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Abstract 

 

The impact of a change in emissions abatement technology, fuel or vehicle on carbon dioxide (CO2) 

and toxic air pollutant emissions derived from road transport was investigated.  

 

Road transport emissions were calculated and non-mobile source emissions rates were compiled for 

the base year 2005 for the City of Leicester, which was the case study for the research.   

 

Factor and cluster analysis were applied so that roads could be classified into groups, allowing diurnal 

traffic profiles to be assigned to roads with similar attributes prior to air quality modelling and to 

enable the characteristics of typical roads in Leicester to be identified. Five road classifications were 

developed. 

 

The emissions inventory compiled along with meteorological data, background pollutant 

concentration values and the five diurnal traffic profiles were input into an air quality model. The 

BOOT evaluation framework (Chang and Hanna 2005) was used to statistically evaluate the 

performance of the air quality model through comparisons of predicted and observed pollutant 

concentrations. The model was found to significantly over-predict and under-predict concentrations of 

nitrogen dioxide (NO2) and particles with a diameter of less than ten microns (PM10) at seven and five 

monitoring locations across Leicester. A discussion of the sources of error in prediction was 

presented.       

 

The base-case was edited to reflect a change in emissions abatement technology, fuel or vehicle and 

emissions were recalculated. In addition, a vehicle kilometres travelled (VKT) restriction was 

imposed on the vehicle fleet that did not allow any increase in VKT from the base year. The changes 

to the base-case were made in increments of 5% until 100% was reached. Regression analysis was 

used to create 13 models that allowed the impact of the road transport strategies on CO2 and pollutant 

emissions to be explored.  

 

A reduction in both CO2 and toxic air pollutant emissions (‘win-win’) was found when the penetration 

of zero emissions vehicles (ZEVs) and plug-in hybrid electric vehicles (PHEVs) to the car fleet was 

modelled. Overall, the highest reduction in toxic pollutant and CO2 emissions were found for ZEVs, 

which represent electric vehicles (EVs) under current legislation. A 53% (or greater) penetration of 

ZEVs to the car fleet was the only strategy for which a 50% reduction in CO2 for a 1990 base was 

found. Therefore, this indicates that substantial and arguably radical changes are required if air quality 

and climate change limit values and targets to be achieved. 
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A win-win for air quality and climate change was found when new emissions abatement technology 

was introduced into the car fleet. However, greater pollutant emissions reductions were observed with 

the introduction of new emissions abatement technology to light goods vehicle (LGV) and heavy 

goods vehicle (HGV) stocks. These strategies were found to have a negligible impact on CO2 

emissions. Consequently a trade-off was found where a ‘win-win’ was achieved through changes to 

the car fleet but at the cost of higher pollutant emissions reductions from other strategies. 

 

The introduction of new emissions abatement technology to the bus fleet on roads predominantly on 

key traffic corridors within Leicester’s air quality management area (AQMA) resulted in substantial 

air quality benefits. The same strategy did not result in a reduction in CO2 emissions. However, in the 

context of an overall sustainable transport strategy the benefits of increasing bus patronage, which in 

turn may reduce the number of single occupancy vehicles on the road, is likely to have a more than 

compensatory effect.  

  

Substantial pollutant emissions reductions were found as a result of the introduction of new emissions 

abatement technology into the HGV and LGV fleets. However, these strategies were found to have 

negligible CO2 emissions reductions and therefore did not provide a win-win for air quality and 

climate change.  Similarly, a win-win from the introduction of LPG to the car fleet was not found. 

Therefore, the uptake of LPG or investment in the introduction of new emissions abatement 

technology to the LGV or HGV fleets should only be considered as a part of a sustainable policy 

package that comprises other measures, such as logistics optimisation or a reduction in VKT.  

 

The findings of this research were used to inform a set of policy actions for Leicester City Council.  
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CHAPTER 1 

 

1. Introduction  

 

Improved road networks, increased car production, cheaper vehicles and increased road construction 

have made on road travel more accessible to the worlds ever growing population (SMMT, 2010; 

OICA, 2010; OECD, 2010a; DfT, 2009a; Schafer, 1998). Higher average salaries have meant more 

and more people are using the passenger car as their first choice of convenient transport (Grupta et al., 

2006). Urbanisation has increased and with it the number of people living in cities (Fenger, 2009). 

The increase in global demand for road transport has resulted in the deterioration of air quality in 

nearly every city in the world (Mayer, 1999). Road traffic is now acknowledged as the dominant 

source of air pollution in urban areas (DEFRA, 2010a; Cameron et al., 2004). Similarly, the impact of 

anthropogenic Greenhouse Gas (GHG) emissions on the Earth’s climate is also of major concern 

(IPCC, 2010). The 2007 fourth assessment report from the Intergovernmental Panel on Climate 

Change (IPCC) concluded that ‘it is very likely (90%) that man-made GHG emissions caused most of 

the observed increase in global average temperatures since the mid-20
th
 century.’ According to the 

Climate Change Committee (CCC) (2009) global GHG emissions need to peak in 2016 and fall by at 

least 50% below 1990 levels by 2050 if a 2
°
C temperature limit is to be maintained. Failure to reach 

this target could have severe consequences on Earth’s climate system, including melting of polar ice 

caps (Lindsay and Zhang, 2005; Winten, 2006), the collapse of the global carbon cycle (Kondratyev 

et al., 2003) and an increase in the number of extreme weather events (Hansen, 2006). The road 

transport sector is one of the only sectors which has seen a continued increase in GHG emissions 

(CCC, 2010). Consequently governing bodies across the globe are, through legislation, obligated to 

develop and implement strategies to reduce air pollution and GHG emissions from all sources 

including road transport.   

 

1.1 Motivation for Study 

 

At present, air quality and climate change targets and the associated policies and strategies lack 

synergy and a recent government document entitled ‘Air Pollution: action in a changing climate’ 

revealed that future air quality targets need to be aligned with climate change measures (DEFRA, 

2010a). This document highlighted that in order to achieve this alignment ‘further work is needed to 

facilitate comparison of air quality and climate change impacts.’ Greater insight into the impacts of 

road transport measures on air quality and climate change issues will allow those strategies that 

reduced both toxic air pollution and GHGs (termed ‘win-win’ in this thesis), those that result in a 

trade off and those that have little impact on these environmental issues to be identified. In turn this 
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will enable trade-offs (where a win-win is achieved but at the cost of greater reductions in either toxic 

air pollution or CO2 as a result of another strategy) to be examined and the most effective measures to 

be identified and implemented simultaneously, thereby aligning toxic air pollution or CO2 reduction 

measures.    

 

Therefore, the research presented here aims to investigate the impact of road transport strategies on air 

quality and carbon dioxide (CO2; a primary GHG) emissions. The two fundamental research questions 

that this thesis aims to address are: 

 

1) Can current and potential future technology, fuels or vehicles result in a win-win for air 

quality and climate change and do these strategies result in trade-offs? 

 

2) Which strategies, if any, can result in a 50% reduction in CO2 emissions over the base case (a 

common target for local authorities in the UK) and what impact do these strategies have on 

air pollution? 

 

1.2 Aim and Objectives of Research 

 

The aim of this research is to assess the impact of a vehicle kilometres travelled (VKT) restraint and a 

change in emissions abatement technology, fuel or vehicle on CO2 emissions and toxic air pollutants 

derived from road transport.  

 

1.2.1 Objectives 

 

 The first objective was to develop a base-case of traffic and emissions data for the Leicester 

city local authority area, which was the case study of this research.  

 

 The second objective was to identify and develop a suitable method for classifying roads into 

groups so that characteristics of roads with similar attributes can be shared and to enable the 

characteristics of typical roads in Leicester to be identified. 

 

 The third objective was to carry out a quality check on the emissions inventory compiled to 

allow it’s representativeness to be assessed. 
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 The fourth objective was to, in a flexible way, assess the impact of a VKT restraint and a 

change in technology, fuel or vehicle within the Leicester fleet on CO2 and toxic air pollutant 

emissions.  

 

 The fifth objective was to identify strategies that can achieve a 50% reduction in CO2 

emissions in Leicester and to assess the associated changes in toxic air pollutant emissions 

resulting from these policy options.   

 

 The sixth and final objective was to develop a list of policy actions for Leicester council that 

were win-win for air quality and climate change. 

 

1.2.2 Thesis Contents 

 

As an introduction to the key concepts of road transport emissions, Chapter 2 begins with a brief 

overview of the release of air pollution from road transport. In the remainder of Chapter 2 and in 

Chapter 3 an extensive literature review is presented in two parts. In the first part, the different 

methodologies for modelling emissions from road transport are described. Emissions factor 

development, emissions models and the methods by which emissions inventories can be validated are 

documented. The role of air quality models as tools for pollutant forecasting is briefly reviewed and 

common Gaussian air quality models and their limitations are described. The methods by which an air 

quality model’s performance can be evaluated are highlighted. In the second part of the literature 

review, the different strategy options that aim to reduce emissions from road transport are discussed. 

New emissions abatement technology, fuels, low emissions vehicles and a reduction in VKT are 

reviewed.  

 

Having provided the reader with the background information on the important areas of emissions and 

dispersion modelling, and on the methods by which emissions can be reduced from road transport; 

Chapter 4 describes the methodological approach used in this research. The scene is set by describing 

the study area on which this research focuses. Leicester’s air quality problems and CO2 emissions 

targets are described. The method used in this investigation is then documented and a flow diagram 

guiding the reader through the modelling approaches adopted is presented.  The key data and software 

used are described.  

 

The use of factor and cluster analysis to classify roads is presented in Chapter 5 that enables diurnal 

traffic profiles to be assigned to roads with similar attributes. The characteristics of the roads in 
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Leicester were identified. The use of simulated traffic data in the approach described and its influence 

on the outputs is discussed.  

 

Chapter 6 documents the development of an emissions inventory and it’s representativeness of real-

world emissions is evaluated through the use of an air quality model. Comparison between the air 

quality model performance and the performance of models documented in the literature is made. A 

discussion of the impacts of meteorological data, background pollutant data, simulated traffic data, 

chemical reaction schemes and emissions factors on air quality model performance is presented.    

 

With a quality check on the emissions inventory provided previously, Chapter 7 presents the strategy 

modelling approach used in this research to edit the base-case emissions inventory to reflect a change 

in technology, fuel or vehicle. The impacts of these strategies on CO2 and toxic air pollutant 

emissions are explored and discussed and a set of policy options for Leicester are documented.  
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CHAPTER 2 

 

2. Background: Emissions and Dispersion Modelling 

 

In this Chapter the different methods used to estimate emissions from road traffic are described. In 

addition, the role of air quality models as tools for emissions inventory validation and for pollutant 

forecasting is reviewed. However, in order to provide the reader with information on the key concepts 

of this thesis, a brief overview of the release of air pollution from road transport is first presented. 

Should the reader require a broader introduction to the impacts of road transport on the environment, 

Appendix A documents a review of road transport’s contribution to global and regional air pollution. 

 

2.1 Release of Air Pollution from Road Transport 

 

To date nearly 3000 anthropogenic gaseous species have been identified (Fenger, 1999) of which in 

excess of 700 are emitted from motor vehicles (EPA, 2006). Furthermore, it has been identified that a 

significantly large portion of these chemicals are harmful to human health (see Appendix B). On a 

similar note a large number of GHGs and GHG precursors are emitted in vehicle exhausts fumes, 

which have the potential to induce climate forcing (USEPA, 2012a). The ability to monitor the 

emissions of such a large number of environmentally damaging gases and pollutants is neither 

physically or financially feasible.  ‘Indicators’ which are identified as being the most common gases 

emitted, are representative of the total mix of pollutants or GHGs in the atmosphere. The major 

pollutants measured and GHGs monitored are commonly defined as indicators. For example oxides of 

nitrogen or NOx is the collective name for nitrogen dioxide (NO2) and nitric oxide (NO) (Ojelede et 

al., 2008) and is used as being representative of these species. Hydrocarbon (HC) is the name given to 

a large number of chemical species including volatile organic carbons (VOCs), which in turn is the 

name given to a large number of chemicals such as methane (CH4), benzene (C6H6), 1,3-butadiene 

(C4H6), toluene (C7H8), formaldehyde (CH2O) and polycyclic aromatic hyrodcarbons (PAHs) 

(Environment Agency, 2010; USEAP, 2010). Particulates is the name given to particulate matter 

(PM) which can comprise an array of chemicals including sodium chloride, black carbon, mineral 

dust, trace metals, water (taken up by a number of secondary particles), VOCs and secondary particles 

(Hueglin et al., 2005; Vallero, 2008; Jacobson, 2002). PM is usually characterised by size with 

particles with a diameter of less than ten microns (PM10) and particles with a diameter of less than 2.5 

microns (PM2.5) used as being representative of all the particles that fall within their associated size 

range.  
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In Kyoto (Japan) in 1997 the UK and many other nations worldwide signed a legally binding 

document confirming their agreement to reduce emissions of six GHGs to or below fixed targets by 

2012 (see section 3.1.2). Known as the Kyoto Protocol, it resulted (in Europe and the UK) in the 

definition of GHG environmental indicators. The legislation covered six of the most common GHGs; 

CO2, methane (CH4), nitrous oxide (N2O), sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs), 

and perfluorocarbons (PFCs) (UNFCCC 1998). These are referred to as the ‘basket six.’ However, out 

of these six, CO2 is emitted from anthropogenic sources in the largest volume and is the dominant 

GHG emitted from road transport (UNFCCC, 2008). When other GHGs are reported in the literature 

they are often converted to CO2 equivalents (via the use of their global warming potential see AEA, 

2011) allowing for comparison between their emissions to be made. Therefore, it can be said that CO2 

is the primary GHG environmental indicator for the transport sector.     

 

It should be noted that in this research chemicals are referred to through the use of environmental 

indicators and CO2 is of primary focus with regards to GHGs. However, it is acknowledge that CO2 

and the other indicators mentioned are often broadly representative of a myriad of other chemical 

species.   

 

Although the majority of emissions from road transport are from a vehicle tail pipe (Boulter et al., 

2009b) toxic air pollutants are also released into the atmosphere due to vehicle brake and tyre wear 

(Omstedt et al., 2005), evaporative processes (Koutidis et al., 1999) and leaks in engine casings and 

tubing (Boulter et al., 2009a). In addition, some species emitted from vehicles undergo chemical 

transformations in the atmosphere and are converted to environmentally damaging gases or particles 

(Vallero, 2008). Such emissions are commonly defined as ‘indirect emissions.’  

 

2.1.1 Exhaust Emissions 

 

The incomplete combustion of fuel within a vehicles engine results in a complex mix of chemicals 

being released in the exhaust fumes (Heck and Farrauto, 2001). The composition of exhaust gases is 

dependent on engine type (e.g. diesel, four-stroke spark ignition) and the vehicle operating conditions 

(Kaspar et al., 2003). In general, exhaust gases comprise primarily un-burnt fuel, HCs, carbon 

monoxide (CO), NOx, PM, lead (Pb) and sulphur (S) (Van der Westhuisen et al., 2004). In modern 

vehicles the latter two species have been controlled by their removal from diesel and petrol fuel (e.g. 

Hm-Treasury, 2008a, 2008b) and NOx, CO and HC exhaust emissions are controlled by a catalytic 

converter (Boulter et al., 2009a). Catalytic converters were introduced in the USA in the 1970s and 

into Europe in the 1980s (Moidovan et al., 2002). The reactions that occur on a modern exhaust 

catalyst involve oxidation and reduction processes and a simplified set of these reactions are shown in 

Table 1 (Kaspar et al., 2003). The control of CO and HC emissions results primarily in CO2 being 
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emitted in vehicle exhaust fumes. In contrast, reduction reactions convert NOx species to water vapour 

(H2O), nitrogen (N2) and nitrogen containing species as well as CO2. The nitrogen containing species 

emitted in a vehicle exhaust after catalytic reduction include N2O which is also a GHG (Cant et al., 

1998; Odaka et al., 2000; Graham et al., 2008).  

 

Numerous vehicle technologies have been developed to reduce emissions of toxic air pollutants from 

road transport (Uherek et al., 2010). Diesel particulate filters are ceramic devices that collect PM in 

the exhaust stream (DEQ, 2012; Boulter et al., 2009a). The high temperature of the exhaust heats the 

ceramic structure and allows the particles inside to oxidize into less harmful components (USEPA, 

2003). Typically a DPF lowers exhaust PM emissions to 0.5mg/km (this value is used in the UK 2009 

emissions factors for Euro 5 and Euro 6 vehicles; Boulter et al., 2009a). Exhaust gas recirculation 

(EGR) systems lower emissions of NOx from the exhaust stream but (like DPFs) increase fuel 

consumption (USEPA, 2003; Dong et al., 2008). In contrast, selective catalytic reduction (SCR) 

systems lower NOx emissions by reduction of NOx to Nitrogen (N2) using ammonia or urea without 

incurring a fuel penalty (Sojvall et al., 2006).       

 

Table 1 Oxidation and reduction reactions occurring on a vehicle catalyst (Kaspar et al., 2003) 

Reaction Type Equation 

Oxidation                                         
2CO + O2 → 2CO2                                                                                                                            

HC + O2 → CO2 + H2O
a 
                                                                                                                        

Reduction  

2CO + 2NO → 2CO2 + N2 

HC + NO → CO2 + H2O + N2
a
 

2H2 + 2NO → 2H2O + N2 
a unbalanced equation 

 

 

2.1.2 Indirect Emissions 

 

Indirect emissions from road transport occur due to chemical reaction and condensation processes in 

the atmosphere transforming vehicle derived emissions into environmentally harmful species. 

Secondary particulates and aerosols form in the atmosphere from the condensation of tailpipe gases 

such as SO2, NOx and VOCs into tiny droplets (Quah and Boon, 2003). In addition, NOx along with 

CO and HC species are involved in a complex set of photochemical reactions in the atmosphere that 

result in the formation of ozone (O3) (Barry and Chorley, 2003) which is a potent GHG and toxic to 

humans (Bree et al., 1995; Inoue et al., 2008; Jorge et al., 2002; Cheng et al., 2003). The production 

of O3 in the troposphere involves hydroxyl radical oxidation of CO, CH4, and other HCs in the 

presence of NOx. A coupled reaction between NOx and O3 leads to the establishment of a 

photostationary state between NO2, NO and O3, which has about a 100 second time scale (Brasseur et 
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al., 2003). Due to increased emissions of anthropogenic NOx and VOCs, primarily sourced from road 

traffic, background levels of O3 in the UK increased from 42µg/m
3
 to 57µg/m

3
 between 1993 and 

2007 (DEFRA, 2008). 

 

2.1.3 Evaporative Emissions 

 

It is primarily VOCs that are vented into the air under evaporative processes from both parked and 

moving vehicles (Boulter et al., 2009a; Van der, Westhuisen et al., 2004). VOCs can evaporate from a 

vehicle due to faulty fuel caps, during refuelling and due to cracks in engine casings and tubing 

(Latham and Boulter, 2009). Evaporative VOCs emissions from diesel vehicles are negligible due to 

the presence of heavier HCs and extremely low volatility of diesel fuel (Boulter et al., 2009b). In 

contrast, evaporative emissions from petrol vehicles have been shown to significantly contribute to 

ambient VOC concentrations. For example, Koutidis et al. (1999) documented around 25% of total 

VOC emissions in Athens were attributed to evaporative emissions in 1999. Batteman et al. (2005) 

highlighted that in the extreme case up to 62.7mg/h of non-methane hydrocarbons (NMVOCs) can be 

emitted from vehicles with loose or malfunctioning fuel caps during the summer season.  

 

2.1.4 Emissions from Abrasive and Mechanical Friction 

 

Non-exhaust derived vehicle pollution from brake and tyre wear is caused by abrasive and mechanical 

friction and primarily results in the emission of PM, which can range in size from a few hundred 

nanometers (nm) to a few tens of micrometers (µm) (Thorpe and Harrison 2008). Emissions from 

brake and tyre wear have been shown to contribute significantly to ambient pollution concentration 

levels. For example Omstedt et al. (2005) documented that non-tailpipe, mechanically generated 

emissions account for 90% of the total traffic contribution to PM10 in Stockholm and Querol et al. 

(2005) showed non-exhaust (abrasive) and exhaust emissions to contribute equally to ambient PM10 

and PM2.5 levels in European cities. However, the rate of brake wear is highly dependent on the 

composition of the linings used and the mode of driving to which the brakes are subjected (Thorpe 

and Harrison 2008). 

 

2.2 Emissions Factor Development 

 

The continuous monitoring of emissions from mobile sources is at present not practically or 

financially feasible (Smit et al., 2010). Therefore, a method was needed to estimate emissions from 

road traffic that used readily available data. The internationally agreed procedures and guidelines for 

reporting emissions from road traffic involves the combination of traffic activity data (km travelled 

and speed) with vehicle fleet composition data (vehicle mix by engine size, vehicle size, age, engine 
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and exhaust treatment technology, Euro emissions standard, fuel type, and vehicle use) and emissions 

factors (g/km) (Barlow and Boulter, 2009; Boulter et al., 2009a, 2009b; Murrels, 2009).  Emissions 

factors are defined by the United Nations Framework Convention on Climate Change (UNFCCC, 

2012a) as ‘a unique value for scaling emissions to activity data in terms of a standard rate of 

emissions per unit of activity.’ For road traffic the National Atmospheric Emissions Inventory (NAEI) 

defines an emissions factor as the ‘relationship between the amount of pollution produced and the 

number of vehicle miles travelled’ (NAEI, 2012b) i.e. an emissions factor is a representative value of 

the typical rate at which a pollutant is released into the air from a vehicle.  

 

Emissions factors can be grouped to make an emissions model that allows for the calculation of 

pollutant emissions from a number of different source types (e.g. passenger cars, buses, artic HGVs 

etc.). Emissions models are typically used to estimate total emissions from a given geographical area 

including a stretch of road or road network (e.g. Kassomenos et al., 2006; Goncalves et al., 2009; 

Kantor et al.,  2010; Theil et al., 2010; Brady and O’Mahony, 2011; Che et al,. 2011; Ginnouli et al., 

2011; Kyle and Kim, 2011; Streimikiene and Sliogeiene, 2011; Thambiran and Diab, 2011; Collet et 

al., 2012; Leighty et al., 2012; Oxley et al., 2012; Pasaoglu et al., 2012; Takeshita, 2012). A list of 

emissions by source for a given geographical area and time period is known as an emissions inventory 

and can be compiled using an emissions model (NAEI, 2012b). A number of different emissions 

modelling approaches have been adopted such as, average-speed, corrected average-speed, traffic 

situation, multiple linear regression and instantaneous models (Barlow and Boulter, 2009). Smit et al. 

(2008a) give an excellent review of these models and they are only briefly described below. However, 

given that emissions models are more often than not represented by emissions factors and emission 

factors are in turn dependent on several other factors (such as type of fuel, type of engine, age of the 

vehicle, driving cycle etc.) (Kamble et al., 2009), it is first necessary to document the methods by 

which emissions factors are developed. 

 

There are a number of different ways in which emissions factors can be estimated from road vehicles. 

Typically laboratory dynamometer tests are used to determine emissions factors from road vehicles 

(Grieshop et al., 2012). Some common alternatives to dynamometer experiments include on-board 

measurements (e.g. Huo et al., 2012a, 2012b), remote sensing measurement campaigns (e.g. Guo et 

al., 2007) and tunnel experiments (e.g. Colberg et al., 2005). It is these four approaches that are the 

focus of the following sections. Other methods, such as inverse modelling (e.g. Zarate et al., 2007) 

and mass balance (e.g. Klthoff et al., 2002) are less commonly used to estimate emissions and are 

beyond the scope of this work.  

 

It should be noted that CO2 emissions are more easily estimated from road vehicles as their emission 

is directly related to fuel consumption (Thambiran and Diab, 2011). In contrast, the emissions of 
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pollutants from road vehicles are dependent on many other parameters such as engine load, ambient 

temperature and therefore it is harder to accurately estimate their emissions rates (Boulter et al., 

2009b).  

 

2.2.1 Dynamometer Tests 

 

The dynamometer test is the most widely used method of estimating emissions from road vehicles 

(Joumard et al., 2000). They involve a vehicle being run on a dynamometer under controlled 

conditions whilst simultaneously collecting the vehicle exhaust gases and subsequently quantifying 

them (Prati et al., 2011). During these tests the vehicles are subjected to various driving cycles, which 

involve the changing of the dynamics (speed, engine load etc.) of the vehicle to reflect ‘real world’ 

driving conditions (Andre et al., 2006; Kamble et al., 2009). During these test (or drive) cycles 

various activity parameters can be measured, such as speed, engine load, acceleration, deceleration 

etc. (Boutlter et al., 2009b). These parameters can be plotted against emissions and through the use of 

regression analysis continuous functions can be applied to the data in order to develop emissions 

factors (Barlow and Boulter, 2009).  

 

The main advantage of the dynamometer tests over other emissions factor development approaches is 

that the tests can be carried out in a controlled environment (laboratory) under standard conditions, 

which allows for test procedures to be easily reproduced (de Vlieger, 1997; Boutlter et al., 2009b). In 

turn this allows the emissions factors produced from different dynamometer tests to be compared and 

subsequently compiled into a single database, increasing the number of sampled vehicles. However, 

the standardisation of dynamometer test conditions can be an advantage on the one hand but a 

disadvantage on the other. Sample size, maintenance level, vehicle size and age of test cars, uniform 

measurement methods and test conditions and driving patterns are all sensitive parameters during 

dynamometer tests (Winther, 1998).  A failure to take into account the sensitivity of these parameters 

whilst conducting emissions laboratory investigations can lead to un-representative emissions factors 

and ultimately under-prediction or over-prediction of emissions model estimates (Boutlter et al., 

2009a). However, it is the dynamometer (or driving) cycle that is widely accepted as a major 

limitation of laboratory based emissions testing (see Carslaw et al., 2011, Carslaw and Beevers, 2005, 

Carslaw and Beevers, 2004; Latham et al., 2001; Jenkin, 2004a; Jenkin, 2008; AQEG, 2007). 

 

Driving cycles used in dynamometer tests provide a speed-time profile of driving behaviour in a 

specific area/region (Newman et al., 1992). Current driving cycles are developed with on-road driving 

data (e.g. ARTEMIS; Assessment and Reliability of Transport Emissions Models and Inventory 

Systems, see Andre 2004) rather than simulation methods (such as the Japanese driving cycle, 

California-seven cycle and mode-cycle see Kamble et al., 2009) and are normally stratified by route 
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type (e.g. urban, rural, motorway), vehicle type (e.g. HGV, LGV), time period (e.g. peak, off-peak) 

and speed level (Hung et al., 2012). Once a dynamometer test is complete it is necessary to apply 

correction factors to the emissions rates recorded to account for deviations between laboratory and on-

road conditions such as temperature and average vehicle speed (Grieshop et al., 2012). However, it is 

well documented in the literature that there are also deviations between the representivity of 

laboratory dynamometer driving cycles and on-road real world driving conditions (Joumard, 1999; 

Lau et al., 2001; de Vlieger, 1997; Andre, 2006; Grieshop et al., 2012; Boutlter et al., 2009a; Smit 

and Bluett, 2011; Nutraman and Supachart, 2009; Andre, 2004).  Much of the literature documenting 

these deviations concerns the application of emissions factors developed from generic, often national 

(e.g. Indian driving cycle) or international driving cycles (e.g. ECE 15, modem-hyzem cycles) known 

as ‘standard’ driving cycles (e.g. Joumard, 1999; Joumard, 2000; Lin and Niemeire, 2003; Kamble et 

al., 2009; Durbin et al., 2002; Lenaers, 1996). These cycles are typically the legislative cycles used 

for testing vehicles registered within a country or region (e.g. Europe). Given that the driving 

characteristics of each city are unique due to different vehicle fleet composition, driving behaviour 

and road network topography (Andre et al., 2006; Tsai et al., 2005), the use of emissions factors 

developed from these standard driving cycles have been shown to substantially underestimate 

emissions (e.g. Carslaw et al., 2011; Joumard, 2000). For example, Rhys-Tyler and Bell (2012) 

compared results from an RSD campaign in London with emissions results over the New European 

Drive Cycle (NEDC) and found CO emissions from gasoline-powered cars less than three years old 

measured using remote sensing to be 1.3 times higher than the NEDC. This value was found to 

increase to 2.2 times for cars between four and eight years and to 6.4 for cars between nine and 12 

years old. Similar results were found by Rhys-Tyler and Bell (2012) when NOx, HC and PM emissions 

were compared.  Discrepancies between dynamometer and ‘real-world’ estimates have been 

documented by Carslaw et al. (2011), Carslaw and Beevers (2005), Carslaw and Beevers (2004), 

Latham et al. (2001), Jenkin (2004a, 2008) and AQEG (2007). The discrepancies between emissions 

estimates developed from dynamometer test and those developed from RSD campaigns are discussed 

further in section 2.3.1.  

 

In some cases dynamometer driving cycles have been developed using more local on-road driving 

data in an attempt to better represent real world conditions in emissions estimates. For example, 

Nutraman and Supachart (2009) compared the more local Bangkok driving cycle to that of the 

European driving cycle (the adopted legislative cycle for testing vehicles registered in Thailand) and 

found that HC and CO emissions from the Bangkok driving cycle were almost two and four times 

greater and NOx emissions 10% higher than those of the European driving cycle. Similarly, Durbin et 

al. (2002) observed substantially higher emissions estimates from tests using the New York City 

driving cycle compared to experiments with the Federal Test Procedure (FTP). They concluded that 
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the discrepancies found were due to the inability of the standard FTP cycle to take into account the 

more aggressive acceleration behaviour that was present at a local level.  Tsai et al. (2005) compared 

a local driving cycle (Karohsiung Driving cycle) to the standard legislative cycle used for testing 

vehicles in China (European driving cycle). They documented that the percentage of time spent in 

acceleration, and deceleration modes was substantially lower for the European driving cycle than for 

the Karohsiung Driving cycle, resulting in completely different emissions factors and fuel 

consumption. However, despite the development of such local cycles it is impractical to develop and 

regularly update driving cycles at every locality and so it is inevitable that the use of ‘standard’ 

driving cycles will continue in the future as common practice.  

 

Other disadvantages of dynamometer tests include the use of set ambient temperatures and 

preconditioning routines and the absence of road gradients (Franco et al. 2013). In addition, emissions 

factors developed from dynamometers tests are typically not representative of the entire vehicle fleet 

as only a few vehicles of each technology type are usually tested (Boutlter et al., 2009b). This 

shortfall can result in the failure of dynamometer tests to represent the local extremes (or gross 

emitters) of real-world driving (Liau and Dubarry, 2007). These gross emitters (often poorly 

maintained vehicles; see Muncaster et al,. 1996) are responsible for a high percentage of total 

pollutant gases but represent a small number of the vehicle fleet meaning that their emissions 

behaviour are often not captured in dynamometer tests (Huo et al., 2012a; Grieshop et al., 2012; Lau 

et al., 2001; Cadle et al., 1997). Similarly, the continuous functions commonly applied to 

dynamometer data in order to develop a set of emissions factors represent an average and as such 

extremes or gross emitters are removed from these datasets (Barlow and Boulter, 2009).    

 

2.2.2 Instrumented Vehicles 

 

Another method by which emissions factors from vehicles can be estimated is using the on-board 

measurement or instrumented vehicle approach (e.g. Lopez et al., 2009; Chen et al., 2007; Lenaers et 

al., 1996; Hung et al., 2007). This method involves the fitting of devices to a vehicle which directly 

measure the rate of emissions and other activity parameters (e.g. speed, engine load, gear change etc.) 

of the vehicle whilst it is operated in real world conditions (Lau et al., 2001). The main advantage of 

this approach over dynamometer tests is that emissions are collected under real world conditions and 

as such the representivity of external variables, such as temperature, are accurately reflected in 

emissions estimates (Lau et al., 2001). Furthermore, vehicle dynamics during on road experiments are 

documented as being more representative of real world driving (Lau et al., 2001; Huo et al., 2012a; 

Huo et al., 2012b; De Vlieger, 1997) than dynamometer tests, although it is necessary to choose 

routes on the network that are ‘typical’ of the journeys they are trying to describe.   
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The main disadvantage of instrumented vehicle experiments is that they are restricted by sample size 

as these tests are often conducted using a limited number of vehicles of a specific type. For example, 

Dee Hann and Keller (2000) conducted extensive on-board measurements of Euro-I petrol passenger 

cars during real world driving to produce a set of emissions factors and subsequently an instantaneous 

emissions model. Although the model was shown to predict emissions more accurately than models 

developed using dynamometer tests over standard driving cycles, the instantaneous emissions model 

was restricted by its sample size and vehicle type i.e. it was developed based on a small number of 

Euro-I petrol cars. Therefore, the model cannot be applied to a wider vehicle fleet.  

 

2.2.3 Remote Sensing  

 

The use of remote sensing detectors (RSD) involves the use of ultraviolet and infrared beams of light 

which, when passed through a vehicle exhaust plume, are absorbed by its constituent gases and 

particles allowing volume concentrations of HC, CO, CO2 and NO to be estimated simultaneously 

(Guo et al., 2007; Guenther et al., 1994). In contrast to the on-board measurement approach, the use 

of RSD has enabled emissions data to be gathered from large samples of vehicles driving in real world 

conditions. For example, a campaign carried out by Chan et al. (2004) involved a series of remote 

sensing exhaust emissions measurements in Hong Kong resulting in the collection of emissions data 

from a total of 10,781 petrol vehicles. Kuhns et al. (2004) compiled an emissions inventory of 61,207 

gasoline and 1,180 diesel vehicles based on RSD studies in Las Vegas, US and Sjodin and 

Andreasson (2000) documented an RSD campaign involving the monitoring of 30,000 vehicles in 

Gothenburg, Sweden. Furthermore, an RSD measurement campaign in the UK by Carslaw et al. 

(2011) has not only resulted in the compilation of a large emissions factor database but also 

highlighted the discrepancies between dynamometer based emissions factors and real world 

conditions (see section 2.3.1 below). Other RSD studies, such as those by Guo et al. (2007), Smit and 

Bluett (2011) and Beevers et al. (2012) have similarly documented a lack of agreement between RSD 

data and dynamometer based emissions inventories. These discrepancies are due to the fact that RSD 

data better reflects real world driving dynamics compared to dynamometer studies (Sadler et al., 

1996). Rhys-Tyler et al. (2011) documented that RSD campaigns (and other real world driving 

measurement techniques such as instrumented vehicles) allow for ‘variability in driver behaviour, 

interactions with other road users and interactions with highway infrastructure.’ Laboratory 

experiments do not explicitly reflect these parameters which can result in unrepresentative emissions 

factors.    

   

There are a number of limitations associated with RSD experiments, namely dependence on 

appropriate meteorological conditions (high winds cause rapid dispersion of exhaust plumes), 

inability to capture vehicle emissions emitted from exhausts at varying heights and the restriction of 
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use to specific road types (i.e. single lane, urban roads that are on a gradient) (see Carslaw et al., 

2011a; Carslaw et al., 2011b). In addition, in order to maintain a consistent and acceptable level of 

accuracy, RSD equipment requires daily multi-point calibration with real wet exhaust which in some 

experiments may not be common practice (Sjodin and Andreasson, 2000).  

 

2.2.4 Tunnel Experiments 

 

In a typical tunnel study, pollutant concentrations are sampled at the entrance and exit of a tunnel 

(Kuhns et al., 2004).  The difference in pollutant concentrations between the entrance and exit points 

is assumed to be directly related to the mass emitted from the vehicles travelling through the tunnel 

during the sample period (Mancilla and Mendoza, 2012). It is possible to calculate average emissions 

factors from this data that are representative of the total vehicle fleet passing through the tunnel 

(Colberg et al., 2005). There are two types of tunnel study, those concerned with the development of 

emissions factors and those with the air quality levels within a tunnel and its compliance with 

legislation (El-Fadel and Hashisho, 2000). Both types of study can be considered beneficial over other 

emissions factor development methods because tunnel studies can determine the average emissions of 

large number of vehicles, reflect vehicle exhaust in real-world traffic, are cheaper than laboratory 

based tests (Hung- Lung and Yao-Sheng, 2009) and provide emissions estimates that are 

representative of tail pipe and non-tail pipe emissions (McGaughey et al., 2000).  

 

Although tunnel studies have been shown to provide accurate estimates of local emissions (Touaty 

and Bonsang, 2000; El-Fadel and Hashisho, 2000; Weingarter et al., 1997; Ho et al., 2007) they are 

subject to a number of limitations. They are limited in their application as they provide emissions 

factors that are specific to a tunnel and its particular driving conditions and road geometry and 

topography (Ning et al., 2008). Furthermore, the vehicle mix passing through the tunnel may not be 

representative of the urban fleet in the surrounding area and as a result, the information they provide 

are often not broadly applicable to the wider road network (Hung- Lung and Yao-Sheng, 2009). In 

addition, tunnel studies do not explicitly measure emissions by vehicle class or type and as such 

provide a composite factor for all vehicles that have passed through the tunnel (Gentler and Pierson, 

1996). It is possible to subsequently estimate emissions by vehicle type using various calculations and 

regression analysis (e.g. Kristensson et al., 2004) but these are subject to assumptions and limitations 

of their own (Grieshop et al., 2006).   

 

2.2.5 Emission Factor Development: Summary 

 

Dynamometer tests do not accurately represent real world driving conditions but have the advantage 

of reproducibility and real world driving studies allow variability in vehicle dynamics to be 
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represented in emissions factors but can be restricted by their sample size (i.e. instrumented vehicles), 

their sensitivity to meteorological conditions (i.e. remote sensing), or by their lack of applicability to 

the wider road network (i.e. tunnel studies).  

 

The fact dynamometer experiments are highly reproducible enables governing bodies to have a 

legislative driving cycle in place that ensures new vehicles meet required standards before going on 

general sale. Ultimately this means that dynamometer tests will remain key to emissions factor 

development. However, a combination of dynamometers test data with real world data can provide a 

more robust approach to estimating emissions from road vehicles (De Vlieger, 1997) and the 

application of multiple methods to estimate emissions factors on a national scale is important if air 

quality limit values are to be met in the UK.  

 

2.3 Emissions Models  

 

During emissions factor development different activity parameters can be recorded and subsequently 

used in conjunction with emissions rates, to develop emissions models. Given that there are many 

parameters that influence emissions rates, many different emissions models have been developed over 

the years some of which are described next. It should be noted that these models are greatly 

influenced by the emissions factors they comprise. Emissions factors are in turn governed by the 

method from which they were developed (see above). As a result emissions models often share the 

same advantages and disadvantages as the emissions factors they use as it is hard to incorporate the 

uncertainties associated with emissions factors into emissions models (Hung-Lung and Yao-Sheng 

2009). 

 

Average-speed models (e.g. MOBILE (EPA), EMFAC (California Air Resources Board), COPERT 

(Ahlvik et al., 1997; Ntziachristos et al., 2000), and Namdeo et al. (2002) are the most commonly 

used emissions models (Smit et al., 2010). This is primarily due to the fact that their data 

requirements, traffic flow, vehicle type and vehicle average-speed, are more often than not readily 

available for use (Barlow and Boulter, 2009). The emissions factors used in these models are based 

upon the principle that the average emissions for a certain pollutant and a given type of vehicle varies 

according to the average-speed during a trip (Boulter et al., 2009a). Consequently the model assigns 

an average emissions factor based on the user specified average-speed and vehicle type.   

 

One major concern with average-speed models is that trips having very different vehicle dynamics 

and emissions can have the same average-speed (Balrow and Boulter, 2009). For example, an 

average-speed of 60km/h on an arterial road could represent uncongested free-flowing conditions, 

whereas the same speed on a motorway would represent much more congested conditions, involving 
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stop and go dynamics (Smit et al., 2008). This is especially relevant in the case of modern catalyst 

equipped vehicles, for which a large proportion of total emissions during a trip can be as a result of 

congested, stop-start conditions (Huo et al., 2012a). Such conditions result in very short, sharp 

increases in emissions (Grieshop et al., 2012; Lau et al., 2001). Average-speed models fail to 

explicitly take into account these peaks in emissions and as such it is hard to determine their 

representativeness.   

 

One approach used to overcome the inability of average-speed models to accurately represent the 

impact of changing vehicle dynamics is the corrected average-speed emissions modelling method. 

Corrected average-speed models (e.g. TEE model; Nagrentini, 1998) use average-speed, green time, 

percentage of traffic signals, link length and traffic density variables to estimate a congestion 

correction factor which is subsequently applied to an average-speed model (Smit et al., 2010). Using 

these variables the model identifies vehicle time spent in different modes (e.g. idle, acceleration, 

cruise etc) and adjusts emissions profiles so that they better represent the short-sharp peaks in 

emissions that may have taken place during a trip (Smit et al., 2008a).  It should be noted that the term 

‘link’ refers to a section of road. In this research ‘link’ and ‘road’ are used interchangeably.  

 

Traffic situation models (e.g. that from ARTEMIS [Andre, 2004], HBEFA [Hand Book for Emissions 

Factors see HBEFA, 2012]) assign specific emissions factors to specific traffic ‘situations’ such as 

‘stop and go’ or ‘free flow’ (Colberg et al., 2005). The user is required to input a textual description 

for each road that directly relates to these textual descriptions. The model relies on the premise that 

users can relate to the traffic situations defined in the model (Boulter et al., 2009a).  

 

Multiple linear regression models (e.g. VERSIT +; Smit et al., 2005) are based on the completion of a 

large number of dynamometer test cycles during which a number of descriptive parameters are 

recorded (Barlow and Boulter, 2009). Regression analysis is used to fit continuous functions to 

average emissions and each variable. This allows the variable that best describes the emissions to be 

identified (Smit et al., 2008a). The user is required to input vehicle driving cycle data from which the 

model predicts the same range of variables and assigns the most appropriate emissions factors 

accordingly (Smit et al., 2007).    

 

Instantaneous emissions models (e.g. De Hann and Keller, 2000; MODEM; PHEM) relate emissions 

to vehicle operation over a small time period (e.g. seconds, minutes). An emissions rate is calculated 

for each time period and the sum of all the time period rates is used as the overall link emissions value 

(Balrow and Boulter, 2009a). Boulter et al. (2007) documented a comprehensive evaluation of 

instantaneous emissions models in which they conclude that, given the level of detail required, 

‘instantaneous models are not suitable for use on larger (e.g. national) scales.’   
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2.3.1 Estimating Road Transport Emissions in the UK 

 

On a national scale, emissions from road traffic in the UK are estimated using the UK NAEI, which 

comprises a set of average-speed emissions factors specific to the general UK vehicle fleet along with 

national road traffic activity data (flow) from the Department for Transport (DfT) traffic census. The 

inventory comprises emissions factors for a large number of pollutants, including PM10 and NOx 

which are of primary concern. The National Green House Gas Emissions Inventory (NGHGI) forms a 

part of the NAEI and similarly comprises emissions factors for a large number of GHGs, including 

CO2. The emissions factors have been revised and updated over the years. In 2009 the Transport 

Research Laboratory (TRL) was commissioned by the DfT to review the NAEI methodology used to 

predict emissions factors. The work resulted in reports that reviewed NAEI methodologies for 

estimating hot exhaust emissions factors (Boutler et al., 2009b), cold start emissions (Boutler and 

Latham, 2009a), fuel properties (Boutler and Latham, 2009b), exhaust emission factors for road 

vehicles in the UK (Boulter et al., 2009a) and evaporative emissions (Latham and Boulter, 2009) for 

road vehicles. In addition, a report was produced documenting deterioration factors and other 

modelling assumptions of road vehicles (Boulter et al., 2009c). Primary outputs from the work 

included a driving cycle reference book (as a result of extensive comparisons of a wide range of 

European test cycles), the subsequent revision of the average-speed approach for estimating hot 

exhaust emissions and the production of fuel and mileage scaling factors (Barlow and Boutler, 2009). 

It should be noted that an important change in the NAEI methodology was made for the estimation of 

CO2 emissions from light duty vehicles (LDVs; cars and light goods vehicles). The revised CO2 

emissions factors take into account the forecast decline in new car CO2 emissions in accordance with 

the 130gCO2/km by 2015 legislation (see section 3.1.2; Boulter et al., 2009a). This means that a 

progressive decline in CO2 emissions factors occurs with change in Euro class despite CO2 not being a 

regulated pollutant.    

 

Despite the revision of the UK emissions factors, more recently a number of discrepancies between 

real world emissions and those in the NAEI have been documented. A substantial amount of research 

has focused on trends in NOx emissions from road vehicles (Carslaw et al., 2011; Carslaw and 

Beevers, 2005; Carslaw and Beevers, 2004; Latham et al., 2001; Jenkin, 2004a; Jenkin, 2008; AQEG, 

2007; Rhys-Tyler et al., 2011). This has come about due to the fact that although emissions standards 

set in the UK have been shown to decrease, a synergistic decline in ambient NO2 concentrations has 

not been observed (Carslaw et al., 2011). Moreover, in some places (primarily at roadside locations) 

an increase in NO2 concentrations has been shown (AQEG, 2007). The reason for this lack of synergy 

between emissions standards and NO2 concentrations is due to an increase in the proportion of NOx 

emitted as f-NO2 in vehicle exhaust fumes (Carslaw and Beevers, 2004). In the UK f-NO2 has 

increased from 5-7% in 1996 to 15-16% in 2009 and in London the increase has been greater (5-7% 
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1996 to 21-22% in 2009) (Carslaw et al., 2011). Recent research  based on UK data has shown that 

the increase in f-NO2 has been due to increased penetration of diesel vehicles into the fleet and an 

increase in the number of vehicles (primarily buses) equipped with diesel particulate filters (DPF) and 

oxidation catalyst exhaust after treatment technologies (AQEG, 2007; Jenkin, 2008). Similar findings 

have been documented for road traffic in Europe and Asia with Hueglin et al. (2006), Hopfner and 

Lambrecht (2005), Grice et al. (2009) and Kousoulisdou et al. (2008) observing an increase in f-NO2 

due to diesel vehicle penetration and specific after treatment technology uptake in Switzerland, 

Germany, and several European cities. Shon et al. (2011) and Minour and Ito (2010) have 

documented similar trends in East Asia.  A study by Mavroidis et al. (2010) concluded that in Athens, 

the fraction of f-NO2 had not altered between 1998 and 2006 due to the fact that diesel cars were not 

allowed in the Athens area and after treatment technologies such as DPF and oxidation catalysts were 

not adopted in Greece during the 8 year period. The study provided an insight into the possible 

strategies to prevent the increase in f-NO2 that has been observed elsewhere in Europe. 

 

A comprehensive investigation by Carslaw et al. (2011) involved the analysis of emissions data from 

72,000 vehicles which was captured based on field campaigns and the use of a RSD. The data was 

compared to current UK emissions factors and alternative emissions factor estimates from 

Swiss/German handbook of Emissions Factors (HBEFA) and COPERT 4 which enabled 

discrepancies between current UK factors to be highlighted. Table 2 shows a summary of the findings 

from the research carried out by Carslaw et al. (2011).  The terms ‘LGV’ and ‘HGV’ refer to light 

goods vehicle and heavy goods vehicle respectively.  

 

Table 2 Summary of findings from the remote sensing detector research carried out by Carslaw et al. 

(2011) 

Data Set Comparison With Vehicle Type Euro Class Conclusion 

UKEF COPERT 4 and HBEFA  Diesel Cars, LGVs Euro 3 onwards UKEF Lower 

RSD  UKEF and HBEFA Petrol Cars Euro 1 and Euro 2 RSD Higher 

RSD UKEF and HBEFA Diesel LGVs Euro 3 onwards RSD Higher 

RSD UKEF and HBEFA Diesel Cars  All Euros RSD Higher 

RSD UKEF and HBEFA Rigid HGV (Diesel)  Euro I to Euro IV RSD Higher 

 

 

Carslaw et al. (2011) attributed the discrepancies between the RSD data and other emissions factor 

data sets observed for petrol cars to be as a result of greater real world catalyst failure and emissions 

degradation rates. For those observed for HGVs it was concluded that selective catalyst reduction 

(SCR) was ineffective at urban driving speeds and as result emissions were substantially higher under 

these conditions and for discrepancies observed for diesel LDVs, particularly diesel cars, it was 
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documented that the LDV test cycles used to develop the UKEFs were inadequate to accurately reflect 

real world conditions resulting in an underestimate of NOx emissions (Carslaw et al., 2011).  

