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Abstract 

This thesis introduces new image compression algorithms, their related architectures 

and data transforms architectures. The proposed architectures consider the current 

hardware architectures concerns, such as power consumption, hardware usage, memory 

requirement, computation time and output accuracy. These concerns and problems are 

crucial in multidimensional image and video processing applications.  

This research is divided into three image and video processing related topics: low 

complexity non-transform-based image compression algorithms and their architectures, 

architectures for multidimensional Discrete Cosine Transform (DCT); and architectures 

for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures 

are parameterised in terms of wordlength, pipelining and input data size. Taking such 

parameterisation into account, efficient non-transform based and low complexity image 

compression algorithms for better rate distortion performance are proposed. The 

proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm, 

and they achieve a controllable output bit rate and accuracy by considering the intensity 

variation of each image block. Their high speed, low hardware usage and low power 

consumption architectures are also introduced and implemented on Xilinx devices. 

Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-

D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been 

proposed.  These architectures attain fast and accurate 3-D DCT computation and 

provide high processing speed and power consumption reduction. In addition, this 

research also introduces two low hardware usage 3-D DCT VR architectures. Such 

architectures perform the computation of butterfly and post addition stages without 

using block memory for data transposition, which in turn reduces the hardware usage 

and improves the performance of the proposed architectures. 

Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-

D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced. 

The presented architectures represent an efficient multiplierless and low memory 

requirement CDF 9/7 DWT computation scheme using the separable approach.  

Furthermore, the proposed architectures have been implemented and tested using Xilinx 

FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can 

be achieved in the proposed AQC-based architectures. Further, a speed of up to 330 

MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT 

VR architectures.  In addition, in the proposed 3-D DWT architecture, the computation 

time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms.  Also, a power 

consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is 

achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite 

can be attained.  
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Chapter 1: Introduction 

1.1 Introduction 

Transforms, such as the Fast Fourier Transform (FFT), Discrete Cosine Transform 

(DCT) and Discrete Wavelet Transform (DWT), represent the main part of many audio, 

image and video processing systems. Although these transforms improve the 

performance of the entire system, they represent a bottleneck in terms of their 

computation complexity, storage requirements and subsequent processing speed and 

power consumption. These issues are crucial in multidimensional applications which 

require a high computation load and large amount of high speed storage media. As a 

result of these concerns, the idea and the subject of this thesis arose. This thesis presents 

new and efficient hardware architectures for low complexity non-transform based image 

compression algorithms. Furthermore, architectures for the transforms used in 

transform-based image and video processing systems, such as the DCT and the DWT, 

are also proposed. In addition, comprehensive analyses are introduced in order to 

evaluate the performance of the proposed hardware architectures. The performance 

analysis includes the hardware usage, power consumption, processing speed and output 

accuracy.  

In summary, this chapter introduces: in section ‎1.2, a general background about digital 

images and video signals is provided. In section ‎1.3, an overview of image and video 

compression algorithms, and their related transforms and architectures are also briefly 

introduced. The motivation, objectives and contributions of this research are introduced 

in sections ‎1.4, 1.5 and ‎1.6, respectively. The thesis outline is presented in section ‎1.7 

and the outcome publications of this research are outlined in section ‎1.8.   

1.2 Digital Image and Video Signals 

The data size of any image is related to its bit rate, number of colour bands, and image 

size, and on the number of images or frames in the case of medical or video streams. 

Thus, high volume storage devices are required to handle such a large amount of data.  

The data storage requirements and bit rate are important factors that affect the 

complexity of any image and video processing system, particularly in mobile devices. In 
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such devices, the main challenges are power consumption, hardware usage, storage 

resources and processing speed. In many image and video applications, the signal bit 

rate can be adjusted using lossy or lossless compression algorithms. The lossy 

compression algorithms sacrifice a specific amount of data accuracy to obtain high 

compression ratios and low bit rates, while in lossless compression algorithms; the 

decompressed data is exactly the same as the original, though with low compression 

ratios and high bit rates. For both compression algorithm classes, the computation 

complexity and storage of intermediate data represent an important factor that 

contributes to the complexity of the entire system. Thus, work has been conducted to 

achieve compression algorithms that produce good image quality, a low bit rate and low 

complexity in terms of storage requirements, high speed, low power consumption and 

low hardware usage.  

1.3 An Overview of Image and Video Compression Algorithms 

Numerous image and video compression algorithms have been published in the 

literature. This includes a class of non-transform based low complex algorithms such as 

Block Truncation Coding (BTC) and Adaptive Quantisation Coding (AQC) [1-5]. 

Further algorithms are classified as transform-based algorithms, as in the Joint 

Photographic Experts Group (JPEG) and JPEG2000 image compression standards [6, 7], 

and MPEGx and H.26x video compression standards [8]. These algorithms offer a good 

compromise between image quality and the output bit rate, where the bit rate and the 

output image quality can be adjusted by proper selection of the quality factor. Although 

the first class of image compression algorithms represents a low complexity and high 

speed compression systems, the low compression ratio represents its main drawback 

compared with the second class of algorithms. However, it represents a suitable choice 

for some applications that require low complexity and low hardware usage [9].  

The second class of compression systems encompasses algorithms based on transforms 

such as the DCT and DWT. This increases the computation complexity, power 

consumption and hardware usage of such systems.  To tackle these issues, many 

hardware architectures have been published in the literature for 1-D and 2-D DCT, and 

DWT [10-23], while a limited number of architectures have been suggested for 3-D 

DCT and DWT applications [22, 24-30]. Nevertheless, the suggested 3-D DCT and 3-D 

DWT in the literature have only partially met the requirements of hardware 

architectures such as low power consumption, high processing speed, low hardware 
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usage and low memory requirements. As such, it is important to produce efficient 

architectures for the DCT and the DWT which consider such issues for 

multidimensional applications. 

1.4 Research Motivation 

The data storage, processing and transmission represent important parts of the major 

concerns and interest of the modern life. As an example, medical images and the related 

archiving systems require a high data storage capacity to handle the information of 

every patient. Additionally, the collected information is usually processed in different 

ways to prepare it for storage and transmission media to overcome their restrictions and 

challenge. Considering these points and other concerns, the data compression and the 

tools required in this field represent the backbone of these applications. However, the 

data processing is not a straightforward task as it has its own restrictions and challenges. 

Among these challenges is the computation complexity, processing time, power 

consumption and storage area. This thesis acts on the previous issues to provide 

efficient hardware architectures for the data transforms used in image and video 

compression systems, especially when these issues become crucial in the case of 

multidimensional signals, such as medical images and video streams. 

1.5 Research Objectives  

The research aims are to introduce new low complexity image compression algorithms, 

their corresponding architectures and efficient architectures for multidimensional data 

transforms used in image and video processing systems. The proposed architectures 

focus on achieving high computation speed, low power consumption and 

parameterisation for different wordlengths. The objectives of this study can be outlined 

as follows: 

 To present parameterised architectures for low complexity image compression 

algorithms and multidimensional data transforms.   

 To introduce new and efficient 2-D non-transform-based and low complexity 

image compression algorithms and their hardware architectures for low bit rate 

applications. The proposed algorithms should consider the intensity variation of 

image blocks for further bit rate reduction while preserving the output image 

quality within an acceptable range. 
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 To design and implement new high speed multidimensional DCT architectures 

for image and video processing applications. Such architectures can be based on 

the available low computational complexity fast DCT algorithms. 

 To design and implement new low hardware usage architectures for 3-D DCT to 

achieve a compromise between the hardware usage, processing speed and power 

consumption for variant wordlengths. The proposed architectures should 

consider hardware and memory usage reduction by reducing the data 

transposition throughout the computation process.   

 To design and implement new hardware architectures for a lifting-based 1-D, 2-

D and 3-D DWT to attain high throughput and low memory requirements for 

different wordlengths. In such architectures, the main goals are: multiplierless, 

high throughput, low memory requirements and low power consumption.  In 

such architectures, the power consumption reduction may be achieved by reduce 

or avoid using the high power consumption elements, such as multipliers. 

1.6 Contributions 

The contributions of this thesis can be summarised as follows: 

1. It introduces low complexity non-transform-based image compression 

algorithms for low bit rate applications. Their new high speed and low hardware 

usage architectures are also introduced.  

2. It presents new high speed multidimensional DCT architectures, based on fast 

DCT algorithms for image and video processing applications.  

3. It introduces new area efficient architectures for 3-D DCT computation using 3-

D DCT VR algorithm.  

4. It introduces parallel and multiplierless multidimensional DWT architectures to 

attain a good compromise between memory requirements, processing speed and 

power consumption. 
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1.7 Thesis Outline 

The remainder of this thesis is organised as follows: Chapter 2 is an overview of image 

and video compression algorithms and their related data transforms, such as the DCT 

and DWT, which are used in 2-D image and 3-D video and, hyperspectral and medical 

image processing systems. It also introduces Field Programmable Gate Arrays (FPGA) 

devices as a medium for hardware implementation. An introduction to hardware design 

tools and Xilinx high level synthesis design tools is also provided.  

In Chapter 3, new non-transform based and low complexity image compression 

algorithms for low bit rate applications are introduced. These algorithms are based on 

the AQC algorithm and they consider the intensity variation of each individual image 

block to introduce low-bit rate and high-performance compression systems. Moreover, 

new high speed architectures to implement these algorithms are also proposed. 

Furthermore, a comprehensive analysis of power consumption, speed and hardware 

resources is also provided.  

Two high speed architectures for multidimensional DCT computation are introduced in 

chapter 4. These architectures are based on 1-D DCT Radix-2 and 3-D DCT VR fast 

algorithms. The proposed architectures are parameterised in terms of wordlength, which 

provides different levels of output accuracy, hardware usage and power consumption.  

In chapter 5, two new low hardware usage architectures for the 3-D DCT VR algorithm 

are presented. The main feature of the proposed architectures are; the in place 

computation of the butterfly and post addition stages without using block memory for 

data transposition, which in turn produces efficient architectures in terms of hardware 

usage, processing speed and power consumption.  

Multiplierless and parallel lifting-based architectures for the 1-D, 2-D and 3-D Cohen-

Daubechies-Feauveau 9/7 (CDF 9/7) DWT are introduced in chapter 6. The proposed 

architectures represent an efficient low memory requirement, multiplierless and high 

precision CDF 9/7 DWT systems.  In such architectures, the temporal memory for 3-D 

DWT has been reduced to a block memory size of four frames only. Such block 

memory is used as a temporary frame buffer during the computation process of the 3-D 

DWT. Conclusions and the outline for potential future work directions are given in 

chapter 7. 
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Chapter 2: Preliminary Concepts and Related Work 

2.1 Introduction 

This chapter presents explanatory materials that support the architectures presented in 

the remainder of the thesis. It is divided into six sections: section ‎2.2 is an overview of 

image/video compression algorithms and the associated transforms, including the DCT 

and DWT. The definitions of rate distortion measurements image fidelity criteria are 

given in section ‎2.3. Section ‎2.4 presents and overview about the related work. 

Section ‎2.5 introduces Xilinx FPGA hardware devices which are used as 

implementation media in the remainder of the thesis, with a particular emphasis on 

Virtex 5 and 6 Xilinx families given in section ‎2.6. Hardware design tools are presented 

in section ‎2.7. The architectures design procedure is described in ‎2.8 and the summary 

is given in section ‎2.9. 

2.2 Image and Video Compression Algorithms 

The revolution in data transmission and communication systems has made it of 

paramount importance to compress data (such as images and video) before storing or 

transmitting it; this is largely due to a limitation in bandwidth, bit rate and storage 

device size. As an example, a typical 512×512-pixel colour image requires a storage 

space of 786.432 Kb, if it has a typical bit rate of 8 bit per pixel per colour band (bpp). 

This number will increase in the case of medical or hyper-spectral images where the bit 

rate can be 16 or 24 bpp and, thus, in video streams the matter becomes more crucial 

due to the large number of images/frames and the size of each frame.  

The idea of compression comes from reducing the redundancy of data which occurs 

from different types of correlation, such as correlation between neighbouring pixels in 

an image or frame, correlation between colour planes in colour images and correlation 

between pixels in the neighbouring frames. These three types of correlation are known 

as spatial redundancy, spectral redundancy and temporal redundancy, respectively [31]. 

These types of redundancies are classified as a statistical redundancy and psycho-visual 

redundancy. The later refers to the Human Visual System’s (HVS) limitations [32]. 

Some algorithms exploit the spatial redundancy in two dimensional (2-D) image 
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compression systems, while others algorithms exploits both spatial and temporal 

redundancy, which may be classified as a three dimensional (3-D) compression system. 

In another aspect, image compression can be classified as a lossless or lossy. The class 

of lossless compression algorithms ensures that the decompressed image is an exact 

version of the original image, this result in a low compression ratios or high bit rate. On 

the other hand, the lossy class of compression algorithms attains high compression 

ratios, which is nevertheless accompanied by a degradation of the decompressed image 

quality [33, 34]. JPEG and JPEG2000 image coding standards, as examples of 

transforms-based compression algorithms. The JPEG image compression standard  is 

based on the DCT [6], and the JPEG2000 is a DWT-based compression system [7]. A 

typical transform-based compression system is shown in Figure ‎2.1 [7]. Even though the 

output performance of the transform-based compression algorithm is high, the 

computation complexity is their main drawback. The other class of compression 

algorithms is the low complex and good performance non-transform-based image 

compression, for which the BTC, multilevel BTC and AQC are well-known algorithms 

[1-3, 35]. Such algorithms are designed specifically to avoid or reduce computational 

complexity, memory requirement and processing time arising from applying the DCT or 

DWT. 

b. Transform-Based Decoder

Inverse

Quantization

Entropy 

Decoder

Inverse 

Transform
Compressed 

Data

Reconstructed 

Image

a. Transform-Based Encoder

Quantization
Entropy 
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Transform

Compressed 

Data

Input 

Image

 

  Figure ‎2.1: Basic block diagram of typical transform-based compression / 

decompression system [36]. 

2.2.1 Adaptive Quantisation Coding (AQC) 

The AQC is a low complex image compression algorithm which represents an improved 

version of BTC algorithm [2, 35]. The BTC algorithm is used for grey-scale image 

compression for an output bit rate of two bit per pixel (bpp) and good image quality [1, 

3].  The BTC partitions the input image into 4×4-pixel blocks and it computes a bit plane 

using a bi-level quantiser and two eight bit moments which represents the high and low 
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mean of the image block. The low compression ratio represents the main drawback of the 

BTC when compared with other transformed–based image compression techniques. 

However, it is an attractive option for mobile and low complex applications due to its 

simplicity and good image quality [37]. Many researchers have tried to enhance the 

performance and to reduce the bit rate of BTC algorithm as stated in [4, 31, 37-42].  In 

[37] a three level quantiser was used to classify the pixels into low, intermediate and 

high intensity, according to a predefined threshold. Accordingly, the AQC algorithm 

partitions the input image into a fixed size blocks and it encodes the input image using a 

multilevel quantised bit plane, the minimum intensity value of the block and the 

quantiser step [4, 5]. Thus, the AQC can be considered as a multi-level BTC algorithm 

and the coding performance of the AQC algorithm is much better than the BTC but it 

comes in the expenses of higher bit rate. However, the bit rate remains the same for both 

algorithms for low intensity variation images. Thus, the AQC algorithm produces good 

compromises between coding performance and computation complexity. The efficient 

coding performance and low implementation cost  of multilevel BTC and AQC 

algorithms have encouraged some researchers to use them as a suitable approach for 

memory usage reduction in Liquid Crystal Display (LCD) overdrive [5, 43-46] and in 

data hiding applications [3, 47-49]. 

2.2.2 Discrete Cosine Transform (DCT) 

The DCT has gained a wide acceptance within the signal processing community since it 

was suggested in 1974 [50]. This is due to its energy compaction, orthogonal and 

performance level being close to that of Karhunen-Loeve transform with respect to the 

rate distortion criterion  [50]. It has become an essential part of many image and video 

applications, including the JPEG, MPEGx and H.26x compression standards [6, 8, 51-

53]. With DCT-based audio, image and video compression systems, the input signal is 

partitioned into  ,    -point data blocks or      -point data cubes, and then 

transformed into DCT domain using 1-D, 2-D and 3-D DCT transforms, respectively.  

The 1-D DCT for  -point data can be computed as follows [16]: 
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The inverse 1-D DCT (1-D IDCT) is defined as: 
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The 2-D DCT of a    -point data block can be computed by computing the 1-D DCT 

on the rows and columns successively. Alternatively, the 2-D DCT can be computed 

directly as [12]: 
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The 3-D DCT for an      -point data cube can be computed as follows  [54]: 
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and the 3-D IDCT is given by [54]: 
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Further, the 3-D DCT can also be computed by applying  -point 1-D DCT using (‎2.1) 

on the rows then columns and the temporal or frames direction successively. This is 

termed the Row-Column-Frame (RCF).  

It is obvious from (‎2.1) to (‎2.6) that the computation complexity of the DCT increases 

rapidly with the data dimensionality. As an example, the computation complexity of 

     -point data cube using an RCF approach requires 3   1-D DCT, where each 

1-D DCT requires    multiplication and  (   ) addition operations. Nevertheless, 

the computation complexity of the 3-D DCT can be reduced using fast DCT algorithms. 

A number of fast DCT algorithms have been published in the literature, among them the 

1-D Radix-2 algorithm [55] and 3-D DCT Vector Radix algorithm (3-D DCT VR) [54]. 

These fast algorithms reduce the mathematical operations involved in the computation 

of the DCT, thus, achieving shorter processing times. In addition they also reduce the 

memory space required for data transpose for both 2-D and 3-D DCT.   

The arithmetic operations for the original RCF 3-D DCT, RCF 3-D DCT Radix-2 and 3-

D DCT VR algorithms are shown in Table ‎2.1 [54, 56, 57]. It is obvious from Table ‎2.1 

that the number of multiplications in a 3-D DCT VR algorithm is less than that required 

by a 3-D DCT Radix-2 algorithm by 
 

 
        . 

Table ‎2.1: The arithmetic operations of the original RCF 3-D DCT, RCF Radix-2 and 

VR algorithms [54, 56, 57]. 

Operations 
Original RCF 

3-D DCT  

RCF using 

1-D DCT Radix-2 
3-D DCT VR 

Multiplication     
 

 
        

 

 
          

Addition    (   ) 
 

 
                

 

 
                

2.2.2.1 DCT-Based Compression Systems 

A conventional DCT-based image compression system encompasses of: DCT, 

quantisation and encoding, as shown in Figure ‎2.2 [6].  
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Figure ‎2.2: DCT based image compression/decompression system [36]. 

 

As shown in Figure ‎2.2, each 2-D input image is partitioned into fixed block sizes 

(typically 8×8-pixel), and then the DCT is applied to tackle the spatial correlation in the 

block. Furthermore, the quantisation and entropy coding are used to reduce the bit rate 

further. 

In 3-D signals, such as videos and 3-D medical images, the spatial correlation between 

pixels can be reduced using the 2-D DCT, while the motion compensation process used 

to tackle the correlation between frames (temporal correlation).  This makes the 3-D 

video compression systems, such as in MPEGx and H.26x standards, consist of 2-D 

compression system with a motion compensation unit. However, the high computation 

complexity of motion compensation makes it is difficult to get a real time 3-D 

compression system without using efficient hardware accelerators. Further, the motion 

estimation is computed with respect to a reference frame within a group of frames; this 

dependency can cause accumulated and propagated error throughout each group of 

frames [58, 59]. The computation complexity of the conventional 3-D images and 

videos has increased the need for new low complex compression system, particularly in 

mobile and wireless communication systems [58]. New approaches have been proposed 

in the literature that considers video data as a 3-D data volume. The correlation at the 

temporal direction is tackled by applying 1-D DCT along the third dimension while 

spatial data redundancy is considered using the 2-D DCT; this has led to new video and 

3-D image compression systems using the 3-D DCT [24, 54, 59-63]. Such  a transform 

is particularly suited for embedded systems requiring low complexity implementation of 

both video encoder and decoder, such as the case of mobile terminals with video-

communication capabilities [24].  
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2.2.2.2 3-D DCT Applications 

The 3-D DCT is used for different applications, such as 3-D video compression, hyper 

spectral image compression and watermarking [64-68]. In [64], an approach based on a 

JPEG lossy image compression system and a 3-D DCT for still image compression was 

introduced. The proposed system constructs an 8×8×8-pixel 3-D data cubes from the 

original 2-D image data using a spiral scanning. Such technique utilises a new 

quantisation table to improve the coding performance. It has been found that the 

performance of the proposed technique outperformed the conventional JPEG 

compression, especially at low and high bit rates in particular [64]. Furthermore,  the 3-

D DCT has been used to exploit the spatio-temporal redundancy in video watermarking 

[65-67] and hyper spectral image compression [68]. Other applications of 3-D DCT 

algorithms include object tracking [69], stereoscopic video quality assessment [70], 3-D 

video de-noising [71] and lip reading [72]. 

2.2.3 Discrete Wavelet Transform (DWT)  

The DWT [73] is used in different image and video applications, such as compression, 

watermarking and denoising. Similar to the DCT, the DWT exhibits a high rate of 

energy compaction, thus making it a good choice in compression standards. Moreover, 

the DWT in image compression algorithms has the property to overcome the blocking 

artifact that characterise the DCT-based or block-based image compression techniques. 

Nevertheless, the DWT affected by its high computation complexity and memory 

requirements compared to the DCT or other block-based algorithms. Such requirements 

are dependent on the wavelet filter length and the size of input data.  

Various low and high pass wavelet filters are used in DWT applications. The simplest 

wavelet filter is the Haar wavelet filter, which has the following coefficients for 

decomposition and reconstruction operations, respectively. 

LPF [   .       .   ] and   HPF [ - .       .    ] (‎2.7) 

where LPF and HPF are the Low and High Pass Filter, respectively. The coefficients of 

Haar reconstruction filter are shown below: 

 LPF [  .       .   ] and  HPF  [  .      - .   ] (‎2.8) 

where ILPF and IHPF are the Inverse Low and High Pass Filter, respectively.  
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Further, more sophisticated wavelets filters are available, which they are different in 

terms of output performance, filter order and computation complexity. As an example of 

these filters are Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) and Le Gall 5/3 which are 

used in JPEG2000 lossy and lossless compression standards, respectively. The 

coefficients of both filters are shown in Table  2.2 [32, 74]. Moreover, there are infinite 

number of possible wavelet filters, such as Daubechies and Coiflets families, and the 

selection of the best wavelet filter depends on the required application [75, 76]. 

Table  2.2: CDF 9/7 and Le Gall 5/3 analysis filters coefficients [32, 74].  

 

CDF 9/7  Le Gall 5/3  

LPF HPF LPF HPF 

0 0.852699 0.788486 1.060660   0.707107 

±1 0.377402 0.418092 0.353553 0.353553 

±2 −0.110624 −0.040689 −0.176777  

±3 −0.023849 −0.064539   

±4 0.037828 
 

  

2.2.3.1 DWT Decomposition Operations 

The DWT decomposition operation consists of two steps namely; filtering and 

decimation (down sampling by 2). This operation is reversed at the decoder side in the 

reconstruction operations.  It acts to reverse the decomposition operations using inverse 

wavelet filters and up sampling by 2. The filtering operation is accomplished by 

applying a sequence of low and high pass filters. The DWT decomposition and down 

sampling operation for a 1-D input signal can be expressed by the following two 

equations [77]: 

    ( )  ∑  (    )

 

    

 ( ) 

     ( )  ∑  (    )

 

    

 ( ) 

(‎2.9) 

Where  ( ) represents the input signal and      ( )          ( ) are the low and high 

output bands, and         represent the impulse response of DWT low and high pass 
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filters, respectively. Further, the reconstruction operations can be carried out as follows 

[77]: 

 ( )  ∑   (    )

 

    

    ( )  ∑   (    )     ( )

 

    

 (‎2.10) 

where           represent the impulse response of the inverse DWT (IDWT) low and 

high pass filters, respectively. 

The decomposition and reconstruction proposes can be repeated L times, where 

         , P is the input data length and L is the number of decomposition levels, 

which leads to a multilevel 1-D DWT decomposition and reconstruction as shown in 

Figure ‎2.3. This figure shows that both directions (decomposition and reconstruction) 

consist of a set of low and high pass filters with down sampling step in the 

decomposition and an up sampling step for reconstruction. Furthermore, in Figure ‎2.3 

the upper output represents the coarse components while the fine components of the 

original signal are represented in the lower part. The coarse part contains the shape of 

the signal or image decimated by the number of wavelet levels. It results from applying 

a sequence of low pass filters only. The fine parts are the output that results from a 

combination of high and low pass filters or high pass filters only. Furthermore, in 

multidimensional signals such as 2-D images and video sequences, the DWT can be 

computed using separable technique by applying 1-D DWT on each dimension, 

successively. Thus, the 2-D DWT can be computed by applying (‎2.9) on the rows and 

columns and on frames in the case of 3-D DWT. Further , 2-D and 3-D DWT can be 

computed using non-separable technique by applying 2-D and 3-D wavelet filters on the 

input data. Therefore, for the 2-D DWT, four output bands are computed for each 

decomposition level, namely: LL, HL, LH and HH bands, where: L and H stand for 1-D 

Low and High pass filters, respectively. Similarly, the output arising from 3-D DWT is 

8-band signal. These bands are: LLL, HLL, LHL, HHL, LLH, HLH, LHH and HHH. As 

a result of the filtering operations, H bands contain the fine components and the L band 

contains the coarse components in 2-D and 3-D DWT. The output bands for one level 2-

D and 3-D DWT decomposition are shown in Figure ‎2.4. 



16 

a. Two levels forward 1-D DWT

First level DWT

LPF

Coarse 

coefficients

Input 

Signal

Down 

Sampling

Second level DWT

HPF
Down 

Sampling

LPF
Down 

Sampling

HPF
Down 

Sampling

Fine 

coefficients-2

Fine 

coefficients-1

b. Two levels inverse 1-D DWT

Coarse 

coefficients
ILPF

Up 

Sampling

IHPF
Up 

Sampling

Fine 

coefficients-2

Fine 

coefficients-1

+ ILPF
Up 

Sampling

IHPF
Up 

Sampling

+
Reconstructed 

Signal

 

  Figure ‎2.3: Typical two levels 1-D DWT: a. Decomposition      b. Reconstruction 
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Figure ‎2.4: One level 2-D and 3-D DWT decomposition.  

 

The convention-based 1-D DWT computation of any 1-D signal can be obtained by two 

convolution steps using low and high pass filters and down sampling by 2. The 

convolution operation produces two sub-bands, low and high frequency; each one 

contains half the number of the original input samples [78]. Thus, the DWT 



17 

decomposition and down sampling operation for a 1-D input signal is computed using 

(2.9) and the reconstruction operations can be performed using (2.10) [77, 79]. 

The preceding computation procedure produces wavelet coefficients for 1-D signals, 

and moreover, the wavelet coefficients of 2-D and 3-D signals can be computed by 

applying 1-D DWT along each signal dimension, separable approach [78]. Additionally, 

as the convolution-based DWT computation approaches require high computation loads, 

a new algorithm was introduced in [80], which has been named the lifting scheme or 

lifting-based DWT computation method. The lifting scheme has been considered as an 

efficient approach for DWT computation. The computation load of the convolution-

based DWT has been reduced by up to 50% using the lifting-based DWT scheme [81]. 

The lifting scheme partitions the wavelet filter into a sequence of triangular matrices. 

Such an approach is called lifting-based DWT. The lifting scheme is composed of a 

sequence of prediction and updating steps as shown in Figure ‎2.5. The most important 

features of this scheme can be summarised as follows [81]: 

1. Faster than the ordinary convolution-DWT approaches. 

2. Low memory requirement. 

3. The computation of each lifting step can be implemented in parallel. 
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Figure ‎2.5: Lifting scheme (a) decomposition (b) reconstruction. 

 

Further, the computational complexity of lifting-based CDF 9/7 DWT is shown in 

Table ‎2.3. The number of operations is computed according to the original structure of 

the CDF 9/7 1-D DWT lifting scheme.  In this table,    multiplication and      

addition operations are required to compute the 1-D CDF 9/7 wavelet filter for  -

sample using lifting scheme. In addition,    1-D DWT is required to compute the 2-D 
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DWT for    -point data block using the RC approach while,     1-D DWT is 

required in the case of the RCF 3-D DWT. 

Table ‎2.3: The arithmetic operations of the lifting-based 1-D, 2-D and 3-D CDF 9/7 

wavelet filter. 

Operations 1-D  2-D 3-D 

Multiplication            

Addition        (    )    (    ) 

2.2.3.2 DWT Applications 

The JPEG2000 image compression standard is one of the most important applications of 

2-D DWT [7, 82]. Further, the multidimensional DWT is used in hyperspectral image 

compression [32], 3-D integral images compression [83], medical image compression 

[26, 84-86] and image watermarking [87]. The 3-D DWT is used in video, medical and 

remote sensing imaging (multispectral images) compression systems, and such an 

example is the 3-D SPECK [32]. Furthermore, various other wavelet-based image 

compression algorithms have been published in the literature. Among them the 

Embedded Zerotree Wavelet (EZW), Set Partitioning In Hierarchical Trees (SPIHT), 

Set Partitioned Embedded BloCK coder (SPECK), Embedded Block Coding with 

Optimized Truncation (EBCOT)[32].  

2.3 Rate Distortion Measurements 

Image and video quality is an important factor in different applications. Thus, the output 

accuracy through this thesis is computed and considered carefully using the well-known 

rate distortion measurement criteria. The Root Mean Square Error (RMSE) and Peak 

Signal to Noise Ratio (PSNR) have been used as objective fidelity criteria. The RMSE 

and PSNR (dB) between the original and the reconstructed images or frames can be 

computed as follows: 

     √
 

  
∑∑(   (   )      (   ))

 
 

   

 

   

 (‎2.11) 



19 

     √
 

   
∑∑ ∑(   (     )      (     ))

 
 

   

 

   

 

   

 (‎2.12) 

            (
(   (   ))

 

(    ) 
) (‎2.13) 

where, P and Q are the image/frame dimensions, F is the number of images or frames, 

   (   )        (   ) is the original and reconstructed images, respectively.    (   ) is 

typically equal to 255.  

2.4 Related work 

The related work section has been divided into three sub-sections to summarise the 

previous work about the AQC, DCT and DWT algorithms and architectures.  

2.4.1 AQC Related Work 

Image compression can be classified into lossy and lossless classes. The lossy class 

reduces the bits required for storing or transmitting an image without much 

consideration of the image resolution. Lossless compression preserves the quality of the 

compressed image so that it is exactly the same as the original.  

Many algorithms have been developed by researchers for both image compression 

classes; some of these algorithms use the DCT or DWT, while others avoid the 

complexity of applying such transforms. Examples of transform-based algorithms are 

the JPEG and JPEG2000. The two standards are DCT and DWT based image 

compression standards, respectively. The main issues with JPEG and JPEG2000 are 

their unsuitability for small devices that require low power consumption and high 

processing speed. 

The other class of compression algorithms avoids using the DCT or DWT. A typical 

example of such algorithms is the BTC, which was introduced by Delp and Mitchell [2]. 

This algorithm is used for image compression with a bit rate of 2 bit per pixel (bpp) and 

leads to good image quality. The algorithm divides the input image into 4×4-pixel 

blocks to compute a bit plane using a two-level quantiser, and two moments 

representing the high and low mean. The main advantages of BTC are the good image 

quality and low computational complexity, compared to the transform-based 
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compression algorithms. However, the main drawback of this algorithm is the annoying 

blocking artefact caused by the low bit rate requirement [1, 3, 37].  

Many researchers have tried to modify or enhance the performance and reduce the bit 

rate of the BTC [4, 5, 37, 38, 40-42, 88]. Some of these algorithms utilise the same BTC 

two-level quantiser, while others use a three-level quantiser. In [37], a three level 

quantiser has been used to classify the pixels into low, intermediate and high intensity, 

according to predefined thresholds. To further reduce the bit rate, this algorithm 

transmits only odd rows and columns of each 6×8-pixel block; the remainder of the 

pixels are reconstructed according to an interpolation function. In [4], an algorithm for 

colour image compression was presented as a combination of the ordinary BTC and the 

AQC [5]. This algorithm converts the RGB image to a Luminance-Chrominance colour 

space (YCbCr) and partitions it into 6×6-pixel main blocks, and each block is divided 

into four 3×3  sub-blocks. The four 3×3-pixel sub-blocks are encoded using the BTC 

algorithm to extract four luminance bit planes and 24 moments (two moments for each 

sub-block in each colour plane). These components are encoded using the AQC 

algorithm. Further, an improved BTC algorithm for colour image compression was 

presented in [42]. This algorithm generates a luminance bit map to represent the edge 

information, with three additional bits to represent the differences between luminance 

(Y) and other colour planes. Furthermore, the BTC blocking artefact is reduced using 

modified Error Diffusion (EDF) by diffusing the quantised error into neighbouring 

pixels [40]. It utilises three EDF kernels to distribute the error between the original and 

the corresponding bi-level BTC pixels into the neighbourhood pixels. Further, an 

improved and low complexity BTC algorithm was presented using a look up table 

(LUT) dither array [41]. In this algorithm, the dither array is calculated offline to reduce 

the computation complexity. The reduction in blocking artefact is an important feature 

of this algorithm. An improved multitone BTC algorithm was presented in [88]. This 

algorithm uses a 3×3 mean filter at the decoding phase to produce an intermediate 

image. The intermediate image is used to compute a bilateral filter weights. Then, the 

multitone image is computed by applying the bilateral filter to the decoded image.    

