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ABSTRACT

Performance measurements of two large time-sharing computer systems

are presented, with emphasis on their disk files“ores. Similarities

of process behaviour are found in the measured systems and another system
reported in the literature. Individual processes make i/0 requests in
sequences, or bursts. Burst lengths have a mean of two with a large
variance; within a burst, file i/0 requests are spatially sequential in

intent and are temporally related.

Characterizations of these behaviour patterns form the basis of a
methodology for filestore evaluation and design. Descriptions of spatial
and temporal load are abstracted from software traces without loss

of any performance factor; these descriptions are inputs to a statistical
model of the processes in the environment of the filestore. The filestore
is represented by a simulation queuing model. The method specifies the
inputs to the composite model and describes the calibration of outputs

to match observable outputs. A model is built by this method, and vali-

dated for different loads.

The model is used for three evaluation experiments. Disk request scheduling
is not statistically significant; filestore layout and disk capacity are
highly significant; disks with fast-access areas are shown to improve
performance by taking advantage of spatial accessing patterns. The limits
of performance of a novel filestore equipped with a cache store are
explored to determine guidelines for this new design. Modest improvements
resulting from this design are shown to produce a considerabie improvement

in overall system performance.
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CHAPTER 1
Introduction and Overview

In a computer system the filestore is the subsystem of storage devices
together with an operating strategy which deals with the storage, access
and preservation of data. A filestore is characterized by its storage
devices, their specifications and configuration, and an organization of
files. It operates in an environment whose interface with the filestore
is a sequence of access requests distributed over time and space. To

the environment,the filestore is a service device whose performance can

critically affect the work rate of the overall system.

This thesis presents performance measurements of real systems and a
methodology for analysis and design of filestores. The measurements show
certain behaviour patterns that seem to be common to several different
computer systems. These observations have been incorporated into a model

of the environment that reflects both temporal and spatial accessing
characteristics of the individual processesthat form the environment. The
method of analysis combines this statistical model of the environment and
simulation queuing model of the filestore. The method assumes the existence
of moving-head disk devices, and would normally be used to design file-
stores that use such devices. However, we give an illustration of the use
of this method to study the performance of a novel backing store where the
assumption of disk devices is not essential. The model has been validated
for different filestores. The approach taken differs from previous work
principally in two aspects; it uses a more realistic characterization of
load which is very different from that assumed by previous simulation
studies, and it seeks to quantify the effect of filestore performance factors

on overall system performance.



The thesis is laid out as follows. Chapter 2 reviews the literature on
analyses of filestore and system performance. Software monitoring and

methods of data analysis used for this wcrk are given in Chapter 3. The

main results of performance measurement are presented in Chapter 4.

Chapter 5 describes the method of representing load and the validation of

a simulation model using this representation. Chapters 6, 7 and 8 present
analyses of disk filestore factors affecting design and performance. Chapter 9
presents a use of the model to evaluate a novel filestore. Finally, Chapter 10

reviews the methodology and conclusions of this research.



CHAPTER 2
Literature Review

This chapter reviews the existing literature on disk filestore measure-

ment and performance analyses.
2.1 Measurement

Lynch [29 and Barraclough [ 3] measured disk i/o activity on the Hichigan

" Terminal System (MTS) running on the N.UCMOALCY IBM 360/67 computer with
a filestore of eighf IBM2314 disks. Their principal result is that only
one-third of i/0 requests cause disk arm movement (i.e. seek movement).
This observation is repeated by Gray [17] and independently observed by
Jalics and Lynch [26] from the TOPS-10 system on a PDP-10 computer with

a filestore of eight DEC RP02 disks. For both of those systems the mean
disk seek time, when there was a seek, was about 40ms which corresponds to
a movement of approximately 10 cylinders (out of 200). This mean seek time

had a large variance. Access rates were about 2 per second per disk.

Using a software monitoring technique, Gray measured and analyzed the disk
behaviour of processes. He concentrated on spatial distribution of accesses

and reported that most accesses were to the catalogue cylinders of the
index-sequential style of file organization then current for MIS. Figure 2.1

shows results from Gray' work on spatial accessing. Figure 2.2 is a representation
of Gray's results in a form to compare with other functions that have been

used to represent spatial accessing [16,53). Gray also found

*Northumbrian Universities Multiple Access Computer
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that a process might make sequences of i/o requests in quick succession

to the same cylinder. He reported the mean sequence length as two with

a large variance but made no temporal analyses. Lynch, in his earlier work
using hardware monitoring [29] observed that most of the "same cylinder"

requests occurred within 10ms of the previous request completion.

Jalics and Lynch [ 26] also used software monitoring to make a detailed
study of process behaviour. In the TOPS-10 system, three of their results
are of interest here because they may be compared with the length of the

sequences reported by Gray;

(1) same cylinder by process - mean 3, S.D. 6, 90% less than 4
(i1) same file by process - mean 9, S.D.40, 90% less than 13
(iii) same cylinder by disk - mean 4, $.D.8, 90% less than 7.

When observing the intervals from end of terminal i/0 to start of next
terminal i/c, only 10% of TOPS-10 processes had disk i/o activity, and those
processes had a mean of 83 disk references. "Runtime" was defined to be

the time between the exit of a process from one i/0 wait queue until its
entry to its next i/o wait queue [25]. Jalics and Lynch reported that 55%

. * . .
of runtimes between disk i/0 references were less than 5ms.

These studies indicate that disk spatial references in two time-sharing
systems are highly sequential. Where the organization of data does not
interrupt sequentiality of reference , few seek movements are made. There

is also an indication that references are correlated in time.

. , y tion 3.4
*The tefm cuntime is used i this sense t[\f’.y‘\ou,t the thesis.  See mfn(‘tculﬂr‘ section



In addition to these measurement studies, the importance of sequentiaiity
of spatial reference has been recognized by Maruyama and Smith [ 34] who
investigated the fragmentation that occurs in a sequentially formatted
filestore when files are edited or expanded. With the use of a cost
function describing the excess costs due to physical disorganization, they
show that the optimum reorganization point depends on sequentiality of

reference and sometimes the optimum strategy is not to reorganize.
2.2 Disk Request Scheduler and Single-Disk Models

Previous studies of disk request schedulers have made assumptiors about
work-load that are at variance with the measurements of Lynch, Jalics and
Gray. Consequently, their results do not necessarily form a basis for

sound engineering in the design of filestores.

Teorey and Pinkerton [53] used an infinite-source, uniformly-accessed

single disk model with exponential arrival assumptions to investigate
request schedulers. In addition to the SCAN scheduler, in which the disk

arm sweeps back and forward across the disk surface, Teorey introduced
C-SCAN (or Circular-SCAN) in which the arm always scans in the same direction,
returning to its starting extreme at the end of a scan. Their conclusion,
that a combination of SCAN and C-SCAN is most efficient in terms of respnse
time, does not apply to distributions of the type reported by Lynch, Jalics
and Gray. Teorey [52]varied the input arrival pattern, considering batched
as well as sparse arrivals as extremes on either side of Poisson arrivals.
He also considered the effect of concentrating accesses on central cylinders
of both single and multiple disk systems. Figure 2.2 compares the uniform
pattern with the B-distributions used by Gotlieb and lacEwan (9.v.) and

actual measurehents made by Gray.



-Gray showed that, for his address traces, the First-Come-First-Served (FCFS)
scheduling algorithm was capable of servicing access rates reckoned to be

in the SCAH-only region (12-20 per second for IBM 2314-style disks) by
Teorey and Pinkerton. lMeasured filestore access rates of about 2 per second
per disk compare with queuing theory and simulation investigations

[1, 16, 53, 56]where access rates exceeding 10 per second per disk are
considered. Scanning algorithm improvements are not apparent except under

high rates of access.

Wilhelm [ 55] studied disk request scheduling with an infinite-source, singie-
disk analytical model with exponential request-inter-arrival times, but with
a spatial distribution following Lynch's observation that two-thirds of
requests have zero seek-time. He found that the First-Come-First-Served
policy had shorter or as good response time than the Shortest-Seek-Time-First
policy, and claimed this result to be anomalous. However, this result is an
inevitable consequence of his model of load where disk arms rarely move.

Gray had already noted that in such situations seek optimizing policies have

little to optimize.

The factors of temporal and spatial accessing patterns and file organization
have been recognized as relevant to filestore performance. If filestore
load is simplified to exclude known patterns and effects, ensuing pre-

dictions are misleading and unsafe.



2.3 Other Disk iModels

Previous studies of multiple-disk filestores have used unrealistic
descripticns of load and do not contribute to filestore desicn in the
engineering sense. Omahen [ 40] has reviewed queuing models for estimating
response time of multiple disk filestores. He offers no recommendation,
simply remarking that he expects finite-source models to be more realistic

than infinite source models.

GotTieb and MacEwan [ 16, 31] used the B-distribution with various parameter
values to represent a non-uniform spatial access distribution. This function
is compared with Gray's observed distribution in Figure 2.2. Temporal load
was simply represented by a mean access rate with exponential arrival
assumptions. The effect of varying the number of disks was investigated, but
the mean access rate to each disk was varied over the same range for each
configuration. This results in a higher load for systems with more disks,

an unrealistic treatment emphasizing the "stand-alone" nature of their model.
Wilhelm's general queuing model of multi-disk systems [ 56] repeats MecEwan's

assumption of load that increases with the number of disks in the filestore.

Validation of these queuing theory models consists of building a simulation
model that reflects the detail of disk operation but embeds it in the same
environment as the queueing mocel. The load presented to the filestore
remains idealized. This validation process does not build confidence in

subsequent predictions of performance in real situations.

Stone and Turner [51]) claim realism from their feedback-inhibited model for
a system and its filestore. Validation measurements are made on a real
system, but this exercise is weakened by the use of a load controlled to

achieve the assumptions of their model.



- Network queuing models have been revicwed by Buzen [10] who demonstrates

their accuracy of prediction for indices such as CPU and device utilizations.
Moore [ 37] has developed a network model of MTS from measurements taken

at the University of Michigan. For tractable computation and system compre-
hension, network models are limited to a small number of user classes and
resources. Diversity of user behaviour and variety of filestore configurations

are difficult to model.
2.4 Software Monitoring and Event Traces

Event tracing has been developed as a measuring tool that offers much
detail and insight into the operation of complex systems despite difficulties

of interpretation and restricted relevance.

Pinkerton [ 42] implemented event-reporting code in various parts of an early
version of MTS, and arranged for a collection facility to gather data on
user-selected events within the system, e.g. page faulting and i/0 requests.
The motivation for this trace was to observe process behaviour. Gray [17]
and Moore [37] used this facility to provide workload descriptions for their

models.

Jalics [25] instrumented the TOPS-10 system and made many observations of
user behaviour including filestore spatial and temporal accessing patterns.
The measurements are at a level of detail similar to the even trace used
by Parapudi and Winograd [ 41] who made less detailed measurements of the

VMOS system on an RCA Series 70 computer.

The principles of trace-driven modelling (TDM) were presented by Cheng [12].
In TDM, an event trace is the input to a mecdelled variant of the real system.

Validation is straightforward, in that outputs from the model can be



_directly compared with real outputs. Predictions are accurate though of
restricted relevance because the workload, and frequently the modelled
system, ic precisely specified without abstractions. New trace data,
simulating changes, may be manufactured from an actual trace. Baskett,

Brown and Sherman [ 6, 50] describe a tracing system for a CDC-6600
computer with the UT-2 operating system. Examples of collected events are
operating systems calls and scheduler decisions; it is a less detailed trace

than those of Pinkerton and Jalics.

Another use of event traces is to construct a more general, synthetic load.
Schwetman and Brown [ 48] use the UT-2 trace to provide a high-level
description of workload for statistically designed experiments, but with
variation of only one factor. Beilner and Waldbaum [ 7] and Schatzoff [45]

use trace data in the specification of workload for deterministic models.

Despite the disadvantages of system dependency, event traces are extremeiy
useful. In the absence of physical laws governing how computer systems
are used, measurement by event monitoring is a primary engineering tool for

investigation of behaviour.
2.5 Statistical Investigation Methods

Techniques for statistical experiment on real systems have been presented

by various authors[ 2, 33, 39, 44, 46, 54 ] . These mgthods are designs and
analyses permitting variation of several chosen factors in a complex system.
Classical, single-factor experiments are inadeguate when the presence and
possible interaction of several factors is suspected. Bard [ 4] quantitatively

analyzed overhead in a prototype software system. He used a regression



model with weights (coefficients of the model equation) allocated to the
system structures (factors) reckoned as contributing to the overhead. In
[5] ., Bard extends this analytical method to the more comprehensive fitting
of a statistical response surface for the components of the regression
model. Clapson [11) has quantified resource usage by use of regression
models and has established common patterns of resource behaviour in
different operating systems for similar IBM computers. His analyses are

of resource usage, not program behaviour; they are restricted to computers
of similar architecture. Anderson and Sargent[ 2] performed a full
factorial experiment (every factor at each of its levels observed with
each level of all other factors). The resulting data were fitted by a
linear regression model. They found that service time demands were very
variable, and no common distribution was able to fit the data. The data

were eventually fitted by composite Weibull distributions.

