ensure all participants 

either commit or rollback TI. In our example, the transaction manager will 

poll RDBMSA and RDBMSB (via XAA and XAB respectively) to ask if they 

are ready to commit. If a RDBMSA or RDBMSB cannot commit, they inform 

the transaction manager and roll back their own part of the transaction. If the 

transaction manager receives a positive reply from RDBMSA and RDBMSB it 

informs all participants to commit the transaction and the modified states of X 

and Y becomes the new persistent states. 

In this example, all the beans are in the same application server. Support for 

distributed transactions involving beans in multiple containers (on possibly 

distinct application servers) is also straightforward if the transaction manager 

is built atop a CORBA transaction service (Java Transaction Service), since 

such a service can coordinate both local and remote XA resources. Such a 

transaction manager will also be able to coordinate a transaction that is started 

within a client and spans EJBs, provided the client is CORBA enabled. 

2.6Architecture of J2EE application servers implementation 

This section describes an example of J2EE application server using a popular 

open source J2EE application server, JBoss AS. 
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2.6.1 JBoss J2EE Application Server 3.2.x 

JBoss application server is an implementation of J2EE specification developed 

by JBoss company. JBoss application server centres around Java Management 

Extension (JMX) (Sun Microsystems Inc 2002), where a microkemel called 

JMX MBean server hosts a number of pluggable services, presented as JMX 

MBeans. The role of the microkemel is to initialize all services and configure 

them in the right order, Other components of J2EE server, such as the Java 

Naming and Directory Interface (JNDI) server, EJB containers, transaction 

manager, persistence manager, database accesses are all implemented as 

MBean services, and these services can enquire the JMX MBean server about 

other available services so that they can interact with each other. When an 

MBean services relies on the service of provided by another MBean service, 

one can specify this dependency in a configuration file, and the JMX MBean 

server is responsible for creating and initializing those services in the right 

order. 

2.6.1.1 JBoss EJB Containers 

JBoss EJB containers host the EJB components and provide them access to 

other services in JBoss. The components are deployed by a service called 

EJBDeployer (orgjboss.ejb.EJBDep/oyer). The deployer first inspects the 
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deployment descriptor file4 to find out the configuration of the component. 

Based from that information, the deployer then creates the container that will 

host that component, and initializes the container according to the 

specification of the component. The containers themselves are deployed as 

services that depend on other components such as transaction service, proxy 

factory (factory for creating proxy objects), persistence manager and lock 

manager (see Figure 2-6). 

Container 

nterceptors 

Proxy 
Factory 

Instance 
Cache 

Instance 
Pool 

Persistence 
Manager 

BeanLock 
Manager 

Figure 2-6 EJB Container and its relationship with other components in JBoss 

During the initialization of the container (as part of component deployment), 

the container creates a representation of the component, an object proxy that 

will be used by clients to access the component (see Figure 2-7). The container 

creates the proxy by using a component named as Proxy Factory. The proxy 

contains a set of interceptors that intercept client's request at the client's side 

and an invocation context that contains the identity of the container, the JNDI 

name of the component, the EJB meta data, and the invoker. The invoker is the 

one that relays client's request to the server. 

4 In JBoss 3.2, the deployment descriptor is described in three files: ejb-jar.xml. jaws.xml and jboss.xml. 
These files are included in the jar file that contains the components and they describe the configuration of 
those components. 
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org.jboss.proxy.ejb.Homelnterceptor 

I nvocationContext 
• container id 
• JNDI name 

I org.jboss. proxy. Securityl nterceptor 

• EJB metadata 
org.jboss. proxy. Transactionl nterceptor • invoker 

org.jboss.invocation.lnvokerlnterceptor 

Figure 2-7 Proxy object 

On the server side, requests from clients are handled by an invoker service. 

This service inspects the invocation context on each request, and delegates the 

processing of the request to the appropriate container. 

In JBoss, A container hosts a specific type of enterprise bean component. A 

container has a set of interceptors, and different types of enterprise bean 

component (entity beans, stateless session beans etc.) have different set of 

interceptors. For example, a stateful session bean container has a set of the 

interceptors as below: 

• ProxyFactoryFinderInterceptor: this interceptor is responsible for 

setting the proxy factory on the target container to match the proxy 

factory from the invocation. 

• LogInterceptor: this interceptor is responsible for handling the logging 

for the invocation. 

• TxInterceptorCMT: this interceptor is used for components with 

container managed transactions. It checks the transaction attribute of 

the invoked method, and sets a proper transaction context according to 

the transaction attribute of that method, then passes the invocation to 

the next interceptor. 

• org.jboss.ejb.plugins.MetricsInterceptor: this interceptor measures the 

time for invoking the method and send the result via a message queue 

so that it can be read by other application. 
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• org.jboss.ejb.plugins.StatefuISessionInstancelnterceptor: this 

interceptor is specific to stateful session bean. It gets an instance 

context that contains the state of the accessed bean from the cache 

whenever available; otherwise it creates a new context for the 

invocation. 

• org.j boss.resource.connectionmanager. CachedConnectionInterceptor: 

this interceptor checks for any previous connections opened during the 

previous invocations, and reopens the connections again so that they 

can be used in current invocation. 

• org.jboss.ejb.plugins.SecurityInterceptor: this interceptor is responsible 

for checking the authorization for accessing this method and throws an 

exception if it is not authorized. 

In the container, an invocation is processed first by interceptors, then the 

container invokes the appropriate method on the bean instance, and after that 

the result is passed back through the interceptors again, and sent back to the 

client. The details on how an client request is processed in JBoss are described 

in the next section. 

2.6.1.2 Processing client request in JBoss 

Client Dynamic Invocation Itt Invoker Invoker Container Interceptor EJB 
.... p.r.Q~ .......... t!.~n9!.~L .............. ~ .. :.r.~:~ .. ~.~ ................. p..r.Q~ .. , ... ~.~~~~ ....... ~~.~.~D............... . .. .. , 

j i • + __ ~~ 
--~ ~ ~ Ln. _ invoca.ron he"",ng ~ ~ ~ ~ ~ ~ -T ~ ~ t~'~~-in~~~ hendNng • - - - - -

:.. .................................................................................................................. ' :. .............................................................. __ ............ , 

Figure 2-8 Processing client request in JBoss 

Figure 2-1 provides an overview of the client and server side handling of an 

invocation in JBoss. When a proxy receives an invocation from a client, the 

proxy first checks whether the invocation is a local invocation or a remote 

invocation. Local invocations are optimized so that they do not have to pass 

through the invocation marshalling process. If the invocation is a remote one, 
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then the invocation is marshalled and forwarded to the appropriate container in 

the application server. The initial step in this process is the marshalling of the 

invocation by the invocation handler, which in turn forwards the marshalled 

invocation through a series of client side interceptors to an invoker proxy. The 

interceptors perform some necessary processing (see previous section) and the 

invoker proxy handles protocol specific communications (common invoker 

proxy types are Java RMI or CORBA nOP), sending marshalled client 

invocations and receiving associated replies to/from a JBoss server. At the 

server side, the invoker MBean handles all incoming requests. It first 

unmarshalls the invocation, and passes them to the appropriate container 

where the EJB component exists where ultimately the invocation is handled by 

application logic. Each container may has its own set of interceptors, which 

will perform additional processing (see previous section)to the invocation 

prior and after being process by the bean. 

2.7Summary 

This chapter provided an overview of component middleware concepts with 

particular references to the middleware platform that we will use as a target for 

designing and implementing the available components infrastructure. Among 

other things, we have described how a client request is processed in J2EE 

architecture, and the role of the transaction service in managing the transaction 

over this architecture. Based on this overview, an extension to JBoss to 

provide replicated components can be implemented as interceptors in both 

server and client side, and also as an invoker proxy and invoker MBean as 

well. 

The following chapter deals with the problems and strategies for improving 

the availability of these platforms. We will provide a survey of existing 

techniques for improving the availability for systems similar to the one that we 

have described in this chapter. 
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3 Availability measures for component-oriented 
middleware 

This chapter reviews strategies for improving availability in the component­

oriented middleware infrastructure. Availability is improved by employing 

replication. As there are many participants involved in the infrastructure. an 

integrated approach on how to implement replication in a component-oriented 

middleware infrastructure is needed. The chapter provides a literature re\ie\\ 

on published work in this area and compare them to the work of this thesis 

3.1 Background 

Component-oriented middleware infrastructure, such as the one defined by 

J2EE standards, provides clear separation between components that have 

persistent state, and components for performing computations, that haw only 

non persistent, session-oriented state. Therefore, it is natural to divide the 

replication support for these components into two categories: state replication 

and computation replication. State replication deals with masking data store 

failures to make persistent data highly available to components, while 

computation replication deals with masking application server failures where 

the computations are performed. The structure of this thesis and the literature 

review on this chapter therefore follows this observation. 

There are two common approaches in implementing replication in distributed 

systems: active and passive replication. In active replication (Schneider 

1990), each server replica processes every client invocation. As long as client 

requests are processed in the same order at all replicas, the replicas will 

produce the same output. This naturally requires replicas to be deterministic, 

that the state of a replica is determined only by its current state and the 

message it processes. On the other hand, passive replication (Budhiraja, 

Marzullo et al. 1993) allows nondeterminism by executing client requests only 

on one server, the primary, and distributing the updates to other replicas 

(backups) later on. Most server replication in component-oriented middleware 
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architecture follow the latter approach, due to non detenninistic nature of most 

servers (e.g. because of thread scheduling, 10 interrupts etc.). 

A replication algorithm needs to make assumptions about the failure modes of 

components so that specific fault-tolerant measures can be deployed. Two 

widely used failure assumptions are Byzantine failures (Lamport, Shostak et 

al. 1982) and crash failures. A replica exhibits Byzantine failures when it can 

produce arbitrary (possibly malicious) output when a failure happens. 

Conversely, if a replica stops working when a failure happens and does not 

produce any output, it is called crash failure. By nature, Byzantine failures are 

more difficult to handle than crash failures. However, crash failures 

assumption is frequently considered sufficient for many applications, such as 

applications that are not life-critical (Schneider 1990). 

The task of implementing a replication scheme is considerably simplified if all 

the correctly functioning replicas can be managed as a group with members 

having a mutually consistent view of the order in which events (such as 

message delivery, replica failures) have taken place. Design and 

implementation of fault-tolerant process group systems satisfying certain order 

properties has been a very active area of research during the eighties and 

nineties (Chang and Maxemchuk 1984; Peterson, Buchholz et al. 1989; 

Melliar-Smith, Moser et al. 1990; Binnan, Schiper et al. 1991; Dolev, Kramer 

et aI. 1993; Ezhilchelvan, Macedo et al. 1995). In an asynchronous 

environment where processing and communication delays cannot be estimated 

accurately, accurate detection of a failed component is not possible, as it is 

impossible to distinguish a failed component from a slow one (Fischer, Lynch 

et al. 1985). Process group systems circumvent this impossibility by relying 

on failure suspectors (Chandra and Toueg 1996). It is thus possible for a 

correctly functioning component to be eliminated from its group if other 

members suspect it to have failed. Well engineered systems can certainly 

minimise the probability of such occurrences. 

Assuming components fail independently, to tolerate Byzantine failures, a 

minimum of 3f+ 1 components are needed to mask the failure of f components 

and output results need majority vote from 2f+ 1 components. For crash 
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failures, f+ 1 components are required to mask f components failures, assuming 

functioning components can communicate (i.e. there is no network partition) 

and component failures can be detected accurately; no output vote is required. 

If accurate failure detection is not possible, then 2f+ 1 replicas are necessary to 

mask up to f failure suspicions, with the majority f+ 1 components not 

suspecting each other. 

3.2Assumptions and requirements 

Participants involved in component middleware infrastructure are: clients, web 

servers, application servers, and back-end databases. Application servers 

provide services to support components, such as transactions, persistence, 

security, etc. These services usually reside at the same process as the 

application server. Throughout this thesis we assume crash failure of 

computing nodes (application servers, database machines). After a crash, a 

node is repaired within a finite amount of time and is made active again. We 

choose to implement our replication approaches on application servers 

supporting J2EE architecture; hence it should provide the same correctness 

criteria as single J2EE application server. We also assume that back-end 

databases support ACID transactions. 

One of the key concept of component middleware is to allow developers to 

focus on the specific business task of the components that they have to 

implement, thus the component developers should be relieved from the task 

such as managing access authorizations, persistence, and transactions, and the 

responsibility of managing replication to improve the availability as well. 

These tasks belong to the container implementers. Therefore, component 

replication should also be transparent to both clients and components. The 

transparency requirement imposes the following constraints: (a) no 

modifications to the API between client and component; (b) no modifications 

to the API between component and the container; (c) no modification to the 

existing middleware services and API. In later chapters we will explain in 

detail how replication can be introduced under above constraints. 

One can take a look at each tier separately, and implement replication at each 

tier to enhance the availability of the system. Failure at the database tier makes 
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the persistent data becomes unavailable, and as a result, the whole system is 

also unavailable. Existing application servers as yet do not provide any 

support for managing persistent state replication. This means that they must 

rely on database vendor specific approaches for tolerating database failures 

(e.g. vendor specific database replication techniques). 

At the middle tier, an application server failure causes the computations that 

were active to be lost. Commercial application servers make use of multiple 

application servers deployed over a cluster of machines to mask server failures 

so that these computations can be restarted on any other available server. For 

stateless computations, these scheme works perfectly, but for stateful 

computations, transactions are not supported and there are some limitations 

that are examined in detail in section 3.3. 