 

An equally robust study was completed by Rhys-Tyler et al. (2011) using data from an RSD 

campaign in London. The study found Euro 2 diesel cars to have NO emissions significantly higher 

than Euro 1 or Euro 3, Euro 4 diesel cars to have between 6 and 17 times higher NO emissions than 

the equivalent Euro 4 petrol car and median NO emissions from Euro IV diesel light commercial 

vehicles (<3.5t) were observed to be approximately 25% higher than emissions from Euro 4 diesel 

passenger cars. The results from the work of Rhys-Tyler et al. (2011) further support the findings of 

Carslaw et al. (2011) and suggest that the introduction of emissions abatement technology and the 

emissions testing of such technology in some cases has not been successful.     

 

2.4 Evaluating the Impact of Road Transport Strategies on Air Pollution 

 

It is necessary for governing bodies to develop strategies and policies in order to reduce the impact of 

vehicle emissions on human health and the environment. It is an advantage to have the ability to 

evaluate such strategies and policies prior to implementation, so to allow the best possible option 

(often for the least cost) to be identified. A key approach to strategy modelling is the editing of a base-

case emissions inventory to reflect the proposed changes to the vehicle fleet. The strategies can be 

evaluated relative to the base-case and the cost in terms of emissions reductions calculated allowing 

the ‘best’ strategy to be identified. For example Kyle and Kim (2011) documented an assessment of 

the impact of technology advancement in the global LDV fleet on GHG emissions. They documented 

the greatest reductions in GHGs as a result of increased penetration of electric vehicles (EVs) into the 

fleet. Ginnouli et al. (2011) documented a study that involved the assessment of the impact of 

European emissions control strategies on urban and local air quality in 20 European cities. They found 

NO2 and PM10 reductions to be greatest when the base-case was edited to reflect greater uptake of 

alternative technologies. Goncalves et al. (2009) edited a base-case inventory for the Barcelona and 

Madrid road networks in order to model the switching of conventional fuels to natural gas. The 

highest pollutant emissions reductions resulted from the switching of conventional fuelled cars to 

natural gas powered cars. Similar strategy modelling studies are documented by Takeshita (2012), 

Streimikiene and Sliogeiene (2011), Theil et al. (2010), Kantor et al. (2010), Che et al. (2011), 

Kassomenos et al. (2006), Leighty et al. (2012), Brady and O’Mahony (2011), Thambiran and Diab 

(2011) and Collet et al. (2012). However, these studies all differ in their approaches to strategy 

modelling. These differences are primarily due to assumptions made, such as those concerning new 

technology efficiency and penetration, emissions factors, number and type of vehicles, social 

behaviour and changes in fuel production processes (Oxley et al., 2012). In addition, Pasaoglu et al. 

(2012) documents that in relation to strategy modelling studies ‘there is significant amount of degrees 
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of freedom in the presentation and aggregation of assumptions and findings.’ As a result it often 

becomes hard to compare studies. Furthermore, given the level of assumptions made, their use is often 

not to provide absolute emissions results but rather to provide an indication of what a change in the 

vehicle fleet may have on vehicle emissions (or concentrations) (Ginnouli et al., 2011). However, in 

order to estimate such emissions changes it is common practice to validate the base-case emissions 

inventory first.  

 

2.5 Validation of Emissions Models  

 

It has been stated above that a number of different models and approaches have been developed to 

estimate vehicle derived emissions. It is important that these models are validated so that their ability 

to predict emissions from road traffic can be estimated. However, it is not possible to validate an 

emissions model without simultaneously assessing the accuracy of the emissions inventory compiled 

and used in the model. As such validating an emissions model inherently results in the validation of 

the emissions inventory as well. From here on reference to emissions models and subsequent 

validation will include the validation of the emissions inventory, although it may not be explicitly 

mentioned.  

 

Emissions models can be validated using  data collected from tunnels (e.g. Robinson et al., 1996; 

Hausberger et al., 2003), instrumented vehicles (e.g. Joumard et al., 1995) and remote sensing 

(Carslaw et al., 2011; Chan et al., 2004). The advantages and disadvantages of these techniques have 

been described above. An alternative approach to emissions inventory validation is the use of ambient 

concentration measurements. Emissions data can be input for use in an air quality model. Subsequent 

predicted pollutant concentrations can be compared with observed data which allows the accuracy of 

the emissions inventory compiled to be assessed (see section 2.6 below). Zarate et al. (2007) 

documented the use of ambient concentration data to validate emissions models as a useful approach 

in times of economic uncertainty. A comprehensive and extensive meta-analysis of road traffic 

emissions model validation studies was documented by Smit et al. (2010). They provide an excellent 

table of comparison between the different methods used for emissions model validation which can be 

found in Appendix C of this work. Smit et al. (2010) concluded that there was limited literature 

concerning emissions model validation. They importantly highlighted that testing the overall accuracy 

of road traffic emissions models is difficult, as ‘true’ emissions values are unknown and cannot 

practically be determined by measurement.  

 

2.6 Atmospheric Dispersion Modelling 

 

In a perfect world pollution concentrations would be continuously measured and monitored 
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everywhere throughout a conurbation. In reality this is neither physically or financially feasible. 

Instead policy makers must rely on air quality models (atmospheric dispersion models) to predict the 

spatial and temporal distribution of pollutants over a given area. Righi et al. (2009) acknowledge 

pollution dispersion models to ‘compliment measurement techniques as they allow the spatial 

distribution of measured values to be represented, providing concentration values in areas where 

monitoring equipment is absent.’ In the UK air quality models are regularly used by local authorities 

for air quality review and assessment and for pollutant concentration forecasting (Namdeo, 1995). In 

addition, air quality models are commonly used to evaluate emissions inventories by comparing their 

outputs with monitored data. For example, Taghavi et al. (2005) used the Regional Atmospheric 

Modelling System (RAMS) to evaluate two emissions inventories compiled for O3, CO, SO2 and NOx 

over southern France. Zhang et al. (2008) compared SO2, NOx and PM10 concentration outputs from 

AERMOD with monitored data to evaluate an emissions inventory for Hangzhou, China.  Peace et al. 

(2004) used ADMS-Urban to evaluate three different emissions inventories compiled for NOx and 

NO2 over Greater Manchester, UK. Banerjee et al. (2011) used two dispersion models, the Gaussian 

Finite Line Source Model (GFLSM) and Industrial Source Complex Model (ISCT-3) to evaluate an 

emissions inventory complied for NO2 over Pantnagar, India and Guttikunda and Calari (2013) 

evaluated a PM10 and PM2.5 emissions inventory for Delhi, India using the Atmospheric Transport 

Modelling System (ATMoS).  

 

Over the years there have been many different types of dispersion models developed, including 

statistical (e.g. Stedman et al., 2001), numerical (HIWAY series; Zimmerman and Thompson,1975) 

receptor (e.g. COPREM; Wahlin, 2003), box (e.g. STREET BOX; Johnson et al., 1973), street 

canyon (e.g. OSPM; Hertel and Berkowicz, 1989), microscale CFD (e.g. FLUENT; 

www.Fluent.com), urban scale (e.g. MEMO; see Moussiopoulous et al., 1993), Gaussian (e.g. 

GFLSM; Luhar and Patil, 1989), Lagrangian (e.g. GEM-AG; see O’Neill et al., 2003) and screening 

(e.g. UK DMRB; Highways Agency, 2009) models. There is no universally accepted way in which to 

classify these models. They can be grouped in terms of complexity, based on their physical principles, 

the mathematical techniques they employ, their ability to model chemical reactions or the coordinate 

system they use (see Namdeo, 1995). A comprehensive overview of the different approaches adopted 

by dispersion models was documented by Holmes and Morawska (2006) and Namdeo (1995). The 

following sections focus on the Gaussian approach to dispersion modelling and the statistical methods 

used to validate their performance. 

 

2.6.1 Fundamental Gaussian Principles 

 

In the UK the most widely used models for air quality modelling for regulatory purposes are those 

based on Gaussian dispersion theory (Gurjar et al., 2010). On the one hand, the way in which modern 
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Gaussian air quality models calculate the dispersion of pollutants has become much more advanced, 

whereas on the other hand they still retain the fundamental Gaussian principles on which their more 

simple predecessors were developed. As a result, modern Gaussian models have inherited a number of 

assumptions and limitation.  

 

Gaussian models assume that pollutant concentrations are normally distributed in the vertical and 

horizontal planes around a given wind direction (Vallero, 2008; Tiwary and Colls, 2010; Huber, 1991; 

Wagner et al., 2006; Gurjar et al., 2010). In addition, Gaussian plume formula assumes that wind 

speed and turbulence are vertically homogenous and that surface topography and meteorology are 

constant over time and distance between source and receptor (‘steady state’) (Yura et al., 2007; 

Lazaridis, 2011). Furthermore, crosswind dispersion is assumed to be uniform over a given 

meteorological wind sector e.g. 30
o
 or 10

o
 (Lutman et al., 2004). The Gaussian plume equation for 

estimating normalized ground-level concentrations is: 
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(Equation 1)    

 

Where   is the pollutant concentration,   is the mean wind speed affecting the plume,   is the 

emissions rate,   the effective emissions height above the ground,    and    are the values of 

horizontal ( ) and vertical dispersion ( ) coefficients. Equation 1 assumes that the plume spread has a 

Gaussian distribution, the wind affecting the plume is uniform and that the plume is perfectly 

reflected at ground level (Huber, 1991). In some models the values for horizontal (  ) and vertical 

(  ) dispersion coefficients are defined according to Pasquill stability classes (see Pasquill, 1978; 

Venkatram, 1996). Stability classes range from A (stable) to G (very unstable) with each different 

class specifying a different set of    and    depending on the level of turbulence (defined by wind 

speed, daytime solar radiation and night time cloud cover) in the atmosphere they describe (Tiwary 

and Colls, 2010). In other models (e.g. ADMS-Urban) atmospheric stability is defined based on two 

different variables namely boundary layer height (h) as a function of height above ground level (z/h) 

and the Monin-Obukhov Length (LMO) as a function of height above ground level (z/ LMO): 
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Where    is the friction velocity at the Earth’s surface,   is the von Karman constant (0.4),   is the 

acceleration due to gravity,    
is the surface heat flux,   is the density of air,    is the specific heat 

capacity of air and    is the surface temperature. Unlike the Pasquill-Gifford estimation this approach 

allows the variation in dispersion parameters with height to be modelled as the parameters in Equation 

2 will change depending on h (Tiwary and Colls, 2010; CERC, 2006). 

 

2.6.2 Modern Gaussian Air Quality Models 

 

Early Gaussian models, such as APRAC (Johnson et al., 1973), Highway series (Zimmerman and 

Thompson, 1975) and CALINE series (Benson et al., 1972; Ward et al., 1975; Benson, 1979, 1980); 

Benson, 1984) were simple in their approach to dispersion modelling. They failed to take into account 

physical removal, chemical reactions in the atmosphere and the influence of surface roughness on 

pollutant dispersion (EPA, 1982; EPA, 1989). As a result these models have become almost redundant 

in the modern world. However, in their place, more complex models, such as ADMS-series (see 

CERC, 2006) and AERMOD (see USEPA, 2004a) have been developed that incorporate an array of 

algorithms that compute a multitude of dispersion parameters and processes. For example, ADMS-

Urban has algorithms for dry deposition, wet deposition, particle settling, chemical reaction schemes 

(simplified generic reaction sets), meteorological pre-processing (for calculating boundary layer 

parameters) and for modelling the effect of buildings and street canyons (see Hertel and Berkowicz, 

1989 and in Hertel et al.,1990) on pollutant dispersion (CERC, 2006). Furthermore, the complexity of 

these models allows them to be applied to an array of different geographical locations and 

environments. For example, AERMOD is applicable to rural and urban areas, flat and complex 

terrain, surface and elevated releases, and to multiple sources (USEPA, 2004a, 2004b) and ADMS-

Urban and Airviro Gauss model take into consideration surface structures such as buildings and trees 

via the use of local roughness lengths and adjustments to wind speeds (CERC, 2006; SMHI, 2006).  

 

The input data requirements of air quality models have increased in line with their complexity. Early 

models such as CALINE required few input variables including, a single wind speed and wind 

direction and an emissions rate (Benson et al., 1972). However, modern dispersion models require a 

multitude of input parameters. For example, AERMOD requires upper air data, data from site-specific 

meteorological measurements, boundary layer height, surface albedo, surface roughness, cloud cover, 

Bowen ratio and a geographically and temporally resolved emissions inventory to be input prior to 

dispersion modelling (USEPA, 2004a, 2004b, USEPA, 2004c).   

 

Typically road sources are treated as line sources in modern Gaussian air quality models. The line 

source is decomposed to a number of source elements and the dispersion of pollution from each 
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element is computed. For example, in AERMOD road sources are modelled as a string of volume 

sources along a line segment (USEPA, 2004a, 2004b) and in ADMS-Urban and the Airviro Gauss 

model road sources are treated as a series of point sources along a line of finite length (CERC, 2006; 

SMHI, 2006). Some Gaussian based models have algorithms specifically for modelling the dispersion 

of pollutants from these elements. These algorithms are modified versions of the simple Gaussian 

plume formula in Equation 1. For example, ADMS-Urban calculates dispersion from road sources 

according to the following formulae: 
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  (Equation 3) 

 

Where    is the source strength,   is the height of receptor above ground,   is the lateral distance 

from the plume centreline,    is the height of the plume above ground,   is the wind speed at the 

plume height and    is the source length. Reflection terms refer to the reflection of the plume when it 

reaches ground level (CERC, 2006). Some Gaussian models, such as AERMOD and ADMS-Urban 

take into account physical processes around buildings by modifying σy and σz. Although, unlike CFD 

models, they are not able to calculate re-circulation effects caused by multiple buildings or at 

intersections (Holmes and Morawska, 2006). In addition, in ADMS-Urban initial vertical turbulence 

emissions heights are altered to account for varying heights of vehicle emissions and an algorithm for 

extra lateral turbulence accounts for turbulence due to traffic flow: 
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(Equation 5) 

 

The turbulence decay time,    is given by 
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(Equation 6) 
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Where   is the time to travel to source,   is a constant (0.3) from OSPM street canyon model,   is a  

constant (0.1; chosen by CERC after testing),    and    are the number of heavy and light vehicles 

per second respectively,      and      are the speeds of the heavy and light vehicles respectively, 

   and    are the areas covered by the heavy and light duty vehicles respectively and   is the road 

width.  

 

2.6.3 Limitations of Gaussian Air Quality Models 

 

Fundamental Gaussian principles make a number of assumptions that limit the predictive power of the 

air quality model. The Gaussian formulation does not take time into consideration and pollutants are 

effectively dispersed from the source to receptor instantaneously (Wagner et al., 2006). Air quality 

models commonly require data that is averaged over a specific time period, for example AERMOD, 

ADMS-Urban and the Airviro Gauss model require input data that are resolved to an hourly resolution 

(USEPA, 2004a, 2004b; CERC, 2006; SMHI, 2006). Gaussian algorithms intrinsic to these models 

are solved for each line of this input data meaning that the meteorological conditions over the 

averaging period remain constant and subsequent outputs are representative of the average 

concentrations per unit of time specified. Therefore, any changes in meteorological conditions during 

the averaging period will not be reflected in Gaussian calculations (Gurjar et al., 2010). In addition, 

because Gaussian models are effectively instantaneous they cannot take into account pollution build 

up over consecutive averaging periods (Lazaridis, 2011). Righi et al. (2009) documented ADMS-

Urban to underestimate CO concentrations in Ravenna, Italy due to this issue. They applied a 

correction factor to their data to overcome what they termed the ‘memory effect.’ 

 

Gaussian models assume that the meteorological data is homogeneous throughout the simulation 

domain meaning that local meteorological conditions are not considered in dispersion calculations 

(Tiwary and Colls, 2010). Furthermore, they are inversely dependent on wind speed and perform 

poorly when predicting the dispersion of pollution under low wind speed conditions (Vallero, 2008; 

Chock, 1978). As a result in modern air quality models the wind velocity is set to 0.5m/s to 1m/s for 

zero or very low wind conditions to allow the model to compute (Lazaridis, 2011). Similarly, 

Gaussian models are sensitive to wind direction and perform better when air-flow is towards the 

receptor and perform poorly when air-flow is away from the receptor (e.g. Righi et al., 2009; Benson, 

1992).  

 

Concentration distributions are Gaussian in stable conditions but the vertical distribution is non-

Gaussian in convective conditions to take account of the skewed structure of the vertical component 

of the turbulence (Harrop, 2002). Therefore, early Gaussian models could not accurately predict 

pollutant dispersion under convective conditions (see Chock, 1978; Johnson et al., 1973; Zimmerman 
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and Thompson, 1975; Benson et al., 1972). However, most modern air quality models, such as 

ADMS-Urban, AERMOD and the Airviro Gauss model, use a non-Gaussian formula to calculate 

pollutant dispersion in convective conditions (see USEPA, 2004a; CERC, 2006; SMHI, 2006) in 

order to bring material from elevated releases rapidly down to the surface in convective conditions. 

 

A major limitation of the use of Gaussian models to predict pollutant concentrations in an urban 

environment is that dispersion processes are non-Gaussian in street canyons (Leksmono et al., 2006). 

To overcome this issue many modern air quality models comprise street canyon models. However, 

due to long computational times only crude versions of street canyon models are included in modern 

air quality models. For example ADMS-Urban comprises a simplified version of OSPM that has been 

shown to poorly represent dispersion processes in the canyon (Westmorelands et al., 2011). In future 

the integration of Gaussian models with more complex street canyon models will enable pollutant 

concentrations to be better represented in the urban environment.     

 

2.7 Validation and Evaluation of Dispersion Model Performance 

 

Before air quality model performance can be discussed, it is necessary to highlight the difference 

between the terms ‘validation’ and ‘evaluation.’ According to Jenke (2009) an evaluation study has a 

set of performance expectations that may or may not be met and a validation study has a set of 

acceptance criteria that must be met. Kartseva (2008) document that ‘the difference between 

validation and evaluation is that in the former, a technique not yet implemented in practice is 

investigated, whereas in the latter a technique already implemented in practice is investigated.’ When 

an air quality model is developed it is initially validated through comparison with observed data (e.g. 

ADMS-Urban; Carruthers et al., 2003a) and it must meet certain criteria before it can be considered 

fit for purpose. A model validation study may result in a calibration exercise during which model 

parameters are tuned to improve performance (DEFRA, 2010b). Historically, air quality model 

validation studies were based on data collected from field experiments (known as ‘field grade’) 

(Chang and Hanna, 2010; Hanna, 2010) which were relatively simple in nature, consisting of near 

ground level continuous point source releases and extensive concentration and meteorological 

observations over flat or complex terrain (Hanna et al., 1990).  These experiments provided more 

precise data sets with which to validate model performance as parameters, such as emission rates, 

release heights, topography, meteorological conditions and observed concentrations were accurately 

recorded at numerous locations, usually along concentric sampling arcs (Hanna et al., 1991). In 

essence these experiments removed, as far as possible, error due to model input parameters and 

provided a dataset with which an air quality model’s algorithms, code and or calculation procedures 

could be validated (Chang and Hanna, 2004). Examples of such data sets and a discussion of their use 

in air quality modelling can be found in Chang and Hanna (2010) and in Hanna (2010).  
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The wider application and assessment of an air quality model post validation is termed an ‘evaluation 

study’ (see Hanna et al., 2011; 2004; 1990; 1991; 1993, Donnelly et al., 2009; Stunder and 

Sethurama, 1986; Tesche et al., 1987; Mosca et al., 1998; Hanna and Chang, 2001; for examples) and 

has certain performance expectations e.g. the model should predict within 50% of the observed. The 

methods by which a dispersion model can be evaluated are discussed in the next section. Chang and 

Hanna (2004) noted that the performance of a model, when validated with a research grade field 

experiment dataset, may not be reproduced when the same model is evaluated with input data of lower 

quality. Consequently it is important that the quality of such input data is of the highest standard prior 

to modelling (Heinold et al., 1995).  

 

2.7.1 Dispersion Model Evaluation Methods  

 

There have been many statistical measures suggested in the literature for air quality model 

performance evaluation. For example, Stunder and Sethurama (1986) used variance, total root mean 

square error and systematic root mean square error to evaluate the performance of two coastal point 

source dispersion models. In contrast, Tesche et al. (1987) used the performance measures ratio of the 

maximum predicted (Cpmax) to the maximum observed concentrations (Comax), bias and gross error to 

evaluate five grid based models in complex terrain. Desiato (1992) used the correlation coefficient 

(R), bias, normalised mean square error (NMSE), the proportion of predicted data within a factor of 

two of the observed (FAC2) and the proportion of predicted data within a factor of five of the 

observed (FAC5) to evaluate the performance of a puff model used for accident release dispersion 

modelling. More recently Donnelly et al. (2009) used NMSE, FAC2, fractional bias (FB), geometric 

mean bias (MG) and geometric mean variance (VG) to evaluate the performance of a computation 

fluid dynamics model (WinMISKAM) using  the Mock Urban Setting Test (MUST) field data. All of 

these statistical descriptors have been used to answer the same two fundamental questions in relation 

to air quality model performance: in general, by how much is the model over-predicting or under-

predicting and; how much deviation is there from the average over-prediction or under-prediction 

(Duijm et al., 1996). Statistical measures used to answer these questions fall under two main 

mathematical genres, bias and variance respectively and it is these two descriptors that are well 

documented in the literature, all be it calculated in different ways. The reason for this is that 

dispersion is ultimately governed by turbulence, which is random in nature and so cannot be 

accurately predicted (Chang and Hanna, 2004). Therefore, only basic statistics can be used to compare 

observed and predicted data.  Furthermore, because of the random nature of dispersion, an air quality 

model will never predict observed concentrations ‘perfectly’ (Hanna et al., 2004).  

 

Duijm et al. (1996) reviewed many statistical evaluation performance measures, namely, bias, mean 

square error (MSE), FB, NMSE, average absolute gross error (AAGE), fractional standard deviation 
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(FSD), mean relative bias (MRB), mean relative square error (MRSE), fraction of over-prediction 

(FOEX), MG, geometric mean, VG, FAC2 and R and concluded that ‘One should use at least two 

performance measures in an evaluation exercise in order to obtain a measure of bias and variance.’ In 

addition, they advised that MG, VG, FOEX, and FAC2 or MRB, MRSE, FOEX, and FAC2 to be the 

best measures for air quality model performance evaluation. They suggested MG and VG and MRB 

and MRSE not to be used simultaneously because both provide similar information (i.e. MG and 

MRB measure bias and VG and MRSE measure variance).   

 

Chang and Hanna (2004) give a comprehensive and in depth review of air quality model performance 

evaluation methods and procedures and as a result one is not documented here.  They first of all 

review the different applications of air quality models and discuss how these can influence the 

requirements of an air quality evaluation procedure (e.g. air quality modelling for regulatory purposes 

are more concerned with high concentration values corresponding to limit value exceedences and 

evaluation procedures may only consider concentration maxima) and they stress the need to properly 

define evaluation goals prior to carrying out any statistical analysis. They go on to review the different 

methods of evaluating air quality model performance presented in the literature, namely Taylors 

single nonogram method (Taylor, 2001; Gates ,1999), American Society of Testing Materials model 

evaluation guidelines (ASTM, 2000), Figure of Merit in Space, the Cumulative Distribution Function 

(CDF) method and the statistical performance measures implemented in the BOOT software (Hanna 

et al., 1993, 1991).  Finally, Chang and Hanna (2004) discuss the different magnitudes of 

performance measures presented in the literature (and provide a set of values for which outputs from 

research grade field experiments can be compared) prior to examining the different statistical 

performance measures in a case study using two Gaussian based models.  

 

In addition to statistical performance measures, graphical presentations are widely acknowledged as 

being useful for evaluating model behaviour (Hanna et al., 1990, 1991, 1993; Chang and Hanna, 

2004). In particular they are most useful when evaluating the results of model sensitivity testing and 

the use of scatter plots and box plots is common place when assessing performance in relation to 

independent variables such as mixing depth and horizontal diffusion (e.g. Desiato, 1992).    

 

2.8 Chapter 2 Summary 

 

Emissions factors are combined with traffic data in a model to estimate the emissions from road 

traffic. Emissions factors can be developed using a number of different techniques namely, 

dynamometer tests, instrumented vehicles, remote sensing and tunnel experiments. In the UK 

dynamometer tests are typically used to develop emissions factors. These factors are based on 

average-speed and vehicle type. Recent research has shown that there are major discrepancies 
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between emissions factors and real world emissions. These differences have been attributed to the 

inability of the factors to take into consideration congested conditions, the greater uptake of diesel 

vehicles into the UK stock and a lack of representativeness in dynamometer test cycles from which 

the factors were developed.    

 

Atmospheric dispersion models allow for the spatial prediction and forecasting of pollution in areas 

where monitoring equipment is absent. Over the years many different models have been developed. 

Commonly it is Gaussian models that are used by local authorities for air quality review and 

assessment in the UK. Gaussians models have now evolved to become much more complex but still 

retain fundamental Gaussian principles, which mean they comprise a number of assumptions and 

limitations. These limitations and assumptions can be evaluated using a number of statistical and 

graphical descriptors that measure bias and variance. In addition, these measures allow for the 

evaluation of model inputs such as the emissions inventory, which can subsequently be used for 

strategy modelling.  
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Chapter 3 

 

3. Background: Reducing Emissions from Road Transport 

 

3.1 Environmental Regulations 

 

In order to prevent and reduce the impact of air pollution on the environment and its constituents 

many governing bodies worldwide have set air quality standards (or limit values). Air quality 

standards are ‘concentrations recorded over a given time period, which are considered to be 

acceptable in terms of what is scientifically known about the effects of each pollutant on health and on 

the environment (DEFRA, 2012a).’ In the UK air quality legislation is driven by European Union 

(EU) law and all member states must not exceed EU air quality limit values.   

 

In addition to air quality legislation many governing bodies throughout the globe have set legally 

binding CO2 reduction targets following the ratification of the Kyoto Protocol (UNFCCC, 1998). 

Although road transport is a major source of both toxic air pollutants and CO2 emissions the 

legislation enforced in the EU and UK to tackle these issues remains separate. The current air quality 

and GHG legislation enforced in the UK is described in more detail in the following sections. Then 

the strategies and technology options available to policy makers to further reduce emissions from road 

transport is documented.  

 

3.1.1 Air Quality Legislation in the European Union and United Kingdom 

 

In the UK, in 1995 the Environment Protection Act, unlike proceeding Acts (e.g. Environment 

Protection Act 1990; Clean Air Acts in 1968 and 1956), introduced an effects-based, risk management 

approach to air pollution abatement (Bell and McGillivray, 2006). It was formulised by a series of air 

quality standards and regulations (see Table 3). These regulations provided the foundation on which 

more recent air quality legislation in the UK has been based. 
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Table 3 Sections of the Environment Protection Act 1995 Relating to Air Quality (Bell and 

McGillivray, 2006) 

Environment Protection 

Act Section 

Brief Description 

81 Environment agency must take account of the strategy 

82 

Local Authorities (LAs) must review air quality problems with in 

their state and assess whether air quality standards are being 

achieved. Areas of short fall must be identified. 

83 
LAs assign Air Quality Management Areas (AQMA) in areas 

where air quality limit values are not met. 

84 

LAs must assess AQMAs and produce action plans complete with 

measures and time scales to bring air quality levels back within 

limits. 

85 
Reserves the power for assessment to be made in any area and 

gives instructions to LAs to take specified actions. 

86 
Role for County Councils to make recommendations to the 

district on air quality and action plans. 

87 
Provides Secretary of State (SoS) with powers to make 

regulations concerning air quality. 

88 
Provides SoS with powers to make guidance that the LAs should 

pay due regard to. 
 

In 2005 the European Commission launched the Clean Air for Europe (CAFE) programme with the 

aim of establishing a long-term, integrated strategy to tackle air pollution and to protect against its 

effects on human health and the environment (EC, 2005a). The programme’s objectives were to set 

target values for air pollution and national emissions ceilings (negotiated during the 1999 Gothenburg 

Protocol; see UNECE, 1999), to develop integrated pollution-reduction programmes in targeted areas 

and to identify specific measures to limit emissions or raise product standards. The European 

Commission subsequently produced the Thematic Strategy on Air Pollution which is based on the 

documents produced under the framework of the CAFE Programme (EC, 2005b). The Strategy 

established interim objectives for air pollution in the EU and proposed appropriate measures for 

achieving them. It was reviewed in 2010 and a more comprehensive review is due in 2013. However, 

a number of interim measures have been established from the 2010 review including the necessity to 

further reduce emissions from vehicles (DEFRA, 2012a).   

 

As a direct result of the documentation produced under the CAFE programme the 2008 European 

Commission Ambient Air Quality Directive (2008/50/EC) set legally binding limit values for 

pollutant concentrations in outdoor air (EC, 2008). The 2008 Directive combined nearly all the 

previous EU air quality legislation (except the fourth Directive 2004/107/EC) and was made law in 

England through the Air Quality Standards Regulation 2010 (DEFRA, 2011). The Regulation set air 

quality limit values for SO2, NO2, PM10, PM2.5, Lead (Pb), Benzene, PAH, 1,3,-butadiene and CO 
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(Table 4). The main legislative change enforced under the Ambient Air Quality Directive was the 

introduction of a limit value (25µg/m
3
) and an exposure reduction approach for PM2.5. The exposure 

reduction approach adopted is one in which the main aim is to reduce exposure generally with greater 

reductions required in areas where exposure is the greatest (EC, 2005a). This means that a relatively 

high concentration cap was set for PM2.5 but requires those areas where air pollution is the greatest to 

achieve much higher reductions (EC, 2012a). In addition, in accordance with the Air Quality 

Directive member states are eligible to apply for time extensions of three years (PM10) or up to five 

years (NO2, benzene) for complying with limit values (EC, 2008). However, despite the extensions 

many European member states, including the UK, are now facing heavy financial penalties as air 

quality levels still remain non-compliant (see EC, 2010).  

 

The Ambient Air Quality Directive requires all Secretaries of State to continuously monitor and 

assess air quality in their authority areas (EC, 2008). In the UK this requirement is passed to local 

authorities who are responsible for carrying out air quality review and assessment (DEFRA, 2011). 

Places identified or predicted to be non-compliant with the EU limit values must be defined as an 

AQMA. The local authority is then required to devise an air quality action plan that aims to reduce 

toxic air pollution below EU limit levels (NAQS, 2007). This legislation remains the same as that 

enforced under the old Council Directive 96/62/EC on ambient air quality assessment and 

management (the Air Quality Framework Directive) and is the strategy documented in the Nation Air 

Quality Strategy for England, Wales, Scotland and Northern Ireland (NAQS, 2007).  

 

In 2010, in the UK, road transport was responsible for 37%, 43% and 24% of total NOx, CO and PM10 

emissions respectively (NAEI, 2012a). The UK is currently failing to meet EU air quality limit values 

for NO2 (40µg/m
3
 annual average) and PM10 (EC, 2010; DEFRA, 2011). A review of local air quality 

management by Faulkner and Russell (2010) found that in 2009 58% of local authorities across the 

UK had Air Quality Management Areas (AQMAs) and of these local authorities 92% declared 

AQMAs due to pollution exceedences due to road transport. 
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Table 4 Air Quality Limit Values enforced in the UK and in the European Union (DEFRA, 2012b; NAQS, 2007) 
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Table 4 Air Quality Limit Values enforced in the UK and in the European Union (Continued) 
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Supplementary to the ambient air quality standards, the UK has legislation specifically aimed at 

reducing on-road transport emissions. When a new motor vehicle is produced it must comply with all 

relevant standards, including EU emissions limits or ‘Euro standards,’ before it can legally be sold in 

the EU. The motor vehicle regulations set out type-approval procedures which are applied to 

specimen example vehicles prior to general sale (Bell and McGillivray, 2006). The road vehicle 

regulation requirements relate to a variety of details including catalytic converters, use of unleaded 

petrol and emissions levels for vehicles. These emission limits are more commonly known as ‘Euro’ 

standards and regulate carbon monoxide, Non-methane hydrocarbons, total hydrocarbons, NOx and 

particulates emissions from tailpipe, evaporation and crank cases (Boulter et al., 2009a). They were 

introduced in the UK in stages starting with Euro 1 in 1992 and the legislation now lays provisions for 

Euro 5/V and Euro 6/VI vehicles (EC, 2012b). With each successive standard being introduced the 

legislation is updated with Regulation (EU) No 459/2012 and Regulation (EU) No 64/2012 recently 

amending the regulations regarding Euro 6 light duty vehicles (cars and light vans: LDVs) and Euro 

VI heavy duty vehicles (HDVs) respectively (see EC, 2012b). It should be noted that roman numerals 

are used when considering Euro standards for HGVs and numbers are used when Euro standards for 

LDVs are documented.   

 

The current emissions standard for LDVs is Euro 5, which entered into force in 2009 under 

Regulation (EU) 715/2007/EC. Its main focus was to reduce the emission of particulate matter from 

diesel cars from 25mg/km to 5mg/km. Euro 6 is scheduled to enter into force in 2014 and aims to 

reduce the emissions of NOx from diesel cars from 180mg/km to 80mg/km. Similarly the current 

legislation in force for HDVs is Euro V which falls under Directive 2005/78/EC and aims to reduce 

NOx emissions (40% reduction on Euro IV). Euro VI legislation for HDVs is set to come into force in 

2013 and aims to reduce NOx emissions by 80% relative to Euro V standards. In addition, the Euro VI 

standard will require diesel HDVs to comply with a particle number threshold as well as a limit value 

(Regulation (EU) No 582/2011).  

 

The UK annual vehicle Ministry of Transport (MoT) test ensures that the Euro standards are upheld 

and checks compliance for smoke (diesel vehicles), CO and HC (petrol vehicles) which must not be 

exceeded (NAQS, 2007). An MoT test is mandatory for most vehicles in the UK over three years old. 

To comply with the Euro standards, vehicle manufacturers must also ensure that emissions abatement 

technology fitted to control pollution are able to last for a distance of 160, 000km (Boulter et al., 

2009a). 

 

 

 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32005L0078:EN:NOT
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3.1.2 CO2 Emissions Legislation in the UK 

 

GHG emissions in the UK are primarily controlled by legislation that falls under the Kyoto Protocol. 

The meeting of world leaders in the city of Kyoto, Japan, in 1997 resulted in 15 EU member states as 

well as numerous countries worldwide signing a legally binding document confirming their agreement 

to reduce emissions of six GHGs to or below fixed targets by 2012 (UNFCCC, 1998). Of the 12 

countries which have joined the EU since the Kyoto Protocol was agreed, all except Cyprus and Malta 

have individual emission reduction commitments under the Protocol (EEA, 2012a). The European 

Commission agreed to an aggregated 8% reduction in GHGs (relative to a 1990/1995 base year) by 

2008-2012, requiring the UK to reduce emissions by 12.5% to meet the target (UNFCCC, 2008). In 

order to comply with the Kyoto targets the EU developed various initiatives through the first 

European Climate Change Programme (see EC, 2012c) including the European Emissions Trading 

Scheme (Directive 2003/87/EC), the development of joint implementation and clean development 

mechanism (see UNFCCC, 2012b). Of direct relevance to road transport was the Directive 

2003/30/EC on the promotion of biofuels which required 5.75% of transport fuel to be biofuel by 

2011.  

 

The European Environment Agency estimated that the EU member states are currently over-achieving 

the 12% reduction target despite a lack of change in CO2 emissions levels from the road transport 

sector (EEA, 2012a, 2012b). In 2009 a further legally binding commitment to a 20% reduction in EU 

GHG emissions from 1990 levels by 2020 entered into force through the EU climate and energy 

package (see Decision NO 406/2009/EC). However, in 2008 the UK set legally binding medium to 

long term GHG targets that go beyond those laid down in the EU package. The targets came into force 

under the UK Climate Change Act and require a reduction in GHGs of 34% and 80% by 2020 and 

2050 respectively from 1990 base. The plans to meet these targets were documented in the White 

Paper ‘The UK Low Carbon Transition Plan: Nation Strategy for Climate and Energy (Miliband, 

2009).’ The plans included the introduction of five-yearly carbon budgets to encourage emissions 

reductions (Table 5). These budgets are emissions caps that provide a benchmark above which GHGs 

levels must not stray. The budgets cover total GHG emissions from all sectors including road 

transport and the UK is about to enter into the second Budget (HM-Government, 2011). 
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Table 5 Carbon Budgets 1 to 4 for the time period 2008 to 2027 and associated % reduction from 

1990 levels (HM-Government, 2011) 

 Budget 1 Budget 2 Budget 3 Budget 4 

Date 2008 - 12 2013 - 17 2018 - 22 2023 - 2027 

Carbon Budgets (MtCO2e) 3,018 2,782 2,544 1,950 

Reduction below 1990 levels (%) 22 28 34 50 

 

 

Legislation is currently in force in the EU and UK that specifically targets CO2 emissions from road 

transport. In 2009 the Regulation (EU) No 443/2009 of the European Parliament and of the Council 

set emissions performance standards for new passenger cars as a part of the community’s integrated 

approach to reduce CO2 emissions from LDVs. The legislation set an average CO2 emissions value of 

130g/km for a manufactures fleet. This allows a manufacture to produce gross emitting vehicles but 

these must be offset by vehicles which emit below the target value. The legislation was phased-in 

commencing 2012 and requires 65% of the fleet to meet the 130g/km CO2 emissions target. The % of 

a manufacturer’s fleet meeting the target is to be tightened with 100% of the fleet complying by 2015. 

Failure to comply with the legislation results in a fine per car registered that is over the average 

emissions target value. The long term goal is to reduce the average fleet CO2 emissions value to 

95g/km by 2020. Similar legislation is set to enter into force in 2014 for light commercial vehicles 

(Regulation (EU) No 510/2011). However, the average fleet value for these vehicles is 175g/km, with 

100% compliance by 2016. In the longer term the average fleet value is to be reduced to 135g/km by 

2020. At present there are no CO2 emissions limits for HDVs despite them accounting for 6% of total 

EU CO2 emissions (EC, 2012d). 

 

In addition to the average fleet CO2 emissions targets, in 2008 the European Commission made 

revisions to the Directive 1999/94/EC on information relating to the fuel economy and CO2 emissions 

of new passenger cars offered for sale or lease through the implementation of Regulation (EC) No 

1137/2008. Directive 1999/94/EC was put in place to ensure that a consumer is presented with a 

vehicle’s fuel economy and CO2 emissions information prior to purchase. The revision made to the 

Directive harmonised the way in which the information is presented to allow for greater consumer 

awareness. 

 

In order to encourage the uptake of more energy efficient lower carbon vehicles, the excise duty or 

‘road tax’ for vehicles in the UK was calculated from the 1st March 2001 on the basis of engine size 

or type and CO2 emissions (VCA, 2012). Owners of vehicle’s emitting less CO2 pay lower tax with 

owners of cars emitting less than 100g/km paying no road tax (DVLA, 2012).    
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3.2 Strategies to Reduce the Impacts of Congestion  

 

Congestion occurs when the demand for travel becomes higher than the road network capacity 

(Hassan et al., 2011). It results in traffic delay, queuing, stop-and-go conditions, low average-speeds 

and frequent acceleration and deceleration episodes (Stopher, 2004).  These traffic characteristics in 

turn result in greater fuel use and higher tailpipe emissions (Sjodin et al., 1998) and congestion is now 

prevalent in nearly every major city in the world (see Appendix A for a brief review of road 

transport’s contribution to global and regional air pollution). Historically the UK government 

increased road capacity in order to reduce congestion and meet increased demand for road travel 

(Noland and Lem, 2002). However, a report (‘Trunk roads and the generation of Traffic’) issued to 

the government in 1994 by the Standing Advisory Committee for Trunk Road Assessment (SACTRA) 

resulted in a change of thinking due to the existence of a negative feedback mechanism associated 

with capacity increase (SACTRA, 1994). The report by SACTRA investigated the existence of 

induced demand in the UK. Induced demand occurs when increases in road capacity attract new 

traffic resulting in the partial or complete offset of the intent of the capacity increase (Hymel et al., 

2010). If the intended capacity increase was to reduce vehicle emissions (and improve air quality 

levels) then induced demand would directly limit the reductions observed.     

 

The existence of induced demand is now widely accepted amongst researchers, with Goodwin (1992; 

1996), Noland and Lem (2002), Kane and Behrens (2000) and Hymel et al. (2010) giving reviews of 

literature concerning induced demand and Noland (2001) documented the different modelling 

approaches used to estimate induced demand. The level to which induced demand affects road 

transport is a much debated topic in the literature. Some research has documented capacity increase to 

result in a substantial (25%>) increase in travel demand (e.g. Su, 2011; Noland, 2001; Downs, 1962; 

Smeed, 1968) whilst other research has found capacity increase to induce demand for travel only 

marginally (e.g. Hymel et al., 2010). However, despite the debate the UK government has now 

switched from its ‘predict and provide’ approach to a more critical method of evaluating proposals for 

increased capacity (see Cook, 2011). As a result policy makers have had to switch their focus to invest 

in strategies that do not rely on capacity increase in order to alleviate congestion, reduce emissions 

from road transport and improve local air quality. 

 

There are a number of different ways in which the impacts of road traffic congestion can be 

minimised including, making the vehicle fleet ‘cleaner’ through technological and fuel advancements, 

reducing the total amount of vehicle use (VKT) on the network and or decreasing the number of 

vehicles travelling to a congested area through traffic management strategies (re-routing of traffic, 

signal optimisation, ramp metering etc). The latter policy measures are less environmentally 

beneficial as they often involve the relocation of traffic which may result in air quality problems in 
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other parts of the network (May, 1986). Some traffic management strategies aim to smooth traffic 

flows through signal optimisation (e.g. Li et al., 2004; Chang and Park, 2012; McKenney and White, 

2013; Varia et al., 2013). However, such strategies have been documented to have little success in 

reducing emissions from vehicles in congested areas due to the fact that signal optimisation is 

ineffective in smoothing traffic flows on a section of the road network that is operating at capacity 

(Huang and Huang, 2003). As a result an area that is congested will gain no benefits from signal 

optimisation. In contrast, the introduction of new emissions abatement technology is considered key 

to reducing emissions from road vehicles. Furthermore, advances in abatement technology are 

necessary in order for vehicles to comply with stricter EU air quality legislation. Similarly, the uptake 

of cleaner vehicles, including alternative powertrain vehicles (referred to as ‘low emissions vehicles’ 

from here onwards) and those powered with less carbon intense and more efficient fuels, have been 

documented by King (2007) amongst others to be necessary in order for the UK to reach its legally 

binding CO2 emissions targets. Vehicles powered by electricity have been around for many years 

(Camus and Farias, 2012) but their inability to compete with conventional vehicles (CVs) has meant 

they have had little uptake in the UK (Oxley et al., 2012). However, recent advances in technology 

driven largely by legislation have meant that electric vehicles (EVs) and plugin-hybrud electric 

vehicles (PHEVs) are now highly competitive with internal combustion engine (ICE) vehicles fuelled 

with petrol or diesel (Gallardo-Lozano et al., 2012).  It should be noted that the term ‘low emissions 

vehicle’ in this research refers to PHEVs, EVs and ‘zero’ emissions vehicles (ZEVs). 

 

Policies that aim to reduce VKT have been opposed by some in the literature on the grounds that they 

negatively impact on economic stability and social equality (see Moore et al., 2010). However, Salon 

et al. (2012) documented that a reduction in VKT generates many benefits including the alleviation of 

traffic congestion, a reduction in toxic air pollutant and GHG emissions, a reduction in the 

dependency on foreign oil, and an improvement in public health through increased exercise. Given 

these benefits there is now more than ever a strong focus on policies that aim to reduce VKT. For 

example, the UK low carbon reduction strategy for transport set the goal of creating a modal shift 

from car use to public transport in order to decrease private VKT and subsequently reduce emissions 

(DfT, 2009b). The US Federal Surface Transportation Policy and Planning Act of 2009 (Commerce 

Committee, 2009) went a step further and set a specific goal to ‘reduce national per capita motor 

vehicle miles travelled on an annual basis.’ Policies that aim to reduce VKT, along with those 

technologies and fuels that have the potential to reduce emissions from road vehicles are described in 

more detail below.  
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3.2.1 Emissions Abatement Technology 

 

Some of the most common emissions abatement technologies available were described in Chapter 2 

(section 2.1.1). Their development has come about due to the need of manufacturing companies to 

comply with legislation. In the future the legislation concerning the emissions of toxic air pollutants 

from motor vehicles is set to get stricter. Therefore, emissions from road transport are expected to 

decline based on the assumption that new abatement technology will reduce vehicle emissions further 

(DfT, 2012b). However, in the past the introduction of emissions abatement technology (e.g. DPFs) 

and the emissions testing of such technology in some cases has not been successful. In order for 

maximum emissions reductions to be achieved in the future new abatement technology and 

dynamometer test cycles must be fit for purpose. This is particularly relevant given that it is expected 

that in the future the majority of Euro 5 and Euro 6 diesel LDVs and Euro VI HDVs will be fitted 

with DPFs (Boulter et al., 2009).  

 

3.2.2 Electric Vehicles (EVs) 

 

EVs differ from CVs because they comprise an electric (and not mechanical) powertrain (Smith, 

2010). As a result EVs have no tailpipe emissions (Nasai et al., 2002). However, they are responsible 

for the pollutant and GHG emissions associated with the generation of energy from which they are 

‘fuelled’ (Gould and Golob, 1998). It is this research area that has recently begun to receive more 

attention in the literature (e.g. King, 2007; Eyre et al., 2002; Brady and O’Mahony, 2011; Oxley et 

al., 2012; Pasaoglu et al., 2012; Doucette and McCulloch, 2011a; Ma et al., 2012; Smith, 2012; 

Camus and Farias, 2012; Faria, 2012; Varga, 2012) primarily because the environmental benefits of 

EVs are dependent on the source of energy from which they derive their power (Samuel, 1992).  

 

For pollutant emissions, according to Deluchi et al. (1989), a 100% substitution of conventional 

passenger cars would result in the near complete elimination of CO and HC emissions and significant 

NOx reductions. However, SO2 emissions may increase if the energy generation is from coal fired 

power stations (which are the primary source of electricity in the UK). Similar findings to those of 

Deluchi et al. (1989) have more recently been documented by Gould and Golob (1998), Brady and 

O’Mahony (2011) and Oxley et al. (2012). 

 

The CO2 emissions associated with the introduction of EVs into the road network are very sensitive to 

the energy generation fuel mix (Doucette and McCulloch, 2011a). It is now acknowledge that in order 

for substantial (80-90%) GHG emissions reductions to be achieved from EVs a larger portion of the 

UK’s energy generation must come from non-fossil fuel sources, such as nuclear power, geothermal, 
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photovoltaic cells and wind turbines (RAE, 2010; King, 2007). In December 2010 the UK 

government announced that if 2050 climate change agreements were to be met then CO2 emissions 

from the electricity sector must be largely decarbonised by the 2030s (DECC, 2010).  

 

3.2.3 Hybrid Electric Vehicles 

 

Hybrid electric vehicles (HEVs) differ from CVs as they use an ICE powertrain as well as an 

alternative powertrain (Alvarex et al., 2010). The alternative powertrain is typically an electric motor 

coupled with an electric storage device, although fuel cells are less commonly used as alternative 

powertrains in HEVs (Doucette and McCulloch, 2011b). Fuel cells are discussed in section 3.2.3 and 

as such HEVs that use fuel cells are not discussed here. HEVs can be characterised into ‘levels’ 

(micro, mild, full or plug-in) depending on the hybrid components and technology they comprise 

(Fontaras et al., 2008). Fontaras et al. (2008) documented a comparison of the technology and vehicle 

characteristics associated with the different levels of hybridisation which is shown in Table 6. 

