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ABSTRACT 

Performance measurements of two large time-sharing computer systems 

are presented, with emphasis on their disk files~ores. Si~ilarities 

of process behaviour are found in the measured systems and another system 

reported in the literature. Individual processes make i/o requests in 

sequences, or bursts. Burst lengths have a mean of two wi th a large 

variance; within a burst, file i/o requests are spatially sequential in 

intent and are temporally related. 

Characterizations of these behaviour patterns form the basis of a 

methodology for filestore evaluation and design. Descriptions of spatbl 

and temporal load are abstracted from software traces without loss 

of any performance factor; these descriptions are inputs to a statistical 

model of the processes in the environment of the filestore. The filestore 

is represented by a simulation queuing model. The method specifies the 

inputs to the composite model and describes the calibration of outputs 

to match observable outputs. A model is built by this method, and vali­

dated for different loads. 

The model is used for three evaluation experiments. Disk request scheduling 

is not statistically significant; filestore layout and disk capacity are 

highly significant; disks with fast-access areas are shown to improve 

performance by taking advantage of spatial accessing patterns. The limits 

of performance of a novel filestore equipped with a cache store are 

explored to determine guidelines for this new design. Modest improvements 

resulting from this design are shown to produce a considerabie improvement 

in overall system performance. 
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CHAPTER 1 

Introduction and Overview 

In a computer system the filestore is the subsystem of storage devices 

together with an operating strategy which deals with the storage, access 

and preservation of data. A filestore is characterized by its storage 

devices, their specifications and configuration, and an organization of 

files. It operates in an environment whose interface with the filestore 

is a sequence of access requests distributed over time and space. To 

the environment,the filestore is a service device whose performance can 

criticdlly affect the work rate of the overall system. 

This thesis presents performance measurements of real systems and a 

methodology for analysis and design of filestores. The measurements show 

certain behaviour patterns that seem to be common to several different 

computer systems. These observations have been incorporated into a model 

of the environment that reflects both temporal and spatial accessing 

characteristics of the individual proces~that form the environment. The 

method of analysis combines this statistical model of the environment and 

simulation queuing model of the filestore. The method assumes the existence 

of moving-head disk devices, and would normally be used to design file­

stores that use such devices. However, we give an illustration of the use 

of this method to study the performance of a novel backing store where the 

assumption of disk devices is not essential. The model has been validated 

for different filestores. The approach taken differs from previous work 

principally in two aspects; it uses a more realistic characterization of 

load which is very different from that assumed by previous simulation 

studies, and it seeks to quantify the effect of filestore performance factors 

on overall system performance. 



,The thesis is laid out as follows. Chapter 2 reviews the literature on 

analyses of filestore and system performance. Software monitoring 2nd 

methods of data analysis used for this wcrk are given in Chapter 3. The 

main results of performance measurement are presented in Chapter 4. 

Chapter 5 describes the method of representing load and the validation of 

a simulation model using this representation. Chapters 6, 7 and 8 present 

analyses of disk filestore factors affecting design and performance. Chapter 9 

presents a use of the model to evaluate a novel filestore. Finally, Chapter 10 

revievls the methodology and conclusions of this research. 



CHAPTER 2 

Literature Revi ew 

This chapter reviews the existing literature on disk filestore measure­

ment and performance analyses. 

2. 1 Meas uremen t 

Lynch [29] and Barraclough [3] measured disk i/o activity on the r~ichigan 

Terminal System (MTS) running on the N.U.M.A.C: IBM 360/67 computer with 

a filestore of eight IBM2314 disks. Their principal result is that only 

one-third of i/o requests cause disk arm movement (i.e. seek movement). 

This observation is repeated by Gray [l~ and independently observed by 

Jalics and Lynch [26] from the TOPS-10 system on a PDP-10 computer \'Jith 

a filestore of eight DEC RP02 disks. For both of those systems the mean 

disk seek time, when there was a seek, was about 40ms which corresponds to 

a movement of approximately 10 cylinders (out of 200). This mean seek time 

had a large variance. Access rates were about 2 per second per disk. 

Using a software monitoring technique, Gray measured and analyzed the disk 

behaviour of processes. He concentrated on spatial distribution of accesses 

and repOl'ted that most accesses were to the catalogue cyl i nders of the 

index-sequential style of file organization then current for MTS. Figure 2.1 

shows results from Gray' work on spatial accessing. Figure 2.2 is a representation 

of Gray' s results in a form to compare with other functions that have been 

used to represent spatial accessing [16,5~. Gray also found 

~Northumbrian Universities r'iultiple Access Computer 
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that a process might make sequences of i/o requests in quick succession 

to the same cylinder. He reported the mean sequence length as t','IO with 

a large variance but made no temporal analyses. Lynch, in his earlier work 

using hardy/are monitoring [29J observed that most of the "same cylinder" 

requests occurred within 10ms of the previous request completion. 

Jalics and Lynch [26] also used software monitoring to make a detailed 

study of process behaviour. In the TOPS-10 system, three of their results 

are of interest here because they may be compared with the length of the 

sequences reported by Gray; 

(i ) 

( i i ) 

( iii) 

same cylinder by process 

same file by process 

same cylinder by disk 

mean 3, S.D. 6, 90% less than 4 

mean 9, 5.0.40, 90% less than" 13 

mean 4, 5.0.8, 90% less than 7. 

When observing the intervals from end of terminal i/o to start of next 

terminal i/o, only 10% of TOPS-10 processes had disk i/o activity, and those 

processes had a mean of 83 disk references. "Runtime" was defined to be 

the time between the exit of a process from one i/o wait queue until its 

entry to its next i/o wait queue [25J. Jalics and Lynch reported that 55% 
?lr 

of runtimes between disk i/o references were less than 5ms. 

These studies indicate that disk spatial references in two time-sharing 

systems are highly sequential. Where the organization of data does not 

interrupt sequentiality of reference, fev/ seek movements are made. There 

is also an indication that references are correlated in time. 



In addition to these measurement studies, the importance of sequentiality 

of spatial reference has been recognized by !~arujama and Smith [34) who 

investigated the fragmentation that occurs in a sequentially formatted 

filestore when files are edited or expanded. With the use of a cost 

function describing the excess costs due to physical disorganization, they 

show that the optimum reorganization point depends on sequentiality of 

reference and sometimes the optimum strategy is not to reorganize. 

2.2 Disk Request Scheduler and Single-Disk Models 

Previous studies of disk request schedulers have made assumptions about 

work-load that are at variance with the measurements of Lynch, Jalics and 

Gray. Consequently, their results do not necessarily form a basis for 

sound engineering in the design of filestores. 

Teorey and Pinkerton [53] used an infinite-source, uniformly-accessed 

single disk model with exponential arrival assumptions to investigate 

request schedulers. In addition to the SCAN scheduler, in which the disk 

arm sweeps back and forward across the disk surface, Teorey introduced 

C-SCAN (or Circular-SCAN) in which the arm always scans in the same direction, 

returning to its starting extreme at the end of a scan. Their conclusion, 

that a combination of SCAN and C-SCAN is most efficient in terms of respnse 

time, does not apply to distributions of the type reported by Lynch, Jalics 

and Gray. Teorey [52]varied the input arrival pattern, considering batched 

as well as sparse arrivals as extremes on either side of Poisson arrivals. 

He also considered the effect of concentrating accesses on central cylinders 

of both single and multiple disk systems. Figure 2.2 compares the uniform 

pattern with the p-distributions used by Gotlieb and r:acEwan (q.v.) and 

actual measurements made by Gray. 



-Gray showed thats for his address traces, the First-Come-First-Served (FCFS) 

scheduling algorithm was capable of servicing access rates reckoned to be 

in the SCAf'l-only region (12-20 per second for IBr~ 2314-style disks) by 

Teorey and Pinkerton. r~easured fi lestore access rates of about 2 per second 

per disk compare with queuing theory and simulation investigations 

[1, 16,53, 56)where access rates exceeding 10 per second per disk are 

considered. Scanning algorithm improvements are not apparent except under 

high rates of access. 

Wilhelm [55] studied disk request scheduling with an infinite-source, single­

disk analytical model with exponential request-inter-arrival times, but with 

a spatial distribution following Lynch's observation that two-thirds of 

requests have zero seek-time. He found that the First-Come-First-Served 

policy had shorter or as good response time than the Shortest-Seek-Time-First 

policy, and claimed this result to be anomalous. However, this result is an 

inevitable consequence of his model of load where disk arms rarely move. 

Gray had already noted that in such situations seek optimizing policies have 

little to optimize. 

The factors of temporal and spatial accessing patterns and file organization 

have been recognized as relevant to filestore performance. If filestore 

load is simplified to exclude known patterns and effects, ensuing pre­

dictions are misleading and unsafe. 



2.3 Other Di sk j·1ode 1 s 

Previous studies of multiple-disk filestores have used unrealistic 

descriptions of load and do not contribute to filestore desicn in the 
;;J 

engineering sense. Omahen [40] has reviewed queuing models for estimating 

response time of multiple disk filestores. He offers no recommendation, 

simply remarking that he expects finite-source models to be more realistic 

than infinite source mOdels. 

Gotlieb and MacEwan [16, 31] used the ~-distribution with various parameter 

values to represent a non-uniform spatial access distribution. This function 

is compared with Gray's observed distribution in Figure 2.2. Temporal load 

was simply represented by a mean access rate with exponential arrival 

assumptions. The effect of varying the number of disks was investigated, but 

the mean access rate to each disk was varied over the same range for each 

configuration. This results in a higher load for systems with more disks. 

an unrealistic treatment emphasizing the "stand-alone" nature of their model. 

Wilhelm's general queuing model of multi-disk systems [ 56) repeats r·jc:cEvlan's 

assumption of load that increases with the number of disks in the filestore. 

Validation of these queuing theory models consists of building a simulation 

model that reflects the detail of disk operation but embeds it in the same 

environment as the queueing mOGel~ The load presented to the filestore 

remains idealized. This validation process does not build confidence in 

subsequent predictions of performance in real situations. 

Stone and Turner [51) claim realism from their feedback-inhibited model for 

a system and its filestore. Validation measurements are made on a real 

system, but this exercise is I','eakened by the use of a load controlled to 

achieve the assumptions of their model. 



" Network queuing models have been rE:'/i e.-led by Buzen [ 10) who demonstrates 

their accuracy of prediction for indices such as CPU and device utilizations. 

Moore [37] has developed a net\,/ork mod€l of MrS from measurements taken 

at the University of Michigan. For tractable computation and system compre­

hension, network models are lim"ited to a small nurmer of user classes and 

resources. Diversity of user behaviour and variety of filestore configurations 

are difficult to model. 

2.4 Software Monitoring and Event Traces 

Event tracing has been developed as a measuring tool that offers much 

detail and insight into the operation of complex systems despite difficulties 

of interpretation and restricted relevance. 

Pinkerton (42) implemented event-reporting code in various parts of c:n early 

version of MTS, and arranged for a collection facility to gather data on 

user-selected events within the system, e.g. page faulting and i/o requests. 

The moti vati on for th i s trace was to observe process behavi our. Gray [ 17) 

and Moore (37) used this facility to provide workload descriptions for their 

models. 

Jalics (25) instrumented the TOPS-10 system and made many observations of 

user behaviour including filestore spatial and temporal accessing patterns. 

The measurements are at a level of detail similar to the even trace used 

by Parapudi and Winograd [41J who made less detailed measurements of the 

VMOS system on an RCA Series 70 computer. 

The principles of trace-driven modelling (TOM) were presented by Cheng (12). 

In TOM, an event trace is the input to a modelled variant of the real systEm. 

Validation is straightforward, in that outputs from the model can be 



_directly compared with real outputs. Predictions are accurate though of 

restricted relevance because the workload, and frequently the modelled 

system, is precisely specified \'lithout abstl~actlons. ri2\'/ trace data, 

simulating changes, may be manufactured from an actual trace. Baskett, 

Brown and Sherman [6, 50J describe a tracing system for a COC-6600 

computer with the UT-2 operating system. Examples of collected events are 

operating systems calls and scheduler decisions; it is a less detailed trace 

than those of Pinkerton and jalics. 

Another use 'of event traces is to construct a more general, synthetic load. 

Schwetman and Brown [48] use the UT-2 trace to provide a high-level 

description of workload for statistically designed experiments, but with 

variation of only one factor. Beilner and \'Jaldbaum [7] and Schatzoff [45] 

use trace data in the specification of workload for deterministic models. 

Despite the disadvantages of system dependency, event traces are extremelY 

useful. In the absence of physical la\'/s governing how computer systems 

are used, measurement by event monitoring is a primary engineering tool for 

investigation of behaviour. 

2.5 Statistical Investigation Methods 

Techniques for statistical experiment on real systems have been presented 

by vari ous authors [ 2, 33, 39, 44, 46, 54) . These methods are desi gns and 

analyses permitting variation of several chosen factors in a com~lex system. 

Classical, single-factor experiments are inadequate when the presence and 

possible interaction of several factors is suspected. Bard [4] quantitatively 

analyzed overhead in a prototype softwa.re system. He used a regression 

,v 



.model with weights (coefficients of the model equation) allocated to the 

system structures (factors) reckoned as contributing to the overhead. In 

[5] , Bard extends this analytical method to the more comprehensive fitting 

of a statistical response surface for the components of the regression 

mode 1. C1 apson (11) has quantifi ed resource usage by use of regress i on 

models and has established common patterns of resource behaviour in 

different operating systems for similar IBM computers. His analyses are 

of resource usage, not program behaviour; they are restricted to computers 

of similar architecture. Anderson and Sargent [ 2] performed a full 

factorial experiment (every factor at each of its levels observed with 

each level of all other factors). The resulting data were fitted by a 

linear regression model. They found that service time demands \'Iere very 

variable, and no common distribution was able to fit the data. The data 

were eventually fitted by composite Weibull distributions. 