At the client tier, a client crash usually does not pose critical issue to the 

availability of the system, as normally it does not cause other clients to be 

blocked from the service. 

One important concept related to availability measures is that of exactly once 

transactions or exactly once executions (Little and Shrivastava 1998a; Little 

and Shrivastava 1998b; Tygar 1998; Frolund and Guerraoui 2000a; Barga, 

Lomet et al. 2002; Frolund and Guerraoui 2002). The concept is particularly 

relevant in web-based e-services where the system must guarantee exactly 

once executions on user requests despite system failures. The problems arise 

as the clients in such systems are usually not transactional, thus they are not 

part of the recovery guarantee provided by the underlying transaction 

processing systems that support the web-based e-services at the server side. 

When failures occur, clients often do not know whether their requests have 

been processed or not. Resubmitting the requests may result in duplication, 

and on the other hand it is also possible the requests have not been processed 

at all. As we discuss in the next section, while existing application servers for 

Enterprise Java Bean (EJB) components do use replication, they do not 

adequately support exactly once transaction capability. For this reason, there 

has been much recent works on replication for supporting exactly once 

transactions over commonly used application servers. Howe\'er. 
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implementation work reported so far has dealt with transactions that update a 

single database only, so do not require two-phase commit. 

The next section describes existing implementations for providing availability 

by employing multiple application servers over a cluster of machines, which is 

suitable for stateless computations. In here we explain why it is not sufficient 

for stateful computations and other limitations of the approach. 

Several approaches on improving the availability by employing state 

replication are presented in section 3.4. The review focuses on approaches that 

improve the database availability by the use of middleware. The concept of 

exactly once transactions and several works that target this problem are 

discussed in section 3.5. 

3.3Availability measures in existing application servers 

Most application server products available on the market currently support 

clustering. Clustering employs multiple servers (web servers, application 

servers) together with a load balancer to mask server failures. A cluster usually 

consists of several commodity low cost PCs located on the same LAN (Figure 

2-1). At the front-end (PT - presentation tier), web servers receive queries 

from clients that usually access applications via web browsers. Before the 

requests reach web servers, typically they are processed by a web switch or 

load balancer (LB) to distribute the load among web servers (Cardellini, 

Casalicchio et al. 2002). In this approach, clients access a server by using a 

virtual IP, which is actually the address of the web switch or load balancer 

device. The device then distributes the load using a mechanism known as 

network address translation (NAT) (Egevang and Francis 1994). The 

mechanism works by editing the IP headers of packets to change the 

destination address for incoming packet and change the source address for 

outgoing packet. Load-balancing can also be employed at DNS (Domain 

Name System) level, by using round-robin DNS which gives different IP 

addresses for the same site name (Brisco 1995). More detail about this 

mechanism can be found in (Cardellini, Colajanni et al. 1999). 
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c: client 
lB: load balancer 
PT: presentation tier 
AT: application tier 
DT: data tier 

Figure 3-1 Three-tier architecture 
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Behind the load balancer components, there are several servers, which make 

up the n-tier system: presentation tier (PT) - web servers, application tier (AT) 

and data store tier (DT). On this system, one tier becomes a client for the next 

tier, for example, PT is the client for AT, and AT is the client for DT. This 

composition into tier is a logical one, and it is not necessarily reflected in 

hardware. One can, for example, configure a server machine as both 

presentation tier and application tier. 

In practical situations one can either co-locate the presentation tier and the 

application tier on the same machine or separate the presentation tier and the 

application tier on different machines. The data store tier is usually located on 

a different machine. Co-locating the presentation tier and application tier 

reduces the latency for calls from the presentation tier to the application tier. 

However, one may need to scale the presentation tier only or the application 

tier only, and in this case, separating the presentation tier and the application 

tier is the only way to make this possible. The tier separation makes it more 

flexible to choose which tier needs to be scaled up. 
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At the application tier, a naming server or resource locator plays the similar 

role as the DNS for the Internet. For Java-based systems, such as J2EE 

application servers, this role is provided by a JNDI server. The JNDI server 

gives component home interface references to the web servers (the 

presentation tier), which are the clients of J2EE application servers, so that 

they can send requests to the components hosted by the application servers. 

Remote calls from the presentation tier are always initiated by queries to the 

JNDI server, in order to get a home interface of the accessed component. 

There are three possibilities in configuring the JNDI server in a cluster 

environment. One can configure centralized servers (one or more) designated 

as JNDI servers, one can put independent JNDI server on each machine that 

host the application server and one can configure each JNDI server on each 

machine to share global reference to all components from all servers (Kang 

2001). For the first approach, the main problem is if all of the JNDI servers 

crash, the system becomes unavailable even if there are some application 

servers still available. Furthermore, binding remote references from all servers 

to JNDI servers needs some significant time during recovery or initiation 

phase. On the other extreme, having each application server has its own JNDI 

server independently running on the same machine may increase the 

availability, but as each JNDI server does not know the existence of other 

application servers, there should be a mechanism to enable clients to find out 

other JNDI servers in case of failure. In third approach, each application server 

has its own JNDI server, like in the second approach, but each JNDI server 

maintains references to other application servers as well, thus clients can fail­

over directly without contacting other JNDI server when the server that a 

client contacted fails. This approach has the same approach as the first one, i.e. 

requires significant time during the recovery or the initiation phase for the 

binding process. 

Application server clustering typically are characterised for: 

Scalability: the proposed configuration should allow the overall system to 

service a higher client load than that provided by the simple basic single 
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machine configuration. Ideally, it should be possible to service any given load. 

simply by adding the appropriate number of machines. 

Load-balancing: the proposed configuration should ensure that each machine 

or server in the configuration processes a fair share of the overall client load 

that is being processed by the system as a whole. Furthennore, if the total load 

changes over time, the system should adapt itself to maintain this load­

balancing properties 

Failover: if anyone machine or server in the system were to fail for any 

reason, the system should continue to operate with the remaining servers. 

Transparent failover (failures are masked from a client, who minimally might 

need to retransmit the current request) is an ideal, but rarely achievable with 

the current technology, for the reasons to be outline below. However, the 

important thing in current systems is that forward progress is possible 

eventually and in less time than would be the case if only a single machine 

were used. 

3.3.1 Limitation in existing application servers availability 

At the application server side, there are three types of components: stateless 

components, session-oriented conversational components and persistent 

components. In general, clustering provides limited fail-over capability for 

components hosted in application servers. For a stateless component, it is 

straightforward, as it has no state. The application server only needs to ensure 

that there is no duplication of execution when it tries to re-execute the query 

on a different server. For session components, many vendors employ in­

memory replication for the session state among application servers. This is 

perfonned by propagating the session state to other servers on each invocation. 

However, handling session state replication is not a trivial task. Session 

components may involve in transactional invocation accessing database via 

entity beans, and when they fail, most clustering implementations simply 

create new sessions on a new server, and the client invocations are re-executed 

from the beginning as new transactions. This may result in inconsistency of 

the session state, as the updated state of the session from previous transaction 

is also wiped off, as the session is created as a new one. When the failure 
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happens in the middle of transaction commitment process, the outcome of this 

process is not known to other application servers. For single database access, 

the associated client invocation may either be executed twice (the transaction 

commits successfully in the failed application server and the backup assumes 

the transaction fails and re-executes the invocation) or may not be executed at 

all (the transaction fails to commit in the failed application server and the 

backup assumes it commits successfully), violating the exactly once execution 

property. For multi-database access, this may results in unnecessary blocking 

as the old transactions on the failed server may still have a hold on some 

resources. New sessions that are started may be blocked since they may 

require that same resources. The details of the problems and solution related to 

this approach will be discussed when we describe the implementation of 

computation replication in chapter 5. A summary of existing approaches that 

handle the same issue is provided in the literature review of exactly once 

execution in section 3.5. 

One can also avoid in-memory replication for session state by always 

maintaining the state on an external database. The server failure is handled by 

restarting the component on a new server with the state from the database. 

This way, conversational components and persistent components are handled 

the same way, as persistent state. By this mechanism, the main focus now is 

how to make the database-tier fault tolerant. This will be the focus of chapter 

4, when we discuss state replication on component middleware. A summary of 

existing approach for state replication is described in the section 3.4. 

3.4 State Replication 

Replication has long been researched in both database and distributed systems 

communities. Research on data replication in distributed systems has 

emphasized different targets and requirements than the one in database 

community (Wiesmann, Pedone et al. 2000b). In distributed systems research 

the focus has been mainly to provide fault tolerance. Database replication 

work has always assumed transactional data, while on distributed systems this 

is not a primary assumption. The following sections provide literature review 
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of database replication works that are relevant for our state replication 

approach, focusing on works that target middleware-based replication. 

3.4.1 Database replication in general 

Transactional data replication has also been widely researched (Bernstein, 

Hadzilacos et al. 1987; Gray, Helland et al. 1996). Many database replication 

strategies have been devised, but few only ever applied in commercial 

products (Kemme and Alonso 2000). The reason for this is that most 

approaches are not practical due to performance and scalability reasons. 

However, some vendors now provide database replication as part of their 

solution. A summary of these implementations and a discussion on how they 

can be used to support three tier architecture can be found in (Vaysburd 1999). 

To guarantee consistency, the replicated system must appear to the client as if 

it only has a single copy. This correctness property is known as one-copy 

serializability (Bernstein and Goodman 1985). Many algorithms satisfy this 

property at all times by employing eager replication scheme, i.e. by 

propagating state update to all replicas eagerly before the transaction commit. 

In this way, all replicas will always be up to date with the latest committed 

transaction. 

Available copies algorithm performs eager replication by sending write 

operations to all available replicas and sending read operation to any (nearby) 

replica. Performing transactions concurrently on different replica may lead to 

deadlocks that can only be detected later when the transaction is about to 

commit. To avoid this, one replica can be assigned as a primary copy, and all 

updates are performed first on this copy to determine any conflict with other 

transactions and then the updates are propagated to other replicas before the 

transaction commits. 

As opposed to eager replication schemes, propagating state update to replicas 

can also be done lazily, i.e. after the transaction commit. This scheme is called 

lazy replication scheme. With lazy replication algorithms, it is possible that 

serializability violation is detected after some transactions commit, and these 

transactions cannot be aborted anymore. To keep the database consistent, the 
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effect of these transactions must be undone either by performing compensating 

transactions that can undo the effect of committed transactions or by 

performing manual intervention by a human operator. Despite this downside, 

many commercial products choose to implement lazy replication algorithms as 

they have higher performance compare to eager replication ones (Gray, 

Helland et al. 1996). 

Recently, following the success of group communication approach in 

distributed systems, researchers have started to investigate the use of group 

communication for enhancing database replication (Agrawal, Alonso et al. 

1997; Pedone, Guerraoui et al. 1998; Stanoi, Agrawal et al. 1998; Holliday, 

Agrawal et al. 1999; Kemme and Alonso 2000). A study in (Wiesmann, 

Pedone et al. 2000a) provides classifications of database replication schemes 

and suggests that group communications can be used for developing better 

eager replication schemes. Group communication, for example, can be used to 

define the order of conflicting transactions and to simplify the commitment 

protocol (Kemme 2003). (Kemme 2003) describes some of the issues In 

employing group communication for database replication as follows: 

• The replication mechanism should allow concurrent execution of 

transactions as long as they do not conflict. This is a difficult task as it 

requires extensive access to other components within the database 

systems. 

• Most implementations only allow a simplified transaction model, for 

example by only allowing a single SQL statement for each transaction. 

Multi-statements transaction execution requires the replication 

subsystem to track all changes performed by a transaction that might 

lead to a considerable overhead without adequate support from the 

database system. 

• More investigations are still needed to defme weaker transaction 

models that can still be acceptable for practical use and to develop a 

more adaptive failure-handling and recovery mechanism. 
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Integrating group communication sub-system into the database architecture 

requires access to the internals of the database, and this makes such schemes 

difficult to work with existing commercial databases. To relieve this problem, 

a middleware layer has been proposed to provide the required functionality for 

integrating group communication based eager replication schemes into 

existing commercial databases (Jimenez-Peris, Patino-Martinez et al. 2002). 

However, middleware approach to database replications has some drawbacks. 

First, it cannot access the internal databases being replicated, meaning that it 

cannot access the locking mechanism used by the database, and possibly it has 

to perform redundant concurrency control mechanism that has already been 

performed at the database. The middleware layer must also have the ability to 

extract the concurrency unit information (e.g. tables, records) from the client 

queries (i.e. from SQL queries) so that it can perform its own concurrency 

control. But, on the other hand, middleware-based database replication is more 

suitable for middleware-based application architecture, such as web server 

clusters, J2EE-based and CORBA-based e-services. 

3.4.2 Middleware-based data replication 

Following the term used in (Patino-Martinez, Jimenez-Peris et al. 2005), we 

can classify middleware-based database replication into two categories: black 

box approach and grey box approach. Black box approach treats databases as 

black boxes and does not require any modification from existing database 

implementation, while grey box approach assumes the middleware replication 

has limited access to the database and therefore this approach may require 

some modification from existing database implementation. There are some 

research projects investigating middleware-based database replication, and 

these will be discussed in the next sub chapters. 

3.4.2.1 Middle-R 

Middle-R is a set of group communication based replication protocols that are 

implemented at the middleware layer developed as part of ADAPT project 

(Patino-Martinez, Jimenez-Peris et al. 2005). It requires some access to the 

internals of the database to support the replication, hence this approach is 

considered as grey box approach. In Middle-R, the database needs to be 
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modified to provide support for obtaining the write-set of a transaction and for 

applying the write-set into the database. 

