

Efficient Architectures for Multidimensional

Discrete Transforms in Image and Video Processing

Applications

By

Saad Mohammed Saleh Al-Azawi

School of Electrical and Electronic Engineering

A thesis submitted for the degree of

Doctor of Philosophy

__

Faculty of Science, Agriculture and Engineering

Newcastle University, June 2013

__

ii

Declaration

I declare that this thesis is my own work and it has not been previously submitted, either

by me or by anyone else, for a degree or diploma at any educational institute, school or

university. To the best of my knowledge, this thesis does not contain any previously

published work, except where another person’s work used has been cited and included

in the list of references.

Saad Mohammed Saleh Al-Azawi

iii

Supervisor’s Certificate

This is to certify that the entitled thesis “Efficient Architectures for Multidimensional

Discrete Transforms in Image and Video Processing Applications” has been

prepared under my supervision at the school of Electrical and Electronic Engineering

/Newcastle University for the degree of PhD in Electronic Engineering.

Signature

Supervisor: Professor Said Boussakta

Date: June 2013

Signature

Student: Saad Mohammed Saleh Al-Azawi

Date: June 2013

iv

To My Beloved Family

v

Acknowledgements

In the name of Allah, the Beneficent and the Merciful. Praise and Gratitude be to Allah

for giving me strength and guidance, so that this thesis can be finished accordingly.

I would like to thank my supervisors: Professor Said Boussakta and Professor Alex

Yakovlev. Please let me express my deep sense of gratitude and appreciation to both of

you for the knowledge, guidance and unconditional support you have given me. I wish

you all the best and further success and achievements in your life.

My deepest gratitude goes to my dearest parents, for their immense patience and

unconditional support and encouragement throughout my life. My brothers, sisters and

their daughters and sons: thank you very much for your prayers and encouragements.

My friends and colleagues: thank you very much for what you have done for me. I

thank you all for the companionship that has made this journey much easier. In fact, I do

not need to list your names because I am sure that you know who you are.

I would like to express my sincere gratitude to Dr. Omar Nibouche for the very useful

feedback on my research work. Ms. Sharon Pointer, thank you very much for your

useful English language advice and comments. Also, I would like to thank all the

Electrical and Electronic Engineering School and Newcastle University staff for their

support during my study.

Finally, I also thank the Iraqi Ministry of Higher Education and Scientific Research, the

Iraqi Cultural Attaché in London, Diyala University and the College of

Engineering/Diyala University for supporting me during my study abroad.

vi

Abstract

This thesis introduces new image compression algorithms, their related architectures

and data transforms architectures. The proposed architectures consider the current

hardware architectures concerns, such as power consumption, hardware usage, memory

requirement, computation time and output accuracy. These concerns and problems are

crucial in multidimensional image and video processing applications.

This research is divided into three image and video processing related topics: low

complexity non-transform-based image compression algorithms and their architectures,

architectures for multidimensional Discrete Cosine Transform (DCT); and architectures

for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures

are parameterised in terms of wordlength, pipelining and input data size. Taking such

parameterisation into account, efficient non-transform based and low complexity image

compression algorithms for better rate distortion performance are proposed. The

proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm,

and they achieve a controllable output bit rate and accuracy by considering the intensity

variation of each image block. Their high speed, low hardware usage and low power

consumption architectures are also introduced and implemented on Xilinx devices.

Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-

D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been

proposed. These architectures attain fast and accurate 3-D DCT computation and

provide high processing speed and power consumption reduction. In addition, this

research also introduces two low hardware usage 3-D DCT VR architectures. Such

architectures perform the computation of butterfly and post addition stages without

using block memory for data transposition, which in turn reduces the hardware usage

and improves the performance of the proposed architectures.

Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-

D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced.

The presented architectures represent an efficient multiplierless and low memory

requirement CDF 9/7 DWT computation scheme using the separable approach.

Furthermore, the proposed architectures have been implemented and tested using Xilinx

FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can

be achieved in the proposed AQC-based architectures. Further, a speed of up to 330

MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT

VR architectures. In addition, in the proposed 3-D DWT architecture, the computation

time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms. Also, a power

consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is

achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite

can be attained.

vii

Contents

List of Figures .. xii

List of Tables .. xvi

Abbreviations ... xix

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.2 Digital Image and Video Signals .. 1

1.3 An Overview of Image and Video Compression Algorithms 2

1.4 Research Motivation ... 3

1.5 Research Objectives .. 3

1.6 Contributions ... 4

1.7 Thesis Outline ... 5

1.8 List of Publications ... 6

Chapter 2: Preliminary Concepts and Related Work .. 7

2.1 Introduction ... 7

2.2 Image and Video Compression Algorithms .. 7

2.2.1 Adaptive Quantisation Coding (AQC) .. 8

2.2.2 Discrete Cosine Transform (DCT) .. 9

2.2.2.1 DCT-Based Compression Systems .. 11

2.2.2.2 3-D DCT Applications ... 13

2.2.3 Discrete Wavelet Transform (DWT) .. 13

2.2.3.1 DWT Decomposition Operations .. 14

2.2.3.2 DWT Applications ... 18

2.3 Rate Distortion Measurements .. 18

2.4 Related work ... 19

2.4.1 AQC Related Work ... 19

2.4.2 DCT Related Work ... 20

2.4.3 DWT Related Work .. 22

2.5 Field Programmable Gate Array (FPGA) ... 24

viii

2.6 Xilinx FPGA Devices’ Main Components ... 25

2.6.1 Configurable Logic Blocks (CLBs) .. 26

2.6.2 Block RAMs ... 27

2.6.3 Distributed RAM (Available in SLICEM only).. 28

2.6.4 DSP Slices ... 28

2.6.5 Specifications of FPGA Devices Used in This Thesis 28

2.7 Xilinx FPGA Design Tools ... 29

2.7.1 Xilinx System Generator for DSP ... 30

2.7.2 Vivado High Level Synthesis Design Suite (Vivado HLS) 33

2.8 Architectures Design Procedure .. 33

2.9 Summary ... 36

Chapter 3: Low Complexity Block-Based Image Compression Systems 37

3.1 Introduction ... 37

3.2 Background ... 38

3.2.1 Block Truncation Coding (BTC) .. 38

3.2.2 Adaptive Quantisation Coding (AQC) .. 40

3.3 Intensity Based Adaptive Quantisation Coding (IBAQC) 41

3.3.1 Algorithm1 .. 42

3.3.2 Algorithm2 .. 44

3.4 The Proposed IBAQC Architectures ... 46

3.4.1 Model1 .. 47

3.4.1.1 Minimum, Maximum and Mean Computation Units 47

3.4.1.2 Intensity Check Unit .. 49

3.4.1.3 AQC Computation Unit ... 50

3.4.2 Model2 .. 51

3.4.3 AQC Architecture ... 52

3.5 Performance Evaluation .. 53

3.5.1 Performance of the Proposed Algorithms ... 53

ix

3.5.1.1 Rate Distortion Performance of Algorithm1 53

3.5.1.2 Rate Distortion Performance of Algorithm2 55

3.5.1.3 Rate Distortion Performance Comparison ... 57

3.5.2 Performance of the Proposed Architectures .. 59

3.5.2.1 Hardware Resources .. 59

3.5.2.2 Operating Frequencies and Power Consumption............................... 60

3.5.2.3 The Validation of the Proposed Architectures 61

3.6 Summary ... 65

Chapter 4: High Speed Multidimensional DCT Architectures 66

4.1 Introduction ... 66

4.2 Fast Algorithms for DCT Computation .. 67

4.2.1 The 1-D DCT Radix-2 Algorithm ... 67

4.2.2 The 3-D DCT VR Algorithm .. 68

4.3 3-D DCT RCF Architecture (RCF Architecture) .. 72

4.4 The Proposed 3-D DCT VR Architecture ... 78

4.4.1 The 3-D Reordering Stage .. 79

4.4.1.1 Memory Writing Operation ... 80

4.4.1.2 Memory Reading Operation .. 81

4.4.2 Butterfly Stages ... 81

4.4.3 Post Addition Stages ... 85

4.5 Results and Discussion .. 86

4.5.1 Rate Distortion Performance ... 87

4.5.2 Hardware Usage .. 89

4.5.3 Speed and Power Consumption .. 90

4.6 Summary ... 92

Chapter 5: Area-Efficient 3-D DCT Architectures ... 93

5.1 Introduction ... 93

5.2 The 3-D DCT VR Architectures ... 94

x

5.2.1 Reordering Stage ... 95

5.3 Single Path Data Flow 3-D DCT Architecture; Model1 97

5.3.1 Butterfly Stages ... 97

5.3.2 Post Addition Stages ... 101

5.3.3 3-D Bit Reverse Order Stage (3-D BRO Stage) 103

5.4 Dual Path Data Flow 3-D DCT Architecture; Model2 106

5.4.1 Butterfly Stages ... 106

5.4.2 Post Addition Stages ... 110

5.4.3 3-D Bit Reverse Order Stage (3-D BRO Stage) 110

5.5 Performance Evaluation .. 111

5.5.1 Rate Distortion Performance ... 111

5.5.2 Hardware usage ... 114

5.5.3 Dynamic Power Consumption .. 115

5.5.4 Comparing with Other Architectures .. 115

5.6 Summary ... 117

Chapter 6: Parallel and Multiplierless Multidimensional CDF 9/7 DWT Architectures

 ... 118

6.1 Introduction ... 118

6.2 The CDF 9/7 1-D DWT Lifting Scheme... 119

6.3 The Proposed Lifting-based CDF 9/7 DWT Computation Scheme.............. 121

6.4 The Proposed Lifting-based 1-D DWT Architecture 124

6.5 The Proposed Lifting-based 2-D DWT Parallel Architecture....................... 127

6.6 The Proposed Lifting-based 3-D DWT Parallel Architecture....................... 130

6.6.1 Row-Column Units (RCUs) .. 131

6.6.2 Frame Units (FUs) .. 131

6.7 Results and Discussion .. 132

6.7.1 The 2-D DWT Architecture Performance ... 133

6.7.1.1 The Rate Distortion Performance .. 133

6.7.1.2 Power Consumption ... 134

xi

6.7.1.3 Hardware Usage ... 134

6.7.2 The 3-D DWT Architecture Performance ... 135

6.7.2.1 Rate Distortion Performance ... 135

6.7.2.2 Power Consumption Test ... 137

6.7.2.3 Hardware Usage ... 137

6.7.3 Comparison with Other Architectures .. 138

6.8 Summary ... 141

Chapter 7: Conclusions and Future Work ... 143

7.1 Conclusions ... 143

7.2 Future Work .. 145

Appendices .. 147

Appendix A: Brief Description of Xilinx FPGA Families.. 147

Appendix B : Pre-Processing Matlab Codes for IBAQC Model1 and Model2

Architectures .. 149

Appendix C: Memory Writing/Reading Addresses of the proposed 3-D DCT VR

Architecture .. 153

Appendix D : Pre-Processing Matlab Codes for Chapter 4; Model1 and Model2

Architectures .. 157

Appendix E : Pre-Processing Matlab Codes for Chapter 5; Model1 and Model2

Architectures .. 162

Appendix F : The 2-D and 3-D DWT Architectures Controllers 167

Appendix G : Pre-Processing Matlab Codes for Chapter 6; 2-D DWT and 3-D DWT

Architectures ... 171

References ... 175

xii

List of Figures

Figure ‎2.1: Basic block diagram of typical transform-based compression /

decompression system [36]. .. 8

Figure ‎2.2: DCT based image compression/decompression system [36]. 12

Figure ‎2.3: Typical two levels 1-D DWT: a. Decomposition b. Reconstruction 16

Figure ‎2.4: One level 2-D and 3-D DWT decomposition. .. 16

Figure ‎2.5: Lifting scheme (a) decomposition (b) reconstruction................................... 17

Figure 2.6: Zynq-7000 system architecture [117]. .. 25

Figure ‎2.7: Basic block diagram of an FPGA device architecture [126]. 26

Figure ‎2.8: CLB block diagram [120]. .. 27

Figure ‎2.9: Selected DSP blocks from system generator blockset.................................. 32

Figure ‎2.10: Architectures design procedure. ... 35

Figure ‎2.11: System Generator design flow [132]. ... 36

Figure ‎3.1: The AMBTC algorithm computation procedure. ... 39

Figure ‎3.2: The AQC algorithm computation procedure. ... 40

Figure ‎3.3: Block diagram of Algorithm1. ... 42

Figure ‎3.4: The Computation procedure of Algorithm1. .. 43

Figure ‎3.5: Block diagram of Algorithm2. ... 45

Figure ‎3.6: The Computation procedure of Algorithm2. .. 46

Figure ‎3.7: IBAQC Model1 architecture. ... 47

Figure ‎3.8: Minimum and Maximum computation units. ... 48

Figure ‎3.9: Controller signal (Ctrl1). .. 48

Figure ‎3.10: Intensity check unit of Model1. .. 49

Figure ‎3.11: AQC computation unit of Model1. ... 50

Figure ‎3.12: IBAQC Model2 architecture. ... 51

Figure ‎3.13: AQC computation unit of Model2. ... 51

xiii

Figure ‎3.14: The AQC architecture. .. 52

Figure ‎3.15: Test images. .. 53

Figure ‎3.16: Performance of the Lena image obtained using Algorithm1 for a block size

of 4×4-pixel, different thresholds and 32, 16 and 8 quantisation levels. 57

Figure ‎3.17: Performance of the Lena image obtained using Algorithm2 for block size

of 4×4-pixel, different thresholds and 32, 16 and 8 quantisation levels. 58

Figure ‎3.18: Dynamic power consumption of the AQC and the proposed architectures

using 4×4 and 8×8-pixel block sizes. .. 61

Figure ‎3.19: The Lena and baboon images computed using Algorithm1 and Algorithm2

architectures with a 4×4-pixel block size and 32 quantisation levels. 63

Figure ‎3.20: The Lena and baboon images computed using Model1 and Model2

architectures with a 4×4-pixel block size and 32 quantisation levels. 64

Figure ‎4.1: Block diagram of 1-D DCT Radix-2 algorithm.. 67

Figure ‎4.2: Block diagram of the whole RCF architecture. .. 72

Figure ‎4.3: Block diagram of N-point 1-D DCT architecture. .. 73

Figure ‎4.4: Block diagram of 8-point butterfly stage (three sub-stages). 74

Figure ‎4.5: Block diagram of 8-point post addition stage. .. 75

Figure ‎4.6: TMem1 writing /reading control unit of the first 1-D DCT stage. 75

Figure ‎4.7: Block diagrams of the second and third memory writing/reading control

units (for TMem2 and TMem3). ... 77

Figure ‎4.8: Block diagram of 3-D DCT VR architecture.. 78

Figure ‎4.9: The timing sequence of the proposed 3-D DCT VR architecture. 79

Figure ‎4.10: Block diagram of the reordering unit. .. 79

Figure ‎4.11: MRE circuits. .. 81

Figure ‎4.12: Block diagrams of the butterfly stages and, the MRC and BRO address

controllers. ... 82

Figure ‎4.13: Block diagram for single butterfly stage. ... 83

Figure ‎4.14: Eight-point butterfly structure. ... 83

Figure ‎4.15: The twiddle factor multiplication circuit for single butterfly stage. 83

xiv

Figure ‎4.16: Memory Writing Controller (MWC) block diagram. 84

Figure ‎4.17: The block diagram of the post addition stages. .. 85

Figure ‎4.18: Eight points addition unit of each post addition stage. 86

Figure ‎4.19: Test MRI images and video sequences (first frame from each sequence). 86

Figure ‎5.1: Block diagram of the 3-D DCT VR algorithm. .. 94

Figure ‎5.2: An 8×8×8-pixel data cubes. .. 94

Figure ‎5.3: Reordering circuit and memory content during reordering operation. 96

Figure ‎5.4: Block diagrams of a. Model1 and b. Butterfly architectures. 98

Figure ‎5.5: Single butterfly unit of Model1. ... 98

Figure ‎5.6: Twiddle factor generator circuit of the first butterfly stage.......................... 99

Figure ‎5.7: Twiddle factor generator circuit of BTFL2. ... 100

Figure ‎5.8: Last sub-stage of BTFL3. ... 101

Figure ‎5.9: Twiddle factor generator circuit of BTFL3. ... 101

Figure ‎5.10: Post addition stages and their controller. .. 102

Figure ‎5.11: The 3-D BRO stage. ... 104

Figure ‎5.12: a. Block diagram of the proposed dual path data flow 3-D DCT

architecture; Model2 ... 106

Figure ‎5.13: The architecture of single butterfly stage of Model2 106

Figure ‎5.14: Butterfly sub-stages and flipping stage in Model2. 107

Figure ‎5.15: Twiddle factors generators for butterfly stages. 109

Figure ‎5.16: Post addition stages. ... 110

Figure ‎5.17: Third post addition stage (Stage3). ... 110

Figure ‎5.18: The original and reconstructed MRI2 using Model1 and Model2

architectures for different wordlengths. .. 113

Figure ‎5.19: Dynamic power consumption of the proposed architectures. 115

Figure ‎6.1: The CDF 9/7 1-D DWT [28]. ... 121

Figure ‎6.2: The proposed CDF 9/7 computation scheme for the first two data blocks. 122

Figure ‎6.3: Single unit (SU) of the CDF 9/7 1-D DWT architecture. 125

xv

Figure ‎6.4: The proposed shift-add multipliers. .. 127

Figure ‎6.5 : The proposed 2-D DWT parallel architecture. .. 128

Figure ‎6.6: Four 4×4-sample data blocks. ... 128

Figure ‎6.7: Block diagram of the proposed 3-D DWT lifting-based architecture. 130

Figure ‎6.8: Input bands to the frame units. ... 131

Figure ‎6.9: Power consumption for various operating frequencies using (11, 5)-bit

wordlength. ... 134

Figure ‎6.10: Dynamic power consumption (mW) for the proposed 3-D DWT

architecture using various operating frequencies using (11, 5)-bit wordlength. 137

Figure ‎6.11: Power consumption (mW) of the proposed 3-D DWT and other

architectures using 40 MHz clock frequency, (11, 5)-bit wordlength and 144×176 frame

size... 141

Figure A.1: Series 7 Xilinx FPGA families performance comparison 148

Figure F.1: The 2-D DWT controller .. 168

Figure F.2: Down sampled 2-D DWT controller signals .. 168

Figure F.3: Controller block diagram of the proposed 3-D DWT architecture 169

Figure F.4: The main signals of the 3-D DWT controller down sampled by 4 170

xvi

List of Tables

Table ‎2.1: The arithmetic operations of the original RCF 3-D DCT, RCF Radix-2 and

VR algorithms [54, 56, 57]. .. 11

Table 2.2: CDF 9/7 and Le Gall 5/3 analysis filters coefficients [32, 74]. 14

Table ‎2.3: The arithmetic operations of the lifting-based 1-D, 2-D and 3-D CDF 9/7

wavelet filter.. 18

Table ‎2.4: Hardware resources in single CLB for Virtex 5 and Virtex 6 [120, 121]. 27

Table 2.5: Summary of XC5VLX50T and XC6VLX760 Xilinx FPGA devices

characteristics. ... 29

Table 3.1: Number of bits required for each block type for 4×4-pixel blocks using

different number of quantisation levels... 44

Table 3.2: Computational complexities of the AQC, Model1 and Model2 architectures.

 ... 52

Table ‎3.3: PSNR and bit rate computed using Algorithm1 for different block sizes,

quantisation levels and a low threshold (12). .. 54

Table ‎3.4: PSNR and bit rate computed using Algorithm1 for different block sizes,

quantisation levels and a high threshold (400). ... 54

Table ‎3.5: PSNR and bit rate computed using Algorithm2 for different block sizes,

quantisation levels and a low threshold (0.4). ... 56

Table ‎3.6: PSNR and bit rate computed using Algorithm2 for different block sizes,

quantisation levels and a high threshold (2). ... 56

Table ‎3.7: Performance comparison between the AQC, Algorithm1 and Algorithm2 for

Lena image. ... 58

Table 3.8: Hardware usage of the AQC and the proposed architectures. 59

Table 3.9: Maximum operating frequencies, initial latencies and computation time for

the AQC and proposed architectures using different block sizes. 60

Table 3.10: The average bit rate and PSNR of the proposed algorithms and their

corresponding architectures. ... 62

Table ‎4.1: The first eight addresses (R_adds1) for 8×8-point block............................... 76

xvii

Table ‎4.2: Content of ROMs M1 and M2 for the reordering operation (TMem1 Writing

Operation)
(1)

. .. 80

Table ‎4.3: The PSNR and RMSE between original and reconstructed input sequence

and the maximum absolute error in 3-D DCT coefficients for the first eight input

frames. ... 88

Table ‎4.4: Comparison between hardware usages for different 3-D DCT architectures 89

Table ‎4.5: Comparison between percentage utilisation rates of the proposed

architectures using 21, 18 and 16-bit wordlengths. .. 90

Table ‎4.6: The power consumption and computation speed of the proposed architectures

using different clock frequencies and 21, 18 and 16-bit wordlengths. 91

Table ‎4.7: Comparison of the normalised operating frequencies for different 3-D DCT

architectures. ... 92

Table ‎5.1: The memory write/read block locations for reordering stage (block shuffling)

 ... 97

Table ‎5.2: The memory write/read block locations for the 3-D BRO stage (shuffling

between data blocks) ... 105

Table ‎5.3: The PSNR and RMSE between the original and reconstructed 8 frames and

the maximum absolute error between the 3-D DCT coefficients computed using

architectures output and Matlab. ... 111

Table ‎5.4: Percentage of hardware usages, maximum operating frequencies and

computation times of both models using different wordlengths. 114

Table ‎5.5: Maximum clock frequency of the proposed and similar architectures. 116

Table ‎5.6: Hardware usage comparison between the 3-D DCT architectures. 116

Table ‎6.1: The difference between the constant and proposed shift-add multipliers.... 126

Table ‎6.2: The PSNR and the maximum absolute error for the proposed 2-D DWT

architecture using 18-bit and 16-bit WL. .. 133

Table ‎6.3: The hardware usage, maximum operating frequencies and computation time

for the proposed 2-D DWT architecture using 144×176 and 288×352-pixel at (11, 5) bit

wordlength. ... 135

Table ‎6.4: The PSNR, RMSE and average of the maximum error for 3-D DWT

coefficients using the proposed architectures for WL=18 (11, 7)-bit. 136

xviii

Table ‎6.5: The PSNR, RMSE and average of the maximum error for 3-D DWT

coefficients using the proposed architectures for WL=16 (11, 5). 136

Table ‎6.6: The hardware usage, maximum operating frequencies, throughput and

computation time for the proposed 3-D DWT architecture using 144×176 and 256×256

image sizes at (11, 5) bit wordlength. ... 138

Table ‎6.7: Comparison with existing 3-D DWT architectures for an input sequence

of -frames each with pixels * .. 139

Table ‎6.8: Comparison between the proposed 3-D DWT and [27, 30, 109] architectures

for an input frame size of 144×176-pixel for 6VLX760FF1760-2 Virtex 6 Xilinx FPGA

Device ... 140

Table A.1: Brief description of Xilinx FPGA families introduced since 2003 147

Table A.2: List of Xilinx FPGA families comparison .. 148

Table C.1: Content of M1 and M2 for memory reading addresses for TMem1 (node P1)

 .. 154

Table C.2: Content of M1 and M2 for memory reading addresses for TMem2 (node P3)

 .. 154

Table C.3: Content of M1 and M2 for memory reading addresses for TMem4 (node P6)

 .. 155

xix

Abbreviations

Accum Accumulators

Adds_Generator Address Generator

AMBTC Absolute Moment Block Truncation Coding

AQC Adaptive Quantisation Coding

ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuits

bior biorthogonal wavelet

bpp bit per pixel

BRO Bit Reverse Order operation

BTC Block Truncation Coding

BTFL Butterfly

CDF 9/7 Cohen-Daubechies-Feauveau (9/7)

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductors

CMux Column Multiplexer

Comp Comparator

 Computation Time

CT Cosine transform

Ctrl Controller signal

CU Column unit

Daub-4 Daubechies 4-tap filter or CDF 5/3 or LeGall5/3

DCT Discrete Cosine Transform

D-FF D-Flip Flop

DFT Discrete Fourier Transform

DSP Digital Signal Processing

xx

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimized Truncation

EDF Error Diffusion

EDK Embedded Development Kit

EZW Embedded Zerotree Wavelet

FF Flip Flop

FIFO First In First Out

FIR Finite Impulse Response

FMux Frame Multiplexer

FPGA Field programmable Gate Arrays

FT Fourier Transform

FU Frame Unit

FWL Floating Wordlength (mantissa part)

GOF Group Of Frames

HLS High Level Synthesis

HPF High Pass Filter

HVS Human Visual System

I/O Input/Output

IBAQC Intensity Based Adaptive Quantisation Coding

IDCT Inverse Discrete Cosine Transform

IHPF Inverse High Pass Filter

ILPF Inverse Low Pass Filter

IP Intellectual Property

ISE Integrated Software Environment

IWL Integer Wordlength

JPEG Joint Photographic Expert Group

Kb Kilo bits

xxi

LCD Liquid Crystal Display

LE Logic Element

LPF Low Pass Filter

LSB Least Significant Bit

LUT Look Up Table

MA Multiplier-Adder

Mem_Enb Memory Enabling

MF Maximum operating Frequency

MHz Mega Hertz

ms millie second

mW millie Watt

MPEG Moving Picture Expert Group

MRC Memory Reading Controller

MRE Memory Reading Enable

MRI Magnetic Resonance Imaging

MSB Most Significant Bit

Mult Multiplier

Mux Multiplexer

MWC Memory Writing Controller

NormF Normalisation Factor

PSNR Peak Signal to Noise Ratio

R_adds Reading address

R_enb Reading enable

RAM Random Access Memory

RC Row Column

RCF Row Column Frame

RCU Row Column Unit

xxii

RISC Reduced Instruction Set Computing

RMSE Root Mean Square Error

ROM Read Only Memory

RTL Register Transfer Level

RU Row Unit

SDP Slice Delay product

SelC Column Selector

SelF Frame Selector

SelR Row Selector

SPECK Set Partitioned Embedded BloCk

SPIHT Set Partitioning In Hierarchical Trees

SR Shift Register

SRL Shift Register LUT

SU Single Unit

SubStg Sub Stage

TF Twiddle Factor

TMem Transpose memory

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

VR Vector Radix

W_adds Writing address

W_enb Writing enable

WL WordLength

YCbCr Luminance-Chrominance colour space

1

Chapter 1: Introduction

1.1 Introduction

Transforms, such as the Fast Fourier Transform (FFT), Discrete Cosine Transform

(DCT) and Discrete Wavelet Transform (DWT), represent the main part of many audio,

image and video processing systems. Although these transforms improve the

performance of the entire system, they represent a bottleneck in terms of their

computation complexity, storage requirements and subsequent processing speed and

power consumption. These issues are crucial in multidimensional applications which

require a high computation load and large amount of high speed storage media. As a

result of these concerns, the idea and the subject of this thesis arose. This thesis presents

new and efficient hardware architectures for low complexity non-transform based image

compression algorithms. Furthermore, architectures for the transforms used in

transform-based image and video processing systems, such as the DCT and the DWT,

are also proposed. In addition, comprehensive analyses are introduced in order to

evaluate the performance of the proposed hardware architectures. The performance

analysis includes the hardware usage, power consumption, processing speed and output

accuracy.

In summary, this chapter introduces: in section ‎1.2, a general background about digital

images and video signals is provided. In section ‎1.3, an overview of image and video

compression algorithms, and their related transforms and architectures are also briefly

introduced. The motivation, objectives and contributions of this research are introduced

in sections ‎1.4, 1.5 and ‎1.6, respectively. The thesis outline is presented in section ‎1.7

and the outcome publications of this research are outlined in section ‎1.8.

1.2 Digital Image and Video Signals

The data size of any image is related to its bit rate, number of colour bands, and image

size, and on the number of images or frames in the case of medical or video streams.

Thus, high volume storage devices are required to handle such a large amount of data.

The data storage requirements and bit rate are important factors that affect the

complexity of any image and video processing system, particularly in mobile devices. In

2

such devices, the main challenges are power consumption, hardware usage, storage

resources and processing speed. In many image and video applications, the signal bit

rate can be adjusted using lossy or lossless compression algorithms. The lossy

compression algorithms sacrifice a specific amount of data accuracy to obtain high

compression ratios and low bit rates, while in lossless compression algorithms; the

decompressed data is exactly the same as the original, though with low compression

ratios and high bit rates. For both compression algorithm classes, the computation

complexity and storage of intermediate data represent an important factor that

contributes to the complexity of the entire system. Thus, work has been conducted to

achieve compression algorithms that produce good image quality, a low bit rate and low

complexity in terms of storage requirements, high speed, low power consumption and

low hardware usage.

1.3 An Overview of Image and Video Compression Algorithms

Numerous image and video compression algorithms have been published in the

literature. This includes a class of non-transform based low complex algorithms such as

Block Truncation Coding (BTC) and Adaptive Quantisation Coding (AQC) [1-5].

Further algorithms are classified as transform-based algorithms, as in the Joint

Photographic Experts Group (JPEG) and JPEG2000 image compression standards [6, 7],

and MPEGx and H.26x video compression standards [8]. These algorithms offer a good

compromise between image quality and the output bit rate, where the bit rate and the

output image quality can be adjusted by proper selection of the quality factor. Although

the first class of image compression algorithms represents a low complexity and high

speed compression systems, the low compression ratio represents its main drawback

compared with the second class of algorithms. However, it represents a suitable choice

for some applications that require low complexity and low hardware usage [9].

The second class of compression systems encompasses algorithms based on transforms

such as the DCT and DWT. This increases the computation complexity, power

consumption and hardware usage of such systems. To tackle these issues, many

hardware architectures have been published in the literature for 1-D and 2-D DCT, and

DWT [10-23], while a limited number of architectures have been suggested for 3-D

DCT and DWT applications [22, 24-30]. Nevertheless, the suggested 3-D DCT and 3-D

DWT in the literature have only partially met the requirements of hardware

architectures such as low power consumption, high processing speed, low hardware

3

usage and low memory requirements. As such, it is important to produce efficient

architectures for the DCT and the DWT which consider such issues for

multidimensional applications.

1.4 Research Motivation

The data storage, processing and transmission represent important parts of the major

concerns and interest of the modern life. As an example, medical images and the related

archiving systems require a high data storage capacity to handle the information of

every patient. Additionally, the collected information is usually processed in different

ways to prepare it for storage and transmission media to overcome their restrictions and

challenge. Considering these points and other concerns, the data compression and the

tools required in this field represent the backbone of these applications. However, the

data processing is not a straightforward task as it has its own restrictions and challenges.

Among these challenges is the computation complexity, processing time, power

consumption and storage area. This thesis acts on the previous issues to provide

efficient hardware architectures for the data transforms used in image and video

compression systems, especially when these issues become crucial in the case of

multidimensional signals, such as medical images and video streams.

1.5 Research Objectives

The research aims are to introduce new low complexity image compression algorithms,

their corresponding architectures and efficient architectures for multidimensional data

transforms used in image and video processing systems. The proposed architectures

focus on achieving high computation speed, low power consumption and

parameterisation for different wordlengths. The objectives of this study can be outlined

as follows:

 To present parameterised architectures for low complexity image compression

algorithms and multidimensional data transforms.

 To introduce new and efficient 2-D non-transform-based and low complexity

image compression algorithms and their hardware architectures for low bit rate

applications. The proposed algorithms should consider the intensity variation of

image blocks for further bit rate reduction while preserving the output image

quality within an acceptable range.

4

 To design and implement new high speed multidimensional DCT architectures

for image and video processing applications. Such architectures can be based on

the available low computational complexity fast DCT algorithms.

 To design and implement new low hardware usage architectures for 3-D DCT to

achieve a compromise between the hardware usage, processing speed and power

consumption for variant wordlengths. The proposed architectures should

consider hardware and memory usage reduction by reducing the data

transposition throughout the computation process.

 To design and implement new hardware architectures for a lifting-based 1-D, 2-

D and 3-D DWT to attain high throughput and low memory requirements for

different wordlengths. In such architectures, the main goals are: multiplierless,

high throughput, low memory requirements and low power consumption. In

such architectures, the power consumption reduction may be achieved by reduce

or avoid using the high power consumption elements, such as multipliers.

1.6 Contributions

The contributions of this thesis can be summarised as follows:

1. It introduces low complexity non-transform-based image compression

algorithms for low bit rate applications. Their new high speed and low hardware

usage architectures are also introduced.

2. It presents new high speed multidimensional DCT architectures, based on fast

DCT algorithms for image and video processing applications.

3. It introduces new area efficient architectures for 3-D DCT computation using 3-

D DCT VR algorithm.

4. It introduces parallel and multiplierless multidimensional DWT architectures to

attain a good compromise between memory requirements, processing speed and

power consumption.

5

1.7 Thesis Outline

The remainder of this thesis is organised as follows: Chapter 2 is an overview of image

and video compression algorithms and their related data transforms, such as the DCT

and DWT, which are used in 2-D image and 3-D video and, hyperspectral and medical

image processing systems. It also introduces Field Programmable Gate Arrays (FPGA)

devices as a medium for hardware implementation. An introduction to hardware design

tools and Xilinx high level synthesis design tools is also provided.

In Chapter 3, new non-transform based and low complexity image compression

algorithms for low bit rate applications are introduced. These algorithms are based on

the AQC algorithm and they consider the intensity variation of each individual image

block to introduce low-bit rate and high-performance compression systems. Moreover,

new high speed architectures to implement these algorithms are also proposed.

Furthermore, a comprehensive analysis of power consumption, speed and hardware

resources is also provided.

Two high speed architectures for multidimensional DCT computation are introduced in

chapter 4. These architectures are based on 1-D DCT Radix-2 and 3-D DCT VR fast

algorithms. The proposed architectures are parameterised in terms of wordlength, which

provides different levels of output accuracy, hardware usage and power consumption.

In chapter 5, two new low hardware usage architectures for the 3-D DCT VR algorithm

are presented. The main feature of the proposed architectures are; the in place

computation of the butterfly and post addition stages without using block memory for

data transposition, which in turn produces efficient architectures in terms of hardware

usage, processing speed and power consumption.

Multiplierless and parallel lifting-based architectures for the 1-D, 2-D and 3-D Cohen-

Daubechies-Feauveau 9/7 (CDF 9/7) DWT are introduced in chapter 6. The proposed

architectures represent an efficient low memory requirement, multiplierless and high

precision CDF 9/7 DWT systems. In such architectures, the temporal memory for 3-D

DWT has been reduced to a block memory size of four frames only. Such block

memory is used as a temporary frame buffer during the computation process of the 3-D

DWT. Conclusions and the outline for potential future work directions are given in

chapter 7.

6

1.8 List of Publications

During the period of PhD research the following publications have been introduced:

 S. Al-Azawi, S. Boussakta, and A. Yakovlev, "Image Compression Algorithms

Using Intensity Based Adaptive Quantisation Coding," American Journal of

Engineering and Applied Sciences, vol. 4, pp. 504-512, 2011.

 S. Al-Azawi, S. Boussakta, and A. Yakovlev, "High precision and low power

DCT architectures for image compression applications," in the IET Conference

on Image Processing (IPR 2012), 2012, pp. 1-6.

 S. Al-Azawi, S. Boussakta, and A. Yakovlev, "Performance improvement

algorithms for colour image compression using DWT and multilevel block

truncation coding," in the 7th International Symposium on Communication

Systems Networks and Digital Signal Processing (CSNDSP), 2010, pp. 811-815.

 S. Al-Azawi, S. Boussakta, and A. Yakovlev, "Low complexity image

compression algorithm using AMBTC and bit plane squeezing," in 7th

International Workshop on Systems, Signal Processing and their Applications

(WOSSPA), 2011, pp. 131-134.

7

Chapter 2: Preliminary Concepts and Related Work

2.1 Introduction

This chapter presents explanatory materials that support the architectures presented in

the remainder of the thesis. It is divided into six sections: section ‎2.2 is an overview of

image/video compression algorithms and the associated transforms, including the DCT

and DWT. The definitions of rate distortion measurements image fidelity criteria are

given in section ‎2.3. Section ‎2.4 presents and overview about the related work.

Section ‎2.5 introduces Xilinx FPGA hardware devices which are used as

implementation media in the remainder of the thesis, with a particular emphasis on

Virtex 5 and 6 Xilinx families given in section ‎2.6. Hardware design tools are presented

in section ‎2.7. The architectures design procedure is described in ‎2.8 and the summary

is given in section ‎2.9.

2.2 Image and Video Compression Algorithms

The revolution in data transmission and communication systems has made it of

paramount importance to compress data (such as images and video) before storing or

transmitting it; this is largely due to a limitation in bandwidth, bit rate and storage

device size. As an example, a typical 512×512-pixel colour image requires a storage

space of 786.432 Kb, if it has a typical bit rate of 8 bit per pixel per colour band (bpp).

This number will increase in the case of medical or hyper-spectral images where the bit

rate can be 16 or 24 bpp and, thus, in video streams the matter becomes more crucial

due to the large number of images/frames and the size of each frame.

The idea of compression comes from reducing the redundancy of data which occurs

from different types of correlation, such as correlation between neighbouring pixels in

an image or frame, correlation between colour planes in colour images and correlation

between pixels in the neighbouring frames. These three types of correlation are known

as spatial redundancy, spectral redundancy and temporal redundancy, respectively [31].

These types of redundancies are classified as a statistical redundancy and psycho-visual

redundancy. The later refers to the Human Visual System’s (HVS) limitations [32].

Some algorithms exploit the spatial redundancy in two dimensional (2-D) image

8

compression systems, while others algorithms exploits both spatial and temporal

redundancy, which may be classified as a three dimensional (3-D) compression system.

In another aspect, image compression can be classified as a lossless or lossy. The class

of lossless compression algorithms ensures that the decompressed image is an exact

version of the original image, this result in a low compression ratios or high bit rate. On

the other hand, the lossy class of compression algorithms attains high compression

ratios, which is nevertheless accompanied by a degradation of the decompressed image

quality [33, 34]. JPEG and JPEG2000 image coding standards, as examples of

transforms-based compression algorithms. The JPEG image compression standard is

based on the DCT [6], and the JPEG2000 is a DWT-based compression system [7]. A

typical transform-based compression system is shown in Figure ‎2.1 [7]. Even though the

output performance of the transform-based compression algorithm is high, the

computation complexity is their main drawback. The other class of compression

algorithms is the low complex and good performance non-transform-based image

compression, for which the BTC, multilevel BTC and AQC are well-known algorithms

[1-3, 35]. Such algorithms are designed specifically to avoid or reduce computational

complexity, memory requirement and processing time arising from applying the DCT or

DWT.

b. Transform-Based Decoder

Inverse

Quantization

Entropy

Decoder

Inverse

Transform
Compressed

Data

Reconstructed

Image

a. Transform-Based Encoder

Quantization
Entropy

Coder

Forward

Transform

Compressed

Data

Input

Image

 Figure ‎2.1: Basic block diagram of typical transform-based compression /

decompression system [36].

2.2.1 Adaptive Quantisation Coding (AQC)

The AQC is a low complex image compression algorithm which represents an improved

version of BTC algorithm [2, 35]. The BTC algorithm is used for grey-scale image

compression for an output bit rate of two bit per pixel (bpp) and good image quality [1,

3]. The BTC partitions the input image into 4×4-pixel blocks and it computes a bit plane

using a bi-level quantiser and two eight bit moments which represents the high and low

9

mean of the image block. The low compression ratio represents the main drawback of the

BTC when compared with other transformed–based image compression techniques.

However, it is an attractive option for mobile and low complex applications due to its

simplicity and good image quality [37]. Many researchers have tried to enhance the

performance and to reduce the bit rate of BTC algorithm as stated in [4, 31, 37-42]. In

[37] a three level quantiser was used to classify the pixels into low, intermediate and

high intensity, according to a predefined threshold. Accordingly, the AQC algorithm

partitions the input image into a fixed size blocks and it encodes the input image using a

multilevel quantised bit plane, the minimum intensity value of the block and the

quantiser step [4, 5]. Thus, the AQC can be considered as a multi-level BTC algorithm

and the coding performance of the AQC algorithm is much better than the BTC but it

comes in the expenses of higher bit rate. However, the bit rate remains the same for both

algorithms for low intensity variation images. Thus, the AQC algorithm produces good

compromises between coding performance and computation complexity. The efficient

coding performance and low implementation cost of multilevel BTC and AQC

algorithms have encouraged some researchers to use them as a suitable approach for

memory usage reduction in Liquid Crystal Display (LCD) overdrive [5, 43-46] and in

data hiding applications [3, 47-49].