Improved instrumentation and increased statistical awareness are leading 

to new computer performance measures and methods of experiment based on 

what happens in real systems. 



CHAPTER 3 

System Measurement 

3.1 Introduction 

Measurements were made to provide an accurate description of what 

happens in a large time-sharing system. The performance of the filestore 

is of special interest but the load under which it operates is also of 

prime importance. This chapter describes how the measurements were made 

and how the results of interest were derived from the collected data. 

The Michigan Terminal System has an event reporting and collection 

facility that is part of the operating system. This facility was used to 

monitor the temporal behaviour of the batch and terminal processes that 

comprise the normal workload of MTS. In addition to new data about the 

use of MTS on the N.U.M.A.C. IBM 370/168 computer system, Gray's [17 J 

measurements of an earlier version of MTS on an IBM 360/67 system were 

available. Gray used the earlier data to study spatial accessing patterns. 

We have made a new analysis of these data. 

3.2 Performance Measures 

Filestore performance is measured by the response time for each file i/o 

request. For each process, the filestore response time is defined as the time 

interval between reports of the start and end of a file i/o wait for that 

process. 

, '-



There are insufficient numbers of process births and dectths en the event 

traces to measure system performance in terms of job throughput. Instead 

the interaction rate between the users and the system is used. An inter­

action is defined as the time between completion of user input from a 

terminal and completion of subsequent system output to the terminal. The 

measured systems have batch as well as terminal users, so the start and 

finish of a batch job is interpreted as the completion and start of a 

terminal wait, i.e. one batch job completion is one interaction. We call 

such an interaction a work-unit. This work-unit represents an unquantified 

work step for one process, whether batch or terminal. The amount of work 

performed is not considered here. This measure is empirical and depends 

on the applied load and its utilization of system resources. The use of 

the work-unit in this thesis is an index of "work done" when presenting 

performance measurements, and for comparative evaluation of a simulation 

results. The simulations are of different filestores, but the same set 

of work units is used whenever comparisons are made. 

3.3 Data Collection 

The software trace tool on MTS is the Data Collection Facility (DCF) 

[27, 43]. It provides a means of gathering detailed low-level data 

generated by processes within the system. At about 25 locations in the system, 

pertinent data is recorded by the Supervisor. The event is labelled with 

an identifying code, the time at which it vias recorded and the job number 

of the process that caused it. These data are buffered and trans-

mitted to the user process that initiated DCF data gathering. The supplied 

data may be accufi1ulated or analyzed on-line. Indi'Vidual events are not 

lost, since their collection is part of the operating system. Only con­

tinuous sequences of data were used for analysis; no data has been lost. 

, "" 



· For the work of this thesis, data accumulation only ~as used with sub­

sequent analysis. In addition to a small nunber of obligatory and reference 

events, two types of events were collected. 

Event A - when for any reason, a process enters a wait state (compared 

with ready-or-running state). The reason for the wait is given with 

the collected event. 

Event B - when a process stops waiting. 

With these two events, we were able to measure the run-time and i/o­

wait-time for each process. 

The version of the Data Collection Facility used by Gray '.'/as the same as 

the one reported by Pinkerton [43]. He evaluated the interference and 

overhead of collection to be 0.3% of CPU time and about 4% of main storage 

for buffers. The new collection facility used for this \'1ork (King [27]) 

was evaluated; interference and overhead was about 1% of CPU time, 

4% of storage for buffers and 0.4% of channel time. Appendix D presents 

a description of this evaluation. This interference and overhead is very 

sma 11. The software monitors used by Parapudi and vJi nograd [41] and Ja li cs 

and Lynch [26] were not assessed for system interference. SCh\!0tman [ 4] 

assessed the CPU utilization of a data collection program at 13%. an 

almost intolerably high figure for useful deductions from the data. 

Screenivasan [49] gives a figure of 5% CPU overhead for his measurement 

study. 



3.4 Data Analysis of Time-Event Traces 

From Events A and B above, each process is classified into three L:lpol'al 

categories: 

(i) not waiting 

(ii) waiting but not for explicit i/o completion 

(iii) waiting for explicit i/o completion. 

1f 

In category (ii) are page waits, ~taits for system resources and other 

operating system overhead. Categories (i) and (ii), when conbined, form 

a measure of the run-time spent in a compute step. This run-time is 

measured for each process. 

Category (iii) is divided into three types of i/o wait: 

a) file i/o 

b ) term ina 1 -I /0 

c) other i/o 

File i/o is considered separately because it is our special interest. 

Terminal i/o waits are of interest because they delimit WGI-K units. All 

other waits for i/o completion e~e grouped into type (c) \·thich includes i/o 

with non-filestore disks, magnetic tapes and slow devices such as printers 

and readers. 

Each process is thus in one of four states at various points i~ its life -



1. running [See. de.(ini.tiot1 or IIJ.flf:lme 0r1 fS.] 

2. in a file-i/o wait 

3. in a terminal-i/o wait 

4. in an other-i/o wait 

3.5 Data Analysis of Filestore Spatial References 

The da~collected and presented by Gray gives spatial usage patterns of 

the filestore of MTS as it was then configured at rI.U.r,1.A.C. Its main 

characteristics were: 

1. Eight IBM 2314 disks (30Mbytes each) 

2. Single channel linking filestore to main store 

3. Sequential layout of files, "lith a main disk catalogue on one 

disk and secondary catalogues on each other disk. This organi~ation 

is similar to the Indexed-Sequential Organization [24] 

When measurements were made on the IBM 370/168 it was not practicable to 

extend the Data Collection Facility to report on fi1estore addresses as 

Gray had done. The main characteristics of the fi1estore on this machine 

at the time of measurement were: 

1. Four IBM 3330,11 disks (200 Mbyte each) with Rotational Position 

Sensing (RPS). 

2. Single channel linking filestore to main store. 

3. a "randomized" layout of file in "file page fram2s". 

The disk space is divided into "frames" or sectors, 58 per cylinder, 

allocated sequenti a 11y \vithin cy1 i nders but not necessari ly 

sequentially across cylinder boundaries. Brinch Hansen describes 

such an organization in [8] and names it the non-Consecutive La:1out .. 

1 ~ 



It attempts to locate related data together while avoiding the 

fragmentation caused by editing and other changes. The main disk 

catalogue is spread over all the disks in the filestore, with a 

master index on one disk. 

3.6 Catalogue of Trace Data 

Gray's measurements, the S/360 data, were made in June 1973, and comprise 

two runs of 45-minutes duration (S/360,1 and S/360,2). His only use of this 

data was as preparation for his subsequent trace of disk accesses. The 

measurements made in the course of the present research, the S, ~7~d:ta, 

were collected from December 1975 to June 1976. The traces used for 

presentation in this thesis are: 

a) S/ 370,1 10 minutes duration, 28 June 1976 

b) S/370,2 20 minutes duration, 29 June 1976 

c) S/370,3 30 minutes duration, 30 June 1976. 

These traces were ~ do.r'Ylj tlte ~ernoor1 F'~k LDo.ct;n.9 . 

Gray's traces have over 350,000 events each and the S/370 data have about 

100,000 events per 10 minutes. 



CHAPTER 4 

Analysis of Collected Data 

4.1 The Main Results 

In both measured systems, processes characteristically do their i/o in 

bursts. In a burst, most run-times betl-/een i/o requests are short. For 

file-i/o, more than half the run-times between requests are less than lOms. 

Indirect evidence of i/o in bursts has also been found by Jalics as 

discussed in Chapter 2. We investigate the properties of these bursts, 

their lengths and characteristic run-time distributions. This information 

is useful when constructing realistic models of system. 

We also show that sequentiality of spatial reference exists within bursts 

of file-i/o. This effect complements the popularity of central catalogue 

areas to explain why disk arms rarely move. 



4.2 I/O Bursts 

4.2.1 Existence of i/o bursts 

This section presents data on file-i/o bursts. Figure 4.1 shows the 

distribution of all run-times between requests for file i/o. For both 

5/360 and 5/370, more than half of these runtimes are less than 10ms. 

Figure 4.2 shows the period 0-10 ms in detail. Both distributions peak 

in this region with no carry-over. 

Table 4.1 shows the frequency with which a given type of i/o request is 

followed by any other type. A process completing an i/o wait has a greatel' 

than 90% chance of starting another wait of the same type. Jalics has 

reported results similar to Table 4.1 that strongly suggest the existence 

of bursts of i/o in the TOPS-10 system. Although he did not make any 

direct observation of the i/o burst effect, Jalics reported that 64~ of 

run-times between i/o requests are less than 8ms (55% less than 5ms). His 

method of time measurement by logarithmic hexadecades obscured any peak 

in short run-time between requests. These measurements also indicate the 

existence of bursts Qf i/o in TOPS-10. 
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~ file i/o terminal i/o other i/o 
from 

file i/o 0.978 0.018 0.004 

terminal 0.042 0.886 0.072 

i/o 

other 0.003 0.024 0.966 

i/o 

S/360 

A file i/o te rmi n ali / 0 other i/o 

from 

file i/o 0.965 0.016 0.019 

-

terminal 0.042 0.939 0.019 

i/o 

other 0.032 0.017 0.951 

i/o 

S/370 

Tab 1 e 4.1 Relative Frequency of next i/o from previous i/o 



4.2.2 Delimiting the lengths of file-i/o bursts 

For 5/360 , Lynch bad already observed a high incidence of requests 

to a cylinder within 10ms of completion of the prev~ous request. Gray 

has reported that over 50% of accesses are to the central cylinders. 

Some of Lynch's "repeat" requests may be due to cylinder popularity, 

b.~t the frequency with which a file-i/o request is follcv;ed by another 

of the same (Table 4.1) and the distribution of all run-times between 

file requests (Figure 4.2) indicate that sequences of these "repeat" 

requests are generated by the same process. We wish to investigate this 

effect further. We shall call the maximum run-time between file-i/o 

requests-in-a-burst the 1,Ynch Period, and use it to delimit the lengths 

of file-i/o bursts. If a process makes a file-iio request later than 

the Lynch Period since completion of its previous file-i/o request 

(e.g. because of a disk-busy delay or a long run time), we consider 

that a new burst has begun. From Figure 4.2, we have chosen the Lynch 

Period for 5/360 to be 10ms, and 4ms for 5/370. 



~.2.3 Characteristic length of I/O bursts 

With the Lynch Period set to delimit file-i/o bursts, the lengths of these 

bursts are distributed hyper-exponentially, as shown in Figure 4.3. Both 

systems show the same distribution. When these data are presented as 

cumulative log plots, as in Figure 4.4, the distribution falls into two 

straight lines. The change of slope occurs for long bursts of 8 and over, 

with a mean of 2 for both systems. Simple linear regression is used to 

fit these data. Despite the shorter Lynch Period for S/370, there has been 

no significant change in this user habit between measurements separated 

by three years, a new version of the operating system and a new file 

organization. 

The distributions of burst lengths for terminal-i/o and other-i/o are 

shown in Appendix A. All length distributions are very similar for all 

types of i/o burst. Terminal-i/o and other-i/o bursts are delimited by a 

transition of the process from that type of wait sequence to another. 

4.2.4 Run-time characteristics of i/o bursts 

The run-times characterized for i/o bursts are those between bursts and 

those between requests within a burst. 

Figure 4.5 and 4.6 show the mean run-time beb/een bursts for all i/o 

types as a function of processor load. Processor load is the number of 

processes in the running state (i.e. not in any wait state). The system load 

is defined as the total number of processes in all states. Only those data 

points \'Iith a frequency of at least 1% are shovm. The S/360 plots of 

Figure 4.5 show a general tendency for this mean run-time to increase 

with processor load. The S/370 plots of Figure 4.6 show mean run-times 

2, 
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appare:r:ty unrec 1 (l i:ed to load. The standard deVi at -; ')r,s of these mean run­

times are very large at approximately 107 to 109 ms. Run-time bet>leen bursts 

is exponentially distributed \'/ith a long tail as sho ... m in the histograms 

of log (run-time between bursts) in Figure 4,7. 

Figure 4.8 shows the mean run-time between requests-in-a-burst for file-i/o. 

5imple linear regression has been used to fit these data. The 5/360 plot 

has a positive slope indicating a CPU-contention feedback effect. However, 

the Pearson correlation coeffecient is significantly less than 1.0, 

suggesting that this effect is not a reliable indicator of how run-time 

varies with processor load. An explanation of the negative slope on two 

5/370 plots is that the 5/370 was limited by a resource other than CPU. Only 

one trace (S/370,1) was made when the processor was sufficiently occupied 

to show negative feedback on run-times. From Figure 4.2 these run-times 

have a 5/360 mean of 6.6ms (50 1.5ms) and a 5/370 mean of 1.8ms (5.0. 0.8ms). 

Appendix A contains plots of all run-times between requests-in-a-burst 

against processor load for terminal-i/o and other-i/o bursts. 