The model assumes that the middleware layer is located as the same site as the 

database. Thus there is one to one correspondence between a middleware layer 

and a database instance. The system runs on an asynchronous system 

augmented with failure detectors that can provide reliable multicast with 

strong virtual synchrony. 

Data in Middle-R is partitioned into basic conflict classes (Bernstein, Shipman 

et al. 1980). A conflict class is a unit of concurrency control; this can be a 

record, a table or even a database partition. Each basic conflict class is 

associated with a queue. A transaction that requires access to more than one 

basic conflict class is said to access a compound conflict class (a set of 

nonempty basic conflict classes). Each conflict class (either basic or 

compound) has a master site that will execute all transactions that access this 

conflict class. Therefore, each transaction will have a master site that executes 

the transaction and transactions that access the same set of conflict classes will 

always be executed at the same site. 

The basic algorithm works as follow: a client can submit a request to any 

middleware layer. The request contains all operations that are to be performed 

within a transaction. Hence all accessed data items are also known. Upon 

receiving the request, the middleware layer broadcast the request to all sites. 

The master site for that transaction puts the request on a queue for the basic 

conflict class (or basic conflict classes) that is accessed by that transaction. 

The master site always executes the transaction that comes up as the first on 

all queues of basic conflict classes that it access. After the transaction finish, 

the master multi casts the update write set for that transaction to all sites. Read­

only transactions are processed by reading from a database snapshot; therefore 

they can be executed directly at the site that receives the request from the 

client. 

There are three different protocols described in (Patino-Martinez, Jimenez­

Peris et al. 2005). The first protocol, DISCOR, limits transactions by only 

allowing them to access one basic conflict class only. The second protocol, 
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NODO, allows transactions to access multiple basic conflict classes but it may , -
abort transactions whenever a possible non serializable execution is detected. 

The third protocol, REORDERING, reduces the amount of transaction aborts 

by performing transactions reordering on non master sites so that those 

transactions are still serializable hence are not aborted. 

The first protocol, DISCOR, orders all conflicting transactions at their master 

sites, and upon finishing those transactions, the master sites multicast the write 

set to other sites using FIFO ordering. As each transaction can only accesses 

one basic conflict class and each basic conflict class has a unique master site, 

there will be no overlapping/conflict between transactions that are executed on 

different sites. Hence, the execution is serializable since all conflicting 

transactions will always have the same order defined by their master sites. 

The second protocol, NODO, allows transactions to access more than one 

basic conflict class by defining compound conflict classes that contain all 

basic conflict classes accessed by those transactions. In this protocol, requests 

from clients are multicast to all sites using total order, so that each server 

receives client requests in the same order. To allow executing transactions as 

soon as possible, the protocol employs optimistic total order multicast 

(Kemme, Pedone et al. 2003). Under optimistic total order multicast, each 

multicast message is delivered twice, i.e. the message is first delivered 

optimistically (OPT -delivered) as soon as possible after the message is 

received by a site and later on the message is delivered again for the second 

time (TO-delivered) after the total ordered has been computed. When the 

transaction is optimistically delivered on a site, the transaction is added to all 

basic conflict class queues that it accesses. The master site executes the 

transaction that is ready, i.e. it comes up as the first on the queues of all basic 

conflict classes that the transaction access. However, the transaction cannot be 

committed yet. It must wait for the TO-delivery for the transaction, the one 

that define its total order. If the TO-delivery for a transaction arrives but that 

transaction is still blocked by other transactions, then the blocking transactions 

are either aborted (if they are local transactions) or reordered (if they belong to 

other sites). 
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The third protocol, REORDERING, is a modification of NODO, by allowing 

some transactions that are executed at the same master site to follow different 

order from the one dictated by the total order multicast, in order to reduce the 

number of aborted transactions. Not all transactions on one master site can be 

reordered. If T2 blocks TI and the set of T2's basic conflict classes is not a 

subset of the set of TI 's basic conflict class, then when TI arrives before T2 

according to the total order delivery, T2 must still be aborted to allow the 

execution of TI. Otherwise, if T2's basic conflict classes are a subset of Tl 's 

basic conflict classes, then TI can wait until T2 finish and the new order is 

multicast to other sites after T2 finish. 

The middleware layer in Middle-R implementation runs on each database site, 

which is different from J2EE model, where there is no one-to-one 

correspondence between middleware layer server (i.e. the application servers) 

and the databases. The approach also assumes that all operations to be 

executed within a transaction are submitted as a request to the database. It 

cannot be used for applications that require multi-database transactions, as two 

phase commitment is not supported. Furthermore, it requires some database 

modifications to support the protocol. Therefore, the approach does not appear 

to be entirely suitable for J2EE application servers, such as the one being 

targeted in this thesis, i.e. replicating database from the application servers 

directly without any modification required for the database. 

3.4.2.2 Ganymed 

Ganymed (Plattner and Alonso 2004) is a middleware-based replication tool 

designed to support transactional web applications. Instead of I-copy 

serialization, it supports snapshot isolation (Berenson, Bernstein et al. 1995), 

which is strictly weaker than I copy serializability. In snapshot isolation, 

transactions read from a database snapshot (based on the value of the data at 

the time the transaction started) so that they are not blocked from accessing 

data that being used by other transactions. As the result, sometimes a 

transaction must be aborted, i.e. when a transaction T reads data x and there is 

another transaction that commits while the transaction T is still active, and also 

accesses data x that is used by T. 
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Ganymed architecture consists of a scheduler and a set of database replicas 

that support snapshot isolation. One replica is designated as a primary copy 

while the rest are backups. The scheduler coordinates client requests by 

sending all update transactions to the primary copy and sending read only 

transactions to the backups. The scheduler also assigns a timestamp for each 

transaction at the start of the transaction, which will be used by database to 

determine which data version that will be accessed by that transaction. At 

commit time, after the primary copy successfully commits the transaction, the 

scheduler extracts the write set for that transaction from the primary and sends 

the write set to all backups. 

The main limitation of Ganymed is that it reqUIres database that support 

snapshot isolation. This makes the approach cannot be used directly in multi­

database transactional setting (Schenkel, Weikum et al. 2000). Furthermore, it 

also requires database support for write set extraction. For implementing it on 

J2EE architecture, Ganymed scheduler can be placed as an intermediate layer 

between application servers and database servers. 

3.4.2.3 Distributed versioning 

Similar to Ganymed, Distributed versioning (Amza, Cox et al. 2003) also 

implements replication tool that targets transactional web applications. In this 

approach, the middleware layer performs its own concurrency control by 

maintaining the version number of each table on the database. Requests from 

clients are sent to databases only after they are cleared from conflicts, i.e. there 

is no other transaction that accessing the table with lower version number. 

Distributed versioning requires the transaction to declare all the tables that it 

access at the beginning, which will be used to determine conflict among 

transactions. When a client starts a transaction, it sends a list of the table 

names that will be accessed by this transaction together with their access mode 

(read only or write). The middleware layer assigns a new version number for 

each of these tables. When the client send an operation to access a table, the 

middleware layer compares the version number of the table possessed by the 

transaction (the one that is assigned when the transaction starts) with the 

version number of the table that is currently on operation. The middleware 
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layer sends the access to the database only if the number matches. When the 

transaction commits, the scheduler increases the table versions accessed by 

this transaction. 

Distributed versioning duplicates the concurrency control mechanism that 

already been performed at the databases. It avoids deadlock by ensuring all 

access to tables on the database will not contain circular. As it allows non 

strict execution of transactions (Bernstein, Hadzilacos et al. 1987; Breitbart, 

Georgakopoulos et al. 1991), the approach may not be suitable for distributed 

transaction settings. As with Ganymed approach, it requires a single scheduler 

that controls all accesses to the database, and since the scheduler performs 

more tasks compare to Ganymed, it may become the source of bottleneck. 

However, for implementing it on J2EE application servers, it has the same 

place as Ganymed, i.e. as an intermediate layer between application servers 

and database servers. 

3.4.2.4 C-JDBC 

Clustered JDBC (C-JDBC) (Cecchet, Marguerite et al. 2004) is a middleware 

for database clustering developed by ObjectWeb consortium. It provides 

transparency for clients to access a set of replicated and partitioned databases 

via a standard JDBC driver. C-JDBC architecture consists of C-JDBC drivers 

that run as part of clients' process, C-JDBC controller and backend databases. 

C-JDBC controller, via C-JDBC drivers, provides a virtual database to clients 

by relaying requests to appropriate databases transparently. C-JDBC schedules 

all requests from clients by sending read operation to any single database and 

sending update, commit or abort operation to all databases. C-JDBC also 

queues update access to the same virtual database so that at any given time 

only a single update, commit or abort operation is in progress. To allow faster 

response, C-JDBC also provides support for partial replication. In this setting, 

instead of replicating full database in all replicas, the database is partitioned 

into several databases, which will be provided by different backend databases. 

C-JDBC then parses client requests and sends those requests to the appropriate 

backend database. 
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Failed replica is handled by disabling it and removing it from further access. 

Before a failed replica is allowed to join in again, it must update its state to the 

latest state via external mechanism. C-JDBC allows configuration of several 

controllers that share information about their backend databases. When one of 

the controller fails, the other controllers can take over its backend databases so 

that it can be used. However, the paper does not provide information about 

whether the clients connected to failed controller can fail-over to the new 

controller. 

Among the other implementations described above, C-JDBC is the most 

similar to our implementation for state replication in chapter 1. However, our 

implementation is developed independently from C-JDBC, and at that time the 

author did not have any knowledge about C-JDBC development. Compared to 

C-JDBC, we move a step further by implementing JDBC driver replication to 

allow clustering configuration, therefore the implementation described in 

chapter 4 does not require the existence of a single controller to intermediate 

access from application servers to databases. 

3.5 Computation replication 

As it has already been mentioned at the beginning of this chapter, one 

important requirement that availability measures must meet m multi-tier 

architecture is that of exactly once executions. The clustering approach 

described in section 3.3 and the replication mechanism supported in existing 

middleware products currently do not provide exactly once execution 

guarantee. If a failure happens just before the server (or cluster of servers) 

sends the reply back to the client, the client does not know whether its request 

has actually been executed or not, and if the client resends the same request, it 

may result in duplicated invocation. 

If failure happens in the middle of request processing, say m application 

server, the clustering approach does not guarantee that the system will 

automatically failover correctly to another available server. Clustering can 

only help if a server fails exactly in-between requests from clients. 
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In the following sub chapters, we will describe several mechanisms and 

solutions to solve the exactly once execution problem. 

3.5.1 Transactional queue 

The most popular approach for solving this problem is by employing 

transactional queues (Bernstein, Hsu et al. 1990). In this approach, clients 

submit a request to a transactional queue as a transaction. The server then 

retrieves the client request from the queue, processes the request, and submits 

the result to the queue as a separate transaction. The client receives the result 

back from the queue as another transaction. By this way, the requests and their 

results cannot be lost, as they always move from one node to another under the 

control of transactions. If there is a failure, the transaction mechanism 

guarantees that the request (result) is either available at the original place or 

the new place. 

One can make exactly-once execution of requests by making the whole 

process (client submits request, server process the request and client receives 

reply) as a transaction, however, this way makes the server holding all 

involved resources until the transaction finishes, thus increases resources 

contention. Transactional queue avoids unnecessary resource blocking by 

separating the request sending, request processing and reply into separate 

transactions. This approach has been supported in many On-Line Transaction 

Processing (OLTP) products (e.g. IBM MQ Series, BEA Tuxedo, Microsoft 

MTS). 

Multi-transactions execution within one client request is supported by 

extending the model to store the temporary result in-between transactions in 

separate queues. For example, if an execution of a client request r1 is to be 

executed as three transactions tl, t2 and t3, then the client first submits the 

request to the queue for client request, then the server retrieves that request to 

be executed as t1, and submits the result to another queue, which then will be 

retrieved again for the execution of t2, and so on. One problem with this 

approach is that if the client wants to abort the execution after the first 

transaction of the multi-transactions request has committed. The only way to 

cancel that committed transaction is by executing compensating 
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transactions(Korth, Levy et al. 1990) to undo the effect of committed 

transaction, which on some cases may violate the ACID properties of the 

transactions. 

However, this approach requires developers to develop applications in such 

way that no state kept in the application servers between successive requests 

from clients. All the state either kept in the requests themselves or in the 

backend database servers. From the performance point of view, this approach 

also requires at least three transactions for each client request: client submits 

the request, the server processes the request and the client retrieves the result 

from the queue. 

3.5.2 Transactional client 

(Little and Shrivastava 1998a) extends the transactional guarantee to the client 

side by making the web browsers as part of the transaction processing. This is 

done by making the browser as a resource which can be controlled by the 

resource manager from the server side. The browser also should be able to 

store its state persistently, and this can be implemented via mechanism such as 

cookies. In this way, the exactly once execution problem is guaranteed as 

whenever there is a failure (either on the server or on the client), the 

transaction will be aborted, and all the changes at the client side will be 

cancelled automatically. The drawback of this approach is that it requires the 

clients to be transactional. 

CORBA with Object Transaction Service also allows client to be transactional. 

Felber and Narasimhan (Felber and Narasimhan 2002) implement failover 

capability on the client-side by employing multi-profile lOR (object 

references). This lOR enlists all available server replicas for that object. When 

the primary server fails, the client-side ORB will transparently find new 

available server based on the list of addresses contained in the lOR. 