Improved instrumentation and increased statistical awareness are leading
to new computer performance measures and methods of experiment based on

what happens in real systems.



.CHAPTER 3

System Measurement

3.1 Introduction

Measurements were made to provide an accurate description of what
happens in a large time-sharing system. The performance of the filestore
is of special interest but the Toad under which it operates is also of
prime importance. This chapter describes how the measurements were made

and how the results of interest were derived from the collected data.

The Michigan Terminal System has an event reporting and collection
facility that is part of the operating system. This facility was used to
monitor the temporal behaviour of the batch and terminal processes that
comprise the normal workload of MTS. In addition to new data about the

use of MTS on the N.U.M.A.C. IBM 370/168 computer system, Gray's [17]
measurements of an earlier version of MTS on an IBM 360/67 system were
available. Gray used the earlier data to study spatial accessing patterns.

We have made a new analysis of these data.

3.2 Performance Measures

Filestore performance is measured by the response time for each file i/o0

request. For each process, the filestore response time is defined as the time
interval between reports of the start and end of a file i/o wait for that

process.



There are insufficient numbers of process births and deaths cn the event
traces to measure system performance in ierms of job throughput. Instead

the interaction rate between the users and the system is used. An inter-

action is defined as the time between completion of user input from a
terminal and completion of subsequent system output to the terminal. The
measured systems have batch as well as terminal users, so the start and
finish of a batch job is interpreted as the completion and start of a
terminal wait, i.e. one batch job completion is one interaction. We call
such an interaction a work-unit. This work-unit represents an unquantified
work step for one process, whether batch or terminal. The smount of work
performed is not considered here. This measure is empirical and depends
on the applied Toad and its utilization of system resources. The use of
the work-unit in this thesis is an index of "work done" when presenting
performance measurements, and for comparative evaluation of a simulation
results. The simulations are of different filestores, but the same set

of work units is used whenever comparisons are made.

3.3 Data Collection

The software trace tool on MTS is the Data Collection Facility (DCF)

[27, 43]. It provides a means of gathering detailed Jow-level data

generated by processes within the system. At about 25 locations in the system,
pertinent data is recorded by the Supervisor. The event is labelled with

an identifying code, the time at which it was recorded and the job number

of the process that caused it. These data are buffered and trans-

mitted to the user process that initiated DCF data gathering. The supplied
data may be accumulated or analyzed on-line. Individual events are not

lost, since their collection is part of the operating system. Only con-

tinuous sequences of data were used for analysis; no data has been lost.




-For the work of this thesis, data accumulation only was used with sub-
sequent analysis. In addition to a small number of obligatory and reference
events, two types of events were collected.
Event A - when for any reason, a process enters a wait state (compared
with ready-or-running state). The reason for the wait is given with
the collected event,
Event B - when a process stops waiting.

With these two events, we were able to measure the run-time and i/o-

wait-time for each process.

The version of the Data Collection Facility used by Gray was the same as
the one reported by Pinkerton [43]. He evaluated the interference and
overhead of collection to be 0.3% of CPU time and about 4% of main storage
for buffers. The new collection facility used for this work (King [27])
was evaluated; interference and overhead was about 1% of CPU time,

4% of storage for buffers and 0.4% of channel time. Appendix D presents

a description of this evaluation. This interference and overhead is very
small. The software monitors used by Parapudi and Winograd [ 41) and Jalics
and Lynch [ 26] were not assessed for system interference. Schwetman [ 4]
assessed the CPU utiiization of a data co]legtion program at 13%, an
almost intolerably high figure for useful deductions from the data.
Screenivasan [ 49] gives a figure of 5% CPU overhead for his measurement

study.



3.4 Data Analysis of Time-Event Traces

From Events A and B above, each process is classified into three tz.poral

categories:

(1) not waiting
(1)  waiting but not for explicit i/o completion

(1i1) waiting for explicit i/o completicn.

*
In category (i) are page waits, waits for system resources and other
operating system overhead. Categories (i) and (i1), when combined, form
a measure of the run-time spent in a compute step. This run-time is

measured for each process.

Category (iii) is divided into three types of i/o wait:

a) file /o
b) terminal i/0
c) other i/o

File i/o is considered separately because it is our special interest.
Terminal i/0 waits are of interest because they delimit work units. All
other waits for i/o completion &re grouped into type (c) which includes i/o
with non-filestore disks, magnetic tapes and slow devices such as printers

and readers.

Each process is thus in one of four states at various points irn its life -

YT1a MTS, pging and fikstore traffic are wolependent on separate  devices.



3.5

running [Sec definition of runtime  on /DS]
in a file-i/o0 wait
in a terminal-i/o wait

in an other-i/o wait

Data Analysis of Filestore Spatial References

The datacollected and presented by Gray gives spatial usage patterns of

the filestore of MTS as it was then configured at H.U.M.A.C. Its main

characteristics were:

Eight IBM 2314 disks (30Mbytes each)

Single channel linking filestore to main store

Sequential layout of files, with a main disk catalogue on one

disk and secondary catalogues on each other disk. This organization

is similar to the Indexed-Sequential Organization [24] .

When measurements were made on the IBM 370/168 it was not practicable to

extend the Data Collection Facility to report on filestore addresses as

Gray had done. The main characteristics of the filestore on this machine

at the time of measurement were:

Four IBM 3330,11 disks (200 Mbyte each) with Rotational Position
Sensing (RPS).

Single channel linking filestore to main store.

a "randomized" layout of file in "file page frames".

The disk space is divided into "frames" or sectors, 58 per cylinder,
allocated sequentially within cylinders but not necessarily
sequentially across cylinder boundaries. Erinch Hansen describes

such an organization in [ 8] and names it the lon-Consecutive Lavout.

I



It attempts to locate related data together while avoiding the
fragmentation caused by editing and other changes. The main disk
catalogue 1is spread over all the disks in the filestore, with a

master index on one disk.

3.6 Catalogue of Trace Data

Gray's measurements, the S/360 data, were made in June 1973, and comprise
two runs of 45-minutes duration (S/360,1 and S/360,2). His only use of this
data was as preparation for his subsequent trace of disk accesses. The

~

measurements made in the course of the present research, the £ 270 data,

were collected from December 1975 to June 1976. The traces used for

presentation in this thesis are:

a) S/370,1 , 10 minutes duration, 28 June 1976
b) $/370,2 , 20 minutes duration, 29 June 1976
c) S/370,3 , 30 minutes duration, 30 June 1976.

These traces were token during the afternoon peak (oading.
Gray's traces have over 350,000 events each and the S/370 data have about

100,000 events per 10 minutes.



CHAPTER 4
Analysis of Collected Data
4.1 The Main Results

In both measured systems, processes characteristically do their i/o in
bursts. In a burst, most run-times between i/0 requests are short. For
file-i/0, more than half the run-times between requests are less than 10ms.
Indirect evidence of i/0 in bursts has also been found by Jalics as
discussed in Chapter 2. We investigate the properties of these bursts,
their lengths and characteristic run-time distributions. This information

is useful when constructing realistic models of system.

We also show that sequentiality of spatial reference exists within bursts
of fi]é—i/o. This effect complements the popularity of central catalogue

areas to explain why disk arms rarely move.



_4.2 1/0 Bursts

4.2.1 Existence of i/0 bursts

This section presents data on file-i/0 bursts. Figure 4.1 shows the
distribution of all run-times between requests for file i/0. For both
S/360 and‘S/370, more than half of these runtimes are less than 10ms.
Figure 4.2 shows the pericd 0-10 ms in detail. Both distributions peak

in this region with no carry-over.

Table 4.1 shows the frequency with which a given type of i/o request is
followed by any other type. A process completing an i/o wait has a greater
than 90% chance of starting another wait of the same type. Jalics has
reported results similar to Table 4.1 that strongly suggest the existence
of bursts of i/0 in the TOPS-10 system. Although he did not make any
direct observation of the i/o burst effect, Jalics reported that 64% of
run-times between i/0 requests are less than 8ms (55% less than 5ms). His
method of time measurement by logarithmic hexadecades obscured any peak

in short run-time between requests. These measurements also indicate the

existence of bursts of i/o in TOPS-10.
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to

file i/o terminal i/0 other i/o
from
file i/o 0.978 0.018 0.004
terminal 0.042 0.886 0.072
ifo
other 0.003 0.024 0.966
i/o
S/ 360
to file i/0 terminal i/o other i/0
from
file i/o 0.965 0.016 0.019
terminal 0.042 0.939- 0.019-
i/0
other 0.032 0.017 0.951
i/o
S/370
Table 4.1 Relative Frequency of next i/o from previous i/0




4.2.2 Delimiting the lengths of file-i/o bursts

For $/360 , Lynch had already observed a high incidence of requests

to a cylinder within 10ms of completion of the previous request. Gray
has reported that over 50% of accesses are to the central cylinders.
Some of Lynch's "repeat" requests may be due to cylinder popularity,
but the frequency with which a file-i/0 request is followed by another
of the same.(Tab1e 4.1) and the distribution of all run-times between
file requests (Figure 4.2) indicate that sequencesof these "repeat"
requests are generated by the same process. We wish to investigate this
effect further. We shall call the maximum run-time between file-i/o

requests-in-a-burst the Lynch Period, and use it to delimit the lengths

of file-i/o bursts. If a process makes a file-i/o request later than
the Lynch Period since completion of its previous file-i/0 request
(e.g. because of a disk-busy delay or a long run time), we consider
that a new burst has begun. From Figure 4.2, we have chosen the Lynch

Period for S/360 to be 10ms, and 4ms for S/370.



4.2.3 Characteristic length of I/0 bursts

With the Lynch Period set to delimit file-i/o bursts, the lengths of these
bursts are distributed hyper-exponentially, as shown in Figure 4.3. Both
systems show the same distribution. When these data are presented as
cumulative log plots, as in Figure 4.4, the distribution falls into two
straight ]1nes.'The change of slope occurs for long bursts of 8 and over,
with a mean of 2 for both systems. Simple linear regression is used to

fit these data. Despite the shorter Lynch Period for S/370, there has been
no significant change in this user habit between measurements separated

by three years, a new version of the operating system and a new file

organization.

The distributions of burst lengths for terminal-i/o and other-i/o are
shown in Appendix A. A1l length distributions are very similar for all
types of i/0 burst. Terminal-i/o and other-i/o bursts are delimited by a

transition of the process from that type of wait sequence to another.
4.2.4 Run-time characteristics of i/o bursts

The run-times characterized for i/o bursts are those between bursts and

those between requests within a burst.

Figure 4.5 and 4.6 show the mean run-time between bursts for all i/o

types as a function of processor load. Processor load is the number of

processes in the running state (i.e. not in any wait state). The system load

is defined as the total number of processes in all states. Only those data
points with a frequency of at ieast 1% are shown. The S/360 plots of
Figure 4.5 show a general tendency for this mean run-time to increase

with processor load. The S$/370 plots of Figure 4.6 show mean run-times

~
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apparenty unrclated to load. The standard deviatisns of these mean run-
times are very large ot approximately 107 to 709 ms. Run-time between bursts
is exponentially distributed with a long tail as shown in the histograms

of log (run-time between bursts) in Figure 4,7.

Figure 4.8 shows the mean run-time between requests-in-a-burst for file-i/o.
Simple Tinear regression has been used to fit these data. The $/360 plot

has a positive slope indicating a CPU-contention feedback effect. However,
the Pearson correlation coeffecient is significantly less than 1.0,
suggesting that this effect is not a reliable indicator of how run-time
varies with processor load. An explanation of the negative slope on two
S/370 plots is that the S/370 was limited by a resource other than CPU. Only
one trace (S/370,1) was made when the processor was sufficient]y occupied

to show negative feedback on run-times. From Figure 4.2 these run-times

have a S/360 mean of 6.6ms (SD 1.5ms) and a S/370 mean of 1.8ms (S.D. 0.8ms).

Appendix A contains plots of all run-times between requests-in-a-burst

against processor load for terminal-i/o and other-i/o bursts.

