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ABSTRACT 

A methodology is presented for performing quantitative cost­

benefit comparisons of protection systems. Protection systems in 

both programming languages and machine architectures can be under­

stood and described in terms of the concept of a domain, an abstract 

entity which defines the access privileges of an executing program 

to objects in a system. Though the issues of protection and addressing 

can be treated separately, the realisation of the close relationship 

between protection and addressing can assist in the implementation 

of domains using addressing techniques and provides a basis for the 

comparison of protection systems. 

Current formal models of protection are seen to aid 

qualitative comparisons but do not provide an effective yardstick 

with which to compare protection systems. Based on the ideas of 

protection through addressing, a protection model is developed 

from which cost and benefit measures of protection are derived in 

order to achieve the quantitative comparison methodology. 

Two detailed examples of the application of the methodology are 

presented. The first concerns the protection implemented in various 

Algol W run-time systems, and the second compares the protection 

system of IBM's 370 DOS/VS operating system with a proposed alternative 

protection system. 

Finally, the comparison of protection systems which exploit 

structure to achieve protection is discussed. The notion of a 

structured domain is introduced and used in an assessment of the 

protection afforded by programmer defined types and a supporting 

architecture. 
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1.1 Protection 

Chapter 1 

INTRODUCTION 

Protection in a computer system is concerned with controlling the 

access of executing programs to resources in the system. Included in 

the term 'resources' are physical resources, such as main memory and 

input/output devices, and logical resources such as files and programs. 

The prime function of a protection system, in a multiprogramming. 

timesharing or multiprocessor computer system. is the prevention of 

unwanted interference between executing user programs. This function 

has two aspects: 

1. isolating user programs from each other during their execution 

and preventing an executing user program from interfering with 

the supervisor. and 

2. facilitating the controlled sharing of resources and information. 

The term sharing has a number of connotations. It includes the true 

serial use of a resource. as in the allocation of the CPU in a multi­

programming environment, sharing of a divisible resource such as main 

memory, and cooperative sharing as in sharing a file or data structure. 

Even in the situation where concurrent execution of programs takes place 

without communication between programs, there is typically sharing of 

physical resources and operating system routines on the grounds of 

economy. To some extent. sharing is a matter of synchronisation as well 

as protection. For instance, if several users wish to modify or 

examine the contents of a file, not only must they have authority to 

perform such actions but the actions must be synchronised. 

Protection can be regarded as part of the wider issue of security. 

Security concerns essentially the integrity of a computer system against 

any form of unauthorised penetration. Security issues include the 



correct identification of users, approved use of terminals, prevention 

of wire tapping, privacy, the handling of tapes and disk packs, as well 

as the control of executing programs accessing resources within the 

com~uter system. 

computer system. 

Protection deals with security internal to the 

Other types of threats perpetrated outside the 

computer system, such as the monitoring of communication lines, are not 

addressed directly by protection, though occasionally protection provides 

means for detecting illegal probes into the computer system. 

Protection systems generally assume that users and their processes 

are correctly identified. This identification in the case of users 

usually takes the form of a password scheme. It is clear that however 

secure the protection system is itself, if the identification mechanism 

can be subverted, a user will have little difficulty in gaining access 

to any information he wants. It is also usual for protection systems 

to assume the reliability of the hardware on which the protection 

system operates, though some hardware failures may be detected by 

protection checks. The PRIME project (Fabry 1973) has attempted to take 

account of the unreliability of hardware and the protection system itself 

by performing two independent protection checks on every access request. 

We restrict consideration of protection to the control of access 

to resources by a process such that a decision on whether or not to allow 

a requested access to proceed can be made independently of the information 

(if any) contained in the resource. Data-dependent access checks, such 

as only permitting a doctor to view medical records of patients who have 

had a specific disease, can be implemented in the following manner. A 

procedure is constructed which performs the necessary data-dependent 

checking when supplied with the access request. The user is given the 

authority to invoke the procedure but not to access the file of medical 

records directly. Thus, all his accesses to the file are constrained to 

go via the procedure. Hoffman (1969) discusses this and similar issues, 
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which we would classify under the heading of privacy, and proposes a 

method of solving many of the problems (Hoffman 1971). 

Another problem, sometimes considered to be in the realm of 

protection but which we exclude, is that of guaranteeing that a process 

is 'confined ' . That is, the process does not retain after completion any 

of the information that has been supplied to or derived by the process 

during its execution, nor transmit such information to unauthorised 

processes. The classic example involving a process which should ideally 

have these properties is the provision of a proprietary program to 

calculate income tax. A user of the program supplies data concerning his 

earnings etc., the program returns details of the amount of tax he owes 

and reports the cost of using the program to the owner of the program. 

The program must be guaranteed not to retain nor transmit in any manner 

details concerning the financial status of the user. A protection 

mechanism can be used to prevent the direct transmission of information, 

but Lampson (1973) and Fenton (1974) have demonstrated that much more 

complicated mechanisms are necessary to prevent indirect transmission of 

information. For instance, by making abrupt changes in the traffic on 

a channel a process can in certain circumstances transmit data to a 

second process. 

The need for protection systems arises from the observed fact that 

programs often contain errors and from the necessity of guarding against 

the malicious user. Design and implementation techniques such as structured 

programming (Dahl, Dijkstra and Hoare 1972) and the chief programmer team 

(Baker 1972), and the efforts being directed towards developing effective 

program proving techniques, can aid significantly in the reduction of 

errors but do not guarantee their absence. 

A significant proportion of errors manifest themselves as protection 

violations. Protection systems contribute to reliable computing systems 

by aiding the early detection of errors, and hence their diagnosis and 
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correction, and by helping to isolate the effects of an error within 

one part of a system. 

A protection system can contribute to the reliability of a process 

itself if facilities exist for splitting a process into a number of parts 

and treating each part as a separate unit for protection purposes. The 

protection system is then able to detect errors sooner, because protection 

is applied to a unit smaller than the process, and is able to detect certain 

errors which previously could not be detected because the process was 

treated as a whole. 

Since the specification of a process, and in particular how a process 

is to be subdivided, involves the use of a programming language, it is 

reasonable to take a wider view of protection than has been typical in the 

past. Protection has usually been regarded as one of the functions of the 

hardware and operating system, but in this thesis we also consider the 

protection aspects of programming languages. 

With the development of high level programming languages, 'scope rules' 

were introduced mainly for storage allocation optimisation, but they also 

act as protection rules defining the allowed use of variables within a 

program. Recent developments with regard to programmer defined 'types' 

(e.g., forms in Alphard (Wulf 1974a), clusters in CLU (Liskov and Zilles 

1974)) provide further means for a programmer to use facilities of 

protection systems within his programs. Also, by including programming 

languages in the study, notions such as 'context' and 'scope of names' 

can be used to aid our understanding of protection systems. 

1.2 The Comparison of Protection Systems 

A recent report on the future of real time technology (Dept. of 

Industry 1975) suggests that: 

liThe most significant trend in real time technology will be the 
implementation of systems as sets of interacting subsystems. The 
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value of this approach has already been recognised in software with 
the concept of structured programming; it will also become feasible 
in the hardware as the improved technology makes distributed computing 
economic ..... Such interacting parts are usually called processes, 
and the concept of a real time system as a collection of interacting 
parallel processes is fundamental." 

(Dept. of Industry 1975) 

The emphasis in many real time systems is on reliability, and distributed 

computing offers the prospect of enhanced system resilience. Protection 

has a key role in any system composed of interacting parallel processes 

in detecting and containing errors, so preventing unwanted interference 

among processes. Thus the provision of new protection systems with 

improved effectiveness and efficiency will contribute directly to the 

development of successful real time systems. 

There are many protection systems in use today, ranging from systems 

which present a homogeneous attitude to protection throughout a computer 

system (e.g., CAL-TSS in which all protection is based on capabilities 

(Lampson 1969b))to those which are formed from a collection of ad hoc and 

often unrelated mechanisms, each applicable to a specific type of resource 

and providing differing degrees of protection (e.g., storage keys for 

physical memory, segmentation for virtual memory, access control lists for 

fil es). 

With the increasing pressure for secure systems, the need for reliable 

and effective protection systems is certain to grow. Current work on 

types ((Wulf 1974a), (Morris 1973a), (Wang 1974), (Liskov and Zilles 1974)) 

is likely to lead to novel protection methods since it simultaneously 

addresses the questions of protection within a programming language and 

within a system of interacting processes. The timeliness of relating 

programming language constructs and operating system/machine architecture 

constructs is unde~lined by the report mentioned above: 

"Architecture and language should be two sides of the same coin. In 
the past there has been a divergence between the two, but the 
increased power of the hardware and greater understanding of language 
design is bringing them closer together .•... as operating (system) 
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facilities are codified and incorporated into language and as the 
hardware provides improved run-time facilities, this divergence 
will reduce, until programming languages become the primary inter­
face for the system implementer. 1I 

IIIt is to be expected that the availability of low cost hardware 
will encourage the introduction of new architectural features .•• 
Perhaps the most significant effect for real time systems is that 
the difference between the program as written and as executed is 
likely to decrease so that the programmer will have greater 
control over what the computer actually does. 1I 

(Dept. of Industry 1975) 

Existing machine architectures are still more heavily influenced by hard­

ware considerations (e.g., word/byte access, arithmetic, etc.) than by 

the structural and logical characteristics of the tasks they are set. It 

is anticipated that architectures influenced by more macroscopic 

considerations such as block structure, control structure, composite 

data items, etc., will have the effect of eliminating some of the 

potential sources of error in conventional programming, and of assisting 

the detection, diagnosis, and the determination of the extent of errors. 

In this somewhat confused situation, there is lacking a means of 

comparing protection systems. When designing a new machine architecture 

or a programming language and its run-time system, it would be useful 

to be able to compare various alternative protection schemes to obtain 

some relative indication of their suitability for the intended environment, 

as well as estimates of their costs in terms of execution time, storage 

space and implementation. 

Abstract models of protection, such as those proposed by Lampson (1971) 

and Jones (1973), allow many of the salient features of a protection system 

to be identified and thus compared with other protection systems in a 

qualitative manner. This thesis attempts to show that there are, however, 

useful alternative methods of comparison based on, as far as possiul' 

quantitative rather than a very abstract qualitative comparison. 

Underlying the method of comparison proposed in this thesis is the 

recognition of the relationship between protection and addressing. An 
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understanding of this relationship is both useful for the development of 

a methodology for the comparison of protection systems and for the 

development of new protection methods. The relationship is a unifying 

factor between programming languages, operating systems and machine 

architectures, encouraging a synthesis of ideas from each of these areas 

in the design of new protection systems. 

The comparison methodology is a cost-benefit analysis method, based 

on measures for cost and benefit. The general form of these measures is 

derived but the precise form will depend on the actual comparison being 

made, that is the protection aspects one is interested in, the given 

environment, and the criteria for choosing the best protection mechanism. 

Examples of the use of the comparison methodology given in the thesis 

illustrate the variety of comparisons which the methodology includes. 

There are also aspects of protection systems not amenable to 

quantification which should also be considered in order to make a 

comparison in some sense complete. The effect of the protection system 

on the way programs are written is such a factor since the provision of 

protection information by programmers could influence the design of a 

program. 

1.3 Summary of Thesis 

Until very recently, many people working in the area of protection 

have argued that protection and addressing are separate issues and so 

protection systems can be considered independently of any particular 

addressing mechanism being used. A great deal of thought and analysis 

of the concepts underlying protection has resulted in the realisation 

of the close relationship between protection and addressing. A detailed 

discussion of this relationship and its relevance to the relationship 

between machine architecture and programming languages forms the first 

major topic of this thesis. 
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Secondly, having brought the issues of protection and addressing 

together, it was then feasible to develop a proposal for the cost­

benefit analysis of some protection systems. The third topic is the 

successful application of the comparison methodology in two practical 

experiments comparing different protection systems. Finally, ways in 

which protection systems exploiting structure can be characterised and 

compared are considered. 

The nature of protection and its relationship to addressing are 

considered in Chapter 2. Characterisations are given of the concepts 

of process and domain, and the often unrecognised link between the 

concept of a domain and notions of scope of names, context, etc., in 

programming languages is pointed out. Examples of protection in 

operating systems and programming languages are presented to illustrate 

that the basic issues of protection are similar in both areas. 

Chapter 3 contains brief descriptions of current abstract models 

of protection which, in principle, offer a feasible means of comparison, 

at least of a qualitative nature. These models are shown to be inadequate 

for our purposes though a measure suggested by Jones (1973) points the 

way to an alternative approach; that of comparing protection systems by 

means of cost-benefit measures. 

The proposed methodology for comparing protection systems is explained 

in Chapter 4 and Chapters 5 and 6 contain two examples of the use of the 

methodology. The first example concerns protection in programming languages. 

specifically Algol W (Wirth and Hoare 1966). Statistics were gathered on 

a set of 'typical ' Algol W programs which were then used to compare the 

protection aspects of different implementations of Algol W. Protection 

between processes is the central concern of the second example, illustrating 

the comparison of protection systems where the issue of the isolation of 

processes is paramount. Statistics were gathered on programs run under the 

8 



DOS/VS operating system (IBM 1973) on an IBM 370/135 computer and used 

to compare the protection system of DOS/VS with an alternative protection 

system which also uses the storage key mechanism of the 370/135 (IBM 1972). 

Chapter 7 introduces the concept of a structured domain which is 

used to characterise protection systems which exploit structure to 

achieve effective and efficient protection mechanisms. A measure of 

structure is derived, based on the notion of a structured domain, and 

is used in brief comparisons of some protection systems. The protection 

advantages afforded by programmer defined types and a supporting 

architecture, which retains at run-time the structure provided by the 

programmer, are considered in detail. 

The final chapter presents the conclusions of this research and 

attempts to put the work into perspective. 
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Chapter 2 

PROTECTION AND ITS RELATION TO ADDRESSING 

In this chapter, the elements with which protection is concerned 

are considered: the entities to be protected (objects) and the entities 

to be protected against (processes). Programming language notions such 

as the name, identity and address of variables, and context are seen 

to be of direct relevance to protection. In particular, these notions 

assist the understanding of the transformation function, which, given an 

object name issued by a process, produces the identity and the location(s) 

of its representation. The significance of this transformation function 

is that protection checks are typically carried out during the application 

of the transformation function or are actually embodied in the trans­

formation function itself. The transformation function, commonly under­

stood as the addressing mechanism, is thus frequently bound up with 

protection. 

The abstract notion of domain (Lampson 1969a) is seen as fundamental 

to protection and forms a unit of structuring for protection purposes, 

allowing a process to be associated with a group of access privileges. 

Inter-process and intra-process protection can be discussed in terms of 

domains. The emphasis placed on domains reflects their importance to 

the cost-benefit analysis which relies on the concept for the definition 

of cost and benefit measures. 

To perform any sort of access check, it is necessary to have some 

alternate specification against which the intended action can be validated. 

The domain provides such a specification, but the information describing 

what a program may access, from which the domain can be established, has 

to be furnished in some manner. Various ways in which such redundant 

information can be provided are briefly considered. 
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The application of protection checking can take place at a number 

of points in time and space. Attention can be restricted to dynamic 

checks made between the point of issue of an access request and the 

actual access being performed on the object, or enlarged to include 

static checks, performed, for example, at compile-time or load-time. 

Different attitudes to the time and place of run-time protection checks 

result in a variety of mechanisms to implement protection. In this 

thesis, we are principally concerned with the dynamic verification of 

access requests. 

2.1 Objects 

We refer to the entities within a computer system which are to be 

protected against unpermitted access as objects. I Object I defies 

precise definition, but the intuitive notion of object is sufficient 

in any particular case to decide whether or not an entity constitutes 

an object. An object may be a physical resource, such as a page frame, 

a terminal, a tape drive or disk track, or a logical resource such as 

a file, a segment, a user defined data structure or a procedure. An 

object may also be made up of other objects. 

An access to an object is an algorithm, defined by hardware, 

microcode or a piece of program, to reference the object in order to 

change the value of the object or to extract information from the object. 

For a particular object there may be a number of different ways in which 

the object can be accessed. For example, the possible accesses defined 

for an object which is a segment could be READ a word, WRITE a word, and 

INCREASE the size of the segment. 

Objects are divided into disjoint classes by ~, the distinguishing 

characteristic being that all objects of a given type have the same set 

of defined accesses. Thus, for any object which is a segment, the accesses 

READ a word, WRITE a word and INCREASE the size of the segment would be 
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defined, though the protection system may limit the access a given process 

has to a particular segment to READ a word. For any object, its type 

is known and so the possible accesses which can be made to the object are 

also known. The set of available types may be fixed at the time of 

creation of the system or it may be dynamic in that new types can be 

created or old types deleted during the lifetime of the system as is 

possible in Hydra (Wulf et al 1974b). 

Details of an object, the internal form of its representation, or 

indeed whether or not it"exists as a physical realisation, need not be 

available outside the defined accesses for that type of object. Indeed, 

one can conceive of Ivirtual l objects, objects represented in the form 

of a set of procedures rather than data. 

For the purposes of protection, the information required concerning 

an object is the identity of 'the object, to distinguish it from other 

objects, its type, since this identifies the accesses which are defined 

for the object, the accesses permitted to the object by the requesting 

process, and the requested access. A consequence of the restrictions 

which were outlined in Chapter 1 is that a protection system is not con­

cerned about the nature of objects, the information content of an object, 

or the semantics associated with particular accesses. A protection 

system provides a facility which given the identity of an object and a 

requested access either permits or prohibits the requested access to the 

object. 

Objects are not necessarily atomic, an object may be formed from 

a composition of other objects and this process may be recursive. A 

system will initially provide a certain set of objects and support for 

a number of types, and possibly a mechanism for defining new types. New 

objects of certain types can be created, e.g., segments and pages, and 

existing objects deleted. Dynamic creation and deletion of physical 

resources will in general not occur, though a system may cater for the 
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attachment of new devices or the temporary removal of a device from 

system. 

Though creation of a new object may bring into existence a new 

object to be handled by the system, at some level this 'creation' may 

appear as a regrouping and renaming of other objects. Ultimately, all 

logical resources are forms of information represented as sequences of 

bits, and except for paper tape, magnetic tape, etc., there is no 

possibility of creation of storage media. 

Similarly, object deletion may not be as simple as the destruction 

of the object. Parts of an object, that is other objects of which an 

object is composed, may be intended to continue their existence, and 

certainly in the case of the deletion of a file there is no intended 

destruction of the disk tracks on which the file resided. 

The choice as to what constitutes objects (or a primitive set of 

objects in the case of systems permitting programmer defined types) in 

a particular system is at the discretion of the designer of the protection 

system, and the determination of objects should be made to meet the 

requirements of the system as a whole. In the case of memory protection. 

for instance, one may choose a word, page or segment as the basic storage 

unit of protection. 

2.2 Processes 

An object has a passive role; the entities initiating access requests 

to objects are executing programs, i.e., processes. During execution, a 

process retrieves information from objects and manipulates objects via 

the accesses defined for each object. 

We take as our basic definition of a process that given by Horning 

and Randell (1973), where a process is defined as a triple (S,f,s): S is 

a state space, f is an action function in that space, and s is the subset 
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of S which defines the initial states of the process. A computation is 

a sequence of states from the state space obtained by applying the 

action function f first to an initial state and then to each succeeding 

state. 

Working from a strict low level definition of a process such as 

this, and using techniques of combination, abstraction and refinement, 

as discussed by Horning and Randell, to deduce new 'higher' level 

processes, will not always yield the most appropriate structuring of a 

system into processes. This is because at the level of user programs 

and operating systems the notion of a process is somewhat arbitrary. 

The techniques of combination, abstraction and refinement allow many 

choices at each stage, thus it is often the case that a system can be 

structured into processes in a variety of ways. 

Figure 2.1 

The process structure of a system 

Consider a spooling system which schedules user jobs one at a time, where 

each job consists of three phases: reading the program and data, execution 

of the program and printing of the results. This system can be viewed in 
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two ways as illustrated in Figure 2.1. (This example is taken from 

Brinch Hansen (1973)). 

The first view, indicated by the single line arrows, is that which 

would be taken by a user of the system. Each job is considered to 

correspond to a process; initially it is scheduled to do the input, then 

the execution phase of the job and finally the printing of the results. 

Thus a user would recognise the processes: 

job consisting of rl xl pl 

job 2 consisting of r2 x2 p2 

The designer of such a system is likely to take the alternative 

view indicated by the double line arrows and partition the system into 

three processes of a cyclical nature each in control of a physical resource, 

viz: 

reader process comprising rl r2 r3 

execution process comprising xl x2 x3 

printer process comprising pl p2 p3 

These three processes progress independently except during short intervals 

when they must exchange data. The execution process must receive user 

programs and data from the reader process, or at least an indication of 

their location, and the printer process must be informed by the execution 

process where user results are stored. 

Both decompositions are useful for a particular purpose, but being 

abstractions each of them obscures facts about the original system. The 

first decomposition hides the fact that the jobs share the same reader, 

processor and printer and from the second decomposition it is not evident 

that the reader, execution and printer processes execute a stream of jobs. 

A decomposition of a system into a set of processes is a partial description 

or an abstraction of that system. How one chooses an abstraction depends on 

ones purpose. 
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Though there is this degree of arbitrariness with respect to what 

constitutes a process, the one aspect which any process structuring must 

preserve is the degree of permitted parallelism in a system. Thus any 

act which modifies the degree of permitted parallelism must be regarded 

as involving an alteration to a process. The essential idea of process 

structuring has to do with minimising the interactions between parts of 

a system (Simon 1962), (Myers 1975). In any practical realisation of a 

process structuring, one wants to choose the basic entities (in this 

case processes) such that interaction occurs within an entity rather than 

between entities. If a structuring has been devised in which the majority 

of interactions occurs between entities rather than within the entities, 

then perhaps the most appropriate structuring of the system has not been 

obtained. 

In this thesis, we assume that a process is associated with the 

execution of a user job, though alternative views, such as that illustrated 

in the previous example, may be more appropriate in other circumstances. 

Though we associate a process with a user job, we do not want to limit 

the operating system from having further processes inside of itself, e.g., 

for spooling. In a particular system, the abstract concept of a process 

will have some concrete representation, such as a Iprocess control block'. 

Thus, we assume that during execution a user job is represented by a 

particular Iprocess control block ' , also that each process created by the 

operating system corresponds to a particular Iprocess control block'. If 

a user job has inherent parallelism, it will cause two or more processes 

to be created in which case there will be more than one Iprocess control 

block ' corresponding to the user job. 

In a uni-programming system with both supervisor and problem states, 

the execution of a program can be regarded as a single process executing 

at certain times in supervisor state and at other times in problem state, 

or as two processes, one which executes only in supervisor state and the 
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other which executes only in problem state. As will be seen in Chapter 

6, we take the former view, though in this case either view is probably 

equally valid and the distinction between them will depend on how one 

wishes to view the system. 

2.3 Domains 

2.3.1 Concept of a Domain 

We define a domain to be the abstract entity which specifies the 

objects a process can access at a given point in time and the manner in 

which each object can be accessed. Typically, the permitted accesses 

to an object will be a subset of those defined for the type of the 

object. The domain in which a process executes thus defines the access 

privileges of the process. A process may execute out of a number of 

domains during its lifetime, though at any particular instant it will 

be associated with precisely one domain. 

The access privileges of a process change when either a process 

moves from one domain of execution to another, a switch in domains, or 

the set of access privileges constituting the current domain alter, a 

domain change. The distinction being drawn here can perhaps be clarified 

by considering an analogy with a variable in a programming language. A 

variable has a name and a value, and though its value may change its name 

remains the same. A switch to a new domain implies a switch from one 

domain variable to another. Such a switch may well be a temporary one 

and the previous domain variable can then be reused. A change in the 

access privileges contained in the domain corresponds to a change in the 

value of the domain variable. In general, the difference between the 

contents of two domains is likely to be much greater than the differences 

within a domain during its lifetime. 

The aim of allowing the contents of a domain (i.e., access privileges 

contained in a domain) to change with time is so that over-frequent 
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domain switches can be avoided. The contents of a domain can be changed 

either by the addition of new objects, the deletion of currently accessible 

objects, or changed types of access including revocation of access 

privileges by other processes. By a series of such changes the contents 

of one domain could be altered to coincide with that of another domain, 

thus avoiding the need for domain switches altogether. However, domain 

switches are retained as it is sometimes more efficient to make a sudden 

change in the set of accessible objects by means of a domain switch. 

It is expedient to regard domains as objects, since a switch between 

domains can then be treated as an access to a domain object and hence be 

controlled by the protection system. In addition, creation of domains 

and alterations to the contents of a domain can be monitored by the pro­

tection system. If certain functions or instructions, e.g., privileged 

instructions, are to have their use limited, treating them as objects 

allows them to be included in domains and thus their use can also be 

controlled by the protection system. 

The aim of protection is to restrict a process to those objects it 

needs to access at any particular time. In the ideal situation, a process 

would be restricted, at any instant, to accessing a single object, viz. 

the object it currently wishes to access. This scheme would achieve 

complete protection, but is impractical and inefficient, it involves 

a switch in domain prior to each access. In the other extreme, a process 

is executed in just one domain, in which case the domain must contain all 

the objects which the process may possibly want to access. As a compromise 

between these extremes, a number of domains are usually associated with a 

process. This approach gives much greater flexibility and facilitates 

tighter protection since the instantaneous name space of the process is 

restricted to the objects of immediate interest, as parts of a process 

can be run in more restricted domains than would be the case if the whole 

process had to be run in a single domain. Against this, however, must be 

balanced the cost associated with the creation and maintenance of the extra 
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domains and the cost of switching between.domains. 

We have emphasised the notion of multiple domains being associated 

with a process since this facilitates the provision of intra-process 

protection and includes the simple case where a process is executed in a 

single domain. Domains are also a suitable abstraction for considering 

inter-process protection and the notion of controlled sharing of objects. 

Providing the domains of all processes in a computing system are set up 

in an appropriate way, interference between processes can be prevented. 

Sharing of an object is achieved by including access privileges, not 

necessarily identical, to the same object in the domains of different 

processes. For instance, one process may be permitted read access to a 

particular file, whereas another process may be permitted read and write 

access to the same file. 

Though the concept of a domain.is well understood, what constitutes 

a domain in a particular system is somewhat arbitrary, thus one has a 

choice of what aspects of a system should be linked to the concept of a 

domain. Some choices are of course more natural than others, but the 

aim, as with the use of the process concept, is to reflect the structuring 

of the system. The ways in which programs and operating systems are 

designed and the manner in which workloads are presented to a system lead 

to large and abrupt changes in what is going on, specifically the objects 

being accessed, within the computer system. The relation between processes 

and domains can be one-to-one, many-to-one or one-to-many. This degree 

of flexibility can be exploited in order to achieve a structural description 

of a system which captures the practical realisation in a luseful l way. 

That is, it not only describes it well in that large and small changes in 

what is going on in the system have corresponding changes in the abstract 

structural representation, but also the associated costs of the changes 

are minimised. As is discussed later in this thesis, this is particularly 
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related to obtaining a structural description of a system such that 

protection can be achieved through addressing. 

Domains are a protection structuring device and intuitively it is 

appealing to tie protection structure directly to some form of program 

structure. This has the advantage that a change in the program entity 

being executed then implies a switch in the domain of execution. If 

protection and program structure are independent, the problem of how to 

signal a switch in the domain of execution remains to be solved. 

Processes are a structuring imposed on activity and domains are a 

structuring imposed on accessibility, just as procedures, say, are a 

structuring imposed on a program text. Each such structuring can be 

done well or badly, and their interrelationship can be set up well or 

badly. We have enumerated some of the criteria which are likely to be 

important in structuring activity using processes and accessibility 

using domains. For the sake of generality, we assume a many-to-many 

relationship between processes and domains, and assume that each is 

linked appropriately to some program structuring scheme - e.g., domain 

linked to procedure, and process to class. 

2.3.2 Domains and Locality 

The utility of the domain concept depends partly on the notion of 

'locality of reference,' that is, the experimentally observed phenomenon 

that a process tends to access only a small subset of the available objects 

during a relatively extended period of execution. In many cases, the set 

of objects which a process actually accesses changes only slowly over a 

period of time, but studies of reference patterns (e.g., (Morrison 1973), 

(Hatfield and Gerald 1971), (Hatfield 1972)) have shown that many processes 

are subject to occasional sudden changes in their behaviour, corresponding 

to an abrupt and massive change in the set of objects being accessed. 
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Reference pattern of the META7 compiler 
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Typically, a process will be performing different logical functions in 

different time periods and thus will tend to concentrate its activity on 

well-defined subsets of objects. Localisation in space is a desirable 

characteristic since it can provide limitations on the free access of 

information and aid recovery :in the event 6f"failure (Dept. of Industry 

1975). 

Example 

Figure 2.2, taken from a paper by Opderbeck and Chu (1974) displays 
a reference pattern for an execution of the META7 compiler. 

liThe horizontal axis represents virtual processing time measured in 
units of 50,000 page references, while the vertical axis represents 
virtual memory at 512 word resolution. The dark areas show which 
pages have been used during a given time interval. This reference 
pattern illustrates the sudden changes of program behaviour as 
observed during the execution of the META7 compiler. As Figure 
2.2 suggests, the execution of META7 consists of three different 
phases .... " (Opderbeck and Chu 1974). 

Evidence such as this suggests that it is quite realistic to associate 

multiple domains with a process and hence afford the process improved 

protection. This is not to say that it will be obvious how to allocate 

access privileges to domains or how to associate the different domains 

with the different phases of execution of a process. 

At this point, it is useful to draw a distinction between the 

concepts embodied in the words 'possibilities' and 'probabilities'. 

Possibilities are the objects which may be accessed in the future by a 

process. Information about possibilities comes, for example, from the 

explicit provision by programmers of statements which affect domain 

changes and domain switches. These statements are 'redundant' in the 

sense that they contribute nothing to the intended progress of the 

process. 
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Probability is concerned with the study of accessing patterns, i.e., 

how programmers actually use objects, to predict what a program will do 

in the near future based on recent history. Denning (1968), in his work 

on the working set model has been concerned with 'probabilities'; The 

notion of locality is directly connected with 'probability'. 

The important distinction to be made here is that locality is not 

an aspect of 'possibility'. 'Probabilities' are assessed over recent 

history and used to predict some short future interval. Thus, 

'probabilities' are not necessarily a subset of the present 'possibilities'. 

Since a domain indicates 'possibilities', it says something about 

which objects can be accessed while the process executes in the domain. 

A paging mechanism, for instance, might make use of such predictive 

information. Thus a domain may contain information which could be useful 

to other parts of an operating system. 

2.3.3 Examples of Domains 

A capability list (Dennis and Van Horn 1966) associated with a 

process defines a domain since it denotes all the objects the process 

may access. Since a process may execute with different capability lists 

at different times, protection based on capabilities supports multiple 

domains per process. The use of multiple domains per process can be found 

in programming languages too. The scope rules of Algol-60, for 

instance, can be used to define domains conSisting of all the variables, 

arrays, etc., which lie in the scope of the block being executed, 

together with the parameters which have been passed to any enclosing 

procedures. If such domains are used, a switch in the current domain 

of execution will occur on entry to or exit from a block or procedure. 

