

Acknowledgements

This thesis grew out of a series of conversations with and contributions by many people at the

Uniyersity of Newcastle upon Tyne. I would have liked to individually thank all of them but

seyeral people have made outstanding contribution to the realisation of this work. My most

heartfelt gratitude goes to my supervisor Dr. Neil Speirs who has endured supervising this

work for years. I would also like to thank Dr. Paul Ezhilchelvan for his outstanding

professional support and interest in this thesis.

This thesis would not have survived as an island. It is based on previous works by, among

others, Prof. Santosh Shrivastava, Dr. Graham Morgan, Doug Palmer, and Dr. F. V.

Brasileiro., some of whom have provided technical assistance whenever sought.

I am thankful to staff and students of School of Computing Science at the University of

Newcastle upon Tyne for making my four year study such a joy. Finally I am grateful for the

financial support I enjoyed that was generously and fully offered by the University of

Botswana Computer Science Department.

ill

TABLE OF CONTENTS

Chapter 1 - Introduction

1.1 Overview ... 1

1.2 Thesis objectives .. 3

1.3 Implementation of a fail-signalling system .. 4

1.4 Findings and benefits of a fail-signalling service 5

1.5 Thesis structure .. 6

Chapter 2 - Background and related work

2.1 Overview ... 9

2.2 Fundamental problems in distributed systems 10

2.2.1 Detecting a crashed process in an asynchronous system 1 0

2.2.2 Global state .. 12

2.2.3 Partial failures, group consensus and membership 15

2.2.4 Closing remarks .. 16

2.3 Typical dependable system models ... 17

2.3.1 Process model ... 17

2.3.2 Synchronous and asynchronous network ... 18

2.3.3 Group communication system model ... 20

2.4 Failures and failure detection .. 21

2.4.1 Terminology of failures .. 21

2.4.2 Failure detectors .. 22

2.5 Byzantine tolerance and security ... 25

2.6 Group communication systems .. 26

2.6.1 Passive and active replication techniques .. 27

2.6.2 Consensus and group membership protocol... ... 27

2.6.3 Atomic broadcast and virtual synchrony ... 28

2.6.4 Order protocol .. 29

IV

2.6.5 Liveliness .. 29

2.6.6 Group partitions and gossips .. 30

2.7 Fault tolerant group communication systems 31

2.8 Byzantine tolerant and secure group communication systems 32

2.8.1 Group communication approach ... 33

2.8.2 Failure detectors and oracles ... 34

2.8.3 Stochastic and computational techniques ... 35

2.8"+ Quorum systems ... 36

2.9 Distributed computing systems and failure detection 36

2.10 Summary and conclusions .. 41

2.10.1 Problems .. 41

2.10.2

2.10.3

2.10.4

Current solutions .. 42

Limitations of the current solutions .. 42

Contributions of this thesis ... 43

Chapter 3 - The fail-signalling system

3.1 Introduction .. 45

3.2 Fault model. .. 46

3.3 The problem ... 46

3.3.1 Dealing with FLP impossibility46

3.3.2 Liveliness and fail-signalling .. 47

3.3.3 Properties of fail-signalling process .. .49

3.4 Construction of Fail-Signal (FS) Processes .. 50

3.4.1 i\ssumptions and principles .. 50

3.4.2 A fail-signalling pair .. 52

3.5 Implementation of fail-signalling pair ... 54

3.6 Optimizing a fail-signalling pair .. 56

3.6.1 Improving synchronized clock algorithm ... 58

3.6.2 Order protocol optimization in fault free runs .. 59

3.7 Concluding remarks ... 61

v

Chapter 4 - A fail-signalling group communication system

4.1 Overview ... 62

4.2 The NewTOP Group Communication Service 63

4.3 Extending NewTOP to FS-NewTOP .. 66

Chapter 5 - Results and performance analysis

5.1

5.2

5.3

5.4

5.4.1

5.4.2

5.5

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

5.5.6

5.5.7

5.6

Introduction and objectives .. 71

Operating environment - Mega cluster ... 72

Configuration and Object Distribution .. 72

Measuring group consensus latency .. 74

The global timer (real time clock) .. 74

Events: crash, detect, and consensus (determination) 76

Performance analysis .. 77

Throughput versus number of group members 78

Throughput versus message sizes ... 80

Order latency versus number of group members 82

Order latency versus message sizes .. 84

Cost of consensus when one member fails (varying members) 85

Cost of consensus when one member fails (varying message size) 86

Cost of consensus when one member fails (varying timeouts) 87

Discussion and conclusion ... 89

Chapter 6 - Discussion and conclusions

6.1 Overview ... 90

6.2 Assumptions ... 90

6.3 FS service and further work .. 92

VI

Appendix A - Porting and adapting V oltan to fail signalling

java/CORBA .. 95

References ... 116

Bibliography .. 133

Vll

List of Figures

Figure 3.1: Architecture of Fail-Signal Wrapper Objects for middleware process p.

Figure 3.2: Fail Signaling \\'rapper objects

Figure 4.1: The NewTOP service: access and structure.

Figure 4.2. The FS-NewTOP system

Figure -+.3: Deployment of the components of FS-NewTOP for a 3-Member Group.

Figure 5.la: Group member structure for (a) traditional NewTOP (b) Fail-Signalling and
secure FS-NewTOP and (c) the object/node distribution strategy for FS-NewTOP.

Figure 5.1 b External timer for crash events and group communication systems

Figure 5.2: Throughput under maximum message load against varying group members

Figure 5.3: Throughput under maximum message load against varying message size

Figure 5.4: Symmetrical order latency against varying group members

Figure 5.5: Symmetrical order latency against varying message size

Figure 5.6: Membership protocol overhead when one member suddenly fails (varying number
of members, fixed message size to 5 bytes)

Figure 5.7: Membership protocol overhead when one member suddenly fails (varying size of
messages, fixed group membership to 1 0 members)

Figure 5.8: Figure 5.8: Membership protocol overhead when one member suddenly fails

(varying liveliness time outs)

Figure A.l: V oltan fail silent process structure

Figure A.2: CORBA Voltan fail-signalling structure

V1l1

List of Tables

Table 2.1: Failure detector properties

Table 2.2: Classes of failure detectors

Table 2.3: Atomic broadcast properties

Table 2.4: Systems' failure detection and security

Table 2.4: Classes of failure detectors

Table 5.1: Throughput under maximum message load against increasing group members

Table 5.2: Throughput under maximum message load against increasing message size

Table 5.3: Smunetrical order latency against increasing group members

Table 5.4: Symmetrical order latency against increasing message size

ix

Chapter 1

INTRODUCTION

1.1 Overview

Today's society is much more dependent on distributed computing than ever

before in homes, academia, research, commerce and industry. Distributed

applications are deployed in a wide range of environments from non critical but

demanding systems such as video streaming, teleconferencing, internet server

farm to more mission critical applications such as finance, airline booking

systems, electronic auctions, medical equipment and air traffic control.

Distributed computing has also found its way into high performance systems in

nuclear power stations, human genome simulations, space missions, weather

forecasting and film and entertainment industry.

To satisfy the demands of these applications, there are a number of properties

that the underlying distributed systems are required to obey. Some of the

desirable properties include high availability, timeliness, fault tolerance and

security. A system that satisfies these properties should continue to operate and

service clients at anytime even if it encounters faults, it is attacked or some of its

components fail. Different systems vary on how well they can handle that in

terms of what malicious attacks they can handle and up to how many system

components can fail without affecting the operation of the whole system.

Most of dependable distributed systems are constructed from a number of

applications or processes that cooperate to achieve one goal as a group. The

1

processes communicate certain type of messages obeying same communication

rules. This collection of processes is a Group Communications System (GCS).

GCS is used as an abstraction to address a wide range of distributed systems

applications. To achieve the dependable properties just stated, a GCS is required

to satisfy group communication challenges that are only unique to GCS. Some of

the challenges include the order of messages received by members, membership

consensus, elections, clock synchronisation and atomic broadcast. Total message

order protocol ensures that non-faulty members of the group receive all messages

sent to them in the same order. In addition, all members have to unambiguously

agree on certain actions and values that determine correctness of the group

communication operations.

Causes of these dependability challenges include: the error prone network that

link all the participating group members, the partial failures that may occur due to

the autonomous nature of application hosts and the vulnerability of the

distributed computing as a result of its exposure to adversaries that may have

malicious access to the network.

Substantial amount of research work has already been carried out to tackle such

dependability and security problems. It is evident from literature that almost all

solutions targeted toward GCS have been centred around applying traditional

agreement protocols, using signatures for authenticity, and over reliance on

liveliness mechanisms.

2

1.2 Thesis objectives

Many fault-tolerant group communication rniddleware systems have been

implemented assuming crash failure semantics. Crash failure semantics state that

a process participating in a group can crash without propagating errors to other

processes. \'Ollie this assumption is not unreasonable, it becomes hard to justify

when applications are required to meet high reliability requirements and are built

using commercial off the shelf (COTS) components.

Distributed dependability of group communication systems has in the past relied

on protocols that are based on completely connected single processes that

communicate via message passing for both application specific messages and

fault tolerance messages. It is desirable to decouple fault tolerance and security

from application-specific services and messages. Decoupling application services

from dependability services greatly simplifies and betters group communication

semantics and computations. For example, removing liveliness properties from

the group layer would ease the group membership protocol profoundly in that

the detection of faults and agreement on values by group distributed members

will be faster and decoupled from membership service.

This thesis proposes techniques that will make sure dependable activities such as

group member failure detection, liveliness and security are removed from the

upper group communication layer. The proposed model requires a single process

to be duplicated so that the process becomes a self checking pair with the two

replicas communicating synchronously over a reliable network, but two different

replicas from different processes can be connected asynchronously. With most of

failure detection confined within the two replicas, semantics of a group

communication are wrong suspicious on process failure is eliminated. The

3

proposed approach is based on the two same-process-replicas obeying state

machine replication (SMR). SMR is utilised to assure signal-on-failure (fail-signal)

semantics. One or both of the two replicas always issues a signal to other

processes whentTer there is a failure between them. This way, an originally crash

tolerant group communication can be extended into a Byzantine tolerant system

by use of fail-signalling protocol.

1.3 Implementation of a fail-signalling system

The proposed fail-signalling (FS) approach requires that group members that are

duplicated to act as one, as mentioned, conform to the state machine replication

(SMR) model. SMR is used to assure signal-on-failure (fail-signal) semantics at a

le\'el where existing crash-tolerant services can be seamlessly deployed. The

resulting system can provide total ordering that has no liveliness requirement for

termination.

This work demonstrates the effectiveness of the suggested approach by porting a

GCS system designed and developed at University of Newcastle upon Tyne

called Newcastle Total Order Protocol (NewTOP). The crash-tolerant NewTOP

CORK.'\" group communication service was ported into a Byzantine tolerant Fail­

signalling NewTOP one referred to as FS-NewTOP. Security is augmented to the

replicas' fail-signalling capabilities so that the group system can tolerate even

more serious Byzantine faults. The Fail-signalling techniques deYeloped in this

thesis can be applied to other distributed computing systems whose components

are state machines.

4

1.4 Findings and benefits of a fail-signalling service

The thesis has pro\'en that the fail-signalling group communication faired better

in areas that it was expected to such as better group communication semantics,

dealing with member failures and formation of new group membership faster.

This work improved on what the distributed community have achieved by

decoupling security infrastructure from the upper rniddleware layer. Equally

important an effective fail-signalling layer was added to the system. The replicas

of the process were each placed on different nodes connected by network

assumed to be synchronous, while the link between two different group members

may be asynchronous.

The fail-signalling structure enabled us to pull down the failure detection

mechanism from the upper group layer and confme it within duplicates that

either produces identical results or a failure signal to some group members all the

time. If the duplicated member sends a duplicate application message or fail

signal message, one of the duplicate messages is suppressed on receipt.

These techniques eliminate suspicions and partition by ensuring that a failure

detector receives a failure signal from a failing process and therefore no need for

suspicions [Mpoeleng03]. This use of either failure detection or group

communication techniques for fault tolerance could even be more efficient if the

processes were guaranteed to fail only by crashing and being able to distribute a

failure signal to the nearest fellow group process(es) which immediately initiates

new membership view protocol. FS protocol eliminates failure suspicions that are

wrong thereby disallows partitions of a group communication system while

maintaining the integrity of a normally operating group system.

5

The benefits of fail-signalling distributed systems, particularly group

communication systems, are summarised below.

•
•
•

•

Decoupling of fault detection and security from application layer

Faster failure detection leading to faster group membership protocol

Elimination of group partitioning

Clean and assured crash without propagating errors to other parties

At the end of this work, it has been proven that the construction of a fail­

signalling service that brings about the above mentioned benefits is possible. In

the results chapter, findings of performance of the traditional NewTOP against

the new FS-NewTOP are presented. As predicted, the FS-NewTOP performance

is much better when the system loses a group member because the fail-signalling

protocol produces a sure failure to the system hence eliminating the need for

group member to undergo a consensus protocol but rather forces the FS group

to run a new membership view immediately.

1.5 Thesis structure

The thesis is organised as following:

Chapter 2: Background and related work. This chapter covers the

background of distributed computing dependability. Topics and subtopics

include: fundamental challenges in distributed systems which are the subject of

current research. The chapter then presents typical system model for both

synchronous and asynchronous networks. Byzantine tolerance and security are

6

also covered. The most command group communications systems are discussed

in detail before a conclusion is drawn with emphasis on the limitations of the

current group communication system.

Chapter 3: The Fail-signalling system. This chapter covers the maID

contribution of the thesis. The chapter explains how the fail-signalling service was

constructed and how the target application (or group member) is duplicated to

act as one self-checking process. The chapter demonstrates how the fail-signalling

service can be optimised in fault free environments. This chapter's topics include:

The problem to solYe, dealing with FLP impossibility, liveliness and fail­

signalling, properties of fail-signalling process, construction of fail-signal ifs)

processes, assumptions and principles, a fail-signalling pair, implementation of

fail-signalling pair, optimizing a fail-signalling pair, improving synchronised clock

algorithm, order protocol optimisation is fault free runs, and concluding remarks

Chapter 4: A Fail-signalling group communication system. This chapter

demonstrates how a fail-signalling service can be incorporated into an existing

distributed application. The target group system that is enhanced with the FS

service is the group communication systems developed at the University of

Newcasde upon Tyne called NewTOP. This chapter demonstrates how

NewTOP was minimally changed to be connected to the fail-signalling service so

that members of the NewTOP group communication are each duplicated to act

as robust self checking entity. The chapter starts with an overview of the chapter,

the description of NewTOP group communication service, extending NewTOP

to FS-NewTOP and Implementation details.

Chapter 5: Results and performance analysis. The chapter compares

performance of NewTOP versus FS-NewTOP on various performance

properties. The chapter includes: Operating environment - Mega cluster,

7

configuration and object distribution, performance analysis, throughput yersus

number of group members, throughput versus message sizes, order latency

versus number of group members, order latency versus message sizes, cost of

group membership protocol when one member fails (\'arying members), cost of

group membership protocol when one member fails (varying message size), and

discussion and conclusion of results.

Chapter 6: (Discussion and conclusions). The chapter concludes the overall

thesis and implications of its findings. It summarises the performance

implications of fail-signalling service in terms of the J formula and J is the

maximum number of group members that can fail without affecting the system.

This chapter briefly discusses the contributions of this thesis and suggests future

work.

Appendix A: Porting and adapting Voltan to fail signalling java/CORBA

System. This appendix describes in detail how the fail silent system was adapted

and ported to a fail-signalling Java/CORBA version. The new CORBA based

Voltan seamlessly connected with the CORBA based NewTOP and ensured

minimal changes to NewTOP.

8

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Overview

This chapter reVlews and analyses the inherent fault tolerance and security

challenges in distributed systems and examines existing solutions that address

them. "\ number of distributed computing systems are cited. The chapter further

highlights the limitations of solutions offered by such systems and finally justifies

this thesis.

First, problems that are inherent in distributed system are identified and a more

detailed description of the problems is presented. Then a group communication

system paradigm is discussed that is usually used to solve such problems. The

chapter continues by giving details of Byzantine faults before discussing

distributed system that tolerate benign faults and those that tolerate more serious

faults such as Byzantine and malicious faults. Examples of practical group

communication solutions are introduced and their failure detection mechanisms

are discussed. The chapter concludes by highlighting the weaknesses of the

current approaches and suggests better solutions.

This chapter covers the following topics: Fundamental problems in distributed

systems; Distributed system model; Failures and failure detection; Byzantine

faults and security; Group communication systems; Fault tolerant group

communication systems; Byzantine tolerant and secure group communication

9

systems; Example group communication systems with failure detection; and

finally Summary and conclusions

2.2 Fundamental problems in distributed systems

There are several fundamental problems that are central to building today's fault

tolerant distributed systems. When designing a distributed system applications

and their protocols, designers should consider these key problems ([Cristian91a],

[Nancy96]):

• identifying a crashed process from a slow process in an asynchronous

network configuration,

• accurately taking a snap shot of the system's global state,

• dealing with arbitrary, Byzantine faults, and

• reaching a consensus among a group of processes.

These challenges are further explained below.

2.2.1 Detecting a crashed process in an asynchronous system

An asynchronous network is characterised by computer nodes connected by links

whose timing latencies are not known but bounded. It is impossible to distinguish

a crashed process (or a disconnected link) from a slow process connected by an

asynchronous link. The problem is tackled differently in synchronous networks

10

and asynchronous networks. In a synchronous network, message transmissions

are subjected to maximum timeouts while in asynchronous network it is not

possible to impose such upper latency time bounds. In an asynchronous network

there is no known message transmission timing delays or relative processor

speeds, therefore a slow process cannot be distinguished from a crashed one.

1bis key problem has been termed the "FLP Impossibility" named after the

authors, Fischer, Lynch and Paterson, who proved that it is impossible to reach

an agreement among a group of asynchronously connected processes when just

one of the processes crashes [Fischer85]. Further proofs of FLP impossibility

result are presented in [Fischer86].

However, extensive work has been carried out to circumvent the FLP

impossibility result. i\ttempts range from theoretical solutions ([Vijay98b]) to

practical solutions ([Chandra91], [Chandra96]). Vijay et al introduced an infinitelY

often accurate failure detector which can be implemented in an asynchronous

system and assume that when a process has failed or crashed it remains in that

state throughout a run. The aim of this thesis is to guarantee that condition in a

different way. Chandra et al introduced the concepts of unreliable failure detectors

that can be used to solve consensus in an asynchronous distributed system more

on Chandra solutions is discussed in this chapter.