4.3 Effects Limiting Work Throughput

Figure 4.9 is a histogram of processor load measured at every wait-start

and wait-finish event. At any given moment most processes are in an i/0
wait; the mean processor load is 11 (out of maximum 60) for S/360, and

25 (from maximum 90) for S/370. Table 4.2 shows the relative number of

each state (running,file-i/o, terminal-i/o and other-i/o). Because a running
state precedes each i/0 wait, there are as many running.,states as waiting
states. Numerically, file-i/o is the most frequent wait state, but the mean
terminal-i/o wait is about 3500ms (see Appendix A} so we cannot single

out a particular type of wait as a limit on throughput. Generally, waiting
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for i/o completion is the major systems effect that limits the rate of
worr. throughput.

Running File-i/o Terminal-i/o Other-i/o
System bursts bursts bursts
S/360,1 0.5 0.443 0.035 0.022
S/360,2 0.5 0.412 G.053 0.035
S/370,1 0.5 0.420 0.041 0.039
S/370,2 0.5 0.452 0.033 0.015
S/370,3 0.5 0.440 0.044 0.016

Table 4.2 Relative Frequency of Process States

The effect of processor load on run-time between bursts was investigated.

Figure 4.10 shows a histogram of these run-times for selected processor

loads. As the load increases, the model frequency decreases and the

run-time distribution grows in the longer-time regions. This indication

of a contention effect lead to a re-plot of Figure 4.5 with the longest

10% of run-times discarded. This is shown in Figure 4.11. The value of

10% was chosen from the discrepancy between the means and the mode of

Figure 4.5 and 4.7.

The reduced plots are fitted by simpie linear recression

models. The Pearson correlation coefficient confirms that the reduced mean

run-time between bursts is highly correlated with processor load, but

the variance of the unreduced mean has a larger effect since it conceals

the contention result. Processor contention is not a factor limiting S/360

work throughput.

The more evently distributed run-time between bursts for the $/370

(see Figure 4.7) implied that eliminating only the longest 10% wouid not
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reveal any feedback contention effect. It was found that the longest 20.. of
the run-times had to be discarded to reduce the means to the order of
the mode, as in Figure 4.12. Even then, the correlation between processor
Toad and run-time is poor. As expected for the faster processor, CPU
contention does not Timit S/370 work throughput.

both
Independent measurements by/da]ics and Parapudi place the run-time between
i/0 requests with 90% means of 46ms and 46ms respectively, and with ali-
inclusive means about twice this magnitude. These figures agree well

with the S/360 90% plots of Figure 4.11.

R
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4.4 Filestore Accessing Behaviour
4.4.1 Sequential accessing and file-i/o bursts.

Figure 4.13 shows the distribution of file response times. These times
exclude any initial wait before the file request is accepted. We have
incorporated this wait inte the run-time before bursts. For S$/360, about
10% of response times exceed 100ms. This is despite the observed mean
number of cylinders moved Qf around 10. The expected response time of an
IBM 2314 disk ranges from 25ms (no seek delay) to 75ms (for a seek of

one third of the available cylinders, the average for uniform accessing).
The bigger, faster IBM 3330, 11 disks used for the S/370 have only 5%

of their response time exceeding 100ms. Expected response times for these

disks are from 15ms (no seek) to 40ms (average seek).

Figure 4.14 and 4.15 show detail of these respense times. For the S/360
traces, the first peak at 19ms corresponds to a rotational delay of about
one-half revolution time, plus the record transmission time. This zero
seek-time peak reflects the higher proportion of zero seek requests already

known for S/360.

The second peak is wide, at 29-32ms. This may be explained by the "missed
revolution" effect that occurs when sequentially accessing sequentially
formatted records if the run-time between requests is short enough. When

a process makes a “"successor" request for the next record shortly after
completion of i/0 service for the "previous" record, the start of the

next record has already passed the read/write arm. A delay of almost a full
revolution is incurred, the exact delay depending on the arrival time of
the successor request. We have already seen (Figure 4.2) the mean run-

time between requests-in-a-burst for file-i/o is 6.6ms with S.D. 1.5ms.
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From this, expected rotation delay for "successor" requests

(rotation time -6.6) ms I 1.5ms

18. 4ms t 1. 5ms

. + . . Ls
response time (m.an) = (18.4ms = 1.5ms) + record transmission time

30ms : 1.5ms

for the 11.5ms record transmission time on the S$/360.This calculation fits
with the second peak of Figure 4.14. Table 4.3 shows the relative pro-
portions of services represented by the first two peaks of the response time
histograms in Figure 4.14 and 4 .15. The mean S/360 burst length of 2.0

(see Figure 4.3) fits well with the almost equal nuiber of services

under the first two peaks (from Table 4.3). The calculation of expected
response time if accesses within bursts are spatially sequential fits well
with the mean burst length and number of services under the first two peaks
to support the conculsion that spatial accessing within bursts is se-

quential in intent.

S/370 370,1 370,2 370,3 S/360 360,1 360,2
range range
1st peak 0-18ms 0.52 0.49 0.45 0-24ms | 0.48 0.50
2nd peak | 19-24ms 0.48 0.51 0.55 25-38ms | 0.52 0.50

Table 4.3 Relative number of file services under first and second Time Pcaks

The S/370 response time data (Figure 4.15) show a large peak at 19-22ms.
This may be explained by sequential accessing within bursts, as for S/360.
To calculate the "missed revolution" characteristic delay, we proceed as for

the $/360:
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expected rotation delay for "successor" request

(rotation tine -1.8)ms T 0.8ms

15ms ¥ 0.8ms

4+ . - 3
expected mean response (15 - 0.8) + record transmission time

20. 5ms t 0.8ms

This calculation fits the second response time peak. From Table 4.3,

the mean burst length of 2.5 for S/370 (Figure 4.3) seems too long for the
almost equal numbers under the first two peaks of Figure 4.15. Howcver,
2.5 is the mean length for a Tayout in which file placement is not con-
tiguous. If, because of the "missed revolution" time delay calculation,

we say that the second peak of Figure 4.15 represents the effects of
sequential accessing in bursts, we cannot expect the first two peaks to
wholly reflect the mean burst length because the layout would break the
sequentiality of reference for long bursts. The peaks should then indicate

a shorter mean length. Our explanation fits well with the available data.

This argument strongly supports the conclusion that the Non-Consecutive
| Sequential
layout of S/370 exhibits a large degree of spatial/accessing within

file-i/0 bursts.
4.4.2 S/360 distribution of seek movements

A new result from Gray's S/360 trace of spatial accessing concerns the
distribution of seek movements. This is shown in Figure 4.16. S/360,]1

and $/360,2 have a mean of 13 cylinders moved in those 33% of occasions
when a seek was made; Jalics reported a mean of 15 cylinders on 35 of
occasions. From the distribution shown, small movements are common and

the full range of cylinders is very rarely used.



1.09 -—
Cumulative /‘/&J—‘o—‘; ‘
Relakive ’ '/'

g“’ﬁuc\qg

O\S' 1

‘4.0

Q’I'—\d.fl‘ wmovad

a.:puh'a of tond

Figure 4.16 Cylinders moved - S/360 Sequential Layout.




The distribution is closely fitted by the empirical function:

y = J1.5x : x = uniform {5,2/3}

The spatial distribution function used by iilhelm [55] is also shown on

Figure 4.16.



4.5 Summary and Conclusions

The main result of measurement is that i/o is performed in bursts of
characteristic length and run-time distributions. This observation
explains and confirms other independent observations made by Lynch,

Jalics and Gray. The burst lengths are hyper-exponentially distributed
with a file-i/0 mean of 2 for both systems. Run-time between bursts is
exponentially distributed with a mode of about 50ms for S/360 and

10msvfor S/370. Run-time between requests-in-a-burst is uniform about 7ms
(or 2ms for S/370) when delimited by Lynch Period, an interval within which

more than 50% of these run-times fall.

Analysis of S/360 file wait tihes confirms Gray's findings of sequential
spatial accessing with a high proportion of zero seek-time requests. This
result has been extended by the new finding that sequential accessing is
due in part to bursts of sequential accessing by individual processes, as
well as Gray's report of the popularity among all processes of central,
catalogue areas. To a lesser extent, sequential spatial accessing is also
found on the $/370 filestore caused, as for S$/360, by sequential accessing
by individual processes. The Non-Consecutive layout partially preserves
the sequential "intent" by allocating space sequentially within cylinders.
A new result from Gray's data on spatial accesses is the distribution of

seek movements on a sequential layout filestore.

Conclusions about the performances of the measured systems are that
neither is CPU-bound and that work throughput is limited, in the system

feedback sense, by i/0 waits.

a6



CHAPTER 5

A New Method of Filestore Analysis

5.1 Introduction

The method of filestore analysis comprises a simulation queuing model

of the filestore within a statistical empirical model of its environment.
Processes in the environment behave according to the characteristics
deduced from real measurements. A simulation queuing model of the filestore
facilitates trials with alternative configurations and devices used to

implement the filestore.

5.2 Performance Indices

The principal outputs of the model are the two indices of performance

which were deduced from software measurement. Filestore performance is

measured by response time. System performance is defined as the rate of

completion of terminal-i/o bursts, i.e. the rate of completion of work units

as defined in Chapter 3. Whenever comparison is made using this work rate,

the same set of work-units is used.



5.3 Load Representation

5.3.1 Introduction

Each process in the environment of the filestore conducts i/0 in bursts
with trace-derived run-time distributions between i/o-bursts and between-
requests-in-a-burst for the three types of i/o0. We have developed an al-
gorithm that represents the spatial accessing habits of each process.

The algorithm is parameterized to map the sequential intent of each burst
on to the layout of the filestore, and is calibrated for each system.
Burst lengths are well characterized, and are represented by trace-derived
parameters describing their distribution. The representation techniques
are statistical and use a pseudo-random number generator. Predictions

are taken from several trials of the model with identical inputs save for

a different random number seed.
5.3.2 The model of i/0 bursts

Data describing burst lengths are derived from a software trace to re-
create the load conditions prevailing during that trace. The relative
probabilities for each state are inputs from the trace. The four states

of each process are:

(1) running before any i/0 burst
(i1)  file-i/o burst
(i11) terminal-i/o burst

(iv)  other-i/o burst

If an i/o burst state is selected, the burst length is generated from
the distribution of that i/o type. All types of i/o have burst lengths
distributed as in Figure 5.1. Generation is convenient if each part is

fitted separately, with a change of origin in each case, as in Figure 5.2.
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Selection of burst length is:-

1. Lét p = uniform {0,]}.

2. if P £ pchange then 3. else 4.

3. length <« integer (exp. (slope_l » p)).

4. length <« integer (exp. (slope_2 = (p-pchange))).

where pchange,slope_1 and slope_2 are as in Figure 5.2. The “input parameter
pchange describes the change of slope for each i/0 burst length distri-
bution. For each type of i/0 burst these parameters are deduced from the
trace. The value of pchange is chosen from the intersection of the two
"best-fit" (by Pearson correlation coefficient) straight lines through the
data points. Values of pchange from the traces used in this work are given

in Figure 4.4 (and in Appendix A for non-file burst lengths).
5.3.3 The model of spatial load

Parameters describing addressing behaviour are calibrated for a pqéicular
layout (we have measured the Sequential and Non-Consecutive layouts) and
remain set for all modé] runs on that layout. A filestore address is
generated as a triple (disk, cylinder, sector). The disk is selected
according to the distribution of accesses across the disks of the measured

filestore, a trace-derived input. The cylinder is selected from -

from current cylinder i,

select catalogue cylinder with probability «
select current cylinder with probability B-«
move to cylinder j with probability 1-B

j is such that 'i-jl is drawn uniformly from {O,C/Z} and x<B <1.0 .

The restriction on the size of move selected is taken from the observation.
that 97% of all moves are léss than half the available range of cylincers.

An addressed sector is selected from



uniform {1, number of sectors per cy]inder} .

In accordance with deductions made from the study of response time dis-
tributions (Figures 4.14 and 4.15), selection of successor file addresses
depends on the Tayout. During a burst the disk address remains constant.
Sequentiality of reference is preserved for a Sequential layout, but
discontinuities are introduced for the Non-Consecutive layout. Selection
is as follows:
(1) Sequential layout: the sector address is incremented modulo the
number of sectors per cylinder. The cylinder address is incremented

if the sector address "wraps round".

(ii)  Non-Consecutive Tayout: successive addresses are generated
sequentially or discontinuously according to probability Ps? where
PS = uniform {O,]}and
0 ¢ PS £ 7Y = sequential - generate as (i) above

9 < Ps € 1.0=>discontinuous - generate a new triple (disk,
cylinder, sector)

Parameters~, B and y are calibrated from trace-derived measurements by

iteration from initial values.