2.2.2 Discrete Cosine Transform (DCT)

The DCT has gained a wide acceptance within the signal processing community since it

was suggested in 1974 [50]. This is due to its energy compaction, orthogonal and

performance level being close to that of Karhunen-Loeve transform with respect to the

rate distortion criterion [50]. It has become an essential part of many image and video

applications, including the JPEG, MPEGx and H.26x compression standards [6, 8, 51-

53]. With DCT-based audio, image and video compression systems, the input signal is

partitioned into , -point data blocks or -point data cubes, and then

transformed into DCT domain using 1-D, 2-D and 3-D DCT transforms, respectively.

The 1-D DCT for -point data can be computed as follows [16]:

 ()

∑ () (

())

 (‎2.1)

where and {

√

10

The inverse 1-D DCT (1-D IDCT) is defined as:

 () ∑ ()

 (

()) (‎2.2)

The 2-D DCT of a -point data block can be computed by computing the 1-D DCT

on the rows and columns successively. Alternatively, the 2-D DCT can be computed

directly as [12]:

 ()

∑ ∑ () (

())

 (

())

(‎2.3)

and the 2-D IDCT is computed as:

 ()

∑ ∑

 () (

())

 (

())

(‎2.4)

where and

 {

√

The 3-D DCT for an -point data cube can be computed as follows [54]:

 ()

∑ ∑ ∑ ()

 (

()) (

())

 (

())

(‎2.5)

and the 3-D IDCT is given by [54]:

 () ∑ ∑ ∑

 ()

 (

())

 (

()) (

())

(‎2.6)

where and
 {

√

11

Further, the 3-D DCT can also be computed by applying -point 1-D DCT using (‎2.1)

on the rows then columns and the temporal or frames direction successively. This is

termed the Row-Column-Frame (RCF).

It is obvious from (‎2.1) to (‎2.6) that the computation complexity of the DCT increases

rapidly with the data dimensionality. As an example, the computation complexity of

 -point data cube using an RCF approach requires 3 1-D DCT, where each

1-D DCT requires multiplication and () addition operations. Nevertheless,

the computation complexity of the 3-D DCT can be reduced using fast DCT algorithms.

A number of fast DCT algorithms have been published in the literature, among them the

1-D Radix-2 algorithm [55] and 3-D DCT Vector Radix algorithm (3-D DCT VR) [54].

These fast algorithms reduce the mathematical operations involved in the computation

of the DCT, thus, achieving shorter processing times. In addition they also reduce the

memory space required for data transpose for both 2-D and 3-D DCT.

The arithmetic operations for the original RCF 3-D DCT, RCF 3-D DCT Radix-2 and 3-

D DCT VR algorithms are shown in Table ‎2.1 [54, 56, 57]. It is obvious from Table ‎2.1

that the number of multiplications in a 3-D DCT VR algorithm is less than that required

by a 3-D DCT Radix-2 algorithm by

 .

Table ‎2.1: The arithmetic operations of the original RCF 3-D DCT, RCF Radix-2 and

VR algorithms [54, 56, 57].

Operations
Original RCF

3-D DCT

RCF using

1-D DCT Radix-2
3-D DCT VR

Multiplication

Addition ()

2.2.2.1 DCT-Based Compression Systems

A conventional DCT-based image compression system encompasses of: DCT,

quantisation and encoding, as shown in Figure ‎2.2 [6].

12

b. DCT-Based Decoder

De-

quantizer

Entropy

decoder
IDCT

8×8 Pixel

Block
Compressed

Data

Reconstructed

Image

a. DCT-Based Encoder

Quantizer
Entropy

Coder
DCT

8×8 Pixel

Block

Compressed

Data

Input

Image

Figure ‎2.2: DCT based image compression/decompression system [36].

As shown in Figure ‎2.2, each 2-D input image is partitioned into fixed block sizes

(typically 8×8-pixel), and then the DCT is applied to tackle the spatial correlation in the

block. Furthermore, the quantisation and entropy coding are used to reduce the bit rate

further.

In 3-D signals, such as videos and 3-D medical images, the spatial correlation between

pixels can be reduced using the 2-D DCT, while the motion compensation process used

to tackle the correlation between frames (temporal correlation). This makes the 3-D

video compression systems, such as in MPEGx and H.26x standards, consist of 2-D

compression system with a motion compensation unit. However, the high computation

complexity of motion compensation makes it is difficult to get a real time 3-D

compression system without using efficient hardware accelerators. Further, the motion

estimation is computed with respect to a reference frame within a group of frames; this

dependency can cause accumulated and propagated error throughout each group of

frames [58, 59]. The computation complexity of the conventional 3-D images and

videos has increased the need for new low complex compression system, particularly in

mobile and wireless communication systems [58]. New approaches have been proposed

in the literature that considers video data as a 3-D data volume. The correlation at the

temporal direction is tackled by applying 1-D DCT along the third dimension while

spatial data redundancy is considered using the 2-D DCT; this has led to new video and

3-D image compression systems using the 3-D DCT [24, 54, 59-63]. Such a transform

is particularly suited for embedded systems requiring low complexity implementation of

both video encoder and decoder, such as the case of mobile terminals with video-

communication capabilities [24].

13

2.2.2.2 3-D DCT Applications

The 3-D DCT is used for different applications, such as 3-D video compression, hyper

spectral image compression and watermarking [64-68]. In [64], an approach based on a

JPEG lossy image compression system and a 3-D DCT for still image compression was

introduced. The proposed system constructs an 8×8×8-pixel 3-D data cubes from the

original 2-D image data using a spiral scanning. Such technique utilises a new

quantisation table to improve the coding performance. It has been found that the

performance of the proposed technique outperformed the conventional JPEG

compression, especially at low and high bit rates in particular [64]. Furthermore, the 3-

D DCT has been used to exploit the spatio-temporal redundancy in video watermarking

[65-67] and hyper spectral image compression [68]. Other applications of 3-D DCT

algorithms include object tracking [69], stereoscopic video quality assessment [70], 3-D

video de-noising [71] and lip reading [72].

2.2.3 Discrete Wavelet Transform (DWT)

The DWT [73] is used in different image and video applications, such as compression,

watermarking and denoising. Similar to the DCT, the DWT exhibits a high rate of

energy compaction, thus making it a good choice in compression standards. Moreover,

the DWT in image compression algorithms has the property to overcome the blocking

artifact that characterise the DCT-based or block-based image compression techniques.

Nevertheless, the DWT affected by its high computation complexity and memory

requirements compared to the DCT or other block-based algorithms. Such requirements

are dependent on the wavelet filter length and the size of input data.

Various low and high pass wavelet filters are used in DWT applications. The simplest

wavelet filter is the Haar wavelet filter, which has the following coefficients for

decomposition and reconstruction operations, respectively.

LPF [. .] and HPF [- . .] (‎2.7)

where LPF and HPF are the Low and High Pass Filter, respectively. The coefficients of

Haar reconstruction filter are shown below:

 LPF [. .] and HPF [. - .] (‎2.8)

where ILPF and IHPF are the Inverse Low and High Pass Filter, respectively.

14

Further, more sophisticated wavelets filters are available, which they are different in

terms of output performance, filter order and computation complexity. As an example of

these filters are Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) and Le Gall 5/3 which are

used in JPEG2000 lossy and lossless compression standards, respectively. The

coefficients of both filters are shown in Table 2.2 [32, 74]. Moreover, there are infinite

number of possible wavelet filters, such as Daubechies and Coiflets families, and the

selection of the best wavelet filter depends on the required application [75, 76].

Table 2.2: CDF 9/7 and Le Gall 5/3 analysis filters coefficients [32, 74].

CDF 9/7 Le Gall 5/3

LPF HPF LPF HPF

0 0.852699 0.788486 1.060660 0.707107

±1 0.377402 0.418092 0.353553 0.353553

±2 −0.110624 −0.040689 −0.176777

±3 −0.023849 −0.064539

±4 0.037828

2.2.3.1 DWT Decomposition Operations

The DWT decomposition operation consists of two steps namely; filtering and

decimation (down sampling by 2). This operation is reversed at the decoder side in the

reconstruction operations. It acts to reverse the decomposition operations using inverse

wavelet filters and up sampling by 2. The filtering operation is accomplished by

applying a sequence of low and high pass filters. The DWT decomposition and down

sampling operation for a 1-D input signal can be expressed by the following two

equations [77]:

 () ∑ ()

 ()

 () ∑ ()

 ()

(‎2.9)

Where () represents the input signal and () () are the low and high

output bands, and represent the impulse response of DWT low and high pass

15

filters, respectively. Further, the reconstruction operations can be carried out as follows

[77]:

 () ∑ ()

 () ∑ () ()

 (‎2.10)

where represent the impulse response of the inverse DWT (IDWT) low and

high pass filters, respectively.

The decomposition and reconstruction proposes can be repeated L times, where

 , P is the input data length and L is the number of decomposition levels,

which leads to a multilevel 1-D DWT decomposition and reconstruction as shown in

Figure ‎2.3. This figure shows that both directions (decomposition and reconstruction)

consist of a set of low and high pass filters with down sampling step in the

decomposition and an up sampling step for reconstruction. Furthermore, in Figure ‎2.3

the upper output represents the coarse components while the fine components of the

original signal are represented in the lower part. The coarse part contains the shape of

the signal or image decimated by the number of wavelet levels. It results from applying

a sequence of low pass filters only. The fine parts are the output that results from a

combination of high and low pass filters or high pass filters only. Furthermore, in

multidimensional signals such as 2-D images and video sequences, the DWT can be

computed using separable technique by applying 1-D DWT on each dimension,

successively. Thus, the 2-D DWT can be computed by applying (‎2.9) on the rows and

columns and on frames in the case of 3-D DWT. Further , 2-D and 3-D DWT can be

computed using non-separable technique by applying 2-D and 3-D wavelet filters on the

input data. Therefore, for the 2-D DWT, four output bands are computed for each

decomposition level, namely: LL, HL, LH and HH bands, where: L and H stand for 1-D

Low and High pass filters, respectively. Similarly, the output arising from 3-D DWT is

8-band signal. These bands are: LLL, HLL, LHL, HHL, LLH, HLH, LHH and HHH. As

a result of the filtering operations, H bands contain the fine components and the L band

contains the coarse components in 2-D and 3-D DWT. The output bands for one level 2-

D and 3-D DWT decomposition are shown in Figure ‎2.4.

16

a. Two levels forward 1-D DWT

First level DWT

LPF

Coarse

coefficients

Input

Signal

Down

Sampling

Second level DWT

HPF
Down

Sampling

LPF
Down

Sampling

HPF
Down

Sampling

Fine

coefficients-2

Fine

coefficients-1

b. Two levels inverse 1-D DWT

Coarse

coefficients
ILPF

Up

Sampling

IHPF
Up

Sampling

Fine

coefficients-2

Fine

coefficients-1

+ ILPF
Up

Sampling

IHPF
Up

Sampling

+
Reconstructed

Signal

 Figure ‎2.3: Typical two levels 1-D DWT: a. Decomposition b. Reconstruction

LLL LHL

LLH LHH

LLL LHL

LLH LHH

LLL LHL

LLH LHH

LLL LHL

LLH LHH

LLL LHL

LLH LHH

LLL LHL

LLH LHH

LLL LHL

LLH LHH

LLL HLL

LHL HHL

L-Bands

H-bands
Frame

direction filter

HHH-Band

HLH-Band

(a) 2-D DWT decomposition (b) 3-D DWT decomposition

LL HL

LH HH

Figure ‎2.4: One level 2-D and 3-D DWT decomposition.

The convention-based 1-D DWT computation of any 1-D signal can be obtained by two

convolution steps using low and high pass filters and down sampling by 2. The

convolution operation produces two sub-bands, low and high frequency; each one

contains half the number of the original input samples [78]. Thus, the DWT

17

decomposition and down sampling operation for a 1-D input signal is computed using

(2.9) and the reconstruction operations can be performed using (2.10) [77, 79].

The preceding computation procedure produces wavelet coefficients for 1-D signals,

and moreover, the wavelet coefficients of 2-D and 3-D signals can be computed by

applying 1-D DWT along each signal dimension, separable approach [78]. Additionally,

as the convolution-based DWT computation approaches require high computation loads,

a new algorithm was introduced in [80], which has been named the lifting scheme or

lifting-based DWT computation method. The lifting scheme has been considered as an

efficient approach for DWT computation. The computation load of the convolution-

based DWT has been reduced by up to 50% using the lifting-based DWT scheme [81].

The lifting scheme partitions the wavelet filter into a sequence of triangular matrices.

Such an approach is called lifting-based DWT. The lifting scheme is composed of a

sequence of prediction and updating steps as shown in Figure ‎2.5. The most important

features of this scheme can be summarised as follows [81]:

1. Faster than the ordinary convolution-DWT approaches.

2. Low memory requirement.

3. The computation of each lifting step can be implemented in parallel.

b. Inverse transform

Output

Signal
Predict MergeUpdate

+

-

Coarse

Detail

Input

Signal
Predict UpdateSplit

-

+

Coarse

Detail

a. Forward transform -
a

b

a-b

Odd

Even

Figure ‎2.5: Lifting scheme (a) decomposition (b) reconstruction.

Further, the computational complexity of lifting-based CDF 9/7 DWT is shown in

Table ‎2.3. The number of operations is computed according to the original structure of

the CDF 9/7 1-D DWT lifting scheme. In this table, multiplication and

addition operations are required to compute the 1-D CDF 9/7 wavelet filter for -

sample using lifting scheme. In addition, 1-D DWT is required to compute the 2-D

18

DWT for -point data block using the RC approach while, 1-D DWT is

required in the case of the RCF 3-D DWT.

Table ‎2.3: The arithmetic operations of the lifting-based 1-D, 2-D and 3-D CDF 9/7

wavelet filter.

Operations 1-D 2-D 3-D

Multiplication

Addition () ()

2.2.3.2 DWT Applications

The JPEG2000 image compression standard is one of the most important applications of

2-D DWT [7, 82]. Further, the multidimensional DWT is used in hyperspectral image

compression [32], 3-D integral images compression [83], medical image compression

[26, 84-86] and image watermarking [87]. The 3-D DWT is used in video, medical and

remote sensing imaging (multispectral images) compression systems, and such an

example is the 3-D SPECK [32]. Furthermore, various other wavelet-based image

compression algorithms have been published in the literature. Among them the

Embedded Zerotree Wavelet (EZW), Set Partitioning In Hierarchical Trees (SPIHT),

Set Partitioned Embedded BloCK coder (SPECK), Embedded Block Coding with

Optimized Truncation (EBCOT)[32].

2.3 Rate Distortion Measurements

Image and video quality is an important factor in different applications. Thus, the output

accuracy through this thesis is computed and considered carefully using the well-known

rate distortion measurement criteria. The Root Mean Square Error (RMSE) and Peak

Signal to Noise Ratio (PSNR) have been used as objective fidelity criteria. The RMSE

and PSNR (dB) between the original and the reconstructed images or frames can be

computed as follows:

 √

∑∑(() ())

 (‎2.11)

19

 √

∑∑ ∑(() ())

 (‎2.12)

 (
(())

()
) (‎2.13)

where, P and Q are the image/frame dimensions, F is the number of images or frames,

 () () is the original and reconstructed images, respectively. () is

typically equal to 255.

2.4 Related work

The related work section has been divided into three sub-sections to summarise the

previous work about the AQC, DCT and DWT algorithms and architectures.

2.4.1 AQC Related Work

Image compression can be classified into lossy and lossless classes. The lossy class

reduces the bits required for storing or transmitting an image without much

consideration of the image resolution. Lossless compression preserves the quality of the

compressed image so that it is exactly the same as the original.

Many algorithms have been developed by researchers for both image compression

classes; some of these algorithms use the DCT or DWT, while others avoid the

complexity of applying such transforms. Examples of transform-based algorithms are

the JPEG and JPEG2000. The two standards are DCT and DWT based image

compression standards, respectively. The main issues with JPEG and JPEG2000 are

their unsuitability for small devices that require low power consumption and high

processing speed.

The other class of compression algorithms avoids using the DCT or DWT. A typical

example of such algorithms is the BTC, which was introduced by Delp and Mitchell [2].

This algorithm is used for image compression with a bit rate of 2 bit per pixel (bpp) and

leads to good image quality. The algorithm divides the input image into 4×4-pixel

blocks to compute a bit plane using a two-level quantiser, and two moments

representing the high and low mean. The main advantages of BTC are the good image

quality and low computational complexity, compared to the transform-based

20

compression algorithms. However, the main drawback of this algorithm is the annoying

blocking artefact caused by the low bit rate requirement [1, 3, 37].

Many researchers have tried to modify or enhance the performance and reduce the bit

rate of the BTC [4, 5, 37, 38, 40-42, 88]. Some of these algorithms utilise the same BTC

two-level quantiser, while others use a three-level quantiser. In [37], a three level

quantiser has been used to classify the pixels into low, intermediate and high intensity,

according to predefined thresholds. To further reduce the bit rate, this algorithm

transmits only odd rows and columns of each 6×8-pixel block; the remainder of the

pixels are reconstructed according to an interpolation function. In [4], an algorithm for

colour image compression was presented as a combination of the ordinary BTC and the

AQC [5]. This algorithm converts the RGB image to a Luminance-Chrominance colour

space (YCbCr) and partitions it into 6×6-pixel main blocks, and each block is divided

into four 3×3 sub-blocks. The four 3×3-pixel sub-blocks are encoded using the BTC

algorithm to extract four luminance bit planes and 24 moments (two moments for each

sub-block in each colour plane). These components are encoded using the AQC

algorithm. Further, an improved BTC algorithm for colour image compression was

presented in [42]. This algorithm generates a luminance bit map to represent the edge

information, with three additional bits to represent the differences between luminance

(Y) and other colour planes. Furthermore, the BTC blocking artefact is reduced using

modified Error Diffusion (EDF) by diffusing the quantised error into neighbouring

pixels [40]. It utilises three EDF kernels to distribute the error between the original and

the corresponding bi-level BTC pixels into the neighbourhood pixels. Further, an

improved and low complexity BTC algorithm was presented using a look up table

(LUT) dither array [41]. In this algorithm, the dither array is calculated offline to reduce

the computation complexity. The reduction in blocking artefact is an important feature

of this algorithm. An improved multitone BTC algorithm was presented in [88]. This

algorithm uses a 3×3 mean filter at the decoding phase to produce an intermediate

image. The intermediate image is used to compute a bilateral filter weights. Then, the

multitone image is computed by applying the bilateral filter to the decoded image.

2.4.2 DCT Related Work

Transforms such as the Discrete Fourier Transform (DFT), DWT, and DCT play a

critical part in various DSP applications, including audio, image and video systems.

Much of the usefulness of these transforms arises from their frequency and time-

21

frequency representations and properties including the decorrelation property, energy

compactness and the availability of fast algorithms for their computation. Nevertheless,

even the fast algorithms that implement these transforms are very compute-intensive.

Thus, these transforms can become a bottleneck in terms of the speed of the system, and

contribute greatly to the area usage and power consumption of their wide applications

[10-17, 22, 27, 28, 89-92]. For its role in many image and video applications, including

the JPEG, MPEGx and H.26x compression standards, the DCT has received a great deal

of research interest [6, 8, 51-53]. As a matter of fact, the 2-D DCT is the image

transform which reduces inter-pixel redundancy in the JPEG standard [6]. Further, 3-D

DCT is used to eliminate the need for motion estimation in video compression systems,

which takes advantage of the data redundancy of video stream in spatial and temporal

domains [54]. Numerous 1-D and 2-D DCT architectures have been suggested in the

literature [93-99]. Exploiting the separability principle of the transform, 2-D DCT cores

are based on the 1-D DCT RC approach [95-97, 99]. In addition, they address different

requirements, including power consumption, speed and hardware usage [10-17]. While

the 3-D DCT architectures can be found in [24, 25, 100-103]. Traditionally, the 3-D

DCT has been implemented by cascading stages of the 1-D DCT, taking account of the

separability principle which breaks the 3-D DCT computation to three 1-D DCTs, such

as in the well-known RCF approach. Noteworthy differences between architectures in

the literature is their level of parallelisation in terms of the number of stages and the

number 1-DCT units per stage, which leads to different trade-offs between circuit

complexity and throughput rate. One common architecture employs three stages of one

1-D DCT unit each and N
3
 + N

2
 transpose memory [24, 102, 103]. Parallelisation can be

applied to the first two 1-D DCT processors, which indeed implement a 2-D DCT

transform, leading to the utilisation of 2N+1 1-D DCT processors and N
3
+N memory.

Another class of the 3-D DCT architectures multiplexes the 1-D DCT involved in its

computation into single 1-D DCT architecture. Such a class of architecture requires N
3

memory words [24, 103]. In [24], a context based 3-D DCT RCF algorithm and its

VLSI implementation for various parallelization levels has been introduced. With

regards to 180 nm CMOS technology, such architecture can operate at frequencies of up

to 72, 103 and 120 MHz for 1.6, 1.8 and 1.95 supply voltages, respectively.

Furthermore, for 90 nm, the proposed system operates at frequencies of up to 120.2,

176.4 and 208.8 MHz using 1.08, 1.2 and 1.26 supply voltages, respectively [24].

Evidently, the economy made in hardware utilisation came at the cost in throughput

rate. As a matter of fact, using three 1-DCT architectures to implement the 3-D DCT

22

achieves a throughput rate three times higher than when employing a single 1-D DCT

processor. Another class of the 3-D DCT architecture relies solely on the systolic

approach with its well established methodology and complexity analysis [25]. In [25], a

3-D DCT architectures based on a dedicated three-dimensional array processor have

been presented. Such architectures are termed; Original, Pipelined ver.1, Pipelined

ver.2 and Block. These architectures utilises RCF technique and different levels of

parallelisation and pipelining. Nevertheless, such parallelisation levels are associated

with high hardware utilisation costs. As an example, for points the block

architecture consumes 19,355 Logic Elements (LE), 13,347 registers, 525 input/output

(I/O) pins and 128 embedded multipliers.

2.4.3 DWT Related Work

The DWT is an efficient tool in multidimensional signal processing and digital

communication applications. While the 1-D DWT has found in many audio

applications, the 2-D DWT is used in the well-known image compression JPEG2000

and MPEG-4 standards, watermarking, de-noising and multimedia information systems

[7, 18, 78]. The lossless JPEG2000 compression system utilises the lossless 5/3 integer

wavelet filter, termed Daub-4, while the CDF 9/7 floating-point filter banks are used in

the JPEG2000 lossy compression system [104]. Furthermore, the 3-D DWT is used in

video, medical, hyper spectral and integral image compression systems [28, 83, 84,

105]. Although the DWT has more applications than the DCT, it is affected by high

computational complexity and high memory requirements [28]. Therefore, numerous

algorithms and architectures have been proposed in the literature for efficient DWT

implementations with the aim of lower-power consumption, higher clock rates and

lower memory requirements [18-23, 27-30, 86, 105-110].

A VLSI 2-D DWT architecture for lifting-based DWT computation is proposed in [18]

.Such an architecture is based on a modified lifting scheme for CDF 9/7 1-D and 2-D

wavelet filters. In [19], 2-D lifting based DWT multi-input/multi-output VLSI

architectures were proposed. The proposed architectures process multiple input data

rows concurrently to attain high processing speeds. The operating frequencies of the

proposed architectures were 65.38, 64.25 and 63.52 MHz for 2, 4 and 8 parallel

computation units, respectively, with a memory requirement of 10M+4N+MN/2 where

M is the number of parallel units and N×N is the image size. Furthermore, in [20],

parallel FIR filters with a polyphase structure were used to improve the speed of the 2-D

23

DWT structures. A high speed non-separable pipeline 2-D DWT VLSI architecture was

proposed in [21]. Such architecture can operate at a frequency of up to 135 MHz with

8×18 Kb block RAM. In [22], high-throughput and low-latency 2-D block-based

pipeline DWT architectures using lifting scheme were proposed. In addition, a high-

throughput lifting-based 2-D DWT architecture for efficient area and power

consumption was proposed in [23]. The memory requirement of the proposed

architecture is (4N + 8P) words, where N is the image width and P is the input block

size.

Furthermore, in [28], a lifting-based 3-D DWT architecture was proposed for an infinite

Group Of Frames (GOF) input data. This architecture can operate at a frequency of 321

MHz and generates 2 samples /clock cycle. A VLSI architecture which implements the

Daub-4 using the conventional convolution based method was proposed in [29]. The

memory requirement of such architecture is ⁄ , where pixel is the

frame size. Furthermore, the proposed architecture in [109] uses on-chip and off-chip

memories of ()() and ⁄ , respectively, where, is the

number frames, is the filter length and is the frame size. The on-chip memory

represents the internal block memory slices while the off-chip memory represents the

external memory resources such as the DDR. In [30], cascaded pipeline architectures for

multilevel convolution-based 3-D DWT computation were proposed. Such architectures

use computation blocks to compute each decomposition level to reduce the frame-

memory and maximize the hardware utilisation efficiency. Each decomposition level is

split into three parallel stages to further improve the processing speed. However, the

memory requirement of the proposed architecture is () ()

on-chip storage and

 frame buffer, where, : image height, : image width, K: is

the filter length, , , and is the maximum

of levels of 3-D DWT decomposition [30]. A memory-efficient 3-D DWT architecture

using an overlapped GOF has been proposed in [27]. In this architecture, the input

frames are partitioned into blocks of 6×6-pixel, while the GOF and the number of

overlapped frames are related to the wavelet filter order. As an example, the GOF of the

Daub-4 is equal to 4 and two frames have to be overlapped. Similarly, the GOF of the

CDF 9/7 is equal to 9 frames with 7 overlapped frames. In general, the number of

overlapped frames is equal to GOF-2 while the GOF is equal to the filter order. Thus,

for the Daub-4, four frames are fed to the computation units, and two of them have to be

reloaded again in the subsequent GOF. Therefore 50% data redundancy is required.

24

Moreover, in the CDF 9/7 wavelet filter, 7 frames should be reloaded to the architecture

together with two new frames to provide sufficient data for 3-D DWT computation.

2.5 Field Programmable Gate Array (FPGA)

The FPGA is a type of Application Specific Integrated Circuits (ASIC) which is

designed to be configured by the hardware designer using different hardware

description languages [111]. An example of FPGA device suppliers is the Xilinx

Corporation, which has been one of the leading FPGA devices providers since 1984.

Xilinx have introduced relentless variant FPGA devices with system performance,

processing power, hardware resources and power consumption. Up to 2010, two main

Xilinx programmable families had been introduced, Virtex and Spartan. They are

largely similar in terms of construction and architecture. However, the Virtex family can

be used for high performance applications. It is fabricated in more advanced CMOS

technology, while the Spartan family is more applicable for low-cost, high volume

applications [112]. A brief description of the Xilinx FPGA families that have been

introduced since 2003 is illustrated in Table A.1 in the Appendix A, taking the main

characteristics of the largest device from each family for the sake of a clear comparison.

A quick view of Table A.1 reveals that the block memory sizes have increased up to 10

times and so has the number of Digital Signal Processing (DSP) slices. For the DSP

slices, it is clear that the earlier versions of Xilinx devices was only composed of 18×18

bit multipliers, while in the most recent devices the DSP slices have become more

advanced and contain 25 × 18 bit multipliers, together with an adder and accumulator.

Another difference lies in the Configurable Logic Block (CLB) construction. CLBs

contain two slices, each slice has four 6-input Look Up Tables (LUT) and eight Flip

Flops (FFs) in the recently introduced Xilinx device, while they used to have four slices

per CLB and each slice used to have two 4-input LUT and two FFs.

Further, in 2010 another two families were introduced, Artix 7 and Kintex7, together

with a high performance Virtex 7 family. A comparison between these families and

series 6 families can be found in Table A.2 in the Appendix A [113]. It is obvious from

Table A.2 that Virtex 7 is more efficient than Virtex 6 by approximately 50% in terms

of logic cells, Block RAM, DSP slices and power consumption. Furthermore, the Xilinx

series 7 represents the lowest power consumption family among all other Xilinx

families; in comparison with the previous family, series 7 has 65%, 25% to 30% and

30% lower static, dynamic and I/O dynamic power consumption, respectively [114].

http://www.xilinx.com/products/silicon-devices/fpga/kintex-7/index.htm

25

Furthermore, the series 7 Virtex 7 family is a high performance family in terms of

performance while Artix 7 is suitable for low power consumption applications. A

simple comparison between Virtex7, Kintex7 and Artix7 in terms of performance and

power consumption is illustrated in Figure A.1 in the Appendix A [114].

Furthermore, the most recent Xilinx product is the Zynq 7000 automotive family, which

is fabricated using 28 nm CMOS technology based Xilinx programmable logic. This

family mixes all the programmable 28 nm technology with a dual-core ARM Cortex A9

processor, as described in Figure 2.6. The ARM processor is a 64-bit microprocessor

which is used in many mobile phones and other small devices. The ARM processing

system comprises on-chip memory and external memory interfaces together with the

ARM Cortex-A9 processor [115, 116].

Figure 2.6: Zynq-7000 system architecture [117].

2.6 Xilinx FPGA Devices’ Main Components

Xilinx FPGA devices are a composition of CLBs, DSP blocks, Block RAMs,

Input/output ports (I/O) and programmable interconnections, as shown in the basic

block diagram of Figure ‎2.7 [118-125].

26

Switches and

Connections

CLB

CLB

CLB

CLB

Block

RAM

Block

RAM

Block

RAM

Block

RAM

CLB

CLB

CLB

CLB

DSP

DSP

DSP

DSP

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

I/O

Ports
I/O

Ports

I/O

Ports

I/O

Ports

Figure ‎2.7: Basic block diagram of an FPGA device architecture [126].

2.6.1 Configurable Logic Blocks (CLBs)

A CLB is the main logic component used for circuits implementations. It composes of

two slices (four slices in Virtex 4, see Table A.1 in the Appendix A) connected to a

switch matrix, as shown in Figure ‎2.8. Each slice has its own carry chain [120, 121].

Two types of slices are used in FPGA devices, namely: SLICEL and SLICEM. SLICEL

is a combination of LUTs, storage elements, wide function multiplexers and carry logic.

It can be used to implement logic and ROM functions. The function generators can be

configured as 6-input LUTs or dual-output 5-input LUTs. The Boolean function of each

LUT can be modified or altered using existing hardware description languages.

SLICEM has an additional function which supports data shifting using 32-bit registers

(or 16-bit × 2 shift registers) and data storing using distributed RAM (64-bit distributed

RAM). A brief description of CLB logic resources for both slice types is shown in

Table ‎2.4. It is clear from Table ‎2.4 that Virtex 6 has twice the number of Flip-Flops of

Virtex 5; as such it provides more efficient hardware functionality.

27

S
w

it
ch

M
at

ri
x

Slice

1

CLB

Slice

0

Carry in

Carry out

Figure ‎2.8: CLB block diagram [120].

Table ‎2.4: Hardware resources in single CLB for Virtex 5 and Virtex 6 [120, 121].

 All CLBs (SLICEL and SLICEM) SLICEM only

Device Slices LUTs FFs
Arithmetic and

Carry Chains

Distributed RAM

(bit)

Shift

Registers(bit)

Virtex 5 2 8 8 2 256 128

Virtex 6 2 8 16 2 256 128

2.6.2 Block RAMs

The block RAM is a dedicated hardware resource which can be used to store large data

for high speed applications. Up to 18, 38 and 68 Mb block memory can be constructed

using available block RAM resources in Virtex 5, 6 and 7 families, respectively.

Further, each block RAM can be constructed as two independently controlled 18 Kb

RAMs or one 36 Kb RAM. In addition, each 36 Kb RAM can be cascaded with other 36

Kb RAMs to form bigger block memories. A variety of memory components can be

implemented using a Xilinx CORE generator [124]. This includes ROMs, single/dual

port RAMs and FIFOs. Since the FIFO uses dedicated memory resources, it does not

require additional logic resources for its data control unit [120-122].

28

2.6.3 Distributed RAM (Available in SLICEM only)

Distributed RAM is an efficient memory component in terms of resources, performance,

and power aspects. It represents a good solution for small data and it can be

implemented using available SLICEM LUTs resources [120]. Generally, Distributed

RAM should be used for data sizes of 64 bits or less. However for a depth varying from

64 to128 bits, the decision of using block or distributed RAM depends on the

availability of block RAMs; if not available, distributed RAM can be used instead.

Further, the block memory should be used for data widths greater than 16 bits [127].

2.6.4 DSP Slices

DSP slices accelerate and reduce the power consumption required by the multiplication

operations. Each DSP slice in Virtex 5 and later families composed of 25×18-bit two’s

complement multiplier with a 48-bit output precision and optional adder, subtracter and

accumulator with an optional pipeline stages for performance enhancement [118, 123,

128].

Further, each Xilinx device contains interconnection matrices, I/O buffers and ports,

PCI interfaces, high throughput transceivers and memory interfaces. Full details about

the components of each Xilinx FPGA device can be found in [125].

2.6.5 Specifications of FPGA Devices Used in This Thesis

In this thesis, two Xilinx FPGA devices are used for verification and performance

evaluation. The first device is the xc5vlx50t-3ff1136 Virtex 5 FPGA. It is used in the

evaluation operations of the architectures in chapters 3, 4 and 5. Such a device

encompasses up to a 2.1 Mb block memory and 48 DSP slices; both of these are

required for the proposed architectures. The second device is the XC6VLX760 Virtex 6

FPGA device. It is used in Chapter 6 to fulfil the hardware requirement of the parallel

multidimensional wavelet architectures. The main features of this device include; a

block memory of up to a 25Mb and 864 DSP slices. A summary of the main features of

the two FPGA devices is shown in Table 2.5 [118-121].

29

Table 2.5: Summary of XC5VLX50T and XC6VLX760 Xilinx FPGA devices

characteristics.

Device
Virtex 5

XC5VLX50T

Virtex 6

XC6VLX760

CLBs Total Slices 7200 118560

SLICELs 5280 85440

SLICEMs 1920 33120

Max Distributed

RAM (Kb)
480 8280

Shift registers

(Kb)
240 4140

DSP48E1 Slices

48 864

Block RAMs 18 Kb 120 1440

36 Kb 60 720

Max (Kb) 2160 25920

Max User I/O

480 1200

Slice configuration

4-LUT, 4-Storage

elements (FF),

multiplexers and carry

logic

4-LUT, 8-storage

elements (FF),

multiplexers and

carry logic

2.7 Xilinx FPGA Design Tools

Various Xilinx FPGA designing tools can be used in FPGA devices programming. They

include an Integrated Software Environment (ISE) Design Suite, PlanAhead, an

Embedded Development Kit (EDK), ChipScope Pro, AccelDSP, System Generator for

DSP and Vivado High Level Synthesis design suite (Vivado HLS) [125].

In ISE design suite and PlanAhead, the designed system can be built schematically or

by programming using VHDL and Verilog hardware description languages. Through

the ISE design suite, the designer can synthesise, implement, verify and perform device

configuration for the required design throughout the project navigator’s panes. The

EDK tool includes Xilinx Device Studio, the Software Development Kit, documentation

and IPs for designing embedded processing systems using Xilinx FPGA Devices.

Moreover, the ChipScope Pro tool captures, display and analyse the internal signals for

a selected node. Another hardware design tool is the AccelDSP Synthesis tool [129]. It

is used to transform Matlab floating point design into a fixed-point either in Matlab or

30

C++ format, and then it can be implemented in a Xilinx FPGA device. Further details

can be found in [125].

Moreover, two other high level hardware design tools can be used in hardware

architectures implementations. These two tools include; the Xilinx System Generator

for DSP and Vivado HLS.

2.7.1 Xilinx System Generator for DSP

System Generator for DSP is a high level hardware design tool [130]. It is used for high

performance DSP system implementation using Xilinx FPGA devices. The Xilinx

system generator is a system-level modeling tool based on Simulink of Matlab [125]. It

shortens the time required to design and implement efficient DSP algorithms compared

with other traditional Register Transfer Level (RTL) design procedures. It merges the

functionality of Matlab Simulink with the requirement of hardware implementations

using new Simulink DSP blockset that have been added to fulfill the hardware

requirements. The DSP blockset is a library containing over 90 DSP blocks such as

adders, multipliers, block RAMS, multiplexers, and others, as shown in Figure ‎2.9. The

DSP blocks can be connected together in an appropriate way to satisfy the requirement

of any proposed DSP system. Furthermore, the Xilinx System Generator for DSP

generates VHDL or Verilog codes automatically from Simulink workspace, while the

VHDL codes can be imported using a specific block in order to use it with other

existing blocks as well. Further, a sequence of optimization operations should be carried

out in order to improve the performance and robustness of the proposed architecture.

The optimization operations include validating the functionality of the proposed

architecture, whether it meets the design constraints or not. The function of the

proposed architecture can be verified using Matlab Simulink simulation workspace with

an appropriate setting of simulation time and clock period. Moreover, the power

consumption can be analysed using Xilinx Power Analyzer, which is an integrated tool

with the System Generator. Also, the timing constraint and critical path delay can be

viewed and optimized for better performance and higher processing speed. Further, the

critical path delay can be reduced by inserting some pipeline stages as required. The

main System Generator DSP blocks shown in Figure ‎2.9 are the following [130]:

 System Generator block: It is used to set the system clock period, select the

target hardware device and VHDL and Verilog code generation. Further, another

important function of System Generator block is the timing and power analysis

31

generation. Through the timing and power analysis tool, the designer can ensure

that the proposed system meets the timing and power constraints before it is

embedded or merged with other systems in the large model.

 Gateway in: It represents the input port to convert the data from floating point to

fixed point representation in a FPGA environment according to the word length

and data precision specified by the designer.

 Gateway Out: It is used to convert the data from fixed point to floating point

representation and acts as an output port.

 WaveScope: It is an optional tool to view the output waveforms at a dedicated

node in the architecture.

 Dual port RAM, single port RAM, ROM and FIFO: In RAM, ROM and FIFO

blocks the depth, word size, latency and initial data (if any) of the selected

RAM/ROM can be set. These memories can be constructed as a block or

distributed RAM with a specific latency, as required. The block memory is

constructed using the available dedicated memory resources.

 Register: It is a D-FF register with one sample latency.

 Delay: It is a chain of Shift Register LUT (SRL) followed by FF. It is used for

data synchronising and pipelining purposes.

 Shift: It is used to perform binary right and left shift with different output

precision levels.

 Slice or bit/bits slice: It is used to select specific bit/bits from the input sequence

to create new data values with unsigned integer output values.

 CMult: It performs the multiplication of the input data by a pre-selected constant

value. Further, its latency and the output precision can be adjusted for optimum

and fast multiplications.

 Mult: It is used for two input data multiplication. Its latency and the output

precision can also be adjusted.

 AddSub: It is an adder/subtractor with the ability to modify latency and output

precision. It can be used as an adder or subtractor or both.

32

Figure ‎2.9: Selected DSP blocks from system generator blockset.

 Accumulator: It performs an accumulation operation (addition or subtraction)

with different feedback scales and different latency depths. Its output data

precision is similar to that of the input data.

 Down sample and up sample blocks: Different sampling rates can be obtained

using these two blocks; the up sampling block either repeats the data or fills it by

a sequence of zeros.

 Counter: Different ranges of up or down counters can be implemented using

such a block and the output of the counter can be specified as a signed or

unsigned.

 Mux: It is a multiplexer with variable number of inputs and one unsigned control

signal.

Wave Scope

WaveScope

2

Up Sample

[a:b]

Slice

addr

data

we

z
-1

Single Port RAM

X << 2

Shift

a

b
a = b

z
-1

Relational

d qz
-1

Register

addr z
-1

ROM

sel

d0

d1

Mux

a

b
a  b
z
-3

Mult

x

y

zxlmax

MCode

and

Logical

 Out

Gateway Out

 In

Gateway In

addra

dina

wea

addrb

dinb

web

A

B

Dual Port RAM

z
-1

2

Down Sample

z
-1

Delay

++

Counter

1

Constant

x 1

CMult

a

b
a + b

AddSub

b

rst
+=b

Accumulator

System

Generator

33

 Constant: It is used to set specific constant values such as an integer, fractional

or Boolean.

 Logical: It performs logical operations such as AND, NAND, OR, NOR, XOR

and XNOR with adjustable number of inputs.

 Relational: It is a comparator to perform relational operations such as greater

than, equal or not equal.

 MCode block: Using the MCode block, the designer can use simple Matlab code

to perform simple operations such as comparison and/or switching.

 Black Box: This is used to import pre-designed VHDL or Verilog codes to be

used with other existing DSP blocks in the Simulink blockset.

2.7.2 Vivado High Level Synthesis Design Suite (Vivado HLS)

The Vivado HLS is the most recent Xilinx design tool. It was unveiled in April 2012 to

support faster hardware implementation and verification. The Vivado HLS accelerates

IP generation by directing C, C++ and SystemC codes according to the requirements of

the Xilinx FPGA devices. Furthermore, it offers faster implementation and verification

with an important feature of about 35 % average power advantage and about 20% better

LUT utilisation[125, 131].