 

Table 6 Hybrid electric vehicle (HEV) characterisation with respect to hybridisation level (Fontaras et 

al., 2008) 

  

PHEVs differ from conventional HEVs due to their higher battery capacity, the existence of an 

appropriate electrical output (plug) by which batteries can be recharged and due to the way in which 

the two powertrains interact (Silva et al., 2009). The way in which the powertrains of PHEVs interact 

is dependent on their classification. PHEVs can be classed as series or parallel configuration (Kheir et 

al., 2004). In a series configuration PHEV the ICE mechanical output is converted to electricity, 

which is stored in an on-board rechargeable battery which in turn is used by an electric motor to drive 

the vehicle (Adly et al., 2006). In contrast, in a parallel configuration PHEV an electric motor assists 

the ICE in providing power for the vehicle as well as recapturing energy during deceleration (Zhaiu et 

al., 2011). When an ICE is in use on-board a PHEV it is in charge sustaining mode (Silva et al. 2009). 

The ICE of a parallel PHEV can be shut off (known as charge depleting mode) allowing battery 

power to be used at lower speeds and for stop start driving (Eyre et al., 2002). This can significantly 

reduce toxic pollutant tailpipe emissions and subsequently improve air quality particularly in urban 

areas where traffic congestion occurs frequently (Kantor et al., 2010; King, 2007; Alvarex et al., 
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2011; Eyre et al., 2002; Zhaiu et al., 2010). Relative to the ICE of CVs, the ICE for both series and 

parallel configuration PHEVs is typically downsized, which significantly improves fuel efficiency and 

can subsequently reduce both CO2 and pollutant tailpipe emissions (King, 2007; Sioshansi et al., 

2010).  

 

Given that PHEVs are charged from the electricity grid, emissions savings from the tailpipe are 

shifted to the point of energy generation when the vehicle is operated in charge depleting mode (Kong 

and Recker, 2009). In terms of air quality this is beneficial as power plants are typically located in 

remote areas away from population dense urban conurbations meaning the risk of human exposure to 

toxic species is reduced (Sioshansi et al., 2010). However, CO2 and other GHG emissions are a global 

problem and as such a shift from tailpipe to power plant is not of any great benefit unless the 

electricity generation is from low-carbon sources (Jansen et al., 2010; Axsen et al., 2011). As a result 

emissions from PHEVs are dependent on the energy generation mix (King, 2007). In general, the 

penetration of PHEVs charged from an electricity generation mix relying predominantly on fossil 

fuels (e.g. China) increases CO2 emissions relative to a CV (Doucette and McCulloch, 2011b), those 

relying predominantly on renewables (e.g. Brazil) decrease CO2 emissions and those relying 

predominantly on nuclear power (e.g. France) decrease CO2 emissions but increase emissions of other 

GHGs (H2O) (Silva, 2011). In addition, an energy generation mix with increased capacity of natural 

gas generators can reduce CO2 emissions (Sioshansi and Miller, 2011). It should be noted that energy 

generation mix varies between regions and depending on time of day meaning where, when and how 

often a PHEV is charged influences emissions (Axsen et al., 2011). It is beyond the scope of this 

research to document the variation in emissions associated with PHEV charging in detail. However, 

this subject is well documented in the literature (see Kong and Recker, 2009; Mullan et al., 2011; 

Wang et al., 2011; Weiller, 2011).  

 

3.2.4 Well-To-Wheel, Well-To-Tank and Tank-To-Wheel Emissions 

 

As mentioned above, PHEVs have point of use emissions (i.e. tailpipe emissions) and are responsible 

for emissions from electricity generation. The latter emissions are termed ‘well-to-tank’ (WTT) whilst 

the former are termed ‘tank-to-wheel’ (TTW) emissions (GM 2001). The Department of 

Environment, Food and Rural Affairs (DEFRA) defined WTT emissions as ‘the emissions ‘upstream’ 

from the point of use of the fuel resulting from the transport, refining, purification or conversion of 

primary fuels to fuels for direct use by the end user and the distribution of these fuels (DEFRA, 

2012c).’ WTT emissions are estimated by investigating the different pathways of fuel production (e.g. 

JEC, 2011). In the case of PHEVs and EVs this involves estimating the emissions from the different 

pathways of electricity generation (e.g. burning of coal, natural gas, biomass etc.) and distribution and 
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in the case of conventional fuels the different pathways of diesel and petrol production and 

distribution are explored (GM, 2001). In contrast, TTW emissions are estimated as described in 

chapter 2, with the UK 2009 emissions factors being estimates of TTW emissions rates (with 

adjustments for brake and tyre ware emissions).    

 

By summing WTT and TTW the total or ‘well-to-wheel’ (WTW) emissions can be estimated. EVs 

have no TTW emissions and subsequently WTW emissions for these vehicles are equal to WTT 

emissions. WTW emissions for CVs and low emissions vehicles are often reported in the literature 

(GM, 2001; Wu et al., 2012; Huang and Zhang, 2006; Wang, 2002; Huo et al., 2009; Ma et al., 2012; 

Bishop et al., 2012). Perhaps the most comprehensive WTW analysis for Europe was documented by 

JEC (2011) in their research ‘Well-to-Wheel Analysis of Future Automotive Fuels and Powertrains in 

the European Context.’  The purpose of the study was to ‘guide those who have to make a judgement 

on the potential benefits of substituting fuels by alternatives.’ The study produced three reports. The 

WTT report established energy and GHG balance for the production, transport, manufacturing and 

distribution of a number of fuels suitable for road transport powertrains namely, petrol, diesel, 

Naphtha, compressed natural gas (CNG), liquid petroleum gas (LPG), hydrogen, numerous biofuels 

and electricity. The TTW report used the ADVISOR model to determine the fuel energy (MJ/km) 

necessary to perform the New European Driving Cycle (NEDC) and GHG (gCO2eq/km) emissions 

during the cycle. The reference vehicle used in the model was typical of a 2002 European 5-door 

compact saloon car with a 1.6 l engine comparable to a VW golf. The vehicle was modified in the 

model to test different powertrains and fuels. For both the TTW and WTT reports only technologies 

that have the potential to become commercially available between 2010 and 2020 were considered. 

The final report compiled WTW emissions and evaluated the cost and practicality of the technologies 

considered.  

 

The three JEC (2011) reports were subsequently used by DEFRA (2012c) as a basis for estimating 

WTT (termed ‘scope 3’ or ‘indirect emissions’ in DEFRA (2012)) GHG conversion factors for 

company reporting. DEFRA (2012c) provide a spread sheet which allows companies to calculate their 

TTW and WTT GHG emissions which is necessary for certain commitments (see DEFRA, 2010c). 

The TTW emissions factors used by DEFRA in their reporting spread sheet are single emissions rates 

weighted by vehicle age and activity of the UK fleet. The JEC (2011) data were used by DEFRA 

(2012c) to derive WTT emissions for LDVs, HDVs and low emissions vehicles (PHEVs) using 

simple ratios of TTW:WTT. The conversion factors for PHEVs estimate that WTT emissions account 

for 15% of WTW emissions. For LDVs and HDVs the % of WTW emissions attributed to WTT 

ranges from 11% to 17% with a fleet average of 16%.      
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Current air quality and climate change legislation in the UK covers only TTW emissions from road 

transport. In the future CO2 emissions from transport may be extended to included WTT emissions. 

However, when considering air quality, it is not appropriate to allocate pollutant emissions emitted at 

one location to an air-shed a considerable distance away as the impacts of toxic air pollutants on the 

environment and its constituents are predominately confined to the locale in which they are released. 

Subsequently the inclusion of WTT emissions in air quality review and assessment is unlikely. This 

causes a significant issue when evaluating co-benefits of strategies and policies. On the one hand 

WTW CO2 emissions are to be considered whilst on the other TTW pollutant emissions assessed.   

Ultimately, until legislation is updated policy makers in the UK remain obligated to meet EU 

Legislation concerning TTW emissions from road transport. For EVs, WTT emissions are currently 

assigned to the energy generation sector (DfT, 2011b). Similarly the emissions associated with 

PHEVs operating in charge depleting mode are assigned to the energy generation sector. In the future, 

if government plans to decarbonise the electricity grid (DECC, 2010) are implemented then EVs will 

become zero emissions vehicles.   

 

3.3 Alternative Fuel Vehicles  

 

In general diesel CVs have lower CO2 emissions than petrol CVs due to the lower carbon content of 

diesel fuel (Boulter et al., 2009a). However, diesel vehicles are also generally associated with higher 

NOx, f-NO2 and PM10 emissions than petrol vehicles (Rhys-Tyler et al., 2011). Over the last decade 

there has been an increasing dieselisation of the European vehicle fleet (Schipper, 2011). As a result a 

shift towards research into alternative fuels that offer emissions reductions of both toxic air pollutants 

and CO2 has occurred.  

 

There are many fuels that are considered alternatives to conventional petrol and diesel. Those that can 

be used in CVs with little or no engine modification including LPG, biofuels and hydrogen are at an 

advantage over other alternative fuels as they can directly compete with petrol and diesel. These fuels 

are discussed in more detail in the following sections. However, other fuels such as CNG, which 

require significant cost to convert vehicle engines, remain relatively uncompetitive with CVs (King, 

2007). 

 

3.3.1 Liquefied Petroleum Gas (LPG)  

 

LPG has been widely used in commercial vehicles during the last decade (Li et al., 2007) and in the 

UK there are over 55, 000 LPG vehicles on the roads and in excess of 1,400 filling stations that offer 

LPG (Eyre et al., 2002). The three major constituents of LPG are propane, iso-butane and n-butane 

which are together termed LPG alkanes (Lai et al., 2009). The higher butane content of LPG relative 
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to diesel and petrol fuels results in lower NOx emissions (Saleh, 2008). Similarly, LPG contains less 

carbon molecules than petrol or diesel which results in a relative reduction in emissions of CO2 

(Saleh, 2008; Myung et al., 2012). Additional benefits of LPG are that it is easily stored, low cost, and 

has a high combustion efficiency making it an attractive alternative to conventional fuels (Gumus, 

2011).  

 

3.3.2 Biofuel 

 

The EU Renewable Energy Directive defines biomass as 'the biodegradable fraction of products, 

waste and residues from biological origin from agriculture (including vegetal and animal substances), 

forestry and related industries including fisheries and aquaculture, as well as the biodegradable 

fraction of industrial and municipal waste.' Biomass can be used to produce biofuels which can be 

used as an alternative fuel to conventional diesel or petrol (Bernard and Prieur, 2007; Acquaye et al., 

2012; Grupta and Demirbas, 2010). There are four main types of biofuels namely; alcohols (e.g. 

ethanol, methanol), which are made from fermented sugar crops (grain crops); biodiesel, which is 

made from the esterification of vegetable oils and methanol; natural gas (methane), which is made 

from the digestion of energy crops and so called second generation biofuels, such as dimethyl ether 

(DME) and synthetic biodiesel, that are made from the gasification of lignocellulosic biomass and 

synthetic processes (Biofuels Research Advisory Council, 2006). The latter came about due to 

growing concerns of increased deforestation and rising food prices as a direct result of the production 

of biofuels from food crops (see Gallagher, 2008). This topic remains much debated in the literature 

(see Goldemberg and Guardabarsi, 2009). As a result of these concerns processes were developed that 

produced biofuels from non-feed stock biomass (Pandey et al., 2011). These biofuels are termed 

second generation and differ from other biofuels only by the way in which they are produced (see 

Biofuels Research Advisory Council, 2006).  

 

Emissions from the combustion of biofuels vary depending on the fuel composition (Hammond, 

2008). It is beyond the scope of this research to review the associated toxic pollutant and CO2 

emissions from every biofuel or biofuel blend. However, Gaffney and Marley (2009) documented an 

overview of the general emissions levels from the combustion of biofuels relative to those from 

conventional petrol/diesel. A summary of the overview can be seen in Table 7. Although emissions of 

CO2 from vehicles fuelled with alcohols or biodiesel are generally lower than those of a conventional 

vehicle, these liquid biofuels contain less energy than petrol or diesel (Biofuels Research Advisory 

Council, 2006). As a result more fuel has to be burnt to travel the same distance as a conventional 

vehicle (of similar type and specification) meaning overall alcohols or biodiesel have similar CO2 

emissions to that of petrol or diesel fuelled vehicles (Gaffney and Marley, 2009). 
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Table 7 Emissions from biofuel combustion relative to emissions from the combustion of 

conventional petrol/diesel fuel (Gaffney and Marley, 2009)   

 

 

3.3.3 Hydrogen 

 

Hydrogen can be combined with oxygen in a fuel cell to generate power which can subsequently be 

used to propel a vehicle (Bento, 2010).  These vehicles are known as hydrogen fuel cell vehicles 

(HFCVs). Hydrogen has high energy efficiency by weight, it can be produced in large quantities and 

vehicles can be refuelled at speeds comparable to petrol/diesel vehicles, making it a highly 

competitive fuel for transport (Martin et al., 2009). In addition, HFCVs have zero emissions at the 

tailpipe and if they are fuelled with hydrogen produced using electricity from renewable sources, then 

HFCVs emit no emissions at the point of energy generation (Sainz et al., 2012). However, at present 

only controlled deployment has resulted in the penetration of HFCVs into the global vehicle fleet 

(Martin et al., 2009). This is because of a number of barriers limiting their uptake primarily 

surrounding lack of refuelling infrastructure and storage (Hu and Green, 2011). Hydrogen fuel easily 

leaks and is highly flammable meaning that it is a safety risk (Watanabe et al., 2007; Houf et al., 

2012). In addition, hydrogen’s low density limits the amount of storage on-board a vehicle (Mori and 

Hirose, 2009). As a result, advances in storage technologies and the subsequent deployment of such 

technology in vehicle development and for refuelling are required in order for hydrogen to become a 

sustainable fuel of the future (King, 2007; Ogden and Nicholas, 2011; Park et al., 2011; Eyre et al., 

2002).  

 

3.4 Rebound Effect 

 

Advancement in vehicle technology, fuel and drive trains are seen as primary drivers in meeting air 

quality limit values and climate change targets. However, it is now widely accepted these 

advancements are subject to a feedback mechanism termed the rebound effect (Sorrel and 

Biofuel Regulated Pollutant 

Emissions  

Non-regulated 

Pollutant Emissions 

Tailpipe CO2 Emissions  

Alcohols 

(Ethanol/methanol) 

Decrease except for NOx  

which may increase 

Significantly 

increase specifically 

aldehydes 

Similar to petrol/diesel 

Natural Gas (Methane) Decrease CO, HC and 

NOx 

 - Lower CO2  (but methane 

is a potent GHG) 

Biodiesel 60% less CO, up to 80% 

increase in  NOx, PM10 

and benzene 

Increase in aldehydes Similar to diesel 
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Dimitropoulos, 2007). Berkhout et al., (2000) provide a rigorous definition of the rebound effect and 

so it is only briefly described here. There are three types of rebound effect which Greene (2012) 

described as; 1) when improved fuel efficiency reduces the cost of travel inducing travel (direct 

rebound effect); 2) consumption of other goods and services lowers the cost of travel inducing more 

demand (indirect rebound effect); 3) when a reduction in the demand for energy reduces its price 

encouraging increased consumption (economy-wide rebound effect). Studies in the literature have 

primarily focus on estimating the size of the direct rebound effect (i.e. the per cent of savings offset 

by the increased demand) on personal transport. For example, Su (2012) estimated the direct rebound 

effect to be between 11% and 19% for petrol cars in the US using 2009 National Household 

Transportation Data. Hymel et al. (2010) estimated the rebound effect of 4.7% in the short run and 

24.1% long run for the USA states using cross-sectional time series data for 1966 through 2004 and 

Goodwin et al. (2004) reported the rebound effect varying between 4% and 89% based on an 

international survey. However, literature documenting estimates of the rebound effect within the on-

road freight sector has been increasing (e.g. Winebrake et al., 2012; Ruzzenenti and Basosi, 2008) and 

Matos and Silva (2011) found that a 1% increase in diesel fuel efficiency of freight in Portugal 

resulted in a reduction in energy consumption of 0.759%. This is equal to a direct rebound effect of 

24.1%, 0.87 million litres of diesel per year and substantial NOx and PM10 vehicle emissions.  

 

As highlighted above direct rebound effects vary considerably. They are sensitive to the energy 

service studied (e.g. personal transport or freight, petrol or diesel fuel) the time frame analysed (i.e. 

long or short run definitions) and the model approach adopted (Matos and Silva, 2011). Current 

estimates of rebound effects documented in the literature vary due to the way in which researchers 

incorporate these sensitivities into their investigations. Perhaps the most compressive review and 

meta-analysis of recent literature concerning direct rebound effects was carried out by Sorrel and 

Dimitropoulos (2007) who analysed the methods and identified strengths and weaknesses of 17 

studies on road transport rebound effects. From the studies they found long run rebound estimates to 

range between 3% and 87%, with the higher end of the range being associated with data for the US 

(see Greene (2012) for a review on estimates of rebound effects in the US). Their critical review of 

the literature allowed  Sorrel and Dimitropoulos (2007) to provide a ‘best guess’ estimate for long run 

rebound effects of between 10% and 30%. However, they concluded that the ‘current research state of 

knowledge on direct rebound effect is insufficient for policy’ and suggested that more empirical work 

was needed. Since the analysis of Sorrel and Dimitropoulos (2007) further support for long run 

rebound effects between 10% and 30% have been documented by Matos and Silva (2011), Su (2012), 

Hymel et al. (2010) and Greene (2012) indicating a consensus amongst some researchers. However, 

other subsequent research does not support the findings of Sorrel and Dimitropoulos (2007). For 

example Wang et al. (2012) estimated a rebound effect of 35% between 1999 and 2009 for the 

passenger transport sector in Hong Kong. The differences observed between estimates made by Wang 
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et al. (2012) and those made by Sorrel and Dimitropoulos (2007) are more than likely due to 

geographical variation in rebound effects (Sorrel and Dimitropoulos (2007) did not review any studies 

in Asia) an area in which Sorrel and Dimitropoulos (2007) suggested more empirical research was 

needed.  

 

3.5 Reducing Vehicle Kilometres Travelled 

 

Given that a rapid increase in VKT has resulted in high emissions and poor air quality throughout the 

world (Youngkook and Guldmann, 2011), it follows that a reduction in VKT will reverse this trend. 

The impact of a reduction in VKT on emissions of toxic air pollutants and CO2 emissions has recently 

been highlighted with the onset of the global economic crisis. For example, in the UK between 2007 

and 2008, total road traffic decreased by 3.6 billion VKT (0.7%) (ITF, 2010b). During the same 

period DECC (2011a) documented CO2 emissions from road transport to have fallen by 0.1% and the 

DfT (2012b) documented substantial reductions in NOx, CO2 and PM10 emissions from road transport 

between 2008 and 2010 (see Appendix A, Figure A.2). In addition, the IEA (2009) estimated that 

growth rates in CO2 emissions from transport in developed countries dropped sharply in 2008 and 

absolute emissions of GHGs dropped more in 2009 than in any other time in the past 40 years due to a 

reduction in VKT. Similarly the benefits of a reduction in VKT have been further highlighted recently 

by Zhou et al. (2010) who found a 32% reduction in VKT in Beijing during the 2008 Olympic Games 

to have reduced urban VOC, CO, NOx, and PM10 concentrations by 55.5%, 56.8%, 45.7% and 51.6% 

relative to ambient pollution levels before the games. 

 

As a result of these environmental benefits decision makers have considered and implemented 

numerous different policy measures in an attempt to decrease VKT many of which were reviewed by 

Cameron et al. (2004). The review by Cameron et al. (2004) documented the policy measures 

introduced by governing bodies in Singapore, Hong Kong, Munich, Stockholm, New York and Perth 

between the 1960s and 1990s in order to reduce VKT. A summary of these policy options can be seen 

in Table 8. Broadly the measures for reducing VKT fall under three main policy instruments namely; 

financial incentive or disincentive, land-use planning and investment in public transport (Perdue et al. 

2011). 
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Table 8 Summary of measures introduced by governing bodies between 1960 and 1990 in various 

cities in order to reduce vehicle kilometres travelled (Cameron et al., 2004) 

Measure to Reduce VKT between 

1960 and 1990 

Singapore Hong 

Kong 

Munich 

(Germany) 

Stockholm 

(Sweden) 

New York 

(US) 

Perth 

(Australia) 

 

 

 

Fiscal 

increases 

in… 

 

 

 

Import Taxes 
    

Registration Tax  
   

Road Taxes 



  

Zone Based 

Charging/Licensing 
 

   

Parking Charges 
 

 
 

Fuel Tax 



   

Vehicle License Fees 



   

 

Land-

Use 

Planning 

 

Narrowed Streets 
 


  

Pedestrian only City 

Centre  


  

Limitation of Urban 

Sprawl   


 

 

Public 

Transport 

 

Modal Integration of 

Public Transport 

Services 
  






Investment in Public 

Transport 
     

 

 

Cameron et al. (2004) suggested that those fiscal measures implemented in Singapore and Hong 

Kong, namely the taxing of fuel, registration and licensing of vehicles and road user charging, 

appeared to have been the most successful as the traffic volume in Singapore decreased by 45% 

between 1970 and 1980 and Hong Kong had no significant increase in vehicle ownership between 

1980 and 1990. Similar policy measures have been implemented elsewhere in the world (Kenworthy 

and Laube, 1999; Newman and Kenworthy, 1996; May, 1986) and a substantial amount of literature 

has focused on evaluating the impact of road user charging on local emissions and air quality 

(Eliasson et al., 2009; McKinnon, 2006; Mitchell et al., 2005; Beevers and Carslaw, 2005; Mitchell, 

2005; Johansson et al., 2009; Borjesson et al., 2012; Santos et al., 2004).  

 

In 2003 congestion charging in London was introduced and in 2007 the zone was extended (Beevers 

and Carslaw, 2005). A recent report by Transport for London revealed that although early indications 

suggested decreases in congestion relative to 2002, in 2008 there was no difference in congestion, 

emissions or air quality levels between pre and post implementation of the charging scheme (TfL, 

2008). Furthermore, the report documented that traffic on the boundary of the congestion charging 

zone increased by 4% due to adjustments in traffic signals. This highlights a major issue with such 

schemes in that although they aim to reduce the VKT within a specific area through financial 

disincentives they often result in the build-up of diverted traffic elsewhere in the road network which 
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ultimately maintains or exacerbates air quality problems (May, 1986). Furthermore, Santos et al. 

(2004) documents that the failure of the London congestion charging scheme is due to the fact that the 

scheme in London, unlike that implemented in Singapore, does not charge users on a per entry basis 

which suggests that the scheme is not stringent enough to facilitate a modal shift to public transport 

and subsequently to reduce private VKT. Charge per entry congestion schemes have been 

implemented elsewhere in the world some of which similarly appear to have been too modest to have 

resulted in significant air quality benefits. For example, although Johansson et al. (2009) found NOx 

and PM10 emission reductions of 8.5% and 13% to have occurred during the Stockholm congestion 

pricing trail during January 3 to July 31 2006 exceedences in ambient air quality limit values were 

still observed on the most densely trafficked streets within the charging area.  The congestion pricing 

scheme in Stockholm in 2007 was made permanent but results to date show that it has had little 

impact on congestion in the city (Borjesson et al., 2012).  

 

Other zonal based charging schemes include low emissions zones (LEZs) which typically impose a 

financial penalty on those entering in vehicles which do not meet certain emissions standards 

(Carslaw and Beevers, 2002). LEZs have now been implemented in 152 cities in nine EU countries 

(Wolff and Perry 2010). Although the primary aim of these schemes is not to reduce VKT, such a 

reduction may indirectly occur if financial penalties are high enough to facilitate a modal shift to other 

modes of transport, such as rail. However, the success of such schemes in substantially improving air 

quality is not widely documented, for example Jones et al. (2012) found that only a small reduction, if 

any, in particulate number may have occurred as a direct result of the London LEZ and Boogaard et 

al. (2012) documented there to be no air quality improvement in five Dutch cities despite the 

implementation of LEZs.  

 

It is evident from Table 8 that if road charging, LEZs and other financial measures are to be 

successful in delivering even small environmental benefits, investments must be made in public 

transport in order to encourage a modal shift and reduce dependence on private vehicles for road 

travel. In the UK the 2011 government budgets revealed that funds available for investment in 

transport are to be cut from £5.5 billion in 2011 to £4.4 billion in 2015 (HM Treasury, 2011). 

However, during the same year a £560m Local Sustainable Transport Fund was announced which is 

to be partly used to make alternative modes of transport, including cycling, walking and public 

transport, viable options for the public (see DfT, 2011a). In addition, in 2012 the UK government 

agreed to proceed with the development of a new high speed rail network (HS2) which when 

developed will ‘release space on the conventional railway for new commuter, regional and freight 

services’ (see DfT, 2012c). If these new rail services are competitively priced relative to the costs of 

road travel then the HS2 has the potential to reduce personal car and freight VKT, decrease emissions 

from the road network and improve air quality.  
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Recently research has begun to focus on the impact of a VKT specific tax (Greene, 2011; McMullen 

et al., 2010; Rufolo and Kimpel, 2008). The findings from the research to date suggest that a VKT tax 

has the potential to reduce VKT, traffic congestion and reduce emissions of toxic air pollutants and 

CO2 (Sorenson et al., 2009). In addition, such a policy may have the added benefit of limiting the 

impact of the rebound effect. However, at present a number of barriers exist, such as large capital 

investment, that have prevented the wide spread implementation of such policy measures (see 

Sorenson et al., 2009; Greene, 2011). 

 

A strong relationship exists between land-use and road transport (see Newman and Kenworthy, 1996). 

Expanding cities fuelled by economic growth have resulted in greater commuter distances and more 

trips (Zhao, 2010). Large metropolitan areas with high levels of urban sprawl have been shown to 

have a greater number of pollution exceedences (Stone, 2008) and the correlation between road 

transport CO2 emissions and urban sprawl has been documented to be much stronger than correlations 

between transport emissions and GDP or population data (Bart, 2010). As a result a large amount of 

research has focused on identifying the impacts of limiting urban sprawl. For example, Heres-Del-

Valle and Niemier (2011) documented that a 10% increase in residential density would reduce vehicle 

miles travelled in California by 1.9% and results from a modelling study by Hankey and Marshall 

(2010) suggest that cumulative GHG emission from road vehicles could be reduced by 15% to 20% 

between 2000 and 2020 in the US through restriction of urban sprawl. Similar modelling studies have 

been documented by Travis et al. (2010), Garcia-Palmares (2010), Anas and Pines D, (2008). In 

addition, Cameron et al. (2004) found the development of land with high employment and residential 

densities in close proximity to public transport hubs to have partly limited the impact of vehicle 

emissions on air quality in Stockholm. However, despite the air quality and GHG benefits that can be 

achieved through limiting urban sprawl, policy measures that focus on increasing residential densities 

are restricted temporally as land-use changes are only effective over the medium to long term (Dulal 

2011). Stern (2006) highlighted that in order for significant environmental deficits to be avoided 

action is needed now and should be sustained in the future. Subsequently land-use change alone 

cannot be relied upon in order to achieve CO2 emissions targets from the road transport sector.  

 

In the future it is likely that fiscal measures, land-use planning and investment in public and 

alternative modes of transport will continue to be used in conjunction in order to reduce VKT. 

However, to date such policy packages have been ineffective in reducing the VKT in urban areas to 

levels that result in acceptable air quality. All of the cities documented in Table 8 presently have 

significant air quality problems to which road transport is a major contributor despite the introduction 

of measures to reduce VKT (see DEC (2012a) for New York; EPD (2011) for Hong Kong; DEC 

(2012b) for Perth; DUPBR (2006) for Munich; Johansson et al. (2009) for Stockholm). Even 

Singapore has significant air quality problems which are particularly highlighted when assessing PM10 
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pollutant concentrations against EU air quality limit values (see NEA, 2012). As a result policy that 

aims to reduce VKT must get stricter in order for global CO2 emissions and local air quality targets to 

be met. Furthermore, a more aggressive reduction in VKT will allow greater environmental benefits 

from technological advancements to be realised without being offset.  

 

3.6 Modelling the Impact of Road Transport Strategies on Toxic Air Pollutant and CO2 Emissions 

 

There has been an increase in the number of studies modelling the impact of strategies and policies on 

vehicle emissions from road transport. Some of these have focused on the impact of low emissions 

vehicles. For example, Brady and O’Mahony (2011) predicted a 25% substitution of conventional 

vehicles to EVs by 2020 from a 2008 base-case in Dublin to reduce CO, NO2 and NOx emissions by 

80%, 69% and 38% respectively. Kantor et al. (2010) estimated the penetration of fuel cell plug in 

hybrid vehicles to reduce GHG emissions in Ontario, Canada, by 3 – 6% and PHEVs and FCVs to 

reduce GHGs by 3 – 3.5% based on a modelling period between 2008 to 2025. Pasaoglu et al. (2012) 

documented 35%, 45% and 75% reductions in CO2 due to the low, medium and high penetration of 

low emissions vehicles into the European fleet over a 40 year period (2010 to 2050). Some of those 

studies focus solely on the impact of alternative fuels or those that model the impact of improved 

abatement technology on emissions from road transport. For example Goncalves et al. (2009) 

estimated significant reductions in NOx, PM10, SO2, CO and NMVOCs when conventional buses, 

taxis, heavy duty freight vehicles, LDVs and passenger cars were substituted with vehicles fuelled 

with CNG and Kassomenos et al. (2006) estimated reductions in CO, benzene, PM10, NOx and VOCs 

of 41%, 58%, 12%, 23% and 27% respectively when pre-Euro (non-catalytic) vehicles and Euro I 

vehicles were replaced with vehicles meeting the Euro III emissions standard on selected roads during 

a typical working day in Athens in 2002. Similar studies concerned with modelling the impact of 

improved pollutant abatement technology on emissions from road vehicles have been documented by 

Collet et al. (2012) and Ginnouli et al. (2011).  

 

Despite the growing body of literature modelling the impact of strategies on vehicle emissions from 

road transport, those strategy modelling studies that consider both toxic air pollutants and CO2 remain 

relatively few in number. Thambiran and Diab (2011) modelled the impact of a change in technology, 

fuel and VKT on pollutant (NOx, CO, PM, SO2) and CO2 emissions in South Africa. They concluded 

that a reduction in VKT and the removal of the oldest vehicles in the fleet were the best options for air 

quality improvement and CO2 reduction. Brady and O’Mahony (2011) modelled the low medium and 

high penetration of EVs into the Dublin vehicle stock and found modest reductions in CO2, CO, VOC, 

PM, NO2 and NOx emissions. Major emissions reductions were observed under the business as usual 

strategy as a result of the introduction of Euro 5 and Euro 6 technologies. Oxley et al. (2012) 

modelled the impact of numerous strategies on pollutant concentrations and CO2 emissions for the 
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road network in the UK based on 2008 data and a 2020 target. Their study is distinguishable from 

other studies because of the large number of strategies modelled namely, changes to the petrol - diesel 

split, reduced car engine sizes, a reduction in vehicle miles travelled, penetration of EVs and PHEVs, 

increased use of biofuels and the reduction in average CO2 emissions from cars. In addition, the 

modelling approach adopted by Oxley et al. (2012) involved the integrated use of an emissions model 

(IMOVE) and an atmospheric dispersion model (BRUTAL) which allowed air quality policy makers 

to assess concentration values (although air quality and GHG emissions can only be compared at an 

emissions level as ambient levels of CO2 are not toxic to humans).  

 

In general, these studies aimed to evaluate the impact of fixed % strategy changes (relative to the 

base-case) on vehicle emissions. For example, Thambiran and Diab (2011) modelled 20% strategy 

changes in vehicle technology, fuel and VKT. Brady and O’Mahony (2011) modelled the low (10%), 

medium (15%) and high (25%) penetration of EVs and Oxley et al. (2012) modelled a number of 

fixed % changes e.g. 5% fuel blends of biofuel. Similarly, Schrooten et al. (2006), Che et al. (2011), 

Hao et al. (2011), Leighty (2012), Goncalves et al. (2009), Pasaoglu et al. (2012) and Collet et al. 

(2012) all adopted fixed % strategy change modelling approaches to assess emissions of either toxic 

air pollutants or CO2. The % change modelled is typically decided upon using extrapolation of 

historic data (e.g. Huo et al., 2012c), logistic curves (e.g. Brady and O’Mahony 2011), planned 

legislation (e.g. Rouston et al., 2011) or socioeconomic models and indicators (e.g. Shakya and 

Shrestha, 2012). Fundamentally, these types of study ask ‘what if questions’ i.e. ‘what will happen to 

emissions if I implement a strategy change of..’ Such an approach to strategy modelling is adequate 

for evaluating the impact of imminent policies and legislation. However, as a method for the 

development and exploration of new policy options this approach is limited as it does not provide 

flexibility to the policy maker to compare numerous levels of change. Furthermore, given that policy 

makers are obligated to meet legislation and targets it would be more beneficial for modelling 

approaches to answer research questions such as ‘what change is needed to reach my target of..’. The 

majority of current fixed % strategy approaches, whilst adding to the air quality and CO2 policy 

knowledge base do not enable such a question to be answered. This is perhaps best highlighted in the 

work of Kromer et al. (2010) who adopt a ‘what if’ approach to assess the impact of vehicle 

technology (25% or 50% private cars to PHEVs and EVs) on CO2 emissions in the USA. Their 

findings were that none of the low emissions vehicle strategies modelled met the target of an 80% 

reduction in CO2. Such a conclusion would be adequate if the modelling study was exhaustive i.e. 

100% of passenger cars were replaced with PHEVs or EVs. However, this was not the case. The work 

only informs of those fixed changes that are not able to bring about the required emissions reductions. 

A flexible and exhaustive approach that allowed for the identification of either those strategies that 

could meet the target or those that under maximum change could not would be much more beneficial.  
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Current modelling literature (see those documented above) concerning air quality and climate change 

typically allows vehicle numbers to increase to represent the demand for road transport. However, a 

change in vehicle numbers affects vehicle flow which in turn impacts on vehicle dynamics (speed) 

and ultimately emissions rates. The current literature generally allows vehicle numbers to increase 

whilst neglecting the change in vehicle dynamics. In an ideal situation traffic simulation models 

should be re-run for each strategy prior to emissions modelling to allow for changes in vehicle 

dynamics as a result of a strategy or policy implementation to be represented in the modelling. In 

reality the computation time of such an approach prevents it from being a viable option. However, a 

way around this is to fix vehicle numbers at base-case level which would not only prevent changes to 

vehicle dynamics but would also model a more stringent VKT restriction which the literature suggests 

is needed for air quality and climate change targets to be met.  

 

3.7 Chapter 3 Summary 

 

Technology, low emissions vehicles, fuels and a reduction in VKT have the potential to reduce 

emissions of toxic air pollutants and or CO2 from the road transport sector. Attempts to decrease 

emissions from road traffic and improve air quality by reducing VKT have been ineffective 

suggesting more stringent strategies are needed.  Furthermore, studies modelling the impacts of 

strategies on emissions of both toxic air pollutants and CO2 remain relatively few in number. Those 

that have been documented do not provide flexibility to the policy maker to compare numerous levels 

of strategy change. A flexible and exhaustive approach that allows comparison of different levels of 

change whilst enabling substantive conclusions (about whether or not a strategy has the potential to 

deliver a ‘win-win’ for air quality and climate change) would be much more beneficial.  
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Chapter 4 

 

4. Methodology of Research 

 

In this chapter the method used in this research is described. It should be noted that more detailed 

descriptions of the work undertaken are laid out in the subsequent relevant chapters of this thesis. The 

work undertaken focused on road transport in the city of Leicester. Leicester was chosen as a case 

study for this research due to academic and technical reasons. The academic reasons are; it is a 

medium sized UK city whose characteristics are typical of other cities in the UK (e.g. dense urban 

infrastructure, high traffic flows and heavy congestion in the city centre) and; it’s CO2 and air quality 

policy is similar to that of other local authorities. Therefore, using Leicester as a case study would 

enable outcomes of this thesis to be applicable throughout the UK. The academic reasons for choosing 

Leicester as a case study for this research are; 1) comprehensive historic traffic, air quality and 

meteorological data are readily available; 2) Leicester has a very good air quality monitoring system 

in place; 3) both traffic and air quality models for Leicester are available for use in this research and; 

4) this thesis was funded by the EPSRC under the 4M Project whose primary aim was to model, map, 

monitor and manage Leicester’s carbon footprint. A general description of Leicester is provided 

below.       

 

Leicester is located in the East Midlands and is one of the largest cities in the region. It is situated on 

the River Soar ~99 miles north of London by rail. In 1964/65 the M1 was built around Leicester and 

in 1976/77 the M69 to the West Midlands followed making Leicester a transport hub of the Midlands 

(LCC, 1995). In 2005 Leicester had a population of 291, 000 people (DECC, 2011b). This is an 

increase of ~12, 000 people since the 2001 census (LCC, 2001).  The census revealed that 38% of 

households in Leicester owned a car with almost 50% of people travelling to work by this mode and 

~15% of people travelling to work by bus, mini-bus or coach (Table 9). On road transport was the 

dominant travel mode and has had a substantial impact on the air quality and CO2 emissions in 

Leicester.  
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Table 9 Comparison of the percentage travel mode adopted by inhabitants of Leicester in order to get 

to work in 2001 (LCC, 2001) 

Travel Mode Leicester (%) England & Wales (%) 

People who work mainly at or from home 7.53 9.19 

Underground, metro, light rail, tram 0.09 3.01 

Train 0.81 4.08 

Bus, mini-bus or coach 15.23 7.40 

Motorcycle, scooter or moped 0.69 1.09 

Driving a car or van 47.47 55.23 

Passenger in a car or van 7.59 6.25 

Taxi or minicab 0.40 0.52 

Bicycle 4.00 2.76 

On foot 15.83 10.01 

Other 0.38 0.47 

 

As a part of the review and assessment process, in 2000 Leicester City Council (LCC) carried out 

detailed air quality monitoring followed by pollutant forecasting (LCC, 2000). It was identified that 

by 2005 the annual EU air quality limit value for NO2 (40µg/m
3
) would not be met. As such the LCC 

declared an AQMA within its authority area (see Figure 1, section 4.3 below). In 2005 monitored NO2 

data proved the forecasting to be correct with some places within the city exceeding the limit value by 

25% (LCC, 2011a). Further review and assessment found that 95% of local NO2 was as a result of 

road traffic. As a result Leicester’s 3
rd

 local transport plan (LTP 3) focuses on the development of an 

improved public transport network and a series of traffic demand management measures in order to 

encourage the greater use of public transport, less private car use and ultimately to improve air quality 

within the city (LCC, 2011b).    

 

In addition to the toxic air pollutant emissions limit values, the LCC has set ambitious CO2 targets. 

The LCC aim to reduce total carbon emissions by 50% based on 1990 levels by 2025. By 2005 road 

transport CO2 emissions in Leicester were 12% lower than 1990 levels meaning an additional 38% 

reduction is required to meet the 2025 target (LCC, 2011b). In 2005 the dominant source of CO2 

emissions in Leicester was from the industrial and commercial sector (LCC, 2006). The domestic 

sector was the second highest contributor followed by the road transport sector. However, between 

2000 and 2004 road transport in Leicester increased by 8% (LCC, 2006).  

 

Leicester’s ambitious CO2 targets and the city’s non-compliance with EU air quality limit values has 

led to the requirement for road transport strategies that reduced CO2 emissions and improve air quality 

(‘win-win’). This research investigated the impact of a VKT restriction and a change in technology, 

vehicle or fuel on emissions from the road transport sector in Leicester. The method used is described 

below. 
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4.1 Method 

 

Figure 1 shows a detailed flow diagram of the method used in this research. In addition, the figure 

shows where each objective was met in the methodology. In summary, a base-case TTW emissions 

inventory was compiled using data provided from the LCC and using the Platform for Integrated 

Transport and Health Emissions Modelling (PITHEM; Namdeo et al., 2011). The traffic dataset used 

in this research and PITHEM are described later in this chapter. The accuracy of the inventory was 

estimated through the use of an air quality model, ADMS-Urban. In order to compile the base-case 

inventory factor and cluster analysis were applied to traffic data (provided by the LCC) to classify 

roads in to groups. This enabled classification specific diurnal flow profiles to be specified prior to air 

quality modelling. For clarity the fundamental principles of factor and cluster analysis are elaborated 

further in Chapter 5 in the context of the analysis method. 

 

The emission inventory and diurnal profiles along with meteorological data provided by the LCC 

were used as input for ADMS-Urban. Air quality modelling was subsequently carried out to estimate 

the accuracy of the emissions inventory compiled. The base-case emissions inventory was then edited 

to reflect a change in vehicle, fuel or technology and emissions were recalculated. In addition, a VKT 

restriction was imposed on the vehicle fleet that did not allow any increase in VKT from the base 

year. Maintaining VKT at 2005 levels imposed a strict restraint on the Leicester fleet, resulted in the 

rebound effect being zero and minimised issues concerning changes in vehicle dynamics (e.g. speed 

and flow change when VKT increases) associated with strategy modelling. The strategy changes to 

the base-case were made in increments of 5% until 100% was reached (e.g. 5%, 10%, 15% etc. of cars 

were changed to ZEVs). The changes in emissions relative to the base-case for each strategy were 

plotted and regression was used to interpolate between the 5% increments. Output of the regression 

equations allowed any % strategy change to be modelled and subsequent emissions analysed. In 

addition, the regression equations were used to create data tables which enabled the change required 

to bring about a 38% reduction in CO2 (relative to the base-case) to be identified or firm conclusions 

regarding the ineffectiveness of the strategies to be made. Those strategies that provided a reduction 

in CO2 and toxic air pollutants (‘win-win’) were identified and those that resulted in a trade-off were 

discussed. Finally, the total change in emissions for each road classification relative to the base was 

calculated for each strategy. This allowed the impact of the strategies to be assessed relative to road 

classification characteristics and geographical locations.  
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Figure 1 Method Flow Diagram 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traffic Data from Strategic Transport Model (SATURN)  
Leicester City Council (LCC) provided traffic data output from their strategic transport model for the 

year 2005. In addition, the LCC provided point source and area source emissions data, as well as 

meteorological data for the same year.  

  

A Novel Application of Factor and Cluster Analysis for Classifying Roads 
Factor and cluster analysis were used to classify roads into groups to allow for the assignment of diurnal 

profiles prior to air quality modelling. Factor analysis was used to infer the number of cluster seeds prior 

to a cluster analysis (k-means). Roads were subsequently grouped into classifications by the k-means 

algorithm. The classification specific road characteristics were explored. 

Emissions Calculation 
Platform for Integrated Transport and Health Emissions Modelling (PITHEM) was used to calculate link 

based CO
2
, NO

2
, PM

10
 and f-NO

2
 emissions. The software incorporated the DfT 2009 emissions factors 

and alternative low-carbon vehicle emissions factors from the DfT Low-Carbon Tool. These factors 

along with average flow and speed data, vehicle fleet composition and diurnal profiles were used to 

calculate link based emissions rates for the base year 2005.  

Dispersion Modelling 
An air quality model cannot be evaluated without simultaneously assessing the accuracy of its input data. 

Therefore, in order to assess the accuracy of the emissions inventory compiled the 2005 base case data 

was input into an air quality model, ADMS-Urban. The model performance was evaluated through the 

comparison of model outputs with observed pollutant concentration data according to the evaluation 

framework described by Chang and Hanna (2004). 
  

Strategy Modelling 
The base-case data was edited in 5% increments (until 100% change was reached) to reflect a change in 

technology, fuel or vehicle within the Leicester fleet using PITHEM (e.g. 5%, 10%, 15% etc. of cars 

were changed to ZEVs). In addition, VKT was restricted meaning the rebound effect was zero. Emissions 

changes relative to the base-case were plotted for each strategy and regression was used to interpolate 

between data points allowing the emissions from any % strategy change to be modelled. Those strategies 

that provided a win-win for air quality and climate change were identified and those that resulted in a 

trade-off were discussed. Data tables were compiled using the regression equations allowing a ‘what 

change is needed to meet my target of…’ approach to be adopted. Subsequently, those strategies that 

resulted in a 50% reduction in CO
2
 were identified and their associated pollutant emissions were 

assessed.   
  

Objective 1 

Objective 2 

Objective 1 

Objective 3 

Objective 4, 5 and 6 

Diurnal Traffic Flow Profiles 
Halcrow Ltd. provided a set of interpolation factors that were used to calculate traffic flow per hour. 

Classification specific diurnal profiles were then calculated for weekdays based on average flows. 

National diurnal profile data was used to construct weekend flow profiles as there were no weekend data 

available. 
Objective 1 
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4.2 Data and Software Used 

 

The LCC provided a substantial amount data for use in this research, namely traffic activity data from 

a strategic transport model, geographical co-ordinates of links within the LCC LA area, 

meteorological data, emission rates for domestic and commercial non-mobile sources and an annual 

profile that represented fluctuations in Leicester’s month by month traffic flow throughout the year 

(see Appendix D for domestic and non-domestic source locations and month by monthly traffic 

profile). In addition, Halcrow Ltd (2009) provided interpolation factors that enabled the development 

of diurnal traffic profiles and national data was used to partially define vehicle fleet composition.  

 

The specialist software used in this work included the PITHEM and ADMS-Urban. In addition, SPSS 

and Microsoft excel were used for statistical analysis and data manipulation. The software and data 

used in this thesis are described in the subsequent relevant chapters of this work. However, in the 

following sections the traffic data set used and the PITHEM software are described.  

    

4.3  The Traffic Data Set 

 

The traffic data used in this research was derived from the Central Leicestershire Transport Model 

(CLTM) and included transport activity data and road vehicle fleet composition data. The CLTM 

comprised a number of sub models: transport forecasting, accessibility, modal splits, public transport 

utilisation and the assignment of vehicles to the highway network. Only the highway sub model 

(Simulation and Assignment of Traffic to Urban Road Networks; SATURN, Van Vliet 1982) was 

included in this research. The traffic data derived from SATURN was split into three vehicle types 

namely, HDVs (aritc and rigid HGVs), LDVs (cars and LGVs) and public transport (buses and 

coaches). Data for two wheeled vehicles was not available and as a result this vehicle class was not 

represented in this work. A total of 52 traffic activity variables for these vehicle types were used (see 

Appendix D). The activity variables included estimates of origin-destination (route-based) traffic 

flows, network speeds, link delay, link queue length and number of lanes on each road link. All of the 

traffic data were defined as weekday AM peak, PM peak or inter peak (IP), referring to events 

occurring between 07.00h-08.00h, 16.00h-17.00h and average hour between 10.00h-16.00h periods 

respectively for approximately 6000 road links across the Leicestershire area. This work considered 

only those roads that were located within the LCC LA area. Figure 2 shows the location of Leicester 

within the UK and the LCC LA area and associated road network. The LCC LA comprised 3748 road 

links. However, the CLTM was not developed to include every link within the LCC LA. Those links 

considered by the council to have very low traffic flows were not included in the model and equally 

were not included in this research. However, it is acknowledged that future work should look to 

quantify emissions from these missing roads.     
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Figure 2 The study area of Leicester (a,b,c; OS Maps 2013) and associated road network considered 

in this research (d,e,f; LCC, 2010)  
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4.4 Platform for Integrated Transport and Health Emissions Modelling (PITHEM) 

 

A number of emissions models were considered for use in this research, including ADMS-Urban’s in 

built emissions model, the UK government Emissions Factor Tool Kit (see DEFRA, 2009) and 

PITHEM. PITHEM was considered the most appropriate for use in the research as it was developed 

specifically to calculate emissions using traffic data directly output from the strategic transport model 

SATURN which was the source of traffic data in this thesis. In addition, PITHEM is extremely 

flexible allowing vehicles, technologies and fuels to be easily manipulated using its drop down menus 

and tick boxes. Therefore, the use of PITHEM substantially reduced data processing times whilst 

enabling the rapid editing of the base case to reflect various road transport strategies. Furthermore, the 

emissions factors in PITHEM are readily available (and accessible) meaning they can be compared as 

part of an assessment and evaluation procedure.      