2.4.2 DCT Related Work 

Transforms such as the Discrete Fourier Transform (DFT), DWT, and DCT play a 

critical part in various DSP applications, including audio, image and video systems. 

Much of the usefulness of these transforms arises from their frequency and time-
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frequency representations and properties including the decorrelation property, energy 

compactness and the availability of fast algorithms for their computation. Nevertheless, 

even the fast algorithms that implement these transforms are very compute-intensive. 

Thus, these transforms can become a bottleneck in terms of the speed of the system, and 

contribute greatly to the area usage and power consumption of their wide applications 

[10-17, 22, 27, 28, 89-92]. For its role in many image and video applications, including 

the JPEG, MPEGx and H.26x compression standards, the DCT has received a great deal 

of research interest [6, 8, 51-53]. As a matter of fact, the 2-D DCT is the image 

transform which reduces inter-pixel redundancy in the JPEG standard [6]. Further, 3-D 

DCT is used to eliminate the need for motion estimation in video compression systems, 

which takes advantage of the data redundancy of video stream in spatial and temporal 

domains [54]. Numerous 1-D and 2-D DCT architectures have been suggested in the 

literature [93-99]. Exploiting the separability principle of the transform, 2-D DCT cores 

are based on the 1-D DCT RC approach [95-97, 99]. In addition, they address different 

requirements, including power consumption, speed and hardware usage [10-17]. While 

the 3-D DCT architectures can be found in [24, 25, 100-103]. Traditionally, the 3-D 

DCT has been implemented by cascading stages of the 1-D DCT, taking account of the 

separability principle which breaks the 3-D DCT computation to three 1-D DCTs, such 

as in the well-known RCF approach. Noteworthy differences between architectures in 

the literature is their level of parallelisation in terms of the number of stages and the 

number 1-DCT units per stage, which leads to different trade-offs between circuit 

complexity and throughput rate. One common architecture employs three stages of one 

1-D DCT unit each and N
3
 + N

2
 transpose memory [24, 102, 103]. Parallelisation can be 

applied to the first two 1-D DCT processors, which indeed implement a 2-D DCT 

transform, leading to the utilisation of 2N+1 1-D DCT processors and N
3
+N memory. 

Another class of the 3-D DCT architectures multiplexes the 1-D DCT involved in its 

computation into single 1-D DCT architecture. Such a class of architecture requires N
3
 

memory words [24, 103]. In [24],  a context based 3-D DCT RCF algorithm and its 

VLSI implementation for various parallelization levels has been introduced. With 

regards to 180 nm CMOS technology, such architecture can operate at frequencies of up 

to 72, 103 and 120 MHz for 1.6, 1.8 and 1.95 supply voltages, respectively. 

Furthermore, for 90 nm, the proposed system operates at frequencies of up to 120.2, 

176.4 and 208.8 MHz using 1.08, 1.2 and 1.26 supply voltages, respectively [24].   

Evidently, the economy made in hardware utilisation came at the cost in throughput 

rate. As a matter of fact, using three 1-DCT architectures to implement the 3-D DCT 
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achieves a throughput rate three times higher than when employing a single 1-D DCT 

processor. Another class of the 3-D DCT architecture relies solely on the systolic 

approach with its well established methodology and complexity analysis [25]. In  [25], a 

3-D DCT architectures based on a dedicated three-dimensional array processor have 

been presented.  Such architectures are termed; Original, Pipelined ver.1, Pipelined 

ver.2 and Block. These architectures utilises RCF technique and different levels of 

parallelisation and pipelining. Nevertheless, such parallelisation levels are associated 

with high hardware utilisation costs. As an example, for     points the block 

architecture consumes 19,355 Logic Elements (LE), 13,347 registers, 525 input/output 

(I/O) pins and 128 embedded multipliers. 

2.4.3 DWT Related Work 

The DWT is an efficient tool in multidimensional signal processing and digital 

communication applications. While the 1-D DWT has found in many audio 

applications, the 2-D DWT is used in the well-known image compression JPEG2000 

and MPEG-4 standards, watermarking, de-noising and multimedia information systems 

[7, 18, 78]. The lossless JPEG2000 compression system utilises the lossless 5/3 integer 

wavelet filter, termed Daub-4, while the CDF 9/7 floating-point filter banks are used in 

the JPEG2000 lossy compression system [104]. Furthermore, the 3-D DWT is used in 

video, medical, hyper spectral and integral image compression systems [28, 83, 84, 

105]. Although the DWT has more applications than the DCT, it is affected by high 

computational complexity and high memory requirements [28]. Therefore, numerous 

algorithms and architectures have been proposed in the literature for efficient DWT 

implementations with the aim of lower-power consumption, higher clock rates and 

lower memory requirements [18-23, 27-30, 86, 105-110].  

A VLSI 2-D DWT architecture for lifting-based DWT computation is proposed in [18] 

.Such an architecture is based on a modified lifting scheme for CDF 9/7 1-D and 2-D 

wavelet filters. In [19], 2-D lifting based DWT multi-input/multi-output VLSI 

architectures were proposed. The proposed architectures process multiple input data 

rows concurrently to attain high processing speeds. The operating frequencies of the 

proposed architectures were 65.38, 64.25 and 63.52 MHz for 2, 4 and 8 parallel 

computation units, respectively, with a memory requirement of 10M+4N+MN/2 where 

M is the number of parallel units and N×N is the image size. Furthermore, in [20], 

parallel FIR filters with a polyphase structure were used to improve the speed of the 2-D 
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DWT structures. A high speed non-separable pipeline 2-D DWT VLSI architecture was 

proposed in [21]. Such architecture can operate at a frequency of up to 135 MHz with 

8×18 Kb block RAM. In [22], high-throughput and low-latency 2-D block-based 

pipeline DWT architectures using lifting scheme were proposed. In addition, a high-

throughput lifting-based 2-D DWT architecture for efficient area and power 

consumption was proposed in [23]. The memory requirement of the proposed 

architecture is (4N + 8P) words, where N is the image width and P is the input block 

size. 

Furthermore, in [28], a lifting-based 3-D DWT architecture was proposed for an infinite 

Group Of Frames (GOF) input data. This architecture can operate at a frequency of 321 

MHz and generates 2 samples /clock cycle. A VLSI architecture which implements the 

Daub-4 using the conventional convolution based method was proposed in [29]. The 

memory requirement of such architecture is    ⁄    , where     pixel is the 

frame size. Furthermore, the proposed architecture in [109] uses on-chip and off-chip 

memories of   (   )(   )     and     ⁄ , respectively, where,   is the 

number frames,   is the filter length and      is the frame size. The on-chip memory 

represents the internal block memory slices while the off-chip memory represents the 

external memory resources such as the DDR. In [30], cascaded pipeline architectures for 

multilevel convolution-based 3-D DWT computation were proposed. Such architectures 

use computation blocks to compute each decomposition level to reduce the frame-

memory and maximize the hardware utilisation efficiency. Each decomposition level is 

split into three parallel stages to further improve the processing speed. However, the 

memory requirement of the proposed architecture is  (   )     (    )  
  

 
 

on-chip storage and 
    

 
 frame buffer, where,  : image height,  : image width, K: is 

the filter length,         ,          ,             and   is the maximum 

of levels of 3-D DWT decomposition [30]. A memory-efficient 3-D DWT architecture 

using an overlapped GOF has been proposed in [27]. In this architecture, the input 

frames are partitioned into blocks of 6×6-pixel, while the GOF and the number of 

overlapped frames are related to the wavelet filter order. As an example, the GOF of the 

Daub-4 is equal to 4 and two frames have to be overlapped. Similarly, the GOF of the 

CDF 9/7 is equal to 9 frames with 7 overlapped frames. In general, the number of 

overlapped frames is equal to GOF-2 while the GOF is equal to the filter order. Thus, 

for the Daub-4, four frames are fed to the computation units, and two of them have to be 

reloaded again in the subsequent GOF. Therefore 50% data redundancy is required. 
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Moreover, in the CDF 9/7 wavelet filter, 7 frames should be reloaded to the architecture 

together with two new frames to provide sufficient data for 3-D DWT computation.  

2.5 Field Programmable Gate Array (FPGA) 

The FPGA is a type of Application Specific Integrated Circuits (ASIC) which is 

designed to be configured by the hardware designer using different hardware 

description languages [111]. An example of FPGA device suppliers is the Xilinx 

Corporation, which has been one of the leading FPGA devices providers since 1984. 

Xilinx have introduced relentless variant FPGA devices with system performance, 

processing power, hardware resources and power consumption. Up to 2010, two main 

Xilinx programmable families had been introduced, Virtex and Spartan. They are 

largely similar in terms of construction and architecture. However, the Virtex family can 

be used for high performance applications. It is fabricated in more advanced CMOS 

technology, while the Spartan family is more applicable for low-cost, high volume 

applications [112]. A brief description of the Xilinx FPGA families that have been 

introduced since 2003 is illustrated in Table A.1 in the Appendix A, taking the main 

characteristics of the largest device from each family for the sake of a clear comparison. 

A quick view of Table A.1 reveals that the block memory sizes have increased up to 10 

times and so has the number of Digital Signal Processing (DSP) slices. For the DSP 

slices, it is clear that the earlier versions of Xilinx devices was only composed of 18×18 

bit multipliers, while in the most recent devices the DSP slices have become more 

advanced and contain 25 × 18 bit multipliers, together with an adder and accumulator. 

Another difference lies in the Configurable Logic Block (CLB) construction. CLBs 

contain two slices, each slice has four 6-input Look Up Tables (LUT) and eight Flip 

Flops (FFs) in the recently introduced Xilinx device, while they used to have four slices 

per CLB and each slice used to have two 4-input LUT and two FFs.  

Further, in 2010 another two families were introduced, Artix 7 and Kintex7, together 

with a high performance Virtex 7 family. A comparison between these families and 

series 6 families can be found in Table A.2 in the Appendix A [113]. It is obvious from 

Table A.2 that Virtex 7 is more efficient than Virtex 6 by approximately 50% in terms 

of logic cells, Block RAM, DSP slices and power consumption. Furthermore, the Xilinx 

series 7 represents the lowest power consumption family among all other Xilinx 

families; in comparison with the previous family, series 7 has 65%, 25% to 30% and  

30% lower static, dynamic and I/O dynamic power consumption, respectively [114]. 

http://www.xilinx.com/products/silicon-devices/fpga/kintex-7/index.htm
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Furthermore, the series 7 Virtex 7 family is a high performance family in terms of 

performance while Artix 7 is suitable for low power consumption applications. A 

simple comparison between Virtex7, Kintex7 and Artix7 in terms of performance and 

power consumption is illustrated in Figure A.1 in the Appendix A [114]. 

Furthermore, the most recent Xilinx product is the Zynq 7000 automotive family, which 

is fabricated using 28 nm CMOS technology based Xilinx programmable logic. This 

family mixes all the programmable 28 nm technology with a dual-core ARM Cortex A9 

processor, as described in Figure  2.6. The ARM processor is a 64-bit microprocessor 

which is used in many mobile phones and other small devices. The ARM processing 

system comprises on-chip memory and external memory interfaces together with the 

ARM Cortex-A9 processor [115, 116]. 

 

 

Figure  2.6: Zynq-7000 system architecture [117]. 

 

2.6 Xilinx FPGA Devices’ Main Components 

Xilinx FPGA devices are a composition of CLBs, DSP blocks, Block RAMs, 

Input/output ports (I/O) and programmable interconnections, as shown in the basic 

block diagram of Figure ‎2.7 [118-125].  
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Figure ‎2.7: Basic block diagram of an FPGA device architecture [126].  

2.6.1 Configurable Logic Blocks (CLBs) 

A CLB is the main logic component used for circuits implementations. It composes of 

two slices (four slices in Virtex 4, see Table A.1 in the Appendix A) connected to a 

switch matrix, as shown in Figure ‎2.8. Each slice has its own carry chain [120, 121]. 

Two types of slices are used in FPGA devices, namely: SLICEL and SLICEM. SLICEL 

is a combination of LUTs, storage elements, wide function multiplexers and carry logic. 

It can be used to implement logic and ROM functions. The function generators can be 

configured as 6-input LUTs or dual-output 5-input LUTs. The Boolean function of each 

LUT can be modified or altered using existing hardware description languages. 

SLICEM has an additional function which supports data shifting using 32-bit registers 

(or 16-bit × 2 shift registers) and data storing using distributed RAM (64-bit distributed 

RAM). A brief description of CLB logic resources for both slice types is shown in 

Table ‎2.4. It is clear from Table ‎2.4 that Virtex 6 has twice the number of Flip-Flops of 

Virtex 5; as such it provides more efficient hardware functionality. 
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Figure ‎2.8: CLB block diagram [120]. 

 

Table ‎2.4: Hardware resources in single CLB for Virtex 5 and Virtex 6 [120, 121]. 

 All CLBs (SLICEL and SLICEM) SLICEM only 

Device Slices LUTs  FFs 
Arithmetic and 

Carry Chains 

Distributed RAM 

(bit) 

Shift 

Registers(bit) 

Virtex 5 2 8 8 2 256 128 

Virtex 6 2 8 16 2 256 128 

2.6.2 Block RAMs 

The block RAM is a dedicated hardware resource which can be used to store large data 

for high speed applications. Up to 18, 38 and 68 Mb block memory can be constructed 

using available block RAM resources in Virtex 5, 6 and 7 families, respectively. 

Further, each block RAM can be constructed as two independently controlled 18 Kb 

RAMs or one 36 Kb RAM. In addition, each 36 Kb RAM can be cascaded with other 36 

Kb RAMs to form bigger block memories. A variety of memory components can be 

implemented using a Xilinx CORE generator [124]. This includes ROMs, single/dual 

port RAMs and FIFOs. Since the FIFO uses dedicated memory resources, it does not 

require additional logic resources for its data control unit [120-122].  



28 

2.6.3 Distributed RAM (Available in SLICEM only) 

Distributed RAM is an efficient memory component in terms of resources, performance, 

and power aspects. It represents a good solution for small data and it can be 

implemented using available SLICEM LUTs resources [120]. Generally, Distributed 

RAM should be used for data sizes of 64 bits or less. However for a depth varying from 

64 to128 bits, the decision of using block or distributed RAM depends on the 

availability of block RAMs; if not available, distributed RAM can be used instead.  

Further, the block memory should be used for data widths greater than 16 bits [127].   

2.6.4 DSP Slices 

DSP slices accelerate and reduce the power consumption required by the multiplication 

operations. Each DSP slice in Virtex 5 and later families composed of 25×18-bit two’s 

complement multiplier with a 48-bit output precision and optional adder, subtracter and 

accumulator with an optional pipeline stages for performance enhancement [118, 123, 

128]. 

Further, each Xilinx device contains interconnection matrices, I/O buffers and ports, 

PCI interfaces, high throughput transceivers and memory interfaces. Full details about 

the components of each Xilinx FPGA device can be found in [125]. 

2.6.5 Specifications of FPGA Devices Used in This Thesis  

In this thesis, two Xilinx FPGA devices are used for verification and performance 

evaluation. The first device is the xc5vlx50t-3ff1136 Virtex 5 FPGA. It is used in the 

evaluation operations of the architectures in chapters 3, 4 and 5. Such a device 

encompasses up to a 2.1 Mb block memory and 48 DSP slices; both of these are 

required for the proposed architectures. The second device is the XC6VLX760 Virtex 6 

FPGA device. It is used in Chapter 6 to fulfil the hardware requirement of the parallel 

multidimensional wavelet architectures. The main features of this device include; a 

block memory of up to a 25Mb and 864 DSP slices. A summary of the main features of 

the two FPGA devices is shown in Table  2.5 [118-121].  
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Table  2.5: Summary of XC5VLX50T and XC6VLX760 Xilinx FPGA devices 

characteristics.  

Device 
Virtex 5 

XC5VLX50T  

Virtex 6 

XC6VLX760  

CLBs Total Slices 7200 118560 

SLICELs 5280 85440 

SLICEMs 1920 33120 

Max Distributed 

RAM (Kb) 
480 8280 

Shift registers 

(Kb) 
240 4140 

DSP48E1 Slices 
 

48 864 

Block RAMs 18 Kb 120 1440 

36 Kb 60 720 

Max (Kb) 2160 25920 

Max User I/O 
 

480 1200 

Slice configuration 

 

4-LUT, 4-Storage 

elements (FF), 

multiplexers and carry 

logic 

4-LUT, 8-storage 

elements (FF), 

multiplexers and 

carry logic 

2.7 Xilinx FPGA Design Tools 

Various Xilinx FPGA designing tools can be used in FPGA devices programming. They 

include an Integrated Software Environment (ISE) Design Suite, PlanAhead, an 

Embedded Development Kit (EDK), ChipScope Pro, AccelDSP, System Generator for 

DSP and Vivado High Level Synthesis design suite (Vivado HLS) [125].  

In ISE design suite and PlanAhead, the designed system can be built schematically or 

by programming using VHDL and Verilog hardware description languages. Through 

the ISE design suite, the designer can synthesise, implement, verify and perform device 

configuration for the required design throughout the project navigator’s panes. The 

EDK tool includes Xilinx Device Studio, the Software Development Kit, documentation 

and IPs for designing embedded processing systems using Xilinx FPGA Devices. 

Moreover, the ChipScope Pro tool captures, display and analyse the internal signals for 

a selected node. Another hardware design tool is the AccelDSP Synthesis tool [129]. It 

is used to transform Matlab floating point design into a fixed-point either in Matlab or 
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C++ format, and then it can be implemented in a Xilinx FPGA device. Further details 

can be found in [125].  

Moreover, two other high level hardware design tools can be used in hardware 

architectures implementations. These two tools include; the Xilinx System Generator 

for DSP and Vivado HLS. 

2.7.1 Xilinx System Generator for DSP   

System Generator for DSP is a high level hardware design tool [130]. It is used for high 

performance DSP system implementation using Xilinx FPGA devices. The Xilinx 

system generator is a system-level modeling tool based on Simulink of Matlab [125]. It 

shortens the time required to design and implement efficient DSP algorithms compared 

with other traditional Register Transfer Level (RTL) design procedures. It merges the 

functionality of Matlab Simulink with the requirement of hardware implementations 

using new Simulink DSP blockset that have been added to fulfill the hardware 

requirements. The DSP blockset is a library containing over 90 DSP blocks such as 

adders, multipliers, block RAMS, multiplexers, and others, as shown in Figure ‎2.9. The 

DSP blocks can be connected together in an appropriate way to satisfy the requirement 

of any proposed DSP system. Furthermore, the Xilinx System Generator for DSP 

generates VHDL or Verilog codes automatically from Simulink workspace, while the 

VHDL codes can be imported using a specific block in order to use it with other 

existing blocks as well. Further, a sequence of optimization operations should be carried 

out in order to improve the performance and robustness of the proposed architecture. 

The optimization operations include validating the functionality of the proposed 

architecture, whether it meets the design constraints or not. The function of the 

proposed architecture can be verified using Matlab Simulink simulation workspace with 

an appropriate setting of simulation time and clock period. Moreover, the power 

consumption can be analysed using Xilinx Power Analyzer, which is an integrated tool 

with the System Generator. Also, the timing constraint and critical path delay can be 

viewed and optimized for better performance and higher processing speed. Further, the 

critical path delay can be reduced by inserting some pipeline stages as required. The 

main System Generator DSP blocks shown in Figure ‎2.9 are the following [130]: 

 System Generator block: It is used to set the system clock period, select the 

target hardware device and VHDL and Verilog code generation. Further, another 

important function of System Generator block is the timing and power analysis 
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generation. Through the timing and power analysis tool, the designer can ensure 

that the proposed system meets the timing and power constraints before it is 

embedded or merged with other systems in the large model.  

 Gateway in: It represents the input port to convert the data from floating point to 

fixed point representation in a FPGA environment according to the word length 

and data precision specified by the designer. 

 Gateway Out: It is used to convert the data from fixed point to floating point 

representation and acts as an output port. 

 WaveScope: It is an optional tool to view the output waveforms at a dedicated 

node in the architecture. 

 Dual port RAM, single port RAM, ROM and FIFO: In RAM, ROM and FIFO 

blocks the depth, word size, latency and initial data (if any) of the selected 

RAM/ROM can be set. These memories can be constructed as a block or 

distributed RAM with a specific latency, as required. The block memory is 

constructed using the available dedicated memory resources. 

 Register: It is a D-FF register with one sample latency. 

 Delay: It is a chain of Shift Register LUT (SRL) followed by FF. It is used for 

data synchronising and pipelining purposes. 

 Shift: It is used to perform binary right and left shift with different output 

precision levels. 

 Slice or bit/bits slice: It is used to select specific bit/bits from the input sequence 

to create new data values with unsigned integer output values. 

 CMult: It performs the multiplication of the input data by a pre-selected constant 

value. Further, its latency and the output precision can be adjusted for optimum 

and fast multiplications. 

 Mult: It is used for two input data multiplication. Its latency and the output 

precision can also be adjusted. 

 AddSub: It is an adder/subtractor with the ability to modify latency and output 

precision. It can be used as an adder or subtractor or both. 
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Figure ‎2.9: Selected DSP blocks from system generator blockset. 

 

 Accumulator: It performs an accumulation operation (addition or subtraction) 

with different feedback scales and different latency depths. Its output data 

precision is similar to that of the input data. 

 Down sample and up sample blocks: Different sampling rates can be obtained 

using these two blocks; the up sampling block either repeats the data or fills it by 

a sequence of zeros. 

 Counter: Different ranges of up or down counters can be implemented using 

such a block and the output of the counter can be specified as a signed or 

unsigned.  

 Mux: It is a multiplexer with variable number of inputs and one unsigned control 

signal. 
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 Constant: It is used to set specific constant values such as an integer, fractional 

or Boolean. 

 Logical: It performs logical operations such as AND, NAND, OR, NOR, XOR 

and XNOR with adjustable number of inputs. 

 Relational: It is a comparator to perform relational operations such as greater 

than, equal or not equal. 

 MCode block: Using the MCode block, the designer can use simple Matlab code 

to perform simple operations such as comparison and/or switching. 

 Black Box: This is used to import pre-designed VHDL or Verilog codes to be 

used with other existing DSP blocks in the Simulink blockset. 

2.7.2 Vivado High Level Synthesis Design Suite (Vivado HLS) 

The Vivado HLS is the most recent Xilinx design tool. It was unveiled in April 2012 to 

support faster hardware implementation and verification. The Vivado HLS accelerates 

IP generation by directing C, C++ and SystemC codes according to the requirements of 

the Xilinx FPGA devices. Furthermore, it offers faster implementation and verification 

with an important feature of about 35 % average power advantage and about 20% better 

LUT utilisation[125, 131]. 

2.8 Architectures Design Procedure  

A design may go through variant implementation and verification steps, as shown in 

Figure ‎2.10. The figure, starting point is to analysis and apperception of the targeted 

algorithm. In the second step, such algorithm is coded in Matlab for testbench purposes. 

Thus, this is the base of the whole design procedure; the results obtained from this step 

are used for verification of the architecture.   In the third step, the architecture is built 

using the block sets of the system generator, and the architecture output is collected and 

verified with that obtained from Matlab codes. Various optimization operations are 

carried out to further reduce the hardware cost, power consumption and increase the 

processing speed. Such operations include pipelining to shorten the critical path, 

varying wordlengths for output precision, and the replacement of high cost hardware 

blocks, such as dividers and multipliers, with equivalent low cost blocks. Finally, once 
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all the optimization procedures have been carried out, the results are collected and a 

comparison with the software implementation results is made. 

Further, throughout the rest of this thesis the algorithms and architectures are designed 

and tested using the following software and tools: 

1. Machine specifications: Intel (R) Core (TM) 2 CPU 6600 @ 2.4GHz, 3.24 GB 

of RAM and 80 GB of Hard disk. 

2. Operating system: Microsoft Windows XP professional Version 2002 Service 

Pack 3. 

3. Software tool: Matlab version 2010a. 

4. Hardware design tool: Xilinx System Generator for DSP 12.4 (2010) and ISE 

12.4. 

5. Xilinx Xpower Analyser is used for power and timing analysis. 

6. The testing data composes of standard images, video sequences and medical 

images. In chapter 3, 2-D images and individual frames with block sizes of 

N×N-pixel have been used. While 3-D volume data and a cube size of N×N×N-

voxel is used in the evaluation process of the 3-D DCT and 3-D DWT 

architectures proposed in chapters 4 to 6.  

The design procedure using Xilinx system generator starts from Matlab Simulink and 

end with the bit stream generation, as shown in Figure ‎2.11 [132].  

 

mailto:6600@2.4GHz
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Figure ‎2.10: Architectures design procedure. 
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Figure ‎2.11: System Generator design flow [132]. 

 

2.9 Summary  

This chapter has presented the information required to support the work in the rest of 

this thesis. The information provided has reviewed the low complexity image 

compression algorithms, the DCT and DWT, their computational complexity. 

Furthermore, as the rest of this thesis focuses on FPGA-based implementation of such 

algorithms using Xilinx devices, necessary key information about Xilinx FPGA families 

and their architectures has been given. Moreover, the related work and FPGA design 

tools were presented including Xilinx System Generator for DSP. Furthermore, the 

design procedure of the proposed architectures has been introduced and the design, 

implementation and verification steps are outlined. 
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Chapter 3: Low Complexity Block-Based Image 

Compression Systems 

3.1 Introduction 

Low complexity image compression algorithms are necessary for modern portable 

devices such as mobile phones and wireless sensor networks. Examples of such 

algorithms are the BTC and AQC. Hence, this chapter introduces two new low 

complexity block-based image compression algorithms for low bit rate applications and 

their high speed, low power consumption architectures. The proposed algorithms are 

based on the AQC algorithm by considering the intensity variation of image regions to 

reduce the bit rate of the encoded image. Thus, the proposed algorithms introduce the 

intensity check process as an additional parameter to the AQC parameters to control the 

output bit rate while preserving the output PSNR within an acceptable range.  Such 

algorithms are termed Intensity Based Adaptive Quantisation Coding (IBAQC) 

algorithms. The key differences between the two proposed algorithms lie in the intensity 

check process of the image block and the computation cost. The first algorithm 

performs an intensity check operation on the variance of each image block prior to the 

AQC computation, whereas the second algorithm performs the same operation 

according to the quantisation steps of the AQC algorithm. The second algorithm avoids 

the computational complexity of the block variance required by the intensity check unit 

in the first algorithm.  Moreover, high speed and low hardware usage architectures have 

been designed and verified using xc5vlx50t-3ff1136 Virtex 5 Xilinx FPGA device.  

The remainder of this chapter is organised as follows: Section ‎3.2 introduces a 

background about the BTC and AQC algorithms. Section ‎3.3 presents two IBAQC 

algorithms, while section ‎3.4 presents their hardware architectures. The performance of 

both algorithms and their architectures are discussed in section ‎3.5 and the summary is 

drawn in section ‎3.6.  
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3.2 Background 

3.2.1 Block Truncation Coding (BTC) 

The BTC is a lossy image compression technique with a bit rate of 2 bpp [2]. The BTC 

algorithm uses a two-level quantiser and a bit plane which depends on local image 

features. The BTC algorithm partitions the input image into    -pixel blocks, and 

computes the bi-level bit plane and two 8-bit moments for each block. The computation 

steps of this algorithm are as follows: 

 Compute the mean and the standard deviation of each block. 

 Specify a threshold so that each pixel within the 4×4-pixel block, which is smaller 

than the threshold, is encoded as 0; otherwise, it is encoded as 1. In [2], the mean 

of each image block can be chosen as a threshold. 

  (   ) {
          (   )    ̅
               

 (‎3.1) 

where   (   ) is the output bit plane,  (   ) is the intensity of each pixel in the block 

and            , and  ̅  is the block mean. 

 Compute the two moments using the following two equations [2]: 
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where L0 and L1 are the moments,    is the number of pixels that are greater than the 

threshold of the block, and  ̅  is the standard deviation of the block: 

 ̅     √  ̅̅ ̅   ̅    

   ̅̅ ̅  
 

  
∑ ∑  (   ) 

   

   

   

   

  

  ̅  
 

  
∑ ∑  (   )

   

   

   

   

 

(‎3.4) 



39 

Thus, the encoding of each 4×4-pixel block requires 32 bits; 16 bits to encode the two 

moments and the remaining 16 bits for the resultant bit plane. 

The computation load of the original BTC algorithm was reduced by the Absolute 

Moment Block Truncation Coding (AMBTC) [133]. The AMBTC algorithm replaces 

the standard deviation and the mean by an appropriate high and low means, as follows: 

     
∑∑ (   )   { (   )  ̅}

  
 (‎3.5) 

   

     
∑∑ (   )   {  (   )  ̅}

   
 (‎3.6) 

where    and    represent the low and high means respectively, and    and    are the 

number of pixels that are less and greater than the threshold, respectively. 

Further, the decoding process is carried out by replacing each element in the bit plane 

by its corresponding low or high mean.  

           {
        (   )   

                     
 (‎3.7) 

where          is the reconstructed image.  

Further, the AMBTC algorithm computation procedure is shown in Figure ‎3.1. 

 

Figure ‎3.1: The AMBTC algorithm computation procedure. 
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3.2.2 Adaptive Quantisation Coding (AQC) 

AQC is used in different applications as a low complexity and high speed image 

compression system, such as an image compression system to reduce the motion blur on 

liquid crystal displays (LCDs) [4, 5, 43-46]. The AQC can be described as a multilevel 

BTC encoding system. The computation of the AQC compression algorithm includes 

the following three steps: 

1. Partitioning the input image into non-overlapped blocks of    -pixel.  

2. The computation of the quantisation step: 

 
 
 ⌊(      )  

 
⁄ ⌋ 

(‎3.8) 

where  
 
 represents the quantisation step ,  

 
  is the number of quantisation levels,  

      ( (   )) and        ( (   )). 

3. The bit plane (Bp)  of each block using a multilevel quantiser can be 

computed as follows: 

  (   ) ⌊( (   )     )  
 

⁄ ⌋ (‎3.9) 

Hence, the encoded bit stream includes bit plane, the quantiser step and the minimum of 

each block. These values are termed the AQC parameters. The computation procedure 

of the AQC algorithms is shown in Figure ‎3.2. 

 

Figure ‎3.2: The AQC algorithm computation procedure. 
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The decoding phase is carried out by restoring the original image from the computed 

AQC parameters, as follows: 

  ̃(   )      
 
   (   ) (‎3.10) 

where,  ̃(   )is the reconstructed image block. 

As such, the resultant bit rate of a grey scale image is expressed as follows: 

        
(           )

   
       

 (‎3.11) 

where       is the number of bits required for the quantiser step, which is equal to 

        
     .       

 is the quantisation level bits and Bitn is the number of bits 

used for encoding the minimum of each block (typically 8 bits). As an example, if a 

512×512 grey scale image is partitioned into 4×4-pixel blocks, the resultant bit rates are 

equal to 1.8125 and 3.8125 bpp using two and eight levels quantisers, respectively. 

The AQC algorithm outperforms the BTC algorithm in terms of the quality of the 

output images, but with a higher bit rate than the BTC algorithm [4]. However, the AQC 

algorithm produces a fixed bit rate throughout the whole image without considering the 

difference in intensity levels between image regions. Some image regions contain a 

single intensity level, whereas the others contain different intensity levels. Hence, 

improved encoders are proposed by considering the intensity variation of the image 

blocks, namely: the IBAQC. 

3.3 Intensity Based Adaptive Quantisation Coding (IBAQC) 

In this section, two IBAQC image compression algorithms are presented. The proposed 

algorithms consider the intensity variation of image regions to reduce the bit rates whilst 

keeping the quality of the compressed image at an acceptable level. Both algorithms 

comprise two steps: intensity check and AQC computation. The intensity check step is 

carried out locally within each data block using a certain intensity check unit. The two 

algorithms are termed Algorithm1 and Algorithm2. Algorithm1 performs the intensity 

check using the block variance prior to the AQC computation process. While, 

Algorithm2 performs the intensity check on the quantisation step of the AQC algorithm. 

The input parameters of both algorithms are the number of quantisation levels, block 

size and threshold. 