For the Sequential layout, Gray reported that 50% of accesses were to the
central, catalogue cylinders. This sets o initially to 0.50. The fraction

of zero-seek accesses for this layout is 70%giving an initial value for

8 of 0.70. Tabie 5.1 shows the actual fractions of zero-seek requests

and the overall mean number of cylinders moved for a seek. The accessing
model was iterated with various parameter values until its output most
closely matched the real system output for $/360,1 (the calibration data fer
the Sequential layout). The final parameter values are:

o = 0.50 B = 0.83

$a



Performance Index S$/360, 1 $/360,2
Calibration Validation
Observed Zero-Seek Requests 63% 68%
Simulated Zero-Seek Requests 63% t 2% 74% * 2%
: +
-S.D.
Observed No. of Cylinders Moved 12 13
Simulated No. of Cylinders Moved | 20 + 2% 12 t 2%
t+ S.D.
Observed Mean Response Time 54ms 54ms
Simulated Mean Response Time 57ms + 5% 63ms + 6%
t S.D. - -

Table 5.1

Calibration and Validation Results for the Sequential Layout

Performance Index S/370,3 S/370,1 $/370,2
Calibration | Validation Validation
Observed Access Rate 25/sec 24/sec 17/sec

Simulated Access Rate
t s.D.

25/sec + 5%

24/sec + 6%

16/sec + 5%

Observed Mean Response Time
Simulated Mean Response Time
t S.D.

37ms

34ms + 9%

35ms

36ms + 8%

32ms

35% + 5%

<

Table 5.2 Calibration and Validation Results for the Non-Consecutive Layout




-The data in Table 5.1 for S/360,2 are the validation results. Other

inputs to the system model are derived from the S/360,2 trace as des-
cribed in 5.3.4 and 5.3.2. The validation results lie close to their

real values. More importantly, the accessing algorithm for individual
processes accurately models gross accessing patterns on a Sequential layout.
Figure 5.3 shows file response time distribution for the caiibration

and validation trials. Figure 5.3 should be compared with Figure 4.14 .

These response times confirm the accuracy of prediction.

For the Non-Consecutive layout, no data or accessing patted% were available.
From Figure 4.15, an initial value of & = 0.45 was found from the weighted
average of the fraction of accesses with no seek movements, i.e. those

with a response time within 24ms (the first two major peaks). The value

of B = 0.83 was retained and an initial y = 0.50 (the parameter which

introduces spatial discontinuities) was adopted. The model was iterated

“on the S$/370,3 trace with various parameter values, and simulated outputs

were compared as indicated in Table 5.2. The final results of this cali-
bration gave

= 0.40 @ =0.83 7= 0.25

The validation runs for $/370,1 and $/370,2 in Table 5.2 are for these
parameter values. Other inputs were taken from the $/370,1 and $/370,2
traces (see sections 5.3.4 and 5.3.2). The validation sets of response
time distributions are shown in Figure 5.4. The real measures are given in
Figure 4.15. Each set of validation results was obtained from five
independently seeded runs. The validation results lie close to their real
values; they confirm that the Non-Consecutive accessing algorithm
accurately predicts gross performance values from a model of individual

process behaviour.
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5.3.4 Runtime and waiting time generation

Means of describing runtime distributions are needed to represent the load
conditions prevailing during the software trace. As shown in section 4.3,
runtimes between i/0-bursts are distributed exponentially with a long tail
that makes the mean misleadingly large. In the model, the runtime between
i/o-bursts is generated from an exponential distribution whose mean is of
the order of the mode of its histogram, and a correction factor is added
for the longer values. The Gamma, Normal and Log Normal distributions were
tested but the Exponential distribution based on the reduced mean was the
best fit for the shorter end of the runtime range, where most runtimes lie.
A technique of fitting this type of distribution with comppsite Weibull
distributions has been described by Anderson and Sargent[2] . In this
work a simpler approach has been used; the exponential distribution is
used for the dominant part, and a correction factor is added for longer
values. For the model, the 90% mean for S/360 and the 70% mean for S/370
were used. The correction factor is taken from a uniformly indexed table
of mean values chosen to fit the longer end of the runtime distribution.

These factors are simply specified and tractable in use.

A similar method is used for generating runtimes between request-in-a-burst
for terﬁina]-i/o and other-i/o, since their runtimes are similarly dis-
tributed. Runtime between requests-in-a-burst for file-i/o is almost
constant when bursts are delimited by the Lynch Period. It is generatec as

a constant runtime.

File-i/o response times are calculated in the simulation of the filestore.
Terminal-i/0 and other-i/o waits are generated from their measured values
by uniform random selection from a small set of cumulative probabilites

-

describing the log distribution of waiting time (see Appendix A). Once a



particular Tlog range has been selected, generation is uniform within

that range.

5.3.5 Summary of inputs representing load

5.3.5.1 State selection in a process life.

To model transitions between states, we need the relative probabilites

of the four states:

]. before any i/0 burst
2. file-i/0o burst

3. terminal-i/o burst
4. other-i/o burst

5.3.5.2 Length of i/0 burst

For each software trace, values of slope_l, slope_2 and pchange are input
for each type of burst. Pchange is the change of slope point between
the two best straight-line fits. Generation of length is by the algorithm

given above.
5.3.5.3 Parameters describing individual accessing

For each system, values ofx, Band »calibrate the accessing algorithm
for predicting the effect of file layout on the sequential intent of each
burst of file i/0.Selection is by tests and calibration from available
accessing data. For each trace, the relative proportions of bursts to

each disk are inputs.



5.3.5.4 Realtime descriptors

For each system, the runtime betwueen request-in-a-burst for filc-i/o is
found by inspection of the distribution of runtimes between file-i/o0

requests.

For each software trace, the reduced runtimes most nearly corresponding

to the mode of distributions for

1. runtime before i/0 - burst
2. runtime before requests-in-a-burst for terminal-i/o
3. runtime before requests-in-a-burst for other-i/o

represent the load prevailing during that trace. They are used as means
of an exponential distribution to describe the corresponding runtime.

The "long tails" are generated empirically from trace-derived data.

For each trace, i/o waiting times for terminal-i/o and other-i/o are

generated from the cumulative distribution of log (waiting time).



5.4 The Filestore Simulation Queueing Model

The performance of a rotating magnetic disk can be characterized by

certain service-time delays; seek-timedelay to position the read/write

arm at a selected cylinder, and rotation delay to await the arrival of

the addressed record at the read/write position. The modelled filestore

is n disks served by a single channel. Queues are maintained for each

disk and the channel. Availability of the channel for command as well as
data transmission is explicitly modelled. Figure 5.5 shows the time delays
incurred for a filestore i/o service, and those delays that are regarded
as neglegible and not modelled. Figure 5.6 shows these delays for a

disk equipped with Rotational Position Sensing (RPS). In conjunction with
a channel able to support theextra processing, RPS enables the freeing

of the channel during rotational delay (as well as seek-time delay).

In the filestore simulation, various configurations of disks may be
modelled. The number and capacity of disks may be varied, as well as

the number of read/write heads. All read/write heads are fixed to the
same arm, thus increasing the capacity per access, i.e. the capacity per
arm position. Seek-time delay is calculated by functions approximating
the modelled disks, (either IBM 2314[20) or IBM 3330{21] ). Constant
velocity when seeking is assumed. Rotational delay is calculated from
disk rotation speed and the difference between the addressed sector

and the current angular position.
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5.5 Validation

Following Van Horn [19], vwe define validation as the process of building
an acceptable level of confidence than an inference about a simulated
system is a correct or valid inference for the actual system. The set
of observed measures compared to model outputs in order to develop such

confidence is:

1. An index of system performance - the rate per minute of work-units
2. An index of filestore performance -~ the filestore response time
3. An index of load - the rate per second of filestore requests.

All measurements were made after start-up transients had been eliminated.
A set of five, independently - seeded runs were used to establish standard
deviations and confidence limits for the calibration parameters. Further
sets of five, independently sceded, runs were made for each validation

trace.

From Table 5.3 the'calibration predictions for load and performance lie

close to the actual values. The 95% confidence limits are about six percent
for these indices in the case of S/360, and range slightly higher for S/370
load and system performance indices. These confidence limite are bounds
which the model is likely to exceed only on one occasion in twenty. the
less stringent 90% limits are also shown. Standard deviations are all

less than ten percent.

The validation results are shown in Table 5.4. The S/360,2 performance
indices have 95% confidence bounds of about six percent. The standard

deviations of these indices are not large. Prediction of mean response

time has been discussed above in section 5.3.3.



60

Performance Index S/360,1 $/370,3
Observed Work Rate - 41/min 49/min
Simulated Work Rate ¥ S.D. 40/min + 5% 48/min + 75
95% Confidence Bound + 6% + 9%
90% Confidence Bound + 5% + 7%
Observed Response Time 54ms 37ms
(mean)
Simulated Response Time 5Tms + 5% 35ms + 9%
(mean * S.D.)
95% Confidence Bound + 1% + 1%
90% Confidence Bound + 5% + 8%
Observed Access Rate 17/sec 25/sec
Simulated Access Rate T s.o. 18/sec + 3% 25/sec + 5%
95% Confidence Bound + 4% + 6%
90% Confiden Bound + 3% + 4%

Table 5.3 Calibration Results




For the S/370 validation runs, the 95% confidence limits are similar
the calibration limits of about nine percent. Standard deviations
for all indices are less than ten percent. All predicted means lie
to their observed values. The accurate prediction of response time

discussed in section 5.3.3 above. Wider limits than for S/360 were

to

close

is

ex—

pected because of the absence of data on filestore accessing patterns.

These results lend confidence to the model outputs and the new methods

of representing load in the environment of the filestore.

el




Performance Index S/360,2 $/370,1 S/370,2
Observed Work Rate 56/min 68/min 53/min
Simulated Work Rate ¥ S.D. 55/min + 2% | 66/min + 6% | 47/min + 9
95% ConfiderceBounds + 3% + 8% + 113%
90% Confidence Bounds + 2% + 6% T 8%
Observed Response Time 54ms 35ms 32ms
(mean)
Simulated Response Time 63ms + 6% 36ms + 8% 35ms + 5%
(mean * S.D.) - -
95% Confidence Bound + 1% + 9% + 6%
90% Confidence Bound + 5% + 7% + 5%
Observed Access Rate 14/sec 24/sec 17/sec
Simulated Access Rate ¥ S.D. 14/sec + 5% |24/sec + 6% | 16/sec + 5%
95% Confidence Bound + 6% + 8% + 6%
90% Confidence Bound + 5% + 6% + 4%

Table 5.4 Validation Results




5.6 Summary

A method of evaluating filestores has been developed from measurements

of real systems. Load is accurately represented by a model of individual
Tives of processes in the environment of the filestore. I/0 is conducted in
bursts of characteristic length and with realistically simulated runtimes
between i/0 events. Trace derived inputs are used to describe temporal
load. Filestore spatial accessing by each process is sequential in intent,
as observed in real systems. Address selection within individual bursts

on Sequential and Non-Consecutive layouts is accurately modelled. The
model built by this method has been vaiidated for its simulated load and
two outputs of performance prediction on different sets of input data.

The predictions agree well with their measured values and have acceptable

standard deviations and confidence Timits.



CHAPTER 6

The Effects of Disk Request Scheduling and Disk Capacity on System and

Filestore Performance
6.1 Introduction

This chapter presents a simulation experiment to re-evaluate disk
scheduling algorithms and to investigate the effect of disk capacity on
performance. The system model developed in the previous chapter is used

for this experiment. Input parameters are taken from the measurements
described in Chapter 4. Simulation outputs for work-unit throughput are only
compared where these units are equivalent, i.e. .only within runs on the same
set of outputs.

The results of Lynch, Jalics and Gray indicate that the conclusions of
Teorey and Pinkerton on the ranking of disk request schedulers are not
relevant to at least two time-sharing systems. The configuration problem

of the number of disks used for a filestore of given capacity has arisen
because of the availability of so-called "double-density" disks with twice
the number of tracks per surface than their "single-density" variants.

The problem is whether any performance losses incurred by fewer servers

outweigh the cost savings of the halved number of disks.
6.2 Disk Request Scheduling Algorithms

The scheduling algorithms tested, with brief descriptions, are

1. First Come First Served (FCFS) - with a single waiting queue per disk.

2. Shortest Seek Time First (SSTF) - with a single waiting queue per disk.

(4]



3. SCAN with a single waiting queue per disk. The SCAN algorithm
includes Merten's modification to reverse the scanning direction
if there are no queued requests ahead of the currently selected

position.

4. C-SCAN with a single waiting queue per disk. The disk arm returns to
the start-scan position if there are no queued requests ahead of the

currently selected position.

5. N-SCAN with two queues per disk, the service queue and the waiting
queue. At request completion, the head of the service queue is chosen.
If the service queue is empty, all waiting requests are taker and
ordered by Frank's algorithm [15] approximating the optimal shortest-

seek-time. This is the N=09 case.
Descriptions of the algorithms are given in Appendix C.