In practice, the Algol run-time system designer will choose explicitly 

what sorts of Algol constructs will involve domain switches, so that 

an Algol programmer will make implicit choices of domain. 
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Some systems (e.g. RC-4000 multiprogramming system (Brinch Hansen 

1970)) support only one domain per process, often on the grounds that 

it is too costly to switch domains during execution of a process. In 

the RC-4000 multiprogramming system, each object in the system is owned 

by one process and that process alone is permitted access to the object. 

If a process wants to access an object: owned by another process it sends 

a request, in the form of a message, to the owning process. The owning 

process decides whether or not to invoke the request, and if it does, it 

returns the information in a reply message. 

CAL-TSS (Lampson 1969b) allows up to 12 domains to be associated 

with a process. Each domain is directly attached to a 'subprocess' so 

that, when control passes to a subprocess, the process automatically 

enters the domain associated with that subprocess. In the Hydra system 

(Wulf et al 1974b), a 'procedure' includes a specification (template) 

of the domain in which it is to run on invocation. When the procedure 

is invoked by a process, the domain in which, the procedure is to run 

(called the Local Name Space) is constructed from the template and the 

parameters passed to the procedure. In principle, Hydra allows a 

process to execute in an unlimited sequence of different domains, but 

the cost of domain switches constrains 'procedures', in the context of 

Hydra, to be larger than the typical procedure occurr;-ng within a program. 

Not all uses of the domain concept coincide with our definition. 

Lampson treats a domain both as a collection of names (i.e., a set of 

allowed accesses) and as the active entity performing the access. Viewing 

domains as the active entitie~ initiating access requests within a system 

conflicts with our intended role of a domain. We want the facility to 

add access permissions to a domain or delete access permissions already 

contained within a domain, while still maintaining the identity of the 

domain. Thus, we subscribe to the view that a domain is a set of allowed 

accesses. 
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2.4 Protection and Redundancy 

Protection is concerned with checking that the accesses to objects 

attempted by a process obey certain restrictions on the objects the 

process may access and the operations which may be invoked. Such checks 

depend on the provision, by the programmer, of explicit or implicit 

redundant information. This redundant information forms an alternate 

specification of what the program may do. In general, this information 

is not so detailed as the program, but is provided so that errors in 

the program may be detected when the program is being executed and 

damage to other processes or information prevented. The term Iredundancyl 

is used here in the sense of useful redundancy - it adds nothing to the 

execution of the program, but can be utilised for protection. 

Instructions to switch execution to another domain are a very obvious 

example of information which is redundant, yet can be used to indicate 

that a process is in error, either in that it has attempted to access an 

object in an unintended manner, or that previously it had specified an 

incorrect domain switch. 

A less obvious example of redundancy is that provided unwittingly 

by a programmer when he signs on at a timesharing terminal. The manner 

of sign-on (e.g., the password used, the identity of the terminal used) 

may well imply information about what the: programmer is allowed to do 

(e.g., a batch terminal for student jobs), information that can be used 

by the system in checking his program1s actions. The IJCL 1 preceding 

a request to execute a program typically specifies the files and/or 

devices which are to be used for input and output of data. 

The block structure of Algol provides another form of redundancy. 

The programmer uses the block structure to signify that certain variables 

can or cannot be accessed within a specific block. The compiler uses 

this extra information to check that no illegal accesses are attempted. 
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The union of the information on the restrictions to be imposed on 

an executing program, provided from sources such as those mentioned above, 

can be used to define the domain(s) of the executing program. Although 

potentially useful information may be provided, it will not necessarily 

all be utilised in the monitoring of the execution of the program. Infor­

mation provided in the source program may be ignored by the compiler, or 

used during compilation but not retained in the object form of the 

source program. Type information is commonly required at compile-time 

but is often discarded before run-time. At least two machine architectures, 

the Burroughs B6700 (Burroughs 1972) and the Rice computer (Feustel 1972), 

however, have been devised to make use of type information at run-time 

to 'limit the operations which may be applied to data. Codewords, 

developed by Iliffe and Jodeit in the Basic Language Machine (Iliffe 1969) 

and in the Rice computer (Jodeit 1968), were aimed at the retention of 

structure present in programs written in a high-level language so that 

it can be utilised for addressing and protection purposes. 

If information, which is potentially valuable to a protection 

system, is discarded before the protection system can view it, the amount 

of protection which can be provided to the executing program is 

necessarily reduced. However, the protection system itself may make 

only limited use of the information with which it is supplied. 

It is useful to separate out two aspects of redundancy: 

1. What can be provided in the way of an alternate specification 

of a program1s intended behaviour, and 

2. The use made by a protection system of the information with which 

it is provided. 

The first aspect is easily understood from manuals describing the 

programming language and the system being used, though research needs to 

be carried out on the best form of this specification. This thesis 
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concentrates on the second aspect; measuring the use made of protection 

information by protection systems. 

2.5 Name, Identity and Address 

To invoke an access to an object, the invoking entity (process) 

must name an object and the access to be made. The object name used by 

the process must in some manner be translated into the identity of the 

object, to distinguish the object from other objects. It is useful to 

distinguish between the name and identity of an object and, where 

appropriate, its address or physical location, by analogy with programming 

languages. The definitions of identity, context and universe of discourse 

given here are due to Dijkstra and Randell. 

Even within a single program written in, for example, Algol-60 

or PL/l, a particular object may be referred to by different names 

(called lidentifiers l in Algol-60) and the same name, in different 

contexts, may refer to different, (simultaneously existing!) objects. 

A similar situation exists in a multiprogrammed environment in which 

separate programs may share data or items from a common library. 

Different names referring to the same object, or the same name 

referring (in different contexts) to different objects are relations 

which only make sense with respect to a universe of discourse in which 

different objects have different identities, regardless of the various 

names that may be used to refer to them in various contexts. A context 

defines how names may be mapped into identities, the latter obviously to 

be understood in an implied (constant or common) universe of discourse. 

For instance, at a given stage of execution of an Algol program, the 

name of a quantity can only be understood in the context provided by 

the block structure and the depth of nesting of procedure calls. 

Taking a step backwards, the universe of discourse of a process 
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may present itself as a sub-universe among many others in a surrounding 

universe. What was 'universe ' then becomes Icontext l and what was 

'identity' becomes Inamel to be understood in that context. From this 

viewpoint, the notion of identification acquires an essentially 

recursive nature. 

In the original von Neumann machine, working in its isolated finite 

universe, addresses of storage locations serve both as names (occurring 

in the program text) and as identities of the information held in the 

locations. Multi-level storage systems force upon us the clearest 

possible distinction between identity of information and the addresses 

of the actual locations where the information can be found. As information 

drifts around the storage system the address associated with a given item 

of information will no longer be constant in time, it may even be non­

unique, viz. when copies of an item exist simultaneously on different 

storage levels. 

These notions apply equally well to general objects in a computer 

system. For instance, Fraser (1971) has illustrated how the concept of 

context underlies both the problem of file identification within a 

computer system and that of the design of programming languages. When 

a new program is submitted to a system, it will name the context in 

which it is to run, or the context will be implicit in the manner in 

which the program is sUbmitted. 

A mechanism or transformation function must exist for the translation 

of an object name issued by an executing program (either explicitly or 

implicitly) first to the identity of the object and then to its address. 

In certain cases, it may be possible to bypass the identity in the total 

transition from name to address. 

The nature of names used for objects and the transformation function 
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can have a significant bearing on the protection system. For instance, 

one approach to protection is that a process should only be able to 

name those objects to which it is permitted access. The other extreme, 

which avoids altogether the problem of the name to identity transformation, 

is to use unique global names for all objects. In this case, there is a 

single universe of discourse in the system containing all objects, in 

which all processes execute. 

Many writers on the subject of protection (e.g., (Wulf et al 1974b), 

(Fabry 1971), (Lampson 1971), (Jones 1973)) make the assumption that all 

objects within a system are uniquely identified, not only in space (i.e., 

from other objects which exist concurrently) but also in time, over the 

whole lifetime of the computer system (i.e., amongst all objects existing 

in the past or in the future). The mechanism used for such global names 

is a unique integer of,_say, 64 bits, which is assigned to an object on 

its creation and identifies the object throughout its lifetime. Such 

global names necessarily pervade the whole system and though they finesse 

the transformation of name to identity, unique names do not provide an 

easy means of locating objects, indeed global names give rise to a number 

of problems in this area (Lampson 1969b). 

Systems such as the Rice computer (Feustel 1972) and the Burroughs 

86700 (Organick 1973) testify that unique global names for all objects 

are not a basic requirement of efficient and effective protection systems. 

We do not deny unique names as an approach to protection, but argue that 

insistence on such an assumption may preclude potentially useful protection 

systems. In particular, the exploitation of the notion of context in both 

programming languages and operating systems offers the possibility of 

cheap effective protection methods without the need for absolute unique 

identifiers for objects to be explicit throughout a system. 
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2.6 Protection and Addressing 

Perhaps one of the simplest illustrations of the concept of achieving 

protection through addressing is the use of a single pair of relocation 

and bounds registers. Segmentation provides an extension of this idea and 

enables different types of access (e.g., read, write or execute) to be 

allowed or denied to each segment included in the address space of the 

executing program. Both these schemes have the advantage that they can 

be largely implemented in hardware and so the addressing, and therefore 

the protection, is efficient. 

Lampson (1968) took protection by addressing a stage further and 

considered how access could be controlled by addressing mechanisms not 

only to areas of main memory but also to so-called 'privileged' instructions. 

Privileged instructions are those instructions which could lead to a 

process accessing information outside of its address space, e.g., I/O 

instructions, instructions which alter the address mapping hardware, etc. 

The conventional way of handling privileged instructions is to provide 

two modes of execution 'superv i s'or' and 'user'. In supervi sor mode, a 11 

instructions, including privileged instructions, can be executed, whereas 

in user mode privileged instructions are prohibited. The prohibition is 

usually enforced by causing a switch into supervisor mode and transferring 

to a standard system routine whenever attempted execution of a privileged 

instruction is detected. Lampson's proposal was to include in a special area 

of memory provided for each process those privileged instructions which 

the process would be allowed to execute. The appropriate instructions 

would be placed in this area by a supervisor routine. The addressing 

mechanism would allow privileged instructions fetched from this area to 

be executed, but execution of other privileged instructions would be 

suppressed. 

The DEC PDP 11 computers (Digital Equipment Corporation 1972) achieve 
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protection of I/O devices in a similar manner. I/O devices are 

represented by addresses in real memory, reference to an address 

corresponding to a device causes the reference to be made to the actual 

device. Devices can then be protected by the addressing mechanism by 

including or not including them in the virtual memory of a process. 

A number of people have argued that conceptually the issues of 

addressability and protection should be separated. Lampson (1971), 

in his abstract treatment of protection, assumes that every object ever 

in a computer system has a unique name. The protection system can then 

be represented by an access matrix, the rows and columns of which 

correspond to all the different objects and different domains respectively. 

Each element of the matrix indicates what types of access are permitted 

to a part-i.cular object by a process when in a given domain. The 

protection system is then independent of any addressing mechanism used. 

Jones (1973) takes a similar view and Needham (1972) argues the 

case for a lock and key system which is independent of the method of 

addressing objects. Achieving a protection scheme which is independent 

of the addressing scheme used is possible, e.g., storage keys on IBM 
~ 

System/360 computers (IBM 1968a), though pragmatic considerations eventually 

force most designers back to some form of addressing technique. 

The importance of addressing techniques in respect of protection is 

that such techniques can provide a great deal of protection in an efficient 

manner. Assume a situation in which a process may access objects only 

through an addressing mechanism provided to it, such that the process 

cannot alter the mechanism. The mechanism interprets every reference to 

an object as a name (not an address) in a set of names provided to the 

program. If that set of names includes only objects which the program is 

allowed to access, then the addressing mechanism provides a first level 

of protection since the process has no way of referring to objects for 
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which no access is permitted. Thus, in a given domain, a process would 

not 'know ' the name of any object for which it did not have some type of 

access. This is to be contrasted to a system of protection in which the 

process has a large space of names or addresses, many of which it is not 

allowed to refer to, so that a check of each acces~ is required to determine 

if the access is p~rmitted. 

In practice, unless the number of bits available to form names permits 

only the proper names to be formed, a check is still required with addressing 

schemes, though it is usually possible to arrange that the check is a 

particularly simple one. The capability mechanism (Dennis and Van Horn ,1966), 

for instance, has the advantage that names may be arranged in such a way 

as to simplify the check needed with each reference. Usually the check 

need entail no more than comparing an index with a limit. 

With the addressing technique, the fUnction of the protection system 

has been reduced to that of ensuring that only the right types of access 

are allowed. In principle, even this function of the protection system 

can be thought of in terms of addressability. For simplicity, consider 

just the special case of read or write access to a variable X. Instead 
" 

of, as above, considering that one has a variable X and operations LOAD 

and STORE, one can think of having two separate (though of course related) 

functions LOADX and STOREX. This immediately leads to the possibility of 

having a name space in which one could specify (i.e., name) the function 

LOADX but not the function STOREX. So the question of type of access to 

X has been reduced to that of addressability of functions that can be 

applied to X. Such a scheme can be immediately extended to the control 

of peripheral devices along the lines of the DEC PDP 11 manner of 

addressing I/O devices (Digital Equipment Corporation 1972). There would 

be problems in implementing such a scheme for achieving protection since 

the product of the number of functions and the total number of objects will 

in general be very large. However it demonstrates that all protection can 
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be thought of in terms of addressability. 

A characterisation of protection by addressing is that protection 

is achieved by a simple check at the cost of a level of indirection. With 

a lock and key protection system, absolute addresses of objects can be 

used as names, since protection checking is independent of the access 

path to the object. However, in many systems, e.g., a segmented virtual 

memory, a level of indirection already exists, so protection through 

addressing does not have to introduce an extra level of indirection. 

Recognising this relationship between protection and addressing does 

not immediately solve all protection problems. However, it does allow 

one to consider protection in terms of existing programming language 

concepts such as name, value and context, and to consider techniques 

that have been developed for addressing in structured languages, such 

as Algol, and at systems such as the Burroughs B6700 (Organick 1973) for 

pointers to the design of sophisticated protection systems. 

In designing a protection system, any reasonable structure, useful 

redundancy or knowledge concerning the behaviour of programs should be 

exploited to achieve protection by limiting the name space available to 

a program during execution. The relocation and bounds registers example 

above recognises a static name space, viz. 0,1, ... , L-l (where the 

bounds register is set to L). The Algol addressing mechanism is a good 

example of how the name space of a program can change dynamically during 

program execution. The use of a display and address couples in block­

level implementations of Algol-like languages (see Section 5.1) limits 

the set of names recognised by the addressing mechanism to precisely those 

which are defined as valid by the language. 

A way of increasing the effectiveness of protection achieved via 

addressing is to exploit structure contained in a system. Chapter 7 

concentrates on structure, considering the notion of a structured domain, 
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and examining such domains in various computer systems. 

2.7 Time of Protection Checking 

The objective of this section is to consider some of the many 

mechanisms which have been devised for enforcing protection and to see 

how they can be characterised in terms of time of protection checking • 
• 

We are concerned only with run-time checks performed during execution of 

a process. Static checks performed by a compiler are useful since 

error indications can be obtained without the need to execute the 

program. However, to place total reliance on a compiler and run the 

object code without checks requires that: 

the compiler be correct and trusted aiways to produce correct 

object code; 

- all names be bound at compile time; 

information describing access authorisations is not changed 

between compilation and execution; 

- the object code cannot be altered before execution. 

Similar comments can be made concerning load-time checking. 

The safest time to check the validity of an access is immediately 

before it is performed. Then, concern about whether a compiler was 

used and its correctness, or whether the object program had been corrupted, 

is allayed. 

Dynamic protection checking, performed at run-time, is also a form 

of check on the compiler, the loader, the run-time system and the hardware. 

As such, it contributes towards the reliability of the system. Because 

of the significance of dynamic protection checking, we concentrate our 

attention on protection systems which perform explicit checks on every 

reference to an object or embody protection checks in the addressing 

mechanism. 

In general, there is a time delay between an access request and its 
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execution. This delay may be due to the address mapping function, 

queuing of the request due to time delays involved with input/output 

devices or delays introduced by the fact that the central processor is 

multiprogramming a number of processes. For similar reasons, there may 

be a time interval between the time of protection checking and the 

performance of the access. Thus, the possibility can arise that though 

an access request was valid at the time of the protection check, it may 

be invalid by the time the access is performed • 

. Example 

In IBM's VM/370 system (Belady and Weissman 1974), the 
protection check and the execution of the action validated by 
that check are separated by some dlstance in time in the case 
of channel programs. It is possible, under certain conditions, 
such as the occurrence of an interrupt, for the user to change the 
parameters examined by the check before the action occurs and 
thus subvert the protection system. This flaw depends on the 
interruptibility of the check-action sequence and the 
accessibility of the access request to the user after it has 
been checked. 

To make the protection system as secure as possible, it is desirable 

that the protection check be carried out as close as possible to the 

performance of the access, reducing the possibility of the checked request 

being altered or the specifications of the allowance of that access being 

revoked before the, access is executed. 

Dynamic protection checking can be performed during the transformation 

of an object name to an address either at a single point or at multiple 

points during the transformation. Since the transformation function is 

applied to every object name issued by a process, associating protection 

with the transformation ensures that every access is validated. The obvious 

places for the application of protection checks are: 
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- the point at which names are generated; 

- the location of the object; 

- at some intermediate point(s). 

The set of valid object names and accesses is delineated by the domain 

in which the process is executing so, when considering different times 

of protection checking, one also considers different representations of 

domains. 

The capability list of Dennis and Van Horn (1966) is an example of 

protection enforced at the place of generation of access requests. The 

capability list .encodes the domain in a table of capabilities. The 

names of objects used by a process are simple integers which index into 

the capability list. A simple test that the object name does not exceed 

the length of the capability list suffices to determine the validity of 

the object name. Each capability contains the global name of the object 

it represents and a specification of the accesses permitted to the 

object by the process. In this implementation, the information describing 

a domain is concentrated in one place, at the site of execution, so 

information is directly available on all the objects which the process 

may access. 

The access control list mechanism, as implemented in Multics 

(Graham 1968), exemplifies the storage of protection information with 

objects. The access control list attached to each object consists of a 

set of pairs, each pair consisting of the identity of a user who is 

allowed access to the object and the permitted types of access. Such 

an implementation implies that the object has to be located before 

the protection check can be carried out. Since the information on each 

domain is distributed throughout the system it is very difficult to 

determine all the objects to which a given domain allows access. However, 

the access control list mechanism enables the set of users who have 

access to a given object to be determined trivially. 
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Protection checks are applied at each stage of address translation 

in the Cambridge CAP computer (Walker 1973) and the Recursive Virtual 

Machine (Lauer and Wyeth 1973). An address issued in the executing 

environment is translated to an address in each of the containing 

environments in turn. Protection checks are carried out at each 

translation from one environment to the containing environment. 

Protection checking is not always associated with the transformation 

function. For instance, lock and key systems (e.g., storage keys 

on IBM System/360 computers (IBM 1968a)) are not intimately bound with 

the transformation function. 
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Chapter 3 

THE COMPARISON OF PROTECTION SYSTEMS 

To compare different approaches to protection, it is desirable 

to distinguish between a functional or logical scheme for protection 

and its mechanisation or implementation. The term protection system 

is used loosely to cover both the logical protection scheme and its 

implementation. For instance, the capability scheme, as presented 

by Dennis and Van Horn (1966), is a logical protection scheme. The 

Plessey PP250 processor (England 1972) is an actual implementation of 

capabilities used for protection. 

Ideally, one would like to contrast protection systems in terms 

of their logical schemes, so avoiding in the first instance at least 

questions of mechanism, machine architecture, etc. Different 

implementations of a given scheme could then be compared to give a 

complete comparison of protection systems. 

The descriptive language of a formal model of protection, if 

sufficiently general, would appear to be an attractive means of 

comparing the functional schemes of protection systems. The two most 

notable formal models which have been proposed to date are the access 

matrix model of Lampson (1971) and the environment model of Jones (1973). 

3.1 Formal Models of Protection and Their Use in Comparisons 

3.1.1 Lampson's Access Matrix Model 

Lampson's model of protection (Lampson 1971) comprises three parts: 

1. A set of objects X. An object is any entity to which access 

must be controlled. Each object has associated with it an 

identification number which is unique among other objects in 

the system for all time. 
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2. A set of domains D. Domains are the entities which permit 

access to objects. Since domains must be protected from 

each other, in the sense that execution of a process must 

pass from one domain to another in a controlled manner, 

domains are also considered to be objects. 

3. An access matrix A which governs the accessing of objects 

by domains. 

The access rights which domains have to objects are specified in 

the form of an access matrix. Domain names identify the rows and 

object. names the columns. The entry A(d,x) contains a list of the 

access rights held by domain d to object x. A monitor checks for 

each access request (d,~,x) whether ~ is in A(d,x), and allows ~ access 

of d to x if ~ f A(d,x) and not otherwise. When a process executing 

in domain d requests oc access to x, the identification of the domain 

is provided by the 'system' and thus, in principle, cannot be forged. 

Hence, a process executing in a given domain can only access objects 

as permitted by the access matrix. 

A set of four rules governs the establishment, deletion and 

modification of the elements A. These rules facilitate the transfer 

and deletion of access rights on command of a domain, providing the 

domain requesting the change has the appropriate authorisation. For 

this purpose, Lampson introduces the attributes of 'owner' and 

'control' and the notion of the 'copy' flag. 'Control' access reflects 

a partial ordering between domains. Each object has one or more 

'owners' who are automatically granted the complete set of access 

rights to the object. The copy flag is introduced so that a domain 

can prevent an untrustworthy subordinate domain from giving away access 
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permissions to objects. The monitor of the access matrix enforces 

these rules, ensuring that the access matrix is altered only in an 

authorised manner. 

The question of whether the lowner l of an object should be able 

to take away access permissions to the object from other domains is 

still open. Many systems, including Lampson's model, permit it, but 

Vanderbilt (1969) puts forward a contrary view. 

The switch of a process from one domain to another is also controlled 

by entries in the matrix. A process can only enter those domains for 

which the current domain, in which the process is executing, has the 

'call ' attribute. 

Above, we have talked of a single monitor validating all access 

requests. In any real system, it is likely that objects would be 

divided into classes such as files, segments and terminals. Associated 

with each class would be a monitor through which all accesses to objects 

of that class would pass to be validated. In the case of files the 

monitor would be the file system and for segments the segmentation 

hardware. It is a key point of the model that access rights are 

interpreted by object monitors at the time accesses are attempted. 

Graham and Denning (1972) have extended Lampson's work ;n several 

directions. They allow more than one process to execute out of a domain 

and so introduce the term subject to denote the entity which requests 

access to objects. A subject is identified as a (process,domain) pair. 

This is a more faithful abstraction of many systems which do not 

implement a number of distinct domains for each process or even a 

domain per process. For instance, the domain characterised by super­

visor state on IBM System/360 computers (IBM 1968b) ;s shared by all 

processes, but each process has its own problem state domain characterised 

by a particular storage key. 
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Graham and Denning have also investigated the problems of creating 

and deleting subjects and objects. Creation of a non-subject object, 

e.g., a segment, is straightforward and consists of adding a new column 

to the access matrix. The destruction of an object, permitted only to 

its owner, corresponds to deleting the column representing the object 

from the access matrix. 

In the case of a subject, creation consists of adding a row and 

a column to the matrix. The destruction of a subject, permitted only 

to its owner, corresponds to deleting both the row and the column from 

the access matrix. 

A number of minor extensions are also considered by Graham and 

Denning, such as the requirement that subjects be members of a hierarchy 

and the idea of indirect access, to facilitate the implementation of 

cooperation among mutually suspicious subsystems. 

3.1.2 Jones's Environment Model 

Jones's model (Jones 1973) attempts to formalise notions of 

protection within a set of processes sharing the use of objects. The 

objective of protection is seen to be the restriction of a process to 

the objects of immediate relevance to the task that the process is 

performing. Fundamental to the model is the concept of a domain 

(referred to as an environment by Jones). A domain is defined as a 

set of rights, each specifying an object and an access applicable to 

that object. 

The model has three major aspects: the enforcement of protection, 

the transfer of rights into or out of domains, and the binding of 

process execution to domains. 

The activity of a process is controlled by the enforcement rule 

which states that a process can access an object only when the right 
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to do so is in the current domain of that process. The enforcement rule 

;s fixed for all protection systems, but variations in the representation 

of domains and the manner in which protection checking is performed give 

rise to a variety of protection mechanisms. 

To facilitate changes to a domain, a protection system must 

specify a policy for the movement of access rights into and out of a 

domain. To accommodate a variety of policies, the model provides a 

mechanism in the form of a set of primitives (viz.: COPY, DELETE, GRANT, 

CREATE) in terms of which a policy may be specified. The primitives are 

the only means by which domains may be manipulated. 

The way suggested by Jones to control the use of primitives on 

individual rights, is to extend each right by a field which specifies 

how the right itself may be manipulated. An obvious example is the 

specification of whether or not the primitives COPY,GRANT,DELETE can be 

applied to a right by the process executing in the domain containing 

the right. To control the alteration of domains, domains are treated 

as objects so that they can be protected by the protection system. 

The domain binding rule of the model requires specification of how 

crossings between domains can take place. Hydra (Wulf et al 1974b), 

for instance, links domain boundary crossing to nested procedure calls. 

In connection with domain boundary crossing, Jones discusses in detail 

the passage of rights between domains as parameters and defines a 

primitive AMPLIFY to cover the case where rights to a parameter are 

expanded during the act of crossing to the new execution domain. The 

purpose of amplification is to provide a controlled means to permit a 

called procedure domain to have greater access to an object named in a 

parameter right than the caller possesses. 

The model allows the dynamic creation of types, that is programmer 

defined types of objects, based on the already existing set of types. , 
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Objects of a programmer defined type can be created and accesses to such 

objects controlled by the protection system in the same manner as is 

done for other objects. Each object is assumed to have a unique global 

name so that an object can be identified uniquely among all objects in 

the system. 

Jones illustrates how different abstract protection systems can be 

defined in terms of the model and then compared on an informal basis in 

terms of this notation. 

Jones introduces the concept of closure which, together with the 

model, forms the basis of a technique for stating and proving properties 

that restrict execution. Informally, the closure of a domain is the 

set of domains which can be derived from the given domain by applying 

the rules governing the movement of rights into and out of domains. 

The idea of obtaining proofs concerning the properties of a 

protection system is a very attractive one. It could lead the way to 

a formal treatment of protection with the obvious benefits of practical 

systems being supported by a well developed theory. In her thesis, 

Jones proves only one or two weak properties of an elementary system 

and it would be necessary to demonstrate that stronger and practically 

useful results could be obtained before this approach could be used 

as an aid to compare protection systems. 

3.1.3 Criticisms of the Models 

Formal models have a definite place in the comparison of protection 

systems, but their utility to date has been limited. Both models allow 

many protection systems to be expressed in a common abstract framework. 

For comparison purposes, this is a reasonable start, since protection 

systems which can be adequately described in terms of a model can be 

compared in the common language of the model. This leads to a qualitative 
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comparison but does not provide a yardstick for a quantitative comparison. 

The description of a protection system in terms of the primitives 

of Jones's model would appear to be extremely complex, judging by the 

examples contained in her thesis (Jones 1973). This implies that it 

would be very difficult to extract important differences and note 

similarities between descriptions of two protection systems in terms 

of her model. However, if from the description of a protection system 

in terms of the model, theoretical results could be derived, along the 

lines indicated by the property of closure, then the formal model could 

prove a useful tool for the purposes of comparison. 

Lampson's work (Lampson 1969a, 1971) was a first attempt to present 

the functional capabilities of several of the existing protection systems 

within a unified context. Different existing systems seem to correspond 

roughly to different ways of representing the matrix A and different 

choices of access modes and the rules, which permit changes to be made 

to the contents of the access matrix. 

Not all protection systems can be readily described in terms of 

the access matrix. The form of addressing and protection typified by 

the Burroughs B6700 system (Hauck and Dent 1968), where a domain is 

structured into a display and sets of descriptors, is not well suited 

to a lucid description by the access matrix. (To be precise, we 

are referring to a modified form of the B6700, along the lines of the 

Algol W run-time system described in Chapter 5, in which all necessary 

protection checks are carried out.) 

The drawbacks of Lampson's model include its inability to reflect 

directly any structure in a protection system, since all domains, objects 

and access rights are expressed in terms of a single matrix. The model 

assumes that an access permission applies uniformly to an object and 

its components. To enforce different domains having different access 

permissions to the components of an object (e.g., rec~rds of a file) 
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it is necessary to represent each component as an object in the access 

matrix as well as the object itself. Thus, a file is regarded as an 

object and some of its records may be objects too. With the access 

matrix model one has to be content with an unstructured, one-level 

view of the set of objects constituting a system. It is not possible 

to reflect the relationship between an object and its components, 

that is to represent objects formed by the combinations, regroupings 

and renaming of other objects. The creation and deletion of such 

objects thus poses difficult questions, largely ignored in the 

description of the access matrix model. 

In Jones's model some of these criticisms are overcome. Objects 

have a more natural structural representation in terms of other objects 

and the type of each object is recognised. 

An important aspect of both models is that objects must have unique 

identification numbers. Though necessary for realising the access 

matrix, many protection systems achieve protection without the need for 

names of global validity, for instance the Cambridge CAP machine (Walker 

1973) and the Recursive Virtual Machine (Lauer and Wyeth 1973). 

A key issue in both models is the checking of all accesses to objects, 

in particular, the access matrix model implies an active check of each 

access. In contrast, possession of a capability in the system proposed 

by Dennis and Van Horn (1966) is taken to be prima facie evidence of the 

right to access an object. No checking is thus needed at the time of 

access. 

The achievement of a comparison method based on a formal model 

does not seem imminent. Thus. the remainder of the thesis will concentrate 

on more practical and less formalised means of comparing, and hence 

classifying, protection systems. 
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3.2 Suitability Measure of Jones 

As a contrast to the formal model approach, which concentrates on 

a detailed description of protection systems, another line of attack is 

to gain a macroscopic view of protection systems and use that for 

comparison purposes. 

An example of a quantitative macroscopic measure is the suitability 

measure of Jones (1973). Jones considers a demand, that is the specifi­

cation of a situation to be satisfied by a protection system, to be 

defined in terms of: 

a. constraints on the contents of domains, and 

b. constraints on processes crossing from one domain to another. 

So, a demand consists of a set of processes, a set of domains and their 

contents, and the possible domain crossings which each process may make. 

Given a demand expressed in these terms, the aim is to compare how 

different protection systems satisfy or approximately satisfy such a 

demand, without adding processes or domains or otherwise altering the 

specifications. If a protection system requires domains to be nested 

one within another, then the implementation of a given demand may 

require that some domains contain more objects than necessary. Thus a 

protection system may prevent the construction of a domain which contains 

precisely the access rights needed to perform a computation. 