 

PITHEM enables the calculation of link specific emission rates based on traffic data. It allows for the 

manipulation of vehicle fleet compositions at the Euro class level. PITHEM uses vehicle flow and 

speed coupled with the 2009 DfT average-speed TTW emissions factors (see Boulter et al., 2009a) to 

calculate traffic related emissions. This methodology is consistent with that recommended by the UK 

Department for Energy and Climate Change (DECC) in the production of their ‘Local and Regional 

CO2 Emissions Estimates’ (DECC 2011b). The UK average-speed emissions factors vehicle fleet 

composition structure is split into seven levels namely, total fleet (Level 0), vehicle type (Level 1), 

vehicle type (Level 2), vehicle fuel (Level 3), weight/type (Level 4), engine size (Level 5) and 

emissions standard (Level 6) (Figure 3). The vehicle fleet composition structure in PITHEM has the 

same number of levels but is reordered to enable data from transport models to be entered more easily 

i.e. bus and HGV data are not linked to take into consideration that SATURN provides separate traffic 

flows for HDVs and public transport (Figure 4). In addition, PITHEM comprises WTW CO2 

emissions factors for PHEVs and EVs from the DfT Local Authority Carbon Tool (DfT, 2011b). The 

emissions factors for these vehicles differ from those developed by Boulter et al. (2009a) as they are 

based on a single average emissions factor and not on speed (DfT, 2011c). The average emissions 

factor specified for PHEVs and EVs defined in PITHEM is 97.3gCO2/km and 53.4gCO2/km 

respectively. The vehicles used to derive the average emissions factor for EVs included the Nissan 

Leaf, Mitsubishi iMiEV, Renault Fluence and Renault Zoe (DfT, 2011c). The average emissions 

factor for PHEVs was based predominantly on the Plug-in Toyota Prius (DfT, 2011c). Sales data and 

technical specifications of EVs and PHEVs were used by the DfT to estimate fuel and electricity 

consumption per km for these vehicles. The UK energy generation mix for 2011 (Table 10) was 

subsequently used to calculate a sales weighted average CO2 emissions factor. It should be noted that 

the sales data and exact vehicle types and specifications used to develop the average emissions factors 

for low emissions vehicles is not publicly available and would not be released by the DfT.   
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Table 10 UK Energy Generation Mix (DECC 2011c) 

Energy source % 

Coal 29.2 

Natural Gas 40.7 

Nuclear 19.1 

Renewables 9.2 

Other 1.8 

 

In addition, PITHEM comprises a vehicle class called ‘zero emissions vehicles’ (ZEVs) which release 

no emissions at the tail pipe or at the point of energy generation. These vehicles can be used as being 

representative of EVs or PHEVs operating in charge depleting mode when conducting a TTW study.  

 

An average emissions factor for PM10 (0.02042 gPM10/km) for ZEVs, EVs and PHEVs is specified in 

PITHEM in order to take into consideration particulate emissions from brake and tyre ware. There are 

no further pollutant emissions factors for these vehicles specified in the model. 
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Figure 3 Vehicle fleet composition structure of the UK 2009 emissions factors 
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Figure 4 Vehicle fleet composition structure in PITHEM 
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Chapter 5 

 

5. A Novel Application of Factor and Cluster Analysis to Classify Roads 

 

An important source of data used in air quality emissions and dispersion models is the road traffic 

flow. Traffic flow is influenced by many factors such as congestion, green light time, number of lanes 

etc. meaning that each road exhibits fluctuations in flow throughout the day. In an ideal world the 

fluctuations in traffic flow on every road in a network would be captured in air quality modelling 

allowing for greater representation of concentrations temporally. However, in reality this is not 

possible due to large data requirements and computation times. Therefore, air quality models (e.g. 

AERMOD, AirViro, ADMS-Urban) are limited to a finite number of diurnal flow profiles prior to 

calculation. As a result there is a requirement for a method that assigns roads into groups 

(classifications) so that diurnal profiles can be specified to roads with similar characteristics. 

Therefore, a method that achieves this is explored in this chapter together with a description of the 

current methods documented in the literature for classifying roads.    

 

In their document ‘Traffic Monitoring Guide’ the US Department of Transport (US DoT, 2001) 

suggest three suitable methods for creating road classifications namely, geographical/functional 

assignment, same road factor application and cluster analysis. The document was constructed as an 

aid for local authorities to appropriately apply annual average daily traffic (AADT) extrapolation 

factors to short period traffic counts. Often short period manual traffic counts are carried out at 

specific times of day e.g. during peak flows and as such the diurnal flow profiles of traffic on such 

roads is unknown. The US DoT’s (2001) ‘Traffic Monitoring guide’ addresses this issue by providing 

a methodology that involves classifying roads based on their characteristics such as speed and flow 

and subsequently applying appropriate AADT interpolation factors to each of these roads depending 

on their classification.  

 

The document states that geographical/functional assignment involves the grouping of road based on 

traffic patterns inferred from the knowledge of a traffic professional. However, such a professional 

requires an in depth knowledge of the road network, including its spatially and temporally variant 

traffic patterns, which researchers and air quality modellers do not possess. In contrast, air quality 

modellers and researchers can readily assign roads to classifications using the same road factor 

application method (see DoT (2001) and references there in) which involves grouping roads that are 

adjacent to each other. However, it is acknowledged by the US DoT (2001) that this method can be 

highly unreliable as traffic flows can fluctuate greatly, even between roads that are connected or 

adjacent to each other. Due to its inaccuracies the same road factor application method of classifying 
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road has little support in the literature and is not considered an appropriate tool for classifying roads. 

Cluster analysis, on the other hand, has been shown by Chen et al. (2008) to be an adequate technique 

for creating road classifications and is probably the most viable technique available to researchers as it 

requires little to no knowledge of the physical layout of the road network.   

 

Cluster analysis is a data classification tool that can be used to partition data into meaningful 

subgroups (Fraley and Raftery, 1998). Cluster analysis techniques can be split into two main 

categories, hierarchical and non-hierarchical, both of which are well described in the literature 

(Grimm and Yarnold, 2002, Anderson, 2003, Fraley and Raftery, 1998). Non-hierarchical techniques 

have a major benefit over hierarchical methods, as they allow multiple passes of the data (Hair et al. 

1992). With each subsequent iteration data points are allowed to move between clusters (provided 

they do not increase the within cluster square error) which maximises intra-cluster similarity and 

inter-cluster dissimilarity (Aldenderfer and Blashfield, 1984). Non-hierarchical techniques are limited 

in their application as they require the researcher to specify a priori information (Ketcher and Shook, 

1996).  This limitation is evident in the work of Chen et al. (2008) who classified 3263 roads in 

Leicester according to their traffic conditions, using their traffic characteristics (morning average-

speed, hourly flows in hours 9, 12, 18 and 24)  and fleet compositions (petrol cars without a catalyst, 

petrol cars with a catalyst, diesel LGVs, Buses and HGVs). They used the k-means clustering 

algorithm which has the prerequisite that the user must specify the number of clusters prior to the 

analysis. In their study the number of clusters specified was six. Although Chen et al. (2008) suggest 

that their method of grouping roads was sufficiently reliable through subsequent analysis with 

external variables (AURN site and road side pollutant monitoring data) the number of clusters was 

driven by the requirement of the air quality model rather than justified statistically through rigorous 

analysis. It is important to allow flexibility for the number of clusters specified so that the cluster 

analysis can be driven by the data and not restricted by the subsequent applications of the number of 

clusters.    

 

Therefore, this research investigated the application of a statistical methodology to classifying roads 

based on traffic conditions that allows the traffic data to drive the classification process.  The 

methodology combines factor analysis and cluster analysis to infer the number of partitions. In this 

research the method is applied to the road network in Leicester. Initially 52 traffic variables from 

SATURN were used in the classification process. The variables were defined as weekday AM peak, 

PM peak or IP, referring to events occurring between 07.00h-08.00h, 16.00h-17.00h and average hour 

between 10.00h-16.00h periods respectively.   
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5.1 Factor and Cluster Analysis Method 

 

The use of factor analysis and cluster analysis are standard statistical techniques and the combined use 

of both factor and cluster analysis is relatively common. In some studies factor analysis is used to 

validate a cluster analysis structure (e.g. Clark et al., 2003; Berlage and Terwedume, 1988) and in 

other studies factor analysis is used as a data pre-processor to reduce the number of variables and 

prevent issues of unequal variable weighting in the clustering process (e.g. Andriotis et al., 2008; 

Kibicho, 2008). The later method is known as ‘factor-cluster’ analysis and it has been applied in the 

medical (Suzuki et al., 2010) and tourism (Cha et al., 1995; Frochot and Morrison, 2000; Ahmed, 

1997) sectors. Factor-cluster analysis is used to classify roads in this research. To this author’s 

knowledge the application of factor-cluster analysis to classify roads is unique to this study and so this 

investigation provides a first step in exploring data-driven road classifications. The method involves 

factor analysis, producing factor scores and subsequently using these factor scores as input for cluster 

analysis.  

 

In this research factor analysis is also used to infer the number of clusters to be output by an iterative 

cluster analysis. There are a number of techniques that have been developed previously in order to 

determine the number of clusters to be output from a cluster analysis including, the use of a two-stage 

cluster process (e.g. Peterson, 2002). A two-stage methodology involves initially carrying out a 

hierarchical cluster analysis to produce a dendogram. The dendogram is then used to infer the number 

of clusters to be output from a subsequent iterative cluster analysis (e.g. k-means). The dendogram 

may also be used to determine the initial cluster centres of the iterative analysis. The major issue with 

such an approach is that hierarchical methods make only one pass through the data set and as such a 

poor early clustering of the data set is not modified in subsequent clustering steps (Aldenderfer and 

Bashfield, 1984; McNeil et al., 2005; Suhr and Spitznagel, 2001). This means that a poor initial 

hierarchical cluster analysis can subsequently infer a poor output from the iterative cluster analysis.  

 

Another technique used to determine the number of partitions of a cluster analysis is the elbow 

criterion.  Mo et al. (2010) define this method to involve ‘plotting the ratio of the within-cluster 

variance to the total variance of the data set’ (or percentage variance explained by each cluster). The 

resultant graph has a distinctive shape and when the improvement in per cent of variance explained 

drops substantially, an elbow-like inflection point is formed and the per cent of variance explained 

gained by adding more clusters becomes marginal (see Figure 5). Therefore, by looking on the graph 

for this inflection point the number of clusters to be output can be determined.  
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Figure 5 Example of elbow criterion graph (based on Mo et al., 2010) 

 

 

Mo et al. (2010) documented this technique to be a satisfactory one. However, the technique itself is 

very similar to factor analysis but does not have the benefit of determining the key variables that are 

driving the data set. In factor analysis Catell’s (1966) scree plot is used to determine the number of 

factors to be extracted from the analysis. It involves the plotting of eigenvalues which are matrix 

based functions (Tabachnick and Fidell, 2001; Field, 2005). The matrices used in factor analysis are 

of shared common variance and as such the scree plot can be said to be a measure of variable 

variance. The scree plot works in the same way as the elbow criterion, with an inflection point 

inferring the number of factors to be extracted. Therefore, the use of factor analysis to infer the 

number of clusters can be seen as being similar to the elbow criterion, but with the benefit of allowing 

the user to identify the driving factors within the subject dataset.  To this author’s knowledge the use 

of factor analysis to infer the number of clusters is novel to this research.         

 

In this research exploratory factor analysis (EFA) was carried out on 52 variables in order to 

determine the underlying constructs which describe the data. Various sensitivity tests were conducted 

during the EFA which were used to inform the appropriate factor analysis (FA) methodology to 

produce the final solution. Associated factor scores of the final solution were generated and used as 

predictor variables for cluster analysis. The number of factors extracted during the FA final solution 

was used as a priori for the number of road classifications to be grouped during the cluster analysis. 

The road classifications output from the cluster analysis were then analysed statistically to determine 

their characteristics and as such their internal consistency. In addition, the groupings were visually 

assessed in a geographical information system (ArcGIS) in order to determine whether or not they 
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conformed to specific expected pattern. All statistical analysis was conducted using the SPSS (17.1) 

software package. 

 

5.1.1 Data Input 

 

Traffic data for this research was acquired from the CLTM. Predictor variables used in the study were 

extracted from the 3748 roads within the LCC LA area.  

 

Preliminary statistical analysis (histograms and box plots) of data for each variable revealed that their 

distributions were all non-normal. Therefore, non-parametric tests at 95% level of confidence were 

used throughout this chapter.   

 

5.1.2 Factorability of Variables 

 

In order to determine if the data set was appropriate for use in FA the factorability of the variables 

was assessed through the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy (MSA) 

statistics (Kaiser, 1970). Fundamentally the tests compare the magnitudes of the calculated correlation 

coefficients to the magnitude of the partial correlation coefficients (Pett et al.,  2003). The KMO MSA 

can be calculated for the correlation matrix as a whole or for the individual variables separately. Both 

were calculated for this research according to equations 7 and 8.   
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 (Equation 8) 

 

In Equation 7 and Equation 8    
  is the square of the off-diagonal elements of the anti-image 

correlation matrix and      
  is the square of the off-diagonal elements of the original correlations. A 

comprehensive description of KMO MSA procedures is given in Stewart (1981). The anti-image 

correlation (AIC) matrix reports MSA values for each individual variable on the diagonal, with the 

negatives of the partial correlations between pairs of variables present on the off diagonals 

(Tabachnick and Fidell, 2001). KMO MSA values range from 0 to 1. Large MSA values and small 
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negatives of the partial correlations indicate that the data set is factorable (Tabachnick and Fidell, 

2001). Kaiser (1974) provided a scale against which to measure KMO MSA values in order to 

determine if the correlation matrix is factorable. According to Kaiser (1974) a KMO MSA value of 

0.90+ is marvellous, 0.80+ meritorious, 0.70+ middling, 0.60+ mediocre, 0.50+ miserable, and a 

value below 0.50 is considered unacceptable. Kaiser (1974) further suggested a KMO MSA cut-off 

point for data suitability to be 0.60+ (‘mediocre’), with anything below 0.60 indicating a lack of 

underlying factor structure describing the relationships between the data set variables. Therefore, 

variables were removed from the EFA if their individual KMO MSA statistics were below 0.60.    

 

In addition to KMO MSA calculations, the communalities (measures of shared variance) between 

variables were evaluated and the variables correlation matrix was screened. High communality scores 

(0.30>) suggest that there is a significant proportion of shared common variance between the variables 

and that FA is appropriate (Fabrigar et al., 1992; MacCallum et al., 1999). Field (2005) suggested that 

variables that have a correlation coefficient between them greater than 0.90 should be considered as 

possibly describing the same underlying construct and could in fact be a cause of multicolinearity in 

the dataset. Therefore, the variables correlation matrix was screened for values above 0.90 and those 

variables that met this criterion were subjected to sensitivity analysis (see section 5.1.7).  

 

5.1.3 Factor Extraction 

 

There are a number of common factor extraction statistical techniques, principal component analysis 

(PCA, technically not a FA procedure), principal axis factoring, unweighted least squares, generalised 

least squares, maximum likelihood, alpha factoring and image factoring. All of these techniques have 

significant advantages and disadvantages (see Tabachnick and Fidell, 2001, Kline, 1994, Field, 2005) 

and it is widely acknowledged that there is no definitive extraction method that is beneficial over all 

other methods (Costello and Osborne, 2005; Fabrigar et al., 1992). Some methods, such as maximum 

likelihood and generalised least-squares are beneficial in their approach as they allow statistical 

significance testing of factor loadings, whereas others, e.g. image analysis, are advantageous as they 

provide a unique solution that accounts for common variance only (Kline, 1994). Fabrigar et al. 

(1992) document principal axis factoring (PAF) to produce results that are comparable to other 

extraction techniques in terms of reliability as does Bagby et al. (1994), Kerns et al. (1985), Becker et 

al. (2010) and Greco and Roger (2001). Nunnally and Berstein (1994) compared PAF and PCA 

extraction techniques and suggested that PAF to perform better than PCA as it lowers the root mean 

square error (RMS) between the estimated correlations matrix and the actual correlation matrix. They 

concluded that PAF provides a better fit of the model to the data than PCA does and that PAF is 

superior to PCA. PAF was chosen as the principal factor extraction method for this research. 

However, Gorsuch (1983) documented that a dataset with strong underlying constructs will produce 
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the same solution regardless of extraction method. Therefore, in order to assess the strength of the 

underlying constructs of the final solution PCA, unweighted least squares, generalised least squares, 

maximum likelihood, alpha factoring and image factoring extraction techniques were compared to 

those outputs produced using PAF. 

 

5.1.4 Number of Factors Extracted 

 

As with factor extraction, the techniques chosen to determine the number of factors extracted are 

highly subjective. There is no definitive way in which to determine the number of factors to extract 

(Ledesma and Valero-Mora, 2007). Kaiser (1974) suggested extracting all factors with eigenvalues 

higher than 1.0. However, this method has been shown to result in over extraction and occasionally 

under extraction (Zwick and Velicer, 1986; Tucker et al., 1969; Hakstian et al., 1982; Costello and 

Osborne, 2005; Patil et al., 2008). Jolliffe et al. (1972) documented that Kaiser’s value is too strict 

and suggested that extraction of factors should be based on eigenvalues higher than 0.7. This method, 

like Kaiser’s (1974), however suffers from the same fundamental issues and that both techniques are 

arbitrary in that an eigenvalue of 1.0 is considered important where as an eigenvalue of 0.99 is not 

(Field, 2005). In contrast, the ‘scree test’ (Catell, 1966) does not rely on an arbitrary cut-off value. 

The scree test involves plotting the eigenvalues against their associated factor in order to determine 

the relative importance of a factor (Field, 2005). The curve of this graph has a distinct shape and the 

point of inflection, according to Catell (1966), indicates the cut-off point for selecting factors. It is 

well documented in the literature that the technique provides fairly reliable results (Gorsuch, 1983; 

Stevens, 1992; Tucker et al., 1969; Catell and Vogelmann, 1977). Furthermore Monte Carlo 

investigations by Tucker et al. (1969) revealed the scree test to perform consistently better than 

Kaiser’s eigenvalue rule. Therefore, in this research the scree test was used to determine the number 

of factors to be extracted.  

 

5.1.5 Rotation 

 

Rotation of factor loadings allows for more interpretable results by shifting loadings so that they fall 

predominately on to a factor (Floyd and Widaman, 1995; Brown, 2009). In the literature rotation is 

often illustrated as the movement of data points on a graph so that they fall close to one of the axis 

lines (Field, 2005). In this case the graph’s axis represents factors and the plotted points represent 

factor loadings. The data points plotted can be moved in different ways, e.g. allowed to correlate, in 

order to make interpretation easier. There are a number of different types of rotation, orthogonal, 

primarily varimax, is by far the most widely used FA rotation technique documented in the literature 

(Kline 1994). Oblique rotation, unlike orthogonal rotation, allows factors to correlate (Ford et al., 

1986) and in doing so can be seen as a more appropriate technique for EFA. Tabachnick and Fidell 



 
 

72 
 

(2001) document that the production of a factor correlation matrix from oblique rotation allows the 

user to determine if underlying constructs are truly correlated. If the matrix reveals factors to be 

correlated then the use of oblique rotation is justified. If however, the matrix reveals near zero factor 

to factor correlation coefficients then it is indicated that orthogonal rotation is applicable.  Given these 

benefits of oblique rotation, oblique direct oblimin was used for the EFA.  

 

5.1.6 Interpretation of Factor Matrices 

 

There is a large volume of literature documenting different ways in which to interpret outputs from 

FA (Thurstone, 1974; Costello and Osborne, 2005; Gorsuch, 1983; Kline, 1994; Tabachnick and 

Fidell, 2001; Comrey and Lee, 1992; Cattell, 1978; Stewart, 1981). Perhaps the most cited method for 

interpreting matrices is that of Thurstone (1974) who proposed five criteria for determining if a 

loading matrix exhibited ‘simple structure.’ Thurstone (1974) argued that a FA procedure that 

produced a loading matrix with simple and interpretable structure is the best fit of the model to the 

data. Thurstone’s (1974) five criteria are as follows; each variable produces at least one zero loading 

on a factor, each factor has at least as many zero loadings as there are factors, each pair of factors has 

variables with significant loadings on one factor and zero loadings on the other, each pair of factors 

has a large proportion of zero loadings on both factors and each pair of factors has only a few 

variables with significant loading values. Gorsuch (1983) later elaborated on Thurstone’s (1974) 

proposal and suggested that ‘zero’ loadings are loadings that fall between -0.10 and +0.10. The 

definition of a ‘significant loading’ is much debated in the literature. Kline (1994) suggested that a 

factor loading of 0.30 indicates that 9% of the variance is accounted for by the factor and values equal 

to or higher than 0.30 should be regarded as significant. In contrast, Cattell (1978) suggested that 

loadings as low as 0.15 have been viewed as significant. Kline (1994) rejected this theory on the basis 

that it can cause problems of replication.  On the other hand, Comrey and Lee (1992) defined loadings 

in excess of 0.71 (50% overlapping variance), 0.63 (40% of overlapping variance), 0.55 (30% of 

overlapping variance), 0.45 (20% overlapping variance) and 0.32 (10% overlapping variance), as 

excellent, very good, good, fair and poor respectively. Tabachnick and Fidell (2001) suggested that 

the cut-off point is ultimately a matter of researcher preference and that more often than not a cut-off 

point is chosen as it makes interpretation of factors easier.  In this research a cut-off point of 0.30 was 

used to determine the significance of factor loadings, as this allowed for a significant proportion of 

overlapping variance to be considered and enabled interpretation of factor matrices to be carried out 

with ease.    
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5.1.7 Sensitivity Analysis 

 

The EFA communalities table and correlation matrix were analysed. Those variables which appeared 

to be describing the same underlying construct (correlation between variables above 0.9) were 

removed one at a time from the data set and the EFA was recalculated. Pattern, structure and factor 

correlation matrices output from the multiple FA were compared and variables were discarded if they 

resulted in a solution that significantly violated Thurstone’s (1974) criteria for simple structure and 

those criteria of variable factorability documented in section 5.1.2. 

 

5.1.8 Factor Internal Consistency  

 

Internal consistency refers to the interrelatedness of those variables loading on a factor. A solution 

that has strong variable interrelatedness is deemed to be good as it infers that those variables loading 

on the same factor share a large proportion of variance and are in fact in part describing the same 

underlying construct. Cronbach’s (1951) coefficient alpha is widely documented in the literature (see 

Schmitt, 1996, Peterson, 1994) as a mathematical tool for measuring the internal consistency 

(interrelatedness) of grouped items. Therefore, Cronbach’s coefficient of alpha was used to indicate 

the level of internal consistency of the factors determined from the EFA. Coefficient alpha values 

range from 0 to 1, with a value of 1 suggesting strong inter-item relatedness and a value of 0 

indicating poor interrelatedness. However, it should be noted that a large number of items can result 

in the inflation of alpha scores (see Cortina, 1993). Therefore, alpha values were used only as an 

indication of internal consistency.  Correlation coefficients were also calculated to further assess the 

interrelatedness of factor variables.  

 

5.1.9 Factor Scores 

 

According to Field (2005) factor scores are ‘a composite score for each individual variable on a 

particular factor.’ That is they are an estimate score of what a subject may have scored on a factor if 

the underlying construct was measured directly (Tabachnick and Fidell, 2001). In general, factor score 

procedures can be classified in two ways, refined and non- refined. Non- refined methods, e.g. sum of 

scores, are simple in their approach (Kline, 1994). In contrast, refined methods, such as Anderson-

Rubin and Bartlett’s regression techniques are more complex and often yield more reliable results 

(Lastovicka and Thamodaran, 1991). Field (2005) and Tabachnick and Fidell (2001) give a good 

basic explanation of factor scores and their uses. In addition, Distefano et al. (2009) give a 

comprehensive review on ‘understanding and using factor scores’ and provide a useful set of lookup 

tables which compare factor score algorithms and outputs.  
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Factor scores are often produced if subsequent analysis is to be carried out using the factored data set 

(e.g. Funkhouser, 1983). By using factor scores in such analysis (in this case cluster analysis) issues 

of multicolinearity are addressed and unequal variable weighting is avoided (Ketchen and Shook, 

1996).  Therefore, factor scores were used as predictor variables in the subsequent cluster analysis.    

 

5.2 Cluster Analysis: k-means algorithm 

 

The k-means algorithm (McQueen, 1967) is one of the most widely used clustering techniques due to 

its ease of use, simplistic nature, efficiency and empirical success (Jain, 2010). In addition 

Yiakopouloulos et al. (2010) documented the k-means algorithm to be adopted further by its relatively 

quick computation times, small computational space requirements and the fact that it is not limited by 

prior knowledge and may produce tighter clusters. K-means is a technique that has been applied 

successfully within the engineering (e.g. Yiakopouloulos et al., 2010), energy (e.g. Pandit et al., 

2011), medical (e.g. Docquier et al., 2009) and electrical (e.g. Mora-Florez et al., 2009) fields, as well 

as within the transport sector (Chen et al.,  2008). It is applied to the dataset used in this research in 

order to characterise the road classifications.  

 

K-means cluster analysis involves objects moving iteratively from one cluster centre to another, 

starting from an initial partition (Fraley and Raftery, 1998, Cheung 2003, Chitta and Murty, 2010). 

Like all non-hierarchical procedures, k-means requires a priori information regarding the number of 

clusters to be output from the analysis (Grimm and Yarnold, 2002). It initially involves the random 

selection of cluster centres and the partitioning of objects into the nearest cluster (Ketchen and Shook, 

1996). The algorithm then calculates the square error within each of these clusters (Kalyani and 

Swarup, 2011). Objects are allowed to move between clusters if the square error is minimised (Erman 

et al., 2006). If an object moves to a new cluster the cluster centre is re-calculated and the whole 

process starts again in an iterative manner. Only once the clusters become stable (i.e. the square error 

values for the clusters varies very marginally with further iterations) are the final groupings 

determined (Hair et al., 1992).  

 

The k-means algorithm is extremely sensitive to the position of initial cluster centres and as such re-

ordering of the input data can result in different initial centres and subsequently different solutions 

(Juang and Wu, 2010). A number of techniques have been presented in the literature to overcome this 

issue (e.g. averaging the initial seed values) with the ‘multiple restarts’ methods perhaps being the 

most widely accepted (Likas et al., 2003). The multiple restarts method was adopted in this research 

primarily due to its ease of use and relatively quick computation time. The method involved a pre-

processing procedure whereby the input data was re-ordered 100 times and subsequently grouped 

using the k-means algorithm. Initial cluster centre values and the assignment of roads to clusters are 
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assessed in terms of frequency. If multiple solutions were produced the most dominant solution was 

considered the most appropriate for use in air quality modelling due to its greater reproducibility. This 

approach is similar to that used by Vichi and Kiers (2001) who calculated 100 cluster analysis and 

retained ‘only the best solution’ for subsequent analysis.    

 

5.2.1 Statistical and Spatial Analysis 

 

Box plots of the within cluster variables were plotted to assess variable data ranges and to help 

characterise the classifications. Clusters with few outliers (1.5 times the inter quartile ranges) were 

considered to be more consistent and internally similar. Greater internal similarity indicates a more 

effective clustering procedure.  

 

Box plots were deemed appropriate as they use median values. The median value is influenced less by 

extreme values and outliers than other statistical measures such as the mean in non-normally 

distributed data (Skottowe, 1963) and was considered to be more representative of the classification 

characteristics in this case. The classifications were then assessed visually using a geographical 

information system to allow for evaluation of road location in relation to characteristics.   

 

5.3 Results and Discussion 

 

5.3.1 Factor Analysis 

 

Of the initial 52 variables considered for the EFA, 30 were removed from the analysis due to high 

correlations (0.90>) and or significantly low (<0.60) individual KMO MSA scores. The 20 variables 

used as input for calculation of the final solution are shown in Table 11. These variables where 

extracted from the 52 by 52 correlation matrix of statistical parameters which was studied in detail. 

This matrix was too large was to be included in the thesis or as an appendix. 

 

All of the variable communalities were significant (0.30≥) which suggested that there was a 

substantial proportion of shared common variance between the variables and that factor analysis was 

an appropriate technique. Although using PM Cruise Speed and IP Free Flow speed as predictor 

variables for the EFA meant including variables with a correlation coefficient above 0.90, the removal 

of any these variables significantly impacted the stability and interpretability of the FA solution and as 

a result the speed variables were considered important for the production of the final solution. Also, 

issues of multicollinerarity that may have occurred due to the inclusion of these variables were 

addressed through the production of factor scores. In addition, speed is an important traffic variable 

that influences tailpipe emissions which further justifies its retention.   
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The scree plot output (see justification in section 5.1.4) from the 20 variable EFA is shown in Figure 

6. The plot indicated extraction of four, five or six factors. Subsequently the extraction of four, five 

and sic factors was carried out. The extraction of five factors was deemed the most appropriate. The 

extraction of four factors doubled the number of non-redundant residuals in the residuals matrix 

suggesting extraction of another factor. The extraction of six factors was not possible due to the 

communality of a variable exceeding one which suggested a sixth factor would likely be a replication 

of a previously defined factor.  

 

The five factor final solution accounted for 72.84% of the total variance in the dataset and as such 

27.16% of variance was not extracted. This means that 27.16% of the variance in the dataset was not 

shared common variance between variables and did not result in significant (0.30≥) factor loading 

scores. Factors 1 to 5 accounted for 28.25, 15.45, 15.03, 8.15 and 5.96% of the variance respectively. 

All of the extracted factors had eigenvalues greater than 1.0 indicating that the use of extraction 

criteria shown by Kaiser (1974) would have yielded the same factor solution. The residuals matrix 

had 12% non-redundant residuals with absolute values of greater than 0.05. Comparison of the 

outputs of the 6 extraction techniques (PCA, unweighted least squares, generalised least squares, 

maximum likelihood, alpha factoring and image factoring) with the PAF solution revealed similar 

factor loading patterns suggesting that strong underlying constructs within the data were present. This 

also indicated that the variable factorability analysis carried out was effective.    

 

Figure 6 Scree plot output from the exploratory factor analysis (principal axis factoring, direct oblimin 

oblique rotation) 

 

 

Selected Factors 
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The factor pattern loading matrix for the final solution is shown in Table 11. Although there are six 

cross factor loadings, generally the loading matrix satisfied Thurstone’s (1974) criteria for simple 

structure. All of the factors had an adequate number of significantly high (0.30>) variable loadings 

and at least 5 loadings between -0.10 and +0.10. The high factor loadings suggested a good model fit 

to the data and indicated strong internal stability. Furthermore, the FA model provides an easily 

interpretable output, with factors 1 to 5 describing HDV and LDV flow (1), bus flow (2), delay (3), 

speed (4) and AM peak network characteristics (5).  

 

Table 11 Communalities scores and factor pattern loading matrix of the final factor analysis solution 

    Factor 
 
 Communalities 1 2 3 4 5 

IP Lights .851 .904         

IP Heavies .803 .891         

PM Lights .812 .879         

PM Heavies .567 .685         

AM Lights .623 .616       .442 

AM Heavies .479 .504       .330 

No. Lanes .416 .372       .354 

PM Bus  .756   -.894       

PM Bus Q .751   -.830       

IP Bus Q .748   -.816       

AM Bus  .786   -.758     .359 

AM Bus Q .773   -.743     .417 

IP Q Average .709     .787     

IP Junction Delay .578     .700     

AM Q Average .517     .654     

PM Q Average .461     .617     

AM Network Speed .464     -.554 .385   

AM Junction Delay .417     .537     

PM Cruise Speed .970       .996   

IP Free Flow Speed .971       .988   

 

 

Table 12 shows the ‘between factor’ correlations (below the diagonal) and Cronbach’s Alpha 

Coefficient score (on the diagonal) for each factor. Factors 1 and 4 are significantly (0.30>) correlated 

justifying the use of an oblique rotation. This correlation is logical given that factors 1 and 4 describe 

speed and flow underlying constructs.  

 

The ‘within factor’ variable correlation coefficients were above 0.60, 0.70, 0.30, 0.30 and 0.40 for 

factors 1 to 5 respectively suggesting an acceptable level of inter-variable relatedness. Furthermore, 
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generally the alpha scores observed indicated relatively strong factor internal consistency. Nunnally 

(1978) recommended alpha scores of 0.70 for early stages of research, 0.80 for basic research tools 

and 0.90 for clinical research purposes. The alpha scores of factor 1 and factor 4 are consistent with 

Nunally’s (1978) criteria for basic research, factor 2 for clinical purposes and factor 5 for the early 

stages of research. However, the variables loading on factor 3 produced an alpha score of 0.559 

suggesting its internal consistency was relatively low. The calculation of Cronbach’s (1951) alpha 

coefficient if one item deleted revealed that removal of AM Network Speed from the factor would 

have produced an alpha value of 0.790 for factor 3. The removal of AM Network Speed from the FA 

however substantially impacted the factor loading pattern (given that it is cross loaded) and 

subsequently the solution structure and interpretability was lost. Therefore, the AM Network Speed 

remained in the final solution.  

 

Table 12 Factor correlations (below diagonal) and Cronbach’s Alpha Coefficient [diagonal] 

Factor 1 2 3 4 5 

1 [.898]     

2 -.248 [.904]    

3 .136 -.063 [.549]   

4 .309 .026 -.048 [.812]  

5 .170 -.124 .067 .115 [.746] 

 

 

5.3.2 Factor Scores 

 

Comparison of the three factor score calculation methods (regression, Anderson-Rubin and Bartlett) 

showed that the Bartlett technique reproduced scores that most closely matched those in the factor 

pattern loading matrix. This was consistent with Distefano et al. (2009), who suggested that the 

Bartlett score method is better because it produces estimates that are most likely to represent the true 

factor scores and also produces high validity estimates between the factor scores and factor. For these 

reasons the Bartlett method of calculating factor scores was used in this research. The limitation of the 

Bartlett factor score method is that it may produce factor scores that are correlated in an orthogonal 

solution (Tabachnick and Fidell, 2001). This was not of major concern, given that the final solution of 

this FA produced factors that were correlated. However, what was of concern was factor score 

indeterminacy. Factor score indeterminacy refers to the fact that infinite number of solutions could 

account for the relationships between variables in a factor analysis (Grice, 2001; Gorsuch, 1983). 

Therefore, factor scores are imprecise and can only be estimated and not calculated (Hammon, 1986). 

Accordingly, factor scores can impact the validity of decisions based on these values (Actio and 

Anderson, 1986).  
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The literature suggests that a solution with high factor loadings, high communality values and a 

relatively large number of variables loading on factors can reduce the impact of factor score 

indeterminacy (Gorsuch, 1983; Grice 2001; Actio and Anderson, 1986; Lastovicka and Thamodaran, 

1991). The final solution produced in this research appears to meet the above criteria adequately in the 

sense that all of the factor loading scores were above 0.30, with an average loading value of 0.61,  

communality estimates were all above 0.40 with an average value of 0.67, and all of the factors had 

three or more variables loading onto them. This further suggests that the factor scores produced in this 

research were fit for purpose. However, researchers are reminded that factor scores are estimates and 

furthermore can be sample specific (Field, 2005). Therefore, the production of factor scores whilst 

using this methodology may lead to significant errors.  

 

5.4 Cluster Analysis   

 

The completion of factor analysis revealed that five factors could be used to describe the data set. 

Cluster analysis was carried out in order to group roads in to classifications. The k-means algorithm 

was used with an a priori of five classifications specified which was inferred from the factor analysis. 

The multiple starts method, involving the reordering of variable data and re-running of cluster 

analysis was carried out in order to account for the sensitivity of the k-means algorithm to initial 

cluster centres. From the 100 cluster analyses computed, it was evident that there were two solutions 

emerging. Therefore, this research highlights how sensitive the k-means algorithm is to initial cluster 

seed location. The solutions accounted for 61% (Solution 1) and 39% (Solution 2) of the 100 cluster 

analyses computed respectively. Therefore, Solution 1 was favoured due to its greater reproducibility.  

 

In the Solution over half of the roads were assigned to classification 2 and were evenly spread 

throughout the city (Figure 7(a)). A total of 784 roads were assigned to classification 4 (Figure 7(b)) 

and were predominantly located at junctions and intersections with city centre feeder roads. 

Generally, roads belonging to classification 5 were located on Leicester’s outer ring road and those 

assigned to classification 3 were located predominantly in the city centre (Figure 7(c)). Classification 

1 comprised only 129 roads which were located mainly at junctions.  
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Figure 7(a) The Leicester City Council (LCC) local authority area road network and associated road 

classifications; Figure 7(b) number of roads assigned to each classification and; Figure 7(c) the city 

centre at a finer resolution 

  

                                          

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inter-comparison between the road classifications showed their characteristics to vary 

considerably (Figure 8). Roads belonging to classification 1 were characterised by substantially lower 

network speeds, bus flows and HDV flows than the other classifications. In addition, the roads in 

classification 1 were characterised by relatively high LDV flows suggesting that these roads were 

subject to severe congestion. Classification 2 comprised roads that had low HDV and bus flows and 

were characterised by LDV flows that were within a similar range to those of classification 1. 

However, roads belonging to classification 2 were observed to have higher network speeds which 

were the likely cause of their grouping. Despite 50% of the roads being assigned to classification 2, 

the data ranges for these roads were relatively small which suggested that they were similar in 

characteristics. The roads belonging to classification 5 were typically characterised by high network 

speeds and high HDV and LDV flows. Classification 4 comprised roads that were characterised by 

low HDV, LDV and bus flows and moderate speeds. Finally, high bus flows and a broad range of 

speeds were observed for classification 3.       

(c) 

¯

(a) 

0 2.5 51.25 Kilometers ¯

(b) 
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Figure 8 Traffic data comparison between the five road classifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13 provides a summary of the typical locations and traffic characteristics of the 5 road 

classifications. 

 

Table 13 Typical locations and traffic characteristics of the 5 road classifications output from cluster 

analysis 

Classification Typical Location Traffic Characteristics 

1 City centre junctions Low speeds, high LDV flows, Low bus and HDV flows 

2 Evenly spread throughout the city High speeds, high LDV flows, Low bus and HDV flows 

3 City centre Broad range of speeds, high bus flows 

4 Junctions and Intersections Low traffic flows, moderate speeds 

5 Outer ring road High speeds, high LDV and HDV flows 

  

Whilst the use of factor-cluster analysis is relatively common for segmentation analysis (Suzuki et al., 

2010; Andriotis et al., 2008; Kibicho, 2008; Cha et al., 1995), the use of factor scores as input for 

cluster analysis is a much debated topic in the literature. Frochot and Morrison (2000) conducted a 

meta-analysis of segmentation studies and concluded that the factor-cluster analysis approach to be 

superior to other techniques as it allows the data set to be reduced into ‘a smaller set of 

understandable factors.’ Ahmed (1997) found the factor-cluster method to be an advantage over other 
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approaches as it provided ‘richer’ and ‘clearer’ clusters when classifying the climatic regionalization 

of Saudi Arabia. However, cluster analysis assumes heterogeneity (Grimm and Yarnold, 2002) and 

variables with a high proportion of shared common variance arguably influence the clustering 

process. On the one hand, the advantage of using factor scores is that they prevent variables 

containing unequal weighting (i.e. a large proportion of shared common variance) from being 

included in the clustering process (Ketchen and Shook, 1996). On the other hand, factor analysis aims 

to eliminate variables with a small amount of shared common variance and only part of the variance 

of the dataset is extracted during the analysis (in this research 72.84%). As a result the removal of 

heterogeneous data during factor analysis may substantially influence the subsequent cluster analysis. 

In order to estimate the influence of this drawback on the classifications presented, comparison 

between the outputs of this work (factor-cluster analysis) and those of Chen et al. (2008) (cluster 

analysis) were made. It should be noted that whilst these two studies used slightly different data, their 

comparison provides insight into the possible influences of factor scores on the classification process 

in this work. The results show the two outputs to be similar in terms of number of roads assigned 

which indicates that the use of factor scores in this research did not substantially influence the 

classification process (Table 14). However, similarities between the two classifications suggested that 

a limitation common to both the work of Chen et al. (2008) and this work was influencing the 

classification process. 

 

The main similarities between this work and those documented by Chen et al. (2008) are that both 

approaches produced solutions that have a dominant classification containing a large proportion of 

roads and at least one classification comprising a very small number of roads. This similarity can be 

explained by the use of simulated traffic data for classification as opposed to the use of real world 

traffic data. Real world data will inevitably have greater variability than simulated data and is likely to 

result in a higher number of road classifications. However, it is not only expensive but also 

impractical to continuously monitor traffic flow and speed on every road within a conurbation. In 

reality automatic traffic recorders (ATRs) exist only on a relatively small proportion of roads (LCC 

2011) meaning that the spatial coverage of real world traffic data does not meet the requirement of 

regional scale air quality models.  Therefore, the use of traffic data from strategic transport models, 

such as SATURN, has become necessary to allow for estimates of road traffic dynamics, including 

diurnal profiles, to be included in air quality modelling. However, traffic models comprise 

assumptions (e.g. capacity-delay curves), limitations (e.g. finite number of routes can be modelled) 

and often errors (e.g. introduced in input data such as origin destination matrices) which are 

sometimes evident in outputs. These biases are likely to influence the cluster analysis. The relatively 

small data ranges of the variables describing the roads assigned to classifications 1 and 2 in this work 

could be evidence of assumptions made in SATURN influencing the classification process. For 

example, the small number of roads assigned to classification 1 were characterised by very low 
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network speeds which may, on the one hand, have been the result of capacity-delay assumptions 

intrinsic to the SATURN model. On the other hand, these speeds may be a reflection of the real world 

traffic speeds associated with roads located near heavily traffic junctions.   

 

Table 14 Comparison of number of roads assigned for two different methods of classifying roads; 

factor analysis followed by cluster analysis (this work) and one stage cluster analysis governed by 

model requirements (Chen et al., 2008)  

 

Classifications 

in This Work 

Roads  

(%) 

Classifications in 

Chen et al. (2008) 

Roads  

 (%) 

1 3.4 1 0.4 

2 51.9 2 23.1 

3 7.4 3 0.8 

4 20.6 4 0.4 

5 16.6 5 34.9 

  6 40.2 

 

 

In some cases it is possible that many variables output from a traffic model contain a large proportion 

of shared bias. In such a case, the use of the method presented here to classify roads can be seen as an 

advantage over other approaches as variables containing multicolinearity and unequal weighting are 

removed from the classification process. However, it should be noted that the use of factor scores as 

input for cluster analysis may in some cases influence the classification process (see above). The use 

of the factor and cluster analysis method presented here also has an advantage over other methods as 

it allows the classification process to be driven by the data and not restricted by the subsequent 

applications of the number of clusters.  

 

5.5 Chapter 5 Summary 

 

A statistical method of classifying roads was presented. Factor analysis was used to determine the 

underlying constructs of the road traffic data for the LCC road network. Factor analysis was used to 

infer the number of cluster seeds for the k-means algorithm. Some traffic variables were found to be 

unsuitable for factor analysis and were removed. The factor analysis revealed five underlying 

constructs. Therefore, five initial seed functions were specified for the cluster analysis allowing the 

clustering process to be driven by the data itself. Multiple cluster analyses were calculated to test the 

stability of the solution. Two predominant solutions emerged due to different initial cluster seed 

locations. Solution 1 was favoured as it had greater reproducibility. The use of factor scores as input 

for cluster analysis was discussed and the road classifications produced were compared to those 

produced in previous work using a different classification technique. The classifications produced in 
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this work were similar in terms of number of roads assigned to a direct cluster analysis approach 

which suggested that the use of simulated traffic data was influencing the classification process.  
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CHAPTER 6 

 

6. Air Quality Modelling: Evaluation of the Emissions Inventory 

 

The approach recommended by the government to monitor the air quality of a city is to identify a 

suitable (often a single) fixed site for a monitoring station to record concentration levels continuously 

over time (DEFRA, 2007). Monitoring locations are only capable of providing insight into the impact 

of previous and current abatement policies and strategies on pollutant concentration levels and cannot 

be used for evaluating the effectiveness of future action plans. Instead, atmospheric dispersion models 

have been developed to carry out this task. Concentration levels are predicted based on input data that 

can be manipulated and edited to reflect a range of strategies and policies depending on user 

preference. In order to assess the impact of these policies such pollutant ‘forecasts’ are compared to a 

‘base-case’ which represents pollutant concentrations predicted using current fleet characteristics, 

traffic and base year meteorological data. The air quality model allows the emissions inventory 

compiled for the base year (in this research 2005) to be evaluated and subsequently systematically 

changed to reflect planned strategies. Comparison with the base-case benchmark allows the 

effectiveness of such strategies to be estimated prior to implementation. In this way more effective 

use of resources is achieved ensuring that policy decisions taken deliver their objectives. Therefore, 

the next step in this research was to create, evaluate and test the robustness of the air quality model to 

replicate the base-case. In this chapter the emissions inventory compiled for the LCC region is 

presented and the ability of the ADMS-Urban dispersion model to predict concentrations of NO2 and 

PM10 at fixed locations throughout the city evaluated. Predicted concentration levels are compared to 

observed data and model performance is quantified on a statistical basis. 

 

6.1 Study Methodology 

 

Diurnal profiles were developed using the five road classifications documented in Chapter 5.  Vehicle 

fleet composition was defined using data from SATURN and national data (DfT, 2009b). The vehicle 

fleet composition, traffic flow data and link average-speed were subsequently used in PITHEM to 

calculate road transport emissions. The LCC provided emissions values that were representative of the 

non-mobile source emissions in the LA area. The emissions inventory along with meteorological data 

was used as input for ADMS-Urban. The dispersion model was used to predict concentrations of NO2 

and PM10 at seven and five receptor locations across the city of Leicester respectively. These receptor 

locations are representative of the pollutant monitoring sites within the LCC LA area. Model 

performance was subsequently evaluated through comparison of predicted with observed 

concentrations according to methods suggested by Chang and Hanna (2004). It should be noted that 
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measured (termed ‘observed’ as specified from here on in) concentration data were assumed to 

accurately represent actual pollution concentrations. 

 

6.1.1 Diurnal Profiles 

 

Halcrow Ltd (2009) provided interpolation factors that allowed for the calculation of AADT flow and 

diurnal profiles (Table 15). The interpolation factors were derived from empirical data and enabled 

the interpolation of the AM peak, IP period and PM peak hour values. The AM and PM interpolation 

factors were easily applied to the corresponding peak flows obtained from SATURN. In contrast, the 

interpolation factor for the IP period was a composite value for the pre 07.00h (00.00h - 07.00h), 

10.00h - 16.00h and post 19.00h (19.00h - 00.00h) periods. LCC provided the breakdown of the IP 

period. The pre 07.00h, 10.00h-16.00h and post 19.00h periods accounted for 7%, 37% and 56% of 

the total IP period respectively. Therefore, the interpolation factor was used to calculate the IP total 

and the data from the LCC was subsequently used to breakdown the IP period into the three time 

scales.  

 

Table 15 Interpolation factors provided by Halcrow Ltd (2009) used to calculate annual average 

hourly traffic flows 

Period 
Factor 

Highway 
Public 

Transport 

AM Peak Hour to 07.00-09.00h 2.6 2.4 

IP Average Hour to Period pre 07.00h,10.00h-15.00h, post19.00h 7.5 7.0 

PM Peak Hour to Period 16.00-18.00h 2.7 2.6 

 

 

Halcrow Ltd (2009) provided different interpolation factors for public transport. Analysis of the 

Leicester bus timetable revealed bus traffic to occur on the roads between 05.00h - 00.00h only (LCC 

2011c).  Subsequently the pre 07.00h traffic flow period was shortened from 00.00h - 07.00h to 

05.00h - 07.00h to accommodate public transport flows. This meant that there were zero bus flows 

between the hours of 00.00h and 05.00h.  