In addition to the above, two implementations of an algorithm suggested

by Lynch are included. Lynch [ 29] suggested a scheduler which enqueues any re- |
quest with a seek movement in the expectation of a request to the currently selecte.
position. If within a short period the expected request has nct materialized

the queued requests are serviced. In Chapter 4 we have named this inter-

val the Lynch Period. This a]gorithm is designed to take advantage of

sequential accessing with a high percentage of zero-seek requests. The

two implementations differ in their queue service method. LYNCH1 services

its waiting queue in a FIFO manner, LYNCH2 uses an SSTF method. The Lynch

algorithm assumes a small number of requesting processes per disk at any

given moment. This is a low-use situation. For its operation or ine re-

quests to a single disk, with a single waiting queue, the LYNCH algorithm

- may be described at two events - "request arrival" and "queue service" :-



a) request arrival -

if = disk busy and cylinders moved = 0

then service

else enqueue;

b) 1. queue service for LYNCH1 -

(1) service the Tongest waiting request to the currently
selected position. (Such requests are enqueued because of

a disk busy condition.)

(1) if none in (i), service the head of the queue if its

waiting time exceeds the Lynch Period.

(iii) if none in (ii), do nothing.

2. queue service for LYNCHZ -

(1) service the longest waiting request to the currently

selected position.

(i) if none in (i), SSTF—service the queued requests

which have waited longer than the Lynch Period.

(iii)  if none in (ii), do nothing.



6.3 Disk Configuration

r
Disk manufactq@rs are maintaining the economic effectiveness of their
products by price adjustments and performance improvements. Only the latter
concerns us here. Larger capacity is offered by increasing track density
and using more precise track selection. This also reduces per-cylinder
seek time, but the increased capacity may mean longer response time from

fewer servers.

For the S/360 environment, a filestore capacity equal to the measured
system was modelled, viz. 1600 IBM 2314-style cylinders (i.e. 240 Mbyte).
The filestore is modelled with 2, 4, 8 and 16 disks each of 800, 400,

200 and 100 cylinders. For the S/370 environment, the modelled filestore
has 1600 cylinders of IBM 3330-style (i.e. 800 Mbyte). This is the same
capacity as the measured S/370 system. It is modelled with 2, 4 and 8
disks each of 800, 400 and 200 cylinders.

6.4 Experimental Plan

Input data from both S/360 and S/370 systems are used to re-create the
filestore environment of those systems. In the one, disk performance
characteristics not varied for the experiment are as for the IBM 2314.

In the other, these characteristics are as for the IBM 3330 disk. When the
S/360 system is simulated, a sequentially-formatted filestore is modelled
using the spatial accessing algorithm developed in Chapter 5. Similarly,
the Non-Consecutive layout is simulated for the S/370 system using the
accessing algorithm developed to represent the spatial accessing of

individual processes for that file organization.



‘The number of active processes in each system is varied over a small

range to enable plots of performance against load for graphical evaluation.
The outputs are mean filestore response time and work-unit throughput rate.
Each run is triplicated and the outputs averaged; for each combination

of factors the same load is presented. The simulation runs are 600 seconds

long, and error bounds are taken from the 95% confidence Timits of Table 5.4.

The factors and their levels for both systems are
1. Scheduling algorithm: 7 levels

2. Capacity per disk (i) 4 levels for S/360 - 2, 4, 8 and 16 disks
in a 240 Mbyte filestore

(i1) 3 levels for S/370 - 2, 4 and 8 disks
in an 800 Mbyte filestore



(S

6.5 Conclusions

Figure 6.1 and 6.2 for 8 and 4 disks respectively show that choice of
scheduling algorithm does not affect system performance. The Figures
are given with the detailed discussion of results in Section 6.6. The
graphs for other numbers of disks are similar. From Figures 6.5 and 6.6
there is only a suggestion that fewer disks in the filestore adversely
affects the work throughput rate. In general, the plots of results are

closer together than their error tolerances.

Figure 6.3 and 6.4 show that SCAN-type schedulers do not 1mpr8ve response
time much compared with FCFS, the improvement being of the order of the
confidence Timits. The LYNCH scheduler performs badly for the Non-
Consecutive layout (see Figure 6.2 and 6.4). It gives very low system
throughput and significantly longer response times. FCFS performs as well

as any other scheduler, except at heavier loads.

Table 6.1 of sample response time variances shows that disk technology
has a strong effect on scheduler performances. The characteristics of
schedulers, as indicated by these variances, are generally as expected
with the SCAN-type having smaller variances than the FCFS and SSTF

schedulers.



6.6 Results - Disk Scheduling Algorithms
6.6.1 Work Throughput

Figure 6.1 and 6.2 show work throughput rate against load for each of the
tested schedulers. In both the filestores are configured as in the real
systems. For the S/360, all of SSTF, the scanning methods and the Lynch
scheduler tend to perform better than FCFS. Excluding two off-trend values,
each group of results 1ies in a 10% band of work throughput, so no
particular algorithm is outstanding. For the S/370, the 95% confidence
bound is t10%. Over the range of loads, no scheduler is significant,

though FCFS is as effective as more complex algorithms. The increase in

work throughput is linear with load on both systems.

The Lynch scheduler performs as well as any other in the S/360 model,

but both variants show consistently low throughput rates in the S/370

model. The differences between the simulated systems are device speeds,
numbers of disks and filestore tayout. The Lynch Period compensates for device
speeds; the algorithm ought to perform better with fewer disks (more

frequent queue services); but the interrupted sequentiality in the Non-
Consecutive layout will cause more requests to be enqueued. This seems

the most 1likely explanation for the poor performance of the LYNCH

schedulers on the S/370.
6.6.2 Mean Response Time
Figure 6.3 and 6.4 present the plots of mean response time with system

load for each tested scheduler. FCFS increases response time in the S/360

model by a factor of 7 over the load range (from 100ms to 700ms approximately.)
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This compares with the SCAN range of 2.5 which is almost linear with load.
At the higher Toads, the +®bound for the 95% confidence limits does not
cover the gap between both Lynch and FCFS, and the other schedulers. Of
the non-scan algorithms, only SSTF performs as well as the scanning
algorithms. In the S$/370 model the FCFS response range is much smaller

at about 2, and FCFS is only worse than the others (Lynch excluded) at
the highest load level where its result exceeds the +8% bound. No signi-
ficant difference in mean response time is evident amongst the other
schedulers. N-SCAN performs better on the Non-Consecutive layout, where
the interrupted physical sequentiality distributes the i/0 requests across
the disk surface, compared with its poor performance on the sequentially
formatted filestore. The Lynch scheduler in both tested forms is very
poor in the S/370 model and unremarkable in the S/360 model. Layout is an

important factor in the viability of this scheduler.

Table 6.1 is a set of sample variances of response times taken from the
results plotted in Figure 6.3 and 6.4. These variances are taken from the
variances of the response times for the lowest and highest system loads.
They are given to illustrate the characteristics of each scheduler. .
Although the Non-Consecutive layout causes longer seek movements, the faster
arm-movement and rotational speed bf the IBM 3330,11 disks reduces the
variances below their sequentially formatted values (on slower IBM 2314
disks). For the Sequential layout, as shown in Figure 6.3, SSTF has the
same order of variance as SCAN and C-SCAN, as well as a similar response
time. Under these realistic conditions, SSTF does not degenerate to serving
only a small area of the disk. Contrary to expectations, the variance of
FCFS is larger than that of SSTF, Both LYNCH schedulers have lower
variances than FCFS. For the Non-Consecutive layout (see Figure 6.4) all

variances except LYNCH are small. SSTF and SCAN have similar variances, but



C-SCAN and N-SCAN values are even smaller, reflecting the designed

improvement of these algorithms.

(]

Response Time Variances
Scheduling Sequential Layout Non-Consecutive Layout
policy 8 x 2314 disks 4 x 3330 disks
FCFS - 75% 17%
SSTF 38% 23%
LYNCH (fcfs Q) 52% 500%
LYNCH (sstf Q) 47% 175%
~ SCAN 38% 17%
C-SCAN 36% 1%
N-SCAN 41% 10%

Table 6.1 Sample Variances of Response Times.
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6.7 Results - Number of Disks
6.7.1 Work Throughput

Figures 6.5 and 6.6 show work throughput against system load for each
configuration of filestore, and selected schedulers. The 95% confidence
bounds of +3% for S/360 and +10% for S/370 cover almost all the plots
at each load value. The suggestion of these data is that more disks per
filestore are associated with higher system performance, but no definite

results emerge.
6.7.2 Mean Response Time

Figure 6.7 and 6.8 show mean response time against system load. In these
figures, the confidence bounds are +7% for S/360 and +8% for S/370.

For both systems, only the smallest disk size mitigates the response

times of FCFS under heavier loads. For the other S$/360 schedulers,
increasing the number of disk cannot be said to significantly improve file-
store performance. Although this is suggested, most of the plots fall
within the confidence bound. For the S/370, despite the wider bounds

the difference between performances for the least and greatest number of

disks confirms that more disks per filestore improves mean response time.
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CHAPTER 7

Ranking of filestore factors for their effect on performance

7.1 Introduction

The investigation of request schedulers and disk capacity for two different
systems showed that neither scheduling algorithm nor capacity per disk

was a sufficiently influential factor in system or filestore performance

to offer a simple rationale for design. Furthermore, these investigations
do not permit any statement to be made about the ranking of these factors
and others (e.g. layout) that seem to be important. In this chapter, we

investigate the following set of filestore factors.

a) filestore layout
b) capacity per disk access
c) capacity per disk

d) scheduling algorithm

The experiments are designed for the application of Analysis of Variance
techniques (ANOVA) to the results in order to produce a ranking of factors
alone and in interaction with each other. This design is further described
in section 7.3, and the statistical method is described in Appendix B.
These simulation experiments are performed on the system model developed

in Chapter 5.
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7.2 The Factors
7.2.1 Filestore layout

In addition to modelling the Non-Consecutive layout, the Sequential lay-
out is used as a second level of this factor. A third level, the Pre-

cessed Layout, is also simulated.

The Precessed Layout allows the introduction of a gap between logically
consecutive records without any penalty of lost space {30] . This method
of placement is designed to mitigate the rotational delay incurred during
sequential accessing of a sequential layout - the "missed revolution"
effect discussed in Chapter 4. The Precessed placement policy used in
this experiment is shown in Figure 7.1. The filestore has 3 records per

track, simulating the S/370 layout.

Sefuen tiad Frecessed

Figure 7.1 Sequential and Precessed Layouts

In this Precessed implementation, the gap between logically sequential
records is effectively one-third of the revolution time. For the IBM 3330

disk in this system model, this time of 5.5ms exceeds the Lynch Period
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which is fixed at 4ms. Thus the gap between logically sequential records
exceeds the maximum runtime between requests in a file-i/o burst, andeli-
minates the "lost revolutions" originating from an inter-record gap of
less than the Lynch Period. This practical scheme is simulated by the
sequential accessing behaviour algorithm for individual processes, but
with the sectors on each surface renumbered from (0, 1, 2) to (0, 2, 1)

for the calculation of rotational delay.
7.2.2 Capacity per disk access
Three levels of capacity per disk access are represented by 1, 2 or 4

read/write heads per surface. These heads are placed on the same arm.

The effect of the arrangement of Figure 7.2 is to create

[ —
|

[ D—
|

&
)

Figure 7.2 Illustration of capacity per disk-access

“'lTogical' cylinders of twice the number of cylinders compared with a single
'physical' cylinder. When in position, all data on this 'logical' cylinder
is accessible without further head movement. This is implemented in the
model by mapping addresses generated from the range of physical cylinders
on to the range of logical cylinders. When necessary, the heads are moved
in unison. Little reduction in seek time may be expected since the number

of cylinders traversed is only reduced by the number of heads in the assenbly:



-the 1ikely benefit is an increased chance of selecting an address without

incurring a seek delay.
7.2.3 Capacity per disk

Three levels of capacity per disk (i.e. track density) are simulated in

a filestore size of 800 Mbytes and composition of IBM 3330-type disks.

This is achieved by setting the number of cylinders per disk (equivalent

to tracks per surface) to 200 (8 disks), 400 (4 disks) and 800 (2 disks).
The minimum and maximum seek delays were as for the standard IBM 3330. The
previous chapter indicated that fewer disks in the filestore were associated
with longer service delays, but the effect on system performance was not

significant by the method of analysis used.
7.2.4 Scheduling Algorithm

From the indications of performance given in Chapter 6, three schedulers

are selected:

i) FCFS
i) SCAN
iii)  C-SCAN

FCFS seems well-suited to a Sequential Layout, and by implication a
Precessed Layout also. Although mean response time 1ncréases with Toad,
the indications are that the magnitude of this increase for 3330-style
disks is modest if there are sufficient disks. SCAN and C-SCAN are two
scanning variations which seem suited to a Non-Consecutive layout,

even with its limited-length bursts of sequential accessing. Their



advantage s likely to be in situations of higher ioad with fewer,

large~capacity disks.