2.8 Architectures Design Procedure

A design may go through variant implementation and verification steps, as shown in

Figure ‎2.10. The figure, starting point is to analysis and apperception of the targeted

algorithm. In the second step, such algorithm is coded in Matlab for testbench purposes.

Thus, this is the base of the whole design procedure; the results obtained from this step

are used for verification of the architecture. In the third step, the architecture is built

using the block sets of the system generator, and the architecture output is collected and

verified with that obtained from Matlab codes. Various optimization operations are

carried out to further reduce the hardware cost, power consumption and increase the

processing speed. Such operations include pipelining to shorten the critical path,

varying wordlengths for output precision, and the replacement of high cost hardware

blocks, such as dividers and multipliers, with equivalent low cost blocks. Finally, once

34

all the optimization procedures have been carried out, the results are collected and a

comparison with the software implementation results is made.

Further, throughout the rest of this thesis the algorithms and architectures are designed

and tested using the following software and tools:

1. Machine specifications: Intel (R) Core (TM) 2 CPU 6600 @ 2.4GHz, 3.24 GB

of RAM and 80 GB of Hard disk.

2. Operating system: Microsoft Windows XP professional Version 2002 Service

Pack 3.

3. Software tool: Matlab version 2010a.

4. Hardware design tool: Xilinx System Generator for DSP 12.4 (2010) and ISE

12.4.

5. Xilinx Xpower Analyser is used for power and timing analysis.

6. The testing data composes of standard images, video sequences and medical

images. In chapter 3, 2-D images and individual frames with block sizes of

N×N-pixel have been used. While 3-D volume data and a cube size of N×N×N-

voxel is used in the evaluation process of the 3-D DCT and 3-D DWT

architectures proposed in chapters 4 to 6.

The design procedure using Xilinx system generator starts from Matlab Simulink and

end with the bit stream generation, as shown in Figure ‎2.11 [132].

mailto:6600@2.4GHz

35

Start

Analysis and apperception

of the targeted algorithm

Design the prototype architecture

Build the architecture on Simulink workspace

using available DSP blocks

Verify and compute the accuracy of the

architecture output using Matlab

Output True? Y
Alter the

architecture
N

Remove

unnecessary DSP

blocks?

Timing and power analysis

N

Y

Constraints are met?

End

Y

Pipelining and modifying the

architecture to improve the

timing and power

characteristics

N

Implement the algorithm using

Matlab

Figure ‎2.10: Architectures design procedure.

36

Figure ‎2.11: System Generator design flow [132].

2.9 Summary

This chapter has presented the information required to support the work in the rest of

this thesis. The information provided has reviewed the low complexity image

compression algorithms, the DCT and DWT, their computational complexity.

Furthermore, as the rest of this thesis focuses on FPGA-based implementation of such

algorithms using Xilinx devices, necessary key information about Xilinx FPGA families

and their architectures has been given. Moreover, the related work and FPGA design

tools were presented including Xilinx System Generator for DSP. Furthermore, the

design procedure of the proposed architectures has been introduced and the design,

implementation and verification steps are outlined.

37

Chapter 3: Low Complexity Block-Based Image

Compression Systems

3.1 Introduction

Low complexity image compression algorithms are necessary for modern portable

devices such as mobile phones and wireless sensor networks. Examples of such

algorithms are the BTC and AQC. Hence, this chapter introduces two new low

complexity block-based image compression algorithms for low bit rate applications and

their high speed, low power consumption architectures. The proposed algorithms are

based on the AQC algorithm by considering the intensity variation of image regions to

reduce the bit rate of the encoded image. Thus, the proposed algorithms introduce the

intensity check process as an additional parameter to the AQC parameters to control the

output bit rate while preserving the output PSNR within an acceptable range. Such

algorithms are termed Intensity Based Adaptive Quantisation Coding (IBAQC)

algorithms. The key differences between the two proposed algorithms lie in the intensity

check process of the image block and the computation cost. The first algorithm

performs an intensity check operation on the variance of each image block prior to the

AQC computation, whereas the second algorithm performs the same operation

according to the quantisation steps of the AQC algorithm. The second algorithm avoids

the computational complexity of the block variance required by the intensity check unit

in the first algorithm. Moreover, high speed and low hardware usage architectures have

been designed and verified using xc5vlx50t-3ff1136 Virtex 5 Xilinx FPGA device.

The remainder of this chapter is organised as follows: Section ‎3.2 introduces a

background about the BTC and AQC algorithms. Section ‎3.3 presents two IBAQC

algorithms, while section ‎3.4 presents their hardware architectures. The performance of

both algorithms and their architectures are discussed in section ‎3.5 and the summary is

drawn in section ‎3.6.

38

3.2 Background

3.2.1 Block Truncation Coding (BTC)

The BTC is a lossy image compression technique with a bit rate of 2 bpp [2]. The BTC

algorithm uses a two-level quantiser and a bit plane which depends on local image

features. The BTC algorithm partitions the input image into -pixel blocks, and

computes the bi-level bit plane and two 8-bit moments for each block. The computation

steps of this algorithm are as follows:

 Compute the mean and the standard deviation of each block.

 Specify a threshold so that each pixel within the 4×4-pixel block, which is smaller

than the threshold, is encoded as 0; otherwise, it is encoded as 1. In [2], the mean

of each image block can be chosen as a threshold.

 () {
 () ̅

 (‎3.1)

where () is the output bit plane, () is the intensity of each pixel in the block

and , and ̅ is the block mean.

 Compute the two moments using the following two equations [2]:

 ̅ ̅ √

 (‎3.2)

 ̅ ̅ √

 (‎3.3)

where L0 and L1 are the moments, is the number of pixels that are greater than the

threshold of the block, and ̅ is the standard deviation of the block:

 ̅ √ ̅̅ ̅ ̅

 ̅̅ ̅

∑ ∑ ()

 ̅

∑ ∑ ()

(‎3.4)

39

Thus, the encoding of each 4×4-pixel block requires 32 bits; 16 bits to encode the two

moments and the remaining 16 bits for the resultant bit plane.

The computation load of the original BTC algorithm was reduced by the Absolute

Moment Block Truncation Coding (AMBTC) [133]. The AMBTC algorithm replaces

the standard deviation and the mean by an appropriate high and low means, as follows:

∑∑ () { () ̅}

 (‎3.5)

∑∑ () { () ̅}

 (‎3.6)

where and represent the low and high means respectively, and and are the

number of pixels that are less and greater than the threshold, respectively.

Further, the decoding process is carried out by replacing each element in the bit plane

by its corresponding low or high mean.

 {
 ()

 (‎3.7)

where is the reconstructed image.

Further, the AMBTC algorithm computation procedure is shown in Figure ‎3.1.

Figure ‎3.1: The AMBTC algorithm computation procedure.

40

3.2.2 Adaptive Quantisation Coding (AQC)

AQC is used in different applications as a low complexity and high speed image

compression system, such as an image compression system to reduce the motion blur on

liquid crystal displays (LCDs) [4, 5, 43-46]. The AQC can be described as a multilevel

BTC encoding system. The computation of the AQC compression algorithm includes

the following three steps:

1. Partitioning the input image into non-overlapped blocks of -pixel.

2. The computation of the quantisation step:

 ⌊()

⁄ ⌋

(‎3.8)

where

 represents the quantisation step ,

 is the number of quantisation levels,

 (()) and (()).

3. The bit plane (Bp) of each block using a multilevel quantiser can be

computed as follows:

 () ⌊(())

⁄ ⌋ (‎3.9)

Hence, the encoded bit stream includes bit plane, the quantiser step and the minimum of

each block. These values are termed the AQC parameters. The computation procedure

of the AQC algorithms is shown in Figure ‎3.2.

Figure ‎3.2: The AQC algorithm computation procedure.

41

The decoding phase is carried out by restoring the original image from the computed

AQC parameters, as follows:

 ̃()

 () (‎3.10)

where, ̃()is the reconstructed image block.

As such, the resultant bit rate of a grey scale image is expressed as follows:

()

 (‎3.11)

where is the number of bits required for the quantiser step, which is equal to

 .

 is the quantisation level bits and Bitn is the number of bits

used for encoding the minimum of each block (typically 8 bits). As an example, if a

512×512 grey scale image is partitioned into 4×4-pixel blocks, the resultant bit rates are

equal to 1.8125 and 3.8125 bpp using two and eight levels quantisers, respectively.

The AQC algorithm outperforms the BTC algorithm in terms of the quality of the

output images, but with a higher bit rate than the BTC algorithm [4]. However, the AQC

algorithm produces a fixed bit rate throughout the whole image without considering the

difference in intensity levels between image regions. Some image regions contain a

single intensity level, whereas the others contain different intensity levels. Hence,

improved encoders are proposed by considering the intensity variation of the image

blocks, namely: the IBAQC.

3.3 Intensity Based Adaptive Quantisation Coding (IBAQC)

In this section, two IBAQC image compression algorithms are presented. The proposed

algorithms consider the intensity variation of image regions to reduce the bit rates whilst

keeping the quality of the compressed image at an acceptable level. Both algorithms

comprise two steps: intensity check and AQC computation. The intensity check step is

carried out locally within each data block using a certain intensity check unit. The two

algorithms are termed Algorithm1 and Algorithm2. Algorithm1 performs the intensity

check using the block variance prior to the AQC computation process. While,

Algorithm2 performs the intensity check on the quantisation step of the AQC algorithm.

The input parameters of both algorithms are the number of quantisation levels, block

size and threshold.

42

3.3.1 Algorithm1

The first algorithm (Algorithm1) is a composition of intensity variation check and AQC

units, as shown in Figure ‎3.3 and Figure ‎3.4 . The input image is partitioned into non-

overlapping -pixel blocks to check the local variation of each image block using

the sample variance (̅̅ ̅). The variance can be computed using (‎3.4). A block variance

is compared against a predefined threshold to classify the image blocks into low or high

intensity variation. The variance of a small image block is small enough to ignore the bit

plane of the whole block. Thus, an appropriate encoding method and the parameters for

each image block are selected. The encoding parameters of the two classes of image

blocks can be described as follows:

 {
{ } ̅̅ ̅

{ ̅}
 (‎3.12)

where is the encoded bit stream, { } is the classification bit and is an

adjustable parameter which represents a predefined threshold. Further, the number of

bits required for the quantisation step is given as follows:

 ⌈

((()))⌉

 (‎3.13)

where ⌈ ⌉ represents ceil function.

No

Bit stream generation

Partitioning into

(N×N) Blocks

Quantisation

levels (QL)

Input

Image

µ

Variance≤δ

Compressed

Image

Threshold

δ

Yes

Variance

Qs

Bp

Bn

Figure ‎3.3: Block diagram of Algorithm1.

43

Figure ‎3.4: The Computation procedure of Algorithm1.

Typically, the number of quantisation step bits is equal to (

) in typical 8

bit/pixel grey images. The number of bits required for the bit plane of high variation

blocks is:

 ()

 (‎3.14)

Thus, the bit rate of the proposed algorithm for each image block is:

{

 ()

 ̅̅ ̅

()

 (‎3.15)

where is the number of bits required to represent; the mean,

quantisation step, minimum and the bit plane of each block, respectively. Overall, the

number of bits that are required to encode the low and high intensity variation blocks

for 4×4-pixel blocks are shown in Table 3.1. From Table 3.1, a reduction of 72-88 % in

44

bit rate can be achieved for the low intensity variation blocks. Thus, the low intensity

variation blocks are encoded using its mean and a 1 bit classifier, whereas the edge

blocks are encoded using its minimum, quantisation step and bit plane. The number of

quantisation levels can be set to 3, 4 or 5 depending on the required compression ratio

and the output performance.

The output of the former computation procedure represents the encoded or compressed

image. On the decoding side, the decoder takes account of the classifier bit (). If it is

in low state, the block is classified and decoded as a low variation block; otherwise, it is

decoded as a high variation block. Thus, the decoding phase can be represented by the

following equation:

 ̃() {
 ()

 ̅
 (‎3.16)

where ̃()is the decompressed image block.

Table 3.1: Number of bits required for each block type for 4×4-pixel blocks using

different number of quantisation levels.

Quantisation

levels (

)

Classifier

bit

 or

Number of bit/Block for

each intensity variation

type:

Bit rate

Saving/Block

%
High Low

2 1 8 7 16 32 9 72

4 1 8 6 32 47 9 80

8 1 8 5 48 62 9 85

16 1 8 4 64 77 9 88

3.3.2 Algorithm2

This algorithm is a composition of AQC and an intensity variation check unit, as shown

in Figure ‎3.5 and Figure ‎3.6. The input image is partitioned into -pixel blocks in

which the AQC parameters (the minimum of each block; , quantisation step;

 and

the bit plane;) are computed. The AQC parameters and the output bit rate depend on

the predefined quantiser, as stated in (‎3.9) and (‎3.11). The quantiser is selected

according to the target bit rate and the required PSNR.

45

The proposed algorithm classifies each image block into one of two classes, low or high

intensity variation block. High intensity variation blocks are encoded using the AQC

coding system while low ones are represented by its mean, similar to Algorithm1.

However, in Algorithm1 the intensity check unit utilises high computation complexity,

which involves multiplication and () additions to perform the block

variance computation. Thus, to eliminate this number of multiplications a new intensity

check unit is proposed. The new intensity check unit is based on the quantisation step of

the quantiser, as the low variation blocks require lower quantisation steps than the high

variation or edge blocks. Thus, to exploit this attribute for bit rate reduction, the

quantisation step is compared with a predefined threshold. The bit plane and

quantisation steps are discarded for any block for which the quantisation step is less

than the predefined threshold. Thus, each low intensity variation block is represented by

its mean and one classifier bit to distinguish between the two types of blocks. Moreover,

the encoding bit stream of the high intensity variation blocks consists of a bit plane, a

quantiser step size, the minimum intensity value of such a block and a single bit

classifier. The encoded parameters of both block classes can be expressed as in (‎3.12)

and the output bit rate is computed using (‎3.15), while the decoder described in (‎3.16)

can be used in the decoding phase.

Bit stream

generation

Partitioning into

(N×N) Blocks

Quantisation

levels (QL)

Input

Image

Qs

Bp

Bn

µ

Qs>δ

Compressed

Image

Threshold

δ

Qs>δ

Qs≤δ

Figure ‎3.5: Block diagram of Algorithm2.

46

Figure ‎3.6: The Computation procedure of Algorithm2.

3.4 The Proposed IBAQC Architectures

In this section, two architectures that implement the proposed IBAQC algorithms are

presented. The two architectures are named Model1 and Model2, which represent the

architectures that corresponding to Algorithm1 and Algorithm2, respectively. Further,

an architecture for the AQC algorithm is also designed and verified. The red and blue

lines represent the controller signals while the black lines represent the actual data flow

in the proposed architectures. The proposed architectures have been designed and

implemented using Xilinx System generator tool, as illustrated in section 2.8. The

initialisation Matlab codes for the proposed architectures are listed in the appendix B.

47

3.4.1 Model1

The proposed Model1 architecture consists of five separate units: the main controller,

the intensity check, the minimum, maximum and AQC computation units, as shown in

Figure ‎3.7. Model1 architecture represents the hardware architecture of Algorithm1.

Intensity

check unit

Maximum

Minimum

Controller

Signal

Ctrl1

Input

Image AQC

Computation

Mean or

Minimum

Quantization step

Mean

Minimum
Mux

0

Bit Plane

Mux=Multiplexer

1 bit

Classification

signal (Ctrl2)

(0 or 1)

Figure ‎3.7: IBAQC Model1 architecture.

The proposed architecture produces four outputs: the intensity check signal value Ctrl2,

the minimum or mean of each block, the bit plane and quantisation step. Ctrl2 is a

binary signal which distinguishes between the high and low intensity blocks (the

classifier bit).

3.4.1.1 Minimum, Maximum and Mean Computation Units

The computation of the minimum and maximum of each input block is carried out using

specific circuits composed of comparators, multiplexers and registers, as shown in

Figure ‎3.8. The input parameters to the proposed architectures, which are the block size,

number of quantisation levels, threshold and wordlengths are specified prior to the

computation process of the compressed image.

48

Comp1

a. Computation of smallest pixel

of each block (Minimum)

Input

Data

Minimum

Register

Reset

a

a>b

b

Mux

1

Controller

Signal (Ctrl1)

Input

Data

Maximum

Register

Reset

a

a<b

b

Mux

2

Controller

Signal (Ctrl1)

b. Computation of largest pixel of

each block (Maximum)

Comp2

Figure ‎3.8: Minimum and Maximum computation units.

….

.
Clock

Ctrl1

0 1 N2-1 0 1

Figure ‎3.9: Controller signal (Ctrl1).

The minimum value of each block is computed as follows: each input pixel is compared

with the output of the multiplexer Mux1, as shown in Figure ‎3.8-a. The output of the

comparator Comp1 is high if the input pixel is greater than the Mux1 output; otherwise,

it is low. The Comp1 output acts as a selector signal for the Mux1; if it is 1, the output

of Mux1 is unchanged; otherwise, Mux1 selects the current input pixel. After clock

cycles, the output of Mux1 represents the minimum value of the data block and the

register is set to its initial value (255) by the controlling signal Ctrl1. The maximum

value of each input block is computed in the same way except for the comparison

operation and the initial value of the register is zero. The output of Comp2 is high when

the input data is less than Mux2 output. The block diagram of the maximum

computation circuit is shown in Figure ‎3.8-b.

Further, the mean of each input block is computed through the computation process of

the intensity check unit. The controller signal Ctrl1 is used to reset the accumulators,

enable/disable multipliers and set/reset registers. This signal is generated according to

the size of input block and its waveform is shown in Figure ‎3.9.

49

3.4.1.2 Intensity Check Unit

The intensity check unit is a combination of multipliers, accumulators (Accum), bit

shifting and a comparator (Comp), as shown in Figure ‎3.10.

Accum

1

-Controller Signal (Ctrl1)
Input

Image

Mean

Accum

2

>>

log2(N
2)

>>

log2(N
2)

Comp

Threshold

1 bit

Classification

signal (Ctrl2)

(0 or 1)

Accum=Accumulator

Comp=Comparator

Mult= Multiplier

Mult1

Mult2

×

×

Figure ‎3.10: Intensity check unit of Model1.

During each clock cycles, the following sequence of operations is carried out in the

intensity check unit:

 The sum of all pixels in the -pixel block using Accum1, as shown in

Figure ‎3.10

 The computation of the mean of each block (̅) using a (
) right bit shifter

 The computation of the square value of the mean (̅) using Mult1

 The computation of the squared value of the mean of each input block using

Mult2

 The sum of the squared values of all pixels in the -pixel block using

Accum2

 The computation of the mean of squared values ̅̅̅̅ of each block using a

 (
) right bit shifter

 The computation of the variance, is given by:

 ̅̅ ̅ ̅̅̅̅ ̅ (‎3.17)

The last computation step of the intensity check unit is the comparison between the

variance and a predefined threshold to generate the bi-level controlling signal Ctrl2.

50

Such a control signal is low for low intensity variation blocks Ctrl2=0. Moreover, the

AQC computation is accomplished using the circuit of Figure ‎3.11. The AQC

computation unit is turned on/off according to the state of Ctrl2 signal; if Ctrl2=0, the

quantisation step and the bit plane are set to 0. The controller signal Ctrl2 is used to

select the minimum or the mean of each block by driving Mux0 in Figure ‎3.7.

3.4.1.3 AQC Computation Unit

The next steps are the computation of the bit plane and the quantisation step of the

image block. The bit plane is computed according to (‎3.8). However, division

operations are avoided using two 256-Word ROMs and an addressing unit, as shown in

Figure ‎3.11. The difference between the maximum and minimum ranges is from 0 to

255, which can be used as the addresses of the two ROMs (ROM1 and ROM2). Thus,

the content of ROM1 is:

 ⌈

⌉ (‎3.18)

and the content of ROM2 is given as:

 () (‎3.19)

where is the quantisation steps and ⌈ ⌉ represents the ceil function and
 is an

array of 256 words used for the bit plane computation in (‎3.9). The output from ROM2

is multiplied by the difference between the actual pixel value and the minimum of each

block to produce the bit plane of the input data block. Such a bit plane is coded as

unsigned integer on

 bit.

Input

Block

ROM1

256

Words

-
ROM2

256

Words

Maximum

Minimum

Quantisation

step

-
Bit Plane

Controller Signal (Ctrl2)

×

Figure ‎3.11: AQC computation unit of Model1.

51

3.4.2 Model2

Model2 architecture consists of six separate units: the main controller, intensity check,

minimum, maximum, mean and AQC computation units, as shown in Figure ‎3.12. The

input parameters of the proposed architecture are the quantisation levels, block size and

the threshold value.

Mean

Maximum

Minimum

Controller

Signal

Ctrl1

Input

Image AQC

Computation

Mean or

Minimum

Quantization step

Mean

Minimum
Mux

0

Bit Plane

Mux=Multiplexer

Comp0 Threshold

Comp=Comparator

1 bit Classification

signal (Ctrl2)

(0 or 1)

Figure ‎3.12: IBAQC Model2 architecture.

The computation of the minimum and maximum of each input block is carried out using

the same procedure of Model1, while the mean of each input block is computed using

an accumulator and

 right bit shifter. The AQC parameters are computed using

the circuit that shown in Figure ‎3.13. The computation process is carried out similar to

that of Model1 architecture. However, the ROM1 output is compared against the

predefined threshold to generate the second controlling signal (Ctrl2), as shown in

Figure ‎3.13. When Ctrl2 is 0, the multiplier is turned off, the output of Mux3 is set to 0

and the mean of each block is selected, otherwise the multiplier is on, the Mux3 output

is set to and the minimum of each input block is selected. The , Mult1 output (bit

plane), minimum and the Ctrl2 binary signal represent the encoded bit stream of the

high intensity variation input block.

Input

Block

ROM1

256

Words

-
ROM2

256

Words

Maximum

Minimum

-
Bit Plane

Mult1

Quantization

step (Qs)

Mux

3

CompThreshold

1 bit Classification

signal (Ctrl2)

(0 or 1)

0
Qs

-1Qs

×

Figure ‎3.13: AQC computation unit of Model2.

52

3.4.3 AQC Architecture

The AQC architecture is designed similar to Model2 architecture, with only difference

being the intensity check unit which has been removed. The block diagram of the AQC

architecture is shown in Figure ‎3.14 and its operation sequence is similar to Model2

architecture. However, all image blocks are encoded using the minimum, bit plane and

the quantisation step.

Maximum

Minimum
Ctrl1

Input

Image
AQC

Computation

Minimum

Quantization step

Bit Plane

Figure ‎3.14: The AQC architecture.

Further, the computational complexities and the initial latencies of the AQC, Model1

and Model2 architectures are shown in Table 3.2. It can be seen from Table 3.2, the

AQC and Model2 architectures have the same number of multiplication operations.

While additional -addition operations are required to perform the block mean

computation in Model2. Further, Model1 shows an additional number of multiplication

and addition operations over AQC and Model2 which are required for variance

computation. However, the number of addition and multiplication operations depends

on the type of each image block. For high intensity variation blocks; and

 addition and multiplication operations are required, respectively. Whereas

only ()and addition and multiplication operations are required for low

intensity variations blocks.

Table 3.2: Computational complexities of the AQC, Model1 and Model2 architectures.

Architecture Latency
Number of

Additions Multiplications

AQC

Model1

 : (for high intensity

variation blocks)

or () :(for low intensity

variation blocks)

 :(for high intensity

variation blocks)

or :(for low intensity

variation blocks)

Model2

53

3.5 Performance Evaluation

In this section, the proposed algorithms and their corresponding architectures are tested

on natural and commonly used images, as shown in Figure ‎3.15. Tests have been carried

out using different block sizes, quantisation levels and thresholds. The block sizes used

are: 4×4, 8×8 and 16×16-pixel while the quantisation levels are 8, 16 and 32 levels.

Figure ‎3.15: Test images.

3.5.1 Performance of the Proposed Algorithms

The obtained results are evaluated using the bit rate and PSNR of the reconstructed

images. A Matlab code is written to compute the PSNR using (2.13).

3.5.1.1 Rate Distortion Performance of Algorithm1

The PSNR and bit rates of Algorithm1 using low threshold value of 12 and high

threshold value of 400 are shown in Table ‎3.3 and Table ‎3.4, respectively. The low

threshold (Table ‎3.3) produces very good image quality and high average PSNRs

ranging from 41 to 46 dB with a bit rate of 3 to 4 bpp. As can be seen from Table ‎3.3,

the best choice of the block size is 4×4-pixel with an 8-level quantiser. Such a block

size, quantiser and threshold parameters have resulted in a good compromise between

image quality and bit rate.

54

Table ‎3.3: PSNR and bit rate computed using Algorithm1 for different block sizes,

quantisation levels and a low threshold (12).

Lena

(512×512)

Baboon

(512×512)

Pepper

(512×512)

Barbara

(512×512)

MRI1

(128×128)

MRI2

(256×256)

N QL
PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

4 32 43.9 3.3 48.9 5.6 44.3 4.2 43.8 3.3 53.7 2.5 48.4 5.3

4 16 43.4 2.8 44.0 4.7 43.5 3.5 43.2 2.8 49.7 2.2 46.0 4.4

4 8 41.4 2.3 37.4 3.8 40.5 2.9 40.9 2.3 41.3 1.8 41.6 3.6

8 32 44.6 3.6 47.4 5.2 45.6 4.4 44.7 3.6 54.1 2.3 48.7 5.0

8 16 43.2 2.9 42.0 4.2 43.3 3.6 43.3 2.9 48.0 1.9 43.7 4.1

8 8 39.3 2.2 35.7 3.2 38.3 2.7 39.4 2.3 38.1 1.5 37.5 3.1

16 32 45.0 4.1 45.8 5.0 46.0 4.7 45.7 4.2 52.9 2.8 47.2 5.0

16 16 42.2 3.3 40.3 4.1 41.7 3.8 42.8 3.4 47.3 2.2 41.0 4.1

16 8 36.9 2.5 34.2 3.1 35.6 2.9 37.4 2.5 36.7 1.7 34.1 3.1

Average 42.2 3.0 41.7 4.3 42.1 3.6 42.4 3.0 46.8 2.1 43.1 4.2

Table ‎3.4: PSNR and bit rate computed using Algorithm1 for different block sizes,

quantisation levels and a high threshold (400).

Lena

(512×512)

Baboon

(512×512)

Pepper

(512×512)

Barbara

(512×512)

MRI1

(128×128)

MRI2

(256×256)

N QL
PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

4 32 31.8 0.9 29.5 2.8 32.1 1.0 32.3 0.9 31.4 1.3 30.9 1.2

4 16 31.8 0.8 29.5 2.4 32.1 0.9 32.3 0.8 31.3 1.1 30.8 1.1

4 8 31.7 0.8 29.0 2.0 31.9 0.9 32.1 0.7 31.1 1.0 30.7 1.0

8 32 30.9 1.0 29.9 3.0 30.9 1.1 30.7 0.7 31.7 1.5 31.4 1.2

8 16 30.8 0.8 29.7 2.4 30.9 0.9 30.6 0.6 31.6 1.3 31.3 1.0

8 8 30.5 0.6 29.1 1.9 30.4 0.7 30.4 0.5 30.9 1.0 30.6 0.8

16 32 30.2 1.6 30.6 3.4 30.4 1.9 28.9 1.0 32.0 2.0 32.5 1.5

16 16 30.1 1.3 30.3 2.7 30.3 1.5 28.9 0.8 31.9 1.6 32.1 1.2

16 8 29.6 1.0 29.2 2.1 29.5 1.2 28.5 0.6 30.9 1.2 30.4 0.9

Average 30.8 1.0 29.6 2.5 30.9 1.1 30.5 0.7 31.4 1.3 31.2 1.1

55

Furthermore, Table ‎3.4 shows the performance of the encoded images using a high

classification threshold. The average bit rates, in this case, are 1 to 2.5 bpp with average

PSNRs of 30 to 31 dB. All the images behaved equally except the baboon image, which

is an example of a high intensity variation image. Further, the 4×4-pixel block size and

16-level quantiser parameters provide the best compromises between image quality and

bit rate in the case of a high classification threshold.

3.5.1.2 Rate Distortion Performance of Algorithm2

Samples of the obtained results using Algorithm2 are shown in Table ‎3.5 and Table ‎3.6

as an illustration of low and high thresholds cases, respectively. Table ‎3.5 shows the

PSNRs and bit rates obtained using a low classification threshold for very good output

image quality. The blocks which have a quantisation step of less than 0.4 are dropped,

and classified as low intensity variation blocks and encoded by their mean and a single

bit classifier. The remaining high intensity variation blocks are encoded using their

minimum, quantisation step, bit plane and a single bit classifier. From Table ‎3.5, the

average PSNRs of the test images range from 41 to 47 dB and the average

corresponding bit rates are 2.2 to 4.4 bpp. Further, for such high output accuracy, it can

be concluded that the block size of 4×4-pixel with an 8-level quantiser (shaded cells in

Table ‎3.5) produces the best compromises between the output PSNRs and bit rates.

Furthermore, Table ‎3.6 presents the PSNRs and bit rates for a classification threshold of

2. Such a high threshold has led to more blocks being classified as low intensity

variation and represented by their means and a single bit classifier, which consequently

has resulted in low bit rate encoded image. From this table, the block size of 4×4-pixel

and 32 quantisation levels have resulted in a best PSNR for low bit rate purposes. The

average PSNRs in this case are 30 to 32 dB and the bit rate is around 1 bpp. However,

in the case of the baboon image, such PSNR can only be attained on a higher bit rate.

This is due to the fact that this particular image has many regions with high intensity

variations.

56

Table ‎3.5: PSNR and bit rate computed using Algorithm2 for different block sizes,

quantisation levels and a low threshold (0.4).

Lena

(512×512)

Baboon

(512×512)

Pepper

(512×512)

Barbara

(512×512)

MRI1

(128×128)

MRI2

(256×256)

N QL
PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

4 32 43.8 3.31 48.9 5.7 44.4 4.2 43.7 3.3 53.9 2.5 47 5.2

4 16 48.9 4.12 44.4 4.8 49.4 4.7 49.1 4.3 50.4 2.2 48.5 4.8

4 8 44.6 3.82 37.5 3.9 42.5 3.9 43.7 3.8 41.4 1.9 42.3 3.9

8 32 47.1 4.09 47.5 5.2 49.3 4.9 46.7 4.1 54.3 2.4 50.1 5.2

8 16 47 4.11 42 4.2 45.7 4.2 47.5 4.1 48.1 1.9 44.2 4.2

8 8 40.5 3.22 35.7 3.2 38.9 3.2 40.6 3.2 38.1 1.5 37.6 3.2

16 32 48.3 4.74 45.8 5 47.8 5 49.2 4.8 53.8 2.9 47.2 5

16 16 44 4.04 40.3 4.1 42.3 4.1 44.6 4 47.5 2.4 41 4.1

16 8 37.4 3.05 34.2 3.1 35.8 3.1 37.8 3.1 36.7 1.8 34.1 3.1

Average 44.6 3.8 41.8 4.4 44.0 4.1 44.8 3.9 47.1 2.2 43.6 4.3

Table ‎3.6: PSNR and bit rate computed using Algorithm2 for different block sizes,

quantisation levels and a high threshold (2).

Lena

(512×512)

Baboon

(512×512)

Pepper

(512×512)

Barbara

(512×512)

MRI1

(128×128)

MRI2

(256×256)

N QL
PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

PSNR

(dB)

Bit

Rate

(bpp)

4 32 31.9 0.9 30.4 3 32.3 1 32.2 0.9 31.3 1.3 31.2 1.2

4 16 36.8 1.5 37 3.7 35.7 1.5 36.3 1.3 41.5 1.9 34.6 1.7

4 8 39.9 1.9 37.2 3.7 38.7 2.3 39.6 1.9 41.2 1.8 39.2 2.9

8 32 32.4 1.2 33.5 3.6 32.5 1.4 31.9 0.9 35.3 1.9 33.2 1.4

8 16 38.0 1.8 39.3 3.8 37 2.1 37.5 1.8 47.8 1.9 34.7 1.6

8 8 39.2 2.2 35.7 3.2 38.2 2.7 39.2 2.2 38.1 1.5 37.4 3.1

16 32 33.8 2.2 36.4 4.3 33.8 2.6 32.6 1.9 48.9 2.7 34.2 1.7

16 16 39.2 2.6 40.1 4 39.2 3.2 39.2 2.7 47.3 2.2 34.8 1.9

16 8 37.1 2.6 34.2 3.1 35.7 3 37.5 2.6 36.7 1.7 34.1 3.1

Average 36.5 1.9 36.0 3.6 35.9 2.2 36.2 1.8 40.9 1.9 34.8 2.1

57

3.5.1.3 Rate Distortion Performance Comparison

The bit rate and PSNR performance of both algorithms are almost similar. However, the

main difference between these two algorithms is the complexity of the intensity check

unit. Such a unit requires multiplication and () addition operations in

the first algorithm, whereas the second algorithm involves only addition

operations which are required to compute the mean of the block. Furthermore, by

suitably adjusting thresholds, both algorithms can produce the same performance as

shown in Figure ‎3.16 and Figure ‎3.17. These figures present the PSNRs and bit rates

obtained for the Lena image using the proposed algorithms for a 4×4-pixel block size,

and 32, 16 and 8 quantisation levels. In Figure ‎3.16, the sample variance of each image

block is compared against a specific set of threshold values, whereas in Figure ‎3.17 the

quantisation step is compared against a wide range of thresholds. From both figures,

different PSNRs and bit rates can be obtained by adjusting thresholds and quantisation

levels for specific block sizes. The same behaviour is obtained using 8×8 and 16×16-

pixel block sizes for the other test images.

 a. PSNR (dB) versus Threshold b. (Bit rate (bpp) versus Threshold

Figure ‎3.16: Performance of the Lena image obtained using Algorithm1 for a block size

of 4×4-pixel, different thresholds and 32, 16 and 8 quantisation levels.

58

 a. PSNR (dB) versus Threshold. b. Bit rate (bpp) versus Threshold.

Figure ‎3.17: Performance of the Lena image obtained using Algorithm2 for block size

of 4×4-pixel, different thresholds and 32, 16 and 8 quantisation levels.

Further, a comparison between the AQC and the proposed algorithms is shown in

Table ‎3.7. From this table, the output performance of both algorithms outperforms the

AQC in terms of bit rate and PSNR. This is due to using a threshold as an additional

parameter to control the output bit rate, in contrast with the AQC algorithm which

depends on the number of quantisation levels and block sizes only. Thus, the lowest bit

rate of the AQC algorithm is 1.1 bpp with a PSNR of 21.6 dB. This result can only be

achieved by reducing the number of quantisation levels and increasing the block size.

However, bit rates of 0.6 and 0.9 bpp with PSNRs of 30.5 and 31.9 dB are achieved

using Algorithm1 and Algorithms2, respectively, using the selected thresholds.

Table ‎3.7: Performance comparison between the AQC, Algorithm1 and Algorithm2 for

Lena image.

AQC algorithm
Algorithm1

Threshold=400

Algorithm2

Threshold=2

PSNR (dB) Bit Rate (bpp) PSNR (dB) Bit Rate (bpp) PSNR (dB) Bit Rate (bpp)

21.6 1.1 30.5 0.6 31.9 0.9

25.4 1.2 31.8 0.8 32.4 1.2

29.6 1.9 31.8 0.9 36.8 1.5

29.3 2.1 30.9 1 38 1.8

32.9 2.2 30.1 1.3 39.2 2.2

37.1 2.9 30.2 1.6 39.2 2.6

59

3.5.2 Performance of the Proposed Architectures

The AQC and the proposed architectures are tested on the xc5vlx50t-3ff1136 Virtex 5

FPGA device. The performance of the AQC and the proposed architectures is evaluated

using different block sizes, quantisation levels and thresholds. Further, the output

accuracy of the proposed architectures are evaluated and compared with the

corresponding algorithms’ outputs to prove their validity.

3.5.2.1 Hardware Resources

The hardware utilisation rates of the AQC, Model1 and Model2 architectures using

various block sizes are shown in Table 3.8. From this table, the average hardware

utilisation rates of the proposed architectures are almost equal to 3% of the available

resources. However, Model1 architecture consumes slightly more resources due to the

requirement of the intensity check unit. The intensity check unit of Model1 requires two

additional DSP48Es to compute the variance of each image block. Further, the AQC

and Model2 architectures utilised a single multiplier only in their structure.

Table 3.8: Hardware usage of the AQC and the proposed architectures.

Slice Logic

Utilisation

4×4-pixel block size 8×8-pixel block size

Available Model1 Model2 AQC Model1 Model2 AQC

Slice Registers 28,800 280 195 147 341 242 189

Slice LUTs 28,800 225 148 89 286 205 139

Occupied

Slices
7,200 97 69 54 126 68 75

Bonded IOBs 480 26 26 25 26 26 25

Block RAM /

FIFO (36 Kb)
60 1 1 1 1 1 1

DSP48Es 48 3 1 1 3 1 1

Average (%) 3 2 2 3 2 2

As shown in Table 3.8, additional number of registers, LUTs and occupied slices are

required in the case of 8×8-pixel block size. Whereas other hardware resources are remain

the same for all block sizes. The extra resources are required due to using extra delay

elements in both architectures for synchronisation. Further, the changing in image size

and/or the quantisation does not have an impact on hardware utilisation rate.

file:///D:/sami/xflow/aqc_final_cw_map.xrpt%3f&DataKey=IOBProperties

60

3.5.2.2 Operating Frequencies and Power Consumption

The operating frequencies, initial latencies and computation times of the AQC and the

proposed architectures are shown in Table 3.9. From Table 3.9, a maximum operating

frequency of 312, 287 and 292 MHz can be achieved for Model1, Model2 and AQC

architectures using 4×4-pixel block size, respectively. Further, the initial latencies of the

Model1, Model2 and AQC architectures are: , and cycles,

respectively. Thus, the computation time of a 512×512-pixel image is less than 0.9 ms.

Table 3.9: Maximum operating frequencies, initial latencies and computation time for

the AQC and proposed architectures using different block sizes.

4×4-pixel 8×8-pixel 16×16-pixel

Model

1

Model

2
AQC

Model

1

Model

2
AQC

Model

1

Model

2
AQC

Maximum

frequency (MHz)
312.0 287.6 292.4 315.9 280.5 285.7 293.8 287.9 283

Initial latency

(ns)
134.6 132.1 130 436.8 477.7 469 1776.7 1799.2 1830

Computation

time of 512×512

image (ms)

0.84 0.91 0.9 0.83 0.94 0.92 0.89 0.91 0.93

Moreover, the dynamic power consumption of the AQC and the proposed architectures

is shown in Figure ‎3.18. The power consumption is computed using a Xilinx Xpower

analyser [125]. The dynamic power consumption of Model1 architecture is higher than

that of Model2 architecture by 3 to 5 mW. This power increase with Model1

architecture is due to the complexity of the intensity check unit, which requires two

extra multipliers. Further, the power consumption of both the AQC and Model2

architectures is almost the same. For all architectures, an extra 2 mW power is required in

the case of 8×8-pixel block size. This extra amount of power is due to using extra hardware

resources in this case.

61

Figure ‎3.18: Dynamic power consumption of the AQC and the proposed architectures

using 4×4 and 8×8-pixel block sizes.

As a result, the performance of Model2 architecture is almost similar to that of the AQC

architecture with a few extra hardware resources. The extra hardware resources are used

for the mean computation and the intensity check operations. Thus, it can be considered

as an appropriate low complexity image compression system with its additional

advantage of a good low bit rate-PSNR performance.

3.5.2.3 The Validation of the Proposed Architectures

The PSNR and bit rate performance of the proposed architectures are evaluated against

a Matlab code representation of their respective IBAQC algorithms, as shown in

Table 3.10. The drawn figures in this table represent the average PSNR and average bit

rate obtained using 8, 16 and 32 quantisation levels, and a 4×4, 8×8 and 16×16-pixel

block sizes. Further, from this table the PSNR error between the results obtained by the

proposed algorithms and their counterparts’ architectures is less than .5 dB for some

results. This small difference in PSNR is due to the truncation and rounding operations

arises from using fixed sizes multipliers in the proposed architectures.

0

4

8

12

16

20

100 66.67 50 40 33.33

D
y
n
am

ic
 P

o
w

er
 (

m
W

)

Clock Frequecny (MHz)

4×4 Model1 4×4 Model2 4×4 AQC

8×8 Model1 8×8 Model2 8×8 AQC

62

Table 3.10: The average bit rate and PSNR of the proposed algorithms and their

corresponding architectures.