42 

3.3.1 Algorithm1 

The first algorithm (Algorithm1) is a composition of intensity variation check and AQC 

units, as shown in Figure ‎3.3 and Figure ‎3.4 . The input image is partitioned into non-

overlapping    -pixel blocks to check the local variation of each image block using 

the sample variance (  ̅̅ ̅). The variance can be computed using (‎3.4). A block variance 

is compared against a predefined threshold to classify the image blocks into low or high 

intensity variation. The variance of a small image block is small enough to ignore the bit 

plane of the whole block. Thus, an appropriate encoding method and the parameters for 

each image block are selected. The encoding parameters of the two classes of image 

blocks can be described as follows:  

     {
{           }       ̅̅ ̅   

{    ̅}                     
 (‎3.12) 

where      is the encoded bit stream,   {   } is the classification bit and   is an 

adjustable parameter which represents a predefined threshold. Further, the number of 

bits required for the quantisation step is given as follows: 
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 (‎3.13) 

where ⌈ ⌉ represents ceil function. 
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Figure ‎3.3: Block diagram of Algorithm1. 
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Figure ‎3.4: The Computation procedure of Algorithm1. 

 

Typically, the number of quantisation step bits is equal to (     
 
 

 
) in typical 8 

bit/pixel grey images. The number of bits required for the bit plane of high variation 

blocks is: 

      (   )    
 
 

 
 (‎3.14) 

Thus, the bit rate of the proposed algorithm for each image block is: 
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 (      )

   
                                             ̅̅ ̅  

(                  )

   
                

 (‎3.15) 

where                            is the number of bits required to represent; the mean, 

quantisation step, minimum and the bit plane of each block, respectively. Overall, the 

number of bits that are required to encode the low and high intensity variation blocks 

for 4×4-pixel blocks are shown in Table  3.1. From Table  3.1, a reduction of 72-88 % in 
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bit rate can be achieved for the low intensity variation blocks. Thus, the low intensity 

variation blocks are encoded using its mean and a 1 bit classifier, whereas the edge 

blocks are encoded using its minimum, quantisation step and bit plane. The number of 

quantisation levels can be set to 3, 4 or 5 depending on the required compression ratio 

and the output performance. 

The output of the former computation procedure represents the encoded or compressed 

image. On the decoding side, the decoder takes account of the classifier bit (   ). If it is 

in low state, the block is classified and decoded as a low variation block; otherwise, it is 

decoded as a high variation block. Thus, the decoding phase can be represented by the 

following equation: 

 ̃(   ) {
      (   )   

 
            

  ̅                                     
 (‎3.16) 

where  ̃(   )is the decompressed image block. 

Table  3.1: Number of bits required for each block type for 4×4-pixel blocks using 

different number of quantisation levels. 

Quantisation 

levels ( 
 
) 

Classifier 

bit 

     or  

     
            

Number of bit/Block for 

each intensity variation 

type: 

Bit rate 

Saving/Block 

%  
High Low 

2 1 8 7 16 32 9 72 

4 1 8 6 32 47 9 80 

8 1 8 5 48 62 9 85 

16 1 8 4 64 77 9 88 

 

3.3.2 Algorithm2 

This algorithm is a composition of AQC and an intensity variation check unit, as shown 

in Figure ‎3.5 and Figure ‎3.6. The input image is partitioned into    -pixel blocks in 

which the AQC parameters (the minimum of each block;    , quantisation step;  
 
 and 

the bit plane;   ) are computed. The AQC parameters and the output bit rate depend on 

the predefined quantiser, as stated in (‎3.9) and (‎3.11). The quantiser is selected 

according to the target bit rate and the required PSNR.  
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The proposed algorithm classifies each image block into one of two classes, low or high 

intensity variation block. High intensity variation blocks are encoded using the AQC 

coding system while low ones are represented by its mean, similar to Algorithm1. 

However, in Algorithm1 the intensity check unit utilises high computation complexity, 

which involves      multiplication and  (    ) additions to perform the block 

variance computation. Thus, to eliminate this number of multiplications a new intensity 

check unit is proposed. The new intensity check unit is based on the quantisation step of 

the quantiser, as the low variation blocks require lower quantisation steps than the high 

variation or edge blocks. Thus, to exploit this attribute for bit rate reduction, the 

quantisation step is compared with a predefined threshold. The bit plane and 

quantisation steps are discarded for any block for which the quantisation step is less 

than the predefined threshold. Thus, each low intensity variation block is represented by 

its mean and one classifier bit to distinguish between the two types of blocks. Moreover, 

the encoding bit stream of the high intensity variation blocks consists of a bit plane, a 

quantiser step size, the minimum intensity value of such a block and a single bit 

classifier. The encoded parameters of both block classes can be expressed as in (‎3.12) 

and the output bit rate is computed using (‎3.15), while the decoder described in (‎3.16) 

can be used in the decoding phase.  
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Figure ‎3.5: Block diagram of Algorithm2. 
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Figure ‎3.6: The Computation procedure of Algorithm2. 

 

3.4 The Proposed IBAQC Architectures  

In this section, two architectures that implement the proposed IBAQC algorithms are 

presented. The two architectures are named Model1 and Model2, which represent the 

architectures that corresponding to Algorithm1 and Algorithm2, respectively. Further, 

an architecture for the AQC algorithm is also designed and verified. The red and blue 

lines represent the controller signals while the black lines represent the actual data flow 

in the proposed architectures. The proposed architectures have been designed and 

implemented using Xilinx System generator tool, as illustrated in section 2.8. The 

initialisation Matlab codes for the proposed architectures are listed in the appendix B. 
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3.4.1 Model1 

The proposed Model1 architecture consists of five separate units: the main controller, 

the intensity check, the minimum, maximum and AQC computation units, as shown in 

Figure ‎3.7. Model1 architecture represents the hardware architecture of Algorithm1. 
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Figure ‎3.7: IBAQC Model1 architecture. 
 

The proposed architecture produces four outputs: the intensity check signal value Ctrl2, 

the minimum or mean of each block, the bit plane and quantisation step. Ctrl2 is a 

binary signal which distinguishes between the high and low intensity blocks (the 

classifier bit). 

3.4.1.1 Minimum, Maximum and Mean Computation Units 

The computation of the minimum and maximum of each input block is carried out using 

specific circuits composed of comparators, multiplexers and registers, as shown in 

Figure ‎3.8. The input parameters to the proposed architectures, which are the block size, 

number of quantisation levels, threshold and wordlengths are specified prior to the 

computation process of the compressed image. 
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Figure ‎3.8: Minimum and Maximum computation units. 
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Figure ‎3.9: Controller signal (Ctrl1). 

 

The minimum value of each block is computed as follows: each input pixel is compared 

with the output of the multiplexer Mux1, as shown in Figure ‎3.8-a. The output of the 

comparator Comp1 is high if the input pixel is greater than the Mux1 output; otherwise, 

it is low. The Comp1 output acts as a selector signal for the Mux1; if it is 1, the output 

of Mux1 is unchanged; otherwise, Mux1 selects the current input pixel. After    clock 

cycles, the output of Mux1 represents the minimum value of the data block and the 

register is set to its initial value (255) by the controlling signal Ctrl1. The maximum 

value of each input block is computed in the same way except for the comparison 

operation and the initial value of the register is zero. The output of Comp2 is high when 

the input data is less than Mux2 output. The block diagram of the maximum 

computation circuit is shown in Figure ‎3.8-b.  

Further, the mean of each input block is computed through the computation process of 

the intensity check unit. The controller signal Ctrl1 is used to reset the accumulators, 

enable/disable multipliers and set/reset registers. This signal is generated according to 

the size of input block and its waveform is shown in Figure ‎3.9.  
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3.4.1.2 Intensity Check Unit 

The intensity check unit is a combination of multipliers, accumulators (Accum), bit 

shifting and a comparator (Comp), as shown in Figure ‎3.10.  

Accum

1

-Controller Signal (Ctrl1)
Input 

Image

Mean

Accum

2

>>

log2(N
2)

>>

log2(N
2)

Comp

Threshold

1 bit 

Classification 

signal (Ctrl2)

(0 or 1)

Accum=Accumulator

Comp=Comparator

Mult= Multiplier

Mult1

Mult2

×

×

 

Figure ‎3.10: Intensity check unit of Model1. 

 

During each    clock cycles, the following sequence of operations is carried out in the 

intensity check unit: 

 The sum of all pixels in the    -pixel block using Accum1, as shown in 

Figure ‎3.10 

 The computation of the mean of each block ( ̅) using a     ( 
 ) right bit shifter 

 The computation of the square value of the mean ( ̅ ) using Mult1 

 The computation of the squared value of the mean of each input block using 

Mult2 

 The sum of the squared values of all pixels in the    -pixel block using 

Accum2 

 The computation of the mean of squared values    ̅̅̅̅  of each block using a 

    ( 
 ) right bit shifter 

 The computation of the variance, is given by: 

  ̅̅ ̅    ̅̅̅̅    ̅  (‎3.17) 

The last computation step of the intensity check unit is the comparison between the 

variance and a predefined threshold to generate the bi-level controlling signal Ctrl2. 
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Such a control signal is low for low intensity variation blocks Ctrl2=0. Moreover, the 

AQC computation is accomplished using the circuit of Figure ‎3.11. The AQC 

computation unit is turned on/off according to the state of Ctrl2 signal; if Ctrl2=0, the 

quantisation step and the bit plane are set to 0. The controller signal Ctrl2 is used to 

select the minimum or the mean of each block by driving Mux0 in Figure ‎3.7. 

3.4.1.3 AQC Computation Unit 

The next steps are the computation of the bit plane and the quantisation step of the 

image block. The bit plane is computed according to (‎3.8). However, division 

operations are avoided using two 256-Word ROMs and an addressing unit, as shown in 

Figure ‎3.11. The difference between the maximum and minimum ranges is from 0 to 

255, which can be used as the addresses of the two ROMs (ROM1 and ROM2). Thus, 

the content of ROM1 is: 

   ⌈
     

  
⌉ (‎3.18) 

and the content of ROM2 is given as: 

  
   

 

  
    

  ( )    (‎3.19) 

where    is the quantisation steps and ⌈ ⌉ represents the ceil function and   
   is an 

array of 256 words used for the bit plane computation in (‎3.9). The output from ROM2 

is multiplied by the difference between the actual pixel value and the minimum of each 

block to produce the bit plane of the input data block. Such a bit plane is coded as 

unsigned integer on    
 
 

 
 bit. 

Input 

Block

ROM1 

256 

Words

-
ROM2 

256 

Words

Maximum

Minimum

Quantisation 

step

-
Bit Plane

Controller Signal (Ctrl2)

×

 

Figure ‎3.11: AQC computation unit of Model1. 
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3.4.2 Model2 

Model2 architecture consists of six separate units: the main controller, intensity check, 

minimum, maximum, mean and AQC computation units, as shown in Figure ‎3.12. The 

input parameters of the proposed architecture are the quantisation levels, block size and 

the threshold value.   

Mean

Maximum 

Minimum 

Controller 

Signal

Ctrl1

Input 

Image AQC 

Computation

Mean or 

Minimum

Quantization step

Mean

Minimum
Mux

0

Bit Plane

Mux=Multiplexer

Comp0 Threshold

Comp=Comparator

1 bit Classification 

signal (Ctrl2)

(0 or 1)

 

Figure ‎3.12: IBAQC Model2 architecture. 
 

The computation of the minimum and maximum of each input block is carried out using 

the same procedure of Model1, while the mean of each input block is computed using 

an accumulator and    
 
   right bit shifter. The AQC parameters are computed using 

the circuit that shown in Figure ‎3.13. The computation process is carried out similar to 

that of Model1 architecture. However, the ROM1 output is compared against the 

predefined threshold to generate the second controlling signal (Ctrl2), as shown in 

Figure ‎3.13. When Ctrl2 is 0, the multiplier is turned off, the output of Mux3 is set to 0 

and the mean of each block is selected, otherwise the multiplier is on, the Mux3 output 

is set to    and the minimum of each input block is selected. The   , Mult1 output (bit 

plane), minimum and the Ctrl2 binary signal represent the encoded bit stream of the 

high intensity variation input block.  

Input 

Block

ROM1 

256 
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-
ROM2 

256 

Words

Maximum
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-
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Quantization 

step (Qs)

Mux

3

CompThreshold
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(0 or 1)

0
Qs

-1Qs

×

 

Figure ‎3.13: AQC computation unit of Model2. 
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3.4.3 AQC Architecture 

The AQC architecture is designed similar to Model2 architecture, with only difference 

being the intensity check unit which has been removed. The block diagram of the AQC 

architecture is shown in Figure ‎3.14 and its operation sequence is similar to Model2 

architecture. However, all image blocks are encoded using the minimum, bit plane and 

the quantisation step.   

Maximum 

Minimum 
Ctrl1

Input 

Image
AQC 

Computation

Minimum

Quantization step

Bit Plane

 

Figure ‎3.14: The AQC architecture. 
 

Further, the computational complexities and the initial latencies of the AQC, Model1 

and Model2 architectures are shown in Table  3.2. It can be seen from Table  3.2, the 

AQC and Model2 architectures have the same number of multiplication operations. 

While additional     -addition operations are required to perform the block mean 

computation in Model2. Further, Model1 shows an additional number of multiplication 

and addition operations over AQC and Model2 which are required for variance 

computation. However, the number of addition and multiplication operations depends 

on the type of each image block. For high intensity variation blocks;        and  

      addition and multiplication operations are required, respectively. Whereas 

only  (    )and       addition and multiplication operations are required for low 

intensity variations blocks.   

Table  3.2: Computational complexities of the AQC, Model1 and Model2 architectures. 

Architecture Latency 
Number of 

Additions Multiplications 

AQC               

Model1        

      : (for high intensity 

variation blocks) 

or   (    ) :(for low intensity 

variation blocks) 

      :(for high intensity 

variation blocks) 

or      :(for low intensity 

variation blocks) 

Model2              



53 

3.5 Performance Evaluation 

In this section, the proposed algorithms and their corresponding architectures are tested 

on natural and commonly used images, as shown in Figure ‎3.15. Tests have been carried 

out using different block sizes, quantisation levels and thresholds. The block sizes used 

are:  4×4, 8×8 and 16×16-pixel while the quantisation levels are 8, 16 and 32 levels.  

 

Figure ‎3.15: Test images. 

3.5.1 Performance of the Proposed Algorithms  

The obtained results are evaluated using the bit rate and PSNR of the reconstructed 

images. A Matlab code is written to compute the PSNR using (2.13). 

3.5.1.1 Rate Distortion Performance of Algorithm1 

The PSNR and bit rates of Algorithm1 using low threshold value of 12 and high 

threshold value of 400 are shown in Table ‎3.3 and Table ‎3.4, respectively. The low 

threshold (Table ‎3.3) produces very good image quality and high average PSNRs 

ranging from 41 to 46 dB with a bit rate of 3 to 4 bpp. As can be seen from Table ‎3.3, 

the best choice of the block size is 4×4-pixel with an 8-level quantiser. Such a block 

size, quantiser and threshold parameters have resulted in a good compromise between 

image quality and bit rate.  
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Table ‎3.3: PSNR and bit rate computed using Algorithm1 for different block sizes, 

quantisation levels and a low threshold (12). 

    

Lena 

(512×512) 

Baboon 

(512×512) 

Pepper 

(512×512) 

Barbara 

(512×512) 

MRI1 

(128×128) 

MRI2 

(256×256) 

N QL 
PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

4 32 43.9 3.3 48.9 5.6 44.3 4.2 43.8 3.3 53.7 2.5 48.4 5.3 

4 16 43.4 2.8 44.0 4.7 43.5 3.5 43.2 2.8 49.7 2.2 46.0 4.4 

4 8 41.4 2.3 37.4 3.8 40.5 2.9 40.9 2.3 41.3 1.8 41.6 3.6 

8 32 44.6 3.6 47.4 5.2 45.6 4.4 44.7 3.6 54.1 2.3 48.7 5.0 

8 16 43.2 2.9 42.0 4.2 43.3 3.6 43.3 2.9 48.0 1.9 43.7 4.1 

8 8 39.3 2.2 35.7 3.2 38.3 2.7 39.4 2.3 38.1 1.5 37.5 3.1 

16 32 45.0 4.1 45.8 5.0 46.0 4.7 45.7 4.2 52.9 2.8 47.2 5.0 

16 16 42.2 3.3 40.3 4.1 41.7 3.8 42.8 3.4 47.3 2.2 41.0 4.1 

16 8 36.9 2.5 34.2 3.1 35.6 2.9 37.4 2.5 36.7 1.7 34.1 3.1 

Average 42.2 3.0 41.7 4.3 42.1 3.6 42.4 3.0 46.8 2.1 43.1 4.2 

Table ‎3.4: PSNR and bit rate computed using Algorithm1 for different block sizes, 

quantisation levels and a high threshold (400). 

    

Lena 

(512×512) 

Baboon 

(512×512) 

Pepper 

(512×512) 

Barbara 

(512×512) 

MRI1 

(128×128) 

MRI2 

(256×256) 

N QL 
PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

4 32 31.8 0.9 29.5 2.8 32.1 1.0 32.3 0.9 31.4 1.3 30.9 1.2 

4 16 31.8 0.8 29.5 2.4 32.1 0.9 32.3 0.8 31.3 1.1 30.8 1.1 

4 8 31.7 0.8 29.0 2.0 31.9 0.9 32.1 0.7 31.1 1.0 30.7 1.0 

8 32 30.9 1.0 29.9 3.0 30.9 1.1 30.7 0.7 31.7 1.5 31.4 1.2 

8 16 30.8 0.8 29.7 2.4 30.9 0.9 30.6 0.6 31.6 1.3 31.3 1.0 

8 8 30.5 0.6 29.1 1.9 30.4 0.7 30.4 0.5 30.9 1.0 30.6 0.8 

16 32 30.2 1.6 30.6 3.4 30.4 1.9 28.9 1.0 32.0 2.0 32.5 1.5 

16 16 30.1 1.3 30.3 2.7 30.3 1.5 28.9 0.8 31.9 1.6 32.1 1.2 

16 8 29.6 1.0 29.2 2.1 29.5 1.2 28.5 0.6 30.9 1.2 30.4 0.9 

Average 30.8 1.0 29.6 2.5 30.9 1.1 30.5 0.7 31.4 1.3 31.2 1.1 
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Furthermore, Table ‎3.4 shows the performance of the encoded images using a high 

classification threshold. The average bit rates, in this case, are 1 to 2.5 bpp with average 

PSNRs of 30 to 31 dB. All the images behaved equally except the baboon image, which 

is an example of a high intensity variation image. Further, the 4×4-pixel block size and 

16-level quantiser parameters provide the best compromises between image quality and 

bit rate in the case of a high classification threshold. 

3.5.1.2 Rate Distortion Performance of Algorithm2 

Samples of the obtained results using Algorithm2 are shown in Table ‎3.5 and Table ‎3.6 

as an illustration of low and high thresholds cases, respectively. Table ‎3.5 shows the 

PSNRs and bit rates obtained using a low classification threshold for very good output 

image quality. The blocks which have a quantisation step of less than 0.4 are dropped, 

and classified as low intensity variation blocks and encoded by their mean and a single 

bit classifier. The remaining high intensity variation blocks are encoded using their 

minimum, quantisation step, bit plane and a single bit classifier. From Table ‎3.5, the 

average PSNRs of the test images range from 41 to 47 dB and the average 

corresponding bit rates are 2.2 to 4.4 bpp. Further, for such high output accuracy, it can 

be concluded that the block size of 4×4-pixel with an 8-level quantiser (shaded cells in 

Table ‎3.5) produces the best compromises between the output PSNRs and bit rates.  

Furthermore, Table ‎3.6 presents the PSNRs and bit rates for a classification threshold of 

2. Such a high threshold has led to more blocks being classified as low intensity 

variation and represented by their means and a single bit classifier, which consequently 

has resulted in low bit rate encoded image. From this table, the block size of 4×4-pixel 

and 32 quantisation levels have resulted in a best PSNR for low bit rate purposes. The 

average PSNRs in this case are 30 to 32 dB and the bit rate is around 1 bpp. However, 

in the case of the baboon image, such PSNR can only be attained on a higher bit rate. 

This is due to the fact that this particular image has many regions with high intensity 

variations. 
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Table ‎3.5: PSNR and bit rate computed using Algorithm2 for different block sizes, 

quantisation levels and a low threshold (0.4). 

    

Lena 

(512×512) 

Baboon 

(512×512) 

Pepper 

(512×512) 

Barbara 

(512×512) 

MRI1 

(128×128) 

MRI2 

(256×256) 

N QL 
PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

4 32 43.8 3.31 48.9 5.7 44.4 4.2 43.7 3.3 53.9 2.5 47 5.2 

4 16 48.9 4.12 44.4 4.8 49.4 4.7 49.1 4.3 50.4 2.2 48.5 4.8 

4 8 44.6 3.82 37.5 3.9 42.5 3.9 43.7 3.8 41.4 1.9 42.3 3.9 

8 32 47.1 4.09 47.5 5.2 49.3 4.9 46.7 4.1 54.3 2.4 50.1 5.2 

8 16 47 4.11 42 4.2 45.7 4.2 47.5 4.1 48.1 1.9 44.2 4.2 

8 8 40.5 3.22 35.7 3.2 38.9 3.2 40.6 3.2 38.1 1.5 37.6 3.2 

16 32 48.3 4.74 45.8 5 47.8 5 49.2 4.8 53.8 2.9 47.2 5 

16 16 44 4.04 40.3 4.1 42.3 4.1 44.6 4 47.5 2.4 41 4.1 

16 8 37.4 3.05 34.2 3.1 35.8 3.1 37.8 3.1 36.7 1.8 34.1 3.1 

Average 44.6 3.8 41.8 4.4 44.0 4.1 44.8 3.9 47.1 2.2 43.6 4.3 

Table ‎3.6: PSNR and bit rate computed using Algorithm2 for different block sizes, 

quantisation levels and a high threshold (2). 

    

Lena 

(512×512) 

Baboon 

(512×512) 

Pepper 

(512×512) 

Barbara 

(512×512) 

MRI1 

(128×128) 

MRI2 

(256×256) 

N QL 
PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

PSNR  

(dB) 

Bit 

Rate 

(bpp) 

4 32 31.9 0.9 30.4 3 32.3 1 32.2 0.9 31.3 1.3 31.2 1.2 

4 16 36.8 1.5 37 3.7 35.7 1.5 36.3 1.3 41.5 1.9 34.6 1.7 

4 8 39.9 1.9 37.2 3.7 38.7 2.3 39.6 1.9 41.2 1.8 39.2 2.9 

8 32 32.4 1.2 33.5 3.6 32.5 1.4 31.9 0.9 35.3 1.9 33.2 1.4 

8 16 38.0 1.8 39.3 3.8 37 2.1 37.5 1.8 47.8 1.9 34.7 1.6 

8 8 39.2 2.2 35.7 3.2 38.2 2.7 39.2 2.2 38.1 1.5 37.4 3.1 

16 32 33.8 2.2 36.4 4.3 33.8 2.6 32.6 1.9 48.9 2.7 34.2 1.7 

16 16 39.2 2.6 40.1 4 39.2 3.2 39.2 2.7 47.3 2.2 34.8 1.9 

16 8 37.1 2.6 34.2 3.1 35.7 3 37.5 2.6 36.7 1.7 34.1 3.1 

Average 36.5 1.9 36.0 3.6 35.9 2.2 36.2 1.8 40.9 1.9 34.8 2.1 
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3.5.1.3 Rate Distortion Performance Comparison 

The bit rate and PSNR performance of both algorithms are almost similar. However, the 

main difference between these two algorithms is the complexity of the intensity check 

unit. Such a unit requires      multiplication and  (    ) addition operations in 

the first algorithm, whereas the second algorithm involves only      addition 

operations which are required to compute the mean of the block. Furthermore, by 

suitably adjusting thresholds, both algorithms can produce the same performance as 

shown in Figure ‎3.16 and Figure ‎3.17. These figures present the PSNRs and bit rates 

obtained for the Lena image using the proposed algorithms for a 4×4-pixel block size, 

and 32, 16 and 8 quantisation levels. In Figure ‎3.16, the sample variance of each image 

block is compared against a specific set of threshold values, whereas in Figure ‎3.17 the 

quantisation step is compared against a wide range of thresholds. From both figures, 

different PSNRs and bit rates can be obtained by adjusting thresholds and quantisation 

levels for specific block sizes. The same behaviour is obtained using 8×8 and 16×16-

pixel block sizes for the other test images. 

 

 

       a. PSNR (dB) versus Threshold                 b. (Bit rate (bpp) versus Threshold 

Figure ‎3.16: Performance of the Lena image obtained using Algorithm1 for a block size 

of 4×4-pixel, different thresholds and 32, 16 and 8 quantisation levels.  
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       a. PSNR (dB) versus Threshold.                 b. Bit rate (bpp) versus Threshold. 

Figure ‎3.17: Performance of the Lena image obtained using Algorithm2 for block size 

of 4×4-pixel, different thresholds and 32, 16 and 8 quantisation levels.  

 

Further, a comparison between the AQC and the proposed algorithms is shown in 

Table ‎3.7. From this table, the output performance of both algorithms outperforms the 

AQC in terms of bit rate and PSNR. This is due to using a threshold as an additional 

parameter to control the output bit rate, in contrast with the AQC algorithm which 

depends on the number of quantisation levels and block sizes only. Thus, the lowest bit 

rate of the AQC algorithm is 1.1 bpp with a PSNR of 21.6 dB. This result can only be 

achieved by reducing the number of quantisation levels and increasing the block size. 

However, bit rates of 0.6 and 0.9 bpp with PSNRs of 30.5 and 31.9 dB are achieved 

using Algorithm1 and Algorithms2, respectively, using the selected thresholds.   

Table ‎3.7: Performance comparison between the AQC, Algorithm1 and Algorithm2 for 

Lena image. 

AQC algorithm 
Algorithm1 

Threshold=400 

Algorithm2 

Threshold=2 

PSNR  (dB) Bit Rate (bpp) PSNR  (dB) Bit Rate (bpp) PSNR  (dB) Bit Rate (bpp) 

21.6 1.1 30.5 0.6 31.9 0.9 

25.4 1.2 31.8 0.8 32.4 1.2 

29.6 1.9 31.8 0.9 36.8 1.5 

29.3 2.1 30.9 1 38 1.8 

32.9 2.2 30.1 1.3 39.2 2.2 

37.1 2.9 30.2 1.6 39.2 2.6 
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3.5.2 Performance of the Proposed Architectures 

The AQC and the proposed architectures are tested on the xc5vlx50t-3ff1136 Virtex 5 

FPGA device. The performance of the AQC and the proposed architectures is evaluated 

using different block sizes, quantisation levels and thresholds. Further, the output 

accuracy of the proposed architectures are evaluated and compared with the 

corresponding algorithms’ outputs to prove their validity. 

3.5.2.1 Hardware Resources  

The hardware utilisation rates of the AQC, Model1 and Model2 architectures using 

various block sizes are shown in Table  3.8. From this table, the average hardware 

utilisation rates of the proposed architectures are almost equal to 3% of the available 

resources. However, Model1 architecture consumes slightly more resources due to the 

requirement of the intensity check unit. The intensity check unit of Model1 requires two 

additional DSP48Es to compute the variance of each image block. Further, the AQC 

and Model2 architectures utilised a single multiplier only in their structure.  

Table  3.8: Hardware usage of the AQC and the proposed architectures. 

Slice Logic 

Utilisation 
 

4×4-pixel block size 8×8-pixel block size 

Available Model1 Model2 AQC Model1 Model2 AQC 

Slice Registers 28,800 280 195 147 341 242 189 

Slice LUTs 28,800 225 148 89 286 205 139 

Occupied 

Slices 
7,200 97 69 54 126 68 75 

Bonded IOBs  480 26 26 25 26 26 25 

Block RAM / 

FIFO (36 Kb) 
60 1 1 1 1 1 1 

DSP48Es 48 3 1 1 3 1 1 

Average (%)  3 2 2 3 2 2 

 

As shown in Table  3.8, additional number of registers, LUTs and occupied slices are 

required in the case of 8×8-pixel block size. Whereas other hardware resources are remain 

the same for all block sizes. The extra resources are required due to using extra delay 

elements in both architectures for synchronisation. Further, the changing in image size 

and/or the quantisation does not have an impact on hardware utilisation rate.   

file:///D:/sami/xflow/aqc_final_cw_map.xrpt%3f&DataKey=IOBProperties
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3.5.2.2 Operating Frequencies and Power Consumption  

The operating frequencies, initial latencies and computation times of the AQC and the 

proposed architectures are shown in Table  3.9. From Table  3.9, a maximum operating 

frequency of 312, 287 and 292 MHz can be achieved for Model1, Model2 and AQC 

architectures using 4×4-pixel block size, respectively. Further, the initial latencies of the 

Model1, Model2 and AQC architectures are:        ,       and      cycles, 

respectively. Thus, the computation time of a 512×512-pixel image is less than 0.9 ms. 

Table  3.9: Maximum operating frequencies, initial latencies and computation time for 

the AQC and proposed architectures using different block sizes. 

 
4×4-pixel 8×8-pixel 16×16-pixel 

 

Model

1 

Model

2 
AQC 

Model

1 

Model

2 
AQC 

Model

1 

Model

2 
AQC 

Maximum 

frequency (MHz) 
312.0 287.6 292.4 315.9 280.5 285.7 293.8 287.9 283 

Initial latency 

(ns) 
134.6 132.1 130 436.8 477.7 469 1776.7 1799.2 1830 

Computation 

time of 512×512 

image (ms) 

0.84 0.91 0.9 0.83 0.94 0.92 0.89 0.91 0.93 

 

Moreover, the dynamic power consumption of the AQC and the proposed architectures 

is shown in Figure ‎3.18. The power consumption is computed using a Xilinx Xpower 

analyser [125]. The dynamic power consumption of Model1 architecture is higher than 

that of Model2 architecture by 3 to 5 mW. This power increase with Model1 

architecture is due to the complexity of the intensity check unit, which requires two 

extra multipliers. Further, the power consumption of both the AQC and Model2 

architectures is almost the same. For all architectures, an extra 2 mW power is required in 

the case of 8×8-pixel block size.  This extra amount of power is due to using extra hardware 

resources in this case.   
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Figure ‎3.18: Dynamic power consumption of the AQC and the proposed architectures 

using 4×4 and 8×8-pixel block sizes. 

 

As a result, the performance of Model2 architecture is almost similar to that of the AQC 

architecture with a few extra hardware resources. The extra hardware resources are used 

for the mean computation and the intensity check operations. Thus, it can be considered 

as an appropriate low complexity image compression system with its additional 

advantage of a good low bit rate-PSNR performance.  

3.5.2.3 The Validation of the Proposed Architectures 

The PSNR and bit rate performance of the proposed architectures are evaluated against 

a Matlab code representation of their respective IBAQC algorithms, as shown in 

Table  3.10. The drawn figures in this table represent the average PSNR and average bit 

rate obtained using 8, 16 and 32 quantisation levels, and a 4×4, 8×8 and 16×16-pixel 

block sizes.   Further, from this table the PSNR error between the results obtained by the 

proposed algorithms and their counterparts’ architectures is less than  .5 dB for some 

results. This small difference in PSNR is due to the truncation and rounding operations 

arises from using fixed sizes multipliers in the proposed architectures. 
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Table  3.10: The average bit rate and PSNR of the proposed algorithms and their 

corresponding architectures. 

 

Lena Baboon 

Threshold 
PSNR 

(dB) 

Bit rate 

(bpp) 

PSNR 

(dB) 

Bit rate 

(bpp) 

PSNR 

(dB) 

Bit rate 

(bpp) 

PSNR 

(dB) 

Bit rate 

(bpp) 

 Model1 Algorithm1 Model1 Algorithm1 

12 41.7 3.0 42.2 3.0 41.6 4.3 41.7 4.3 

400 30.7 1.0 30.8 1.0 29.4 2.5 29.6 2.5 

 

Model2 Algorithm2 Model2 Algorithm2 

0.4 44.8 3.9 44.6 3.8 41.8 4.3 41.8 4.4 

2 36.5 1.9 36.5 1.9 35.9 3.6 36.0 3.6 

 

Moreover, Lena and the baboon reconstructed images are shown in Figure ‎3.19 and 

Figure ‎3.20. In these two figures, these images are compressed using a 4×4-pixel block 

size, a 32-level quantiser and a classification threshold of 400 and 2 for Algorithm- 

Model1 and algorithm2-Model2, respectively. Both algorithms and architectures 

produced the same image quality regarding to the Lena image (31 dB PSNR with 0.9 

bpp bit rate), while there was little difference in the performance of the baboon image. 

The difference in the performance of the baboon image can be reduced or eliminated by 

suitably adjusting the classification thresholds in both algorithms and architectures. 
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Figure ‎3.19: The Lena and baboon images computed using Algorithm1 and Algorithm2 

architectures with a 4×4-pixel block size and 32 quantisation levels. 

  

(b) Lena image computed using 

Algorithm2 at threshold 2 , 

PSNR 31.8 dB and  .9 bpp. 

(a) Lena image computed using 

Algorithm1 at threshold 4   , 

PSNR 31.  dB and  .9 bpp. 