To measure how accurately an execution domain suits its use, Jones 

introduces the accuracy measure. 

Definition 

The accuracy measure of a domain is the ratio of the number 

of access rights exercised in the domain compared to the total 

number of rights which could be exercised within the domain 

during the performance of one task. 
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If a procedure is invoked in a domain a number of times, the 

accuracy measure for that domain is defined to be the average of the 

accuracy measures over a representative sample of procedure invocations. 

This measure has a maximum value of 1, attained when the domain is 

exactly tailored to its use, and a lower bound of 0 approached as the 

number of unused rights in the domain increases. 

Using the accuracy measure to quantify how closely an implementation 

of a single domain meets the specification of that domain's contents, 

Jones proposes a measure, the suitability measure, which indicates how 

well a particular implementation satisfies a given demand. 

Definition 

The suitability measure of a system with respect to a given demand 

is the average of the accuracy measures of the implementations of 

all domains required by the demand specification. 

A system cannot introduce new processes or domains to satisfy a 

demand, but might force processes or domains to be merged, and thus, or 

in some other way, cause the number of access rights that are provided 

in a domain to be 'unnecessarily' increased. For example, a demand 

can specify between which domains a process can cross. When an 

implementation cannot meet such a specification, Jones assumes that 

the two specified domains, between which a process is to cross, will be 

implemented as one domain, so that the crossing is rendered unnecessary. 

A specific demand, which involves say k domains, has an 

implementation, in terms of a particular protection system, involving 

k or less domains. An accuracy measure can be computed for the 

implementation of each of the k domains. Merging domains in the 

implementation lowers the accuracy measure for those domains so that 
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an implementation's approximate solution to a domain crossing 

specification is reflected in the average of the accuracy measures. 

The suitability measure ranges in value between 1, which 

indicates that the demand has been met exactly by the implementation 

and 0, a lower bound approached in cases where the implementation 

fails to reflect the demand situation. 

Given a specific demand, the suitability measure will yield an 

ordering of protection systems along the suitability scale. Jones 

uses the suitability measure in an informal manner to compare the 

protection facilities of IBM's OS/360 MVT (IBM 1968b), Multics 

(Graham 1968), CAL-TSS (Lampson 1969b) and Hydra (Wu1f et al 1974b), 

and obtains the following ordering: 

o < S(OS/MVT) < S(Multics) < S(CAL-TSS) < S(Hydra) < 1 

where S(Z) indicates the value of the suitability measure for the system 

Z. 

As pointed out by Jones, the accuracy measure for an execution 

domain is dependent on the execution which takes place in the domain. 

This in turn is dependent on the decomposition of the problem into 

processes and domains. The accuracy measure will indicate when a 

domain has more rights than are needed, but does not reflect 'under­

stacking', which occurs if an unnecessarily fine decomposition generates 

multiple tasks each to be executed in almost identical domains. We 

return to this point in the next section. 

3.3 The Modularisation Problem 

The example contained in this section demonstrates that, although 

approximate, the suitability measure is useful for comparing protection 

systems, but also points to some of its deficiencies. 
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Consider a process P which uses access rights a,b,c,d,e,f, and can 

be viewed as two closely interacting routines Pl and P2, where Pl uses 

rights a,b,c,d and P2 uses rights a,b,e,f. 

'P Pl' 

D Dl 

a a 
b b 

c c 
d d 

e 

f 

Suitabil ity 
= 1 

measure 

(a) 

P2 

D2 

a 
h 

e 

f 

Suitability 
= 

measure 

(b) 

Figure 3. 1 

Pl,P2 

D 1= (Dlu D2) 

a 
b 

c 

d 

e 

f 

Suitability 
= 2/3 

measure 

(c) 

Possible execution domains of P and their suitability measures 

In Figure 3.1, the three relevant implementations of the domains 

are shown. In (a), the process is regarded as a single entity P and 

executes out of the domain D which contains the six required access rights. 

The suitability measure in this case is 1. 

Case (b) shows the process viewed as two separate routines Pl and 

P2, each executing in its own domain, Dl and D2 respectively. This 

implementation achieves greater protection than (a) in the sense that 
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the process is more restricted in what it can access at any time. In 

(a), the process can access any of six objects at any instant, but in 

(b) the process is always restricted to four objects. The suitability 

measure has the same value (namely 1) in both cases but does not 

reflect the extra protection achieved in (b). The reason for this is 

that the demand in (a) was specified as a process P and a domain 0 

containing rights a,b,c,d,e,f, no indication being given that P splits 

into Pl and P2. 

The third implementation (c) illustrates a protection system which 

although cognizant that P splits into Pl and P2 is unable to support sepa­

rate domains Dl and D2. The suitability measure for (c) = 2/3. This 

reduced suitability measure, compared to that for (b), reflects the 

fact that the protection system has had to merge the two domains Dl and 

D2 into the domain D'. 

This example illustrates that the suitability measure provides a 

means of comparing protection systems with respect to the original 

demand specification given in terms of processes and domains. The 

suitability measure is an attempt to quantify how closely a given 

protection system satisfies a given demand. What is not expected of 

the suitability measure is that it should indicate when a demand would 

be better phrased in terms of a different set of domains and domain 

crossings. The optimum manner in which any programming problem should 

be divided into processes and 'modules' and hence into domains and 

domain crossings is a very difficult question and is largely a matter 

of intuition. 

This is the problem highlighted by cases (a) and (b) above, where 

(a) and (b) are two specifications for the same situation using different 

sets of domains. A measure which would indicate that (b) gives better 

protection than (a) is the average (with respect to time or number of 
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references) of the number of rights available to a process. 'Better' 

protection is interpreted in the sense that the process has, on average, 

fewer access rights which it can use, since this reduces the chance of 

an undetected error. 

This measure would indicate that more protection (in the restrictive 

sense) could be achieved by introducing more domains. This is how the 

protection was increased in (b) over that in (a). This will often be 

the case, but there is likely to be some optimum number of domains for 

a given problem. If a problem is decomposed into the maximum number of 

domains possible, each domain would contain exactly one access right. 

One then has the extremely costly situation of switching domains each 

time the process wants to exercise a different right. A single domain 

prohibits the decomposition of a process into suitable routines, each 

executing in its own domain, so there is likely to be some intermediate 

point which offers a large degree of protection for a reasonable cost 

in terms of number of domains and domain crossings. It would be very 

difficult to determine by a measure the optimum number of domains for 

a given situation. since the decomposition of a problem into modules 

has many side effects other than protection, such as reliability and 

understandability. 

The suitability measure provides a practical means of comparison 

but is limited in its scope. No account is taken of maintaining domains 

and other questions of cost, nor of excessive domain crossings. The 

suitability measure depends only on the concept of a domain and not on 

other aspects of Jones's model, such as the primitives by which access 

rights are created and deleted. However, this measure demonstrates the 

feasibility of comparing protection systems in terms of measures. The 

next chapter pursues this approach and develops measures which facilitate 

a cost-benefit comparison of protection systems. 
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Chapter 4 

A MODEL OF PROTECTION AND A METHODOLOGY FOR COMPARISON 

This chapter develops a more pragmatic approach to comparing 

protection systems than that of formal models, namely that of obtaining 

a macroscopic rather than a microscopic view. Another major 

distinction between this new model and those discussed in the last 

chapter, is that it is very closely based on the arguments given in 

Chapter 2 for considering protection and addressing together, rather 

than as separate or separable issues. 

A simple model of protection is proposed and the application of the 

model to the comparison of protection systems is described. The model 

is somewhat arbitrary and, is not important in itself, it is used 

primarily as a vehicle for obtaining precise definitions for cost and 

benefit measures. The comparison of protection systems is in terms 

of a cost-benefit analysis based on the measures. 

4.1 A Simple Protection Model 
" 

For programs written in most, if not all, languages, it is 

possible at any point in the execution of a program to identify various 

sets of variables. Two such sets are the set of accessible variables 

and the set of variables which exist but are not currently accessible. 

The protection model formalises the notions of the various sets of 

interest. 

Examples of these sets can be identified, for instance, in the 

execution of an Algol program. During the execution of a block or 

procedure in an Algol program, there is a specific subset of all 

variables declared in the program which are accessible, as defined by 

the rules of Algol. This subset includes the local variables declared 
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in the given block or procedure, the global variables declared in any 

containing block and any parameters passed to the enclosing procedures. 

If a standard implementation of Algol is considered (such as that 

described by Randell and Russell (1964)), the set of accessible 

variables can be identified with a collection of accessible regions of 

the run-time stack. There will be portions of the stack inaccessible 

to the block or procedure currently being executed, corresponding to 

variables declared within blocks or procedures not within the scope of 

the current block or procedure. As execution proceeds, blocks and 

procedures will be entered and left, and these sets of variables 

will change. 

4.1.1 Program Model 

Two types of program instruction are distinguished, variable 

accessing instructions and context changing instructions. 

A variable accessing instruction specifies an operation, such as 

add, read, etc., and one or more object names. The object names may be 

explicit names or they may be implicit in the operation, for example, 

'add the two integers currently on top of the run-time stack', The type 

of operation and the exact form and representation of objects will 

depend on the 'level' of machine in which one is interested. The aim 

of the protection model is to abstract from the physical representation 

of objects so the model is applicable to any desired 'level' within a 

computing system. 

Before considering context changing instructions, we define the 

environment and the domain of a process. 

Definition 

The environment of a process is the set of existing objects 

potentially accessible by the process. 

i 
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This somewhat vague definition attempts to convey the intuitive notion 

of an environment. An environment delimits the totality of objects which 

a process may attempt to access. In terms of Chapter 2, an environment 

corresponds to the universe of discourse of a process. 

The current domain of execution of a process will only allow the 

process to access a subset of the process's environment. The environment 

is the union of all objects to which all domains, which a process may 

enter, permit access. The fact that an object is in the environment of 

a process only makes that object potentially accessible by the process, 

because the process will have to enter a domain which specifically 

permits access to the object before being able to access that object. 

An environment is a dynamic entity. Objects may be created and 

become accessible to the process or the process may be granted access 

to an already existing object, in either case the object is added to 

the environment of the process. If an object is destroyed it will be 

removed from the environment. 

Example 

In the Cambridge Capability Computer (Walker 1~7~), the enviro~ment 
of a process is specified by the process ca~ablllty segment WhlCh 
contains the complete set of capabilities w ich potentially may be 
referenced by a process. 

At a specific point during execution, a process may be restricted 

to a subset of its environment. This subset is referred to as the 

current domain of the process. 

Definition 

The domain Qf a process at time t (measured in process time) is 

the set of access permissions which the process is able to exercise 

at time t. 
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Sometimes we will refer to the objects in a domain, meaning those objects 

in the process's environment to which the domain permits access. 

The introduction of time here is only a device by which to distinguish 

different domains, actual time is unnecessary, something as simple as 

numbers of instructions executed will suffice. A process can only be 

in one domain at any instant, but at two different times t l ,t2,(tltt2) 

a process may be executing in two quite different domains dl ,d2. 

Example 

In the Cambridge Capability Computer, a process is restricted, 
at any instant, to a subset of the process capability segment 
as defined by the current indirection tables (Walker 1973). 

A change in the contents of a domain or a switch to a new domain 

is indicated by one or more context changing instructions. The 

function of such instructions is to provide the addressing/protection 

mechanism with information which determines the currently accessible 

set of objects. 

A transformation function is required which will take any name 

issued by a process and use it to identify unambiguously an object 

within a given environment. In performing this transformation, use 

may be made of the information provided by the context changing 

instructions. 

Example 

In a typical Algol run-time system, names of variables tak~ the 
form of address couples (l,d); 1 indicates the lexicogr~ph1cal. 
level and d the displacement within that level. If a d1Spl~y 1S 
maintained-in registers O(O),O(l), ••• ,O(n), the transformat10n 
function is: 

0(1) + d 
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(c9nte~ts of the.l-th.display register plus the displacement d). 
Trl1s Y1elds the 1dent1ty (address) of the variable in the stack 
which is the environment for the Algol program. Typically, this 
identity will be converted to a virtual address by adding the 
address of the base of the stack and then to a physical address 
via segmentation hardware. 

In those protection systems in which protection is embodied in the 

addressing mechanism, the domain of a process is specified by context 

information. Context information is a priori knowledge, saying that, 

for some probably significant time period, it is known that the state 

of the addressing mechanism will be constant. Rather than transmit 

such information with each instruction or address, it can be more 

efficient to extract it and provide it once at the beginning of the 

time period. Setting up the display on entry to a block in an 

Algol program, for example, can be viewed as the transmission of 

information defining the new domain. 

4.1.2 Set Definitions 

The protection model consists of the identification of five sets 

of objects pertaining to a process: the totality of objects in a computer 

system T, the environment of a process E, the theoretically accessible 

set A, the accessible set as defined by an implementation AI, and the 

referenced set R. 

The set of objects contained in the environment of a process 

(defined in the previous section) at time t is denoted by E. 

In general, a process will only be permitted to access a subset 

of the objects contained in )ts environment at a given time. Normally, 

we can distinguish between two subsets of the environment, the 

theoretically accessible set A and the accessible set AI as defined 

by a particular implementation, though in some cases A and AI may have 
I . 

the same contents. 
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Definition 

The theoretically accessible set A is a subset of the environment 

E. A contains those objects within E which the process may access 

at time t, as defined by some external specification. 

The set A corresponds to the current domain of execution defined by 

information on the job-card (together with a definition of the JCL), for 

instance, or by certain statements (e.g., statements affecting scope 

rules) in the programming language used to write the program. 

Example 

In the execution of an Algol program, where domains are tied to 
blocks and procedures, the set E corresponds to all variables, 
arrays, etc., stored on the run-time stack. The set A consists 
of all variables, arrays. etc. accessible from the block currently 
being executed. 

In practice, the realisation of the current domain in which a process 

executes by a particular implementation may contain objects other than 

those to which the external specification indicates access may be 

required. This may be because the implementation under consideration 

chooses to ignore certain of the information with which it is supplied 

regarding access requirements, perhaps because there is no obvious 

implementation, or because the cost of utilising all the information is 

too great. Another reason may be that certain checks are carried out 

at compile-time but are not reinforced by corresponding run-time checks. 

The accessible set as defined by an implementation is determined by the 

transformation function F (defined in the previous section). 
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Definition 

The accessible set as defined by a particular implementation AI is 

the set of objects, at time t, to which the transformation function 

F will grant access if F is presented with a suitable set of object 

names. 

Example 

In ~he virtual machine design of Price (Parnas and Price 1973), 
(Prlce 1973), the environment of a process is its Virtual Space, 
a set of segment descriptors defining all the data which a 
process may access. The implemented accessible set of a process 
is defined by its Working s~ace since this contains segment 
descriptors describing all he data which a machine instruction 
may reference at a gi ven instant. 

The set A corresponds to what should be accessible to a process, 

whereas set AI corresponds to the set of objects actually accessible 

to a process at any given time. The protection mechanism is presumed 

to detect references to objects not contained in AI. An undetected 

protection violation will occur when an object X£A I is referenced 

and X~A. 

While a process executes in a domain, with a corresponding 

theoretically accessible set A, the process will actually reference a 

set of objects R. 

Definition 

The referenced set R (initially empty), corresponding to domain 

0, is composed of those objects referenced by the process up to 

time t since the process switched execution to domain D. 

When R is referred to without mention of time, it will mean the set of 

objects referenced whilst the process ;s in a given domain. If a domain 
\ 
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D is temporarily left when the set R has the value Rl , then, when execution 

returns to domain D the set R starts with the value Rl • However, each 

time a domain is entered to perform a separate logical function, strictly 

each time a domain is created from the same specification, the set R 

has the initial value ~ (the empty set). Temporary and permanent context 

changes are distinguished by the context-changing instructions which 

cause them. 

The set R may include items outside A and AI because A and AI may 

change with time. R can be a useful indicator of the accessing patterns 

of a process, in particular, one is likely to be interested in R before 

a switch in domain and its relation to R built up after a switch. 

To complete the set definitions and to ease the task of defining 

set transitions, one further set is defined. 

Definition 

The set T is the totality of objects in a computer system. 

The set T is composed of all existing and Inon-existing l objects. 
I, 

This apparent contradiction reflects our view that object creation is 

not truly an act of creation, but rather a combination, regrouping and 

renaming of other objects, similarly for object destruction. 

The relationships between the sets are shown by means of a Venn 

diagram in Figure 4.1 
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T totality of objects 

E environment 

A theoretically accessible set 

AI accessible set defined by an implementation 

R set of objects actually referenced 

Figure 4.1 

Relationships between the sets 
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4.1.3 Transitions Between Sets 

On a domain switch. execution switches to a new domain, thus the 

sets A and AI also switch to new sets corresponding to the new domain 

of execution. During execution within one domain, the actual contents 

of the domain may change resulting in corresponding changes to the sets 

A and A I. 

To accommodate changes to these and other sets it is necessary to 

consider object transitions between sets. The following is a list of 

possible object transitions between sets, involving the theoretically 

accessible set A rather than the implemented accessible set AI. The 

notation Sl~S2 is used to denote a transfer of an object X~Sl from 

Sl to S2' 

1. E~A 

2. A~ E 

3. T~A 

(T~ E) 

4. A~T 

(E~ T) 

5. T~ E 

an object is transferred from the environment to the 

accessible set. 

an object is transferred from the accessible set to 

the environment and so becomes. temporarily at least, 

inaccessible. 

an object (or possibly a group of objects in T regarded 

as a single object in E) is transferred from T to the 

accessible set, and by implication to the environment. 

an object is transferred from the accessible set (and 

by implication from the environment) to the set T; 

due to combination and regrouping the object may be 

represented by a number of objects in T. 

an object is transferred from the set T to the 

environment of the process, thus in some domain the 

process may be able to access the object. 
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6. E~ T an object is removed from the environment and 

transferred to T. again due to regrouping the 

object may be represented by a number of objects 

in T. 

Similar further transitions must also be included if the referenced 

set is being considered. 

A new domain of execution may be specified as a set of additions 

and deletions to the set of access permissions constituting the previous 

domain or might be specified by an explicit list of access permissions. 

Similarly. a set of object transitions can be specified for a domain 

switch to turn the old set A into the new set corresponding to the new 

domain. Alternatively. a complete specification of the new set A may 

be given independent of the previous domain. 

The transition E~T includes the cases of object deletion and 

revocation of access permission. If permission to access an object is 

revoked, then the object is effectively removed from the environment of 

the process. A certain object may not be currently accessible. but may 

be potentially accessible. i.e •• the process could enter a domain in 

which the object would be accessible. If the process enters a domain 

from which it is no longer possible to enter a domain (by one or more 

domain crossings) in which an object x is accessible. then x may be 

deleted from the environment. 

The dynamic creation of objects while executing in a domain, e.g •• 

the use of records in Algol W, involves transitions T~ A and T~ E 

but does not affect the set R. The same transitions are involved in the 

case of a process gaining access to an object not previously in its 

environment, while executing in a specific domain. but again the set R 

is not affected. 
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4.1.4 Extensions to the Model 

The model has been described in terms of restricting access to 

objects, the extension to different types of access presents no problem. 

To distinguish between different types of access permitted to an object, 

consider an object a with possible access types al ,a2, •.. ,an, as a set of 

pairs (O,a,).(0,a 2), .•.• (O,an), and treat each as a separate object. If 

the current domain includes object 0, but only with permitted access types 

ai,aj,a k, then objects (O,ai).(O.a j ) and (O.ak) are in the corresponding 

accessible set A, and objects (O,a h) hti,j.k are not included in A. 

This level of detail may not always be appropriate and the simple 

model described above may be quite sufficient in many circumstances. 

For instance, in Algol-60, apart from value parameters, there is no 

notion of a variable being read-only or write-only, so there is little 

to be gained in trying to make the distinction. However. if procedures 

are included in the set of accessible objects and are represented by 

descriptors and referenced by address couples, as in the Burroughs 
r 

B6700 (Hauck and Dent 1968). to 'read' a procedure could mean the act 

of passing a procedure as a parameter. To 'execute' a procedure would 

have the obvious meaning, but to 'write' a procedure would be meaningless. 

In such a situation, it may well be desirable to make the distinction 

between 'read,write,execute, ... ' types of access to objects. 

The extension to different access types or operations could be of use 

in considering machines with a tagged architecture such as the Burroughs 

B6700 (Burroughs 1972) or the Rice Computer (Feustel 1972). Any operation 

uwould further restrict the set of accessible objects to objects of the 

form (Oi'&)' i.e., those objects 0i£A' for which access type ~ is allowed. 

The inclusion of domain switching operations presents little problem, 
I 

particularly if a 'procedure' or 'subroutine' is associated with a domain. 

The domains to which one could transfer from the current domain would be 
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the 'procedure' objects in the current domain with the access type call. 

Further extensions to the model to include user defined datatypes 

and operations, and the notion of a structured domain are discussed 

in Chapter 7. 

4.2 Value of Protection 

In terms of the above model, the accuracy measure of Jones, for a 

given domain, is the ratio IRI: IAI, (where the notation lsi is used to de­

note the cardinality of the set S), of the size of the set of referenced 

objects R to the set of theoretically accessible objects A. (This 

measure ignores possible problems which may be caused by the fact that 

A may vary with time.) Averaged over a number of domains this measure 

becomes Jones's suitability measure. 

Accuracy alone can give a very distorted picture of the true situa­

tion. A process may only use one object in a domain of two objects, an 

accuracy of 50%, but the domain could be restricting the process to two 

objects out of 1000, so the protection would be quite reasonable. 
I 

Jones's suitability measure deals with what a process actually 

accesses and attempts to evaluate how well a protection mechanism matches 

up to the dynamic behaviour of a process. Basing the evaluation of 

protection systems on the detailed dynamic behaviour of processes gives 

rise to a number of problems (c.f., the modularisation problem discussed 

in Chapter 3) because of the need to know the detailed accessing patterns 

of processes, which vary greatly from one process to another, and because 

of the possibility of measuring aspects of processes rather than protection 

mechanisms. 

An alternative and more direct approach is to consider the use 
t" 

made by protection systems of available information, e.g., context 

information, which can be used to form domain specifications. In other 
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words, the implementation of a domain (i.e., the accessible set AI 

defined by the implementation) compared to the specification of the 

domain (the theoretically accessible set A), based on a priori knowledge. 

It is patently impossible to provide more protection than supplied 

information allows, but it is quite feasible to make only partial use 

of this knowledge. 

Definition 

The value or benefit of a protection mechanism is defined to be 

IA1/IAII 

averaged over the domains of execution of a sample set of programs. 

Thus, the value of a protection mechanism is defined as an empirical 

measure of how well implemented domains match the true domains; that is, 

the use made of context information or an external specification of 

what should be accessible. The measure is independent of the detailed 

behaviour of actual programs, since it is independent of the referenced 

set R. Sample programs are only needed for the specifications and 

implementations of a set of domains over which to average the benefit 

measure. The average can be a simple mean or a weighted average based 

on the Itime l spent in each domain or the importance, from the view of 

potential protection violations, of each domain. 

Within a domain, weights could be applied to objects if some were 

considered much more important than others, e.g., shared objects, critical 

system objects, etc. If objects enter and leave the domains of a process 

during its execution, a time average based on the length of time each 

object remains in a domain can be taken for the benefit measure. 
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Above, we have used the term 'size of a set l without being explicit 

about its definition. The precise meaning of this term will depend very 

much on one's attitude towards objects. An array. for instance, can be 

regarded as a single conceptual object or as a collection of component 

objects. The 'sizes ' of the sets A and AI are thus left to be defined 

for each particular comparison, so that the most appropriate measure 

of size can be used. In the next two chapters, the examples of the 

comparison of protection systems use storage requirements as a 

measurement of size and in Chapter 7 comparisons involving structured 

objects are considered. 

4.3 Cost of Protection 

A protection mechanism may be implemented in a combination of hard­

ware and software, so the true cost of protection might be a measure of 

amount of hardware, speed of system (i.e., amount it is slowed down by 

protection checks), provision of software etc. In addition, a 

protection system or mechanisation may have an influence on the whole 

operating system and on the writing of user programs. It would be 
I 

convenient if protection could be discussed and measured in isolation 

from the rest of the system. This is normally not possible, indeed in 

some systems it is impossible completely to separate the protection 

fUnction from the addressing function since one mechanism has been 

devised to achieve both aims. 

To avoid at least some of these problems, we follow the approach 

of Wortmann (1972) who devised an abstract but potentially useful cost 

measure for the comparison of different implementations of SPL (a 

dialect of PL/l). 

A simple but illustrative cost measure is a line~r measure based 

on the number of domain switches made by a process. 
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crude, but, being easy to calculate. can lead to rapid gross comparisons 

of protection systems. 

Alternatively, a more complicated cost measure can be devised which 

emphasises the amount of information which has to be supplied or transmitted 

to set up domains and the bookkeeping involved in the maintenance of domains. 

We break down the total cost of applying protection to a process into the 

following six components: 

1. Cost of creation of a domain 

2.·· Cost of deletion of a domain 

3. Cost of maintenance of a domain 

4. Cost of domain crossings 

5. Cost of dynamically adding or removing objects from a domain 

6. Cost of protection enforcement, i.e., that a named object 

lies within the current domain. 

The cost of creation of a domain is likely to depend on the size of 

the domain (i.e., the number of objects or access permissions to objects 
v 

contained in the domain) and the amount of parameter checking etc. which 

has to be done. Domain deletion will usually be trivial and may have a 

fixed cost (possibly zero), since it will often involve little more than 

the deletion of information defining the domain. However, in some 

systems, deletion of a domain may be a much more complex task. In the 

Hydra system (Wulf et al 1974b), on the deletion of a domain it is 

necessary to decrement the reference count of every object for which 

there is a capability in the local name space defining the domain. 

The cost of maintenance of a domain will usually reduce to a function 

of the space necessary to store a description of the domain, which in 

turn will depend on the size of the domain. The description of a domain 
, 

may be kept in different places when execution is actually taking place 

in the domain and when the process is temporarily executing in another 
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domain. In the execution of an Algol program, for example, where the 

current domain is represented by the display registers, other domains, 

to which the process may return, are represented in terms of linkage 

information stored on the run-time stack. 

A fixed cost could be assumed for each transfer to a new domain 

(domain switch), this would be appropriate if a domain switch merely 

involved the resetting of a fixed number of registers. A more realistic 

cost would be one related to the 'size' of the new domain, that is the 

amount of information required to specify the new domain. This would 

be applicable to situations in which a description of the domain has to 

be loaded into a specific area of memory or piece of hardware before 

the desired procedure can be executed in that domain. 

The addition of access permissions to a domain or the removal of 

such permissions will involve a cost dependent upon the representation 

of the domain and the amount of information required to indicate the 

change. 
\ 

The cost of protection enforcement may be independent of the 

current domain of execution (e.g., checking access bits in a segment 

descriptor). The total cost of enforcement is then a constant multiplied 

by the total 'time' (e.g., number of references) spent in execution by 

the process. Alternatively, the cost of checking the validity of an 

access may depend on the size of the current domain. One would expect 

the cost of enforcement to have a linear dependence on time, but access 

to 'well-protected' objects may cost more than to other types of objects. 

Certain mechanisms may appear to involve no cost for protection 

enforcement, e.g., storage keys on the IBM System/360. Here though there 

is a hardware cost, albeit a once only cost, and presumably some small 

time delay to test the result of the protection check on each storage 

reference. 
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The general form of the six cost components has been discussed and 

it is envisaged that .these components could be determined for any 

particular protection mechanism. Each component will generally be 

made up of a number of parts, such as storage space, time (in practice 

number of references) and possibly hardware costs. These parts could 

be treated separately or reduced to a common denominator, namely money. 

Each cost component, for example the creation of a domain, will 

involve the invocation of a set of basic or primitive actions, the 

number of times each primitive action is invoked will depend on the 

domain in question. The actual form of the cost measure for a 

particular protection mechanism is obtained by determining the primitive 

actions ~l '~2 , •••• 'Pjk. involved in the i-th cost component (i = 1,2, ... ,6). 
I 

The costs c'l ,c'2, •.• ,c·k of each of the primitives are then determined. 
I I I . 

I 

The total cost of the protection mechanism for a sample set of programs 

is then: 
6 k j 

L L n.,c .. 
i =1 j=l I) I) 

where n,. is the number of times primitive action p., is invoked during 
I J I) 

execution of the set of programs. We are assuming that the costs of the 

primitives c., have been reduced to a common denominator or time, space 
I) 

etc., are being considered separately, in which case there will be a sum 

of this form for each type of cost. Hardware costs, being once only costs, 

can be determined directly without resorting to such a summation. 

This relatively complicated cost measure is in no sense an absolute 

measure of cost. Instead, this discussion is to be viewed as a set of 

guidelines for determining a more abstract cost measure for a protection 

mechanism, one which will facilitate at least a rudimentary comparison 

of costs of different protection mechanisms. 
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4.4 Comparison of Protection Systems 

The model described above has been developed with a view to 

performing quantitative or qualitative comparisons of protection 

mechanisms. The model provides a measure to evaluate the benefit 

of a protection mechanism and guidelines for deriving a cost measure 

. for the provision of the protection. 

The cost measure is based on the run-time costs of performing 

the protection checks. Attempts have not been made to measure any 

increase or decrease in programming cost due to restrictions or 

requirements of the protection system, nor to evaluate any additional 

benefits which accrue from a particular mechanism. 

Specific instructions for performing a comparison of protection 

mechanisms cannot be given due to the variety of possible criteria for 

evaluating which of several protection mechanisms is best suited to a 

particular application. ~owever, we endeavour to convey a general 

approach by means of two examples contained in the next two chapters. 
• • J 

In the ideal situation, a need would arise to evaluate various 

protection systems in a well understood environment for which many 

'typical ' programs are in existence. A simple criterion for 'best' 

would be given, e.g., maximum amount of protection for a given cost. 

A straightforward quantitative analysis is then feasible. First the 

benefit and cost measures to be evaluated must be considered in terms 

of each of the candidate protection mechanisms. From this analysis, 

the statistics required to evaluate the measures can be determined. 

These statistics can then be gathered from the set of 'typical ' 

programs by using a suitable method (e.g., alteration to a compiler, 

interpreter or emulator, or by simulation) without actually implementing 

the protection systems being considered. The measures can then be 

evaluated and the 'best' system determined. 
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If a new system and machine are being designed, it is unlikely 

that programs will exist for the new machine architecture. Thus, 

intelligent guesswork must be used or 'similar' programs measured. 

Account will also have to be taken of the effect of the protection 

mechanism on the remainder of the system and the way it fits into the 

overall design. In some cases, it may only be feasible to use the 

measures in a qualitative manner to discuss the differences of certain 

protection mechanisms or strategies. 

The first example of the comparison of protection systems compares 

various implementations of Algol W run-time systems (Wirth and Hoare 1966) 

and evaluates the value of protection provided by each implementation 

and the associated cost. The second example illustrates the utility of 

the model in the system area, i.e., the problems of inter-user protection, 

by comparing the protection system used in the IBM System/370 DOS/VS 

operating system (IBM 1973) with an alternative system based on the 

same mechanism, namely storage keys. 