Lena Baboon

Threshold
PSNR

(dB)

Bit rate

(bpp)

PSNR

(dB)

Bit rate

(bpp)

PSNR

(dB)

Bit rate

(bpp)

PSNR

(dB)

Bit rate

(bpp)

 Model1 Algorithm1 Model1 Algorithm1

12 41.7 3.0 42.2 3.0 41.6 4.3 41.7 4.3

400 30.7 1.0 30.8 1.0 29.4 2.5 29.6 2.5

Model2 Algorithm2 Model2 Algorithm2

0.4 44.8 3.9 44.6 3.8 41.8 4.3 41.8 4.4

2 36.5 1.9 36.5 1.9 35.9 3.6 36.0 3.6

Moreover, Lena and the baboon reconstructed images are shown in Figure ‎3.19 and

Figure ‎3.20. In these two figures, these images are compressed using a 4×4-pixel block

size, a 32-level quantiser and a classification threshold of 400 and 2 for Algorithm-

Model1 and algorithm2-Model2, respectively. Both algorithms and architectures

produced the same image quality regarding to the Lena image (31 dB PSNR with 0.9

bpp bit rate), while there was little difference in the performance of the baboon image.

The difference in the performance of the baboon image can be reduced or eliminated by

suitably adjusting the classification thresholds in both algorithms and architectures.

63

Figure ‎3.19: The Lena and baboon images computed using Algorithm1 and Algorithm2

architectures with a 4×4-pixel block size and 32 quantisation levels.

(b) Lena image computed using

Algorithm2 at threshold 2 ,

PSNR 31.8 dB and .9 bpp.

(a) Lena image computed using

Algorithm1 at threshold 4 ,

PSNR 31. dB and .9 bpp.

(d) Baboon image computed using

Algorithm2 at threshold 2 ,

PSNR 3 .3 dB and 3 bpp.

(c) Baboon image computed using

Algorithm1 at threshold 4 ,

PSNR 29.5 dB and 2.8 bpp.

64

Figure ‎3.20: The Lena and baboon images computed using Model1 and Model2

architectures with a 4×4-pixel block size and 32 quantisation levels.

(b) Lena image computed using Model2 at

threshold 2 , PSNR 31. dB and bit

rate .9 bpp.

(a) Lena image computed using Model1

at threshold 4 , PSNR 31.5 dB

and bit rate .9 bpp.

(d) Baboon image computed using Model2

at threshold 2 , PSNR 29.9 dB and

bit rate 3 bpp.

(c) Baboon image computed using Model1

at threshold 4 , PSNR 28.8 dB and

bit rate 2.8 bpp.

65

3.6 Summary

This chapter has introduced two low complexity image encoding algorithms based on

the AQC algorithm for low bit rate applications. The two algorithms classify each image

block into a low or high intensity variation. Thus, they introduce a classification

threshold parameter which is used to distinguish and classify the blocks and selects the

appropriate parameters to encode them. The first algorithm compares the block variance

of each input block to a selected threshold to specify whether such a block is a high or

low intensity variation. Such a classification operation in the second algorithm is carried

out using the quantisation step. Thus, the high intensity variation blocks are encoded

using a minimum, a quantisation step, a bit plane and a single bit classifier, whereas the

other blocks are encoded using their mean and the classifier bit. This approach produces

a low bit rate whilst preserving the PSNR and image quality within an acceptable range.

The performance evaluation shows that the output bit rate and PSNR are almost the

same for both algorithms. However, the second algorithm compares the quantisation

step to the threshold to avoid the complexity that arises from the block variance

computation. Further, the performance of both algorithms outperforms the AQC

algorithm for low bit rate purposes.

In addition to the above, new efficient architectures are suggested and validated for the

AQC and the proposed algorithms. The suggested architectures were implemented on a

Xilinx Virtex 5 device and tested on different images, block sizes, quantisation levels

and thresholds. The obtained results have shown that a speed of up to 315 MHz can be

achieved. Furthermore, in the second architecture, a power consumption of 6 mW at 30

ns can be obtained with a low hardware utilisation rate, which can be used in low power

consumption applications. Moreover, the hardware usage, power consumption and

operating frequency of Model2 and AQC architectures are almost the same. However,

Model2 architecture has an advantage in its good low bit rate-PSNR performance.

Further, the proposed algorithms and architectures in this chapter are a type of 2-D

block-based low complexity systems, while with the 3-D transforms the matter is more

complicated which will be introduced and discussed in chapters 4, 5 and 6.

66

Chapter 4: High Speed Multidimensional DCT

Architectures

4.1 Introduction

The preceding chapter has presented efficient architectures for low complexity non-

transform-based image compression systems. The main advantages of the proposed

systems are their high speed, low complexity and low power consumption.

Nevertheless, the transform-based compression systems represent an efficient

alternative for high performance compression systems. However, the computation

complexity of such transforms as the DCT and DWT represents the bottleneck of the

entire systems. Moreover, the problem becomes much worse with multidimensional

approaches, such as DCT-based image and video compression systems. This has led to

the development of efficient fast algorithms and architectures for such transforms.

This chapter presents two new high speed architectures for multidimensional DCT

computation. The proposed architectures are: high speed implementation of the Row

Column Frame (RCF) using a 1-D DCT Radix-2 and 3-D DCT VR algorithms. The

proposed architectures process the input data using an N×N×N-pixel data cube. Such

architectures are tested using 8×8×8-pixel data cubes, various wordlengths and clock

frequencies. The proposed architectures strike a balance between hardware resources,

speed and power consumption, as can be seen from the results obtained using Virtex5

5vlx50tff1136-3 Xilinx FPGA device. The performance evaluation process has revealed

that both architectures are outperforming similar architectures in terms of speed and

hardware cost. Furthermore, the computation process of both architectures is carried out

with a negligible error rate in a comparison with Matlab implementation.

The remainder of the chapter is organised as follows: Section ‎4.2 provides a description

of the fast DCT algorithms. Sections ‎4.3 and ‎4.4 present two architectures for 3-D DCT

computation. The results are discussed in section ‎4.5 and a summary is given

section ‎4.6.

67

4.2 Fast Algorithms for DCT Computation

4.2.1 The 1-D DCT Radix-2 Algorithm

The computational complexity of 1-D DCT is reduced using the Radix-2 algorithm [55].

The 1-D DCT fast algorithm requires

 multiplication and

addition operations to perform -point 1-D DCT computation. In this way, there are

fewer arithmetic operations than those required by the original DCT algorithm, as

illustrated in Table 2.1 [54, 55]. The fast 1-D DCT Radix-2 algorithm consists of four

stages: 1-D reordering, butterfly computation, 1-D bit reverse ordering and the post

addition stage, as illustrated in the block diagram of Figure ‎4.1.

1-D

Reordering

1-D

Input

Data

Butterfly

structure

1-D Bit Reverse

Order

 (BRO)

1-D Post

addition
1-D DCT

Coefficients

Figure ‎4.1: Block diagram of 1-D DCT Radix-2 algorithm.

The first stage is a reordering operation. The reordering operation of the -point input

data sequence can be expressed as follows:

 () () and () () (‎4.1)

where and are the input and reordered data sequence, respectively. The index is

in the range of 0 to

 .

In (‎4.1), the input is rearranged and fed into three butterfly sub-stages unit, which

represents the main part of the algorithm. The butterfly for can be calculated

using the following procedure:

 () () ()

 (⁄) (() ()) ()

 { }

 ⁄ (‎4.2)

where
 ()

 and each value of represents a single butterfly sub-stage.

68

The next stages are the 1-D bit reverse ordering and post addition stages. The post

addition for the bit-reversed ordered of eight samples can be calculated as follows:

 () ()

 () ()

 () ()

 () ()

 () () ()

 () () ()

 () () ()

 () () () () (‎4.3)

where , is the input data size, is the output of the

butterfly stage and is the output of the post addition stage. The final 1-D DCT

coefficients requires normalisation; dividing each element by two (shift right operation),

with the exception of the first element (DC element) which has to be divided by (√) .

Further, the 3-D DCT Radix-2 RCF technique is performed by applying a 1-D DCT

Radix-2 on the rows, columns and frames, successively. This approach requires

 multiplication and

 addition operations [54].

4.2.2 The 3-D DCT VR Algorithm

Although the computation of the 3-D DCT RCF using 1-D DCT Radix-2 algorithm

requires fewer multiplication operations than the direct 3-D DCT, further computation

load reduction can be achieved [54, 56, 57]. Hence, an efficient algorithm for fast 3-D

DCT computation is the 3-D DCT VR algorithm, which was introduced in [54, 56].

This algorithm requires

 multiplication and

addition operations for -point 3-D DCT computation. This algorithm

computes the 3-D DCT for specific data cubes according to the following sequence:

 3-D reordering

 Butterfly calculation

 3-D bit reverse order

69

 3-D post addition

This algorithm assumes that the input data is a -pixel, where is a power of

two. In this algorithm, the 3-D input data is first rearranged according to the following

index mapping:

[

 ̃()

 ̃()

 ̃()

 ̃()

 ̃()

 ̃()

 ̃()

 ̃()]

[

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()]

 (‎4.4)

where

 , i=1,2,3, and ̃ is the reordered form of the original input .

Equation (2.5) can be rewritten by exchanging () with ̃() :

 ()

∑ ∑ ∑ ̃()

 ()

 () () (‎4.5)

where

() and i=1,2,3.

The computation of the 3-D DCT VR algorithm consists of two steps: butterflies and

post addition stages. The number of stages requires for the butterfly computation is

 with

 butterfly per stage. The multiplication by the normalisation factor

, can be postponed to the final stage.

By considering even and odd parts, the 3-D DCT can be computed as follows:

 () ∑ ∑ ∑ [̃ ()]

 (()) (()) (())
(‎4.6)

where
 ⁄ and ijl=[000,001,010,011,100,101,110,111] and ̃ () is

expressed as:

70

 ̃ ()

 ̃() () ̃ (

)

 () ̃ (

) () ̃ (

)

 () ̃ (

) () ̃ (

)

 () ̃ (

)

 () ̃ (

)

(‎4.7)

For even and odd values of , (‎4.6) can be developed as follows:

 () { ∑ ∑ ∑ [̃ ()] ∏ ()

}
(‎4.8)

where
 ⁄ .

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

}

 ()
(‎4.9)

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

}

 ()
(‎4.10)

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

}

 ()
(‎4.11)

71

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

}

 ()

 ()

 () (‎4.12)

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

} ()

 () ()
(‎4.13)

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

}

 () ()

 ()
(‎4.14)

 ()

 { ∑ ∑ ∑ [̃ ()]

 ∏ ()

}

 () ()

 () ()

 () ()

 ()

(‎4.15)

72

Equations (‎4.8)-(‎4.15) contain two parts: the first is the term between the curly brackets

for butterfly computation and the second represents the computation operations carried

out in the post addition stage.

4.3 3-D DCT RCF Architecture (RCF Architecture)

The proposed RCF Architecture computes an -point 1-D DCT Radix-2 algorithm on

the rows, columns and frames in a -point data cube. Thus, this architecture

is composed of three -point 1-D DCT stages and data control units, as illustrated in

Figure ‎4.2. The computation sequence of this architecture is as follows:

 1-D DCT on the rows.

 Normalisation

 Transpose buffer1 (TMem1)

 1-D DCT on the columns.

 Normalisation

 Transpose buffer2 (TMem2)

 1-D DCT on the frames.

 Normalisation

 Reordering buffer (TMem3)

(TMem1)

2N2

3-D DCT

>>3
(TMem2)

2N3

(TMem3)

2N3

>>3

Specify Wordlength (Integer Word Length; IWL, Floating Word Length;

FWL), Latency Data addressing and controlling units

>>3

First

N-Point

1-D DCT

Second

N-Point

1-D DCT

Third

N-Point

1-D DCT

3-D

Input Data

Control signal

Data flow signal

Normalisation;

3-bit Right Shifter

Normalisation;

3-bit Right Shifter

Normalisation;

3-bit Right Shifter

Figure ‎4.2: Block diagram of the whole RCF architecture.

73

In Figure ‎4.2, the dashed red arrows represent the controller signals and the continuous

arrows represent the data flow signals. The wordlength and latency are specified for

each stage prior to the computation process using input parameters in the controller unit.

Moreover, the architecture of each 1-D DCT stage is composed of serial to parallel

converter, butterfly, bit reverse ordering, post addition and multiplexer unit, as

illustrated in Figure ‎4.3.

Serial to Parallel

Converter

(1:N)

Butterfly

stage

1-D DCT

1-D

Post addition

Bit Reverse

Order (BRO) and

Parallel to Serial

(N:1)

Specify Wordlength and Latency

x(0)

x(N-1)

X(0)

X(N-1)

Y(0)

Y(N-1)

1-D

Input Data

Figure ‎4.3: Block diagram of N-point 1-D DCT architecture.

The input data to the first 1-D DCT stage is converted to a group of -parallel pixels

using the serial to parallel converter and fed to the butterfly stage. The butterfly stage

performs addition, subtraction and twiddle factor multiplication operations. It is

composed of three arithmetic operations sub-stages with a varying latency and

wordlength, as illustrated in Figure ‎4.4. The latency can be altered easily without

affecting the whole operation of the proposed architecture, which can improve the speed

and reduce the power consumption. However, such improvements come at an extra

hardware cost. The latency can be adjusted using three input parameters: A(i,j), S(i,j)

and () for adders, subtracters and multipliers, respectively. Where i represents the

sub-stage in each butterfly (i=1,2,3) and j is the butterfly stage number; j =1,2 and 3;

the first, second and third 1-D DCT stages, respectively.

74

×

x(0)

x(4) 0.9808

×

x(1)

x(5) 0.5556

×

x(2)

x(6) -0.1951

×

x(3)

x(7) -0.8315

×

0.9239

×

-0.3827

×

0.9239

×

-0.3827

×

0.7071

×

0.7071

×

0.7071

×

0.7071

X(0)

X(1)

X(2)

-

-

-

-

+

+

+

+

-

-

-

-

+

+

+

+

-

-

-

-

+

+

+

+

X(3)

X(4)

X(5)

X(6)

X(7)

Sub-stage i=1; (1, j)

Sub-stage i=2; (2, j)

Sub-stage i=3; (3, j)

 j=1,2,3 butterfly stage index

Figure ‎4.4: Block diagram of 8-point butterfly stage (three sub-stages).

The output precision can be controlled by modifying the wordlength of each unit. Two

designed parameters have been used to specify the wordlength: the Integer Wordlength

(IWL) and Floating Wordlength (FWL). The IWL represents the number of bits

required for the signed integer part and FWL represents the number of bits for the

mantissa part.

The subsequent sub-stage is the post-addition which is implemented using bit shifters

and subtracters, as illustrated in Figure ‎4.5. The post addition stage performs the

addition sequence that is described in (‎4.3). Additional registers are added for pipelining

and synchronising purposes. When the preceding data processing sequence is

completed, the parallel data is converted into a serial stream and normalised by a factor

of ⁄ .

75

X(1)

-

X(0)

X(3)

X(2)

<<1

Y(1)

Y(0)

-

X(7)

X(6)

<<1

<<1 -

<<1 -
X(4)

-
X(5) <<1

Y(3)

Y(2)

Y(7)

Y(6)

Y(5)

Y(4)

-
<<1: 1-bit shift left

R=3 D-FF : Register

a

b

c=a-b

R

R

R

R-1

R-2

R-1

R-2

R-2

R

R-2

R

R-2

Figure ‎4.5: Block diagram of 8-point post addition stage.

The output data from the first 1-D DCT will be available after clock cycles, where

the period can be computed as follows:

 () (‎4.16)

where () is the latency in each sub-stage (i=1, 2, 3) for the first butterfly stage

when j=1, is the latency of the parallel to the serial convertor,

represents the latency of the post-addition stage, and represents any other latency

offset. The normalisation operation is implemented using a -bit right shift register

to avoid any overflow in the subsequent arithmetic operations. The normalised output is

then written into a -word Block RAM; TMem1. The memory TMem1 is activated by

the control signal W_enb1 for the data to be written at addresses between 0 to

that is carried by the control signal W_adds1, as shown in Figure ‎4.6.

W_Enb1

W_adds1

Adds_in

Constant (dMW)

write
Enb

Constant

C

Comparator

Countera

b
a = b

a

b
a = b

 R0

 enb

R1

 enb

R_Enb1

read
Enb

counter

L
S

B

 M

S
B

C
o
n
ca

ti
n
at

io
n

R_adds1

Cm1

S1

S2

S3

Address GeneratorR0, R1 =D-FF

Figure ‎4.6: TMem1 writing /reading control unit of the first 1-D DCT stage.

76

Data stored in TMem1 is reordered and fed to the second 1-D DCT stage. The

reordering operation is carried out using R_Adds1, as shown in Figure ‎4.6. The value

carried by R_adds1 signal is given as:

 , (‎4.17)

where l and m represent the rows and the columns indices of an -point data block,

respectively. The R_Adds1 values are generated using the shaded part of Figure ‎4.6 and

Table ‎4.1, and it can be represented as follows:

 [] (‎4.18)

where is the binary representation of a -bit counter,

 , is the least significant bit (LSB) and the acronym refers

to bit slice.

From Figure ‎4.6, the outputs of this control circuit are: TMem1 writing enables

(W_enb1), writing address (W_adds1), reading address (R_adds1), reading enables

(R_enb1) and counter (Cm1). The Cm1 signal is used to control the multiplexer of the

subsequent 1-D DCT stage.

Table ‎4.1: The first eight addresses (R_adds1) for 8×8-point block.

Main counter (Input addresses-Adds_in)

Output addresses (R_adds1)

Decimal
Binary

Binary Decimal

S1 S2 S3

S1 S3 S2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 8

2 0 0 0 0 0 1 0

0 0 1 0 0 0 0 16

3 0 0 0 0 0 1 1

0 0 1 1 0 0 0 24

4 0 0 0 0 1 0 0

0 1 0 0 0 0 0 32

5 0 0 0 0 1 0 1

0 1 0 1 0 0 0 40

6 0 0 0 0 1 1 0

0 1 1 0 0 0 0 48

7 0 0 0 0 1 1 1

0 1 1 1 0 0 0 56

77

The second 1-D DCT stage performs the same operations sequence of the second 1-D

DCT on the columns of each -point data block. The output is stored in a -

word block memory; TMem2, as shown in Figure ‎4.2. The TMem2 writing address,

W_adds2 signal is generated by a -bit counter and bit slices as shown in

Figure ‎4.7-a. The address generator in Figure ‎4.7-a is constructed in the same way as

that shown in the shaded part of Figure ‎4.6 with different bit slices, which can be

computed as follows:

 [] (‎4.19)

where is the binary representation of a -bit counter.

Adds_in Address

Generator

S1, S2 and S3

W_Enb2

W_adds2

Constant

C R_Enb2

R_adds2

Cm

Constant (dMW)

Address

Generator

S1, S2 and S3

Adds_in Address

Generator

S1, S2 and S3

W_Enb3

W_adds3

Constant

C

Constant (dMW)

R_Enb3

R_adds3

write
Enb

counter

Comparator

log22N3a

b

a = b
R0

 enb

a. Block diagram of the second controller. b. Block diagram of the third controller.

R0 : D-FF

Figure ‎4.7: Block diagrams of the second and third memory writing/reading control

units (for TMem2 and TMem3).

The data stored in TMem2 is reordered and fed to the third 1-D DCT stage to perform a

transform along the frame direction. TMem2 reordering operation is carried out as

shown in Figure ‎4.7-a, and it can be expressed as follows:

 [] (‎4.20)

78

Hence, the 3-D DCT of the input data is computed. The computed results are stored in

the third block RAM; TMem3, as shown in Figure ‎4.2. TMem3 acts as a reordering

buffer to produce an output sequence with the same indexing order as the original data.

TMem3 writing address signal; W_adds3, is generated similar to R_adds2, while its

reading address; R_adds3, is generated using a -bit counter only, as shown in

Figure ‎4.7-b.

4.4 The Proposed 3-D DCT VR Architecture

The proposed 3-D DCT VR architecture is shown in Figure ‎4.8 and it consists of the

following:

 3-D reordering

 Three butterfly stages

 3-D bit reverse ordering

 Three post addition stages

 Normalisation

3-D

Reordering

Butterfly

stages

1, 2 and 3

Post Addition

stages

1, 2 and 3

3-D Bit

Reverse Order

(BRO)

3-D Input

Data

Normalisation

3-D DCT
Addressing, Wordlength (IWL, FWL) and Latency paramters

Control Signal Data Signal

Figure ‎4.8: Block diagram of 3-D DCT VR architecture.

The timing sequence of the proposed architecture is shown in Figure ‎4.9. In this figure,

each block represents points, and the delay (𝜹1, 𝜹2 ... 𝜹6) between each of the

consecutive stages is selected according to the availability of the data required by the

ensuing stage. Furthermore, two parameters are used to control the wordlength of the

proposed architecture stages termed; IWL and FWL.

79

Reordering

1st stage butterfly

2nd stage post addition

3rd stage post addition

1st 2nd 3rd 4th

1st 2nd 3rd 4th

1st 2nd 3rd 4th

1st 2nd 3rd 4th

1st 2nd 3rd 4th

1st 2nd 3rd 4th

1st 2nd 3rd 4th

2nd stage butterfly

3rd stage butterfly

1st stage post addition

δ1

δ2

δ3

δ4

δ5

δ6

Clock cycles

Stages

1, 2, 3

and 4
N×N×N-point data cube=

Figure ‎4.9: The timing sequence of the proposed 3-D DCT VR architecture.

4.4.1 The 3-D Reordering Stage

The reordering stage consists of counters, ROMs and block memory (TMem1), as

shown in Figure ‎4.10. Three signals termed; Data_out, Cm and R_adds are generated by

the reordering stage. The first signal; Data_out, represents the output data stream and

the second signal; Cm is a log22N
3
-bit counter. Signal Cm is used to control the parallel

to serial converters and to select the appropriate twiddle factors of the butterfly stages.

The third signal; R_adds, is used to select the proper data for the first butterfly stage.

The reordering operation is carried out as shown the following two subdivisions.

log22N3
counter

S2

S1

S3

R_enb

R_adds

log22N3
counter

R R-1

MRE-I

L
S

B

M
S

B
C

o
n

ca
te

n
at

io
n

M1

M2

+

L
S

B

M

S
B

C
o
n
ca

te
n
at

io
n

M1

M2

+

Input Data R Input

Data

W_adds

R_adds

Data_Out

R-1

Register R=2 D-FF; , M1 and M2=ROMs

W_adds

TMem1

S2

S1

S3

Cm

MRC Adds_Generator

Figure ‎4.10: Block diagram of the reordering unit.

80

4.4.1.1 Memory Writing Operation

The reordering operation is carried out during the memory writing operation to TMem1.

The writing addresses are generated using two ROMs; of -word and of -

word and their addressing units. The memory writing addresses; reordering addresses

are computed according to:

 [(() ())] (‎4.21)

where the annotation [] indicates the concatenation operation of the content between

the brackets, and represent two ROMs, (),

 and the clock period of is times of that of . Signal is the MSB

of the -bit counter . Signals , and can be expressed as follows:

 (‎4.22)

The actual content of is shown in the first column of Table ‎4.2, while the content of

 shown in columns 2 to 9 of the same table. As an example of data reordering for

N=8, when , =0 and =0, 1, 2, 3,..7, the TMem1 writing addresses of the first

eight points are: 0, 388, 4, 384, 128, 260, 132 and 256. Similarly, the addresses of the

second eight points are: 98, 486, 102, 482, 226, 358, 230 and 354. In other words, each

element in ROM M1 is added to the content of ROM in order to generate the

memory writing addresses.

Table ‎4.2: Content of ROMs M1 and M2 for the reordering operation (TMem1 Writing

Operation)
(1)

.

M2 Content M1 Content

0 0 98 2 96 32 66 34 64

388 25 123 27 121 57 91 59 89

4 1 99 3 97 33 67 35 65

384 24 122 26 120 56 90 58 88

128 8 106 10 104 40 74 42 72

260 17 115 19 113 49 83 51 81

132 9 107 11 105 41 75 43 73

256 16 114 18 112 48 82 50 80

(1)
Reading sequence of M1 content is , 98, 2, 96, 32, 66, 34, 64, 25, 123 …… 8 .

81

4.4.1.2 Memory Reading Operation

The output of memory component TMem1 represents the required input data to the

ensuing butterfly stage. The start of TMem1 reading operation is controlled by the

Memory Reading Controller (MRC), as shown in the shaded part of Figure ‎4.10. The

MRC consists of two units, the Memory Reading Enable (MRE) and the Address

Generator (Adds_Generator). The functions of the MRE unit are to avoid using long

delay elements and control the start of memory reading operations, as shown in

Figure ‎4.11. Two MRE components are proposed, namely; MRE-I and MRE-II, as

illustrated in Figure ‎4.11. Component MRE-I generates the memory reading enabling

signal R_enb according to the comparison between the W_adds and the parameter α.

While, Component MRE-II generates R_enb by comparing accumulated W_enb with

the parameter α. The parameter α specifies the time to start memory reading operation

and it is shown underneath Figure ‎4.12 for N=8. Further, MRE-I is used in the

reordering stage while the MRE-II is used in other memory reading controllers.

W_enb

a

 1
a

b

a ≤ b

R_enb

a

 ++
Enb

b. MRE-II

W_adds
a

 ++
Enb

a

b

a=b

a

b

a≤b

a

1

R_enb

Comparator

Accum

a. MRE-I

Constant

Constant

Accum

Figure ‎4.11: MRE circuits.

The Adds_Generator unit is used to generate the memory reading addresses R_adds in

similar way to W_adds generation, though with different ROMs contents. Such contents

are listed in Appendix C.

4.4.2 Butterfly Stages

The butterfly computation consists of three similar stages, as shown in Figure ‎4.12. The

differences between these three butterfly stages are the values of twiddle factors and the

memory read/write addresses. From Figure ‎4.12, each butterfly stage is connected to a

buffer; TMem2, 3 and 4 and their corresponding memory writing and reading

controllers, MWC and MRC, respectively. In this figure, TF1, 2 and 3 are the twiddle

factors of each butterfly stage. Signals MWCs, MRCs are the memory writing and

82

reading addresses controllers, respectively. The addresses at points P1 to P7 can be

computed as shown in appendix C. In addition, β and α are controlling parameters used

in MWC and MRE units, respectively. Such parameters are used to specify the start of

memory writing and reading operations in each stage in the proposed architecture. The

values of these parameters depend on the latency of each stage. In Figure ‎4.12, these

parameters are calculated for N=8.

3-D Input

Data

3-D Reordering

TMem1

MWC2

Butterfly

stage1

TMem2

MRC2 MWC3

Butterfly

stage2

TMem3

MRC3
BRO

adds

Butterfly

stage3

TMem4

MRC4

To

Post

addition

stages

P1

P2 P3 P4 P5

P6 P7

TF1 × TF2 × TF3 ×

a=447 a=167 a=296b=40 b=40 b=36

R_adds

R_enb

a. Butterfly stages

a and b are calculated for N=8

Adds_GeneratorMRE-II
R_enb

a
R_adds

W_enb

b. Memory Reading Controller (MRC)

Cm

Adds_Generator MWC

b

R_enb

W_adds

W_enb

c. BRO address generator circuit

Figure ‎4.12: Block diagrams of the butterfly stages and, the MRC and BRO address

controllers.

Each butterfly stage consists of a serial to parallel converter, an 8-points butterfly

structure and parallel to serial converter, as shown in Figure ‎4.13. From this figure, the

input data is converted to N-parallel points to perform the butterfly computation as

shown in Figure ‎4.14. The twiddle factors multiplication operation is postponed after

the parallel to serial converter to reduce the number of multipliers to a single multiplier

per butterfly stage.

83

Serial to

Parallel

Converter

(1:8)

Input

Data

Butterfly

unit

Parallel to

Serial

(8:1)

Specify Wordlength and Latency

x(0)

x(7)

X(0)

X(7)

TF

×

Output

Data

To

TMem

Butterfly stage

Twiddle factors

Signal Cm from MRC

Figure ‎4.13: Block diagram for single butterfly stage.

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/- +/-

+/-

+/-

+/-

x(2k1,2k2,2k3)

x(2k1,2k2,2k3+1)

x(2k1,2k2+1,2k3)

x(2k1,2k2+1,2k3+1)

x(2k1+1,2k2,2k3)

x(2k1+1,2k2,2k3+1)

x(2k1+1,2k2+1,2k3)

x(2k1+1,2k2+1,2k3+1)

X(2k1,2k2,2k3)

X(2k1,2k2,2k3+1)

X(2k1,2k2+1,2k3)

X(2k1,2k2+1,2k3+1)

X(2k1+1,2k2,2k3)

X(2k1+1,2k2,2k3+1)

X(2k1+1,2k2+1,2k3)

X(2k1+1,2k2+1,2k3+1)

cos(f3)

cos(f2)

cos(f2)cos(f3)

×

×

×

×

×

×

×

cos(f1)

cos(f1)cos(f3)

cos(f1)cos(f2)

cos(f1)cos(f2)cos(f3)

fi=
p (4ni + 1)

2N
b

-

+

a

a+b

a-b

Butterfly structure Twiddle factors

Figure ‎4.14: Eight-point butterfly structure.

B
u

tterfly
 stag

e

P
arallel to

 S
erial (M

u
x

)

TF

Signal Cm from MRC

To

TMem

×

X(0)

X(7)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

Figure ‎4.15: The twiddle factor multiplication circuit for single butterfly stage.

84

Once the butterfly computation is completed the data is converted to a serial stream and

a multiplication by twiddle factors is performed, as shown in Figure ‎4.15. In

Figure ‎4.15, the annotation TF refers to pre-computed twiddle factors for butterfly

stages 1, 2 and 3 using three ROMS. The ROM sizes are: , and words for TF1,

TF2 and, TF3, respectively. The controller signal for each ROM is generated from the

corresponding MRC block; bit-slice from the signal Cm. The content of each ROM is

computed according to the cosine terms in (‎4.8) to (‎4.15).

The output of the first butterfly stage is stored in the second memory TMem2 which

acts as a reordering buffer for the ensuing butterfly stage. The buffer TMem2 is

controlled by Memory Writing Controller (MWC) circuit, as shown in Figure ‎4.16.

After b clock cycles, the memory enabling signal is high W_enb=1, if the addresses

signals and are different:

 {

 (‎4.23)

where is the delayed by one cycle, and is the memory reading

addresses of the preceding stage delayed by b cycles. The values of b depends on the

latency of each component in the butterfly stage. An important advantage of this circuit

is to reduce the power consumption by turning on the memory component for writing

operation at specific times.

Data

R1 R2 W_adds

W_enb

Input Data

TMem for the

current stage

TMem i-1 : Transpose-Memory of the previous stage

TMem i : Transpose-Memory of the current stage

≠

R_adds

of TMem

Of the

preceding

stage

Registers

Data_Out

W_adds

W_enb

adds2

adds1

R1=b D-FF R2=D-FF

Figure ‎4.16: Memory Writing Controller (MWC) block diagram.

The computation sequence of the subsequent two butterfly stages is similar to the first

butterfly stage. The output from the second and third butterfly stages is stored in

memory components TMem3 and TMem4, respectively. Furthermore, the output from

85

the third butterfly stage is stored in a different order, by adjusting the memory writing

addresses to perform a 3-D Bit Reverse Order (BRO) operation. The BRO addresses at

point P6 in Figure ‎4.12 are shown in the Appendix C.

4.4.3 Post Addition Stages

Three post addition stages are employed to compute the terms that are outside the curly

brackets in equations (‎4.8)-(‎4.15), as shown in Figure ‎4.17. The output of the three post

addition stages is stored in TMem5, 6 and 7, respectively. The memory TMem7 is used

as a reordering buffer to rearrange the output coefficients to the same order of the input

data. The addresses at each point in Figure ‎4.17 for N=8 are detailed in the Appendix C.

Each post addition stage is composed of serial to parallel converter, 8-point addition

unit and parallel to serial converter. The 8-point addition unit of each post-addition

stage consists of five subtracters and additional registers for pipelining purposes, as

shown in Figure ‎4.18. The length of each register can be adjusted using input parameter

without affecting the validity of the proposed architecture. Furthermore, the wordlength

of each stage are controlled using two input parameters, IWL and FWL.

The final stage of the proposed architecture is the normalisation operation which can be

specified by:

 (4.24)

where , and
 {

√

 .

Normalization

factors

From

Butterfly

stages

3-D DCT

Coefficients

P7

Post addition

stage1

TMem5

Post addition

stage2

TMem6

Post addition

stage3

TMem7

P8 P9 P10 P11 P12 P13

×

R_adds

Data

MWC5 MRC5 MWC6 MRC6 MWC7 MRC7

a=444 a=442 a=443b=35 b=35 b=36

a and b are calculated for N=8

Figure ‎4.17: The block diagram of the post addition stages.

86

X(0)

R

-

X(4)

X(6)

X(2)

Y(0)

Y(4)

R

-

X(7)

X(3) -

-
X(1)

-
X(5)

Y(6)

Y(2)

Y(7)

Y(3)

Y(5)

Y(1)

R

R

R-1

R-2
R-2

-
a

b

c=a-b R=3 D-FF Register

R

R-1

R-2

R-2

R-2

Figure ‎4.18: Eight points addition unit of each post addition stage.

4.5 Results and Discussion

The proposed architectures are tested and verified using the MRI images and video

sequences shown in Figure ‎4.19. The proposed architectures are implemented on a

Virtex5 5vlx50tff1136-3 Xilinx device using the Xilinx system generator tool [134].

The output data and memory addressing are validated according to the results obtained

by specific Matlab codes. Matlab codes for 3-D DCT has been produced and used as a

test bench for 3-D input and output data. For testing purposes the parameters IWL and

FWL have been chosen to be (12, 9), (12, 6) and (12, 4) for total WL of 21, 18 and 16-

bit, respectively.

Figure ‎4.19: Test MRI images and video sequences (first frame from each sequence).

87

Further, the proposed architectures have been designed and implemented using Xilinx

System generator tool, as illustrated in section 2.8. The initialisation Matlab codes for

the proposed architectures are listed in the Appendix D.

4.5.1 Rate Distortion Performance

The PSNR and RMSE between the original and the reconstructed frames are computed

using 21, 18 and 16-bit WL, as shown in Table ‎4.3. Further, the maximum absolute

error between the 3-D DCT coefficients obtained by the proposed architectures and

Matlab implementation are listed in Table ‎4.3 in columns 4 and 6 for RCF and 3-D

DCT VR architectures, respectively. All figures in Table ‎4.3 represent the results that

are obtained for eight frames from each data sequence. The and between

the original and the reconstructed frames are computed using (2.12) and (2.3),

respectively.

Moreover, the maximum absolute error between the proposed architectures and a

Matlab implementation of the 3-D DCT is computed as follows:

 () ((() ()))

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

∑ ()

(‎4.25)

where () ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the maximum absolute error in each frame and the

average of maximum absolute error over eight frames, respectively. Further, the

variables and represent the 3-D DCT coefficients of each data cube

computed using Matlab code and the proposed architectures, respectively.

From Table ‎4.3, it is obvious that at a wordlength of 21-bit, a of ∞ has been

achieved. The maximum average absolute errors among the eight input sequences are

3.11 and 0.87×10
-2

for RCF and 3-D DCT VR architectures, respectively. Furthermore,

a 51.2 and 52.9 dB are achieved with 16-bit wordlength for both architectures,

respectively. It can be explained that the error increasing in RCF over 3-D DCT VR

architectures is a result of the high number of multipliers in each stage, which is

accompanied by accumulated rounding and truncation operations.

88

Table ‎4.3: The PSNR and RMSE between original and reconstructed input sequence

and the maximum absolute error in 3-D DCT coefficients for the first eight

input frames.

RCF architecture 3-D DCT VR architecture

Reconstructed data Coefficients Reconstructed data Coefficients

Input sequence
PSNR

(dB)
RMSE

Max rr̅̅ ̅̅ ̅̅ ̅̅ ̅̅
×10

-2

PSNR

(dB)
RMSE

Max rr̅̅ ̅̅ ̅̅ ̅̅ ̅̅
×10

-2

WL=21-bit

MRI1 ∞ 0 1.18 ∞ 0 0.69

MRI2 ∞ 0 2.71 ∞ 0 0.87

Akiyo ∞ 0 2.06 ∞ 0 0.70

Stefan ∞ 0 2.53 ∞ 0 0.80

Suzie ∞ 0 2.20 ∞ 0 0.71

Bus ∞ 0 3.11 ∞ 0 0.83

Flower ∞ 0 2.64 ∞ 0 0.87

Calendar ∞ 0 2.33 ∞ 0 0.78

Average ∞ 0 2.35 ∞ 0 0.78

WL=18-bit

MRI1 68.02 0.10 6.57 70.48 0.08 5.30

MRI2 65.18 0.14 7.22 67.81 0.10 5.69

Akiyo 66.77 0.12 6.81 69.38 0.09 5.30

Stefan 65.30 0.14 7.48 67.78 0.10 5.89

Suzie 65.28 0.14 7.16 67.83 0.10 5.68

Bus 65.21 0.14 7.54 67.76 0.10 6.10

Flower 65.33 0.14 7.72 67.78 0.10 6.06

Calendar 65.24 0.14 7.35 67.80 0.10 5.59

Average 65.79 0.13 7.23 68.33 0.10 5.70

WL=16-bit

MRI1 53.34 0.55 27.46 55.13 0.45 21.32

MRI2 50.45 0.77 29.75 52.39 0.61 23.52

Akiyo 52.93 0.58 26.64 54.15 0.50 21.87

Stefan 50.59 0.75 29.75 52.41 0.61 23.82

Suzie 50.66 0.75 27.74 52.47 0.61 21.87

Bus 50.51 0.76 29.72 52.39 0.61 23.57

Flower 50.75 0.74 29.31 52.46 0.61 23.49

Calendar 50.45 0.77 28.37 52.37 0.61 22.48

Average 51.21 0.71 28.59 52.97 0.58 22.74

89

4.5.2 Hardware Usage

Table ‎4.4, shows the hardware usage of the proposed architectures and the 3-D DCT

architectures in [25]. This table shows that the proposed architectures consumes far

fewer hardware resources than the 3-D DCT architectures in [25]. As such, 128

multipliers are required in [25] while only four multipliers are required in the 3-D DCT

VR architecture for a cube size of 8×8×8-point. Further, the 3-D DCT VR architecture

outperforms the RCF architecture in terms of slice registers, as detailed in Table ‎4.4.

The number of slice registers used in the RCF architecture is increased due to the

pipelining process to improve the operating frequency and to preserve data

synchronisation through each 1-D DCT stage. However, the proposed 3-D DCT VR

architecture consumes more memory resources than the RCF architecture, and this

occurred because of the reordering and the data addressing process that is required by

each stage of the proposed 3-D DCT VR architecture.

In addition, the average hardware utilisation rate for the RCF and 3-D DCT VR

architectures is 15 and 13 % respectively from the available resources as shown in

Table ‎4.5. Moreover, from this table, it is obvious that the number of DSP slices and

block memory are lower than that required by the 3-D DCT VR architecture. However,

the 3-D DCT VR has lower number or registers and LUTs.

Table ‎4.4: Comparison between hardware usages for different 3-D DCT architectures

Slice Logic

Utilisation

Proposed

architectures

WL=21 bit

Architectures in [25]

RCF
3-D DCT

VR
Original

(1) Pipelined

ver.1
(1)

Pipelined

ver. 2
(1) Block

Slice Registers 6,934 4,972 Registers 57,379 57,367 105,476 13,347

Slice LUTs 7,051 2,779 Logic Elements
(2)

 117,847 184,396 306,188 19,355

Bonded IOBs 30 30 I/O Pins 2,059 2,059 2,058 525

Multipliers 39 4 9-bit Multipliers 576

576

576

128

Data cube size 8×8×8 8×8×8

Target FPGA

Device

XilinxVirtex5

5vlx50tff1136-3
Altera Cyclone III EP3C120F780C8

(1) Estimated values were evaluated using Altera Quartus II [25].

(2) Each logic element in Altera Cyclone III comprises a four-input LUT [135].

90

Table ‎4.5: Comparison between percentage utilisation rates of the proposed

architectures using 21, 18 and 16-bit wordlengths.

 Utilisation rates %

Slice Logic Utilisation Available
RCF 3-D DCT VR

21-bit 18-bit 16-bit 21-bit 18-bit 16-bit

Number of Slice Registers 28,800 24 20 18 17 15 14

Number of Slice LUTs 28,800 24 19 18 9 8 8

Number of occupied Slices 7,200 31 26 23 21 19 16

Number of bonded IOBs 480 6 5 5 6 5 5

Number of Block RAM/FIFO 60 5 5 5 15 15 15

Number of DSP48Es 48 0 0 0 12 12 12

Average utility rate % -- 15 13 12 13 12 12

4.5.3 Speed and Power Consumption

The maximum operating frequencies, computation times and power consumption of the

proposed architectures using different clock periods and wordlengths are shown in

Table ‎4.6.The maximum operating frequency of the RCF architecture is 237, 279 and

237 MHz for 21, 18 and 16 bit wordlengths, respectively. Whereas, the 3-D DCT VR

architecture can operate up to 259, 238 and 305 MHz using the same wordlengths,

respectively. The obtained results have revealed that for a data of 512×512×8-pixel the

3-D DCT can be computed for just 6.8 ms. Further, the dynamic power consumption of

the proposed RCF architecture at 5 ns clock period are 261, 228 and 179 mW for 21, 18

and 16 bit wordlengths, respectively, whereas the proposed the 3-D DCT VR

architecture can operate at 5 ns, consuming a dynamic power of 180, 153 and 129 mW

for the same wordlengths, respectively.