7.2.5 Load variation

The simulated system load is varied from 80 to 130 processes in steps
of 10. This small range is to facilitate graphical presentations of
results, and to represent the load variation conditions encountered in

the real system.



7.3 Experimental Plan

The experimental plan is an orthogonal design, i.e. all combinations

of Tevels are used in the model runs, and an equal number of observations
of each output variable are made for each factor arrangement. These
results, when the model runs are independently seeded, are amenable to
Analysis of Variance techniques for determining factor effects and inter-
actions. This technique and its requirements of the experimental plan

are described in Appendix B. The ANOVA analysis tests the Null Hypothesis
that the factor by itself or in combination with other factors has no
effect on the resultant output. The outputs with the factor at one value,
or level, are compared with those outputs at another level. In simulation
experiments, the normal fluctuation of the output is estimated by making
several observations of the output. The Null Hypothesis is true if the
outputs at factor level 1 do not differ from those at factor level 2

by more than the expected fluctuation. In statistical terms, this test

is the F-ratio (see Appendix B) and the probability of the Null Hypo-
thesis is expressed in accepted steps of 5%, 1% and 0.1%, these values
being calculated from the F-ratio. That is, a probability of 1% implies
that there is 1 chance in 100 that the Null Hypothesis is satisfied.
These probability levels are expressed as » ("significant", 5%), «» (“very
significant", 1%) and =*++ ("highly significant", 0.1%) representing

increasing confidence in the existence of the indicated effect.

The factors and their levels are:

1. Layout - 3 levels ; Sequential, Precessed and
Non-Consecutive.

2. Capacity per disk - 3 levels ; 2,4 and 8 disks in a 1600 tbyte files:or

3. Capacity per disk access - 3 levels ; 1,2 and 4 heads per surfcce



4, Scheduling algorithm - 3 levels ; FCFS, SCAN and C-SCAN

5. Load - 6 levels ; 80 to 130 processes in steps of 10.

6. Replication - 3 levels ;

For each level of load, there are 81 combinations of the other factors
excluding replication. This experimental set consists of 81x 6 x 3

runs, i.e. 1458 runs. These results are averaged over each replication

and used for graphical illustration of statistically indicated effects.
The statistical analyses use the set of results for two load levels, a
medium load (90 processes) and a heavy load (130 processes). Each analyzed
set comprises 243 runs of the.model. The analyzed outputs are work-unit

throughput and filestore mean response time.



7.4 Conclusions

The ANOVA data show that Tayout is highly significant in system and
filestore performance. Figure 7.3 and 7.4 show that the Non-Consecutive
layout affects performance adversely; the Sequential and Precessed layouts
show less sensitivity to disk capacity and have half the mean response
time. System and filestore performance is penalized by large capacity
disks, but the absolute effects are very small. The Non-Consecutive

layout is most adversely affected.

Request scheduler and capacity per access (i.e. number of heads per

surface) are not significant.

7.5 Results - Commentary on ANOVA tables

Tables 7.1 and 7.2 show the Analysis of Variance (ANOVA) evaluations of
each factor for its effect on the observed performance indices at two
load levels. For both indices, layout is highly significant, with a
lesser rating for work throughput at the lower load. Disk capacity is
also highly significant for filestore performance, and at the higher load
for work throughput. The significant 2nd and 3rd order jnteractions of
Table 7.1 are probably due to the strength of the single factors layout
and disk capacity; these interactions are investigated further below.

In Table 7.2, the 2nd order interaction at both loads between layout and
disk capacity is highly significant. The other interactions lessen at

the higher load.

Table 7.3 shows the ANOVA results for system performance when layout is

treated separately. No significant factor emerges except disk ccpacity
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Source of Degrees of F-ratio Significance F-Ratio Significance |
Variation Freedom at load=90 at lcad=90 at load=130 at load=125 °
A 2 0.38 0.95
B 2 0.03 8.95 xR
AXxB 4 2.09: 0.97
C 2 0.39: 0.89:
AxC 4 1.00 1.83
BxC 4 1.37 2.07
AxBXC 8 2.64 ** 2.41 *
D 2 4,89 ** 23.6 xxk
AxD 4 1.46 1.63
BxD 4 0.79- 2.87 *
AxBxD 8 0.50 0.88
CxD 4 1.41 0.56
AxCxD 8 0.41 1.29-
BxCxD 8 1.14 0.78
AxBxCxD 16 0.43 1.43
R 2
E 160
A = Scheduler * “significant"
B = Capacity/disk (track density) *% "very significant"
C = Capacity/Access (number of heads) *»x+ "highly significant"”
D = Layout

R = Replication

E = Error (all interactions with R)

Table 7.1 Results of ANOVA for Work throughput rate




Source of Degree of F-ratio Significance F-ratio Significance
Variation Freedom at 1oad=90 at load=90 at load=130 at load=130

A 2 13.0 *kk 6.53 *%
B 2 41.4 *kk 109 *xk
A x B 4 8.51 *kok 2.60 *
C 2 0.51 1.21
AxC 4 1.15 1.01
B xC 4 0.85 0.97
AxBxC 8 0.61 2.09 *
D 2 77.6 *xx 93.4 *kk
AxD 4 3.75 *x 3.27 *
BxD 4 7.82 * ok ok 18.8 *kk
AxBxD 8 3.63 *kk 0.77
Cx?D 4 0.53 0.08
AxCxD 8 0.46 2.30 *
BxCxD 8 0.36 1.20
AxBxCxD 16 1.13 1.30
R 2
E 160

A = Scheduler

B = Capacity/disk (track density)

C = Capacity /Access (heads/surface)
D = Layout

R = Replication

E = Error (all interactions with R)

Table 7.2  Results of ANOVA for Filestore Mean Response Time




at the higher load. The other factors involved with layout in Table 7.1
are not significant These results are illustrated in Figure 7.3. Pre-
cessed and Sequential Layouts differ little in their effect, but both
have a work throughput higher by a few percent than the Non-Consecutive
layout when it is most efficiently configured {see below). The absoiute
benefits of the smaller disks are small, but most marked for a Non-
Consecutive layout; at medium-to-heavy loads, the improvement in system
throughput is 10 - 15% for small disks (200 cylinders) and about 5% for
medium disks (400 cylinders). The Non-Consecutive layout is most severely

affected by large capacity disks.

For filestore performance with the layouts treated separately (Table 7.4),
disk capacity is highly significant at both load levels. The 2nd order
interaction between scheduler and disk capacity diminishes at the higher load.
No other main effects or interactions are significant. Figure 7.4 shows
mean response time against system load for all levels of factors disk
capacity and layout. With Precessed and Sequential layouts, the mean
response time is half that of the Non-Consecutive layout when‘efficiently
configured. With all layouts, disk capacity is also highly significant.
For the Non-Consecutive layout, the smaller capacities are better. The
large disks (800 cylinders) give response times which increase rapidly
with load; the medium (400 cylinder) and small (200 cylinder) disks are
equal until heavier loads when the small disks give a faster response.

The Precessed layout performs equally well with the Sequential layout for
small and medium disks. Only at heavier loads does the smaller disk

show a few percent improvement for the Precessed Layout.



Source of Degree of F-ratio Significance F-Ratio Significance
Variation Freedom at load=90 at 10ad=90 at load=130 at load=130

A 2 2.69- 0.71
B 2 0.68 3.1 *
AxB 4 0.91 0.41
C 2 0.24 0.23
I | AxC 4 0.66 0.26
B xC 4 1.20 0.87
AxBxC 8 1.25 1.38
R 2
E 52
A 2 0.61 1.17
B 2 1.00 3.29 *
AxB 4 0.99: 1.15
C 2 1.24 0.15
AxC 4 0.82 0.76
IIl Bx C 4 2.34 1.89-
AxBxC 8 0.53 1.47
R 2
E 52
A 2 0.13 2.26
B 2 0.08 8.03 *kk
AxB 4 1.25 1.16
C 2 1.79 1.52
IIT} AxC 4 0.44 3.19 *
BxC 4 0.46 0.95
AxBxC 8 1.71 2.42 *
R 2
E 52
Scheduler = = A
Capacity/disk = B
Capacity/Access = C
Replication = R
Error = E
Separate analyses of each level of layout:
I = Sequential
II = Precessed
III= Non-Consecutive

Table 7.3  ANOVA Results for Work throughput rate




Source of Degree of F-ratio Significance F-ratio Significance
Yariation Freedom at 1oad=90 at load=90 at load=130 at 10ad=130
A 2 6.47 * % 0.04
B 2 15.7 *kk 45.6 * kK
AxB 4 2.53 * 0.35
C 2 1.61 0.83
I AxC 4 1.19: 0.31
B xC 4 1.38 2.08
AxBxC 8 0.68 0.30
R 2
E 52
A 2 0.28 3.89: *
B 2 13.4 37.2 *xk
AxB 4 1.14 ok 1.26
C 2 1.08 0.75
IT| AxC 4 2.41 0.91
BxC 4 0.27 0.34
AxBxC 8 1.30 0.72
R 2
E 52
A 2 7.76 * % 5.01 *
B 2 21.8 * ¥k 50.3 %k
AXxB 4 6.77 * %k 1.53
C 2 0.16 0.37
ITI| AxC 4 0.48 2.19
BxC 4 0.28 1.05
AxBxC 8 1.10 1.83
R 2
E 52
Table 7:4 ANOVA Results for Filestore Mean Response Time
A = Scheduler
B = Capacity/disk
C = Capacity/Access
R = Replication
E = Error
Separate analyses for each level of layout:
I = Sequential
IT = Precessed
IIT = Non-Consecutive



CHAPTER 8
Investigation of Two Policies for using Disk Fast-Access Areas
8.1 Introduction

A disk configuration factor not considered in Chapter 7 is the availability
of fixed heads over a small group of cylinders [ 22, 23] . This enables fast,
zero-seek-time accessing of data on this area. In this chapter, the system
model is used to evaluate two strategies for using a fast-access area.

-The evaluated stra&egies are

(i) the Simple-Placement Policy

(ii)  the Staging Policy

Both policies take advantage of known accessing patterns to anticipate
sequential referencing. The Simple-Placement policy is to place frequently
accessed data (catalogues and other files)on the fast-access area. The
Staging Policy uses the fast-access area as a "staging" area, i.e. long
sequences of records are buffered on the fast-access area in response to

a demand for one record of the sequence.

These strategies are both suitable for the Sequential layout filestore.
Both are also suitable for the Non-Consecutive layout if a buffer area not
larger than one cylinder is staged since that layout is organized sequentially

within cylinders but not necessarily so across cylinder boundaries.



8.2 Experimental Factors for the Fast-Access Area
8.2.1 The Simplie-Placement Pclicy

Measurements of the S/360 filestore showed that 50% of the accesses to
each disk were to the 1% of surface area containing the catalogue.
Inferences about accessing patterns on the S$/370 filestore suggest that
40% of its accesses are made without incurring any seek delay. These are
the bases for the Simple-Placement Policy, which is to place the catalogue
(or other disk index) on the fast-access area. Contemporary disks with
this facility typically have 0.5% of their area under fixed heads. Our

interest is a disk with a fast-access area of at least 1% of its surface.

To model the Simple-Placement Policy, the request generating algorithm
is modified to select the fast-access area when generating a request to
the 'central' area. This parameter is &, as described in Chapter 5. A
variable, additional fraction of requests is also directed to this area
to simulate the placement of other frequently-accessed data. The address
generating algorithm becomes:

from current cylinder i,

select fast-access area with probabilitye+ S N

select current cylinder with probability (£+ S) - (ﬁ+ S)

move to cylinder j with probability 1 - (f+ S)

Cylinder j is selected such that li —‘jl is according to layout type,
&+ S)<(B + 94.0 3 S is the additional fraction of requests satisfied

from the fast-access area (see discussion in section 8.2.3) and any move is

selected according to layout, as described in section 5.5.1 and 5.5.2 .
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8.2.2 The Staging Policy

The alternative strategy of Staging is to use the fast-access area as

a buffer between slower-access storage and the main store. Sequentiality
of reference on both layouts indicates that one or more successor requests
will be made during a file-i/o0 burst. The Staging Policy transfers complete
cylinders of data to and from the staging area. A cylinder is staged-in
when one of its records is referenced (and the cylinder is not already

in the fast-access area). We assume that all records cn the addressed
cylinder may be staged-in for the cost of a seek delay plus one rotation.
The cylinder to be staged-out is selected by the Least Recently Used
a]gérithm. In the absence of any other data, we assume a probability of
0.5 that this cylinder has been written to, and so requires saving to its
permanent residence area. The "write home" cost is the seek delay to the

cylinder position plus one rotation.
8.2.3 Size for the fast-access area.