(d) Baboon image computed using 

Algorithm2 at threshold 2 , 

PSNR 3 .3 dB and 3 bpp. 

(c) Baboon image computed using  

Algorithm1 at threshold 4   , 

PSNR 29.5 dB and 2.8 bpp. 
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Figure ‎3.20: The Lena and baboon images computed using Model1 and Model2 

architectures with a 4×4-pixel block size and 32 quantisation levels. 

 

 

 

 

(b) Lena image computed using Model2 at 

threshold 2 , PSNR 31.  dB and bit 

rate   .9 bpp. 

(a) Lena image computed using Model1 

at threshold 4   , PSNR 31.5 dB 

and bit rate   .9 bpp. 

(d) Baboon image computed using Model2 

at threshold 2 , PSNR 29.9 dB and 

bit rate  3 bpp. 

(c) Baboon image computed using Model1 

at threshold 4   , PSNR 28.8 dB and 

bit rate  2.8 bpp. 
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3.6 Summary 

This chapter has introduced two low complexity image encoding algorithms based on 

the AQC algorithm for low bit rate applications. The two algorithms classify each image 

block into a low or high intensity variation. Thus, they introduce a classification 

threshold parameter which is used to distinguish and classify the blocks and selects the 

appropriate parameters to encode them. The first algorithm compares the block variance 

of each input block to a selected threshold to specify whether such a block is a high or 

low intensity variation. Such a classification operation in the second algorithm is carried 

out using the quantisation step.  Thus, the high intensity variation blocks are encoded 

using a minimum, a quantisation step, a bit plane and a single bit classifier, whereas the 

other blocks are encoded using their mean and the classifier bit. This approach produces 

a low bit rate whilst preserving the PSNR and image quality within an acceptable range. 

The performance evaluation shows that the output bit rate and PSNR are almost the 

same for both algorithms. However, the second algorithm compares the quantisation 

step to the threshold to avoid the complexity that arises from the block variance 

computation. Further, the performance of both algorithms outperforms the AQC 

algorithm for low bit rate purposes.  

In addition to the above, new efficient architectures are suggested and validated for the 

AQC and the proposed algorithms. The suggested architectures were implemented on a 

Xilinx Virtex 5 device and tested on different images, block sizes, quantisation levels 

and thresholds. The obtained results have shown that a speed of up to 315 MHz can be 

achieved. Furthermore, in the second architecture, a power consumption of 6 mW at 30 

ns can be obtained with a low hardware utilisation rate, which can be used in low power 

consumption applications. Moreover, the hardware usage, power consumption and 

operating frequency of Model2 and AQC architectures are almost the same. However, 

Model2 architecture has an advantage in its good low bit rate-PSNR performance. 

Further, the proposed algorithms and architectures in this chapter are a type of 2-D 

block-based low complexity systems, while with the 3-D transforms the matter is more 

complicated which will be introduced and discussed in chapters 4, 5 and 6. 
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Chapter 4: High Speed Multidimensional DCT 

Architectures 

4.1 Introduction 

The preceding chapter has presented efficient architectures for low complexity non-

transform-based image compression systems. The main advantages of the proposed 

systems are their high speed, low complexity and low power consumption. 

Nevertheless, the transform-based compression systems represent an efficient 

alternative for high performance compression systems.  However, the computation 

complexity of such transforms as the DCT and DWT represents the bottleneck of the 

entire systems. Moreover, the problem becomes much worse with multidimensional 

approaches, such as DCT-based image and video compression systems. This has led to 

the development of efficient fast algorithms and architectures for such transforms.  

This chapter presents two new high speed architectures for multidimensional DCT 

computation. The proposed architectures are: high speed implementation of the Row 

Column Frame (RCF) using a 1-D DCT Radix-2 and 3-D DCT VR algorithms. The 

proposed architectures process the input data using an N×N×N-pixel data cube. Such 

architectures are tested using 8×8×8-pixel data cubes, various wordlengths and clock 

frequencies. The proposed architectures strike a balance between hardware resources, 

speed and power consumption, as can be seen from the results obtained using Virtex5 

5vlx50tff1136-3 Xilinx FPGA device. The performance evaluation process has revealed 

that both architectures are outperforming similar architectures in terms of speed and 

hardware cost. Furthermore, the computation process of both architectures is carried out 

with a negligible error rate in a comparison with Matlab implementation. 

The remainder of the chapter is organised as follows: Section ‎4.2 provides a description 

of the fast DCT algorithms. Sections ‎4.3 and ‎4.4 present two architectures for 3-D DCT 

computation. The results are discussed in section ‎4.5 and a summary is given 

section ‎4.6.  
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4.2 Fast Algorithms for DCT Computation 

4.2.1    The 1-D DCT Radix-2 Algorithm 

The computational complexity of 1-D DCT is reduced using the Radix-2 algorithm [55]. 

The 1-D DCT fast algorithm requires 
 

 
       multiplication and 

 

 
           

addition operations to perform  -point 1-D DCT computation. In this way, there are 

fewer arithmetic operations than those required by the original DCT algorithm, as 

illustrated in Table 2.1 [54, 55]. The fast 1-D DCT Radix-2 algorithm consists of four 

stages: 1-D reordering, butterfly computation, 1-D bit reverse ordering and the post 

addition stage, as illustrated in the block diagram of Figure ‎4.1. 

1-D 

Reordering

1-D

Input 

Data

Butterfly 

structure

1-D Bit Reverse 

Order

 (BRO)

1-D Post 

addition
1-D DCT 

Coefficients

 

Figure ‎4.1: Block diagram of 1-D DCT Radix-2 algorithm. 

 

The first stage is a reordering operation. The reordering operation of the  -point input 

data sequence can be expressed as follows:  

 (   )    (    ) and  (   )    (    ) (‎4.1) 

where    and   are the input and reordered data sequence, respectively. The index   is 

in the range of 0 to 
 

 
  . 

In (‎4.1), the input is rearranged and fed into three butterfly sub-stages unit, which 

represents the main part of the algorithm. The butterfly for     can be calculated 

using the following procedure: 

 

 (   )   (   )   (       ) 

 (      ⁄ )  ( (   )   (       ))   ( ) 

       {     }                                  

          ⁄    (‎4.2) 

 

where    
 (    )

  
   and each value of   represents a single butterfly sub-stage. 



68 

The next stages are the 1-D bit reverse ordering and post addition stages. The post 

addition for the bit-reversed ordered of eight samples can be calculated as follows: 

 ( )   ( ) 

 (   )   (   ) 

 (   )   (   ) 

 (   )   (   ) 

 (   )    (   )   (   ) 

 (   )    (   )   (   ) 

 (   )    (   )   (   ) 

 (   )    (   )    (   )   (   ) (‎4.3) 

where                   ,   is the input data size,    is the output of the 

butterfly stage and    is the output of the post addition stage. The final 1-D DCT 

coefficients requires normalisation; dividing each element by two (shift right operation), 

with the exception of the first element (DC element) which has to be divided by ( √ ) .  

Further, the 3-D DCT Radix-2 RCF technique is performed by applying a 1-D DCT 

Radix-2 on the rows, columns and frames, successively. This approach requires  

 

 
        multiplication and 

 

 
                addition operations [54].  

4.2.2 The 3-D DCT VR Algorithm 

Although the computation of the 3-D DCT RCF using 1-D DCT Radix-2 algorithm 

requires fewer multiplication operations than the direct 3-D DCT, further computation 

load reduction can be achieved [54, 56, 57]. Hence, an efficient algorithm for fast 3-D 

DCT computation is the 3-D DCT VR algorithm, which was introduced in [54, 56]. 

This algorithm requires 
 

 
         multiplication and 

 

 
                

addition operations for      -point 3-D DCT computation. This algorithm 

computes the 3-D DCT for specific data cubes according to the following sequence: 

 3-D reordering 

 Butterfly calculation 

 3-D bit reverse order 
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 3-D post addition 

This algorithm assumes that the input data is a       -pixel, where   is a power of 

two. In this algorithm, the 3-D input data is first rearranged according to the following 

index mapping: 

[
 
 
 
 
 
 
 
 

 ̃(        )

 ̃(            )

 ̃(            )

 ̃(                )

 ̃(            )

 ̃(                )

 ̃(                )

 ̃(                    )]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 

 (           )

 (             )

 (             )

 (               )

 (           )

 (              )

 (              )

 (                 )]
 
 
 
 
 
 
 
 

 (‎4.4) 

where          
 

 
   , i=1,2,3, and  ̃ is the reordered form of the original input  . 

Equation (2.5) can be rewritten by exchanging  (        ) with  ̃(        ) : 

 (        )  
 

  
   

   
   

∑ ∑ ∑  ̃(        )

   

    

   

    

   

    

    (    )         

                                                                                  (    )     (    ) (‎4.5) 

where    
 

  
(     ) and i=1,2,3. 

The computation of the 3-D DCT VR algorithm consists of two steps: butterflies and 

post addition stages. The number of stages requires for the butterfly computation is 

      with 
  

 
 butterfly per stage. The multiplication by the normalisation factor  

 
 

     
   

   
, can be postponed to the final stage. 

By considering even and odd parts, the 3-D DCT can be computed as follows: 

 (                 )  ∑ ∑ ∑  [ ̃   (        )]

 

    

 

    

 

    

 

    (  (    ))     (  (    ))     (  (    )) 
(‎4.6) 

where    
 ⁄    and ijl=[000,001,010,011,100,101,110,111] and  ̃   (        ) is 

expressed as:  
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(‎4.7) 

For even and odd values of              , (‎4.6) can be developed as follows: 

 (           )  { ∑ ∑ ∑  [ ̃   (        )]  ∏   (     ) 

 

   

 

    

 

    

 

    

} 
(‎4.8) 

where    
 ⁄   . 
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 { ∑ ∑ ∑ [  ̃   (        )      ]

 

    

 

    

 

    

 ∏   (     ) 

 

   

} 

  (             ) 
(‎4.9) 

 

 

 (             ) 

 { ∑ ∑ ∑ [  ̃   (        )      ]

 

    

 

    

 

    

 ∏   (     )

 

   

}

  (             ) 
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Equations (‎4.8)-(‎4.15) contain two parts: the first is the term between the curly brackets 

for butterfly computation and the second represents the computation operations carried 

out in the post addition stage. 

4.3 3-D DCT RCF Architecture (RCF Architecture) 

The proposed RCF Architecture computes an  -point 1-D DCT Radix-2 algorithm on 

the rows, columns and frames in a      -point data cube. Thus, this architecture   

is composed of three  -point 1-D DCT stages and data control units, as illustrated in 

Figure ‎4.2. The computation sequence of this architecture is as follows: 

 1-D DCT on the rows. 

 Normalisation 

 Transpose buffer1 (TMem1) 

 1-D DCT on the columns. 

 Normalisation 

 Transpose buffer2 (TMem2) 

 1-D DCT on the frames. 

 Normalisation 

 Reordering buffer (TMem3) 

 

(TMem1)

2N2

3-D DCT 

>>3
(TMem2)

2N3

(TMem3)

2N3

>>3

Specify Wordlength (Integer Word Length; IWL, Floating Word Length; 

FWL), Latency Data addressing and controlling units

>>3

First

N-Point

1-D DCT

Second

N-Point

1-D DCT

Third

N-Point

1-D DCT

3-D

Input Data

Control signal

Data flow signal

Normalisation; 

3-bit Right Shifter

Normalisation; 

3-bit Right Shifter

Normalisation; 

3-bit Right Shifter

 

Figure ‎4.2: Block diagram of the whole RCF architecture. 
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In Figure ‎4.2, the dashed red arrows represent the controller signals and the continuous 

arrows represent the data flow signals. The wordlength and latency are specified for 

each stage prior to the computation process using input parameters in the controller unit. 

Moreover, the architecture of each 1-D DCT stage is composed of serial to parallel 

converter, butterfly, bit reverse ordering, post addition and multiplexer unit, as 

illustrated in Figure ‎4.3. 

Serial to Parallel 

Converter

(1:N)

Butterfly 

stage

1-D DCT 

1-D

Post addition

Bit Reverse 

Order (BRO) and 

Parallel to Serial

(N:1)

Specify Wordlength and Latency

x(0)

x(N-1)

X(0)

X(N-1)

Y(0)

Y(N-1)

1-D

Input Data

 

Figure ‎4.3: Block diagram of N-point 1-D DCT architecture. 

 

The input data to the first 1-D DCT stage is converted to a group of  -parallel pixels 

using the serial to parallel converter and fed to the butterfly stage. The butterfly stage 

performs addition, subtraction and twiddle factor multiplication operations. It is 

composed of three arithmetic operations sub-stages with a varying latency and 

wordlength, as illustrated in Figure ‎4.4. The latency can be altered easily without 

affecting the whole operation of the proposed architecture, which can improve the speed 

and reduce the power consumption. However, such improvements come at an extra 

hardware cost. The latency can be adjusted using three input parameters: A(i,j), S(i,j) 

and  (   ) for adders, subtracters and multipliers, respectively. Where i represents the 

sub-stage in each butterfly (i=1,2,3) and j is the butterfly stage number; j =1,2 and 3; 

the first, second and third 1-D DCT stages, respectively.  
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Figure ‎4.4: Block diagram of 8-point butterfly stage (three sub-stages). 

 

The output precision can be controlled by modifying the wordlength of each unit. Two 

designed parameters have been used to specify the wordlength: the Integer Wordlength 

(IWL) and Floating Wordlength (FWL). The IWL represents the number of bits 

required for the signed integer part and FWL represents the number of bits for the 

mantissa part. 

The subsequent sub-stage is the post-addition which is implemented using bit shifters 

and subtracters, as illustrated in Figure ‎4.5. The post addition stage performs the 

addition sequence that is described in (‎4.3). Additional registers are added for pipelining 

and synchronising purposes.  When the preceding data processing sequence is 

completed, the parallel data is converted into a serial stream and normalised by a factor 

of   ⁄ .  
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Figure ‎4.5: Block diagram of 8-point post addition stage. 

 

The output data from the first 1-D DCT will be available after     clock cycles, where 

the period     can be computed as follows: 

        (   )                    (‎4.16) 

where  (   ) is the latency in each sub-stage (i=1, 2, 3) for the first butterfly stage  

when j=1,       is the latency of the parallel to the serial convertor,           

represents the latency of the post-addition stage, and   represents any other latency 

offset. The normalisation operation is implemented using a      -bit right shift register 

to avoid any overflow in the subsequent arithmetic operations. The normalised output is 

then written into a   -word Block RAM; TMem1. The memory TMem1 is activated by 

the control signal W_enb1 for the data to be written at addresses between 0 to      

that is carried by the control signal W_adds1, as shown in Figure ‎4.6. 
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Figure ‎4.6: TMem1 writing /reading control unit of the first 1-D DCT stage. 
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Data stored in TMem1 is reordered and fed to the second 1-D DCT stage. The 

reordering operation is carried out using R_Adds1, as shown in Figure ‎4.6.  The value 

carried by R_adds1 signal is given as: 

              ,                         (‎4.17) 

where l and m represent the rows and the columns indices of an    -point data block, 

respectively.  The R_Adds1 values are generated using the shaded part of Figure ‎4.6 and 

Table ‎4.1, and it can be represented as follows: 

                    

                         

                   

             [        ] (‎4.18) 

where     is the binary representation of a        -bit counter, 

                 ,     is the least significant bit (LSB) and the acronym   refers 

to bit slice.  

From Figure ‎4.6, the outputs of this control circuit are: TMem1 writing enables 

(W_enb1), writing address (W_adds1), reading address (R_adds1), reading enables 

(R_enb1) and counter (Cm1). The Cm1 signal is used to control the multiplexer of the 

subsequent 1-D DCT stage. 

Table ‎4.1: The first eight addresses (R_adds1) for 8×8-point block. 

Main counter (Input addresses-Adds_in)  
 

Output addresses (R_adds1) 

Decimal 
Binary 

 
Binary Decimal 

S1 S2 S3 
 

S1 S3 S2 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 1 
 

0 0 0 1 0 0 0 8 

2 0 0 0 0 0 1 0 
 

0 0 1 0 0 0 0 16 

3 0 0 0 0 0 1 1 
 

0 0 1 1 0 0 0 24 

4 0 0 0 0 1 0 0 
 

0 1 0 0 0 0 0 32 

5 0 0 0 0 1 0 1 
 

0 1 0 1 0 0 0 40 

6 0 0 0 0 1 1 0 
 

0 1 1 0 0 0 0 48 

7 0 0 0 0 1 1 1 
 

0 1 1 1 0 0 0 56 
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The second 1-D DCT stage performs the same operations sequence of the second 1-D 

DCT on the columns of each    -point data block.   The output is stored in a    -

word block memory; TMem2, as shown in Figure ‎4.2.  The TMem2 writing address, 

W_adds2 signal is generated by a        -bit counter and bit slices as shown in  

Figure ‎4.7-a. The address generator in Figure ‎4.7-a is constructed in the same way as 

that shown in the shaded part of Figure ‎4.6 with different bit slices, which can be 

computed as follows: 

                    

                         

                   

             [        ] (‎4.19) 

where    is the binary representation of a        -bit counter. 
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Figure ‎4.7: Block diagrams of the second and third memory writing/reading control 

units (for TMem2 and TMem3).  

 

The data stored in TMem2 is reordered and fed to the third 1-D DCT stage to perform a 

transform along the frame direction. TMem2 reordering operation is carried out as 

shown in Figure ‎4.7-a, and it can be expressed as follows: 

                      

                         

                   

             [        ] (‎4.20) 
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Hence, the 3-D DCT of the input data is computed. The computed results are stored in 

the third block RAM; TMem3, as shown in Figure ‎4.2. TMem3 acts as a reordering 

buffer to produce an output sequence with the same indexing order as the original data. 

TMem3 writing address signal; W_adds3, is generated similar to R_adds2, while its 

reading address; R_adds3, is generated using a        -bit counter only, as shown in 

Figure ‎4.7-b. 

4.4 The Proposed 3-D DCT VR Architecture 

The proposed 3-D DCT VR architecture is shown in Figure ‎4.8 and it consists of the 

following: 

 3-D reordering 

 Three butterfly stages 

 3-D bit reverse ordering 

 Three post addition stages 

 Normalisation  
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Figure ‎4.8: Block diagram of 3-D DCT VR architecture. 

 

The timing sequence of the proposed architecture is shown in Figure ‎4.9. In this figure, 

each block represents    points, and the delay (𝜹1, 𝜹2 ... 𝜹6) between each of the 

consecutive stages is selected according to the availability of the data required by the 

ensuing stage. Furthermore, two parameters are used to control the wordlength of the 

proposed architecture stages termed; IWL and FWL. 
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Figure ‎4.9: The timing sequence of the proposed 3-D DCT VR architecture. 

4.4.1 The 3-D Reordering Stage  

The reordering stage consists of counters, ROMs and block memory (TMem1), as 

shown in Figure ‎4.10. Three signals termed; Data_out, Cm and R_adds are generated by 

the reordering stage. The first signal; Data_out, represents the output data stream and 

the second signal; Cm is a log22N
3
-bit counter. Signal Cm is   used to control the parallel 

to serial converters and to select the appropriate twiddle factors of the butterfly stages. 

The third signal; R_adds, is used to select the proper data for the first butterfly stage. 

The reordering operation is carried out as shown the following two subdivisions. 
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Figure ‎4.10: Block diagram of the reordering unit. 
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4.4.1.1 Memory Writing Operation 

The reordering operation is carried out during the memory writing operation to TMem1. 

The writing addresses are generated using two ROMs;    of   -word and    of  -

word and their addressing units. The memory writing addresses; reordering addresses 

are computed according to: 

       [      (   (  )    (  ))] (‎4.21) 

where the annotation [       ] indicates the concatenation operation of the content between 

the brackets,    and    represent two ROMs,                (    ),    

             and the clock period of    is   times of that of   . Signal    is the MSB 

of the        -bit counter   . Signals   ,    and    can be expressed as follows: 

                         

                      

                   (‎4.22) 

The actual content of    is shown in the first column of Table ‎4.2, while the content of 

   shown in columns 2 to 9 of the same table. As an example of data reordering for 

N=8, when   ,   =0 and   =0, 1, 2, 3,..7, the TMem1 writing addresses of the first 

eight points are: 0, 388, 4, 384, 128, 260, 132 and 256. Similarly, the addresses of the 

second eight points are: 98, 486, 102, 482, 226, 358, 230 and 354. In other words, each 

element in ROM M1 is added to the content of ROM    in order to generate the 

memory writing addresses. 

Table ‎4.2: Content of ROMs M1 and M2 for the reordering operation (TMem1 Writing 

Operation) 
(1)

. 

M2 Content M1 Content 

0 0 98 2 96 32 66 34 64 

388 25 123 27 121 57 91 59 89 

4 1 99 3 97 33 67 35 65 

384 24 122 26 120 56 90 58 88 

128 8 106 10 104 40 74 42 72 

260 17 115 19 113 49 83 51 81 

132 9 107 11 105 41 75 43 73 

256 16 114 18 112 48 82 50 80 

(1) 
Reading sequence of M1 content is  , 98, 2, 96, 32, 66, 34, 64, 25, 123 …… 8 . 
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4.4.1.2 Memory Reading Operation 

The output of memory component TMem1 represents the required input data to the 

ensuing butterfly stage.  The start of TMem1 reading operation is controlled by the 

Memory Reading Controller (MRC), as shown in the shaded part of Figure ‎4.10. The 

MRC consists of two units, the Memory Reading Enable (MRE) and the Address 

Generator (Adds_Generator). The functions of the MRE unit are to avoid using long 

delay elements and control the start of memory reading operations, as shown in 

Figure ‎4.11. Two MRE components are proposed, namely; MRE-I and MRE-II, as 

illustrated in Figure ‎4.11. Component MRE-I generates the memory reading enabling 

signal R_enb according to the comparison between the W_adds and the parameter α. 

While, Component MRE-II generates R_enb by comparing accumulated W_enb with 

the parameter α. The parameter α specifies the time to start memory reading operation 

and it is shown underneath Figure ‎4.12 for N=8. Further, MRE-I   is used in the 

reordering stage while the MRE-II is used in other memory reading controllers.  
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Figure ‎4.11: MRE circuits. 

 

The Adds_Generator unit is used to generate the memory reading addresses R_adds in 

similar way to W_adds generation, though with different ROMs contents. Such contents 

are listed in Appendix C. 

4.4.2 Butterfly Stages 

The butterfly computation consists of three similar stages, as shown in Figure ‎4.12. The 

differences between these three butterfly stages are the values of twiddle factors and the 

memory read/write addresses. From Figure ‎4.12, each butterfly stage is connected to a 

buffer; TMem2, 3 and 4 and their corresponding memory writing and reading 

controllers, MWC and MRC, respectively. In this figure, TF1, 2 and 3 are the twiddle 

factors of each butterfly stage. Signals MWCs, MRCs are the memory writing and 
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reading addresses controllers, respectively. The addresses at points P1 to P7 can be 

computed as shown in appendix C. In addition, β and α are controlling parameters used 

in MWC and MRE units, respectively. Such parameters are used to specify the start of 

memory writing and reading operations in each stage in the proposed architecture. The 

values of these parameters depend on the latency of each stage. In Figure ‎4.12, these 

parameters are calculated for N=8.   
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Figure ‎4.12: Block diagrams of the butterfly stages and, the MRC and BRO address 

controllers. 

 

Each butterfly stage consists of a serial to parallel converter, an 8-points butterfly 

structure and parallel to serial converter, as shown in Figure ‎4.13. From this figure, the 

input data is converted to N-parallel points to perform the butterfly computation as 

shown in Figure ‎4.14. The twiddle factors multiplication operation is postponed after 

the parallel to serial converter to reduce the number of multipliers to a single multiplier 

per butterfly stage. 
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Figure ‎4.13: Block diagram for single butterfly stage. 
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Figure ‎4.14: Eight-point butterfly structure. 
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Figure ‎4.15: The twiddle factor multiplication circuit for single butterfly stage. 
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Once the butterfly computation is completed the data is converted to a serial stream and 

a multiplication by twiddle factors is performed, as shown in Figure ‎4.15. In 

Figure ‎4.15, the annotation TF refers to pre-computed twiddle factors for butterfly 

stages 1, 2 and 3 using three ROMS. The ROM sizes are:   ,    and   words for TF1, 

TF2 and, TF3, respectively. The controller signal for each ROM is generated from the 

corresponding MRC block; bit-slice from the signal Cm. The content of each ROM is 

computed according to the cosine terms in (‎4.8) to (‎4.15).  

The output of the first butterfly stage is stored in the second memory TMem2 which 

acts as a reordering buffer for the ensuing butterfly stage. The buffer TMem2 is 

controlled by Memory Writing Controller (MWC) circuit, as shown in Figure ‎4.16. 

After b clock cycles, the memory enabling signal is high W_enb=1, if the addresses 

signals        and       are different: 

      {
                            

                                 

 (‎4.23) 

where       is the       delayed by one cycle, and       is the memory reading 

addresses of the preceding stage delayed by b cycles. The values of b depends on the 

latency of each component in the butterfly stage. An important advantage of this circuit 

is to reduce the power consumption by turning on the memory component for writing 

operation at specific times. 
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Figure ‎4.16: Memory Writing Controller (MWC) block diagram. 

 

The computation sequence of the subsequent two butterfly stages is similar to the first 

butterfly stage. The output from the second and third butterfly stages is stored in 

memory components TMem3 and TMem4, respectively. Furthermore, the output from 
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the third butterfly stage is stored in a different order, by adjusting the memory writing 

addresses to perform a 3-D Bit Reverse Order (BRO) operation. The BRO addresses at 

point P6 in Figure ‎4.12 are shown in the Appendix C.  

4.4.3 Post Addition Stages 

Three post addition stages are employed to compute the terms that are outside the curly 

brackets in equations (‎4.8)-(‎4.15), as shown in Figure ‎4.17. The output of the three post 

addition stages is stored in TMem5, 6 and 7, respectively. The memory TMem7 is used 

as a reordering buffer to rearrange the output coefficients to the same order of the input 

data. The addresses at each point in Figure ‎4.17 for N=8 are detailed in the Appendix C. 

Each post addition stage is composed of serial to parallel converter, 8-point addition 

unit and parallel to serial converter. The 8-point addition unit of each post-addition 

stage consists of five subtracters and additional registers for pipelining purposes, as 

shown in Figure ‎4.18. The length of each register can be adjusted using input parameter 

without affecting the validity of the proposed architecture. Furthermore, the wordlength 

of each stage are controlled using two input parameters, IWL and FWL. 

The final stage of the proposed architecture is the normalisation operation which can be 

specified by:  

      
 

  
   

   
   

 ( 4.24) 

where              ,          and    
 {

 

√ 
                

                     
   . 
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Figure ‎4.17: The block diagram of the post addition stages. 
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Figure ‎4.18: Eight points addition unit of each post addition stage. 
 

4.5 Results and Discussion 

The proposed architectures are tested and verified using the MRI images and video 

sequences shown in Figure ‎4.19. The proposed architectures are implemented on a 

Virtex5 5vlx50tff1136-3 Xilinx device using the Xilinx system generator tool [134]. 

The output data and memory addressing are validated according to the results obtained 

by specific Matlab codes. Matlab codes for 3-D DCT has been produced and used as a 

test bench for 3-D input and output data.  For testing purposes the parameters IWL and 

FWL have been chosen to be (12, 9), (12, 6) and (12, 4) for total WL of 21, 18 and 16-

bit, respectively. 

 

Figure ‎4.19: Test MRI images and video sequences (first frame from each sequence).  
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Further, the proposed architectures have been designed and implemented using Xilinx 

System generator tool, as illustrated in section 2.8. The initialisation Matlab codes for 

the proposed architectures are listed in the Appendix D. 

4.5.1 Rate Distortion Performance  

The PSNR and RMSE between the original and the reconstructed frames are computed 

using 21, 18 and 16-bit WL, as shown in Table ‎4.3. Further, the maximum absolute 

error between the 3-D DCT coefficients obtained by the proposed architectures and 

Matlab implementation are listed in Table ‎4.3 in columns 4 and 6 for RCF and 3-D 

DCT VR architectures, respectively. All figures in Table ‎4.3 represent the results that 

are obtained for eight frames from each data sequence. The      and      between 

the original and the reconstructed frames are computed using (2.12) and (2.3), 

respectively. 

Moreover, the maximum absolute error between the proposed architectures and a 

Matlab implementation of the 3-D DCT is computed as follows: 

      ( )     (   (    (     )      (     ))) 

          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  
 

 
∑       ( )

 

   

 
(‎4.25) 

where       ( )           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the maximum absolute error in each frame and the 

average of maximum absolute error over eight frames, respectively. Further, the 

variables      and      represent the 3-D DCT coefficients of each data cube 

computed using Matlab code and the proposed architectures, respectively. 

From Table ‎4.3, it is obvious that at a wordlength of 21-bit, a       of ∞ has been 

achieved. The maximum average absolute errors among the eight input sequences are 

3.11 and 0.87×10
-2 

for RCF and 3-D DCT VR architectures, respectively. Furthermore, 

a 51.2 and 52.9 dB      are achieved with 16-bit wordlength for both architectures, 

respectively. It can be explained that the error increasing in RCF over 3-D DCT VR 

architectures is a result of the high number of multipliers in each stage, which is 

accompanied by accumulated rounding and truncation operations. 

 

 

 



88 

Table ‎4.3: The PSNR and RMSE between original and reconstructed input sequence 

and the maximum absolute error in 3-D DCT coefficients for the first eight 

input frames. 

 
RCF architecture 3-D DCT VR architecture 

 
Reconstructed data Coefficients Reconstructed data Coefficients 

Input sequence 
PSNR 

(dB) 
RMSE 

Max rr̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
×10

-2
 

PSNR 

(dB) 
RMSE 

Max rr̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
×10

-2
 

   
WL=21-bit 

   
MRI1 ∞ 0 1.18 ∞ 0 0.69 

MRI2 ∞ 0 2.71 ∞ 0 0.87 

Akiyo ∞ 0 2.06 ∞ 0 0.70 

Stefan ∞ 0 2.53 ∞ 0 0.80 

Suzie ∞ 0 2.20 ∞ 0 0.71 

Bus ∞ 0 3.11 ∞ 0 0.83 

Flower ∞ 0 2.64 ∞ 0 0.87 

Calendar ∞ 0 2.33 ∞ 0 0.78 

Average ∞ 0 2.35 ∞ 0 0.78 

   
WL=18-bit 

   

MRI1 68.02 0.10 6.57 70.48 0.08 5.30 

MRI2 65.18 0.14 7.22 67.81 0.10 5.69 

Akiyo 66.77 0.12 6.81 69.38 0.09 5.30 

Stefan 65.30 0.14 7.48 67.78 0.10 5.89 

Suzie 65.28 0.14 7.16 67.83 0.10 5.68 

Bus 65.21 0.14 7.54 67.76 0.10 6.10 

Flower 65.33 0.14 7.72 67.78 0.10 6.06 

Calendar 65.24 0.14 7.35 67.80 0.10 5.59 

Average 65.79 0.13 7.23 68.33 0.10 5.70 

   
WL=16-bit 

   

MRI1 53.34 0.55 27.46 55.13 0.45 21.32 

MRI2 50.45 0.77 29.75 52.39 0.61 23.52 

Akiyo 52.93 0.58 26.64 54.15 0.50 21.87 

Stefan 50.59 0.75 29.75 52.41 0.61 23.82 

Suzie 50.66 0.75 27.74 52.47 0.61 21.87 

Bus 50.51 0.76 29.72 52.39 0.61 23.57 

Flower 50.75 0.74 29.31 52.46 0.61 23.49 

Calendar 50.45 0.77 28.37 52.37 0.61 22.48 

Average 51.21 0.71 28.59 52.97 0.58 22.74 
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4.5.2 Hardware Usage  

Table ‎4.4, shows the hardware usage of the proposed architectures and the 3-D DCT 

architectures in [25]. This table shows that the proposed architectures consumes far 

fewer hardware resources than the 3-D DCT architectures in [25]. As such, 128 

multipliers are required in [25] while only four multipliers are required in the 3-D DCT 

VR architecture for a cube size of 8×8×8-point. Further, the 3-D DCT VR architecture 

outperforms the RCF architecture in terms of slice registers, as detailed in Table ‎4.4. 

The number of slice registers used in the RCF architecture is increased due to the 

pipelining process to improve the operating frequency and to preserve data 

synchronisation through each 1-D DCT stage. However, the proposed 3-D DCT VR 

architecture consumes more memory resources than the RCF architecture, and this 

occurred because of the reordering and the data addressing process that is required by 

each stage of the proposed 3-D DCT VR architecture.  

In addition, the average hardware utilisation rate for the RCF and 3-D DCT VR 

architectures is 15 and 13 % respectively from the available resources as shown in 

Table ‎4.5. Moreover, from this table, it is obvious that the number of DSP slices and 

block memory are lower than that required by the 3-D DCT VR architecture. However, 

the 3-D DCT VR has lower number or registers and LUTs.    