3.5.3 E-transactions 

Frolund and Guerraoui (2002) approach the problem by first defining e­

transaction (Exactly-once transaction) that describes the semantic of 

transaction execution in three-tier architecture. The specification extends the 
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transactional guarantee to the client by requiring that the client will always 

receive the result of its request as long as it does not fail. A client submits 

requests to an application server; the application server processes requests, 

interacts with databases and sends the result back to the client. Application 

servers are replicated to guarantee that they are always able to compute the 

result, to update the state from the database and to return the result back to the 

client. 

Formally, e-transactions specification is as follows. An e-transaction has three 

properties: Termination, Agreement and Validity. Termination guarantees 

liveness, meaning that every request will always have a result, as long as the 

client that issues them does not crash. Agreement guarantees safety, that every 

computation gives correct result, and Validity excludes trivial solutions to the 

specification. 

Properties of e-transactions 

Termination. (T.I) If the client issues a request, then, unless it crashes, the 
client eventually delivers a result. 

(T2) If any database server votes for a result, then the 
database server eventually commits or aborts the result. 

Agreement. (A. I ) No result is delivered by the client unless the result is 
committed by all database servers. 

(A.2) No database server commits more than one result for 
the same request. 

(A.3) No two database servers decide differently on the same 
result 

Validity. (V.1) If the client issues a request and delivers a result, then 
the result has been computed by an application server with 
the request as a parameter. 

(V.2) No database server commits a result unless all database 
servers have voted yes for that result. 

Table 3-1 E-transaction properties 

The specification relieves the client from being transactional while still 

guaranteeing end-to-end reliability by requiring the correctness of e­

Transactions applies only as long as the client does not crash. 
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There are three different implementations described for the e-transaction. In 

these implementations, application servers are modelled as stateless servers. 

They do not maintain state across multiple client requests. They also do not 

model chained invocations, where an application server invokes services from 

other application servers. The first one (Frolund and Guerraoui 2002) solves 

the problem by making the application servers available as primary backup 

replicated servers. When the primary fails, the client reissues the request to the 

backup after timeout period and one of the backup takes over the computation 

and returns the result back to the client. This solves the transaction 

commitment blocking problem as the application servers take the role as 

replicated transaction coordinator as in (Reddy and Kitsuregawa 1998). As 

long as there is an application server available (with the assumption that the 

databases are always available or will be recovered within a reasonable time), 

the algorithm solves the e-transactions problem above. The protocol assumes 

the existence of perfect failure detectors5 (Chandra and Toueg 1996) among 

application servers, as it is required for the primary backup scheme (Budhiraja, 

Marzullo et al. 1993). 

The second implementation (Frolund and Guerraoui 2001) employs 

application servers that relaxes the perfect failure detector requirements. This 

protocol implements e-transactions on asynchronous environment augmented 

with eventually perfect failure detectors between application servers. The 

abstraction used for the synchronization is write-once register objects (wo­

registers). This objects record once only and subsequent read will consistently 

result the first value written. There are two wo-registers used, say regA and 

regD. for Upon receiving a client request, an application server (say appA) 

writes a record containing the application server identity into regA. This step is 

necessary to avoid other application servers execute the same request, and also 

to record the fact that appA is computing the result. After computing the result 

and preparing the transaction to commit, appA writes the transaction commit 

outcome into regD and sends the result back to the client. If at later time appA 

fails, another application server (say appB) that takes over the computation 

5 Perfect failure detectors has strong accuracy and strong completeness. They never suspect correct 
processes and all correct processes will eventually suspects all crashed processes. 
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knows from regA that appA has probably performed the computation and 

appB must check regD to find out if there is any result for that request. 

The third implementation (Fro lund and Guerraoui 2000b) discusses a 

pragmatic approach in single database context. In this situation, the protocol 

removes the need for coordination directly at the application servers, and 

pushes it back to the database layer via testable-transaction abstraction. 

Testable-transaction abstraction is an abstraction mechanism that allows the 

application server to check the outcome of a transaction, even after the 

transaction finishes. Thus, application servers become independent against 

each other, and as the result this, the system becomes more scalable. 

The key issue in e-transactions and its solution lies on the model of application 

servers as stateless servers. In this context, the only state that needs to be 

handle when the application server fails is the transaction context (and the 

transaction outcome decision, if exist). Therefore, when the system has only 

one database, such as the one in the pragmatic approach above, one can even 

push all the required state information to the database. This model choice also 

removes the difficulties to handle chain invocation between application 

servers, as they don't handle the state by themselves. Any failures can be 

transferred to another application server, as long as the database has not 

committed the transaction yet. 

Stateless server approach is suitable for some of internet-based applications. 

However, for many applications, this requires developers to structure the 

applications so that no state is kept in the application server between client's 

requests. The session state, if any, must also be kept in the backend database, 

which incurs additional overhead. In our approach, we model the application 

servers as stateful servers, capable of maintaining session state between 

requests which is encapsulated in stateful session beans, in addition to the 

transactional data maintained by the database. 

3.5.4 Interaction contract 

(Barga, Lomet et al. 2004) takes a different approach on how to guarantee 

exactly once execution on internet-based e-services. They focus the study on 
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how to do the recovery when there is a failure. In this approach. there is no 

replication of servers or databases, but their solution is focused on how to 

properly perform checkpoints and message logging. In order to do this. 

components are classified into three types: persistent components I e.g. web 

servers, application servers, and browsers), transactional components (e.g. 

database servers) and external components (user displays. printers). 

Persistent components have persistent state, transactional components haw 

persistent guarantee only when transactions commit, and external components 

do not have persistent guarantee at all. Browsers are considered as persistent 

components; therefore they must have logging capabilities to support the 

recovery process. All components are required to be piecewise deterministic 

(PWD) (Strom and Yemini 1985), meaning that components can recowr by 

restoring their state from the previous checkpoints and replaying all input 

messages that arrive after the last checkpoints. 

The baseline algorithm for implementing recovery guarantees for component 

applications is based pessimistic logging. Components log all incoming and 

outgoing messages and immediately store them in stable storage. On recO\ery. 

a component can therefore start its state from its last stored state and replay the 

incoming messages received after that. This baseline algorithm can be 

optimised by avoiding the logging on the receiving components. When a 

component fails, on recovery it can asks other components to resend the lost 

messages. 

Interactions between these components are specified as contracts, so that each 

component can manage its logs and checkpoints independently as long as it 

conforms to the specified contracts. There are four types of contracts specified 

between the above three components: Committed Interaction Contract 

(CIC) and Immediately Committed Interaction Contract (JCIC) for the 

interaction between persistent components; External Interaction Contract 

(XIC) for the interaction between external components and persistent 

components; and Transactional Interaction Contract (TIC) for the 

interaction between persistent components and transactional components. CIC 

reduces the number of force-logging required for the interactions between 

persistent components, while ICIC is similar to the baseline algorithm 
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described above. XIC allows duplication for messages sent to external 

components, and also allows best effort guarantee only for input messages 

from external components. TIC guarantees the persistent state in persistent 

components only after the transaction is expected to commit, but if the 

transaction is aborted or rollback, only the transaction's effect on the 

transaction component that is erased, and there is no guarantee at all at the 

persistent component state. 

Although this approach has the benefit of reduced numbers of forced logs 

required, compared to pessimistic message logging (Alvisi and Marzullo 

1998), the contract does not specify clearly about the state of the persistent 

components when the transaction is not committed (aborted or cancelled). An 

implementation that is simply let the uncommitted state 'poison' the persistent 

component is fine, according to the specification. 

The notion of component in this approach refers to a software application as a 

whole, such as web servers, application servers, database servers while our 

approach uses the notion of component as a smaller piece of software such as 

EJB beans and servlets. To compare both approaches, we can assume that the 

state and the log of a software application (e.g. an application server) as the 

composite of all state and logs of the smaller components (e.g. EJB beans) that 

it hosts. Therefore, the composite of EJB beans in our approach becomes the 

persistent component in the interaction contract approach. 

The interaction contract also assumes the interaction between persistent 

components and transactional components are always on one-to-one basis. 

Furthermore, it also assumes that the commitment process consists of single 

commit request from the persistent component and a commit reply from the 

transaction component, which rules out the two phase commitment required 

for the distributed transaction setting. One can assume that two phase 

commitment can be seen as a single commit request-reply interaction, i.e. the 

first request that initiate the commitment process (the prepare message) is 

considered as the commit request from the persistent server and the last reply 

that concludes the commitment process (the transaction commit/abort 

confirmation message) as the commit reply from the transactional component. 
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But this does not govern the interaction between a persistent component and 

two or more transactional components, which can happen in distributed 

transactions. For example, when a persistent component fails in the middle of 

two phase commitment which involve two other transactional components, the 

transactional interaction contract (TIC) fails to distinguish the state of 

transaction commitment between before taking a decision for the transaction 

outcome (before the first phase of the 2PC finishes) and after taking the 

decision (after the second phase of the 2PC starts). This distinction is 

necessary when we replicate the persistent component (e.g. the application 

server), and can avoid unnecessary blocking on the resources held by the 

transactional components. 

3.5.5 J2EE replication framework 

As part of ADAPT project6, Babaoglu et al. developed a framework for 

prototyping J2EE replication (Babaoglu, Bartoli et al. 2004). They approach 

J2EE replication by creating a framework that provides hooks for 

implementing replication algorithms on top of existing J2EE servers. The 

framework intercepts client invocations, both at the client's side and also at the 

server's side, performs some processing, passes the control to the replication 

algorithm and returns the execution control back to the J2EE server (see 

Figure 3-2). 

Replication algorithm 

ADAPT framework 

client 

J2EE server 

Figure 3-2 ADAPT framework (Babaoglu, Bartoli et al. 2004) 

6 ADAPT: Middleware Technologies for Adaptive and Compos able Distributed Components. 
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The framework provides hooks for intercepting request processing at three 

points (Figure 3-3): at the client ' s side just before control lea es the caller ( 1 . 

at the client's side but inside the server provided stub (2) and at the ser\' r 

side before the request is processed by the component (3a and 3b). 

Client Server 

Figure 3-3 intercepting points on ADAPT framework (Babaoglu, Bartoli et al. 2004) 

Interception point 1 is provided to handle client replication . When the client is 

replicated, the framework provides the replication algorithm to synchronize 

client's request with other client replicas . Interception point 2 is for handling 

failover when a target server fails . Interception point 3 is to control the state 

replication and propagation at the server's side. For EJB replication 

interception point 3 is divided into two points: the first point (3a) is before the 

component reference is resolved, and the second point (3b) is after the 

reference and other properties such as security and transaction have been 

resolved. Interception point 3a is useful when the replication algorithm needs 

to instantiate a component itself, and interception point 3 b is necessary as the 

replication algorithm may need the transaction context and other component 

properties that are only available after the component reference has been 

resolved. The framework also intercepts accesses to/from JNDI service and 

transaction service. 

ADAPT framework has been used as the basis for a stateful EJB replication 

(Wu, Kemme et al. 2004) which will be described in the next section. Our 

approach is similar to this project, although we de elop it independentl . 

However, we think that the inception points pro ided by ADAPT framework 

is not sufficient if we want to handle replication that supports distribut d 

transactions. For handling distributed transactions, the replication aJgorithm 
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must possess the information about the last status of the transaction outcome. 

especially during two phase commitment, and this information cannot be 

deducted by simply intercepting the transaction manager interaction with the 

resources and the application server. We argue that modifying the transaction 

manager is necessary if we want to properly handle replication that support 

distributed transactions. 

3.5.6 Stateful EJB replication 

Wu, Kemme et al. (2004; 2005) deal with the case of stateful EJB replication, 

the same platform that is used in this thesis. As it has been mentioned in the 

previous section, the algorithm is implemented using the ADAPT framework. 

The algorithm assumes that the clients and EJBs are not multithreaded and are 

blocked when sending requests to the application servers or other EJBs. 

Therefore, there is no concurrency problems for stateful session beans as they 

can only be used by one client with no multithreading. Our approach follows 

the same assumption. The algorithm also assumes that when an application 

server fails, all active connections to the database will be lost and all active 

transactions are aborted by the database. While this might be incorrect for two 

phase commitment that involves more than one database, this is true for single 

database access with optimisation, i.e. when the transaction manager employs 

one phase optimization. 

There are three variant algorithms being proposed: one client request is 

executed as one transaction (1-1), many client requests are executed within a 

single transaction (N-l) and one client request executes many transactions (1-

N). 

The algorithms implement primary backup replication, which consist of two 

parts: client-side (at the interception point 1 and 2 of ADAPT framework, see 

3.5.5) and server-side (at the interception point 3 of ADAPT framework). The 

1-1 algorithm proceeds as follows. The client replication algorithm (for now 

on this is referred as Client Replication Manager - CRM) intercepts each 

request, attaches a unique id, then forwards the request to the primary. The 

CRM maintains a list of server replicas and a pointer to the current primary. If 
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the current primary is down or does not give a positive response, the CRM 

queries other server replicas on the list asking whether they are the primary or 

not. The CRM then forwards the request to the server that responds back as the 

new current primary. 

The primary processes the request, and before committing, it propagates the 

updates to all replicas, inserts the transaction identifier txid into the database. 

After receiving commit confirmation from the database, the primary again 

multi casts a committed message to replicas, and send the result back to the 

client. 

For the N-l algorithm, the client replication algorithm stores all requests 

submitted to the primary and their associated results. These requests are 

associated with the transaction id within which they are executed. When the 

primary fails, the client will try to replay the requests execution at the backup 

site and compare the results with the ones it has. If there is no nondeterminism 

(the results are the same), the computation can continue at backup site and the 

client perceives exactly once execution for its requests, otherwise the 

transaction must be aborted and the client is informed. 