It is clear from Table ‎4.6 that the 3-D DCT VR architecture consumes less power than

the RCF architecture. The reduction in power consumption is achieved due to using a

lower number of multipliers in 3-D DCT VR architecture (one multiplier per butterfly

stage only) and using efficient data controllers. In contrast, the reasons for the high

power consumption with the RCF architecture are additional multipliers and registers

that are required to improve the speed and maintain the data synchronization at each 1-

D DCT stage. The data controllers are designed to avoid using long delay elements and

file:///D:/Reports112/xflow/rcf_model1_test_cw_map.xrpt

91

turn on the memory writing/reading operations only when required. In contrast, the

reasons for the high power consumption that exhibit in the RCF architecture are that the

relatively high number of multipliers and the additional registers required to improve

the speed and maintain data synchronisation at each 1-D DCT stage.

Table ‎4.6: The power consumption and computation speed of the proposed architectures

using different clock frequencies and 21, 18 and 16-bit wordlengths.

Clock

Frequency

(MHz)

RCF Architecture 3-D DCT VR Architecture

21-bit 18-bit 16-bit 21-bit 18-bit 16-bit

Power

consumption

(mW)

200 261 228 179 180 153 129

100 157 133 99 98 86 83

66.67 115 100 72 71 64 62

50 96 83 58 58 53 52

40 84 73 50 51 47 46

33.33 76 67 45 45 42 41

Operating frequency

(MHz)
237 279 237 259 283 305

Computation time of

512×512×8-point (ms)
8.85 7.52 8.85 8.10 7.41 6.88

In addition, a comparison between the maximum operating frequency achieved by the

proposed architectures with the architectures in [102] and [25] is shown in Table ‎4.7. As

these architectures were implemented on different hardware devices, thus normalised

operating frequencies are used for such comparison. Taking the maximum clock

frequency of 5vlx50tff1136-3 Virtex5 Xilinx FPGA device as a reference, the frequency

normalisation operation can be computed as follows [25]:

 (‎4.26)

where, Normalised_Freq1 is the normalised value of the architecture operating

frequency Freq1 which is implemented on hardware device type A. The variable

Max_Clock_Of_Device_A represents the maximum clock frequency of the hardware

device A. It is equal to 180 and 402.5 MHz for Altera EPF10K100EFC484 and

Cyclone II EP2C70F896C6, respectively [25]. From Table ‎4.7, it is clear that the

proposed architectures outperform those architectures in term of the normalised clock

frequency.

92

Table ‎4.7: Comparison of the normalised operating frequencies for different 3-D DCT

architectures.

Proposed

architectures

WL=21-bit

Architectures in

Architecture in [102] [25]

RCF

3-D DCT

VR
Original

Pipelined

ver.1

Pipelined

ver.2
Block

Frequency

(MHz)
237 259 12.5 97.2 111.7 97.2 128.6

Normalised

frequency
237 259 38.19 132.82 152.63 132.82 175.73

Data Cube 8×8×8 4×4×4 4×4×4

Target

hardware

Xilinx Virtex5

5vlx50tff1136-3

Altera

EPF10K100EFC484
Altera Cyclone II EP2C70F896C6.

4.6 Summary

This chapter has presented two new FPGA architectures for high speed 3-D DCT

computation. The proposed architectures are based on 1-D DCT Radix-2 and 3-D DCT

VR algorithms. The first architecture performs the 3-D DCT computation by applying

1-D DCT Radix-2 to the rows, columns and frames. Both architectures have been

implemented, tested and evaluated using a Virtex5 Xilinx FPGA device. The obtained

results have revealed that the RCF and 3-D DCT VR architectures can operate at up to

279 and 305 MHz respectively, using an 8×8×8-point data cube size. At such high

speeds, the 3-D DCT computation times of 512×512×8-point are 7.5 and 6.8 ms,

respectively. Moreover, the hardware usage of the 3-D DCT VR architecture is lower

than that required by the RCF architecture, whereas the 3-D DCT VR architecture

consumed more DSP48E slices and memory resources than the RCF architecture. The

performance evaluation has revealed that the power consumption of the 3-D DCT VR

and RCF architectures at 21-bit wordlength and 10 ns clock are 98 and 157 mW,

respectively. Moreover, for different wordlengths, both architectures produce low error

in the 3-D DCT output and good PSNR. The proposed architectures outperform similar

3-D DCT architectures in terms of the number of multipliers, I/O pins and registers.

However, although the proposed 3-D VR architecture gained more advantages than that

achieved by RCF, the main disadvantages of the 3-D VR architecture were the

complicated memory addressing and high hardware usage. These drawbacks will be

solved by the proposed architectures that will be presented in chapter 5.

93

Chapter 5: Area-Efficient 3-D DCT Architectures

5.1 Introduction

In this chapter, two new area-efficient architectures for 3-D DCT computation using the

3-D DCT VR algorithm are introduced. The data processing of the first architecture is

accomplished sequentially with one output/stage each clock cycle, whereas two

outputs/stages are computed in the butterfly and post addition stages in the second

architecture. This has the merit of increasing the processing speed, albeit at the cost of

extra hardware resources. The main characteristics of the proposed architectures are:

 In place computation; no block memory is used for data transposition in post-

addition and butterfly computation stages which is essential in row-column-

frame approaches. Thus, efficient architectures in terms of processing speed and

power consumption are produced.

 Parameterisable architectures regarding wordlength, providing different output

precision levels and processing speeds.

 Low hardware usage and high processing speed of up to 330 MHz using 14-bit

output wordlength and 8×8×8-pixel input cube size can be achieved.

The proposed architectures have been tested on MRI images and video data sequences

using different wordlengths. The results obtained show that the hardware usage is less

than 10 and 16 % from the available resources of the Virtex5 5vlx50tff1136-3 FPGA

device for the first and second architectures, respectively. Furthermore, an operating

frequency of up to 330 MHz and a processing time of just 6.4 ms can be achieved for

512×512×8-pixel data using a transform length of 8×8×8.

The rest of this chapter is organised as follows. Section ‎5.2 presents an overview about

the proposed architectures. Section ‎5.3 introduces a single path data flow architecture;

Model1. While a dual path data flow architecture; Model2 is introduced in section ‎5.4.

A sample of the results obtained is discussed in section ‎5.5 and the chapter summary is

given in section ‎5.6.

94

5.2 The 3-D DCT VR Architectures

The proposed architectures consist of 3-D reordering, butterfly computation, post

addition and 3-D bit reverse ordering stages, as shown in Figure ‎5.1. The input data is

partitioned into cubes of N×N×N-voxel; N=8, or eight 8×8-pixel blocks and the

dimension of the input sequence is P×Q×F-pixel. In the rest of this chapter, the term

data cube refers to 8×8×8 or N
3
-pixel, data block refers to 8×8 or N

2
-pixel and the

symbol Bi refers to an 8×8-pixel data block 0 1 …7 (B0, B1, ... B7). As shown in

Figure ‎5.2.

Butterfly

Stages

Reordering

Stage

Post

Addition

Stages

Bit

Reverse

Order

3-D

Input

Data

3-D Output

DCT

Coefficients

Figure ‎5.1: Block diagram of the 3-D DCT VR algorithm.

Data Cube No.

(0, 1)

Block No :B0

Block (8×8) pixels

Data Cube No.

(0, 0)

Block No :B0

Block (8×8) pixels

Data Cube No.

(0, Q/N -1)

Block No :B0

Block (8×8) pixels

…...

…...

…...

Data Cube No.

(P/N -1,1)

Block No :B0

Block (8×8) pixels

Data Cube No.

(P/N -1,0)

Block No :B0

Block (8×8) pixels

Data Cube No.

(P/N -1,Q/N -1)

Block No :B0

Block (8×8) pixels

…...

…...

…...

…
...

…
...

…
...

…
...

…
...

…
...

…
...

…
...

…
...

Eight
blocks

Figure ‎5.2: An 8×8×8-pixel data cubes.

Two models are proposed for 3-D DCT VR computation: Model1; single path data flow

architecture, and Model2; dual path data flow architecture. The differences between the

two models are in butterfly computation, post addition and 3-D bit reverse order stages.

However, the same 3-D reordering circuit is used in both models. Furthermore, the

wordlength of the proposed architectures can be adjusted using two input parameters;

the IWL and FWL.

95

5.2.1 Reordering Stage

The proposed architectures partition the input sequence into cubes of 8×8×8-pixel or

eight 8×8-pixel data blocks. The input data to the proposed architectures is reordered

according to (4.8). The reordering process is performed by shuffling each element

within each column, shuffling between columns and shuffling between blocks. As an

example, if the input sequence is; 0, 1, 2, 3, 4, 5, 6 and 7, then the reordered sequence

will be; 0, 2, 4, 6, 7, 5, 3 and 1. The block diagram of reordering stage is shown in

Figure 5.3.

From Figure ‎5.3, the reordering circuit composes of a 5 -word block RAM and

read/write controllers. During the first four clock cycles, the first four data blocks are

allocated in the first memory locations using its natural order from 0 to 255. At the

beginning of the fifth block (i.e. the element number 256) the memory reading process

starts to perform the reordering process. The proposed writing/reading sequence is

shown in Table ‎5.1. From this table, the delay between memory writing and reading

operations is clock cycles. The writing addresses are generated using 16-word

ROM (ROM1) which direct each block into an empty memory location to avoid

interference between writing and reading operations. The ROM1 content is; 0, 1, 2, 3, 4,

0, 2, 4, 2, 4, 0, 3, 1, 2, 0 and 1; where 0 refers to the memory locations from 0 to 63, and

1 refers to 64 to 127 locations and so on. Further, the memory reading addresses are

generated using 16-words ROM (ROM2) to select the required data block: the reading

phase ROM2 content is shown in the sixth column of Table ‎5.1. Moreover, two eight

word ROMs (ROM3 and ROM4) are used to generate the reordering address within

each 8×8-pixel block for row and column reordering. The content of each ROM is; 0, 2,

4, 6, 7, 5, 3 and 1. The output of this stage represents a reordered version of the input

data cube which is fed to the subsequent stage; butterfly computation stage.

96

0 0

1

0

2

1

0

3

2

1

3

2

1

4

5

3

1

4

5

3

6

1

5

3

1

7

0 2

0 1 2 3

4 6

4 5 6 7

Input Blocks/sequence from left to right

Output Blocks

5

3

0

1

7

0

3

0

1

1

5

1

2

0

1

1

3

2

2

3

0

1

1

3

Delay

2

3

4

1

0

4

3

5

4

1

2

5

6

3

5

1

4

6

3

5

7

1

6

7

0

3

5

1

7

0

Concat

ROM1

16

Words

W_Adds
Every 1 Cycle

0-15

Every N2 Cycles

0-63

a. Reordering Circuit

b. Memory content

Each square represents (8×8)

coefficients or one block

Block

Memory

5N2

Words

Output

Input

W_Adds

R_Adds

0-15

Concat

ROM2

16

Words

R_Adds

Every N2 Cycles

Every N Cycles
ROM3

8

Words

ROM4

8

Words

Every 1 Cycle

0-7

0-7

Figure ‎5.3: Reordering circuit and memory content during reordering operation.

97

Table ‎5.1: The memory write/read block locations for reordering stage (block shuffling)

Input Data Output Data

Cube

number

Block

number

Memory

addresses

Cube

number

Block

number

Memory

addresses

0 B0 0 -- -- --

0 B1 1 -- -- --

0 B2 2 -- -- --

0 B3 3 -- -- --

0 B4 4 0 B0 0

0 B5 0 0 B2 2

0 B6 2 0 B4 4

0 B7 4 0 B6 2

1 B0 2 0 B7 4

1 B1 4 0 B5 0

1 B2 0 0 B3 3

1 B3 3 0 B1 1

1 B4 1 1 B0 2

1 B5 2 1 B2 0

1 B6 0 1 B4 1

1 B7 1 1 B6 0

2 B0 0 1 B7 1

2 B1 1 1 B5 2

2 B2 2 1 B3 3

2 B3 3 1 B1 4

5.3 Single Path Data Flow 3-D DCT Architecture; Model1

The proposed architecture (Model1) is composed of a 3-D reordering stage, three

butterfly computation stages, three post addition stages and 3-D Bit Reverse Order (3-D

BRO) stages. The reordering unit has been introduced in section ‎5.2.1, while the other

stages are introduced in ‎5.3.1 to ‎5.3.3.

5.3.1 Butterfly Stages

The butterfly stage consists of three main stages, each with three sub-stages, as shown

in Figure ‎5.4. In Figure ‎5.4-b, the letter m refers to the butterfly stage number; BTFL1,

BTFL2 and BTFL3. Every butterfly stage consists of three single units, a twiddle factor

98

generator and a multiplier. Each sub-stage is considered as a single butterfly unit (single

sub-stage), as shown in Figure ‎5.5.

Twiddle Factors

BTFLmButterfly Stage Number m (BTFLm)

SubStg1

d(n)=N3/2m ×
SubStg2

d(n)=N2/2m Output
SubStg3

d(n)=N/2mInput

b. Single Butterfly stage.

a. Block diagram of Model1.

Reoredered

Data
Butterfly stages

(m=1, 2 and 3)

Post Addition

stages (1, 2 and

3)

3-D

BRO

Figure ‎5.4: Block diagrams of a. Model1 and b. Butterfly architectures.

Delay

d(n)

Mux2
a

b

+

-

0

Output

Input

Controller

Mux

1

-
a

b

a-b

Figure ‎5.5: Single butterfly unit of Model1.

The first butterfly unit; BTFL1-SubStg1 is used to perform the addition and subtraction

between the two halves of each input data cube;

 and

 . During

the first N
3
/2 samples of each data cube, the controller is in its low state; 0. This

enforces the output of the first multiplexer; Mux1 to 0, and the switch is connected to

the upper side; point-a, and the output of the second multiplexer; Mux2 represents the

first half of the input data cube. This arrangement allows the first half of the input cube

to be allocated in N
3
/2 registers; d(n)=N

3
/2. However, in the succeeding N

3
/2 clock

cycles, the controller state is turned into high level; 1 to allow the second half of the

99

input data cube to go through to the adders. The output of the Mux2 during this period

is the result of subtraction between the first and second halves of the input data cube and

the switch connected to the lower side; point-b. The output data represents the additions

between the two halves of the input data cube. Moreover, during the first half of the

second data cube the controller will return to its low state; 0 to allow the subtraction

results of the first data cube to go through the output port. Consequently, the output data

from BTFL1-SubStg1 is kept in its original order; 0 to N
3
-1 and the initial output

latency is N
3
/2.

In the next sub-stage; BTFL1-SubStg2, the controller period becomes N
2
/2 clock cycles

to allow addition and subtraction between the two halves of each block; N
2

samples. The

same computation procedure in the SubStg1is used to perform the addition and

subtraction process in SubStg2. Finally, the third sub-stage of the first butterfly; BTFL1-

SubStg3 acts within each single column; eight samples to perform addition and

subtraction between the two halves of each column.

The circuit operation is directed using a specific controller which is composed of three

single-bit slices from the main counter. The time period of the three controlling signals

are: N
3
/2, N

2
/2 and N/2 clock cycles.

The output of BTFL1 stage is multiplied by an appropriate twiddle factor using single

multiplier and twiddle factor generator circuit. The BTFL1 twiddle factor generator; TF-

BTFL1 composes of three eight word ROMs, two multipliers and a specific addressing

signal, as shown in Figure ‎5.6. The contents of each ROM are; 1, 1, 1, 1, 1.96157,

1.11114, -0.39018 and -1.66294 and they are divided by 2 to prevent output overflow.

The addresses of ROM1, ROM2 and ROM3 are generated every one, N and N
2
 clock

cycles, respectively, as shown in Figure ‎5.6.

TF_BTFL1

×

×

0-7
ROM1

8

Words

Every 1 Cycle

Every N Cycles
ROM2

8

Words

ROM3

8

Words

Every N2Cycles

0-7

0-7

Figure ‎5.6: Twiddle factor generator circuit of the first butterfly stage.

100

The second butterfly stage; BTFL2 composes of three sub-stages, similar to BTFL1

with a different registers, data controlling signals and twiddle factors. The required

registers for the second butterfly stage are N
3
/4, N

2
/4 and N/4 for the three sub-stages,

respectively, as shown in Figure ‎5.4. Moreover, the three controlling signals are

generated using single-bit slices from the main counter considering that the required

time periods of the three signals are; N
3
/4, N

2
/4 and N/4, respectively.

Further, the twiddle factors of BTFL2 are generated similar to BTFL1 using four word

ROMs, two multipliers and data addressing units, as shown in Figure ‎5.7. The content

of each 4-word ROMs is; 1, 1, 1.847759 and -0.76537, divided by 2 to reduce the

number of bits required for the IWL part of the output samples. Again, in this stage the

output is normalised by 8 and as a result the final output becomes normalised by 64; 8

for BTFL1 and 8 for BTFL2.

TF_BTFL2

×

×

0-3
ROM1

4

Words

Every 1 Cycle

Every N Cycles

ROM2

4

Words

ROM3

4

Words

Every N2Cycles

0-3

0-3

Figure ‎5.7: Twiddle factor generator circuit of BTFL2.

The last butterfly stage; BTFL3 is similar to the previous two stages with different

registers, data controller, twiddle factors and the third sub-stage. The first two sub-

stages in BTFL3 are similar to those used in BTFL1 and BTFL2 but with N
3
/8 and N

2
/8

registers; d(n) for the first and second sub-stage, respectively. On the other hand, the

third sub-stage is constructed in a different manner using one multiplexer, two adders,

two down sampler elements and one register, as shown in Figure ‎5.8. Further, the data

controlling signals are generated using three single-bit slices with a time period equal to

N
3
/8, N

2
/8 and N/8 cycles.

101

R0

Mux

+

-

OutputInput

Controller

2

2

R0=D-FF Register

Figure ‎5.8: Last sub-stage of BTFL3.

The output of BTFL3 is multiplied by an appropriate twiddle factors using a single

multiplier. Twiddle factors are generated using single four words ROM and three

single-bit slices and two adders, as illustrated in Figure ‎5.9. The ROM content is; 1,

1.414214, 2 and 2.828427 normalised by 2, and the ROM addressing signal is generated

using three single-bit slices. The generated twiddle factors are multiplied accordingly

with each BTFL3 output using a single multiplier. The output from the third butterfly

represents a normalised version of the regular butterfly output. The normalisation factor

is 128; 8 for BTFL1, 8 for BTFL2 and 2 for BTFL3. The output of the butterfly stage

BTFL3 is fed to the subsequent post-addition stages.

Briefly, a complete in-place computation is carried out for the butterfly stages without

any reordering within or between the butterfly stages. Such computation procedure

reduces the complexity of the proposed architecture.

+
ROM

4

Words

+

{0,1} period

1 Cycle

{0,1}

period N

Cycles

{0,1}

period N2

Cycles

TF_BTFL3

Figure ‎5.9: Twiddle factor generator circuit of BTFL3.

5.3.2 Post Addition Stages

The third part of the Model1 is the post addition stages, which perform the computation

of the term outside the curly brackets of (4.13) to (4.19). The post addition operation

composes of three stages; each stage runs an addition process for selected elements over

102

each data dimension; Row, Column and Frame. The block diagram of the three post

addition stages and their data controller are shown in Figure ‎5.10. Where d(n) is the

register length, Sel1, Sel2 and Sel3 are the controller signals. From Figure ‎5.10-c, each

post addition stage consists of three multiplexers, four adders, registers and controller

units.

c. Single post addition stage of Model1

Mux1-

-

Output

Controller

d(n)

d(n)

Input

Mux2

-
d(n)

Mux3

-
2d(n)

Sel1 Sel2 Sel3

a. Post addition stages.

Stage 1

d(n)=N

Stage 2

d(n)=1

Stage 3

d(n)=N2

3-D

BRO

Output

BTFLO

utput

Post addition Controller{Sel1, Sel2, Sel3}

S3

S1

AND

NOT

AND

AND

AND

Sel3

Concat Sel1

Sel2

b. Post addition controller.

Bit slices

S2

Figure ‎5.10: Post addition stages and their controller.

In the first post addition stage; Stage 1, each register is of N length; d(n)=8. Further, the

data controller of the post addition stages is shown in Figure ‎5.10-b.

The output signals of the three controllers can be computed as follows:

 (‎5.1)

 ̅ (‎5.2)

 { () } (‎5.3)

where • represents logical AND, represent different single-bit slices from

the main counter and are the resultant three controlling signals.

The selected bits for the first controller circuit (first post addition stage controller) are:

S1=C5, S2=C4, S3=C3, where C is the binary representation of a 9-bit counter (LSB

marked with 0 and MSB marked with 8).

103

The second post addition stage; Stage 2 is constructed similar to the Stage1. The main

differences between them are register length and data controller. The register length for

this stage is 1; d(n)=1, and the second controller signals are computed using (‎5.1) to

(‎5.3) and the selected bits for the controller are S1=C2, S2=C1 and S3=C0.

Further, the last post addition stage; ; Stage 2 is similar to the first and second stages

but using N
2
 registers for each sub-stage; d(n)=64 and the selected bits used to generate

the controller signals are; S1=C8, S2=C7 and S3=C6. The output from the third post

addition stage is fed to the 3-D bit reverse order stage to produce the same order of the

input data. Further, the features of the post addition stages are: in place computation,

and low complexity derived by simple controller units.

5.3.3 3-D Bit Reverse Order Stage (3-D BRO Stage)

The last stage of the proposed architecture is the 3-D BRO stage. This stage is

postponed after the post addition stages to act as a buffer for the subsequent system as

an example; DCT is usually integrated with a Quantiser in conventional data

compression algorithms. The 3-D BRO stage composes of 5N
2
-word block memory and

writing/reading addresses controller, as shown in Figure ‎5.11. The writing addresses are

generated using 24-word ROM (ROM1) and 0-63 counter. ROM1 is used to specify an

empty memory location of each data block. The ROM1 content is shown in the first 24

elements of the third column of Table ‎5.2. The input data blocks are written into its

locations according to the order specified by ROM1 content in the same manner of

reordering stages in sub-section ‎5.2.1.

During the memory reading phase, specific addresses are generated to perform the bit

reversing operation. The bit reversing operation shuffles the regular input sequence into

different arrangements; as an example for eight points; 0, 1, 2, 3, 4, 5, 6 and 7, the 1-D

BRO sequence is; 0, 4, 2, 6, 1, 5, 3 and 7. The 3-D BRO operation is performed using

24-word ROM (ROM2) for frame direction shuffling and six single-bit slices from the

main counter. ROM2 content is shown in the sixth column of Table ‎5.2, which is used

for shuffling between data blocks within each data cube. The whole 3-D BRO addresses

(memory reading addresses) are generated by concatenating ROM2 content with the six

single-bit slices, as shown in Figure ‎5.11-a. The block memory content during each N
2

clock cycles is shown in Figure ‎5.11-b.

Finally, the output from this stage represents the 3-D DCT coefficients of the input data.

104

a. BRO Circuit

W_Adds

R_Adds

Block

Memory

5N2

Words

Output

Input

Concat

ROM1

24

Words

W_AddsEvery 1 Cycle

0-23

Every N2 Cycles

0-63

Every N2 Cycles

0-23

Concat

ROM2

24

Words

R_Adds

Every N Cycles

0-1
Every 2N Cycles

0-1

Every 4N Cycles
0-1

Every 1 Cycle
0-1

Every 2 Cycles
0-1

Every 4 Cycles
0-1

0 0

1

0

2

1

0

3

2

1

3

2

1

4

5

3

1

4

5

3

6

1

5

3

1

7

0 2

0 1 2 3

4 6

4 5 6 7

Input Blocks/sequence from left to right

Output Blocks

5

3

0

1

7

0

3

0

1

1

5

1

2

0

1

1

3

2

2

3

0

1

1

3

2

3

4

1

0

4

3

5

4

1

2

5

6

3

5

1

4

6

3

5

7

1

6

7

0

3

5

1

7

0

b. Memory content

Figure ‎5.11: The 3-D BRO stage.

105

Table ‎5.2: The memory write/read block locations for the 3-D BRO stage (shuffling

between data blocks)

Input Data Output Data

Cube

number

Block

number

Memory

addresses

Cube

number

Block

number

Memory

addresses

0 B0 0 -- -- --

0 B1 1 -- -- --

0 B2 2 -- -- --

0 B3 3 -- -- --

0 B4 4 0 B0 0

0 B5 0 0 B4 4

0 B6 4 0 B2 2

0 B7 2 0 B6 4

1 B0 4 0 B1 1

1 B1 1 0 B5 0

1 B2 0 0 B3 3

1 B3 3 0 B7 2

1 B4 2 1 B0 4

1 B5 4 1 B4 2

1 B6 2 1 B2 0

1 B7 0 1 B6 2

2 B0 2 1 B1 1

2 B1 1 1 B5 4

2 B2 4 1 B3 3

2 B3 3 1 B7 0

2 B4 0 2 B0 2

2 B5 2 2 B4 0

2 B6 0 2 B2 4

2 B7 4 2 B6 0

3 B0 0 2 B1 1

3 B1 1 2 B5 2

3 B2 2 2 B3 3

3 B3 3 2 B7 4

106

5.4 Dual Path Data Flow 3-D DCT Architecture; Model2

Model2 is dual path architecture for 3-D DCT VR computation. Model2 is designed to

produce high speed 3-D DCT architecture with in-place butterfly computation

procedure. It composes of a 3-D reordering stage, three butterfly stages, three post

addition stages and a 3-D BRO stage, as shown in Figure ‎5.12. The 3-D reordering stage

is similar to Model1, whereas different architectures of butterfly, post addition and BRO

stages are introduced in this model. Each single butterfly and post addition stage

computes two coefficients per clock cycle; the first output represents the first half of the

input data (addition process) whereas the second output represents the second half of the

input data (subtraction process).

Reordered

Data
Butterfly stages

(m=1, 2 and 3)

Post Addition stages

(m=1, 2 and 3)
BRO

Figure ‎5.12: a. Block diagram of the proposed dual path data flow 3-D DCT

architecture; Model2

5.4.1 Butterfly Stages

The Model2 butterfly stages are shown in Figure ‎5.13. Two flipping stages are added to

keep the data sequence within each block in its regular order; 0 to N
2
-1.

Twiddle Factors

BTFLm_U

SubStg1

d1(n)=N3/2m-N2/2(m-1)

d2(n)=N3/2m

×

×

SubStg2

d1(n)=N2/2m

d2(n)=N2/2m

Flip1

d(n)=

N/2m

Filp2

d(n)=

N2/2m-N/2m

Output1

Output2

Twiddle Factors

BTFLm_L

SubStg3

d1(n)=N/2m

d2(n)=N/2m

Butterfly Stage Number m (BTFLm) *

* The First sub-stage of the first Butterfly has different

arrangement ; it uses N3/2 registers only.

O1

O2

Figure ‎5.13: The architecture of single butterfly stage of Model2

The input data is firstly 3-D reordered and fed to the first sub-stage of the first butterfly

stage; SubStg1 of BTFL1, m=1. The first sub-stage is constructed from two

multiplexers, two adders and N
3
/2 registers; d(n)= N

3
/2, as shown in Figure ‎5.14-a.

During the first N
3
/2 clock cycles, the outputs of the two multiplexers (Mux1 and

Mux2) are equal to 0 and the first N
3
/2 pixels of the input data cube are stored in a

specific register; d(n); the register length is d(n)= N
3
/2. However, during the second

107

N
3
/2 clock cycles the output of Mux1 and Mux2 become the results of addition and

subtraction operations, respectively. The addition and subtraction process is performed

between the content of the register d(n) and the second half of the input data cube

during the second N
3
/2 clock cycles. The process of addition and subtraction in the first

sub-stage produces N
3
/2 clock cycles delay between successive data cubes, this delay

will be eliminated in the last stage of Model2. The adder and subtracter components are

turned off during the first half of each input cube, and on during the second half using

the same controller signal of this stage. The first sub-stage controller signal is a bi-level

signal, each level with a period of N
3
/2 clock cycles, while N

2
/2 and N/2 clock period

controller signals are used for the second and third sub-stages of BTFL1 stage.

b. Flipping stage

Controller

Switch

a c

b d

Input2

d(n)

Input1

Controller

Switch

a c

b d
Input2

Input1

d1(n)
+

-

d2(n)

c. Single butterfly sub-stage architecture

a. First sub-stage of the first butterfly stage (SubStg1)

Mux1

0

Controller

Mux2

+

- Output2

Output1
d(n)Input O1

O2

O1

O2

O1

O2

Figure ‎5.14: Butterfly sub-stages and flipping stage in Model2.

The data block order of the first sub-stage outputs are: first output order; O1 is; B0, B1,

B2 and B3 and the second output; O2 is; B4, B5, B6 and B7. The element order within

each block is kept in its natural order from 0 to N
2
-1.

The second sub-stage in BTFL1 is constructed from a switch, two adders and two N
2
/2-

registers; d1(n), d2(n)=N
2
/2, as shown in Figure ‎5.14-c. During the first N

2
/2, the switch

connects the positions; a to c and b to d, and flips them during the successive N
2
/2 clock

cycles to connect the positions; a to d and b to c. The output O1 represents the first half

108

of each block, whereas the second half is handled by O2. The block order of the two

outputs is:

 [

]

 [

] (‎5.4)

where
 represents the first half of each data block and

 represents the second

half.

The circuit diagram of the third sub-stage in BTFL1 is similar to the second sub-stage;

the only difference is the length of the two registers, which is equal to N/2; d1(n), d2(n)

=N/2. In this sub-stage, the order of the blocks at each output; and is (B0, B4, B1,

B5, B2, B6, B3 and B7). However, the data order inside such blocks of and are:

 0-3, 32-35, 8-11, 40-43, 16-19, 48-51, 24-27 and 56-59

 4-7, 36-39, 12-15, 44-47, 20-23, 52-55, 28-31 and 60-63

(‎5.5)

This irregular element order within each data block is corrected using two flipping sub-

stages. Such two sub-stages are constructed using a switch and registers, as shown in

Figure ‎5.14-b. The first flipping circuit utilises a register length of N/2; d(n)=4 and the

second flipping stage uses N
2
/2-N/2 register; d(n)=28. The controller signals of the first

and second flipping switches are the same as the controller signals of the third and

second sub-stages of BTFL1, respectively.

The last part of the first butterfly stage is the twiddle factor multiplication, which is

accomplished using one multiplier per output and a single twiddle factor generator

circuit. The twiddle factor generator is shown in Figure ‎5.15-a. This circuit composes of

two 8-word ROM; its content is the same as that in Model1, one 4-word ROM with a

content of: 1.96157, 1.11114, -0.39018 and -1.66294 and two multipliers. The first

ROM is derived by a 3-bit slice with a single clock cycle period and the second ROM is

derived by a 3-bit slice with an N clock cycle period. The addresses of the third ROM

are generated using a 2-bit slice with a clock period of N
2
.

109

ROM
4

Words+

{0,1}

period

1 Cycle

{0,1}

period

N Cycles

TF_BTFL3B

TF_BTFL3A

ROM
4

Words

b. Third stage twiddle factors

generator

×

×

0-(N/2(m-1)-1)

N/2(m-1)

Words

Every 1 Cycle

Every N Cycles

Every N2Cycles

TF_BTFL1_U

N/2m

Words0-(N/2m-1)
TF_BTFL1_L

a. First (m=1)and second (m=2) stages twiddle

factors generator

N/2(m-1)

Words0-(N/2(m-1)-1)

ROMs

Figure ‎5.15: Twiddle factors generators for butterfly stages.

In the second butterfly stage (BTFL2; m=2), all sub-stages are constructed using the

circuit in Figure ‎5.14-c. The number of registers for each sub-stage are; (96,128), (16,

16) and (2, 2), where the first value of each pair represents d1(n) and the second value

refer to d2(n)). Three bi-levels controller signals are used to perform the butterfly

computation; the period of the first signal is N
3
/4 cycles, while the clock period of the

second and the third signals is N
2
/4 and N/4, respectively. Additionally, two flipping

units are added with d(n)=2 and 14 for the first and second flipping units, respectively.

Bearing in mind that the data within each block is kept in its natural order, the block

order of the first output becomes; B0, B1, B4 and B5, and the second output order is;

B2, B3, B6 and B7. The outputs from BTFL2 are multiplied by specific twiddle factors,

accordingly. The twiddle factors of BTFL2 are generated using the circuit of

Figure ‎5.15-a with m=2. The content of the upper and the middle ROM is; 1, 1,

1.847759 and -0.76537, while the content of the lower ROM is; 1.847759 and -0.76537.

The last butterfly stage; BTFL3 is similar to the previous stage but it uses different

register lengths and twiddle factor values. The length of the registers (d1, d2) for each

sub-stage are; (48, 64), (8, 8) and (1, 1) and the length of the registers used in the first

and second flipping units are 1 and 7, respectively. The data block order of the first

output O1 is; B0, B2, B4 and B6, and the second output O2 order is; B1, B3, B5 and B7,

whereas the order of the elements within each block is corrected using the two flipping

switches. Further, the twiddle factors of BTFL3 are computed using the circuit shown in

Figure ‎5.15-b by using two ROMs. The content of both ROMs are; 1, 1.4142 and 2, and

1.4142, 2 and 2.8284, respectively.

110

5.4.2 Post Addition Stages

Post addition operations compose of three individual stages, as shown in Figure ‎5.16.

Each post addition stage processes two elements per clock cycle. The first two stages

are constructed from two parallel stages similar to the single post addition of Model1

stages, Figure ‎5.10-c; with the same data controller (Figure ‎5.10-b). On the other hand,

the third stage is constructed using the circuit shown in Figure ‎5.17. The third post

addition stage consists of four multiplexers, five adders and the registers length is N
2

;d(n)=64.The controller of the last post-addition stage is composed of one AND gate

and two single-bit slice elements, bit number 6 and 7 from the main 9-bit counter. The

last adder is used to merge the two outputs into a single output; the order of the merged

output is; B0, B2, B4, B6, B1, B3, B5 and B7.

Stage 1

d(n)=N

Stage 2

d(n)=1

Stage 3

d(n)=N2

3-D

BRO
Output

Post addition Controller{Sel1, Sel2, Sel3}

BTFLs:Output1

BTFLs: Output2

Figure ‎5.16: Post addition stages.

Controller

Mux1

-
Input2

Input1

Output

-

d(n)

Mux3

Mux2

-
d(n)

Mux4

-
d(n) +

3d(n)-1

Figure ‎5.17: Third post addition stage (Stage3).

5.4.3 3-D Bit Reverse Order Stage (3-D BRO Stage)

The 3-D BRO stage of Model2 is similar to that of Model1, as shown in Figure ‎5.11.

However, different block RAM and ROM1 and ROM2 sizes are used. The block

memory size is 3N
2
–word, and ROM1 and ROM2 are of 8-word depth. The content of

ROM1 is; 0, 1, 2, 0, 2, 1, 0 and 2, whereas; 0, 2, 1, 0, 2, 0, 1 and 2, is the content of

ROM2.

111

5.5 Performance Evaluation

The proposed architectures have been tested and implemented on a Xilinx Virtex5

5vlx50tff1136-3 FPGA device, using different video sequences and different

wordlengths. Further, the proposed architectures have been designed and implemented

using Xilinx System generator tool, as illustrated in section 2.8. The initialisation

Matlab codes for the proposed architectures are listed in the Appendix E.

5.5.1 Rate Distortion Performance

The PSNR and RMSE are used to check and evaluate the accuracy of the proposed

architecture outputs and the reconstructed frames. These two metrics are computed

between original and reconstructed frames. Further, the average of maximum absolute

error of the 3-D DCT coefficients computed using architectures output and Matlab

software implementation, are also computed using (4.29). The PSNR, RMSE and

average maximum absolute error results for the first 8 frames from every input sequence

are tabulated in Table ‎5.3 using 20, 16 and 14-bit wordlengths.

Table ‎5.3: The PSNR and RMSE between the original and reconstructed 8 frames and

the maximum absolute error between the 3-D DCT coefficients computed using

architectures output and Matlab.

 Reconstructed and original frames 3-D DCT Coefficients

 PSNR (dB) RMSE Max. absolute error

Input video (12,8) (12,4) (12,2) (12,8) (12,4) (12,2) (12,8) (12,4) (12,2)

MRI1 ∞ 60 48 0 0.25 0.99 0.013 0.22 0.88

MRI2 ∞ 57 45 0 0.36 1.41 0.014 0.29 1.01

Akiyo ∞ 59 47 0 0.27 1.15 0.013 0.25 1.10

Stefan ∞ 57 45 0 0.35 1.40 0.014 0.27 0.99

Suzie ∞ 57 45 0 0.35 1.39 0.013 0.24 0.91

Bus ∞ 57 45 0 0.35 1.40 0.015 0.24 1.15

Flower ∞ 57 45 0 0.35 1.39 0.015 0.25 1.01

Calendar ∞ 57 45 0 0.35 1.40 0.013 0.22 0.93

Average ∞ 58 46 0 0.33 1.32 0.0137 0.246 1.00

112

It is obvious from Table ‎5.3 that 100 % output accuracy is obtained using a 20-bit

wordlength for all input sequences. Further, at 14-bit wordlength a PSNR of up to 48 dB

and 0.9 lowest RMSE can be achieved. Moreover, from Table ‎5.3, the proposed

architectures produce very good image quality using the selected wordlengths. The

average PSNR of the eight test sequences are ∞, 58 and 46 dB using (12, 8), (12, 4) and

(12, 2)-bit wordlengths, respectively. The average RMSE between the original and the

reconstructed frames is less than 1.3. While, the maximum absolute error between 3-D

DCT coefficients computed using Matlab and the proposed architectures is less than

1.15.

Further, the first image of the original and reconstructed MRI2 medical image is shown

in Figure ‎5.18 to give the reader a visual impression of the performance of the proposed

architectures. In this figure, the reconstructed images are computed in both architectures

using wordlength sizes of (12,2), (12,4) and (12,8)-bit. It is obvious that both

architectures produce the same image quality. Also, it can be noticed that the (12,2)-bit

wordlength produced a good image quality where the visual error cannot be recognised

by the human visual system.

113

Figure ‎5.18: The original and reconstructed MRI2 using Model1 and Model2

architectures for different wordlengths.

Reconstructed Image (One Image)

Reconstructed Image (One Image)

Reconstructed Image (One Image)

Reconstructed; Model1;

WL (12,2)–bit

Reconstructed; Model1;

WL (12,4)–bit

Reconstructed; Model1;

WL (12,8)–bit

Original Image (One Image)

Original MR 2

Reconstructed; Model2;

WL (12,2)–bit

Reconstructed; Model2;

WL (12,4)–bit

Reconstructed; Model2;

WL (12,8)–bit

Reconstructed Image (One Image)

Reconstructed Image (One Image)

Reconstructed Image (One Image)

114

5.5.2 Hardware usage

The hardware usage, speed and computation time of both architectures using different

output wordlengths is shown in Table ‎5.4. It is clear that the average hardware usage of

Model1 and Model2 architectures are lower than 10 and 16 %, respectively. The

hardware usage of Model2 has increased due to duplicating some circuits for post

addition stages to perform an addition process on both data lines (first and second

outputs). However, this extra hardware usage improves the maximum operating

frequency of Model2 by more than 80 MHz over the Model1. As such, the minimum

computation time of 512×512×8-pixel in Model2 is 6.4 ms, whereas 8.4 ms for Model1

is required, as shown in Table ‎5.4.

Table ‎5.4: Percentage of hardware usages, maximum operating frequencies and

computation times of both models using different wordlengths.

Model1 Model2

(12,8) (12,4) (12,2) (12,8) (12,4) (12,2)

Available
Rate

%

Rate

%

Rate

%

Rate

%

Rate

%

Rate

%

Hardware

usage

Slice Registers 28,800 6 5 5 13 11 10

LUTs 28,800 7 6 5 11 9 8

Occupied Slices 7,200 10 7 7 17 13 13

IOBs 480 6 5 5 6 5 5

Block RAMs 60 15 15 15 20 18 16

DSP48Es 48 18 16 16 33 25 25

Average (%) 10 9 9 17 14 13

Maximum operating

frequencies (MHz)
- 238 237 250 320 303 330

Computation times for

512×512×8-pixel data (ms)
- 8.8 8.9 8.4 6.6 6.9 6.4

An interesting point from Table ‎5.4 is that the memory requirements of both

architectures are kept low due to the in-place computations in all butterfly and post

addition stages. An additional reason behind that is the low memory requirement for the

BRO and 3-D reordering operations. As such, a memory of 5N
2

 and 3N
2
-word has been

used for 3-BRO for Model1 and Model2, respectively. Further, a memory of 5N
2
-word

for 3-D reordering operation has been used in both models. Thus, the total number of

file:///D:/Temp_Report1/xflow/newmodelb1_cw_map.xrpt

115

block memory used in each model is less than 20% of the available memory resources

of the 5vlx50tff1136-3 FPGA device (60 Block RAMs are available in this device).