These solutions are dominandy targeted to a group of processes, that are

communicating and are completely connected or there is a direct link between

any two processes, by message passing and they have to reach an agreement

despite a number of them failing. The efficiency of a solution is judged by the

number of rounds needed to reach an agreement and how many processes can be

faulty without affecting the proper agreement over failed members of the group

by non-faulty members. The number of processes that can be faulty without

affecting the group decisions is an upper bound and it is denoted j, where fis the

11

maXlffium number of faulty group members relative to size of the group II.

Efficiency of group agreement protocols is determined by the number of rounds

and]

The relationship between nand f is determined by several factors:

• \'Vhat types of faults are to be tolerated? Benign, crash, malicious

• \'Vhat is the underlying communication protocol? Synchronous or
Asynchronous

• How many numbers of rounds are required for consensus?

In an asynchronous network, to tolerate benign and crash faults 2f+ 1 < n

processes are needed to reach consensus. To tolerate malicious faults 3f + 1 < n

are needed [Schneider90]. For synchronous network model to tolerate benign or

malicious faults f+ 1 < n processes are required regardless of assumption of

authenticated or no-authenticated channels [Fischer82, Dolev82, DeMillo82]. f <

n/3 is required for malicious participants [Lamport78], f < n-2 in the case of

benign, f < 1/2 network connectivity for not-full connected network [Dolev82].

2.2.2 Global state

Another hurdle in distributed system protocols is that there is no real time global

clock and therefore difficult to accurately get the global state snapshot of a

distributed system. It is even more difficult to get a global state if a majority or all

correct processes have to communicate to agree upon the system state. Each

node in a distributed system has its own real time clock. It is hard to keep clocks

in real time steps with one another not only because the clocks drift against each

12

other, but also because the same messages sent between nodes to keep clocks in

step are exposed to unpredictable latencies. Parties may not be aware of not just

the global time, but also the system's general global properties or state.

There are algorithms that keep physically separated clocks in synchrony such as

the Berkeley algorithm and Halpern's algorithm [Halpern84] that both

synchronize clocks within given bounds by message passing in a fault tolerant

way. The algorithms tolerate both link and node failures of any type and they can

maintain clock synchronization with arbitrary networks (not just completely

connected networks). The problem with these clock synchronisation algorithms is

that they still require processes to communicate with the rest or majority of

processes in a group and that can lead to high message load.

Real earth time helps us determine which event happened before which.

Measurements need to be taken to determine which event happened before

which event for overall deterministic ordering of events.

Lamport's logical clocks in [Lamport78] and [Halpern84] demonstrate how to

address the global clock problem without using real physical clocks. Logical clock

are based on the concept of associating an increasing integer number to an event,

depending on which event caused which? This is causality temporal relationship.

Schwarz detects causality relationship in a distributed system [Schwarz94]. A

causal relationship is a predicate that determines which event happened before

which based on which caused which to happen. If process .i\ sends message m to

process Band B receives it, the send event happened before the receive event because

the former caused the latter. A lot of these timing theories and systems have been

developed based on Lamport's logical clock.

Various researchers have addressed global snap shot in different ways, the

challenge of observing a distributed global state. Chase and others have shown

13

how to detect global properties of a distributed system but highlighted its

limitations [Chase98]. Chandy [Chandy85] and Shah [Shah84] use distributed

snapshots to determine the global state of a system while Felix and Kloppenburg

use weak fault assumptions to consistently detect global predicates in an

asynchronous distributed systems ([FelixOO], [KloppenburgOO]). Li employs

distributed predicates to try to solve more practical problems such as distributed

deadlock detection [Li93].

2.2.3 Byzantine faults

Byzantine faults have been one of the dominant problems in distributed systems

research community and the faults have been tackled in different ways over many

years as fully discussed in subsequent sections. Byzantine faults are arbitrary and

unpredictable and can either be inadvertent or malicious. The Byzantine problem

was first coined by Lamport in 1982 and it was modeled around several

distributed processes, some of which can be faulty but the rest of the group must

be able to reach a consensus.

The Byzantine problem is analogous to various army generals in command of

different regiments surrounding an enemy city. The generals communicate only

by passing messages from one regiment to the other via human messengers.

Some generals may be traitors by sending wrong messages, however, the non­

traitors must reach agreement on whether to attack or not. This paradigm came

to be known as the Byzantine Generals Problems ([Lamport82], [Lamport83],

and [Cristian85]).

Subsequent research efforts to solve this problem are centered on a number of

distributed processes cooperating as a group. The challenge is for the non-faulty

processes (non traitors) to reach an agreement despite Byzantine failures (from

traitors). It has been proven that up to a third of n processes can be faulty if)

14

without affecting consensus of non faulty processes - J < n/3. This Byzantine

agreement can be achieved by a determinist protocol with complexity of 0ifJ

rounds [pease80].

Furthermore, Castro and Liskov have carried out a number of theoretical and

practical solutions to tolerate Byzantine faults ranging from normal faults to

malicious faults. They developed practical solutions for state machine replication

that tolerates Byzantine solution which was tested in NFS services to prove its

applicability. The algorithm operates in an asynchronous network and it offers

both liveliness and safety provided no more than a third of group members are

simultaneously faulty. This means that clients eventually receive replies to their

requests and those replies are correct [Castro99c]. In another paper [Castro99a],

the authors prove these algorithms formally using I/O automaton. Other

algorithms eliminate the need for costly public-key cryptography by replacing

public key cryptography with message authentication codes (MAC) and the speed

is doubled while maintaining the same degree of security [Castro99b]. They

further enhance their algorithms to not just tolerate but to recover from

Byzantine faults [CastroOO].

However all these Castro and Liskov algorithms and many other research works

are based on complete communication among processors which can still be

costly in terms of message traffic. On the contrary, algorithms proposed in this

thesis confine majority of fault tolerance and security operations within two

replicas.

2.2.3 Partial failures, group consensus and membership

Partial failures are one of the major challenges of a distributed cooperating group

processes. Unlike a centralised and localised system with one processor and one

15

memory, a distributed computation can fail partially and independently at various

locations of the network In such circumstances, measures should be taken to

ensure integrity and correction of such computation [Cristian91a]. 1-1.t anyone

time, various processes of the distributed system may have failed. The distributed

system must be designed correctly so that these failures have little \1.sibility to the

obsen'er of the system. This property is called high availability and it is usually

implemented by replication of a service over multiple components and by

replication of information.

Reiter et al describe group membership as a protocol that enables processes in a

distributed system to agree on which group of processes are currently operational.

Membership protocols are used to maintain availability and consistency in

distributed applications [Reiter94b]. They present a membership protocol for

asynchronous distributed systems that tolerates the malicious corruption of group

members. Their protocol ensures that correct members control and consistently

observe changes to the group membership, provided that in each instance of the

group membership, fewer than one-third of the members are corrupted or fail

benignly.

2.2.4 Closing remarks

The challenges discussed above are inherent in distributed computing and are

active topics among researchers and professionals. Solutions range from simple

redundancy measures to complex group communications with signatures. Major

challenges of today's asynchronous distributed systems models and protocols are

based on this fact compounded with security issues. One protocol that has been

the challenge for decades is the agreement protocol. In the protocol, participating

group members have to reach an agreement and terminate despite presence of

16

some faulty or betraying members within a known maximum number of faulty

members (upper bound). Much research work has been carried out in trying to

optimize the upper bound and various research works have provided both

theoretical and practical techniques to address the upper bounds.

2.3 Typical dependable system models

This section discusses most commonly implemented distributed system models

particularly those that are designed to tolerate faults and malicious attacks. A.

dependable distributed system is composed of a set of processes together

characterised by strict stochastic specifications (minimum probability that the

standard behavior is observed at run-time, and maximum probability that a

potentially catastrophic failure that is different from the specified failure

behaviour is observed) [Cristian99]. The dominant protocol model discussed is

group communication system whose processes are distributed across a

synchronous or asynchronous network. The processes communicate only

through message passing, not shared memory. This work makes distinction

between synchronous and asynchronous system models. The synchronous and

asynchronous system models should not be confused with synchronous (send­

and-wait) and asynchronous method calls (fire-and-forget to continue).

2.3.1 Process model

"-1. distributed system is modelled as a collection of cooperating processes

distributed over a network. Processes communicate only by message passing.

Each process obeys state machine replication properties and Schneider describes

17

a state machine approach as a general method for implementing fault-tolerant

sen1.ccs in distributed systems [Scheinder90], This message passing model is

point-to-point, connection oriented and allows for asynchronous message

passing. On top of the point to point, a multi-cast software layer is placed on top

and an underlying hardware or network may support multi-cast functionality

Lamport86], [Scheider90], [Schlichting83],

This work deals with distributed entities or processes connected by a point-to­

point network. A process is a program that executes instructions sequentially and

communicates with other processes only by message passing even if the two

communicating processes share the same processor, memory or clock. A message

is passed from process p to q by P calling p.send(q,m), and subsequendy q calling

q.receive(m). It is assumed that there is a bounded message buffer between p and q.

The processes are linked by message queue and unidirectional. A bidirectional

communication can be achieved by using two or more queues.

2.3.2 Synchronous and asynchronous network

The a.rynchronous model of distributed systems has no bounds on

• execution entity (the principles of distributed computing community uses

the term "process") execution latencies - i.e., arbitrarily long (but finite)

times may occur between execution steps

• message transmission latencies - i.e., a message may be received an

arbitrarily long time after it was sent

18

• clock drift rates

unsynchronised

1.e., process's local clocks may be arbitrarily

In other words, the asynchronous distributed system model makes no

assumptions about the time intervals involved in any behaviour. Although the

maximum delay and processing time are not known they are bounded.

It is also assumed that network link is a fair link which means a message from p

to q is eventually delivered after an infinity number of trials. [Schlichting83]

[Schneider90). The network may fail to deliver messages, delay them, duplicate

them, or deliver them out of order.

A synchronous network is when clocks speeds of participating processors are in

step, and maximum network delay between two processors and processor speed

is bound and known ([Cristian91 b]). The !J1nchronous model of distributed systems,

conversely, has apriori known upper and lower bounds on these quantities

• each process has a bounded time between its execution steps

• each message is transmitted over a channel and received in a bounded

time

• process's local clocks may drift either from each other or from global

physical time only by a bounded rate (note that this does not necessarily

bound the clocks' accuracy)

Such a system model makes it easier to facilitate reasoning about properties of a

distributed system if those presumed bounds are not deterministic it follows that

reasoning based on them can not be deterministic.

19

When processes are distributed over an asynchronous network, each process is

modelled as having its own processor, memory and clock (not global clock).

Messages are sent between processes over a link that has no known timing delay

bounds. Messages can be indefinitely delayed or lost, however a link is assumed

to be a fair link - eventually a message reaches the destination if it is sent infinite

number of times.

Dolev and others have explored solving Byzantine agreement in both

synchronous [Dolev93] and asynchronous environments [BazziOl]. For

synchronous systems, Dolev uses tight bounds on the load of synchronous

Byzantine quorum systems for various failure assumptions.

2.3.3 Group communication system model

There are three types of fault tolerant distributed systems, those that rely on

failure detectors, those that rely on group communication service, and those that

use the hybrid of both failure detectors and group communication systems.

Failure detectors can employ a more aggressive timeout compared to that of

group communication [Birman93], [Melliar-Srnith91], [MorganOOaJ. The

processes must conform to certain group communication system as total order of

message, virtual synchronous, fault tolerance. See Sections 2.6 and 2.7 below for

details of group communication systems.

20

2.4 Failures and failure detection

2.4.1 Terminology of failures

i\ fault, an error and a failure are defined. A fault is an internal defect of a system.

A fault mayor may not cause a deviation of the system from normal internal

operation. This internal deviation of a system is called an error. If an error causes

the system to misbehave against the specification of the system and the

misbehaviour is observed from the environment it is called a system failure.

"-\ failure is any type of behaviour of a system that deviates from the systems

specification. In the context of this thesis, a failure occurs when a distributed

systems component produces not only a wrong result but an expected result that

is produced too early, too late or never. For example, node failures include crash,

omission and Byzantine. A channel can fail by crashing, message loss, or

production of erroneous and arbitrary messages.

There are four different ways by which a process can fail. These include fail crash,

fail silent, fail stop, and fail-signalling

Fail-crash process dies without propagating the faults to the rest of the system. A

crashed process mayor may not be detected.

fail-silent process crashes cleanly without affecting the system and other processes

mayor may not detect it. A fail-silent node is a self-checking node that either

functions correctly or stops functioning after an internal failure is detected. Such

a node can be constructed from a number of conventional processors. In a

software-implemented fail-silent node, the non-faulty processors of the node

need to execute message order to "keep in step" and comparison protocols to

check each other. [Brasileir096]

21

On the other hand, Schlichting and Schneider describe a jail-stop process that,

when crashed, writes its crashed state to a secondary storage so that the other

processes know about the crash. Fail stop process are identified by three

fundamental properties: 1) Halt-on-Failure Property - the process will halt before

performing an erroneous state transition visible to other processes, 2) Failure

Status Property. Any non-faulty process can detect the halting of any other

process, 3) Stable Storage Property Part of the processes memory is "stable", i.e.

unaffected by failure readable by other processes [Schlichting83].

A jail-signalling process sends a signal to the rest of the group when it is in a failing

state. Construction of fail-signalling processes is the key aim of this thesis. Our

fail-signalling process is very similar to fail stop process; the main difference is

that the fail-signalling process does not assume permanent storage but a fail

signal. A fail-signalling process can also be seen as extending the properties of a

fail-silent process.

2.4.2 Failure detectors

I\ccurate failure detection in asynchronous distributed systems is notoriously

difficult. In such system, a process may appear failed because it is slow, or

because the network connection is slow or partitioned. This is termed the FLP

impossibility result. Because of this, several impossibility results solutions have

been suggested and implemented with varying degrees of accuracy.

According to Chanda and Toeug, failure detectors are timers and timeout values.

There is a wide range of failure detectors that vary with the degree of accura0' and

completeness properties and they range from perfect error detection ones that are

22

hard to implement to weak ones that can be practically implemented

([Chandra91], [Chandra96], [Chandra98]).

A failure detector is usually part of the participating process . It gathers

information for the process about the other processes that it "suspect!' to have

failed which mayor may not be true. All processes that do not suspect each other

compare one another's list of processes suspected by their failure detectors to

have failed and a group consensus is reached. This may lead to partitioning by

different cliques.

Table 2.1: Failure detector properties

Completeness

Strong eventually every process that crashes is permanently suspected by every
correct process

Weak eventually every process that crashes is permanently suspected by some
correct process.

Accuracy

Strong accuracy no correct process is ever suspected

Weak accuracy some correct process is never suspected

Eventual strong There exists a time after which no correct process is suspected

Eventual weak there is a time after which some correct process is never suspected

Chandra's and Toueg's efforts were to provide a solution to Fischer et al FLP

impossibility results by investigating and developing solution for the weakest

possible, and therefore implementable, failure detector (Ow) that can be used to

reach consensus in a group communication system. See Table 2.2 below for

classes of failure detectors .

23

Failure detection is based on two principal properties: completeness and accurary.

Complete can either be strong or weak; accuracy can be strong, weak, eventually

strong, or eventually weak.

The most perfect failure detector (and hard to implement) is the one that has

strong accuracy and strong completeness referred to as Perfect P. On the other

side of the spectrum, the weakest failure detector is the one that has weak

completeness and eventually weak accuracy and it is denoted as OW. Chandra and

Toueg proved that this is the weakest possible failure detector to reach a

consensus and be implementable at the same time. The table below shows all

possible classes of failure detectors based on a combination of completeness and

accuracy properties listed above.

Table 2.2: Classes of failure detectors

Completeness Accuracy

Strong Weak Eventual Eventual

Stro~ Weak
Strong Perfect P Strong S OP OS

Weak Quasi Q StrongW OQ OW

How the research community has handled failure detection problem varies from

theoretical to practical ([Fischer85], [Beauquier97], [Charron-BostOO],

[Deepak96], [MatsuiOO], [Vijay98], [Fetzer96], [Cristian99]). Fischer et allaid down

the foundation of the problem to be solved (FLP impossibility results) and most

of the rest of the authors provide solutions to it.

24

Group membership provides consistent information about the status of

processes in the system, failure detectors provide inconsistent information.

[Schiper02] confirm that failure detection and group membership are two

important components of fault-tolerant distributed systems not only in fail free

runs but in which processes crash. The authors investigated scenarios in which

the deployment of either failure detectors or group membership is suitable.

2.5 Byzantine tolerance and security

Bellare highlights the importance of Byzantine tolerance and security [Bellare93].

Message authentication and key distribution are central cryptographic problems in

distributed computing but up until early 1990s they had lacked even a meaningful

definition. One consequence is that incorrect and inefficient protocols have

proliferated. Authors presented mutual authentication and authenticated key

exchange and their proofs that they are practical and efficient.

Handling Byzantine faults or arbitrary failures is related to handling security

problems such as malicious attacks, therefore dealing with authenticated fault

tolerance is the same as dealing with security in distributed systems.

Most of these security protocols assume the existence of a Public Key

Cryptosystem:

• Each process/processor has a unique private key that cannot be stolen

to digitally sign messages.

• Each process/processor can obtain the public key of other

processes/processors (as and when required) to ,oerify signed messages.

25

2.6 Group communication systems

This section introduces the basic characteristics and properties of a group

communication system and it covers roles, properties of a group communication

system, passive and active replication techniques, consensus and group

membership protocols, atomic broad cast and virtual synchrony, liveliness, and

group partitions.

Typical group communication protocols are:

Join Protocol: A new process wants to join the group.

Remove Protocol: A faulty/corrupt process must be removed from the group.

Agreement. If P and q are two correct processes, then both the processes will have

the same membership view.

Validity: If a correct process p installs a view Vi> then V; includes p.

Integrity: If a view includes a process p, but the subsequent view excludes p, then p

was suspected by at least one correct member.

Uveliness: If there is a correct process p that is a member of a view and is not

suspected by j correct members of the view then any process off will receive "I

am alive" message from p within time bound t.

Total Order if Views: If correct processes p and q both install views V; and V; + 1,

then p installs V; + 1 after V; if and only if q installs V; + 1 after V;.