The first example deals essentially with protection within a 

sequential process. The second tackles inter-process protection in a 

multiprogramming environment. If there was a system where the whole 

system and user programs were written in a single language (conceivably 

the Burroughs B6700 with Algol, though the B6700 in fact uses various 

differing versions of Algol, but one might find a common denominator), 

then all protection, both internal and external to a process, would be 

expressed in that language. The comparison method applied to such a 

language would have been sufficient to demonstrate the utility of the 

methodology, but such a system was not availab1e to us. 

Further examples, in Chapter 7, illustrate the application of the 

model to characterise protection in computer architectures and languages 

which exploit structure for protection purposes. Together, these examples 

will demonstrate that the model can be applied to almost any level of detail. 
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Chapter 5 

A QUANTITATIVE STUDY OF PROTECTION IN IMPLEMENTATIONS OF ALGOL W 

To illustrate the comparison of protection mechanisms, an experi­

ment was conducted to examine the benefit and cost tradeoffs of 

protection in various feasible implementations of the Algol W language 

(Wirth and Hoare 1966), (Bauer et al 1968). The experiment was 

based on a sample of about 100 programs, written in Algol W, collected 

from a wide variety of people in the Computing Laboratory at Newcastle 

Un i ve rs i ty. 

Algol W is a development of the programming language Algol-60 

and is used extensively in the Computing Laboratory for teaching 

purposes and research work. If the list processing facilities 

(records and references) are ignored, which they are for the purposes 

of this study, Algol W can be regarded as a variant of Algol-60, the 

differences in syntax and semantics being of minor significance. The 

important attribute of Algol W with regard to this experiment is that 

it is a block structured language. 

The ready availability of a source of Algol W programs was a 

considerable influence on the selection of this experiment as a 

test bed of the ideas proposed in Chapter 4. However, a major 

advantage of this choice was the existence of an Algol W run-time 

system which has the capability of providing a trace of the execution 

of Algol W programs in source language terms. This system was 

developed by Satterthwaite (1972) primarily to assist the develop­

ment and debugging of programs. It provided the essential basis for 

a means of gathering statistics on the execution of programs necessary 

to evaluate the cost and benefit measures. 
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5.1 Implementations of Algol W 

Run-time implementations of block-structured languages generally 

make use of a stack on which to store program variables and control 

information, exploiting knowledge of the last-in-first-out creation 

and deletion strategy of program objects. Two very common styles 

of implementation perform storage allocation at the block level 

(Randell and Russell 1964) and the procedure level (Hawkins and 

Huxtable 1963), (Wichmann 1973) respectively. The aim of this 

experiment was to examine these two implementation styles from the 

protection aspect. 

The Algol W run-time system provides a stack machine for the 

execution of Algol W programs. This stack machine is an abstract 

machine in the sense that it is simulated on a conventional von 

Neumann type computer. An activation record consisting of three 

parts (link information area, primary allocation and secondary 

allocation) is placed on the stack on entry to a block or procedure 

and is removed at block exit or procedure exit. For the purposes 

of implementation, a block is considered to be a procedure without 

parameters. 

The link information typically includes pointers to the previous 

activation record on the stack (dynamic link) and the activation 

record of the statically enclosing block (static link). The 

primary allocation contains space set aside for the simple (i.e. 

not array) variables and descriptors of any arrays declared in the 

block. If the activation record corresponds to a procedure with 

parameters, space is also included in the primary allocation for 

the specification of the actual parameters passed to the procedure. 

The secondary allocation contains space for the elements of the 

arrays declared in the block. 
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Though the sizes of each primary allocation and each link 

information area can be calculated at compile-time, the size of each 

secondary allocation is not known until the array declarations 

within a block have been executed, since arrays may have dynamic 

bounds. As the exact position of an activation record on the stack 

Cannot be predicted at compile-time, addresses cannot be calculated 

for program variables in terms of an absolute displacement from the 

base of the stack. The method of addressing program variables 

utilised in Algol W is the conventional use of a display and address 

couples (see (Randell and Russell 1964) and (Wichmann 1973)). A 

program variable declared in a block is uniquely defined by an 

address couple (l,d) where 1 = level of static nesting of the block 

in which the variable is declared (the lexicographical level) and 

d = displacement of the variable in the activation record of that 

block. Display registers point to the activation records of the block 

currently being executed and the statically enclosing blocks; the 

address of a variable within the stack is formed by adding the contents 

of the l-th display register and the displacement d. 

This method of addressing permits access to the activation records 

of the blocks on the static chain (i.e., the statically enclosing 

blocks) of the block currently being executed. Other activation 

records on the stack cannot be accessed directly. Strictly speaking, 

a check should be performed on the displacement contained in an 

address couple to ensure that it lies within the appropriate 

activation record. This can easily be achieved if the display 

registers are of the base and limit form. 

Actual parameters, which may lie outside the static chain of 

activation records, are accessed via descriptors placed in the 

appropriate accessible activation records. Array elements are 
f 
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accessed via a descriptor in the primary allocation of the activation 

record. In Algol W, this descriptor takes the form of a dope vector. 

which used in conjunction with the subscripts, facilitates the 

calculation of the address of an array element. 

A possible alternative to the above implementation of the Algol 

W run-time system would be to put an activation record on the stack 

only on entry to a procedure. This is feasible because, although 

procedures may be recursive, blocks within a procedure are not. The 

addressing scheme for storage allocation performed at the procedure 

level is very similar to the case where activation records correspond 

to blocks, except that the level of nesting, 1, ,in an address couple 

is now the level of nesting of procedures. The outermost block of 

a program is treated as a procedure. 

The advantage of this method is that since procedure entry is in 

general less frequent than block entry, fewer activation records are 

placed on the stack. The display will therefore be smaller, 

particularly important if it is desired to keep the display in a 

limited set of registers, and the cost of maintaining the display 

will normally be cheaper. However, to be balanced against this 

saving is the drawback that parts of the stack may be accessible 

which, according to the rules of the language, should not be 

accessible. Thus, if through an error in the compiler or a machine 

malfunction, an address couple describing a location in the 

theoretically inaccessible region of the stack is presented to the 

addressing mechanism, the request for access to the stack will in 

certain cases be granted. 

The activation record for a procedure in such an implementation 

reserves space for all simple variables and descriptors for arrays 

declared in blocks in the procedure. The secondary allocation is 
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handled on a block basis, space for arrays is allocated on execution 

of an array declaration and deallocated on block exit. During 

execution in a procedure. the addressing mechanism will permit access 

to the whole of the procedure's activation record, which includes 

space set aside for variables declared in blocks contained within 

the procedure. The scope rules of Algol W, however, only permit 

access to such variables when execution is taking place within the 

block, in which the variable is declared. or a block enclosed by 

that block. 

The alternative implementation based on procedures has two 

forms; the first which takes account of parallel blocks and the 

second which does not. Within a procedure, two blocks at the same 

level of nesting cannot have variables on the stack simultaneously 

(in the same activation of the procedure). Thus, such blocks can 

use the same space within an activation record for declared variables, 

reducing the size of the activation record. In Figure 5.1, if note 

is taken of parallel blocks the variable R2 can use the same 

storage location as 11 (assuming integers and reals both occupy one 

word) since these two variables can never exist simultaneously in 

one call of the procedure. 

Another feasible implementation is a Fortran-like implementation 

in which space is reserved at program load time for all simple 

variables, array and parameter descriptors, and links for nested 

procedure calls and sequence control. The stack is used solely for 

the allocation of space for arrays and is necessary to permit arrays 
~~: 

to have dynamic bounds. Execution of an array declaration allocates 

space on the stack for the array and fills in the addresses in the 

dope vector or descriptor. The space is deallocated on block exit. 
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PROCEDURE A; 
BEGIN 

REAL Rl; 

BEGIN 
INTEGER 11,12,13; 
• • • END; . 

BEGIN 
REAL R2; 

END; . 

END; 

Size of activation record of procedure 
A in procedure implementations 

a. taking account of parallel blocks 
= 4 words + link information 

b. ignoring parallel blocks 
= 5 words + link information 

Figure 5.1 

An Algol W procedure and the size of its activation record 

This implementation precludes recursion, but is interesting as 

a theoretical implementation since it provides a base line for the 

comparison of the three implementations of Algol W: storage 

allocation performed at block level, storage allocation performed 

at procedure level taking note of parallel blocks and storage 

allocation performed at procedure level ignoring parallel blocks. 

An implementation scheme following the Fortran-like approach, but 

with special l provision for recursion, has been suggested by 

Sattley (1961).(" 

In a Fortran-like implementation, all variables and arrays are 

always accessible since absolute addresses are used and no checks are 
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performed on addresses. except a simple check that they lie within 

the data area. No display is required, so the overhead of maintaining 

a display is removed. 

To avoid obscuring the important issues in the above discussion 

of various implementations of Algol W. no mention has been made of the 

need for working storage necessary for the retention of temporary 

intermediate results in the evaluation of expressions. The compiler 

can calculate the amount of storage required to evaluate each 

expression in a program and hence deduce the maximum amount of 

storage required in each block or procedure. The appropriate amount 

of extra space can then be allocated in the primary allocation of 

each block or procedure. Alternatively. it is possible to arrange 

that the workspace for temporary information is taken on top of 

the stack. Wichmann (1973) reports that examination of post mortem 

dumps from the KDF9 compiler for Algol-60 showed that working storage 

variables were much less numerous than user declared variables which 

in turn were less than array storage. 

An assumption made in discussing accessible areas of the stack 
\ 

is that array descriptors and actual parameter descriptors only allow 

access to the appropriate array elements, and actual parameters 

respectively. In the case of array descriptors, there is little 

problem since array elements can be addressed relative to a display 

register and thus any array element address is checked that it lies 

within the activation record to which the display register points. 

An actual parameter descriptor must contain an address relative to 

the base of the stack. as the parameter may not lie within the 

areas of the stack described by the display. To prevent access being 

gained to other supposedly inaccessible locations on the stack, it 

is necessary to ensure that a program cannot alter, even inadvertently, 
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the contents of the actual parameter descriptor. This point is 

taken up again in Section 5.5. 

5.2 Benefit and Cost Measures 

The purpose of this experiment is to compare the cost and 

benefit of protection in five implementations of Algol W. 'Protection', 

in this experiment, is defined to be accessibility to areas of the 

run-time stack. In other words, if a suitable address is presented 

to the addressing mechanism, will access be granted to a specific 

location? Access to files and devices, etc., and available instruction 

sets are not considered. 

The implementations being analysed are: 

11 an implementation based on a stack and performing storage 

allocation at the block level 

12 an implementation based on a stack and performing storage 

allocation at the procedure level taking account of ., 

parallel blocks 

13 as for 12, but no account taken of parallel blocks 

14 a Fortran-like implementation with static allocation of 

space for all simple variables and array descriptors and 

using a stack for array allocation, no account is taken of 

parallel blocks within procedures 

15 the actual Algol W implementation used at Newcastle, based 

on a stack and performing storage allocation at the block 

level, but not checking access attempts to link information 

or extra words on the stack used for boundary alignment. 

Each implementation, except 15, is treated as an idealised abstract 

machine. Thus, certain details concerned with implementing these 
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machines on actual computers, which would otherwise detract from the 

essential aspects of this study, can be ignored. 

Practical implementations do exist corresponding to 11,12 and 13. 

14 represents a worst case situation where everything is accessible, 

and thus provides a lower limit for reference purposes. The actual 

implementation of Algol W on the IBM System/360 computer (15) is 

based on the 'ideal ' implementation 11, which represents Ipure l 

Algol W, reflecting the rules of the language. Problems, such as 

the limited numbers of registers available for use as a display, the 

method of addressing employed on System/360 and boundary alignment 

in main memory, have forced a less than ideal practical realisation. 

In all implementations, it is assumed that the display registers 

are of the base and limit form (even though this is not the case with 

the actual Algol W system), so only the allowed activation records can 

be accessed. The link information in implementations 11,12,13 and 

14 is presumed to be inaccessible to all instructions except those 

which change the context. A device such as that suggested by Lauer 

and Snow (1972) would achieve this. 

Temporary working storage is ignored and it is assumed that 

array and parameter descriptors only allow access to the appropriate 

part of the stack, and that some mechanism exists, such as tag bits, 

for preventing the contents of descriptors being changed by an 

executing program. We also ignore the possibility of preventing access 

to a variable by declaring a new variable with the same name. Further, 

the initial analysis does not distinguish between different types of 

access to the stack, namely read or write. 

To perform the analysis, benefit and cost measures have to be 

derived which are then evaluated using statistics from a sample set 

of programs. Before the measures can be derived, however, it is 
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necessary to consider the nature of domains in the Algol W 

environment. 

5.2.1 Domains in Algol W 

In terms of the rules of the Algol W language (ignoring the 

facility which permits the dynamic creation and deletion of records), 

once a block has been entered and any array declarations contained 

within the block processed, the set of accessible objects is well 

defined and does not vary during the execution of the remainder of 

the block. The set of accessible objects will in general alter 

when a transfer of control is made between blocks. (For the pur-

poses of this discussion, the term 'block ' encompasses blocks, pro­

cedures and implicit subroutines used to evaluate actual name para­

meters.) The appropriate semantic unit to which to tie domains is 

therefore the block. If domains were keyed to procedures, inconsis­

tencies would arise in certain cases. In particular, a block executing 

in the domain of its containing procedure would be allowed to access 

variables declared within other blocks within the procedure even 

if they were inaccessible according to the rules of the language. 

During execution of an Algol W program, the theoretically 

accessible set corresponds to the domain described above. This is 

defined by the scope rules of Algol W which specify that the variables 

accessible at a given point in the execution of an Algol W program 

are those declared in the block currently being executed and any 

statically enclosing blocks, together with any actual parameters 

passed to enclosing procedures. 

In this comparison of different implementations of Algol W, we 

are interested in the accessible set as defined by each of the 

implementations 11.12.13,14 and IS at any point in the activation 
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of an Algol W program and how these accessible sets compare with 

the theoretically accessible set. 

The run-time system 11, which directly implements the rules of 

the Algol W language, places an activation record on the stack for 

each activation of a block. The accessible set at any time is defined 

by the display, being composed of the accessib1e regions of the stack 

pointed to by the display plus any other areas of the stack indicated 

as accessible by descriptors contained within the directly accessible 

activation records. In the case of 11, the accessible set and the 

theoreticallYlset are identical. 

Implementations 12 and 13 put an activation record on the stack 

on entry to a procedure or implicit subroutine. Entry to a block 

may cause an adjustment to be made to an activation record if an 

array is declared within the block, but does not cause the creation 

of a new activation record. In implementations 12 and 13, the 

accessible set at any time during the execution of an Algol W 

program is defined by the primary and secondary allocations of 

activation records pointed to by the display, plus any actual 

parameters passed to procedures on the static chain. Each accessible 

set in implementations 12 and 13 will generally correspond to a 

number of domains as defined by Algol W. 

The execution of a program in the Fortran-like implementation 

14 occurs in what it is most convenient to regard as a single 

accessible set. The accessible set is composed of a static part, 

including all simple variables and array descriptors, and a 

dynamic part consisting of a stack on which arrays are implemented. 

It is assumed that an array descriptor is set to null t thereby 

denying access to the stack, except during the period of Gxistence 

of the arr"ay. 
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'The actual implementation of Algol W, 15, follows·the essential 

ideas of 11, but is limited by the architecture of the 360 computers. 

The display is maintained in a subset of the machine's general registers 

which have no limit extension. In practice, therefore, the majority 

of the stack, if not all of it, is usually accessible. However, 

presuming that the display is maintained in base and limit registers 

allows a crude comparison to be made between the actual Algol W 

implementation and the ideal 11. The main effects being studied are 

allowing the link information to be included in the accessible set 

and the effect of having to align arrays and activation records on 

double word boundaries. 

The following simplifying assumptions have been made in the above 

discussion. 

1. Space required for the temporary storage of intermediate results of 

expression evaluation has been ignored. This is partly due to the 

problem of calculating the amount of temporary storage required to 

evaluate an expression. since it will depend on the architecture of 

the machine being used. 

2. Standard functions (e.g., square-root, sine) have been treated as 

indivisible machine instructions causing no switch in domain. This 

is justified on the grounds that standard functions make no reference 

to the current domain except to the parameter(s) passed to the function. 

3. During a domain switch, it has been assumed that no access is made 

to source language variables. In other words, the fact that execution 

of array declarations can involve expression evaluation is ignored. 

Similarly. the initialisation of VALUE parameters and the setting of 
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RESULT parameters are also ignored. The number of references to 

source language variables involved in these actions is generally 

very small compared to the number of references made within a block 

and hence this simplifying assumption is reasonable. 

4. Algol W specifies that a control variable in a FOR statement is 

only accessible within the statement following the DO and can only 

be read. not written. This is checked by the compiler but not by 

the run-time system. Therefore, FOR loop control variables have 

been treated as being declared in the block enclosing the FOR 

statement and accessible throughout the block. 

5. All identifiers in a program are assumed to be unique, so that 

there is no possibility of redeclaration of an identifier already 

used within a program, which would cause a hole in the scope of 

the original variable with that name. 

6. In Algol W, an actual name parameter which is a simple variable 

is passed by reference, thus avoiding the activation of an implicit 

subroutine on each reference to the formal parameter. This 

optimisation is assumed to occur in all implementations. 

5.2.2 Benefit Measures 

To evaluate benefit.measures of the form suggested in Chapter 4, 

it is necessary to define the 'size' of an accessible set in the 

context of Algol W. The simple-minded approach of indicating the 

size of an accessible set by the number of simple variables. arrays 

and parameters contained in the set does not fairly represent an 
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accessible set, since an array is usually regarded not as a single 

object but as a collection of array elements. Individual array 

elements could be counted as objects, but problems would still arise 

in assessing the size of an accessible set in implementation 12, where 

space on the stack, which is not currently being used to store objects, 

is accessible. A more realistic approach, and one which avoids this 

last problem, is to consider an accessible set to be the total 

accessible area of the stack, i.e., the size of the current accessible 

set is expressed as the number of bytes on the stack which could be 

accessed if suitable addresses were presented to the addressing 

mechanism. 

Since accessible sets are being measured on an IBM. Syst~m/36n 

computer, some machine dependence will affect the measurements, 

e.g., descriptor sizes and space allocated to variables of different 

types. This effect is unlikely to be marked since it is only with 

logical variables, where for convenient manipulation a byte is 

allocated to each logical variable rather than one bit, that the 

360 architecture has had a strong influence, otherwise space allocated 

to variables of different types is fairly conventional. 

The calculation of the size of an accessible set in each of the 

implementations 11, 12, 13, 14, and 15 is indicated in Table 5.1. 

The size of the theoretically accessible set, as defined by the Algol W 

language (subject to the simplifications noted earlier), is achieved 

by implementation 11. 

Let a program written in Algol Wand run on implementation 11 

execute in domains d1 ,d2, ••• ,dn (n~l) and the sizes of the corresponding 

accessible sets be sl,s2, ••• ,sn' The total number of distinct domains 

in which the program executes (= total number of activation records 

placed on the stack) is n~l. Execution in a domain may take the form 
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Table 5.1 

Definition of the size of the current accessible set during execution 

of an Algol W program in each implementation of Algol W. 

Implementation 

11 

12 

Size of Accessible Set 

The sum of the allocation of each block, procedure 
or implicit subroutine on the static chain of the 
activation record on top of the stack, where the 
allocation of an activation record is composed of: 

primary 
allocation 

secondary 
allocation 

(space for declared variables of simple type 
(space for descriptors of declared arrays 
(space for value/result parameters 
(space for descriptors for formal name 
( parameters 
(space for descriptors for array 
( parameters 

(space for elements of declared 
( arrays 

space for actual name parameters not 
otherwise accessible 

space for elements of (sub)arrays passed 
as parameters and not otherwise 
accessible 

The sum of the allocation of each activation record 
on the static chain of the activation record on top 
of the stack, where the allocation of an activation 
record is composed of: 

space for the primary allocation - the 
maximum required by the procedure 
calculated by summing the primary 
allocation of each block (as defined 
in 11 above) in the procedure, taking 
account of parallel blocks. 

space for elements of declared arrays, 
i.e., all arrays currently declared 
within-rhe procedure 

space for actual name parameters not 
otherwise accessible 

space for elements of (sub) arrays 
passed as parameters and not other­
wise accessible 
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Imp 1 ementa tion 

13 

14 

15 

Table 5.1 (continued) 

Size of Accessib1e Set 

As for 12, except that the primary a11ocation is 
ca1cu1ated for each procedure on the basis that no 
account is taken of parallel b10cks within the 
procedure 

The sum of the size of the primary allocation of 
each procedure declared in the program, p1us the 
space taken by the array e1ements of a11 arrays 
currently existing on the stack. 

The sum of the a11ocation of each activation record 
on the static chain of the activation record on top 
of the stack, where the a11ocation of an activation 
record is composed of: 

space for the activation record 

space for actua1 name parameters not 
otherwise accessib1e 

space for e1ements of (~ub) arrays 
passed as parameters and not. other­
wise accessible 
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of periods of execution separated by periods when the program is 

executing in other domains. 

When the same Algol W program is executed by implementation 

I j (j = 1,2,3,4,5), let the sizes of the accessible sets corresponding 

to the domains d, ,d2 , ••• ,dn be t ,t.
2
, ••• ,t. Whereas domains 

J' J In 

d, ,d 2 , ... ,d n are all distinct in 11, the corresponding accessible 

sets in the other implementations may not be distinct. 

A first benefit measure for the implementations of Algol W 

based on the execution of an Algol W program 
n 

D
J
. = I :.i. 

1=' JI 
n 

is: 

j=1,2.~4,5 

In this measure, no weights have been applied to the domains. 

Dj can be evaluated for each implementation for a given program, 

though for 11, Dl = 1. 

A further benefit measure can be developed by weighting each 

domain by some characterisation of the time spent in the domain. The 

statistics necessary to evaluate the benefit and cost measures are 

gathered from executing Algol W programs by an interpretive technique. 

This precludes accurate measurement of time spent in a domain since 

it is impossible to exclude the time required for interpretation. 

Instead, the number of references made in each domain to source 

language variables and array elements is used. If the number of 

references made while executing in domain dj is ~ , the weighted 

benefit measure is: 
n r· s· [ ~ 

B j 
t .. i:',2,3,4,5. = j :1 J I 

n 

L rj 
j=' 

The factor ~ is used to weight domains because it gives some 

indication of the 'time ' spent in domain dj from the Algol W or 
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source language point of view. 

In counting references to source language variables and array 

elements while in a domain, the following are ignored: 

references to constants, since constants are stored with the 

compiled code or in immediate instructions 

references to array descriptors 

references to parameter descriptors 

references to anonymous variables (temporary results) 

references to predeclared variables of the language 

It is possible that certain domains may be entered by the 

executing program but have a reference count of zero. An implicit 

subroutine, for example, may calculate the value of an expression 

involving predeclared variables and constants. Such domains 

contribute to the measure D. , but are discounted in B.. Normally, 
J J 

such domains exist for performing specialist functions and are 

relatively infrequent. 

These measures are applicable to implementation schemes where 

arrays are implemented off the stack, as in the case of Algol on the 

Burroughs B6700 (Organick 1973), as well as the type of implementation 

being considered in this chapter, where all arrays are kept on the 

stack. 

5.2.3 Cost Measures 

The mechanisms which contribute to protection in the five 

implementations of Algol W being considered also provide other 

advantages. For instance, addressing variables by lexicographical 

level and displacement, in conjunction with a display, facilitates 

recursion. So, it is difficult to distinguish and assess precisely 

the costs attributable to protection. Nevertheless, it is possible 
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to achieve a crude quantification of the relative costs of each 

implementation with regard to protection. 

Costs are incurred both at compile-time and run-time. Compile­

time costs will depend somewhat on what is provided by the run-time 

system. For example, the provision of special hardware or an 

interpretive run-time system with domain switching instructions might 

ease the task of the compiler. A particular difference between 

implementations 12 and 13 is that the compiler for 12 must take account 

of parallel blocks within each procedure in calculating the size of 

a procedure's activation record, whereas the compiler for 13 can 

ignore parallel blocks. It is thought that any differences in 

compilation costs between the five implementations would be minor 

and completely masked by the general overhead of compilation. 

Compilation costs are therefore ignored entirely and we concentrate on 

run-time costs. 

Run-time costs fall into three categories: extra processing time, 

extra storage space and the provision of special hardware. There is 

likely to be a tradeoff between these three costs; for instance, 

the provision of extra hardware is likely to reduce the increased 

processing time and storage requirements of the protection mechanism. 

Since implementations 11, 12, 13 and 14 are being regarded as 

abstract machines, no attention is paid to the precise nature of 

how the implementations could be achieved on an extant or proposed 

computer. The tradeoffs amongst the costs are therefore not 

examined and the question of the provision of special hardware is 

ignored. Any extra storage space required will depend to a great 

extent on the machine used but it is assumed to be minimal. Costs 

are therefore calculated in terms of extra processing time. 
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First, the costs of protection in implementation 11 are examined 

under the six headings proposed in Chapter 4. The differences 

occurring in implementations 12, 13, 14, and 15 are then described 

and two cost measures proposed. 

Domain creation. 

On entry to a new domain, it is necessary to place a new 

activation record on the stack and set up the appropriate linkage 

(static and dynamic) to other activation records on the stack. 

Descriptors located in the primary allocation and representing 

parameters and arrays will be set to describe the corresponding 

objects. The secondary allocation will be obtained as array 

declarations are executed. The display will be adjusted as part 

of the domain switch to this domain. 

Domain deletion. 

A domain is deleted when the program leaves the domain and 

either terminates execution or enters a domain from which it is 

impossible to return to the domain just left. The space occupied 

by the activation record corresponding to the domain is freed for 

future use. 

Domain maintenance. 

A domain remains in existence as long as the corresponding 

activation record remains on the stack, i.e., has not been deleted. 

Apart from the activation record remaining on the stack, the only 

cost involved in maintaining a domain is to ensure that when a 

domain is left by an executing program on a temporary basis, means 

are provided for returning to execute in that domain. In the 
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majority of implementations. this is achieved by means of the pointers 

in the linkage area of each activation record. The cost of domain 

maintenance can'therefore be ignored. 

Domain switch. 

A domain switch occurs on: 

a. Block entry or exit 

b. Procedure entry or exit 

c. Implicit subroutine entry or exit 

d. Non-local GOTO 

A domain switch implies an adjustment to the display to alter the 

set of accessible activation records. Entry to or exit from a 

procedure or implicit subroutine will generally cause a more 

substantial adjustment to be made to the display than block entry 

or exit. A non-local GOTO will always be directed to a visible 

label and hence will only result in display entries being discarded. 

The display can be reset on a domain switch from information in the 

link area of the activation record corresponding to the new domain 

of execution (c.f., (Hauck and Dent 1968)). 

Domain changes. 

In implementation 11, domains correspond to blocks. The 

acquisition of space for all objects declared in a block is treated 

as being part of domain creation. There is no possibility of dynamic 

variable creation or deletion within a block once an activation record 

has been establish~d;~thusthere are no domain changes. 
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Protection checking. 

Protection is enforced by the use of address couples which 

allow little possibility for protection violation. For an address 

couple (l,d), 1 must be less than or equal to the index of the 

current highest numbered active display register and d must be 

less than or equal to the limit portion of the l-th display register. 

The amount of checking which has to be performed is therefore 

minimal. 

Implementations 12 and 13 can be considered together since 

they will have the same run-time costs. A new activation record is 

created only on entry to a procedure or implicit subroutine and 

activation records are deleted in the same manner as in 11. Domain 

switches cause similar changes to be made to the display, though they 

will normally occur less frequently than in 11 and involve fewer 

display registers. Protection checking is performed in precisely 

the same way as in 11. The real difference between 12, 13 and 11 

occurs with array declarations in a block which cause an increase 

to be made in the size of the secondary allocation in the activation 

record on top of the stack. To enable the stack to be retracted 

by the correct amount on block exit, it is usual to maintain a vector 

within the link area of the activation record of each procedure, in 

which is recorded the limit of secondary storage for each block level 

within the procedure. On block exit it is then a simple matter to 

reset the size of the secondary allocation. 

The Fortran-like implementation, 14, is very different from 

11, 12, or 13. A single activation record exists in which the Algol W 

program carries out the whole of its execution. Apart from 

establishing this activation record prior to program execution, there 

93 



is no creation of activation records, similarly with deletion. 

There is no protection checking of the form described above since 

absolute addresses are used, but we assume a check to ensure that 

addresses lie within the program data area. All array declarations 

cause a change to the activation record in a manner similar to that 

for 12 and 13. 

Implementation 15 is assumed to have the same costs as 11. 

Activation records are a convenient means of allocating storage 

space and this is their prime function; the cost of actually putting 

activation records on the stack is therefore ignored. Array allocation 

occurs in all implementations and involves similar actions in all cases; 

since it is part of storage allocation this cost is also ignored. 

Protection checking occurs in all implemen~tionsand we assume this 

checking is done by hardware in parallel. with memory referencing, 

so it contributes nothing to extra processing time. Protection cost 

is therefore assessed as the cost of maintaining the display. Since 

each Algol W program will incur different costs, comparing absolute 

costs is meaningless, therefore, costs are compared relative to that 

of 11 for each program. 

In the simpler approach, we assume that the cost of a domain switch 

predominates and define the cost Kj of implementation I j as being 

the number of domain switches occurring during execution of an Algol W 

program on implementation IJ divided by the number of domain switches 

which would occur if the program were executed on implementation 11. 

Each domain switch is assumed to incur unit cost in processing time. 

This provides a crude basis for comparing the costs of each 

implementation. 

The other approach is to make a detailed analysis of the cost, 

breaking the maintenance of the display down into a number, say q, 
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of primitive actions each with associated cost c
j 

(i = 1.2,. ..• q) and 

to measure the number of times (~i .i=l .2 •...• q) each primitive is 

invoked by implementation Ij (j=1.2.3.4.5) during the execution of an 

Algol W program. The cost Lj of implementation I
j 

relative to that 

of 11 for the execution of a 

L. = 
J 

Four primitive actions 

given program is then: 
q 

Lc.n .. 
i=l 1 )1 

q i: 1,2,3,4,5 

[ c.n,' 
, 1 1 1=, 

can be identified (assuming the existence 

of a top-of-stack pointer) and are as follows: 

1. Setting up the linkage information and top-of-stack pointer 

on the creation of a new activation record. 

2. Resetting the top-of-stack pointer on the deletion of a 

domain. 

3. Altering one display register on a domain switch. (A 

domain switch will generally involve more than one display 

register.) 

4, Setting or resetting the limit extension in the current top 

display register and the top-of-stack pointer on a domain 

change. 

The cost of each primitive action is c1.c2 .c
3

.c4 respectively 

and is assumed constant and to have the same value for each imple­

mentation. This second cost measure is still somewhat crude. but 

enables a better assessment of relative costs to be made than the 

first measure. 