 

The highway (HDV and LDV) flows and public transport flows were summed to give total hourly 

traffic flows for each link. The links were then assigned to their appropriate classifications and the 

average hourly traffic flow of the links within each road classification was calculated and used to 

create classification specific diurnal profiles. The profiles were then transformed to meet the input 

requirements of AMDS-urban (profiles must average one and add up to 24; CERC 2011). The profiles 

created can be seen Appendix E. 
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Interpolation factors that enabled the development of Saturday and Sunday profiles were not 

available. Therefore, the 2005 DfT national flow profiles for the weekend days were used (DfT, 

2009b).  

 

All of the weekday profiles developed were characterised by two peak flow periods (AM and PM 

peaks) and by low flows during the early morning and night. In general, classifications 1 and 5 and 

classifications 4 and 2 respectively exhibited similar diurnal variation. However, road classification 3 

had a profile dominated by PM peak flows with only a small AM peak period.  

 

6.1.2 Vehicle Fleet Composition 

 

Vehicle fleet compositions were developed according to the structure of PITHEM (see Chapter 4 

Figure 4) using data from SATURN and national data (DfT 2009b). Level 1 of the vehicle fleet 

composition structure for each link was partly defined using the HDV, LDV and bus compositions 

from SATURN. National vehicle fleet composition data was used to further characterise the LDV 

vehicles into cars and LGVs at Level 1. All other levels of vehicle fleet composition were defined 

using national data. 

 

6.1.3 Emissions Data  

 

The LCC provided NOx (285t/yr) and PM10 (10t/yr) emissions data for point and area sources. These 

emissions were considered representative of the commercial and domestic contributions to local air 

pollution in Leicester. Link based NOx and PM10 emissions were calculated using vehicle fleet 

composition, AADT and average network speed. The AM, IP and PM Network Speeds were used to 

calculate the average-speed for each link. In addition, an annual profile for month by month traffic 

flow provided by the LCC was defined in the emissions inventory. However, the temporal variation of 

point and area source emissions were not defined due to a lack of available data. 

 

It should be noted that ADMS-Urban assumes that 10% of NOx from all sources is emitted as NO2. 

 

6.2 ADMS-Urban 

 

A number of models in addition to ADMS-Urban were available for use in this research, namely 

AERMOD and Airviro. AERMOD was not used in this research as it requires substantially more 

meteorological data (e.g. upper air data, surface albedo, Bowen ratio etc.) than either Airviro or 

ADMS-Urban. This meteorological data was not readily available for Leicester and therefore the 
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requirements of the model could not be met. In contrast to AERMOD, ADMS-Urban requires only a 

basic set of meteorological data from which it calculates more complex meteorological parameters. 

The meteorological data available for use in this research were sufficient enough to meet the 

requirements of ADMS-Urban.  Airviro was not used in this research as it is split into a number of 

modules (e.g. emissions module, dispersion module and chemistry post processing module) which 

have to be manually set up one after another. This is extremely time consuming. In contrast, ADMS-

Urban requires only a single initial set up as all modules (e.g. meteorological pre-processing and 

emissions, dispersion and chemistry calculations) are automatically run once a preceding calculation 

has finished. Therefore, manual set up times are significantly reduced when using ADMS-Urban.    

 

ADMS-Urban has been validated in numerous studies (Carruthers et al., 1998; Blair et al., 2003; 

Carruthers et al., 2003a) and it has been shown to perform within a factor of two when predicting 

pollutant concentrations in Taiwan (Carruthers et al., 2008), China (McHugh et al., 2005), France 

(Soulac et al., 1997), Italy (Righi et al., 2009) and the UK (Carruthers et al., 1999). In addition, its 

performance has been shown to be comparable, if not better than other dispersion models and 

approaches by Hanna et al. (1999), Leskmono et al. (2006), Carruthers et al. (2003b) and Riddle et al. 

(2004). Therefore, ADMS-Urban was considered the most appropriate regional scale dispersion 

model for use in this research.   

 

The treatment of road sources in ADMS-Urban has already been described in Chapter 2 along with an 

overview of its Gaussian principles and limitations. The following sections document the model set-

up carried out in this work and ADMS-Urban is further described. However, a comprehensive 

description of the model is given by CERC (2006). It should be noted that canyon width and canyon 

height data were not available for use in this research and it was for this reason that ADMS-Urban’s 

canyon model was not used in this study.  

 

6.2.1 Model Input Limitations 

 

The maximum number of road sources that can be defined in ADMS-Urban in any single set-up prior 

to calculation is 3000 and so it was not possible to model the whole of the simulation domain in one. 

Therefore, the road network was divided spatially into three segments (top, bottom and middle) and 

the model was executed in two ways. The first run (Figure 9) comprised point, area and road 

emissions sources aggregated to a shallow grid source (300m x 300m resolution; 2025 grid cells) for 

the entire area (all three segments) whilst the middle of the road network was explicitly defined at a 

much higher resolution as a road source. Predicted concentrations at three receptor locations (Bassett 

Street, New Walk Centre (NWC) and Uppingham Road) were output for the first run. It should be 

noted that ADMS-Urban subtracts the emissions from explicitly defined sources (in this case road 
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sources) from the grid source prior to calculation preventing double counting. The second run (Figure 

10) comprised point, area and road source emissions aggregated to a shallow grid source (300m x 

300m resolution; 2025 grid cells) of the entire area whilst the top and bottom segments of the road 

network were explicitly input as road sources. Predicted concentrations at four receptor locations 

(Abbey Lane, Melton Road, Imperial Avenue and Glenhills Way) were output for the second run. 

This methodology is based on the approach of Owen et al. (1999 and 2000) who defined links both 

explicitly and aggregated to grid level when predicting pollution concentrations at fixed locations 

throughout London using ADMS-Urban.    

 

Figure 9 ADMS-Urban model run 1 set up for the Leicester City Council (LCC) Local Authority (LA) 

area 
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Figure 10 ADMS-Urban model run 2 set up for the Leicester City Council (LCC) Local Authority 

(LA) area 

 

 

In ADMS-Urban a grid source is treated in a similar manner to a line source. Like a road source, a 

grid source has no plume rise but the user must specify a grid depth which represents the depth within 

which the source is well mixed. A grid depth of 10m is advised by CERC (2011) for large urban 

conurbations and was the value used in this study. Similarly, like a road source a grid source is 

decomposed to a maximum of 10 source elements. The contribution from each element is 

approximated by a crosswind vertical slice of finite length and height (CERC, 2006). The expression 

for the concentration from a crosswind vertical slice of length    and height    is given by Equation 

9. 
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Where   is the pollutant concentration,   is the mean wind speed affecting the plume,   is the 

emissions rate,   the effective emissions height above the ground,    and    are the values of 

horizontal ( ) and vertical dispersion ( ) coefficients. 

  

6.2.2 Chemical Reaction Scheme 

 

ADMS-Urban has a simple Generic Reaction Set (GRS) that is used to define NOx chemistry. It 

should be noted that the scope of the dispersion model does not extend to include all the chemical 

reactions that take place in the atmosphere. The GRS takes into account eight chemical reactions (see 

CERC, 2006; Venkatram et al., 1996). The model requires the input of NOx, NO2 and O3 background 

concentrations (see section 6.2.3) prior to modelling chemistry.  

 

There are two separate chemistry modules in ADMS-Urban, both of which employ the same GRS. 

The simpler of the two modules uses the GRS only and assumes that background pollutant levels and 

associated reactions do not vary spatially throughout the study area. In contrast, the Chemical 

Reaction Scheme with Trajectory (CRST) model takes into account differences in surface and 

background ozone levels that may occur over large conurbations through the use of a Lagrangian box 

model. The trajectory model requires the specification of a grid source. This allows for a more 

spatially variable ozone field to be calculated. The average lifetime of pollutants at each receptor 

point is used to calculate the time scale over which the eight reactions take place (Owen et al., 2000). 

Background gases are assumed to enter the simulation area at the upwind edge of the domain. The 

trajectory module then aggregates the emissions, meteorological conditions and deposition rates into 

5km x 5km grid squares and then uses the GRS to calculate local pollutant concentrations. Therefore, 

to allow for spatial variability in photochemical reactions the CRST was used in this investigation.  

 

6.2.3 Background Data 

  

The UK has an extensive network of air quality monitoring stations. The AURN is the main air 

quality compliance network for DEFRA and devolved administrations. In their local air quality 

management technical guidance, DEFRA state the use of background data from a rural monitoring 

station is appropriate if all local sources are explicitly modelled (DEFRA, 2009). Therefore, 

background data from a rural monitoring station was used in this investigation. NOx, NO2, PM10 and 

O3 background concentration data was collated from Harwell rural background monitoring station 

which is located 125km> from Leicester. This site was chosen based on advice from the LCC (2011d) 

who use data from Harwell when conducting air quality review and assessments. The site was 

considered appropriate because it provided data of good quality, there was sufficient data capture and 
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because of its location downwind of Leicester (LCC, 2011d).  Although the background data from the 

Harwell site met the requirements of ADMS-Urban it was envisaged that due to its distance from 

Leicester it would not be representative of the city’s urban background pollution concentrations. 

However, a number of other rural background sites (namely Ladybower and Market Harborough) 

were considered for use in this research, but the data capture at these locations was found insufficient 

to meet the requirements of ADMS-urban. Therefore, the background site located at Harwell was at 

the time considered the best appropriate option for use in this research.   

 

6.2.4 Meteorological Data Set and Pre-processing 

 

Meteorological data for the parameters wind speed (m/s), wind direction (
o
), solar radiation (W/m

2
), 

temperature (
o
C) and precipitation (mm/h) for the year 2005 were provided by LCC for use in this 

study. The data used was recorded in central Leicester at a height of 10m. It is widely accepted in the 

literature that meteorological conditions vary on the microscale, with the construction of every 

building, bridge, road etc. effectively creating a new microclimate which has its own set of 

meteorological parameters governing pollutant dispersion (Vallero, 2008). Therefore, the use of 

meteorological data collected from a single point in Leicester was not considered representative of the 

meteorological conditions immediately within the vicinity of the pollution monitoring sites. However,   

meteorological data of this resolution was not available for use in this research and the data provided 

by the LCC collected from a single central location in Leicester was considered the best available at 

the time of research. 

 

A constant surface roughness length of 1.5m was used to describe the simulation area, as this value is 

suggested by CERC (2006) for large urban conurbations.  

 

The meteorological data was characterised by mixed patterns of wind (Figure 11), with 3% of the 

hourly sequential data exhibiting wind speeds of ≤1m/s and 1% of the data exhibiting wind speeds of 

≤0.75m/s. Table 16 shows a summary of meteorological conditions for the city of Leicester for the 

year 2005. The maximum wind speed (23m/s) was recorded on 24
th
 February at 19.00h. The 

prevailing wind was from the south/south westerly direction. Peak solar radiation (1 W/m
2
) values 

were frequently achieved throughout the year and were not season specific. Higher temperatures were 

observed between the months of April and August which corresponded to the UK summer time. 

 

 

 



 
 

93 
 

Table 16 Summary of meteorological conditions for the city of Leicester for the year 2005 

 

Temperature 

(
o
C) 

Wind Speed 

(m/s) 

Solar Radiation 

(W/m
2
) 

Precipitation 

(mm/h) 

Average 10.57 2.92 0.13 0.07 

Maximum 34.00 23.00 1.00 3.10 

Minimum -6.00 0.00 0.00 0.00 

 

Figure 11 Wind rose (wind speed [m/s] and wind direction [
o
]) for the city of Leicester 2005 

 

 

ADMS-Urban has algorithms to compute the rates of dry deposition ( ) and wet deposition (    ). 

Both were used in this investigation.    is defined by the following formula. 

  

                                                                                                                            

(Equation 10) 

 

Where: 
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Where    is the deposition velocity which is defined in Equation 11,    the terminal velocity (a 

function of gravitational settling) and   
  the deposition velocity as a function of diffusion. When dry 

deposition is specified in ADMS-Urban the airborne concentration is modified to reflect a reduction 

in plume strength with distance and by adjusting the vertical profile as removal only occurs at the 

surface.  

 

     is modelled using a washout coefficient   which is dependent on a large number of parameters 

including; the nature of the pollutant, concentration in air raindrops, rainfall rate and droplet size 

distribution. These parameters can be input by the user or estimated by ADMS-Urban. The default 

values in ADMS-Urban were used to calculate the wet deposition rates in this investigation as 

information on droplet size distribution and concentration in raindrops was not known.      is 

calculated in ADMS-Urban according to the following formula: 

 

     ∫       
 

 
                                                                                                                   

(Equation 12) 

 

Where    is the deposition height. As with dry deposition, the wet deposition algorithm reduces the 

plume strength with distance from the source.  

 

6.3 Observed Concentration Data 

 

Observed PM10 and NO2 concentration data was compiled for five and seven monitoring locations 

within the LCC LA area respectively. All the sites are AURN accredited. Table 17 shows a summary 

of the monitoring station characteristics. All of the stations were situated on the road side except for 

the NWC which was located 30m from the nearest road and is classified as an urban background 

station. Monitoring stations at Abbey Lane, Bassett Street, and Melton Road were located close to 

heavily trafficked junctions and the station at Glenhills Way was located adjacent to a junction 

characterised by high delay. The remaining stations (Imperial Avenue and Uppingham Road) were 

located on road links that were considered to be on a primary traffic corridor into Leicester city centre 

(city centre feeder roads). These city centre feeder roads were characterised by high vehicle flow and 

high junction delay.    
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Table 17 Summary of monitoring station characteristics 

Site Name Pollutants 

Monitored 

Distance to 

Nearest Road 

(m) 

Nearest Link 

AADT 

(PCU) 

Nearest Link 

Average Traffic 

Speed (km/h) 

Site Location 

Description 
 

New Walk 

Centre (NWC) 

PM10 and 

NO2 
30 23923 27 

Surrounded by 

Buildings on three 

sides 

Abbey Lane 
PM10 and 

NO2 
7 2658 33 

40m from a 

heavily trafficked 

junction 

Basset Street NO2 12 3013 27 

95m from 

extremely large 

junction 

Melton Road 
PM10 and 

NO2 
3 10545 38 

70m to heavily 

trafficked 

junction 

Glenhills Way 
PM10 and 

NO2 
3 16058 27 

68m from a 

junction 

characterised by 

delay 

Imperial 

Avenue 

PM10 and 

NO2 
7.5 15533 38 

On a city centre 

feeder road 

Uppingham 

Road 
NO2 2 9828 38 

On city centre 

feeder road, 64m 

to nearest junction 

 

 

In 2005, monitoring sites at Abbey Lane, Glenhills Way and Melton Road recorded annual mean 

concentration values that failed to comply with EU NO2 limit values (40µg/m
3
 annual average). In 

contrast, PM10 pollution levels were well under the EU limit values (50µg/m
3
 24 hour average and 

40µg/m
3
 annual average).  

 

Figure 12 and Figure 13 show the monthly mean NO2 and PM10 concentrations at the seven and five 

monitoring sites respectively. All sites had a data capture greater than 90% for the year. In general, 

the monitoring station at Glenhills Way recorded the highest NO2 and PM10 concentrations. The NWC 

monitoring station, which was surrounded by buildings on three sides, recorded the lowest NO2 

concentration values. However, the NWC site recorded the third highest PM10 pollution levels. The 

monitoring station at Imperial Avenue recorded the lowest PM10 concentrations.  Recorded NO2 

levels, with the exception of data recorded at Glenhills Way, showed relatively strong seasonal 

(spring, summer, autumn and winter) variation, with pollution levels peaking in the winter in 

November and again in February and tailing off in the summer. In contrast, trends in pollution levels 

recorded at Glenhills Way remained steady between January and May but increased rapidly between 
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June and December. Similarly PM10 concentration levels showed strong seasonal variation at all 

monitoring sites with higher concentrations in winter and spring than in summer and autumn.  

 

Figure 12 Monthly mean NO2 concentrations (µg/m
3
) at Abbey Lane, Bassett Street, Glenhills Way, 

Uppingham Road, Melton Road, Imperial Avenue, and New Walk Centre (NWC) 

 

 

Figure 13  Monthly mean PM10 concentrations (µg/m
3
) at Abbey Lane, Glenhills Way, Melton Road, 

Imperial Avenue and New Walk Centre (NWC) 
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6.4 Comparison of Predicted and Observed: Statistical Analysis Method 

 

Chang and Hanna (2004) give a comprehensive review of the different statistical evaluation methods 

presently available to air quality modellers. Based on their review the ASTM, CDF and Taylor’s 

nonogram were considered to be inadequate for evaluation of data in this work due to the following 

reasons. A CDF approach provides a qualitative comparison of predicted and observed concentration 

and did not meet the quantitative comparison criteria defined in this research goal. Taylor’s nonogram 

(Taylor, 2001, Gates, 1999) comprises three quantitative performance evaluation measures (NMSE, 

normalised standard deviation - NSD, R: where R is the square root of the correlation coefficient R
2
) 

which are presented on one diagram. However, the performance measure R is described in the 

literature as a poor indicator of model performance (Stunder and Sethurama, 1986). Duijm et al. 

(1996) document that R ‘merely determines whether the variance in the predicted (Cp) and observed 

(Co) concentrations is in some way correlated….the correlation tells nothing about the agreement 

between the two sets of data.’ Finally, the ASTM procedure does not directly compare predicted and 

observed data (ASTM, 2000). Instead, prior to performance evaluation, predicted and observed data 

are placed separately into groups (called regimes in the user guide) defined based on independent 

factors such as wind speed or downwind distance. These regimes are then averaged and it is these 

average values which are compared. However, although Chang and Hanna (2004) describe the ASTM 

procedure as ‘a promising approach,’ they concluded that there are a number of issues with the 

methodology that need to be addressed before it can be useful. These include the fact that 

comparisons are sensitive to the regimes in which they are placed, there are only a finite number of 

regimes, which limits the number of comparisons, and the procedure has only been used with short 

range dispersion experiments with concentric sampling arcs.  

 

In contrast to the ASTM methodology, the statistical procedures implemented in the BOOT Software 

(Hanna et al., 1991, 1993; Chang and Hanna, 2004) evaluate model performance by coupling 

predicted and observed concentrations. Concentrations can be coupled in time, in space or both. The 

original BOOT software (Hanna, 1991) was developed under the European Initiative on 

Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes to provide a 

common set of quantitative performance measures with which an air quality model’s performance 

could be assessed (see HARMO, 2012). Use of the standard set of statistics is well documented in the 

literature (Hanna, 1989; Owen et al., 1999, 2000; Ichikawa and Sada, 2002; Nappo and Essa, 2000; 

Mosca et al., 1998) and the software is widely accepted as a tool to evaluate model performance. 

However, literature concerning its application to evaluate air quality performance relating to mobile 

sources is relatively limited.  
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The latest version of the BOOT software (Chang and Hanna, 2005) not only provides an improved set 

of standard statistical descriptors but also suggests a framework for model performance evaluation; a 

clear goal should be defined for the evaluation method, the BOOT statistical software (Chang and 

Hanna, 2004) should be used to quantitatively evaluate the performance of the air quality model and 

exploratory data analysis should be carried out on the observed and predicted data in relation to 

independent variables (e.g. wind speed and direction). The framework was followed in this research. 

 

6.4.1 Evaluation Goal 

 

The goal of the evaluation procedure carried out in this work was to quantitatively compare predicted 

and observed concentrations of NO2 and PM10 so that the performance of ADMS-Urban could be 

assessed and the accuracy of the emissions inventory compiled estimated.  

 

6.4.2 Statistical Performance Measures 

 

The BOOT statistical software (Chang and Hanna, 2004) was used to calculate the performance 

evaluation measures; FAC2, FB, MG, fractional bias false negative (FBfn), fractional bias false 

positive (FBfp) NMSE and VG. FAC2 is documented in the literature as being the most robust 

measure of a model’s performance because FAC2 is not influenced by extreme high or low values and 

as a result is a completely unbiased evaluation performance measure (Chang and Hanna 2005).  It is 

calculated according to Equation 13. 

 

 

(Equation 13) 

 

Where    denotes the observed concentration values, and    denotes predicted concentration values.  

In all statistics defined in the BOOT framework,    and    data are coupled in time (averaging time, 

Ta, was defined as hourly in this study) and space (at the same receptor location). 

 

FB and MG are measures of mean bias. They indicate the mean under or over-prediction (Hanna et al. 

2004) and are calculated according to equations 14 and 15 respectively.  
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(Equation 14)                                                                                                                                                                               

      

(Equation 15) 

                                                                                   

In equations 14 and 15   ̅ denotes the average of the data set. FB ranges from -2 (over-prediction) to 

+2 (under-prediction) and a perfect model has an FB of zero (Hanna et al., 2004). However, because 

FB is a measure of mean bias, predictions that do not closely match those of the observed can still 

result in a FB close to zero. To overcome this issue Chang and Hanna (2004) suggested the 

calculation of the false negative (FBfn) and false positive (FBfp) parts of FB. FBfn and FBfp are 

calculated according to equations 16 and 17 respectively.  

 

 

(Equation 16) 

 

 

(Equation 17) 

 

FBfn only considers pairs of predicted and observed data where Cp<Co and as such FBfn is a measure 

of under-prediction of the model. On the other hand FBfp considers only pairs of data where Cp>Co 

and as such is a measure of over-prediction of the model. Chang and Hanna (2005) illustrated that 

plotting FBfn against FBfp can be a useful way to evaluate a model’s performance. They presented a 

two dimensional diagram with the x and y coordinates defined as FBfn and FBfp respectively (Figure 

14). The diagram can be used to determine if a model’s fractional bias falls within a factor of two 

(indicated by the shaded area between FB = -2/3 and FB = 2/3), if there is no overlap between the 

predicted and observed concentrations (the hypotenuse of the triangle) and if there is systematic under 

or over-prediction between the observed (Ao) and predicted (Ap) contour areas. Chang and Hanna 

(2004) documented the relationship between FB and contour area and it is not presented here. The two 

dimensional FB diagram was plotted in this investigation.  It should be noted that the Figure of Merit 
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in Space (FMS) compares Ao and Ap (see Chang and Hanna, 2004) and therefore it was not necessary 

to calculate FMS in this work as the two dimensional FB diagram accounts for this relationship.  

 

Figure 14 Two dimensional FB diagram* 

 

 

* The x axis indicates under-prediction and the y axis over-prediction. Perfect agreement between observed and predicted 

data lies at FBfn =FBfp = 0. FB = -2/3 and FB = 2/3 represent a factor of two over and under-predicted respectively. The 

shaded area represents a mean bias that is within a factor of two of the observed. The hypotenuse of the triangle represents 

no overlap between the predicted and observed concentrations. 

 

NMSE and VG are measures of variance or scatter and indicate the overall deviation between the 

predicted and observed (Hanna et al., 1999). They are calculated according to Equations 18 and 

Equation 19 respectively.  

 

 

(Equation 18) 
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(Equation 19) 

 

Both MG and VG are based on a logarithmic scale and their measure of bias refers to the ratio of Cp to 

Co (Chang and Hanna, 2005). However, due to their measure on a log scale, MG and VG are sensitive 

to low values. For example Dijum et al. (1996) documented that coupled data with values lower than 

10ppm removed to have a MG of 2.22 and VG of 11.9 but when values lower than 20ppm were 

removed the same model was documented to have a performance equal to MG 1.97 and VG 9.9. To 

overcome this issue Chang and Hanna (2004) suggested removing data below the lowest limit of 

detection (LOD) of the instruments used to record the observed data prior to calculating MG and VG. 

Therefore, in this research observed and predicted NO2 and PM10 concentration values lower than 

0.4ppb (see Teledyne Instruments 2011) were removed from the data sets prior to calculating MG and 

VG.  

 

FB and NMSE are calculated on a linear scale and as a result can be influenced by extreme high 

values (Dijum et al., 1996). A relatively high FB (e.g. FB = ±2) and or NMSE (e.g. NMSE =4) value 

but a lower MG (e.g. 0.5> MG < 2) and or VG (e.g. VG = <1.6) value can indicate the presence of 

infrequent high values and that the predicted or observed (or both predicted and observed) data is 

(are) not normally distributed (Donnelly et al., 2009). In such a case the use and interpretation of MG 

and VG is more appropriate as they give equal weighting to over or under-predictions (Mosca et al., 

1998; Hanna et al., 2004). MG and VG values are always greater than zero. An MG value <1 

indicates model over-prediction whilst an MG of 1> suggests model under-prediction and a perfect 

model has an MG of 1 (Chang and Hanna, 2005). An MG of 0.5 indicates a factor of two over-

prediction and an MG of 2 indicates a factor of two under-prediction (Chang and Hanna, 2004). In 

contrast, a model with a VG of 1.6 indicates that on average there is a factor of two scatter between 

coupled predicted and observed data (Hanna et al., 1993). As VG is a measure of variance it does not 

indicate over or under-prediction as is the case for its linear counterpart, NMSE.  

 

The BOOT software was used to calculate whether the statistical performance measures FB, NMSE 

were significantly different from zero and MG, VG and FAC2 significantly different from one. The 

BOOT software comprises a bootstrap or Jackknife resampling procedure (Efron, 1987) that 

resamples the coupled observed and predicted data a 1000 times, with the possibility of the same pair 

being sampled more than once (Mosca et al., 1998). Statistical performance values are calculated for 

each sample taken and the distribution of each performance measure is determined. The standard 
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deviations of these distributions are subsequently used to determine the 95% confidence limits of the 

measures (Hanna et al., 1991).  

 

From extensive experience in evaluating air quality model performance Chang and Hanna (2004) 

suggested a range of values within which a ‘good’ model’s performance measures should lie (FAC2 > 

0.5, FB<0.3 or 0.7<MG<1.3, NMSE <1.5 or VG<4). However, these acceptance criteria were set for 

research grade field experiments and it was further documented by Chang and Hanna (2004) that 

‘model performance would be expected to deteriorate as the quality of inputs decreases or as more 

stringent data pairing options (paired in time and space) are used.’ There has been no acceptance 

criteria suggested in the literature for non-field grade experiments. 

 

6.4.3 Exploratory Data Analysis 

 

Time series analysis of observed and predicted concentrations were plotted to help assess the ability 

of ADMS-Urban to predict concentrations in time. It should be noted that predicted data are plotted 

on the negative scale for time series comparisons. In addition, observed versus predicted scatter plots 

were drawn to further assess agreement in time. Residual values (ratio of Cp to Co) were calculated 

and grouped according to independent variables, namely wind speed, wind direction, time of day and 

time of year (summer or winter). Residuals were grouped if they occurred at wind speeds of 1m/s to 

6m/s and 7m/s and above, according to units of 45
o
 angles of wind direction (orientated to Figure 9 

and Figure 10) and for each consecutive hour of the day for diurnal trend analysis. Finally, residuals 

were grouped based on time of year, with September to March classed as the UK winter time and 

April to August as the UK summer time. Perfect agreement between predicted and observed results in 

a residual of one. Residuals less than 0.5 indicate a factor of two under-prediction, whilst residuals 

greater than two indicate a factor of two over-prediction.  

 

6.5 Results  

 

The statistical performance measures NMSE and FB calculated were significantly different from zero 

at 95% confidence interval. Similarly the statistical performance measures VG, MG and FAC2 were 

significantly different from 1 at 95% confidence. ADMS-Urban significantly under-predicted NO2 

concentrations. Predicted concentrations of NO2 and PM10 were dependent on wind speed, wind 

direction, season and time of day. The results for NO2 and PM10 are presented in the next sections. 
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6.5.1 Statistical Performance Measure for NO2 

 

All sites had positive FB values and VG and MG values significantly (95% confidence) greater than 1 

suggesting ADMS-Urban under-predicted NO2 concentrations (Table 18). FB values were within a 

factor of two (-2/3> FB <2/3) and MG values, with the exception of Glenhills Way, were also within a 

factor of two (0.5>MG <2) of the observed. Only VG values for Bassett Street and Imperial Avenue 

fell within a factor of two scatter and NMSE values for these sites were comparatively low further 

indicating a relatively small spread of predicted data around the observed. In contrast, all other sites 

were found to have VG and NMSE values that suggested a large spread of predicted data around the 

observed data.   

 

The predicted data at all of the sites except those of Glenhills Way and Melton Road had FAC2 values 

of 60% or greater. Only 44% and 53% of predicted NO2 concentrations at Glenhills Way and Melton 

Road respectively were within a factor of two of the observed.  A greater proportion of predicted data 

fell within a factor of two of the observed at Imperial Avenue (FAC2 73%), Bassett Street (FAC2 

72%) and Uppingham Road (FAC2 69%). Similarly, 66% of predicted urban background NO2 

concentrations were within a factor of two at the NWC site. NO2 concentrations at this site were 

under-predicted by an average of only 4% (FB = 0.04) over the year which is comparable to the mean 

under-prediction (2%; FB=0.02) found at Bassett Street. 
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Table 18 Statistical performance measures mean, standard deviation (SIGMA), normalised mean square error (NMSE), the proportion of data that is within a 

factor of two of the observed (FAC2), fractional bias (FB), geometric mean variance (VG), geometric mean bias (MG) for observed and predicted NO2 

concentrations at the seven monitoring locations respectively 

 

Site Name Model MEAN SIGMA NMSE FAC2 FB VG 
VG within a factor of 2 

(VG<1.6) 
MG 

MG within a factor of 2 

(0.5 >MG< 2) 

Abbey Lane 
Observed 46 24 0 1 0 1 - 1 - 

Predicted 29 17 0.58 0.60 0.46 1.82 No 1.63 Yes 

New Walk Centre 

(NWC) 

Observed 33 21 0 1 0 1 - 1 - 

Predicted 32 18 0.46 0.66 0.04 1.79 No 1.03 Yes 

Bassett Street 
Observed 36 19 0 1 0 1 - 1 - 

Predicted 35 23 0.39 0.72 0.02 1.55 Yes 1.09 Yes 

Glenhills Way 
Observed 57 29 0 1 0 1 - 1 - 

Predicted 29 20 0.95 0.44 0.65 2.80 No 2.14 No 

Imperial Avenue 
Observed 36 18 0 1 0 1 - 1 - 

Predicted 29 19 0.36 0.73 0.19 1.50 Yes 1.3 Yes 

Melton Road 
Observed 52 22 0 1 0 1 - 1 - 

Predicted 30 19 0.68 0.53 0.52 2.33 No 1.86 Yes 

Uppingham Road 
Observed 35 20 0 1 0 1 - 1 - 

Predicted 30 20 0.41 0.69 0.17 1.63 No 1.25 Yes 
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The observed data for Abbey Lane, Melton Road and Glenhills Way showed annual mean 

exceedences of the NO2 EU air quality limit value (40µg/m
3
). These exceedences were not found in 

the predicted concentrations as annual mean values were significantly under-predicted at these sites. 

Neither observed or predicted NO2 concentrations exceeded 200µg/m
3 
more than 18 times a year.  

 

Figure 15 shows the two dimensional FB diagram for NO2, where perfect agreement between 

predicted and observed data lies at FBfn = FBfp =0. All of the predicted data comprised over and 

under-prediction. Generally, the model showed a greater tendency to under-predict rather than over-

predict as FBfn values were found to be higher than FBfp values. ADMS-Urban over-predicted 

concentrations at Glenhills Way the least, but under-predicted concentrations at this site the most. The 

diagram suggests that there was overlap between the predicted and observed concentration contour 

lines as the data points did not fall close to the triangle hypotenuse. Predicted NO2 concentrations at 

Bassett Street and NWC had FB values close to zero, but both comprised under and over-prediction. 

 

Figure 15 Two dimensional FB diagram for NO2 

 

 

 

6.5.2 Exploratory Data Analysis for NO2 

 

All of the modelled percentile values were under-predicted (Table 20Table 19). However, the level of 

under-prediction was dependent on site location. The predicted data for Bassett Street and Uppingham 

Road showed an under-prediction of ~10µg/m
3 

for the lower percentiles (50
th
 to 98

th
), whilst the level 

of under-prediction increased linearly at these sites in line with the 99
th
, 99.8

th
, 99.9

th
 and 100

th
 

observed percentiles. In general, the modelled percentiles for Melton Road showed an under-

prediction of ~25µg/m
3
 but the 99.9

th
 and 100

th
 percentiles were under-predicted by only ~10µg/m

3
. 

FAC2 

FBfn 

FBfp 

FB = -2/3 

FB = 2/3 

FB = 0 
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The modelled percentiles at Glenhills Way were under-predicted the most with the 50
th
 percentile 

found to be under-predicted by more than a factor of two. Similarly, a factor of two under-prediction 

was found for the 100
th
 percentile at Imperial Avenue. However, unlike Glenhills Way, generally 

good agreement between observed and predicted percentiles was found for Imperial Avenue. 

Similarly, predicted percentiles at the NWC site showed generally good agreement with the observed. 

However, the model significantly under-predicted peak percentiles at the NWC location and showed 

~45µg/m
3 

under-prediction for the 99.9
th
 and 100

th
 percentiles. A similar trend was found at Abbey 

Lane with the 99.8
th
 and 99.9

th
 percentiles under-predicted by as much as ~50µg/m

3
.   

 

Table 19 The 50
th
 to 100

th
 percentiles respecitvely for the observed and predicted NO2 concentrations 

(µg/m
3
) at the New Walk Centre (NWC), Bassett Street, Uppingham Road, Abbey Lane, Glenhills 

Way, Melton Road and Imperial Avenue  

Monitoring 

Site 
Model 

Percentile (µg/m
3
) 

50
th
 84

th
 90

th
 95

th
 98

th
 99

th
 99.8

th
 99.9

th
 100

th
 

New Walk 

Centre 

(NWC) 

Observed 29 52 59 69 86 101 136 153 201 

Predicted 28 50 58 67 76 84 103 108 148 

Bassett 

Street 

Observed 33 55 63 72 85 93 119 127 168 

Predicted 21 42 49 58 68 74 87 91 114 

Uppingham 

Raod 

Observed 31 55 64 75 88 95 110 115 143 

Predicted 21 42 50 61 72 79 93 101 113 

Abbey 

Lane 

Observed 44 69 77 90 103 116 146 164 181 

Predicted 25 46 54 63 74 80 94 102 157 

Glenhills 

Way 

Observed 54 85 96 112 131 144 174 181 202 

Predicted 24 49 58 70 81 87 102 110 133 

Melton 

Road 

Observed 50 75 82 91 99 105 119 125 176 

Predicted 26 49 56 68 79 86 101 113 165 

Imperial 

Avenue 

Observed 33 54 60 68 78 85 101 114 307 

Predicted 25 48 57 69 80 87 99 106 145 

 

The time series and scatter plots confirmed the trends in the descriptive statistics, with sites found to 

have NMSE and VG values respectively closer to zero and one to have better agreement with the 

observed data in time. The time series and scatter plots not presented below can be found in Appendix 

F. In general, predicted  NO2 concentrations at Glenhills Way showed poor hour by hour agreement 

(Figure 16(a)) with a large proportion of data under-predicted (Figure 16(b)). A similar trend was 

found for Abbey Lane and Melton Road. Model over-predictions were more prominent at NWC 

(Figure 17(a) and Figure 17(b)), Uppingham Road, Bassett Street (Figure 18(a)) and Imperial Avenue, 

particularly during the summer months. ADMS-Urban had a greater tendency to over-predict NO2 

concentrations at Bassett Street than at any other location (Figure 18(b)).  
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Figure 16(a) Time series graph of observed and predicted NO2 concentrations (µg/m
3
) and Figure 16(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

Glenhills Way from the 1
st
 of January 2005 

 

 

 

Figure 17(a) Time series graph of observed and predicted NO2 concentrations (µg/m
3
) and Figure 17(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

NewWalk Centre (NWC) from the 1
st
 of January 2005 

 

 

(a) (b) 

(a) (b) 
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Figure 18(a) Time series graph of observed and predicted NO2 concentrations (µg/m
3
) and Figure 18(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

Bassett Street from the 1
st
 of January 2005 

(a) (b) 
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The ability of ADMS-Urban to predict NO2 concentrations was dependent on wind speed, wind 

direction, season and time of day. The box plots of residuals versus independent variables for NO2 

and PM10 are presented in Appendix G. It should be noted that the box plot size is proportional to the 

number of residuals for the particular variable. Although the overall trend was one of under-

prediction, in general the model had a greater tendency to over-predict during low wind speed 

conditions (<1m/s) and the model’s performance deteriorated in favour of under-prediction as wind 

speeds increased (e.g. Figure 19). The tendency of the model to over-predict during low wind speed 

conditions resulted in a greater number of residuals falling within a factor of two. 

 

ADMS-Urban’s sensitivity to wind direction was dependent on wind speed. Generally, the model had 

a tendency to over-predict NO2 concentrations during wind directions between 0° and 90° (Table 20), 

which typically exhibited low wind speed conditions (see Figure 11). In contrast, the model under-

predicted during wind directions between 180° and greater than 315°, which typically had higher 

wind speeds. The best performance for all sites was found during wind directions that were associated 

with low wind speed conditions (<1m/s) as the model had a greater tendency to over-predict during 

these conditions resulting in a greater number of residuals falling within a factor of two.  

 

Table 20 Sensitivity of ADMS-Urban to wind direction when predicting PM10 concentrations at 

Abbey Lane, Gelnhills Way, Imperial Avenue, Melton Road, New Walk Centre (NWC), Bassett 

Street and Uppingham Road 

Location 
Wind Direction (°) 

Under-prediction Over-prediction Best Performance 

Abbey Lane 225<270 0<45 0<45 

Glenhills Way 180<225 45<90 45<90 

Imperial Avenue 225<270 45<90 0<45 

Melton Road 315> 45<135 45<135 

New Walk Centre (NWC) 180<225 45<90 0<45 

Bassett Street 180<225 45<90 315> 

Uppingham Road 180<225 45<90 0<45 
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Figure 19 Ratio of predicted to observed (Cp/Co) NO2 concentrations and wind speed (m/s) at 

Imperial Avenue 

 

 

 

 

The performance of ADMS-Urban varied by time of day showing a greater tendency to over-predict 

at night (~20.00h to ~3.00h) and a tendency to under-predict between 4.00h and 6.00h (e.g. Figure 

20). The models tendency to over-predict at night resulted in a greater number of residuals falling 

within a factor of two. In addition, a greater tendency for the model to under-predict between 10.00h 

and 12.00h was found at NWC, Bassett Street and Imperial Avenue. 

 

The model generally over-predicted NO2 concentrations more in the summer months and under-

predicted during the winter period (Figure 21). These seasonal trends were the most pronounced when 

the model predicted concentrations at Uppingham Road, Bassett Street, Imperial Avenue and NWC. 

When the model predicted concentrations at Melton Road, Abbey Lane and Glenhills Way it showed 

much less dependence on season and had only a marginal tendency to over-predict more in the 

summer than in the winter.   

 

 

 

 

 

 

FAC2 Residuals 1.5 times higher or 

lower than the inter quartile ranges 
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Figure 20 Ratio of predicted to observed (Cp/Co) NO2 concentrations and time of day (hours) at 

Glenhills Way 

 

 

Figure 21 Ratio of predicted to observed (Cp/Co) NO2 concentrations and Season (Summer and 

Winter) for Uppingham Road, Bassett Street, New Walk Centre (NWC), Abbey Lane, Glenhills Way, 

Imperial Avenue and Melton Road 
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6.5.3 Statistical Performance Measures for PM10 

 

More than 80% of the predicted PM10 data was within a factor of two of the observed at all locations 

(FAC2 values ranged from 0.84 to 0.90; Table 21). NMSE values ranged from 0.22 to 1.34 and VG 

values ranged from 1.21 to 1.30 which indicated a relatively small spread of predicted data around the 

observed. The model had a tendency to over-predict concentrations at Abbey Lane and Imperial 

Avenue. In contrast, the model had a tendency to under-predict at NWC, Melton Road and Glenhills 

Way. All of the FB, VG and MG values were within a factor of two of the observed (0.5> MG <2, 

VG<1.6, -2/3 > FB < 2/3).  

 

With the exception of predictions made at Imperial Avenue, all NMSE values were within a factor of 

two (NMSE<0.5). A NMSE value of 1.34 was found for predictions at Imperial Avenue. However, its 

log normal counterpart, VG was found to be relatively low (1.29). This suggested greater influence of 

extreme values on peak concentrations. 

 

Figure 22 shows the two dimensional FB diagram for PM10. Both over and under-prediction was 

evident at all locations. The diagram further highlights that all of the predicted data fell within a factor 

of two mean bias. In addition, the diagram suggested that there was overlap between the predicted and 

observed concentration contour lines because the data points did not fall close to the triangle 

hypotenuse. On average the model had a greater tendency to under-predict at NWC, Glenhills Way 

and Melton Road and over-predict at Abbey Lane and Imperial Avenue which is reflected in the 

respective FB values.  
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Table 21 Statistical performance measures mean, standard deviation (SIGMA), normalised mean square error (NMSE), the proportion of data that is within a 

factor of two of the observed (FAC2), fractional bias (FB), geometric mean variance (VG), geometric mean bias (MG) for PM10 concentrations at the five 

monitoring locations respectively 

Site Name Model MEAN SIGMA NMSE FAC2 FB VG 
VG within a factor of 2 

(VG<1.6) 
MG 

MG within a factor of 

2 (0.5 >MG< 2) 

Abbey Lane 
Observed 21 12 0 1 0 1 - 1 - 

Predicted 23 10 0.32 0.86 -0.10 1.27 Yes 0.87 Yes 

New Walk 

Centre (NWC) 

Observed 22 11 0 1 0 1 - 1 - 

Predicted 21 10 0.22 0.90 0.02 1.21 Yes 1.01 Yes 

Glenhills Way 
Observed 27 14 0 1 0 1 - 1 - 

Predicted 24 11 0.28 0.87 0.14 1.24 Yes 1.12 Yes 

Imperial 

Avenue 

Observed 19 24 0 1 0 1 - 1 - 

Predicted 24 10 1.34 0.84 -0.22 1.29 Yes 0.76 Yes 

Melton Road 
Observed 24 14 0 1 0 1 - 1 - 

Predicted 22 11 0.41 0.84 0.09 1.30 Yes 1.05 Yes 
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Figure 22 Two dimensional FB diagram for PM10 

 

 

 

6.5.4 Exploratory Data Analysis: PM10 

 

The model had a tendency to under-predict 99.8
th
 and 99.9

th
 modelled percentile values at all locations 

and a factor of two under-prediction was found for the 99
th
 percentile at Melton Road (Table 22). In 

contrast, generally better agreement was found for the lower percentiles. With the exception of 

Imperial Way and Abbey lane, the model had a tendency to over-predict the 100
th
 percentile value and 

the peak predicted concentration at the NWC site (356µg/m
3
) was more than a factor of three higher 

than the observed. The observed 100
th
 percentile at Imperial Avenue (1428µg/m

3
) was almost a factor 

of four higher than that of the predicted (361µg/m
3
). This high value for the observed 100

th
 percentile 

was the likely cause of the high NMSE value observed in Table 21. 

 

 

 

 

 

 

 

 

 

 

 

FAC2 

FB = -2/3 

FB = 2/3 

FB = 0 

FBfn 

FBfp 
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Table 22 The 50
th
 to 100

th
 percentiles for the observed and predicted PM10 concentrations at the New 

Walk Centre (NWC), Abbey Lane, Glenhils Way, Melton Road and Imperial Avenue monitoring sites 

respectively 

Monitoring 

Site 
Model 

Percentile (µg/m
3
) 

50
th
 84

th
 90

th
 95

th
 98

th
 99

th
 99.8

th
 99.9

th
 100

th
 

New Walk 

Centre (NWC) 

Observed 20 31 35 42 52 59 81 86 113 

Predicted 20 29 32 38 47 52 63 66 356 

Abbey Lane 
Observed 19 30 34 40 48 53 76 86 418 

Predicted 21 31 34 40 48 54 64 69 357 

Glenhills Way 
Observed 25 39 45 54 63 70 90 102 226 

Predicted 22 33 37 43 51 57 69 70 364 

Melton Road 
Observed 21 33 39 46 60 72 106 134 304 

Predicted 20 30 34 40 49 54 65 67 361 

Imperial 

Avenue 

Observed 17 26 30 36 45 52 74 106 1428 

Predicted 22 32 36 42 51 56 66 70 361 

 

 

Time series analysis revealed that predicted data for all sites had similar temporal variation (see 

Appendix F). Comparison with the background data revealed strong agreement between predicted and 

background PM10 concentrations temporally (e.g. Figure 23(a) and Figure 23(b); Figure 24(a) and 

Figure 24(b)). However, less agreement was found between observed concentrations and background 

concentrations (e.g. Figure 23(c) and Figure 23(d)), which in turn meant that predicted and observed 

data had less hour by hour agreement (e.g. Figure 23(e) and Figure 23(f) and Figure 24(c) and Figure 

24(d)).  
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Figure 23(a) Time series of background and predicted PM10 concentrations (µg/m
3
); Figure 23(b) predcited vs background PM10 concentrations; Figure 23(c) 

observed and background PM10 concentrations; Figure 23(d) observed vs background PM10 concentrations; Figure 23(e) observed and predicted PM10 

concentrations (µg/m
3
) and; Figure 23(f) observed vs predicted PM10 concentrations at Melton Road 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 24(a) Time series of background and predicted PM10 concentrations (µg/m
3
); Figure 24(b) predcited vs background PM10 concentrations; Figure 24(c) 

observed and predicted PM10 concentrations (µg/m
3
) and; Figure 24(d) observed vs predicted PM10 concentrations at Imperial Avenue from 1

st
 January 2005 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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The ability of ADMS-Urban to predict PM10 concentrations varied depending on wind direction, 

season, wind speed and time of day. Although the overall trend found at NWC, Glenhills Way and 

Melton Road was one of under-prediction and the model typically over-predicted PM10 concentrations 

at Abbey Lane and Imperial Avenue, ADMS-Urban had a greater tendency to over-predict PM10 

concentrations between 20.00h to 3.00h which resulted in a greater number of residuals falling within 

a factor of two of the observed at those sites that exhibited a general trend of under-prediction. In 

contrast, the model had a greater tendency to under-predict between 4.00h and 6.00h (e.g. Figure 25) 

and model under-prediction was found between 10.00h and 12.00h at all sites with the exception of 

the Abbey Lane location. Model performance when predicting PM10 concentrations at the NWC site 

was much less dependent on time of day.    

 

Figure 25 Ratio of predicted to observed (Cp/Co) PM10 concentrations and time of day (hours) at 

Abbey Lane 

 

 

 

The trends in model performance with season for PM10 were similar to those found for NO2, with a 

greater tendency for model over-prediction during the summer and under-prediction during the winter 

(Figure 26). The trend of under-prediction in winter was most pronounced at Glenhills Way, whilst 

ADMS-Urban’s tendency to over-predict in summer was the most evident at Imperial Avenue and 

Abbey Lane.     

FAC2 Residuals 1.5 times higher or lower 

than the inter quartile ranges 
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Figure 26 Ratio of predicted to observed (Cp/Co) PM10 concentrations and Season (Summer and 

Winter) for New Walk Centre (NWC), Abbey Lane, Glenhills Way, Imperial Avenue and Melton 

Road 

 

 

 

 

ADMS-Urban had a tendency to under-predict at Glenhills Way during high wind speeds and during 

wind directions associated with these conditions (between 180° and 270°; Table 23). Model over-

predictions were typically found at Glenhills Way during wind directions between 45° and 90° 

corresponding to low wind speed conditions (<1m/s; see Figure 11). In contrast, trends in PM10 

predictions and wind conditions were less pronounced at Imperial Avenue as almost 75% of the 

residuals were found to be systematically over-predicted irrespective of wind speed (e.g. Figure 27) or 

direction. Similarly, ADMS-Urban was less sensitive to wind speeds when predicting PM10 

concentrations at Abbey Lane as all median values were marginally over-predicted irrespective of 

wind speed (Appendix G). The model had a slight tendency to over-predict at Abbey Lane during 

wind directions associate with low wind speed conditions (greater than 315° and between 0° and 45°).  