Table ‎4.4: Comparison between hardware usages for different 3-D DCT architectures 

Slice Logic 

Utilisation 

Proposed 

architectures 

WL=21 bit 

Architectures in [25] 

RCF 
3-D DCT 

VR  
Original

(1) Pipelined 

ver.1
(1) 

Pipelined 

ver. 2
(1) Block 

Slice Registers 6,934 4,972 Registers 57,379 57,367 105,476 13,347 

Slice LUTs 7,051 2,779 Logic Elements
(2)

 117,847 184,396 306,188 19,355 

Bonded IOBs 30 30 I/O Pins 2,059 2,059 2,058 525 

Multipliers 39 4 9-bit Multipliers 576
 

576
 

576
 

128 

Data cube size 8×8×8  8×8×8 

Target FPGA 

Device 

XilinxVirtex5 

5vlx50tff1136-3  
Altera Cyclone III EP3C120F780C8 

(1) Estimated values were evaluated using Altera Quartus II [25]. 

(2) Each logic element in Altera Cyclone III comprises a four-input LUT [135]. 
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Table ‎4.5: Comparison between percentage utilisation rates of the proposed 

architectures using 21, 18 and 16-bit wordlengths. 

 

  Utilisation rates % 

Slice Logic Utilisation Available 
RCF  3-D DCT VR 

21-bit 18-bit 16-bit 21-bit 18-bit 16-bit 

Number of Slice Registers 28,800 24 20 18 17 15 14 

Number of Slice LUTs 28,800 24 19 18 9 8 8 

Number of occupied Slices 7,200 31 26 23 21 19 16 

Number of bonded IOBs  480 6 5 5 6 5 5 

Number of Block RAM/FIFO 60 5 5 5 15 15 15 

Number of DSP48Es 48 0 0 0 12 12 12 

Average utility rate % -- 15 13 12 13 12 12 

4.5.3 Speed and Power Consumption   

The maximum operating frequencies, computation times and power consumption of the 

proposed architectures using different clock periods and wordlengths are shown in 

Table ‎4.6.The maximum operating frequency of the RCF architecture is 237, 279 and 

237 MHz for 21, 18 and 16 bit wordlengths, respectively. Whereas, the 3-D DCT VR 

architecture can operate up to 259, 238 and 305 MHz using the same wordlengths, 

respectively. The obtained results have revealed that for a data of 512×512×8-pixel the 

3-D DCT can be computed for just 6.8 ms. Further, the dynamic power consumption of 

the proposed RCF architecture at 5 ns clock period are 261, 228 and 179 mW for 21, 18 

and 16 bit wordlengths, respectively, whereas the proposed the 3-D DCT VR 

architecture can operate at 5 ns, consuming a dynamic power of 180, 153 and 129 mW 

for the same wordlengths, respectively.  

It is clear from Table ‎4.6 that the 3-D DCT VR architecture consumes less power than 

the RCF architecture. The reduction in power consumption is achieved due to using a 

lower number of multipliers in 3-D DCT VR architecture (one multiplier per butterfly 

stage only) and using efficient data controllers. In contrast, the reasons for the high 

power consumption with the RCF architecture are additional multipliers and registers 

that are required to improve the speed and maintain the data synchronization at each 1-

D DCT stage. The data controllers are designed to avoid using long delay elements and 

file:///D:/Reports112/xflow/rcf_model1_test_cw_map.xrpt
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turn on the memory writing/reading operations only when required. In contrast, the 

reasons for the high power consumption that exhibit in the RCF architecture are that the 

relatively high number of multipliers and the additional registers required to improve 

the speed and maintain data synchronisation at each 1-D DCT stage. 

Table ‎4.6: The power consumption and computation speed of the proposed architectures 

using different clock frequencies and 21, 18 and 16-bit wordlengths. 

 

Clock 

Frequency 

(MHz) 

RCF Architecture  3-D DCT VR Architecture 

21-bit 18-bit 16-bit 21-bit 18-bit 16-bit 

Power 

consumption 

(mW) 

200 261 228 179 180 153 129 

100 157 133 99 98 86 83 

66.67 115 100 72 71 64 62 

50 96 83 58 58 53 52 

40 84 73 50 51 47 46 

33.33 76 67 45 45 42 41 

Operating frequency 

(MHz) 
237 279 237 259 283 305 

Computation time of 

512×512×8-point (ms) 
8.85 7.52 8.85 8.10 7.41 6.88 

 

In addition, a comparison between the maximum operating frequency achieved by the 

proposed architectures with the architectures in [102] and [25] is shown in Table ‎4.7. As 

these architectures were implemented on different hardware devices, thus normalised 

operating frequencies are used for such comparison. Taking the maximum clock 

frequency of 5vlx50tff1136-3 Virtex5 Xilinx FPGA device as a reference, the frequency 

normalisation operation can be computed as follows  [25]: 

                      
                      

                       
 (‎4.26) 

where, Normalised_Freq1 is the normalised value of the architecture operating 

frequency Freq1 which is implemented on hardware device type A. The variable 

Max_Clock_Of_Device_A represents the maximum clock frequency of the hardware 

device A. It is equal to 180 and 402.5 MHz  for Altera EPF10K100EFC484 and 

Cyclone II EP2C70F896C6, respectively [25]. From Table ‎4.7, it is clear that the 

proposed architectures outperform those architectures in term of the normalised clock 

frequency.     
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Table ‎4.7: Comparison of the normalised operating frequencies for different 3-D DCT 

architectures. 

 

Proposed 

architectures 

WL=21-bit 

 
Architectures in  

Architecture in [102] [25]  

 
RCF 

3-D DCT 

VR  
Original 

Pipelined 

ver.1 

Pipelined 

ver.2 
Block 

Frequency 

(MHz) 
237 259 12.5 97.2 111.7 97.2 128.6 

Normalised 

frequency 
237 259 38.19 132.82 152.63 132.82 175.73 

Data Cube  8×8×8 4×4×4 4×4×4
 

Target 

hardware  

Xilinx Virtex5 

5vlx50tff1136-3 

Altera 

EPF10K100EFC484 
Altera Cyclone II EP2C70F896C6. 

4.6 Summary 

This chapter has presented two new FPGA architectures for high speed 3-D DCT 

computation. The proposed architectures are based on 1-D DCT Radix-2 and 3-D DCT 

VR algorithms. The first architecture performs the 3-D DCT computation by applying 

1-D DCT Radix-2 to the rows, columns and frames. Both architectures have been 

implemented, tested and evaluated using a Virtex5 Xilinx FPGA device. The obtained 

results have revealed that the RCF and 3-D DCT VR architectures can operate at up to 

279 and 305 MHz respectively, using an 8×8×8-point data cube size. At such high 

speeds, the 3-D DCT computation times of 512×512×8-point are 7.5 and 6.8 ms, 

respectively. Moreover, the hardware usage of the 3-D DCT VR architecture is lower 

than that required by the RCF architecture, whereas the 3-D DCT VR architecture 

consumed more DSP48E slices and memory resources than the RCF architecture.  The 

performance evaluation has revealed that the power consumption of the 3-D DCT VR 

and RCF architectures at 21-bit wordlength and 10 ns clock are 98 and 157 mW, 

respectively. Moreover, for different wordlengths, both architectures produce low error 

in the 3-D DCT output and good PSNR. The proposed architectures outperform similar 

3-D DCT architectures in terms of the number of multipliers, I/O pins and registers. 

However, although the proposed 3-D VR architecture gained more advantages than that 

achieved by RCF, the main disadvantages of the 3-D VR architecture were the 

complicated memory addressing and high hardware usage. These drawbacks will be 

solved by the proposed architectures that will be presented in chapter 5. 
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Chapter 5: Area-Efficient 3-D DCT Architectures 

5.1 Introduction 

In this chapter, two new area-efficient architectures for 3-D DCT computation using the 

3-D DCT VR algorithm are introduced. The data processing of the first architecture is 

accomplished sequentially with one output/stage each clock cycle, whereas two 

outputs/stages are computed in the butterfly and post addition stages in the second 

architecture. This has the merit of increasing the processing speed, albeit at the cost of 

extra hardware resources. The main characteristics of the proposed architectures are: 

 In place computation; no block memory is used for data transposition in post-

addition and butterfly computation stages which is essential in row-column-

frame approaches. Thus, efficient architectures in terms of processing speed and 

power consumption are produced. 

 Parameterisable architectures regarding wordlength, providing different output 

precision levels and processing speeds. 

 Low hardware usage and high processing speed of up to 330 MHz using 14-bit 

output wordlength and 8×8×8-pixel input cube size can be achieved.  

The proposed architectures have been tested on MRI images and video data sequences 

using different wordlengths. The results obtained show that the hardware usage is less 

than 10 and 16 % from the available resources of the Virtex5 5vlx50tff1136-3 FPGA 

device for the first and second architectures, respectively. Furthermore, an operating 

frequency of up to 330 MHz and a processing time of just 6.4 ms can be achieved for 

512×512×8-pixel data using a transform length of 8×8×8. 

The rest of this chapter is organised as follows. Section ‎5.2 presents an overview about 

the proposed architectures. Section ‎5.3 introduces a single path data flow architecture; 

Model1. While a dual path data flow architecture; Model2 is introduced in section ‎5.4. 

A sample of the results obtained is discussed in section ‎5.5 and the chapter summary is 

given in section ‎5.6. 
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5.2 The 3-D DCT VR Architectures 

The proposed architectures consist of 3-D reordering, butterfly computation, post 

addition and 3-D bit reverse ordering stages, as shown in Figure ‎5.1. The input data is 

partitioned into cubes of N×N×N-voxel; N=8, or eight 8×8-pixel blocks and the 

dimension of the input sequence is P×Q×F-pixel. In the rest of this chapter, the term 

data cube refers to 8×8×8 or N
3
-pixel, data block refers to 8×8 or N

2
-pixel and the 

symbol Bi refers to an 8×8-pixel data block    0 1   …7 (B0, B1, ... B7). As shown in 

Figure ‎5.2.  
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Figure ‎5.1: Block diagram of the 3-D DCT VR algorithm. 
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Figure ‎5.2: An 8×8×8-pixel data cubes. 

 

Two models are proposed for 3-D DCT VR computation: Model1; single path data flow 

architecture, and Model2; dual path data flow architecture. The differences between the 

two models are in butterfly computation, post addition and 3-D bit reverse order stages. 

However, the same 3-D reordering circuit is used in both models. Furthermore, the 

wordlength of the proposed architectures can be adjusted using two input parameters; 

the IWL and FWL. 
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5.2.1 Reordering Stage  

The proposed architectures partition the input sequence into cubes of 8×8×8-pixel or 

eight 8×8-pixel data blocks. The input data to the proposed architectures is reordered 

according to (4.8). The reordering process is performed by shuffling each element 

within each column, shuffling between columns and shuffling between blocks. As an 

example, if the input sequence is; 0, 1, 2, 3, 4, 5, 6 and 7, then the reordered sequence 

will be; 0, 2, 4, 6, 7, 5, 3 and 1. The block diagram of reordering stage is shown in 

Figure  5.3.  

From Figure ‎5.3, the reordering circuit composes of a 5  -word block RAM and 

read/write controllers. During the first four    clock cycles, the first four data blocks are 

allocated in the first     memory locations using its natural order from 0 to 255. At the 

beginning of the fifth block (i.e. the element number 256) the memory reading process 

starts to perform the reordering process. The proposed writing/reading sequence is 

shown in Table ‎5.1. From this table, the delay between memory writing and reading 

operations is     clock cycles. The writing addresses are generated using 16-word 

ROM (ROM1) which direct each block into an empty memory location to avoid 

interference between writing and reading operations. The ROM1 content is; 0, 1, 2, 3, 4, 

0, 2, 4, 2, 4, 0, 3, 1, 2, 0 and 1; where 0 refers to the memory locations from 0 to 63, and 

1 refers to 64 to 127 locations and so on. Further, the memory reading addresses are 

generated using 16-words ROM (ROM2) to select the required data block: the reading 

phase ROM2 content is shown in the sixth column of Table ‎5.1. Moreover, two eight 

word ROMs (ROM3 and ROM4) are used to generate the reordering address within 

each 8×8-pixel block for row and column reordering. The content of each ROM is; 0, 2, 

4, 6, 7, 5, 3 and 1. The output of this stage represents a reordered version of the input 

data cube which is fed to the subsequent stage; butterfly computation stage.  
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Figure ‎5.3: Reordering circuit and memory content during reordering operation. 
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Table ‎5.1: The memory write/read block locations for reordering stage (block shuffling) 

Input Data Output Data 

Cube  

number 

Block 

number 

Memory 

addresses 

Cube  

number 

Block 

number 

Memory 

addresses 

0 B0 0 -- -- -- 

0 B1 1 -- -- -- 

0 B2 2 -- -- -- 

0 B3 3 -- -- -- 

0 B4 4 0 B0 0 

0 B5 0 0 B2 2 

0 B6 2 0 B4 4 

0 B7 4 0 B6 2 

1 B0 2 0 B7 4 

1 B1 4 0 B5 0 

1 B2 0 0 B3 3 

1 B3 3 0 B1 1 

1 B4 1 1 B0 2 

1 B5 2 1 B2 0 

1 B6 0 1 B4 1 

1 B7 1 1 B6 0 

2 B0 0 1 B7 1 

2 B1 1 1 B5 2 

2 B2 2 1 B3 3 

2 B3 3 1 B1 4 

5.3 Single Path Data Flow 3-D DCT Architecture; Model1  

The proposed architecture (Model1) is composed of a 3-D reordering stage, three 

butterfly computation stages, three post addition stages and 3-D Bit Reverse Order (3-D 

BRO) stages. The reordering unit has been introduced in section ‎5.2.1, while the other 

stages are introduced in ‎5.3.1 to ‎5.3.3. 

5.3.1 Butterfly Stages  

The butterfly stage consists of three main stages, each with three sub-stages, as shown 

in Figure ‎5.4. In Figure ‎5.4-b, the letter m refers to the butterfly stage number; BTFL1, 

BTFL2 and BTFL3. Every butterfly stage consists of three single units, a twiddle factor 
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generator and a multiplier. Each sub-stage is considered as a single butterfly unit (single 

sub-stage), as shown in Figure ‎5.5.  
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Figure ‎5.4: Block diagrams of a. Model1 and b. Butterfly architectures. 
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Figure ‎5.5: Single butterfly unit of Model1. 

 

The first butterfly unit; BTFL1-SubStg1 is used to perform the addition and subtraction 

between the two halves of each input data cube;      
  

 
   and 

  

 
        . During 

the first N
3
/2 samples of each data cube, the controller is in its low state; 0. This 

enforces the output of the first multiplexer; Mux1 to 0, and the switch is connected to 

the upper side; point-a, and the output of the second multiplexer; Mux2 represents the 

first half of the input data cube. This arrangement allows the first half of the input cube 

to be allocated in N
3
/2 registers; d(n)=N

3
/2. However, in the succeeding N

3
/2 clock 

cycles, the controller state is turned into high level; 1 to allow the second half of the 
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input data cube to go through to the adders. The output of the Mux2 during this period 

is the result of subtraction between the first and second halves of the input data cube and 

the switch connected to the lower side; point-b. The output data represents the additions 

between the two halves of the input data cube. Moreover, during the first half of the 

second data cube the controller will return to its low state; 0 to allow the subtraction 

results of the first data cube to go through the output port. Consequently, the output data 

from BTFL1-SubStg1 is kept in its original order; 0 to N
3
-1 and the initial output 

latency is N
3
/2.  

In the next sub-stage; BTFL1-SubStg2, the controller period becomes N
2
/2 clock cycles 

to allow addition and subtraction between the two halves of each block; N
2 

samples. The 

same computation procedure in the SubStg1is used to perform the addition and 

subtraction process in SubStg2. Finally, the third sub-stage of the first butterfly; BTFL1-

SubStg3 acts within each single column; eight samples to perform addition and 

subtraction between the two halves of each column.  

The circuit operation is directed using a specific controller which is composed of three 

single-bit slices from the main counter. The time period of the three controlling signals 

are:  N
3
/2, N

2
/2 and N/2 clock cycles.  

The output of BTFL1 stage is multiplied by an appropriate twiddle factor using single 

multiplier and twiddle factor generator circuit. The BTFL1 twiddle factor generator; TF- 

BTFL1 composes of three eight word ROMs, two multipliers and a specific addressing 

signal, as shown in Figure ‎5.6.  The contents of each ROM are; 1, 1, 1, 1, 1.96157, 

1.11114, -0.39018 and -1.66294 and they are divided by 2 to prevent output overflow. 

The addresses of ROM1, ROM2 and ROM3 are generated every one, N and N
2
 clock 

cycles, respectively, as shown in Figure ‎5.6.  
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Figure ‎5.6: Twiddle factor generator circuit of the first butterfly stage. 
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The second butterfly stage; BTFL2 composes of three sub-stages, similar to BTFL1 

with a different registers, data controlling signals and twiddle factors. The required 

registers for the second butterfly stage are N
3
/4, N

2
/4 and N/4 for the three sub-stages, 

respectively, as shown in Figure ‎5.4. Moreover, the three controlling signals are 

generated using single-bit slices from the main counter considering that the required 

time periods of the three signals are; N
3
/4, N

2
/4 and N/4, respectively. 

Further, the twiddle factors of BTFL2 are generated similar to BTFL1 using four word 

ROMs, two multipliers and data addressing units, as shown in Figure ‎5.7. The content 

of each 4-word ROMs is; 1, 1, 1.847759 and -0.76537, divided by 2 to reduce the 

number of bits required for the IWL part of the output samples. Again, in this stage the 

output is normalised by 8 and as a result the final output becomes normalised by 64; 8 

for BTFL1 and 8 for BTFL2.   
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×
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ROM1
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ROM2
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ROM3

4
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Figure ‎5.7: Twiddle factor generator circuit of BTFL2. 

 

The last butterfly stage; BTFL3 is similar to the previous two stages with different 

registers, data controller, twiddle factors and the third sub-stage. The first two sub-

stages in BTFL3 are similar to those used in BTFL1 and BTFL2 but with N
3
/8 and N

2
/8 

registers; d(n) for the first and second sub-stage, respectively. On the other hand, the 

third sub-stage is constructed in a different manner using one multiplexer, two adders, 

two down sampler elements and one register, as shown in Figure ‎5.8. Further, the data 

controlling signals are generated using three single-bit slices with a time period equal to 

N
3
/8, N

2
/8 and N/8 cycles. 
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Figure ‎5.8: Last sub-stage of BTFL3. 

 

The output of BTFL3 is multiplied by an appropriate twiddle factors using a single 

multiplier. Twiddle factors are generated using single four words ROM and three 

single-bit slices and two adders, as illustrated in Figure ‎5.9. The ROM content is; 1, 

1.414214, 2 and 2.828427 normalised by 2, and the ROM addressing signal is generated 

using three single-bit slices. The generated twiddle factors are multiplied accordingly 

with each BTFL3 output using a single multiplier. The output from the third butterfly 

represents a normalised version of the regular butterfly output. The normalisation factor 

is 128; 8 for BTFL1, 8 for BTFL2 and 2 for BTFL3. The output of the butterfly stage 

BTFL3 is fed to the subsequent post-addition stages. 

Briefly, a complete in-place computation is carried out for the butterfly stages without 

any reordering within or between the butterfly stages. Such computation procedure 

reduces the complexity of the proposed architecture.  
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Figure ‎5.9: Twiddle factor generator circuit of BTFL3. 

5.3.2 Post Addition Stages 

The third part of the Model1 is the post addition stages, which perform the computation 

of the term outside the curly brackets of (4.13) to (4.19). The post addition operation 

composes of three stages; each stage runs an addition process for selected elements over 



102 

each data dimension; Row, Column and Frame. The block diagram of the three post 

addition stages and their data controller are shown in Figure ‎5.10. Where d(n) is the 

register length, Sel1, Sel2 and Sel3 are the controller signals. From Figure ‎5.10-c, each 

post addition stage consists of three multiplexers, four adders, registers and controller 

units.   
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Figure ‎5.10: Post addition stages and their controller.  

 

In the first post addition stage; Stage 1, each register is of N length; d(n)=8. Further, the 

data controller of the post addition stages is shown in Figure ‎5.10-b.  

The output signals of the three controllers can be computed as follows: 

                (‎5.1) 

               ̅ (‎5.2) 

            {     (     ) } (‎5.3) 

where • represents logical AND,              represent different single-bit slices from 

the main counter and                     are the resultant three controlling signals. 

The selected bits for the first controller circuit (first post addition stage controller) are: 

S1=C5, S2=C4, S3=C3, where C is the binary representation of a 9-bit counter (LSB 

marked with 0 and MSB marked with 8). 
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The second post addition stage; Stage 2 is constructed similar to the Stage1. The main 

differences between them are register length and data controller. The register length for 

this stage is 1; d(n)=1, and the second controller signals are computed using (‎5.1) to 

(‎5.3) and the selected bits for the controller are S1=C2, S2=C1 and S3=C0.  

Further, the last post addition stage; ; Stage 2  is similar to the first and second stages 

but using N
2
 registers for each sub-stage; d(n)=64 and the selected bits used to generate 

the controller signals are; S1=C8, S2=C7 and S3=C6.  The output from the third post 

addition stage is fed to the 3-D bit reverse order stage to produce the same order of the 

input data. Further, the features of the post addition stages are: in place computation, 

and low complexity derived by simple controller units.  

5.3.3 3-D Bit Reverse Order Stage (3-D BRO Stage) 

The last stage of the proposed architecture is the 3-D BRO stage. This stage is 

postponed after the post addition stages to act as a buffer for the subsequent system as 

an example; DCT is usually integrated with a Quantiser in conventional data 

compression algorithms. The 3-D BRO stage composes of 5N
2
-word block memory and 

writing/reading addresses controller, as shown in Figure ‎5.11. The writing addresses are 

generated using 24-word ROM (ROM1) and 0-63 counter. ROM1 is used to specify an 

empty memory location of each data block. The ROM1 content is shown in the first 24 

elements of the third column of Table ‎5.2. The input data blocks are written into its 

locations according to the order specified by ROM1 content in the same manner of 

reordering stages in sub-section ‎5.2.1.   

During the memory reading phase, specific addresses are generated to perform the bit 

reversing operation. The bit reversing operation shuffles the regular input sequence into 

different arrangements; as an example for eight points; 0, 1, 2, 3, 4, 5, 6 and 7, the 1-D 

BRO sequence is; 0, 4, 2, 6, 1, 5, 3 and 7. The 3-D BRO operation is performed using 

24-word ROM (ROM2) for frame direction shuffling and six single-bit slices from the 

main counter. ROM2 content is shown in the sixth column of Table ‎5.2, which is used 

for shuffling between data blocks within each data cube. The whole 3-D BRO addresses 

(memory reading addresses) are generated by concatenating ROM2 content with the six 

single-bit slices, as shown in Figure ‎5.11-a. The block memory content during each N
2
 

clock cycles is shown in Figure ‎5.11-b. 

Finally, the output from this stage represents the 3-D DCT coefficients of the input data.  



104 

a. BRO Circuit

W_Adds

R_Adds

Block

Memory

5N2

Words 

Output

Input

Concat

ROM1

24

Words

W_AddsEvery 1 Cycle

0-23

Every N2 Cycles

0-63

Every N2 Cycles

0-23

Concat

ROM2

24

Words

R_Adds

Every N Cycles

0-1
Every 2N Cycles

0-1

Every 4N Cycles
0-1

Every 1 Cycle
0-1

Every 2 Cycles
0-1

Every 4 Cycles
0-1

0 0

1

0

2

1

0

3

2

1

3

2

1

4

5

3

1

4

5

3

6

1

5

3

1

7

0 2

0 1 2 3

4 6

4 5 6 7

Input Blocks/sequence from left to right

Output Blocks

5

3

0

1

7

0

3

0

1

1

5

1

2

0

1

1

3

2

2

3

0

1

1

3

2

3

4

1

0

4

3

5

4

1

2

5

6

3

5

1

4

6

3

5

7

1

6

7

0

3

5

1

7

0

b. Memory content 

 

Figure ‎5.11: The 3-D BRO stage. 
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Table ‎5.2: The memory write/read block locations for the 3-D BRO stage (shuffling 

between data blocks) 

Input Data Output Data 

Cube  

number 

Block 

number 

Memory 

addresses 

Cube  

number  

Block 

number 

Memory 

addresses 

0 B0 0 -- -- -- 

0 B1 1 -- -- -- 

0 B2 2 -- -- -- 

0 B3 3 -- -- -- 

0 B4 4 0 B0 0 

0 B5 0 0 B4 4 

0 B6 4 0 B2 2 

0 B7 2 0 B6 4 

1 B0 4 0 B1 1 

1 B1 1 0 B5 0 

1 B2 0 0 B3 3 

1 B3 3 0 B7 2 

1 B4 2 1 B0 4 

1 B5 4 1 B4 2 

1 B6 2 1 B2 0 

1 B7 0 1 B6 2 

2 B0 2 1 B1 1 

2 B1 1 1 B5 4 

2 B2 4 1 B3 3 

2 B3 3 1 B7 0 

2 B4 0 2 B0 2 

2 B5 2 2 B4 0 

2 B6 0 2 B2 4 

2 B7 4 2 B6 0 

3 B0 0 2 B1 1 

3 B1 1 2 B5 2 

3 B2 2 2 B3 3 

3 B3 3 2 B7 4 
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5.4 Dual Path Data Flow 3-D DCT Architecture; Model2  

Model2 is dual path architecture for 3-D DCT VR computation. Model2 is designed to 

produce high speed 3-D DCT architecture with in-place butterfly computation 

procedure. It composes of a 3-D reordering stage, three butterfly stages, three post 

addition stages and a 3-D BRO stage, as shown in Figure ‎5.12. The 3-D reordering stage 

is similar to Model1, whereas different architectures of butterfly, post addition and BRO 

stages are introduced in this model. Each single butterfly and post addition stage 

computes two coefficients per clock cycle; the first output represents the first half of the 

input data (addition process) whereas the second output represents the second half of the 

input data (subtraction process). 

Reordered 

Data
Butterfly stages 

(m=1, 2  and 3)

Post Addition stages 

(m=1, 2 and 3)
BRO

 

Figure ‎5.12: a. Block diagram of the proposed dual path data flow 3-D DCT 

architecture; Model2  

5.4.1 Butterfly Stages  

The Model2 butterfly stages are shown in Figure ‎5.13. Two flipping stages are added to 

keep the data sequence within each block in its regular order; 0 to N
2
-1.  
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Figure ‎5.13: The architecture of single butterfly stage of Model2 

 

 

The input data is firstly 3-D reordered and fed to the first sub-stage of the first butterfly 

stage; SubStg1 of BTFL1, m=1. The first sub-stage is constructed from two 

multiplexers, two adders and N
3
/2 registers; d(n)= N

3
/2, as shown in Figure ‎5.14-a. 

During the first N
3
/2 clock cycles, the outputs of the two multiplexers (Mux1 and 

Mux2) are equal to 0 and the first N
3
/2 pixels of the input data cube are stored in a 

specific register; d(n); the register length is d(n)= N
3
/2. However, during the second 
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N
3
/2 clock cycles the output of Mux1 and Mux2 become the results of addition and 

subtraction operations, respectively. The addition and subtraction process is performed 

between the content of the register d(n) and the second half of the input data cube 

during the second N
3
/2 clock cycles. The process of addition and subtraction in the first 

sub-stage produces N
3
/2 clock cycles delay between successive data cubes, this delay 

will be eliminated in the last stage of Model2. The adder and subtracter components are 

turned off during the first half of each input cube, and on during the second half using 

the same controller signal of this stage. The first sub-stage controller signal is a bi-level 

signal, each level with a period of N
3
/2 clock cycles, while N

2
/2 and N/2 clock period 

controller signals are used for the second and third sub-stages of BTFL1 stage. 

b. Flipping stage
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Figure ‎5.14: Butterfly sub-stages and flipping stage in Model2. 

 

The data block order of the first sub-stage outputs are: first output order; O1 is; B0, B1, 

B2 and B3 and the second output; O2 is; B4, B5, B6 and B7. The element order within 

each block is kept in its natural order from 0 to N
2
-1.  

The second sub-stage in BTFL1 is constructed from a switch, two adders and two N
2
/2-

registers; d1(n), d2(n)=N
2
/2, as shown in Figure ‎5.14-c. During the first N

2
/2, the switch 

connects the positions; a to c and b to d, and flips them during the successive N
2
/2 clock 

cycles to connect the positions; a to d and b to c. The output O1 represents the first half 
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of each block, whereas the second half is handled by O2. The block order of the two 

outputs is: 

         [  
    

    
    

    
    

    
    

 ] 

         [  
    

    
    

    
    

    
    

 ] (‎5.4) 

where     
  represents the first half of each data block and     

  represents the second 

half.  

The circuit diagram of the third sub-stage in BTFL1 is similar to the second sub-stage; 

the only difference is the length of the two registers, which is equal to N/2; d1(n), d2(n) 

=N/2. In this sub-stage, the order of the blocks at each output;    and    is (B0, B4, B1, 

B5, B2, B6, B3 and B7). However, the data order inside such blocks of    and    are: 

    0-3, 32-35,  8-11, 40-43, 16-19, 48-51, 24-27 and 56-59 

    4-7, 36-39, 12-15, 44-47, 20-23, 52-55, 28-31 and 60-63 
 

(‎5.5) 

 

This irregular element order within each data block is corrected using two flipping sub-

stages. Such two sub-stages are constructed using a switch and registers, as shown in 

Figure ‎5.14-b. The first flipping circuit utilises a register length of N/2; d(n)=4 and the 

second flipping stage uses N
2
/2-N/2 register; d(n)=28. The controller signals of the first 

and second flipping switches are the same as the controller signals of the third and 

second sub-stages of BTFL1, respectively.  

The last part of the first butterfly stage is the twiddle factor multiplication, which is 

accomplished using one multiplier per output and a single twiddle factor generator 

circuit. The twiddle factor generator is shown in Figure ‎5.15-a. This circuit composes of 

two 8-word ROM; its content is the same as that in Model1, one 4-word ROM with a 

content of: 1.96157, 1.11114, -0.39018 and -1.66294 and two multipliers. The first 

ROM is derived by a 3-bit slice with a single clock cycle period and the second ROM is 

derived by a 3-bit slice with an N clock cycle period. The addresses of the third ROM 

are generated using a 2-bit slice with a clock period of N
2
.  
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Figure ‎5.15: Twiddle factors generators for butterfly stages. 

 

In the second butterfly stage (BTFL2; m=2), all sub-stages are constructed using the 

circuit in Figure ‎5.14-c. The number of registers for each sub-stage are; (96,128), (16, 

16) and (2, 2), where the first value of each pair represents d1(n) and the second value 

refer to d2(n)). Three bi-levels controller signals are used to perform the butterfly 

computation; the period of the first signal is N
3
/4 cycles, while the clock period of the 

second and the third signals is N
2
/4 and N/4, respectively. Additionally, two flipping 

units are added with d(n)=2 and 14 for the first and second flipping units, respectively. 

Bearing in mind that the data within each block is kept in its natural order, the block 

order of the first output becomes; B0, B1, B4 and B5, and the second output order is; 

B2, B3, B6 and B7. The outputs from BTFL2 are multiplied by specific twiddle factors, 

accordingly. The twiddle factors of BTFL2 are generated using the circuit of 

Figure ‎5.15-a with m=2. The content of the upper and the middle ROM is; 1, 1, 

1.847759 and -0.76537, while the content of the lower ROM is; 1.847759 and -0.76537.  

The last butterfly stage; BTFL3 is similar to the previous stage but it uses different 

register lengths and twiddle factor values. The length of the registers (d1, d2) for each 

sub-stage are; (48, 64), (8, 8) and (1, 1) and the length of the registers used in the first 

and second flipping units are 1 and 7, respectively. The data block order of the first 

output O1 is; B0, B2, B4 and B6, and the second output O2 order is; B1, B3, B5 and B7, 

whereas the order of the elements within each block is corrected using the two flipping 

switches. Further, the twiddle factors of BTFL3 are computed using the circuit shown in 

Figure ‎5.15-b by using two ROMs. The content of both ROMs are; 1, 1.4142 and 2, and 

1.4142, 2 and 2.8284, respectively. 



110 

5.4.2 Post Addition Stages 

Post addition operations compose of three individual stages, as shown in Figure ‎5.16. 

Each post addition stage processes two elements per clock cycle. The first two stages 

are constructed from two parallel stages similar to the single post addition of Model1 

stages, Figure ‎5.10-c; with the same data controller (Figure ‎5.10-b). On the other hand, 

the third stage is constructed using the circuit shown in Figure ‎5.17. The third post 

addition stage consists of four multiplexers, five adders and the registers length is N
2
 

;d(n)=64.The controller of the last post-addition stage is composed of one AND gate 

and two single-bit slice elements, bit number 6 and 7 from the main 9-bit counter. The 

last adder is used to merge the two outputs into a single output; the order of the merged 

output is; B0, B2, B4, B6, B1, B3, B5 and B7.  