26

2.6.1 Passive and active replication techniques

Passive replication of processes is based on one process acting as a leader and

updating other processes after every operation has been perfonned. When the

leader dies, one of the processes takes over. Active replication is when all

processes provide service in step and they all have to be state machines

[Schneider90]. In active replication, a failing leader process does not need to send

its own state to other processes because they are up-to-date with its operations

anyway. This work is focused on an actively replicated process group, although

the same concepts of this thesis can be applied to passively replicated processes

([Amir9 5], Ezhilchelvan89], [Ezhilchelvan95])

2.6.2 Consensus and group membership protocol

Consensus and group membership are closely related. Consensus is when all

participating processes agree upon a value, and group membership protocol is

when all processes agree upon a list of processes that are believed to be active

and have not crashed. The members exchange messages about any suspicions

determined by their respective failure detectors even if the fail detectors are

imperfect. ([Binnan99], [Bracha95], [Dolev87], [Dolev93], [Dwork88],

EzhilchelvanOl], [Fischcr83], [Melliar-Srnith91] , [pease80], [Ramasamy02],

[Reiter94c], [Reiter94d]).

Most of group protocols employ the 3-phase commit strategy. The first phase is

the Consensus phase where the protocols try to reach consensus on the

suspicions generated by the respective fault detectors. The second phase is the

27

Agreement phase where the protocols reach agreement on the next view to be

installed. The fInal phase is the Commit phase where the view is updated and the

system is verified for consistency.

This thesis eliminates suspicions from the first phase thereby making consensus

fast and efficient.

2.6.3 Atomic broadcast and virtual synchrony

Atomicity is the "all or nothing" property. For example, either all correct

processes receive the same messages in the same order or none of them do. This

gives a group of processes an illusion that they are all synchronised thus the term

virtual synchrony

According to Cristian et al [Cristian85], atomic broadcast must satisfy three

properties: unanimity, order and termination.

Table 2.3: Atomic broadcast properties

property Description

IlIIallimity Every message whose broadcast is initiated by a member is
either delivered to all correct receivers or to none of them

order All delivered message from all senders are delivered in the
same order at all receivers

terminatioll Every message broadcast by a correct sender to all correct
receivers is delivered

\Y/e need to extend these properties further such that a message sent by a process

is delivered to other processes belonging to a group view exacdy the same view as

it was when the massage was sent. That is, there should be no view change

between sending the message and other processes receiving, this is known as

28

virtllal .rynchrony. (Birrnan87], [Dwork88], [Hadzilzcos93], [Melliar-Smith94],

[Moser94], [Schiper93]).

2.6.4 Order protocol

One of the fundamental principles of a group communication system is messages

received by correct processes should be delivered (or committed) in exacdy the

same order in all correct processes. ([Dolev93], [Garcia-Molina91], [pandeyOl],

[MorganOOa]). This is important since for most distributed applications it is

important that messages are delivered to group processes in the same order to

ensure integrity. Order protocols can be strengthened by improving the accuracy

of failure detectors. The ordering property of group communication ensures that

all correct processes receive messages in the same order.

There are two ways that messages can be ordered: total order and causal order. In

total order all correct processes receive and see all messages in the same order. This

solution is expensive to ensure total ordering. Causal order on the other hand uses

which event caused which to order messages. If message m causes message n,

then m is ordered before n.

2.6.5 Liveliness

liveliness property is met if message delays over the asynchronous network are

perceived to remain stable for a suitably long duration. Processes send periodic "I

29

am alive" messages to other processes (or coordinator process) to a\'oid being

suspected to have failed. Failure detectors make decisions based on how the

li\'eliness property has been met by communicating processes.

Liveliness is expensi\'e in that it floods the network with "I am alive" messages

which in turn have to be managed by normally expensive membership and order

protocols. The thesis addresses this problem by confIning liveliness messages and

failure detection operations messages between two synchronously connected

duplicates of a process, not the whole communicating process group. If one of or

both of the duplicates violates liveliness property, the duplicates commit suicide

(replica self-destruction) and or murder (destruction of the other twin replica)

before issuing a signal to the group.

2.6.6 Group partitions and gossips

Group partitioning is when the processes divide themselves into at least two

groups. Members of each group "think" they are the only ones alive. This leads to

a complex ordering of messages to satisfy atomic broadcast properties in Table

2.3 when groups reconcile. I\S Dolev points out, [Dolev95] group partitions are

attributed to suspicions by false failure detectors. It would be desirable to find a

way of eliminating false suspicions completely thereby rule out partitions, which

is what this thesis is achieving - elimination of wrong suspicions by guaranteeing

fail signal thereby avoid group partitions.

30

2.7 Fault tolerant group communication systems

In this section, before we look at group communication systems that tolerate

more serious faults such as Byzantine and malicious faults, we discuss distributed

systems, in particular group communication system that tolerate benign faults. A

process participating in a group displays benign faults when it fails by crashing

without propagating faults to the rest of the group.

Here is a problem - to tolerate failures, redundant components need to broadcast

messages among themselves to keep their states in step with one another, but this

broadcasting activity is also susceptible to failures and poor latency. A process, p,

participating in a broadcast can fail just after receiving a message, or after sending

a message to a subset of the group. This is partly what failure detection protocols

are tackling.

The question IS at what cost (/) a group of processes can reach a proper

agreement when some members of the group are faulty where jis the maximum

number of processes that can fail without affecting the agreement protocol of a

group communication system. The effectiveness of a group communication

system protocol is judged by the maximum number of members that can be

faulty without affecting the group communication system agreement protocol.

This degree of resilience which is determined by the maximum number of group

members that can go wrong is called a bound. Furthermore, the efficiency of a

group communication system protocol is determined by how many phases and

rounds it needs for group members to reach agreement in the presence of faults.

In a study where non-faulty processes communicate honestly, Pease [pease80]

addressed a problem concerning a set of isolated processors, some unknown

31

subset of which may be faulty, that communicate only by means of two-party

messages. However, non-faulty processors always communicate honestly, while

faulty processors may lie. It is shown that the problem is solvable for, and only

for, n ~ 31 + 1, where f is the number of faulty processors and n is the total

number of group members [Hadzilzcos93].

Finally there is problem with combing failure detection infrastructure with group

communication system, or treating group communication system itself as a fault

tolerance tool. The roles of these two systems are usually blurred together and

this makes it hard to concentrate fairly on the respective types of problems. This

thesis decouples failure detection and security from the upper group

communication protocols layer.

2.8 Byzantine tolerant and secure group communication

systems

This section discusses approaches used by researchers to deal with more serious

group communication system failure. These are well known to be Byzantine

faults and malicious attacks. In the following section, real life developed

Byzantine tolerant and security systems are presented.

For a large class of Internet-based dependable applications (e.g., e-auctions, B2B

applications etc.,), an asynchronous rniddleware system must be robust and

responsive in the following sense: (i) it must tolerate faults more serious than

crashes (robustness), and (ii) its performance should be free of liveness

requirements that need to be met by making appropriate choice of values either

32

speculatively (as in time outs) or randomly (responsiveness). Systems or

architectures, such as ([Kihlstrom98], [Malkhi98a], [Castro99c]), which tolerate

(authenticated) Byzantine faults do exist. (An authenticated Byzantine fault causes

a component to fail in arbitrary manner that is however restricted by the

effectiveness of message signature and authentication mechanisms such as the

RSA scheme.) These systems make use of Byzantine fault tolerant protocols

developed almost 'from scratch'. Baldoni et al derives a Byzantine protocol from a

crash-tolerant one [BaldoniOO]. Such protocols require at least one extra

communication round than their crash-tolerant counterparts (if the latter exist)

and at least 31+ 1 nodes to guarantee total order if f is the maximum number of

nodes that can become faulty. They however deal with the FLP impossibility by

one of the two ways attributed above to the non-partitionable approach.

There are techniques that tackle Byzantine faults and malicious faults ranging

from using group communication protocol itself, probabilistic or stochastic

approach, authenticated Byzantines, to cryptography. These are discussed below.

2.8.1 Group communication approach

[Reiter94d] et al presents a security architecture that uses a group communication

protocol that extends the process group into a security abstraction. The

architecture securely and fault tolerantly support cryptographic key distribution.

Authors introduce novel replication techniques that they apply only when

necessary. They constructed these services both to be easily defensible against

attack and to permit key distribution despite the transient unavailability of a large

number of servers.

33

Castro and Liskov's system was the first to recover Byzantine-faulty replicas

proactively and it uses group communication symmetric rather than public-key

cryptography for authentication [CastroOO] because public-key cryptography has

been the main computational botdeneck for distributed systems in the past. They

used an asynchronous state-machine replication system that tolerates and

recovers from Byzantine faults, which can be caused by malicious attacks or

software errors and the performance bound of the system is also 3j + 1. /\uthors

have also proved their theories in more practical environment and the

performance of the system was promising ([Castro99a], [Castro99b], [Castro99c]).

Another technique is to use group consensus model to check efficiency of two

different communication protocol group systems. [Charron-BostOO] compare two

approaches; asynchronous group augmented with fail detectors and

asynchronous group communication. They examined whether one of these two

models is more efficient and concentrated on the uniform consensus problem.

The result was that they found synchronous performed better than asynchronous

model augmented with a perfect failure detector.

2.8.2 Failure detectors and oracles

An introduction of fail detector has been covered already in Section 2.4. One of

the characteristics of failure detectors is that they supply their host processes with

failure suspicions of other group processes which may be inaccurate. However

failure detectors can be used to detect Byzantine faults and malicious attacks by

using a security infrastructure. Oracles are more special failure detectors that are

based on the notion and assumption that they never fail. Pedone supports the

34

aims of this thesis by suggesting that it would be desirable to make sure oracles

only report genuine failures but not suspicions [pedone02].

2.8.3 Stochastic and computational techniques

In another similar computation approach, Goldereich [GoldreichOO] uses a

"computational model" that assumes the existence of trapdoor permutations.

Trap door permutations are security structures whose functions are hard or

impossible to inverse or undo to decipher security protected messages. The

authors provide full proofs for the following results: secure protocols for any

two-party (and in fact multi-party) computation allowing abort, as well as for any

multi-party computations with honest majority. Their " ... aim is to present

protocols which are secure with respect to a natural (although not the strongest

possible) model (i.e., the so-called static model)."

There is also a leader approach to tolerating Byzantine and malicious faults.

[GuptaOO] presents a scalable leader election protocol for large process groups

with a weak membership requirement. The underlying network is assumed to be

unreliable but characterised by probabilistic failure rates of processes and message

deliveries. The system ensures good probabilistic guarantees on correct

termination, and of generating a constant number of messages. Felber et al

[FelberOl] also developed other distributed systems whose group agreements are

solved probabilistically.

35

2.8.4 Quorum systems

Quorum Systems are well-known tools for ensunng the consistency and

availability of replicated data despite the benign failure of data repositories

Malkhi97aJ. Replicated services accessed via quorums enable each access to be

performed at only a subset (quorum) of the servers and achieve consistency

across accesses by requiring any two quorums to intersect [MalkhiOO]. Authors

considered the arbitrary (Byzantine) failure of data repositories and present the

first study of quorum system requirements and construct a system that ensures

data availability and consistency despite these failures. [Malkhi98b] came up with

a real life application that utilised quorum model called Phalanx. Phalanx is a

software system for building a persistent, survivable data repository that supports

shared data abstractions. It can survive arbitrarily malicious corruption of clients

and some servers.

2.9 Distributed computing systems and failure detection

The section introduces vanous systems that have been composed usmg a

combination of theories discussed above. Weaknesses of such systems are

highlighted in terms of failure detection and failure reporting both of which are

central to this thesis. The computation systems discussed here use different

approaches to achieve different performance bounds and they are operating

under different environments and fault assumptions. The section particularly

reviews the system's failure detection mechanisms and the extent at which it

affects the performance, complexity, and semantics of a group communication

36

system. Systems discussed here are Antigone, Spread, Totem, Rampart, Spread,

Eternal, Horus, SecureRing, and NewTOP. The section starts with general

discussion of the systems them summarise the discussions in a table.

Detecting if a processes has failed in a distributed system is one the most crucial

activities in building feasible distributed systems. Therefore all systems that are

distributed and mostly based on group communication employ one way or the

one of, or a combination of, failure detection and tolerance approach discussed in

Section 2.4 above. This section scrutinises a number of failure detection

mechanisms that are used by the current systems and reveals their limitations

which will pave way for the thesis of this work in Chapters 3 and 4.

The most common technique used to detect a crashed process is heartbeat. "\

heartbeat is a periodic message sent by a process that wishes to inform other

processes that it is alive and should not be excluded from membership of the

group.

1\ntigone [.McDaniel99] provides services that enable the flexible choice of which

security policy to deploy for the intended group application. It offers failure

detection interfaces for detection of group member failures. In the early version

of Antigone the process willing to be always included in the membership had to

continually transmit periodic heartbeat messages confirming their presence. This

scheme does not scale well with increasing number of group members. However,

MacDaniel improved it and came up with light weight failure detection using

hashing and heartbeats. This improved the performance by an order of 10.

Rampart [Reiter94d] is a secure group communication that provides services that

work properly even when under actively malicious and Byzantine failures. It relies

on secure channels between pairs that ensure security between themselves. This

37

approach is very similar to the approach of this thesis except that Rampart pairs

are not treated as a single process.

Lolus [Mittra97] also requires that member of the group periodically send "1 am

alive" messages to secure their membership. Each member has to refresh its

membership periodically and any member that does not do that is excluded from

the group. The main disadvantage of this is the member may still be alive or just

slow.

Renesse and others [Renesse96] developed a service that uses Gossips to detect

failures. It greatly improves on keeping the probability that a member is wrongly

accused by other group members to a constant with an increasing number of

members. The algorithm is also resilient to both message loss (not timing failures)

and process crash.

Rampart group system provides the first Group Membership Protocol (GMP)

that tolerates malicious intrusions using the technique of state machine replication

to achieve high availability. The Rampart GMP uses a 3-phase commit protocol

and provides strong consistency guarantees. In achieving this, Rampart system

excludes detection of corrupt members i.e. it relies on an external fault detector.

Public Key Cryptosystem is employed using Cryptolib package.

SecureRing employs the logical token ring architecture to solve the problem of

group membership. The pnmary motivation of SecureRing group

communication system is to reduce cost of digital signatures. System is partially

synchronous i.e. local non-synchronised clocks are used for processing and

message transmission timeouts. Each processor multicasts messages to all other

processors. Communication between processors is unreliable.

38

Aqua is a dependable system that adapts to changing dependability requirements

during execution of the application, enable application access to the internal

dependability mechanism. The validation of the systems is determined by fault

injection using Loki fault injector. Aqua supports: Multiple fault types (e.g.

crash, value, and time), diagnosis and recovery from faults in a nearly application

transparent manner (including killing and restarting objects), execution time

translation of high-level dependability desired to particular system configurations

(including replication type, voting scheme, number and distribution of replicas),

multiple levels of adaptation and recovery, perhaps involving the application in a

high-level way which allows separation of concerns by decoupling application

specific operations from quality of service layer [Krishnamurthy02, Cukier98].

Delta-4 ([powell88, Barrett90]) ensures that the nodes of the distributed system

are implemented with extensive self-checking so that simple error processing

techniques based on the fail-silent assumption can be employed, or b) providing

error-processing techniques that do not require restrictive assumptions as the

failure modes of individual nodes. Delta-4 is based on fail-uncontrolled nodes in

that they do not possess any local error-detection mechanisms and can thus

produce quite random or even malicious behaviour. In particular, a fail

uncontrolled node may: (a) omit or delay sending (some) messages, (b) send extra

messages, (c) send messages with erroneous content, or (d) refuse to receive

messages.

''With fail-uncontrolled nodes, the replication of software components and the

associated error-processing protocols must serve not only for recovery from

errors but also for their detection. In order to mask t simultaneous errors, at least

2.t+l replicates are necessary for there to be a majority of replicates executing on

error-free nodes". In contrasts, replicas for this thesis system are fail-controlled

have internal self checking system. The table below summarises the groups

39

systems just discussed. It highlights the mall strength and weaknesses of the

systems.

Table 2.4: Systems' failure detection and security

P rotocols Security Failure Strengths Wealmesses
detection

Antigone token ring, Byzantine Secure Security policy uses heartbea ts,
group tolerance and detection of chosen fl ex ibly, could be cos tly
session re- malicious failures. session re-keying with increasing
keying attacks lOX faster. members.

Aqua Flexible Byzantine Standard, Dependability Wrong
dependabil tolerance and suspicions can be applied to SUspIcions,
ity malicious different layers of partitions
regutreme attacks the sys tem.
nts Application,

middleware,
operating sys tem

Spread Ring, Public Standard , Scalable with Wrong
WAN, cryptography SuspICions WAN SuspICIons,
LAN group keys parti tions

T o tem Token ring Basic security Allows Handles Suspicions and
/ Transis protocol fea tures gOSSipS, Extended virtual negotiations,

0 0 Transis SuspICIons, synchrony parti tions,
recovery, partitions are single token
time outs allowed to can get los t or

remerge corrupted.

Rampart Use of Secure point Byzantine D eals with Stringent time
mobile to point tolerance, temporal outs may push
agents. messages specifications in failure

real time detectors to the
limit

H orus/ HCPI- Secure Imperfect Scalable and Uses gossips.
hours failure layered, flexible

E semble common detectors service choice.
protocol
interface

SecuceRing Ring Digita l Time out E fficient wrong
signatures failures signatures SuspIC1ons,

40

NewTOP G roup Basic security Time out Allows group suspicions,
CQmmUfltC failures and merging, multiple gossips,
ation suspicions, group membership
sys tem cras h membership protocol
protocols tolerant expensive

2.10 Summary and conclusions

2.10.1 Problems

The chapter has discussed key distributed computing challenges that the

computing research community is addressing from theoretical and practical point

of views. The challenges include the FLP impossibility result that stems from the

fact that it is hard to distinguish a failed process from a slow one over an

asynchronous network. Related to this problem is the difficulty of getting the true

snap shot of the state of a distributed system. Other related hurdles are partial

failures of a distributed system and the resulting non-trivial task of distributed

processes reaching a consensus on the same value - agreement protocol. An

example that requires group members to reach a consensus is when the

distributed group members have to agree upon which member, among the group

members, is dead or alive. This compilation of a list of active group members is

called a membership protocol. The chapter also covered more serious threats to

distributed computing such as Byzantine failures.