4.3 Effects Limiting Work Throughput 

Figure 4.9 is a histogram of processor load measured at every wait-start 

and wait-finish event. At any given moment most processes are in an i/o 

wait; the mean processor load is 11 (out of maximum 60) for 5/360, and 

25 (from maximum 90) for 5/370. Table 4.2 shows the relative number of 

each state (running,file-i/o, terminal-i/o and other-i/o). Because a running 

state precedes each i/o Ivait, there are as many runningJstates as Ivaiting 

states. Numerically, file-i/o is the most frequent wait state, but the mean 

terminal-i/o wait is about 3500ms (see Appendix A) so we cannot single 

out a particular type of wait as a limit on throughput. Generally, \'Iaitir-,g 
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for i/o completion is the major syste~s effect that limits the rate of 

I>/Or:, throughput. 

r---

Running File-i/o Terminal-i/o Othe:-- i/o 
System burs ts bursts bursts 

- --" --

j:)/360,1 0.5 0.443 0.035 0.022 

S/360,2 0.5 0.412 0.053 0.035 

5/370,1 0.5 0.420 0.041 0.039 

~/370,2 0.5 0.452 0.033 0.015 

,)/370,3 0.5 0.440 0.044 0.016 

Table 4.2 Relat-ive Frequency of Process Stat.es 

The effect of processor load on run-time between bursts was investigated. 

Figure 4.10 shows a histogram of these run-times for selected processor 

loads. As the load increases, the mode 1 frequency decreases and the 

run-time distribution grows in the longer-time regions. This indication 

of a contention effect lead to a re-plot of Figure 4.5 with the longest 

10% of run-times discarded. This is shown in Figure 4.11. The value of 

10% was chosen from the di screpancy betvleen the metlns arid the mode of 

Figure 4.5 and 4.7. The reduced plots are fitted by sililple linear rc::qression 

models. The Pearson correlation coefficient confirms that the reduced mean 

run-time between bursts is highly correlated with processor load, but 

the variance of the unreduced mean has a larger effect since it concecls 

the contention result. Processor contention is not a factor limi~ing S/360 

work throughput. 

The more evently distributed run-time bebJeen bursts for the 5/370 

(see Figure 4.7) implied that eliminating only the longest 10% \;(Ju::J not 

i 
I 

I 
I 
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reveal any feedback contention effect. It was found that t~e longest 30:; of 

the run-times had to be discarded to reduce the means to the order of 

the mode, as in Figure 4."12. Even then, the correlation between processor 

load and run-time is poor. As expected for the faster processor, CPU 

contention does not limit S/370 work throughput. 

both 
Independent measurements byjJalics and Parapudi place the run-time between 

i/o requests with 90% means of 46ms and 46ms respectively, and with all-

inclusive means about twice this magnitude. These figures agree well 

with the S/360 90% plots of Figure 4.11. 
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4.4 Filestore Accessing Behaviour 

4.4.1 Sequential accessing and file-i/o bursts. 

Figure 4.13 shows the distribution of file response times. These times 

exclude any initial wait before the file request is accepted. We have 

incorporated this wait ina the run-time before bursts. For S/360, about 

10% of response times exceed lOOms. This is despite the observed mean 

number of cylinders moved of around 10. The expected response time of an 

IBM 2314 disk ranges from 25ms (no seek delay) to 75ms (for a seek of 

one third of the available cylinders, the average for uniform accessing). 

The bigger, faster IBM 3330, 11 disks used for the S/370 have only 5% 

of their response time exceeding lOOms. Expected response times for these 

disks are from 15ms (no seek) to 40ms (average seek). 

Figure 4.14 and 4.15 show detail of these response times. For the S/360 

traces, the first peak at 19ms corresponds to a rotational delay of about 

one-half revolution time, plus the record transmission time. This zero 

seek-time peak reflects the higher proportion of zero seek requests already 

known for S/360. 

The second peak is wide, at 29-32ms. This may be explained by the "missed 

revolution" effect that occurs when sequentially accessing sequentially 

formatted records if the run-time between requests is short enough. ~Jhen 

a process makes a "successor" request for the next record shortly after 

completion of i/o service for the "previous" record, the start of the 

next record has already passed the read/write arm. A delay of almost a full 

revolution is incurred, the exact delay depending on the arrival time of 

the successor request. We have already seen (Figure 4.2) the mean run-

time between requests-in-a-burst for file-i/o is 6.6ms with S.D. 1.5ms. 

..>0 • 
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From this, expected rotation delay for "successor" requests 
~ 

= (rotation time -6.6) n~ ~ 1.5ms 

= 18.4ms ± 1.5ms 

response time (mlan) + = (18.4ms - 1.5ms) + record transmission time 

= 30ms + - 1.5ms 

for the 11.5ms record transmission time on the 5/360.This calculation fits 

with the second peak of Figure 4.14. Table 4.3 shows the relative pro-

portions of services represented by the first two peaks of the response time 

histograms in Figure 4.14 and 4.15. The mean 5/360 burst length of 2.0 

(see Figure 4.3) fits well v:ith the almost equal nUi:,'jer of services 

under the first two peaks (from Table 4.3). The calculation of expected 

response time if accesses within bursts are spatially sequential fits well 

with the mean burst length and number of services under the first two peaks 

to support the conculsion that spatial accessing within bursts is se-

quential in intent. 

5/370 370,1 370,2 370,3 5/360 360,1 360,2 
range range 

--.-

1st peak 0-18ms 0.52 0.49 0.45 0-24ms 0.48 0.50 

2nd peak 19-24ms 0.48 0.51 0.55 25-38ms 0.52 0.50 

Table 4.3 Relative number of file services under first and second Time P~aks 

The 5/370 response time data (Figure 4.15) show a large peak at 19-22ms. 

This may be explained by sequential accessing within bursts, as for 5/360. 

To calculate the "missed revolution" characteristic delay, vie proceed as for 

the 5/360: 
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expected rotation delay for "successor" request 

expected mean response 

(rotation tinle -1.8)ms + 0.8ms 

= 15ms ± 0.8ms 

+ = (15 - 0.8) + record transmission time 

= 20.5ms ± 0.8ms 

This calculation fits the second response time peak. From Table 4.3, 

the mean burst length of 2.5 for 5/370 (Figure 4.3) seems too long for the 

almost equal numbers under the first two peaks of Figure 4.15. rIO",'I::V~'I', 

2.5 is the mean length for a layout in which file placement is not con-

tiguous. If, because of the "missed revolution" time delay calculation, 

we say that the second peak of Figure 4.15 represents the effects of 

sequential accessing in bursts, we cannot expect the first two peaks to 

wholly reflect the mean burst length because the layout would break the 

sequentiality of reference for long bursts. The peaks should then indicate 

a shorter mean length. Our explanation fits well with the available data. 

This argument strongly supports the conclusion that the Non-Consecutive 
sequerrt ia.L 

layout of 5/370 exhibits a large degree of spatial/accessing within 

file-i/o bursts. 

4.4.2 5/360 distribution of seek movements 

A new result from Gray's 5/360 trace of spatial accessing concerns the 

distribution of seek movements. This is shown in Figure 4.16. 5/360,1 

and 5/360,2 have a mean of 13 cylinders moved if. those 33% of occasions 

when a seek was made; Ja 1 i cs reported a mean of 15 cyl i nders on 35'; of 

occasions. From the distribution shm·m, small movements are common and 

the full range of cylinders is very rarely used. 
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The distribution is closely fHted by the emplrical function: 

y=~ x = uniform (S,2/3} 

The spatial distribution function used by I!ilhelm [55] is also shown on 

Figure 4.16. 



4.5 Summary and Conclusions 

The main result of measurement is that i/o is performed in bursts of 

characteristic length and run-time distributions. This observation 

explains and confirms other independent observations made by Lynch, 

Jalics and Gray. The burst lengths are hyper-exponentially distributed 

with a file-i/o mean of 2 for both systems. Run-time between bursts is 

exponentially distributed with a mode of about 50ms for S/360 and 

10ms for S/370. Run-time between requests-in-a-burst is uniform about 7ms 

(or 2ms for S/370) when delimited by Lynch Period, an interval within which 

more than 50% of these run-times fall. 

Analysis of S/360 file wait times confirms Gray's findings of sequential 

spatial accessing with a high proportion of zero seek-time requests. This 

result has been extended by the new finding that sequential accessing is 

due in part to bursts of sequential accessing by individual processes, as 

well as Gray's report of the popularity among all processes of central, 

catalogue areas. To a lesser extent, sequential spatial accessing is also 

found on the S/370 filestore caused, as for S/360, by sequential accessing 

by individual processes. The Non-Consecutive layout partially preserves 

the sequential "intent" by allocating space sequentially within cylinders. 

A new result from Gray's data on spatial accesses is the distribution of 

seek movements on a sequential layout filestore. 

Conclusions about the performances of the measured systems are that 

neither is CPU-bound and that work throughput is limited, in the system 

feedback sense, by i/o waits. 



CHAPTER 5 

A New Method of Filestore Analysis 

5.1 Introduction 

The method of filestore analysis comprises a simulation queuing model 

of the filestore within a statistical empirical model of its environment. 

Processes in the environment behave according to the characteristics 

deduced from real measurements. A simulation queuing model of the filestore 

facilitates trials with alternative configurations and devices used to 

implement the files tore. 

5.2 Performance Indices 

The principal outputs of the model are the two indices of performance 

which were deduced from software measurement. Filestore performance is 

measured by response time. System performance is defined as the rate of 

completion of terminal-i/o bursts, i.e. the rate of completion of vlork units 

as defined in Chapter 3. Whenever comparison is made using this work rate, 

the same set of work-units is used. 



5.3 Load Representation 

5.3.1 Introduction 

Each process in the environment of the filestore conducts i/o in bursts 

with trace-deri ved run-time di stri buti ons between i/o-bursts and beh/een­

requests-in-a-burst for the three types of i/o. He have developed an al­

gorithm that represents the spatial accessing habits of each process. 

The algorithm is parameterized to map the sequential intent of each burst 

on to the layout of the filestore, and is calibrated for each system. 

Burst lengths are well characterized, and are represented by trace-derived 

parameters describing their distribution. The representation techniques 

are statistical and use a pseudo-random number generator. Predictions 

are taken from several trials of the model with identical inputs save for 

a different random number seed. 

5.3.2 The model of i/o bursts 

Data describing burst lengths are derived from a software trace to re­

create the load conditions prevailing during that trace. The relative 

probabilities for each state are inputs from the trace. The four states 

of each process are: 

(i ) 

( i i ) 

( iii) 

(iv) 

running before any i/o burst 

file-i/o burst 

terminal-i/o burst 

other-i/o burst 

If an i/o burst state is selected, the burst length is generated from 

the distribution of that i/o type. All types of i/o have burst lengths 

distributed as in Figure 5.1. Generation is convenient if each part is 

fitted separately, with a change of origin in each case, as in Figure 5.2. 
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Selection of burst length is:-

l. Let p = un iform {a, 1} . 
2. ifP ~ pchange then 3. else 4. 

3. length ~ integer (exp. (slope_l "* p)). 

4. 1 ength ~ integer ( expo (slope_2 ~ (p-pchange))). 

where pchange?slope_l and slope_2 are as in Figure 5.2. The'input parameter 

pchange describes the change of slope for each i/o burst length distri­

bution. For each type of i/o burst these parameters are deduced from the 

trace. The value of pchange is chosen from the intersection of the two 

"best-fit" (by Pearson correlation coefficient) straight lines through the 

data points. Values of pchange from the traces used in this work are given 

in Figure 4.4 (and in Appendix A for non-file burst lengths). 

5.3.3 The model of spatial load 

r 
Parameters describing addressing behaviour are calibrated for a p~icular 

layout (we have measured the Sequential and Non-Consecutive layouts) and 

remain set for all model runs on that layout. A filestore address is 

generated as a triple (disk, cylinder, sector). The disk is selected 

according to the distribution of accesses across the disks of the measured 

filestore, a trace-derived input. The cylinder ;s selected from -

from current cylinder i, 

select catalogue cylinder with probability ()( 

select current cylinder with probability ~-~ 

move to cylinder j with probability l-~ 

j is such that li-jl is drawn uniformly from fO,C/2} andO«~ <1.0 . 

The restriction on the size of move selected is taken from the observation. 

that 97% of all moves are less than half the available range of cylind~rs. 

An addressed sector is selected from 



uniform {I, nunber of sectors per cyl inder ] . 

In accordance with deductions made from the study of response time dis­

tributions (Figures 4.14 and 4.15), selection of successor file addresses 

depends on the layout. During a burst the disk address remains constant. 

Sequentiality of reference is preserved for a Sequential layout, but 

discontinuities are introduced for the Non-Consecutive layout. Selection 

is as follows: 

(i) Sequential layout: the sector address is incremented modulo the 

number of sectors per cylinder. The cylinder address is incremented 

if the sector address "wraps round". 

(ii) Non-Consecutive layout: successive addresses are generated 

sequentially or discontinuously according to probability Ps~ where 

Ps = uniform [o,l}and 

o s P ~ 1 => sequential - generate as (i) above s 
1 <. Ps ~ 1.0~discontinuous - generate a new triple (disk, 

cylinder, sector) 

Parameters ()(., ~ and rare calibrated from trace-deri ved measurements by 

iteration from initial values. 

For the Sequential layout, Gray reported that 50% of accesses were to the 

central, catalogue cylinders. This sets ~ initially to 0.50. The fraction 

of zero-seek accesses for this layout is 70%~iving an initial value for 

~ of 0.70. Table 5.1 shows the actual fractions of zero-seek requests 

and the overall mean number of cylinders moved for a seek. The accessing 

model was iterated with various parameter values until its output most 

closely matched the real system output for 5/360,1 (the callbration data for 

the Sequential layout). The final parameter values are: 

0( = 0.50 ~ = 0.83 

· .. 



Performance Index S/360, 1 S/360,2 
Calibration Validation 

Observed Zero-Seek Requests 63% 68% 
Simulated Zero-Seek Requests 63% -:!: 2% 74% :t 2~; 

+ -S.D. 