The N-l algorithm above can guarantee exactly once execution as long as 

there is no nondeterminism when the replays of client requests are performed 

at the backup site. Nondeterminism can happen if another transaction has 

updated the same data after the first execution at the primary server but before 

the requests replay at the backup. (Wu and Kemme 2005) also proposes N-I­

ordered extension for the algorithm above. In this algorithm, accesses to the 

database are ordered according to the order of the original transaction requests 

from the client. On replay, the requests are executed according to this order, so 

that the chance of exactly once execution increases. 

The I-N algorithm handles the replication similar to the 1-1 algorithm, only in 

this case one request can executes many transactions, and when there is a 

failure, the new primary must handle a case where some of the transactions 

have already committed while some other transactions are still active. To solve 

this problem, the algorithm assumes the existence of compensating 
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transactions, thus all committed transactions can be compensated and the 

request can be executed as a new request as is the one in the 1-1 algorithm. 

The algorithms above assume single database access only. For multi databases 

access, the paper suggests a solution by intercepting messages (prepare and 

committing messages) from the transaction manager. In this case, the primary 

does not need to insert the transaction identifier to the database, but must send 

three multi casts to backup instead. Upon intercepting the first prepare message 

from the transaction manager, the primary multicast a preparing message to 

the backups. Upon intercepting the first commit message from the transaction 

manager, the primary again multi casts a committing message (in case of 

commit) to the backups. Finally, the primary multi casts a commit/abort 

message after the transaction has terminated. The new primary then can handle 

how to process a transaction according to the multicast messages that it has 

received for that transaction, either by sending aborting messages or commit 

messages to all involved databases. Therefore, this mechanism described in 

the paper assumes that the new primary knows already which databases are 

involved within a transaction, so that it can always follow up transactions from 

a failed primary. This assumption cannot be easily upheld in EJB application 

server, as it requires the developer/deployer to specify all involved databases 

for each invocation at configuration time, whereas normally they are 

determined at execution time. 

3.6The approaches developed in this thesis 

We consider replication on application server supporting J2EE architecture 

with minimal change to the internal of the application server. As it has been 

outlined earlier in this chapter (see section 3.2), there should be no 

modification to the APIs that are used by clients, components and services on 

the application server. 

The replication strategy is divided into two approach: 

(i) State replication for supporting persistent components: persistent 

state is stored on mUltiple databases; here database failures can be 

masked, so the transaction will be able to commit provided the 
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application server can access a copy of the state on a database; the 

approach should support clustering configurations, where multiple 

application servers may execute different transactions at the same 

time. 

(ii) Computation replication for supporting session oriented 

components: instances of session components are replicated on the 

cluster of application servers; here application server failures can 

be masked, and the sessions running on a failed application server 

should be able to continue on different application server, including 

continuing the transaction processing whenever possible. 

3.6.1 Failure assumptions 

We assume crash failures of application servers and databases. A transaction 

manager exists on each application server, controlling the transactions running 

on that application server. Hence, whenever an application server crashes, the 

associated transaction manager will also crash as well. Application server 

crashes can be accurately detected by the underlying group communication 

system. When accurate failure detection is not possible (asynchronous 

environment), a minimum of 2f+ 1 replicas will be required, otherwise f+ 1 

replicas would be sufficient for the synchronous environment. In a clustered 

environment, it is possible to engineer a system where accurate failure 

detection is possible. Our design makes use of a group communication system 

that was designed for asynchronous environment, so will also work in 

synchronous environment as well. 

3.6.2 State replication approach 

To introduce state replication into a J2EE application server, an attractive 

approach that allows minimal modification to the existing application server is 

by implementing a database proxy that can be plugged in into the application 

server as a JDBC driver. This proxy intercepts all interaction between an 

application server and its external database resources; hence it can introduce 

state replication into the application server smoothly, without any modification 

to other parts of the application server. The proxy performs replication by 

using 'available copies' approach to maintain replicas of state on a set of 
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databases (Bernstein, Hadzilacos et al. 1987). For clustering configuration, the 

proxies on different application servers coordinate with each other to ensure 

the consistency of all replicas despite mUltiple transactions running on 

different application servers. This is done by ensuring that all proxies use the 

same replica to satisfy load requests for relevant entity beans. This replica 

determines the ordering of conflicting transactions; hence preser;ing the 

consistency. The state replication approach developed in this thesis works well 

in distributed transaction settings, as it also handles all interactions between 

application servers and databases for committing the transaction with two­

phase commit. 

3.6.3 Computation replication approach 

Computation replication is implemented by using primary copy replication 

approach. The approach goes well with J2EE application server perfectly, as 

on this server, typically stateful session beans are only used by the same client, 

they are not shared among multiple clients. Session state check-pointing is 

performed at the end of each client request invocation; therefore client session 

can be continued on backup only by repeating the last unfinished invocation. 

Transactions failover is supported by including the transaction information 

(the transaction id, the information of all resources involved in that transaction 

and the transaction outcome decision) in the checkpoint. 

To perform computation replication, modification of the internals of the 

application server is unavoidable. These modification includes: 

(i) intercepting client invocations, before and after they are processed 

by the application server. 

(ii) retrieving the state of a session bean within an application server, 

and installing it on another server 

(iii) intercepting the commitment process; i.e. is right after the 

transaction takes a decision about the outcome of a transaction, 

prior to performing the second phase of the two phase commitment 

process. 
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(iv) retrieving the infonnation about current active transaction within 

an invocation 

Fortunately, the platfonn that is used for implementing the approach (JBoss) 

provides almost all the necessary hooks for the above requirements. 

Requirement (i) can be provided by implementing specific JBoss interceptors, 

which will be executed on each invocation. The state of a session bean 

(requirement (ii)) is also supplied as part of the interceptor mechanisms in 

JBoss. However, requirements (iii) and (iv) require modification of existing 

transaction manager within JBoss, as existing APIs for transactions (JT A and 

JTS) do not provide access to retrieve infonnation about resources involved 

within a transaction, which is maintained by the transaction manager. The 

session state check-pointing and application server failure detection are 

perfonned using an open source group communication implementation from 

JGroups (Ban 1998). 

3.6.4 Comparison with other approaches 

As a summary, all the approaches are compared with each other in the 

following tables (Table 3-2 and Table 3-3). On the last column of each table is 

our own implementation that will be presented in chapters 4 and 5. 

Aspects Middle-R Ganymed Distributed C-JOBC JOBC proxy 
versioning (our approach) 

Consistency 1 copy Snapshot 1 copy 1 copy 1 copy 
criteria serializability isolation serializability serializability serializability 
J2EE support No Possible No Yes Yes 
Backend Modification Database Standard database Standard Standard 
database required supporting database via database with 
requirements snapshot JOBC driver strict 2PL via 

isolation with JDBe driver 
modification for 
write set 
extraction 

Multi-databases No No No Yes yes 
transaction 
sllj:l£ort 
Clustering Yes Yes Yes No yes 
s~ort 

Table 3-2 State replication approaches 

In Table 3-2 above, we consider Middle-R, Ganymed and Distributed 

versioning as do not provide support for J2EE application servers. Middle-R 

approach assumes all operations within a transaction are submitted to the 

database as one request, which is different from how a J2EE application server 
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interacts with databases in general. Distributed versioning approach also 

requires transactions to pre-declare all tables that they will access. forcing 

necessary modification on existing J2EE application servers to support this 

requirement. Ganymed may be used for J2EE application servers, \\ith the 

exceptions that it works with a modified database and it supports snapshot 

isolation consistency criteria, instead of a standard I-copy serializability. 

Aspects Transactional Transactional e-transaction Interaction Stateful EJB Stateful EJB 
queue client contract replication replication (ours) 

Transactional client Yes Yes No No No No 
requirement 
Client persistency Yes Yes No No No No 
requirement 
Stateful server No Yes No Yes Yes Yes 
Multi databases access Yes Yes Yes No No Yes 
Conformance to current Yes Yes No No Yes Yes 
standard 
Flexibility for application No Yes No Yes Yes Yes 
developers 

Table 3-3 computation replication approaches 

Transactional queue (Table 3-3) decouples the client transactional 

requirements from the server's, by separating request submission and reply 

processing transactions from the server processing transactions. Although this 

approach reduces the contention for resources on the server (as oppose to 

putting all of them, the client request submission, server processing and client 

reply processing, into one transaction), it still incurs additional overhead by 

introducing two more transactions for each client requests. 

Transactional client approach, especially the one that use CORBA standard, 

have full features that allows them to have many possibilities to handle client 

requests, such as I-Nand N -1 transactions and also multi databases accesses. 

The downside of these flexibilities is that it imposes heavy requirements on 

the client side, such as it dictates the client to support the transaction service 

and the persistent service. 

We consider the interaction contract approach does not support multi 

databases approach, as the contract treats the interaction between persistent 

components and transactional components on bilateral basis. Therefore, there 

is no guarantee that governs interaction between one persistent component and 

two transactional components, for example, like the one that normally occurs 

in distributed transaction setting. 
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3.7Summary 

This chapter summarizes recent progresses in replication that are relevant for 

implementing replicated application servers to provide highly available 

components. Compare to the above research, this thesis deals with state 

replication implementation in middleware layer (chapter 4) that does not 

require any modification at the backend database and with minimum 

modification to existing application server implementation. Our target is to 

answer whether it is possible to do state replication at the application servers, 

especially on J2EE application servers, instead of having to use a specific 

replicated database system. 

On chapter 5, a replication strategy of application server that support 

distributed transactions and provide exactly once guarantee is described. Here, 

our goal is to devise mechanism for replicating application servers that can 

avoid resource blocking and can fail-over the transactions to other application 

servers transparently. 
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database tier 

Existing application servers do not yet provide support for managing persistent 

state replication. They must rely on the replication support provided by the 

database vendor, therefore they depend on the features provided by the 

database vendor, and not all database products support currently replication. 

In this setting, we consider of masking database server failures only. Thus. an 

application server may continue to make forward progress despite failure of a 

database server, as long as another database server is available. 

This chapter discusses the problems, techniques and possibilities when we 

want to improve the availability of the database tier without relying on the 

replication feature from the database. The design presented here provides a 

simple and practical way of introducing data replication into component 

middleware, with minimal modification into the internals of the application 

servers. The content of this chapter has also been presented as a conference 

paper (Kistijantoro, Morgan et al. 2003). 

4.1 Issues in state replication for component middleware 

In chapter 3 we have described some issues associated with data replication in 

middleware layer. Among these issues is that the middleware layer does not 

have access to the internal locking mechanisms employed by the database. 

However. this is unavoidable for the architecture that we consider in this 

thesis, i.e. data replication in component oriented application seners such as 

12EE servers. In this environment, database is an external entity that must be 

assumed as a black box that can not be modified. 

By replicating the data store tier, what \\'e mean is that we want to use two or 

more databases (not necessarily from the same vendor) to store the same data. 

The 12EE application server accesses data stores by employing resource 

adapters. We modified these resource adapters so that they connect to identical 
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database copies and they can manage replication consistency by using the 

available copies approach (Bernstein, Hadzilacos et al. 1987). 

Client 

Container 

Transaction 
Manager 

Application server 

Figure 4-1 An application server without state replication 

1----+---:::::"'"' RDBMSB 

>==~ 

Figure 4-1 illustrates the interaction between components within an 

application server and external databases that store their state. The state of 

entity bean X is stored at RDBMS A, and the state of entity bean Y is stored at 

RDBMS B. Communications between an RDBMS and a container is via Java 

DataBase Connectivity (JDBC) driver, referred in the J2EE specification as a 

resource adaptor. To enable a resource manager to participate in transactions 

originated in EJBs, a further interface is required. In J2EE architecture this 

interface is referred to as the XAResource interface (shown as XA in Figure 

4-1). A separation of concerns between transaction management via 

XAResource interface and resource manager read/write operations via JDBC 

is clearly defined. In simple terms, the transaction manager interoperates with 

the resource manager via the XAResource interface and the application 

interoperates with the resource manager via the JDBC driver. 
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Client 

Container 

Transaction 
Manager 

Application server 

Figure 4-2 An application server with state replication 

1----+----..1 RDBMSA1 

RDBMSA2 

RDBMSS1 

RDBMSB2 

Figure 4-2 illustrate an approach to improve the availability of data store tier 

that leaves the container, transaction managers internal to resource managers 

and the transaction manager of the application server undisturbed. RDBMSs A 

and B (Figure 4-1) are now replicated (replicas AI, A2, and B 1, B2). Proxy 

resource adaptors (JDBC driver and XAResource interface) have been 

introduced (identified by letter P appended to their labels in the diagram). In 

this diagram, the application consists of three beans: one session bean and two 

entity beans that each are stored to different data store. For this purpose, 

adapter proxies (JDBCxP and XAxP) are introduced to handle replication for 

each data store. 

We assume that the backend databases employ a standard concurrency control, 

i.e. two-phase locking based concurrency control. To correctly implement the 

replication, the adapter proxies must handle the following issues: interaction 

with the transaction manager, handling the data store failure, handling updates 

in the clustering configuration, and handling the application server failure in 

the clustering configuration. Each of these issues will be discussed in the 

following sub chapters. 
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4.2 Single server implementation 

Available copies approach is the most common way to handle data replication 

(Bernstein, Hadzilacos et al. 1987). The replication manager maintains a list of 

all replicas/copies. On reading the data, one can read from any copy, and on 

writing the data, it must write the data to all available copies. When a copy is 

unavailable, it is removed from the list of available copies and it will not be 

accessed again, until the recovery process is performed on that copy. 