Stage 1

d(n)=N

Stage 2

d(n)=1

Stage 3

d(n)=N2

3-D 

BRO
Output

Post addition Controller{Sel1, Sel2, Sel3}

BTFLs:Output1

BTFLs: Output2

 
 

Figure ‎5.16: Post addition stages. 
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Figure ‎5.17: Third post addition stage (Stage3). 

5.4.3 3-D Bit Reverse Order Stage (3-D BRO Stage) 

The 3-D BRO stage of Model2 is similar to that of Model1, as shown in Figure ‎5.11. 

However, different block RAM and ROM1 and ROM2 sizes are used. The block 

memory size is 3N
2
–word, and ROM1 and ROM2 are of 8-word depth. The content of 

ROM1 is; 0, 1, 2, 0, 2, 1, 0 and 2, whereas; 0, 2, 1, 0, 2, 0, 1 and 2, is the content of 

ROM2.  
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5.5 Performance Evaluation  

The proposed architectures have been tested and implemented on a Xilinx Virtex5 

5vlx50tff1136-3 FPGA device, using different video sequences and different 

wordlengths. Further, the proposed architectures have been designed and implemented 

using Xilinx System generator tool, as illustrated in section 2.8. The initialisation 

Matlab codes for the proposed architectures are listed in the Appendix E. 

5.5.1 Rate Distortion Performance  

The PSNR and RMSE are used to check and evaluate the accuracy of the proposed 

architecture outputs and the reconstructed frames. These two metrics are computed 

between original and reconstructed frames. Further, the average of maximum absolute 

error of the 3-D DCT coefficients computed using architectures output and Matlab 

software implementation, are also computed using (4.29). The PSNR, RMSE and 

average maximum absolute error results for the first 8 frames from every input sequence 

are tabulated in Table ‎5.3 using 20, 16 and 14-bit wordlengths.  

Table ‎5.3: The PSNR and RMSE between the original and reconstructed 8 frames and 

the maximum absolute error between the 3-D DCT coefficients computed using 

architectures output and Matlab.   

  Reconstructed and original frames 3-D DCT Coefficients 

 

 PSNR (dB) RMSE Max. absolute error 

Input video   (12,8) (12,4) (12,2) (12,8) (12,4) (12,2) (12,8) (12,4) (12,2) 

MRI1 ∞ 60 48 0 0.25 0.99 0.013 0.22 0.88 

MRI2 ∞ 57 45 0 0.36 1.41 0.014 0.29 1.01 

Akiyo ∞ 59 47 0 0.27 1.15 0.013 0.25 1.10 

Stefan ∞ 57 45 0 0.35 1.40 0.014 0.27 0.99 

Suzie ∞ 57 45 0 0.35 1.39 0.013 0.24 0.91 

Bus ∞ 57 45 0 0.35 1.40 0.015 0.24 1.15 

Flower ∞ 57 45 0 0.35 1.39 0.015 0.25 1.01 

Calendar ∞ 57 45 0 0.35 1.40 0.013 0.22 0.93 

Average ∞ 58 46 0 0.33 1.32 0.0137 0.246 1.00 
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It is obvious from Table ‎5.3 that 100 % output accuracy is obtained using a 20-bit 

wordlength for all input sequences. Further, at 14-bit wordlength a PSNR of up to 48 dB 

and 0.9 lowest RMSE can be achieved.   Moreover, from Table ‎5.3, the proposed 

architectures produce very good image quality using the selected wordlengths. The 

average PSNR of the eight test sequences are ∞, 58 and 46 dB using (12, 8), (12, 4) and 

(12, 2)-bit wordlengths, respectively. The average RMSE between the original and the 

reconstructed frames is less than 1.3. While, the maximum absolute error between 3-D 

DCT coefficients computed using Matlab and the proposed architectures is less than 

1.15.   

Further, the first image of the original and reconstructed MRI2 medical image is shown 

in Figure ‎5.18 to give the reader a visual impression of the performance of the proposed 

architectures. In this figure, the reconstructed images are computed in both architectures 

using wordlength sizes of (12,2), (12,4) and (12,8)-bit. It is obvious that both 

architectures produce the same image quality. Also, it can be noticed that the (12,2)-bit 

wordlength produced a good image quality where the visual error cannot be recognised 

by the human visual system.  
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Figure ‎5.18: The original and reconstructed MRI2 using Model1 and Model2 

architectures for different wordlengths. 
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5.5.2 Hardware usage 

The hardware usage, speed and computation time of both architectures using different 

output wordlengths is shown in Table ‎5.4. It is clear that the average hardware usage of 

Model1 and Model2 architectures are lower than 10 and 16 %, respectively. The 

hardware usage of Model2 has increased due to duplicating some circuits for post 

addition stages to perform an addition process on both data lines (first and second 

outputs). However, this extra hardware usage improves the maximum operating 

frequency of Model2 by more than 80 MHz over the Model1. As such, the minimum 

computation time of 512×512×8-pixel in Model2 is 6.4 ms, whereas 8.4 ms for Model1 

is required, as shown in Table ‎5.4. 

Table ‎5.4: Percentage of hardware usages, maximum operating frequencies and 

computation times of both models using different wordlengths.  

 

 

 

Model1 Model2 

 
(12,8) (12,4) (12,2) (12,8) (12,4) (12,2) 

Available 
Rate 

% 

Rate 

% 

Rate 

% 

Rate 

% 

Rate 

% 

Rate 

% 

Hardware 

usage 

Slice Registers 28,800 6 5 5 13 11 10 

LUTs 28,800 7 6 5 11 9 8 

Occupied Slices 7,200 10 7 7 17 13 13 

IOBs 480 6 5 5 6 5 5 

Block RAMs 60 15 15 15 20 18 16 

DSP48Es 48 18 16 16 33 25 25 

Average (%)  10 9 9 17 14 13 

Maximum operating 

frequencies (MHz) 
- 238 237 250 320 303 330 

Computation times for 

512×512×8-pixel data (ms) 
- 8.8 8.9 8.4 6.6 6.9 6.4 

An interesting point from Table ‎5.4 is that the memory requirements of both 

architectures are kept low due to the in-place computations in all butterfly and post 

addition stages. An additional reason behind that is the low memory requirement for the 

BRO and 3-D reordering operations. As such, a memory of 5N
2

 and 3N
2
-word has been 

used for 3-BRO for Model1 and Model2, respectively. Further, a memory of 5N
2
-word 

for 3-D reordering operation has been used in both models. Thus, the total number of 

file:///D:/Temp_Report1/xflow/newmodelb1_cw_map.xrpt
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block memory used in each model is less than 20% of the available memory resources 

of the 5vlx50tff1136-3 FPGA device (60 Block RAMs are available in this device). 

5.5.3 Dynamic Power Consumption 

The power consumption in FPGA is classified into static and dynamic power. The static 

power mainly comes from leakage current, whereas charging switch capacitors and 

short circuit currents are the main sources of dynamic power. The first type (static 

power) is affected by the technology used in FPGA manufacturing, whereas the second 

type (dynamic power) can be minimized by switching capacitance reduction, as in [136] 

and [137]. The dynamic power consumption of the proposed architectures is shown in 

Figure ‎5.19. The power consumption has been computed using a Xilinx Xpower 

analyser for various clock frequencies, and different wordlengths. The dynamic power 

consumption has increased in Model2 by around 15 mW over Model1; an important 

reason behind that is the additional multipliers in the butterfly stages and the duplication 

of some resources in the first two post addition stages.  Thus, Model1 is outperforming 

Model2 in power consumption attribute, which makes it suitable for power economy 

applications. Further, using a wordlength of (12,2)-bit in both models has a good impact 

on power consumption reduction, as shown in Figure ‎5.19.  

 

Figure ‎5.19: Dynamic power consumption of the proposed architectures. 

5.5.4 Comparing with Other Architectures 

The performance of the proposed architectures is compared with the performance of the 

architectures in [25] and chapter 4, as shown in Table ‎5.5 and Table ‎5.6. From 

Table ‎5.5, it is clear that the maximum operating frequency of the proposed 
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architectures outperforms the normalised frequency of the 3-D DCT architectures in 

[25]. The normalised operating frequency is computed as in [25]. Furthermore, Model2 

and 3-D DCT VR architecture in chapter 4 represent the highest speed DCT 

implementation among all architectures.  

Further, from Table ‎5.6, it is clear that the hardware usage of the proposed architectures 

is less than that in [25]. An interesting point is that the number of multipliers in the 

proposed architectures is much less than those used in the block architecture in [25]. 

From Table ‎5.6, it can be noticed that Model1 architecture has the lowest number of 

registers and LUTs with respect to other architectures. While, the 3-D DCT RCF 

architecture has the advantage of the lowest number of DSP slices among all 

architectures.  However, Model2 represents the faster architectures among all of them. 

Table ‎5.5: Maximum clock frequency of the proposed and similar architectures.   

 
Proposed architectures 

Normalised frequency of the architectures in 

[25] 

 

This Chapter 

WL=20-bit 

Chapter 4 

WL= 21-bit  

 

Model

1 

Model

2 

RCF VR 
Original 

Pipelined 

ver.1 

Pipelined 

ver.2 
Block 

Frequency (MHz)  250 330 237  259  132.82 152.63 132.82 175.73 

Data cube size 8×8×8 8×8×8 

FPGA device 
Xilinx Virtex5 

5vlx50tff1136-3 
Altera Cyclone II EP2C70F896C6 

 

Table ‎5.6: Hardware usage comparison between the 3-D DCT architectures. 

Slice Logic 

Utilisation 

This Chapter 

WL= 20-bit 

Chapter 4 

WL= 21-bit Block architecture in [25] 

Model1 Model2 RCF VR 

Slice Registers 1,871 3,750 6,934 4,972 Registers 13,347 

Slice LUTs 2,173 3,309 7,051 2,779 Logic Elements 19,355 

Multipliers 7 10 39 4 9-bit Multipliers 128 

Memory (Kb) 288 306 108 306 - - 

DSP48Es slices 9 16 0 6 - - 

Data cube size  8×8×8 
 

8×8×8 

FPGA Device XilinxVirtex5 5vlx50tff1136-3 Cyclone III EP3C120F780C8 
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5.6 Summary  

This chapter has introduced two new architectures for 3-D DCT computation using the 

3-D DCT VR algorithm. The proposed architectures avoid the need for the memory for 

data transposition in the butterfly and post addition stages which in turn reduce the 

hardware usage and improve the processing speed. The proposed architectures are 

parameterisable in terms of wordlength, providing different output precision levels, 

power consumption, hardware usage and processing speeds. The proposed architectures 

have been implemented on Virtex 5 5vlx50tff1136-3 FPGA device and tested using 

different images and videos, different wordlengths and clock frequencies. The output 

accuracy, hardware usage, maximum operating frequencies and power consumption of 

the proposed architectures are evaluated using (12, 8), (12, 4) and (12, 2)-bit; (IWL, 

FWL) wordlengths. The accuracy tests revealed that the PSNR of the reconstructed 

images and frames are ∞, 6  and 4  dB using the three selected wordlengths, 

respectively. Also, the evaluated results reveal that the number of occupied slices is 722 

and 1235 for the first and second architecture, respectively. Furthermore, the maximum 

operating frequencies achieved by the two architectures are 250 and 330 MHz using 14-

bit output wordlength and 8×8×8-pixel input cube size for the first and second 

architectures, respectively. Moreover, the new architectures have the advantage of low 

power consumption, which is in the order of 25 to 175 mW, depending on the clock 

frequency and wordlength. Moreover, significant hardware usage reduction with higher 

operating frequencies is achieved when compared with similar 3-D DCT hardware 

architectures. 

So far, block based multidimensional transforms for image and video processing have 

been discussed and different architectures have been proposed and verified. The next 

chapter will discuss a multidimensional discrete wavelet transform (DWT) which 

represents a non-block transformation for image and video processing. 
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Chapter 6: Parallel and Multiplierless 

Multidimensional CDF 9/7 DWT Architectures 

6.1 Introduction 

Thus far, block based multidimensional transforms as used in image and video 

compression applications have been discussed, with different architectures proposed and 

verified. This chapter will discuss the multidimensional DWT, which represents a non-

block transform used in image and video processing applications. The DWT is used in 

audio, image and video compression algorithms as it overcomes the blocking artefact 

limitations of the conventional block-based image compression techniques. However, in 

spite of the advantages of the DWT over DCT and FFT, it has the limitations of high 

memory requirements and high computation costs. These factors affect the speed, 

complexity and power consumption of any DWT architecture, thus motivating many 

researchers to investigate and propose different versions of DWT computation 

approaches to overcome these limitations and drawbacks. 

In this chapter, new lifting-based 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7 

(CDF 9/7) DWT parallel and multiplierless architectures are proposed. The proposed 

architectures have been devised to process an infinite GOF and achieve a good 

compromise between memory requirement and power consumption. Such architectures 

partition the data into blocks of 4, 4×4 and 4×4×4 pixels, which are processed 

concurrently. The temporal computation in the proposed 3-D DWT architecture is 

carried out using a block memory size of four frames only. Furthermore, shift-add 

multipliers with ignorable error are suggested to reduce the power consumption arising 

from using the constant multipliers. The evaluation results have revealed that the 

proposed architectures outperform the works in the literature in terms of processing 

speed and power consumption. In addition, further wavelet filters can be implemented 

using the proposed design methodology and architectures of the CDF 9/7 when 

appropriate modifications are introduced. 

The remainder of this chapter is organised as follows. Section ‎6.2 reviews the lifting-

based 1-D CDF 9/7 DWT. A modified CDF 9/7 lifting scheme is introduced in 

section ‎6.3. A 1-D DWT architecture that implements such modification is presented in 

section ‎6.4. Sections ‎6.5 and ‎6.6 and present new 2-D and 3-D CDF 9/7 DWT 
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architectures. The results are analysed in section ‎6.7, while the summary is drawn in 

section ‎6.8.  

6.2 The CDF 9/7 1-D DWT Lifting Scheme 

The lifting-based DWT scheme decomposes a wavelet filter into a matrix product 

involving a sequence of upper and lower triangular matrices pairs and diagonal scaling 

matrix. Such an operation corresponds to factorisation of the poly-phase matrix of a 

target wavelet filter [80, 81]. The poly-phase decomposition can be expressed as 

follows:  

 ( )    ( 
 )       ( 

 ) (‎6.1) 

 ( )    ( 
 )       ( 

 ) (‎6.2) 

 ( )  [
  ( )   ( )

  ( )   ( )
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] (‎6.4) 

where  ( ) and  ( ) are the low and high pass analysis filters, respectively.  ( ) is the 

poly-phase decomposition matrix. As an example, the CDF 9/7 filter can be 

decomposed into four lifting and one scaling steps, as follows [28, 80, 81, 138]: 
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(‎6.5) 

where α = −1.586134342, β = −0.05298011854, γ = 0.8829110762,   = 0.4435068522, 

and ζ = 1.149604398. 

Then, the computation steps can be implemented as follows [81]:   
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where (‎6.6) represents splitting of signal x into odd and even indexed terms; it is also 

termed the lazy wavelet step,   
        

  are the first and second predict steps, and 

  
        

  are the first and second update steps, while (‎6.9) represents the final scaling 

step. The computation of (‎6.9) as a whole involves a series of five multiplication and 

eight addition operations. As such, the hardware implementation of (‎6.9) results in a 

critical path of 5Tm + 8Ta; where Tm and Ta are the multiplier and adder delay, 

respectively [28, 139, 140]. Such critical delay can be shortened to 3Tm + 4Ta by 

adopting a flipping structure [139, 140]. This modified structure is based on the 

modification of (‎6.6) to (‎6.9) as follows: 
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The constants             can be calculated as follows:       
 ⁄             , 

   
    ⁄              ,    

    ⁄                and    
    ⁄  

           . The scaling factors (         ) can be computed using:     

                  and    
     

  
⁄             [140]. 

6.3 The Proposed Lifting-based CDF 9/7 DWT Computation 

Scheme  

The computation scheme of (‎6.10) to (‎6.13) is shown in Figure ‎6.1. In this figure, A, B, 

C, D, K0 and K1 are the constant and scaling factors. From this figure, nine input 

samples are required to compute the wavelet coefficients    and   .  
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Figure ‎6.1: The CDF 9/7 1-D DWT [28]. 

 

The proposed 1-D CDF 9/7 DWT computation scheme is shown in Figure ‎6.2. In this 

scheme, the input data sequence  {             };   is the input data length, is 

partitioned into a blocks of four samples, and thus the first block is 

    {            }. Such samples are termed {  
    

    
    

  } or even and odd 

samples and fed to the 1-D DWT computation unit in parallel. During the computation 

process of the first data block - the first computation round - four temporary values are 

computed and allocated in appropriate registers, while the output wavelet coefficients 

are set to zero. The four temporary values, marked by the shaded left skew bar shown in 

Figure ‎6.2, are:   
 ̃   

 ̃   
 ̃       

 ̃ and they are computed according to the following 

sequence: 
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Figure ‎6.2: The proposed CDF 9/7 computation scheme for the first two data blocks. 

 

During the second data block, the second computation round of      {            } 

({  
    

    
    

  }), four output wavelet coefficients are computed using the temporary 

values and the new input block samples as described in the following computation 

sequence: 

   
    

    
 ̃                             (‎6.20) 
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Then, the four wavelet coefficients (               ) are computed as follows: 

        
  (‎6.32) 

        
  (‎6.33) 

        
  (‎6.34) 

        
  (‎6.35) 

Furthermore, four new temporary values are computed and allocated in the same four 

registers to be used during the computation process of the third input block. The second 

four temporary values are   
 ̃   

 ̃   
 ̃       

 ̃ and these are computed using (‎6.31), (‎6.28), 

(‎6.25) and (‎6.22), respectively. This process is repeated   ⁄  times until the wavelet 

coefficients of the last input block are computed. The abovementioned computation 
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procedure represents full 1-D wavelet computation of  -point 1-D input data. Thus, in 

the proposed 1-D DWT scheme four temporary values with four new data samples can 

be used to evaluate the DWT coefficients. The proposed computation scheme can be 

used to perform the 2-D and 3-D CDF 9/7 DWT computation. In the proposed 3-D 

DWT computation scheme a memory depth of four frames is used to perform the 

computation operations without any computational redundancy.  

6.4 The Proposed Lifting-based 1-D DWT Architecture 

The proposed lifting-based CDF 9/7 1-D DWT architecture is based on the computation 

process described in section ‎6.3, as shown in Figure ‎6.3-a. In this figure, the parameters 

R0, R1, R2 and R3 represent the registers used to store the temporary values during the 

computation process. R0, R1, R2 and R3 all have the same length; thus, they have been 

substituted by 4R in Figure ‎6.3-b. In this figure, the blue lines represent the position of 

the selectors or switches. The Ctrl signal represents the Controller signal. 

In the rest of this chapter, each 1-D DWT lifting architecture unit is termed Single Unit 

(SU). The proposed SU, represents the CDF 9/7 1-D DWT architecture. The word data 

block refers to 4 and 4×4-sample in the proposed 1-D and 2-D DWT architectures, 

respectively. Each SU has four input and four output ports for data signals, as well as 

one input port for the controller signal.  

The computation procedure through the SU is accomplished according to the following 

sequence: a  -sample 1-D input data is partitioned into blocks of 4-sample which is fed 

to the SU in parallel. As an example, an input data   of   samples is partitioned into 

     data blocks, as follows: 

{ (  )  (    )  (    )  (    ) }          
 

 
   (‎6.36) 

Hence, during the first data block,    , the SU, is set to perform the computation of 

( 6.14) to ( 6.19) according to the controller signal.  The controller signal is 0 and all 

selectors are disconnected during the first block computation period; the controller unit 

and its signals is shown the Appendix F. Throughout this period;    , four temporary 

values are computed and allocated in four registers. Such temporary values are used 

during the computation operation of the subsequent data block;    . Then, the 

selectors are reconnected during the computation process of the blocks      to 

  
 

 
  . Four wavelet coefficients are computed during the computation operation of 
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every input data block. These four wavelet coefficients are arranged in the following 

sequence: Low, High, Low and High pass (L, H, L and H) coefficients. This process is 

repeated     times and, during each input data block, four temporary values are 

allocated in the same four registers and four wavelet coefficients are computed. 
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a. The proposed CDF 9/7 1-D DWT data flow; Single Unit (SU) 
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R0, R1, R2  and R3 

or in total= 4R
 

b. The block diagram of SU 

Figure ‎6.3: Single unit (SU) of the CDF 9/7 1-D DWT architecture. 
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The proposed SU architecture is designed to tackle different wordlengths to provide 

various levels of output precision. The wordlength of each SU is partitioned into two 

parts: the IWL and FWL. In the rest of this chapter, the IWL is set to an 11-bit signed 

integer and the FWL is selected to be 5 or 7; however, any other wordlength sizes can 

be chosen as required.  

The proposed SU involves 12 constant multipliers to perform the multiplication 

operation with the previously mentioned constants and scaling 

factors;                  . However, it is well-known that the multiplication 

operation affects the power consumption of any system. Thus, each multiplier is 

substituted by a proposed shift-add element, as shown in Figure ‎6.4. In this figure, the 

division or multiplication by a power of two values is substituted by shift operations.  

As shown in Table ‎6.1, the proposed shift-add multipliers are designed to produce the 

same output accuracy of the conventional multipliers. However, a negligible error 

between each two multipliers occurred, as specified in Table ‎6.1. From this table, it is 

obvious that the maximum error (difference) between the proposed shift-add and 

conventional multipliers is less than  . 9 1 
-3

; thus, it can be neglected.  

Table ‎6.1: The difference between the constant and proposed shift-add multipliers. 

Constant 
Conventional 

multipliers 

Proposed shift-add 

multipliers 
difference 

A 0.630463621 0.630371094 9.252 2 1 
 5

 

B 0.743750255 0.743652344 9. 9113 1 
 5

 

C 0.668067178 0.66796875 9.8428 1 
 5

 

D 0.638443853 0.638671875  2.28 22 1 
 4

 

K0 2.421021123 2.420898438 1.22686 1 
 4

 

K1 2.065244222 2.064453125  .91 9  1 
 4
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Figure ‎6.4: The proposed shift-add multipliers. 

 

6.5 The Proposed Lifting-based 2-D DWT Parallel Architecture 

The proposed 2-D DWT architecture consists of four SUs for rows (RUs) and four SUs 

for columns (CUs) computation units, as shown in Figure ‎6.5. The SelR and SelC 

signals are used to control the transitions between the block boundaries.   

Initially, each input image is partitioned into blocks of 4×4-pixel. Each row is fed to a 

corresponding RU. Thus, an input image with    -pixel is partitioned into 
   

  
  data 

blocks using the suggested 4×4-pixel data blocks. Such blocks are shown in Figure ‎6.6 

for an image tile of 8×8-pixel.  

The 16-sample data stream is converted into four parallel data sequences using a serial 

to parallel converter. Each four sample block belongs to a single row from the original 

4×4-pixel data block. Thus, four 4-sample blocks are fed to four RUs in parallel. The 

input data to RU1, RU2, RU3 and RU4 are as follows:   
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Figure ‎6.5 : The proposed 2-D DWT parallel architecture.  

 

 

CU1 CU2 CU3 CU4 CU1 CU2 CU3 CU4

1st

Column

2nd

Column

3rd

Column

4th

Column

5th

Column

6th

Column

7th

Column

8th

Column

RU1 1st Row x (0,0) x (0,1) x (0,2) x (0,3) x (0,4) x (0,5) x (0,6) x (0,7)

RU2 2nd Row x (1,0) x (1,1) x (1,2) x (1,3) … … … x (1,7)

RU3 3rd Row x (2,0) x (2,1) x (2,2) x (2,3) … … … x (2,7)

RU4 4th Row x (3,0) x (3,1) x (3,2) x (3,3) … … … x (3,7)

RU1 5th Row x (4,0) x (5,1) x (6,2) x (7,3) … … … x (4,7)

RU2 6th Row … … … … … … … x (5,7)

RU3 7th Row … … … … … … … x (6,7)

RU4 8th Row x (7,0) x (7,1) x (7,2) x (7,3) x (7,4) x (7,5) x (7,6) x (7,7)

First data block Second data block

Third data block Fourth data block

 

Figure ‎6.6: Four 4×4-sample data blocks. 

 

 



129 

{ (     )  (       )  (       )  (       ) }                             (‎6.37) 

{ (       )  (         )  (         )  (         ) } (‎6.38) 

{ (       )  (         )  (         )  (         ) } (‎6.39) 

{ (       )  (         )  (         )  (         ) } (‎6.40) 

where          
 

 
   and           

 

 
   represent block row and column 

indices, respectively.   

Consequently, during the first 4×4-pixel block (           ), each RU computes 

four temporary values   
 ̃   

 ̃   
 ̃       

 ̃. These temporary values are stored in the four 

registers. Each register has a single stage length;    , as shown in Figure ‎6.3, and the 

row controlling signal; Row Selector (SelR) is set to 0; the controller unit is detailed in 

Appendix F. The four temporary values will be used during the computation process of 

the subsequent data block. Hence, when             (the second data block), the 

SelR is set to 1 and four wavelet coefficients are computed from each RU; 2 coarse and 

2 fine components. At the same time, the content of the four registers in each RU is 

updated with new temporary values to be ready for the third data block. The first four 

outputs of each RU become available for the columns filtering process after 161 clock 

cycles regardless of the image size. The above mentioned procedure represents the row 

wavelet filtering step. Subsequently, the first four outputs of each RU become available 

for the columns filtering process after 161 clock cycles regardless of the image size 

Then, the subsequent units (CUs), perform the filtering operation on the output of RUs.  

This step represents the column wavelet filtering operation. It starts the computation 

process when each RU has finished the computation process of the first data block. 

During the first four rows of the input image (    and    ) each CU computes   ⁄   

temporary values which are allocated in a dedicated chain of registers with a length of 

  ⁄ ;     ⁄ , as shown in Figure ‎6.5. These temporary values will be used during the 

computation process of the subsequent four rows (rows 5 to 8;      and    ). 

During the period of rows 5 to 8 computation process, each CU computes four wavelet 

coefficients using the temporary values and the new RUs outputs. New temporary 

values are also allocated in the same registers to be used during the computation 

operation of the ensuing four rows (rows 9 to 12;      and    . Consequently, the 

outputs from this step (CUs outputs) are arranged in the sequence of Low-Low, Low-
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High, High-Low and High-High pass filtered signals (LL, LH, HL and HH) wavelet 

bands which represent the 2-D wavelet coefficients of the input image. The first four 2-

D wavelet coefficients become available at the output ports after  (     )    clock 

cycles. 

6.6 The Proposed Lifting-based 3-D DWT Parallel Architecture 

This section presents CDF 9/7 3-D DWT lifting-based parallel architecture based on the 

proposed SU. In this architecture, the 3-D DWT computation is performed by applying 

1-D DWT on the rows, columns and frames, successively. It consists of; four Row-

Column units (RCUs) and four SUs for frame direction (FUs), as shown in Figure ‎6.7. 

Each RCU calculates 2-D DWT coefficients for a single frame and the outputs of these 

units are fed to four FUs. The four FUs are termed; FU1, FU2, FU3 and FU4, and these 

are used to compute the wavelet coefficients in the frame direction. 

The 3-D input signal is considered to have P-Rows, Q-Columns and F-Frames; 

P×Q×F-pixel and each dimension is assumed to be a multiple of 4 in all subsequent 

explanations throughout this chapter.   

3-D 

DWT 

output

RCU1

SelR SelF

R; Register 

size= PQ/4

R= 

D-FF

RCU2

RCU3

RCU4

FU4

FU2

FU3

FU1

Frame1

Frame2

Frame3

Frame4

SelC

R=

Q/4

2-D 

DWT 

 

Figure ‎6.7: Block diagram of the proposed 3-D DWT lifting-based architecture. 
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6.6.1 Row-Column Units (RCUs) 

The input signal of the proposed 3-D DWT architecture is partitioned into a group of 

four frames (GOF) :                 and                 
 

 
 , where each frame is 

fed to a single RCU, concurrently. The operation of the four RCUs is similar to the 

operation of the proposed 2-D DWT architecture. The RCUs are identical and operate 

simultaneously to compute the 2-D wavelet coefficients of each input frame. Thus, each 

RCU produces LL, LH, HL and HH wavelet bands for each input frame. These outputs 

are termed:                     where,           and represents the RCUs 

index.   

6.6.2 Frame Units (FUs) 

This stage computes wavelet coefficients in the frame direction using four FUs. These 

units are similar to that shown in Figure ‎6.3 with a different controlling signal and 

buffer size (register R); the controller unit is detailed in Appendix F. The inputs to this 

stage are collected from the outputs of the RCUs. Hence, the inputs to the FU1 are the 

four LL bands which can be collected from the four RCUs, and likewise for LH, HL and 

HH bands, as shown in Figure ‎6.8. This figure explains how the output wavelet bands of 

each frame are fed from RCUs to FUs. 

 

 a. Row-Column units outputs

LL1 LH1

HL1 HH1

RCU1:Frame1

LL2 LH2

HL2 HH2

LL3 LH3

HL3 HH3

LL4 LH4

HL4 HH4

RCU2:Frame2

RCU3:Frame3 RCU4:Frame4

LL1 LL2

LL3 LL4

FU1 FU2

LH1 LH2

LH3 LH4

HL1 HL2

HL3 HL4

FU3 FU4

HH1 HH2

HH3 HH4

b. Frame units inputs  

Figure ‎6.8: Input bands to the frame units.  
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During the first four frames (first computation round; first GOF),                  

 , each FU computes and stores four temporary values every clock cycle to perform the 

computation operations of ( 6.14) to ( 6.19). The computed temporary values are 

allocated in four block RAMs. Each RAM has a depth of   
  

 
 words, as shown in 

Figure ‎6.7, and represents a temporal buffer. Thus, the total memory depth required for 

each FU is  (
  

 
)-word (four R-registers). These block memories act as a long delay 

line which can be constructed using a single port block RAM , dual port block RAM, 

FIFO or long chain of registers. Thus, the total block temporal memory requirement for 

the proposed 3-D DWT architectures is:   (
  

 
), which represents the memory required 

by all FUs which are sufficient  to handle four frames as temporary values (single 

GOF). In the subsequent computation round, when    , the input frames are; 

               , and again the RCUs compute the 2-D DWT coefficients for the new 

frames. These outputs are also fed to the FUs in the same sequence as the first GOF. 

Hence, throughout the second computation round (   ), each FU computes the 3-D 

DWT coefficient using the RCU outputs and the temporary values allocated in the 

frame buffers. Furthermore, at each computation round, the temporary values in each 

block memory are updated with new values to be used in the subsequent computation 

round. The temporary values are stored and recalled in a sequential order; thus, FIFOs 

or chain of registers can be used without the need for additional addressing circuits. 

Moreover, the processing time for any number of frames and frame sizes is   
 

 
 clock 

cycles. Furthermore, the proposed 3-D DWT architecture is constructed using the same 

basic unit (SU) for rows, columns and frame directions and it is parameterisable in 

terms of wordlength, frame sizes and number of frames. These parameters are IWL, 

FWL, P, Q and F, respectively.  

6.7 Results and Discussion 

In this section, the performance of the proposed 2-D and 3-D DWT architectures are 

analysed. The proposed architectures have been implemented and tested using a 

6vlx760ff1760-2Virtex 6 FPGA device. The output accuracy, power consumption and 

hardware cost have been analysed using various images and video sequences, as well as 

different wordlengths. These images and video sequences are shown in Figure 3.15 and 

Figure 4.19. Further, the proposed architectures have been designed and implemented 
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using Xilinx System generator tool, as illustrated in section 2.8. The initialisation 

Matlab codes for the proposed architectures are listed in the Appendix G. 

6.7.1  The 2-D DWT Architecture Performance  

6.7.1.1 The Rate Distortion Performance 

The PSNR between the original and the reconstructed images are computed and 

tabulated in Table ‎6.2. The maximum 2-D DWT absolute error between the proposed 

architecture and its Matlab implementation are also shown in this table. The 

wordlengths used in these tests are 18 and 16-bit, where the IWL is set to 11-bit with 7 

and 5-bit for FWL. However, the architecture is designed to tackle any wordlengths as 

specified or required, according to the target accuracy and PSNR. As shown in 

Table ‎6.2, the average of the maximum absolute error in wavelet coefficients of the 

proposed architecture using the MRI images and video sequences are 0.32 and 1.32 with 

PSNRs of ∞ and 53 dB, respectively. This error occurs due to the rounding and 

truncation operations of the proposed shift-add constant multipliers. However, it does 

not have a high impact on the targeted PSNR of the reconstructed frames. 

Table ‎6.2: The PSNR and the maximum absolute error for the proposed 2-D DWT 

architecture using 18-bit and 16-bit WL. 