41

2.10.2 Current solutions

It is important that efficient group failure detection is deployed by a group

communication system. Various techniques used by different group

communication systems were discussed. In a situation where security of the

application is of rave concern, a distributed system has to go further into

protecting the system by deploying a security feature. Solutions to the above

problems are imperfect failure detectors, stochastic and computational

techniques, quorum systems and Authenticated Byzantine agreement.

2.10.3 Limitations of the current solutions

The current solutions are still faced with problems. Most systems assume the

processes fail only by crashing. This assumption is now unrealistic considering

not only the complexity of today's distributed systems but also the will to harm

distributed computing systems by adversaries.

The systems are still faced with the problem of group partitioning. Solutions that

deal with merging groups end up being complex and hard to specify. This is

mainly due to the imperfect failure detectors that are augmented to their group

communication processes. The failure detectors may lie about the life or death of

other members which may force all group members to engage in an agreement

protocol. The reported error could also be late which may harm the agreement

performances. It is these agreement protocols that are source of poor system

performance. Agreement protocols are not just used for group membership, but

also application specific messages.

42

All the group communication systems cited above assume that processes fail in a

benign manner: either crash or occasionally omit to produce a response (omission

failures). However, field and experimental data collected indicates that there is a

non-negligible risk of data corruption due to software failures [Chandra98,

Sullivan91]. Consequences software corruptions are difficult to predict, as the

error detection latency may be arbitrarily long. Such corruptions can cause an

application process, or the underlying operating system to crash, 'hang' or omit

producing a response (all of which are benign faulty behaviour), and also cause

erroneous values to be output. .t\ paper analyzing software defect reports

collected between 1986 and 1989 for the IBM MVS operating system showed

that 15% to 25% of faults (referred to as 'overlay faults' in the paper) caused

corruption of data [Sullivan91]. Secondly, the impact of these faults was much

more serious than the remaining faults. Thirdly, only 39% of the overlay faults

were detected as addressing violation. ~\ fault injection experiment to determine

'how fail stop are faulty programs', indicated that 7% of failures led to corruption

of data [Chandra98]. Chandra and Chen proved that not all failing system obey

fault stop fault model. In other words they make noisy failures. They recommend

the use of transactions to increase dependability of their systems. Transactions

reduced 7% of noisy failures to 3%.

2.10.4 Contributions of this thesis

This work llllproves on what the distributed community have achieved by

decoupling security infrastructure from the upper middleware layer and even

crucially augmenting the system with an effective fail-signalling layer. Each

member of a distributed system is duplicated into a self-checking failure signalling

43

process. The replicas of the process are each placed on different nodes and the

communication link between the duplicates is assumed synchronous, that is

transmissions delays are bounded and known, while the link between two

different group members may be asynchronous. This structure enables us to pull

down the failure detection mechanism from the upper group layer then confine it

within two duplicates that either produces a correct result or a failure signal all the

time. If the member sends a duplicate application or failure message, one of the

duplicate messages is suppressed on receipt.

This was constructed by developing a fail-signalling infrastructure so that it is

searnlessly connected to a group communication system. A security feature was

introduced into the fail-signalling layer. The security features proved not to be

that fast at programming level. To curb the digital signature libraries performance

problem another version of the fail-signalling systems was also developed by

replacing the digital signatures with Message Authentication Code (MAC) hashing

algorithms.

A more detailed account on the contribution of this work follows in the next

Chapters.

44

Chapter 3

THE FAIL-SIGNALLING SERVICE

3.1 Introduction

This thesis presents an approach that extends a crash-tolerant middleware system

into an authenticated Byzantine tolerant one with small modifications to the

original system. State machine replication is used to assure signal-on-failure (fail­

signal) semantics at a level where existing crash-tolerant services can be

seamlessly deployed. The resulting system can provide total ordering that has no

liveness requirement for termination.

In the next Chapter 4, we demonstrate the effectiveness of our fail-signalling

approach by porting a crash-tolerant group communication service, (NewTOP)

system, into a Byzantine-tolerant Fail Signalling group communication service

(FS-NewTOP). This is achieved by augmenting the fail-signalling infrastructure

discussed in this chapter into a group communication system.

This chapter first presents the problem of constructing a Byzantine tolerant

group communication system in the context of fail-signalling. It then moves on

to describing how a fail-signalling process is constructed before going into details

of the implementation of such a FS process. The chapter finishes by

demonstrating how the constructed fail-signalling process can be optimized in

fault free runs so that the performance of the FS service remains steady especially

in operating environments that have very low failure rates.

4S

3.2 Fault model

Availability: clients and servers can crash, network cannot physically partition or

experience high delays. Outside attackers: Cannot learn information exchanged

by the servers, or server and clients Impersonate participants,

inject/modify /replay data. Inside attackers (compromised servers or clients):

Replicas always behave correctly or they send a fail signal. The system protects

against eawsdropping, prevents impersonation, injection, modification, replay

attacks.

3.3 The problem

\\'e address the problem of building a Byzantine fault tolerant group­

communication middleware system for asynchronous communication networks.

Such a system offers services that simplify the development of distributed

applications over an asynchronous network (e.g., the Internet) which supports

operational processes to exchange messages but guarantees no bound on message

delays. The services include: reliable multicast, causal order and total order (or

atomic multicast). Total order is essential for replicating application servers that

are state machine and providing fault-tolerant services, Atomic broadcast is also

harder to achieve and the difficulties are epitomised in the FLP impossibility

result [Fischer85].

3.3.1 Dealing with FLP impossibility

Crash-tolerant middleware systems deal with the FLP impossibility in one of

three ways. In partitionable systems (e.g., [Cristian99, Dolev96, Ezhilchelvan95]),

middleware processes that do not suspect each other remove from the group

46

those processes which they suspect to have crashed. Since the bound on message

delays is not known precisely, suspicions can be false; this can lead to connected,

operational processes being split into sub-groups Oogical partitions) even when

no process has crashed. Group-splitting thus reduces the fault-tolerance

potentials of a group; merging the partitioned sub-groups and ensuring state

reconciliation is a hard problem and an automated solution typically requires

considerable message and time overhead [Lotem97].

3.3.2 Liveliness and fail-signalling

TIlls problem does not exist in a non-partitionable system such as [Felber98a].

However, termination of a deterministic total order protocol is guaranteed, even

in failure-free runs, only when message delays over the asynchronous network are

perceived to remain stable for a suitably long duration. [Chandra96] precisely

states this requirement in its weakest form as Ow. Chandra's and Toueg's

provided a solution to Fischer et al FLP impossibility results by investigating and

developing solution for the weakest possible, failure detector (Ow) that can be

used to reach consensus in a group communication system. Table 2.2 in Section

2.4 presents classes of other classes of failure detectors. If, on the other hand,

non-deterministic or randomized protocols are used, termination requires that the

random choices made converge (i.e. haye tendency to suggest a definite agreed

upon solution) and this is guaranteed, only in probabilistic terms, to be a certainty

with the passage of time [EzhilchelvanOl]. Such requirements for termination are

often called the liveness requirements. The requirements make it hard to predict

performance and to provide meaningful performance guarantees to applications:

total-ordering latency is influenced by how early the liveness requirement is met

during the protocol execution which, in turn, depends on the choice of values

assigned to the protocol parameters. For example, in a Ow-based system, when

47

time outs chosen for suspecting failures become small compared to actual

message delays, it postpones the realization of Ow and increases the latency even

in failure-free runs; setting long timeouts, on the other hand, slows down failure

detection and affects the performance when failures do occur.

For a large class of Internet-based dependable applications (e.g., e-auctions, B2B

applications etc.,), an asynchronous middleware system must be robust and

responsive in the following sense: (i) it must tolerate faults more serious than

crashes (robustness), and (ii) its performance should be free of liveness requirements

that need to be met by making appropriate choice of values either speculatively

(as in time outs) or randomly (responsiveness). Systems or architectures, such as

[Kihlstrom98, Malkhi98a, Castro99], which tolerate (authenticated) Byzantine

faults do exist. These systems make use of Byzantine fault tolerant protocols

developed almost 'from scratch'. Baldoni et. aI., derives a Byzantine protocol from

a crash-tolerant one [BaldoniOO]. Such protocols require at least one extra

communication round than their crash-tolerant counterparts (if the latter exist)

and at least 31+ 1 nodes to guarantee total order if 1 is the maximum number of

nodes that can become faulty. They however deal with the FLP impossibility by

one of the two ways attributed above, which are liveness and randomization

algorithms, to the non-partitionable approach. Chapter 2 describes this systems in

detail.

In contrast, a fail-signalling process signals a failure when ever there is one. This

eliminates the need to constantly check (polling) the node if it is alive since that

node will signal a failure once it becomes faulty.

We achieve the objective of robustness by considering authenticated Byzantine

faults and responsiveness by seeking an alternative way to deal with the FLP

48

impossibility. \,\'e observe that (a) the FLP impossibility applies only to crash

model (unannounced stopping) and not to announced crashes, and (b) a fail-stop

process [Schlichting83, Schneider84] which has been built "vith internal

redundancy to tolerate authenticated Byzantine faults, can be guaranteed to

announce its crash to its environment. These observations form the rationale for

our structured approach: we first build every middleware process as a pair of self­

checking processes on distinct nodes, and then construct a middleware system

out of such middleware processes, termed as the fail-signal processes, whose

failure modes are as follows.

3.3.3 Properties of fail-signalling process

~\ fail-signal process fails only by outputting fail-signals that are unique to

that process. More precisely, a faulty fail-signal process

(!s1) outputs its fail-signal whenever it cannot produce a correct response, and

(!s2) may also output its fail-signal at arbitrary timing instances.

Two important remarks are in order:

Remark 1: By]s1, whenever a response is expected of a fail-signal (FS hereafter)

process, it is produced; it is always correct if it is not a fail-signaL Note however

that the outputting of a fail-signal does not necessarily mean that a response from

the signalling process was expected nor that the process has crashed see ifs2)

above. Thus, a faulty FS process, say b behaves like a correct process whose

responses pass through an adversary who is restricted only to substituting an

arbitrary subset of pis responses with pis fail-signals or to randomly emitting Pis

fail-signals. A fail-stop process [Schlichting83] - the inspiration for our FS

49

process - offers stronger failure-guarantees: its fail-signal is a sure indication of its

crash and its pre-crash states are preserved. Because of this, a 3-fold redundancy

is needed for fail-stop construction, whereas a 2-fold redundancy will suffice for

constructing an FS process. (Details in Section 3.3.)

Remark 2: Since a signalling FS process is necessarily faulty, a process that

receives a fail-signal can correctly regard the source to be fauln'; i.e., failure

detection does not involve choosing appropriate timeouts which cannot always

be done correctly oyer an asynchronous network. Thus, with the FS middleware

processes, the FLP impossibility result ceases to hold and it is possible to build a

deterministic total order protocol that neither tends to split groups in the absence of

failures nor requires the existence of Ow (or a similar liveness requirement

[Castro99]).

3.4 Construction of Fail-Signal (FS) Processes

3.4.1 Assumptions and principles

To transform a middleware process p into an FS p,p must be a deterministic state

machine in the sense that the execution of an operation by p in a given state and

with a given set of arguments must always produce the same result (requirement

Remark 1). Middleware processes that implement deterministic algorithms and

protocols satisfy Remark 1. We construct FS p by hosting a replica pair, denoted

as {p,p'}, on distinct nodes as shown in Figure 3.1. (fhroughout this chapter, the

replica pair of an object or process x is denoted as {x, x'}.) \X'e make the

following assumptions.

50

Assumption A1: The nodes are assumed to be correct (i.e., non-faulty) when they

are paired at start-up time. If one of these two nodes fails, the other is assumed to

work correctly until the system detects this fault.

Assumption A2 The nodes are connected by a reliable, synchronous

communication link (LAN) that delivers messages within a known bound p.

Assumption A3: Suppose that both nodes are non-faulty and an input is submitted

to both of them at the same time t for processing. Say, p (respectively p)

processes that input and generates a result at time t+..Jt (respectively at t+ ..Jt').

We assume that max {..Jt, ..Jt' }~ K*min{..Jt, ..Jt'}, for some known, positive

number K.

Assumption A4: Similarly, suppose that both nodes are non-faulty and p and p'

schedule a send_resu/tO operation at the same time s to forward their result to the

other replica. Say, p (respectively p) completes the send operation at time s+..Js

(respectively at s+..Js). We assume that max {..Js, ..Js'}~ o*mi.n{..Jt, ..Jt'} for some

known, positive number o.

Assumption A5: A3 and A4 require that the maximum difference between the

delays for processing and scheduling of middleware messages, be bounded and

known. Finally, a process of a correct node can sign the messages it sends and the

signed message cannot be generated nor undetectably altered by a process in

another node.

51

3.4.2 A fail-signalling pair

Fail-Signal Wrapper
Objects (FSOs)

I"JO PSO '

Synch ronous Network (LAN)

Order" ConljJare'

Figure 3.1: Architecture of Fail-Signal Wrapper Objects for middleware process p.

The pair {p, p'} is made to act as a self-checking pair by means of process pairs

{Order, Order'} and {Compare, Compare'} which are threads (like p or p) within a

fail- signal wrapper Object pair {FSO, FSO'} (see Figure 3.1). A message destined

for FS p must be received by both the wrapper objects FSO and FSO'. The Order

process pair ensures that the inputs are submitted to p or p' in an identical order.

The Compare processes check if p and p' generate identical outputs. If so, the

output is transmitted to the destination(s), together with verifiable evidence (see

below) that output checking has been carried out. Note that if a destination is an

FS process, then each Compare process transmits the output to both the replicas

of the destination FS process.

When Compare (of FSO) receives an output generated by p, it signs it and forwards

a copy to Compare'. If it receives a signed message of identical contents from

Compare' within a certain timeout, it signs the received message and outputs the

double-signed message which will be regarded as an output of FS p. Similarly,

Compare' will output a double-signed message where the first- signature is by

52

Compare. An output from FS p is valid only if it bears the authentic signatures of

both Compare and Compare '.

"\t the start-up time or pre-processing phase, when both nodes are correct, each

Compare process is supplied with a fail-signal message signed by the other

Compare process. \\!hen Compare decides that an output produced by p could not

be successfully compared within the timeout, it signs the fail-signal supplied to it

at the start-up time and emits the double-signed fail-signal to the destination(s) of

that output; from this moment on, it ceases to exchange messages with the

remote Compare' and instead it sends the double-signed fail-signal to destination(s)

of any locally produced output; it also replies to the sender of any incoming

message with the double-signed fail-signal. That is, Compare of a correct node,

after detecting a failure in the other node, sends a (double-signed) fail-signal to all

entities that are expecting a response from the FS p.

Observe that when both nodes are correct, two valid outputs are generated -

both having identical contents and been signed by both Compare and Compare'but

in different order. When faulty p' generates no, late, or incorrect output, Compare

starts emitting double-signed fail-signal to nearest destination replicas that expect

a response from the FS p; further, Compare stops its interacting with Compare',

leaving the latter unable to produce any valid output. Thus, an FS p can fail only

by emitting a fail-signal that can be uniquely attributed to it. It is possible that a

node fault can cause the local Compare process to emit fail-signals arbitrarily.

This leads to js2 described earlier.

53

3.5 Implementation of fail-signalling pair

The construction of fail-signal processes is based upon University of Newcastle's

earlier work on the construction of fail- silence processes [Brasileiro96, Black98] .

The key idea in the construction of a fail-silent process is similar to that of fail ­

signal processes except that no fail-signals are emitted. A fail-silent process (or

object) is made up of a self-checking process (or object) pair. The pair receives

the same set of requests in the same order, compute the requests, and then

compare each other's results. If the results differ, the replicas stop functioning by

committing suicide and refrain from propagating any output to the environment.

The fail-silent process has been implemented in both C++ and Java. For this

thesis, the implementation of fail- silent processes has been enhanced to include

fail-signalling aspect and to run in a CORBA environment so that it can be

integrated with NewTOP group communication system introduced in Section

3.1. The detai·LEADER fail- signal implementati n are as FOLLOWER

~I I I I I
: pu sh a message into [he queue

I I I I ~ : pop a message from the queue

Figure 3.2: Fail :SIgnalling wrapper oDJects

54

Figure 3.2 illustrates the internal structures and the inter-workings of the Fail­

Signal wrapper Objects (FSOs). An FSO consists of two threads: the Compare

process and the replica of target process that needs to be made into an FS

process. FSO is the leader and FSO' is the follower. If an input is from another

FS process, it is checked for authentic, double signature; this is implemented in

the recei veNew (m) method which, at the leader FSO, places the received

input into the local Delivered Message Queue (DMQ) and then sends a copy to

the follower by calling the follower's recei veDouble (m) method.

\\'hen the follower receives a message from the leader, it places it into the local

DMQ; a copy of the message is also deposited in the Internal Received Message

(IRMP) Pool. When the follower receives a valid message via receiveNewO

method, it performs a different task to that executed by the leader. As it gets the

message, it checks if the message is in the IRM Pool and if so, the pair is deleted.

Otherwise the follower stores it in the IRJ\1 Pool with an associated timeout ti. If

the message is not received from the leader within ti, the follower dispatches the

message to the leader by calling the receiveDouble () of the leader. The

message within IRM Pool is given a new timeout t2. If this second timeout

expires and the message has not been received from the leader, the follower

assumes the leader has failed and starts emitting fail-signal to appropriate

destinations. In the implementation the ti is set to 0, and t2 is set to 2d·

The target thread selects a message from DMQ, processes the message, and may

produce an output message. A copy of an output message is signed once and

transmitted to the other target replica by calling the receiveSingle (m)

method of the latter. The unsigned message is stored in the Internal Candidate

Message Pool (ICMP), setting a timeout. When a single signed message is

55

receiYed, it is placed in the External Candidate Message Pool (ECMP). The

Compare thread compares relevant messages in ICMP and ECMP. If the

comparison indicates that both messages contain identical result, then the

comparison is deemed successful, the message from the ECMP is signed again,

and the doubly signed message is sent to the destination(s). If the comparison

fails or if an ICMP entry times-out, the Compare thread starts emitting fail-signals

to appropriate destinations.

Observe that the simple, asymmetric, leader-follower arrangement guarantees

message ordering when the leader is correct. If the leader is faulty, any out-of­

order processing will manifest as a failure in the output comparison, causing the

follower FSO' to start emitting fail-signals.