Observed No. of Cy1 inders Moved 12 13 
Simulated No. of Cylinders Moved 20 ± 2% 12 ± 2% 

± S. D. 

Observed Mean Response Time 54ms 54ms 
Simulated Mean Response Time 57ms + 5% 63ms + 6% 

-:!: S ~·D. -

Table 5.1 Calibration and Validation Results for the Sequential Layout 

Performance Index S/ 370,3 S/370,1 5/370,2 
Calibration Validation Validation 

Observed Access Rate 25/sec 24/ sec 17/sec 
Simulated Access Rate 25/sec + 5% 24/sec 2: 6% 16/sec + 5% 

± S. D. - -

Observed Mean Response Time 37ms 35ms 32ms 
Simulated Mean Response Time 

± S.D. 34ms + 9% 36ms + 8% 35% : 5% -

Table 5.2 Calibration and Validation Results for the Non-Consecutive Layoot 



.The data in Table 5.1 for S/360,2 are the validation results. Other 

inputs to the system model are derived from the S/360,2 trace as des­

cribed in 5.3.4 and 5.3.2. The validation results lie close to their 

real values. More importantly, the accessing algorithm for individual 

processes accurately models gross accessing patterns on a Sequential layout. 

Figure 5.3 shows file response time distribution for the calibration 

and validation trials. Figure 5.3 should be compared with Figure 4.14 

These response times confirm the accuracy of prediction. 

n 
For the Non-Consecutive layout, no data or accessing patteqs were available. 

From Figure 4.15, an initial value of~ = 0.45 was found from the weighted 

average of the fraction of accesses with no seek movements, i.e. those 

with a response time within 24ms (the first two major peaks). The value 

of ~ = 0.83 was retained and an initial 1 = 0.50 (the parameter which 

introduces spatial discontinuities) was adopted. The model was iterated 

on the S/370,3 trace with various parameter values, and simulated outputs 

were compared as indicated in Table 5.2. The final results of this cali­

bration gave 

()( = 0.40 8 = 0.83 1 = 0.25 

The validation runs for S/370.1 and S/370.2 in Table 5.2 are for these 

parameter values. Other inputs were taken from the S/370,1 and S/370,2 

traces (see sections 5.3.4 and 5.3.2). The validation sets of response 

time distributions are shown in Figure 5.4. The real measures are given in 

Figure 4.15. Each set of validation results was obtained from five 

independently seeded runs. The validation results lie close to their real 

values; they confirm that the Non-Consecutive accessing algorithm 

accurately predicts gross performance values from a model of individual 

process behaviour. 
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5.3.4 Runtime and waiting time generation 

Means of describing runtime distributions are needed to represent the load 

conditions prevailing during the software trace. As shown in section 4.3, 

runtimes between i/o-bursts are distributed exponentially with a long tail 

that makes the mean misleadingly large. In the model, the runtime between 

i/o-bursts is generated from an exponential distribution whose mean is of 

the order of the mode of its histogram, and a correction factor is added 

for the longer values. The Gamma, Normal and Log Normal distributions ~ere 

tested but the Exponential distribution based on the reduced mean was the 

best fit for the shorter end of the runtime range, where most runtimes lie. 

A technique of fitting this type of distribution with composite Weibu1l 

distributions has been described by Anderson and Sargent [ 2] . In this 

work a simpler approach has been used; the exponential distribution is 

used for the dominant part, and a correction factor is added for longer 

values. For the model, the 90% mean for S/360 and the 70% mean for S/370 

were used. The correction factor is taken from a uniformly indexed table 

of mean values chosen to fit the longer end of the runtime distribution. 

These factors are simply specified and tractable in use. 

A similar method is used for generating runtimes between request-in-a-burst 

for terminal-i/o and other-i/o, since their runtimes are similarly dis­

tributed. Runtime between requests-in-a-burst for file-i/o is almost 

constant when bursts are delimited by the Lynch Period. It is generatec as 

a constant runtime. 

File-i/o response times are calculated in the simulation of the filestore. 

Terminal-i/o and other-i/o waits are generated from their measured values 

by uniform random selection from a small set of cumulative probabilit~s 

describing the log distribution of waiting time (see Appendix A). Once a 



particular log range has been selected, generation is uniform within 

that range. 

5.3.5 Summary of inputs representing load 

5.3.5.1 State selection in a process life. 

To model transitions between states, we need the relative probabilites 

of the four states: 

1. before any i/o burst 

2. file-i/o burst 

3. terminal-i/o burst 

4. other-i/o burst 

5.3.5.2 Length of i/o burst 

For each software trace, values of slope_l, slope_2 and pchange are input 

for each type of burst. Pchange is the change of slope point bet\'Jeen 

the two beststraight-line fits. Generation of length is by the algorithm 

given above. 

5.3.5.3 Parameters describing individual accessing 

For each system, values ofoe, ~o.l\d..7calibrate the accessing algorithm 

for predicting the effect of file layout on the sequential intent of each 

burst of file i/o. Selection is by tests and calibration from available 

accessing data. For each trace, the relative proportions of bursts to 

each disk are inputs. 



5.3.5.4 Realtime descriptors 

For each system, the runtime bet',;cen request-in-a-burst for fi 1c:-i/o is 

found by inspection of the distribution of runtimes between file-i/o 

requests. 

For each software trace, the reduced runtimes most nearly corresponding 

to the mode of distributions for 

1. runtime before i/o - burst 

2. runtime before requests-in-a-burst for terminal-i/o 

3. runtime before requests-in-a-burst for other-i/o 

represent the load prevailing during that trace. They are used as me~ns 

of an exponential distribution to describe the corresponding runtime. 

The "10ng tails" are generated empirically from trace-derived data. 

For each trace, i/o waiting times for terminal-i/o and other-i/o are 

generated from the cumulative distribution of log (waiting time). 



·5.4 The Filestore Simulation Queueing Model 

The performance of a rotating magnetic disk can be characterized by 

certain service-time delays; seek-ti~delay to position the read/write 

arm at a selected cylinder, and rotation delay to await the arrival of 

the addressed record at the read/write position. The modelled filestore 

is n disks served by a single channel. Queues are maintained for each 

disk and the channel. Availability of the channel for command as well as 

data transmission is explicitly modelled. Figure 5.5 shows the time delays 

incurred for a filestore i/o service, and those delays that are regarded 

as neglegible and not modelled. Figure 5.6 shows these delays for a 

disk equipped with Rotational Position Sensing (RPS). In conjunction with 

a channel able to support theextra processing, RPS enables the freeing 

of the channel during rotational delay (as well as seek-time delay). 

In the filestore simulation, various configurations of disks may be 

modelled. The number and capacity of disks may be varied, as well as 

the number of read/write heads. All read/write heads are fixed to the 

same arm, thus increasing the capacity per access, i.e. the capacity per 

arm position. Seek-time delay is calculated by functions approximating 

the modelled disks, (either IBM 23l412~ or IBM 3330[21] ). Constant 

velocity when seeking is assumed. Rotational delay is calculated from 

disk rotation speed and the difference between the addressed sector 

and the current angular position. 
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5.5 Validation 

Following Van Horn [19], we define validation as the process of building 

an acceptable level of confidence than an inference about a simulated 

system is a correct or valid inference for the actual system. The set 

of observed measures compared to model outputs in order to develop such 

confidence is: 

1. An index of system performance - the rate per minute of work-units 

2. An index of filestore performance - the filestore response time 

3. An index of load - the rate per second of filestore requests. 

All measurements were made after start-up transients had been eliminated. 

A set of five, independently - seeded runs were used to establish standard 

deviations and confidence limits for the calibration parameters. Further 

sets of five, independently seeded, runs were made for each validation 

trace. 

From Table 5.3 the calibration predictions for load and performance lie 

close to the actual values. The 95% confidence limits are about six percent 

for these indices in the case of S/360, and range slightly higher for S/370 

load and system performance indices. These confidence limite are bounds 

which the model is likely to exceed only on one occasion in twenty. the 

less stringent 90% limits are also shown. Standard deviations are all 

less than ten percent. 

The validation results are shmm in Table 5.4. The S/360,1 performance 

indices have 95% confidence bounds of about ~ix percent. The standard 

deviations of these indices are not large. Prediction of mean rcsrnnse 

time has been discussed above in section 5.3.3. 
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Performance Index S/360,1 S/370,3 

Observed ~Jork Rate ·41/min 49/min 

Simul ated ~Jork + Rate - S.D. 40/min + 5% 48/min + 75'0 
95% Confidence Bound +-6% +-95~ 
90% Confi dence Bound + 5% + 7% 

Observed Response Time 54ms 37ms 
(mean) 

Simulated Response Time 51ms + 5% 35ms + 9% 
(mean ± S.D.) -

95% Confidence Bound + 7% + 11% 
90% Confidence Bound - 5% + 8% + - -

Observed Access Rate 17/sec 25/sec 

Simulated Access Rate ± S. D. 18/sec + 3% 25/sec + 5% 
95% Confidence Bound + 4% + 6% 
90% Confiden Bound + 3% + 4% 

Table 5.3 Calibration Results 



For the S/370 validation runs, the 95% confidence limits are similar to 

the calibration limits of about nine percent. Standard deviations 

for all indices are less than ten percent. All predicted means lie close 

to their observed values. The accurate prediction of response time is 

discussed in section 5.3.3 above. Wider limits than for S/360 were ex-

pected because of the absence of data on filestore accessing patterns. 

These results lend confidence to the model outputs and the new methods 

of representing load in the environment of the filestore. 

l I 
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Performance Index S/360.2 S/370,1 S/370,2 I 
Observed Work Rate 56/min 68/min 53/mi n 

Simulated Work Rate ± S.D. 55/min + 2% 66/min + 6% 47/min + 9;~ 
95% ConfidenzBounds + 3% + 8;'~ + l1{o 
90% Confidence Bounds +2% + 6% + 8% -

Observed Response Time 54ms 35ms 32ms 
(mean) 

Simulated Response Time 63ms + 6% 36ms + 8% 35ms + 5% 
(mean ± S.D.) - -

95% Confidence Bound + 7% +9% + 6% 
90% Confidence Bound + 5% + 7% 

-
5% + - - -

Observed Access Rate l4/sec 24/sec 17/sec 

Simulated Access Rate ± S.D. 14/sec + 5% 24/sec + 6% 16/sec + 5% 
95% Confidence Bound + 6% + 8% + 65'; 
90% Confidence Bound + 5% + 6% + 4% 

Tab~e 5.4 Valjdation Results 

) -it!' 



5.6 Summary 

A method of evaluating filestores has been developed from measurements 

of real systems. Load is accurately represented by a model of individual 

lives of processes in the environment of the filestore. I/O is conducted in 

bursts of characteristic length and with realistically simulated runtimes 

between i/o events. Trace derived inputs are used to describe temporal 

load. Filestore spatial accessing by each process is sequential in intent, 

as observed in real systems. Address selection within individual bursts 

on Sequential and Non-Consecutive layouts is accurately modelled. The 

model built by this method has been validated for its simulated load and 

two outputs of performance prediction on different sets of input data. 

The predictions agree well with their measured values and have acceptable 

standard deviations and confidence limits. 



£HAPTER 6 

The Effects of Disk Request Scheduling and Disk Capacity on System and 

Filestore Performance 

6.1 Introduction 

This chapter presents a simulation experiment to re-evaluate disk 

scheduling algorithms and to investigate the effect of disk capacity on 

performance. The system model developed in the previous chapter is used 

for this experiment. Input parameters are taken from the measurements 

described in Chapter 4. Simulation outputs for work-unit th~oughput are only 

compared where these units are equivalent, i.e .. on1y within runs on the same 
set of outputs. 

The results of Lynch, Ja1ics and Gray indicate that the conclusions of 

Teorey and Pinkerton on the ranking of disk request schedulers are not 

relevant to at least two time-sharing systems. The configuration problem 

of the number of disks used for a filestore of given capacity has arisen 

because of the availability ofsg,-called "double-density" disks with t'lJi'ce 

the number of tracks per surface than thei r Its ingle-dens ity" vari ants. 

The problem is \",hether any performance losses incurred by fe\oJer servers 

outweigh the cost savings of the halved number of disks. 

6.2 Disk Request Scheduling Algorithms 

The scheduling algorithms tested, with brief descriptions, are 

1. First Come First Served (FCFS) - with a single waiting queue per disk. 

2. Shortest Seek Time First (SSTF) - with a single waiting queue ~er d~sk. 

( , 
~ -



.3. SCAN with a single waiting queue per disk. The SC~~ algorithm 

includes Merten's modification to reverse the scanning direction 

if there are no queued requests ahead of the currently selected 

pos iti on. 

4. C-SCAN with a single waiting queue per disk. The disk arm returns to 

the start-scan position if there are no queued requests ahead of the 

currently selected position. 

5. N-SCAN with two queues per disk, the service queue and the waiting 

queue. At request completion, the head of the service queue is chosen. 

If the service queue is empty, all waiting requests are taker. and 

ordered by Frank's algorithm [15] approximating the optimal shortest­

seek-time. This is the N=oo case. 

Descriptions of the algorithms are given in Appendix C. 