 

Low wind speeds (<1m/s) and wind directions between 0° and 45° resulted in greater under-prediction 

at the NWC location and over-predictions at the same site were found at high wind speeds and for 

wind directions between 225° and 270°.  ADMS-Urban had a greater tendency to under-predict PM10 

concentrations during wind speeds of 4m/s and wind directions between 270° and 315° at Melton 

FAC2 Residuals 1.5 times higher or lower 

than the inter quartile ranges 
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Road. The performance of the model deteriorated in favour of over-prediction during wind speeds 

greater than 7m/s and for wind directions between 45° and 135° at the same location. 
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Table 23 Sensitivity of ADMS-Urban to wind speed and wind direction at Glenhills Way, Imperial Avenue and New Walk Centre (NWC) 

Location 
Overall 

Trend 

Wind Speed (m/s) Wind Direction (°) 

Under-

prediction 

Over-

prediction 

Best 

Performance 

Under-

prediction 

Over-

prediction 

Best 

Performance 

Glenhills 

Way 

Under-

prediction 
6> <1 <1 180<270 45<90 45<90 

Melton 

Road 

Under-

prediction 
4 7> 2, 3 270 to 315> 45<135 180<225 

NWC 
Under-

prediction 
<1 7> 7> 0<45 225<270 225<270 

 

 

Figure 27 Ratio of predicted to observed (Cp/Co) PM10 concentrations and wind speed (m/s) at Imperial Avenue 
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6.6 Discussion: Comparison with the Literature 

 

Table 24 shows a comparison of the FB, MG, VG, NMSE and FAC2 ranges found in this research 

with some of those documented in the literature. The table shows statistical performance measures 

from a range of air quality model experiments, such as studies that only considered maximum plume 

centre line concentrations (e.g. Hanna et al.), those that conducted model sensitivity tests (e.g. Hanna 

and Chang 2001) and those that coupled observed and predicted concentrations in time, in space and 

or both (e.g. Donnelly et al., 2009; Duijum et al., 1996). Furthermore, the table comprises 

investigations that used different air quality model types such as Gaussian, dense gas and CFD 

models. It should be noted that many of the experiments listed in Table 24 contain bias and 

comparisons should be made with caution. However, in general, comparison with research grade field 

investigations show the performance of ADMS-Urban in this study was comparable (e.g. Chang and 

Hanna, 1990; Desiato, 1992) to previous studies found in the literature. A study of particular 

relevance is that of Hanna et al. (2000) which evaluated the ability of ADMS, AERMOD and ISC3 to 

predict arc maximum tracer concentration values and concentration values at points above the tracer 

release height using various field grade data sets, namely OPTEX, Duke Forest, Kincaid power plant, 

Indianapolis power plant and Lovett power plant. The datasets were compiled from research grade 

experiments that were carried out in very different environments and comprised very different 

elements such as buoyant or non-buoyant tracer plumes and flat or urban terrain and as such evaluated 

model performance under changing conditions. Hanna et al. (2000) documented ADMS to under-

predict by ~20%, AERMOD by ~40% and ISC3 was shown to perform least well having only 33% of 

predicted data within a factor of two of the observed. However, the model was shown to have a 40% 

bias (towards under-prediction) when predicting maximum SO2 concentrations at 12 continuous 

monitors, not arranged in an arc, located on a mountain at a distance of 2000m and 3000m from a 

145m stack. This suggested that the model performed better when predicting maximum 

concentrations along an arc and that model performance deteriorated when predicting pollution levels 

at random spatial locations. The under-predictions recorded by Hanna et al. (2000) are comparable to 

the NO2 under-predictions in this research. The research of Hanna et al. (2000) considered only fixed 

emissions sources and was based on field grade data, which provided emissions and concentration 

measurements at a greater level of detail than the data used in this work. 

 

The statistical values describing the performance of ADMS-Urban calculated by Carruthers et al. 

(2003a) show the model to have exceptional performance and comparatively, the performance of 

ADMS-Urban in this work is poor. The validation study carried out by Carruthers et al. (2003a) 

involved the assessment of ADMS-Urban to predict pollutant concentrations at both roadside and 

urban background locations in London. The model run for the validation study included the use of the 

CRST, canyon model and background data from four different rural monitoring stations chosen based 
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on wind direction. In addition, the study adopted a nested approach in which the main simulation area 

(Greater London) was modelled explicitly and surrounding areas (within 3km) were modelled as grid 

sources to take into consideration background emissions immediately adjacent to the simulation 

domain. Furthermore, the model inputs were adjusted to take into consideration local PM10 from 

construction. Therefore, the quantity and quality of input parameters used by Carruthers et al. (2003a) 

were significantly greater than those used in this research and the model performance documented can 

subsequently be considered ‘best case.’ Information on canyon parameters, emissions sources 

adjacent to the simulation domain, PM10 emission rates from construction and background 

concentrations relative to wind direction were not available for use in this research which significantly 

(95% confidence) impacted the performance of ADMS-Urban.  

 

The performance of ADMS-Urban in this work was more comparable to the non-field grade 

evaluation investigations documented by Owen et al. (1999; 2000) and Righi et al. (2009). These 

investigations were found to have used input data and set up the model in a similar way to that 

described in this research and subsequently were of lower quality than those of Carruthers et al. 

(2003a). Therefore, the literature suggested model inputs were the cause of predictive error in this 

research. The cause of the error in prediction is discussed in more detail in the following section.  
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Table 24 Comparison of statistical descriptors used for air quality model performance evaluation 

Author and Date 

(data set type) 

Model Pollutant 

 

Statistical Performance Measure Ranges 

   
FB MG VG NMSE FAC2 

This Work (Non-

Field Grade) 

ADMS-Urban NO2 0.02 to 0.73 1.03 to 2.14 1.50 to 2.80 0.36 to 0.95 0.44 to 0.73 

ADMS-Urban PM10 -0.22 to 0.14 0.76 to 1.12 1.21 to 1.30 0.22 to 1.34 0.84 to 0.90 

 

Non-Field Grade 

Carruthers et al. 

2003a 
ADMS-Urban NO2 -0.14 to 0.20 - - 0.12 to 0.28 0.78 to 0.95 

Carruthers et al. 

2003a 
ADMS-Urban PM10 -0.06 to 0.03 - - 0.13 to 0.71 0.90 to 0.95 

Owen et al. 2000 ADMS-Urban NOx, NO2 - - - - 0.28 to 0.79 

Owen et al.  1999 ADMS-Urban NOx, -0.45 to 0.34 - - 2.57 to 10.6 0.13 to 0.46 

Righi et al. 2009 ADMS-Urban CO 0.17 to 0.21 - - 0.65 to 0.92 0.45 to 0.59 

 

Field Grade 

Hanna et al. 2011 4 wind flow models Tracer Release -1.32 to 0.60 0.12 to 2.76 3.30 to 10
4
 0.75 to 19.3 0 to 0.45 

Hanna et al.  2004 FLACS (CFD) Tracer Release -1.32 to 0.61 0.35 to 2.63 1.07 to 17.9 0.07 to 2.03 0.47 to 1.00 

Donnelly et al. 2009 WinMISKAM (CFD) Tracer Release 0.21 to 0.43 1.17 to 2.00 7.68 to 50.8 1.39 to 2.79 0.43 to 0.50 

Desiato 1992 Apollo (based on puff model) Tracer Release - - - 3.5 to 7.4 0.32 to 0.35 

Hanna and Chang 

2001 

HEGADAS 3+ (Dense gas 

dispersion model) 
Tracer Release - 0.49 to 0.96 1.15 to 2.00 - 0.52 to 0.92 

Chang and Hanna 

1990 

3 simple Gaussian plume 

models 
Tracer Release - - - 0.14 to 5.75 0.49 to 0.92 

Duijum et al. 1996 
Britter and McQuad model, 3 

Gaussian plume models 
Tracer Release - (ln) 0.04 to 2.87 (ln) 6.61 to 20.2 - 0.27 to 1 

Hanna et al. 1991 14 hazardous gas models Tracer Release -1.54 to 1.24 - - 0.03 to 6.17 0 to 1 

Mosca et al. 1998 long range dispersion models Tracer Release - 0.36 to 1.26 6.29 to 111.37 9.95 to 1091.15 0.28 to 0.37 

Chang and Hanna 

2004 
2 Gaussian plume models Tracer Release -0.04 to 0.52 0.84 to 15.52 1.2 to 306520 0.46 to 3.47 0.24 to 0.89 

Hanna et al. 2000 ADMS, AERMOD, ISC3 Tracer Release - -1.68 to 2.47 0.7 to 11.6 - 0.06 to 0.80 
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6.7 Discussion: Performance of ADMS-Urban 

 

According to Hanna (2007) the total error in a model output is made up of four components; errors 

and unrepresentativeness in observed data, errors and unrepresentativeness in inputs to the model, 

model errors such as assumption in model algorithms and stochastic fluctuations in observed data. 

Stochastic fluctuations in observed data come about due to random turbulence in the atmosphere 

(Chang and Hanna, 2004). It is not possible to fully account for this random turbulence in an air 

quality model’s algorithms. As a result stochastic errors are always present in a model’s output 

(Chang and Hanna, 2005). Furthermore, it is due to stochastic fluctuations that there can never be a 

model that predicts pollutant concentrations perfectly. Therefore, the model predictions in this 

research comprised an element of stochastic error. However, given the level of total predictive error 

found it was unlikely that this was the main cause of under-prediction and over-prediction. Similarly 

it was unlikely that errors (e.g. monitoring equipment calibration errors) and unrepresentativeness in 

observed data (i.e. observed data does not reflect the pollutant concentrations in the surrounding area) 

were the major cause of under-prediction in this case, although it is acknowledged that they will have 

contributed to total model predictive error.   

 

The data analysis and comparison with the literature (see section 6.6 above) indicated the major 

source of model error in this research came about due to errors and unrepresentativeness of inputs to 

the model. It is possible that errors in input data resulted in model compensating errors which in turn 

resulted in better model performance. Compensating errors are when a model’s performance is 

improved due to errors in input data, model algorithms etc. (Chang and Hanna, 2004). Compensating 

errors were seen in the predicted NO2 data and predicted PM10 data sets. The model had a greater 

tendency to over-predict NO2 concentrations between ~20.00h and 3.00h, during wind speeds <1m/s 

and during wind directions between 45°  and 90° which resulted in a higher proportion of the model 

residuals falling within a factor of two. Similar, compensating errors were found for predicted PM10 

concentrations but these were more dependent on location. The source of these errors are documented 

below, where the input variables (emissions inventory data - simulated traffic data, interpolation 

factors, diurnal profiles and emissions factors; meteorological data; and background concentration 

data) and the method used to model chemical reactions in the atmosphere are discussed. 

 

6.7.1 Simulated Traffic Data, Interpolation Factors and Diurnal Profiles 

 

The data from the strategic transport model (SATURN) used in this investigation did not include all 

of the roads inside the study area and emissions from these roads were not resolved in the inventory. 

Therefore, the compiled emissions inventory was incomplete, which would in part account for the 

under-predictions observed. Failure to account for emissions sources is well documented in the 
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literature as a significant cause of predictive error (see Taghavi et al., 2005; Hsu et al., 2010; Zang et 

al., 2008). The roads within the LCC LA area not modelled in this research were considered by the 

council to have very low traffic flows and therefore are unlikely to have been the primary cause of the 

model error in prediction found. However, point and area source data provided by the LCC may have 

been imprecise which would account for part of the model error observed. 

 

SATURN was developed using ATR data and manual count data (LCC 2011e). ATRs and manual 

counts provide data that is a snap-shot of the traffic flow at the time of the recording. It is restricted 

temporally meaning that its representativeness over a longer time period is questionable. On a similar 

note, a traffic model requires the user to specify origin-destination data and the model then assigns 

traffic to roads based on this data (Van Vliet, 1982). It is impossible for the user to know every origin 

and destination within a network (given their diversity and dynamic nature) and so traffic models can 

comprise significant error (e.g. Namdeo et al., 2002). Furthermore, the assignment of vehicles to 

roads by a traffic model ultimately determines the vehicle fleet composition on each road. Therefore, 

errors in assignment due to imprecise and unrepresentative origin destination matrices in turn result in 

errors in vehicle fleet composition. In this research, vehicle fleet composition at Level 1 was defined 

using data from SATURN and subsequently vehicle fleet characteristics were a source of error. In 

addition, the use of national data to represent local fleet compositions in this work will have further 

contributed to the model error. Namdeo et al. (2002) estimated that the potential error for vehicle fleet 

composition when using an air quality model to typically range from ±5% to ±10%.   

 

Traffic models are steady-state assuming traffic flow remains constant over a single hour (Van Vliet, 

1982). However, in reality traffic flows are unlikely to remain static over such a time scale. An 

increase in traffic volumes and or changes in travel-related characteristics increase vehicular 

emissions significantly (Nesamani at al., 2007). Namdeo et al. (2002) suggested that SATURN has a 

potential error of ±12% for vehicle flows. Similar error margins for SATURN were documented by 

Matoros et al. (1987) and Nejadkoorki et al. (2008). Therefore, the use of simulated traffic data in this 

research was responsible for part of the model error found.  

 

Time series analysis revealed that predicted NO2 failed to accurately follow observed values in time. 

Under-predictions between 4.00h and 6.00h and during the IP period, particularly at NWC, Bassett 

Street and Imperial Avenue between 10.00h and 12.00h suggested an underestimate in the duration of 

peak emissions time. The diurnal profiles used in this research were developed using three different 

sets of interpolation factors, namely a set for constructing the AM, PM and IP periods respectively. 

Therefore, the profiles created did not model the transitions between periods and may have resulted in 

peak periods being shorter than in reality. This was a likely cause of predictive error. Future research 
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should look to smooth the diurnal profiles to better represent diurnal variations in traffic flow and 

resulting congestion. 

 

6.7.2 Emissions Data 

 

The use of a coarse grid resolution has been well documented in the literature as a significant source 

of emissions and dispersion modelling error (Tang, 2002; Brucher et al., 2000; Pangprueka et al., 

2008; Gilani and Pieim, 1996; Liang and Jacobson 2000), which tends to increase when chemically 

reactive species (e.g. NOx) are considered (Jang et al., 1995; Brant et al., 2006). It is possible that the 

grid resolution used in this research (300m x 300m) may have resulted in the spatial dilution of 

emissions sources. However, given that in the two ADMS-Urban model runs the roads immediately 

adjacent to the monitoring sites were modelled explicitly it is unlikely that the grid resolution was a 

major cause of predictive error.  

 

Since the completion of the modelling work carried out in this research the DfT released an updated 

set of interim emissions factors (DEFRA, 2012d). The factors incorporated changes to PM10 and NOx 

emissions rates as the 2009 functions describing these emissions were considered not to be 

representative of real world emissions. The NOx emissions factors developed by Boulter et al. (2009a) 

on behalf of the DfT were replaced with functions from COPERT 4 v8.1. The changes to the NOx 

factors included adjustments to emissions degradation rates as well as changes in baseline speed - 

emissions functions. In addition, changes were made to the vehicle fleet composition to also take into 

account new vehicle sales projections, revised figures on the likely penetration of diesel cars and 

evidence from DfTs Automatic Number Plate Recognition data on the age mix of vehicles on the road 

across the country. Figure 28 shows the fleet weighted NOx emissions factors used in PITHEM and 

the interim corrected factors released by the DfT in 2012 (DEFRA, 2012d). It should be noted that the 

factors in Figure 28 are for the year 2012. The latest interim factors do not include emissions rates for 

the year 2005 and are not publicly accessible. Personal correspondence provided access to the new 

factors for 2012 as they were readily available (see NCL, 2012). On average the COPERT 4 v8.1 are 

higher than the DfT factors by 35%. Therefore, the new interim COPERT 4 factors indicate that 

unrepresentative emissions factors were a primary cause of model error in this study. 
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Figure 28 Fleet weighted speed-dependent NOx emissions factors used in PITHEM and the speed-

dependent NOx emissions factors used in COPERT 4 v8.1 for the year 2012 (NCL, 2012) 

 

 

ADMS-Urban was shown to adequately predict mean PM10 concentrations and consequently the 

evaluation statistics (MG, VG and FB) showed ADMS-Urban to perform within acceptable ranges 

(0.5> MG <2, VG<1.6, -2/3> FB <2/3). However, it failed to predict PM10 concentrations in time 

accurately. The recently released interim PM10 COPERT 4 tailpipe and brake and tyre wear emissions 

factors remain unchanged compared to the DfT 2009 emissions factors. However, road abrasion 

emission factors have been added to the revised data resulting in an average increase in fleet weighted 

emission factors of 9% based on the year 2012 (Figure 29). Therefore, the interim emissions factors 

suggest that failure to take into consideration road abrasion was a cause of PM10 under-prediction in 

this research.   

 

It is likely that the average-speed emissions factors used in this work failed to represent real-world 

short-lasting peaks caused by changing vehicle ‘dynamics’ (e.g. rapid acceleration, late gear change 

etc) (see Dee Hann and Keller, 2000; Jourmard et al., 1995; Sturm et al., 1997). A major fundamental 

issue with the average-speed approach is that trips having very different vehicle operation 

characteristics (and emissions) can have the same average-speed (Balrow and Boulter, 2009). 

Consequently a trip with low speeds but a few short sharp changes in dynamics are ‘smoothed out’ by 
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the continuous functions used in the average-speed method (Boutlter at al., 2009a). Therefore, the use 

of average-speed emission factors was considered a cause of model under-prediction in this research. 

 

Figure 29 Fleet weighted speed-dependent PM10 emissions factors used in PITHEM and the speed-

dependent PM10 emissions factors used in COPERT 4 v8.1 for the year 2012 (NCL, 2012) 

 

 

6.7.3 Meteorological Data  

 

It is well documented in the literature that meteorological conditions govern the dispersion processes 

in the atmosphere (Than et al., 2008, Alabiso and Parrini, 1998, Tu et al., 2007, El-Shobokshy et al., 

1990; Elminir, 2005). Therefore, it is important that the meteorological data input to an air quality 

model is representative of the simulation domain. The meteorological data used in this research was 

recorded in the centre of Leicester and was considered representative of the study area. However, 

Carruthers et al. (2003a) found ADMS-Urban to be extremely sensitive to meteorological monitoring 

site location and documented ±8% error when conducting sensitivity tests using two different 

meteorological data sets. The error occurred when meteorological data from an airport was switched 

with a data set from a central urban monitoring site. These findings highlighted that meteorological 

conditions vary on the microscale, with the construction of every building, bridge, road etc. 

effectively creating a new microclimate which has its own set of meteorological parameters governing 

pollutant dispersion (Vallero, 2008). All of the monitoring sites in this research were located in an 
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urban street. However, the dimensions of the local area (canyon width and canyon height) in which 

the monitoring stations were located were not known, meaning the use of ADMS-Urban’s integrated 

street canyon model was not possible. Leksmono et al. (2006) found an ADMS-Urban model run 

using the street canyon module to result in higher NO2 concentrations (maximum 47.8µg/m
3
) than a 

model run considering NO2 for an open road (maximum 31.2µg/m
3
). They concluded that NO2 

concentrations were higher as ‘air is trapped in the canyon leading to a pollution build up.’ Therefore, 

failure to consider changes in meteorological conditions due to the canyon effect in this research may 

have resulted in model under-predictions as high as 35% for maximum concentration values. Similar 

under-predictions were observed for the 99
th
, 99.8

th
 and 99.9

th
 NO2 percentiles at Abbey Lane. 

Furthermore, it is suggested that the outliers (stars on the residual box plots presented in sections 6.5.2 

and 6.5.4) in the predicted data were caused by stochastic fluctuations in meteorological conditions on 

the microscale which the model could not predict.  

 

The residual box plots for PM10 and NO2 and time of day revealed ADMS-Urban had a greater 

tendency to over-predict pollutant concentration values at night (~20.00h to ~3.00h). On the one hand 

it is possible that this was caused by unrepresentative vehicle fleet compositions, vehicle flows or 

speeds on roads in close proximity to the monitoring sites over these time periods. On the other hand 

it is possible that this error resulted from ADMS-Urban’s inability to accurately predict pollutant 

concentrations during stable conditions (see Owen et al., 1999). Gaussian models are inversely 

dependent on wind speed and perform poorly when predicting the dispersion of pollution under low 

wind speed, calm conditions such as those that form at night during a temperature inversion (Vallero, 

2008; Chock, 1978; Lazaridis, 2011). In ADMS-Urban the wind velocity is set to 0.75m/s for zero or 

very low wind speed conditions to allow the model to compute (CERC, 2006). Therefore, a greater 

rate of dispersion is calculated between ~20.00h and ~3.00h resulting in error in the prediction. This 

hypothesis is supported by the NO2 residuals box plots for wind speed which showed ADMS-Urban 

to have a greater tendency to over-predict NO2 concentrations during wind speeds <1m/s. In addition, 

ADMS-Urban is effectively instantaneous and cannot take into account pollution build up over 

consecutive hours (Lazaridis, 2011; Righi et al., 2009). Therefore, under low wind speed conditions 

when dispersion is relatively small any pollution build up cannot be included in model calculations 

which results in under-prediction. Namdeo et al. (2002) estimated that errors due to ADMS-Urban 

model algorithms may be as high as ±20%.    

  

ADMS-Urban’s sensitivity to wind direction was dependent on wind speed. The model showed a 

tendency to over-predict NO2 concentrations when wind directions were between 0° and 90°.  From 

the windrose (Figure 11) it can be seen that when the air flow was in the direction between 45° and 

90° wind speeds were low suggesting ADMS-Urban’s inverse dependence on wind speed was the 

cause of over-prediction. In contrast, ADMS-Urban had a greater tendency to under-predict NO2 
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concentrations during wind directions of 180° and greater than 315°, which correspond to higher wind 

speeds. On the one hand, this could have been because ADMS-Urban set a lower rate of dispersion 

during these conditions than was found in reality. On the other hand, this may have been due to 

unrepresentative background emissions. Under high wind speeds greater dispersion of pollution from 

sources directly adjacent to the study area will have passed into the local air-shed.  Therefore, a failure 

to take into account these sources in the model resulted in under-prediction. This is discussed in more 

detail in the next section.  

 

Owen et al. (1999) found ADMS-Urban to under-predict NOx and NO2 concentrations during the 

winter when modelling air quality in London. They documented that during winter a greater number 

of stable conditions prevailed further highlighting that Gaussian models perform poorly when 

predicting concentrations in calm, low wind speed conditions (Vallero, 2008; Chock, 1978; Lazaridis, 

2011). In this research a marginally greater proportion (53%) of calm conditions were found in winter 

than in summer which indicated a possible reason for the seasonal trends observed.  

   

6.7.4 Background Pollutant Concentration Data 

 

The background data used in this investigation was recorded at Harwell rural monitoring station 

which, given its distance from Leicester (125km>), will probably have failed to take into account the 

background emissions attributed to the road, point and area sources immediately adjacent to the study 

area. This would, in part, account for the under-predictions in pollutant concentrations observed. The 

influence of the unrepresentative background emissions was highlighted in the predicted data at 

Glenhills Way. ADMS-urban consistently under-predicted NO2 concentrations at Glenhills Way and 

the model had poor performance when predicting both PM10 and NO2 concentrations at this site. The 

monitoring station was situated <1.5km from the south, west and eastern edges of the simulation 

domain boundary and therefore failure to take into account adjacent emissions sources was more 

pronounced at this location. Furthermore, to the west of Glenhills Way is situated the M1 Motorway, 

a source of substantial emissions. A similar issue was observed by Owen et al. (2000) who document 

that ADMS-Urban under-predicted NOx and NO2 concentrations at Bexley, which was located on the 

eastern extreme of their Greater London study area. No account was taken of emissions immediately 

outside Greater London in their investigation and as a result the model under-predicted the mean NO2 

concentration by 25% when the GRS was used. Therefore, the relatively large bias and spread of 

predicted NO2 data observed at Glenhills Way, and to a lesser extent at the other monitoring site 

locations, can be explained by the unrepresenative background emissions.  

 

Although predicted PM10 concentrations appeared to be sensitive to the independent meteorological 

variables specified in the model setup, concentrations were found to follow the temporal variation in 
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the background data. Predicted concentrations deviated only marginally from background values and 

as a result were less sensitive to meteorological conditions. It is well documented in the literature that 

background concentrations can contribute a significant proportion of the total pollution within an air-

shed (see McHugh et al., 2004; Richmond-Bryant et al., 2009; Mensink et al., 2003). In such 

situations local policy is likely to have a limited impact on reducing PM10 concentrations. Regional, 

national or international policy would be required for reductions to be achieved. However, in this 

research the observed data was found to deviate substantially from the background PM10 

concentrations, which indicated; a) the presence of local emissions sources and; b) that local sources 

were not properly represented in the model. In future the inclusion of road abrasion emissions rates in 

the emissions inventory will help to better represent local traffic emissions sources and more 

representative background data would likely improve the agreement between the predicted and 

observed. 

 

ADMS-Urban significantly over-predicted PM10 concentrations at Imperial Avenue and Abbey Lane, 

particularly during the summer period. Over-prediction at these locations typically occurred when 

estimates were made for lower PM10 concentrations. This suggested that the lower percentiles of the 

background data were not representative of the local pollution at these sites.       

 

6.7.5 Chemical Reactions in the Atmosphere 

 

Atmospheric chemistry was modelled in this research using ADMS-Urban’s CRST which comprises a 

GRS. The GRS in turn comprises only 8 chemical reactions and is therefore a crude representation of 

the complex processes that occur in the atmosphere (CERC, 2006). Generally, the GRS has been 

shown to perform adequately in the literature (e.g. Carruthers et al., 1999; Owen et al., 2000).    

However, there is some debate in the literature as to whether empirical based approaches should be 

adopted for predicting NOx chemistry rather than semi empirical methods, such as the GRS. A 

comparative study of the GRS with two empirical based approaches (National Environmental 

Technology Centre (NETCEN) and the Environment Research Group of King’s College (ERG) 

empirical approaches) by Carruthers et al. (2003b) found all three methods to be in good agreement 

with the observed when predicting roadside NO2 concentrations in London. However, Carruthers et 

al. (2003b) concluded that although empirical approaches have the advantage of speed of calculation 

and providing a close link of the model to observed data they are limited in their applicability 

geographically, have uncertainties surrounding the validity of the relationships for future years and 

exhibit difficulty with ensuring continuity in the spatial distribution of NO2 (see Chaney et al., 2011 

for the latter).  Leksmono et al. (2006) conducted a similar comparative study and found the empirical 

based Derwent-Middleton (1996) function to predict higher NO2 concentrations (by 4% to 38%) than 

those observed when ADMS-Urban’s GRS was used. However, the highest differences between the 
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two methods were found when predicting concentrations in a rural street canyon suggesting that 

dispersion processes were the cause of the differences observed. Similarly, Soulac et al. (1997) 

initially found the GRS perform poorly relative to the Derwent-Middleton function when predicting 

NO2 concentrations in Lyon, France. However, closer inspection of the analysis revealed that the 

differences in performance found were due to dispersion calculations and not the GRS. The GRS 

assumes that the ambient air mixing into the plume as it is transported downstream is uniformly 

mixed across the plume (CERC, 2006; Carruthers et al., 2003c). Therefore, the GRS is inappropriate 

for canyon modelling (Leksmono et al., 2006; Westmorelands et al., 2011). The canyon model was 

not used in this research and subsequently error in prediction could not be attributed to these short 

falls. However, the GRS is a post processor that uses the predicted NOx concentrations as input for 

subsequent calculations (Owen et al., 2000). Therefore, the performance of the GRS is dependent on 

the ability of the dispersion model to predict NOx concentrations accurately in time and space. A 

failure to represent emissions rates accurately in this research resulted in the under-prediction of NOx 

concentrations which were used as input for the GRS.   

       

ADMS-Urban assumed 10% of NOx to be emitted as f-NO2 (CERC, 2006). However, recent research 

suggests this value is a gross underestimate. For example, Carslaw and Beevers (2004) and Jenkin 

(2004) estimated diesel LDVs to have a mean f-NO2 fraction of 12.7% and 11.8% respectively, 

AQEG (2007) documented f-NO2 values in the range of 20-70% for Euro 3 diesel cars and Carslaw et 

al. (2007) found diesel vehicles equipped with DPF to have f-NO2 fractions of ~40-50%. Therefore, 

the NOX:NO2 assumptions made by ADMS-Urban resulted in error in the prediction. A study by 

Westmorelands et al. (2011) revealed that changing the f-NO2 fraction in ADMS-Urban from 10% to 

20% (a value observed at numerous sites in the UK, see AQEG, 2007) reduced annual mean NO2 

predictive error by 16% and resulted in predicted values that were within 5% of the observed.      

 

Unrepresentative solar radiation data is a possible cause of the seasonal NO2 trends found in this 

research. Equations 20 and Equations 21 show the two primary chemical reactions used by ADMS-

Urban to represent NOx chemistry in the atmosphere.  

 

3NO2 + hv  3NO + O3                                                                                                                                                                     

 (Equation 20) 

 

NO + O3  NO2 +O3                                                                                                               

(Equation 21) 
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Where hv is solar radiation.  Overestimation of hv data would result in model under-predictions as this 

would enhance O3 formation. In this research, model under-predictions were found during the winter 

months indicating that overestimation of hv data was a possible cause of error. In contrast, the model 

was found to over-predict during the summer months suggesting that hv data may have been 

underestimated. In addition, an overestimation of background O3 levels in summer may have 

contributed to the NO2 over-predictions found in summer.    

 

6.8 Chapter 6 Summary 

 

An emissions inventory was compiled and was subsequently evaluated using an air quality model, 

ADMS-Urban. The dispersion of toxic air pollutants, NO2 and PM10 were modelled over the Leicester 

area and air quality model performance was evaluated through comparison with observed data at 

seven fixed locations. Graphical and statistical descriptors revealed that both under and over-

prediction was evident in modelled data. However, overall ADMS-Urban under-predicted mean NO2 

concentrations. Relatively good agreement between predicted and observed mean PM10 

concentrations was found at some locations, whilst at others the model had a tendency to over-predict. 

Hour by hour agreement between predicted and observed pollutant concentrations was relatively poor. 

The use of simulated data and an unrepresentative vehicle fleet composition were considered to 

contribute substantially to the model error observed. Street canyon data was not available for use in 

this research which meant that local microscale meteorological conditions were not accurately 

represented in the air quality modelling carried out. This may have resulted in errors of ±35% for peak 

concentrations.     

 

When predicting NO2 concentrations the model performance was found to be sensitive to wind speed, 

wind direction, season (summer and winter) and time of day. The model had a greater tendency to 

over-predict during low wind speed (<1m/s) conditions (which were typically found at night between 

~20.00h to ~3.00h) due to ADMS-Urban’s inverse dependence on wind speed and in ability to take 

into account pollution build up over consecutive hours. In addition, the model’s performance 

deteriorated in favour of under-prediction as wind speeds increased. Under high wind speeds greater 

dispersion of pollution from sources directly adjacent to the study area will have resulted in higher 

pollution over the Leicester air-shed. These emissions sources were not modelled in this research and 

thus NO2 under-prediction was found and had particularly influence during high wind speeds. In 

contrast, PM10 predictions were less dependent on meteorological conditions as they were found to 

follow background concentrations temporally. The observed data were found to deviate from the 

background values substantially, which suggested the local emissions sources defined in the model 

were not representative of real world conditions. The inclusion of road abrasion PM10 emissions rates 

in the emissions inventory may help to better represent local traffic emissions sources and more 
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representative background data would likely improve the agreement between the predicted and 

observed. 

 

ADMS-Urban had a tendency to under-predict between 4.00h and 6.00h and 10.00h and 12.00h 

respectively. This was likely caused by the use of AADT interpolation factors which did not 

accurately represent diurnal variations in traffic flow and resulting congestion. The model generally 

under-predicted during the winter period which was attributed to a greater proportion of calm 

conditions prevailing in winter than in summer. In the summer the model had a greater tendency to 

over-predict NO2 concentrations which was possibly caused by an underestimate of solar radiation 

and or an overestimation of background O3 concentrations.      

 

During the air quality modelling calculations ADMS-Urban assumed 10% of NOx to be emitted as f-

NO2 which has been shown in the literature to be a gross underestimate. Therefore, under-prediction 

was evident in this research due to this assumption. In addition, the NOx emissions factors used to 

calculate link based emissions rates in this work have recently been updated due to relatively poor 

representation of real world emissions. New NOx emissions factors were found to be on average 35% 

higher than those used in this study. Therefore, the use of the 2009 DfT emissions factors were a 

major cause of error in prediction.  

 

The overall error due to the use of unrepresentative vehicle fleet composition, traffic flows, emissions 

factors, background data and meteorological data and the error due to ADMS-Urban assumptions and 

limitations are summarised in Table 25. The error attributed to the emissions inventory was estimated 

to be between 13% and 57% of the total error found depending on location and pollutant considered. 

A large proportion of the emissions inventory error was attributed to the use of unrepresentative 

emissions factors. In this research the difficulty in compiling an emissions inventory that is 

representative of real world emissions was demonstrated and the need for emissions factors that are 

representative of real world driving conditions and not just dynamometer test cycle conditions was 

highlighted. 

 

 

 

 

 

 

 

 

 



 
 

136 
 

 

Table 25 Estimated cause and proportion of air quality model predictive error  

Cause of Error Estimated Error (%) Reference 

Unrepresentative Vehicle Fleet 

Composition 
±5 to ±10 (Namdeo et al. 2002)  

Simulated Traffic Flows ±12 

Matoros et al. (1987)  

Namdeo et al. (2002)  

Nejadkoorki et al. (2008) 

Unrepresentative emissions factors 
-35 for NOX,  -9 PM10    

4 to 35 Depending on pollutant 

DEFRA (2012d) 

Namedo et al. (2002) 

Unrepresentative meteorological data  

(failure to model street canyon 

meteorology)
1
 

-8 annual mean 
1
(-35 for maximum 

concentrations)  

Carruthers et al. (2003) 
1
Leksmono et al. (2006) 

ADMS-Urban model 

algorithms/assumptions (sensitivity to 

wind speed and wind direction; 

inability to model pollution build up; 

10% NOx emitted as NO2*) 

±20 

(-16*) 

Namedo et al. (2002) 

*Westmorelands et al. 

(2011) 

Unrepresentative background 

Concentrations 
-25 (for NO2) Owen et al. (2000) 

Estimated maximum error attributed to 

NOx emissions inventory 
-57   

Estimated maximum error attributed to 

PM10 emissions inventory at sites where 

under-prediction was found 

-31   

Estimated maximum error attributed to 

PM10 emissions inventory at sites where 

over-prediction was found 

13  

 

 

Having developed a thorough understanding of the influence of the different parameters in, and the 

limitations of, the air quality model this chapter provided a quality check on the emissions resulting 

from the LCC traffic model. The next chapter draws together the outputs of this research and presents 

ideas for the future.   
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CHAPTER 7 

 

7. Emissions Abatement Technology, Fuels and Low Emission Vehicles: Win-Win for Air 

Quality and Climate Change? 

 

In Chapter 6 a base-case of emissions for the LCC region was developed and the accuracy of the 

inventory compiled estimated. In addition, the impact of road traffic on air quality in Leicester and 

issues with current dispersion modelling practices were highlighted. It is the aim of this chapter to edit 

the base-case to reflect various hypothetical strategies assuming that the flows and speeds remain 

unchanged which means that the VKT remains the same. It should be noted that only TTW emissions 

were modelled in this research as it is not appropriate to allocate pollutant emissions emitted at one 

location to an air-shed a considerable distance away as the impacts of toxic air pollutants on the 

environment and its constituents are predominately confined to the locale in which they are released. 

Furthermore, WTT emissions are typically out of the remit of control for local authority policy 

makers. Therefore, considering only those emissions that can be reduced by local action is beneficial 

as it allows money to be spent wisely. In the following text, the term ‘emissions’ refers to TTW unless 

stated otherwise, ‘win-win’ refers to a reduction in both CO2 and toxic air pollutant emissions as a 

result of a change to the Leicester fleet and the term ‘trade-off’ refers to a situation where a win-win is 

achieved but at the cost of greater reductions in either toxic air pollution or CO2 emissions as a result 

of another strategy.   

 

7.1 Strategy Modelling Methodology 

 

The base-case was edited to reflect 13 strategies involving changes to the vehicle fleet composition.  

Each strategy was modelled separately and a VKT restraint was imposed on the vehicle fleet. 

Emissions of CO2, NOx, f-NO2 and PM10 were calculated and comparisons between the base-case and 

strategy were made in each case. The strategies modelled included the introduction of vehicles fitted 

with new emissions abatement technologies (e.g.EURO VI) or with low emissions vehicles (e.g. 

ZEVs) and through changes to the fuel type used by vehicles (e.g. introduction of LPG).  

 

Figure 30 shows a flow diagram of the method used to model the 13 strategies in this research. All 

strategies were modelled using PITHEM. Changes to the fleet composition were implemented in 5% 

increments (e.g. 5%, 10%, 15% etc. of conventional cars were replaced systematically with electric 

vehicles) to allow the relationship between strategy and emissions change to be identified. IBM 

(2012) suggested that more than 15 pairs of data are required for a regression analysis. Given that 

choice of incremental changes of typically one or two per cent would result in substantial 
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computational time, a compromise was reached at 5% increments providing 21 pairs of data to be 

output. It should be noted that regression analysis, including the fitting of linear and polynomial trend 

lines to data sets of less than 21 pairs is common practice in the literature (e.g. Khan and Kockleman, 

2012; Fontaras et al., 2008; Cheng et al., 2006). Once the 5% incremental change was made the 

remaining vehicle fleet proportions were redistributed with the earliest vehicle types being reduced 

first. An example of this is presented in Figure 31 below.  

 

Figure 30 Strategy modelling method flow diagram 
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Figure 31 Example of vehicle fleet redistributions associated with modelling 5% incremental 

introductions of Euro 6 vehicles into the fleet 

 

The total network emissions from each strategy were plotted against the % change in the vehicle fleet. 

Those strategies that offered a win-win for air quality improvement and CO2 reduction were identified 

and those that resulted in a trade-off were discussed. Subsequently ‘best fit’ linear or polynomial trend 

lines were used to interpolate between the incremental changes in emissions output from each 

strategy. This allowed the statistical relationship between emissions and strategy to be output in the 

form of a regression equation. The regression equations enabled any % change (e.g. 3%, 4%, 6% etc.) 

to be derived and associated emissions assessed. They were subsequently used to create data tables of 

emissions outputs resulting from 1% to 100% strategy changes which allowed research questions such 

as ‘what change is needed to meet my emissions target of…’ to be answered. To demonstrate the use 

of these tables the level of change needed for Leicester to achieve a 38% reduction in CO2 emissions 

from strategy options were explored. A 38% reduction in CO2 based on 2005 is the equivalent of a 

50% (LCC’s target) reduction in CO2 based on 1990 levels. The resulting pollutant emissions from 

these strategies were investigated.   

 

The emissions per road classification were calculated for the base-case and for each of the 100% 

change strategies (e.g. 100% cars changed to ZEVs). The extreme case was chosen as the LCC has set 

very ambitious targets for CO2 and has widespread pollution exceedances throughout the city. 

Therefore, it was envisaged that significant and substantial changes would be necessary in order for 

Leicester to meet targets and comply with air quality limit values. The % change in emissions was 

calculated for each road classification for each strategy relative to the base and those strategies that 

resulted in the greatest reduction in toxic air pollutants and CO2 were identified. This allowed the 

effectiveness of each of the strategies to be analysed spatially and for the relationship between 

emissions change and road characteristics to be assessed. 

 

Vehicle 

Standard 

Vehicle Fleet Composition (%) 

Base 

Case 

5% Euro 

6 Strategy 

10% Euro 

6 strategy 

15% 

Euro 6 

strategy 

Pre-Euro 5 0 0 0 

Euro 1 10 10 5 0 

Euro 2 15 15 15 15 

Euro 3 70 70 70 70 

Euro 4 
 

   

Euro 5 
    

Euro 6  
5 10 15 

 

-5 

+5 

-5 -5 

+5 +5 
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A description of the base-case was documented in Chapter 6. The development of the strategies is 

described in more detail in the following sections and examples of the vehicle fleet compositions 

modelled are documented below.  

 

7.1.1 Vehicle Kilometers Travelled (VKT) Restriction 

 

A VKT restriction was imposed on the vehicle fleet which provides assessments that assume there is 

no change from the base year in the VKT. In this way the modelling provides a consistent base against 

which the changes in emissions are assessed. The literature suggests a stricter VKT restraint is needed 

to reduce emissions from road vehicles (see Chapter 3, section 3.5). Therefore, maintaining VKT at 

2005 levels imposes a strict restraint on the Leicester fleet. It is acknowledge that this restraint is 

unlikely to happen. However, it was the intension of this work to investigate whether such an extreme 

case coupled with other strategies and policies could provide a win-win for air quality and climate 

change thereby providing insight into the level of change required in order for ambitious targets to be 

met and compliance with legislation achieved. In addition, modelling such a VKT restriction has two 

other implications. The first is that any emissions reductions are not offset by an increase in VKT 

allowing the ‘true’ impact of a change in technology, fuel or vehicle on emissions to be assessed i.e. 

the rebound effect is zero.  Secondly by restricting the VKT to 2005 levels issues concerning changes 

in vehicle dynamics (e.g. speed and flow) associated with strategy modelling are minimised.       

 

7.1.2 Emissions Abatement Technology  

 

A total of eight strategies were modelled to reflect improved emissions abatement technology. This 

primarily involved the introduction of Euro 5/V and Euro 6/VI technology to the private car 

(shortened to ‘car’ from here on in), LGV, HGV and bus vehicle fleets. Petrol and diesel cars that 

represented the oldest (in terms of Euro class) portion of the car fleet were changed with cars 

equipped with Euro 5 and Euro 6 technology respectively. Similarly pre-Euro/Euro petrol vans class 

N1 (I) and diesel vans classes N1(I), N1(II) and N1(III) vehicles were changed with vans equipped 

with Euro 5 and Euro 6 technology and pre-Euro/Euro Artic and rigid diesel HGV vehicles were 

retired in favour of Euro V and Euro VI vehicles. Finally, buses of weight category 0-15t, 15t-18t, 

18t+ and coaches of weight category 15-19t and 18t+ were changed with vehicles fitted with Euro V 

and Euro VI technology.    

 

Figure 32(a) to Figure 32(e) shows an example of the vehicle fleet composition that was modelled to 

reflect the introduction of Euro 5 technology into the Leicester car stock. The introduction of 20% 

vehicles with Euro 5 technology (Figure 32(b)) resulted in the removal of pre-Euro and Euro 1 cars 

from the vehicle fleet. A 60% introduction of Euro 5 cars (Figure 32(d)) resulted in the additional 
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removal of Euro 2 vehicles and an 80% change in the fleet (Figure 32(e)) in favour of Euro 5 resulted 

in the further removal of Euro 3 cars. It should be noted that as the 5% incremental changes were 

implemented the ratio of failed catalyst to non-failed catalyst vehicles remain constant for each 

particular Euro class.   

 

Figure 32(a) to Figure 32(e) Vehicle fleet composition resulting from 20% increases in Euro 5 petrol 

cars  

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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7.1.3 Low Emissions Vehicles  

 

The penetration of PHEVs or ZEVs was modelled. It should be noted that ZEVs are representative of 

EVs under current legislation i.e. zero emissions vehicles. In addition, ZEVs are representative of 

PHEVs operating in charge depleting mode. The ratio of petrol to diesel cars remained the same as the 

base-case, but the % of cars running on conventional fuel was reduced in 5% increments in favour of 

low emissions vehicles (see Figure 33 for an example of the compositions modelled).  

 

The CO2 emissions factors for PHEVs in PITHEM are estimates of WTW emissions rates. Therefore, 

it was necessary to calculate the proportion of these emissions that were TTW emissions (i.e. tailpipe 

emissions from PHEVs whilst in charge sustaining mode). The DEFRA (2012c) GHG conversion 

factors based on the JEC (2011) WTW analysis estimate WTT emissions from PHEVs to account for 

15% of WTW emissions. The GHG conversion factors provided by DEFRA (2011c) are a composite 

factor for N2O, CH4 and CO2 emissions. However, CO2 accounts for 99%> of these emissions and 

therefore it was concluded that N2O and CH4 emissions have a negligible impact on the % of WTW 

emissions that are WTT. Therefore, CO2 emissions associated with the introduction of PHEVs into 

the Leicester fleet were reduced by 15% allowing TTW emissions to be estimated and subsequently 

compared to the base-case and other strategies. This is equivalent to a TTW emissions rate of 

82gCO2/km which is within the range (60 to 90gCO2/km ) estimated by Hagman and Assum (2012) 

who calculated TTW emissions from nine instrumented PHEV Toyota Prius’ operating under real-

world driving conditions in the Nordics (Denmark, Finland and Norway) from 2010 to 2012. In the 

same study ‘barely detectable’ pollutant (PM10, NOx and VOCs) emissions were found when a 

dynamometer test of a 2.1litre/4.4kWh battery PHEV Toyota Prius was carried out using the Helsinki 

urban driving cycle.  

 

PITHEM does not include emissions factors for PHEV TTW pollutant emissions. This is because a 

comprehensive database of factors does not exist and estimates of PHEV tailpipe emissions 

documented in the literature are very few in number. The findings of Hagman and Assum (2012) are 

applicable to the Nordics driving conditions but indicate that PHEVs have very small emissions rates 

when operating under urban conditions. Fontaras et al. (2008) conducted dynamometer tests of a 2005 

hybrid electric Prius over the ARTEMIS real world driving cycle. The Prius was found to operate 

very close to the manufacturer’s specifications for type approval over the New European Driving 

Cycle (NEDC) with an average NOx emissions rate of 0.01gNOx/km. Although the Prius tested in the 

work of Fontaras et al. (2008) was a 2005 HEV it’s average NOx emissions rate was found to be well 

below Euro 4 (0.08gNOx/km) and Euro 5 (0.06gNOx/km) standards. Both plug-in hybrid electric and 

hybrid electric Toyota Prius’ have the same ‘synergy drive’ hybrid engine technology (Toyota, 2012). 

Subsequently, it was assumed that the NOx emissions rates for the Toyota hybrid Prius range are 
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similar. Therefore, PITHEM was modified to include a constant emissions rate of 0.01gNOx/km for 

PHEVs in this work.  

 

PM10 and f-NO2 exhaust emissions factors for PHEVs were not available for use in this research and 

were not modelled. However, PM10 emissions from brake and tyre wear were calculated for the low 

emissions vehicle strategies.     

 

Figure 33(a) to Figure 33(d) Vehicle fleet composition modelled to reflect a change from car to low 

emissions vehicle 

 

  

 

 

 

 

7.1.4 Fuels 

 

A strategy was developed that reflected a replacement of petrol or diesel cars in the fleet with cars 

fuelled by LPG. This was carried out for diesel and petrol cars separately. When petrol (diesel) cars 

were changed the vehicle fleet composition (at the Euro class level) associated with the petrol (diesel) 

cars were switched to LPG. However, no pre-Euro LPG car emissions factors are available in the 

NAEI and as a result it was not possible to model them using PITHEM. Therefore, pre-Euro cars were 

assumed to be replaced with Euro 6 LPG vehicles. In the case of petrol cars this resulted in 5% of 

total LPG vehicles modelled as Euro 6 and for diesel 2% of the total LPG vehicles were Euro 6 

(a) (b) 

(c) (d) 
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(Figure 34(a) and Figure 34(b)). Similarly there are no emissions factors for cars with failed catalysts 

fuelled by LPG in the NAEI. Therefore, petrol cars were modelled to be replaced with cars with non-

failed catalysts fuelled by LPG.      