3.6 Optimizing a fail-signalling pair

In the order protocol component, synchronized clocks are used and the main

issues to consider for optimisation are the message delays, the clock skews among

the two host processors, and the concept of stable message sequence number. Say

a message is sent at T and c is the maximum clock skew between any two clocks,

while (j is the upper bound of a message delay possible, and then the message

becomes stable at:

T + f'...,f'... = r5 + E

Because of the increasing timestamp order, already delivered messages are

discarded.

One parameter to consider in determining the efficiency of an order protocol is

called adual stability de/cry (L). This is the time elapsed between when a particular

56

a message m" is received by a processor and when that message is queued in the

DMQ,. \X'ith assumptions that there is a negligible difference between reference

clocks any correct clock when intervals E, 0, and t::. are measured. LA will be

presented:

Where Aa CA. 2: 0) is the magnitude if the message skew according to the reference

clock, £ is the magnitude of the actual clock synchronization error at the time

the message is first received from the network, rx is the ahead factor. AlphaCrx) is

assigned 1 if the processor receiving message mil is ahead of the other processor,

or rx is assigned 0 of the receiving processor is not ahead, or Aa =0. Further more:

which brings us to:

The implication is that there is a fixed overhead of at least t::. units of time. The

motivational aim is to squeeze as much as possible either the t::. or E or both to 0

in the above formula. The best case scenarios are when:

or

Or even better

57

Therefore the aim is to improve the order protocol while leaving the compare

protocol unchanged.

3.6.1 Improving synchronized clock algorithm

Brasileiro and others noticed that they could improve/::. by using best timestamps

(quick arrivals) of the received messages to dynamically determine the subsequent

time constraints on the received messages. This is achieved by stabilization

interval, which is quickly arriving messages to almost immediately. This is well

illustrated in Figure 5 of [Brasileiro96]. The question is how prolonged can the

tuning of this constraints be without increasing the failure rate as a result of more

and more messages failing to meet the time interval delays?

\\'e go back to the target of optimizing L to be as close to 0 as much as possible.

Let us assume that the first processor to receive message m. from the other

processor at time T;;rsr The other processor will receive the equivalent message

from the first processor at 'f;irrr +0 • . Because this second processor will have the

T=(T;;rsr +o~ greater than its current clock T;;rst , it will immediately order the

message to the DMQ;. There is not much about the second processor beyond

ordering the message into the DMQ,. However the first processor will have to

order the message as soon as it has determined the message to be stable. The

message can be declared stable and sent at time 'f;irsr + .J or if the first processor

is lucky the message can be declared stable and sent to the network at time 'f;irsr +

A. + 0", if Aa + oa :S -.1. This means the first processor received the message from

the other processor before ~;rrr + .J. \\'e therefore have:

La = min {/::., Aa +8a)

and from,

58

and

we have a more attractive stability delay of:

3.6.2 Order protocol optimization in fault free runs

Where there are no physical clocks to synchronize the nodes, the Lamport logical

clocks are used for generation of message time stamps between two replicas of a

fail-signalling entity. In the order protocol each processor keeps its own local time

and the estimate local time of the other processor. Hence we have two logical

clocks in each processor: local logical clock (LLC) and remote logical clock (RLC)

both of which are defined in [Barasileiro96]. When a processor send a message it

sets its RLC to either the timestamp of an incoming message T and sets its LLC

to itself or T+l which ever is greater.

An interesting aspect of the properties of the protocol: messages are relayed to

the neighbour (leader or follower) bearing timestamps and RLC is smaller than

local LLC and remote LLC. This RLC is the threshold for stable messages for

ordering. The actual stabilisation delay will be:

However there is a problem: only after the arrival of the RLC can the local

message become stable and be ordered.

59

Solution: timeouts. At time t + 28, RLC is updated to T if its value is less than T.

We now have:

and with our optimised

we have

If our fail-signalling process is operating in a fault free environment, and then we

have an approximation of:

1 £=-5
2

The above range of La can now swallow the 8 and be expressed on c thus:

This expresslOn implies that if we operate in failure free environment, it is

attractive that we concentrate in the clock skews (8) than the network link delays

(8). This makes our fail signal implementation less costly to as part of the target

system when failures are rare, while retaining failing signalling (FS) properties.

60

3.7 Concluding remarks

We have constructed a fail-signalling service that duplicate the target application

component to tum into a self checking fail-silent and signalling entity. The idea of

signal-on-failure is not new and it is one of the three failure-guarantees offered by

the Fail-stop processes of [Schlichting83]. /\ Fail-stop process requires (at least)

three (internal) replicas, while an FS process can be done with a replica pair. A

significant benefit of our fail-signal based approach is that the FLP impossibility

result derived for unannounced crashes ceases to apply and consequently the total

ordering is guaranteed to terminate so long as the asynchronous network does

not suffer permanent partitions.

The assumptions made in the construction of FS processes have implications at

the application and middleware levels. Assumptions A3 and A4 (in Section 3.3)

require that the maximum delay within which the replicas of an FS middleware

process complete processing of an incoming message or scheduling an outgoing

message, must be known and bounded.

Fail-signal construction also assumes that the two nodes of an FS process are

connected by a synchronous link (assumption A2) and that no more than one

node becomes faulty (assumption "\ 1). A2 can be realized, say, by keeping each

pair of nodes geographically close and making use of the fast Ethernet

technology.

The next chapter shows how to construct a Byzantine-tolerant, group­

communication system by extending a crash-tolerant system. The extension

involves replacing crash-prone middleware processes with fail-signal or FS

processes that are self checking and secure.

61

Chapter 4

A FAIL-SIGNALLING GROUP COMMUNICATION SYSTEM

4.1 Overview

The objective of this thesis is twofold: to 1) demonstrate that our fail-signal (FS)

based approach can considerably simplify the middleware construction by

decoupling authentication and group membership protocol from the middleware

and 2) to e,-aluate the performance degradation when crash-tolerance is swapped

for (authenticated) Byzantine tolerance. \,('hen the construction of a deterministic,

crash-tolerant middleware system and that of FS processes conform to the same

standard, integration that leads to a Byzantine-tolerant middleware system

requires Yen' little code change to the original crash-tolerant system. As a proof

of concept we enhance the NewTOP group communication system (which is a

CORB}I. compliant, crash-tolerant, and partitionable middleware system

[MorganOOa, ~lorganOOb]) with FS middleware processes. The enhanced

NewTOP, called the FS-NewTOP hereafter, tolerates authenticated Byzantine

faults and does not lead to group partitioning. \'('e then measure the ordering

latencies of FS-NewTOP and the original NewTOP under those conditions that

put the components of FS processes under maximum processing load.

This chapter shows how to construct a Byzantine-tolerant, group-communication

system by extending a crash-tolerant system. The extension in,'olves replacing

crash-prone middleware processes with fail-signal or FS processes that are self

62

checking and secure. The chapter describes the existing NewTOP and how the

FS-NewTOP is constructed as an extension of the existing system.

The next chapter, Chapter 5, presents the experimental set-up, measures the

latency and throughput cost extracted by this extension.

4.2 The NewTOP Group Communication Service

The Newcastle Total Order Protocol (NewTOP) is a CORBA compliant, crash­

tolerant, partitionable middleware system. The system implementation is centered

on a CORB.A node called the NewTOP Service Object (NSO). NSO is the

pinnacle of the design of NewTOP in that is does total order, multicasts, inter

group communication. There is one NSO for each group member. \\fhen

application processes want to form a group with a common goal and to avail

themselves group communication services, each process is allocated an NSO as

shown in Figure 4.1. An application process /\, acts as a 'client' to its NSO in

obtaining group communication services from the latter. The communication

between 1\, and its NSO, and the communication between NSO's themselves are

handled by an ORB.

63

Application Layer

OMGORI3

Figure 4.1 : The NewTOP service: access and structure.

An N SO and its application 'client' need not reside on the same hos t, for the

reasons that N SO is a CORBA obj ect and the communication between an NSO

and its client is handled by the ORB (location independence) [OMG OO]; however, for

performance reasons, they are normally hosted by the same node. Further,

NewTOP requires an Ai to be member of a group in which A, intends to

multicast and permits Ai to be a member of more than one group at the same

time. Being a partitionable system, it does not however support merging of

partitioned sub-groups.

An N SO comprises of two subsystem s: Invocation service and Group

Communication (G C) service. The former allows the application to specify the

type of NewTOP service needed and marshals a multicast message accordingly.

The latter implements pro tocols to provide a variety of services: symmetric total

order, asymmetric total order, reliable multicast, simple (unreliable) multicas t and

(partitionable) group membership.

64

When A; multicasts a message to the group, the message is marshaled into a

generic CORBA type any by the Invocation service and the relevant protocol of

the group communication service is invoked to deliver the message. At the

delivery end, the reverse happens. The Invocation service at a destination end

unmarshals the delivered message (of type any) and delivers it to the client

application A j•

If a host node of, say, Al in Figure 4.1 develops Byzantine faults, the faults can

manifest at two levels. First, at the application level, the message which Al multicasts

to the group may contain erroneous information. To tolerate this failure, Ac and

A3 must be replicas of AI; given that the latter are correct, the failure of Al can be

masked through a majority vote. Secondly, the fault may manifest at the middleware

level. The NSO associated with AI, when hosted in the same node as AI, may

corrupt, probably undetectably, AI's multicast message. NewTOP, designed to be

only crash-tolerant, cannot tolerate such failures and provide correct middleware

services. It is the middleware-level failures of non-benign nature that we wish to

tolerate by extending NewTOP into a Byzantine tolerant one. One of the most

common assumptions distributed systems experts make is, a process that is

participating in a system can either produce a correct result when functioning

correctly or stop producing the result at all when it fails (fail silently). Although

this assumption may be adequate for non-mission-critical systems, experiments

have shown that it not reasonable to make fail-silence assumptions for more life­

critical or monetary-critical systems that require high integrity of computed results

[ScottO 1].

65

4.3 Extending NewTOP to FS-NewTOP

Figure 4.2 depicts the structure of the FS-NewTOP system, extended from

(crash-tolerant) NewTOP by using an extra node, a synchronous link to connect

the node pair, and the Fail Signal Wrapper Objects whose target is the NewTOP

group communication (GC) service object. The wrapping of GC is made

transparent to Gc. To achieve this transparency, CORBA interceptors are used

similar to those in [Narasimham99b]. A call to NewTOP GC, either from the

Invocation layer or from a remote NewTOP GC, is intercepted on the fly and is

submitted to both GC and GC' in an identical order with the FSO acting as the

leader. Similarly, a double-signed response returned by FSO and FSO' to the

Invocation layer is intercepted, signatures stripped and duplicates suppressed.

This interceptor based technique used here is very similar to the one used in the

Eternal system [NarasimhanOO]. Since the GC service is implemented as a single­

threaded, deterministic application, GC and GC' run as deterministic state

machines regardless of other software (e.g. CORBA) rurming on the host nodes.

l Application I
".

I NewTOP I nvocation Layer I
FSO no'

Group Synchronous Group
Communication I AN Communication

GC GC'

+ 1 ...A

<J- I
v

OMG ORB

Figure 4.2. The FS-NewTOP system

66

Observe that the wrapper transparency means that GC and GC' regard

themselves as the onlY GC service below the Invocation layer as in the original

NewTOP. Futher, that the GC'is hosted on a different node to the Invocation

layer will not matter since the communication between the two is via the ORB

(which hides location) and through the wrapper object FSO' which is a CORBA

object. Thus, with the CORBA-compliant fail-signal wrappers and the ORB

technology, the extension to FS-NewTOP was seamless. Indeed, the applications

can specify, as a NewTOP service option, whether Byzantine tolerance is needed

or crash tolerance is sufficient. In the latter case, FSO will not choose to order the

input and compare the output; FSO'will remain unused. Adding this functionality

will be a future work. Below, we state the modifications to the original NewTOP

necessary for the extension.

The NewTOP group membership object in GC system makes use of a failure

suspector module which periodically 'pings' remote NSO GCs and generate

suspicions based on a timeout mechanism. In the FS-NewTOP, a suspector

module does not have to send 'pings'; instead, it converts the fail-signals received

into 'suspicions' and supplies them to the group membership object. As stated

earlier, fail-signals uniquely identify, and are indications of a fault at, the signalling

entity; so, the suspicions generated in FS-NewTOP, unlike those in NewTOP,

cannot be false. This avoids splitting of groups when there are no failures and

preserves all correct FS-GCs in one group. Note also that all input messages are

submitted to GC and GC in an identical order. Therefore the suspector modules

of GC and GC'send suspicions to the group membership objects of GC and GC'

in an identical order. Since the NewTOP group membership protocol is

deterministic, the outputs (group views) computed by the group membership

objects of GC and GC' will be identical.

67

Referring to Figure 4.2, a non-benign failure at the Invocation layer that results in

an application message being los t or corrupted can be treated as an application­

level non-benign failure, mentioned earlier. T otal order protocols are

unconcerned with the correctness of the application-level contents of the

messages they order. So, even if N ewTOP-G C were to implement a Ow based

(crash-tolerant) protocol, by the fail- signalling properties of FS-GCs, the

requirements of Ow will be met so long as FS rniddleware processes are not

permanently disconnected and a majority o f them remain correct. The reader is

referred to [Ezhilchelvan02] which transforms a Ow based, crash-tolerant total­

order protocol for a (mixed) system of JFS processes and if+ 1) Byzantine-prone

processes.

LAN LAN LAN
FSO, FSO,' FSO, FSO;'

Asynchronous Network

Figure 4.3: Deployment of the components of FS-NewTOP for a 3-Member

Group.

Figure 4.3 shows the deployment of FS-NewTOP for a 3-member application

group {AI' A 2, A}}. For a given i, l~ i ~ 3, FSO,. and FSO',. are placed in nodes

connected by a synchronous LAN; they are also connected to every {FSO,. ,

68

FSO~}, i:;e j, by the (reliable) asynchronous network. At most one node fault (of

authenticated Byzantine nature) can be tolerated by the system shown in figure 4.

If the node of an FSO~ is faulty, A; cannot effectively communicate with the rest

of the group due to FSO;having stopped the middleware operations or fail-signals

being emitted arbitrarily (by FSO'). If the node of an FSO)s faulty, the following

failure mode is also possible: A, can transmit messages of application-specific

erroneous contents. If A;'s are replicas of each other, a client of this replica group

must multicast its request to the entire group and must majority-vote the results

received from the replicas. Thus, with the FS-NewTOP, 4(+2 nodes are needed

to maskJByzantine faults. The other cost of FS-NewTOP over NewTOP is the

perfonnance

The details of implementing fail-signal processes are very similar to our earlier

implementation of fail-silence processes. In the latter, a Compare process simply

stops functioning when matching of output messages does not succeed. They are

not therefore equipped with the single-signed fail-signal messages at the start-up

time. The details of fail-silence implementation can be seen in [Brasileir096,

Black98] and fault-injection testing in [StottOl]. This thesis worked on fail-silence

implementation to augment fail-signalling feature and to make the system

CORBA compliant. For space reasons, we have left the details to Appendix A,

except to outline some aspects of interest.

The input messages are ordered using a simple, asymmetric protocol that does

not require nodes' clocks to be synchronised. One of the wrapper objects, say

FSO, is fixed as the Leader and the other, FSO', as the Follower. The Order

process of FSO', Order', accepts the order decided by Order and checks whether

every message it receives is being ordered by the leader. This means that a given

input is submitted to p and then to p " and the time difference can be at most 8. A

69

Compare process computes, for every locally produced output, the time elapsed

since the corresponding input was submitted for processing (as n) and the time

taken to sign and forward the output to its remote counterpart (as 't).

In summary, in the traditional NewTOP, despite to minimise incorrect suspicions

by processes, it is possible for processes to wrongly suspect other processes to

have crashed. In FS-NewTOP this wrong suspicions, or even suspicion protocol,

are eliminated thereby making group semantics much simpler.

70

Chapter 5

RESULTS AND PERFORMANCE ANALYSIS

5.1 Introduction and objectives

This chapter presents results obtained from both the traditional NewTOP and

the new fail-signalling and secure FS-NewTOP group communication system.

The two systems are compared under two main conditions: 1) when the number

of group members is increased up to 15 and the message is fixed to a very small

size, and 2): when the size of the message is varied from 5 bytes to 10K bytes and

the number of group member is fixed at 10.

NewTOP and FS-NewTOP configurations were tested for performance on five

system properties: throughput for very small message size! for members ranging

from 2 up to 15 members, throughput for message sizes in the 5 bytes to 10k

range for a fixed 10 group membership, symmetrical order latency for very small

message size for members ranging from 2 up to 15 members, symmetrical order

latency for a fixed group size of 10 with messages from 0 to 10k bytes, and time

taken for a group to reach an agreement for a new membership when one

member fails by suddenly crashing.

"\5 predicted our results indicate that a fail-signalling and secure group

communication is possible to construct and it performs better than traditional

group communications in membership protocols and eases the semantics (see

1 Equivalent to the micro·benchmark technique that measures perfonnances based on the nuff operation call.

71

section 5.7 and 5.8). Howe\'er the traditional group communication performs

better in other performance categories including throughput and order latency.

5.2 Operating environment - Mega cluster

The results were collected from 16 nodes connected by 1-Mega bits/second high

speed homogenous L\N. Each node is a dual Intel Pentium III (coppermine

860.946 t.1Hz) , has 256 KB cache and 512 MB RAM. The machines are

networked in a 10.x.x.x configuration that is standalone and not part of campus

wide network to ensure exclusive access to the test bed. Nodes were running

linux 2.4 and Java 1.4.2 was used to compile and run the test systems.

5.3 Configuration and Object Distribution

There are fi\'e system configurations each tested for the five different properties

including: 1) throughput for very small message size2 for members ranging from

2 up to 15 members, 2) throughput for message sizes in the 5 bytes to 10k range

for a fixed 10 group membership, 3) symmetrical order latency for very small

message size for members ranging from 2 up to 15 members, 4) symmetrical

order latency for a fixed group size of 10 with messages from 0 to 10k bytes, and

5) time taken for a group to reach an agreement for a new membership when one

member fails by suddenly crashing.

The five different system configurations to be tested against the above five

configurations are: 1) NewTOP without fail-signalling infrastructure, 2) FS­

NewTOP without message signatures, 3) FS-NewTOP with messages signed

2 Equivalent to the micro-benchmark technique that measures performances based on the 1/ulloperation call.

72

with 512 bit RSA key size, 4) FS-NewTOP with messages signed with 1024 bit

RSA key size 5) FS-NewTOP with H MAC-M05.