95 



5.3 Method of Gathering Statistics and Evaluating Measures 

The statistics required for the evaluation of the cost and benefit 

measures concern the dynamic execution of Algol W programs rather than 

the static program text. Therefore, it is necessary to gather the 

statistics during the execution of each Algol W program. There are 

three obvious techniques by which this may be done: hardware modification 

or monitoring, interpretive execution or emulation, or compiler 

modification; all of which have attendant problems. 

For this study, hardware modification was not feasible and there 

was no hardware monitor available. 

If the Algol W system was coded as an emulator which ran on a 

microcoded computer, it would, in theory, be possible to modify the 

emulator to record the appropriate statistics during execution. This 

method has two advantages; (1) emulators are generally relatively 

easy to alter and (2) the overhead of gathering the statistics would 

be low. Thus, the total execution time of an Algol W program would 

only be increased by a small proportion. Compilers which use inter­

preters to execute the compiled program also make the collection of 

such information a straightforward inexpensive operation, since the 

time required to gather the statistics is swamped by the time taken 

to interpret. Wichmann (1970),0973) utilised the interpreter of 

Randell and Russell (1964) in this way to obtain dynamic statistics 

from A1g01-60 programs. Wortman (1972) used an interpreter which ran 

on an IBM System/360 computer to study the design of a proposed 

machine for executing SPL programs (a dialect of PL/l). 

The third technique involves modifying the compiler so that code 

;s inserted into the object program at suitable points to record the 

activities of the executing program - this method has been used by 

Brundage and Batson (1974) to obtain symbolic address traces of 

Algol-60 programs. 
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In developing a tracing and debugging system for Algol W, 

Satterthwaite (1972) wrote what amounts to a simulator of an IBM 

System/360 computer. When tracing of a program is forced by the 

programmer, execution of the program is simulated and a trace 

produced, in terms of the original source program, which includes 

details of the statements executed and any variables which are 

read or altered. Since this simulator already existed, it was 

decided to use a variation of the interpretive technique to gather 

statistics rather than attempt to make alterations to the compiler 

which would have been a major undertaking. When programs are traced 

by the Algol W run-time system, the execution time of programs 

increases by a multiplicative factor of 50 to 150. This huge 

overhead of tracing meant that. the addition of code to gather 

statistics caused little further degradation, but had the dis­

advantage that some interesting Algol W programs could not be 

analysed because their execution time under simulation was prohibitive. 

To achieve flexibility, since it was envisaged that as the 

experiment progressed further statistics might be required, the 

general types of statistics to be gathered were identified and the 

most suitable places in the simulator for collection pinpointed. 

The statistics fell into four broad classes according to the time 

at which each statistic was gathered. These times were: initial 

program entry, reference to a source language variable, domain switch 

and final program exit. Having identified the places in the simulator 

where these statistics could be gathered, a skeletal measurement system 

was written to interface with the Algol W run-time system at these 

points. To obtain further measurements or to alter the statistics 

being obtained, it was only necessary to add code to or alter code in 

the procedure bodies of the skeletal measurement system. 
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This approach, as opposed to inserting odd pieces of code in the 

run-time system itself, was found to be effective. Once the inter­

face to the run-time system had been established, little further 

change was made to the code of the run-time system. 

The Algol W system at Newcastle appends to the end of each 

code segment produced by the compiler a name table containing details 

of all variables, arrays and parameters declared within the corresponding 

block or procedure. This information is necessary for diagnostic and 

tracing purposes and allowed the size of each accessible set to be 

calculated. When a program has been loaded into memory, but prior 

to execution, the measurement system performs an analysis of the 

static structure of the program. To increase efficiency, the execution 

of the program is mirrored on another stack on which information, useful 

in the evaluation of the measures, is kept to save it having to be 

recalculated each time it is needed. 

Evaluation of the cost and benefit measures could either be done 

on a separate run using the statistics from the execution of the 

program or during the actual execution of the program. The latter 

method was adopted since it added little further overhead to the time 

of execution of programs and avoided problems of storing the 

statistics and later evaluating the measures. 

It is perhaps interesting to note that what is being obtained 

by the measurement system, though not permanently recorded, is a 

source language trace of Algol W programs. In the study of paging 

algorithms, it has been common practice to analyse detailed address 

traces of programs, but as far as the author is aware, very little 

work has been done with source language traces of programs. A recent 

example of the use of a source language trace is the work of 

Brundage and Batson (1974) in examining the advantages of using 
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associative registers on a computer like the Burroughs B5500. A source 

language trace of the execution of a program reflects the structure 

contained in the original program which it is usually impossible to 

regain from an address trace. It seems plausible to expect that the 

behaviour of programs written in Algol W or other Algol-like languages 

is much better discussed in terms of Algol level trace data, and equally 

that such data can be usefully employed for the design of high-level 

language machines. 

5.4 Evaluation of the Measures 

To evaluate the measures, some 100 A~gol W programs were gathered 

from members of the computing community at Newcastle University. The 

majority of the programs were written by undergraduates in all three 

years of the degree course in computing science, and M.Sc. and Ph.D. 

students in computing science. This set of programs is representative 

of the programs submitted to the Algol W compiler at Newcastle. 

Included in the sample were solutions to exercises set by 

lecturers, projects done by undergraduates in their third year and 

programs written as part of research. work being carried out by post­

graduate students and members of staff. The applications themselves 

were in general of a scientific nature including numerical analysis, 

simulation, combinatorial problems and sorting. The programs could 

be classified as small to medium in size and complexity, containing 

from 1 to 55 blocks and procedures. The number of statements contained 

in the programs ranged from approximately 20 to 500 and the number of 

references to source language vqriables generated during execution 

varied between 381 and 1,134,434. 

The programs themselves were gathered on an ad hoc basis rather 

than altering the compiler to save systematically all syntactically 
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correct programs on magnetic tape or disk, a method used by Wichmann 

(1970) and Wortman (1972). The majority of programs submitted to the 

Algol W compiler arise from introductory programming courses given 

within the University. These programs tend to be short, typically 

10 - 15 lines, and contain only one block and no procedures. Such 

programs do not warrant the analysis being performed here, so it 

was decided to gather programs by personal contact to obtain a 

wider variety. 

Statistics were gathered from the execution of these programs 

and used to evaluate the cost and benefit measures for each implement­

ation. All the measures could be evaluated using the single set of 

statistics. When interpreting the results presented in this section, 

it is necessary to bear in mind the environment, namely one of 

teaching and research. 

The mean and standard deviation of the benefit measures obtained 

from the analysis of the execution of the programs are shown in Table 5.2. 

The values of the benefit measures are shown to 4 decimal places 

to illustrate the small difference between certain of the measures 

(particularly 02 and 03' B2 and B3)· The benefit measures of 

implementation Il, namely 0, and B, , both have the value 1, since 

11 implements the rules of the Algol W language. In general, D2~1, 

B2~1 and for most programs 02<1,B
2
<1. It can be seen from Table 5.2 

that the difference between B2 and B, for the sample of programs is 

relatively small. In implementation 12, the extra accessible locations 

in the implemented accessible set occur in the primary allocation 

(i.e., eq~ivalent to simple variables) and only in certain special 

cases in the secondary allocation (i.e., array elements). For the 

majority of domains, it is to be expected that the secondary allocation 

in the accessible sets of 11 and 12 will be the same, and since 
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01 O2 03 04 05 
mean 1. 0000 0.8909 0.8905 0.8138 0.7182 
standard 
deviation a 0.2309 0.2308 0.2510 0.1891 

Bl B2 B3 B4 B5 
mean 1. 0000 0.9686 0.9682 0.8938 0.7927 
standard a 0.1007 0.1008 deviation O. 1545 0.1595 

Table 5.2 

Benefit measures obtained from analysis of the sample Algol W programs 

storage occupied by array elements is usually much greater than that 

occupied by simple variables (Wichmann 1973) it is not surprising 

that the values of B, and B2 are very close. 

The difference between B2 and O2 can be explained by the effect 

of the weights used with domains in the B-measure. From studying the 

program texts, it was noted that a large proportion of the programs 

in the sample used dynamic arrays typically in the form: 

A: BEGIN 

INTEGER N; 

REAO(N); 

B: BEGIN 

INTEGER ARRAY MAT(l ::N,l ::N); . 
END; 

END. 
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In implementation 12, the two blocks A and B would be represented by 

one activation record on the stack. When executing in block B, the 

accessible sets defined by 11 and 12 would be the same but when 

executing in block A the accessible set defined by 12 would include 

not only the variable N (which is the sole contents of the accessible 

set defined by 11) but also the array descriptor for the array MAT 

and any other variables declared in block B. So the accessible set 

for the block A in implementation 12 would be much larger than the 

theoretically accessible set. In benefit measure 02' blocks A and B 

contribute equally to the measure. However, in B2 each domain is 

weighted by the number of references to source language variables 

occurring within the domain, and since the number of references 

occurring in block B will usually be very much greater than in block 

A, the effect of the implemented accessible set for block A will have 

a much more marked effect on 02 than on B2. 

In implementation 13, since no account is taken of parallel 

blocks within procedures, activation records will, in general, be 

1 arger than those of 12 and hence D3~ D2 and B3~ B2 . Apart from the 

most trivial programs, 03<D2 and B3<B2' but one would expect the 

differences to be small. This;s borne out by the measurements made 

of the sample set of programs, since the difference between 02 and ~ 

and that between B2 and B3 is only just discernible. To some extent, 

this is probably a reflection on the fact that most programs in the 

sample were small to medium in size and not complex in nature. 

The Fortran-like implementation will have a benefit measure of 1 

only for programs with one block and no procedures. Since all space 

for the primary allocation of all blocks is allocated at program entry 

D« 0 and B!!: B. Apart from the trivial programs mentioned above, 
4 .... 3 z. ..... 3 I 

the inequality is strict in both cases. The values of 04 and B4 
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are considerably better than might have been expected, indeed 14 

outperforms 15 very noticeably (the benefit is somewhat greater and 

as will be seen the cost is far lower). The probable reason for 

this is that the total primary allocation for all blocks declared in 

a program is often small compared to the total size of arrays accessible 

at any instant during execution of a program. 

The measures Ds and B5 illustrate the effect of the link 

information area in each activation record being accessible and the 

necessity for aligning activation records and arrays on double word 

boundaries. As in the case of 14, these effects are tempered by the 

large arrays declared in most of the programs contained in the sample. 

The values of the standard deviations of the benefit measures 

for the sample of programs indicate a fair variation in the values of 

the measures for individual programs. With a sample of some 100 

programs collected from about 70 different authors, and bearing in 

mind that these are empirical measures, such a wide variation is 

almost inevitable. However, the measures do indicate the essential 

aspects of the different implementation strategies. The larger 

standard deviations in the case of the D-measures can probably be 

explained along lines similar to that used to explain the difference 

between Band D , namely the effect of domains with accessible sets 
2 2 

that differ greatly in 11 and 12. 

The first cost measure K, the number of domain switches for each 

implementation relative to the number of domain switches in implementation 

11, are shown in Table 5.3. Costs K2 and K3 are the same, as precisely 

the same actions are involved in implementations 12 and 13 at run-time. 

The cost of 15 was assumed to be the same as that of 11. K4 is very 

small because it was assumed that there were only two domain switches 

in the case of implementation 14, namely program entry and program exit. 
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Kl K2 K3 K4 Ks 
mean 1.0000 0.7968 0.7968 0.0411 1.0000 
standard 
deviation 0 0.3112 0.3112 0.1094 0 

L1 L2 ~ L4 Ls 
mean 1.0000 0.8524 0.8524 0.3389 1.0000 
standard 

0 0.1742 deviation 0.1742 0.1473 0 

Table 5.3 

The mean and standard deviation of cost measures K and L. 

K2 gives an indication of the cost saving of implementation 12 over 11, 

though there was a wide variation between individual programs. 

In the evaluation of cost measure L (see Table 5.3) the costs of 

the individual primitives were each taken to be 1 (i .e., c
1 

=c
2

=c3=c4 =1) 

since each primitive essentially involved setting the contents of a 

register. The individual cj 's are implementation dependent, but in 

this chapter we are concerned with implementation schemas rather than 

the precise details of how each implementation is mechanised, and so 

we take a simple approach here. L4 has a significantly higher value 

than K4 because the execution of an array declaration involves a cost 

to the Fortran-like implementation in the L-measure. Similarly, the 

cost of accommodating array declarations in blocks, as opposed to 

procedures, tends to make the cost L2 higher than K2· 

In Figure 5.2 two cost-benefit spaces are shown; cost K against 
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benefit D and cost L against benefit B. In both spaces, it is almost 

impossible to distinguish between implementations 12 and 13. 14 

appears to give a fair amount of protection at low cost, though this 

is largely due to the effect of arrays as discussed earlier. In terms 

of run-time costs. it would appear well worthwhile using implementation 

11 to achieve the greatest possible amount of protection. 
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Cost-benefit spaces: K against D indicated by . and 
L against B indicated by x 
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The significant improvement possible in the protection afforded 

by the Algol W run-time system in use at Newcastle, IS, is also 

illustrated in Figure 5.2. The changes necessary to obtain this 

improvement are making the registers forming the display into base 

and limit type registers, removing the necessity for aligning arrays 

and activation records on double word boundaries (a restriction 

imposed for technical reasons on the IBM System/360 computers but 

relaxed on the 370 series) and making the link information inaccessible 

to all but the context-changing instructions. 

5.5. Extensions to the Study 

A further point in cost-benefit space could be obtained by 

examining the implementation of Algol W which allocates storage on 

the basis of a program-level rather than a block or procedure. A 

program-level is a unit of the program which does not recurse within 

itself. This implementation is a hybrid of 12 and 14, it minimises 

the number of activation records which have to be placed on the stack 

but still allows recursion. To evaluate the cost and benefit 

measures for this implementation, it is necessary to detect all 

recursive procedures within a program. The only practical way to 

do this is by altering the compiler and since all other measurements were 

carried out by the run-time system, it was decided to omit this 

implementation from the study. 
o 

An extension to the anlysis would be to recognise different 

types of operation (e.g., read and write access) and the accessible 

set available to an operation of a given type. It would be an 

advantage, for instance, to flag all descriptors contained on the 

stack as being read-only, to prevent the possibility of a program 

, to ','naccessible ' areas of the run-time stack by gain,ng access 
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altering a descriptor. In Algol W, the control variable in a FOR 

statement is defined to be read-only within the body of the FOR 

statement and this could be catered for in a similar manner. 

If a machine with a tagged architecture (e.g., Burroughs B6700) 

was being considered, operations could be classified according to 

whether they operated on integers, reals, strings etc. The type of 

operation would restrict the accessible set to be the subset of the 

implemented accessible set containing objects of the appropriate 

type. This scheme would also enable the set of allowed domain 

crossings from a given domain (i.e., possible procedure calls 

and block entries) to be included in the analysis if such domain 

crossings were represented by descriptors. 

A different direction in which an analysis such as the one 

contained in this chapter could be taken is the evaluation of 

alternative scope rules for Algol-like languages. This would be 

more in the way of a study of how extra information could be 

supplied so that the domain as defined by the language matches 

more closely the objects actually used by a program. Proposals 

such as partitions in LIS (Ichbiah et al 1973), and ways of avoiding 

the automatic accessibility of global variables by an inner block 

(Wulf and Shaw 1973) could be assessed in specially written programs. 

The inclusion of the referenced set R in the protection model 

presented in Chapter 4 and the collection of symbolic trace information 

(i.e., trace information at the source program level), as is required 

for the evaluation of the cost and benefit measures, opens up the 

possibility of studying program locality. If domains are a close 

match to a program's requirements during execution, they can be used 

to predict the information which a program will need to access during 

the time the program executes in that domain. Madison and Batson (1975) 
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have studied program locality in the case of A1gol-60 programs on 

a Burroughs B5500 and the implications for modelling program behaviour 

and memory management in virtual memory systems. 

5.6 Evaluation of the Experiment 

Having performed the empirical analysis of different Algol W 

run-time implementations, it is necessary to question the utility of 

the model and methodology as put forward in Chapter 4, and the 

usefulness of the results of the experiment. 

The applicability of the model and methodology to some, if not 

many, situations has been demonstrated by this experiment. The 

employment of the methodology has provided a quantitative comparison 

of the benefits and costs of protection in alternative implementations 

of Algol W. The results could be used, for instance, as a quantitative 

basis for part of an assessment of run-time strategies in the imple­

mentation of a language similar to Algol W. It must be noted, however, 

that the results are empirical and reflect the environment in which 

Algol W is used at Newcastle. In another situation, e.g., a 

commercial environment, programs may exhibit a significant difference 

in the way they are written and use of a sample of programs from 

such an environment might lead to some variation in the results. 

Even so, the sample of programs used in this experiment was taken from 

a wide selection of people in the computing community at Newcastle, 

which compares favourably with the study conducted by Wortman (1972) 

into the design of an SPL machine. Wortman used programs from an 

introductory programming course, so his sample was biased by repetition 

of the same or very similar programs since the programs represented 

solutions to a collection of about 10 relatively easy problems. 

108 



The results of this experiment are largely unsurprising but 

argue in favour of a run-time system based on storage alloca~ion 

at the block level. This study has really been concerned with 

accidental errors such as hardware induced errors. A weighting 

of important domains or significant objects within each domain 

may change these results and their applicability. If one could 

identify potential 'small' violations which if achieved made it 

possible to access all objects in the system, and gave them a heavy 

weighting, evaluation of the measures would be of use in 

penetration studies, like that carried out by Belady and Weissman 

(1974). 

Apart from the main goal of achieving a quantitative assessment 

of protection in different implementations of Algol W, the 

methodology has lead to a number of beneficial side effects. An 

obvious one is that the analysis has drawn attention to possible 

improvements to the Algol W run-time system currently in use. 

The analysis could be extended to yield a cost and benefit assessment 

of the effect of each proposed improvement. 

The results presented here are essentially global measures of 

certain program behavioural characteristics, and we have shown how they 

can be used to evaluate different implementations of Algol W from the 

protection point of view. One important question concerns the extent 

to which the sample of programs used is representative of the mix of 

real world computing problems. Clearly an increase in the size of 

the sample would be an improvement and an obvious bias is the lack of 

any really large programs. 

There is a ,drawback of this general approach to the comparison of 

protection systems which should be mentioned here, though the topic is 

covered in greater detail in Chapter 7. A domain, in each implementation 

of Algol W, has been considered as a set of accessible areas of the 
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stack. Domains have been compared on the basis of the total amount 

of the stack (in terms of storage area) to which they permit access. 

This is a simplified view of the true nature of a domain but suffices 

for performing the gross comparisons which the methodology is aimed at. 

Treating a domain as the sum of accessible areas of the stack 

totally ignores any structure which may exist within the domain and 

which may itself provide additional protection (c.f., Lampson (1974)). 

If array descriptors, for instance, are formed according to the 

specification given by I1iffe and Jodeit (1962) using codewords, then 

it is a simple matter for the hardware to perform checks that each 

subscript of an array element lies within the defined range of 

values for that subscript. The concept of a structured domain is 

discussed in Chapter 7. 
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Chapter 6 

INTER-PROCESS PROTECTION IN A NAIVE OPERATING SYSTEM: 
A STUDY OF THE IBM SYSTEM/370 DOS/VS OPERATING SYSTEM 

To demonstrate the utility of the proposed methodology in the 

comparison of simple protection systems providing inter-process 

protection, implemented as a policy of complete isolation between 

processes, an analysis of the IBM System/370 DOS/VS operating 

system (IBM 1973),(Birch 1973) was performed. This operating 

system was selected because it enabled the methodology to be applied 

to an environment in which inter-process protection is important 

and the statistics required for the analysis were readily available.* 

In this chapter, the protection system used in DOS/VS is 

compared, by means of a cost-benefit analysis, with an alternative 

protection system which offers greater memory protection but at an 

increased cost. DOS/VS uses a fixed sized partition approach whereas 

protection in the alternative system is based on variable sized 

partitions, which can be fitted to the individual memory requirements 

of each process. Only memory protection is considered in detail, 

though later in the chapter there is some discussion of I/O devices 

and the possibility of extending the comparison to include the file 

system. 

A rider must be added to the results obtained in this chapter 

concerning the validity of the data on which the analysis is based. 

It should be emphasised that the clock used to time the programs was 

relatively coarse (timings were available to the nearest 1/300th of 

a second), though this was compensated for in part by the relatively 

*The generous assistance given by Procter & Gamble Ltd. in obtaining 
the required statistics from their computing system is gratefully 
acknowledged. 
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slow speed of the processor (IBM 370/135). More significant, only 

the total execution time of processes was available, so the amount 

of time spent in supervisor state by a process had to be estimated 

from the input/output counts for the process. Definitive conclusions 

concerning DOS/VS should not be drawn from the results of the analysis, 

rather the chapter should be viewed as a further example of the 

application of the methodology. 

6.1 IBM System/370 DOS/VS Operating System 

The disk operating system (DOS/VS) for the IBM System/370 

computers is a medium scale general purpose multiprogramming operating 

system designed to provide background batch processing facilities in 

conjunction with up to four foreground processes. It is a naive 

operating system from the protection point of view. Programs are 

executed in fixed-sized memory partitions and inter-process protection 

is achieved by endeavouring to enforce complete isolation between 

user processes. The storage key protection feature prevents a 

program in one of the five partitions from writing into, reading from 

or directing an input/output operation into any of the other partitions 

or the supervisor area. 

The unit of work a user submits to the system for processing is 

called a job. A job may consist of a number of job-steps, each job­

step consists of one program which executes after the preceding job­

step is completed. All the job-steps of a job are executed sequentially 

in the same partition. The execution of a job-step constitutes a 

process and forms the basic unit of protection. 

A single virtual memory is maintained as an extension to real 

memory and its organisation is shown in Figure 6.1. 
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The combined real and virtual memory can be any size up to 224 

bytes (providing it is a multiple of 2K bytes) and is divided into 

2K byte pages. Pages in virtual memory are brought into the page 

pool in real memory on demand by conventional demand paging techniques. 

The real memory area contains a resident supervisor area and 

the page pool. Virtual memory contains a shared virtual area and 

between 1 and 5 partitions, the number being specified at the time 

of system generation. The size of each partition (a multiple of 

2K bytes) is fixed at system generation time but can be modified by 

the operator. The number of partitions cannot be altered, but the 

amount of storage allocated to a partition can be set to zero, which 

in effect reduces the number of partitions. An assumption underlying 

the design of the operating system is that such changes to partitions 
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are relatively infrequent. Resident programs that can be shared 

between jobs and that are used frequently can be stored in the 

shared virtual area of the virtual memory. 

The use of the various partitions for foreground or background 

jobs is immaterial here. A partition may be allocated space in the 

real address area. A program being executed in such a partition 

can elect to run in real mode and to have all its pages kept in 

main memory throughout its execution. Running in real mode means 

that the dynamic address translation facility is bypassed resulting 

in a significant improvement in efficiency. The use of certain 

peripherals with timing constraints, e.g., an optical character 

reader, or if a program is doing a substantial amount of input/ 

output are also reasons for executing a program in real mode. In 

particular, the spooling program (POWER) supplied with the operating 

system runs in real mode. The usual mode of execution is virtual 

mode, in which case the real area allocated to the partition is 

viewed as part of the page pool and all addresses are converted by 

the dynamic address translation facility to real addresses. 

When a program is to be executed, it is allocated to one of the 

five partitions, according to specifications contained on the job 

card. The whole partition is allocated to the program regardless 

of how much memory the program actually requires. In virtual mode 

the partition in virtual memory is allocated and in real mode the 

area of real memory assigned to the partition is allocated to the 

program. There is no restriction on a program accessing ~" of 

its allocated partition; the only constraint on a program is I'" 

all memory references generated by the executing program must remain 

within the assigned partition. The size of a partition cannot be 

changed while it contains an executing program. 
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The dynamic address translation mechanism ensures that all 

addresses used to access virtual memory fall within the size of the 

combined virtual and real memory (M, say) by means of a simple 

comparison of the page bits contained in the address with the size 

of the page table. In real mode, the hardware traps any address 

that is outside the range of the physical memory. Inter-process 

protection is achieved by means of hardware storage keys. Physical 

memory is divided into 2K byte blocks and associated with each block 

is a 4-bit storage key which can be set to a number between 0 and 15. 

These storage keys may be set and examined by appropriate privileged 

instructions. Each partition is assigned a different key between 

1 and 15. When a page, from the virtual memory area of a partition, 

is transferred to a block in main memory the storage key of that 

block is set to the key assigned to the partition. 

When a program is being executed by the processor, the program 

status word (PSW) of the executing program contains the same 4-bit 

key as that assigned to the partition in which the program is 

executing. The supervisor and programs in the shared virtual area 

execute with key zero. Before access is allowed to storage, a 

comparison is made by hardware between the key associated with the 

memory block, containing the real address issued by the program in 

the case of execution in real mode or the real address corresponding 

to the virtual address issued by the program in virtual mode, and 

the key in the PSW. The access is only allowed if the two keys are 

equal or if the PSW contains the 'master key' (key zero). 

There are two versions of the storage key protection mechanism: 

fetch/store protection, which checks both fetch and store accesses to 

memory, and store protection which only checks stores. If a protection 
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violation does occur, a protection interrupt causes control to be 

regained by the supervisor. 

The memory protection feature functions independently of the 

supervisor/problem state status of the machine and is always active. 

However, DOS/VS for simplicity identifies states of the machine with 

protection states. When the processor is in problem state executing 

a user program, the protection key in the PSW is that of the partition 

to which the program has been allocated. If the supervisor or code 

from the shared virtual area is being executed the processor is in 

supervisor state and executes with key zero. Key zero allows access 

to all memory, thus the supervisor and programs in the shared virtual 

area are 'trusted' to be well-behaved. In problem state, privileged 

instructions cannot be executed, so user programs are unable to 

change the storage keys or the protection key in the PSW. 

References to memory can also be made by channels when trans­

ferring information to or from peripheral devices. Such transfers 

are also subject to the storage key protection mechanism. Channel 

programs which contain virtual addresses are first transformed by the 

supervisor into an equivalent channel program containing real 

addresses. A channel program contains one or more channel address 

words, each specifying an area of memory to or from which information 

is to be transferred. Each channel address word also contains a 

protection key and the hardware checks that this key matches the 

key(s) of the corresponding physical memory area before the transfer 

of information commences. In the case of unequal keys (key zero 

matches all storage keys) a protection interrupt occurs. 
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6.2 An Alternative Protection System 

With DOS/VS, the sizes of the individual partitions can be 

arranged so that few, if any, programs need to use overlays, the 

method employed to overcome the constraints of small partitions in 

360 DOS (IBM 1971). With larger partitions, it is to be expected 

that the majority of programs will use less than the whole of the 

allocated partition. The alternative protection system aims to 

limit a program during execution more closely to its known actual 

memory requirements than is achieved by DOS/VS. The same virtual 

storage organisation as used by DOS/VS is assumed. 

To suit a program's memory needs, it is necessary to have 

information on its memory requirements during execution. There are 

two obvious sources for this information: 

a. an estimate provided by the user 

b. information from the loader and from requests for more space. 

An estimate provided by the user can be expected to be greater than 

that actually required by a program and ignores the fact that 

programs, in general, have dynamic memory requirements. Recognising 

this behavioural aspect of programs can result in further improvement 

to the protection afforded to a program, though almost certainly at 

an increased cost. The alternative protection system is based, there­

fore, on information supplied by the loader and on requests from the 

executing program for more memory space. 

Before execution, every user program is assumed to be loaded into 

the appropriate partition by the loader and thus the immediate memOlj 

requirements of the program can be supplied to the supervisor. If 

the program is to run in virtual mode, the supervisor can then indicate 

that any unused pages in the virtual area of the partition are not to 

be referenced, by means of an extra bit (the 'used ' bit) on each page 
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entry in the page table. A reference to such a page will cause a 

protection violation interrupt. If a program requests more memory 

space (such requests can only be for a contiguous extension of a 

multiple of 2K bytes to the memory already allocated to the program), 

the appropriate 'unused' pages can be made available by resetting 

the relevant bits in the page table. 

A program which is to run in real mode will be allocated space 

in the real memory allocation of the partition. The blocks in this 

allocation will have their storage keys set to that of the partition. 

Any unused blocks remaining in the real memory allocation of the 

partition will have their storage keys set to a key (e.g., 15) which 

indicates 'unused'. Additional memory can be allocated to the 

program by changing the storage key on the appropriate block(s) from 

'unused' to that of the partition. 

Execution then proceeds as under DOS/VS except that attempted 

memory accesses by the program in problem state to the unused space 

are treated as protection violations. A new state, the SVC state, 

is introduced to allow the supervisor to perform functions on behalf 

of a user program, but be restricted by the protection system to 

the supervisor area and the program area, in the case of real mode, 

and the supervisor area, the shared virtual area and the allocated 

program area in virtual mode. The third state, supervisor state, is 

reserved for the supervisor when it performs functions on behalf of 

the system, e.g., scheduling programs to be executed. In this state, 

the whole machine is accessible and the storage keys can be altered. 

A possible mechanism to implement the alternative protection system 

is as follows. In problem state, the protection key of the partition, 

in which the currently executing job-step resides, is stored in the 

active program status word (PSW) and access is only permitted to blocks 
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of memory having the same key. On a switch to SVC-state, the protection 

key of the partition is still kept in the PSW, but access is now 

allowed to blocks with the same key or with key zero. By setting the 

storage keys of blocks containing supervisor code or shared virtual 

code to zero, access is restricted to the relevant portions of memory. 

In supervisor state, the master key (key 0) is stored in the PSW 

and access is allowed to the whole of memory. 

6.3 A Cost-Benefit Analysis of DOS/VS and the Alternative Protection 
System 

The first stage in performing a cost-benefit analysis is to 

identify the domains in which each process may execute and derive 

benefit measures for each of the protection systems. Cost measures 

must also be deduced for each protection system being considered. 

Then, given, in this case, a set of statistics of programs which 

have been run under DOS/VS, the measures can be evaluated and a 

comparison of the protection systems carried out. 

6.3.1 Identification of Domains 

In DOS/VS, two domains can be identified for each process: the 

problem state domain and the supervisor state domain. The problem 

state domain essentially consists of the partition allocated to the 

job-step and the machine instructions apart from the privileged 

instructions. In the supervisor state domain, the whole memory is 

accessible (either real or real + virtual depending on the mode) and 

all instructions can be executed. 

A uS,er process will normally execute in the problem state domain. 

From time to time, the process will need the services of the supervisor; 

usually requests for the initiation of input/output. Such requests 
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(SVC1s) are accompanied by a switch from the problem state domain 

to the supervisor state domain. Programs residing in the shared 

virtual area and the supervisor process, which performs scheduling 

functions, resource allocation, etc., always execute in supervisor 

state. 

Under the alternative protection system, the domains in which 

user processes execute are very similar to those implemented by 

DOS/VS. The problem state domain corresponds to the problem state 

domain in DOS/VS, except that a process is restricted to the 

portion of the partition which it actually requires. Supervisor 

state domain in DOS/VS corresponds to the SVC state domain in the 

alternative protection system. Under the alternative protection 

system, only the supervisor process executes in the supervisor state 

domain. 