 

Figure 34 Euro classification breakdown modelled for the replacement of petrol (a) and diesel (b) cars 

with LPG cars 

 

 

Figure 35(a) to Figure 35(f) show the car fuel split that was modelled to reflect a switch from diesel to 

LPG fuelled vehicles. 100% removal of diesel fuelled cars in favour of LPG fuelled cars resulted in a 

20%-80% LPG-petrol split. In contrast 100% switch from petrol fuelled cars to LPG resulted in an 

80%-20% LPG-diesel split. 

 

An additional strategy was developed to reflect changes to the car petrol diesel fuel split. The % of 

cars that were fuelled by diesel (petrol) was changed in 5% increments until 100% diesel cars (petrol) 

were modelled. It should be noted that the car base-case fleet composition was 80%-20% petrol-diesel 

split. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 35(a) to Figure 35(f) Car fuel split modelled to reflect a switch from diesel to LPG by 20% 

increments 

 

 

 

 

 

 

7.2 Statistical Analysis 

 

Least Squares Regression analysis was used to fit linear or polynomial trend lines to scatter plots of 

emissions versus strategy change. Regression analysis was considered appropriate as they provide 

equations that allow interpolation between the 5% steps modelled using PITHEM. The resulting 

equations can be used to estimate values over the range of the independent variable over which the 

trend line (or model) was fitted (Montgomery et al., 2012) i.e. it allows a value of   (dependent 

variable), which in this research is the emissions change (t) to be estimated from a given value of    

(independent variable), in this case % change imposed by the strategy.  

(a) (b) 

(c) (d) 

(e) (f) 
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In the following sections least squares regression is explained and the method used to fit linear or 

polynomial trend lines using least squares regression is documented.   

 

7.2.1 Least Squares Regression 

 

The simplest linear model involves one independent variable and states that the dependent variable 

changes at a constant rate as the value of the independent variable increases or decreases (Rowlings et 

al. 2001). The statistical relationship describing a simple linear model is given by the following 

equation; 

 

                                                  

(Equation 22) 

 

Where     is the intercept, the value of   when   = 0, β1 is the slope of the line, the rate of change in   

per unit change in   and   is the observational unit. Both    and    are estimated from the data and 

are treated as pairs for each  . In some cases a constant rate of change as described by a simple linear 

model does not represent the relationship that exists between the dependent and independent 

variables. In such a case it is necessary to extend the straight line model to a second-order, or 

quadratic polynomial which takes the form; 

 

                    
          

(Equation 23) 

 

Higher order polynomial models are a further extension of the linear model and take the form; 

 

                    
       

           
        

(Equation 24) 

 

Where   is the number of rates of change in   per unit change in  . A polynomial with two degrees is 

known as a quadratic model, those with three degrees a cubic, four a quartic and five a quintic model.  

Random variation in    causes each pair of    and    (or   ...     
  if a polynomial model is 

considered) to give different results (Rowlings et al. 2001). These differences are known as residuals 

(е) which represent the difference between the observed value of   and the value of   that is 

estimated by X using the regression equation ( ̂) (Weisberg 2005). If   ̂ and   ̂ are numerical 

estimates of the parameters    and    respectively then   ̂ can be calculated from;  
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  ̂     ̂ +   ̂                        

(Equation 25) 

 

Therefore,    can be calculated from; 

 

       ̂            

(Equation 26) 

 

The Least Squares Regression principle chooses   ̂ and   ̂ that minimise the sum of squares of the 

residuals (       ) (Miles and Shevlin 2001) which is estimated from; 

 

         ∑   
            

(Equation 27) 

 

The Least Squares procedure has a number of assumptions the majority of which must be met if the 

regression is to be deemed appropriate (Table 26). Small violations of the underlying assumptions do 

not invalidate the model in a major way, but large violation of the assumptions indicates the 

regression model is inappropriate (Chatterjee and Hadi, 2006).      

 

Table 26 Least Squares Regression assumptions (constructed from text of Chatterjee and Hadi 2006) 

Regression Component Assumptions 

   
Non-random 

Measured without error 

   
Equally reliable and have approximately 

equal role in determining regression 

results and influencing conclusions 

(е) 

Normally distributed 

Average of zero 

Errors have same variance  

Errors are independent from each other 

 

 

7.2.2 Fitting Linear and Polynomial Regression Models  

 

Kleinbaum et al. (2008) described three methods that can be used to fit regression models to data. The 

first is the forward method which begins with a simple linear straight line model and then adds more 

complexity to the model in successive steps if necessary. The reverse of this method by which a 

complex model is successively reduced until an appropriate fit is found is called the backward 
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method. The third approach is based on experience or theory and requires some prior knowledge of 

the relationship between   and  . In this research the forward method of model or trend line fitting 

was used as its logical ‘start simple’ approach was favoured (Figure 36).   

 

Figure 36 Flow diagram of forward method used to determine appropriate regression model fit 

 

 

   

Initially a simple linear model was fitted to the data. The standard error of the estimate (SEE) was 

calculated in order to determine if the model described   well. SEE measures how precise the 

prediction of   ̂ is based on the regression of   on   (Shenoy et al.,  2002). It takes the form;   

 

     √
∑    

 

   
          

(Equation 28) 

 

Where   is the number of observed values. A low SEE value indicates that the typical distance 

between  ̂and   is small and suggests that the model is a good fit to the data (Gravetter and Wallnau, 

2011). In addition to SEE the value of   , was calculated using the formula; 

 

      
       

∑      ̅  
           

(Equation 29) 

Is the model appropriate - 

Are the majority of the 

model assumptions met? 

Yes 

No 

Assume a new model 

(polynomial or higher 

order polynomial) 

Yes No 

Simple 

Linear 

Model 

Does the best fit model describe 𝑌 well? 

Stop 



 
 

149 
 

Where  ̅ is the mean of  .    
determines if the variance in   can be explained by the variance in   

(Montgomery et al.,  2012). However, it does not mean that variance in   is the cause of variance in   

(Draper and Smith, 1998). For this reason unless   and Y come from a controlled experiment where 

the relationship between   and   is known to be strong then    
should be viewed with caution 

(Rowlings et al., 2001). In this research   and   came from a controlled experiment during which 

incremental changes were made to a single variable ( ) and no other variables had influence on  . 

Therefore, any change in emissions was known to be caused by the strategy change. As a result the 

use of    
in addition to SEE as a measure of model fit was appropriate.    values range from zero to 

one and a value of one indicates a perfect model fit i.e.          .   

 

If a high value of SEE and a low value of    were observed then a higher order regression model was 

fitted to the data and the goodness of fit test was recalculated. In contrast, if a low value of SEE and a 

high   was observed then the model was tested to determine if it violated the Least Squared 

Regression assumptions (Table 26). From preliminary assessment of the   and   variables it was clear 

that they did not violate the assumptions; the   values were non-random and were measured without 

error as this investigation was a controlled experiment and each    had equal role in determining 

regression results. However, it was necessary to test that the model residuals were compliant with the 

majority of the regression underlying assumptions. The residuals were tested for normality using the 

Anderson-Darling goodness of fit test (Anderson and Darling 1954). The Anderson-Darling test is 

currently considered to be superior over other normality tests as it emphasizes the quality of fit in the 

tail of its distribution more than other methods (such as the Kolmogorov-Smirnov test; Massey 1951) 

(Grace and Wood 2012). The Anderson-Darling test is well described by Thas and Ottoy (2003). The 

test determines whether or not there is a significant (p-value 0.05>) relationship between a given 

distribution and a normal distribution (Thas and Ottoy, 2003).  

 

In addition to goodness of fit tests the mean of the residuals were calculated. Scatter plots of    versus 

  ̂ were plotted and subsequently visually assessed in order to determine if the values of    had the 

same variance (equal scatter around the x axis) and were independent from each other (no clustering 

of data points on the plots). A scatter plot of    versus   ̂ that shows a non-random scatter may 

indicate that a higher degree regression model may provide a better fit to the data (Montgomery et al., 

2012). Therefore, a higher degree model fit was tested. Small violations of the underlying 

assumptions were considered acceptable and a model was only deemed to be a poor fit to the data if it 

had a high SEE, low R
2
 and its residuals had a mean 0> and were non-normally distributed.     
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The regression equations describing the statistical relationships between strategy and emissions were 

subsequently used to identify which strategy, if any, could achieve a 38% reduction in CO2. The 

resulting pollutant emissions from such strategies were analysed.  

 

7.3 Results  

 

All of the models had    values of one and normally distributed residuals (p-value = 0.05>). In 

addition, the model residuals for each of the strategies had means of zero. A total of 20 models were 

linear, six were quadratic, eight cubic, nine quartic and four were quintic. Figure 37 shows a bar chart 

of those strategies that had SEE scores greater than zero. It should be noted that the model type fit to 

each of these data sets is given in brackets on the x-axis label. Only models fitted to CO2 and NOx 

emissions data sets had SEE scores greater than zero.  The linear models describing the statistical 

relationships for the low emissions vehicles had SEE values ±1t. Similarly four out of the five 

quadratic models had SEE scores that were equally small. The models describing the statistical 

relationship between % change in cars to Euro 5 or Euro 6 and CO2 emissions were quadratic and 

cubic respectively and both were observed to have an SEE of ±131t. The cubic models fit to the LGV 

to Euro 5 and Euro 6 data set for NOx had a small SEE of ±1t. Quartic models were fit to the car to 

Euro 5 and car to Euro 6 NOx emissions datasets and were observed to have SEE values of ±3t. The 

second highest SEE scores (±15t) were observed for the quintic models applied to describe the CO2 

emissions resulting from the introduction of new abatement technology to the LGV fleet. A similar 

SEE of ±10t was observed for the quintic models describing the CO2 emissions resulting from a 

change in HGV vehicles in favour of Euro V/VI technology.  
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Figure 37 Standard error of the estimate of those models fit to the NOx and CO2 emissions datasets 

 

*indicates higher residuals in absolute terms were observed between zero and 15% strategy change 

 

The scatter plots of    versus   ̂ of those models that had SEE (and therefore SS(Res)) values 0> were 

visually assessed for non-random patterns in the data. The CO2 plots for the low emissions vehicle 

strategies showed random scatter suggesting model fit was appropriate. Clear non-random scatter was 

observed in the NOx emissions plots for HGV Euro V and Euro VI technology strategies. Those 

strategies marked with a * in Figure 37 were observed to have higher residuals in absolute terms when 

predicting the base-case emissions value (zero % strategy change). In some cases (HGV to Euro V/VI 

CO2 and Car to Euro 6 NOx) relatively higher residuals were observed when predicting emissions 

from 0%, 5%, 10% and 15% strategy changes. However, given that the SEE values of all of these 

strategies were relatively small, all other regression assumptions were met and the polynomials 

visually appeared to describe the data trends well, the models were deemed to be a good fit. 

 

7.3.1 Emissions Abatement Technology Strategies  

 

Figure 38(a) to Figure 38(g) show the change in emissions relative to the base-case as a result of 

changes to the vehicle fleet composition in favour of Euro 5/V and Euro 6/VI equipped vehicles. The 

highest reductions in NOx emissions modelled were observed with the introduction of new technology 

into the car fleet (Figure 38(a)). The replacement of all the cars with Euro 5 and Euro 6 vehicles 

showed reductions of 308t (35%) and 330t (38%) respectively. The second highest reductions in NOx 

were observed with the introduction of new abatement technology into the HGV fleet (Euro V 161t 

[18%] and Euro VI 221t [25%]). In contrast, the smallest reductions in NOx emissions were observed 

for technology changes made to the LGV vehicle stock (figure 38(b)). The removal of 10% of the 

NOx 

CO2 
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oldest cars in favour of Euro 6 equipped vehicles showed a 10% reduction in NOx, which is 

comparable to that of 100% technology change for LGV vehicles (98t [11%] Euro 5 and 113t [13%] 

Euro 6; Figure 38(b)). A 100% change in the bus fleet to Euro V and Euro VI showed NOx reductions 

of 94t (~11%) and 132t (15%) respectively relative to the base-case.  

 

Figure 38(a) to Figure 38(g) Change in emissions (t) relative to the base-case as a result of changes to 

the vehicle fleet composition in favour of Euro 5/V and Euro 6/VI equipped vehicles 

 

 

 

(a) 

(b) 
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(d) 

(c) 

(e) 
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Reductions in CO2 emissions of <1% were observed with the introduction of new emissions 

abatement technology to the HGV, LGV and bus vehicle stocks. The introduction of new abatement 

technology to the car fleet had a substantial impact on CO2 emissions with maximum reductions of 

26,556t (12%) and 38,492t (17%) observed for Euro 5 and Euro 6 strategies respectively (Figure 

38(c)).  

 

The highest reductions in f-NO2 emissions modelled were observed with the introduction of new 

technology into the HGV fleet (Figure 38(d)). The total replacement of the HGV stock with vehicles 

equipped with Euro V/VI technology showed f-NO2 emissions reductions of 22t (22%) and 28t (28%) 

respectively. Comparable reductions in f-NO2 were observed with the replacement of all cars with 

Euro 6 technology (22t [22%]). However, the introduction of Euro 5 technology to the car fleet was 

observed to have considerably lower f-NO2 emissions reductions (10t [10%]) which were similar to 

those seen for the replacement of LGV vehicles with Euro 6 technology (13t [13%]) (Figure 38(e)). 

The introduction of Euro 5 technology to the LGV vehicle stock resulted in the smallest reduction in 

(f) 

(g) 
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f-NO2 emissions (maximum 4t [4%]). Introduction of Euro V and Euro VI technology to the bus fleet 

was found to have maximum emissions reductions of 13t (13%) and 17t (17%) respectively. 

 

All of the new abatement technology strategies, with the exception of the bus to Euro V/VI strategies, 

resulted in PM10 emissions reductions that were of a similar magnitude with maximum reductions 

(100% change to Euro 6/VI) observed to be between 5t (10%) and 8t (16%). However, the 

introduction of Euro V and VI equipped technology to the bus fleet was found to result in the smallest 

reductions in PM10 (2t [5%] and 3t [6%] respectively for 100% change; Figure 38(f)). The largest 

reductions in PM10 emissions were observed with changes in technology to the car and LGV fleets (7t 

[15%] and 8t [16%] respectively Figure 38(g)). It should be noted that car Euro 5 and Euro 6 and 

LGV Euro 5 and Euro 6 strategies respectively showed the same reductions in PM10 emissions.  

  

7.3.2 Low Emissions Vehicle Strategies 

 

Figure 39 shows the % change in CO2 emissions relative to the base-case as a result of changes to the 

vehicle fleet composition in favour of low emissions vehicles, namely PHEVs operating in charge 

sustaining mode and ZEVs. The highest CO2 reductions were observed when cars were substituted for 

ZEVs. A 20% change in the car fleet to ZEVs resulted in a reduction of 31,014t (14%) of CO2 which 

is comparable to the reductions observed for the Euro 5/6 strategies for cars. A maximum reduction in 

CO2 emissions of 155,067t (70%) was shown for the removal of all cars in favour of ZEVs. Maximum 

CO2 emissions reductions observed for PHEVs (80,231 [36%]) were significantly greater than CO2 

reductions observed for any of the technology or fuel strategies.  

 

Figure 39 Change in CO2 emissions (t) relative to the base-case as a result of a change in car with 

PHEVs or ZEVs 
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Figure 40(a) and Figure 40(b) show the % change in PM10 and f-NO2 and the % change in NOx 

emissions respectively relative to the base-case as a result of changes to the vehicle fleet composition 

in favour of ZEVs. Maximum reductions of 361t (41%) and 31t (32%) were observed for NOx and f-

NO2 respectively. A reduction in PM10 of 8t (16%) was observed when all of the cars were replaced 

with ZEVs which is comparable to the maximum reductions achieved from the new emissions 

abatement technology strategies. Statistical comparison between NOx emissions resulting from an 

introduction from ZEVs and PHEVs to the car fleet revealed that there was no significant difference 

(p-value 0.05>) between the two data sets. 

 

Figure 40(a) and Figure 40(b) Change in PM10 and f-NO2 and NOx emissions (t) relative to the base-

case as a result of a change in car to zero emssions vehicles (ZEVs) 

 

 

7.3.3 Fuel Strategies 

 

Figure 41(a) to Figure 41(d) show the % change in NOx, CO2, PM10 and f-NO2 emissions relative to 

the base-case as a result of changes to car fuel type, namely a switch in petrol or diesel to LPG or a 

change in the petrol diesel fuel split. Very small changes (<1%) in PM10 and f-NO2 emissions were 

(a) 

(b) 
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found for petrol to LPG strategies and a less than 1% change in CO2 emissions similarly was found 

for the diesel to LPG strategy.  

 

NOx emissions reductions of 49t (6%), 62t (7%) and 71t (8%) were observed when 100% of the car 

stock was fuelled with petrol, 100% of diesel cars were replaced with cars fuelled by LPG and when 

all of the petrol cars were changed to cars fuelled by LPG respectively (Figure 41(a)). An increase in 

NOx emissions was observed when the number of petrol (diesel) cars in the fleet was decreased 

(increased). A car fleet fuelled completely by diesel showed 198t (23%) increase in NOx emissions. 

 

Figure 41(a) to Figure 41(d) Change in NOx, CO2, PM10 and f-NO2 emissions (t) relative to the base-

case as a result of changes to car fuel type, namely a switch from petrol or diesel  to LPG or a change 

in the petrol-diesel split 

 

     

 
 

(b) 
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A switch from petrol to LPG within the car fleet showed the highest reductions in CO2 emissions out 

of all the fuel strategies (maximum of 21,239t [10%]) (Figure 41(b)). An increase (decrease) in the % 

of cars fuelled by petrol (diesel) in the fleet showed CO2 emissions to increase by 3,188t (<2%) for 

the maximum change. In contrast, a decrease (increase) in the number of petrol (diesel) cars showed a 

reduction in CO2 emissions of 12,750t (6%) in the extreme case.     

 

The PM10 emissions reductions observed for the fuel strategies showed similar trends to those 

observed for NOx, with the petrol to LPG strategy showing reductions of <1%. Maximum reductions 

in PM10 emissions of 7t (14%) were observed for the diesel to LPG strategy (Figure 41(c)). A 

decrease (increase) in the number of petrol (diesel) cars in the fleet was shown to significantly 

increase PM10 emissions. A 60-40 petrol diesel split in the car fleet showed an increase in PM10 

emissions of 6t (11%) and a fleet with cars fuelled completely by diesel showed an increase in PM10 

of 24t (33%).  Similarly, a fleet with cars fuelled completely by diesel fuel showed an increase in f-

NO2 emissions of 78t (44%) (Figure 41(d)).  A change of petrol cars in favour of LPG fuelled vehicles 

Car Petrol (80%) Diesel (20%) Base case 

(c) 

(d) 

100% Diesel Car 

100% Petrol Car 

100% Petrol 

Car 

Car Petrol (80%) Diesel (20%) Base case 

100% Diesel Car 
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had a very small (<1% reduction) impact on f-NO2 emissions. A maximum reduction in f-NO2 

emissions of 21t (21%) was observed for the diesel car to LPG strategy.     

 

7.3.4 Change in Emissions by Road Classification  

 

Figure 7  in Chapter 5 (section 5.4) shows the spatial locations of the five road classifications over the 

entire Leicester road network. The base-case emissions for the five road classifications for the LCC 

LA area can be seen in Appendix H. The highest reduction in CO2 emissions resulted from a 100% 

change in cars to ZEVs (Table 27). These reductions were relatively uniform for all road 

classifications (Figure 42). However, the reduction in emissions (58%) on links belonging to road 

classification 3 were lower than those observed (70% to 72%) for the other road classifications 

relative to the base-case. In addition, links grouped in road classification 3 were observed to have the 

smallest reduction in emissions out of all the classifications for the PHEV strategies.  In contrast, the 

highest reductions in PM10 and f-NO2 emissions were observed with the introduction of Euro VI 

technology to the bus fleet on roads belonging to classification 3. In general, the highest reductions 

were found for roads belonging to classification 2 and classification 3.  

 

Table 27 Strategies resulting in the highest (1
st
) and second highest (2

nd
) emissions reductions by road 

classification  

 

Pollutant   Rank Reduction (1
st
 /2

nd
 ) Strategy Classification 

NOx 1
st
 ZEV  2 

2
nd

 Car Euro 6 2 

CO2 1
st
 ZEV 2 

2
nd

 Car Euro 6  2 and 5 

PM10 1
st
 BUS Euro VI 3 

2
nd

 LGV Euro VI 1 

f-NO2 1
st
 BUS Euro VI 3 

2
nd

 HGV Euro 6  5 
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Figure 42 Reduction in CO2 emissions for each of the five road classifications resulting from 100% 

change in cars to ZEVs 

 

 

 

The changes in NOx and f-NO2 emissions observed as a result of 100% change in petrol fuelled cars to 

LPG fuelled cars over the entire network were not uniform across the five road classifications with 

some links increasing in emissions and others showing a reduction (Table 28). Links grouped in road 

classifications 2, 3 and 5 were found to decrease in NOx emissions and emissions from classifications 

1 and 4 were observed to increase. A similar trend was observed for f-NO2 emissions with the 

exception of links belonging to road classifications 3 and 4 which showed an increase in f-NO2.  

 

Table 28 Change in NOx and f-NO2 emissions (%) as a result of 100% switch from all cars in the 

Leicester road network fuelled by petrol to cars fuelled by LPG 

Road Classification Change in NOx 

Emissions (%) 

Change in f-NO2 

Emissions (%) 

1 5 4 

2 -11 -1 

3 -3 1 

4 1 3 

5 -14 -3 

 

 

7.3.5 Achieving a 38% Reduction in CO2 

 

The only strategy that resulted in a 38% reduction in CO2 was a 53% change in cars to ZEVs. The 

same strategy was observed to reduce NOx, f-NO2 and PM10 emissions by 22% (192t), 17% (17t) and 

9% (4t) respectively.  

 

It should be noted that the data tables used in this work are not presented here but can easily be 

reproduced using the regression equations documented above. 
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7.4 Discussion 

 

The results showed substantial reductions in vehicle pollutant and or CO2 emissions from the 

introduction of improved abatement technologies, fuels and low emissions vehicles into the Leicester 

fleet. In some cases a ‘win-win’ for air quality improvement and carbon reduction was observed. 

However, in other cases a trade-off was found where a win-win was achieved but higher reductions in 

pollutant or CO2 emissions were observed from other strategies. These findings are discussed in more 

detail below and the impact of strategies on emissions relative to road characteristics is discussed. 

However, first an evaluation of the statistical relationships observed between strategy and change in 

emissions is documented.   

 

7.4.1 Relationships between Strategies and Emissions  

 

Linear trend lines were fitted to 20 of the strategies. These changes reflected the linear change in 

emissions factors that were modelled. As a result of the linear relationships    values of one were 

observed and the residuals averaged zero. In contrast, the emissions abatement technology strategies 

were fitted with polynomial regressions models. These non-linear relationships were observed 

because changes were made to the fleet at the Euro class level. Therefore, as the successive removal 

of each Euro class type took place the value of   ̂ changed and hence a polynomial relationship was 

observed. In addition, as each Euro class was reduced so too was the number of failed catalyst 

vehicles of the class. These vehicles are gross polluters (Boulter et al., 2009a, 2009b, 2009d). 

Therefore, the gradual reduction in these vehicles further contributed to the fluctuations in   ̂ 

observed. This was perhaps best illustrated when emissions from a change in LGV to vehicles 

equipped with Euro 5 technology were plotted (Figure 43). The gradual removal of each diesel Euro 

class (pre-Euro to Euro 3) resulted in four major changes in   ̂ and subsequently a quartic regression 

model was fit to the data set. However, changes in   ̂ can also be seen between 0% and 5% and 

between 95% and 100% strategies in this case. A sixth degree polynomial could have been fit to 

reflect these changes but the residuals of the quartic model were very small (<0.1t) and all of the 

regression assumptions were met. As such the fitting of a sixth degree polynomial was considered 

over fitting. Those models that had SEE values of 1t> typically had the highest residuals when 

predicting the base-case value as the change in   ̂ between 0% and 5% was not reflected in the model 

as is the case in Figure 43. Subsequently the difference between    and  ̂ was greatest at these points. 

A greater number of strategies modelled in PITHEM at the lower end of the strategy % range (e.g. 

1%, 2%, 3%, 4%) may have provided more confidence in fitting a higher degree polynomial. Future 

work should look to investigate whether such an approach would significantly improve the predictive 

power of the model.     
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Figure 43 Change in f-NO2 emissions as a result of the introduction of Euro 5 technology to the LGV 

fleet 

 

 

The sequential changes in the non-linear models resulted in clear patterns in the data which allowed 

polynomial curves to be fitted easily with little data point variance around the best fit line (e.g. Figure 

43). Therefore,    values of one were observed and the residuals averaged zero for these models.  

 

The changes in   ̂ observed for the new abatement technology strategies highlighted that emissions 

reductions achieved will fluctuate over time as the vehicle fleet evolves. Therefore, it is necessary for 

policy makers to continually track the impact of such strategies on toxic pollutant and CO2 emissions. 

As a result the equations output from this research become valuable to a policy maker as they allow 

for the rapid assessment of changes to the vehicle fleet and the subsequent analysis of emissions.       

 

7.4.2 Win-Win for Air Quality and Climate Change? 

 

Table 29 shows the rank effectiveness (1st, 2nd, 3rd and 4th) in emissions reductions (relative to the 

base-case) as a result of implementing Euro 6/VI technology changes by vehicle type. In terms of NOx 

and CO2 reductions the introduction of emissions abatement technology to the car fleet was best. In 

addition, cars equipped with Euro 6 technology were found to substantially reduce PM10 and f-NO2 

emissions. Therefore, the replacement of cars with cars equipped with new emissions abatement 

technology offered a ‘win-win’ for air quality improvement and CO2 reduction. However, greater 

PM10 and f-NO2 emissions reductions were observed with the introduction of Euro VI technology to 

the LGV and HGV vehicle stock respectively. Consequently a trade-off was observed where a ‘win-

win’ was achieved through changes to the car fleet but at the cost of higher emissions reductions from 

other strategies.  

 

Gradual removal of Euro 1 diesel vehicles 

Gradual removal of pre-Euro diesel vehicles 

Gradual removal of Euro 2 diesel vehicles 

Gradual removal of Euro 3 diesel vehicles 

Euro 5 only 
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Table 29 The rank effectiveness (1st, 2nd, 3rd and 4th) in emissions reductions (relative to the 2005 

base-case) as a result of implementing technological changes by vehicle type 

  Car LGV HGV Bus 

NOx 1st 4th 2nd 3rd 

CO2 1st  - -  -  

PM10 2nd 1st 3rd 4th 

f-NO2 2nd 4th 1st 3rd 

 

 

The introduction of new abatement technology into the LGV, HGV and bus fleets was observed to 

have little impact (<1% reduction) on CO2 emissions. This is because Euro 5/V and Euro 6/VI 

standards, like all other Euro standards for these vehicle types do not have limit values for CO2 

(Boulter et al., 2009a). Therefore, the UK emissions factors used in this research show little change in 

CO2 with the introduction of successive Euro technology (Figure 44).  For example, the emissions 

factors for LGV Euro 3 to Euro 6 vehicles are 219gCO2/km based on an average-speed of 30km/h. In 

some cases Euro 5/V and Euro 6/VI emissions factors increase relative to early standards due to the 

occurrence of a fuel debt incurred by the addition of the technology (Boulter et al., 2009a; USEPA, 

2003; Dong et al., 2008). For example, Euro V and Euro VI emissions factors for rigid HGVs (3.5t-

7.5t) (332gCO2/km  based on an average-speed of 30km/h) are marginally higher than those of rigid 

HGVs equipped with either Euro IV (326gCO2/km based on an average-speed of 30km/h) or Euro II 

(325gCO2/km  based on an average-speed of 30km/h) technology. This is due to a slight increase in 

fuel usage due to the assumed requirement of a DPF or SCR catalyst (Boulter et al., 2009a; USEPA, 

2003; Dong et al., 2008). Therefore, in this research any minor reductions in CO2 observed as a result 

of the removal of Euro II rigid HGVs were offset by the introduction of HGVs with Euro V/VI 

technology. Subsequently, arguably negligible changes in CO2 emissions were observed. The 2009 

emissions factors for buses and artic HGVs show a slight reduction in CO2 emissions with each 

successive Euro class. However, in this research they accounted for a relatively small proportion of 

the vehicle stock and as such changes in CO2 from these vehicles had little impact on total network 

emissions.      
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Figure 44 CO2 emissions factors from the 2009 UK database for various vehicles travelling at an 

average-speed of 30 km/h 

 

 

In contrast to the emissions factors for LGVs, HGVs and buses the 2009 CO2 emissions factors for 

cars were developed to take into consideration the average fleet CO2 legislation introduced for all new 

cars in Europe (Boulter et al., 2009d). Therefore, in this research substantial reductions in CO2 were 

found with a change in cars to vehicles equipped with Euro 5 and Euro 6 technology.  

 

Despite the number of cars being significantly greater than the number of LGVs within the Leicester 

fleet the introduction of Euro 6 technology to the LGV stock was found to reduce PM10 emissions the 

most. Both LGV and car Euro 6 (and Euro 5) vehicles are assigned an emissions rate of 0.5mg/km in 

the UK 2009 emissions database due to the assumption that these vehicles require DPFs to comply 

with type approval standards (Boulter et al., 2009a). However, the base-case emissions rates for 

LGVs were substantially higher than those for cars (Figure 45). A switch from the LGV base fleet to 

an LGV fleet comprised entirely of Euro 6 vehicles resulted in PM10 emissions that were on average 

85mg/km lower, whereas the introduction of Euro 6 technology to the car fleet reduced emission rates 

by only 13mg/km on average. Therefore, the introduction of Euro 6 technology to the LGV fleet had a 

larger impact on PM10 emissions than Euro 6 equipped cars.  High base-case emissions were also the 

reason why reductions in NOx and f-NO2, as a result of the introduction of Euro 6 technology to the 

HGV fleet, were comparable to those observed from the Euro 6 car strategies.   
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Figure 45 Fleet weighted light goods vehicles (LGVs), fleet weighted passenger car and Euro 6 light 

duty vehicle (LDV) PM10 emissions factors for the year 2005    

 

 

A change from diesel fuelled cars to LPG fuelled cars showed the greatest reductions in pollutant 

emissions relative to the other LPG strategies. However, the same strategy was shown to reduce CO2 

emissions by less than 1%. In contrast, a change in fuel type from petrol cars to LPG cars showed 

substantial CO2 emissions reductions (maximum 21,239t [10%]) but had an arguably negligible 

(<1%) impact on PM10 and f-NO2 emissions. These findings suggest a lack of synergy between those 

LPG strategies that reduce CO2 emissions and those that improve air quality. The LPG strategies 

showed the greatest reductions in CO2 emissions of all fuel strategies. Initially it was hypothesised 

that this was primarily due to the replacement of pre-Euro cars with Euro VI cars in the LPG strategy. 

However, closer inspection of the emissions factors revealed that the inclusion of Euro VI technology 

had little impact on the LPG strategy CO2 emissions. Furthermore, fleet weighted car LPG CO2 

emissions rates were observed to be on average 7000mg/km lower than fleet weighted petrol car CO2 

emissions rates suggesting that the emissions reductions found were not caused by the inclusion of 

Euro VI vehicles.      

 

The car petrol diesel fuel split strategies failed to show a win-win for a reduction in CO2 and pollutant 

emissions. Changes to fuel use by the car fleet were shown to increase CO2 emissions when an 

increase in petrol vehicles was implemented but the same strategy was shown to decrease pollutant 

emissions. Therefore, it can be argued that any change in the car diesel petrol fuel split would work 

against aligning climate change and air quality policy. However, this research has shown Euro 5 and 

Euro 6 technology to substantially reduce pollutant emissions. Therefore, a shift towards Euro 5/Euro 
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6 diesel cars could yield a significant win-win for air quality and climate change. The success of such 

a strategy is dependent on the technology introduced being adequate to meet the Euro 5/Euro 6 diesel 

emissions limit values in the ‘real world’ and not just on a dynamometer.  

 

The greatest reductions in toxic pollutant and CO2 emissions out of all of the strategies modelled were 

found for the introduction of ZEVs to the car fleet. Furthermore, an introduction of ZEVs was the 

only strategy for which a 38% reduction in CO2 was observed. ZEVs can be considered representative 

of EVs under current legislation or PHEVs operating in charge depleting mode. Furthermore, ZEVs 

by definition have zero emissions. In this respect the introduction of ZEVs can be observed as the 

removal of cars (and subsequently a reduction in car VKT) from the fleet without a change in the 

Leicester road network dynamics (i.e. vehicle speed and flow). Therefore, this research suggests that 

further VKT restriction in the car fleet would result in substantial emissions reductions and a win-win 

for air quality and climate change. Moreover, it indicates that policy options that limit VKT are likely 

to achieve greater emissions reductions than a change in technology, vehicle (other than ZEV) or fuel. 

 

Maximum CO2 emissions reductions achieved for the introduction of PHEVs were higher than CO2 

reductions found for any of the technology or fuel strategies. In addition, the NOx emissions 

reductions found for PHEVs were not significantly different from those observed for ZEVs, which 

suggested that the introduction of PHEVs would result in a win-win for air quality and climate change 

in Leicester. This was not surprising given the small emissions rate (0.01gNOx/km) specified in 

PITHEM based on the research of Fontaras et al. (2008). PHEVs, such as the Plug-in Toyota Prius, 

typically have a range of ~20km in charge depleting mode after which the ICE is switched on and the 

vehicle is operated in charge sustaining mode (JEC 2011). The average trip length in the UK is 11km 

(DfT, 2011d) which further supports the findings of Fontaras et al. (2008) and Hagman and Assum 

(2012) that PHEVs operate predominately in charge depleting mode in urban environments and 

subsequently have very low pollutant emissions rates. Therefore, strategies that encourage the uptake 

of PHEVs whilst providing sufficient charging facilities, for example at places of work, would enable 

substantial pollutant emissions reductions to be achieved. Such reductions would depend on driver 

charging behaviour. Therefore, from an air quality perspective, strategies that encourage regular 

PHEV charging are beneficial. From a climate change perspective, such a strategy may lead to an 

increase in WTT CO2 emissions but these emissions are typically out of the control of local 

authorities. However, given the UK governments plans to decarbonise the electricity grid by 2030 

(DECC, 2010), WTT CO2 emissions for electric vehicles may become of less concern.      

 

When considering the road classifications, both increases and decreases in NOx and f-NO2 emissions 

were observed when 100% change in petrol cars to LPG fuelled vehicles was modelled. This was 

because of the sensitivity of Euro 1 LPG cars to changes in average-speed. At speeds lower than ~22 
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km/h NOx emissions from these vehicles are higher than those from an equivalent petrol fuelled car 

(Figure 46(a)). At speeds above ~22 km/h emissions from these vehicles are lower than those from an 

equivalent petrol fuelled car. Therefore, links belonging to road classifications 2, 3 and 5, which had 

average-speeds of 35km/h, 27km/h and 39km/h respectively, were observed to have a decrease in NOx 

emissions (Table 30). Whereas links grouped in road classifications 1 and 4 increased as their 

average-speeds were 13km/h and 18km/h respectively. Similar observations were made for Euro 1 

LPG cars and f-NO2 with LPG vehicles having higher (lower) emissions than petrol cars at speeds 

below (above) ~28km/h (Figure 46(b)).    

 

Figure 46(a) and Figure 46(b) Speed dependent NOx and f-NO2 emissions rates (g/km) for LPG, 

petrol and diesel fuelled cars 

 

 

 

 

 

 

(a) 

(b) 
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Table 30 Average-speed of the five road classifications and change in NOx and f-NO2 emissions (%) 

as a result of 100% switch from all cars in the Leicester road network fuelled by petrol to cars fuelled 

by LPG 

Road 

Classification 

Average-

speed (km/h) 

Change in NOx 

Emissions (%) 

Change in f-NO2 

Emissions (%) 

1 13 3 3 

2 35 -8 -1 

3 27 -2 0 

4 18 0 2 

5 39 -10 -2 

 

 

When considering emissions changes by road classification, the highest reductions in NOx and CO2 

emissions were observed for a change in the car fleet to ZEVs and vehicles equipped with Euro VI 

technology on roads grouped in classification 2. This was expected given the relatively high LDV 

flows of, and large proportion of roads belonging to, classification 2. Spatially roads assigned to this 

classification were spread throughout the city exhibiting no geographical trend. Therefore, policy 

options involving the promotion of ZEVs and Euro 6 technology would have to target the Leicester 

road network as a whole and not just the AQMA. This may be considered a disadvantage compared to 

other strategies which can be targeted at more spatially invariant road classifications. Such a policy 

option was observed in this research. The introduction of Euro VI technology to the bus fleet on roads 

belonging to classification 3 was found to have the highest reductions in PM10 and f-NO2 emissions 

compared to all other classifications. This was not expected given that when considering the network 

as a whole the introduction of new abatement technology into the car fleet was observed to have the 

highest pollutant emissions reductions. As a result classifying roads not only for air quality modelling 

but for evaluation of strategies and policies is beneficial as it has allowed for the identification of 

significant emissions reductions that would otherwise have gone unnoticed. Links grouped in 

classification 3 are predominately city centre feeder roads which are located within the LCC AQMA 

(Appendix H).  In addition, they are characterised by high bus flows (average of 11% of classification 

3 vehicle fleet composition) and relatively low HGV flows. Therefore, this research suggests a 

technology upgrade for the bus fleet in Leicester to Euro V/VI would have significant air quality 

benefits. Given the location of the bus roots on city centre feeder roads within the AQMA, such a 

change would help limit NO2 emissions exceedences. However, a technology change to the bus fleet 

has been shown in this research to have negligible impacts on CO2 emissions.  Euro V/VI equipped 

HGV vehicles were observed to substantially reduce pollutant emissions and this strategy was found 

to be particularly successful on roads belonging to classification 5. Classification 5 comprised roads 

that were typically on the city ring road or on city centre feeder roads, which further highlights the 

importance of targeting these key traffic routes with emissions reduction strategies.  
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7.4.3 Policy Options for Leicester 

 

The LCC’s LTP 3 primarily aims to increase the quality and quantity of bus services operating within 

the LA area (LCC, 2011b). This research has shown that substantial reductions in pollutant emissions 

can be achieved through the upgrade of the Leicester bus fleet to Euro V/VI technology. Currently, 

bus operators in Leicester work within an overall emissions allowance with a year on year reduction 

(LCC, 2011b). However, the allowance is likely to be increased given the plans for greater bus 

services. Therefore, it is advised that prior to expansion the existing bus fleet must be improved to 

meet higher levels of environmental regulation. Furthermore, it is suggested that any additional 

vehicles must comply with Euro V/VI standards or better still electric buses should be considered. If 

funding permits, the LCC should look to subsidise the acquisition of electric buses for use in the city.  

 

Improved vehicle abatement technology has been shown in this research to have little impact on CO2 

emissions from the Leicester bus fleet. Therefore, in order for an increase in bus frequency to be 

beneficial in terms of CO2 emissions reduction, bus patronage must be increased and private car use 

simultaneously decreased. The LCC LTP 3 documented that new and improved bus facilities and 

infrastructure will encourage the use of public transport together with smart ticketing and subsidised 

fares as a result of Quality Bus Contracts with First and Arriva bus companies (the two main bus 

providers in Leicester) (LCC, 2011b). Whilst this is likely to encourage greater bus use it is advised 

that a stronger emphasis is placed on reducing passenger car VKT. Strategies that aggressively limit 

private car VKT and simultaneously provide high quality and reliable public transport have been 

shown to be very effective in reducing emissions from vehicles e.g. Hong Kong (see Cameron et al., 

2004). In this research total fleet VKT was limited to 2005 levels and only one strategy was found to 

meet Leicester’s target of a 38% reduction in CO2 emissions. This research subsequently indicated 

that a greater decrease in passenger car VKT would offer maximum improvements in air quality and 

reductions in CO2 emissions. Therefore, this work provides evidence and support for policies and 

strategies that aggressively reduce VKT. However, the LCC should be aware that strategies that aim 

to reduce VKT should be coupled with policies that limit the induced demand and the rebound effect 

(e.g. reduce the capacity of roads for traffic such as bus only lanes, widening pavements and introduce 

speed restrictions) caused by a decrease in VKT and the subsequent surplus of road capacity.   

 

The LTP 3 does not make direct reference to reducing VKT and in fact makes reference to allocating 

additional network capacity (through maximising the current network capacity by improving traffic 

signalling and making physical changes to junctions) to the increased demand for passenger trips 

(LCC, 2011b). It is suggested that the network capacity is not maximised as this will only encourage 

more traffic and will have little impact on already heavily congested and polluted areas of the city. 

Instead, financial penalties or incentives should be introduced that discourage private car use 
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particularly in the city centre and on city centre feeder roads. The LTP 3 already suggests stricter 

parking measures will come into force (LCC, 2011b). However, many car parks in the city centre are 

privately owned and are beyond the control of the LCC. Although road pricing has been put on hold 

in Leicester due to questions of financial feasibility (income from the scheme not sufficient to sustain 

its operation), it is advised that it should be revisited with particular focus on the city centre feeder 

roads and outer ring road. For example, a toll system similar to that implemented in Singapore (see 

Santos et al., 2004), which enforces a charge per entry may provide financial sustainability whilst 

aggressively discouraging private car use during certain times of the day. Such a scheme could be a 

‘polluter pays’ based policy to encourage bus and HGV companies to upgrade their fleets. This 

research has shown substantial pollutant emissions can be achieved if this were the case particularly 

on key traffic routes in the city.  However, road pricing is likely only to encourage public transport 

use if toll costs were higher than bus fares. Therefore, if road pricing is reconsidered the LCC must 

work with the Bus Quality Partnership to ensure that fares remain competitive so that toll costs can 

remain low enough so to not damage the local economy.     

 

A 25% increase in the number of houses in central Leicester has been forecast by the LCC. In 

addition, plans for 3 new Greenfield housing developments comprising 3,000 to 5,000 new homes 

each have been laid down by the council (LCC, 2011b). These developments provide a perfect 

opportunity to encourage the uptake of low emissions vehicles. For example, electric vehicle charging 

facilities could be installed on all of these sites or even on every plot. The introduction of low 

emissions vehicles to the Leicester fleet has been shown in this research to greatly improve local air 

quality and reduce tailpipe CO2 emissions. Therefore, it is advised that the LCC look favourably upon 

planning applications that incorporate electric vehicle charging infrastructure. Similarly, the LCC 

should look to install a greater number of charging facilities in the city and suburbs ensuring that the 

posts are evenly spread throughout the LCC LA area (classification 2 roads). Government funding, 

such as that available from the Sustainable Transport Fund, could be used to pay for some or the 

entire EV infrastructure. The LCC should continue to actively market, promote and encourage the 

uptake of low emissions vehicles. Marketing and promotional material should focus heavily on the 

government funding plug-in car grant scheme which provides financial incentive for the uptake of 

PHEVs and EVs. As a way of leading by example a greater proportion of the LCC’s own vehicle fleet 

could be replaced with EVs. Furthermore, given that 50% of all journeys to work in Leicester are less 

than 5km (LCC, 2011b) the introduction of EV and PHEV company car schemes for local businesses 

could help reduce emissions and improve air quality in Leicester. The LCC should work with local 

businesses to encourage such a scheme and where possible offer financial support. In connection this 

research has shown the introduction of new abatement technology to the LGV fleet to have substantial 

benefits for air quality. Therefore, policies that encourage local businesses to retrofit or upgrade their 
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LGV fleet would be beneficial. Road pricing would act as a financial incentive to encourage such a 

change. 

 

The current LTP 3 strategies for reducing emissions from HGVs include re-routing of heavy traffic 

away from sensitive receptors, encouraging the use of cleaner vehicles and encouraging the use of 

HGV distribution hubs (LCC, 2011b). The latter involves HGV hubs where goods are unloaded into 

cleaner vehicles and subsequently transported to locations throughout the city. The re-routing of 

HGVs is not advised as traffic management of this kind only shifts air quality problems to another 

area of the city and does not in any way alleviate pollution issues (Huang and Huang, 2003). 

Encouraging the use of HGV hubs and cleaner vehicles should continue but HGVs are owned by 

private companies and are out of direct control of the LCC. However, if road pricing was to be 

reconsidered with strict financial penalties for older HGVs, then greater pollutant emissions 

reductions are likely. This research has shown that HGV fleet renewal with Euro V/VI vehicles can 

significantly improve air quality in Leicester. Furthermore, although this research has shown that 

improving the emissions abatement technology within the Leicester HGV fleet will not result in a 

reduction in CO2 emissions, a road pricing scheme may further encourage the use of HGV hubs or 

reduce HGV VKT (through logistics optimisation) thereby offering a win-win. 

 

In the more extreme case the LCC could enforce mandatory fleet renewal once vehicles reach a 

certain age. This research has shown that the removal of the oldest vehicles in a fleet can result in 

significant local air quality benefits and CO2 reductions. The mandatory removal of vehicles of a 

certain age could be enforced in Leicester but such a scheme is more likely to be enforced at a 

national level. The UK government funded ‘scrappage scheme’ ran between May 2009 and April 

2010 and provided financial incentive towards the purchase of a new car if a vehicle greater than 10 

years old was scrapped (Maer, 2012). The LCC could implement a strategy similar to the scrappage 

scheme which would encourage fleet renewal. However, a scheme that offered greater financial 

incentive (e.g. subsidised or free bus travel) for those who scrap an old car and do not buy another 

vehicle would likely result in greater reductions in CO2 and toxic pollutant emissions.  

 

Finally, it is suggested that the LCC use the regression equations and data tables output in this 

research when assessing the impact of planned or implemented strategies on air quality and CO2 

emissions in Leicester. The tables can be rapidly used meaning they are a cost effective way to carry 

out initial investigations. 
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7.4.4 Limitations 

 

Issues surrounding the emissions factors used in this research have been partly described in Chapter 6, 

section 6.7.2.  Fleet weighted PM10 and NOx emissions factors from COPERT 4 where documented to 

have increased relative to 2009 DfT factors. The DfT guidance note concerning the interim COPERT 

4 factors (DEFRA, 2012d) highlighted that the HGV and bus fleet standards for NOx differ 

significantly between the 2009 DfT emissions factors (old) and the COPERT 4 v8.1 (new) interim 

emissions factors (e.g. Figure 47(a) and Figure 47(b)). The Euro V COPERT NOx emissions factors 

for HGVs and buses at 20km/h are more than double those of the old factors and are significantly 

higher than Euro IV factors at the same speed. These differences occur because the new factors have 

separate functions for HGVs and buses equipped with SCR and for those equipped with EGR, whilst 

the old factors made no such distinction (DEFRA, 2012d). Subsequently the new factors reflect the 

poor performance of SCR at urban speeds. A total of 849 roads (22%) in this research had speeds less 

than or equal to 20km/h. Furthermore, the average-speed of the network was 31km/h. Therefore, it is 

likely that the NOx and f-NO2 emissions savings documented in this research concerning the 

introduction of new emissions abatement technology into the HGV and bus fleets are overestimated. 

However, according to the DfT the new factors are to be considered interim as uncertainties still 

remain in the Euro V/VI factors because too few vehicles have been tested under real world 

conditions (NCL, 2012).  

 

Figure 47(a) and Figure 47(b) The UK 2009 DfT emissions factors (old) and the COPERT 4 v8.1 

emissions factors (new) for rigid HGVs <7.5t at 20 km/h (kph) and 40km/h (kph) (DEFRA 2012d) 

  

 

A lack of information on the data used for the development of the emissions rate for PHEVs in the 

low carbon tool was a major limitation of this work. Sales and vehicle characteristics (types of Prius) 

information would not be released by the DfT and subsequently estimates of TTW CO2 emissions 

were made using the DEFRA (2012c) conversion factors for company reporting. To this author’s 

knowledge the JEC (2011) fuel life cycle analysis on which the DEFRA (2012c) WTT emissions rates 

are based is the most comprehensive to date. Therefore, the ratio used in this research to derived 

PHEV TTW CO2 emissions was considered the most appropriate at time of use. However, as PHEVs 
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gain a greater market share in the UK fleet more information regarding TTW emissions will likely 

become available allowing the accuracy of the emissions factor used in this research to be assessed. 