In case of traditional NewTOP, each group obj ect (NSO) is placed on its own

exclusive node, and for FS-NewTOP each of the two replica objects (both

equating to 1 fail-signalling group member object - FSO) was placed on its own

node. See Figure 5.1 below of a three-member group communication system for

both traditional NewTOP and the new fail- signalling FS-NewTOP.

(al NewTOP (bl FS-NewTOP

NS01
NS02 w--------+-~

~!
NS03

"'F~~ '1 m @is_02

\~@\ /~::

I~FS03
, I

... -- -"
(el FS-NewTOP Object Distribution

'C~'C ' -UU~I
eC

Node A FSO 2 ." ""
L"""",_.II

." r-=l B lJIJ - - - - F"S0"3- - - -, '

.. lit normal group messages: data, membership agreements

.. ___ _ .. failure detection, authentications, liveliness, suspicions, gossips and ,.
now confined to only two replicas.

'- ". Figure 5.1 a: Group member structure for (a) traditional NewTOP (b) Fail signalling and

secure FS-NewTOP and (c) the object/node distribution strategy for FS-NewTOP.

The two replicas o f the same FS-NewTOP member are placed on different nodes

to reduce the risk o f a single point of failure . Communication between the

replicas of the same FSO (say FSO 1) is assumed to be synchronous therefore the

duplicates have to be on the same high speed and reliable LAN connection.

73

5.4 Measuring group consensus latency

The purpose of task is to measure how much time it takes for NewTOP group

members to reach a consensus on a new group view when one group member

crashes. Performance is measured in milliseconds for how long a group of three

up to ten members takes to agree upon a new stable group view if one of the

members crashes. This is when a group membership performance protocol

"terminates" after one-member crash. The results indicate that performance

range from about 300 milliseconds with a group size of three up to 1500

milliseconds with a ten-size group.

5.4.1 The Global Timer (real time clock)

To collect group membership protocol performance, an independent global real

time clock is required. Unfortunately, we cannot encapsulate the real timer within

NewTOP because the group communication system uses logical clocks. Even if

NewTOP group members used real time local clocks at various nodes, this would

require an even more daunting task of synchronizing all the clocks to go in step

with a true global real time. Consequently, a more natural way to go about this

problem is to have a timer as an external observer of membership performance.

The timer is a server that logs and timestamps any event sent to it using local

system clock. The three main events required in the measurements include; when

one member crashes, when the crash is detected by at least one non-faulty

member, and when the remaining members reach a new group view agreement.

The timer is executed on a different node within the same LAN the group is

running. The one-way (not return) communication latency between the sender of

the event and the timer may be considered negligible and it was measured at be

74

0.05 of a millisecond. This low latency is achieved by using an unreliable but fast

UDP socket protocol as the communication channel between the group

members and the timer. The timer server reads real time from the system clock of

the host node using System.currentTimeMillisO java method call . See figure 5.1 b.

__ s..

0 --
~ 11'.-..... UDP ,.

Real rimer

Event cras h, detect, Or conse nsus (UDP)

N ewTOP communications (ORB)

....
NewTOP

Figure 5.1b External timer for crash events and group communication systems

For example, if m ember 3 crashes, a crash event is sent to the timer using DP,

bo th member 1 and 2 may bo th send a crash detection event to the timer but

only the earliest is recorded. Finally, both member 2 and member 3 must agree

that member 3 has crashed, this is when they both send the consensus signal and

the last one is the one recorded indicating all-member agreement.

75

5.4.2 Events: crash, detect, and consensus (determination).

I\ group member can send one of three types of events being crash, detection, or

consensus (termination). \'Vhen a group member crashes, it raises an exception

which is caught and within the {} catch block within which a crash eyent is sent

to the timer by calling the triggerTimer(int Event) method. The

triggerTimer () method is a UDP client to the global timer server.

try
{

}

catch (CrashExeeption ee)
{

triggerCloek(CRASH) ;
}

The timer keeps record of the time at which it receives the crash event t(crash),

then the time at which at least one of the group members detected the crash fault

t(detect), then the timer records the time at which a consensus t(cons<ensus) has

been reached with a new view excluding the failed member. The detection and

consensus events can be sent by any un-crashed member of the group, but the

timer will only pick the earliest crash event and the last consensus e\'ent.

\Ve record both the time between crash and detection TA(detect), and the time

between crash and consensus TA(consensus). From this two we calculate the

actual consensus O\'erhead between the detection and consensus (compare

between crash and consensus.

TA(detect) = t(detect) - t(crash) f(1)

TA(consensus) = t (consensus) - t(crash) /(2)

TA (actual consensus) = TA(consensus) - TA(detect) f(3)

76

TA(detect) is particularly important for future comparisons with fail-signaling

NewTOP in Task B. The hypothesis is FS-NewTOP should yield a more

superior TII(detect) because in FS-NewTOP members are duplicated to act as

one and are strongly coupled, therefore the other duplicate must be quick to

pick a crash fault of the other. Similarly, TA(consensus) is also expected be

better in FS-NewTOP since in FS-NewTOP suspicions, which have some

overhead, are eliminated and replaced with true failure signals. Section 5.5.5

presents results collected using this method.

5.5 Performance analysis

\'\'e used both the RSA and HM.\C for security of FS-NewTOP. FS-NewTOP

performance has generally been affected by the overhead of RSA signatures on

relatively larger messages. To partially solve this, java native security RSA

modules were replaced with Message Authentication Code (MAC) security for

the twin-replicas of FS-NewTOP. l'vL\C is a bit string that is a function of both

data (either plaintext or ciphertext) and a secret key, and that is attached to the

data in order to allow data authentication. The function used to generate the

message authentication code must be a one-way function.

"A MAC is a function which takes the secret key k (shared between the parties)

and the message m to return a tag l\L\Ck(m). The adversary sees a sequence (mj;

aj); (m2; a;); ... ; (m
9

; a~ of pairs of messages and their corresponding tags (that is,

a, =l\L\Ck(m,)) transmitted between the parties. The adversary breaks the l\L\C if

she can find a message m, not included among mj; ... ;m9' together with its

corresponding valid authentication tag a = MACk(m). The success probability of

77

the adversary is the probability that she breaks the l\L-\C. (Notice that an

adversary who finds the key certainly breaks the scheme, but the scheme can also

be broken by somehow combining a few messages and corresponding checksums

into a new message and its valid checksum." [Bellare96]

In this thesis, we used Hl\L\C algorithm combined with l\fD5 algorithm.

5.5.1 Throughput versus number of group members

The first experiment measures the throughput of the five system configurations

under maximun1 message load. The results were obtained by fixing the size of

messages to 5 bytes, and then each member sending as many messages as

possible to the group. \Ve obtain a count of messages per second. This scenario is

carried out on each of the five systems: 1) NewTOP, 2) FS-NewTOP without

digital signatures, 3) FS-NewTOP with RSA size 512 bits, 4) FS-NewTOP with

RSA size 1024 bits, and 5) FS-NewTOP with l\fAC-MD5 hashing. Figure 5.2 and

Table 5.1 show the performance results for all the five group system

configurations against the increasing number of group members from 2 up to 15.

Table 5.1: Throughput under maximum message load against increasing group

members

No.of group
memho .. 10 11 12 13 14 ,.

NewTOP 772 103.1 123.5 132.6 141.3 143.7 148.0 1494 150.3 144.9 139.3 134.9 132.0 124.0

F5-NewTOP
+No~ 60.1 739 91.4 108.0 113.0 116.4 114.9 '160 112.0 979 97.9 96.0 92.0 91.S

FS-
NewTOP+
RSA 512 57.2 64.7 72.3 862 90.6 93.0 96.0 93.6 93.6 84.0 70.9 64.6 63.4 60.0

FS-NawTOP
+ RSA1024 52.7 56.0 609 68.4 71 .• 76.0 80.6 806 769 64. 433 37.0 30.7 28.0

FS-NewTOP
+HMAC-

MD. 53.4 67.7 85.4 98.7 103.4 109.3 104 • lOS.7 1002 89.1 88.3 87.5 84.1 80.3

*all times in milliseconds

78

160

140

120

kl
100

.!1! 80 II)

Cl
II)

E 60

40

20

0

Throuput vs number of members
(messege size = 5 bytes)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

no. of members

~NewTOP

__ FS-NewTOP +No Sig

- . .•. .• FS-NewTOP+RSA 5"11

_____ FS.NewTOP +RSA tl24

~FS-NewTOP +HMAC-M05

Figure 5.2: Throughput under maximum message load against varying group members

All five systems increase their perfonnance until the number of group members

reaches 10 at which they sharply lose their throughput. This unexpected pattern

of perfonnance is because NewTOP itself maintains a pool of 10 threads per

group member to do the housekeeping jobs (such ordering, delivering, and

sending messages) and when the number of members reaches a threshold of 10

the perfonnance begins to degrade.

As expected, each of the four configurations of FS-NewTOP perfonns worse

than the pure NewTOP because all the four configurations replicate each of the

NewTOP members. The replicas also need the additional fail signal protocol

activities such as queue management for more queues; encrypting and decrypting

signatures; and handling duplicate messages. The fail-signalling FS-NewTOP

without digital signatures perfonns between 32% (at 11 members) and 22% (at 2

79

members) less efficiently compared to the pure NewTOP. The FS-NewTOP with

512 bit wide RSA digital signals delivers 51 % and 26% fewer messages compared

with NewTOP at 15 members and 2 members respectively. The FS-NewTOP

with 1024 bit RSA performed c\"en worse than its two FS counterparts by a

significant cost of signatures at 2 and 15 members compared to the original pure

NewTOP.

The overhead of the FS-NewTOP 1024 is significant for all group sizes. This is

because of the overhead introduced by the FS protocol itself, and the cost of

digital signatures on each relatively larger message. The dwindling performance of

the 1024 bit is even prominent when we change the size of the message size as

explained in the next subsection. However, HMAC based FS-NewTOP

performed better than both of the RS"-\ FS-NewTOP.

5.5.2 Throughput versus message sizes

\X'e then measure throughput with the number of group members fixed at 10 but

changing message sizes from 0 to 10k bytes. The same experimental environment

as described earlier is maintained. "-\11 the five systems significantly lose

performance as the message size reaches 4k bytes. FS-NewTOP with signatures

performs particularly poorly for large messages.

Table 5.2: Throughput under maximum message load against increasing message size

Message size (bytes) S~es 1k 2k 3k 4k Sk 6k 7k 8k 9k 10k

NewTOP 146.5 123.0 99.6 85.3 78.9 74.7 68.0 640 60.0 57.5 51.7

FS-NewTOP + No Si 108.3 885 72.0 63.3 50.7 40.5 343 28.5 22.2 20.6 18.2

FS-NewTOP + RSA 512 101 626 37.7 26.3 17.1 13.5 9.2 64 5.7 5 3.6

FS-NewTOP + RSA 1024 85.2 49.3 20.9 9.9 4.0 1.7 1.7 2.3 1.7 1.2 1.1

HMAC-MD5 103.7 82.0 66.8 53.3 44.6 33.1 25.6 20.9 16.3 13.6 12.3

*all times in milliseconds

80

~
.!!!
III
CI
III
E

The worst performance of FS-NewTOP without signatures is when the size was 10k. It

is 63 0
'0 worse than the pure NewTOP when the message was 10k, and it was 26% less

efficient than NewTOP when the message size was 5 bytes,

160

140

120

100

80

60

40

20

0
5 bytes 1k 2k

Throuput vs message size
(10 member group)

3k 4k 5k 6k 7k

message size

8k 9k 10k

---0.- Newtop

---FS-NewTOP + No 5g

••••••• FS-NewTOP + RSA 512

~ FS-NewTOP + RSA 1024

__ FS-NewTOP + I-fv1 AC·M D5

Figure 5.3: Throughput under maximum message load against varying message size

The FS-NewTOP with the 512 bit signature is not good enough as the message

size larger than 4k bytes. The worst performance price is paid by the FS­

NewTOP 1024 bit that almost completely stops as the system struggles with high

cryptographic overhead on messages over 5k bytes. Once more, the HMAC

system performed better than both of the RSA FS-NewTOP.

81

5.5.3 Order latency versus number of group members

Order latency is the time in ms it takes to symmetrically order messages of size 5

bytes received from non-faulty group membership where the group varies

between 2 and 15. When messages have been ordered, they are ready to be

delivered to the application. The results were obtained from consistently sending

messages from each group member M, at fixed intervals. The interval between

the messages is fixed to 0 (250 ms) for all different number of group members.

250 ms was found to be the most optimal time interval such that messages are

not kept in the queues for too long and on the other hand the interval ensures

that messages propagated into the system are not too widely separated. The

message size is also fixed to a small size of only 5 bytes for members from 2 to

15.

Table 5.3: Symmetrical order latency against increasing group members

Nu. Of group
members 2 3 4 5 6 7 8 9 10 11 12 13 14

NewTOP 121 245 978 1772 2376 2639 3137 3350 3431 3782 3870 4120 4330
FS-NewTOP +
NoSig 300 774 1963 2750 3394 3862 4226 4552 4842 5248 5657 5763 5904
FS-NewTOP +
RSA512 599 1451 2595 3439 4096 4558 5109 5380 5792 6017 6245 6562 6762
F5-NewTOP +
RSA 1024 642 1739 2979 3878 4610 5111 5460 6016 6285 6531 6974 7151 7525

316 835 2097 2992 3590 4135 4523 4757 5082 5578 5854 6159 6136
HMAC MD5

*all tzmes zn millzseconds

The four FS-NewTOP versions show a consistent performance correlation with the pure

NewTOP as the number of members increase.

82

15

4470

5970

7151

7877
6475

II)

Order latency vs group mem bers
(time required to symmetrically order 5 byte messages)

9000r---~

8000+-----------------------------

7000 -1-----------------------------

6000 +------------....... =;F~:::3::::::;~~:::::...~

5000t-------------~~~~~~~~~~------------~

----0--- NewTOP
_____ FS-NewTOP +No Sig

E 4000 +-------.~~~~~==----__n::=:r_....o::::::::~::::'___l
- - -.- - - FS-NewTOP +RSA 51<
_______ FS-NewTOP +RSA lJ24

~FS-NewTOP+HMAC-MD5

3000+-------__ ~~~----~~~~----------------------~

2000+----.~~~rY~----------------------------------~

1000-l-~~~~~--~

O~~~~--~~--~--~~~~--~~--~--~--~~

2 3 4 5 6 7 8 9 10 11 12 13 14 15

no. of group members

Figure 5.4: Symmetrical order latency against varying group members

The consistency of the performance for all the versions yields a correlation of

coefficient close to 1. However, the FS-NewTOP does not perform as well as the

pure NewTOP as the table shows and the figures indicate that the FS-NewTOP

without signatures is 44% and 33% worse than NewTOP at 2 and 15 members

respectively, while FS-NewTOP 512 FS-NewTOP 1024 perform less efficiently

compared to NewTOP at 2 and 15 members respectively_

83

5.5.4 Order latency versus message sizes

The same order latency experiment is conducted with group membership SlZe

fixed at 10 but message size increases from 5 bytes to 10k bytes.

II)

E

Table 5.4: Symmetrical order latency against increasing message size

5 bytes lk 2k 3k 4k 5k 6k 7k Bk 9k 10k

NewTOP 3188 3535 4671 5369 6697 7595 8288 8729 9409 9865 10108

FS-NewTOP + No Sig 3851 4543 5991 7642 8919 9730 10790 11379 12387 13360 13743

FS-NewTOP + RSA
512 5749 646B 8133 9600 10791 11855 13432 14613 15412 15889 16200

FS-NewTOP + RSA
1024 6307 7188 9239 11030 12590 14224 15647 16749 17549 18390 18573

4234 4781 6562 8037 9652 10532 11917 12499 13429 13917 15206

HMAC-MD5

*all times ill milliseconds

Order latency vs message size
(time required to symmetrically order messages in a 10 member group)

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
5 bytes 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

msg size (bytes)

Figure 5.5: Symmetrical order latency against varying message size

---O-NewTOP

___ FS-NewTOP +No Sig

- - -e- - - FS-NewTOP +RSA 512

___ FS-NewTOP +RSA "024

~FS-NewTOP +HMAC-MD5

84

5.5.5 Cost of consensus when one member fails (varying members).

TIus expenment measures the time in milliseconds, which is taken for the

remaining non-faulty group members to reach an agreement of the new

consistent membership \"ie\v at each member, vi, when one member suddenly

fails by stopping. Messages were sent from each member, and one group

member was crashed during this process. Time is then recorded from the

moment one member crashed until all members agreed upon new membership.

The results below indicate a performance advantage for NewTOP over the

traditional FS-NewTOP. We start with three members (not two) so that we are

left with a minimum of two members when one member crashes. Note that

because a signaled failure from an FS-NewTOP is a guaranteed failure, the

receiving members do not have to negotiate with other members in order to

establish if indeed the member M f has actually failed.

(i)

.s
en
::l
en c
CD
en
c
0
()

Group membership agreement cost with varying number of members, high
message load

(message size fixed to 5 bytes)

10000

9000

8000

7000
~NfNoITOP

6000 --F&NewTOP + RSA 1024

5000 - - -. - - - F&NfNoITOP + RSA 512

-""'-F&NfNoITOP+NoSg
4000 __ F&NfNoITOP + I-MAC-MD5

3000

2000

1000

0

3 4 5 6 7 8 9 10 11 12 13 14 15

Nurrt>er of rmrrbers

Figure 5.6: Membership protocol overhead when one member suddenly fails (varying

number of members, fixed message size to 5 bytes)

85

\'\'hen a non faulty member receives a fail signal message, it immediately updates

its view without group view consensus broadcasts with other members. That is

why in this experiment the pure NewTOP performs worse in group membership

protocol than all the four FS-NewTOP versions for the first time.

5.5.6 Cost of consensus when one member fails (varying message size)

\Ve measured the time in milliseconds it takes for the remaining non-faulty group

members to reach an agreement of the new consistent membership \riew at each

member, vi, when one member suddenly fails by stopping. But instead of taking

measurement against number of members, we varied the message size instead

and fixed the number of group members to 10.

This experimental setting produces interesting results in that for small message

sizes over 3k, NewTOP performances better than FS-NewTOP 1024, FS­

NewTOP 514, FS-NewTOP H-MAC, and FS-NewTOP without digital signature

(see figure 5.7). This result show that digital signatures gradually take a longer

time to process as the message size increases.