5.5.3 Dynamic Power Consumption

The power consumption in FPGA is classified into static and dynamic power. The static

power mainly comes from leakage current, whereas charging switch capacitors and

short circuit currents are the main sources of dynamic power. The first type (static

power) is affected by the technology used in FPGA manufacturing, whereas the second

type (dynamic power) can be minimized by switching capacitance reduction, as in [136]

and [137]. The dynamic power consumption of the proposed architectures is shown in

Figure ‎5.19. The power consumption has been computed using a Xilinx Xpower

analyser for various clock frequencies, and different wordlengths. The dynamic power

consumption has increased in Model2 by around 15 mW over Model1; an important

reason behind that is the additional multipliers in the butterfly stages and the duplication

of some resources in the first two post addition stages. Thus, Model1 is outperforming

Model2 in power consumption attribute, which makes it suitable for power economy

applications. Further, using a wordlength of (12,2)-bit in both models has a good impact

on power consumption reduction, as shown in Figure ‎5.19.

Figure ‎5.19: Dynamic power consumption of the proposed architectures.

5.5.4 Comparing with Other Architectures

The performance of the proposed architectures is compared with the performance of the

architectures in [25] and chapter 4, as shown in Table ‎5.5 and Table ‎5.6. From

Table ‎5.5, it is clear that the maximum operating frequency of the proposed

20

40

60

80

100

120

140

160

180

200

200 100 66.67 50 40 33.33

D
y
n
am

ic
 p

o
w

er
 (

m
W

)

Clock Frequency (MHz)

Model1 (12,8)

Model2 (12,8)

Model1 (12,2)

Model2 (12,2)

116

architectures outperforms the normalised frequency of the 3-D DCT architectures in

[25]. The normalised operating frequency is computed as in [25]. Furthermore, Model2

and 3-D DCT VR architecture in chapter 4 represent the highest speed DCT

implementation among all architectures.

Further, from Table ‎5.6, it is clear that the hardware usage of the proposed architectures

is less than that in [25]. An interesting point is that the number of multipliers in the

proposed architectures is much less than those used in the block architecture in [25].

From Table ‎5.6, it can be noticed that Model1 architecture has the lowest number of

registers and LUTs with respect to other architectures. While, the 3-D DCT RCF

architecture has the advantage of the lowest number of DSP slices among all

architectures. However, Model2 represents the faster architectures among all of them.

Table ‎5.5: Maximum clock frequency of the proposed and similar architectures.

Proposed architectures

Normalised frequency of the architectures in

[25]

This Chapter

WL=20-bit

Chapter 4

WL= 21-bit

Model

1

Model

2

RCF VR
Original

Pipelined

ver.1

Pipelined

ver.2
Block

Frequency (MHz) 250 330 237 259 132.82 152.63 132.82 175.73

Data cube size 8×8×8 8×8×8

FPGA device
Xilinx Virtex5

5vlx50tff1136-3
Altera Cyclone II EP2C70F896C6

Table ‎5.6: Hardware usage comparison between the 3-D DCT architectures.

Slice Logic

Utilisation

This Chapter

WL= 20-bit

Chapter 4

WL= 21-bit Block architecture in [25]

Model1 Model2 RCF VR

Slice Registers 1,871 3,750 6,934 4,972 Registers 13,347

Slice LUTs 2,173 3,309 7,051 2,779 Logic Elements 19,355

Multipliers 7 10 39 4 9-bit Multipliers 128

Memory (Kb) 288 306 108 306 - -

DSP48Es slices 9 16 0 6 - -

Data cube size 8×8×8

8×8×8

FPGA Device XilinxVirtex5 5vlx50tff1136-3 Cyclone III EP3C120F780C8

117

5.6 Summary

This chapter has introduced two new architectures for 3-D DCT computation using the

3-D DCT VR algorithm. The proposed architectures avoid the need for the memory for

data transposition in the butterfly and post addition stages which in turn reduce the

hardware usage and improve the processing speed. The proposed architectures are

parameterisable in terms of wordlength, providing different output precision levels,

power consumption, hardware usage and processing speeds. The proposed architectures

have been implemented on Virtex 5 5vlx50tff1136-3 FPGA device and tested using

different images and videos, different wordlengths and clock frequencies. The output

accuracy, hardware usage, maximum operating frequencies and power consumption of

the proposed architectures are evaluated using (12, 8), (12, 4) and (12, 2)-bit; (IWL,

FWL) wordlengths. The accuracy tests revealed that the PSNR of the reconstructed

images and frames are ∞, 6 and 4 dB using the three selected wordlengths,

respectively. Also, the evaluated results reveal that the number of occupied slices is 722

and 1235 for the first and second architecture, respectively. Furthermore, the maximum

operating frequencies achieved by the two architectures are 250 and 330 MHz using 14-

bit output wordlength and 8×8×8-pixel input cube size for the first and second

architectures, respectively. Moreover, the new architectures have the advantage of low

power consumption, which is in the order of 25 to 175 mW, depending on the clock

frequency and wordlength. Moreover, significant hardware usage reduction with higher

operating frequencies is achieved when compared with similar 3-D DCT hardware

architectures.

So far, block based multidimensional transforms for image and video processing have

been discussed and different architectures have been proposed and verified. The next

chapter will discuss a multidimensional discrete wavelet transform (DWT) which

represents a non-block transformation for image and video processing.

118

Chapter 6: Parallel and Multiplierless

Multidimensional CDF 9/7 DWT Architectures

6.1 Introduction

Thus far, block based multidimensional transforms as used in image and video

compression applications have been discussed, with different architectures proposed and

verified. This chapter will discuss the multidimensional DWT, which represents a non-

block transform used in image and video processing applications. The DWT is used in

audio, image and video compression algorithms as it overcomes the blocking artefact

limitations of the conventional block-based image compression techniques. However, in

spite of the advantages of the DWT over DCT and FFT, it has the limitations of high

memory requirements and high computation costs. These factors affect the speed,

complexity and power consumption of any DWT architecture, thus motivating many

researchers to investigate and propose different versions of DWT computation

approaches to overcome these limitations and drawbacks.

In this chapter, new lifting-based 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7

(CDF 9/7) DWT parallel and multiplierless architectures are proposed. The proposed

architectures have been devised to process an infinite GOF and achieve a good

compromise between memory requirement and power consumption. Such architectures

partition the data into blocks of 4, 4×4 and 4×4×4 pixels, which are processed

concurrently. The temporal computation in the proposed 3-D DWT architecture is

carried out using a block memory size of four frames only. Furthermore, shift-add

multipliers with ignorable error are suggested to reduce the power consumption arising

from using the constant multipliers. The evaluation results have revealed that the

proposed architectures outperform the works in the literature in terms of processing

speed and power consumption. In addition, further wavelet filters can be implemented

using the proposed design methodology and architectures of the CDF 9/7 when

appropriate modifications are introduced.

The remainder of this chapter is organised as follows. Section ‎6.2 reviews the lifting-

based 1-D CDF 9/7 DWT. A modified CDF 9/7 lifting scheme is introduced in

section ‎6.3. A 1-D DWT architecture that implements such modification is presented in

section ‎6.4. Sections ‎6.5 and ‎6.6 and present new 2-D and 3-D CDF 9/7 DWT

119

architectures. The results are analysed in section ‎6.7, while the summary is drawn in

section ‎6.8.

6.2 The CDF 9/7 1-D DWT Lifting Scheme

The lifting-based DWT scheme decomposes a wavelet filter into a matrix product

involving a sequence of upper and lower triangular matrices pairs and diagonal scaling

matrix. Such an operation corresponds to factorisation of the poly-phase matrix of a

target wavelet filter [80, 81]. The poly-phase decomposition can be expressed as

follows:

 () (
) (

) (‎6.1)

 () (
) (

) (‎6.2)

 () [
 () ()

 () ()
] (‎6.3)

 () [∏([
 ()

] [

 ()

])

] [

] (‎6.4)

where () and () are the low and high pass analysis filters, respectively. () is the

poly-phase decomposition matrix. As an example, the CDF 9/7 filter can be

decomposed into four lifting and one scaling steps, as follows [28, 80, 81, 138]:

 () [
 ()

] [

 ()
] [

 ()

]

[

 ()
] [

 ⁄
]

(‎6.5)

where α = −1.586134342, β = −0.05298011854, γ = 0.8829110762, = 0.4435068522,

and ζ = 1.149604398.

Then, the computation steps can be implemented as follows [81]:

(‎6.6)

 α(

) (‎6.7)

120

 (

)

 (

)

(‎6.8)

 (

)

(‎6.9)

 ⁄

where (‎6.6) represents splitting of signal x into odd and even indexed terms; it is also

termed the lazy wavelet step,

 are the first and second predict steps, and

 are the first and second update steps, while (‎6.9) represents the final scaling

step. The computation of (‎6.9) as a whole involves a series of five multiplication and

eight addition operations. As such, the hardware implementation of (‎6.9) results in a

critical path of 5Tm + 8Ta; where Tm and Ta are the multiplier and adder delay,

respectively [28, 139, 140]. Such critical delay can be shortened to 3Tm + 4Ta by

adopting a flipping structure [139, 140]. This modified structure is based on the

modification of (‎6.6) to (‎6.9) as follows:

(‎6.10)

 (

)

(

)

(‎6.11)

 (

)

 (

)

(‎6.12)

(‎6.13)

121

The constants can be calculated as follows:
 ⁄ ,

 ⁄ ,

 ⁄ and
 ⁄

 . The scaling factors () can be computed using:

 and

⁄ [140].

6.3 The Proposed Lifting-based CDF 9/7 DWT Computation

Scheme

The computation scheme of (‎6.10) to (‎6.13) is shown in Figure ‎6.1. In this figure, A, B,

C, D, K0 and K1 are the constant and scaling factors. From this figure, nine input

samples are required to compute the wavelet coefficients and .

ss d s

+

s d s

+

s

+ + +

+ +

1/16

C
1/2 1/2

+

D
1/2 1/2

S2

K0

d2

K1

+

D

S2

K0

1/2

+

D
1/2 1/2

d2

K1

ss d s

+

s d

+

+ +

+ +

1/16

C
1/2 1/2

+

D
1/2 1/2

A A

1 2 3 4 5 6 7

B A B

1/16

1/21/2

1/161/16

S2

K0

d2

K1

S2

K0

ss d

+

+

+

C
1/2

+

D
1/2 1/2

A B

S2

K0

d2

K1

1/161/16 1/161/16

8 9 10
B B A

Figure ‎6.1: The CDF 9/7 1-D DWT [28].

The proposed 1-D CDF 9/7 DWT computation scheme is shown in Figure ‎6.2. In this

scheme, the input data sequence { }; is the input data length, is

partitioned into a blocks of four samples, and thus the first block is

 { }. Such samples are termed {

 } or even and odd

samples and fed to the 1-D DWT computation unit in parallel. During the computation

process of the first data block - the first computation round - four temporary values are

computed and allocated in appropriate registers, while the output wavelet coefficients

are set to zero. The four temporary values, marked by the shaded left skew bar shown in

Figure ‎6.2, are:
 ̃

 ̃
 ̃

 ̃ and they are computed according to the following

sequence:

122

 (

) (6.14)

 ̃

 (
) (6.15)

 ̃

(

) (6.16)

 ̃

(

) (6.17)

 ̃

 (

 ̃) (6.18)

 ̃

 ̃

 () (6.19)

sss s

1/16

C

1/2

1/16

A

B B

A

D

ss

1/2

D

1/2 1/2

s2d1

K1

s1

K0

1/2

D

1/2

d2

s s

1/16

C

1/2

1/161/16 1/16

1/2 1/2

A

B B

A

K1K0

C

First data block

Second data block

Temporary values of

the second data block

Each rectangular represents an

addition process and the

symbols inside each rectangular

represent the computed

coefficients or temporary values

A,B, C, D, K0, K1, 1/16 and 1/2

represent multiplication factors

x0 x1 x2 x3

x4 x5 x6 x7

Figure ‎6.2: The proposed CDF 9/7 computation scheme for the first two data blocks.

During the second data block, the second computation round of { }

({

 }), four output wavelet coefficients are computed using the temporary

values and the new input block samples as described in the following computation

sequence:

 ̃ (‎6.20)

123

 (

) (‎6.21)

 ̃

 (
) (‎6.22)

 ̃

 (‎6.23)

(

) (‎6.24)

 ̃

(

) (‎6.25)

 ̃

 (‎6.26)

(

) (‎6.27)

 ̃

(

) (‎6.28)

 ̃

 (‎6.29)

(

) (‎6.30)

 ̃

(

) (‎6.31)

Then, the four wavelet coefficients () are computed as follows:

 (‎6.32)

 (‎6.33)

 (‎6.34)

 (‎6.35)

Furthermore, four new temporary values are computed and allocated in the same four

registers to be used during the computation process of the third input block. The second

four temporary values are
 ̃

 ̃
 ̃

 ̃ and these are computed using (‎6.31), (‎6.28),

(‎6.25) and (‎6.22), respectively. This process is repeated ⁄ times until the wavelet

coefficients of the last input block are computed. The abovementioned computation

124

procedure represents full 1-D wavelet computation of -point 1-D input data. Thus, in

the proposed 1-D DWT scheme four temporary values with four new data samples can

be used to evaluate the DWT coefficients. The proposed computation scheme can be

used to perform the 2-D and 3-D CDF 9/7 DWT computation. In the proposed 3-D

DWT computation scheme a memory depth of four frames is used to perform the

computation operations without any computational redundancy.

6.4 The Proposed Lifting-based 1-D DWT Architecture

The proposed lifting-based CDF 9/7 1-D DWT architecture is based on the computation

process described in section ‎6.3, as shown in Figure ‎6.3-a. In this figure, the parameters

R0, R1, R2 and R3 represent the registers used to store the temporary values during the

computation process. R0, R1, R2 and R3 all have the same length; thus, they have been

substituted by 4R in Figure ‎6.3-b. In this figure, the blue lines represent the position of

the selectors or switches. The Ctrl signal represents the Controller signal.

In the rest of this chapter, each 1-D DWT lifting architecture unit is termed Single Unit

(SU). The proposed SU, represents the CDF 9/7 1-D DWT architecture. The word data

block refers to 4 and 4×4-sample in the proposed 1-D and 2-D DWT architectures,

respectively. Each SU has four input and four output ports for data signals, as well as

one input port for the controller signal.

The computation procedure through the SU is accomplished according to the following

sequence: a -sample 1-D input data is partitioned into blocks of 4-sample which is fed

to the SU in parallel. As an example, an input data of samples is partitioned into

 data blocks, as follows:

{ () () () () }

 (‎6.36)

Hence, during the first data block, , the SU, is set to perform the computation of

(6.14) to (6.19) according to the controller signal. The controller signal is 0 and all

selectors are disconnected during the first block computation period; the controller unit

and its signals is shown the Appendix F. Throughout this period; , four temporary

values are computed and allocated in four registers. Such temporary values are used

during the computation operation of the subsequent data block; . Then, the

selectors are reconnected during the computation process of the blocks to

 . Four wavelet coefficients are computed during the computation operation of

125

every input data block. These four wavelet coefficients are arranged in the following

sequence: Low, High, Low and High pass (L, H, L and H) coefficients. This process is

repeated times and, during each input data block, four temporary values are

allocated in the same four registers and four wavelet coefficients are computed.

ss

1/2

D

1/2 1/2

s2d1

K1

s1

K0

1/2

D

1/2

1/16

C

1/2

1/16
1/16

1/16

1/2 1/2

A

B B

A

+

+

+

+

K1K0

+ +

+ +

++

+ +

C

First data block

Second data block

x0 x1 x2 x3

x4 x5 x6 x7

R0

R1

R2

R3

R0

R1

R2

R3

x8 x9 x10 x11Third, fourth, ... data blocks

R0, R1, R2 and R3 Registers; D-FF

Controller signal=0
d2

Selectors position

a. The proposed CDF 9/7 1-D DWT data flow; Single Unit (SU)

Input

data

SU

4R

1-D

DWT

output

Control Signal; Ctrl

R0, R1, R2 and R3

or in total= 4R

b. The block diagram of SU

Figure ‎6.3: Single unit (SU) of the CDF 9/7 1-D DWT architecture.

126

The proposed SU architecture is designed to tackle different wordlengths to provide

various levels of output precision. The wordlength of each SU is partitioned into two

parts: the IWL and FWL. In the rest of this chapter, the IWL is set to an 11-bit signed

integer and the FWL is selected to be 5 or 7; however, any other wordlength sizes can

be chosen as required.

The proposed SU involves 12 constant multipliers to perform the multiplication

operation with the previously mentioned constants and scaling

factors; . However, it is well-known that the multiplication

operation affects the power consumption of any system. Thus, each multiplier is

substituted by a proposed shift-add element, as shown in Figure ‎6.4. In this figure, the

division or multiplication by a power of two values is substituted by shift operations.

As shown in Table ‎6.1, the proposed shift-add multipliers are designed to produce the

same output accuracy of the conventional multipliers. However, a negligible error

between each two multipliers occurred, as specified in Table ‎6.1. From this table, it is

obvious that the maximum error (difference) between the proposed shift-add and

conventional multipliers is less than . 9 1
-3

; thus, it can be neglected.

Table ‎6.1: The difference between the constant and proposed shift-add multipliers.

Constant
Conventional

multipliers

Proposed shift-add

multipliers
difference

A 0.630463621 0.630371094 9.252 2 1
 5

B 0.743750255 0.743652344 9. 9113 1
 5

C 0.668067178 0.66796875 9.8428 1
 5

D 0.638443853 0.638671875 2.28 22 1
 4

K0 2.421021123 2.420898438 1.22686 1
 4

K1 2.065244222 2.064453125 .91 9 1
 4

127

Factor; A Factor; B

Factor; C Factor; D

Factor; K1Factor; K0

Input

+
-

1/2

Output

+

-

1/4 1/16

×2

1/8

Input

+

Output

+ +

-

1/2

1/2

1/4

1/4 1/4

+

Input
Output

+

+ -

1/2

1/4

1/32 1/2 1/4

+

Input Output

-

+ -

1/2

1/2

1/4

+

1/21/32 1/2

+

Input Output

+

-

1/2

1/4

1/8 1/8

Input Output

+
+

×2

1/16 1/32

Figure ‎6.4: The proposed shift-add multipliers.

6.5 The Proposed Lifting-based 2-D DWT Parallel Architecture

The proposed 2-D DWT architecture consists of four SUs for rows (RUs) and four SUs

for columns (CUs) computation units, as shown in Figure ‎6.5. The SelR and SelC

signals are used to control the transitions between the block boundaries.

Initially, each input image is partitioned into blocks of 4×4-pixel. Each row is fed to a

corresponding RU. Thus, an input image with -pixel is partitioned into

 data

blocks using the suggested 4×4-pixel data blocks. Such blocks are shown in Figure ‎6.6

for an image tile of 8×8-pixel.

The 16-sample data stream is converted into four parallel data sequences using a serial

to parallel converter. Each four sample block belongs to a single row from the original

4×4-pixel data block. Thus, four 4-sample blocks are fed to four RUs in parallel. The

input data to RU1, RU2, RU3 and RU4 are as follows:

128

2-D

DWT

output

RU1

SelR SelC

R; Register

size= Q/4
R; D-FF

RU2

RU3

RU4

CU4

CU2

CU3

CU1

Row1

Row2

Row3

Row4

1-D DWT

Figure ‎6.5 : The proposed 2-D DWT parallel architecture.

CU1 CU2 CU3 CU4 CU1 CU2 CU3 CU4

1st

Column

2nd

Column

3rd

Column

4th

Column

5th

Column

6th

Column

7th

Column

8th

Column

RU1 1st Row x (0,0) x (0,1) x (0,2) x (0,3) x (0,4) x (0,5) x (0,6) x (0,7)

RU2 2nd Row x (1,0) x (1,1) x (1,2) x (1,3) … … … x (1,7)

RU3 3rd Row x (2,0) x (2,1) x (2,2) x (2,3) … … … x (2,7)

RU4 4th Row x (3,0) x (3,1) x (3,2) x (3,3) … … … x (3,7)

RU1 5th Row x (4,0) x (5,1) x (6,2) x (7,3) … … … x (4,7)

RU2 6th Row … … … … … … … x (5,7)

RU3 7th Row … … … … … … … x (6,7)

RU4 8th Row x (7,0) x (7,1) x (7,2) x (7,3) x (7,4) x (7,5) x (7,6) x (7,7)

First data block Second data block

Third data block Fourth data block

Figure ‎6.6: Four 4×4-sample data blocks.

129

{ () () () () } (‎6.37)

{ () () () () } (‎6.38)

{ () () () () } (‎6.39)

{ () () () () } (‎6.40)

where

 and

 represent block row and column

indices, respectively.

Consequently, during the first 4×4-pixel block (), each RU computes

four temporary values
 ̃

 ̃
 ̃

 ̃. These temporary values are stored in the four

registers. Each register has a single stage length; , as shown in Figure ‎6.3, and the

row controlling signal; Row Selector (SelR) is set to 0; the controller unit is detailed in

Appendix F. The four temporary values will be used during the computation process of

the subsequent data block. Hence, when (the second data block), the

SelR is set to 1 and four wavelet coefficients are computed from each RU; 2 coarse and

2 fine components. At the same time, the content of the four registers in each RU is

updated with new temporary values to be ready for the third data block. The first four

outputs of each RU become available for the columns filtering process after 161 clock

cycles regardless of the image size. The above mentioned procedure represents the row

wavelet filtering step. Subsequently, the first four outputs of each RU become available

for the columns filtering process after 161 clock cycles regardless of the image size

Then, the subsequent units (CUs), perform the filtering operation on the output of RUs.

This step represents the column wavelet filtering operation. It starts the computation

process when each RU has finished the computation process of the first data block.

During the first four rows of the input image (and) each CU computes ⁄

temporary values which are allocated in a dedicated chain of registers with a length of

 ⁄ ; ⁄ , as shown in Figure ‎6.5. These temporary values will be used during the

computation process of the subsequent four rows (rows 5 to 8; and).

During the period of rows 5 to 8 computation process, each CU computes four wavelet

coefficients using the temporary values and the new RUs outputs. New temporary

values are also allocated in the same registers to be used during the computation

operation of the ensuing four rows (rows 9 to 12; and . Consequently, the

outputs from this step (CUs outputs) are arranged in the sequence of Low-Low, Low-

130

High, High-Low and High-High pass filtered signals (LL, LH, HL and HH) wavelet

bands which represent the 2-D wavelet coefficients of the input image. The first four 2-

D wavelet coefficients become available at the output ports after () clock

cycles.

6.6 The Proposed Lifting-based 3-D DWT Parallel Architecture

This section presents CDF 9/7 3-D DWT lifting-based parallel architecture based on the

proposed SU. In this architecture, the 3-D DWT computation is performed by applying

1-D DWT on the rows, columns and frames, successively. It consists of; four Row-

Column units (RCUs) and four SUs for frame direction (FUs), as shown in Figure ‎6.7.

Each RCU calculates 2-D DWT coefficients for a single frame and the outputs of these

units are fed to four FUs. The four FUs are termed; FU1, FU2, FU3 and FU4, and these

are used to compute the wavelet coefficients in the frame direction.

The 3-D input signal is considered to have P-Rows, Q-Columns and F-Frames;

P×Q×F-pixel and each dimension is assumed to be a multiple of 4 in all subsequent

explanations throughout this chapter.

3-D

DWT

output

RCU1

SelR SelF

R; Register

size= PQ/4

R=

D-FF

RCU2

RCU3

RCU4

FU4

FU2

FU3

FU1

Frame1

Frame2

Frame3

Frame4

SelC

R=

Q/4

2-D

DWT

Figure ‎6.7: Block diagram of the proposed 3-D DWT lifting-based architecture.

131

6.6.1 Row-Column Units (RCUs)

The input signal of the proposed 3-D DWT architecture is partitioned into a group of

four frames (GOF) : and

 , where each frame is

fed to a single RCU, concurrently. The operation of the four RCUs is similar to the

operation of the proposed 2-D DWT architecture. The RCUs are identical and operate

simultaneously to compute the 2-D wavelet coefficients of each input frame. Thus, each

RCU produces LL, LH, HL and HH wavelet bands for each input frame. These outputs

are termed: where, and represents the RCUs

index.

6.6.2 Frame Units (FUs)

This stage computes wavelet coefficients in the frame direction using four FUs. These

units are similar to that shown in Figure ‎6.3 with a different controlling signal and

buffer size (register R); the controller unit is detailed in Appendix F. The inputs to this

stage are collected from the outputs of the RCUs. Hence, the inputs to the FU1 are the

four LL bands which can be collected from the four RCUs, and likewise for LH, HL and

HH bands, as shown in Figure ‎6.8. This figure explains how the output wavelet bands of

each frame are fed from RCUs to FUs.

 a. Row-Column units outputs

LL1 LH1

HL1 HH1

RCU1:Frame1

LL2 LH2

HL2 HH2

LL3 LH3

HL3 HH3

LL4 LH4

HL4 HH4

RCU2:Frame2

RCU3:Frame3 RCU4:Frame4

LL1 LL2

LL3 LL4

FU1 FU2

LH1 LH2

LH3 LH4

HL1 HL2

HL3 HL4

FU3 FU4

HH1 HH2

HH3 HH4

b. Frame units inputs

Figure ‎6.8: Input bands to the frame units.

132

During the first four frames (first computation round; first GOF),

 , each FU computes and stores four temporary values every clock cycle to perform the

computation operations of (6.14) to (6.19). The computed temporary values are

allocated in four block RAMs. Each RAM has a depth of

 words, as shown in

Figure ‎6.7, and represents a temporal buffer. Thus, the total memory depth required for

each FU is (

)-word (four R-registers). These block memories act as a long delay

line which can be constructed using a single port block RAM , dual port block RAM,

FIFO or long chain of registers. Thus, the total block temporal memory requirement for

the proposed 3-D DWT architectures is: (

), which represents the memory required

by all FUs which are sufficient to handle four frames as temporary values (single

GOF). In the subsequent computation round, when , the input frames are;

 , and again the RCUs compute the 2-D DWT coefficients for the new

frames. These outputs are also fed to the FUs in the same sequence as the first GOF.

Hence, throughout the second computation round (), each FU computes the 3-D

DWT coefficient using the RCU outputs and the temporary values allocated in the

frame buffers. Furthermore, at each computation round, the temporary values in each

block memory are updated with new values to be used in the subsequent computation

round. The temporary values are stored and recalled in a sequential order; thus, FIFOs

or chain of registers can be used without the need for additional addressing circuits.

Moreover, the processing time for any number of frames and frame sizes is

 clock

cycles. Furthermore, the proposed 3-D DWT architecture is constructed using the same

basic unit (SU) for rows, columns and frame directions and it is parameterisable in

terms of wordlength, frame sizes and number of frames. These parameters are IWL,

FWL, P, Q and F, respectively.

6.7 Results and Discussion

In this section, the performance of the proposed 2-D and 3-D DWT architectures are

analysed. The proposed architectures have been implemented and tested using a

6vlx760ff1760-2Virtex 6 FPGA device. The output accuracy, power consumption and

hardware cost have been analysed using various images and video sequences, as well as

different wordlengths. These images and video sequences are shown in Figure 3.15 and

Figure 4.19. Further, the proposed architectures have been designed and implemented

133

using Xilinx System generator tool, as illustrated in section 2.8. The initialisation

Matlab codes for the proposed architectures are listed in the Appendix G.

6.7.1 The 2-D DWT Architecture Performance

6.7.1.1 The Rate Distortion Performance

The PSNR between the original and the reconstructed images are computed and

tabulated in Table ‎6.2. The maximum 2-D DWT absolute error between the proposed

architecture and its Matlab implementation are also shown in this table. The

wordlengths used in these tests are 18 and 16-bit, where the IWL is set to 11-bit with 7

and 5-bit for FWL. However, the architecture is designed to tackle any wordlengths as

specified or required, according to the target accuracy and PSNR. As shown in

Table ‎6.2, the average of the maximum absolute error in wavelet coefficients of the

proposed architecture using the MRI images and video sequences are 0.32 and 1.32 with

PSNRs of ∞ and 53 dB, respectively. This error occurs due to the rounding and

truncation operations of the proposed shift-add constant multipliers. However, it does

not have a high impact on the targeted PSNR of the reconstructed frames.

Table ‎6.2: The PSNR and the maximum absolute error for the proposed 2-D DWT

architecture using 18-bit and 16-bit WL.

WL (IWL, FWL) (11, 7) (11, 5)

Images Size (P×Q) PSNR (dB)
Max. absolute

Error
PSNR (dB)

Max. absolute

Error

MRI1 128×128 ∞ 0.30 57 1.19

MRI2 256×256 ∞ 0.36 52 1.34

Akiyo 144×176 ∞ 0.33 52 1.38

Stefan 288×352 ∞ 0.30 52 1.40

Suzie 144×176 ∞ 0.30 52 1.26

Bus 288×352 ∞ 0.32 52 1.34

Flower 288×352 ∞ 0.31 52 1.35

Calendar 144×176 ∞ 0.32 52 1.28

Lena 512×512 ∞ 0.31 52 1.32

Peppers 512×512 ∞ 0.34 53 1.37

Average -- ∞ 0.32 53 1.32

134

6.7.1.2 Power Consumption

The power consumption of the proposed 2-D DWT architecture is computed using a

Xilinx Xpower analyser for selected image sizes and operating frequencies at a supply

voltage of 1 Volt, as shown in Figure ‎6.9. Two frame sizes are considered in this test:

144×176 and 288×352-pixel using a wordlength size of 16-bit (11, 5)-bit. As can be

seen in Figure ‎6.9, the power consumption of the proposed 2-D DWT architecture is

from 9 to 48 mW using 20 to 100 MHz operating frequencies. Moreover, the 9 mW

dynamic power consumption is small enough to consider the proposed 2-D DWT

architecture as a low power consumption architecture.

In the same manner, any other image sizes and/or wordlengths can be used by simply

altering the IWL and FWL parameters. However, the power consumption increases

when the wordlength and input image sizes are increased. This power increase is due to

the extra hardware resources and additional computation operations that will be

required.

Figure ‎6.9: Power consumption for various operating frequencies using (11, 5)-bit

wordlength.

6.7.1.3 Hardware Usage

The hardware usage, maximum operating frequencies and the computation times of the

proposed 2-D DWT architecture are shown in Table ‎6.3. From this table, a 185 MHz

operating frequency can be achieved. This reduces the computation time of the 2-D

DWT for an image of 288×352-pixel to 0.55 ms. Furthermore, no block memories have

been used in the proposed architecture.

0

10

20

30

40

50

60

20 25 33.3 40 50 66.7 100

D
y
n
am

ic
 P

o
w

er
 (

m
W

)

Operating Frequency (MHz)

288×352-pixel

144×176-pixel

135

Table ‎6.3: The hardware usage, maximum operating frequencies and computation time

for the proposed 2-D DWT architecture using 144×176 and 288×352-pixel at (11, 5) bit

wordlength.

Available

144×176-

pixel

288×352-

pixel

Hardware

cost

Slice Registers 948,480 6.5K 7.2K

Slice LUTs 474,240 8.7K 9.5K

Occupied slices 118,560 2.4K 2.6K

Bonded IOBs 1,200 73 73

RAMB36E1/ FIFO36E1s 720 0 0

Maximum frequency (MHz) -- 185 185

Computation time (ms) 0.14 0.55

6.7.2 The 3-D DWT Architecture Performance

6.7.2.1 Rate Distortion Performance

The RMSE, PSNR and the average of the maximum 3-D wavelet coefficients error are

computed using 18 and 16-bit wordlengths. The selected (IWL, FWL) pair are set to

(11, 7) and (11, 5)-bit. The RMSE and PSNR have been computed between the original

and reconstructed frames using (2.12) and (2.13), as shown in Table ‎6.4 and Table ‎6.5

for a WL of 18 and 16-bit, respectively. Furthermore, the average of the maximum error

between the 3-D wavelet coefficients computed by the proposed architecture and

Matlab codes are listed in both tables. Table ‎6.4 shows that an average PSNR of 79 dB

at a wordlength of 18-bit with an average RMSE of 0.03 can be achieved. In such case

the average of the maximum error in 3-D wavelet coefficients is less than 0.38.

Moreover, in Table ‎6.5, the average PSNR of the proposed 3-D DWT architecture is 54

dB with an average RMSE of 0.53 using 16-bit wordlength. With this wordlength, the

average of the maximum error in the 3-D DWT coefficients is less than 1.49. This

minor error is due to the rounding operations required by the proposed shift-add

multipliers and other rounding and truncation operations. Moreover, the performance of

the proposed architecture can be easily evaluated for any other word size, frame size

and number of frames by modifying five input parameters, which are IWL, FWL, ,

and .

136

Table ‎6.4: The PSNR, RMSE and average of the maximum error for 3-D DWT

coefficients using the proposed architectures for WL=18 (11, 7)-bit.

Input

sequence

Frame size PSNR
RMSE

Maximum

absolute Error P Q (dB)

MRI1 128 128 85 0.015 0.36

MRI2 256 256 77 0.038 0.43

Akiyo 144 176 78 0.033 0.37

Stefan 288 352 79 0.029 0.39

Suzie 144 176 78 0.031 0.35

Bus 288 352 78 0.034 0.39

Flower 288 352 79 0.029 0.41

Calendar 144 176 79 0.030 0.37

Average - - 79 0.030 0.38

Table ‎6.5: The PSNR, RMSE and average of the maximum error for 3-D DWT

coefficients using the proposed architectures for WL=16 (11, 5).

Input

sequence

Frame size PSNR
RMSE

Maximum

absolute Error P Q (dB)

MRI1 128 128 60 0.26 1.41

MRI2 256 256 52 0.61 1.55

Akiyo 144 176 53 0.57 1.49

Stefan 288 352 53 0.56 1.50

Suzie 144 176 53 0.57 1.46

Bus 288 352 53 0.60 1.54

Flower 288 352 53 0.55 1.55

Calendar 144 176 53 0.56 1.40

Average - - 54 0.53 1.49

137

6.7.2.2 Power Consumption Test

The dynamic power consumption of the proposed 3-D DWT architecture is computed

using a Xilinx Xpower analyser at a supply voltage of 1 Volt. Two video sequences

with frame sizes of 144×167 and 256×256-pixel and various clock frequencies are used,

as shown in Figure ‎6.10. The clock frequency range is selected to be from 20 to 100

MHz and the wordlength is specified as (11, 5)-bit. Figure ‎6.10 illustrates that the

dynamic power consumption of the proposed 3-D DWT architecture ranges from 32 to

159 mW and from 41 to 204 mW for the selected first and second frame sizes,

respectively.

As the throughput of the proposed architecture is 4 results/clock cycles, a low operating

frequency can be used to obtain the desired frame rate of real time 3-D DWT

computation. As an example, in the case of 30 frames per second with a frame size of

144×167-pixel, less than a 1 MHz clock frequency is required as a real time processing

speed, and thus, in this case, the dynamic power consumption will drop to 2 mW, as

computed using the Xilinx Xpower analyser.

Figure ‎6.10: Dynamic power consumption (mW) for the proposed 3-D DWT

architecture using various operating frequencies using (11, 5)-bit wordlength.

6.7.2.3 Hardware Usage

The hardware usage, operating frequency, throughput and computation times of the

proposed 3-D DWT architecture are shown in Table ‎6.6. Such results are obtained using

144×176 and 256×256-pixel frame sizes, wordlength of (11, 5)-bit and a 10 ns clock

period.

0

50

100

150

200

250

20 25 33.33 40 50 66.67 100

D
y
n
am

ic
 P

o
w

er
 (

m
W

)

Operating Frequency (MHz)

144×176-pixel

256×256-pixel

138

Table ‎6.6: The hardware usage, maximum operating frequencies, throughput and

computation time for the proposed 3-D DWT architecture using 144×176 and 256×256

image sizes at (11, 5) bit wordlength.

Available

resources

144×176-

pixel

256×256-

pixel

Hardware

usage

Number of Slice Registers 948,480 31.4K 32.4K

Number of Slice LUTs 474,240 37.3K 38.8K

Number of occupied Slices 118,560 10.5K 11K

Number of bonded IOBs 1,200 97 97

Number of

RAMB36E1/FIFO36E1s
720 0 0

Number of

RAMB18E1/FIFO18E1s
1,440 128 256

Maximum operating frequency (MHz) -- 151.7 139.2

Throughput rate (Pixels/sec×10
6
)

-- 606.8 556.8

Computation time of eight frames (ms) -- 0.33 0.94

As Table ‎6.6 demonstrates, 128 and 256-18 Kb block memories have been used in the

proposed 3-D DWT architecture for 144×176 and 256×256-pixel frame sizes,

respectively. These block memories have been used as a temporary buffer during the

computation operation along the frame direction. In addition, a maximum operating

frequency of 151 MHz can be achieved with a throughput rate of 606.8 M pixels/second

using a 144×176 frame size. Such a high throughput rate has been achieved as a result

of using the parallel computation scheme which computes 4 results per clock cycle.

Thus, processing times of 0.33 and 0.94 ms are achieved for eight frames in the selected

frame sizes, respectively. However, such fast 3-D DWT computation operation comes

with extra hardware resources due to the parallel nature of the proposed architecture

6.7.3 Comparison with Other Architectures

The performance of the proposed CDF 9/7 3-D DWT architecture is compared to that of

the existing architectures in the literature [27-30, 109] in terms of the hardware usage,

computation time and power consumption, as shown in Table ‎6.7, Table ‎6.8 and

Figure ‎6.11.

139

Table ‎6.7: Comparison with existing 3-D DWT architectures for an input sequence

of -frames each with pixels *

Dai

[109]

Das

[29]

Das

[28]

Proposed 3-D

DWT architecture

Temporal

memory

requirements

 ()()

On chip memory and

 ⁄ Off chip memory

 : filter length

 ⁄

(spatial

and

temporal)

1 level

computing

time

 ⁄ –

1 Level

computational

latency

– –

 ()

Filter bank CDF 9/7 Daub-4 CDF 9/7 CDF 9/7

GOF 32 (max) Infinite Infinite Infinite

* Some of the figures in this table are cited from Table I in [28].

As Table ‎6.7 shows, the proposed CDF 9/7 3-D DWT architecture outperforms the

architectures of Dai [109], Das [29] and [28] in terms of memory requirement,

computation time and initial latency. From this table, a memory size of four frames

is required as a temporal buffer in the proposed 3-D DWT architecture, which is used as

a frame buffer. This is in contrast to the recent 3-D DWT architecture in [28] which

requires a temporal buffer. As the size of the input frames is usually more than

144×176 pixels, this memory reduction can be considered an achievement in the

proposed architecture.

The number of slices, block RAMs, processing time () and slice delay-product (SDP)

of the proposed 3-D DWT architecture are compared with the architectures in [27, 30,

109], as shown in Table ‎6.8.

140

Table ‎6.8: Comparison between the proposed 3-D DWT and [27, 30, 109] architectures

for an input frame size of 144×176-pixel for 6VLX760FF1760-2 Virtex 6

Xilinx FPGA Device

Architecture

DWT filter type

Number

of frames
Slices

Block

RAM

MF

(MHz)
 (ms) SDP(s)

Dai [109] 15 10751 64 50.077 1.08 11.61

Based on 30 10467 128 52.578 2.06 21.56

CDF 9/7 filter 60 10607 240 50.121 4.32 45.82

Mohanty [30] 15 28581 48 40.21 0.59 16.86

Based on 30 28581 48 40.21 1.18 33.73

Daub-4 filter 60 28581 48 40.21 2.36 67.45

Mohanty [27] 15 13495 25 88.096 0.539 7.27

Based on 30 13495 25 88.096 1.07 14.44

Daub-4 filter 60 13495 25 88.096 2.15 29.01

Proposed

architecture
15 10500 128 151.7 0.80 8.43

Based on 30 10500 128 151.7 1.43 15.04

CDF 9/7 filter 60 10500 128 151.7 2.69 28.26

 * The performance of other architectures are cited from Table XI in [27].

The SDP is used to measure the area-time complexity of the architectures as in [27]:

 (‎6.41)

where is the computation time which is defined in [27]:

 (‎6.42)

where MF is the maximum operating frequency of the architecture.

In Table ‎6.8, the proposed 3-D DWT architecture outperforms other architectures in

terms of the maximum operating frequency, number of hardware slices and SDP.