In addition to the above, two implementations of an algorithm suggested 

by Lynch are included. Lynch [29] suggested a scheduler which enqueues any re-

quest with a seek movement in the expectation of a request to the curr~ntly selecte., 

position. If within a short period the expected request has net materialized 

the queued requests are serviced. In Chapter 4 we have named this inter-

val the Lynch Period. This algorithm is designed to take advantage of 

sequential accessing with a high percentage of zero-seek requests. The 

two implementations differ in their queue service method. LYNCHl services 

its waiting queue in a FIFO manner, LYNCH2 uses an SSTF method. The Lynch 

algorithm assumes a small number of requesting processes per disk at an} 

given moment. This is a low-use situation. For its operation o~ tne re-

quests to a single disk, with a single waiting queue, the LYNCH algorithn 

may be described at two events - "request arrival" and "queue service" :-



a) request arrival -

if ~ disk busy and cylinders moved = 0 

then service 

else enqueue; 

b) 1. queue service for LYNCHl -

(i) service the longest waiting request to the currently 

selected position. (Such requests are enqueued because of 

a disk busy conditionJ 

(ii) if none in (i), service the head of the queue if its 

waiting time exceeds the Lynch Period. 

(iii) if none in (ii), do nothing. 

2. queue service for LYNCH2 -

(i) service the longest waiting request to the currently 

selected position. 

(ii) if none in (i), SSTF-service the queued requests 

which have waited longer than the Lynch Period. 

(iii) if none in (ii), do nothing. 



6.3 Disk Configura~ion 

~ 

Disk manufact~rs are maintaining the economic effectiveness of their 

products by price adjustments and performance improvements. Only the latter 

concerns us here. Larger capacity is offered by increasing track density 

and using more precise track selection. This also reduces per-cylinder 

seek time, but the increased capacity may mean longer response time from 

fewer servers. 

For the S/360 environment, a filestore capacity equal to the measured 

system was modelled, viz. 1600 IBM 23l4-style cylinders (i.e. 240 ~byte). 

The filestore is modelled with 2, 4, 8 and 16 disks each of 800, 400, 

200 and 100 cylinders. For the S/370 environment, the modelled filestore 

has 1600 cylinders of IBM 3330-sty1e (i.e. 800 Mbyte). This is the same 

capacity as the measured S/370 system. It is modelled with 2, 4 and 8 

disks each of 800, 400 and 200 cylinders. 

6.4 Experimental Plan 

Input data from both S/360 and S/370 systems are used to re-create the 

fi1estore environment of those systems. In the one, disk performance 

characteristics not varied for the experiment are as for the IBM 2314. 

In the other, these characteristics are as for the IBM 3330 disk. When the 

S/360 system is simulated, a sequentially-formatted filestore is modelled 

using the spatial accessing algorithm developed in Chapter 5. Similarly, 

the Non-Consecutive layout is simulated for the S/370 system using the 

accessing algorithm developed to represent the spatial accessing of 

individual processes for that file organization. 



The number of active processes in each system is varied over a small 

range to enable plots of performance against load for gl~aphical evaluation. 

The outputs are mean filestore response time and work-unit throughput rate. 

Each run is triplicated and the outputs averaged; for each combination 

of factors the same load is presented. The simulation runs are 600 seconds 

long, and error bounds are taken from the 95% confidence limits of Table 5.4. 

The factors and their levels for both systems are 

1. Scheduling algorithm: 7 levels 

2. Capacity per disk (i) 4 levels for S/360 - 2, 4, 8 and 16 disks 

in a 240 Mbyte fi 1 estore 

(ii) 3 levels for S/370 - 2, 4 and 8 disks 

in an 800 Mbyte filestore 

- (.. -!;Iv, 



6.5 Conclusions 

Figure 6.1 and 6.2 for 8 and 4 disks respectively show that choice of 

scheduling algorithm does not affect system performance. The Figures 

are given with the detailed discussion of results in Section 6.6. The 

graphs for other numbers of disks are similar. From Figures 6.5 and 6.6 

there is only a suggestion that fewer disks in the fi1estore adversely 

affects the work throughput rate. In general, the plots of results are 

closer together than their error tolerances. 

Figure 6.3 and 6.4 show that SCAN-type schedulers do not improve response 

time much compared with FCFS, the improvement being of the order of the 

confidence limits. The LYNCH scheduler performs badly for the Non­

Consecutive layout (see Figure 6.2 and 6.4). It gives very low system 

throughput and significantly longer response times. FCFS performs as well 

as any other scheduler, except at heavier loads. 

Table 6.1 of sample response time variances shows that disk technology 

has a strong effect on scheduler performances. The characteristics of 

schedulers, as indicated by these variances, are generally as expected 

with the SCAN-type having smaller variances than the FCFS and SSTF 

schedulers. 



6.6 Results - Disk Scheduling Algorithms 

6.6.1 Work Throughput 

Figure 6.1 and 6.2 show work throughput rate against load for each of the 

tested schedulers. In both the filestores are configured as in the real 

systems. For the S/360, all of SSTF, the scanning methods and the Lynch 

scheduler tend to perform better than FCFS. Excluding two off-trend values, 

each group of results lies in a 10% band of work throughput, so no 

particular algorithm is outstanding. For the S/370, the 95% confidence 

bound is +10%. Over the range of loads, no scheduler is significant, 

though FCFS is as effective as more complex algorithms. The increase in 

work throughput is linear with load on both systems. 

The Lynch scheduler performs as well as any other in the S/360 model, 

but both variants show consistently low throughput rates in the S/370 

model. The differences between the simulated systems are device speeds, 

numbers of disks and fi1estore layout. The Lynch Period compensates for device 

speeds; the algorithm ought to perform better with fewer disks (more 

frequent queue services); but the interrupted sequentiality in the Non­

Consecutive layout will cause more requests to be enqueued. This seems 

the most likely explanation for the poor performance of the LYNCH 

schedulers on the S/370. 

6.6.2 Mean Response "Time 

Figure 6.3 and 6.4 present the plots of mean response time with system 

load for each tested scheduler. FCFS increases response time in the 5/360 

model by a factor of 7 over the load range (from lOOms to 700ms approximately.) 
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This compares with the SCAN range of 2.5 which is almost linear with load. 

At the higher loads, the ~7.1obound for the 95% confidence limits does not 

cover the gap between both Lynch and FCFS, and the other schedulers. Of 

the non-scan algorithms, only SSTF performs as well as the scanning 

algorithms. In the S/370 model the FCFS response range is much smaller 

at about 2, and FCFS is only worse than the others (Lynch excluded) at 

the highest load level where its result exceeds the +8% bound. No signi­

ficant difference in mean response time is evident amongst the other 

schedulers. N-SCAN performs better on the Non-Consecutive layout, where 

the interrupted physical sequentiality distributes the i/o requests across 

the disk surface, compared with its poor performance on the sequentially 

formatted filestore. The Lynch scheduler in both tested forms is very 

poor in the S/370 model and unremarkable in the S/360 model. Layout is an 

important factor in the viability of this scheduler. 

Table 6.1 is a set of sample variances of response times taken from the 

results plotted in Figure 6.3 and 6.4. These variances are taken from the 

variances of the response times for the lowest and highest system loads. 

They are given to illustrate the characteristics of each scheduler. 

Although the Non-Consecutive layout causes longer seek movements, the faster 

arm-movement and rotational speed of the IBM 3330,11 disks reduces the 

variances below their sequentially formatted values (on slower IBM 2314 

disks). For the Sequential layout, as shown in Figure 6.3, SSTF has the 

same order of variance as SCAN and C-SCAN, as well as a similar response 

time. Under these realistic conditions, SSTF does not degenerate to serving 

only a small area of the disk. Contrary to expectations, the variance of 

FCFS is larger than that of SSTF, Both LYNCH schedulers have lower 

variances than FCFS. For the Non-Consecutive layout (see Figure 6.4) all 

variances except LYNCH are small. SSTF and SCAN have similar variances, b~t 



C-SCAN and N-SCAN values are even smaller, reflecting the designed 

improvement of these algorithms. 

Response Time Variances 

Scheduling Sequential Layout Non-Consecutive 
pol i cy 8 x 2314 dis ks 4 x 3330 dis!'.:. 

FCFS 75% 17% 

SSTF 38% 23% 

LYNCH (fcfs Q) 52% 500% 

LYNCH (sstf Q) 47% 175% 

SCAN 38% 17% 

C-SCAN 36% 11% 

N-SCAN 41% 10% 

Table 6.1 Sample Variances of Response Times. 

Layout 



6.7 Results - Number of Disks 

6.7.1 Work Through~ut 

Figures 6.5 and 6.6 show work throughput against system load for each 

configuration of filestore, and selected schedulers. The 95% confidence 

bounds of ~3% for S/360 and ~10% for S/370 cover almost all the plots 

at each load value. The suggestion of these data is that more disks per 

filestore are associated with higher system performance, but no definite 

results emerge. 

6.7.2 Mean Response Time 

Figure 6.7 and 6.8 show mean response time against system load. In these 

figures, the confidence bounds are ~7% for S/360 and ~8% for S/370. 

For both systems, only the smallest disk size mitigates the response 

times of FCFS under heavier loads. For the other S/360 schedulers, 

increasing the number of disk cannot be said to significantly improve file­

store performance. Although this is suggested, most of the plots fall 

within the confidence bound. For the S/370, despite the wider bounds 

the difference between performances for the least and greatest number of 

disks confirms that more disks per filestore improves mean response time. 

II 
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CHAPTER 7 

Ranking of filestore factors for their effect on performance 

7.1 Introduction 

The investigation of request schedulers and disk capacity for two different 

systems showed that neither scheduling algorithm nor capacity per disk 

was a sufficiently influential factor in system or filestore performance 

to offer a simple rationale for design. Furthermore, these investigations 

do not permit any statement to be made about the ranking of these factors 

and others (e.g. layout) that seem to be important. In this chapter, we 

investigate the following set of filestore factors. 

a) filestore layout 

b) capacity per disk access 

c) capacity per disk 

d) scheduling algorithm 

The experiments are designed for the application of Analysis of Variance 

techniques (ANOVA) to the results in order to produce a ranking of factors 

alone and in interaction with each other. This design is further described 

in section 7.3, and the statistical method is described in Appendix B. 

These simulation experiments are performed on the system model developed 

in Chapter 5. 

E2 



7.2 The Factors 

7.2. 1 Fi 1 es tore 1 ayout 

In addition to modelling the Non-Consecutive layout, the Sequential lay­

out is used as a second level of this factor. A third level, the Pre­

cessed Layout, is also simulated. 

The Precessed Layout allOl'ls the introduction of a gap between logically 

consecutive records without any penalty of lost space [30] . This method 

of placement is designed to mitigate the rotational delay incurred during 

sequential accessing of a sequential layout - the "missed revolution" 

effect discussed in Chapter 4. The Precessed placement policy used in 

this experiment is shown in Figure 7.1. The filestore has 3 records per 

track, simulating the 5/370 layout. 

Figure 7.1 Sequential and Precessed Layouts 

In this Precessed implementation, the gap between logically sequential 

records is effectively one-third of the revolution time. For the IBr~ 3330 

disk in this system model, this time of 5.5ms exceeds the Lynch Period 



which is fixed at 4ms. Thus the gap between logically sequential records 

exceeds the maximum runtime between requests in a file-i/o burst, andeli-

minates the "lost revolutions" originating from an inter-record gap of 

less than the Lynch Period. This practical scheme is simulated by the 

sequential accessing behaviour algorithm for individual processes, but 

with the sectors on each surface renumbered from (0, 1, 2) to (0, 2, l) 

for the calculation of rotational delay. 

7.2.2 Capacity per disk access 

Three levels of capacity per disk access are represented by 1, 2 or 4 

read/write heads per surface. These heads are placed on the same arm. 

The effect of the arrangement of Figure 7.2 is to create 

---r~ 
--l~ 

Figure 7.2 Illus~ration of capacity per disk-access 

. 'logical' cylinders of twice the number of cylinders compared with a single 

. 'physical' cylinder. When in position, all data on this 'logical' cylinder 

is accessible without further head movement. This is implemented in the 

model by mapping addresses generated from the range of physical cylinders 

on to the range of logical cylinders. When necessary, the heads are moved 

in unison. Little reduction in seek time may be expected since the number 

of cylinders traversed is only reduced by the number of heads in the asse'1bl:,,~ 



-the likely benefit is an increased chance of selecting an address without 

incurring a seek delay. 

7.2.3 Capacity per disk 

Three levels of capacity per disk (i.e. track density) are simulated in 

a filestore size of 800 Mbytes and composition of IBM 3330-type disks. 

This is achieved by setting the number of cylinders per disk (equivalent 

to tracks per surface) to 200 (8 disks), 400 (4 disks) and 800 (2 disks). 

The minimum and maximum seek delays were as for the standard IBM 3330. The 

previous chapter indicated that fewer disks in the filestore were associated 

with longer service delays, but the effect on system performance was not 

significant by the method of analysis used. 

7.2.4 Scheduling Algorithm 

From the indications of performance given in Chapter 6, three schedulers 

are selected: 

i) FCFS 

ii) SCAN 

iii) C-SCAN 

FCFS seems well-suited to a Sequential Layout, and by implication a 

Precessed Layout also. Although mean response time increases with load, 

the indications are that the magnitude of this increase for 3330-style 

disks is modest if there are sufficient disks. SCAN and C-SCAN are two 

scanning variations which seem suited to a Non-Consecutive layout, 

even with its limited-~ength bursts of sequential accessing. Their 



adv(.ntag'C! is likely to bc-; in situations of higher load \'Iith fev.,re,·, 

1 arge··capaci ty di sks. 

7.2.5 Load variation 

The simulated system load is varied from 80 to 130 processes in steps 

of 10. This small range is to facilitate graphical presentations of 

results, and to represent the load variation conditions encountered in 

the real system. 