86

Group member cost agreement with varying message size, high message load
(group membership fixed to 10)

30000r---______ ~

--D-NewTOP
25000 -~ __ FS-NewTOP +RSA tl24

...•... FS-NewTOP +RSA 5"11 ... Ul .s 20000 1--__ ---+--FS-NewTOP +No Sig
--X--FS-NewTOP +HM AC-M D5 •• -.- x

Ul
:::J
Ul
C
(l)
Ul
C
0
U

.... X--........ ___ X--
r-------------------~~~--~~~_=_X--~~~------~ _ .. -. __ ., x .-' .• ······-X--X

15000

10000 .. ,

5000
X

O~--_.----~--_.----r_--_.----r_--_.----r_--~----r_--~

5 by1es 2k 3k 4k 5k 6k 7k 8k 9k 'Ok

Message size (by1es)

Figure 5.7: Membership protocol overhead when one member suddenly fails (varying

size of messages, fixed group membership to 10 members)

The results are obtained by crashing one member (or crashing one replica of a

member for FS versions) then measuring the time from the crash until the time

all group members have agreed upon a new group view. Message sizes vary from

5 bytes up to 10k.

5.5.7 Cost of consensus when one member fails (varying timeouts).

The aim of this experiment was to measure the group consensus of the five

systems when liveliness timeout was varied. The timeout was adjusted in

NewTOP only because all FS~NewTOP disregards time outs because there do no

employ liveliness mechanisms.

87

Group membership agreement cost with varying timeouots, high message load
(members fixed to 10, message size fixed to 5 bytes)

Cil
E
Ul
:::J
(/)

c::
Q)
(/)