Suppose during the execution of a transaction, say Tl, one of the resource 

manager replicas say RDBMSAI fails. A failure would result in JDBCAI and/or 

XAAI throwing an exception that is caught by JDBCAP and/or XAAP. In a non 

replicated scheme, an exception would lead to the transaction manager issuing 

a rollback for Tl. However, assuming that RDBMSA2 is correctly functioning, 

such exceptions will not be propagated to the transaction manager, allowing 

Tl to continue on RDBMSA2. Therefore RDBMSAI must be removed from the 

valid list of resource manager replicas until such a time when the states of 

RDBMSAI and RDBMSA2 may be reconciled (possibly via administrative 

intervention during periods of system inactivity). Such a list of valid resource 

managers is maintained by XAAP. 

As the application server may have several active connections to the same 

database, there will be some write operations are executed concurrently. 

However, these operations will not be in conflict with each other, as the 

locking mechanism of the container controlling the bean would have 

prevented this from happening. Hence, the backup replicas will always receive 

conflicting operations in the same order. 

Deadlock may still be happened as it could happen on any database with two 

phase lock based concurrency control. When this happens, the database proxy 

receives aborting message from the primary database, and then the proxy 

informs other replicas to abort the same transaction on those replicas. 

The transaction manager controls the execution of the transactions on the data 

store by sending instructions to start, to end, to commit or to abort the 

transactions. The XA connection proxy intercepts these instructions and treats 
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them in the same manner as the JDBC proxy handles the write operations to 

the data store. 

4.3Clustering configuration 

For clustering configuration, each application server has its own database 

proxy for each database unit used by that application server. In this 

configuration, concurrent access to data stores from application servers may 

break the serializable property of the data store. This problem is illustrated in 

the following scenario. 

G~s;> 8-~~~ 

~~y~~~~~~~~~~ 

ransaction 
anager 

,,',, ',,'"' ~-:'..-'8 ~ I ~" ... .:-

,', " '" RDBMSB1 9 8 r-----..".'"," ',,' ... 

seSS~ion Entity X ~ - ~ ~ J:~;:,:;/ /',: '>(:~'8 
Entity Y ~ ~ ~ ~ _ _ _ ,,' -: ~ - ~ > RDBMSB2 

--- " ~~~- " ---- -- ... t-I------.t , 
'-------------+' " """, :",41' 

Figure 4-3 State replication in clustering configuration 

In Figure 4-3, a cluster contains two application servers (AS 1 and AS2) that 

are accessing shared resource manager replicas. To make the diagram simple, 

only the resource adaptor proxies are shown. 

Let us assume that transaction Tl is executing on AS 1 and T2 is executing on 

AS2 and both Tl and T2 require invocations to be issued on entity bean X. 

Without proper coordination, there is a possibility that AS 1 manages to obtain 

the state of X from RDBMSA1 while AS2 manages to obtain the state of X 
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from RDBMSA2• This will break the serializable property of transactions. To 

overcome this problem, a single resource manager replica that is the same for 

all application servers should satisfy load requests for relevant entity beans 

(we call such a resource manager a primary read resource manager). This \\ill 

ensure all load requests serialized, causing conflicting transactions to block 

until locks are released. To ensure resource managers remain mutually 

consistent the store request is issued to all resource manager replicas. 

Within clustering configuration, resource adaptor proxies from different 

application servers have to agree on the primary read resource manager. This 

is done by introducing a replica manager that is responsible for propagating 

information about the primaries and available resource managers for each 

adaptor proxy among application servers. The replica manager multicast the 

resource managers' availability by making use of a group communication 

system that supports the abstraction of a virtually synchronous process group. 

Ge~s? 0t~ V- ~ ~ ~ 
~nti~~~~~~~~~~~ 

Transaction r--=-------+I 
Manager '----"----' 

0~V~~~~ 

~ntit~~~~~~_~~~ 
~~H---~ 

\ I 

RepHt:a 
manager 

Figure 4-4 Replica manager for maintaining available resource managers information 

When an adaptor proxy detects failure of a resource manager replica, the 

failure information is multicast to other application servers by the replica 

manager. All resource adaptors on all application servers will then remove the 
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failed resource manager replica from the list of a ailable resource manag r . 

The list of available resource managers is an ordered list ·th the primary read 

resource manager at the top . Therefore, when the primary resource manager of 

a resource adaptor fails , all other resource adaptors will choose the next 

available resource manager as the primary, which will be the same to all 

resource adaptors. 

The identification of the primary read resource manager needs to be a ailabl 

to an application server after a restart. The new restarted application erv r 

may retrieve the list of available resource adapter proxies and the primar 

from existing application servers, if there are any. Otherwise for th fir t 

application server to start, it should get the information from some here 

i.e. from a persistent store. We assume the set of resource manager are fixed , 

so that this information can be inserted as part of the application server' 

configuration. 

4.4Performance evaluation 

Experiments were carried out to determine the performance of our system over 

a single LAN. JGroups (Ban 1998) was used as the group communication sub­

system in our clustered experiments. 

4.4.1 Implementation and Setup 

Client 

f 
Application 

Server 

, 
Resource 
manager 

(i) Single application server no replication 
of resource managers 

(iii) Clustered appl ication server 
configuration (2) wi th no replication of 

resource managers 

Figure 4-5 Configuration 

f ~ 
(ii ) Single application server with 

replication of resource managers (2) 

(iii) Clustered application server 
configuration (2) with replication of 

resource managers (2) 
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Four experiments were carried out (configuration described in Figure 4-5) to 

determine the performance of the clustered (using JBoss clustering) and non­

clustered approaches with and without state replication: 

1. Single application server with no replication - To enable comparative 

analysis of the performance figures, an initial experiment was carried out to 

determine the time required to satisfy a client request issued to the 

application server using a single resource manager \\ithout state replication 

(Figure 4-5.i). 

2. Single application server with state replication - Experiment 1 was 

repeated, with replica resource managers accessed by our resource adaptor 

proxy (Figure 4-5.ii). 

3. Clustered application server with no replication - Two application 

servers constituted the application server cluster with a single resource 

manager providing persistent storage (Figure 4-5.iii). 

4. Clustered application server with state replication - We repeated 

experiment 1 with replica resource managers accessed by resource adaptor 

proxies from each of the application servers (Figure 4-5.iv). 

The application server used was JBoss 3.2.0 with each application server 

deployed on a Pentium III 1000 MHz PC with 512MB of RAM running 

Redhat Linux 7.2. The resource manager used was Oracle 9i release 2 

(9.2.0.1.0) with each resource manager deployed on a Pentium III 600 MHz 

PC with 512MB of RAM running Windows 2000. The client was deployed on 

a Pentium III 1000 MHz PC with 512MB of RAM running Redhat Linux 7.2. 

The LAN used for the experiments was a 100 Mbit Ethernet. Figure 4 

describes the different configurations used in our experiments. 

ECperf (Subramanyam 2002) was used as the demonstration application in our 

experiments and was deployed as described in figure 4. For the purposes of 

our experiments we now provide a brief description of ECperf. For more detai I 

relating to ECperf the reader is referred to (Subramanyam 2002). ECperf is a 

benchmark application provided by Sun to enable vendors to measure the 

performance of their J2EE products. ECperf presents a demonstration 

application that provides a realistic approximation to what may be expected in 

a real-world scenarIO \'1 a a demonstration system that represents 
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manufacturing, supply chain and customer order management. The system is 

implemented using EJB components and deployed on a single application 

server (commonly described as the system under test (SUT). In simple terms. 

an order entry application manages customer orders (e.g., accepting and 

changing orders) and a manufacturing application models the manufacturing 

of products associated to customer orders. The manufacturing application may 

issue requests for stock items to a supplier. The supplier is implemented as an 

emulator (deployed in a java enabled web server). In our configuration the 

supplier emulator is deployed on the same machine as the application server 

(when using the clustered approach only one of the application servers needs 

to run the supplier emulator). The client machine runs the ECperf driver. The 

driver may represent a number of clients and assumes responsibility for 

issuing appropriate requests to generate transactions within the order entry and 

manufacturing applications. 

The ECperf driver was configured to run each experiment with 9 different 

injection rates (l though 9 inclusive). At each of these increments a record of 

the overall throughput (transactions per minute) for both order entry and 

manufacturing applications is taken. The injection rate relates to the order 

entry and manufacturer requests generated per second. Due to the complexity 

of the system the relationship between injection rate and resulted transactions 

is not straightforward. 
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The performance benefit associated with clustering is shown by our 

experiments as higher injection rates result in a lowering of transaction 

throughput for single application server scenarios (indicating application 

server overload). The introduction of clustering prevents such a slowdown. 

The slowdown experienced by the single server is most visible in the 

manufacturing application (where injection rates of over 5 reduce transaction 

throughput significantly). However, when state replication is introduced the 

single server does not experience such a slowdown in performance, indicating 

that saturation of the system has not yet been reached. In fact, the transaction 

throughput of the clustered approach with replication is similar to that of a 

single application server without state replication in the manufacturing 

application when the injection rate is 9. 
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The experiments show that clustering of application servers benefits systems 

that incorporate our state replication scheme. Clustering of application servers 

using state replication outperform single application servers that use state 

replication by approximately 25%. This is the most important observation, as 

state replication does not negate the benefits of scalability associated to the 

clustered approach to system deployment. 
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5 Computation replication: improving the 
availability of the application servers 

This chapter discusses the replication of application servers to improve the 

availability of the system. As it has been explained on chapter 3. our focus is 

how to provide exactly once execution for invocation of components hosted on 

the application servers/middle tier. The content of this chapter is an expanded 

version of (Kistijantoro, Morgan et al. 2006) 

5.1 Model 

Our approach to component replication is based on a passive replication 

scheme, in that a primary services all client requests with a backup assuming 

the responsibility of servicing client requests when a primary fails. 

We assume servers with crash failures. Each EJB server hosts both EJB 

containers and a transaction manager within one process, which serve as a unit 

of failure. This means that whenever an EJB container fails, the associated 

transaction manager will also fail. Messages are reliable, and each message 

will eventually arrive at its destination, as long as both the sender and the 

receiver remain operational. Processes fail by stop executing (crash failures). 

Once it fails all sub component in that process. i.e. EJB containers and the 

transaction manager, will not send any message or do any action before they 

perform the necessary recovery procedure. 

A typical scenario of interactions between a client and a server is that the 

client first enacts a session on an application server, then it sends a series of 

non transactional requests, and it ends the interaction by sending a 

transactional request to set the modification persistently (Figure 2-1). 
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Client Session Bean Entity Bean X Entity Bean Y 
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.... 
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Figure 5-1 Client interaction 

Transactions are managed by containers, i. e. , all enti ty beans are as um d to 

have container managed transactions, which are spec ified per bean method 

invocation basis . Therefore, the unit of transaction always correspond to a 

single invocation that encompasses that transaction and thi s invocati on ma 

invoke other invocations which will be executed under the same tran ac ti on . 

When the primary application server fail s, the backup takes 0 er the e cut ion 

of unfinished requests from the primary. Each applicati on server has its own 

transaction manager, which runs in the same address space as the application 

server. Therefore, the associated transaction manager will also fa il when the 

application server fails . To allow minimal modificati on to ex isting code we 

make use of interceptor mechanism available at JBoss server. in JBoss 

interceptor is a piece of code that can be configured to be executed each time a 

client invokes a method on an EJB bean instance. One can confi gure several 

interceptors to be executed as a chain, before and after the application server 

invokes the method on the bean instance. The detail of the interceptor 

mechanism in JBoss can be found in section 2.6.1.2. 
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Transaction 
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Figure 5-2 System Architecture 
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Figure 5-2 illustrates again the basic principles of how an app lication erv r 

processes a request. A client invokes a method on a session bean ( hich can 

be either a stateless session bean or a stateful session bean), and thi s 

invocation can invoke other invocations on other beans, which can be any type 

of beans (stateful, stateless or entity). The container intercepts all in ocation 

on the beans and performs necessary actions required to process the in ocation 

correctly. There are two interception points occur on JBoss, one is at the cli ent 

side and another one is at the server side. 

The interception point at the client side is used for implementing fai lover 

mechanism, which wi ll be explained in section 5.2. The interception point at 

the server side is used for implementing state update propagation fro m the 

primary to the backup. There are two types of state update propagati on : 

transactional and non transactional. Both types are described in section 5.6 and 

5.3. 

5.1.1 Different types of components : stateless, session and persistent 
component 

There are three kinds of EJB objects: session beans, entity beans and message 

driven beans. Session beans can be either stateful or stateless . This chapter 

mainly focus on stateful session beans. Entity beans are not replicated 

explicitly, but they are supported by the backend databa e. hence the can 
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always be revived by the backup by retrieving their last state from the 

database. Stateless components can also be easily restarted on different 

machine as they do not maintain state in between client requests. Howe\"er. 

stateless session beans may modify persistent state via persistent component. 

On this case, we require that any modification to the persistent state must be 

performed under transaction, and the correctness of stateless session bean 

invocation that access the persistent state will by upheld by the transaction 

processing mechanism. 

Session retains state between requests. Therefore, the state of the component 

must be propagated to backup on every invocations in order to allow the 

backup to continue the session after the primary fails. 