7.3 Experimental Plan 

The experimental plan is an orthogonal design, i.e. all combinations 

of levels are used in the model runs, and an equal number of observations 

of each output variable are made for each factor arrangement. These 

results, when the model runs are independently seeded, are amenable to 

Analysis of Variance techniques for determining factor effects and inter­

actions. This technique and its requirements of the experimental plan 

are described in Appendix B. The ANOVA analysis tests the Null Hypothesis 

that the factor by itself or in combination with other factors has no 

effect on the resultant output. The outputs with the factor at one value, 

or level, are compared with those outputs at another level. In simulation 

experiments, the normal fluctuation of the output is estimated by making 

several observations of the output. The Null Hypothesis is true if the 

outputs at factor level 1 do not differ from those at factor level 2 

by more than the expected fluctuati9n. In statistical terms, this test 

is the F-ratio (see Appendix B) and the probability of the Null Hypo­

thesis is expressed in accepted steps of 5%, 1% and 0.1%, these values 

being calcul~ted from the F-ratio. That is, a probability of 1% implies 

that there is 1 chance in 100 that the Null Hypothesis is satisfied. 

These probability levels are expressed as * ("significant", 5%), ** (livery 

significant", 1%) and *** ("highly significant", 0.1%) representing 

increasing confidence in the existence of the indicated effect. 

The factors and thei r levels are: 

l. Layout - 3 levels Sequential, Precessed and 
Non-Consecud ve. 

2. Capacity per disk - 3 levels 2,4 and 8 disks in a 1600 r'byte 

3. Capacity per disk access - 3 levels 1,2 and 4 heads per surfvce 

files':.~t 



4. 

5. 

6. 

Scheduling algorithm - 3 levels 

Load - 6 1 eve ls 

Replication - 3 levels 

FCFS, SCAN and C-SCAN 

80 to 130 processes in steps of 10. 

For each level of load, there are 81 combinations of the other factors 

excluding replication. This experimental set consists of 81 x 6 x 3 

runs, i.e. 1458 runs. These results are averaged over each replication 

and used for graphical illustration of statistically indicated effects. 

The statistical analyses use the set of results for two load levels, a 

medium load (90 processes) and a heavy load (130 processes). Each analyzed 

set compri ses 243 runs of the ,model. The analyzed outputs are work-unit 

throughput and filestore mean response time. 

3 '"'­<- ' 



7.4 Conclusions 

The ANOVA data show that layout is highly significant in system ~nd 

fi1estore performance. Figure 7.3 and 7.4 show that the Non-Consecutive 

layout affects performance adversely; the Sequential and Precessed layouts 

show less sensitivity to disk capacity and have half the mean response 

time. System and fi1estore performance is penalized by large capacity 

disks, but the absolute effects are very small. The Non-Consecutive 

layout is most adversely affected. 

Request scheduler and capacity per access (i.e. number of heads per 

surface) are not significant. 

7.5 Results Commentary on ANOVA tables 

Tables 7.1 and 7.2 show the Analysis of Variance (ANOVA) evaluations of 

each factor for its effect on the observed performance indices at two 

load levels. For both indices, layout is highly significant, with a 

lesser rating for work throughput at the lower load. Disk capacity is 

also highly significant for filestore performance, and at the higher load 

for work throughput. The significant 2nd ~r.d 3rd order i~teractions of 

Table 7.1 are probably du~ to the strength of the single factors layout 

and disk capacity; these interactions are investigated further below. 

In Table 7.2, the 2nd order interaction at both loads between layout and 

disk capacity is highly significant. The other interactions lessen at 

the higher load. 

Table 7.3 shows the ANOVA results for system performance when layout is 

treated separately. No significant factor emerges except disk ccpac;ty 
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Source of 
Variation 

A 
B 

A x B 
C 

A x C 
B x C 

A x B x C 
D 

A x D 
B x D 

A x B x D 
C x D 

A x C x D 
B x C x D 
AxBxCxD 

R 
E 

A = Schedu1 er 

Degrees of F-ratio Significance F-Ratio 
Freedom at load=90 at load=90 at load=130 

i 

2 0.38 0.95 
2 0.03 8.95 
4 2.09· 0.97 
2 0.39· 0.89· 
4 1.00 1.83 
4 1.37 2.07 
8 2.64 ** 2.41 
2 4.89· ** 23.6 
4 1.46 1.63 
4 0.79· 2.87 
8 0.50 0.88 
4 1. 41 0.56 
8 0.4·1 1.29 
8 1. 14 0.78 

16 0.43 1.43 
2 

160 

* IIsignificantll 

Signifi cance 1 
at load=13C ' 

-

*** 

* 
*** 

* 

B = Capacity/disk (track density) ** livery s i gni fi cant II 

C = Capacity/Access (number of heads) *** IIhigh1y significant ll 

D = Layout 

R = Replication 

E = Error (all interactions with R) 

Table 7.1 Results of ANOVA for Work throughput rate 



Source of Degree of F-ratio Significance 
Variation Freedom at load=90 at load=90 

A 2 13.0 *** 
B 2 41.4 *** 

A x B 4 8.51 *** 
C 2 0.51 

A x C 4 1. 15 
B x C 4 0.85 
AxBxC 8 0.61 

D 2 77 .6 *** 
A x D 4 3.75 ** 
B x D 4 7.82 *** 
AxBxD 8 3.63 *** 
C x D 4 0.53 
AxCxD 8 0.46 
BxCxD 8 0.36 

AxBxCxD 16 1.13 
R 2 
E 160 

A = Scheduler 

B = Capacity / di s k (track density) 

C = Capacity /Access (heads/surface) 

D = Layout 

R = Replication 

E = Error (all interactions with R) 

F-ratio Significance 
at load=130 at load=130 

6.53 
109 

2.60 
1. 21 
1. 01 
0.97 
2.09 

93.4 
3.27 

18.8 
0.77 
0.08 
2.30 
1. 20 
1.30 

** 
*** 

* 

* 
*** 

* 
*** 

* 

93 

I 

.~J 

Table 7.2 Results of ANOVA for Fi1estore Mean Response Time 



at the higher load. The other factors involved with layout in Table 7.1 

are not significant These results are illustrated in Figure 7.3. Pre­

cessed and Sequential Layouts differ little in their effect, but both 

haye a work throughput higher by a few percent than the Non-Consecutive 

layout when it is most efficiently configured (see below). The abso~ute 

benefits of the smaller disks are small, but most marked for a Non­

Consecutive layout; at medium-to-heavy loads, the improvement in system 

throughput is 10 - 15% for small disks (200 cylinders) and about 5% for 

medium disks (400 cylinders). The Non-Consecutive layout is most severely 

affected by large capacity disks. 

For filestore performance with the layouts treated separately (Table 7.4), 

disk capacity is highly significant at both load levels. The 2nd order 

interaction between scheduler and disk capacity diminishes at the higher load. 

No other main effects or interactions are significant. Figure 7.4 shows 

mean response time 9gainst system load for all levels of factors disk 

capacity and layout. With Precessed and Sequential layouts, the mean 

response time is half that of the Non-Consecutive layout when efficiently 

configured. With all layouts, disk capacity is also highly significant. 

For the Non-Consecutive layout, the smaller capacities are better. The 

large disks (800 cylinders) give response times which increase rapidly 

with load; the medium (400 cylinder) and small (200 cylinder) disks are 

equal until heavier loads when the small disks give a faster response. 

The Precessed layout performs equally well with the Sequential layout for 

small and medium disks. Only at heavier loads does the smaller disk 

show a few percent improvement for the Precessed Layout. 



I 

II 

I II 

Source of 
Variation 

Degree of F-ratio 
Freedom at load=90 

A 2 2.69-
B 2 0.68 

A x B 4 0.91 
C 2 0.24 

A x C 4 0.66 
B x C 4 1.20 
AxBxC 8 1.25 

R 2 
E 52 

A 2 0.61 
B 2 1.00 

A x B 4 0.99-
C 2 1.24 

A x C 4 0.82 
B x C 4 2.34 
AxBxC 8 0.53 

R 2 
E 52 

A 2 0.13 
B 2 0.08 

A x B 4 1.25 
C 2 1.79-

A x C 4 0.44 
B x C 4 0.46 
AxBxC 8 1.71 

R 2 
E 52 

Scheduler = = A 
Capacity / di s k .. B 
Capacity/Access = C 
Replication = R 
Error = E 

Significance 
at load=90 

Separate analyses of each level of layout: 
I = Sequen t i a 1 
II = Precessed 
111= Non-Consecutive 

Table 7.3 ANOVA Results for Work throughput rate 

F-Ratio 
at load=130 

0.71 
3.11 
0.41 
0.23 
0.26 
0.87 
1.38 

1.17 
3.29 
1. 15 
O. 15 
0.76 
1.89 -
1.47 

2.26 
8.03 
1. 16 
1.52 
3.19 -
0.95 
2.42 

Significance 
at load=130 

~ 

* 

*** 

* 

* 

-

---



Source of Degree of F-ratio Significance F-ratio Significance 
Variation Freedom at load=90 at load=90 at load=130 at load=130 

A 2 6.47 ** 0.04 
B 2 15.7 *** 45.6 *** 

A x B 4 2.53 * 0.35 
C 2 1. 61 0.83 

I A x C 4 1. 19· 0.31 
B x C 4 1.38 2.08 
AxBxC 8 0.68 0.30 

R 2 
E 52 

A 2 0.28 3.89· * 
B 2 13.4 37.2 *** 

A x B 4 1. 14 *** 1.26 
C 2 1.08 0.75 

II A x C 4 2.41 0.91 
B x C 4 0.27 0.34 
AxBxC 8 1.30 0.72 

R 2 
E 52 

A 2 7.76 ** 5.01 * 
B 2 21.8 *** 50.3 *** 

A x B 4 6.77 *** 1.53 
C 2 0.16 0.37 

III A x C 4 0.48 2. 19 
B x C 4 0.28 1.05 
AxBxC 8 1.10 1.83 

R 2 
E 52 

Table 7.4 ANOVA Results for Filestore Mean Response Time 

A = Scheduler 
B = Capacity/disk 
C = Capacity/Access 
R = Replication 
E = Error 

Separate analyses for each level of layout: 
I = Sequential 
II = Precessed 
III = Non-Consecutive 

I 
t 



CHAPTER 8 

Investigation of Two Policies for using Disk Fast.,.Access Areas 

8.1 Introduction 

A disk configuration factor not considered in Chapter 7 is the availability 

of fixed heads over a small group of cylinders [22, 23] . This enables fast, 

zero· seek-time accessing of data on this area. In this chapter, the system 

model is used to evaluate two strategies for using a fast-access area. 
t 

·The evaluated stra~egies are 

(i) the Simple-Placement Policy 

(ii) the Staging Policy 

Both policies take advantage of known accessing patterns to anticipate 

sequential referencing. The Simple-Placement policy is to place frequently 

accessed data (catalogues and other files) on the fast-access area. The 

Staging Policy uses the fast-access area as a "staging" area, i.e. long 

sequences of records are buffered on the fast-access area in response to 

a demand for one record of the sequence. 

These strategies are both suitable for the Sequential layout fi 1estore. 

Both are also suitable for the Non-Consecutive layout·if a buffer area not 

larger than one cylinder is staged since that layout is organized sequentially 

within cylinders but not necessarily so across cylinder boundaries. 



8.2 Experimental Factors for the Fast-Access Area 

8.2.1 The Simple-Placement Policy 

Measurements of the S/360 filestore showed that 50% of the accesses to 

each disk were to the 1% of surface area containing the catalogue. 

Inferences about accessing patterns on the S/370 fi1estore suggest that 

40% of its accesses are made without incurring any seek delay. These are 

the bases for the Simple-Placement Policy, which is to place the catalogue 

(or other disk index) on the fast-access area. Contemporary disks with 

this facility typically have 0.5% of their area under fixed heads. Our 

interest is a disk with a fast-access area of at least 1% of its surface. 

To model the Simple-Placement Policy, the request generating algorithm 

is modified to select the fast-access area when generating a reque~ to 

the' 'central' area. This parameter is d, as described in Chapter 5. A 

variable, additional fraction of requests is also directed to this area 

to simulate the placement of other frequently-accessed data. The address 

generating algorithm becomes: 

from current cylinder i, 

select fast-access area with probabilitycX+ S 
/J ~ 

select current cylinder I'lith probability (~+ S) - ('+ S) 

move to cylinder j with probability 1 - (~+ S) 

Cylinder j is selected such that Ii -jl is according to layout type, 

(0<.+ S)~(~ + S)<.'1.0; S is the additional fraction of requests satisfied 

from the fast-access area (see discussion in section 8.2.3)'and any move ;s 

selected according to layout. as described in section 5.5.1 and 5.5.2 . 



8.2.2 The Staging Policy 

The alternative strategy of Staging is to use the fast-access area as 

a buffer between slower-access storage and the main store. Sequentiality 

of reference on both layouts indicates that one or more successor requests 

will be made during a file-i/o burst. The Staging Policy transfers complete 

cylinders of data to and from the staging area. A cylinder is staged-in 

when one of its records is referenced (and the cylinder is not already 

in the fast-access area). We assume that all records on the addressed 

cylinder may be staged-in for the cost of a seek delay plus one rotation. 

The cylinder to be staged-out is selected by the Least Recently Used 

al gorithm. In the absence of any other data, we assume a probabil ity of 

0.5 that this cylinder has been written to, and so requires saving to its 

permanent residence area. The "write home" cost is the seek delay to the 

cylinder position plus one rotation. 