Various sizes of the fast-access area are simulated by varying the number
of requests it receives under the Simple-Placement policy, and by varying
the number. of fast-access cylinders in the associative table used to im-
plement the Staging Policy. The levels of the size factor are chosen to
keep.these interpretations of size equivalent. Gray reported 50% of accesses
to 1% by number of the cylinders of the sequentially organized filestore,
and his measurements show peaks of accesses on certain cylinders (see
Figure 2.1). However, without good data on file referencing and file
sizes, we analyze the uniform-access situation in which the fraction of
requests satisfied from the fast-access area is linear with the size of
the area. This sets a lower bound on the number of requests so satisfied,

since it is likely that much higher "hit" rates are possible.



For both Sequential and Non-Consecutive layouts, the spatial accessing
algorithms fix « to be the fraction of requasts to central cylinders.

We assume that this fraction at least is satisfied from the fast-access
area under the Simple Placement policy. In addition, up to 10% of other
accesses are considered to be satisfied from this area. For the Sequential
layout, up to 70% of all accesses may be satisfied; for the Non-Consecutive
layout, up to 50%. The smallest non-zero area is simulated as satisfying

an additional 2.5% of all requests over the value of x, as shown in

Table 8.1.
Simple-Placement Staging
tevel 1 0 of accesses 0% of cylinders
2 & + 0.025 of accesses 1% of cylinders
3 o + 0.050 of accesses 2% of cylinders
4 & + 0.100 of accesses 4% of cylinders

Table 8.1 Interpretations of fast-access area size.

We equate the first non-zero level of size under Simple-Placement with

1% of available cylinders, the representation simulated under the Staging
policy. The maximum size under Staging is 4% of available cylinders, and
this corresponds to the conservative "hit" rate of («+ 0.1) under the

Simple-Placement policy.



8.3 Other Experimental Factors

Layout schemes are expected to influence the choice of strategy, so this
factor is also retained though at two levels only - Sequential and Non-
Consecutive. Increased capacity per disk-access (i.e. more heads per
surface) was found to have no significance in the configuration specified
for the previous experiment. However, this factor is retained to test

for any interaction with the fast-access factors of policy and size. The
number of disks in the filestore is fixed to eliminate variation from
this source. Request scheduler is not significant, so FCFS is selected
for ease of implementation. As in the previous experiment, the system
load is varied over a small range to enable graphical presentation of

statistical effects.
8.4 The Experimental Plan

The experimental plan for ANOVA called for an orthogonaldesign of factor
levels i.e. all combinations of levels are employed and and equal number
of observations are made for each set of levels. Each combination of levels
is replicated three times with independent seeding of each run of the
simulation. Further description and references about the experimental

technique and method of analysis are given in Appendix B.

The factors and their levels are:

1. Layout - 2 levels; Sequential and Non-Consecutive.
2. Use policy - levels; Simple Placement and Staging

3. Fast-access area size levelsy; 0%, 1%, 2% and 47 of available cylinder:.

4. Capacity per disk access levels; 1, 2 and 4 heads per surface

1
o) w S N

5. Load - levels; 80 to 130 prccesses in steps of 10

6. RepTication - 3 levels;



For each level of system load there are 48 ccmbinations of the other levels
excluding replication. This experimental set consists of 48 x 6 x 3 runs,

i.e. 864 runs. These results are averaged over each replication and used

‘for graphical illustration of statistically indicated effects. The statistical
analyses use the sets of results for two load levels, a medium load (90
process) and a heavy load (130 processes). Each analyzed set comprises 144
runs of the model. The analyzed outputs are work-unit throughput rate and

filestore mean response time.



8.5 Conclusions

Figure 8.1 and 8.2 show that Simple-Placement and Staging policies perform
equally on a Sequential Tayout, but that Simple-Placement provides a
faster response from the filestore and more system throughput on the
Non-Consecutive layout. Size of fast-access area is not consistently
significant (as indicated in ANOVA Tables 8.4 and 8.5). Figure 8.3 shows
the weak interaction of size with service policy on the Non-Consecutive

layout.

The Non-Consecutive layout is again a poor choice for filestore performance
(Figure 8.2); for this layout, the Simple-Placement policy is to be pre-
ferred. However, the Sequential layout gives shorter response times and

a slight throughput improvement under both fast-access area strategies.

The choice of strategy for a Sequential layout is between performing

data placement manually or implementing Staging as a self-regulating policy.

Informal comparisons with the results of Chapter 7 show that a fast-access
area is an almost unqualified benefit; system throughput is increased on
both layouts by 20 - 40% (Figures 8.1 and 7.3). For the Sequential lay-

out, mean response time is halved and increases linearly with load even

with a FCFS request scheduler which is normally associated with increasingly

long response times as load increases.
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8.6 Results
8.6.1 Commentary on ANOVA tables

Tables 8.2 and 8.3 show the ANOVA analyses of each factor at two system
load levels. Layout dominates in its 1nf1uence on system and filestore
performances. The work throughput (Table 8.2) is only sensitive to layout
at the higher load level, but mean response time (Table 8.3) is affected
by layout and service strategy at both Toad levels. The significant

interactions all contain the strong factors.

The analyses are repeated in Tables 8.4 and 8.5 where layout is treated
separately. The former layout-dominated result for work throughput now
shows that the service strategy is highly significant at the higher load
for the Non-Consecutive layout. There is an absence of other effects,

and Figure 8.1 confirms the equivalent nature of both service policies
for system throughput, indicating that the Staging policy adjusts well

to the spatially contiguous bursts of the Sequential layout. Size of fast

access area and capacity per disk access are not significant.
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Source of Degree of F-ratio Significance F-ratio Significance
Variation  Freedom 2t load=90 at l0ad=90 at load=130 at load=130
A 1 0.00 14.1 Kk
B 2 0.48 2.09-
A xB 2 0.73 0.25
C 3 2.04 0.90 ;
AxC 3 0.84 1.35 |
BxC 6 1.18 1.17
AxBxC 6 1.02 0.36
D 1 0.19: 4.36
AxD 1 0.00 4.20
BxD 2 0.32 1.03
AxBxD 2 0.32 0.54
CxD 3 0.53 0.63
AxCxD 3 0.24 2.05
BxCxD 6 1.67 0.39
AxBxCxD b 0.66 0.63
R 2
E 94

Table 8.2 Results of ANOVA for Work Throughput Rate

A = Layout

B = Capacity/access (heads/surface)
C = Fast - area size

D = Fast -area service policy

R = Replication

E = Error (all interactions with R)



Source of Degrees of F-ratio Significance F-ratio Significance

Variation Freedom load=90 load=90 load=130 load=13)
A 1 69.7 * ok 130. *kk
B 2 3.76 * 0.09
AxB 2 6.63 *% 1.14
C 3 0.75 1.94
AxC 3 2.94 * 1.50
BxC 6 2.12 1.48
AxBxC 6 1.01 1.00
D 1 23.2 *hk 40.2 *Hk
AxD 1 16.0 *kok 27.4 * Kk
BxD 2 0.48 1.36
AxBxD 2 0.78 0.64
CxD 3 3.62 5.28 *%
AXCxD 3 2.75 4.17 *%
BxCxD 6 0.98 0.70
AxBxCxD 6 1.26 0.46
R 2
E 94

Table 8.3 Results of Anova for Mean Response Time

A = Layout

B = Capacity/access (heads/surface)
C = Fast area size

D = Fast area service policy

R = Replication

E = Error (all interactions with R)



Source of Degrees of F-ratio Significance F-ratio Significance

Variation Freedom load=90 load=90 load=130 load=130
A 2 0.91 1.88
B 3 0.52 0.66
AxB ) 0.98 0.85
C 1 0.07 0.00
I tAxC 2 0.49- 1.57
BxcC 3 0.43 0.61
AxBxC 6 0.65 0.58
R 2
E 46
A 2 0.04 0.52
B 3 2.99 * % ].59
AxB 6 1.25 0.70
C 1 0.13 8.44 *xk
IT| AxC 2 0.00 0.05
BxC 3 0.30 2.06
AxBxC 6 2.00 0.45
R 2
E 46

Table 8.4 Results of ANOVA for Work Throughput Rate

A = Capacity/Access (heads/surface)
B = Fast-area size

= Fast-area service policy

- o
1

Replication

E = Error (all interactions with R)
Separate analyses for each level of layout:-

I = Sequential

II - Non-Consecutive



Source of Degrees of F-ratio Significance F-ratio Significarce
Variation Freedom load=90 load=90 load=130 load=13C
A 2 2.30 4.38 *
B 3 8.18 *kk 0.16
AxB 6 8.82 * A 1.13
C 1 1.30 2.96
I |AxC 2 1.32 0.68
B xC 3 0.20 0.83
AxBxC 6 0.28 0.44
R 2
E 46
A 2 5.61 0.19
B 3 0.90 1.96
A xB 6 "'0.49 1.30
C ] 22.2 * k% 38.9 * k&
II|]AXxC 2 0.53 1.08
BxC 3 3.62 * 5.39: * %
AxBxC 6 1.25 0.62
R 2
E 46

Table 8.5 Results of ANOVA for Mean Response Time

= Fast-area size

Capacity/Access (head/surface)

= Fast-area service algorithm

= Replication

= Error (all interactions with R)

Separate analyses for each level of layout:

I
II

Sequential

Non-Consecutive




Table 8.5 shows that service policy has a highly significant effect on
filestore performance for a Non-Consecutive layout. Figure 8.2 shows

that the Staging policy on this layout has much longer mean response times
than the Simple-Placement policy. For the Sequential layout, Table 8.5
shows that size is highly significant at the low load when it also inter-
acts strongly with capacity per disk-access. Figure 8.3 explores this
result, showing that increased size merely mitigétes the poor performance

of Staging on the Non-Consecutive layout.

For the Sequential layout, the mean response time increases linearly with
Todd, the Staging policy being consistently a few percent slower than
the Simple-Placement policy (Figure 8.2). Mean response time for the

Sequential layout is at least half that for the Non-Consecutive layout.
8.6.2 Commentary on Results of Chapters 7 and 8,

Figures 7.3 and 7.4 of Chapter 7 and 8.1 and 8.2 of Chapter 8 show file-
store performance under various levels of significant factors with and
Without a fast-access area. The Simple-Placement policy and a fast-access
area increase work throughput by 20% to 40%. The reduction in mean response
time for a Sequential layout is unexpectedly large; the very long service
times expected under FCFS at higher loads are eliminated. Mean response
time for a Non-Consecutive layout does not reflect the throughput improve-
ment. It is probable that a reduction in the variance rather than the mean
takes place, Overa]]’the Sequential layout and FCFS filestore is twice

as fast with a fast-access area.



CHAPTER 9-
Potential Performance from a Novel Filestore-Controller
9.1 Introduction

The filestore is adapted with a special form of disk controller equipped
with a cache store. The purpose of the controller is to reduce the average
access time of the filestore by using a rapid-access store, or cache,
under a Simple-Placement policy. This extension of filestore capability
was foreshadowed in Chapter 8 where a fast-access area attached to each
disk resulted in 6onsiderab]e improvement of filestore and system per-
formance under certain conditions. In [32] , McGregor, Thomson, Dawson

and Jones describe their microprocessor 1mp1ementatioﬁ of the controller.

This author's contribution is an assessment of the improved filestore.

The increased effectiveness of a cache-equipped filestore is represented as
a performance improvement which is an input to the model of the filestore
and its environment. Monitoring the behaviour of the work-unit throughput

rate and response time achieves the aims of assessment. These aims are:

1) to explore the 1imits of system performance (work-unit throughput) with

a fast filestore.

ii)  to determine the necessary filestore performance improvement to

release system performance from any filestore constraints.
9.2 Performance Improvement Factor

The Performance Improvement Factor (PIF) is defined in relation to the

basic time-delay characteristics of a disk filestore. These characteriztics



are seek-time, rotational delay and record transmission time. A Performance
Improvement Factor of 1 represents the currently available filestore
without any fast-access cache to shorten its service times. The performance
gained by use of a cache store is represented by reducing the basic time
delay characteristics. Halving these times is represented by a PIF of 2,
and halving again by a PIF of 4, and so on. It is convenient to continue
using the disk filestore model, but for the modelling of Performance

Improvement Factor this is not essential.
9.3 Experimental Plan

Input data from both S/360 and S/370 recreates the filestore environment
of these systems. The layouts and configurations are as described in
Chapter 5, viz .