WL (IWL, FWL) (11, 7) (11, 5) 

Images Size (P×Q) PSNR (dB) 
Max. absolute 

Error 
PSNR (dB) 

Max. absolute 

Error 

MRI1 128×128 ∞ 0.30 57 1.19 

MRI2 256×256 ∞ 0.36 52 1.34 

Akiyo 144×176 ∞ 0.33 52 1.38 

Stefan 288×352 ∞ 0.30 52 1.40 

Suzie 144×176 ∞ 0.30 52 1.26 

Bus 288×352 ∞ 0.32 52 1.34 

Flower 288×352 ∞ 0.31 52 1.35 

Calendar 144×176 ∞ 0.32 52 1.28 

Lena 512×512 ∞ 0.31 52 1.32 

Peppers 512×512 ∞ 0.34 53 1.37 

Average -- ∞ 0.32 53 1.32 
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6.7.1.2 Power Consumption 

The power consumption of the proposed 2-D DWT architecture is computed using a 

Xilinx Xpower analyser for selected image sizes and operating frequencies at a supply 

voltage of 1 Volt, as shown in Figure ‎6.9. Two frame sizes are considered in this test: 

144×176 and 288×352-pixel using a wordlength size of 16-bit (11, 5)-bit. As can be 

seen in Figure ‎6.9, the power consumption of the proposed 2-D DWT architecture is 

from 9 to 48 mW using 20 to 100 MHz operating frequencies. Moreover, the 9 mW 

dynamic power consumption is small enough to consider the proposed 2-D DWT 

architecture as a low power consumption architecture.  

In the same manner, any other image sizes and/or wordlengths can be used by simply 

altering the IWL and FWL parameters. However, the power consumption increases 

when the wordlength and input image sizes are increased. This power increase is due to 

the extra hardware resources and additional computation operations that will be 

required. 

 

Figure ‎6.9: Power consumption for various operating frequencies using (11, 5)-bit 

wordlength. 

6.7.1.3 Hardware Usage 

The hardware usage, maximum operating frequencies and the computation times of the 

proposed 2-D DWT architecture are shown in Table ‎6.3. From this table, a 185 MHz 

operating frequency can be achieved. This reduces the computation time of the 2-D 

DWT for an image of 288×352-pixel to 0.55 ms. Furthermore, no block memories have 

been used in the proposed architecture. 
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Table ‎6.3: The hardware usage, maximum operating frequencies and computation time 

for the proposed 2-D DWT architecture using 144×176 and 288×352-pixel at (11, 5) bit 

wordlength.   

 
Available 

144×176-

pixel 

288×352-

pixel 

Hardware 

cost 

Slice Registers 948,480 6.5K 7.2K 

Slice LUTs 474,240 8.7K 9.5K 

Occupied slices 118,560 2.4K 2.6K 

Bonded IOBs 1,200 73 73 

RAMB36E1/ FIFO36E1s 720 0 0 

Maximum frequency (MHz) -- 185 185 

Computation time (ms)  0.14 0.55 

6.7.2 The 3-D DWT Architecture Performance 

6.7.2.1 Rate Distortion Performance  

The RMSE, PSNR and the average of the maximum 3-D wavelet coefficients error are 

computed using 18 and 16-bit wordlengths. The selected (IWL, FWL) pair are set to 

(11, 7) and (11, 5)-bit. The RMSE and PSNR have been computed between the original 

and reconstructed frames using (2.12) and (2.13), as shown in Table ‎6.4 and Table ‎6.5 

for a WL of 18 and 16-bit, respectively. Furthermore, the average of the maximum error 

between the 3-D wavelet coefficients computed by the proposed architecture and 

Matlab codes are listed in both tables. Table ‎6.4 shows that an average PSNR of 79 dB 

at a wordlength of 18-bit with an average RMSE of 0.03 can be achieved. In such case 

the average of the maximum error in 3-D wavelet coefficients is less than 0.38. 

Moreover, in Table ‎6.5, the average PSNR of the proposed 3-D DWT architecture is 54 

dB with an average RMSE of 0.53 using 16-bit wordlength. With this wordlength, the 

average of the maximum error in the 3-D DWT coefficients is less than 1.49. This 

minor error is due to the rounding operations required by the proposed shift-add 

multipliers and other rounding and truncation operations. Moreover, the performance of 

the proposed architecture can be easily evaluated for any other word size, frame size 

and number of frames by modifying five input parameters, which are IWL, FWL,  ,   

and  .    
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Table ‎6.4:  The PSNR, RMSE and average of the maximum error for 3-D DWT 

coefficients using the proposed architectures for WL=18 (11, 7)-bit. 

Input 

sequence 

Frame size PSNR 
RMSE 

Maximum 

absolute Error P Q (dB) 

MRI1 128 128 85 0.015 0.36 

MRI2 256 256 77 0.038 0.43 

Akiyo 144 176 78 0.033 0.37 

Stefan 288 352 79 0.029 0.39 

Suzie 144 176 78 0.031 0.35 

Bus 288 352 78 0.034 0.39 

Flower 288 352 79 0.029 0.41 

Calendar 144 176 79 0.030 0.37 

Average - - 79 0.030 0.38 

Table ‎6.5:  The PSNR, RMSE and average of the maximum error for 3-D DWT 

coefficients using the proposed architectures for WL=16 (11, 5). 

Input 

sequence 

Frame size PSNR 
RMSE 

Maximum 

absolute Error P Q (dB) 

MRI1 128 128 60 0.26 1.41 

MRI2 256 256 52 0.61 1.55 

Akiyo 144 176 53 0.57 1.49 

Stefan 288 352 53 0.56 1.50 

Suzie 144 176 53 0.57 1.46 

Bus 288 352 53 0.60 1.54 

Flower 288 352 53 0.55 1.55 

Calendar 144 176 53 0.56 1.40 

Average - - 54 0.53 1.49 
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6.7.2.2 Power Consumption Test 

The dynamic power consumption of the proposed 3-D DWT architecture is computed 

using a Xilinx Xpower analyser at a supply voltage of 1 Volt. Two video sequences 

with frame sizes of 144×167 and 256×256-pixel and various clock frequencies are used, 

as shown in Figure ‎6.10. The clock frequency range is selected to be from 20 to 100 

MHz and the wordlength is specified as (11, 5)-bit. Figure ‎6.10 illustrates that the 

dynamic power consumption of the proposed 3-D DWT architecture ranges from 32 to 

159 mW and from 41 to 204 mW for the selected first and second frame sizes, 

respectively.  

As the throughput of the proposed architecture is 4 results/clock cycles, a low operating 

frequency can be used to obtain the desired frame rate of real time 3-D DWT 

computation. As an example, in the case of 30 frames per second with a frame size of 

144×167-pixel, less than a 1 MHz clock frequency is required as a real time processing 

speed, and thus, in this case, the dynamic power consumption will drop to 2 mW, as 

computed using the Xilinx Xpower analyser.  

 

 

Figure ‎6.10: Dynamic power consumption (mW) for the proposed 3-D DWT 

architecture using various operating frequencies using (11, 5)-bit wordlength. 

6.7.2.3 Hardware Usage 

The hardware usage, operating frequency, throughput and computation times of the 

proposed 3-D DWT architecture are shown in Table ‎6.6. Such results are obtained using 

144×176 and 256×256-pixel frame sizes, wordlength of (11, 5)-bit and a 10 ns clock 

period. 
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Table ‎6.6: The hardware usage, maximum operating frequencies, throughput and 

computation time for the proposed 3-D DWT architecture using 144×176 and 256×256  

image sizes at (11, 5) bit wordlength.   

 
 

Available 

resources 

144×176-

pixel 

256×256-

pixel 

Hardware 

usage 

Number of Slice Registers 948,480 31.4K 32.4K 

Number of Slice LUTs 474,240 37.3K 38.8K 

Number of occupied Slices 118,560 10.5K 11K 

Number of bonded IOBs 1,200 97 97 

Number of 

RAMB36E1/FIFO36E1s 
720 0 0 

Number of 

RAMB18E1/FIFO18E1s 
1,440 128 256 

Maximum operating frequency (MHz) -- 151.7 139.2 

Throughput rate (Pixels/sec×10
6
)

 
-- 606.8 556.8 

Computation time of eight frames (ms) -- 0.33 0.94 

 

As Table ‎6.6 demonstrates, 128 and 256-18 Kb block memories have been used in the 

proposed 3-D DWT architecture for 144×176 and 256×256-pixel frame sizes, 

respectively. These block memories have been used as a temporary buffer during the 

computation operation along the frame direction.  In addition, a maximum operating 

frequency of 151 MHz can be achieved with a throughput rate of 606.8 M pixels/second 

using a 144×176 frame size.  Such a high throughput rate has been achieved as a result 

of using the parallel computation scheme which computes 4 results per clock cycle. 

Thus, processing times of 0.33 and 0.94 ms are achieved for eight frames in the selected 

frame sizes, respectively. However, such fast 3-D DWT computation operation comes 

with extra hardware resources due to the parallel nature of the proposed architecture 

6.7.3 Comparison with Other Architectures 

The performance of the proposed CDF 9/7 3-D DWT architecture is compared to that of 

the existing architectures in the literature [27-30, 109] in terms of the hardware usage, 

computation time and power consumption, as shown in Table ‎6.7, Table ‎6.8 and 

Figure ‎6.11. 
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Table ‎6.7:  Comparison with existing 3-D DWT architectures for an input sequence 

of  -frames each with      pixels *   

 
Dai 

[109] 

Das 

[29] 

Das 

[28] 

Proposed 3-D 

DWT architecture 

Temporal 

memory 

requirements 

  (   )(   )     

On chip memory and  

    ⁄   Off chip memory 

 : filter length 

   ⁄  
   

(spatial 

and 

temporal) 

         

1 level 

computing 

time 

     ⁄  –     
 

 
   

   

 
 

1 Level 

computational 

latency 

– – 
    

 

 (   )      

 

Filter bank CDF 9/7 Daub-4 CDF 9/7 CDF 9/7 

GOF  32 (max) Infinite Infinite Infinite 

* Some of the figures in this table are cited from Table I in [28]. 

As Table ‎6.7 shows, the proposed CDF 9/7 3-D DWT architecture outperforms the 

architectures of Dai [109], Das [29] and [28] in terms of memory requirement, 

computation time and initial latency. From this table, a memory size of four frames     

is required as a temporal buffer in the proposed 3-D DWT architecture, which is used as 

a frame buffer. This is in contrast to the recent 3-D DWT architecture in [28] which 

requires a     temporal buffer. As the size of the input frames is usually more than 

144×176 pixels, this memory reduction can be considered an achievement in the 

proposed architecture. 

The number of slices, block RAMs, processing time (  ) and slice delay-product (SDP) 

of the proposed 3-D DWT architecture are compared with the architectures in [27, 30, 

109], as shown in Table ‎6.8.  
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Table ‎6.8:  Comparison between the proposed 3-D DWT and [27, 30, 109] architectures 

for an input frame size of 144×176-pixel for 6VLX760FF1760-2  Virtex 6 

Xilinx FPGA Device 

Architecture 

DWT filter type 

Number 

of frames 
Slices 

Block 

RAM 

MF 

(MHz) 
    (ms) SDP(s) 

Dai [109] 15 10751 64 50.077 1.08 11.61 

Based on 30 10467 128 52.578 2.06 21.56 

CDF 9/7 filter 60 10607 240 50.121 4.32 45.82 

Mohanty [30] 15 28581 48 40.21 0.59 16.86 

Based on 30 28581 48 40.21 1.18 33.73 

Daub-4 filter 60 28581 48 40.21 2.36 67.45 

Mohanty [27] 15 13495 25 88.096 0.539 7.27 

Based on 30 13495 25 88.096 1.07 14.44 

Daub-4 filter 60 13495 25 88.096 2.15 29.01 

Proposed 

architecture 
15 10500 128 151.7 0.80 8.43 

Based on 30 10500 128 151.7 1.43 15.04 

CDF 9/7 filter 60 10500 128 151.7 2.69 28.26 

 * The performance of other architectures are cited from Table XI in [27]. 

 

The SDP is used to measure the area-time complexity of the architectures as in [27]: 

                                                     (‎6.41) 

where     is the computation time which is defined in [27]:  

                                                             (‎6.42) 

where MF is the maximum operating frequency of the architecture. 

In Table ‎6.8, the proposed 3-D DWT architecture outperforms other architectures in 

terms of the maximum operating frequency, number of hardware slices and SDP. 

However, the architecture of  [27] shows the lowest memory requirement of all the 

architectures. Such performance has been achieved for the Daub-4 wavelet filter which 

is considerably less complex than the CDF 9/7.  
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The power consumption at 40 MHz clock frequency of the proposed 3-D DWT 

architecture is compared with those in [27, 30, 109] using a 144×176-pixel frame size 

and (11,5)-bit wordlength, as shown in Figure ‎6.11. The data for the remaining 

architectures are cited from [27]. Hence, Figure ‎6.11 shows that high power reduction in 

the proposed 3-D DWT is achieved compared with other architectures. Such an 

achievement can be assigned to the efficient shift-add multipliers.  

In addition, the average of the maximum output error in 3-D wavelet coefficients of the 

proposed architecture is less than 1.49, while it is not less than 2.7 when the architecture 

in [27] is run on the Xylophone video sequences [27]. This low error in the proposed 

architecture can be considered as an additional advantage. 

 

 

Figure ‎6.11: Power consumption (mW) of the proposed 3-D DWT and other 

architectures using 40 MHz clock frequency, (11, 5)-bit wordlength and 144×176 frame 

size. 

6.8 Summary  

In this chapter, new multiplierless and parallel lifting-based 1-D, 2-D and 3-D DWT 

architectures for the CDF 9/7 wavelet filter have been proposed and tested using a 

6VLX760FF1760-2 Virtex 6 Xilinx FPGA device. The proposed 1-D, 2-D and 3-D 

architectures partition the input data into blocks of 4, 4×4 and 4×4×4 pixels, 

respectively. During each input data block, four temporary values are allocated in a 

specific registers or memories and four wavelet coefficients are computed. Thus, a high 

throughput rate and a short processing time have been achieved. Furthermore, shift-add 

multipliers with negligible error have been suggested to reduce the power consumption 

arising from using regular multipliers. Full analysis of speed, output accuracy, power 

consumption and hardware usage for the proposed architectures has been carried. The 2-
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D DWT results have revealed that, a processing time of less than 0.55 ms is sufficient to 

compute the 2-D DWT coefficients for 288×352-pixel. Furthermore, at a wordlength of 

18-bit the original data can be recovered from the 2-D DWT coefficients accurately.  

In the 3-D DWT architecture, four input frames are simultaneously used, which reduces 

the temporal buffer to a block memory of four frames only. Such block memory can be 

constructed using FIFO, single or double port RAMs. The 3-D DWT results have 

revealed that the proposed 3-D DWT architecture can run at a speed of up to 151 MHz 

with 4 results/cycle throughput rate. Such a high speed has shortened the 3-D DWT 

computation time for data size of 144×176×8-pixel to less than 0.33 ms. In addition, at 

50 MHz clock frequency, the dynamic power consumption of the proposed 3-D DWT 

architecture is 80 and 102 mW for 144×176 and 256×256 frame sizes, respectively. 

Furthermore, the comparisons with other architectures have revealed that the proposed 

3-D DWT architecture outperforms similar architectures in the literature in terms of 

maximum operating frequency, initial latency, power consumption and output accuracy. 
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Chapter 7: Conclusions and Future Work 

7.1 Conclusions 

In this thesis, we have addressed the problems of image and video compression 

algorithms and their related transforms such as power consumption, hardware cost, 

computation time and output accuracy. Hence, new architectures for image compression 

algorithms and the related data transforms that considered these issues have been 

introduced. The original contributions towards the accomplishment of the research 

objectives as outlined in chapter 2 have been detailed in chapters 3-6, and are 

summarised below: 

1. Two new, low computational complexity non-transform-based algorithms for low bit 

rate image compression and their architectures have been suggested in chapter 3. The 

proposed algorithms and architectures are parameterised in terms of the number of 

quantisation levels, input block size and pipelining stages, offering different output 

precision levels and processing speeds. The performance evaluation of the new 

algorithms and their architectures has shown that they are suitable for low power 

consumption and high speed small devices. The analysis has also revealed that the 

proposed architectures can operate at a speed of up to 312 MHz. Furthermore, their 

power consumption is circa 8 mW at an operating frequency of 50 MHz and 4×4-

pixel block size. 

2. Efficient architectures for multidimensional transforms, such as the DCT and DWT 

have been suggested in chapters 4-6. The proposed DCT architectures are based on 

the 1-D Radix-2 DCT and 3-D DCT VR algorithms due to their low computation 

load. While, the proposed DWT architectures are based on a lifting scheme for CDF 

9/7 computation. 

3. In chapter 4, two new high speed architectures for multidimensional DCT have been 

proposed; the first is based on the 1-D DCT Radix-2 algorithm using the RCF 

computation approach, while the second architecture is based on the 3-D DCT VR 

algorithm. The results have revealed that a very high computation speed of up to 305 

MHz can be achieved. At such high speeds, the 3-D DCT computation times of 

512×512×8-point is less than 6.8 ms. In addition; the power consumption using a 
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wordlength of 21-bit at 10 ns clock period is as low as 98 mW. Furthermore, an 

infinite PSNR between the original and the reconstructed data using a wordlength of 

21-bit can be achieved. The comparisons with similar architectures have revealed 

that, both outperform existing architectures in terms of power consumption, speed 

and hardware usage. 

4. In chapter 5, two new low hardware usage architectures based on the 3-D DCT VR 

algorithm have been suggested. The proposed architectures avoid the need for the 

memory for data transposition in the butterfly and post addition stages, which in turn 

reduce the hardware usage and improve the processing speed. The proposed 

architectures are parameterisable in terms of wordlength which provide different 

output precision levels, power consumption, hardware usage and processing speeds. 

The proposed architectures have been tested using different images and video 

sequences, different wordlengths and clock frequencies. The results have revealed 

that the number of occupied slices is 722 and 1235 for the first and second 

architecture, respectively. Furthermore, the maximum operating frequencies 

achieved by the two architectures are 250 and 330 MHz using a 14-bit output 

wordlength and 8×8×8-pixel input cube size. Furthermore, an infinite PSNR between 

the original and reconstructed frames using 20-bit wordlength has been attained. 

Moreover, significant hardware usage reduction with higher operating frequencies is 

achieved when compared with similar 3-D DCT architectures. 

5. New parallel multiplierless lifting-based architectures for 1-D, 2-D and 3-D CDF 9/7 

DWT have been suggested, implemented and verified in chapter 6. In such 

architectures, the constant multipliers have been replaced with their corresponding 

proposed shift-add multipliers with a negligible error. Also, low memory 

requirement and high computation speed have been achieved in the proposed 

architectures. 

6. The proposed 2-D CDF 9/7 DWT lifting-based architecture computes the 2-D DWT 

coefficients by applying 1-D DWT on each row and column using data blocks of 

4×4-pixel. In this architecture, all rows in each data block are fed to corresponding 1-

D units concurrently. Thus, a high throughput rate and a short processing time have 

been achieved.   The results have revealed that, a computation time of less than 0.55 

ms is enough to compute the 2-D DWT coefficients of 288×352-pixel. Furthermore, 

at a wordlength of 18-bit an exact data can be recovered from the 2-D DWT 
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coefficients. Furthermore, the power consumption of the proposed architecture using 

a frame size of 144×167-pixel is as low as 32 mW for a 20 MHz clock frequency. 

7. A 3-D DWT parallel architecture has also been proposed in chapter 6 using a 

separable lifting-based scheme for the CDF 9/7 wavelet filter. In this architecture, 

four input frames are simultaneously used, which reduces the frame buffer to a block 

memory of four frames only. The results have shown that the proposed 3-D DWT 

architecture can run at a speed of up to 151 MHz with 4 results/cycle throughput rate. 

Such a high speed has reduced the 3-D DWT computation time for data size of 

144×176×8-pixel to less than 0.33 ms. Furthermore, the shift-add multiplier 

replacement had a positive impact on power consumption and has provided a high 

computation speed. As such, the power consumption of the proposed 3-D DWT 

architecture is 64 mW at 40 MHz operating frequency and 16-bit wordlength. 

Moreover, the proposed architectures outperform other similar architectures in terms 

of hardware usage, speed, throughput rate and latency. Furthermore, the proposed 3-

D DWT architecture avoids data computation redundancy compared with similar 

parallel 3-D DWT architectures in the literature. It is worth mentioning that the 

output accuracy of all the architectures has been tested and verified using different 

wordlengths and input data sets. Such evaluation processes revealed that the 

maximum error in the 3-D DWT coefficient for 16-bit wordlength in the proposed 

architecture was less than 1.49.  

7.2 Future Work  

Further work on the following points can be considered: 

1. 3-D compression systems based on a 3-D DCT and 3-D DWT architectures can be 

considered as a possible research direction. Especially for high definition and ultra-

high definition video processing and 3-D TV.    

2. Another possible research direction is to implement the proposed 3-D DCT and 3-D 

DWT architectures on the most recent FPGA devices such as family 7 and Zynq device. 

Full comparison between the performance of the new architectures and this thesis 

architectures can be performed. 

3. A possible research direction is to combine the proposed DCT architectures with a 

quantisation and encoding algorithm to produce complete DCT-based image and 

video compression systems. The controllable wordlength and low hardware usage of 
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our DCT architectures can support such a new research direction. Furthermore, our 

proposed 3-D DCT architectures can be used to introduce video watermarking, object 

tracking and medical image compression systems. 

4. DWT has been used for MRI images, hyperspectral and video compression 

algorithms including the EZW, SPIHT, SPECK and EBCOT encoders. Thus, a 

possible research approach is to associate our high throughput CDF 9/7 DWT 

architectures with such encoders to introduce a high performance DWT-based 

compression system.  

5. Generalised DWT architectures for other wavelet filters can be introduced using the 

methodology of our DWT architectures. Such architectures may be targeted to 

achieve high throughput rates for high order wavelet filters for 2-D and 3-D DWT-

based applications.    

 

 

  



147 

Appendix A:  

Brief Description of Xilinx FPGA Families 

Table A.1: Brief description of Xilinx FPGA families introduced since 2003 [125]. 

Xilinx Family 

Selected 

platform 

CMOS 

(nm) 

slices 

per 

CLB 

LUTs 

per 

slices 

FFs 

per 

slices 

Maximum 

Block 

RAM (kb) 

DSP48 

slices 

DSP slices 

structure 

Block RAM 

description 

Virtex 2 Pro 
XC2VP100 

2003 

130 4 2 2 7,992 444 

18 × 18 bit 

multiplier only 
18-Kb blocks 

Spartan 3 
XC3S5000 

2003 

130 4 2 2 1,872 104 

Virtex 4 
XC4VLX200 

2005 

90 4 2 2 6,048 96 

XtremeDSP: 18 

× 18 bit 

multiplier, an 

adder, and an 

accumulator 

Dual-port 18-Kb 

RAM blocks 

Virtex 5 
XC5VSX240T 

2006 

65 2 4 4 18,576 1,056 

DSP48E: 

25 × 18 bit 

multiplier, an 

adder, and an 

accumulator 

Block RAMs are 

36-Kb in size or 

two independent 

18-Kb blocks 

Extended 

Spartan 3A 

XC3SD3400A 

2007 

90 4 2 2 2,268 126 

DSP48AS : 

18 × 18 bit 

multiplier, an 

adder, and an 

accumulator. 

18-Kb dual-port 

blocks 

Spartan 6 
XC6SLX150T 

2009 

45 2 4 8 4,824 180 

DSP48A1: 

18 × 18 bit 

multiplier, an 

adder, and an 

accumulator. 

 

Block RAMs are 

fundamentally 

36-Kb in size. 

Each block can 

also be used as 

two independent 

18-Kb blocks. 

Virtex 6 
XC6VSX475T 

2009 

40 2 4 8 38,304 2,016 

DSP48E1: 

25 × 18 bit 

multiplier, an 

adder, and an 

accumulator. 

Artix 7 
XC7A200T 

2010 

28 2 4 8 13,140 740 

Kintex 7 

XC7K480T 

2010 

28 2 4 8 34,380 1,920 

Virtex 7 
XC7VX1140T 

2010 

28 2 4 8 67,680 3,360 
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Table A.2: List of Xilinx FPGA families comparison [113]. 

Features Artix 7  Kintex 7  Virtex 7  Spartan 6  Virtex 6  

Logic Cells 215K 480K 2000K 150K 760K 

Block RAM 13Mb 34Mb 68Mb 4.8Mb 38Mb 

DSP Slices 740 1,920 3,600 180 2,016 

I/O Pins 500 500 1,200 576 1,200 

I/O Voltage 

1.2V, 1.35V, 

1.5V, 1.8V, 

2.5V, 3.3V 

1.2V, 1.35V, 

1.5V, 1.8V, 

2.5V, 3.3V 

1.2V, 1.35V, 

1.5V, 1.8V, 

2.5V, 3.3V 

1.2V, 1.5V, 

1.8V, 2.5V, 

3.3V 

1.2V, 1.5V, 

1.8V, 2.5V 

 

 

Figure A.1: Series 7 Xilinx FPGA families performance comparison [114]. 

 

  

http://www.xilinx.com/products/silicon-devices/fpga/artix-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/kintex-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/virtex-6/index.htm
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Appendix B:  

Pre-Processing Matlab Codes for IBAQC Model1 

and Model2 Architectures 

1. The pre-processing Matlab code for Model1 architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% Function  : IBAQC Model1 Architecture 
%%%%%% Chapter   : Chapter 3 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
close all 
clear all 
clc 
B1=0; 
Marg1=0; 
[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;*.jpeg;*.gif'

,'IMAGE Files (*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose 

GrayScale Image'); 
[d1,map1]=imread(strcat(pathname,namefile)); 
[r1,c1,z1]=size(d1); 
if z1==3 
    d1=rgb2gray(d1); 
end 

  
qdc=5; %%% quantization levels 
dim=4; 
Thresh1=400; 
[ri1,ci1,zi1]=size(d1); 
if zi1>1 
    d1=d1(:,:,2); 
end 

  
d1=double(d1); 
d1=d1-Marg1; 
[r0,c0,z0]=size(d1); 
% z3=input('Enter the number of frames = '); 
if z0>=8 
    z3=8; 
else 
    z3=1; 
end 
d2=d1(:,:,1:z3); 

   
[r1,c1,z1]=size(d2); 
z2=z1; 
d3=d2(:,:,1:z2); 
[rx,cx,zx]=size(d3); 

  
dim3=z2; 
k1=0; 
dimall=dim*dim*dim3; 
idx=1; 
for k=1:dim3:z2 
    k1=k+dim3-1; 
    j1=0; 
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    i1=0; 
    for i=1:dim:r1 
        i1=i+dim-1; 
        for j=1:dim:c1 
            j1=j+dim-1; 
            X=d3(i:i1,j:j1,k:k1); 
            X1=reshape(X,dimall,1); 
            idx1=idx+dimall-1; 
            InData(idx:idx1,2)=X1; 
            idx=idx1+1; 
        end 
    end 
end 

  
[r3,c3,z3]=size(InData); 
InData(:,1)=0:r3-1; %%%%%% Architecture Input data 

  
save InData InData; 
[r3,c3,z3]=size(InData); 

  
I2=InData;  
I1=I2; 
[rt1,ct1]=size(I1); 
N=dim; 
k1=0; 
k2=0; 
for k=1:N*N:rt1-1 
    k2=k2+1; 
    k1=k+N*N-1; 
    Iz=I1(k:k1,2); 
    varz(k2,1)=(mean(Iz.^2)-(mean(Iz))^2); 

     
    varz(k2,2)=max(Iz); 
    varz(k2,3)=min(Iz); 
    varz(k2,4)=max(Iz)-min(Iz); 
    varz(k2,5)=std(Iz); 
end 
varz; 
stdz=sqrt(varz(:,1)); 
[r1,c1]=size(I1); 
%%%%%%%%%%%%%%%%%%%%%%%%%% Division modification 
levqdc=2^qdc; 
Xs=[0:255]/levqdc; 
Xs=ceil(Xs); 
divx1=Xs'; 
Xs=1./Xs; 
Xs(1,1)=0; 
divx=Xs'; 
Bpoint=8; %%% Binary point 
BAcc1=8+log2(N^2); 
BShft1=8+Bpoint; %% 5  for binary points  13/5 
BMult1=16+Bpoint; 
BAcc2=16+log2(N^2); 
BShft2=16+Bpoint; %% 5  for binary points 
% %%%  Sim Time 
sim_tim=2*dim^2+ri1*ci1+11-1; 
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2. The pre-processing Matlab code for Model2 architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : IBAQC Model2 Architecture 
%%%%%% Chapter   : Chapter 3 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 
B1=0; 
Marg1=0; 
[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;*.jpeg;*.gif'

,'IMAGE Files (*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose 

GrayScale Image'); 
[d1,map1]=imread(strcat(pathname,namefile)); 
[r1,c1,z1]=size(d1); 
if z1==3 
    d1=rgb2gray(d1); 
end 
qdc=5; %%% quantization levels 
dim=8; 
Thresh1=2; 
[ri1,ci1,zi1]=size(d1); 
if zi1>1 
    d1=d1(:,:,2); 
end 
d1=double(d1); 
d1=d1-Marg1; 
[r0,c0,z0]=size(d1); 
% z3=input('Enter the number of frames = '); 
if z0>=8 
    z3=8; 
else 
    z3=1; 
end 
d2=d1(:,:,1:z3); 

  
[r1,c1,z1]=size(d2); 
% z2=fix(z1/8)*8; 
z2=z1; 
d3=d2(:,:,1:z2); 
[rx,cx,zx]=size(d3); 
dim3=z2; 
k1=0; 
dimall=dim*dim*dim3; 
idx=1; 
for k=1:dim3:z2 
    k1=k+dim3-1; 
    j1=0; 
    i1=0; 
    for i=1:dim:r1 
        i1=i+dim-1; 
        for j=1:dim:c1 
            j1=j+dim-1; 
            X=d3(i:i1,j:j1,k:k1); 
            X1=reshape(X,dimall,1); 
            idx1=idx+dimall-1; 
            InData(idx:idx1,2)=X1; 
            idx=idx1+1; 
        end 
    end 
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end 

  
[r3,c3,z3]=size(InData); 
InData(:,1)=0:r3-1; 
save InData InData; 
[r3,c3,z3]=size(InData); 
I2=InData; 
I1=I2; 
[rt1,ct1]=size(I1); 
N=dim; 
k1=0; 
k2=0; 
for k=1:N*N:rt1-1 
    k2=k2+1; 
    k1=k+N*N-1; 
    Iz=I1(k:k1,2); 
    varz(k2,1)=(mean(Iz.^2)-(mean(Iz))^2); 
    varz(k2,2)=max(Iz); 
    varz(k2,3)=min(Iz); 
    varz(k2,4)=max(Iz)-min(Iz); 
    varz(k2,5)=std(Iz); 
end 
varz; 
stdz=sqrt(varz(:,1)); 
[r1,c1]=size(I1); 
%%%%%%%%%%%%%%%%%%%%%%%%% program for divider 
levqdc=2^qdc; 
Xs=[0:255]/levqdc; 
divx1=Xs'; 
Xs=ceil(Xs); 
divx2=Xs'; 
Xs=1./Xs; 
Xs(1,1)=0; 
divx=Xs'; 
Bpoint=8; %%% Binary point 
BAcc1=8+log2(N^2); 
BShft1=8+Bpoint; %% 5  for binary points  13/5 
sim_tim=2*dim^2+ri1*ci1+7-1; 
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Appendix C:  

Memory Writing/Reading addresses of the proposed 

3-D DCT VR Architecture 

This appendix presents the memory writing/reading addresses at each point of the 

proposed 3-D DCT VR architecture. The actual addresses at each node in Figure 4.12 

and Figure 4.17 (P1, P2... P13) are computed by adding the content of ROMs   ( -

words) to each element in   (  -word). The elements in each table are stored in    

row by row from the element 0 till the last element in the bottom right of each table. 

The following example illustrates the procedure of addresses computation for the input 

data to the first butterfly stage (Node P1 in Figure 4.12), which are computed from 

Table C.1 as shown below: 

 The addresses of the first eight samples of input data: the content of M2 (0, 

16, 64, 80, 256, 272, 320 and 336) is added to the first element in M1 

(element 0), then the addresses are: 0, 16, 64, 80, 256, 272, 320 and 336. 

 The addresses of the second eight input data: the content of M2 is added to the 

second element in M1 (element 1), so the addresses are: 1, 17, 65, 81, 257, 

273, 321 and 337.  

 The addresses of the third eight input data: the content of M2 is added to the 

third element in M1 (element 8), so the addresses are: 8, 24, 72, 88, 264, 280, 

328, 344 and so on until the last element in M1 (element 175). 