8.2.3 Size for the fast-access area. 

Various sizes of the fast-access area are simulated by varying the number 

of requests it receives under the Simple-Placement policy, and by varying 

the number· of fast-access cylinders in the associative table used to im­

plement the Staging Policy. The levels of the size factor are chosen to 

keep these interpretations of size equivalent. Gray reported 50% of accesses 

to 1% by number of the cylinders of the sequentially organized fi1estore, 

and his measurements show peaks of accesses on certain cylinders (see 

Figure 2.1). However, without good data on file referencing and file 

sizes, we analyze the uniform-access situation in which the fraction of 

requests satisfied from the fast-access area is linear with the size of 

the area. This sets a lower bound on the number of requests so satisfied, 

since it is likely that much higher "hit" rates are possible. 



For both Sequential and Non-Consecutive layouts, the spatial accessing 

algorithms fix ~ to be the fraction of requests to central cylinders. 

We assume that this fraction at least is satisfied from the fast-access 

area under the Simple Placement policy. In addition, up to 10% of other 

accesses are considered to be satisfied from this area. For the Sequential 

layout, up to 70% of all accesses may be satisfied; for the Non-Consecutive 

layout, up to 50%. The smallest non-zero area is simulated as satisfyinq 

an additional 2.5% of all requests over the value ofoc, as shown in 

Tab 1 e 8.1. 

Simple-Placement Staging 

level 1 0 of accesses 0% of cyl inders 

2 0( + 0.025 of accesses 1% of cy1 i nders 

3 0( + 0.050 of accesses 2% of cylinders 

4 ()( + 0.100 of accesses 4% of cy1 i nders 

Table 8.1 Interpretations of fast-access area size. 

We equate the first non-zero level of size under Simple-Placement with 

1% of available cylinders, the representation simulated under the Staging 

policy. The maximum size under Staging is 4% of available cylinders, and 

this corresponds to the conservative "hit" rate of ()( + 0.1) under the 

Simple-Placement policy. 

I.' -' 



8.3 Other Experimental Factors 

Layout schemes are expected to influence the choice of strategy, so tnis 

factor is also retained though at two levels only - Sequential and Non­

Consecutive. Increased capacity per disk-access (i.e. more heads per 

surface) was found to have no significance in the configuration specified 

for the previous experiment. However, this factor is retained to test 

for any interaction with the fast-access factors of policy and size. The 

number of disks in the filestore is fixed to eliminate variation from 

this source. Request scheduler is not significant, so FCFS is selected 

for ease of implementation. As in the previous experiment, the system 

load is varied over a small range to enable graphical presentation of 

statistical effects. 

8.4 The Experimental Plan 

The experimental plan for ANOVA called for an orthogonal design of factor 

levels i.e. all combinations of levels are employed and and equal number 

of observations are made for each set of levels. Each combination of levels 

is replicated three times with independent seeding of each run of the 

simulation. Further description and references about the experimental 

technique and method of analysis are given in Appendix B. 

The factors and their levels are: 

l. Layout 2 

2. Use policy 2 

3. Fast-access area size 4 

4. Capacity per disk access - 3 

5. Load - 6 

6. Replication 3 

levels; 

levels; 

1 eve 1 s; 

levels; 

levels; 

levels; 

Sequential and Non-Consecutive. 

Simple Placement and Staging 

0%, l~~, 25; and 4:; of available cylind~(':. 

1, 2 and 4 heads per surface 

80 to 130 processes in steps of 10 



For each level of system load there are 48 combinations of the other levels 

excluding replication. This experimental set consists of 48 x 6 x 3 runs, 

i.e. 864 runs. These results are averaged over each replication and used 

for graphical illustration of statistically indicated effects. The statistical 

analyses use the sets of results for two load levels, a medium load (90 

process) and a heavy load (130 processes). Each analyzed set comprises 144 

runs of the model. The analyzed outputs are work-unit throughput rate and 

filestore mean response time. 



8.5 Conclusions 

Figure 8.1 and 8.2 show that Simple-Placement and Staging policies perform 

equally on a Sequential layout, but that Simple-Placement provides a 

faster response from the filestore and more system throughput on the 

Non-Consecutive layout. Size of fast-access area is not consistently 

significant (as indicated in ANOVA Tables 8.4 and 8.5). Figure 8.3 shows 

the weak interaction of size with service policy on the Non-Consecutive 

1 ayout. 

The Non-Consecutive layout is again a poor choice for fi1estore performance 

(Figure 8.2); for this layout, the Simple-Placement policy is to be pre­

ferred. However, the Sequential layout gives shorter response times and 

a slight throughput improvement under both fast-access area strategies. 

The choice of strategy for a Sequential layout is between performing 

data placement manually or implementing Staging as a self-regulating policy. 

Informal comparisons with the results of Chapter 7 show that a fast-access 

area is an almost unqualified benefit; system throughput is increased on 

both layouts by 20 - 40% (Figures 8.1 and 7.3). For the Sequential lay­

out, mean response time is halved and increases linearly with load even 

with a FCFS request scheduler which is normally associated with increasingly 

long response times as load increases. 
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8.6 Results 

8.6.1 Commentary on ANOVA tables 

Tables 8.2 and 8.3 show the ANOVA analyses of each factor at two system 

load levels. Layout dominates in its influence on system and filestore 

performances. The work throughput (Table 8.2) is only sensitive to layout 

at the higher load level, but mean response time (Table 8.3) is affected 

by layout and service strategy at both load levels. The significant 

interactions all contain the strong factors. 

The analyses are repeated in Tables 8.4 and 8.5 where layout is treated 

separately. The former layout-dominated result for work throughput now 

shows that the service strategy is highly significant at the higher lOdd 

for the Non-Consecutive layout. There is an absence of other effects, 

and Figure 8.1 confirms the equivalent nature of both service policies 

for system throughput, indicating that the Staging policy adjusts well 

to the spatially contiguous bursts of the Sequential layout. Size of fast 

access area and capacity per disk access are not significant. 



10) 

Source of Degree of F-ratio Significance F-ratio Significance 
Variation Freedom at load=90 at load=90 at load=130 at load=130 

I ._--, 
: 

I 
A 1 0.00 14. 1 

I 
k** 

B 2 0.48 2.09· 
A x B 2 0.73 0.25 

C 3 2.04 0.90 
A x C 3 0.84 1. 35 
B x C 6 1.18 1. 17 
AxBxC 6 1.02 0.36 

D 1 O. 19 4.36 * 
A x D 1 0.00 4.20 * 
B x D 2 0.32 1. 03 
AxBxD 2 0.32 0.54 
C x D 3 0.53 0.63 
AxCxD 3 0.24 2.05 
BxCxD 6 1.67 0.39 

AxBxCxD 6 0.66 0.63 
R 2 
E 94 

Table 8.2 Results of ANOVA for Work Throughput Rate 

A = Layout 

B = Capacity/access (heads/surface) 

C = Fast - area size 

D = Fast - area servi ce pol i cy 

R = Replication 

E = Error (all interactions with R) 



Source of Degrees of F-ratio 
Variation Freedom load=90 

A 1 69~7 
B 2 3.76 

A x B 2 6.63 
C 3 0.75 

A x C 3 2.94 
B x C 6 2. 12 
AxBxC 6 1.01 

D 1 23.2 
A x D 1 16.0 
B x D 2 0.48 
AxBxD 2 0.78 
C x D 3 3.62 
AxCxD 3 2.75 
BxCxD 6 0.98 

AxBxCxD 6 1.26 
R 2 
E 94 

Significance F-ratio 
load=90 load=130 

*** 130. 
* 0.09 

** 1. 14 
1.94 

* 1. 50 
1.48 
1.00 

*** 40.2 
*** 27.4 

1.36 
0.64 

* 5.28 
* 4.17 

0.70 
0.46 

Table 8.3 Results of Anava for Mean Response Time 

A = Layout 

B = Capacity/access (heads/surface) 

C = Fast area size 

D = Fast area servi ce pol icy 

R = Replication 

E = Error (all interactions with R) 

I 

Significance 
1aad=13J 

*** 

*** 
*** 

** 
** 

vu 

l 



I 

II 

Source of Degrees of F-ratio 
Variation Freedom load=90 

A 2 0.91 
B 3 0.52 

A x B 6 0.98 
C 1 0.07 

A x C 2 0.49-
B x C 3 0.43 
AxBxC 6 0.65 

R 2 
E 46 

A 2 0.04 
B 3 2.99-

A x B 6 1.25 
C 1 0.13 

A x C 2 0.00 
B x C 3 0.30 
AxBxC 6 2.00 

R 2 
E 46 

Significance F-ratio 
load=90 load=130 

1.88 
0.66 
0.85 
0.00 
1.57 
0.61 
0.58 

0.52 
** 1.59 

0.70 
8.44 
0.05 
2.06 
0.45 

Table 8.4 Results of ANOVA for Work Throughput Rate 

A = Capacity / Access (heads/surface) 

B = Fast-area size 

C = Fast-area service policy 

R = Replication 

E = Error (all interactions with R) 

Separate analyses for each level of layout:-

I = Sequential 

II - Non-Consecutive 

Sign ifi cance 
load=130 

*** 

-



I 

II 

Source of Degrees of F-ratio 
Variation Freedom load=90 

A 2 2.30 
B 3 8. 18 

A x B 6 8.82 
C 1 1.30 

A x C 2 1.32 
B x C 3 0.20 
AxBxC 6 0.28 

R 2 
E 46 

A 2 5.61 
B 3 0.90 

A x B 6 . 0.49 
C 1 22.2 

A x C 2 0.53 
B x C 3 3.62 
AxBxC 6 1.25 

R 2 
E 46 

Significance F-ratio 
load=90 load=130 

4.38 
*** 0.16 
*** 1. 13 

2.96 
0.68 
0.83 
0.44 

0.19 
1.96 
1.30 

*** 38.9 
1.08 

* 5.39-
0.62 

Table 8.5 Results of ANOVA for Mean Response Time 

A = Capacity/Access (head/surface) 

B = Fast-area size 

C = Fast-area service algorithm 

R = Replication 

E = Error (all interactions with R) 

Separate analyses for each level of layout: 

I = Sequential 

II = Non-Consecutive 

l1e 

Significar,ce 
load=13C 

* 

*** 

** 

-

I 
I 
I 
I 
I 

I 
I 
i 
I 
I 

I 
I ., 

I 

I 



Table 8.5 shows that service policy has a highly significant effect on 

filestore performance for a Non-Consecutive layout. Figure 8.2 shows 

that the Staging policy on this layout has much longer mean response times 

than the Simple-Placement policy. For the Sequential layout, Table 8.5 

shows that size is highly significant at the low load when it also inter­

acts strongly with capacity per disk-access. Figure 8.3 explores this 

result, showing that increased size merely mitigates the poor performance 

of Staging on the Non-Consecutive layout. 

For the Sequential layout, the mean response time increases linearly with 

load, the Staging policy being consistently a few percent slower than 

the Simple-Placement policy (Figure 8.2). Mean response time for the 

Sequential layout is at least half that for the Non-Consecutive layout. 

8.6.2 Commentary on Results of Chapters 7 and 8. 

Figures 7.3 and 7.4 of Chapter 7 and 8.1 and 8.2 of Chapter 8 show file-

store performance under various levels of significant factors with and 

without a fast-access area. The Simple-Placement policy and a fast-access 

area increase work throughput by 20% to 40%. The reduction in mean response 

time for a Sequential layout is unexpectedly large; the very long service 

times expected under FCFS at higher loads are eliminated. Mean response 

time for a Non-Consecutive layout does not reflect the throughput improve­

ment. It is probable that a reduction in the variance rather than the mean 

takes place. Overall the Sequential layout and FCFS filestore is twice , 
as fast with a fast-access area. 

I; 



CHAPTER 9· 

Potential Performance from a Novel Filestore-Controller 

9;1 Introduction 

The filestore is adapted with a special form of disk controller equipped 

with a cache store. The purpose of the controller is to reduce the average 

access time of the filestore by using a rapid-access store, or cache, 

under a Simple-Placement policy. This extension of filestore capability 

was foreshadowed in Chapter 8 where a fast-access area attached to each . 
disk resulted in considerable improvement of filestore and system per-

formance under certain conditions. In [32] , McGregor, Thomson, Dawson 

and Jones describe their microprocessor implementation of the controller. 

This author's contribution is an assessment of the improved filestore. 

The increased effectiveness of a cache-equipped filestore is represented as 

a performance improvement which is an input to the model of the filestore 

and its environment. Monitoring the behaviour of the work-unit throughput 

rate and response time achieves the aims of assessment. These aims are: 

i) to explore the limits of system performance (work-unit throughput) with 

a fast filestore. 

ii) to determine the necessary filestore performance improvement to 

release system performance from any filestore constraints. 

9;2 Performance Improvement Factor 

The Performance Improvement Factor (PIF) is defined in relation to the 

basic time-delay characteristics of a disk filestore. These characteristics 

I •. 



are seek-time, rotational delay and record transmission time. A Performance 

Improvement Factor of 1 represents the currently available filestore 

without any fast-access cache to shorten its servi ce times. The pe,'formance 

gained by use of a cache store is represented by reducing the basic time 

delay characteristics. Halving these times is represented by a PIF of 2, 

and halving again by a PIF of 4, and so on. It is convenient to continue 

using the disk fi1estore model, but for the modelling of Performance 

Improvement Factor this is not essential. 

9~3 Experimental Plan 

Input data from both S/360 and S/370 recreates the filestore environment 

of these systems. The layouts and configurations are as described in 

Chapter 5, viz. 

S/360 - Sequential layout , eight IBM 2314 disks (240 r~bytes) 

S/370 - Non-Consecutive layout four IBM 3330,11 disks (BOO Mbytes) 

Five sets of duplicated runs are made for each modelled system. Each set 

has its fi1estore performance improved by a factor of 2 over the previous 

run. Record transfer speed is increased until the limit of channel speed. 