However, the architecture of [27] shows the lowest memory requirement of all the

architectures. Such performance has been achieved for the Daub-4 wavelet filter which

is considerably less complex than the CDF 9/7.

141

The power consumption at 40 MHz clock frequency of the proposed 3-D DWT

architecture is compared with those in [27, 30, 109] using a 144×176-pixel frame size

and (11,5)-bit wordlength, as shown in Figure ‎6.11. The data for the remaining

architectures are cited from [27]. Hence, Figure ‎6.11 shows that high power reduction in

the proposed 3-D DWT is achieved compared with other architectures. Such an

achievement can be assigned to the efficient shift-add multipliers.

In addition, the average of the maximum output error in 3-D wavelet coefficients of the

proposed architecture is less than 1.49, while it is not less than 2.7 when the architecture

in [27] is run on the Xylophone video sequences [27]. This low error in the proposed

architecture can be considered as an additional advantage.

Figure ‎6.11: Power consumption (mW) of the proposed 3-D DWT and other

architectures using 40 MHz clock frequency, (11, 5)-bit wordlength and 144×176 frame

size.

6.8 Summary

In this chapter, new multiplierless and parallel lifting-based 1-D, 2-D and 3-D DWT

architectures for the CDF 9/7 wavelet filter have been proposed and tested using a

6VLX760FF1760-2 Virtex 6 Xilinx FPGA device. The proposed 1-D, 2-D and 3-D

architectures partition the input data into blocks of 4, 4×4 and 4×4×4 pixels,

respectively. During each input data block, four temporary values are allocated in a

specific registers or memories and four wavelet coefficients are computed. Thus, a high

throughput rate and a short processing time have been achieved. Furthermore, shift-add

multipliers with negligible error have been suggested to reduce the power consumption

arising from using regular multipliers. Full analysis of speed, output accuracy, power

consumption and hardware usage for the proposed architectures has been carried. The 2-

202
247

334

652

183

64

0

100

200

300

400

500

600

700

15 30 60 15, 30, 60 15, 30, 60 15, 30, 60

Dai, CDF 9/7 Mohanty

2010,

Daub-4

Mohanty

2011,

Daub-4

Proposed

CDF 9/7

3-D DWT

D
y
n
am

ic
 P

o
w

er
 (

m
W

)

142

D DWT results have revealed that, a processing time of less than 0.55 ms is sufficient to

compute the 2-D DWT coefficients for 288×352-pixel. Furthermore, at a wordlength of

18-bit the original data can be recovered from the 2-D DWT coefficients accurately.

In the 3-D DWT architecture, four input frames are simultaneously used, which reduces

the temporal buffer to a block memory of four frames only. Such block memory can be

constructed using FIFO, single or double port RAMs. The 3-D DWT results have

revealed that the proposed 3-D DWT architecture can run at a speed of up to 151 MHz

with 4 results/cycle throughput rate. Such a high speed has shortened the 3-D DWT

computation time for data size of 144×176×8-pixel to less than 0.33 ms. In addition, at

50 MHz clock frequency, the dynamic power consumption of the proposed 3-D DWT

architecture is 80 and 102 mW for 144×176 and 256×256 frame sizes, respectively.

Furthermore, the comparisons with other architectures have revealed that the proposed

3-D DWT architecture outperforms similar architectures in the literature in terms of

maximum operating frequency, initial latency, power consumption and output accuracy.

143

Chapter 7: Conclusions and Future Work

7.1 Conclusions

In this thesis, we have addressed the problems of image and video compression

algorithms and their related transforms such as power consumption, hardware cost,

computation time and output accuracy. Hence, new architectures for image compression

algorithms and the related data transforms that considered these issues have been

introduced. The original contributions towards the accomplishment of the research

objectives as outlined in chapter 2 have been detailed in chapters 3-6, and are

summarised below:

1. Two new, low computational complexity non-transform-based algorithms for low bit

rate image compression and their architectures have been suggested in chapter 3. The

proposed algorithms and architectures are parameterised in terms of the number of

quantisation levels, input block size and pipelining stages, offering different output

precision levels and processing speeds. The performance evaluation of the new

algorithms and their architectures has shown that they are suitable for low power

consumption and high speed small devices. The analysis has also revealed that the

proposed architectures can operate at a speed of up to 312 MHz. Furthermore, their

power consumption is circa 8 mW at an operating frequency of 50 MHz and 4×4-

pixel block size.

2. Efficient architectures for multidimensional transforms, such as the DCT and DWT

have been suggested in chapters 4-6. The proposed DCT architectures are based on

the 1-D Radix-2 DCT and 3-D DCT VR algorithms due to their low computation

load. While, the proposed DWT architectures are based on a lifting scheme for CDF

9/7 computation.

3. In chapter 4, two new high speed architectures for multidimensional DCT have been

proposed; the first is based on the 1-D DCT Radix-2 algorithm using the RCF

computation approach, while the second architecture is based on the 3-D DCT VR

algorithm. The results have revealed that a very high computation speed of up to 305

MHz can be achieved. At such high speeds, the 3-D DCT computation times of

512×512×8-point is less than 6.8 ms. In addition; the power consumption using a

144

wordlength of 21-bit at 10 ns clock period is as low as 98 mW. Furthermore, an

infinite PSNR between the original and the reconstructed data using a wordlength of

21-bit can be achieved. The comparisons with similar architectures have revealed

that, both outperform existing architectures in terms of power consumption, speed

and hardware usage.

4. In chapter 5, two new low hardware usage architectures based on the 3-D DCT VR

algorithm have been suggested. The proposed architectures avoid the need for the

memory for data transposition in the butterfly and post addition stages, which in turn

reduce the hardware usage and improve the processing speed. The proposed

architectures are parameterisable in terms of wordlength which provide different

output precision levels, power consumption, hardware usage and processing speeds.

The proposed architectures have been tested using different images and video

sequences, different wordlengths and clock frequencies. The results have revealed

that the number of occupied slices is 722 and 1235 for the first and second

architecture, respectively. Furthermore, the maximum operating frequencies

achieved by the two architectures are 250 and 330 MHz using a 14-bit output

wordlength and 8×8×8-pixel input cube size. Furthermore, an infinite PSNR between

the original and reconstructed frames using 20-bit wordlength has been attained.

Moreover, significant hardware usage reduction with higher operating frequencies is

achieved when compared with similar 3-D DCT architectures.

5. New parallel multiplierless lifting-based architectures for 1-D, 2-D and 3-D CDF 9/7

DWT have been suggested, implemented and verified in chapter 6. In such

architectures, the constant multipliers have been replaced with their corresponding

proposed shift-add multipliers with a negligible error. Also, low memory

requirement and high computation speed have been achieved in the proposed

architectures.

6. The proposed 2-D CDF 9/7 DWT lifting-based architecture computes the 2-D DWT

coefficients by applying 1-D DWT on each row and column using data blocks of

4×4-pixel. In this architecture, all rows in each data block are fed to corresponding 1-

D units concurrently. Thus, a high throughput rate and a short processing time have

been achieved. The results have revealed that, a computation time of less than 0.55

ms is enough to compute the 2-D DWT coefficients of 288×352-pixel. Furthermore,

at a wordlength of 18-bit an exact data can be recovered from the 2-D DWT

145

coefficients. Furthermore, the power consumption of the proposed architecture using

a frame size of 144×167-pixel is as low as 32 mW for a 20 MHz clock frequency.

7. A 3-D DWT parallel architecture has also been proposed in chapter 6 using a

separable lifting-based scheme for the CDF 9/7 wavelet filter. In this architecture,

four input frames are simultaneously used, which reduces the frame buffer to a block

memory of four frames only. The results have shown that the proposed 3-D DWT

architecture can run at a speed of up to 151 MHz with 4 results/cycle throughput rate.

Such a high speed has reduced the 3-D DWT computation time for data size of

144×176×8-pixel to less than 0.33 ms. Furthermore, the shift-add multiplier

replacement had a positive impact on power consumption and has provided a high

computation speed. As such, the power consumption of the proposed 3-D DWT

architecture is 64 mW at 40 MHz operating frequency and 16-bit wordlength.

Moreover, the proposed architectures outperform other similar architectures in terms

of hardware usage, speed, throughput rate and latency. Furthermore, the proposed 3-

D DWT architecture avoids data computation redundancy compared with similar

parallel 3-D DWT architectures in the literature. It is worth mentioning that the

output accuracy of all the architectures has been tested and verified using different

wordlengths and input data sets. Such evaluation processes revealed that the

maximum error in the 3-D DWT coefficient for 16-bit wordlength in the proposed

architecture was less than 1.49.

7.2 Future Work

Further work on the following points can be considered:

1. 3-D compression systems based on a 3-D DCT and 3-D DWT architectures can be

considered as a possible research direction. Especially for high definition and ultra-

high definition video processing and 3-D TV.

2. Another possible research direction is to implement the proposed 3-D DCT and 3-D

DWT architectures on the most recent FPGA devices such as family 7 and Zynq device.

Full comparison between the performance of the new architectures and this thesis

architectures can be performed.

3. A possible research direction is to combine the proposed DCT architectures with a

quantisation and encoding algorithm to produce complete DCT-based image and

video compression systems. The controllable wordlength and low hardware usage of

146

our DCT architectures can support such a new research direction. Furthermore, our

proposed 3-D DCT architectures can be used to introduce video watermarking, object

tracking and medical image compression systems.

4. DWT has been used for MRI images, hyperspectral and video compression

algorithms including the EZW, SPIHT, SPECK and EBCOT encoders. Thus, a

possible research approach is to associate our high throughput CDF 9/7 DWT

architectures with such encoders to introduce a high performance DWT-based

compression system.

5. Generalised DWT architectures for other wavelet filters can be introduced using the

methodology of our DWT architectures. Such architectures may be targeted to

achieve high throughput rates for high order wavelet filters for 2-D and 3-D DWT-

based applications.

147

Appendix A:

Brief Description of Xilinx FPGA Families

Table A.1: Brief description of Xilinx FPGA families introduced since 2003 [125].

Xilinx Family

Selected

platform

CMOS

(nm)

slices

per

CLB

LUTs

per

slices

FFs

per

slices

Maximum

Block

RAM (kb)

DSP48

slices

DSP slices

structure

Block RAM

description

Virtex 2 Pro
XC2VP100

2003

130 4 2 2 7,992 444

18 × 18 bit

multiplier only
18-Kb blocks

Spartan 3
XC3S5000

2003

130 4 2 2 1,872 104

Virtex 4
XC4VLX200

2005

90 4 2 2 6,048 96

XtremeDSP: 18

× 18 bit

multiplier, an

adder, and an

accumulator

Dual-port 18-Kb

RAM blocks

Virtex 5
XC5VSX240T

2006

65 2 4 4 18,576 1,056

DSP48E:

25 × 18 bit

multiplier, an

adder, and an

accumulator

Block RAMs are

36-Kb in size or

two independent

18-Kb blocks

Extended

Spartan 3A

XC3SD3400A

2007

90 4 2 2 2,268 126

DSP48AS :

18 × 18 bit

multiplier, an

adder, and an

accumulator.

18-Kb dual-port

blocks

Spartan 6
XC6SLX150T

2009

45 2 4 8 4,824 180

DSP48A1:

18 × 18 bit

multiplier, an

adder, and an

accumulator.

Block RAMs are

fundamentally

36-Kb in size.

Each block can

also be used as

two independent

18-Kb blocks.

Virtex 6
XC6VSX475T

2009

40 2 4 8 38,304 2,016

DSP48E1:

25 × 18 bit

multiplier, an

adder, and an

accumulator.

Artix 7
XC7A200T

2010

28 2 4 8 13,140 740

Kintex 7

XC7K480T

2010

28 2 4 8 34,380 1,920

Virtex 7
XC7VX1140T

2010

28 2 4 8 67,680 3,360

148

Table A.2: List of Xilinx FPGA families comparison [113].

Features Artix 7 Kintex 7 Virtex 7 Spartan 6 Virtex 6

Logic Cells 215K 480K 2000K 150K 760K

Block RAM 13Mb 34Mb 68Mb 4.8Mb 38Mb

DSP Slices 740 1,920 3,600 180 2,016

I/O Pins 500 500 1,200 576 1,200

I/O Voltage

1.2V, 1.35V,

1.5V, 1.8V,

2.5V, 3.3V

1.2V, 1.35V,

1.5V, 1.8V,

2.5V, 3.3V

1.2V, 1.35V,

1.5V, 1.8V,

2.5V, 3.3V

1.2V, 1.5V,

1.8V, 2.5V,

3.3V

1.2V, 1.5V,

1.8V, 2.5V

Figure A.1: Series 7 Xilinx FPGA families performance comparison [114].

http://www.xilinx.com/products/silicon-devices/fpga/artix-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/kintex-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/virtex-6/index.htm

149

Appendix B:

Pre-Processing Matlab Codes for IBAQC Model1

and Model2 Architectures

1. The pre-processing Matlab code for Model1 architecture

%%
%%%%%% Function : IBAQC Model1 Architecture
%%%%%% Chapter : Chapter 3
%%%%%% Programmer: Saad Al-Azawi
%%

close all
clear all
clc
B1=0;
Marg1=0;
[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;*.jpeg;*.gif'

,'IMAGE Files (*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose

GrayScale Image');
[d1,map1]=imread(strcat(pathname,namefile));
[r1,c1,z1]=size(d1);
if z1==3
 d1=rgb2gray(d1);
end

qdc=5; %%% quantization levels
dim=4;
Thresh1=400;
[ri1,ci1,zi1]=size(d1);
if zi1>1
 d1=d1(:,:,2);
end

d1=double(d1);
d1=d1-Marg1;
[r0,c0,z0]=size(d1);
% z3=input('Enter the number of frames = ');
if z0>=8
 z3=8;
else
 z3=1;
end
d2=d1(:,:,1:z3);

[r1,c1,z1]=size(d2);
z2=z1;
d3=d2(:,:,1:z2);
[rx,cx,zx]=size(d3);

dim3=z2;
k1=0;
dimall=dim*dim*dim3;
idx=1;
for k=1:dim3:z2
 k1=k+dim3-1;
 j1=0;

150

 i1=0;
 for i=1:dim:r1
 i1=i+dim-1;
 for j=1:dim:c1
 j1=j+dim-1;
 X=d3(i:i1,j:j1,k:k1);
 X1=reshape(X,dimall,1);
 idx1=idx+dimall-1;
 InData(idx:idx1,2)=X1;
 idx=idx1+1;
 end
 end
end

[r3,c3,z3]=size(InData);
InData(:,1)=0:r3-1; %%%%%% Architecture Input data

save InData InData;
[r3,c3,z3]=size(InData);

I2=InData;
I1=I2;
[rt1,ct1]=size(I1);
N=dim;
k1=0;
k2=0;
for k=1:N*N:rt1-1
 k2=k2+1;
 k1=k+N*N-1;
 Iz=I1(k:k1,2);
 varz(k2,1)=(mean(Iz.^2)-(mean(Iz))^2);

 varz(k2,2)=max(Iz);
 varz(k2,3)=min(Iz);
 varz(k2,4)=max(Iz)-min(Iz);
 varz(k2,5)=std(Iz);
end
varz;
stdz=sqrt(varz(:,1));
[r1,c1]=size(I1);
%%%%%%%%%%%%%%%%%%%%%%%%%% Division modification
levqdc=2^qdc;
Xs=[0:255]/levqdc;
Xs=ceil(Xs);
divx1=Xs';
Xs=1./Xs;
Xs(1,1)=0;
divx=Xs';
Bpoint=8; %%% Binary point
BAcc1=8+log2(N^2);
BShft1=8+Bpoint; %% 5 for binary points 13/5
BMult1=16+Bpoint;
BAcc2=16+log2(N^2);
BShft2=16+Bpoint; %% 5 for binary points
% %%% Sim Time
sim_tim=2*dim^2+ri1*ci1+11-1;

151

2. The pre-processing Matlab code for Model2 architecture

%%

%%%%%% Function : IBAQC Model2 Architecture
%%%%%% Chapter : Chapter 3
%%%%%% Programmer: Saad Al-Azawi
%%
close all
clear all
clc
B1=0;
Marg1=0;
[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;*.jpeg;*.gif'

,'IMAGE Files (*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose

GrayScale Image');
[d1,map1]=imread(strcat(pathname,namefile));
[r1,c1,z1]=size(d1);
if z1==3
 d1=rgb2gray(d1);
end
qdc=5; %%% quantization levels
dim=8;
Thresh1=2;
[ri1,ci1,zi1]=size(d1);
if zi1>1
 d1=d1(:,:,2);
end
d1=double(d1);
d1=d1-Marg1;
[r0,c0,z0]=size(d1);
% z3=input('Enter the number of frames = ');
if z0>=8
 z3=8;
else
 z3=1;
end
d2=d1(:,:,1:z3);

[r1,c1,z1]=size(d2);
% z2=fix(z1/8)*8;
z2=z1;
d3=d2(:,:,1:z2);
[rx,cx,zx]=size(d3);
dim3=z2;
k1=0;
dimall=dim*dim*dim3;
idx=1;
for k=1:dim3:z2
 k1=k+dim3-1;
 j1=0;
 i1=0;
 for i=1:dim:r1
 i1=i+dim-1;
 for j=1:dim:c1
 j1=j+dim-1;
 X=d3(i:i1,j:j1,k:k1);
 X1=reshape(X,dimall,1);
 idx1=idx+dimall-1;
 InData(idx:idx1,2)=X1;
 idx=idx1+1;
 end
 end

152

end

[r3,c3,z3]=size(InData);
InData(:,1)=0:r3-1;
save InData InData;
[r3,c3,z3]=size(InData);
I2=InData;
I1=I2;
[rt1,ct1]=size(I1);
N=dim;
k1=0;
k2=0;
for k=1:N*N:rt1-1
 k2=k2+1;
 k1=k+N*N-1;
 Iz=I1(k:k1,2);
 varz(k2,1)=(mean(Iz.^2)-(mean(Iz))^2);
 varz(k2,2)=max(Iz);
 varz(k2,3)=min(Iz);
 varz(k2,4)=max(Iz)-min(Iz);
 varz(k2,5)=std(Iz);
end
varz;
stdz=sqrt(varz(:,1));
[r1,c1]=size(I1);
%%%%%%%%%%%%%%%%%%%%%%%%% program for divider
levqdc=2^qdc;
Xs=[0:255]/levqdc;
divx1=Xs';
Xs=ceil(Xs);
divx2=Xs';
Xs=1./Xs;
Xs(1,1)=0;
divx=Xs';
Bpoint=8; %%% Binary point
BAcc1=8+log2(N^2);
BShft1=8+Bpoint; %% 5 for binary points 13/5
sim_tim=2*dim^2+ri1*ci1+7-1;

153

Appendix C:

Memory Writing/Reading addresses of the proposed

3-D DCT VR Architecture

This appendix presents the memory writing/reading addresses at each point of the

proposed 3-D DCT VR architecture. The actual addresses at each node in Figure 4.12

and Figure 4.17 (P1, P2... P13) are computed by adding the content of ROMs (-

words) to each element in (-word). The elements in each table are stored in

row by row from the element 0 till the last element in the bottom right of each table.

The following example illustrates the procedure of addresses computation for the input

data to the first butterfly stage (Node P1 in Figure 4.12), which are computed from

Table C.1 as shown below:

 The addresses of the first eight samples of input data: the content of M2 (0,

16, 64, 80, 256, 272, 320 and 336) is added to the first element in M1

(element 0), then the addresses are: 0, 16, 64, 80, 256, 272, 320 and 336.

 The addresses of the second eight input data: the content of M2 is added to the

second element in M1 (element 1), so the addresses are: 1, 17, 65, 81, 257,

273, 321 and 337.

 The addresses of the third eight input data: the content of M2 is added to the

third element in M1 (element 8), so the addresses are: 8, 24, 72, 88, 264, 280,

328, 344 and so on until the last element in M1 (element 175).

In the rest of this appendix, the actual content of M1 and M2 to generate the

reading/writing addresses at each node of the 3-D DCT VR architecture is explained for

N=8. The Memory Writing Controller is labelled as (MWC) and it is constructed as

shown in Figure 4.16 using different b values, as shown underneath each MWC block in

Figure 4.12 and Figure 4.17. The memory reading addresses are generated using a

combination of MRE and address generator units. The MRE units are shown in Figure

4.11, while the address generator unit is shown in the shaded part Figure 4.10. The

constant value (α variable in Figure 4.11 of MRE unit) required to commence the

memory reading operation is shown underneath each Memory Reading Controller

(MRC) block in Figure 4.12 and Figure 4.17.

154

1. Addresses at Node P1

The addresses at node P1 are generated from the reordering stage (TMem1 reading

addresses generator unit) using the data shown in Table C.1.

Table C.1: Content of M1 and M2 for memory reading addresses for TMem1 (node P1).

M2 Content M1 Content

0 0 1 8 9 2 3 10 11

16 32 33 40 41 34 35 42 43

64 4 5 12 13 6 7 14 15

80 36 37 44 45 38 39 46 47

256 128 129 136 137 130 131 138 139

272 160 161 168 169 162 163 170 171

320 132 133 140 141 134 135 142 143

336 164 165 172 173 166 167 174 175

2. Addresses at Node P2 and P3

The addresses at P2 (writing addresses of TMem2) is the same as that at P1 but is

delayed by (b1) clock cycles. TMem2 reading addresses (addresses at node P3) are

generated from Table C.2 using the same procedure discussed earlier.

Table C.2: Content of M1 and M2 for memory reading addresses for TMem2 (node P3).

M2 Content M1 Content

0 0 1 2 3 4 5 6 7

8 16 17 18 19 20 21 22 23

32 64 65 66 67 68 69 70 71

40 80 81 82 83 84 85 86 87

128 256 257 258 259 260 261 262 263

136 272 273 274 275 276 277 278 279

160 320 321 322 323 324 325 326 327

168 336 337 338 339 340 341 342 343

155

3. Addresses at Node P4 and P5

The writing addresses of TMem3 (P4) are the same as those at P3 but are delayed by

(b1) clock cycles, while the memory reading addresses of TMem3 (P5) are

 . These are generated using an MRE-II unit and a single 10-bit

counter (address generator).

4. Addresses at Node P6 and P7

The data is written to TMem4 in bit reverse order (BRO) using a BRO address

controller, as shown in Figure 4.12. The BRO address controller block is composed of a

10-bit counter, two ROMs (M1 and M2) and three slice elements (address generator unit)

and MWC with b3The BRO addresses (TMem4 writing addresses) at P6 are

computed from Table C.3.

Table C.3: Content of M1 and M2 for memory reading addresses for TMem4 (node P6).

M2 Content M1 Content

0 0 128 64 192 16 144 80 208

256 8 136 72 200 24 152 88 216

32 2 130 66 194 18 146 82 210

288 10 138 74 202 26 154 90 218

4 1 129 65 193 17 145 81 209

260 9 137 73 201 25 153 89 217

36 3 131 67 195 19 147 83 211

292 11 139 75 203 27 155 91 219

The memory reading address generator unit of TMem4 (MRC4 at node P7) is composed

of a 10-bit counter, three slice elements and a concatenation block, which can be

represented by the following relation:

 , ,

 [] (‎C.1)

156

where Xn is the binary representation of the 10 bits input counter, ,

where represents the LSB, and R_adds is the required memory reading addresses

for the input data to the first post addition stage.

5. Addresses at Node P8 and P9

The P7 addresses are used at the TMem5 writing phase (P8) with (b1) clock cycle

delay while the memory reading addresses at P9 are generated using a 10-bit counter

from as an Adds_generator unit.

6. Addresses at Node P10 and P11

The TMem6 writing addresses at P10 are the P9 addresses delayed by (b1) clock cycles,

and its reading addresses (P11) are generated using a 10 bits counter, four slice elements

and a concatenation block, as described by the following relation:

 , , ,

 [] (C.2)

7. Addresses at Node P12 and P13

A delayed version of P11 is used in the TMem7 writing addresses at P12, whereas the

TMem7 reading addresses of the normalisation and finalization process at node P13 are

 , which are generated using a 10-bit counter as an address generator

unit together with MRE-II unit.

157

Appendix D:

Pre-Processing Matlab Codes for Chapter 4; Model1

and Model2 Architectures

1. The pre-processing Matlab code for Model1 architecture

%%

%%%%%% Function : Model1 Architecture
%%%%%% Chapter : Chapter 4
%%%%%% Programmer: Saad Al-Azawi
%%

close all
clear all
clc
% B1=0 3 5;
 B1=5;
VidFil=3;
Siz1=8;
switch VidFil
 case 1
 load mri
 case 2
 load mristack
 D=mristack;
 case 3
 load AkiyoRgb;
 D=AkiyoRgb(:,:,2,1:Siz1);
 case 4
 load Stefan1;
 D=Stefan1(:,:,2,1:Siz1);
 case 5
 load Suzie;
 D=suzie148(:,:,2,1:Siz1);

 case 6
 load Bus;
 D=BusColor(:,:,2,1:Siz1);
 case 7
 load Flower;
 D=FlowerCIF(:,:,2,1:Siz1);
 clear FlowerCIF;

 case 8
 load mobile;
 D=MobileQ300(:,:,2,1:Siz1);
end

d1=squeeze(D);
d1=double(d1);
[r0,c0,z0]=size(d1);
z3=8;
d2=d1(:,:,1:z3);
d2(:,:,1)=d1(:,:,2);
d2(:,:,2)=d1(:,:,1);

d1=d2;

158

[r1,c1,z1]=size(d2);
z2=fix(z1/8)*8;
d3=d2(:,:,1:z2);
dim=8;
k1=0;
dimall=dim*dim*dim;
idx=1;
for k=1:dim:z2
 k1=k+7;
 j1=0;
 i1=0;
 for i=1:dim:r1
 i1=i+7;
 for j=1:dim:c1
 j1=j+7;
 X=d3(i:i1,j:j1,k:k1);
 X1=reshape(X,dimall,1);
 idx1=idx+511;
 InData(idx:idx1,2)=X1;
 idx=idx1+1;
 end
 end
end

[r3,c3,z3]=size(InData);
InData(:,1)=0:r3-1;
save InData InData;

I2=InData;
I1=I2;

[r1,c1]=size(I1);
InData=I1;
save InData InData;
M=8;
%%%%%%%%%%%%%%%%% dS1 delay % FIRST %%%%%%%%%%%%%stage
dS1(1,1)=5;
shd1=1;
dS1(2,1)=5;
shd2=1;
dS1=dS1-2;
dS1(3,1)=3;
shd3=1;
dS1(4,1)=3;
dS1(5,1)=0;
MuxD1=1; %%multiplexer Delay Stage 1
M_W_st1=(sum(dS1))*M+MuxD1+8; %%% start of Memory writing _ Stage One
R1D=50; %% dealy between Write and read operation of the first stage
%%%%%%%%%%%%%%%%% dS2 delay %%%%%%%%%%%%%%%%%%%%% SECOND
dS2(1,1)=5;
s2hd1=1; %%%% shift in the combination of add+multiply ...
dS2(2,1)=5;
s2hd2=1; %%%% shift in the combination of add+multiply ...
dS2=dS2-2;
dS2(3,1)=3;
s2hd3=1; %%%% shift in the combination of add+multiply ...
dS2(4,1)=3;
dS2(5,1)=0;
 MuxD2=1; %%multiplexer Delay Stage 2
M_W_st2=(sum(dS2))*M+MuxD2+8;

%%%%%%%%%%%%%%%%% dS3 delay %%%%% Third %%%%stage
dS3(1,1)=5;

159

s3hd1=1; %%%% shift in the combination of add+multiply ...
dS3(2,1)=5;
s3hd2=1; %%%% shift in the combination of add+multiply ...
dS3=dS3-2;
dS3(3,1)=3;
s3hd3=1; %%%% shift in the combination of add+multiply ...

dS3(4,1)=3;
dS3(5,1)=0;

MuxD3=1; %%multiplexer Delay Stage 3
R2D=10;
% M_W_st3=M_W_st2+(sum(dS3))*M+23+378+15; %%% start of Memory writing

operation_ Stage Three
M_W_st3=(sum(dS3))*M+MuxD2+8; %%% start of Memory writing operation_

Stage Three
sim_tim=M_W_st1+M_W_st2+M_W_st3+956+r1-1 %%% simulation time
NLen=32; %% element length for all stage except stage 1
Nsub=13;%%% mantesa for all stage except stage 1
NLen1=10; %%% First stage // first column of addres only
Nsub1=0; %%% Mentesa First stage // first column of addres only
NLen=21-B1; %% element length for all stage except stage 1
Nsub=9-B1;%%% mantesa for all stage except stage 1

2. The pre-processing Matlab code for Model2 architecture

%%

%%%%%% Function : Model2 Architecture
%%%%%% Chapter : Chapter 4
%%%%%% Programmer: Saad Al-Azawi
%%
close all
clear all
clc
B1=3;
VidFil=3;
Siz1=8;
switch VidFil
 case 1
 load mri
 case 2
 load mristack
 D=mristack;
 case 3
 load AkiyoRgb;
 D=AkiyoRgb(:,:,2,1:Siz1);
 case 4
 load Stefan1;
 D=Stefan1(:,:,2,1:Siz1);
 case 5
 load Suzie;
 D=suzie148(:,:,2,1:Siz1);

 case 6
 load Bus;
 D=BusColor(:,:,2,1:Siz1);
 case 7
 load Flower;
 D=FlowerCIF(:,:,2,1:Siz1);
 clear FlowerCIF;

160

 case 8
 load mobile;
 D=MobileQ300(:,:,2,1:Siz1);
end

D(D>255)=255;
d1=squeeze(D);
d1=double(d1);
[r0,c0,z0]=size(d1);
% z3=input('Enter the number of frames = ');
z3=8;
d2=d1(:,:,1:z3);
[r1,c1,z1]=size(d2);
z2=fix(z1/8)*8;
d3=d2(:,:,1:z2);
dim=8;
k1=0;
dimall=dim*dim*dim;
idx=1;
for k=1:dim:z2
 k1=k+7;
 j1=0;
 i1=0;
 for i=1:dim:r1
 i1=i+7;
 for j=1:dim:c1
 j1=j+7;
 X=d3(i:i1,j:j1,k:k1);
 X1=reshape(X,dimall,1);
 idx1=idx+511;
 InData(idx:idx1,2)=X1;
 idx=idx1+1;
 end
 end
end
%%%%%%%%%%%%%%%%%%% converting to 255 !!!!!!
O=InData(:,2);
[r3,c3,z3]=size(InData);
InData(:,1)=0:r3-1;
save InData InData;
Iin=InData;
 [r1,c1]=size(Iin);
Sim_time=2860+r1-1; %For last model Foward_Final-7
load Iads
load stg0ads8 ; %64 adss strting for writing address
load stg0offset; % 8 offsets for writing address
load Initadds; % this is the whole 512 adss (NOT USED)
load offs2
load st8stg1
%xlswrite('st8stg1.xlsx',st8stg1);
load stg1ads8 %%% For FPGA one Column = st8stg1(:,4)-1;
%%%%%%%%%%%%%%%% STAGE 2
load st8stg2;
load stg2ads8 %%% For FPGA one Column = st8stg2(:,4)-1;
load offstg2;
load st8stg3;
load stg3ads8 %%% For FPGA one Column = st8stg3(:,4)-1;
load offstg3;

%%%% STAGE 4 bIT REVERSE ORDER
load StBRO1; %% the start for writing the output of stage 3 addresses

for each 8 element (the memory content will be in Reverse Order.

161

load offBRO1; % the offset
load Zads % offset of Z (third) adder

load NormF2; %the last stage normalization factors

%%%% new idea for twiddle factors

load TWFAC1
load TWFAC2
load TWFAC3;
NLen=32; %% element length for all stage except stage 1
Nsub=13;%%% mantesa for all stage except stage 1
NLen1=10; %%% First stage
Nsub1=0; %%% Mentesa First stage
NLen=32-B1; %% element length for all stage except stage 1
Nsub=13-B1;%%% mantesa for all stage except stage 1
NLen=21-B1; %% element length for all stage except stage 1
Nsub=9-B1;%%% mantesa for all stage except stage 1
%%%% Choose the Model
%%% Model for a and c Mod1=1, for b Mod1=2
 dS0=0;
 dS0(1,1)=1;
 dS0(2,1)=1;
 dS0(3,1)=1;
 delS0=sum(dS0)*8; %%%% the delay required by first stage

 dS1=0;
 dS1(1,1)=1;
 dS1(2,1)=1;
 dS1(3,1)=1;
 delS1=sum(dS1)*8; %%%% the delay required by Second stage
 dS2=0;
 dS2(1,1)=1;
 dS2(2,1)=1;
 dS2(3,1)=1;
 delS2=sum(dS2)*8; %%%% the delay required by Third stage
 %%%% Butterfly
 dS3=0;
 dS3(1,1)=1;
 dS3(2,1)=1;
 dS3(3,1)=1;
 delS3=sum(dS3)*8; %%%% the delay required by first stage
 dS4=0;
 dS4(1,1)=1;
 dS4(2,1)=1;
 dS4(3,1)=1;
 delS4=sum(dS4)*8; %%%% the delay required by Second stage
 dS5=0;
 dS5(1,1)=1;
 dS5(2,1)=1;
 dS5(3,1)=1;
 delS5=sum(dS5)*8; %%%% the delay required by Third stage
 MuxD1=1;

totdel=delS0+delS1+delS2+delS3+delS4+delS5;
totdel1=2844+totdel;
Sim_time=totdel1+r1-1;

162

Appendix E:

Pre-Processing Matlab Codes for Chapter 5; Model1

and Model2 Architectures

1. The pre-processing Matlab code for Model1 architecture

%%

%%%%%% Function : Model1 Architecture
%%%%%% Chapter : Chapter 5
%%%%%% Programmer: Saad Al-Azawi
%%
close all
clear all
clc
VidFil=8;
Siz1=8;
switch VidFil
 case 1
 load mri
 case 2
 load mristack
 D=mristack;
 case 3
 load AkiyoRgb;
 D=AkiyoRgb(:,:,2,1:Siz1);
 case 4
 load Stefan1;
 D=Stefan1(:,:,2,1:Siz1);
 case 5
 load Suzie;
 D=suzie148(:,:,2,1:Siz1);

 case 6
 load Bus;
 D=BusColor(:,:,2,1:Siz1);
 case 7
 load Flower;
 D=FlowerCIF(:,:,2,1:Siz1);
 clear FlowerCIF;

 case 8
 load mobile;
 D=MobileQ300(:,:,2,1:Siz1);
end
B1=0;
d1=squeeze(D);
d1=double(d1);
[r0,c0,z0]=size(d1);
% z3=input('Enter the number of frames = ');
z3=8;
d1=d1(:,:,1:z3);
d2=d1(:,:,1:z3);
[r1,c1,z1]=size(d2);
z2=fix(z1/8)*8;

d3=d2(:,:,1:z2);

163

dim=8;
% in0=double(d1(75:75+dim-1,73:73+dim-1,1:dim));
k1=0;
dimall=dim*dim*dim;
idx=1;
for k=1:dim:z2
 k1=k+7;
 j1=0;
 i1=0;
 for i=1:dim:r1
 i1=i+7;
 for j=1:dim:c1
 j1=j+7;
 X=d3(i:i1,j:j1,k:k1);
 X1=reshape(X,dimall,1);
 idx1=idx+511;
 InData(idx:idx1,2)=X1;
 idx=idx1+1;
 end
 end
end
O=InData(:,2);
[r3,c3,z3]=size(InData);
InData(:,1)=0:r3-1;
save InData InData;
Iin=InData;
[r1,c1]=size(Iin);
Sim_time=2860+r1-1; %For last model Foward_Final-7

%%% Twiddle factors of stage 1
TFstg1=[1;
 1;
 1;
 1;
 1.961570561;
 1.111140466;
 -0.390180644;
 -1.662939225;
];
TFstg1=TFstg1/2;
%%% Twiddle factors of stage 2
TFstg2=[1
 1;
 1.847759065;
 -0.765366865;
];
TFstg2=TFstg2/2;
%%% Twiddle factors of stage 3
TFstg3=[1;
1.414213562;
2;
2.828427125;
];
TFstg3=TFstg3/2;%*64;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NLen0=10; %% integer
NSub0=0;%%% Mantissa
NLen0=NLen0+NSub0;
%%%% Stage 2
NLen1=11; %%
NSub1=2;%%%
NLen1=NLen1+NSub1;
%%%% Stage 3

164

NLen2=NLen1+1; %%
NSub2=2;%%%

LS01=1;
LS02=1;
LS03=1;
LS0=LS01+LS02+LS03;
LMult0=2;

LS11=1;
LS12=1;
LS13=1;
LS1=LS11+LS12+LS13;
LMult1=6;

LS21=1;
LS22=1;
LS23=1;
LS2=LS21+LS22+LS23;
LMult2=4;

load BROWadds;
load BRORadds;
load ReordWadds;
load ReordRadds;
load ReordRaddsA;
% Second stage -twiddle factors
load Twiddle2;
% Twiddle2=Twiddle2/8;
load TwiddleA;
Sim_tim=1135+r3;

2. The pre-processing Matlab code for Model2 architecture

%%

%%%%%% Function : Model2 Architecture
%%%%%% Chapter : Chapter 5
%%%%%% Programmer: Saad Al-Azawi
%%
close all
clear all
clc

VidFil=8;
Siz1=8;
switch VidFil
 case 1
 load mri
 case 2
 load mristack
 D=mristack;
 case 3
 load AkiyoRgb;
 D=AkiyoRgb(:,:,2,1:Siz1);
 case 4
 load Stefan1;
 D=Stefan1(:,:,2,1:Siz1);
 case 5
 load Suzie;
 D=suzie148(:,:,2,1:Siz1);

165

 case 6
 load Bus;
 D=BusColor(:,:,2,1:Siz1);
 case 7
 load Flower;
 D=FlowerCIF(:,:,2,1:Siz1);
 clear FlowerCIF;

 case 8
 load mobile; %calendar
 D=MobileQ300(:,:,2,1:Siz1);
end
%%%%%%%%%%%%%%%%%%%%%%Input Data
B1=0;
d1=squeeze(D);
d1=double(d1);
[r0,c0,z0]=size(d1);
% z3=input('Enter the number of frames = ');
z3=8;
d1=d1(:,:,1:z3);
d2=d1(:,:,1:z3);
[r1,c1,z1]=size(d2);
z2=fix(z1/8)*8;
d3=d2(:,:,1:z2);
dim=8;
% in0=double(d1(75:75+dim-1,73:73+dim-1,1:dim));
k1=0;
dimall=dim*dim*dim;
idx=1;
for k=1:dim:z2
 k1=k+7;
 j1=0;
 i1=0;
 for i=1:dim:r1
 i1=i+7;
 for j=1:dim:c1
 j1=j+7;
 X=d3(i:i1,j:j1,k:k1);
 X1=reshape(X,dimall,1);
 idx1=idx+511;
 InData(idx:idx1,2)=X1;
 idx=idx1+1;
 end
 end
end

[r3,c3,z3]=size(InData);
InData(:,1)=0:r3-1;
save InData InData;
Iin=InData;
[r1,c1]=size(Iin);
%%% Twiddle factors of stage 1
TFstg1=[1;
 1;
 1;
 1;
 1.961570561;
 1.111140466;
 -0.390180644;
 -1.662939225;
];

166

TFstg1=TFstg1/2;
%%% Twiddle factors of stage 2
TFstg2=[1
 1;
 1.847759065;
 -0.765366865;
];
TFstg2B=TFstg2(3:4,1); %%%Model 2 BTFLstage 2 lower part
TFstg2=TFstg2/2;
load TFstg2A; %%%Model 2 BTFL stage 2 upper part
%%%%%%%%%^^^^ in the architecture this will multiplied three times i.e

the factor will be 8
%%% Twiddle factors of stage 3
TFstg3=[1;
 1.414213562;
 2;
 2.828427125;
];
TFstg3=TFstg3/2;%*64;
TFstg3A=TFstg3(1:3,1);
TFstg3B=TFstg3(2:4,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
NLen0=10; %% integer
NSub0=0;%%% Mantissa
NLen0=NLen0+NSub0;
%%%% Stage 2
NLen1=11; %%
NSub1=8;%%%
NLen1=NLen1+NSub1;
%%%% Stage 3
NLen2=NLen1+1; %%
NSub2=8;%%%
LS01=1;
LS02=1;
LS03=1;
LS0=LS01+LS02+LS03;
LMult0=2;
LS11=1;
LS12=1;
LS13=1;
LS1=LS11+LS12+LS13;
LMult1=6;
LS21=1;
LS22=1;
LS23=1;
LS2=LS21+LS22+LS23;
LMult2=4;
%%%%%%%%%%%%%%%%%%%%%%%%%%-
load BROWadds;
load BRORadds;
load ReordWadds;
load ReordRadds;
load ReordRaddsA;

% Second stage 64 twiddle factors
load Twiddle2;
load TwiddleA;
Sim_tim=954+r3+1;

167

Appendix F:

The 2-D and 3-D DWT Architectures Controllers

This Appendix presents the data controllers for the proposed 2-D and 3-D DWT

architectures.