The cost-benefit analysis of the two protection systems is 

performed on the basis of the amount of accessible memory in each 

domain, so other aspects such as available instruction sets, domain 

switches, etc., in each domain are ignored. 

6.3.2 Benefit and Cost Measures 

In the development of these measures we assume that fetch and 

store protection is in operation, i.e., all accesses to memory are 

checked by the protection system, and concentrate solely on memory 

protection. Access to memory by input/output devices via channels 

is ignored for the moment and it is assumed that there is no inter­

partition communication. 

Figure 6.1 showed the organisation of memory under both protection 

systems. Let the following quantities be represented as follows: 
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size of the resident supervisor area 

size of the shared virtual area 

size of physical memory 

size of real + virtual memory 

s bytes 

h bytes 

R bytes 

M bytes 

M,R,s and h will all be integral multiples of 2K bytes (the page 

size), so the supervisor and the shared virtual area may be allocated 

memory areas slightly larger than they strictly require. The 

possibility of making a correction for this is discussed later. 

Let all job-steps executed on the processor over a given test 

period be indexed by the positive integers, and the total number of 

job-steps be N. Job-step j(l~j~N) during its execution will occupy 

a certain amount of the partition (either in real or virtual memory 

depending on the mode) to which it is allocated, say q. bytes. If the 
J 

job-step has dynamic storage requirements, q. is the maximum memory 
J 

requirement of the job-step within the partition. In general, ~ will 
J 

only be known after the job-step has been executed. 

Since storage is allocated in 2K byte blocks, the minimum storage 

that can be allocated to job-step j 

2048 
= r. p. 

..L..L 
O<r~ 1 

J 

where p = size of the real or virtual allocation of the partition in 
J 

which job-step j executes. Hence, r. , the portion of the partition used 
J 

by job-step j, can be determined. This is illustrated in Figure 6.2. 
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page bounda ri e s ::::------+1------1 

maximum memory 
requirement of 
job-step j in 
the partition 

Figure 6.2 

Job-step j executing in a partition 

In the problem state domain of job-step j: 

real mode 

amount of memory accessible under the r. P. 
alternative protection system J J 

amount of memory accessible under p. 
DOS/VS J 

;- In the SVC-state domain or supervisor 
state domain: 

amount of memory accessible under the s+r. p. 
alternative protection system J J 

amount of memory accessible under R 
DOS/VS 

partition allocation 
(in real or virtual 
memory) 

= P
j 

bytes 

virtual mode 

r. p. 
J J 

p. 
J 

s+h+r. p. 
J J 

M 

The amount of accessible memory under the alternative protection 

system in the problem state domain and SVC-state domain represents 

that amount of memory to which access is required, taking account of 

all known information about the job-steps. In a sense, this is a 

tighter upper bound on the memory requirements of job-steps than 

that used by DOS/VS, which could only be improved upon if further 

information about a process's intentions had been provided. From the 
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point of view of the model developed in Chapter 4, the alternative 

protection system represents the 'ideal ' system, making use of all 

available knowledge.· The amounts of accessible memory for the 

alternative protection system represent the sets to which access is 

required, i.e., the theoretically accessible set, in the model IS 

terms. 

If we ignore the supervisor process, the benefit measure under 

the above assumptions for DOS/VS is: 

N 

~ L (benefit measure for job-step j). 
j=l 

We choose to weight each domain by the time spent by a process in 

that domain, using time as a measure of the number of references 

made within a domain. So the benefit measure for job-step j 

= 
total execution time of job-step j 

~ ( amount of memory to which access ;s required in domain d 
~ amount of accessible memory in domain d 

domains d 

Hence for N job-steps the benefit measure 

time spent in domain d) 

for DOS/VS 
N 

( 
\"' (~ tjp+ ~j tjs) ) . ; 
L (t. +t. ) 
j=l JP JS 

= (B 1 ) 

where rtj = s+r p. for job-steps running in real mode 
J J 

R 

s+h+r. p. for job-steps running in virtual mode 
J J 

M 
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~p = problem state time for job-step j 

~s = supervisor state time for job-step j 

In this measure, we are assuming that the time spent in a domain is 

a good indicator of the number of memory references made in a domain. 

This is a reasonable assumption for the sample set of job-steps used 

in this analysis since all the job-steps used a wide mix of the 

machine instructions and the execution time is of the order of 

seconds for almost all the job-steps. 

When a 370 computer runs in virtual mode, the effective 

instruction rate is lower than that obtained in real mode due to the 

overhead of dynamic address translation. In the benefit measure, 

only the proportions of times spent in problem state and supervisor 

state are significant and so it is unnecessary to make a correction 

for job-steps running in virtual mode. 

The corresponding benefit measure for the alternative protection 

system is 1, since in problem state domain and in SVC-state domain 

the amount of accessible memory is precisely that which is required 

to be accessible. 

The above derivation of the benefit measure Bl was based on the 

maximum memory requirement of a job-step within a partition, namely 

q.. The alternative protection system in fact allows job-steps to 
J 

have dynamic memory requirements, more memory can be requested though 

not later released. Therefore, the memory requirements of a job-step 

can be represented by a monotonic increasing function of time, q.(t), 
J 

though its value only changes a finite number of times and by a 

discrete amount each time. 

If changes to the memory requirements of job-step j occur at 

times t. ,to , .• o,t. 1 (where any convenient measure is used for 'time ' , 
JO )1 '. )e+ 
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e.g., processor time), and tjorepresents the start of program 

execution and t. the end, and the corresponding memory requirements 
Je+l 

are q. ,q. , ... ,q, (measured after the memory change has taken place), 
)0 11 Je --

then the benefit measure is 

Nee 

( 
[(([ u. ,)+( [~.t,,)). e 1 ).2.. (B11) 
j= 1 i=O)1 lPI i=O jl JSI \'( N 

L.. t. .+t· .) 

where r .. = 
)1 

It .. = 
JI 

r 2:~sl 
s+r.. p. 

JI J 

R 

s+h+r.. Po 
)1 j 

M 

, 0 )PI JSI 
)= 

2048 

foY' job-steps running in real mode 

for job-steps running in virtual mode 

and t .. and t. are respectively the problem state and supervisor state 
jPI JSI 

times of execution between tji and tji+1 . 

If the benefit measures Bl and Bl' are compared: 

e 

Lt.. = t. 
. )PI JP 1:0 

e 
Lt .. =t. 
. JSI JS 
1=0 

r..~ r. 
J 1 ) 

i=Oj',. ",e 

hence B11~ Bl. Thus Bl is an upper bound for the protection afforded 

by DOS/VS. 

Statistics at the level of detail necessary to calculate Bl' were 

not available, so this measure has not been evaluated. Instead, the 

measure Bl has been used since it represents an upper bound for Bli. 

In the case of the 370/135 system being considered, few of the job-steps 
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had dynamic memory requirements and thus Bl provides a good estimate 

for the measure Bl'. 

To complete the comparison, it is also necessary to compare the 

relative costs of the two protection systems. We consider first the 

DOS/VS scheme for utilising storage keys under the headings suggested 

in Chapter 4. 

There are three types of cost: hardware, storage space and 

processing time. The provision of the hardware to maintain the 

storage keys associated with each block and to check the protection 

key in the PSW (or channel address word in the case of I/O transfers) 

against the appropriate storage key on every memory reference will 

result in a significant once only cost. Since the protection checking 

is performed by hardware, software is only required to maintain the 

storage keys on the blocks of main memory. The space taken up by 

this extra code and any associated tables will be relatively small 

and is ignored in this analysis. Of more significance is likely to 

be the processing time required to maintain the protection system, 

but in the case of DOS/VS this is largely dwarfed by the paging over­

head. 

Domain creation 

The partitions, the shared virtual area and the supervisor area 

are established at system initialisation time. (In the case of the 

actual system being considered this was performed twice a day every 

day; once in the morning to establish the configuration for day-time 

use and once in the evening when the remote job entry lines were 

disconnected.) The significant actions are setting up the areas of 

real memory and creating the page table. This cost is relatively 

insignificant compared to the total cost of initialisation. When a 
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program is loaded into a partition prior to execution, either the 

appropriate part of the page table will have to be set up for 

execution in virtual mode or storage keys set on blocks in main 

memory for execution in real mode. Such costs are small compared 

to the loading overhead. 

Domain deletion 

When a process terminates execution, it is only necessary to 

reset the relevant entries in the page table and to change the 

storage keys on any pages which belonged to the process and were 

mapped into real memory, thus preventing another process executing 

in the same partition from inadvertently accessing those pages. 

Domain maintenance 

In real mode, the memory area allocated to a user process 

resides in the physical memory and no maintenance is necessary. 

In virtual mode, when a page is brought into real memory it is 

necessary to set the storage key on the block into which the page 

is loaded. The few instructions necessary to do this make little 

impact on the normal paging overhead. 

Domain switches 

User processes can switch between problem state domain and 

supervisor state domain by issuing a supervisor call (SVC). The 

appropriate changes to the protection key in the PSW take place 

automatically as part of the SVC instruction, so the cost of such 

a domain switch is minimal. The same is true of a domain switch 

from supervisor state domain to the problem state domain. 
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Domain changes 

Changes to partition sizes do not occur during execution of a 

job-step, so under DOS/VS no domain changes take place. In the 

actual system under consideration, the partition sizes were only 

changed when the system was reinitialised. 

Protection checking 

The actual protection checking on references to memory by 

the processor and channels is carried out by hardware and thus 

incurs the one-time hardware cost. 

It would be exceedingly difficult to deduce the actual total 

absolute cost of the DOS/VS protection system. However, since two 

protection systems are being compared which use essentially the 

same hardware mechanism, it is more convenient, for the purposes 

of comparison, to consider the extra cost of the alternative 

protection system over that of DOS/VS rather than the absolute 

cost of each system. It is only necessary, therefore, to identify 

the differences between the two systems and quantify the increased 

cost. 

As with DOS/VS, there will be a once only hardware cost for 

the provision of the storage key mechanism for the alternative 

protection system. The mechanism is largely the same in both 

cases, though the alternative scheme requires hardware support for 

the SVC state. It is likely that the increased cost would be small. 

Domain creation 

The initial setting up of. the system will be little different 

from the initialisation of DOS/VS except that the keys on the super-
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visor area memory blocks are set to zero. On loading a program to 

be executed, the portion of the partition not required by the job-step 

is flagged as 'unused ' . In virtual mode, use is made of an extra bit 

on every entry in the page table to indicate whether each page in a 

partition is 'used ' or 'unused ' , 

Domain deletion 

As with DOS/VS, when a process terminates execution the storage 

keys on any blocks containing pages which belonged to the process 

should be set to 'unused ' , If the process executed in virtual mode, 

the relevant page entries in the page table should be reset. 

Domain maintenance 

The maintenance of domains under the alternative protection 

system is very similar to that performed by DOS/VS except that when 

a page from the shared virtual area is loaded into real memory, the 

storage key on the memory block into which the page is loaded must 

be set to zero, 

Domain switches 

The number of switches between domains is the same as occurs 

under DOS/VS except for the switches caused by requests for more 

memory space. 

Domain changes 

Under the alternative protection system the portion of a partition 

allocated to a process can be increased if a request is made by the 

process. The servicing of such requests will involve a switch into 

the supervisor state domain to enable the allocation of more space 
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in either real memory, by changing 'unused' storage keys to 'used', 

or virtual memory, by setting the appropriate bits in the page table. 

It is assumed that requests for' more memory occur very infrequently 

relative to the number of instructions executed between such requests. 

Protection checking 

From the point of view of protection checking, problem state and 

supervisor state are the same as in DOS/VS. The introduction of the 

SVC state will involve some modification to the checking algorithm. 

The provision of a state indicator in the processor to represent SVC 

state and the necessary alterations to the checking algorithm are 

likely to add a small incremental amount to the once only hardware 

cost. 

To summarise the increased cost of the alternative system, there 

is a small additional hardware cost, a small extra storage cost, 

resulting from the new bit on every page table entry and the code to 

support the new features of the alternative protection system, and 

increased processing time. The extra hardware and storage space 

costs are ignored, hence cost in this analysis is equated to extra 

processor time required by the alternative protection system. 

The extra processor time is made up of repetitions of the 

following primitive actions: 

1. domain creation in real mode 

setting the storage key on a used memory block 

2. domain deletion in real mode -

setting the storage key on a previously used memory block to 'unused' 

3. domain creation in virtual mode -

settlng the' 'used' I bi t in the page table entry of a used 

virtual page 
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4. domain deletion in virtual mode -

resetting the 'used ' bit in the page table entry of a previously 

used virtual page 

5. protection checking in virtual mode -

on a page fault, checking that the 'used ' bit in the page table 

entry for the required page is set 

6. domain change in real mode -

setting the storage key on a memory block to 'used ' 

7. domain change in virtual mode -

setting the 'used ' bit in the page table entry of the allocated 

page 

8. servicing of request for more memory. 

If the processing time for each of these primitive actions is 

c, ,c2"" ,ca respectively, then an estimate for the extra time 

necessary to complete the sample of job-steps is 

8 

Lc.n. (Cl) 
. 1 1 
1=1 

where n1 ,n2 , .•. ,na are the total number of times each respective 

primitive action is invoked during execution of the job-steps. 

This measure for the extra cost is only an estimate because in many 

cases storage keys will not need to be changed and thus there are 

opportunities for optimising the actions of the alternative 

protection system. 

6.3.3 Evaluation of the Measures 

The system from which statistics were obtained to compare DOS/VS 

and the alternative protection system was an IBM 370/135 with 192K 

bytes of main memory and associated peripherals. Figure 6.3 shows 
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the essential details of the configuration. 

IBM 370/135 
CPU 

192K bytes main 
memory 

1403 
printer 

3215 
console 

, 
3330 disks 

} three remote job entry lines 

2501 card reader 

1442 ca rd punch 

1287 optical character reader 

Figure 6.3 

IBM 370/135 configuration 

The system is run for two 8 hour shifts on each weekday, using 

DOS/VS release 30 as the operating system. Three partitions are 

maintained: one background (BG) and two foreground partitions (Fl and 

F2). The POWER spooling system (supplied by IBM with DOS/VS) always 

occupies the Fl partition. The background partition is used for batch 

production work and the remaining foreground partition, F2, for testing 

and system development during the day shift and for batch work during 

the night shift. During the night shift, the remote job entry lines 

are not supported. 
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The size of the Fl partition is changed at the start of each 

shift by re-initialising the system, though the number of partitions 

remains fixed. The organisation of real and virtual memory during 

both shifts is shown in Figure 6.4. 

464K 

192K 

o 

shared virtual area 
64K 

Fl virtual allocation 
64K 

F2 virtual allocation 
12K 

BG virtual allocation 
12K 

Page pool 20K (48K) 
Fl rea 1 a 11 oca ti on 

60K (32K) 
F2 real allocation 

36K 
BG real allocation 

36K 
Supervisor area 

40K (44K) 

Figure 6.4 

virtual memory 

real (i.e., physical) 
memory 

Organisation of real and virtual memory during the day-time shift 

(Where the size of an area changes for the night-time shift, the night­
time value is shown in brackets.) 

Space in real memory is allocated to each of the three partitions. 

In the case of the Fl partition this is always occupied by the POWER 

program since it runs in real mode. 

DOS/VS requires that every partition be allocated a minimum 64K 

bytes of virtual memory even though it may never be used. So the Fl 

partition has a 64K virtual memory allocation even thou'gh it remains 
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unused. For similar reasons, the shared virtual area occupies 64K 

of virtual memory, when in fact only about 10K is actually used by 

the system under consideration. 

Statistics were gathered on every job-step executed on the 

system in the space of one week. DOS/VS provides a facility whereby 

job-step statistics recorded by the operating system during the 

execution of the job-step are available to a user-supplied accounting 

routine at the termination of each job-step. These statistics were 

simply written to a disk-file during the two shifts each day, and 

at the start of the next day the file was dumped to cards for later 

analysis. 

The numbers of job-steps run each day (i.e., the cumulative 

totals for both shifts) in each partition, broken down by mode of 

execution, are detailed in Table 6.1. 

The majority of job-steps (92 - 94%) ran in virtual mode in 

partitions &G and F2. In assessing the results of evaluating the 

measures, therefore, greater emphasis will be placed on the BG and 

F2 virtual mode job-steps, rather than the job-steps run in real mode. 

Monday Tuesday Wednesday Thursday Friday 
BG - real 18 8 7 6 5 
BG - virtual 220 257 215 270 256 

Fl - real 2 2 2 2 2 
Fl - virtual 0 0 0 0 0 

F2 - real 22 38 35 29 37 
F2 - virtual 342 431 348 311 321 

Total no. of 604 736 607 618 621 
job-steps 

Table 6.1 

Numbers of job-steps run each day in each partition, broken down by 
mode of execution 
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The relevant statistics gathered on each job-step included: 

identification of job-step 

date and time of start of execution 

partition in which job-step was executed 

mode of execution (real or virtual) 

execution time of job-step 

address of block or page containing the largest 

address referenced by the job-step in problem 

state 

input/output counts for each peripheral device. 

Only the total execution time of each job-step was recorded by DOS/VS, 

separate values for the times spent in supervisor state and problem 

state, as required for the evaluation of the benefit measure Bl were 

not available. In theory, it would be possible to obtain the 

separate problem state time and supervisor state time for each job-

step, either by making alterations to the operating system or by 

use of a hardware monitor. In practice, there was no possibility of 

being able to make (the quite significant) changes to the operating 

system or to use a hardware monitor, since the system operated in 

a commercial environment. However, by making the assumption that 

almost all supervisor state time of a job-step is attributable to 

requests for input/output, it was possible to make an estimate for 

the supervisor state time of each job-step based on the I/O counts 

of the job step, since these were available. The precise details of 

how this was done are described in the Appendix. 

This situation has the advantage that it illustrates the use of 

the methodology in a context where one is working with partial 
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information, not untypical of the real world, and is representative of 

a design situation where one is using statistics from an existing 

system to predict the performance of a system which is partially 

designed and certainly not implemented. If, in fact, an existing 

system was being studied with a view to making improvements, 

e.g., IBM/370 with DOS/VS, the cost of acquiring the supervisor 

state time for each job-step could undoubtedly be justified. 

The job-steps in the sample fall into two broad categories: 

production runs of compiled programs and the compilation and testing 

of new programs. The majority of programs are written in COBOL or 

PL/l, with some assembler and other languages. The work performed by 

the installation is typical of medium sized commercial systems, 

namely file maintenance, stock control and payroll etc. Many~of 

the production runs are done on a specific day each week, thus it 

was felt that by taking one week's work done on the system, a 

reasonable sample of all programs run on the system would be obtained. 

In total, statistics were obtained on 3186 job-steps. 

The first measure to be evaluated was the benefit measure Bl. 

The values obtained for the various partitions and modes of execution 

are given in Table 6.2. 

The most significant values of the measure occur in the cases of 

BG-virtual and F2-virtual, on average 0.58 and 0.49 respectively, 

since the majority of job-steps are executed in these partitions in 

virtual mode. The difference in these two values probably arises 

because of the different nature of the job-steps run in the two 

partitions. The BG partition is used for batch production work 

and so the job-steps executed there consist primarily of compiled and 

link-edited object modules. F2 is used for compilations and test runs. 
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Monday Tuesday Wednesday Thursday Friday Average 

BG - real .35 .61 .27 .38 .38 .40 

BG - virtual .57 .57 .57 .57 .61 .58 

BG - real + .55 .57 .56 .57 .61 .57 
virtual 

F1 - real .94 .94 .94 .94 .94 .94 

F2 - real .32 .32 .33 .33 .34 .33 

F2 - virtual .49 .49 .49 .50 .49 .49 

F2 - real + .48 .48 .48 .48 .47 .48 
virtual 

BG + F2 .51 .51 .51 .52 .53 .52 

BG + F1 + F2 .51 .51 .51 .52 .53 .52 

Table 6.2 

Evaluation of benefit measure Bl by partition and mode of execution 

From Table 6.2, it is evident that apart from BG-rea1, there is 

very close agreement for the value of the measure for each partition 

and mode of execution on each day of the week. The large fluctuations 

occurring in the case of BG-real can be accounted for by the very few 

job-steps executed each day in that partition and mode (18,8,7,6,5 

job-steps on each day of the week respectively). The very large value 

of the measure occurring in the case of the Fl partition is due to the 

fact that it is only used in real mode by two job-steps each day, and 

the real memory allocation of Fl is fitted to the requirements of 

these job-steps. 

The contribution to the benefit measure by individual job-steps 

varied widely as was to be expected since a large number of programs 
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were run each day all with greatly varying memory requirements. 

However, the very small variation in the values of the benefit 

measure for each day of the week shows that the value of the 

benefit measure averaged over a large number of job-steps is 

significant. 

Assume that a typical job-step requires 40K bytes of the 

virtual memory allocation of BG or F2 for its execution and that 

the ratio of problem state time to supervisor state time is 10:1. 

For this single job-step, Bl evaluates to .53. Consider now the 

improvement that is gained in the benefit measure by restricting 

the job-step to 40K bytes in the problem state domain, rather than 

the 72K bytes of the virtual memory allocation to BG or F2, as 

happens under DOS/VS. The value of Bl with a 40K byte allocation 

is 0.94. Thus a dramatic improvement in protection can be obtained 

by improving the protection afforded to the job-step in the problem 

state domain. This arises because programs spend relatively little 

time in supervisor state. (The ratio 10:1 of problem state time 

to supervisor state time is typical of the sample set of job-steps.) 

Though the time spent in the supervisor state domain is small, 

the effect of an undetected error could be devastating since the 

programs executing in the other partitions, or indeed the supervisor 

itself, could be corrupted. In the problem state domain under DOS/VS, 

a process can write into the unused portion of the partition in which 

the process executes. A process which does this is in error, but has 

no' direct effect on other processes, and thus this can be viewed as not 

so serious. Therefore, it may be desirable to apply weights to the 

various domains involved in the measure Bl, to reflect to some extent 

the relative consequences of an undetected error occurring in each 

of the domains. 



The average value of the measure Bl, namely .52, demonstrates 

that the typical job-step has access to approximately twice as 

much memory as it requires to perform its function. The alternative 

protection system therefore represents a significant improvement 

in protection over that afforded by DOS/VS. 

The extra cost of the alternative protection system in terms 

of increased processor time can be obtained by evaluating the 

measure Cl derived .in Section 6.3.2. The number of times each 

primitive is invoked is as follows (n. is the number of times 
I 

primitive i is invoked): 

total number of memory blocks used by job-steps executed 

in real mode 

total number of pages used by job-steps executed in virtual 

mode 

ns total number of page faults (which is proportional to the 

total execution time of all job-steps executed in virtual 

mode) 

n6 total number of memory blocks allocated to job-steps 

executing in real mode as a result of requests for extra 

storage 

n7 total number of pages allocated to job-steps executing in 

virtual mode as a result of requests for extra storage 

total number of requests for extra storage issued by all 

job-steps 

The totals n1 ,n2,n3 and n4 were calculated for the sample set 

of job-steps. For ns ' the total execution time of all job-steps 

executed in virtual mode was calculated and multiplying this by the 
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average page fault rate ~ will yield nS' These results are given in 

Table 6.3 for one day (Tuesday). Similar results were obtained for 

the other days of the week. Since statistics were not gathered on 

requests for extra storage, n6 ,n
7 

and na were not determined. 

partiti on 

BG 

Fl 

F2 

96 

46 

230 

Table 6.3 

5405 

o 
7692 

Statistics from Tuesday's data 

3l68325(), 

o 
257247~ 

(The units of time used in determining ns are 1/300th of a second) 

It would be possible to determine the costs c, ,c 2"" ,ca of one 

invocation of each primitive by coding each primitive and calculating 

the execution times of the primitives from the individual instruction 

execution times. If statistics were available on requests for more 

memory, it would then be possible to evaluate the measure Cl. This 

has not been done because it is evident that the execution time of 

each primitive is very small, and the number of times each primitive 

is invoked is such that the total increase in execution time under 

the alternative protection system is likely to be almost insignificant 

compared to the total execution time of the sample set of job-steps. 

The alternative protection system is seen therefore to offer 

greatly improved protection at little extra cost. 
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6.3.4 Evaluation of Other Benefit Measures 

Measure Bl was derived on the assumption that all references to 

memory (both reads and writes) are checked by the protection system. 

It is instructive to derive a form of the benefit measure in the case 

where only writes to memory are checked. If we assume that the 

ratio of writes to all references is a constant w for all job-steps, 

this benefit measure, B2, is: 

where 

N 

( L ((wr. +(l-w)~. )t. +~.t. ) . 
j=l J J JP J JS ---

(t. +t ) 
JP JS 

cc.. = s+r. p. ~. = r. p. for job-steps J J 1 J ...L...l. mode 
R R 

s+h+r. p. r. p. for job-steps 
1 J _J_J mode 

M M 

(B2) 

running in real 

running in virtual 

Essentially, each job-step executes in four domains: two problem 

state domains, one for reads and one for writes, and two supervisor 

state domains. As the whole of memory (real or virtual depending on 

mode of execution) is accessible in supervisor state, the two 

supervisor state domains are identical regardless of the type of 

access to memory. 

The quantitative improvement in protection benefit afforded by 

read protection can be directly related to a financial cost, namely 

the extra cost of having the computer supplied with read protection. 

To evaluate B2, it is necessary to have a value for the constant w. 

w is assumed constant since almost all the sample job-steps have an 

execution time of the order of seconds and thus involve the execution 

of many 100,000'5 of instructions and include a wide mix of the 

141 



available instructions. Studies of Algol programs (Wichmann 1970), 

(Wyeth 1973) have shown that for references to operands the proportion 

of writes to all references is approximately .23. Burnell and Coffman 

(1975) quote a figure of 80% for the percentage of instructions 

requiring an operand (data) reference to memory. From these figures, 

it is possible to deduce that the proportion of writes to all 

references lies in the range .1 to .2. The measure B2 was evaluated 

for w = .15 for each day of the week in which statistics were gathered. 

Table 6.4 gives the values of the measure 82 (w = .15) obtained 

for each partition and mode of execution. In the case of BG-virtual, 

on average B2 is .18 compared with the corresponding average value 

of Bl, .58. A similar difference in values occurs with F2-virtual, 

namely .15 and .49. This large difference in the values of the two 

measures is to be expected, since in the case of 82, only 15% of 

memory references are being checked for possible protection violations. 

Thus, a very significant improvement in protection can be obtained 

by the implementation of read protection as well as write protection. 

From the point of view of the partitions, other than the one 

containing the currently executing job-step, the supervisor and the 

shared virtual area, a write protection violation is probably much 

more serious than a read violation. A write violation will almost 

certainly cause the eventual failure of the program whose code or 

data has been overwritten, whereas a read violation will at worst 

lead to a breach of confidentiality, though this itself may be very 

damaging in certain circumstances. To the executing job-step, a 

read violation and a write violation are equally serious, since they 

indicate that the program is in error. 
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Monday Tuesday Wednesday Thursday Friday Average 

BG-real .15(.35) .23(.61) . 14 (.27) · 16 ( .38) · 17 ( .38 ) · 17 (.40) 
BG-virtual .18(.57) .18(.57) .18(.57) .18(.57) .19(.61) .18(.58) 

BG-real + .18(.55) .18(.57) .18(.56) .18(.57) .19(.61) .18(.57) 
virtual 

Fl-rea 1 .37(.94) .37 (.94) .37 (.94) .37(.94) .37(.94) .37(.94) 

F2-real . 15 (.32) .14(.32) .15(.33) .14(.33) · 15 ( . 34) .15(.33) 

F2-virtual .15(.49) . 16 (.49) .15(.49) .16 (.50) .15(.49) .15(.49) 

F2-real + 
virtual 

. 15 ( .48) .15 (.48) . 15( .48) · 16( .48) .15(.47) · 15 ( .48) 

BG+F2 .16(.51) .16(.51) .16(.51) .17(.52) · 17 ( .53) · 16 ( . 52) 

BG+Fl+F2 .16(.51) .16(.51) .16(.51) · 17 ( .52) .17(.53) · 16 ( . 52) 

Table 6.4 

Evaluation of benefit measure B2 by partition and mode of execution 
(w=.15) Corresponding values of Bl are given in brackets 

I 

If the computer system is operated in a situation where 

confidentiality of information is not an overriding consideration, so 

that write errors are the main source of concern with respect to 

inter-process protection, it may be appropriate to give greater weight 

to the domains for writes than those for reads in the measure B2. 

It might be assumed that if reads are not checked, a read violation 

will eventually lead to a write violation or some other error which 

will be detected by the hardware. This is probably largely true, but 

the point of detection of the error is then that much further from its 

source than would have been the case if read protection had been 

employed. 
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It is necessary therefore to consider the environment of the 

computer system and then to derive an appropriate form for the measure 

B2 which reflects the functional requirements of the protection system. 

The evaluation of B2 and knowledge of the cost of installation of read 

protection would then provide a quantitative basis on which to make a 

decision. 

It is possible to extend the analysis of the protection benefit to 

include input/output operations carried out on behalf of a user job­

step by the channels. The channel address word (CAW) in a channel 

program contains the (real) address of the start of the physical 

memory area from which or into which data is to be transmitted by the 

channel. The CAW also contains the protection key of the partition 

in which the job-step resides, and, during the transmission of data, 

the hardware protection system checks that the key in the CAW matches 

the storage key(s) of the memory block(s) which are accessed. When 

transfers are done on behalf of the supervisor, the CAW contains the 

master key zero, so no checking is performed. Input/output transfers 

done on behalf of user job-steps are thus 'executed ' in the problem 

state domain. If the total duration time of input/output transfers 

for each job-step is available, the measures Bl and B2 can be adjusted 

to include input/output operations by increasing the time spent in 

the problem state domain by this amount. For 82, the time of input/ 

output transfers will have to be split into input transfer time and 

output transfer time. 

Yet another possible application of this analysis would be to 

compare the protection achieved by DOS/VS and the alternative protection 

system with the protection which could, in theory at least, be 

attained if job-steps could be restricted to the maximum amount of 

storage they require rather than having to round up all memory 
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requirements to a whole number of pages or blocks. This analysis 

would essentially be examining the effect of internal fragmentation 

(Randell 1969) which is a consequence of memory being allocated in 

units of 2K bytes. 

Using the notation of Section 6.3.2, job-step j actually requires 

a maximum qj bytes. Let the actual supervisor requirement be Sl bytes 

and that of the shared virtual area be hi bytes. Assuming that both 

reads and writes are checked by all protection systems and ignoring 

access to memory by input/output devices, the benefit measure for 

DOS/VS is: 

N 

( I C~jP + ~ t ). 
t. )). 