The choice of load is determined by the search for maximum work throughput. 

The system load is increased to overcome the limiting effect of non-file-i/o 

on file load. 

This model extrapolates from the well characterized situations used for 

the more precise estimates presented in Chapters 7 and 8. The aim of 

the experiment is to explore the effect of the new controller on existing 

systems. 



9A Conclusions 

The potential benefits from a simple extension of filestore capabilities 

are considerable. The filestore equipped with a fast-access area as in 

Chapter 8 has a Performance Improvement Factor of 2, and that with immediately 

realizable technology. A cache-equipped filestore with a PIF of 4 reduces 

mean response time by an order of magnitude and increases system performance 

up to four-fold before non-file-store limiting conditions are reached. A 

PI F of 6 or over has spare work capaci ty at 10\ver load but the mean 

response time is reduced by an order of magnitude. The work throughput 

could be increased by a factor of ten and filestore performance would still 

be faster than contemporary systems. 

The limits of work throughput are much higher than achieved with conventional 

multi-user general-purpose systems, even with modest PIFs of 6 or 8. 

However, the effect of processor contention ~ the system load necessary 

to achieve the high throughput is unknown. Also, for concurrent running· 

of many processes, a very large main store is required. The obvious 

application of the new filestore is to very large data bases and existing 

time-sharing systems where reduced response times would be the principal 

benefit. A possible new application is the use of such a filestore as a 

node in a small network of general-purpose systems or in a large network 

of single-user systems. 

I .-, 



9; 5 Results 

Figures 9;1 and 9;2 show the predictions of work throughput and mean 

response time against the Performance Improvement Factor. In both systems, 

very large system loads are able to run concurrently, though at the expense 

of very long mean response times for low PIFs. The Figures are marked 

to show the transition from work throughput limited by the applied load 

to that limited by the performance of the filestore. This is calculated 

as follows: 

a) 

b) 

for Fi gure 9; 1 at PIF = 8 

(i) 

(i i ) 

ratio of system load 

ratio of work rates 

100/60 = 1. 67 

75/45 = 1.67 

=p work rate improvement is due to increased load. 

ratio of system load 300/200 = 1. 50 

ratio of work rates 185/140 = 1.30 

less improvement than expected from increased load therefore 

=> the filestore is limiting the work rate. 

for Figure 9.2 at PIF = 8 

(i) 

( i i ) 

ratio of system load 

ratio of work rates 

200/100 = 2.0 

155/80 = 2.0 

~ work rate improvement is due to increased load. 

ratio of system load 

ratio of work rates 

600/460 = 1.50 

380/285 = 1.30 

=:> filestore is limiting the work rate incl-ease. 
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If the real systems could support more load, more work throughput ;s 

available at the expense of filestore response time. From Figure 9.2, a 

modest PIF of 4 enables a four-fold increase in system load and work rate, 

with mean response time remaining at the levels of current, unimproved 

systems. A PIF of 6 or over offers a very fast response time of about 5ms 

at current system loads of 60 to 100 processes, and with a considerable 
. 

reserve of work capability. This reserve could be realized up to the 

limit of the filestore with mean response times (at 40ms, including waiting) 

still less than current systems (at 60 to l50ms). 

Comparisons with Figures 8.1,8.2 and 9.2 show that the fast-access equipped~ 

sequentially formatted filestore has a Performance Improvement Factor of 2. 

Its improvement over the equivalent filestore without a fast-access area 

(Figures 7.3 and 7.4) is a factor of 1.5 in work throughput. and a factor 

of 2 in mean response time. 



CHAPTER 10 

Summary and Conclusions 

Measurements of two large time-sharing systems have been presented. These 

data are sep.arated by three years, and are from two di fferent vers ions of 

the Michigan Terminal System. Many similarities exist between user 

behaviour patterns on these traces and patterns reported by Jalics and Lynch. 

Processes perform i/o in bursts of short mean length but very large variance. 

These burst lengths have a characteristic distribution that is well fitted 

by t\<IO straigr,t lines. Run-time per process between i/o events has also 

been characterized. For file-i/o bursts, the spatial intention of a burst 

from an individual process is sequential. The filestore layout determines 

whether the sequential intent is mapped on to sequential physical addresses. 

A method for evaluating a filestore in its operating system environment 

has been developed. The measured patterns of individual process behaviour 

enable the specification of temporal and spatial load in the environment. 

Load representation by these behaviour patterns differs considerably from 

previous simulation models, especially with respect to filestore accessing 

habits in time and space. A simulation model incorporating this load 

representation has been established and validated by checking its predictions 

against actual system measurements for a range of different situations. 

The methodology encapsulates studies of many sets of trace data. It is 

flexible in its application to other systems. It requires sofb/are trace 

facil ities for accurate measu'rement of process acti vity. Future systems 

may be modelled by extrapolation of time costs, since it is reasonable to 

assume the future validity of these behaviour patterns. 



The model has been used to analyze various disk filestore configurations 

within contemporary environments. It has also been successfully used as 

a design tool in the investigation of new systems architecture. In 

contemporary systems, the absolute effects of disk request scheduling are 

negligible. Statistically, file organization and disk capacity are the 

significant factors most affecting current system performance. Disks with 

fast-access areas can greatly improve performance by taking advantage of 

disk accessing patterns. A new design, equipping the filestore with a 

cache store, offers considerable performance improvements even with 

current-technology disks. 

This work contributes by measurement and by the abstraction of salient 

characteristics to the development of the engineering study of computer 

systems. The proposed methodolo,9Y contributes to the improvement of 

computer system models for reliable predictions. Further work is required 

to establish the engineering rules and limits of this methodology. 



Appendix A Measurements not given in the text. 

1. Run-time distributions. 

2. Burst length distributions. 

3. Waiting time distributions. 
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Appendix B 

A Note on the method of Statistical Analysis used in Chapters 7 and 8. 

The experimental design used in Chapters 7 and 8 uses qualitative factors 

at several levels, and two quanitative outputs. This system may be 

analyzed for each output by the method of Analysis of Variance (ANOVA) 

because the design is orthogonal, i.e. all combinations of levels are 

employed and an equal number of observations of the output variable are 

made for each factor arrangement. 

Routines from the program library NAG (Nottingham Algorithms Group [3~) 

were used for this analysis. The method decomposes the variance in the 

output observable from its several values in order to test whether those 
~ 

output values with ~ factor at, say_ level 1 differ from those values with 

that factor at another level, say level 2. For the simulation technique used, 

replications of the output observation at each factor level are required 

to establish this variation. The test of significance is whether the 

difference in value between factor levels is more than is expected because 

of random, or error, differences within each factor level. 

The applied test of significance is:-

are the sums of squares of the output observable x due to a particular 

fac~rA (SSA = varA(X~frOm a population where no such effect exists? 

This Null Hypothesis, if true, has the property that the ratio 

mean square of variance attributable to A 
mean square of variance unattributable 

follows the F-distribution. 



further 

Mean square of varianceA = Sum of Sqq of x due to A 

degree of freedom of A 

where the concept "degrees of freedom" is generally the number of obser­

vations of x less the number of constraints imposed on the system. This 

concept is treated explicitly in the analyses of Chapters 7 and 8. 

The effect of factor A is statistically significant if the calculated 

ratio exceeds the value of the F-distribution. Tables of the variance 

ratio at which a factor is considered to be significant may be found in (14). 

The probability levels usually chosen are 5%,1% and 0.1%, i.e. for the 

5% level there is a 1 in 20 chance that the observed effect satisfies the 

Null Hypothesis and belongs to the population of values which the output 

may normally assume. Similarly, the 1% and 0.1% levels express increasing 

confidence that the value observed does indeed come from a different 

population, i.e. that the factor has an effect on the observable. Practical 

texts [9, 18, 36] advise that a result about the 5% level is worth further 

investigation, and for final results and conclusions a higher level is 

preferred. 

In the analyses of Chapters 7 and 8, the level of significance of a 

variance ratio is indicated Q; *(5%) meaning "significant"; ** (1%) 

"very significant"; and *** (0.1%) "highly significant u
• 

The demands made upon experimental design for useful application of this 

statistical method are: 



1. orthogonality of design 

2. replication with independent random number generator seeding 

(for simulation experiments) 

3. a reasonable expectation of cause and effect among the factors and 

the output observable. 

Condition 1 is met by design. Condition 2 is met by preparing a pool of 

acceptable seed values for the mixed congruential pseudo-random number 

generator used [28] and recording final values as seeds for succesor runs. 

the pool of acceptable seeds was chosen by screening candidates with the 

Chi-Squared and Kolmogorov-Smirnoff tests for randomness and long life 

cycle [28] . Condition 3 is a safeguard that the physics of the situation 

lends itself to interpretation by this method of analysis. 



Appendix C 

Disk Request Scheduling Algorithms 

C.l Scheduling Algorithms - Literature 

Denning [13] used a single disk model with exponential arrival assumptions 

to analyze the Shortest Seek Time First (SSTF) scheduler which he 

adopted from the Shortest Access Time First (SATF) policy developed for 

fixed-head rotating storage devices. He introduced SC~~, a method of service 

in which the disk arm sweeps backwards and forwards across the disk. This 

algorithm guarantees service under heavy load where SSTF discriminates 

against requests for extreme addresses. SCAN is also capable of a higher 

throughput of requests than First Come First Served (FCFS) under heavy load. 

Variations of SCAN have been proposed by Frank [15] , Merten [35] and Teorey 

[52]. Frank introduced the N-step SCAN policy (FSCAN or N-SCAN) in which 

N requests are taken from the queue of waiting requests and serviced during 

a scan. This policy is designed to reduce response time variance with 

little effect on request throughput. Merten removed the constraint of 

sweeping to a disk extremity before reversing direction. This policy is 

sometimes called LOOK, although SCAN now often implies Merten's modification. 

Teorey introduced C-SCAN, a circular scan. At an extremity the disk arm 

recommences sweeping at the starting extreme. 

These investigations conclude that the SCAN algorithm and its derivatives 

N-SCAN and C-SCAN increase the val'iance of response time in return for a 

reduced average compared with FCFS. FCFS provides the most rapid service 

at light loads but response time increases with load more rapidly th2n tIle 



the other algorithms. SSTF seems inherently unsafe since at heavy loads 

it shows a high request throughput but degenerates to serving only a 

fraction of available cylinders. 

C.2 Algorithmic descriptions of Request Schedulers. 

The schedulers described are FCFS, SSTF", SCAN, C-SCAN and N-SCAN. The 

Lynch scheduler is described in Chapter 5. These algorithms are described 

in terms of a single disk with two relevant events - Request Arrival and 

Queue Service. Request Arrival is self-explanatory. Queue Service occurs 

after a service completion when waiting requests are serviced. Extension 

to multiple disks involves another queue for the access path, and several 

queues for the several disks. 

C.2.1 FCFS 

a) 

One waiting queue. 

at Request Arrival : 

if ..., disk_busy then service 

else enqueue; 

~) at Queue Service: 

serve request at head of queue; 

C.2.2 SSTF - One waiting queue 

a) at Request Arrival: 

if ..., di sk_busy then servi ce 

else enqueue; 

b) at Queue Service: 

service request closest to current arm position; 



C.2.3 SCAN (including Merten IS modification). One waiting queue. 

a) at Request Arrival: 

if ..., di sk_busy then servi ce 

else enqueue; 

b) at Queue Service: 

Service request least ahead in current service direction. 

If none, reverse direction and select a request by the same rule; 

C.2.4 C-SCAN - (including Merten's modification) 

One waiting queue. 

a) at Request arrival: 

if -. disLbusy then service 

else enqueue; 

b) at Queue Service: 

Service request least ahead in the service direction. 

If none, retract to starting exteme and select request by 

the same rule; 

C.2.S F-SCAN - Two waiting queues, the service-queue and the \'/aiting-que:.;e. 

a) at Request Arrival: 

if ..., di s k_busy then servi ce 

else enqueue on waiting-queue; 

.. 



b) at Queue - Service: 

if service-queue -, = empty 

then service request at head of queue 

else 

begin 

end 

copy the first N requests from the waiting-queue to the 

service queue; 

order the service-queue by Frank's empirical shortest­

seek-time algorithm, viz. arrange the requests for a scan 

first in the direction for which the farthest request 

distance is a minimum, and second backwards until the 

remaining requests have been serviced; 

i4U 



Appendix D Measurement Overhead Costs 

The DCF version used by Gray was substantially the same as the facility 

described by Pinkerton [43]. The version used for this research had been 

implemented by King [27]. Pinkerton evaluated the DCF-induced interference 

to his observed system to be very small, namely 0.3% CPU time and about 

4% of main storage for buffers. King's DCF version was used to monitor 

itself by including in the reporting set another event to enable' explicit 

CPU time accounting per process. This event constitutes more than half 

the events gathered for interference evaluation. Table 0.1 shows the results 

of two typical assessments. All assessments showed less than 2% CPU time 

attributable to DCF; this includes a high overhead introduced to make the 

assessment. The newer DCF uses more buffer areas, but the percentage 

remains the same at 4%. Channel utilization for accumulation of data is 

a calculated 0.4%. The measurement overhead costs are very small. 

CPU% 

ELAPSED DCF MTS ms IDLE 
TIME (sees.) SUPERVISOR USER 

MODE MODE 

121 1.8 2.3 95.9 0.0 

121 1.4 1.8 96.8 0.0 

Table D.l DCF Interference Measurements 

1 • 1 
~. 
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