S/360 - Sequential layout ; eight IBM 2314 disks (240 Mbytes)
S/370 - Non-Consecutive layout ; four IBM 3330,11 disks (800 Mytes)

Five sets of duplicated runs are made for each modelled system. Each set

has its filestore performance improved by a factor of 2 over the previous
run. Record transfer speed is increased until the 1imit of channel speed.
The choice of load is determined by the search for maximum work throughput.
The system load is increased to overcome the limiting effect of non-file-i/o

on file load.

This model extrapolates from the well characterized situations used for
the more precise estimates presented in Chapters 7 and 8. The aim of
the experiment is to explore the effect of the new controller on existing

systems.



9.4 Conclusions

The potential benefits from a simple extension of filestore capabilities

are considerable. The filestore equipped with a fast-access area as in
Chapter 8 has a Performance Improvement Factor of 2, and that with immediafely
realizable technology. A cache-equipped filestore with a PIF of 4 reduces
maan response time by an order of magnitude and increases system performance
up to four-fp]d before non-file-store 1imiting conditions are reached. A

PIF of 6 or over has spare work capacity at lower load but the mean

response time is reduced by an order of magnitude. The work throughput

could be increased by a factor of ten and filestore performance would still

be faster than contemporary systems.

The 1imits of work throughput are much higher than achieved with conventional
multi-user general-purpose systems, even with modest PIFs of 6 or 8.

However, the effect of processor contention gg the system load necessary

to achieve the high throughput is unknown. Also, for concurrent running’

of many processes, a very large main store is required. The obvious
application of the new filestore is to very large data bases and existing
time-sharing systems where reduced response times would be the principal
benefit. A possible new application is the use of such a filestore as a

node in a small network of general-purpose systems or in a large network

of single-user systems.

i=e



9.5 Results

Figures 9:1 and 9.2 show the predictions of work throughput and mean
response time against the Performance Improvement Factor. In both systems,
very large system loads are able to run concurrently, though at the expense
of very long mean response times for low PIFs. The Figures are marked

to show the transition from work throughput limited by the applied load

to that Timited by the performance of the filestore. This is calculated

as follows:

a) for Figure 9.1 , at PIF =8
1.67

(1) ratio of system load 100/60

ratio of work rates 75/45

1.67

= work rate improvement is due to increased load.

(i1) ratio of system load 300/200 1.50

ratio of work rates 185/140 1.30

less improvement than expected from increased load therefore

= the filestore is limiting the work rate.

b) for Figure 9.2 , at PIF =8

(i) ratio of system load 200/100 2.0

ratio of work rates 155/80 2.0

= work rate improvement is due to increased load.

(ii) ratio of system load 600/460 1.50

n

ratio of work rates 380/285 1.30

= filestore is limiting the work rate increase.
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If the real systems could support more load, more work throughput is
available at the expense of filestore response time. From Figure 9.2, a
modest PIF of 4 enables a four-fold increase in system load and work rate,
with mean response time remaining at the levels of current, unimproved
systems. A PIF of 6 or over offers a very fast response time of about 5ms

at current system loads of 60 to 100 processes, and with a considerable
reserve of work capahility. This reserve could be realized up to the

Timit of the filestore with mean response times (at 40ms, including waiting)

still Tess than current systems (at 60 to 150ms).

Comparisons with Figures 8.1, 8.2 and 9.2 show that the fast-access equipped,
sequentially formatted filestore has a Performance Improvement Factor of 2.
Its improvement over the equivalent filestore without a fast-access area
(Figures 7.3 and 7.4) is a factor of 1.5 in work throughput, and a factor

of 2 in mean response time.



CHAPTER 10

Summary and Conclusions

Measurements of two large time-sharing systems have been presented. These
data are separated by three years, and are from two different versions of
the Michigan Terminal System. Many similarities exist between user

behaviour patterns on these traces and patterns reported by Jalics and Lynch.
Processes perform i/0 in bursts of short mean length but very large variance.
These burst lengths have a characteristic distribution that is well fitted
by two straight Tines. Run-time per process between i/o events has also

been characterized. For file-i/o bursts, the spatial intention of a burst
from an individual process is sequential. The filestore layout determines

whether the sequential intent is mapped on to sequential physical addresses.

A method for evaluating a filestore in its operating system environment
has been developed. The measured patterns of individual process behaviour
enable the specification of temporal and spatial load in the environment.
Load representation by these behaviour patterns differs considerably from
previous simulation models, especially with respect to filestore accessing
habits in time and space. A simulation model incorporating this load
representation has been established and validated by checking its predictions
against actual system measurements for a range of different situations.
The methodology encapsulates studies of many sets of trace data. It is
flexible in its application to other systems. It requires software trace
facilities for accurate measurement of process activity. Future systems
may be modelled by extrapolation of time costs, since it is reasonable to

assume the future validity of these behaviour patterns.




The model has been used to analyze various disk filestore configurations
within contemporary environments. It has also been successfully used as

a design tool in the investigation of new systems architecture. In
contemporary systems, the absolute effects of disk request scheduling are
negligible. Statistically, file organization and disk capacity are the
significant factors most affecting current system performance. Disks with
fast-access areas can greatly improve performance by taking advantage of
disk accessing patterns. A new design, equipping the filestore with a
cache store, offers considerable performance improvements even with

current-technology disks.

This work contributes by measurement and by the abstraction of salient
characteristics to the development of the engineering study of computer
systems. The proposed methodology contributes to the improvement of
computer system models for reliable predictions. Further work is required

to establish the engineering rules and limits of this methodology.



Appendix A Measurements not given in the text.

1. Run-time distributions.
2. Burst length distributions.

3. MWaiting time distributions.
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Appendix B
A Note on the method of Statistical Analysis used in Chapters 7 and 8.

The experimental design used in Chapters 7 and 8 uses qualitative factors
at several levels, and two quanitatfve outputs. This system may be
analyzed for each output by the method of Analysis of Variance (ANOVA)
because the design is orthogonal, i.e. all combinations of levels are
employed and an equal number of observations of the output variable are

made for each factor arrangement.

Routines from the program library NAG (Nottingham Algorithms Group [ 38)])

were used for this analysis. The method decomposes the variance in the

output observable from its several values in order to test whether those
output values with Eézi factor at, say, level 1 differ from those values with
that factor at another level, say level 2. For.the simulation technique used,
replications of the output observation at each factor level are required

to establish this variation. The test of significance is whether the

difference in value between factor levels is more than is expected because

of random, or error, differences within each factor level.

The applied test of significance is:-
are the sums of squares of the output observable x due to a particular

or
fact/ A (SSA = varA(x)) from a population where no such effect exists?

This Null Hypothesis, if true, has the property that the ratio

mean square of variance attribgtab]e to A
mean square of variance unattributable

follows the F~distribution.
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Further

Mean square of varianceA = Sum of Sqq of x due to A

degree of freedom of A

where the concept "degrees of freedom" is generally the number of obser-
vations of x less the number of constraints imposed on the system. This

concept is treated explicitly in the analyses of Chapters 7 and 8.

The effect of factor A is statistically significant if the caiculated

ratio exceeds the value of the F-distribution. Tables of the variance

ratio at which a factor is considered to be significant may be found in [14].
The probabiiity levels usually chosen are 5%, 1% and 0.1%, i.e. for the

5% level there is a 1 in 20 chance that the observed effect satisfies the
Null Hypothesis and belongs to the population of values which the output
may normally assume. Similarly, the 1% and 0.1% levels express increasing
confidence that the value observed does indeed come from a different
population, i.e. that the factor has an effect on the observable. Practical
texts [ 9, 18, 36] advise that a result about the 5% level is worth further
investigation, and for final results and conclusions a higher level is

preferred.

In the analyses of Chapters 7 and 8, the level of significance of a
variance ratio is indicated by =*(5%) meaning "significant"; ** (1%)

"very significant"; and «xx (0.1%) "highly significant".

The demands made upon experimental design for useful application of this

statistical method are:



1. orthogonality of design
2. replication with independent random number generator seeding
(for simulation experiments)
3. a reasonable expectation of cause and effect among the factors and

the output observabie.

~Condition 1 is met by design. Condition 2 is met by preparing a pool of

acceptable seed values for the mixed congruential pseudo-random number

generator used [ 28] and recording final values as seeds for succesor runs.

The pool of acceptable seeds was chosen by screening candidates with the
Chi-Squared and Kolmogorov-Smirnoff tests for randomness and long life
cycle [ 28] . Condition 3 is a safeguard that the physics of the situation

lends itself to interpretation by this method of analysis.



Appendix C
Disk Request Scheduling Algorithms
C.1 Scheduling Algorithms - Literature

Denning [13] used a single disk model with exponential arrival assumptions
to analyze the Shortest Seek Time First (SSTF) scheduler which he

adopted from the Shortest Access Time First (SATF) policy developed for
fixed-head rotating storage devices. He introduced SCAN, a method of service
in which the disk arm sweeps backwards and forwards across the disk. This
algorithm guarantees service under heavy load where SSTF discriminates
against requests for extreme addresses. SCAN is also capable of a higher

throughput of requests than First Come First Served (FCFS) under heavy load.

Variations of SCAN have been proposed by Frank [15] , Merten [ 35] and Teorey
[52]. Frank introduced the N-step SCAN policy (FSCAN or N-SCAN) in which

N requests are taken from the queue of waiting requests and serviced during
a scan. This policy is designed to reduce response time variance with

little effect on request throughput. Merten removed the constraint of
sweeping to a disk extremity before reversing direction. This policy is
sometimes ca]]ed‘LOOK, although SCAN now often implies Merten's modification.
Teorey introduced C-SCAN, a circular scan. At an extremity the disk arm

recommences sweeping at the starting extreme.

These investigations conclude that the SCAN algerithm and its derivatives
N-SCAN and C-SCAN increase the variance of response time in return for a
reduced average compared with FCFS. FCFS provides the most rapid service

at light loads but response time increases with load more rapidly thon the



the other algorithms. SSTF seems inherently unsafe since at heavy loads
it shows a high request throughput but degenerates to serving only a

fraction of available cylinders.
C.2 Algorithmic descriptions of Request Schedulers.

The schedulers described are FCFS, SSTF, SCAN, C-SCAN and N-SCAN. The
Lynch scheduler is described in Chapter 5. These algorithms are described
in terms of a single disk with two relevant events - Request Arrival and
Queue Service. Request Arrival is self-explanatory. Queue Service occurs
after a service completion when waiting requests are serviced. Extension
to multiple disks involves another queue for the access path, and several

queues for the several disks.

C.2.17 FCFS - One waiting queue.
a) at Request Arrival
if = disk.busy then service
else enqueue;
b) at Queue Service:

serve request at head of queue;

C.2.2 SSTF - One waiting queue

a) at Request Arrival:
if = disk.busy then service

else enqueue;

b) at Queue Service:

service request closest to current arm position;
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€.2.3

C.2.4

C.2.5

SCAN (including Merten's modification). One waiting queue.

a) at Request Arrival:
if =~ disk_busy then service

else enqueue;

b) at Queue Service:

Service request least ahead in current service direction.

If none, reverse direction and select a request by the same rule;

C-SCAN - (dincluding Merten's modification)

One waiting queue.

a) at Request arrival:
if — disk_busy then service

else enqueue;

b) at Queue Service:
Service request least ahead in the service direction.
If none, retract to starting exteme and select request by .

the same rule;

F-SCAN - Two waiting queues, the service-queue and the waiting-queue.

a) at Request Arrival:
if — disk_busy then service

else enqueue on waiting-queue;



at Queue - Service:

if service-queue — = empty

then service request at head of queue
else

begin

copy the first N requests from the waiting-queue to the
service queue;

order the service-queue by Frank's empirical shortest-
seek-time algorithm, viz. arrange the requests for a scan
first in the direction for which the farthest request
distance is a minimum, and second backwards until the
remaining requests have been serviced;

end

iqu



Appendix D Measurement Overhead Costs

The DCF version used by Gray was substantially the same as the facility
described by Pinkerton [ 43]. The version used for this research had been
implemented by King [27]). Pinkerton evaluated the DCF-induced interference
to his observed system to be very small, namely 0.3% CPU time and about

4% of main storage for buffers. King's DCF version was used to monitor
itself by including in the reporting set another event to enable explicit
CPU time accounting per process. This event constitutes more than half

the events gathered for interference evaluation. Table D.1 shows the results
of two typical assessments. A1l assessments showed less than 2% CPU time
attributable to DCF; this includes a high overhead introduced to make the
assessment. The newer DCF uses more buffer areas, but the percentage
remains the same at 4%. Channel utilization for accumulation of data is

a calculated 0.4%. The measurement overhead costs are very small.

CPU%
ELAPSED DCF MTS MTS IDLE
TIME (secs.) SUPERVISOR USER
MODE MODE
121 1.8 2.3 95.9- 0.0
121 1.4 1.8 96.8 0.0

Table D.1 DCF Interference Measurements
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