1 (B3) 
J JS 

(t. + N 
j= 1 J JP JS 

and the corresponding measure for the alternative protection syslt'I" 

N 

(I( q. t. t t. ). J Jp + 
J JS 

r. p. 
j=1 

J J 

, I 

where ~. = s I+q. ¥j 
J J 

R 

s '+h I+q. 
J 

M 

1 
t

js
) ). (t jp + 

= Sl+q. __ J 

s+r. p. 
J J 

s'+h'+q. 
J 

s+h+r. P. 
J J 

(B4) 
N 

for job-steps running in 
real mode 

for job-steps running in 
virtual mode 

The utility of these measures would be that by evaluating the 

measures and comparing B3 and B4 with Bl and 1 respectively, they 

would show the effect of internal fragmentation. The exact maximum 

memory requirement of each job-step was not recorded by DOSjVS and 

so these measures could not be evaluated. Internal fragmentation is 

a function of the page size, and so B3 and B4 would be expected to 
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vary if the page size was altered. 

A further productive application of the benefit measure Bl is to 

use the measure as a figure of merit to assess the effect of proposed 

minor changes to a system from the point of view of protection. The 

first such change considered was that of making use of the knowledge 

that only 10K bytes of the shared virtual area are actually used. To 

investigate the relaxation of the DOS/VS constraint that the minimum 

allocatable area in virtual memory is 64K, the benefit measure Bl was 

evaluated for two memory organisations. The first in which the 

shared virtual area was 10K bytes and the total memory size (real + 

virtual) was 464K bytes, and the second in which the total memory 

size was 410K bytes, representing a reduction in the size of the 

shared virtual area from 64K to 10K bytes. Table 6.5 shows the 

results of evaluating Bl for these two memory organisations. 

BG-real 

BG-virtual 

BG-real+virtual 

Fl-real 

F2-real 

F2-virtual 

F2-real+virtual 

BG+F2 

BG+Fl+F2 

shared virtual area = 10K shared virtual area = 10K 
total memory size = 464K total memory size = 410K 

.611 

.556 

.558 

.938 

.324 

.480 

.467 

.500 

.501 

Table 6.5 

.611 

.559 

.560 

.938 

.324 

.482 

.469 

.502 

.503 

Evaluation of Bl for a shared virtual area of 10K using one day's data 
(Tuesday) 

146 



The values of Bl have been given to three decimal places so 

that the slight improvement obtained by reducing the total memory 

size can be seen. The values of Bl for the real mode of execution 

do not alter since the organisation of real memory is the same for 

both cases. The values of Bl for the first memory organisation 

(shared virtual area 10K bytes, total memory size 464K) are slightly 

lower than those obtained for a shared virtual area of 64K bytes 

and total memory size 464K bytes (Table 6.2). This is due to the 

fact that the two organisations are quite different, since in 

Section 6.3.3 it was assumed that all 64K bytes of the shared 

virtual area were used, and thus the benefit measures for the two 

situations cannot be compared directly. The reason that the 

increase in Bl, as shown in Table 6.4, is so slight is that only 

the term in Bl representing the supervisor state domain is altered 

by this change and most job-steps spend a low proportion of their 

time in supervisor state (typically 0-20%). 

A second obvious change to the memory organisation is the 

removal of the virtual allocation to the Fl partition. The values 

of Bl for the initial memory organisation (shared virtual area = 

64K and total memory size = 464K) and with the Fl virtual allocation 

removed (shared virtual area = 64K and total memory size = 400K) 

are given in Table 6.6. 

As in the previous case, the measure shows only a slight 

improvement which again reflects the small proportion of execution 

time spent in supervisor state by most job-steps. 

The combined effect of reducing the shared virtual area to 10K 

and removing the Fl virtual allocation is shown in Table 6.7. 
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total memory size 464K total memory size 400K 

BG - real .611 .611 

BG - virtual .568 .573 

BG - real+virtual .569 .574 

Fl - real .938 .938 

F2 - real .324 .324 

F2 - virtual .490 .494 

F2 - real+virtual .477 .480 

BG+F2 .510 .514 

BG+Fl+F2 .511 .515 

Table 6.6 

Evaluation of Bl for total memory sizes 464K and 400K, reflecting 
removal of the Fl virtual allocation (shared virtual allocation 
= 64K) using one day's data (Tuesday). 

BG-real 

BG-virtual 

BG-real+virtual 

Fl-real 

F2-real 

F2-virtual 

F2-real+virtual 

BG+F2 

BG+Fl+F2 

shared virtual area = 10K shared virtual area = 10K 
total memory size = 464K total memory size = 346K 

.611 .611 

.556 .562 

.558 .564 

.938 .938 

.324 .324 

.480 .485 

.467 .472 

.500 .505 

.501 .506 

Table 6.7 

Evaluation of Bl showing the combined effect of reducing the 
shared virtual area to 10K and removing the Fl virtual allocation 
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Mention was made in the introduction to this chapter of the 

possibility of including certain input/output devices in the analysis. 

One feasible extension would be to include the file store. Belady 

and Weissman (1974) have suggested that the use of storage keys could 

be extended to backing store. If the details of such a scheme were 

worked out, it would be possible to compare their scheme with that 

used by DOS/VS to access the file store. 

6.4 Evaluation of the Comparison 

The above analysis has compared DOS/VS with an alternative 

protection system which uses the same protection mechanism, viz. 

storage keys, but which has been shown to offer greatly improved 

protection at little extra cost. 

In this analysis, we have examined how well the protection 

system of DOS/VS restricts user processes to the portion of memory 

they require. The protection considered here is a first-level 

inter-process protection. Any further structuring or protection 

method imposed by the process itself, e.g., an Algol-type display 

mechanism, has been ignored. 

Further improvements could probably be made to the alternative 

protection system if more information was available. For instance, 

if it was known which parts of the supervisor were required for each 

type of supervisor call, it is likely that improved protection could 

be obtained by making use of more values of the storage keys to 

implement a ring-like protection structure (Graham 1968). 

The comparison of DOS/VS and the alternative protection system, 

based on the statistics obtained from the IBM 370/135 configuration, 

strictly represents only a comparison of the two protection systems in 

the context of the particular configuration and type of work load 
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used to supply the statistics. It is probably a reasonable assumption 

that this computer system is 'typical ' of installations using DOS/VS, 

but before definitive conclusions concerning the alternative protection 

system could be reached, it would be necessary to gather similar 

statistics from other DOS/VS installations. 

Before considering the comparison of the two protection systems, 

it ;s useful to look at the cost of performing the analysis. The 

statistics used in the analysis were collected by the operating system 

as part of its provision of an accounting facility, so it was only 

necessary to arrange for the statistics to be retained in a machine 

readable form by dumping them onto cards. A number of experiments 

were carried out on an IBM 360/67 system to establish the basis 

for estimating the supervisor-state time of each job-step. These 

experiments consisted of writing and then running short programs on 

the system. Finally, a program was written to perform the evaluation 

of the various measures. The total cost of evaluating the measures 

was thus relatively small in terms of man hours and machine time. 

Apart from the usefulness of the comparison in its own right. 

it could be viewed as an exercise to examine the relative benefits 

and costs of the two protection systems. using available information, 

to see if there were grounds for justifying a substantial investment 

in a more detailed and widely based comparison. Considering the 

results of this comparison, it could be argued that there was indeed 

a case for collecting statistics on supervisor state time and 

gathering similar statistics from other DOS/VS installations. A 

further extension would be to consider gathering information on 

requests for more storage by user processes and analysing the costs 

involved in incorporating such a mechanism into a system. 

As well as providing the basis for the comparison of the two 
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protection systems, the measure Bl and its derivatives have been 

used as figures of merit to investigate the protection implications 

of the memory organisation of DOS/VS. So a comparison such as 

this can also be useful in evaluating relatively minor changes to 

an existing system. 

This chapter illustrates, therefore, that using a combination 

of available information and estimation, it is possible to perform 

a meaningful comparison of protection systems based on the proposed 

methodology. 
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Chapter 7 

PROTECTION AND STRUCTURE 

This chapter considers the use of structure to restrict further 

the accessible set and ways in which such structure may be provided. 

The concept of a domain is extended to that of a structured domain, 

where the relationship between objects contained within the domain 

can be exploited to provide additional protection. 

A measure is proposed to assist in the comparison of systems 

which exploit structure for protection purposes. Use of the measure 

and of the concept of a structured domain are illustrated in brief 

comparisons of various protection systems. 

Programmer defined types are a possible way of defining such 

structured domains, and a form of types and a possible implementation 

are presented in outline so that the protection aspects can be 

considered and compared with the protection available using con­

ventional block structure. 

Finally, the complementary notion of possible structured 

relationships between domains is discussed. 

7.1 Structured Domains 

The two studies contained in Chapters 5 and 6 have taken a one­

level view of domains as have nearly all other people writing on the 

topic (e.g., (Lampson 1971),(Graham and Denning 1972),(Graham 1968), 

(Price 1973)). In the comparison of Algol W implementations, a 

domain was defined as a set of accessible areas of the stack and in the 

study of DOS/VS a domain was taken to be the accessible part of real 

or virtual memory. This approach to domains is sufficient for 

achieving gross comparisons, but ignores any structural information 
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contained in domains which could be used for protection purposes. 

Domains are typically not composed of a set of uniform items, 

but are composed of many disparate items each with its own structure. 

Many domains can be usefully described by a tree representatifH1 • 

Each node in the tree represents an object, and the branches 

emanating from a node to other nodes represent the objects which 

are accessible from the given node. The domain itself corresponds 

to the root node. 

13 

III 131 

1121 1122 

Figure 7.1 

The tree representation of domain D 

Domain D, shown in Figure 7.1, permits direct access to objects 

11,12 and 13. Object 131 has to be accessed via 13, and 1121 via 

11 and 112. To the programmer, 112 is an abstraction of the two 

objects 1121 and 1122. Similarly, 11 can be regarded as an 

abstraction of the objects contained in the subtree emanating from 

the node labelled 11. The objects which appear at the non-leaf 
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nodes may simply be descriptors permitting access to a vector of 

objects. In other words, it is convenient to regard a descriptor 

as an object in the same way that Lampson regards a capability as 

an object (Lampson 1969b). 

The domains in which an Algol W program executes can be desc­

ribed in this way. Figure 7.2 shows a procedure P and the represen­

tation of the domain in which the activation of P executes. The 

domain is represented by a root node which has branches to the simple 

variables in the domain and the descriptors for any arrays or para­

meters. Thus, the root node permits access to the objects contained 

in the primary allocations of the accessible activation records. 

Certain of these objects, namely descriptors for arrays or parameters, 

themselves permit access to other objects such as array elements. 

Array descriptors permit access to parts of the secondary allocation 

of an activation record and parameter descriptors to objects stored 

anywhere on the stack. When executing in P, direct access is permitted 

to A,C and R, the actual parameter J is accessed via a descriptor and 

the elements of array X are also accessed via descriptors. 

Not all domains are hierarchically structured; when there is 

more than one access path to an object, a lattice-like representation 

m~y be more appropriate (Lampson 1974). 

To access objects in a domain which is hierarchically structured, 

it is necessary to traverse the tree representation using appropriate 

operations. The whole of the domain is not immediately accessible; 

the part of the domain addressable by the programmer at any instant 

is typically a true subset of the domain. A further protection device 

is to label the branches of the tree representation with the allowed 

operations which the programmer can invoke along each branch. Then 

the operation requested by the programmer limits the accessible set to 
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I 

J 

BEGIN 

END. 

INTEGER A; 
REAL ARRAY X (1::2,1::3); 
PROCEDURE P (INTEGER I); 
BEGIN 

INTEGER C; 
REAL R; · 

END Pi . 

BEGIN 
INTEGER J; · 
P (J) ; 
· 

END; . 

X(l,l) X(2,1) X(1,2) X(2,2) X(1,3) 

Figure 7.2 

An Algol W program and the representation of the domain 
in which the activation of procedure P executes 
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the branches emanating from the current node of interest tagged 

with that operation. We have seen in Chapter 6 how read and write 

access select different accessible sets when only store protection 

is implemented on IBM 370 computers. 

In this chapter, we are primarily concerned with the form of 

protection which Lampson (1974) terms defensive protection as opposed 

to absolute protection. Defensive protection tries to make it un­

likely rather than impossible that protection violations will occur, 

that is, the system is defending against accident rather than malice. 

Absolute protection purports to guarantee that no matter what 

program is executing in a domain, it will be unable to break the 

protection barriers imposed by that domain. Absolute protection 

depends on correct hardware and software and the correct setting up 

of domains. 

Between processes which are meant to be entirely independent 

(e.g., processes initiated from different users who do not even know 

of each other's existence) absolute protection is required. That is, 

the protection system should ensure that there is no interference 

between the processes. However, when there is intended to be 

cooperation between processes (e.g., users accessing a common data 

base, or even parallel processes in a single program put there in 

order to make good use of parallel hardware), absolute protection 

is required between the cooperating processes and other independent 

processes, but structure within domains can be exploited in the 

interests of defensive protection between the cooperating processes. 

We define the direct scope of a program executing in a domain 

as the objects contained in the domain which the program can access 

with a single operation. Clearly this definition depends on the 

meaning of 'single operation'. For instance, fetching an array 
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element A(i) on a non-structured machine using an optimising compiler 

would be one rather than two operations. Thus, the direct scope of 

a program has to be considered in a context where the nature of 

operations is clearly understood. 

The direct scope will vary during execution as changes occur 

in the set of objects which the program can access with a single 

operation. For a program executing in domain D shown in Figure 7.1, the 

initial direct scope includes the objects 11,12 and 13. If object 

11 is accessed the direct scope changes to objects III and 112. 

Thus, whenever the program accesses a non-terminal node of the 

tree-representation of the domain, the direct scope changes. The 

union of all possible direct scopes within a domain is termed the 

total sco~e of the domain. 

Absolute protection is not directly concerned with this structure, 

though it is useful conceptually for writing programs and for sharing 

objects between domains. A defensive protection system would attach 

value to the fact that certain objects can be accessed directly, 

while others cannot be referenced except by the execution of a 

carefully chosen sequence of operations. 

In the case of defensive protection, small direct scopes are 

significant since they limit the instantaneous possibilities, but 

the total scope can be large without seriously affecting the 

protection. A measure of structured domains based on the idea of 

direct scope is presented in the next section. 

7.2 A Measure of Structure within a Domain 

A measure of the structure contained within a domain is the 

average direct scope within the domain compared to the total scope of 
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the domain, 

i.e., average direct scope 

total scope 

There are various ways of quantifying the direct scope and total 

scope, similar to the possibilities available in measuring the 'size' 

of an accessible set. The obvious method is to use the number of 

objects contained in the direct scope and total scope. To 

accommodate the operations which can be applied to each object, an 

object 0 can be considered as a set of pairs (O,oc),(O,oc), ... ,(O,~', 
1 2 IV 

where oc. ,oc '0" ,IX. are the permitted operations for object 0, and 
1 2 n 

each pair (O,~) considered as a separate object. 
I 

The average direct scope can be computed as the average of the 

direct scopes actually entered by a process during execution within 

the domain weighted by the number of operations invoked within each 

scope. An alternative is to take the average of all direct scopes 

within a domain, thus avoiding any dependence on the execution 

which actually takes place--within the domain. 

If the domain varies during execution due to domain changes, 

the measure can be evaluated as: 

average of current direct scope 

current total scope 

where the average is taken over those direct scopes entered 

by the process. 

The measure for a particular domain will have a value between 

o and 1. A value of indicates that the direct scope equals the 

total scope and thus the domain contains no structure which is used 

for protection. Values approaching 0 indicate a very highly 

structured situation with few objects contained within each direct 

scope. 
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7.3 Comparison of Structured Protection Systems 

A program executing in a domain consisting of a contiguous 

area of memory and using absolute addresses to access words in the 

memory area has the simplest of structured representations, viz.: 

012 n words of memory 

In such a domain, the direct scope equals the total scope and hence 

the value of the measure equals 1. 

This can be compared with a program executing in a domain con­

sisting of a number of distinct segments ~ ,s2, ... ,sn' Addresses 

used by the program take the form (s,l), where s selects a segment 

and 1 selects a word within that segment. The domain has a two­

level structure: 

n-l 0 
1 

Assuming that n = 
1 n-l 

~n. , \hat 
i=1 I 

o n -1 
m 

is the total accessible memory area is 

the same as in the previous domain, the direct scope is considerably 

reduced in comparison with the previous case. The average direct 

scope over the whole domain = m+n,+n
2

t ... +nm. Thus, if the 

(mtl) 
n 

n.~ 1m, the average direct scope ~ m+n and the measure evaluates to 
I m+l 

approximately 1 
(m+') 

As the number of segments, m, increases the 

measure tends to 0, which, compared to the previous case, indicates 

a significant improvement in protection. A refinement of this analysis 

would be to include the permitted accesses to each segment. For instance, 
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there may be three access modes to segments, Write, Read and Execute --- , 
but if some segments had less than the full set of access modes 

permitted, the average direct scope would be further reduced. 

The second example concerns the use of codewords as proposed 

by Iliffe and Jodeit (.(Jodeit 1968),(Iliffe 1969),(Iliffe and 

Jodeit 1962)) and implemented on the Rice computer (Feustel 1972). 

The purpose of using codewords is to retain structural information 

as an essential component of the representation of a program and 

its data. 

Structuring is provided by the array mechanism, each array is 

named and contains as elements data or subarrays. The elements of 

an array form a block, a set of consecutive memory locations. Each 

block is labelled by a codeword (a word corresponding to the name 

of the array). If A is an array, the i-th element of A is denoted 

(A,i). If the elements of A are subarrays, the i-th word in the 

block for A is a codeword which labels the array (A,i). 

Thus, an array is a tree structure. The codeword corresponding 

to the complete array is called the primary codeword. All subarrays 

and data elements of an array are addressed relative to the primary 

codeword. 

Scalar quantities are represented directly in a value table. 

Other entities, such as programs, vectors, multi-dimensional matrices, 

structured data, etc., are represented by arrays whose primary code­

words occur in the value table. The value table can be addressed 

directly by an executing program, thus the value table essentially 

defines the domain of the executing program. Elements of an array 

are addressed indirectly through the primary codeword for the array 

held in the value table. The indirect addressing is hardware 

implemented leading to an efficient implementation of codewords. 
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To access a particular element in an array, regardless of its 

position in the tree-structured representation of the array, the 

program inserts subscripts into a set of registers indicating the 

path to be taken through the array to reach the element. The 

program then addresses the primary codeword for the array and 

invokes the array element accessing instruction. The hardware 

traces a path through the array structure, using the subscripts 

in turn to determine the branch to be taken from each node in the 

tree representation of the array. Each subscript is checked, 

before being used, against information held in the current code­

word to ensure that it is valid. 

A two-dimensional square matrix M of n rows and n columns 

is thus represented by n vectors each n words long (see Figure 7.3). 

primary codeword 
for M 

n 

I 
I 
· 
/// · · 

I 
· · · 
I 

secondary codewords 
for rows of iV1 

Figure 7.3 

Mi,1 
Mj,2 

• 
· · 

Mj,n 

vector of n elements 
of M 

Codeword representation of a two dimensional square matrix 
(. 

Confining attention to this array alone, the average direct scope is 

n compared to the total scope (n2+n). The measure of structure 

evaluates to 1 ,which compares favourably with the value 1 for a 
n+ 1 

Fortran-type implementation of the same array. 
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The benefit of the codeword approach is a significant reduction 

in the size of the average direct scope (n compared to n2 for a 

Fortran-like implementation of the above array) and automatic checking 

of array subscripts. The cost of the retained structure in this 

instance is (n+l) words of memory and the time taken to set up the 

codeword structure. The time taken to access an array element is 

likely to be similar to the time taken in a Fortran-like implemen­

tation t since it is implemented in hardware and the address of the 

element does not have to be calculated explicitly. 

The use of a scalar measure to compare structured situations 

obviously has its limitations. but as illustrated above t it does 

lend some relative quantitative assessment in comparing structured 

protection systems. A particular limitation is that the measure of 

structure is defined in terms of operations and thus its evaluation 

will depend to a considerable extent on what is deemed to constitute 

an 'operation' in a specific situation. The array element accessing 

operation on the codeword machine t where the subscripts are put into 

registers and the hardware traces a path through the array structure 

to the designated element t can be treated as a single operation 

involving no switch in domains, but 1nstead a number of changes of 

direct scope. In contrast, on a machine such as the Burroughs B5000, 

to access an array element it is necessary to program explicitly 

each individual indexing instruction involved in accessing the 

element. These instructions can be considered as separate operations 

some of which may involve a switch in domain. A third variation is 

the Algol W array element accessing operation which performs sub­

script checking. The programmer can consider this operation as a 

single operation, but he relies on the compiler to generate the 

correct code sequence to carry out the checking and accessing. This 
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introduces the question of abstraction; by viewing array element 

accessing as a single operation the programmer is forming an 

abstraction of a sequence of machine language operations. In practice, 

there are likely to be many levels of abstraction; an operation is an 

abstraction of a sequence of sub-operations which in turn can be 

broken down into sequences of sub-sub-operations, etc. The question 

arises as to the appropriate level at which to view operations. 

Also, even though an operation is regarded as atomic, the sequence 

of operations from which it is formed can perhaps be interleaved 

with operations from other processes, thus introducing questions of 

parallel process interference. 

The assessment of structure poses the question of what is an 

operation and raises other issues such as what is a domain switch, 

what I hardware I checking is actually being done, etc. Rather than 

discuss these issues in general, they are most clearly explicated 

in terms of a particular system design, specifically in terms of a 

type-based design. 

7.4 Evaluation of a Type System 

The intended function of types is to allow the programmer to 

define new forms of data structure together with matching operations 

to access instances of such data structures. Current interest in 

types arises because of their potential for increasing programmer 

effectiveness. The sole aim in presenting types here is to 

investigate the enhanced protection facilities available with 

types compared to the situation where blocks are the only struc­

turing device which can be used to restrict accesS to program 

variables. 

Standard languages such as Fortran, Algol and PL/l have 
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independent means of structuring data and programs. For example, 

Algol W provides arrays and records for structuring data and 

procedures for programs. Types provide a uniform and coordinated 

means for structuring data and instructions. 

The types considered are embedded in an Algol-like programming 

language, the details of which do not concern us here. The block 

structure can be used to restrict the scope of variables within a 

program, that is a specification of domains, and types ensure that 

access to programmer defined data structures is only permitted via 

the set of operations defined for that type of data structure, by 

providing a convenient means to specify and change direct scopes. 

In the present situation, lacking a widely accepted typed 

language, indeed when much research into the subject is being 

carried out, we are forced into having to make certain choices re­

garding the facilities to be provided in such a language. Having 

made a choice, it provides a basis for the discussion of protection 

aspects. The particular choice of facilities is meant to be 

representative rather than definitive. 

It is not appropriate to attempt a survey of all related work 

in this fast-moving area, but the form of types presented in this 

section is an amalgam of ideas from existing work on types: 

classes of SIMULA 67 (Dahl et al 1970), modes of Algol 68 (Wijngaarden 

et al 1974), types of Morris (1973a) and Wang (1974). The notion of 

types and the supporting architecture, which are briefly described in 

the next two sections, are the result of joint work between the author 

and Roy Campbell (Campbell and Wyeth 1974); the evaluation of the 

protection aspects of types was performed solely by the author. 
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7.4.1 Types in a Block Structured Language 

Many languages, e.g., Fortran, Algol, PL/l, support simple 

data-types such as integer, real, boolean, character, etc., and 

operations (read, write, add, subtract, ... ) provided by the hard­

ware which can be applied to variables of these data-types. The 

types described here include the primitive types mentioned above 

but also allow the programmer to create new types and specify a 

set of operations which can be applied to instances of the type. 

A new type is introduced by a type definition. A type is a 

characterisation of a class of objects and, once defined, instances 

of that type can be declared. Example 1 shows the definition of 

a type Item, the notation used has been adopted for convenience and 

is not a proposed syntax. 

A type definition must occur at the beginning of a block along 

with any other declarations contained in the block and applies for 

the duration of the block. Thus, instances of the type can be 

declared within the block containing the type definition and any 

inner blocks. We do not consider here the dynamic creation and 

deletion of objects in the sense of Algol W records (Wirth and 

Hoare 1966). 

A type definition includes a schema or template for a data 

structure, which characterises individual objects of the type, and 

a set of operations which can be performed on such a data structure. 

In Example 1, the template specifies that an instance of an Item 

is composed of two integers, referred to as Part No and Stock, and 

a real number Price. The only means of manipulating an object of 

a user defined type is by invoking an operation defined for that 

type of object. These operations are defined within the template 

and are termed object-operations. 
I, 
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begi~ 

~ Item (integer P,S; real Cost); 
integer No_Items; 
initially: No_Items:=O; 
operation No_of_Parts (returns integer I): 

I :=No_Items; 

template 
integer Part_No, Stock; 
real Price; 

, 
initially: 

begin 
Part_No :=P; Stock :=S; Price :=Cost; 
No Items :=No Items + 1; 

finally: No Items :=No Items - 1; 

operation Allocate (accepts integer request): 
if request ~ stock then stock :=stock - request 

else error; 

end template; 
end type; 
Item Clutch(10451 ,100,10.41), Brake(10651,50,2.96); 

Example 1 
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The declared Items, Clutch and Brake, can only be accessed 

via the operation Allocate and other operations defined within the 

template. The significant point of types is the protection of 

objects from forms of access other than the operations defined for 

that type of object. 

The type Item provides the programmer with an abstraction 

of say car parts, and once this type definition has been specified 

he no longer need concern himself with the concrete representation 

of the objects he creates. The three components of the Item Clutch, 

viz.: Clutch.Part_No, Clutch.Stock and Clutch.Price, cannot be 

accessed directly outside the type definition. Thus the components 

of the Item Clutch can only be manipulated by invoking the appro­

priate object-operations. 

An object-operation can only be invoked by qualifying the 

operation by the object to which it is to be applied, e.g., 

Clutch.Allocate(20) 

Two distinguished operations may be declared: initially and finally. 

initially is invoked automatically on the execution of a declaration 

of an object of that type and finally is invoked when the object is 

deleted. The scope of the object-operations is the same as that of 

the type definition. 

For completeness, a type definition is considered to be the 

declaration of a type object, an object of type TYPE, another pre­

defined but non-simple type. The notion of a type being represented 

by an object is taken from the Hydra system (Wulf et al 1973). 

Treating type definitions as the declaration of an object of type 

TYPE, means that type definitions can be represented at run-time in 

a manner similar to other objects. A TYPE object includes any 

objects declared within the type definition but outside the template. 
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Such objects (e.g., No_Items in Example 1) correspond to lown l 

variables of the class of objects of this type and characterise 

the whole class. These objects are only accessible within the 

environment (i.e., domain) of the type definition. Indirect access 

to these objects is gained via the type-operations which are 

declared within the type definition but outside the template. Type­

operations have the same scope as the type definition in which they 

occur. The type-operation No_of_Parts, in Example 1, is intended 

to return the number of Items which have been declared. A 

distinguished type-operation initially may be declared with other 

type-operations, in which case it is invoked on execution of the 

type definition to initialise the objects declared in the type 

definition. 

Object-operations, declared within a type definition, can 

access the component parts of the object to which they are applied 

by means of the names of the components as defined in the template. 

Such names are automatically interpreted with respect to the object 

on which the operation is acting. Type operations need no qualifi­

cation to be invoked by a program. 

To increase the flexibility in the use of types, parameters are 

allowed to type definitions. Such parameters are bound on declaration 

of an object of that type. Ideally, any form of parameter would be 

permitted including types themselves. However, certain parameters 

and the use of parameters in a way which affects the precise form of 

object created, when an object of the given type is declared, can 

lead to complications such as polymorphic types (see (Morris 1973a), 

(Liskov and Zilles 1974) and (Wang 1974) for a fuller discussion of 

this topic). Thus, we restrict parameters to simple variable 

parameters (i.e., variables of a non-user defined type) used in a 
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'simple ' way. Example 1 used parameters to the type Item for the 

initialisation of the components of an object of type Item. 

7.4.2 A Computer Architecture for Types 

The purpose of presenting in outline a computer architecture for 

types is to demonstrate that it is practicable to design an architecture 

which supports at run-time the structure contained in a program written 

using blocks and programmer defined types. The protection rules of 

types are enforced at run-time by the architecture. 

The prototype for the implementation is that used in Algol-60 

run-time systems where activation records are allocated at the block 

level. Such a system was briefly described in Chapter 5 and is 

covered in detail by Randell and Russell (1964) and Wichmann (1973). 

Since Algol-like scope rules apply to all objects, it is feasible 

to maintain all descriptors, representations of objects, working 

storage and linkage information on a stack. An activation record is 

created on block entry, procedure call, operation call and on the 

declaration of a variable of a user defined type (the term program 

segment will be used for the code corresponding to a block, procedure, 

operation or creation of an object). An activation record consists 

of four parts: linkage information, parameter section, primary 

storage and secondary storage. Access to activation records is via 

a set of hardware maintained display registers. Each active display 

register contains a pointer to the base of the appropriate activation 

record and has its limit extension set to the extent of the parameter 

section plus primary allocation. 

Each object declared in the program segment corresponding to 

a given activation record has a descriptor in the primary storage. 

Objects of a simple type (i.e., integers, reals, etc.) have their 
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value contained in the descriptor for efficiency reasons. Descrip­

tors in the primary storage are accessed via the appropriate 

display register. 

The representations of arrays and objects of a user defined 

type, declared in the program segment, are contained in the secondary 

storage of the activation record. These representations are accessed 

via the descriptors in the primary storage. 

Objects of simple types (i.e., integer, real, character, etc.) 

are represented directly by a word containing the value and tagged 

with the appropriate type (see Figure 7.4(A)). Objects of non-simple 

types (i.e., strings, arrays or user defined types) are represented, 

in the first instance, by a descriptor in the primary storage (Figure 

7.4(8)). The type information contained in the first field of both 

(A) I type I value 

(8) I type I length I pointer I 

Figure 7.4 

Descriptor Formats 

descriptors takes the form of a pointer to the descriptor defining 

the type. The address of a descriptor which defines a type thus 

serves as the identity of the type. The number of contiguous ·words· 

to which a descriptor of format B permits access is contained in the 

length field, and the location of these words in the stack is given 

by the contents of the pointer field. 

A non-simple object is defined recursively as either a simple 

object or an ordered set of non-simple or simple objects (c.f., 

Jones (1973)). Figure 7.5 illustrates the structure of a non-simple 

object. The descriptor representing the non-simple object in 
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primary storage (labelled A in the Figure) points to the ordered set 

of objects of which it ;s composed (B). Objects in B may be simple 

or non-simple and constitute the primary storage of the object. 

A 

descriptor 
(i n primary 
storage) 

B 

~l 

2 
3 

n 

c 
-< value> 

<value> ---'" < value> 
: "'-~ < value> 

< value> 

< value> 
< value> 

Figure 7.5 

The hierarchical representation of an object 

<value> 
~value> 

<value> 
<value> 
<value> 

Descriptor A only permits access to the descriptors in B, not the 

total representation of the object. B, is a non-simple object 

and the descriptor points to its representation C. B2 is a simple 

object and so its value is stored in the descriptor B
2

. This 

process is carried on recursively until all the objects have been 

represented in terms of simple objects. The resulting structure 

is a hierarchical representation of an individual object. 

Apart from the descriptor contained in the primary storage of the 

declaring block, the tree structure drawn in Figure 7.5 is kept in 

a contiguous set of words in secondary storage. 