Furthermore, such information would allow for the estimation of PM10 and f-NO2 emissions from 

PHEVs operating in charge sustaining mode.  

 

The regression equations produced in this research had R
2
 values of one. Therefore, it was clear that 

there was a systematic change in the emissions created by the systematic change in the penetration. In 

reality a systematic change is unlikely. However, this research has provided valuable insight into the 

impacts of a change in technology, fuel or vehicle on emissions from road transport.  In future a 

method to generate greater variation in the values could be explored. 

 

7.5 Chapter 7 Summary 

 

The 2005 emissions base-case compiled in Chapter 6 was edited to reflect a change in emissions 

abatement technology, vehicle or fuel. In addition, a VKT restriction was imposed on the vehicle fleet 

that did not allow any increase in VKT from the base year. Strategies were modelled in 5% 

increments until 100% was reached and emissions changes relative to the base-case were calculated. 

Regression analysis allowed for the interpolation between the 5% increment. The changes in 

emissions relative to the base-case for each strategy were plotted and regression was used to 

interpolate between the 5% increments. This provided a flexible approach to strategy modelling as the 

regression equations allowed any % strategy change to be modelled and subsequent emissions 

analysed.  

 

A reduction in both CO2 and toxic air pollutant emissions (‘win-win’) was found when cars were 

changed to diesel cars equipped with Euro 6 technology. However, greater PM10 and f-NO2 emissions 

reductions were observed with the introduction of Euro VI technology to the LGV and HGV stocks 

respectively. These strategies were found to have negligible impacts on CO2 emissions. Consequently 

a trade-off was found where a ‘win-win’ was achieved through changes to the car fleet but at the cost 

of higher pollutant emissions reductions from other strategies. The introduction of Euro VI 

technology to the bus fleet on roads located predominantly on key traffic corridors within the AQMA 

resulted in substantial air quality benefits. Therefore, zonal based strategies (e.g. pay per entry road 

user charging) could be introduced in Leicester to reduce emissions from the bus fleet.  A win-win 

from the introduction of LPG to the car fleet was not found. Therefore, strategy options that promote 

the uptake of LPG should be avoided if climate change and air quality policy is to be aligned. A 

switch from cars to ZEVs resulted in the highest CO2 and pollutant emissions reductions out of all the 

strategies modelled. ZEVs can be considered representative of EVs under current legislation. This 

strategy was found to be particularly effective on roads characterised by relatively high LDV flows 
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and low bus and HDV flows that were located across the entire LCC LA area. A 53% penetration of 

ZEVs into the Leicester fleet was the only strategy found to reduce CO2 emissions by 50% relative to 

a 1990 base. Therefore, this research indicates that substantial and arguably extreme changes will be 

required in order for compliance with air quality and climate change limit values and targets to be 

achieved. Furthermore, given that a change in emissions abatement technology, fuel and vehicle was 

modelled in an exhaustive way (i.e. 100% change was modelled), the findings of this research 

suggested that a more aggressive VKT restriction is necessary in order for targets to be met.  

       

Based on the strategy modelling findings four main policy options were developed for Leicester; 1) 

the bus fleet should be upgraded to included Euro V/VI technology and the quality and quantity of 

public transport services should be increased; 2) a pay per entry road user charging scheme should be 

considered as this has the potential to reduce private car VKT, ‘clean’ the Leicester vehicle stock 

(particularly the HGV fleet) and encourage the use of public transport; 3) provisions should be made 

by the council for the widespread installation of electric vehicle charging infrastructure and to 

encourage the uptake of low emissions vehicles by local businesses and; 4) a quality bus contract 

should be set up in Leicester that provides free public transport for a period of time for those who 

scrap a vehicle greater than ten years old and do not purchase another vehicle.    

 

Finally, the regression equations and data tables produced in this research present to the decision 

maker valuable insights into the relative impact of improved vehicle abatement technology, fuels and 

low emissions vehicles penetration into the current vehicle fleet. In essence, these enable informed 

decisions on how to best invest scarce resources (e.g. limited budgets), perhaps to replace particular 

vehicle fleets (Euro VI buses); or incentivise third parties to take action (e.g. green travel plans) or to 

justify to the public that road user charging is fair, making sure the polluter pays (e.g. a higher charge 

for HGVs).   
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8. Summary, Conclusions and Future Work 

 

In this chapter a summary of the research carried out is presented. A number of conclusions are drawn 

from the work described and future research is documented.  

 

8.1 Summary 

 

A clear research gap was identified by the UK government in their document entitled ‘Air Pollution: 

action in a changing climate,’ which stated that ‘further work is needed to facilitate comparison of air 

quality and climate change impacts.’ Therefore, the research presented in this thesis aimed to 

contribute to this knowledge gap by investigating the impact of road transport strategies on air quality 

and CO2 emissions. Three main findings from the literature influenced the approach taken to 

investigate these impacts; 1) a more aggressive VKT restriction has the potential to result in 

substantial reductions in both toxic air pollutants and CO2 emissions; 2) the introduction of new 

emissions abatement technology, fuels and low emissions vehicles to the road transport sector are 

considered important if climate change targets and air quality limit values are to be met and; 3) 

current strategy modelling approaches are relatively inflexible and often do not allow substantive 

conclusions to be made about whether a strategy does or does not have the potential to meet air 

quality and climate change targets. Therefore, this research aimed to assess the impact of a vehicle 

VKT restraint and a change in emissions abatement technology, fuel or vehicle on CO2 emissions and 

toxic air pollutants derived from road transport. The Leicester city road network for the year 2005 was 

used as a case study in this research. A base-case emissions inventory for CO2, PM10, NOx and f-NO2 

for the LCC LA area was compiled and evaluated using an air quality model. A statistical method was 

presented that applied factor and cluster analysis to assign roads into groups (classifications) so that 

diurnal profiles could be assigned to roads with similar characteristics prior to air quality modelling. 

This provided a useful tool to local authority officers to set up air quality models which is less labour 

intensive. In addition, this enabled the typical characteristics of the road network in Leicester to be 

identified. A Gaussian air quality model, ADMS-Urban, was used to evaluate the emissions inventory 

compiled. The model was found to significantly over-predict and under-predict NO2 and PM10 

concentrations at seven and five monitoring locations across the city of Leicester respectively. The 

error attributed to the emissions inventory was estimated to be between 11% and 57% of the total 

error found depending on location and pollutant considered. A large proportion of the emissions 

inventory error was attributed to the use of unrepresentative emissions factors. In addition, the 

classification specific diurnal profiles developed were found to underestimate the length of peak 

traffic flows, which further contributed to error in the predictions.   
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The base-case was edited to reflect a change in emissions abatement technology, vehicle or fuel and 

emissions were recalculated. In addition, a VKT restriction was imposed on the vehicle fleet that did 

not allow any increase in VKT from the base year. The changes to the base-case were made in 

increments of 5% until 100% was reached (e.g. 5%, 10%, 15% etc. of cars were changed to ZEVs). 

The changes in emissions relative to the base-case for each strategy were plotted and regression was 

used to interpolate between the 5% increments. This provided a flexible approach to strategy 

modelling and can be considered an advantage over previous approaches documented in the literature 

as the regression equations output in this work allowed any % strategy change to be modelled and 

consequential emissions change to be estimated. In addition, the emissions per road classification 

were calculated for the base-case and for each of the 100% change strategies (e.g. 100% cars changed 

to ZEVs). This allowed the effectiveness of each of the strategies to be analysed spatially and for the 

relationship between emissions change and road characteristics to be assessed.  

 

A reduction in both CO2 and toxic air pollutant emissions (‘win-win’) was found when the penetration 

of ZEVs and PHEVs to the car fleet was modelled. A switch from cars to ZEVs resulted in the highest 

emissions reductions out of all the strategies modelled. ZEVs can be considered representative of EVs 

under current legislation. The ZEV strategy was found to be particularly effective on roads 

characterised by relatively high LDV flows and low bus and HDV flows that were located across the 

entire LCC LA area. A 53% penetration of ZEVs into the Leicester fleet was the only strategy found 

to reduce CO2 emissions by 50% relative to a 1990 base. Therefore, this research indicated that 

substantial and arguably radical changes will be required in order for compliance with air quality and 

climate change limit values and targets to be achieved. Furthermore, given that a change in emissions 

abatement technology, fuel and vehicle was modelled in an exhaustive way (i.e. 100% change was 

modelled), the findings of this research suggested that a more aggressive VKT restriction is necessary 

in order for targets to be met.  

 

A win-win for air quality and climate change was found when cars were changed to cars equipped 

with Euro 6 technology. This research indicated that a switch to diesel Euro 6 cars would be the most 

beneficial. However, greater PM10 and f-NO2 emissions reductions were observed with the 

introduction of Euro VI technology to the LGV and HGV stocks respectively. These strategies were 

found to have negligible impacts on CO2 emissions. Consequently a trade-off was found where a 

‘win-win’ was achieved through changes to the car fleet but at the cost of higher pollutant emissions 

reductions from other strategies. The introduction of Euro VI technology to the bus fleet on roads 

located predominantly on key traffic corridors within the AQMA resulted in substantial air quality 

benefits. Therefore, zonal based strategies (e.g. pay per entry road user charging) could be introduced 

in Leicester to reduce emissions from the bus fleet.  
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Substantial pollutant emissions reductions were found as a result of the introduction of new emissions 

abatement technology into the HGV and LGV fleets. However, these strategies were found to have 

negligible CO2 emissions reductions and therefore did not provide a win-win for air quality and 

climate change.  Similarly, a win-win from the introduction of LPG to the car fleet was not found. 

Therefore, the uptake of LPG or investment in the introduction of new emissions abatement 

technology to the LGV or HGV fleets should only be considered as a part of a sustainable policy 

package that comprises other measures, such as logistics optimisation or a reduction in VKT.  

 

Based on the strategy modelling carried out, four main policy options were developed for the 

Leicester road network that have the potential to reduce both CO2 emissions and toxic air pollution. 

These involve upgrading the bus fleet with new emissions abatement technology, implementing a pay 

per entry road user charging scheme, the widespread installation of electric vehicle charging 

infrastructure and offering financial incentive for scrapping vehicles and using public transport. 

Finally, it was advised that the LCC use the regression equations and data tables produced in this 

research as they provide valuable insights into the relative impact of improved vehicle abatement 

technology, fuels and low emissions vehicles on CO2 emissions and toxic air pollution. They enable 

the rapid assessment to be made of potential strategy options and allow informed decisions on how to 

best invest scarce resources (e.g. limited budgets).   

 

8.2 Conclusions 

 

The following main conclusions can be drawn from the research carried out: 

 

1) The requirement of further comparison of air quality and climate change impacts documented 

by the UK government highlighted an opportunity for research to be under taken that 

investigated the impact of road transport strategies on carbon dioxide emissions and toxic air 

pollution. 

 

2) The capability of modern air quality models to allow a finite number of diurnal traffic profiles 

to be used in dispersion calculations provided an opportunity to explore a method by which 

roads could be grouped to allow diurnal traffic profiles to be specified for links with similar 

characteristics.  

   

3) Factor and cluster analysis can be combined to classify roads to enable traffic profiles to be 

assigned to roads with similar attributes and to allow road vehicle characteristics to be 

explored. 
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4) The method of factor and cluster analysis used to classify roads in this research has an 

advantage over other methods documented in the literature as it allows the classification 

process to be driven by the data, requires no a priori information about the road network and 

ensures that variables containing a large proportion of shared common variance (e.g. bias 

resulting from limitations and assumptions intrinsic to traffic models) are not included in the 

classification process.  

 

5) Gaussian air quality models are extremely sensitive to meteorological, background and 

emissions data used for dispersion calculations. Therefore, the use of ADMS-Urban in this 

research provided a quality check on the emissions resulting from the LCC traffic model.   

 

6) The use of interpolation factors to calculate hourly traffic flows can result in an underestimate 

of peak traffic periods and resulting congestion. This issue was found to result in air quality 

model under-prediction in this research. Therefore, the strategy modelling carried out 

reflected this shortfall.  

 

7) The introduction of Euro VI technology to the bus fleet on roads located predominantly on 

key traffic corridors within the AQMA resulted in substantial air quality benefits. However, 

the introduction of new emissions abatement technology to the bus fleet did not result in CO2 

emissions reductions.  

 

8) Classifying roads not only for air quality modelling but for the evaluation of strategies and 

policies was found to be beneficial as it allowed significant emissions reductions to be 

identified that other strategy modelling approaches documented in the literature would have 

missed. Furthermore, it allowed for the spatial impacts of the strategies modelled to be 

assessed which provided insight into how such strategies could be implemented. 

 

9) Substantial pollutant emissions reductions were found as a result of the introduction of new 

emissions abatement technology into the HGV and LGV fleets. However, these strategies 

were found to have negligible CO2 emissions reductions and therefore did not provide a win-

win for air quality and climate change.  Similarly, a win-win from the introduction of LPG to 

the car fleet was not found. Therefore, the uptake of LPG or investment in the introduction of 

new emissions abatement technology to the LGV or HGV fleets should only be considered as 

a part of a sustainable policy package that comprises other measures, such as logistics 

optimisation or a reduction in VKT.  
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10) The car petrol diesel fuel split strategies failed to show a win-win for a reduction in CO2 and 

pollutant emissions. Changes to fuel use by the car fleet were shown to increase CO2 

emissions when an increase in petrol vehicles was implemented but the same strategy was 

shown to decrease pollutant emissions. Therefore, it can be argued that any change in the car 

diesel petrol fuel split would work against aligning climate change and air quality policy.  

 

11) However, a reduction in both CO2 and toxic air pollutant emissions (‘win-win’) was found 

when cars were changed to diesel cars equipped with Euro 6 technology.  

 

12) The introduction of Euro VI technology to the LGV and HGV stocks respectively resulted in 

greater PM10 and f-NO2 emissions reductions than when new emissions abatement technology 

was introduced to the car fleet. Consequently a trade-off was observed where a ‘win-win’ was 

achieved through changes to the car fleet but at the cost of higher emissions reductions from 

other strategies.  

 

13) A win-win for air quality and climate change was found with the penetration of ZEVs and 

PHEVs to the car fleet. The highest reductions in toxic pollutant and CO2 emissions out of all 

of the strategies modelled were found for the introduction of ZEVs, which can be considered 

representative of EVs under current legislation.  

 

14) A 53% (or greater) penetration of ZEVs to the car fleet was the only strategy for which a 50% 

reduction in CO2 for a 1990 base was found. Therefore, this research indicates that substantial 

and arguably radical changes will be required in order for compliance with air quality and 

climate change limit values and targets to be achieved. 

 

15) ZEVs by definition have zero emissions. In this respect the introduction of ZEVs can be 

observed as the removal of cars (and subsequently a reduction in private car VKT) from the 

fleet without a change in the Leicester road network dynamics (i.e. vehicle speed and flow). 

Therefore, this research suggested that further VKT restriction in the car fleet would result in 

substantial emissions reductions and a win-win for air quality and climate change. Moreover, 

it indicated that policy options that aggressively limit VKT are likely to achieve higher 

emissions reductions than a change in technology, vehicle or fuel. 

 

16) The regression equations produced in this research provide a flexible tool for the policy 

maker to support decision making. In contrast to previous strategy modelling approaches 

documented in the literature the equations and data tables developed enable the rapid 
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assessment to be made of potential strategy options and allow informed decisions on how to 

best invest scarce resources (e.g. limited budgets). 

 

17) Leicester was chosen as a case study because it shares many characteristics of other cities in 

the UK (see Chapter 4) and national vehicle fleet composition data in was used in this study. 

These methodological approaches allow the regression equations and data tables output to be 

transferred to other cities in the UK. Furthermore, the findings of this research can be used by 

local authorities throughout the UK to make informed decisions enabling money to be spent 

more wisely.”  

 

18) In the past, a policy maker may have had to consider the outputs of a number of different 

strategy modelling studies in order to draw conclusions as to whether a strategy could or 

could not result in a win-win for air quality and climate change. However, strategy modelling 

studies are not directly comparable due to assumptions made (see section 2.4). In contrast to 

previous strategy modelling studies, this research adopted a flexible approach to strategy 

modelling and can be used as a single point of reference from which substantive conclusions 

can be drawn.    

 

8.3 Suggestions for Future Research 

 

1) The methodology presented for classifying roads involved the use of specific predictor 

variables and it is recommended that the technique is tested further using different data inputs.  

 

2) The NOx and PM10 emissions factors used in this research have recently been updated as they 

were considered not to be representative of real world emissions. The new factors released are 

to be considered interim by the UK government as they still comprise a number of 

uncertainties. Therefore, in future, when a more comprehensive and complete set of emissions 

factors is available, the representativeness of the outputs from this work should be reassessed 

and adjusted as appropriate. This could be done through the addition of a simple correction 

factor to the regression equations allowing the models to capture the changes in emissions 

factors.  

 

3) The use of simulated traffic data was considered a significant limitation to the research 

carried out. Unrepresentative traffic flows, speeds and vehicle fleet compositions were 

estimated to have been a cause of error in the emissions inventory compiled and may have 

influenced the road classification process presented. However, in reality automatic traffic 

recorders (ATRs) and manual count data exist for only on a relatively small proportion of 
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roads meaning that the spatial coverage of real world traffic data does not meet the 

requirement of regional scale emissions inventories and air quality models. Therefore, 

transport and air quality professionals have no choice but to use simulated data in modelling 

studies. In the future, if greater spatial coverage of real world traffic data becomes available 

then the strategy modelling carried out in this research could be recalculated. 

 

4) The use of national data to define vehicle fleet composition in this research was, on the one 

hand, considered a limitation as it may not have been representative of the vehicle mix in 

Leicester. On the other hand the use of average vehicle fleet composition data has the 

advantage of making the outputs from this research more applicable nationally. Therefore, in 

the future the application of the regression equations and data tables produced in this research 

to other road networks in the UK could be explored.    

 

5) The regression equations produced in this research had R
2
 values of one. Therefore, it was 

clear that there was a systematic change in the emissions created by the systematic change in 

the penetration. In reality a systematic change is unlikely. Away round this would be to 

generate random variation in the values and repeat the PITHEM analysis. This could provide 

greater insight into the impacts of a change in technology, fuel or vehicle on emissions from 

road transport.     

 

8.4 Contribution to Academic Research and Practice 

 

1) This work highlights the short fall of Chen et al.’s (2008) road classification research. 

Having identified the problems with Chen et al.’s (2008) work it then explores a novel 

method for classifying roads that is data driven and not restricted by the subsequent 

application of the number of clusters output. The factor and cluster analysis method used is 

unique to this research. It provides a robust and statistical method for classifying roads where 

previously there was none.  

 

2) The research presented is the first piece of work that has tackled the balance between CO2 

and toxic emissions in great detail at the local authority level. It considers both climate 

change and air quality impacts in the context of the local authority policy maker. Unlike 

previous strategy modelling studies it does not include or confuse WTW emissions as these 

are typically outside of the remit of control of a local authority. Furthermore, the findings of 

this research are combined to make a set of policy actions for Leicester local authority based 

on their LTP. Previous studies have failed to consider the implications of win-win strategies 
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being implemented at the local authority level. In this research these implications are quite 

clearly addressed.  

 

3) The strategy modelling method developed (incremental changes followed by regression) is 

unique to this research. A flexible and exhaustive approach was adopted that allowed for the 

identification of either those strategies that could meet the target or those that under 

maximum change could not. Previous strategy modelling studies typically inform of those 

fixed changes that are not able to bring about the required emissions reductions and 

subsequently this research can be considered at an advantage over previous work.   

 

4) The flexible strategy modelling approach adopted in this research allowed substantive 

conclusions to be drawn from the research.  The findings of this study clearly expose the fact 

under the current CO2 emissions reduction road map targets will not be achieved by 2050. 

They provide an evidence base that previously did not exist and are a point of reference on 

which to build new and more aggressive emissions reductions strategies. 
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GLOSSARY OF TERMS 

 

Term Definition 

AADT Annual Average Daily Traffic 

AAGE Average Absolute Gross Error  

AQMA Air Quality Management Area 

ATR Automatic Traffic Recorder 

AURN Automatic Urban Rural Network 

CAFE Clean Air For Europe 

CDF Cumulative Distribution Function 

CFD Computation Fluid Dynamics 

CLTM Central Leicestershire Transport Model 

CNG Compressed Natural Gas 

CRST Chemical Reaction Scheme with Trajectory 

CV(s) Conventional Vehicle(s) 

DECC Department of Energy and Climate Change 

DEFRA Department for Environment, Food and Rural Affairs 

DfT Department for Transport 

DNA Deoxyribonucleic acid 

EFA Exploratory Factor Analysis 

ERG Exhaust Gas Recirculation 

EU European Union 

Euro Standard' Refers to the emissions standards enforced in the European Union 

EV(s) Electric Vehicle(s) 

FA Factor Analysis 

FAC2 Factor of 2  

FAC5 Factor of 5 

FB Fractional Bias 

FOEX Fraction of over-prediction 

FSD Fractional Standard Deviation 

FTP Federal Test Procedure 

GDP Gross Domestic Product 

GHG(s) Greenhouse Gas(es) 

GRS Generic Reaction Set 

HDV(s) Heavy Duty Vehicle(s) 

HEV(s) Hybrid Electric Vehicle(s) 
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Term Definition 

HFCV(s) Hydrogen Fuel Cell Vehicle(s) 

HGV(s) Heavy Goods Vehicle(s) 

hr Hour 

ICE Internal Combustion Engine 

IP Inter Peak 

KMO Kaiser-Meyer-Olkin 

LA Local Authority 

LCC Leicester City Council 

LDV(s) Light Duty Vehicle(s) 

LEZ Low Emissions Zone 

LGV(s) Light Goods Vehicle(s) 

Link' Section road 

LPG Liquid Petroleum Gas 

LTP Local Transport Plan 

MG Geometric mean bias 

MRB Mean Relative Bias  

MRSE Mean Relative Square Error  

MSA Measure of Sampling Adequacy 

MSE Mean Square Error 

NAAQS National Ambient Air Quality Standards 

NAEI National Atmospheric Emissions Inventory 

NEDC New European Driving Cycle 

NGHGI National Greenhouse Gas Inventory 

NMSE Normalised Mean Square Error 

NSD Normalised Standard Deviation 

NTM National Transport Model 

PAF Principal Axis Factoring 

PCA Principal Component Analysis 

PHEV(s) Plug-in Hybrid Electric Vehicle(s) 

PITHEM Platform Integrated for Transport, Health and Emissions Modelling 

ppb Parts per billion 

ppmv Parts per million volume 

RMS Root Mean Square 

ROS Reactive Oxygen Species 

RSD Remote Sensing Detector 

SACTRA Standing Advisory Committee for Trunk Road Assessment 

SCR Selective Catalyst Reduction 

SEE Standard Error of the Estimate 

TTW Tank-To-Wheel 

USA United States of America 

VG Geometric mean variance 

VKT Vehicle Kilometres Travelled 
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Term Definition 

WTT Well-To-Tank 

WTW Well-To-Wheel 

ZEV(s) Zero Emissions Vehicle(s) 
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Mathematical Term Definition 

  Pollutant Concentration 

  Wind Speed 

  Emissions Rate 

   and    Horizontal ( ) and vertical dispersion ( ) coefficients 

LMO Monin-Obukhov Length 

   Friction velocity at the Earth’s surface 

  von Karman constant (0.4) 

  Acceleration due to gravity 

   
 Surface heat flux 

  Density of air 

   Specific heat capacity of air 

   Surface temperature 

   Source Strength 

  Height of receptor above ground 

  Lateral distance from plume centreline 

   Height of the plume above ground 

   Source length 

  Time to travel to source 

  Constant (0.3) 

  Constant (0.1) 

   and    
Number of heavy and light vehicles per second 

respectively 

     and      Speeds of the heavy and light vehicles respectively 

   and    
Areas covered by heavy and light duty vehicles 

respectively 

  Road width 

   
  

Square of the off-diagonal elements of the anti-image 

correlation matrix 

     
  

Square of the off-diagonal elements of the original 

correlations 

AIC Anti Image Correlation 

  Dry deposition 

     Wet deposition 

V  Deposition velocity 

   Terminal velocity 

  
  Deposition velocity as a function of diffusion 

  Washout Coefficient 

   Deposition height 

   Predicted concentration 

   Observed concentration 

Ta Averaging Time 

 ̅ Average of data set 
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Mathematical Term Definition 

N Number 

  Observational unit 

   Intercept 

β1 Slope 

  Dependent variable 

  Independent variable 

Е Residual 

 ̂ 
Value of   that is estimated by X using the regression 

equation 

  ̂ 
Value of      that is estimated by X using the regression 

equation 

  ̂ 
Value of β1 that is estimated by X using the regression 

equation 

        Sum of squares of the residuals 

 ̅ Mean of   
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APPENDIX A 

 

A.1 Road Transport’s Contribution to Global and Regional Air Pollution 

 

Developing regions of the world, such as those in Asia, have only recently experienced economic 

growth which has in turn led to increased development of road transport infrastructure and a rapid 

increase in the number and use of motor vehicles on the road (OEDC, 2010a). Consequently, pollutant 

emissions from road transport have increased in these regions. For example, road transport in India’s 

major cities is now estimated to account for 70% of total CO, 50% of total HC, 30-40% of total NOx, 

30% of total PM10 and 10% of total SO2 emissions (Sharma et al., 2005) and in Malaysia private cars 

are responsible for 75% of total CO and PM10 emissions and 76% to 79% of total SO2 and NO2 

emissions (Afroz et al., 2003).  In 2009, over 120, 000 km of new highway increased vehicle 

emissions in China and air quality in these areas significantly deteriorated (NBS, 2010). Similarly, in 

2009, 164 air quality monitoring sites in India recorded annual mean PM concentrations in excess of 

90µg/m
3
 (with the average for Delhi being 150 µg/m

3
) and 41 sites recorded annual average  NO2 

concentrations greater than 41µg/m
3
 (CPCB, 2011). A study by Azim et al. (2010) revealed that 

between 1997 and 2006 average PM10 pollution concentrations in Kuala Lumpur (Malaysia) were 

58µg/m
3 

and as a result failed to comply with EU air quality limit values. Similarly maximum annual 

mean NO2 concentrations were found to exceed EU limits having reached 67µg/m
3
. The exceedences 

observed by Azim et al. (2010) were attributed to heavy traffic flows and congested road networks. 

Similarly, in 2005 only 31% of major cities in China met national air quality standards (Smyth et al. 

2008) with annual average PM10 and NO2 concentrations of 121μg/m
3 

and 38μg/m
3 

respectively
 

recorded in the previous year (Kan et al., 2009). Moreover, it is well documented that China’s mega 

cities (Beijing, Shanghai and the PRD; Guangzhou, Shenzhen and Hong Kong) have some of the 

worst air pollution in the world (Kan et al., 2009; Chan and Yao, 2008; Smyth et al., 2008; World 

Bank, 2007).  

 

In contrast to developing regions, developed regions of the world, which by definition have already 

experienced substantial economic growth, have recently observed a general decline in emissions from 

road vehicles despite a continued increase in demand for road transport (EEA, 2011). This has 

primarily come about due to stringent legislation and the introduction of stringent emissions 

abatement technology (OEDC, 2010). However, these areas of the globe still have poor air quality as 

a result of road transport activities. For example, 119.5 million people in the USA in 2008 lived in 

counties that exceeded the national ambient air quality standards (NAAQS) for ozone (100 µg/m
3
 

hour average) and 36.9 million people lived in areas that exceeded standards for PM (15µg/m
3
 PM2.5 

annual average, 35µg/m
3
 PM2.5 24-hour average; 150µg/m

3
 PM10 24-hour average) (USEPA, 2008). In 
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the same year emissions from road transport contributed around 60%, 20%, 30% and 10% of total 

CO, VOCs, NOx and PM emissions in the USA (USEPA, 2008). In the EU, road transportation 

contributed to 39% of NOx and 36% of CO emissions in 2006 (EEA, 2008). In 2009 20% of the 

European urban population lived in areas where the EU 24-hour air quality limit value for PM10 was 

exceeded, 12% of the population were exposed to levels of NO2 that exceeded limit values and 

exceedences in NOx due to traffic hot spots were observed across Europe (EEA, 2011). Furthermore, 

Austria, Belgium, Denmark, Greece, France, Hungary and Slovakia all failed to comply with the EU 

air quality legislation for PM10 (40µg/m
3
 annual average) in 2008 (EC, 2009). In 2010 the UK road 

transport was responsible for 37%, 43% and 24% of total NOx, CO and PM10 emissions respectively 

(NAEI, 2012a). The UK is currently failing to meet EU air quality limit values for NO2 (40µg/m
3
 

annual average) and PM10 (EC, 2010; DEFRA, 2011).  

 

Common to both developed and developing countries is road traffic congestion. Congestion occurs 

when the demand for travel becomes higher than the road network capacity (Hassan et al., 2011). It 

results in traffic delay, queuing, stop-and-go conditions, low average-speeds and frequent acceleration 

and deceleration episodes (Stopher, 2004).  These traffic characteristics in turn result in greater fuel 

use and higher tailpipe emissions. Sjodin et al. (1998) found 4, 3 and 2 fold-increases in CO, HC and 

NOx during congestion conditions relative to non-congested conditions in Goteborg, Sweden. Zhang 

et al. (2011) documented emissions and fuel consumption under rush hour congestion to have 

increased by 11-31% compared to free flow conditions in Michigan (USA) and De Vliger et al. 

(2000) found increases in emissions and fuel consumption of between 10% and 200% during rush 

hour congestion relative to off-peak traffic conditions in Brussels and Antwerpen (Belgium).  In the 

UK in 2012 ~15% of all trips were delayed due to congestion (DfT, 2012a) and recently congestion 

has contributed to some of the most damaging pollution episodes ever recorded in the UK and in 

Europe in terms of loss of life (Anderson, 2009b; Voutard et al., 2007; Wichmann, 2004; Stedman, 

2004; Fischer et al., 2004; Vautard et al., 2005). Such health impacts as a result of congestion and 

poor air quality have come at great financial cost to governing bodies.  Estimates suggest that in 

Europe congestion every year results in financial losses equivalent to nearly 1% of the EU gross 

domestic product (GDP) (de Coensel et al., 2012) and in the UK excess delay results in financial 

penalties of £11 billion per year, carbon emissions impose a cost of £4 billion per year and health 

issues associated with poor air quality, noise from traffic and inactivity cost £25 billion (DfT, 2011a).  
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A.2 Road Transport’s Contribution to Global and Regional CO2 Emissions 

 

The amount of CO2 emitted from vehicle distance travelled is directly proportional to fuel 

consumption (Ong et al., 2011). Therefore, as global road VKT increased so have CO2 emissions 

from transport. Between 1995 and 2005 global levels of CO2 increased by 1.9 ppmv/year and in 2007 

two sectors, electricity generation and transport produced nearly two-thirds of the world’s CO2 

emissions (transport 21% and electricity and heat 41%) (IEA, 2009). In total 26% of global CO2 

emissions are sourced from transport (Chapman, 2007). In 2011 the top six emitters of CO2 were 

China (29%), US (16%), EU27 (11%), India (6%), the Russian Federation (5%) and Japan (4%) 

(Olivier et al., 2012). 

 

Historically, as with toxic air pollutants, global CO2 emissions from transport were dominated by 

developed regions of the world (Vallero, 2008). However, emerging economies are rapidly increasing 

their share of global CO2 emissions and in 2006 China replaced the USA as the highest emitter of CO2 

in the world accounting for 25% of total global carbon emissions (Pao et al., 2012). Collectively 

China and India are responsible for 80% of Asia’s CO2 emissions (Timilsina and Shrestha, 2009). 

Emissions of CO2 from China’s road transport sector increased from 66 Mt to 334 Mt between 1990 

to 2008 (ITF, 2011) and in India road transport CO2 increased from 27 Mt in 1980 to 105 Mt in 2000 

(Singh et al., 2008). Although the transport sector in these regions of the world has a low (~ 10%) 

contribution to total CO2 emissions relative to the combustion of fossil fuels for energy generation it 

is predicted that road transport’s share will rapidly increase as dramatic economic and population 

growth continue (Timilsina and Shrestha, 2009). For example, passenger traffic in India has been 

predicted to grow at 8% per year and freight has been estimated to increase by more than 5% by 2021 

relative to a 1990 base (Ramanathan and Parikh, 1999) and in China road transport has been predicted 

to become the dominant oil consumer by 2020 (He et al., 2005). Similar trends have been predicted 

for central and eastern European emerging economies with the demand for road transport estimated to 

double and CO2 emissions from transport estimated to increase by 70% by 2030 relative to a 2000 

base (Zachariadis and Kouvaritakis, 2003). 

 

Figure A.1 shows the estimated breakdown of freight versus non-freight road CO2 emissions in 

selected countries for 2005 (ITF, 2010a).  Whilst passenger cars (road) dominate CO2 emissions from 

road transport, in China the majority (44%) of CO2 emissions from road transport was attributed to 

heavy trucks. This was primarily due to the increased number of heavy goods vehicles (HGVs) and 

miles travelled because of the reopening of the border between China and Kazakhstan and increased 

trade with Russia (OEDC, 2010). In contrast, in the USA 74% of total CO2 emissions were from 

passenger cars and it was documented by the IEA (2009) that in 2007 the USA had the highest level 

of travel per capita in the world (more than 25, 000km/per person/year).  
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Figure A.1 Estimated breakdown of freight versus non-freight road CO2 emissions in selected 

countries for 2005 (ITF, 2010a) 

 

 

In developed regions of the world 81% of transport CO2 comes from road traffic (Chapman, 2007). In 

the US between 1990 and 2010 there was an 18% increase in CO2 emissions from transport and total 

CO2 emissions increased from 1486 million tonnes to 1746 million tonnes during the same time 

period (USEPA, 2012a). In the UK between 1990 and 2007 CO2 emissions reductions of 3.5%, 

11.5%, 15% and 17% were documented for the domestic, power generation, industry and agriculture 

and forestry sectors respectively (BERR, 2008). However, the transport sector did not mirror such 

reductions as emissions from transport increased by 18% between 1992 and 2004 (DEFRA, 2008). 

Moreover, emissions from privately owned vehicles were estimated to have increased by 4% between 

1990 and 2006 (Woodcock et al., 2009). Research has found UK CO2 emissions from road transport 

to show no real reduction in emissions between 1990 and 2010 despite an increase in the energy 

efficiency of vehicles (NAEI, 2012b). A slight decrease in CO2 emissions from road transport in the 

UK was observed between 2007 and 2008 as a result of a reduction in travel due to the economic 

crisis (ITF, 2010; IEA, 2009). However, despite the recent downturn in emissions traffic volume is 

predicted to increase. The road transport forecasts presented in Figure A.2 show the latest results from 

the Department for Transport’s National Transport Model (NTM) (DfT, 2012b), which produced 

forecasts of road traffic growth, vehicle tailpipe emissions, congestion and journey times up to 2035. 

By 2035 CO2 emissions will have declined by ~10% relative to 1995 levels. Substantial reductions in 

NOx (72%) and PM10 emissions (92%) have also been predicted by 2035. However, it was predicted 

that congestion will increase in line with traffic demand and the seconds per mile lost due to 
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congestion was forecast to increase from 19 seconds in 2010 to 32 seconds in 2035 (DfT, 2012a). This 

indicates an increase in air pollution in some heavily trafficked areas.  

 

Figure A.2 The historical and forecast traffic and emissions for England between 1995 and 2035 

produced by Department for Transport’s National Transport Model (DfT, 2012b) 
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APPENDIX B  

 

B.1 Health Impacts of Traffic Related Air Pollution 

 

It is well documented that a significantly large portion of traffic related air pollutants are harmful to 

human health (Anderson et al., 2009a; Balmes et al., 2010; Donaldson et al., 2005; Kangtip et al., 

2006; Novaes et al., 2010; OECD, 2010a; Prockop and Chichkova, 2007; Raub et al., 2000; 

Raub,1999; Tsai et al., 2010), with many pollutant species categorised as known carcinogens 

(Arayasiri et al., 2010; Burgaz et al., 2002; Guerra et al., 1995; Paz et al., 2009). Exposure to such 

pollutants can occur over a long period of time and cause severe health effects (see COMEAP, 2010, 

2009). Similarly, an abnormally high concentration of these air pollutants over a short period of time, 

often caused by low winds and temperature inversion, can cause illness and death. Such an occurrence 

is known as a pollution episode (USEPA, 2012b). The impacts of pollution episodes on human health 

in the UK and across Europe have been well documented (Anderson, 2009b; Voutard et al., 2007; 

Wichmann, 2004), with perhaps the most significant pollution episode in recent times documented 

during the summer heat wave in 2003. Stedman (2004) estimated that there were 2000 excess deaths 

in the UK caused by air pollution during the first two weeks of the 2003 June-August heat wave. 

Fischer et al. (2004) documents 1000 to 1400 excess deaths in the Netherlands and Vautard et al. 

(2005) estimated 3100 excess deaths in Italy during the same time period. More generally, in 2009 air 

pollution was estimated to reduce the life expectancy of every person in the UK by an average of 7-8 

months and as many as 50, 000 premature deaths are attributed to poor air quality annually (House of 

Commons, 2010).  

 

The primary health effects from exposure to toxic pollutants include the onset of lung disease, heart 

disease and reduced oxygen supply to the heart which can lead to heart attack (Table B.1). Children 

and those people with existing cardiovascular or respiratory disease (e.g. asthma) are often the most 

sensitive to toxic air pollution exposure (COMEAP, 2009; Li et al., 2003). In the UK and in Europe 

O3 and PM are the greatest concern with regards to human health as pollution episodes involving 

these pollutants are the most common (Anderson, 2009b; Voutard et al., 2007; Wichmann, 2004; 

Stedman, 2004; Fischer et al., 2004; Vautard et al., 2005). Furthermore, there is no known safe level 

of exposure to O3 and PM, although strong evidence suggests that the reduction of such pollutants will 

have health benefits (EC, 2005; COMEAP, 2009). Coughing, tightness of chest, nausea, difficulty 

breathing and decreased ability to exercise are all symptoms of O3 exposure (Bree et al., 1995). These 

symptoms come about due to decrements in lung function, airway inflammation and tissue damage 

and airway hyperresponsiveness (Inoue et al., 2008). In addition, O3 can form reactive oxygen species 

(ROS) in the body which can attack DNA and ultimately lead to lung cancer (Jorge et al., 2002). 
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From their research Cheng et al. (2003) concluded that ozone levels below current ambient standards 

may induce DNA breaks suggesting a greater risk to those exposed. 

 

Table B.1 Major Health Effects from Exposure to Toxic Air Pollutants (DEFRA, 2012a) 

Pollutants  Health effects 

Nitrogen Dioxide, 

Sulphur Dioxide, Ozone 

These gases irritate the airways of the lungs, increasing the symptoms of 

those suffering from lung diseases. 

Particles  

Fine particles can be carried deep into the lungs where they can cause 

inflammation and a worsening of heart and lung diseases. 

Carbon Monoxide  

 

This gas prevents the uptake of oxygen by the blood. This can lead to a 

significant reduction in the supply of oxygen to the heart, particularly in 

people suffering from heart disease.  

 

Particles can cause severe health effects, including respiratory disease, cardiovascular disease and 

lung cancer (Anderson et al., 2009; Sanchez-Perez et al., 2009; Gilli et al., 2007; Palli et al., 2008; 

Wise et al., 2006; Brown et al., 2005). It has been identified that the finer fraction of PM, PM2.5 shows 

the greatest association with mortality (COMEAP, 2010, 2009). Exposure to high concentrations of 

PM can cause lung inflammation, an abnormal heart rate, reduced ability to remove clots, 

degeneration of the arteries, the formation of blood clots, reduced blood supply and ultimately death 

or hospitalisation (Donaldson et al., 2005). Epidemiological studies indicate that acute exposure to 

PM increases the number of hospital admissions for arrhythmia, myocardial infarction and congestive 

heart failure (Rhoden et al., 2005). In addition, ROS are induced by PM and can cause an allergic 

inflammation and trigger an asthmatic episode (Li et al., 2003). 
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APPENDIX C 

 

C.1 Typical Characteristics of Emissions Model Validation Techniques 

 

Table C.1 Typical characteristics of emissions model validation techniques (Smit et al., 2010) 

 
aTraffic volume, speeds, fleet composition 
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APPENDIX D 

 

D.1 Data Provided by Leicester City Council 

 

Figure D.1 Location of point sources within the Leicester City Council (LCC) Local Authority 

(LA)Area 

 

Point source 

LCC LA area 

Urban infrastructure 

Urban area 
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Figure D.2 Location of area sources within the Leicester City Council (LCC) Local Authority 

(LA)Area 

 

*Note area sources overlap but are not double counted as emissions included in one are not included 

in the other.  

 

Figure D.3 Month by month profile of Leicester’s traffic flow 
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LCC LA area 

Area source 
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Table D.1 Traffic data output from SATURN 

Variable Description Units 

Link ID* Unique Identifier for the road link N/A 

No. Lanes* Number of lanes on link N/A 

Total Total traffic flow  PCU/h 

Lights Light duty vehicle traffic flow PCU/h 

Heavies Heavy duty vehicle traffic flow  PCU/h 

Bus Bus vehicle traffic flow  PCU/h 

Cruise Speed Speed from stop line to stop line allowing for speeds to 

decrease according to speed-flow delays 
km/h 

Free Flow Speed 
Speed based on free flow conditions; value does not 

comprise a change in speed to account for approaching a 

stop line 

km/h 

Q Average Average link vehicle queue PCU/h 

Junction Delay Link junction delay  s 

QUE FLOW 
Average difference between demand flow to arrive at the 

downstream stop-line and 'actual' flow which arrives at the 

stop line 

PCU/h 

Green T 
Average time that traffic signals remain on green over period 

s 

Bus NEAR Demand bus flows in a near side bus lane PCU/h 

Bus MID Bus flows on 'middle' link as opposed to bus lane PCU/h 

Bus OFF Demand bus flows in a off side bus lane PCU/h 

Bus Q Average link bus queue PCU/h 

Bus EN U Bus entry flow which enters link upstream PCU/h 

StopL D Link delay at stop-line s 

Network Speed 
link speed based on simulation travel time which takes into 

consideration transient delays, queuing delays and speed-

flow delays 

km/h 

*Variables from SATURN not output for AM (08.00h), inter-peak (average hour between 10.00h to 

15.00h) or PM (17.00h) periods. All other variables were output for these three periods. 
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APPENDIX E 

 

E.1 Diurnal Traffic Profiles 

 

Figure E.1 Five diurnal profiles developed based on factor and cluster analysis in Chapter 5 
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APPENDIX F 

F.1 Time Series Analysis of Observed and Predicted Pollutant Concentrations 

 

Figure F.1(a) Time series graph of predicted and observed NO2 concentrations (µg/m
3
) and Figure F.1(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

Abbey Lane from 1
st
 January 2005 

 

 
 

Figure F.2(a) Time series graph of predicted and observed NO2 concentrations (µg/m
3
) and Figure F.2(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

Imperial Avenue from 1
st
 January 2005 

 

 

(a) (b) 

(a) (b) 
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Figure F.3(a) Time series graph of predicted and observed NO2 concentrations (µg/m
3
) and Figure F.3(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

Melton Road from 1
st
 January 2005 

 

 
 

 

 

Figure F.4 Time series graph of predicted and observed NO2 concentrations (µg/m
3
) and Figure F.4(b) observed vs predicted NO2 concentrations (µg/m

3
) at 

Uppingham Road from 1
st
 January 2005 

 

 
 

 

 

(a) (b) 

(a) (b) 
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Figure F.5(a) Time series of background and predicted PM10 concentrations (µg/m
3
); Figure F.5(b) predcited vs background PM10 concentrations; Figure F.5(c) 

observed and predicted PM10 concentrations (µg/m
3
) and; Figure F.5(d) observed vs predicted PM10 concentrations at Abbey Lane from 1

st
 January 2005 

 
 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure F.6(a) Time series of background and predicted PM10 concentrations (µg/m
3
); Figure F.6(b) predcited vs background PM10 concentrations; Figure F.6(c) 

observed and predicted PM10 concentrations (µg/m
3
) and; Figure F.6(d) observed vs predicted PM10 concentrations at the New Walk Centre (NWC) from 1

st
 

January 2005 

 

 
 

 

 
 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure F.7(a) Time series of background and predicted PM10 concentrations (µg/m
3
); Figure F.7(b) predcited vs background PM10 concentrations; Figure F.7(c) 

observed and predicted PM10 concentrations (µg/m
3
) and; Figure F.7(d) observed vs predicted PM10 concentrations at Glenhills Way from 1

st
 January 2005 

 

 

 

 

(a) (b) 

(c) (d) 
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APPENDIX G 

G.1 Box Plot Analysis of Pollutant Concentrations by Wind Direction, Wind Speed and Time of Day 

 

Figure G.1 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at Abbey Lane
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Figure G.2 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at Glenhills Way 
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Figure G.3 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at Imperial Avenue 
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Figure G.4 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at Melton Road 

 

 

7>65432<1

18

16

14

12

10

8

6

4

2

0

Wind Speed (m/s)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2

1

0.5

315>270<315225<270180<225135<18090<13545<900<45

18

16

14

12

10

8

6

4

2

0

Wind Direction (degrees)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2

1

0.5

23222120191817161514131211109876543210

18

16

14

12

10

8

6

4

2

0

Time (hours)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2

1

0.5



 
 

274 
 

Figure G.5 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at the New Walk Centre (NWC) 

 

 

7>65432<1

50

40

30

20

10

0

Wind Speed (m/s)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2
10.5

315>270<315225<270180<225135<18090<13545<900<45

50

40

30

20

10

0

Wind Direction (degrees)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2
10.5

23222120191817161514131211109876543210

50

40

30

20

10

0

Time (hours)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2
10.5



 
 

275 
 

Figure G.6 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at Bassett Street 
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Figure G.7 Ratio of predicted to observed NO2 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at Uppingham Road  
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Figure G.8 Ratio of predicted to observed PM10 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at the New Walk Centre (NWC) 
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Figure G.9 Ratio of predicted to observed PM10 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at the Abbey Lane 
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Figure G.10 Ratio of predicted to observed PM10 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at the Glenhills Way 
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Figure G.11 Ratio of predicted to observed PM10 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at the Imperial Avenue 

 

 

7>65432<1

18

16

14

12

10

8

6

4

2

0

Wind Speed (m/s)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2

1

0.5

315>270<315225<270180<225135<18090<13545<900<45

18

16

14

12

10

8

6

4

2

0

Wind Direction (degrees)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2

1

0.5

23222120191817161514131211109876543210

18

16

14

12

10

8

6

4

2

0

Time (hours)

R
at

io
 o

f 
P

re
d
ic

te
d
 t

o
 O

b
se

rv
ed

2

1

0.5



 
 

281 
 

Figure G.12 Ratio of predicted to observed PM10 concentrations by wind direction (degrees), wind 

speed (m/s) and time of day (hours) at the Melton Road 
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APPENDIX H 

 

H.1 Emissions and Locations of the Five Road Classifications 

 

Table H.1 Base-case emissions (t) per road classification for the entire Leicester road network 

 

Road 

Classification 

NOx  

(t) 

CO2  

(t) 

PM10  

(t)  

f-NO2 

(t) 

1 95 25,334 5 11 

2 261 69,269 16 29 

3 76 15,350 4 9 

4 130 35,075 7 15 

5 313 76,536 18 34 

Total 875 221,563 49 99 

 

 

Figure H.1 Map of Leicester road network, road classifications and air quality management area 
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