5.2 Fail-over implementation 

The fail-over mechanism is implemented by utilising JBoss client-side 

interceptor mechanism. A new interceptor is implemented to give a unique id 

for each request submitted by a client. This id is needed to prevent duplication 

of execution at the backup when the primary fails. The invoker proxy on the 

client side is also modified to contain a list of available server (one primary 

and one or more backups) together with its version number of the group 

membership (Figure 5-3). The application servers are maintained as a view 

synchrony group. On each invocation, the server will check the version id with 

their own view-id. When there is a mismatch between the client group 

membership version number and the server's own view id, the new view of the 

server group is then piggybacked to the client. 
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Figure 5-3 Replicated EJB implementation of a remote interface 

The invoker proxy always sends invocations to the primary server. When the 

primary crashes, the proxy receives a time out and then resends the invocation 

to a backup. Meanwhile, the other group member reconfigures and installs a 

new view for the group. After a new view is installed, the backup contacted by 

the proxy informs the proxy about the new view and the new primary. If the 

contacted backup is the new primary, it processes the invocation directly; 

otherwise, the proxy must again resend the invocation to the new primary. 

recv request 
.. __ !.!!/in:.::vn:.!:k~p.~Pn~·m:.!:;!!!.:rv:....-~ invoking Primary (.......:..:~r:::;,;;~~:,;:..:~>t 

recv not primary excepti n 
lupdatePrimary. 
invokePrimary 

recv server failure exception 
[next backup available] 

IinvokeBackup 

Figure 5-4 Fail-over invoker proxy state chart 

recv server failure exception 
[no other backup available] 

Ithrow exception 

Figure 5-4 displays the state chart of the invoker proxy implementation. On 

normal condition, it sends the invocation to the primary by invoking the 
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invokingPrimary method. If the primary is available and is able to respond 

with a result, the invoker proxy checks if there is any new piggybacked group 

information from the server, updates the list of available servers information, 

and returns the result back to the client. If the primary fails or cannot be 

contacted, the proxy receives a ServerFailureException7, and invokes 

the invokingBackup method to send the invocation to a backup. The 

invokingBackup method iterates through the list of available servers, and 

sends the invocation to a backup server on the list one by one. If the contacted 

backup server has become a new primary server, it processes the invocation 

directly and returns the result. Otherwise, the backup server responds with a 

NotPrimaryException and provides the information about the new primary 

server. Figure 5-5 describes the state chart for a replica implementation. 

primary 

recv client request 
/send 

NotPrimaryException 

Figure 5-5 Server state 

5.2.1 Client interface maintenance 

recv client request 
/send 

ServerFailureException 

The client retrieves an interface for accessing a bean from a naming server. 

Each application server maintains its own naming server, and a client can 

connect to any naming server from any application server that hosts the bean 

to access. When a client retrieves an interface from a naming server, the 

naming server serializes the interface via standard java serialization, and 

retrieves the current list available servers and primary server information from 

the application server, and includes this information as part of the serialization 

7 The ServerFailureException is raised by the system when a connection to a server cannot be made, or 
when an existing connection is lost. 
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data. Therefore, the interface retrieved from any se er should point to the 

latest primary server information and the latest list of a ailable server at the 

time that the client retrieves the interface. 

5.3 Session state replication 

Session state replication is implemented on JBoss appl ication erver by 

utilising container interceptors, MBeans and JMX technologies avai lable on 

JBoss . 

C 
in 

lient 
,,,,,",,,,,,",,,11 

Application Server 

/ ... ...... :.. 
conta iner 

I Retry interceptor I S 
E inspeclor inle rCePlo~~e~~ Entity X 

I tx interceptor I 

IReplica interceptor I E~ V 
Transaction Replication 

Manager Service 

Figure 5-6 Augmenting application server with replication service 

Figure 5-6 shows the interceptors and associated services that implement our 

replication scheme in JBoss application server. The interceptors perfo rm the 

fo llowing tasks: 

• Retry interceptor - identifies if a client request is a duplicate and handles 

duplicates appropriately 

• Txinspector interceptor - determines how to handle invocations that are 

associated to transactions 

• Tx interceptor - existing interceptor that is implemented on JBoss to 

implement transaction handling 

• Replica interceptor - ensures state changes associated with a completed 

invocation are propagated to backups. 

The replication service distributes and processes session state updates to/from 

other application servers. To manage the session state the service maintains 

several logs : 
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(i) invocation result log: each entry on this log contains an invocation 

id, the updated state of session beans resulted from the invocation 

and the result object returned to the client. When the invocation is 

transactional, the log also contains the transaction id together v.ith 

information on all resources involved in that transaction. 

(ii) Transaction log: each entry on this log contains a transaction id 

and a transaction outcome decision (commit or abort) 

Invocations from clients are initially processed by the invoker MBeans (see 

Figure 2-8 on chapter 2). The invoker MBeans on a backup server always 

responds with a NotPrimaryException and provides information about 

current primary and current group membership (see Figure 5-5). On the 

primary server, the invoker MBeans determines and passes the invocation to 

the appropriate container. The container passes the invocation through a set of 

interceptors, including our interceptors above. 

Duplicated invocations are handled by the retry interceptor. This is done by 

comparing the id from the incoming client invocation with the invocation id 

from the invocation result log. When the invocation id is found on the log, the 

invocation has been executed and the retry interceptor simply returns the result 

from the log to the client. Otherwise the invocation is processed through the 

next interceptor, and ultimately by the bean itself. 

After bean execution (i.e. when a reply to an invocation is generated and 

progresses through the interceptor chain towards the client) the replica 

interceptor informs the replication service of the current snapshot of bean 

state, the return parameters and the invocation id. The replication service 

multi casts this information in one message (STATE _ UPDATE message) to 

other backups. Upon delivery confirmation received from the group 

communication service, the replication service updates the invocation result 

log and returns the control back to the replication interceptor. Finally, the 

result is delivered to the client. 
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5.4Handling transaction 

We assume container managed demarcation. For each inn'cation. the 

container decides (based on the transaction attribute of the invoked method) 

whether or not to create a new transaction for the im-ocation. Based on this 

mechanism, a single invocation of a method can be: a single transaction unit (a 

transaction starts at the beginning of the invocation and ends at the end of the 

invocation), a part of a transaction unit originated from other invocation. or 

non transactional (e.g. the container can suspend a transaction prior to 

executing a method, and resume the transaction afterwards). 

Primary application server 

Container 

Client -+-+-~ 

DB1 

Container 

0~0 B DB2 

® 
Replication Transaction 
Service Manager 

Figure 5-7 A typical interaction for a transaction processing in EJB 

Figure 5-7 illustrates the execution of a typical transaction (for brevity, 

resource adaptors are not shown). This will be used as an example to highlight 

the enhancements made to handle transaction failover. All methods on the 

beans have a Required tag as their transaction attribute, indicating to the 

container that they must be executed within a transaction. The invocation from 

the client initially does not contain a transaction context. At (l), a client 

invokes a method on a stateful session bean SFSBl. The container (i.e_ the tx 
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interceptor on JBoss application server) determines that the invocation 

requires a transaction and calls the transaction manager to create a transaction 

TI for this invocation (2). The container proceeds to attach a transaction 

context for TI to the invocation. The invocation of the method on SFSBI calls 

another invocation (3) on EBI and also an invocation (5) on EB2. At (3) and 

(5), the container determines that although the invocations need to be executed 

within a transaction, it does not have to create a new transaction for them as 

the invocation has already been associated with a transaction context. The 

invocation on EB I requires access to a database DB 1 (4) and at this point, the 

container registers DB I to the transaction manager as a resource associated 

with TI. The same process happens at (6) where the container registers DB2 to 

be associated with Tl. After the computation on SFSB 1, EB 1 and EB2 

finishes, before returning the result to the client, the container completes the 

transaction by instructing the transaction manager to commit Tl. The 

transaction manager then performs two phase commit with all resources 

associated with TI (8). After the transaction commit, the result is then returned 

to the client. 

Points (7a), (7b), (8a) and (8b) are the modifications to handle transaction 

fail over. Right after the computation and prior to two-phase commitment 

process (7), the replica interceptor (7a) informs the replica manager to 

multicast (7b) the computation result (STATE UPDATE message) to backups. 

The multicast includes the transaction id, the latest state of all session beans 

involved in that transaction, the result object to return to the client and 

information on all resources involved in that transaction. This is to ensure that 

the backups have all necessary information to continue the computation should 

the primary fail. If the primary fails prior to this multicast, a backup must retry 

to execute the invocation from the beginning, otherwise the backup should try 

to perform the commitment process for the transaction. 

During the two-phase commit, after the transaction manager takes a decision 

based on the vote result returned by the resources (8), the transaction manager 

informs the replica manager (8a) to multicast (8b) the transaction outcome 

decision (TX OUTCOME message) to backups. The multicast consists of the 

transaction id and the decision. If the primary fails after this point, a backup 
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will try to finish the commit process according to the decision that has been 

taken by the failed primary. 

5.4.1 Determining when to replicate the transaction 

The replication service must be able to detect when the transaction starts and 

ends. It is possible to modify the transaction manager or existing JBoss 

interceptor to add a hook for this purpose. However, we choose to implement 

this mechanism as a separate set of interceptors. This task is performed by the 

txinspector interceptor (see Figure 5-6) that processes the invocation before 

the JBoss tx interceptor associates the invocation with a transaction. The 

txinspector interceptor compares the transaction context from the incoming 

invocation and the transaction attribute for the invoked method (which is 

available from the bean metadata). When a method with a Required 

transaction attribute matches an invocation that has no transaction context, this 

means that the container should create a transaction at the start of the 

invocation and it should end the transaction at the end of the invocation. The 

txinspector flags this invocation with a TRANSACTION_UNIT flag, so that 

later on the replica interceptor (at point 7a on Figure 5-7) knows that it has to 

multicast the state update together with the transaction information. 

5.4.2 Handling chained session invocations 

So far we have described how to handle transactional invocation that involves 

one session bean invocation and several entity beans invocations. Now the 

model is extended to include invocation on session bean that invoke another 

session bean. When a session bean SFSB2 is invoked by another session bean 

SFSB 1, the state of SFSB2 is not immediately multicast to all backups after 

the invocation on SFSB2 finishes. The replica interceptor simply adds SFSB2 

session state on the list of updated session, and later on when SFSB 1 finishes, 

the state of SFSB 1 together with the state of SFSB2 are multicast to backups. 

We do not handle concurrent access on SFSB explicitly, as the container has 

always serialized access on stateful session bean. Furthermore, the EJB 

specification also state that stateful session beans are not shared between 

clients, and clients are not allowed to make concurrent calls on the same bean 

(section 4.3.13 on EJB 3.0 specification (DeMichiel and Keith 2006». 
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5.5 Replication service implementation 

Replication service is an abstraction of group communication library for 

propagating messages and group membership information to all servers. The 

service is responsible to maintain group membership information, the replica 

state propagation and state transfer for new member. 

5.5.1 Group membership 

We use JGroups (Ban 2006), a virtual synchronous group communication 

library that provides the following features: 

Virtual synchrony: every non-faulty member of the group will receive 

the same sequence of views and they will receive the same set of 

messages between views. Every view is uniquely identified by view id. 

If a member is disconnected from a group, the next time it reconnects 

to the group, it will be treated as a new member. If the disconnected 

member is the primary, another member will become the new primary 

and when the old primary reconnects, it becomes a backup. 

5.5.2 Replica state propagation 

The replication service maintains logs associated with the replication (see the 

details on section 5.3 above), including current membership configuration. 

Upon requests from containers, the replica service multi casts the updates to 

other replicas and upon delivery it keeps the update in the appropriate log. 

The replication service on backups also performs translation on each incoming 

session state received from the primary. The translation is necessary to convert 

all bean references found in the session state that originally point to other 

beans on the primary server to become references that point to the beans on 

the receiving server. For example, if SFSBI on application server API 

contains a reference to SFSB2 on AP I, then when the state of SFSB I is 

received by application server AP2, the reference to SFSB2 must be translated 

so that it will refer to SFSB2 on AP2. 
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5.5.3 State transfer 

Before a new replica (or formerly disconnected replica) can join as a backup, 

it must first perform a state transfer to bring its state to the most recent 

updates. This state consists of invocation result log and transaction log (see 

section 5.3). The state of a replica is defmed as the request log and tx log. The 

state transfer mechanism is provided by the group communication library 

(JGroups). The group communication service is responsible for queuing 

messages delivered to the new member until it successfully retrieves the state. 

5.6 Load balancing 

The scheme described above assumes a single primary that services all clients. 

This scheme can be easily extended to support load balancing for processing 

client requests, as each session is accessed by a specific client only, and EJB 

specification does not allow concurrent access to a session bean. To support 

load balancing, each session bean has its own primary, which can be any of 

the available application server. The assignment of session beans to servers 

can be either decided by the application server or by the clients. This 

assignment is permanent, i.e. a session bean is attached to an application 

server as long as that server has not crashed. 

The replication service maintains the mapping between session beans and their 

primaries, so that each server knows which sessions that use it as the primary. 

When a server fails, the replication service distributes all session beans on that 

server to other servers. To avoid duplicated executions of client requests, we 

use the following scenario. The invoker proxy on the client side (see 5.2) 

maintains a variable that represents current primary server for that session. For 

home interface invocation, the primary is determined on the first client 

invocation, and for remote interface invocation, it is determined when the 

session is created. If a client fails to connect to its primary server, the invoker 

proxy resends the request to any other server, together with the identity of the 

original primary of the session bean. The contacted server then inspects 

whether the original primary of that invocation is still a member of the current 

group view. As long as an application server is still a member of the current 

group view, other application servers cannot process any invocation that 
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belongs to that server, and they must respond to the invocation with a 

NotPrimaryException, as described in section 5.2. On the other hand, if an 

application server receives a failed over request from an application server that 

has been removed from the current group view, then it becomes the new 

primary for that session, and process the invocation as usual. 