The descriptor for an object of type TYPE is a slight variant 

on the normal object descriptor and is shown. below. The extra field, 

I TYPE llength 1 operations I pointer I 

operations, in this descriptor contains the total number of type­

operations and object-operations declared within the type definition. 
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The representation of a type on the stack includes a descriptor for 

each of the lown l variables of the type definition and a descriptor 

for each code component produced by the compiler. Figure 7.6 

outlines the storage representation of a type definition. 

own variables 

operation 
descriptors 

final code 
template code 

T2 
Tl 
object-operation 
object-operation 
type-operati on 
final-code 
template 

TYPEI 7 13 1 

Figure 7.6 

Outline of a type representation 

r+--

On entry to a program segment the primary storage in the 

activation record is requested and allocated. Each declared object 

(including new types) gives rise to a CREATE instruction in the 

compiled code of the program segment. The descriptor for the object 

is tagged with the appropriate type and for objects of simple type 

no further action is required. 

The representation of non-simple objects is built up in the 

secondary allocation by the CREATE instruction invoking the template 

code for the corresponding type. This is addressed by referencing 

the descriptor for the template code (by convention the first des­

criptor in the primary storage of the type object) in the appropriate 

type object. The template code sets up the representation of the 

object and performs any necessary initialisation. It is analogous 
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to the code produced by an Algol compiler for setting up a dynamic 

array. 

On invocation of the template code, the display registers are 

updated to reflect the environment of the type definition, primary 

storage is requested and the address and extent of the primary 

storage are automatically put into the object descriptor. The 

template code creates on the stack, in its primary allocation, 

the first level representation of the object. In a similar manner, 

the representation of objects occurring in the first-level rep­

resentation of the object are implemented in the secondary allocation 

of the template by invoking the template code for each such 

object in turn. This process is carried on recursively until the 

whole representation for the object has been created. On return 

from template code, the activation record of the template code is 

not removed from the stack since it forms the representation of the 

object. During calls of template code, linkage information can be 

stored on a separate control stack so it is not incorporated into 

the representation of the object being created. 

Objects are deleted on exit from a program segment. For each 

object declared in the program segment, the distinguished operation 

finally is invoked, if defined for that type of object. The objects 

are then deleted by retracting the stack. 

Procedures and operations are essentially similar, but an 

object-operation has a distinguished parameter, namely the object 

to which it is applied, whereas a procedure has a pointer to its 

associated environment (static link) included in its descriptor. 

A procedure or operation descriptor, shown below, contains the 

segment name of the code segment to be invoked, the static link and 

the type procedure, type-operation or object-operation. 
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procedure static 
or segment name 

operation link 

The use of descriptors for procedures and operations means that 

they can be treated as objects implemented off the stack. A 

procedure is invoked by a call instruction which takes as its 

argument an address couple referencing the procedure descriptor. 

Object-operation calls in the source language of the form 

<object-name> . cobject-operation-name> 

are translated into 

object-operation-call <address couple specifying object> 

<operation number> 

The operation descriptor is located by following the pointer in the 

type field of the descriptor for the object to the descriptor for 

the type. Indexing the descriptor for the type with the operation 

number yields the operation descriptor. The operation number is 

checked against the total number of operations contained in the type 

descriptor to ensure it is within the allowed range. 

The domain of an object-operation is a concatenation of the 

domain of the type definition, the type definition, the local 

variables of the operation and the object to which the operation ;s 

applied. The descriptor for the object could either be the first 

descriptor in the parameter space of the activation record or be 

stored in a separate register. If the operation was compiled at 

program level k+l, one higher than its true program level k, the 

descriptor for the object could occupy the display register D{k). 

This would arise naturally if the template in the type definition 

was regarded as a block surrounding the operations. The first 

level representation of the object could then be referenced by 
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address couples, thus avoiding another addressing variant. 

Type-operations are translated into 

type-operation-call <type-address-couple> <operation-number> 

The operation descriptor is located by indexing the type descriptor 

by the operation number. The management of display registers etc., 

for object-operations and type-operations is the same as that for 

procedures. 

Only an outline of the machine architecture has been presented 

here, sufficient to facilitate a discussion of the protection aspects 

Of types. A fuller exposition can be found in (Campbell and Wyeth 

1974). 

7.4.3 Evaluation 

The previous section outlined an architecture which aims to 

achieve an implementation of block structure and types closely 

mirroring the source language structures apparent to the programmer. 

The philosophy underlying the run-time system is that the best time 

to check that an allowed operation ;s being applied to an object is 

just prior to the invocation of the operation. This does not run 

counter to policies of compile-time and load-time checking, but is 

to be seen as an additional checking time. A high degree of pro­

tection is achieved at run-time through a combination of a display 

mechanism, a tagged architecture, a dynamic type table and special 

hardware functions. 

The advantages of base and displacement addressing have already 

been discussed in Chapter 5. Here, this addressing mode has been 

extended to the naming of the parts of which a composite object is 

formed. There is thus a uniformity of attitude to blocks and objects, 

each ;s considered to be structured into primary and secondary 
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allocations. Further, this addressing scheme enables objects to be 

named within the correct scope, but there is no means by which to 

manipulate the representation of an object except by invoking the 

appropriate operations. Object-operations are invoked via the 

descriptor for the type definition corresponding to the type of the 

object. This descriptor is located using the type tag in the 

descriptor for the object. Hence, only those operations defined for 

the object can be invoked to manipulate the object. When an 

object-operation is invoked, the object to which it is applied 

is automatically included in the domain and access permitted to 

the object's first-level representation. 

Type information, in the form of type objects, is maintained 

on the stack during execution. Access to the type objects, which 

represent the various programmer defined types, is limited by the 

display mechanism. The maintenance of this type information thus 

constitutes a dynamic type table. Hydra, a system based on a 

similar form of types (Wulf et al 197~b). keeps type information 

(for the system and all users) in a single large type table. By 

keeping each user's type information in his own data-stack. the 
~ 

problems of accessing and protecting a large table are avoided. 

If a protection violation or an error occurs in a stack it only 

affects one user, whereas similar occurrences with the Hydra type 

table could affect other users. 

A change in context, which takes place on the transfer of 

control from one program segment to another. will involve a change 
I 

in the contents of some of the display registers and the stacking 

or unstacking of linkage information. Following the Burroughs 

B6700 hardware procedure call mechanism, the type machine would 

provide hardware or emulated instructions which perform the functions 
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associated with a context change. The integrity of the display 

registers and the linkage information is thus assured (hardware 

errors apart) as a program segment then has no means to access 

the registers or linkage information directly. 

An evaluation of the protection aspects of the above architecture 

which supports programmer defined types or a comparison with other 

type systems is a difficult problem because of the need to consider 

structure. However, the notion of a structured domain and the 

proposed measure can help such an evaluation whereas the one-level 

view of the set of objects in a program, adopted earlier in this 

thesis, would not be satisfactory. 

In evaluating the protection afforded by the implementation, we 

are interested in the improved protection offered within a block 

over the typical Algol implementation, and the cost at which this 

improvement is attained. 

The increased benefit depends on the extent to which a 

programmer structures his domains using types, thus providing 

structural information to the machine. It would be quite possible 

to ignore the type mechanism altogether and write essentially 

normal Algol programs. There would be no special benefit offered 

by the architecture to such a user over a conventional Algol 

implementation and the costs would be similar to those of an Algol 

system. 

We are concerned, principally, with the situation where 

programmers make extensive use of the facility to create new types 

to suit the requirements of each individual program. 

In the type machine, arrays would be implemented in a manner 

analogous to that described for codewords in Section 7.3. In terms 

of the measure, such an implementation was seen to give a dramatic 
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improvement in protection, measured in terms of the reduction in the 

size of the direct scope. Some Algol implementations (e.g., Algol W) 

use a dope vector to assist in the calculation of the address of an 

array element and include sufficient information in the dope vector 

to permit subscript checking. Thus, there is not necessarily any 

improvement in protection in the case of arrays. However, these 

implementations provide run-time protection by means of compile-time 

provided conventions for use of the machine. If the compiler is 

subverted such conventions may not hold. 

By using types, a programmer can impose on an address space a 

highly structured situation so that the direct scope will typically 

be much smaller than the total scope. 

Consider the type Person defined in Example 2 and the structure 

of an object of type Person shown in Figure 7.7. An object of type 

Person is seen to be a reasonably complex data structure, but by 

defining it in this way various aspects of protection can be enforced 

at run-time which cannot be achieved with a conventional implementation 

of block structure. The average direct scope of the object shown in 

Figure 7.7 is 2.6, and the total scope is 13. Hence, the value of 

the measure for this object alone is .2. 

If a Person is represented by individual variables: day, month. 

year, person-identity, address(1), ... ,address(5), the direct scope 

equals 9. So comparing an object of type Person with the variables 

implementing the corresponding object in a block implementation. the 

average direct scope is 2.6 in the first case and 9 in the second. 

This order of improvement was to. be expected since the proposed 

measure evaluates to .2. For ease of discussion. only the structure 

of a single object has been considered, but with extensive use of 

types it is not unlikely that similar improvements could be expected 

for whole domains. 
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begin 
~ Date; 

template 
lnteger Day,Month,Year; 
operation Set_Date (accepts integer A,B,C): 

be~in Day:=A; Month:=B; Year:=C;end; 
operatlon Read Year (returns integer~: 

I :='tear; 
. 

end template; 
end type; 

type Identity; 
integer Number; 
initially: Number:=O; 
template 

lnteger Identity No; 
initlally: begin-

Number:=Number+l; Identity No:=Number; end; 
operation Access (returns integer I):I:=Identity_No; 

end template; 
end type; 

type Address; 
template 

string(30) array Lines(l:S); 
operation Assign ... ; 
operation Getlinel •.. , 

. 
end template; 

end type; 

type Person; 
;nte~er No People; 
initla11y:-No People:=O; 
template -

bate Birth; 
Identity Person Identity; 
Address Person Address; 
operation Age Treturns integer I): 

I:=Current Year· Birth.Read Year; -' -
. 

end template; 
end type; 
Person Pl,P2,P3; 

Example 2 
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Day Month 

Person 
Identity 

Lines(l) Lines(2) 

Figure 7.7 

Person Address 

Lines(3) Lines(4) 

The structure of an object of type Person 
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The significant reduction in direct scope is not the only 

protection benefit to be expected from types. For instance, the 

components of the object named Birth within an object of type 

Person cannot be manipulated directly. From within the type 

definition Person, Birth can only be accessed by the operations 

defined for an object of type Date. Outside this type definition, 

even these operations cannot be invoked on Birth because there is 

no means of specifying the Birth component of an object of type 

Person. Access to Birth is restricted to the operation Age 

defined within the type definition Person. This protection would 

be enforced in the first place by the compiler but be validated 

by the proposed architecture. Similar comments can be made 

regarding the accessibility of other components of objects. 

The type Identity is used to assign each Person a unique 

identity, namely Person_Identity. The generation of unique numbers 

requires an integer Number in the type definition for Identity. 

Since no type-operation is defined, Number can only be altered 

from within the template. Similarly, the unique number of each 

object of type Identity cannot be changed because there is no 

object operation defined to alter it. 

The type mechanism in this example provides a restricted set 

of operations which can be used to manipulate objects. Since not 

all operations are valid for all objects, the direct scope will in 

practice be smaller in terms of (object,operation) pairs, than 

that calculated above. 

The potential benefit of types and the proposed architecture 

is a significant reduction in direct scope of objects and operations 

compared to the use of conventional block structure without programn~r 
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defined types. The reduction in direct scope results in increased 

reliability; errors are likely to be caught sooner than with a 

conventional Algol implementation and certain previously undetected 

errors will now be signalled as protection violations. When an error 

does occur, since objects are represented at run-time in a way 

which can be related to their source program definition, errors can 

be reported in source language terms, thereby assisting the diagnosis 

and correction of errors. 

The costs of this protection benefit can be considered in terms 

of space and time. Space is required on the stack for the represen­

tation of type objects, the descriptors defining the structured 

relationships of the components of each object and the linkage 

information which must be stored when each new direct scope is 

entered. Extra processing time is required to set up type objects 

and the representations of individual objects, and to perform the 

increased number of context changes. A context change will occur 

on each change of direct scope and will involve alteration of the 

display registers and the storing of linkage information. In 

addition, the proposed hardware itself is more complex than con­

ventional computers and this could increase the hardware cost and 

the basic cycle time of the machine. 

The proposed machine architecture reflects closely at run-time 

the source language structure of the program. Retention of structure 

enables the protection provided at run-time to match closely the 

protection specified by the programming language. The structure is 

exploited to achieve an efficient implementation of protection 

through addressing. It is the author's belief that in a suitably 

designed system, the costs of maintaining and using the system will 

be outweighed by the benefits. 
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This discussion has concentrated on the use of types within a 

single process. The extension to a machine design supporting 

cooperating processes which share objects of programmer defined 

types is not yet complete due to unresolved problems of such an 

architecture in connection with parallelism. Ways of structuring 

the relationships between domains, discussed in the next section, 

and the work of Campbell (Campbell and Habermann 1974) on process 

synchronisation, may provide techniques to overcome these problems. 

Other proposed or extant implementations of types include those 

of Wang (1974) and Morris (1973a) and the Hydra system (Wulf et al 

1974b). 

In his thesis, Wang proposes a method of implementing his 

type language but he does not explicitly represent the structure of 

an object at run-time, reducing all objects to collections of 

primitive objects at compile-time. The consequence of this is 

minimal run-time protection. The proposals of Morris for types 

are similar to those presented in this Chapter, but his 

implementation is radically different. using an unstructured 

storage space whereas we propose implementing all objects on a 

stack. 

The Hydra system also presents a similar view of types but 

without the overall block structure. Types encompass the whole 

computer system and thus present a uniform protection method to the 

programmer. In the Hydra system, an object has two parts: a data 

part and an object reference part. The objects which a process can 

name directly are specified by the capabilities in the process's 

local name space, which is akin to the capability list of Dennis and 

Van Horn (1966). An object which is a composition of other objects 

has capabilities for these objects in the object reference part of 

the given object. Circular links are prevented, thus the resulting 
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set of objects composing a domain and their structure can be 

represented by a tree. Objects in the domain are referred to by 

a path-name which indicates the path to be taken through the 

structured domain to reach the object. For instance, the path­

name i.j.k specifies the k-th capability in the (capability part 

of the) object named by the j-th capability in the object named 

by the i-th capability in the local name space of the process. 

The Hydra system offers more flexibility than the proposed type 

machine but with the result that the cost of a domain switch is 

high, thus discouraging the use of a large number of small domains 

and domains with a large number of small direct scopes. 

7.5 Complementary Notion of Structured Relationships between Domains 

The use of structure within a domain for protection purposes 

has been discussed at length in this ch?pter and, in this final 

section, the complementary notion of structured relationships 

between domains is briefly considered. Two possible types of 

relationship are presented as examples. The first type of struc­

turing is that found in block structured languages where domains 

are linked to blocks and the second is the strict nesting of domains. 

A program written in an Algol-like language can be represented 

by a tree structure where each node corresponds to a block or 

procedure. The branches emanating from a node link the given node 

to nodes representing blocks or procedures declared within the given 

block or procedure. The root node represents the outermost block of 

the program. Figure 7.8 shows the tree representation of a simple 

Algol program. 

The tree is a representation of the static structure of the 

program. Execution of the program, or the program's dynamic structure, 
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Figure 7.8 

An Algol program and its tree representation 

is represented by a path from the root node to the node representing 

the block in which execution is currently taking place. In Figure 

7.8, the path marked indicates execution within the block labelled 

C. If each node is also deemed to represent the set of objects 

declared within the corresponding block or procedure, the path 

through the tree, indicating the current execution state, also 
• 

indicates the currently accessible objects, apart from parameters to 

procedures. 

Each node corresponds to a block or procedure, and since domains 

are tied to blocks and procedures, a node represents a possible domain 

of execution. The tree structure is thus a representation of the 
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relationship between the domains. The interpretation of the tree 

structure is that the domain represented by a node includes the 

objects associated with that node (that is objects declared within 

the corresponding block or procedure) and objects associated with 

nodes on the path from the given node to the root node. Hence a 

domain includes those domains on the path to the root as subsets. 

A second type of relationship is illustrated by the process 

structure of the Cambridge CAP computer (Walker 1973),{Needham and 

Walker 1974). Processes are structured in a hierarchical manner 

so that any process can only access a subset of its father's 

resources. 

The protection implemented by CAP is memory protection, the 

basic unit of protection being a segment which is viewed as a 

contiguous set of words. Input/output protection can be achieved 

via memory protection by assigning each device an address and either 

including or not including that address in the process's address 

space. 

The segments which a process can access are defined by the 

process's capability segment (PsCS). For each segment which the 

process can access, there is a capability in its PsCS containing, 

inter alia, the identity of the segment, in terms of a capability 

in the PsCS of the father process, and the type of access the 

process can make to the segment. 

A process can act as a coordinator for a number of processes, 

that is a process can spawn junior processes, providing any 

operating system functions such as interlocks and the control of 

the allocation of the CPU for the junior processes. A junior 

process is created by defining its PsCS in terms of the capabilities 

contained in the PsCS of the coordinator~ The capabilities in the 
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PsCS of the junior process are refinements of those in the coordinator's 

PsCS, that is represent a subsegment or a reduction in access permissions. 

Thus, the architecture of the CAP computer supports a hierarchy 

of processes, where each process knows of its father and its junior 

processes but does not know if a junior process has set itself up as 

a coordinator and is multiprogramming among a set of junior-junior 

processes. 

A process addresses a word in a segment by specifying a capa­

bility in its PsCS and the offset of the word within the segment. 

The access type is checked against the allowed access types defined 

within the capability and the offset is checked that it lies 

within the segment. The address is then converted, by means of 

information contained within the capability, to an address in the 

universe of discourse of the coordinator of the process. This 

address in turn is converted to an address valid within the universe 

of discourse of the coordinator's coordinator, etc., until the 

address space of the master coordinator is reached. The capabilities 

in the master coordinator's PsCS (alternatively termed the master 

segment list) define the actual identities of the segments, which 

may then be mapped onto physical storage addresses by a paging 

mechanism. 

Providing a process is not passed a capability for its own PsCS 

or any PsCS on the path from its own PsCS to the master segment list, 

coordinators on this path are fully protected from the effects of 

junior processes (save what a process may do to the segments for which 

it has been passed capabilities). 

A domain of execution of a process is defined by its PsCS, which 

in turn is defined in terms of the surrounding domain. The strict 

hierarchical structure of processes, and hence of domains, achieves 
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Figure 7.9 

Domain and process structure of CAP 

inter-process protection. 

Figure 7.9 shows the hierarchical structure of a small set of 

domains, represented by the processes' PsCS's, and indicates that 

a capability in a PsCS is defined in terms of capabilities in PsCS's 

on the path to the master segment list. Though the domains are 

related by a tree structure, as in the previous example, the tree 

structure now has to be interpreted in terms of containment. A domain, 

represented by a node, is contained within the domain represented by 

the next node on the path to the root node. This contrasts sharply 

with the previous case where the node further from the root rep­

resented a domain containing the domain corresponding to the node 

nearer the root. 
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Lauer and Wyeth (1973) have presented a machine design which 

also supports a hierarchically structured set of domains and is 

basically similar to the CAP architecture presented above. The 

advantage of both these designs is that there is no need to treat 

any of the information which describes a domain as sacred to the 

basic protection system. Each level, i.e., process, can be 

responsible for setting up the data structures which define the 

domains for the next junior level and the memory protection system 

simply interprets these structures. Since any addresses produced 

by a process will be interpreted in the domain provided by the 

coordinator. there is no need to constrain the addresses a process 

can produce. The domain structure provides multiple levels which 

are never collapsed into a single level. An error made in describing 

the domain which a coordinator presents to a junior process may cause 

harm to the coordinator but not to the coordinator's coordinator. 

In contrast to the hierarchical process structure, within 

process protection in CAP is completely flexible. The unit of 

protection is the 'procedure', which mayor may not correspond to 

a high level language procedure. the choice is left open. The 

segments the procedure can access when being executed are defined 

by capabilities in a set of four indirectories. The details of these 

indirectories are described fully by Walker (1973). Basically, the 

indirectories used by a procedure invocation define the domain of the 

procedure as a subset of the PsCS. To be strictly correct, Figure 7.9 

should be drawn with indirectories interspersed between PsCS's. 

It should be mentioned that there are difficulties with 

architectures along the lines of the CAP computer and the Lauer­

Wyeth architecture concerning efficient implementation when 

parallelism exists. also that CAP restricts itself to a two-level 
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hierarchy because of protection problems with ENTER capabilities (an 

ENTER capability embodies permission to call a procedure). The Lauer­

Wyeth architecture has similar problems in connection with invocations 

of operations by a junior process, where the operation is implemented 

by an ancestor process, and interrupts from external devices. 

The complementary notion of a structured relationship between 

domains has been discussed in terms of two examples. Thus, it has 

been demonstrated that it is possible to gain protection from 

structure between domains and from structure within a domain. The 

two views of structure in practice tend to merge into one, since 

a direct scope can be considered to be a domain and then a change 

of direct scope becomes a switch in domain. In this section, 

emphasis has been placed on the structure existing between domains, 

but, as the second example demonstrated, domain structure is often 

closely tied to process structure. Various forms of process 

structuring have been discussed in detail by Horning and Randell 

(1973). In the design and comparison of protection systems, the 

structure within a domain should not be considered in isolation, 

but in conjunction with the structure of the relationship between 

domains and the structure between processes. 
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Chapter 8 

CONCLUSIONS 

The work reported in this thesis has demonstrated that it is 

possible to develop quantitative ways of comparing protection 

systems and that the assessment based on cost and benefit measures 

is indeed both practical and useful. 

Comparisons of protection systems based on the cost and benefit 

measures are in a sense gross comparisons since much of the fine 

detail of a protection system is ignored. Because of this, the 

comparison methodology is not claimed to be a complete assessment 

method, but is to be viewed as a part of a comprehensive evaluation. 

In addition to the gross quantitative comparison, such an evaluation 

would need to examine the detailed mechanics of protection systems 

and for this the protection models of Lampson (1971) and Jones (1973) 

would be useful. Also, it would be necessary to assess the influence 

of a protection system on its environment, that is on the structure 
I 

of the operating system, the writing of user programs, etc. 

The quantitative comparison methodology is thus complementary 

to the protection models developed by Lampson and Jones. Apart from 

the suitability measure of Jones, these models do not provide a 

yardstick to be used in any form of quantitative comparison. The 

limitations of the suitabi 1 ity measure were di scussed in Chapter 3. 

The use of cost and benefit measures in comparing protection 

systems is new. The advantage of this quantitative comparison 

methodology is that one gains an appreciation of how much better one 

protection system is compared to another and at what extra cost, if 

any, this increased protection is obtained. Qualitative comparisons 

based on formal protection models are hampered by the attention to 
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detail and the disregard paid to costs. A further advantage of the 

quantitative approach is that various features of a protection 

system can be individually assessed in terms of the protection 

benefit they afford and their cost. Unlike the suitability measure 

of Jones, the comparison methodology does not require detailed 

knowledge of the accessing patterns of executing programs but only 

knowledge of domains and the corresponding implemented accessible 

sets. 

The utility of the comparison methodology is exemplified by 

the two detailed comparisons performed in Chapters 5 and 6, but to 

extend the applicability of this approach it is necessary to take 

account of structure. Tools for the assessment of protection 

systems which exploit structure to achieve protection, namely the 

concept of a structured domain and a measure of structure, were 

described in Chapter 7. 

The comparison methodology and the techniques for assessing 

the exploitation of structure are probably most profitably used in 

the design of new protection systems and their implementations. Two 

areas where this work may be of assistance are the design of new 

machine architectures and the design of new run-time systems for 

high-level languages. The methodblog~ provides a means of performing 

a quantitative comparison of a proposed system with an existing 

similar system. Even if the full quantitative comparison cannot be 

carried out, it may be possible to use the protection model and 

measures developed in Chapter 4, together with available statistics 

or estimates, to perform a semi-quantitative assessment. As 

mentioned above, the quantitative method of assessment also allows 

particular aspects of a protection system to be compared with each 

other. Further factors which may assist the design of new protection 
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systems are the concept of a domain, the relationship between 

protection and addressing, and the utilisation of structure for 

protection; all three aspects have been considered in detail in 

this thesis. 

The comparison of structured situations is recognised to be 

a very complex problem. A number of existing protection systems 

retain structural information at run-time so that it can be 

exploited for protection. The concept of a structured domain 

describes many structured situations in a useful manner, but it 

is only a first step. The suggested measure of structure, though 

crude, attempts to quantify the benefit of the structured situation 

over the unstructured. The assessment of structure relates back 

to the relationship between protection and addressing, discussed 

in Chapter 2, since the retained structure is typically used by the 

addressing mechanism to limit accessibility. 

Chapter 7 is only the start of the work which remains to be 

done in this area. A further step in the assessment of structure 

and its exploitation to achieve effective and efficient protection 

mechanisms would be to gain a combined understanding of process 

structuring, domain structuring and the structuring of objects within 

a domain. Such an understanding should lead to an appreciation of 

how processes should be structured to realise the maximum benefit 

from domains, and the identification of improved ways to specify 

domains and domain switches. A further outcome would probably be 

pointers to the further development of protection systems, 

particularly how the protection embodied in user defined types could 

be improved or extended. 

An area of research suggested by the protection model, described 

in Chapter 4, but not pursued in this thesis, is a study of the 
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relationship between domains and locality, that is between the 

accessible set A and the referenced set R. A study of symbolic 

address tapes, where references to objects are recorded in source 

language terms, to analyse the correlation between static program 

structure and dynamic behaviour, could lead to an investigation 

of better ways to represent dynamic behaviour statically. Static 

structure is significant to protection since in the form of 

context information it is used to indicate domain definitions. 

In addition, if the static structure is sufficiently precise, it 

can convey predictive information concerning the objects likely to 

be accessed in a given period of execution. The importance of 

locality to language and machine design has been underlined in a 

recent Department of Industry report: 

"There is a need for a systematic representation of the concept 
of locality within programming languages, and for a uniform 
implementation of this representation in computer architecture. 
Until this is achieved, it is likely that both language and 
architectural developments will continue in an ad hoc manner, 
and be in conflict with one another." 

(Department of Industry 1975) 

Related,to this work is research into the best way of specifying 

redundancy (Randell 1975). Not all redundancy is 'useful', that is 

can be exploited to predict future actions of a process or detect 

error situations, indeed any form of redundancy will lengthen the 

program text, thereby increasing the opportunities for clerical errors. 

The relation between machine architecture and programming 

language structure is a topic of current interest of direct relevance 

to protection (Department of Industry 1975). The aim of present 

work is the development of programming languages and machine 

architectures. which encourage in a 'natural' way use of the facilities 

provided by the protection system. The two areas of work mentioned 

above are directly relevant to this aim. 
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A possible way of achieving this aim is to design a machine 

and programming language such that one uniform protection 

mechanism is used throughout the system. The systems likely to 

succeed in this respect are those which allow domains to be 

specified and modified so conveniently that the decomposition of 

a process into domains need not be unduly constrained by the 

cost of transmitting arguments or switching domains. Languages 

permitting user defined types provide a uniform protection 

mechanism to programmers if supported by a suitable machine 

architecture. Such a language and architecture were outlined in 

Chapter 7, but there is still a lot more work to be done on 

languages which provide user defined types. 
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Appendix 

ESTIMATION OF SUPERVISOR STATE TIME 

To estimate the time spent in supervisor state by a job-step, 

required in Chapter 6 to evaluate benefit measure Bl, it is 

assumed that the supervisor state time arises from input/output 

requests issued by the executing job-step. The servicing of page 

faults and interrupts, and the functions of scheduling, dispatching 

and resource allocation etc., are treated as part of the general 

supervisory function of the system. Therefore, the time spent by 

the supervisor on these functions is not allocatable to user job-

steps. 

The amount of supervisor state time (as opposed to I/O transfer 

time) necessary to transmit nd records (card images, lines to be 

printed, disk records etc.) to or from device d is assumed to take 

the general form 

n = 0 

where o(.a and ~d are constants. O(.d represents some set-up cost, e.g., 

establishing the logical-physical device mapping, and ~d the 

incremental cost for each record transmitted. The total supervisor 

state time for job-step j is then given by 

supervi sor state time = L «()(..d + ~d nd) 
for job-step j d J 

(s.t. njd;t: 0) 

where the summation is taken over those devices d for which njl 0, and 

the problem state time ,is then the total execution time of the job­

step less the supervisor state time. 
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The form of this function to represent the supervisor state 

time was deduced as an approximate model from initial experiments 

carried out on an IBM 360/67 system. 

The numbers of records transmitted to or from each device by 

each job-step (i.e., n d=1,2, ••. ,m) were included in the statistics 
id 

collected by DOS/VS. To estimate the supervisor state time, there-

fore, it was only necessary to obtain values for the device constants 

O(.d and ¥d for each device. 

The following devices were supported by the 370/135 system: 

console 
printer 
card reader 
card punch 
optical character reader 
di sks 
remote job entry lines 
dummy card reader l 
dummy card punch used ~y the 
dummy printer spoollng system 

To reduce the number of constants to be determined, the optical 

character reader was assumed to have the same characteristics as a 

card punch and the remote job entry lines were treated as card 

reader/punches. On average, only seven job-steps each day used the 

optical character reader and only one job-step, the POWER spooling 

program in the first shift each day, used the remote job entry lines, 

so any errors introduced by these assumptions would be slight. 

Ideally, the device constants should be determined on the 

system from which the statistics were gathered, or at least on a 

370/135 system with a similar configuration. Unfortunately, such 

a system was not available, and so the method adopted was to 

determine the constants on an IBM 360/67 system running under the 

Michigan Terminal System, and then to adjust the constants for the 

difference in speed of the 135 and 67. 
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On the 360/67 system, the constants were determined by 

recording the supervisor state time used in the transmission of 

various numbers of records to or from each device under consideration. 

From these results, the constants for the 67 could be estimated and 

in turn those for the 135 derived. 

The method of timing statements was essentially that used by 

Wichmann (1969) to time Algol statement execution times. The 

various corrections to the measured times, suggested by Wichmann, 

turned out to be negligible compared to the times being measured 

and thus could be ignored. 

The 360/67 system running under the Michigan Terminal System is 

a paging system and thus has many of the same characteristics as the 

370/135 system, though in almost all respects it is a much more 

sophisticated system. It was felt that estimating the device constants 

by using the 360/67 system was a reasonable approach, but to increase 

confidence in the values obtained some experiments were performed to 
I" 

verify the results. 

The proportion of supervisor state time to total execution time , 
for a number of programs on the 360/67 system was measured. The 

proportion of supervisor state time to total execution time was 

calculated for all job-steps run during one day on the 370/135 system, 

using the device constants and input/output counts to estimate the 

supervisor state time. The average proportion of supervisor state 

time and the variation in the proportion were sufficiently similar 

in both cases to justify the method used to estimate the supervisor 

state time. 

\I 
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