In the rest of this appendix, the actual content of M1 and M2 to generate the 

reading/writing addresses at each node of the 3-D DCT VR architecture is explained for 

N=8. The Memory Writing Controller is labelled as (MWC) and it is constructed as 

shown in Figure 4.16 using different b values, as shown underneath each MWC block in 

Figure 4.12 and Figure 4.17. The memory reading addresses are generated using a 

combination of MRE and address generator units. The MRE units are shown in Figure 

4.11, while the address generator unit is shown in the shaded part Figure 4.10. The 

constant value (α variable in Figure 4.11 of MRE unit) required to commence the 

memory reading operation is shown underneath each Memory Reading Controller 

(MRC) block in Figure 4.12 and Figure 4.17.   
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1. Addresses at Node P1   

The addresses at node P1 are generated from the reordering stage (TMem1 reading 

addresses generator unit) using the data shown in Table C.1.  

Table C.1: Content of M1 and M2 for memory reading addresses for TMem1 (node P1).  

M2 Content M1 Content 

0 0 1 8 9 2 3 10 11 

16 32 33 40 41 34 35 42 43 

64 4 5 12 13 6 7 14 15 

80 36 37 44 45 38 39 46 47 

256 128 129 136 137 130 131 138 139 

272 160 161 168 169 162 163 170 171 

320 132 133 140 141 134 135 142 143 

336 164 165 172 173 166 167 174 175 

 

2. Addresses at Node P2 and P3  

The addresses at P2 (writing addresses of TMem2) is the same as that at P1 but is 

delayed by (b1) clock cycles. TMem2 reading addresses (addresses at node P3) are 

generated from Table C.2 using the same procedure discussed earlier.  

 

Table C.2: Content of M1 and M2 for memory reading addresses for TMem2 (node P3). 

M2 Content M1 Content 

0 0 1 2 3 4 5 6 7 

8 16 17 18 19 20 21 22 23 

32 64 65 66 67 68 69 70 71 

40 80 81 82 83 84 85 86 87 

128 256 257 258 259 260 261 262 263 

136 272 273 274 275 276 277 278 279 

160 320 321 322 323 324 325 326 327 

168 336 337 338 339 340 341 342 343 
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3. Addresses at Node P4 and P5  

The writing addresses of TMem3 (P4) are the same as those at P3 but are delayed by 

(b1) clock cycles, while the memory reading addresses of TMem3 (P5) are 

            . These are generated using an MRE-II unit and a single 10-bit 

counter (address generator). 

4. Addresses at Node P6 and P7  

The data is written to TMem4 in bit reverse order (BRO) using a BRO address 

controller, as shown in Figure 4.12. The BRO address controller block is composed of a 

10-bit counter, two ROMs (M1 and M2) and three slice elements (address generator unit) 

and MWC with b3The BRO addresses (TMem4 writing addresses) at P6 are 

computed from Table C.3. 

Table C.3: Content of M1 and M2 for memory reading addresses for TMem4 (node P6). 

M2 Content M1 Content 

0 0 128 64 192 16 144 80 208 

256 8 136 72 200 24 152 88 216 

32 2 130 66 194 18 146 82 210 

288 10 138 74 202 26 154 90 218 

4 1 129 65 193 17 145 81 209 

260 9 137 73 201 25 153 89 217 

36 3 131 67 195 19 147 83 211 

292 11 139 75 203 27 155 91 219 

 

The memory reading address generator unit of TMem4 (MRC4 at node P7) is composed 

of a 10-bit counter, three slice elements and a concatenation block, which can be 

represented by the following relation: 

                 ,                   ,                  

              [        ] (‎C.1) 
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where Xn is the binary representation of the 10 bits input counter,                 , 

where     represents the LSB, and R_adds is the required memory reading addresses 

for the input data to the first post addition stage.  

5. Addresses at Node P8 and P9 

The P7 addresses are used at the TMem5 writing phase (P8) with (b1) clock cycle 

delay while the memory reading addresses at P9 are generated using a 10-bit counter 

from           as an Adds_generator unit. 

6. Addresses at Node P10 and P11 

The TMem6 writing addresses at P10 are the P9 addresses delayed by (b1) clock cycles, 

and its reading addresses (P11) are generated using a 10 bits counter, four slice elements 

and a concatenation block, as described by the following relation:  

                  ,                  ,                  , 

                  

            [            ] (C.2) 

7. Addresses at Node P12 and P13 

A delayed version of P11 is used in the TMem7 writing addresses at P12, whereas the 

TMem7 reading addresses of the normalisation and finalization process at node P13 are 

             , which are generated using a 10-bit counter as an address generator 

unit together with MRE-II unit. 
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Appendix D:  

Pre-Processing Matlab Codes for Chapter 4; Model1 

and Model2 Architectures 

1. The pre-processing Matlab code for Model1 architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : Model1 Architecture 
%%%%%% Chapter   : Chapter 4 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

close all 
clear all 
clc 
% B1=0 3 5; 
 B1=5; 
VidFil=3; 
Siz1=8; 
switch VidFil 
    case 1 
        load mri 
    case 2 
        load mristack 
        D=mristack; 
    case 3 
        load AkiyoRgb; 
        D=AkiyoRgb(:,:,2,1:Siz1); 
    case 4 
        load Stefan1; 
        D=Stefan1(:,:,2,1:Siz1); 
    case 5 
        load Suzie; 
        D=suzie148(:,:,2,1:Siz1); 

         
    case 6 
        load Bus; 
        D=BusColor(:,:,2,1:Siz1); 
    case 7 
        load Flower; 
        D=FlowerCIF(:,:,2,1:Siz1); 
        clear FlowerCIF; 

  
    case 8 
        load mobile; 
        D=MobileQ300(:,:,2,1:Siz1); 
end 

  
d1=squeeze(D); 
d1=double(d1); 
[r0,c0,z0]=size(d1); 
z3=8; 
d2=d1(:,:,1:z3); 
d2(:,:,1)=d1(:,:,2); 
d2(:,:,2)=d1(:,:,1); 

  
d1=d2; 
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[r1,c1,z1]=size(d2); 
z2=fix(z1/8)*8; 
d3=d2(:,:,1:z2); 
dim=8; 
k1=0; 
dimall=dim*dim*dim; 
idx=1; 
for k=1:dim:z2 
    k1=k+7; 
    j1=0; 
    i1=0; 
    for i=1:dim:r1 
        i1=i+7; 
        for j=1:dim:c1 
            j1=j+7; 
            X=d3(i:i1,j:j1,k:k1); 
            X1=reshape(X,dimall,1); 
            idx1=idx+511; 
            InData(idx:idx1,2)=X1; 
            idx=idx1+1; 
        end 
    end 
end 

  
[r3,c3,z3]=size(InData); 
InData(:,1)=0:r3-1; 
save InData InData; 

  
I2=InData; 
I1=I2; 

  
[r1,c1]=size(I1); 
InData=I1; 
save InData InData; 
M=8; 
%%%%%%%%%%%%%%%%%     dS1  delay   %   FIRST       %%%%%%%%%%%%%stage 
dS1(1,1)=5; 
shd1=1; 
dS1(2,1)=5; 
shd2=1;    
dS1=dS1-2; 
dS1(3,1)=3; 
shd3=1;   
dS1(4,1)=3; 
dS1(5,1)=0; 
MuxD1=1;  %%multiplexer Delay Stage 1 
M_W_st1=(sum(dS1))*M+MuxD1+8;  %%% start of Memory writing _ Stage One 
R1D=50; %% dealy between Write and read operation of the first stage 
%%%%%%%%%%%%%%%%%     dS2  delay %%%%%%%%%%%%%%%%%%%%%      SECOND       
dS2(1,1)=5; 
s2hd1=1;  %%%% shift in the combination of add+multiply ...  
dS2(2,1)=5; 
s2hd2=1;  %%%% shift in the combination of add+multiply ...  
dS2=dS2-2; 
dS2(3,1)=3; 
s2hd3=1;  %%%% shift in the combination of add+multiply ...  
dS2(4,1)=3; 
dS2(5,1)=0; 
 MuxD2=1;   %%multiplexer Delay Stage 2 
M_W_st2=(sum(dS2))*M+MuxD2+8;   

  
%%%%%%%%%%%%%%%%%     dS3  delay %%%%%     Third       %%%%stage 
dS3(1,1)=5; 
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s3hd1=1;  %%%% shift in the combination of add+multiply ...  
dS3(2,1)=5; 
s3hd2=1;  %%%% shift in the combination of add+multiply ...  
dS3=dS3-2; 
dS3(3,1)=3; 
s3hd3=1;  %%%% shift in the combination of add+multiply ...  

  
dS3(4,1)=3; 
dS3(5,1)=0; 

  
MuxD3=1;  %%multiplexer Delay Stage 3 
R2D=10; 
% M_W_st3=M_W_st2+(sum(dS3))*M+23+378+15;  %%% start of Memory writing 

operation_ Stage Three 
M_W_st3=(sum(dS3))*M+MuxD2+8;  %%% start of Memory writing operation_ 

Stage Three 
sim_tim=M_W_st1+M_W_st2+M_W_st3+956+r1-1 %%% simulation time  
NLen=32; %% element length for all stage except stage 1 
Nsub=13;%%% mantesa for all stage except stage 1 
NLen1=10; %%% First stage             // first column of addres only 
Nsub1=0;  %%% Mentesa First stage  // first column of addres only 
NLen=21-B1; %% element length for all stage except stage 1 
Nsub=9-B1;%%% mantesa for all stage except stage 1 

 

2. The pre-processing Matlab code for Model2 architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : Model2 Architecture 
%%%%%% Chapter   : Chapter 4 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 
B1=3; 
VidFil=3; 
Siz1=8; 
switch VidFil 
    case 1 
        load mri 
    case 2 
        load mristack 
        D=mristack; 
    case 3 
        load AkiyoRgb; 
        D=AkiyoRgb(:,:,2,1:Siz1); 
    case 4 
        load Stefan1; 
        D=Stefan1(:,:,2,1:Siz1); 
    case 5 
        load Suzie; 
        D=suzie148(:,:,2,1:Siz1); 

         
    case 6 
        load Bus; 
        D=BusColor(:,:,2,1:Siz1); 
    case 7 
        load Flower; 
        D=FlowerCIF(:,:,2,1:Siz1); 
        clear FlowerCIF; 
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    case 8 
        load mobile; 
        D=MobileQ300(:,:,2,1:Siz1); 
end 

   
D(D>255)=255; 
d1=squeeze(D); 
d1=double(d1); 
[r0,c0,z0]=size(d1); 
% z3=input('Enter the number of frames = '); 
z3=8; 
d2=d1(:,:,1:z3); 
[r1,c1,z1]=size(d2); 
z2=fix(z1/8)*8; 
d3=d2(:,:,1:z2); 
dim=8; 
k1=0; 
dimall=dim*dim*dim; 
idx=1; 
for k=1:dim:z2 
    k1=k+7; 
    j1=0; 
    i1=0; 
    for i=1:dim:r1 
        i1=i+7; 
        for j=1:dim:c1 
            j1=j+7; 
            X=d3(i:i1,j:j1,k:k1); 
            X1=reshape(X,dimall,1); 
            idx1=idx+511; 
            InData(idx:idx1,2)=X1; 
            idx=idx1+1; 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%% converting to 255 !!!!!! 
O=InData(:,2); 
[r3,c3,z3]=size(InData); 
InData(:,1)=0:r3-1; 
save InData InData; 
Iin=InData; 
 [r1,c1]=size(Iin); 
Sim_time=2860+r1-1;  %For last model Foward_Final-7 
load Iads  
load stg0ads8 ; %64 adss strting for writing address 
load stg0offset; % 8 offsets for writing address 
load Initadds;  % this is the whole 512 adss  ( NOT USED) 
load offs2 
load st8stg1 
%xlswrite('st8stg1.xlsx',st8stg1); 
load stg1ads8  %%% For FPGA one Column = st8stg1(:,4)-1; 
%%%%%%%%%%%%%%%% STAGE 2 
load st8stg2; 
load stg2ads8  %%% For FPGA one Column = st8stg2(:,4)-1; 
load offstg2; 
load st8stg3; 
load stg3ads8  %%% For FPGA one Column = st8stg3(:,4)-1; 
load offstg3; 

  
%%%% STAGE 4 bIT REVERSE ORDER 
load StBRO1; %% the start for writing the output of stage 3 addresses 

for each 8 element (the memory content will be in Reverse Order. 
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load offBRO1; % the offset 
load Zads  % offset  of Z (third)  adder 

  
load NormF2;  %the last stage normalization factors 

  
%%%% new idea for twiddle factors 

  
load TWFAC1 
load TWFAC2 
load TWFAC3; 
NLen=32; %% element length for all stage except stage 1 
Nsub=13;%%% mantesa for all stage except stage 1 
NLen1=10; %%% First stage 
Nsub1=0;  %%% Mentesa First stage 
NLen=32-B1; %% element length for all stage except stage 1 
Nsub=13-B1;%%% mantesa for all stage except stage 1 
NLen=21-B1; %% element length for all stage except stage 1 
Nsub=9-B1;%%% mantesa for all stage except stage 1 
%%%% Choose the Model 
%%% Model for a and c   Mod1=1, for b    Mod1=2 
    dS0=0; 
    dS0(1,1)=1; 
    dS0(2,1)=1; 
    dS0(3,1)=1; 
    delS0=sum(dS0)*8; %%%% the delay required by first stage 

         
    dS1=0; 
    dS1(1,1)=1; 
    dS1(2,1)=1; 
    dS1(3,1)=1; 
    delS1=sum(dS1)*8;  %%%% the delay required by Second stage 
    dS2=0; 
    dS2(1,1)=1; 
    dS2(2,1)=1; 
    dS2(3,1)=1; 
    delS2=sum(dS2)*8;  %%%% the delay required by Third stage 
    %%%% Butterfly 
    dS3=0; 
    dS3(1,1)=1; 
    dS3(2,1)=1; 
    dS3(3,1)=1; 
    delS3=sum(dS3)*8;  %%%% the delay required by first stage 
    dS4=0; 
    dS4(1,1)=1; 
    dS4(2,1)=1; 
    dS4(3,1)=1; 
    delS4=sum(dS4)*8;  %%%% the delay required by Second stage 
    dS5=0; 
    dS5(1,1)=1; 
    dS5(2,1)=1; 
    dS5(3,1)=1; 
    delS5=sum(dS5)*8;  %%%% the delay required by Third stage 
    MuxD1=1; 

     
totdel=delS0+delS1+delS2+delS3+delS4+delS5; 
totdel1=2844+totdel; 
Sim_time=totdel1+r1-1;  
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Appendix E:  

Pre-Processing Matlab Codes for Chapter 5; Model1 

and Model2 Architectures 

1. The pre-processing Matlab code for Model1 architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : Model1 Architecture 
%%%%%% Chapter   : Chapter 5 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 
VidFil=8; 
Siz1=8; 
switch VidFil 
    case 1 
        load mri 
    case 2 
        load mristack 
        D=mristack; 
    case 3 
        load AkiyoRgb; 
        D=AkiyoRgb(:,:,2,1:Siz1); 
    case 4 
        load Stefan1; 
        D=Stefan1(:,:,2,1:Siz1); 
    case 5 
        load Suzie; 
        D=suzie148(:,:,2,1:Siz1); 

         
    case 6 
        load Bus; 
        D=BusColor(:,:,2,1:Siz1); 
    case 7 
        load Flower; 
        D=FlowerCIF(:,:,2,1:Siz1); 
        clear FlowerCIF; 

  
    case 8 
        load mobile; 
        D=MobileQ300(:,:,2,1:Siz1); 
end 
B1=0; 
d1=squeeze(D); 
d1=double(d1); 
[r0,c0,z0]=size(d1); 
% z3=input('Enter the number of frames = '); 
z3=8; 
d1=d1(:,:,1:z3); 
d2=d1(:,:,1:z3); 
[r1,c1,z1]=size(d2); 
z2=fix(z1/8)*8; 

  
d3=d2(:,:,1:z2); 
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dim=8; 
% in0=double(d1(75:75+dim-1,73:73+dim-1,1:dim)); 
k1=0; 
dimall=dim*dim*dim; 
idx=1; 
for k=1:dim:z2 
    k1=k+7; 
    j1=0; 
    i1=0; 
    for i=1:dim:r1 
        i1=i+7; 
        for j=1:dim:c1 
            j1=j+7; 
            X=d3(i:i1,j:j1,k:k1); 
            X1=reshape(X,dimall,1); 
            idx1=idx+511; 
            InData(idx:idx1,2)=X1; 
            idx=idx1+1; 
        end 
    end 
end 
O=InData(:,2); 
[r3,c3,z3]=size(InData); 
InData(:,1)=0:r3-1; 
save InData InData; 
Iin=InData; 
[r1,c1]=size(Iin); 
Sim_time=2860+r1-1;  %For last model Foward_Final-7 

  
%%%  Twiddle factors of stage 1 
TFstg1=[1; 
    1; 
    1; 
    1; 
    1.961570561; 
    1.111140466; 
    -0.390180644; 
    -1.662939225; 
    ]; 
TFstg1=TFstg1/2; 
%%%  Twiddle factors of stage 2 
TFstg2=[1 
    1; 
    1.847759065; 
    -0.765366865; 
    ]; 
TFstg2=TFstg2/2; 
%%%  Twiddle factors of stage 3 
TFstg3=[1; 
1.414213562; 
2; 
2.828427125; 
    ]; 
TFstg3=TFstg3/2;%*64; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
NLen0=10; %% integer 
NSub0=0;%%% Mantissa 
NLen0=NLen0+NSub0; 
%%%% Stage 2 
NLen1=11; %%  
NSub1=2;%%%  
NLen1=NLen1+NSub1; 
%%%% Stage 3 
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NLen2=NLen1+1; %%  
NSub2=2;%%%  

  
LS01=1; 
LS02=1; 
LS03=1; 
LS0=LS01+LS02+LS03; 
LMult0=2; 

 
LS11=1; 
LS12=1; 
LS13=1; 
LS1=LS11+LS12+LS13; 
LMult1=6; 

  
LS21=1; 
LS22=1; 
LS23=1; 
LS2=LS21+LS22+LS23; 
LMult2=4; 
 

load BROWadds; 
load BRORadds; 
load ReordWadds; 
load ReordRadds; 
load ReordRaddsA; 
% Second stage -twiddle factors 
load Twiddle2; 
% Twiddle2=Twiddle2/8; 
load TwiddleA; 
Sim_tim=1135+r3; 

 

2. The pre-processing Matlab code for Model2 architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : Model2 Architecture 
%%%%%% Chapter   : Chapter 5 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 

   
VidFil=8; 
Siz1=8; 
switch VidFil 
    case 1 
        load mri 
    case 2 
        load mristack 
        D=mristack; 
    case 3 
        load AkiyoRgb; 
        D=AkiyoRgb(:,:,2,1:Siz1); 
    case 4 
        load Stefan1; 
        D=Stefan1(:,:,2,1:Siz1); 
    case 5 
        load Suzie; 
        D=suzie148(:,:,2,1:Siz1); 
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    case 6 
        load Bus; 
        D=BusColor(:,:,2,1:Siz1); 
    case 7 
        load Flower; 
        D=FlowerCIF(:,:,2,1:Siz1); 
        clear FlowerCIF; 

         
    case 8 
        load mobile;  %calendar 
        D=MobileQ300(:,:,2,1:Siz1); 
end 
%%%%%%%%%%%%%%%%%%%%%%Input Data 
B1=0; 
d1=squeeze(D); 
d1=double(d1); 
[r0,c0,z0]=size(d1); 
% z3=input('Enter the number of frames = '); 
z3=8; 
d1=d1(:,:,1:z3); 
d2=d1(:,:,1:z3); 
[r1,c1,z1]=size(d2); 
z2=fix(z1/8)*8; 
d3=d2(:,:,1:z2); 
dim=8; 
% in0=double(d1(75:75+dim-1,73:73+dim-1,1:dim)); 
k1=0; 
dimall=dim*dim*dim; 
idx=1; 
for k=1:dim:z2 
    k1=k+7; 
    j1=0; 
    i1=0; 
    for i=1:dim:r1 
        i1=i+7; 
        for j=1:dim:c1 
            j1=j+7; 
            X=d3(i:i1,j:j1,k:k1); 
            X1=reshape(X,dimall,1); 
            idx1=idx+511; 
            InData(idx:idx1,2)=X1; 
            idx=idx1+1; 
        end 
    end 
end 

  
[r3,c3,z3]=size(InData); 
InData(:,1)=0:r3-1; 
save InData InData; 
Iin=InData; 
[r1,c1]=size(Iin); 
%%%  Twiddle factors of stage 1 
TFstg1=[1; 
    1; 
    1; 
    1; 
    1.961570561; 
    1.111140466; 
    -0.390180644; 
    -1.662939225; 
    ]; 
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TFstg1=TFstg1/2; 
%%%  Twiddle factors of stage 2 
TFstg2=[1 
    1; 
    1.847759065; 
    -0.765366865; 
    ]; 
TFstg2B=TFstg2(3:4,1);  %%%Model 2 BTFLstage 2 lower part 
TFstg2=TFstg2/2; 
load TFstg2A;  %%%Model 2 BTFL stage 2 upper part 
%%%%%%%%%^^^^ in the architecture this will multiplied three times i.e 

the factor will  be 8 
%%%  Twiddle factors of stage 3 
TFstg3=[1; 
    1.414213562; 
    2; 
    2.828427125; 
    ]; 
TFstg3=TFstg3/2;%*64; 
TFstg3A=TFstg3(1:3,1); 
TFstg3B=TFstg3(2:4,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
NLen0=10; %% integer 
NSub0=0;%%% Mantissa 
NLen0=NLen0+NSub0; 
%%%% Stage 2 
NLen1=11; %% 
NSub1=8;%%% 
NLen1=NLen1+NSub1; 
%%%% Stage 3 
NLen2=NLen1+1; %% 
NSub2=8;%%% 
LS01=1; 
LS02=1; 
LS03=1; 
LS0=LS01+LS02+LS03; 
LMult0=2; 
LS11=1; 
LS12=1; 
LS13=1; 
LS1=LS11+LS12+LS13; 
LMult1=6; 
LS21=1; 
LS22=1; 
LS23=1; 
LS2=LS21+LS22+LS23; 
LMult2=4; 
%%%%%%%%%%%%%%%%%%%%%%%%%%- 
load BROWadds; 
load BRORadds; 
load ReordWadds; 
load ReordRadds; 
load ReordRaddsA; 

  
% Second stage 64 twiddle factors 
load Twiddle2; 
load TwiddleA; 
Sim_tim=954+r3+1; 
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Appendix F:  

The 2-D and 3-D DWT Architectures Controllers  

This Appendix presents the data controllers for the proposed 2-D and 3-D DWT 

architectures.  

1. The Proposed 2-D DWT Architecture controller 

The main controller of the 2-D DWT architecture generates the following controlling 

signals, Row Selector (SelR) and Column Selector (SelC), as shown in Figure F.1 and 

Figure F.2. The SelR and SelC signals are used to set/reset the selectors inside all RUs 

and CUs. Hence, considering an input image with     pixels, the Counter1 in Figure 

F.1, is a ⌈    (
 

 
) ⌉-bit counter. This counter controls the transition at the boundaries of 

each row in each 4×4-pixel block. Counter2 is used to control the transitions at the 

column boundaries between blocks. It is a ⌈    (
 

 
 

 

 
) ⌉-bit. Counter1 and 

Comparator1 produce the SelR signal which can be represented as follows: 

     {
                
                    

                             (F.1) 

where          
 

 
  . 

Accordingly, Counter2 together with Comparator3 and Constant1, Constant1= 
 

 
  , 

are used to generate the SelC signal to drive the selectors of all CUs. Such signal can be 

represented as follows: 

     {
                
                    

                             (F.2) 

where          
 

 
  . 

The controlling signals for an image tile of 8×8 are shown in Figure F.2. Such 

waveforms represent a down sampled version by 4 from the original signals for clarity.  

In summary, a quick look into Figure F.1 shows that the main feature of the proposed 

controller is its simplicity and ability to tackle any image size. 
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Figure F.1: The 2-D DWT controller. 
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Figure F.2: Down sampled 2-D DWT controller signals. 

 

2. The Proposed 3-D DWT Architecture Controller 

The 3-D DWT controller is constructed similar to the 2-D DWT controller, with the 

only difference being an additional circuit which is used to control frame direction 

computation process, as shown in Figure F.3.  

The proposed 3-D DWT controller consists of a Row-Column controller, comparators 

and 2-bit counter (counter4). The controller outputs are SelR and SelC for Row-Column 

DWT (2-D DWT) and SelF and Mem_Enb to control the frame direction computation 

process. The first two signals are explained in the 2-D DWT controller circuit, and the 

SelF and Mem_Enb signals are responsible for frame direction controlling and enabling 

functions. The SelF signal is used to drive the selectors that control the transitions at the 

beginning and end of the whole 3-D input stream (Ctrl blocks in each FU). The SelF 

signal is turned on during the period that starts at the beginning of the second GOF 

(second computation round;    ). It is used to activate the reading operation of the 
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temporary values that allocated in the frame buffer during the first GOF computation 

round (    ). Two comparators and an XOR logic gate are used for this purpose; the 

first comparator (Comparator1 in Figure F.3) generates an enabling signal after 

 (   )      clock cycles to drive on the selectors in each frame unit. Then, the 

second comparator output (Comparator2 in Figure F.3) is turned on after  (
  

 
  )  

    clock cycles. Therefore, the XOR output which represents the SelF signal is turned 

on from  (   )      to  (
  

 
  )      clock cycles. The computation period of 

the boundary GOFs, the first and last GOF, is accomplished when the SelF signal is 

turned to zero; SelF=0. Thus, at the last GOF, it becomes zero for the last       

clock cycles from the computation time. The main selector waveforms down sampled 

by 4 are shown in Figure F.4, for clarity. 
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Figure F.3: Controller block diagram of the proposed 3-D DWT architecture. 
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Figure F.4: The main signals of the 3-D DWT controller down sampled by 4. 

 

The second output signal from the controller is the Mem-Enb signal. It is used to 

enable/disable the memory bank and its addressing unit. 

In summary, the main characteristics of the proposed controller are its low complexity 

and ability to cope with different frame sizes and numbers with an infinite GOF. This 

controller arrangement supports the power consumption reduction by turning on and off 

memories and other elements at a required time. 
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Appendix G:  

Pre-Processing Matlab Codes for Chapter 6; 2-D 

DWT and 3-D DWT Architectures 

1. The pre-processing Matlab code for 2-D DWT architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : 2-D DWT Architecture 

%%%%%% Chapter   : Chapter 6 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 
VidFil=3; 
Siz1=8; 
switch VidFil 
    case 1 
        load mri 
    case 2 
        load mristack 
        D=mristack; 
    case 3 
        load AkiyoRgb; 
        D=AkiyoRgb(:,:,2,1:Siz1); 
    case 4 
        load Stefan1; 
        D=Stefan1(:,:,2,1:Siz1); 
    case 5 
        load Suzie; 
        D=suzie148(:,:,2,1:Siz1); 
    case 6 
        load Bus; 
        D=BusColor(:,:,2,1:Siz1); 
    case 7 
        load Flower; 
        D=FlowerCIF(:,:,2,1:Siz1); 
        clear FlowerCIF; 
    case 8 
        load mobile; 
        D=MobileQ300(:,:,2,1:Siz1); 
    case 9 
        

[namefile,pathname]=uigetfile({'*.png;*.bmp;*.tif;*.tiff;*.jpg;*.jpeg;

*.gif','IMAGE Files 

(*.png,*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose GrayScale 

Image'); 
        [d1,map1]=imread(strcat(pathname,namefile)); 
        [rx1,cx1,zx1]=size(d1); 
        if zx1==3 
            D=d1(:,:,2); 
        else 
            D=d1(:,:,1); 
        end 
end 
d1=abs(double(squeeze(D))); 
d1=zeros(512,512); 
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d1=d1(:,:,1,1); 
save d1 d1; 
z3=1; 
d1=d1(:,:,1); 
d1=double(d1); 
[rx,cx,zx]=size(d1); 
idx=1; 
for k=1:4:zx 
    j1=0; 
    i1=0; 
    for i=1:4:rx 
        i1=i+3; 
        for j=1:4:cx 
            j1=j+3; 
            idx1=idx+16-1; 
            X=d1(i:i1,j:j1,1); 
            X1=reshape(X',16,1); 
            InData(idx:idx1,1)=X1; 
            idx=idx1+1; 
        end 
    end 
end 
Seq=0:idx1-1; 
Seq=Seq'; 
IF1=[Seq InData(:,1)]; 
clear InData 
RowS=rx;  %% number of Rows 
ColS=cx;  %% number of Columns 
RowC=ceil(log2(ColS/4));  %%% number of bits for Rows counter 
ColC=ceil(log2(RowS/4*ColS/4)); %%% number of bits for Columns counter 
DelS=ColS/4;  %%% the required delay of folded data in the columns 

unit= number of blocks in each row 
PeriodC=ColS/4-1;  %%% used to comupte the constant required to 

control the columns operation 
INShift=0;%%% Normalization Input Shift 
RBShift=0;  %%% Normalization Row Shift 
% Row Stage 
BpointR=7; %% Binary points 
B1LenR=11+BpointR; 
% Column Stage 
BpointC=7; %% Binary points 
B1LenC=11+BpointC; 
Bpoint=7; %% Binary points 
B1Len=11+Bpoint; 
BpointR=5; %% Binary points 
B1LenR=11+BpointR; 
% Column Stage 
BpointC=5; %% Binary points 
B1LenC=11+BpointC; 
BpointC=5; %% Binary points 
B1LenC=11+BpointC; 
Bpoint=5; %% Binary points 
B1Len=11+Bpoint; 
AF=-0.630463621; 
BF=0.743750255; 
CF=-0.668067178; 
DF=0.638443853; 
K0F=2.421021123; 
K1F=2.065244222; 
sim_tim=289+ColS*4+RowS*ColS-2 
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2. The pre-processing Matlab code for 3-D DWT architecture  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function  : 3-D DWT Architecture 

%%%%%% Chapter   : Chapter 6 
%%%%%% Programmer: Saad Al-Azawi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 
VidFil=1; 
Siz1=8; 
switch VidFil 
    case 1 
        load mri 
    case 2 
        load mristack 
        D=mristack; 
    case 3 
        load AkiyoRgb; 
        D=AkiyoRgb(:,:,2,1:Siz1); 
    case 4 
        load Stefan1; 
        D=Stefan1(:,:,2,1:Siz1); 
    case 5 
        load Suzie; 
        D=suzie148(:,:,2,1:Siz1); 

         
    case 6 
        load Bus; 
        D=BusColor(:,:,2,1:Siz1); 
    case 7 
        load Flower; 
        D=FlowerCIF(:,:,2,1:Siz1); 
        clear FlowerCIF; 

         
    case 8 
        load mobile; 
        D=MobileQ300(:,:,2,1:Siz1); 
end 
d1=double(d1(:,:,1:Siz1)); 
save d1 d1 
[rx,cx,zx]=size(d1); 
idx=1; 
for k=1:4:zx 
    j1=0; 
    i1=0; 
    for i=1:4:rx 
        i1=i+3; 
        for j=1:4:cx 
            j1=j+3; 
            idx1=idx+16-1; 
            for k1=1:4 
                X=d1(i:i1,j:j1,k1+k-1); 
                X1=reshape(X',16,1); 
                InData(idx:idx1,k1)=X1; 
            end 
            idx=idx1+1; 
        end 
    end 
end 
Seq=0:idx1-1; 
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Seq=Seq'; 
IF1=[Seq InData(:,1)]; 
IF2=[Seq InData(:,2)]; 
IF3=[Seq InData(:,3)]; 
IF4=[Seq InData(:,4)]; 
RowS=rx;  %% number of Rows 
ColS=cx;  %% number of Columns 
FraS=zx;  %% number of Frames 
RowC=ceil(log2(ColS/4));  %%% number of bits for Rows counter 
ColC=ceil(log2(RowS/4*ColS/4)); %%% number of bits for Columns counter 
FraC=ceil(log2(RowS/4*ColS/4*FraS/4)); %%number of bits Frame counter 
DelS=ColS/4;  %%% the required delay of folded data in the columns 

unit= number of blocks in each row 
DelF=RowS*ColS/4; %%% the required delay of folded data in the columns 

unit= number of blocks in each Frame 
PeriodC=ColS/4-1;  %%% used to comupte the constant required to 

control the columns operation 
PeriodF=RowS/4*ColS/4-1; 
AF=-0.630463621; 
BF=0.743750255; 
CF=-0.668067178; 
DF=0.638443853; 
K0F=2.421021123; 
K1F=2.065244222; 
Bpoint=5; %% Binary points  %%%% This is used for all models bfore 7 
B1Len=11+Bpoint; 
% Row Stage 
BpointR=5; %% Binary points 
B1LenR=11+BpointR; 
% Column Stage 
BpointC=5; %% Binary points 
B1LenC=11+BpointC; 
Tim1=289+ColS*4+RowS*ColS-2+39; % 39 is the delay after the 2-D 

sim_tim delay when finish the first 2-D frame 
Tim2=Tim1+idx1; 
sim_tim=Tim2-2 
MuxTim=rx/2*cx/2*(zx/4-1)-1;  
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