1. The Proposed 2-D DWT Architecture controller

The main controller of the 2-D DWT architecture generates the following controlling

signals, Row Selector (SelR) and Column Selector (SelC), as shown in Figure F.1 and

Figure F.2. The SelR and SelC signals are used to set/reset the selectors inside all RUs

and CUs. Hence, considering an input image with pixels, the Counter1 in Figure

F.1, is a ⌈ (

) ⌉-bit counter. This counter controls the transition at the boundaries of

each row in each 4×4-pixel block. Counter2 is used to control the transitions at the

column boundaries between blocks. It is a ⌈ (

) ⌉-bit. Counter1 and

Comparator1 produce the SelR signal which can be represented as follows:

 {

 (F.1)

where

 .

Accordingly, Counter2 together with Comparator3 and Constant1, Constant1=

 ,

are used to generate the SelC signal to drive the selectors of all CUs. Such signal can be

represented as follows:

 {

 (F.2)

where

 .

The controlling signals for an image tile of 8×8 are shown in Figure F.2. Such

waveforms represent a down sampled version by 4 from the original signals for clarity.

In summary, a quick look into Figure F.1 shows that the main feature of the proposed

controller is its simplicity and ability to tackle any image size.

168

SelR

R0
b1

enb

a1

1 Constant

1

SelC

Comparator1

Comparator3

Counter1

Number of bits=

Counter2

Number of bits=

Constant1=

P× Q=Frame size (Rows×Columns) and =Ceiling function.

Counter

1
> 0

Counter

2

≥ 1

a1> a2

a1

a2

Comparator2

R0= Register

Figure F.1: The 2-D DWT controller.

13 21 29 37 45 53 61 69 77 85 93 97

Clock cycles/4

SelC (0,1)

SelR(0,1)

Figure F.2: Down sampled 2-D DWT controller signals.

2. The Proposed 3-D DWT Architecture Controller

The 3-D DWT controller is constructed similar to the 2-D DWT controller, with the

only difference being an additional circuit which is used to control frame direction

computation process, as shown in Figure F.3.

The proposed 3-D DWT controller consists of a Row-Column controller, comparators

and 2-bit counter (counter4). The controller outputs are SelR and SelC for Row-Column

DWT (2-D DWT) and SelF and Mem_Enb to control the frame direction computation

process. The first two signals are explained in the 2-D DWT controller circuit, and the

SelF and Mem_Enb signals are responsible for frame direction controlling and enabling

functions. The SelF signal is used to drive the selectors that control the transitions at the

beginning and end of the whole 3-D input stream (Ctrl blocks in each FU). The SelF

signal is turned on during the period that starts at the beginning of the second GOF

(second computation round;). It is used to activate the reading operation of the

169

temporary values that allocated in the frame buffer during the first GOF computation

round (). Two comparators and an XOR logic gate are used for this purpose; the

first comparator (Comparator1 in Figure F.3) generates an enabling signal after

 () clock cycles to drive on the selectors in each frame unit. Then, the

second comparator output (Comparator2 in Figure F.3) is turned on after (

)

 clock cycles. Therefore, the XOR output which represents the SelF signal is turned

on from () to (

) clock cycles. The computation period of

the boundary GOFs, the first and last GOF, is accomplished when the SelF signal is

turned to zero; SelF=0. Thus, at the last GOF, it becomes zero for the last

clock cycles from the computation time. The main selector waveforms down sampled

by 4 are shown in Figure F.4, for clarity.

SelR

Ra

enb

a11

Constant 1

SelC

Ra

enb

a11

Sel_C

Comparator

Comparator

Counter1

Number of bits=

Counter

1 > 0

Counter

2

Counter

3

≥ 1

a1> a2

a1

a2

Constant 2

Constant 3

XOR

Mem_enb

SelF

Comparator3

Comparator2

a1> a2

a1

a2

a1> a2

a1

a2

> 0

Counter3

Number of bits=

Counter2

Number of bits=

Re: register

P× Q=Frame size (Rows×Columns), F= Number of frames and =Ceiling function

Comparator1

Figure F.3: Controller block diagram of the proposed 3-D DWT architecture.

170

13 21 29 37 45 53 61 69 77 85 93 101 109 117 125 133 137

Clock cycles/4

SelF

SelC

SelR

Figure F.4: The main signals of the 3-D DWT controller down sampled by 4.

The second output signal from the controller is the Mem-Enb signal. It is used to

enable/disable the memory bank and its addressing unit.

In summary, the main characteristics of the proposed controller are its low complexity

and ability to cope with different frame sizes and numbers with an infinite GOF. This

controller arrangement supports the power consumption reduction by turning on and off

memories and other elements at a required time.

171

Appendix G:

Pre-Processing Matlab Codes for Chapter 6; 2-D

DWT and 3-D DWT Architectures

1. The pre-processing Matlab code for 2-D DWT architecture

%%

%%%%%% Function : 2-D DWT Architecture

%%%%%% Chapter : Chapter 6
%%%%%% Programmer: Saad Al-Azawi
%%
close all
clear all
clc
VidFil=3;
Siz1=8;
switch VidFil
 case 1
 load mri
 case 2
 load mristack
 D=mristack;
 case 3
 load AkiyoRgb;
 D=AkiyoRgb(:,:,2,1:Siz1);
 case 4
 load Stefan1;
 D=Stefan1(:,:,2,1:Siz1);
 case 5
 load Suzie;
 D=suzie148(:,:,2,1:Siz1);
 case 6
 load Bus;
 D=BusColor(:,:,2,1:Siz1);
 case 7
 load Flower;
 D=FlowerCIF(:,:,2,1:Siz1);
 clear FlowerCIF;
 case 8
 load mobile;
 D=MobileQ300(:,:,2,1:Siz1);
 case 9

[namefile,pathname]=uigetfile({'*.png;*.bmp;*.tif;*.tiff;*.jpg;*.jpeg;

*.gif','IMAGE Files

(*.png,*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose GrayScale

Image');
 [d1,map1]=imread(strcat(pathname,namefile));
 [rx1,cx1,zx1]=size(d1);
 if zx1==3
 D=d1(:,:,2);
 else
 D=d1(:,:,1);
 end
end
d1=abs(double(squeeze(D)));
d1=zeros(512,512);

172

d1=d1(:,:,1,1);
save d1 d1;
z3=1;
d1=d1(:,:,1);
d1=double(d1);
[rx,cx,zx]=size(d1);
idx=1;
for k=1:4:zx
 j1=0;
 i1=0;
 for i=1:4:rx
 i1=i+3;
 for j=1:4:cx
 j1=j+3;
 idx1=idx+16-1;
 X=d1(i:i1,j:j1,1);
 X1=reshape(X',16,1);
 InData(idx:idx1,1)=X1;
 idx=idx1+1;
 end
 end
end
Seq=0:idx1-1;
Seq=Seq';
IF1=[Seq InData(:,1)];
clear InData
RowS=rx; %% number of Rows
ColS=cx; %% number of Columns
RowC=ceil(log2(ColS/4)); %%% number of bits for Rows counter
ColC=ceil(log2(RowS/4*ColS/4)); %%% number of bits for Columns counter
DelS=ColS/4; %%% the required delay of folded data in the columns

unit= number of blocks in each row
PeriodC=ColS/4-1; %%% used to comupte the constant required to

control the columns operation
INShift=0;%%% Normalization Input Shift
RBShift=0; %%% Normalization Row Shift
% Row Stage
BpointR=7; %% Binary points
B1LenR=11+BpointR;
% Column Stage
BpointC=7; %% Binary points
B1LenC=11+BpointC;
Bpoint=7; %% Binary points
B1Len=11+Bpoint;
BpointR=5; %% Binary points
B1LenR=11+BpointR;
% Column Stage
BpointC=5; %% Binary points
B1LenC=11+BpointC;
BpointC=5; %% Binary points
B1LenC=11+BpointC;
Bpoint=5; %% Binary points
B1Len=11+Bpoint;
AF=-0.630463621;
BF=0.743750255;
CF=-0.668067178;
DF=0.638443853;
K0F=2.421021123;
K1F=2.065244222;
sim_tim=289+ColS*4+RowS*ColS-2

173

2. The pre-processing Matlab code for 3-D DWT architecture

%%

%%%%%% Function : 3-D DWT Architecture

%%%%%% Chapter : Chapter 6
%%%%%% Programmer: Saad Al-Azawi
%%
close all
clear all
clc
VidFil=1;
Siz1=8;
switch VidFil
 case 1
 load mri
 case 2
 load mristack
 D=mristack;
 case 3
 load AkiyoRgb;
 D=AkiyoRgb(:,:,2,1:Siz1);
 case 4
 load Stefan1;
 D=Stefan1(:,:,2,1:Siz1);
 case 5
 load Suzie;
 D=suzie148(:,:,2,1:Siz1);

 case 6
 load Bus;
 D=BusColor(:,:,2,1:Siz1);
 case 7
 load Flower;
 D=FlowerCIF(:,:,2,1:Siz1);
 clear FlowerCIF;

 case 8
 load mobile;
 D=MobileQ300(:,:,2,1:Siz1);
end
d1=double(d1(:,:,1:Siz1));
save d1 d1
[rx,cx,zx]=size(d1);
idx=1;
for k=1:4:zx
 j1=0;
 i1=0;
 for i=1:4:rx
 i1=i+3;
 for j=1:4:cx
 j1=j+3;
 idx1=idx+16-1;
 for k1=1:4
 X=d1(i:i1,j:j1,k1+k-1);
 X1=reshape(X',16,1);
 InData(idx:idx1,k1)=X1;
 end
 idx=idx1+1;
 end
 end
end
Seq=0:idx1-1;

174

Seq=Seq';
IF1=[Seq InData(:,1)];
IF2=[Seq InData(:,2)];
IF3=[Seq InData(:,3)];
IF4=[Seq InData(:,4)];
RowS=rx; %% number of Rows
ColS=cx; %% number of Columns
FraS=zx; %% number of Frames
RowC=ceil(log2(ColS/4)); %%% number of bits for Rows counter
ColC=ceil(log2(RowS/4*ColS/4)); %%% number of bits for Columns counter
FraC=ceil(log2(RowS/4*ColS/4*FraS/4)); %%number of bits Frame counter
DelS=ColS/4; %%% the required delay of folded data in the columns

unit= number of blocks in each row
DelF=RowS*ColS/4; %%% the required delay of folded data in the columns

unit= number of blocks in each Frame
PeriodC=ColS/4-1; %%% used to comupte the constant required to

control the columns operation
PeriodF=RowS/4*ColS/4-1;
AF=-0.630463621;
BF=0.743750255;
CF=-0.668067178;
DF=0.638443853;
K0F=2.421021123;
K1F=2.065244222;
Bpoint=5; %% Binary points %%%% This is used for all models bfore 7
B1Len=11+Bpoint;
% Row Stage
BpointR=5; %% Binary points
B1LenR=11+BpointR;
% Column Stage
BpointC=5; %% Binary points
B1LenC=11+BpointC;
Tim1=289+ColS*4+RowS*ColS-2+39; % 39 is the delay after the 2-D

sim_tim delay when finish the first 2-D frame
Tim2=Tim1+idx1;
sim_tim=Tim2-2
MuxTim=rx/2*cx/2*(zx/4-1)-1;

175

References

[1] J. M. Guo and C. C. Su, "Improved block truncation coding using extreme mean

value scaling and block-based high speed direct binary search," IEEE Signal

Processing Letters, vol. 18, pp. 694-697, 2011.

[2] E. Delp and O. Mitchell, "Image compression using block truncation coding,"

IEEE Transactions on Communications, vol. 27, pp. 1335-1342, 1979.

[3] J. M. Guo and Y. F. Liu, "High capacity data hiding for error-diffused block

truncation coding," IEEE Transactions on Image Processing, vol. 21, pp. 4808-

4818, 2012.

[4] J. Wang, Y. C. Jeung, and J. W. Chong, "Improved block truncation coding

using low cost approach for color image compression," in ACM International

Conference Proceeding Series, 2009, pp. 1106-1109.

[5] J. Wang, K. Min, and J. Chong, "A hybrid image coding in overdriving for

motion blur reduction in LCD," in Lecture Notes in Computer Science vol. 4740,

ed, 2007, pp. 263-270.

[6] G. K. Wallace, "The JPEG still picture compression standard," IEEE

Transactions on Consumer Electronics, vol. 38, pp. xviii-xxxiv, 1992.

[7] A. Skodras, C. Christopoulos, and T. Ebrahimi, "The JPEG 2000 still image

compression standard," IEEE Signal Processing Magazine, vol. 18, pp. 36-58,

2001.

[8] A. Madisetti and A. N. Willson, Jr., "DCT/IDCT processor design for HDTV

applications," in International Symposium on Signals, Systems, and Electronics

(ISSSE '95), 1995, pp. 63-66.

[9] J. Mathews, M. S. Nair, and L. Jo, "Improved BTC algorithm for gray scale

images using K-means quad clustering," vol. 7666 LNCS, ed, 2012, pp. 9-17.

[10] R. E. Atani, M. Baboli, S. Mirzakuchaki, S. E. Atani, and B. Zamanlooy,

"Design and implementation of a 118 MHz 2D DCT processor," in IEEE

International Symposium on Industrial Electronics, 2008, pp. 1076-1081.

[11] M. Jridi and A. Alfalou, "A low-power, high-speed DCT architecture for image

compression: Principle and implementation," in 18th IEEE/IFIP VLSI System on

Chip Conference (VLSI-SoC), 2010, pp. 304-309.

[12] M. El Aakif, S. Belkouch, N. Chabini, and M. M. Hassani, "Low power and fast

DCT architecture using multiplier-less method," in 2011 Faible Tension Faible

Consommation (FTFC), 2011, pp. 63-66.

[13] B. Z. Guo, L. Niu, and Z. M. Liu, "Implementation of 2-D DCT based on

FPGA," in Proceedings of SPIE - The International Society for Optical

Engineering, 2010.

[14] H. L. P. A. Madanayake, R. J. Cintra, D. Onen, V. S. Dimitrov, and L. T.

Bruton, "Algebraic integer based 8×8 2-D DCT architecture for digital video

processing," in IEEE International Symposium on Circuits and Systems (ISCAS),

2011, pp. 1247-1250.

[15] A. M. Shams, A. Chidanandan, W. Pan, and M. A. Bayoumi, "NEDA: A low-

power high-performance DCT architecture," IEEE Transactions on Signal

Processing, vol. 54, pp. 955-964, 2006.

176

[16] G. K. a. S. V. Khurram Bukhari, "DCT and IDCT implementations on different

FPGA technologies," Computer Engineering Lab, Delft University of

Technology, 2009

[17] E. D. Kusuma and T. S. Widodo, "FPGA implementation of pipelined 2D-DCT

and quantization architecture for JPEG image compression," in 2010

International Symposium in Information Technology (ITSim), 2010, pp. 1-6.

[18] W. Zhang, Z. Jiang, Z. Gao, and Y. Liu, "An efficient VLSI architecture for

lifting-based discrete wavelet transform," IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 59, pp. 158-162, 2012.

[19] X. Tian, L. Wu, Y. H. Tan, and J. W. Tian, "Efficient multi-input/multi-output

vlsi architecture for two-dimensional lifting-based discrete wavelet transform,"

IEEE Transactions on Computers, vol. 60, pp. 1207-1211, 2011.

[20] C. Cheng and K. K. Parhi, "High-speed VLSI implementation of 2-D discrete

wavelet transform," IEEE Transactions on Signal Processing, vol. 56, pp. 393-

403, 2008.

[21] C. Zhang, C. Wang, and M. O. Ahmad, "A pipeline VLSI architecture for fast

computation of the 2-D discrete wavelet transform," IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 59, pp. 1775-1785, 2012.

[22] B. K. Mohanty and P. K. Meher, "Memory efficient modular VLSI architecture

for highthroughput and low-latency implementation of multilevel lifting 2-D

DWT," IEEE Transactions on Signal Processing, vol. 59, pp. 2072-2084, 2011.

[23] B. K. Mohanty, A. Mahajan, and P. K. Meher, "Area- and power-efficient

architecture for high-throughput implementation of lifting 2-D DWT," IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 59, pp. 434-438,

2012.

[24] S. Saponara, "Real-time and low-power processing of 3D direct/inverse discrete

cosine transform for low-complexity video codec," Journal of Real-Time Image

Processing, pp. 1-11, 2012.

[25] Y. Ikegaki, T. Miyazaki, and S. G. Sedukhin, "3D-DCT processor and its FPGA

implementation," IEICE Transactions on Information and Systems, vol. E94-D,

pp. 1409-1418, 2011.

[26] A. Ahmad and A. Amira, "Efficient reconfigurable architectures for 3D medical

image compression," in International Conference on Field-Programmable

Technology, 2009, pp. 472-474.

[27] B. K. Mohanty and P. K. Meher, "Memory-efficient architecture for 3-D DWT

using overlapped grouping of frames," IEEE Transactions on Signal Processing,

vol. 59, pp. 5605-5616, 2011.

[28] A. Das, A. Hazra, and S. Banerjee, "An efficient architecture for 3-D discrete

wavelet transform," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 20, pp. 286-296, 2010.

[29] B. Das and S. Banerjee, "Data-folded architecture for running 3-D DWT using

4-tap Daubechies filters," IEE Proceedings: Circuits, Devices and Systems, vol.

152, pp. 17-24, 2005.

[30] B. K. Mohanty and P. K. Meher, "Parallel and pipeline architectures for high-

throughput computation of multilevel 3-D DWT," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 20, pp. 1200-1209, 2010.

177

[31] C. C. Wang, C. H. Chen, and I. H. Chen, "Modified VQ-BTC algorithm for

image compression," Electronics Letters, vol. 34, pp. 1390-1392, 1998.

[32] R. Ngadiran, "Rate scalable image compression in the wavelet domain," PhD

thesis, Newcastle university, 2012.

[33] A. Ouafi, A. Taleb Ahmed, Z. Baarir, and A. Zitouni, "A modified Embedded

Zerotree Wavelet (MEZW) algorithm for image compression," Journal of

Mathematical Imaging and Vision, vol. 30, pp. 298-307, 2008.

[34] A. Ouafi, A. T. Ahmed, Z. Baarir, N. Doghmane, and A. Zitouni, "Color image

coding by modified Embedded Zerotree Wavelet (EZW) algorithm," in 2nd

Information and Communication Technologies (ICTTA '06), 2006, pp. 1451-

1456.

[35] S. Al-Azawi, S. Boussakta, and A. Yakovlev, "Image compression algorithms

using intensity based adaptive quantization coding," American Journal of

Engineering and Applied Sciences, vol. 4, pp. 504-512, 2011.

[36] L. N. Faria, L. M. G. Fonseca, and M. H. M. Costa, "Performance evaluation of

data compression systems applied to satellite imagery," Journal of Electrical

and Computer Engineering, // 2012.

[37] E. Oshri, N. Shelly, and H. B. Mitchell, "Interpolative three-level block

truncation coding algorithm," Electronics Letters, vol. 29, pp. 1267-1268, 1993.

[38] S. Domnic, "BTC image compression with variable length integer codes," in IET

International Conference on Visual Information Engineering (VIE), 2006, pp.

184-188.

[39] S. Al-Azawi, S. Boussakta, and A. Yakovlev, "Low complexity image

compression algorithm using AMBTC and bit plane squeezing," in 7th

International Workshop on Systems, Signal Processing and their Applications

(WOSSPA), 2011, pp. 131-134.

[40] J. M. Guo, "Improved block truncation coding using modified error diffusion,"

Electronics Letters, vol. 44, pp. 462-464, 2008.

[41] J. M. Guo and M. F. Wu, "Improved block truncation coding based on the void-

and-cluster dithering approach," IEEE Transactions on Image Processing, vol.

18, pp. 211-213, 2009.

[42] J. Wang, K. Y. Min, Y. C. Jeung, and J. W. Chong, "Improved BTC using

luminance bitmap for color image compression," in Proceedings of the 2009 2nd

International Congress on Image and Signal Processing (CISP'09), 2009.

[43] J. Wang and J. W. Chong, "High performance overdrive using improved motion

adaptive codec in LCD," IEEE Transactions on Consumer Electronics, vol. 55,

pp. 20-26, 2009.

[44] J. W. Han, Y. J. Yoon, T. S. Wang, M. C. Hwang, and S. J. Ko, "Improved block

truncation coding for color image compression in LCD overdrive," in

Proceedings of the International Symposium on Consumer Electronics (ISCE),

2008.

[45] J. Wang and J. W. Chong, "Adaptive multi-level block truncation coding for

frame memory reduction in LCD overdrive," IEEE Transactions on Consumer

Electronics, vol. 56, pp. 1130-1136, 2010.

178

[46] J. Park and S. Lee, "Structural similarity based image compression for LCD

overdrive," IEEE Transactions on Consumer Electronics, vol. 58, pp. 1276-

1284, 2012.

[47] Y. C. Chou and H. H. Chang, "A data hiding scheme for color image using BTC

compression technique," in 9th IEEE International Conference on Cognitive

Informatics (ICCI), 2010, pp. 845-850.

[48] W. Hong, J. Chen, T. S. Chen, and C. W. Shiu, "Steganography for block

truncation coding compressed images using hybrid embedding scheme,"

International Journal of Innovative Computing, Information and Control, vol. 7,

pp. 733-743, 2011.

[49] W. Hong, T. S. Chen, C. W. Shiu, and M. C. Wu, "Lossless data embedding in

BTC codes based on prediction and histogram shifting," vol. 65, ed: Applied

Mechanics and Materials, 2011, pp. 182-185.

[50] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete cosine transform," IEEE

Transactions on Computers, vol. C-23, pp. 90-93, 1974.

[51] D. J. Le Gall, "The MPEG video compression standard," in Compcon Spring

'91: Digest of Papers, 1991, pp. 334-335.

[52] W. Li, "Overview of fine granularity scalability in MPEG-4 video standard,"

IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, pp.

301-317, 2001.

[53] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, "Overview of the

H.264/AVC video coding standard," IEEE Transactions on Circuits and Systems

for Video Technology, vol. 13, pp. 560-576, 2003.

[54] S. Boussakta and H. O. Alshibami, "Fast algorithm for the 3-D DCT-II," IEEE

Transactions on Signal Processing, vol. 52, pp. 992-1001, 2004.

[55] S. C. Chan and K. L. Ho, "Direct methods for computing discrete sinusoidal

transforms," IEE Proceedings on Radar and Signal Processing, vol. 137, pp.

433-442, 1990.

[56] O. Alshibami and S. Boussakta, "Fast algorithm for the 3D DCT," in IEEE

International Conference on Acoustics, Speech, and Signal Processing

Proceedings (ICASSP '01), 2001, pp. 1945-1948 vol.3.

[57] M. C. Lee, R. K. W. Chan, and D. A. Adjeroh, "Fast three-dimensional discrete

cosine transform," SIAM Journal on Scientific Computing, vol. 30, pp. 3087-

3107, 2008.

[58] D. A. Adjeroh and S. D. Sawant, "Error-resilient transmission for 3D DCT

coded video," IEEE Transactions on Broadcasting, vol. 55, pp. 178-189, 2009.

[59] S. Sawant and D. A. Adjeroh, "Balanced multiple description coding for 3D

DCT video," IEEE Transactions on Broadcasting, vol. 57, pp. 765-776, 2011.

[60] T. Fryza, "A complete video coding chain based on multi-dimensional discrete

cosine transform," Radioengineering, vol. 19, pp. 421-428, 2010.

[61] M. Bhaskaranand and J. D. Gibson, "Distributions of 3D DCT coefficients for

video," in IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2009, pp. 793-796.

179

[62] H. Tang, W. Sun, B. Gao, and F. Zhang, "Research on quantization and scanning

order for 3-D DCT video coding," in International Conference on Computer

Science and Electronics Engineering (ICCSEE), 2012, pp. 200-204.

[63] R. Westwater and B. Furht, "The XYZ algorithm for real-time compression of

full-motion video," Real-Time Imaging, vol. 2, pp. 19-34, 1996.

[64] M. A. Engin and B. Cavusoglu, "New approach in image compression: 3D spiral

JPEG," IEEE Communications Letters, vol. 15, pp. 1234-1236, 2011.

[65] Y. Zhang and H. Bi, "Transparent video watermarking exploiting spatio-

temporal masking in 3D-DCT domain," Journal of Computational Information

Systems, vol. 7, pp. 1706-1713, 2011.

[66] J. Yang, J. Hu, and P. Liu, "Video watermarking by 3D DCT," in 7th

International Conference on Signal Processing Proceedings (ICSP '04), 2004,

pp. 861-864.

[67] F. Yong-Gang, "Robust video watermarking scheme based on 3D DCT," in

International Conference onComputer Application and System Modeling

(ICCASM), 2010, pp. V11-635-V11-638.

[68] A. Karami, S. Beheshti, and M. Yazdi, "Hyperspectral image compression using

3D discrete cosine transform and support vector machine learning," in 11th

International Conference on Information Science, Signal Processing and their

Applications (ISSPA), 2012, pp. 809-812.

[69] X. Li, A. Dick, C. Shen, A. van den Hengel, and H. Wang, "Incremental learning

of 3D-DCT compact representations for robust visual tracking," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PP, pp. 1-1,

2012.

[70] L. Jin, A. Boev, A. Gotchev, and K. Egiazarian, "3D-DCT based perceptual

quality assessment of stereo video," in 18th IEEE International Conference on

Image Processing (ICIP), 2011, pp. 2521-2524.

[71] M. Joachimiak, D. Rusanovskyy, M. M. Hannuksela, and M. Gabbouj,

"Multiview 3D video denoising in sliding 3D DCT domain," in Proceedings of

the 20th European Signal Processing Conference (EUSIPCO), 2012, pp. 1109-

1113.

[72] M. Kim Yong and Z. Li Hong, "A lip reading method based on 3-D DCT and 3-

D HMM," in 2011 International Conference on Electronics and Optoelectronics

(ICEOE), 2011, pp. V1-115-V1-119.

[73] S. G. Mallat, "Theory for multiresolution signal decomposition: the wavelet

representation," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 11, pp. 674-693, 1989.

[74] B. E. Usevitch, "A tutorial on modern lossy wavelet image compression:

foundations of JPEG 2000," IEEE Signal Processing Magazine, vol. 18, pp. 22-

35, 2001.

[75] I. Daubechies, "Ten lectures on wavelets," CBMS, SIAM, 61, 1995.

[76] K. Sayood, "Introduction to data compression," Third Eddition, Elsevier Inc.,

2006.

[77] I. Adam, "Complex Wavelet Transform:application to denoising," PhD thesis,

Politehnica University of Timisoara and Université de Rennes 1, 2012.

180

[78] A. Shahbahrami, "Algorithms and architectures for 2D discrete wavelet

transform," Journal of Supercomputing, vol. 62, pp. 1045-1064, 2012.

[79] A. S. Remya Ajai and N. Nagaraj, "A novel methodology for memory reduction

in distributed arithmetic based discrete wavelet transform," in Procedia

Engineering, 2012, pp. 226-233.

[80] W. Sweldens, "The lifting scheme: A custom-design construction of

biorthogonal wavelets," Applied and Computational Harmonic Analysis, vol. 3,

pp. 186-200, 1996.

[81] I. Daubechies and W. Sweldens, "Factoring wavelet transforms into lifting

steps," Journal of Fourier Analysis and Applications, vol. 4, pp. x1-268, 1998.

[82] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi, "JPEG2000: The

upcoming still image compression standard," Pattern Recognition Letters, vol.

22, pp. 1337-1345, 2001.

[83] A. Aggoun, "Compression of 3D integral images using 3D wavelet transform,"

Journal of Display Technology, vol. 7, pp. 586-592, 2011.

[84] N. Sriraam and R. Shyamsunder, "3-D medical image compression using 3-D

wavelet coders," Digital Signal Processing, vol. 21, pp. 100-109, 2011.

[85] B. M. Sunil and C. P. Raj, "Analysis of wavelet for 3D-DWT volumetric image

compression," in Proceedings - 3rd International Conference on Emerging

Trends in Engineering and Technology (ICETET), 2010, pp. 180-185.

[86] A. Ahmad, B. Krill, A. Amira, and H. Rabah, "3D Haar wavelet transform with

dynamic partial reconfiguration for 3D medical image compression," in IEEE

Biomedical Circuits and Systems Conference (BioCAS 2009), 2009, pp. 137-140.

[87] P. Bao and X. Ma, "Image adaptive watermarking using wavelet dOmain

singular value decomposition," IEEE Transactions on Circuits and Systems for

Video Technology, vol. 15, pp. 96-102, 2005.

[88] Y. Wan, Y. Yang, and Q. Q. Chen, "Multitone block truncation coding,"

Electronics Letters, vol. 46, pp. 414-415, 2010.

[89] M. Ayinala and K. K. Parhi, "Parallel pipelined FFT architectures with reduced

number of delays," in Proceedings of the ACM Great Lakes Symposium on VLSI

(GLSVLSI), 2012, pp. 63-66.

[90] O. Nibouche, S. Boussakta, M. Darnell, and M. Benaissa, "Algorithms and

pipeline architectures for 2-D FFT and FFT-like transforms," Digital Signal

Processing: A Review Journal, vol. 20, pp. 1072-1086, 2010.

[91] M. Ayinala, M. Brown, and K. K. Parhi, "Pipelined parallel FFT architectures

via folding transformation," IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 20, pp. 1068-1081, 2012.

[92] O. Nibouche, S. Boussakta, and M. Darnell, "Pipeline Architectures for Radix-2

New Mersenne Number Transform," IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 56, pp. 1668-1680, 2009.

[93] S. An and C. Wang, "Recursive algorithm, architectures and FPGA

implementation of the two-dimensional discrete cosine transform," IET, Image

Processing vol. 2, pp. 286-294, 2008.

181

[94] G. Jiun-In and L. Chih-Chen, "A generalized architecture for the one-

dimensional discrete cosine and sine transforms," IEEE Transactions on Circuits

and Systems for Video Technology, vol. 11, pp. 874-881, 2001.

[95] Z. Wu, J. Sha, Z. Wang, L. Li, and M. Gao, "An improved scaled DCT

architecture," IEEE Transactions on Consumer Electronics, vol. 55, pp. 685-

689, 2009.

[96] C. Yuan-Ho and C. Tsin-Yuan, "A high performance video transform engine by

using space-time scheduling strategy," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems vol. 20, pp. 655-664, 2012.

[97] A. Aggoun and I. Jalloh, "Two-dimensional DCT/IDCT architecture," IEE

Proceedings on Computers and Digital Techniques, vol. 150, pp. 2-10, 2003.

[98] J. I. Guo, "Efficient parallel adder based design for one-dimensional discrete

cosine transform," IEE Proceedings on Circuits, Devices and Systems, vol. 147,

pp. 276-282, 2000.

[99] S. Al-Azawi, S. Boussakta, and A. Yakovlev, "High precision and low power

DCT architectures for image compression applications," in IET Conference on

Image Processing (IPR), 2012, pp. 1-6.

[100] I. Jalloh, A. Aggoun, and M. McCormick, "3D DCT architecture for

compression of integral 3D images," in IEEE Workshop on Signal Processing

Systems, SiPS: Design and Implementation, 2000, pp. 238-244.

[101] A. Aggoun and I. Jalloh, "A parallel 3D DCT architecture for the compression of

integral 3D images," in The 8th IEEE International Conference on Electronics,

Circuits and Systems (ICECS) 2001, pp. 229-232 vol.1.

[102] M. Bakr and A. E. Salama, "Implementation of 3D-DCT based video

Encoder/Decoder system," in Midwest Symposium on Circuits and Systems,

2002, pp. II13-II16.

[103] S. Saponara, L. Fanucci, and P. Terreni, "Low-power VLSI architectures for 3D

discrete cosine transform (DCT)," in IEEE 46th Midwest Symposium on Circuits

and Systems, 2003, pp. 1567-1570 Vol. 3.

[104] D. U. Lee, L. W. Kim, and J. D. Villasenor, "Precision-aware self-quantizing

hardware architectures for the discrete wavelet transform," IEEE Transactions

on Image Processing, vol. 21, pp. 768-777, 2012.

[105] A. Ahmad, B. Krill, A. Amira, and H. Rabah, "Efficient architectures for 3D

HWT using dynamic partial reconfiguration," Journal of Systems Architecture,

vol. 56, pp. 305-316, 2010.

[106] X. Xiaodong and Z. Yiqi, "Efficient FPGA implementation of 2-D DWT for 9/7

float wavelet filter," in International Conference on Information Engineering

and Computer Science (ICIECS), 2009, pp. 1-4.

[107] H. Yu, L. Qing, M. Siwei, and C. C. J. Kuo, "A VLSI architecture for a fast

computation of the 2-D Discrete Wavelet Transform," in IEEE International

Symposium on Circuits and Systems (ISCAS), 2007, pp. 3980-3983.

[108] S. Barua, J. E. Carletta, K. A. Kotteri, and A. E. Bell, "An efficient architecture

for lifting-based two-dimensional discrete wavelet transforms," The VLSI

Journal, Integration, vol. 38, pp. 341-352, 2005.

182

[109] Q. Dai, X. Chen, and C. Lin, "A novel VLSI architecture for multidimensional

discrete wavelet transform," IEEE Transactions on Circuits and Systems for

Video Technology, vol. 14, pp. 1105-1110, 2004.

[110] N. H. Ja’afar, A. Ahmad, and A. Amira, "Rapid prototyping of three-

dimensional transform for medical image compression," in 11th International

Conference on Information Science, Signal Processing and their Applications

(ISSPA), 2012, pp. 842-847.

[111] C. Maxfield, "The design warior's guide to FPGAs," vol. ISBN 0-7506-7604-3,

2004.

[112] H. Sarmento, "Virtex platforms comparison," Technical Report, 2008 [Online].

Available: http://prosys.inesc-id.pt/UWBR/Reports/UWBR-virtex.pdf, Accessed

on 24/11/2012.

[113] Xilinx, "Xilinx 7 series " Xilinx FPGA Families, 2012, [Online]. Available:

http://www.xilinx.com/products/silicon-devices/fpga/index.htm, Accessed on

25/11/2012.

[114] Xilinx, "Xilinx 7 series FPGAs-Brief " XILINX , 2012, [Online].

Available:http://www.xilinx.com/publications/prod_mktg/7-Series-Product-

Brief.pdf, Accessed on 18/12/2012.

[115] Xilinx, "Zynq-7000 all programmable SoC overview," Advance Product

Specification, 2012, [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-

Overview.pdf, Accessed on 25/11/2012.

[116] Xilinx, "XA Zynq-7000 all programmable SoC overview," Advance Product

Specification, 2012, [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-

7000-Overview.pdf, Accessed on 25/11/2012.

[117] Xilinx, "Zynq-7000 family use cases and markets," Xilinx Web site, [Online].

Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/use-

cases-and-markets/index.htm, Accessed on 26/11/2012.

[118] Xilinx, "Virtex-5 family overview," Product Specification, 2009, [Online].

Available: http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf,

Accessed on 21/11/2012.

[119] Xilinx, "Virtex-6 family overview," Product Specification, 2012, [Online].

Available: http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf,

Accessed on 21/11/2012.

[120] Xilinx, "Virtex-5 FPGA user guide," User Guide, 2012, [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf, Accessed

on 22/11/2012.

[121] Xilinx, "Virtex-6 FPGA configurable logic block user guide," User Guide, 2012,

[Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug364.pdf, Accessed

on 22/11/2012.

[122] Xilinx, "Virtex-6 FPGA memory resources," User Guide, 2011, [Online].

Available:

http://www.xilinx.com/support/documentation/user_guides/ug363.pdf, Accessed

on 22/11/2012.

http://prosys.inesc-id.pt/UWBR/Reports/UWBR-virtex.pdf
http://www.xilinx.com/products/silicon-devices/fpga/index.htm
http://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
http://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/use-cases-and-markets/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/use-cases-and-markets/index.htm
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf

183

[123] Xilinx, "Virtex-6 FPGA DSP48E1 slice," User Guide, 2011, [Online].

Available:

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf, Accessed

on 22/11/2012.

[124] Xilinx, "Xilinx CORE Generator System," Xilinx, 2013, [Online]. Available:

http://www.xilinx.com/tools/coregen.htm, Accessed on 10/06/2013.

[125] Xilinx, "Xilinx documentation," Documentation, 2012, [Online]. Available:

http://www.xilinx.com/support/#nav=sd-nav-link-182711&tab=tab-sd, Accessed

on 20/11/2012.

[126] Xilinx, "What is a FPGA?," [Online]. Available:

http://www.origin.xilinx.com/fpga/, Accessed on 13/06/2013.

[127] Xilinx, "7 Series FPGAs configurable logic block user guide," User Guide,

2012, [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB

.pdf, Accessed on 25/11/2012.

[128] Xilinx, "Virtex-5 FPGA XtremeDSP design considerations," User Guide, 2012,

[Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug193.pdf, Accessed

on 27/11/2012.

[129] Xilinx, "AccelDSP Synthesis Tool; User Guide," Xilinx, 2008, [Online].

Available:

http://www.xilinx.com/support/documentation/sw_manuals/acceldsp_user.pdf,

Accessed on 10/06/2013.

[130] Xilinx, "System Generator for DSP; User Guide," Xilinx, 2010, [Online].

Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/sysgen_u

ser.pdf, Accessed on 10/06/2013.

[131] T. Feist, "Vivado design suite," White Paper, 2012, [Online]. Available:

http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-

Design-Suite.pdf, Accessed on 05/12/2012.

[132] C. M. T. Santiago T. P re , Jes s B. Alonso and Jos L. V sque (2 11),

"Design Methodology with System Generator in Simulink of a FHSS

Transceiver on FPGA, Applications of MATLAB in Science and Engineering,

Prof. Tadeusz Michalowski (Ed.), ISBN: 978-953-307-708-6, InTech, DOI:

10.5772/23812," [Online]. Available::

http://www.intechopen.com/books/applications-of-matlab-in-science-and-

engineering/design-methodology-with-system-generator-in-simulink-of-a-fhss-

transceiver-on-fpga, Accessed on 10/06/2013.

[133] M. Lema and O. Mitchell, "Absolute moment block truncation coding and its

application to color images," IEEE Transactions on Communications, vol. 32,

pp. 1148-1157, 1984.

[134] Xilinx, "Xilinx Co.," Documentation, 2012, [Online]. Available:

http://www.xilinx.com/tools/sysgen.htm, Accessed on 05/06/2013.

[135] Altera, "Logic Elements and Logic Array Blocks in the Cyclone III Device

Family," [Online]. Available:

http://www.altera.co.uk/literature/hb/cyc3/cyc3_ciii51002.pdf, Accessed on

02/04/2013.

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/support/#nav=sd-nav-link-182711&tab=tab-sd
http://www.origin.xilinx.com/fpga/
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/sw_manuals/acceldsp_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/sysgen_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/sysgen_user.pdf
http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
http://www.intechopen.com/books/applications-of-matlab-in-science-and-engineering/design-methodology-with-system-generator-in-simulink-of-a-fhss-transceiver-on-fpga
http://www.intechopen.com/books/applications-of-matlab-in-science-and-engineering/design-methodology-with-system-generator-in-simulink-of-a-fhss-transceiver-on-fpga
http://www.intechopen.com/books/applications-of-matlab-in-science-and-engineering/design-methodology-with-system-generator-in-simulink-of-a-fhss-transceiver-on-fpga
http://www.xilinx.com/tools/sysgen.htm
http://www.altera.co.uk/literature/hb/cyc3/cyc3_ciii51002.pdf

184

[136] S. McKeown and R. Woods, "Low power field programmable gate array

implementation of fast digital signal processing algorithms: Characterisation and

manipulation of data locality," IET Computers and Digital Techniques, vol. 5,

pp. 136-144, 2011.

[137] R. Woods, McAllister, J., Turner, R., Yi, Y., Lightbody, G., "FPGA-based

implementation of signal processing systems," Wiley, New Jersey, 2008.

[138] G. Shi, W. Liu, L. Zhang, and F. Li, "An efficient folded architecture for lifting-

based discrete wavelet transform," IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 56, pp. 290-294, 2009.

[139] C. Y. Xiong, J. W. Tian, and J. Liu, "A note on "flipping structure: An efficient

VLSI architecture for lifting-based discrete wavelet transform"," IEEE

Transactions on Signal Processing, vol. 54, pp. 1910-1916, 2006.

[140] C. T. Huang, P. C. Tseng, and L. G. Chen, "Flipping structure: an efficient VLSI

architecture for lifting-based discrete wavelet transform," IEEE Transactions on

Signal Processing, vol. 52, pp. 1080-1089, 2004.