To see that the mechanism described work correctly, we have to ensure that 

for each session bean, at any time only one primary server exists. The primary 

server for a session is determined at the first invocation to the bean. The client 

will use the same primary server for this session, and as only one unique client 

accessing a certain session bean, this will guarantee the same primary server is 

used throughout the session bean lifetime, unless that client receives a failure 

exception from the invocation which can be caused either by a server failure or 

a temporary communication problem. The client changes to a different 

primary server only after the old primary is removed from the group view of 

the application servers which is happened when the application server process 

group decides that the old primary server has crashed. 

5.7 Failure scenarios 

As a result of the primary crashing a client that is waiting for a result will be 

timed out. The client then resends the request to a backup server. The 

contacted backup server then responds with the information on a new primary 

or it processes the request immediately if the contacted server itself is the new 

primary. For non transactional invocations, there are only two conditions that 

may happen: the primary fails before the STATE UPDATE message is 

delivered (section 5.3) or after the STATE UPDATE is delivered. If the 

primary fails before the message is delivered, the client request is re-executed 

on the new primary as a new request. The new primary has the previous state 

of the session bean, and other replicas have not received the result as well, so 

it will be safe to ignore the computation on the failed primary. If the primary 

fails after the message is delivered, the new primary simply returns the 

outcome of the computation previously done on the failed primary. 

For transactional invocations, there are three cases to consider: (a) the primary 

fails before the STATE UPDATE message is delivered; (b) the primary fails 
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after the STA TE UPDATE message is delivered but before the TX 

OUTCOME message is delivered; (c) the primary fails after the TX 

OUTCOME message is delivered. Case (a) is handled in similar way to the 

non transactional invocations; the request is re-executed on the new primary as 

a new request. For case (b) and (c), the new primary will try to finish the 

commitment process without violating the decision that may has been taken by 

the failed primary. 

5.8 Performance evaluation 

We carried out our experiments on the following configurations: (1) Single 

application server with no replication; (2) Two application server replicas with 

transaction failover. Both configurations use two databases, as we want to 

conduct experiments for distributed transaction setting. We also carried out 

experiments with up to five servers and experiments with load balancing 

configuration. 

The application server used was JBoss 3.2.5 with each application server 

deployed on a Pentium IV 2.8 GHz PC with 2048MB of RAM running Fedora 

Core 4. The database used was Oracle 9i release 2 (9.2.0.1.0) (Cheevers 2002) 

with each database deployed on a Pentium IV 2.8 GHz PC with 2048MB of 

RAM running Fedora Core 4. The client was deployed on a Pentium IV 2.8 

GHz PC with 2048MB of RAM running Fedora Core 4. The LAN used for the 

experiments was a 100 Mbit Ethernet. ECperf (Subramanyam 2002) was used 

as the demonstration application in our experiments. ECperf is a benchmark 

application provided by Sun to enable vendors to measure the performance of 

their J2EE products. For our experiments, we configured the ECperf 

application to use two databases instead of just a single database (as is the 

default configuration). 

Four experiments are performed. First, we measure the overhead of our 

replication scheme introduces into application performance. The ECperf driver 

was configured to run each experiment with 10 different injection rates (1 

though 10 inclusive). At each of these increments a record of the overall 

throughput (transactions per minute) for both order entry and manufacturing 

applications is taken. The injection rate relates to the order entry and 
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manufacturer requests generated per second. Due to the complexity of th 

system the relationship between injection rate and resulted transaction i not 

straightforward . The second experiment measures ho our repli ated 

algorithm performs in the presence of fai lures. In this experiment we ran th 

ECperf benchmark for 20 minutes, and the throughput of the s stem every 30 

seconds is recorded . After the first 12 minutes, we kill the primary serv r to 

force the system to failover to the backup server. The third experiment 

measures how our replication algorithm scales with additional backups. In thi 

experiment we ran the ECperf benchmark ith up to 5 server' confi guration. 

The fourth experiment measures the perfo rmance of the replication algo rithm 

in a load balancing configuration. This experiment is simj lar to the third 

experiment, with up to 5 servers ' configuration. 

Order tnnslctlon throughput Orde r transaction re sponse urn. 

20 . "-
~ . 1 t '. 

I 2 3 4 5 6 7 8 i 10 1 2 ) t 5 6 1 8 I 0 

Injection rate Injec1ion ril't. 

(i) throughput for entry order app. (ii ) response time for entry order app. 

Figure 5-8 - Performance figures 

Figure 5-8 presents two graphs that describe the throughput and response time 

of the ECperf applications; figure 5(i) identifies the throughput fo r the entry 

order system, fi gure 5(ii) identifies the response time fo r the entry order 

system. On first inspection we see that our replication scheme lowers the 

overall throughput of the system. This is to be expected as additional 

processing resources are required to maintain state consistency across 

components on a backup server. 
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Figure 5-9 Performance figures with failures 

Figure 5-9 presents a graph that describes the throughput of our s t m and th 

standard implementation over the time of the benchmark. fter 720 econd 

running (12 minutes), we crash the primary server. When no replication i 

present the failure of the application server results in throughput decreas ing t 

zero, as there is no backup to continue the computation. When replicati on i 

present performance drops when failure of the primary is initiated. Ho e er, 

the backup assumes the role of the primary allowing for throughput to ri 

again. An interesting observation is that throughput on the new primary i 

higher than it was on the old primary. This may be explai ned by the fac t that 

only one server exists and no replication is taking place. The initial peak in 

throughput may also be explained by the completion of transactions that 

started on the old primary but finish on the new primary. Thi s adds an 

additional load above and beyond the regular load generated by injection rates. 
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Figure 5-10 Throughput for entry order application with varying number of servers 
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Figure 5-11 Response time for entry order application with varying number of servers 

Figure 5-10 and Figure 5-11 present two graphs that descrl be the throughput 

and the response time of the ECperf appli cations with aryi ng number of 

servers as backups. In this configuration, only one server is the primary fo r aJI 

client requests, and the rests are backups. For low transaction rate (tx= l ), 

adding backup servers does not incur much overhead, the throughput and 

response time differences between two server configuration and fi e erver 

configuration are negligible. However, for higher transaction rate, uch a tx=5 

and tx= 1 0, the differences become obvious. One explanation for thi s i that on 

higher transaction rate, the network becomes more saturated and takes longer 

time to multicast message to more servers. 
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Figure 5-12 Throughput for entry order application with varying number of servers in 
load balancing configuration 
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Figure 5-13 Response time for entry order application with varying number of servers in 
load balancing configuration 

Figure 5-12 and Figure 5-13 present two graphs that describe the throughput 

and the response time of the ECperf applications, with varying number of 

servers in a load balancing configuration. In thi s setup, client sessIOn ar 

distributed among available servers, and when an applicati on server fa il , 

other available servers have the same probability to become the nev server fo r 

the sessions hosted on the failed server (the new primar server fo r each 

session is determined randomly). For low transaction rate (tx rate= l ) adding 

more servers do not increase the performance. Two servers are enough to 

handle this rate. For the transaction rate = 5, the total throughput of the system 

increases when new servers were added up to four servers. However adding a 

new server (number of server=5) makes the total throughput decreases. For the 

transaction rate = 10, adding more servers do not increase the throughput of 

the system. We predicted that this is because of the network saturation that 

causes multicast messages to take longer time to arrive to their destination. 

The experiments show that our replication scheme does not incur high 

overhead compared to a non replicated system, and is able to perfo rm qu ick 

failover when the primary crashes. 
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6 Conclusions 

6.1 Summary of thesis contributions 

The replication schemes developed in this thesis are based on a combination of 

several existing techniques that have been published. The focus of this thesis 

has been to combine existing techniques to provide a complete working 

solution on a real platform (J2EE application servers, In our case). The 

solution solved the system design problems described in chapter I, namely, 

transparent failover, exactly once execution of client requests, non-blocking 

distributed transaction processing, ability to work with load balancing, and 

open, non proprietary solution. Tables Table 6-1 and Table 6-2 from chapter 3 

are again presented here to provide a summary of comparison between our 

approaches and others. 

Aspects Middle-R Ganymed Distributed C-JOBC JOBC proxy 
versioning (our approach) 

Consistency 1 copy Snapshot 1 copy I copy I copy 
criteria serializability isolation serializability serializabilitY serializability 
J2EE support No Possible No Yes Yes 
Backend Modification Database Standard database Standard Standard 
database required supporting database via database with 
requirements snapshot JOBC driver strict 2PL via 

isolation with JOBC driver 
modification for 
write set 
extraction 

Multi-databases No No No Yes yes 
support 
Clustering Yes Yes Yes No yes 
support 

Table 6-1 State replication approaches 

Aspects Transactional Transactional e-transaction Interaction Stateful EJB Stateful EJB 
Jiueue client contract rg>lication replication (ours) 

Transactional client Yes Yes No No No No 
requirement 
Client persistency Yes Yes No No No No 
r~9uirement 
Stateful server No Yes No Yes Yes Yes 
Multi databases access Yes Yes Yes No No Yes 
Conformance to current Yes Yes No No Yes Yes 
standard 
Flexibility for application No Yes No Yes Yes Yes 
developers 

Table 6-2 computation replication approaches 
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First, the problem of replication of the backend database tier \vas investigated. 

Our goal was to implement black-box database replication entirely using 

mechanisms of the middle tier. Our solution essentially required the state 

replication to be introduced into the application server as a resource adaptor. 

While it is feasible to replicate the backend database tier solely at the middle 

tier level, performing recovery on failed database will require techniques to 

transfer the state from a functioning database to the recovering one. These 

were not investigated, but there are well known solutions that are available 

(Gray and Reuter 1993; Weikum and Vossen 2002). 

Second, the thesis investigated the problem of replicating the middle tier itself, 

focusing on how to handle different types of states managed by the application 

servers. There are four different types of states: 

(I) transactional state cached by the application servers. 

(2) session state which is client specific. 

(3) the state that is related to the transaction processing, such as the 

transaction id and involved resources. 

(4) volatile state which exists only within a single request. 

The strategy for the middle tier replication is to discard the volatile state and 

the cache of transactional state on the failed server, and to replicate only the 

session state and the transaction related state to backups by employing primary 

backup mechanism. 

The thesis described precisely when and how to propagate the session state 

associated with clients and the state associated with the transaction processing, 

and how the backup can use that information to continue the processing 

without aborting the transaction. Session state is propagated using a standard 

primary backup algorithm, i.e. the state update is first multicast to backups 

after the primary computes the result, then the result is delivered to client. 

Transaction related state is divided into two parts: (i) the transaction id and 

information on involved resources that are multicast together with the other 

session state; (ii) the transaction outcome information that is multicast after the 
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transaction manager on the primary takes the decision in the first phase of the 

two phase commit protocol. 

By multicasting the transaction related state to backups, our replication 

algorithm allows the backup to continue the transaction that was previously 

executed on the failed primary. This technique is similar to the idea described 

in several papers (Hammer and Shipman 1980; Reddy and Kitsuregawa 1998: 

Jimenez-Peris, Patino-Martinez et al. 2001; Zhao, Moser et al. 2002) for 

implementing a non blocking commitment protocol by replicating the 

transaction coordinator. However, it has some differences as they target 

different platforms and employ different assumptions. For example, in 

(Jimenez-Peris, Patino-Martinez et al. 2001) algorithm, it is the transaction 

participants that multicast their votes to a group of transaction coordinators in 

the first phase of the two phase commit protocol, not the primary as in our 

algorithm. Similar approach is also used in (Zhao, Moser et al. 2002). We 

assume the backend databases do not know the identity of the transaction 

managers/coordinators; hence they cannot multicast their vote directly to the 

coordinators. 

Our techniques for replicating the database tier and that for replicating the 

middle tier are not dependent on each other, and can be used together without 

any difficulties. From the middle tier replication perspective, a replicated 

database resource appears as a single entity, and all operations issue by the 

transaction manager or containers from either the primary or backups are 

translated by the proxy wrappers to database replicas. 

6.2 Further Work 

The replication approaches described in this thesis assume container managed 

transaction only, where transactions are always initiated and completed within 

a scope of a single client request. When bean managed transaction is 

supported, it is possible to have a scenario where a client invokes a method 

which initiates a transaction, and afterwards the client invokes a series of 

invocations, and finally the client invokes another method that commits the 

transaction. In this situation, the fact that a client may see the state resulting 

from a partially executed transaction makes it difficult to provide consistent 

90 



Chapter 6 - ConduslOll 

state when an application server fails in the middle of this interaction. The 

problem lies in that the transaction processing management always 

automatically aborts the transaction, and we cannot mask this abortion from 

the client as executing the request as another transaction on another server 

may produce result that is different from the one which has already seen by the 

client. To avoid this, one could investigate mechanism so that the transaction 

processing management does not abort the transaction automatically, by 

developing a fault tolerant resource adaptor, which can survive the 

transaction even if the connection to the database is lost in the middle of a 

transaction. Another alternative is by investigating different transactional 

semantic, such as transactions with savepoints (Gray and Reuter 1993), so that 

the backup can continue the transaction from the last savepoint (which is made 

on each bean invocation), and use the state of the bean from the previous 

invocation. 

One possible further work is to incorporating the replication approaches on 

other open source J2EE application servers, such as Apache Geronimo and 

Jonas. Although we believe that the approaches can be implemented on any 

other application servers, it would be interesting to see how it could be 

adapted to others. 
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