c::
0
0

10000

9000

8000

7000

6000

5000

4000

3000

2000

+------ --- -- ---

~~~~~~~~~~~~~~~~~~~~~~-~--~.~~ 
x-x-X-x-X-X-X=X~X-X-X-X-X-X-X-X-X-X 

+-____________ ---O--NewTOP 

______ FS-NewTOP +RSA 1)24 

---- -- -+- - - FS-NewTOP +RSA 512 

--+--FS-NewTOP +No Sig 

+------------ -X-FS-NewTOP +HMAC-MD5 

~o0t---------------------------------, 

50 ~o 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 ~oo 

Timeout (ms) 

Figure 5.8: Membership protocol overhead when one member suddenly fails (varying 

liveliness timeouts) 

"\t timeouts that are lower that the average NewTOP roundtrip (around 170ms) 

the NewTOP protocol does not perfonn well as it has to deal with incorrect 

suspicions. "\s the timeout nears the roundtrip time, NewTOP perfonns best_ 

But as the timeout increases beyond the average roundtrip time, NewTOP 

perfonnance goes down because it has to wait a long time to detect failure_ For all 

versions of FS-NewTOP in Figure 5_8, the group membership cost is constant 

because fail-signalling protocol does not make use of timeouts_ 

88 



5.6 Discussion and conclusion 

Performance results were collected for NewTOP group communication system 

and four configurations for FS-NewTOP system 1) with no signatures, 2) with 

RSA 1024 key and four, 3) RSA 512 key and 4) with HM;\C-MD5 hash 

algorithm. Each FS-NewTOP group member is duplicated into two entities that 

exchange signed messages. 

Results have further shown that FS-NewTOP responds consistently regardless of 

the time-outs imposed (Figure. 5.8). This is one of the main advantages of FS­

NewTOP. 

89 



Chapter 6 

DISCUSSION AND CONCLUSIONS 

6.1 Overview 

.\ Byzantine-fault tolerant group communication system has been constructed by 

extending a crash-tolerant group system called NewTOP. The extension involves 

replacing crash-prone middleware processes with fail-signal or FS processes 

resulting in FS-NewTOP. The idea of signal-on-failure is not new and it is one of 

the three failure-guarantees offered by the Fail-stop processes of [Schlichting83]. 

A Fail-stop process requires (at least) three (internal) replicas, while an FS process 

can be done with a replica pair. A significant benefit of our fail-signal based 

approach is that the FLP impossibility result derived for unannounced crashes 

ceases to apply and consequently the total ordering is guaranteed to terminate 

provided the asynchronous network does not suffer permanent partitions. The 

fail-signal oyerhead was measured through a series of experiments. The increase 

in ordering latency and the reduction in throughput were found to be relatively 

small for large groups. 

6.2 Assumptions 

Assumptions in Chapter 3 are listed again: 

Assumption Ai: The nodes are assumed to be correct (i.e., non-faulty) when they 

are paired at start-up time. If one of these two nodes fails, the other is assumed to 

work correctly until the system detects this fault. 

90 



Assumption A2. The nodes are connected by a reliable, synchronous 

communication link (LAN) that delivers messages within a known bound p. 

Assumption A3: Suppose that both nodes are non-faulty and an input is submitted 

to both of them at the same time t for processing. Say, p (respectively p) 

processes that input and generates a result at time t+.Jt (respectively at t+ .Jt' ). 

We assume that max {--.It, .Jt' }~ K*tnin{.Jt, .Jt'}, for some known, positive 

number K. 

Assumption A4: Similarly, suppose that both nodes are non-faulty and p and p' 

schedule a send_multO operation at the same time s to forward their result to the 

other replica. Say,p (respectively p) completes the send operation at time s+Lls 

(respectively at s+--.ls). We assume that max{.Js, .Js'}~ o*tnin{.Jt, .Jt'}for some 

known, positive number o. 

Assumption A5: A3 and A4 require that the maximum difference between the 

delays for processing and scheduling of middleware messages be bounded and 

known. Finally, a process of a correct node can sign the messages it sends and the 

signed message cannot be generated nor undetectably altered by a process in 

another node. 

The assumptions made in the construction of FS processes have implications at 

the application and middleware levels. Assumptions A3 and A4 require that the 

maximum delay within which the replicas of an FS middleware process complete 

processing of an incoming message or scheduling an outgoing message, must be 

known and bounded. Otherwise, correct replicas might find each other untimely 

and start emitting fail-signals unnecessarily. When the load imposed by 

application level processing is unknown, realizing A3 and A4 will require that the 

91 



replicas be run with a high priority. \,\'e note here that an application process, 

such as J\ in Figure 4.3, can also be made into an FS "\ in the same way 

rniddleware processes were transformed. TIlls will incur an additional FS 

overhead at the application level and subject replicas of A, to assumptions A3 and 

A4. Alternatiyely, when A, is Byzantine fault-prone (as in Figure 4.3), another 

application, say B, can be replicated on the host nodes of FSO '. 

Fail-signal construction also assumes that the two nodes of an FS process are 

connected by a synchronous link (assumption A2) and that no more than one 

node becomes faulty (assumption A1). A2 can be realized, say, by keeping each 

pair of nodes geographically close and making use of the fast Ethernet 

technology. Realizing i\ 1 in an intrusion prone environment requires sufficient 

diversity and intrusion detection measures, which will be the focus of our future 

work; in this paper, we have assumed that the causes of the faults can only be 

internal. 

6.3 FS service and further work 

Our rniddleware system reqwres a total of 4[+2 nodes, with assumption Al 

restricting the locations of faults. However, the traditional Byzantine-tolerant 

total-order protocols neither require ~-\ 1 nor anything similar to it. On the other 

hand, they rely on protocol-specific, liveness conditions to prevail for termination. 

In its design philosophy, [Verissimo02] is similar to ours and assumes a 

synchronous WAN to avoid the FLP impossibility result. Much of the motivation 

for its design, expressed elegandy using the Wormholes metaphor [Verissimo03], 

also underpin our approach. 

92 



One cost aspect of this approach is that masking of 1 Byzantine faults at the 

application level requires at least 21+1 FS-processes (i.e. a total of 4f+2 

processes), with each replica requiring access to a total-order service. Compare 3f 

+ 1 needed to tolerate malicious faults [Schneider90]. Since we construct our 

total-order service using FS middleware processes and each FS process itself is a 

self-checking pair running on distinct nodes, 4[+2 nodes are needed in our 

approach i.e., (fH) nodes more than the known optimal requirement for a 

Byzantine-tolerant middleware system~ We believe that this cost will be smail, 

given the falling hardware price. 

There are limitations of this work: the fail signalling service was constructed from 

an object oriented programming java and CORBA, which have proved to be less 

efficient in terms of speed. Furthermore, there has not been stringent Byzantine 

fault injection into the fail signalling service to see how it behaves. Although a 

simulation of crashing one member of the group was carried out to see how FS 

service behaves when one member suddenly becomes corrupt. 

The other benefit of two fail signalling protocol is to tolerate intrusion. In an 

intrusion-prone environment, the adversary may attempt to block, delay, or 

corrupt messages on the network without signalling a security alert. Therefore, 

the mesfage transmission delays between correct middleware processes cannot be 

bounded priori with certainty, unless the network is a trusted private channel. In 

our design, we have assumed that when correct middleware processes send 

messages to each other there is no known bound on delays to be experienced. A 

sent message will eventually be received, and a received message is the one that 

has been sent. In other words, the classical asynchronous delay model is assumed 

for the interaction between middleware processes of the failing replicas. 

93 



Further work can be carried out on this service. One of which can expose the 

service to real life Byzantine faults to see how it can sustain them. 

94 



Appendix A 

PORTING AND ADAPTING VOLTAN TO FAIL SIGNALLING 

JAVA/CORBA SERVICE 

A.I Introduction 

We describe how Y oltan, a fail silent servIce, was ported from J a\ra to 

COREA Jaya and this appendix describes how the porting was done. The 

Voltan software library for building distributed applications provides the 

support for (i) a process pair to act as a single V oltan self-checking 'fail­

silent' process; and (ii) connection management for Voltan process 

communication. A Voltan fail-silent process is written by the application 

developer as a single threaded program. The Voltan system replicates this 

program transparently. The active replication of applications engenders 

problems when dealing with non-deterministic calculations [Brasileiro96]. 

A.2 V oltan Structure 

The following diagram shows a more microscopic relationship between two 

replicas. In the diagram the replicated processes are referred to as 

application threads. Voltan replicas mainly use internal queues and threads 

to facilitate replica-to-replica message exchange. Only double-signed 

messages are considered authentic. "Double" because each sending replica 

must sign an outgoing message to the other recipient pair of replicas. ~\ 

sequence number uniquely identifies a message. The leader replica dictates 

to the follower the order of how messages are received and consumed by 

leader and follower applications. 

95 



This dictatorship ensures that the computation of messages is deterministic 

between the replicas. 

LEADER FOLLOWER 

Figure A.1: Voltan fail silent process structure 

A3 Similarities between the leader and the follower 

Starting with what is common on the leader and the follower sides, the new 

double-signed message from another Voltan node is queued in the DM 

queue. The application stripes off the header information, including 

signatures, then processes the message. The newly computed message is 

then fleshly single signed and queued in the rCM queue to be later 

compared with the single-signed message from the partner (follower or 

leader) queued in the ECM queue. The comparator thread compares the 

two equivalent messages. If there are any discrepancies between the two, the 

leader/follower fails "silently and emits a signal" and immediately. 

96 



Otherwise if the messages compare, the message from the other partner is 

signed the second time and stored in the VM queue, the double-signed 

correct and authentic messages queue. Finally, the send thread pops the 

correct message from the V;,\1 queue sends it to the network destined for the 

recipient Voltan process. 

Both the leader and the follower application forward their newly single 

signed messages to each other via the TXQ queue. The recipient RX thread 

checks the type of the incoming message so it can queue it into appropriate 

queue. 

A.4 Differences between the leader and the follower 

The difference between the leader and the follower stems from the fact that 

the leader has to dictate the order in which messages are to be consumed by 

both the leader and the follower application threads. A new double-signed 

message in the leader DM queue is forwarded to the follower DM via the 

leader TXQ queue. The leader TX thread then forwards the message to the 

follower via the follower RX thread. The same message is queued in the 

follower IRM queue for time outs and leader-missed messages, as you will 

see how that is done below. 

The other difference is the follower Receive thread does not queue the 

message in its follower DI\I queue because the leader has forwarded the 

messages to the follower DM queue. Instead when the follower receives a 

new double-signed message from a network, it checks if the message is in its 

IlUv1 queue. If the message is there, it means the leader has received it and 

forwarded it there. In addition, the follower checks the time stamp of the 

message in the IRM queue and if it does not satisfy the allowable time delay, 

the follower declares a failure on the bases of a time-out. Each message has 

a time stamp field in its control header in case the message is not in the IRM 

97 



queue, it is possible that the leader missed the message therefore it is 

forwarded to the leader after some time delay of 2d via the follower TXQ 

queue. Where d is the maximum one trip delay between the nodes. When d 

is 0 it means the follower forwards the messages to the leader immediately. 

A.S Limitations of this Voltan structure 

In the old Voltan structure the communication between the leader and 

follower is established. Both in the C++ and Java versions of Voltan, the 

communication between the any two entities is mainly RPC and Sockets. 

There are three main communication points that require the use of RPC and 

Sockets: These are 1), between the TX and R.,"'\: threads. 2), between the 

client Voltan process and the leader and the follower Receive threads, and 

finally between the Send thread and the recipient Voltan process. This 

exposes the programmer to low level network programming structure does 

only lead to a complex implementation of Voltan but also inflexibility 

associated with RPC and Sockets. 

Other undesirable features of this structure that may hinder performance are 

threads and queues. They are about five threads in each replica: Receive, 

TX, Comparator, RX, Send, and Application. In addition we have five 

queues: DM, TXQ, ICM, ECM, and VM. The follower has IRM as an 

additional queue. Each of these queues is shared by at least two threads. The 

competing threads use synchronization for mutually exclusive access to the 

shared queues. This is performance costly since there is thread context 

switching between any two accesses to any shared queue by two competing 

threads. 

Furthermore, the pure C++ /Java implementation does not give much 

flexibility in deploying Voltan in today's distributed object oriented 

middleware systems that are dominantly based on CORB/\.. 

98 



A.6 CORBA Voltan model 

The following section illustrates how porting Yoltan to CORBA curbed the 

just mentioned limitations of the C++ /J ava version of Voltan. Initially we 

ported Voltan to CORBA exactly as it is in terms of the queues and threads. 

In the second \'ersion CORBA Y oltan, we eliminated all features that were 

rendered redundant by the use of object based method calls. The 

performance of the latter was approximately lOx faster than the former 

\'ersion of Voltan laden with queues and threads. The performance tests 

were carried out with the pair replicas running on two different workstations 

on the same L-\N. 

A6.1 Introduction 

CORBA is not a programnung language but a distributed object 

environment that facilitates cross-language and cross-platform object­

client/ set\'er communication. The basic units of computation are viewed as 

objects as opposed to processes, but at the same time CORBA object are 

rapped with language specific processes or threads. These processes and 

threads are made transparent to programmers. The interaction between the 

objects is facilitated by method calls within object references. Because 

CORBA is language neutral and is not itself a programming language, our 

design of CORBA Voltan may be implemented with any language of choice 

such as C++ or Java. 

A.6.2 Object references and method calls 

In CORBA, the caller (client) obtains the object reference of the server 

object. The client then executes the method within the server object using 

the dot operation as if the remote server object is in the same address space 

as the client. CORBA indeed hides the complexities of the underlying 

99 



networking operations such as addressing, location resolutions, marshalling 

and de-marshalling of parameters, and serializations. All these are not 

transparent in the pure C++ and pure Java Voltan. The following is an 

example code that demonstrates remote object calls: 

rernoteObjectRef.rnethod(); 

The client object calls the above statement to obtain results computed by a 

remote object using the methodO. The caller of the method has obtained 

the object reference and that is not shown here. In the same way, the 

following is a fragment of code from the new CORBA Voltan code that 

demonstrates remote object calls. The leader calls the methods in the 

remote follower object this way: 

FOLLOWER.receiveMsgToCornpareFromLeader(rnsg); 

The above statement is the key to how CORBA Voltan has been 

implemented. The LEADER object, that has pre,Tiously obtained the object 

reference of the FOLLOWER, calls the above statement. The leader is 

forwarding a single signed message, msg, to the follower for comparison. 

The FOLLO\\'ER object does not ha,Te to be in the same workstation as the 

LEADER object, and yet the leader calls the method as if it (follower object) 

is collocated with the leader (same address space). In addition, the leader 

object does not have to be concerned about the whereabouts of the 

follower. In other words, the leader does not go through low-Ie'Tel network 

operations since the CORBA core engine, known ORB, handles all that 

transparently. We can think of an ORB as a language specific 

implementation of the specifications of CORBA. 

The follower code is responsible for implementing this called method. The 

following code demonstrates how straightforward and comprehensible the 

100 



implementation of the above method 1S on the follower side. There 1S 

literally one statement required. 

public void receiveMsgToCompareFrOrnLeader(MessageBlock msg) 
{ 

II check authenticity of message 
II then push into the ECMQ 
F_ECMQ.push(msg); 

If you look at Figure 3 below, the above method is exactly identical to 

Recei veSingleO. "Single" means single-signed message, "Double" means 

double signed message. The follower needs to push the message into its 

own ECM queue for later comparison to the message from the its (follower) 

own ICi\I queue. The preceding F _ before ECMQ denotes the follower. 

A.6.3 Oneway asynchronous "fire and forget" calls 

CORBA allows the caller to make a call but not wait for the call to return by 

declaring the functions oneway in an jdl declaration file. (See Section A.9 

below for details of jdl and CORBA Voltan implementation). Almost all the 

calls between the leader and the follower are implemented this way. It is 

efficient because it uses "fire and forget" technique. The success of the call 

is not certain to the caller because the caller continues with the next 

instruction immediately. For example, the follower method called by the 

leader in Section A.6.2 above is one-way because the leader does not have to 

witness the pushing of the message into the follower queue. In stead, the 

leader continues with other operations immediately after "firing" the call. 

Fortunately, it is the very reason that we are using fail-signalling to handle 

any such link failures in case the one-way method does not succeed. 

101 



A.6.4 Callback methods 

Callback methods allow the object to behave both like the client and the 

SetTer at the same time. In fact, in CORBA world, any object can be both a 

client and a server at the same time provided it initiates calls and receives 

calls respectively. When a client object gives the server its own reference 

such that the server can call methods in the client we say the server is 

making a callback to the client. This call pattern exactly suites our Voltan 

leader and follower requirements. Both the leader and the follower are 

remote CORBA objects and they know each other's object references. This 

means that they can call each other's methods at any time of their lifetimes 

as they please. 

Oneway calls and callbacks make a perfect combination in this situation 

because the leader and follower cannot block in a deadlock or waste time 

while waiting for each other's methods to return. Instead, they both flre! and 

forget about the call. CORBA takes care of the rest. 

A.6.S CORBA Voltan structure 

The flgure above sums up the relationship between the leader and the 

follower in the new CORBA Voltan. The original structure in Figure A.I 

shrank to the structure in Figure A2. The new structure has much less 

queues and threads. This is mainly because object method calls are used. As 

earlier mentioned in Section 3.4, both the leader and follower obtain each 

other's object references at the initialization stage for subsequent calls to the 

each other. The leader, follower, applications are all CORBA objects. 

Remember that in the original Voltan, and application was a thread. The 

details of how methods within the application object are called, to consume 

messages from the DM queues, are not shown. This is so because it 

depends how the application consumes the messages. 

102 



LEADER FOLLOWER 

DMQ 

Racei veSingle (m) 

Key: 
-----. method(m) call method(m), passing in message m 

~I I I I I : push a message into the queue 

I I ~ : pop a message from the 

Figure A.2: CORBA Voltan fail-signalling structure 

FSO is the leader and FSO' is the follower, If an input is from another FS 

process, it is checked for authentic, double signature; this is implemented in 

the recei veNew(m) method which, at the leader FSO, places the received 

input into the local Delivered Message Queue (DMQ) and then sends a copy 

to the follower by calling the follower's recei veDouble(m) method. 

When the follower receives a message from the leader, it places it into the 

local DMQ; a copy of the message is also deposited in the Internal Received 

Message (IRMP) Pool. When the follower receives a valid message via 

recei veNewO method, it performs a different task to that executed by the 

leader. As it gets the message, it checks if the message is in the IRM Pool and 

if so, the pair is deleted. Otherwise the follower stores it in the IRM Pool with 

an associated timeout tl. If the message is not received from the leader within 

tl, the follower dispatches the message to the leader by calling the 

receiveDoubleOof the leader. The message within IRM Pool is given a new 

timeout t2. If this second timeout expires and the message has not been 

103 



received from the leader, the follower assumes the leader has failed and starts 

emitting fail-signal to appropriate destinations. In the implementation the t, is 

set to 0, and tz is set to 2d" 

The target thread selects a message from DMQ, processes the message, and 

may produce an output message. A copy of an output message is signed once 

and transmitted to the other target replica by calling the 

recei veSingle(m) method of the latter. The unsigned message is stored 

in the Internal Candidate Message Pool (ICMP) , setting a timeout. When a 

single signed message is received, it is placed in the External Candidate 

Message Pool (ECMP). The Compare thread compares relevant messages in 

ICMP and ECMP. If the comparison indicates that both messages contain 

identical result, then the comparison is deemed successful, the message from 

the ECMP is signed again, and the doubly signed message is sent to the 

destination(s). If the comparison fails or if an ICMP entry times-out, the 

Compare thread starts emitting fail-signals to appropriate destinations. 

A3.6 Deprecated and modified features 

The following are threads and queues from the original Voltan that are now 

deprecated in the new CORBA Voltan. The features phased out apply to 

both the leader and the follower. (Compare Figure A.l and Figure A.2) 

Recei ve (thread) 

The receive-from-network thread has been removed. Because the sender of 

a message now has to simply call the recei veNew(m) method to send the 

message. 

TX (thread) 

104 



The transmit-to-partner thread has been phased out. It has been replaced 

witj calling the "receive" methods in each replica object directly. 

TXQ (queue) 

The queue for the TX thread has also been removed. 

RX (thread) 

The receive-from-partner thread has been phased out too. Similarly to the 

IT thread, the R.,X threads have been replaced by the called methods 

pushing messages to the local queues. See example code at the end of 

Section A.6.2. 

Send (thread) 

The send thread has been removed because the newly compared message to 

is sent back to the other Voltan node by the comparator calling the 

equivalent receiveNew(m) on that recipient object. 

VM (queue) 

Likewise, the VM queue is no more needed. 

A7. CORBA Voltan Implementation 

This section gives a more detailed method-by-method description of the 

new COREA Voltan. There are slightly more methods mentioned in the 

document than those shown in Figure 3 above. Further, the names of the 

methods in Figure 3 may be slightly different from the ones presented here, 

however they are exactly equivalent. For example, the following methods 

105 



from figure A.2 (short ones to save space) and this text Oonger ones) are 

equivalent. Single denotes single signed message while double denote 

double signed message: 

receiveNew(m) is equivalent to: 

receiveExternalMsg(m) 

receiveDouble(m) is equivalent to: 

receiveExternalMsgFromFollower(m) 
receiveExternalMsgFromLeader(m) 

receiveSingle(m) is equivalent to: 

receiveMsgToCompareFromFollower(m) 
receiveMsgToCompareFromLeader(m) 

A. 7.1 Introduction 

Like earlier mentioned, CORBA is a language neutral object oriented 

environment that allows programmers to specify attributes and behavior of 

objects. The key CORBA structure that allows such specification is called an 

.idl file. Although the syntax of the file looks very similar to C++ or Java 

syntax, it has got nothing to do with these languages. The compiler of the 

.idl file is the one that dictates the programming language that is to be used 

to implement the objects. The details of idl compilation results and specific 

language mappings are beyond the scope of this document. The reader is 

referred to the Bibliography at the end of this document. 

Most of the methods that are in the leader object are called by the follower 

object and vice versa. 

We only show the interface of the leader and the follower. For a full list of 

the Voltan .idl fue, see Appendix A.. For the source code of the 'whole 

CORBA Voltan, contact the author. 

106 



A. 7.2 Leader idl specification and implementation 

interface LeaderReplica 

void receiveConnectionFromFollower(in string objRef); 
oneway void receiveExternalMsg(in MessageBlock msg); 
oneway void receiveExternalMsgFromFollower(in MessageBlock msg); 
oneway void receiveMsgToCompareFromFollower(in MessageBlock 

msg) ; 
oneway void receiveHeartBeatFromFollower(); 
oneway void failLeaderSilently(); 

}; II LeaderReplica 

A.7.2.1 void receiveConnectionFromFollower(objRef) 

The follower calls this method at the initialization stage. It is assumed that 

the leader is already registered with the CORBA ORB and is waiting 

indefinitely for an "invitation" from the follower for partnership. To obtain 

the reference of the leader object, the follower uses one of the several 

conventional methods to obtain a reference of an object that is already 

registered. The follower must pass in its own object reference when calling 

this method. The leader then obtains the reference of the follower and 

stores it in the local private variable called say FOllOWER. The beauty of 

this is the leader will never have to ask who the follower is or where it is for 

all subsequent method calls and vice versa. The leader will always use the 

FOllOWER.methodO syntax for all future calls to the follower. The leader 

has to immediately inform the follower that it (leader) has accepted the 

invitation as the partner by calling the 

recei veConnectionAckFromLeader(in long status) of the 

follower (See Section A.2.3.1) 

Implementation: 

public void receiveConnectionFromFollower(String objRef) 
{ 

II obtain the follower reference for good 

this.FOLLOWER= 
FollowerReplicaHelper.narrow(orb_.string_to_object(objRe)); 

107 



FOLLOWER. receiveConnectionAckFrornLeader {vGlobals.CONNECTE D); 

II ready the comparator thread. 

Thread L_Cornparator = new Cornparator{ 
L_ICMQ, L_ECMQ); 

A.7.2.2 oneway void receiveExternalMsg(msg) 

The prevlous method does not have the preceding oneway. That is 

because the follower must wait for the connection method to return because 

it is still negotiating with the leader. In contrast, this method has one-way 

because the leader caller does not have to wait for the execution of the 

method on the follower side. This is more efficient and ensures 

asynchronous communication between the caller and the called. 

This method recelVes double-signed messages from the network then 

queues them in the DM queue to be later consumed by the application. 

Implementation: 

public void receiveExternalMsg{MessageBlock rnsg) 
{ 

if (checkAuthenticity{rnsg) 
{ 

L_DMQ. push (rnsg) ; 

A.7.2.3 oneway void receiveExternalMsgFromFollower(msg) 

The follower forwards a double-signed message to the leader, by calling this 

method, in case the leader has missed the message. First, the message is 

checked if there is any matching message in the leader DM queue. If the 

message is already in the leader DM queue, the message is discarded. That is 

why we use a slightly different method for pushing the message. 

108 



Implementation: 

public void receiveExternalMsgFromFollower(MessageBlock msg) 
{ 

if (checkAuthenticity(msg) 

L_DMQ.matchOrPush(msg) ; 
} 

else 

FOLLOWER.killFollowerSilently(); 
this.killFollowerSilently (); 

A.7.2.4 oneway void receiveMsg T oCom pareF romF ollower( msg) 

This method is called by the follower application to forward a fleshly single­

signed message to leader to be later compared by the leader comparator. 

Implementation: 

public void receiveMsgToCompareFromFollower(MessageBlock msg) 
{ Illike above, check authenticity of msg then act 

II accordingly 
L_ECMQ.push(msg) ; 

A.7.2.S oneway void receiveHeartBeatFromFollowerO 

In case there is no computation activity between the leader and the follower, 

the follower calls this method to remind the leader that it (follower) is still 

alive. 

Implimentation: 

public void receiveHeartBeatFromFollower() 
{ 

this.heartBeat = System.currentTimeMillis(); 
} 

109 



A.7.2.6 oneway void failLeaderSilentlyO 

This method is called wheneyer there is any discrepancy in the value or 

timeout failure has occurred. It kills the current partner when called. Both 

the leader and follower can call this method. Before the object is killed, an 

application specific feedback has to be given either in the form of an 

exception or an appropriate call to the system that is relying on Voltan for 

fail-silence. 

Implimentation: 

public void failLeaderSilently() 
{ 

System.out.println("FEEDBACK DEPENDS ON APPLICATION"); 

System.out.println("DEACTIVATE CORBA OBJECTS"); 

System. exit (-l) ; 

A.7.3 Follower idl specification and implementation 

interface FollowerReplica 

oneway void receiveConnectiOnAckFrornLeader(in long status); 
oneway void receiveExternalMsg(in MessageBlock msg); 
oneway void receiveExternalMsgFrornLeader(in MessageBlock msg); 
oneway void receiveMsgToCompareFrornLeader(in MessageBlock 

msg) ; 
oneway void receiveHeartBeatFrornLeader(); 
oneway void failFollowerSilently(); 

}; II FollowerReplica 

A.7.3.1 oneway void receiveConnectionAckFromLeader(status) 

The leader calls this method at initialization stage inside the leader 

receiveConnectionFromFollower() . This method is onaway 

because the leader does not have to wait for the method to return. 

Implementation: 

110 



public void receiveConnectionACkFromLeader(int status) 
{ 

if (status == vGlobals.CONNECTED) 
{ 

Thread F_Cornparator 
F_ICMQ, F_ECMQ) 

else 

new F_Cornparator( 

LEADER.failLeaderSilently() ; 
this.failFollowerSilently() ; 

A.7.3.2 oneway void receiveExternaIMsg(msg) 

This method receIves double-signed messages from the network then 

forwards it to the follower. The follower is not supposed to queue this 

message into its own DM queue because the leader is the one that dictates 

order of messages in both the leader and the follower DM queues. See 

Figures A.1 and A.2 for the equivalent recei veNewO method on the 

follower side. 

The method first checks if the message IS in its IRM queue. See Section 

A.6.S above 

Implementation: 

public void receiveExternalMsg(MessageBlock rnsg) 

F_IRMQ. insert (msg, timeout) ; 

LEADER.receiveExternalMsgFrornFollower(msg) ; 

A.7.3.3 oneway void receiveExternaIMsgFromLeader(msg) 

This method is called by the leader to forward a double-signed message to 

the follower for queuing in the follower DMQ (See Figure 2). In addition, 

111 



the message is pushed into the follower IRl\1 queue. See Section 2.3 for 

details of how the IRl\I queue works. 

Implementation: 

public void receiveExternalMsgFrOmLeader(MessageBlock msg) 
{ 

F_DMQ.push(msg) ; 
F_IRMQ.push(msg) ; 

A.7.3.4 oneway void receiveMsgToCompareFromLeader(msg) 

This method is called by the leader application to forward a fleshly single­

signed message to the follower ECM queue to be later compared to the 

equivalent follower single-signed message from the follower ICM queue. 

Implementation: 

public void 
receiveMsgToCompareFromFollower(MessageBlock msg) 
{ 

F_ECMQ.push(msg) ; 

A.7.3.S oneway void receiveHeartBeatFromLeaderO 

In case there is no computation activity between the leader and the follower, 

the leader calls this method to remind the follower that it (leader) is still 

alive. 

Implirnentation: 

public void receiveHeartBeatFromLeader() 
{ 

this.heartBeat = System.currentTimeMillis(); 

112 



A.7.3.6 oneway void failFollowerSilentlyO 

This method is called whenever there is a discrepancy in value or timeout 

failures. It kills the current partner when called. Both the leader and follower 

can call this method. Before the object is killed, an application specific 

feedback has to be given either in the form of an exception or an 

appropriate method call to the system that is relying on V oltan. 

Implimentation: 

public void failFollowerSilently() 
{ 

System.out.println("ERROR MESSAGE TO APPLICATION"); 
System.out.println("DEACTIVATE CORBA OBJECTS"); 
System. exit (-1) ; 

A.8 Concluding remarks 

The new COREA Voltan, based on method calls, has proved to be a 

viable alternative to a pure C++ or Java Voltan initially based on threads 

and queues. The combination of oneway calls and callback methods has 

made the implementation of the new CORBA Voltan simple and 

efficient. The cost or overhead of the CORBA Voltan pairs is only 

approximately 7 milliseconds per message. That is if a computation takes 

t time to compute a message if the application un-replicated, it will take 

the same application t + 7 milliseconds in Voltanlreplicated version. The 

tests were carried out with each replica of the pair running on two 

different Windows 2000 Pentium workstations on the same LAN. 

Moreover, the CORBA Voltan opens a window for us into the many 

CORBA based systems, such as NewTOP, that assumes fail crash for 

their computational components. Further more, making distributed 

systems components fail-signal should alleviate the systems of their 

failure detection mechanisms. By so doing, the distributed system 

protocol latency "footprint" or overhead can be profoundly reduced. 

113 



A.9 Fail signalling IDL 

II voltan CORBA/Java 
II 
II (cl 03/03/02 16:10:15 (usa date) 
II 
II University of Newcastle upon Tyne 
II Computing Science Department 
II 
II module: Voltan.idl 
II author: Dimane Mpoeleng 

module Voltan 
( 

struct Control 
{ 

string sourceObjectName; 
string destinationObjectName; 
string targetObjectName; 
unsigned long long sequenceNumber; 
unsigned long long timestamp; 
long messageChecksum; 
long processorSignature1; 
long processorSignature2; 
long messageLength; 
long messageType; 
long numberOfSignatures; 

}; 

struct MessageBlock 
{ 

}; 

Control msgControl; 
string message; 

interface Replica 

string name; 
} ; 

interface FollowerReplica; 

typedef sequence<Replica> replicaList; 

interface LeaderReplica Replica 

II Receive msgs from follower and network 

void receiveConnectionFromFollower(in string objRef); 

oneway void receiveExternalMsg(in MessageBlock msg); 
oneway void receiveExternalMsgFromFollower(in MessageBlock msg); 
oneway void receiveMsgToCompareFromFollower(in MessageBlock msg); 
oneway void receiveHeartBeatFromFollower(); 

II Fail Leader Silently 

oneway void failLeaderSilently(); 

}; II LeaderReplica 

114 



interface FollowerReplica Replica 

II Receive msgs from leader and network 

oneway void receiveConnectionAckFromLeader(in long status); 

oneway void receiveExternalMsg(in MessageBlock msg); 
oneway void receiveExternalMsgFromLeader(in MessageBlock msg); 
oneway void receiveMsgToCompareFromLeader(in MessageBlock msg); 
oneway void receiveHeartBeatFromLeader(); 

II Fail Leader Silently. 

oneway void failFollowerSilently(); 

}; II FollowerReplica 

interface ReplicaFactory 
( 
Replica createReplicaObject(in string objectRef, in string role); 

} 

}; II Voltan module 

#endif 

115 



References 

[Amir95] Y . .L\mir, 'Replication using Group Communication over a Partitioned 

Network." PhD thesis, Institute of Computer Science, The Hebrew 

University of Jerusalem, Jerusalem, Israel, 1995. 

[BaldoniOO] R. Baldoni, J .-M. Helary, and M. Raynal. "From crash fault­

tolerance to arbitrary-fault tolerance: Towards a modular approach". 

In Proceedings of the International Conference on Dependable Systems and 

Networks, pp. 273-282, New York, NY USA, June, 2000. 

[Barrett90] P.A. Barrett, P.G. Bond, A.M. Hilborne, L. Rodrigues, D.T. Seaton, 

N.A. Speirs and P. Verissimo, "The Delta-4 Extra Performance 

Architecture (XPA) " , Digest of Papers, FTCS-20, Newcastle upon 

Tyne, pp.481-488, June 1990. 

[Bazzi01] R. A. Bazzi. "Access cost for asynchronous Byzantine quorum 

systems." Distributed Computing Journal volume 14, Issue 1, pp. 41-48, 

January 2001. 

[Beauquier97] J Beauquier and S Kekkonen-Moneta. "Fault-tolerance and self­

stabilization: impossibility results and solutions using self-stabilizing 

failure detectors." International Journal of System Science, 28(11), 

pp.1177-1187, 1997. 

116 



[Bellare93] M. Bellare, and P. Rogaway. "Entity authentication and key 

distribution." In Crypto 93, USA, IEEE Computer Society Press, pp. 

232-249, 1993. 

[Bellare96] M. Bellare, R. Canettiy and H. Krawczykz, "Keying Hash Functions 

for Message Authentication", Advances in Cryptology, Crypto 96 

Proceedings, Lecture Notes in Computer Science Vol. 1109, N. 

Koblitz ed., Springer-Verlag, 1996. 

[Birman93] K. P. Birman. "The Process Group Approach To Reliable 

Distributed Computing", Communications oj the ACM, 36(12), pp. 37-

52, 1993. 

[Birman94] K. P. Birman, and R.V. Renesse. "Reliable Distributed Computing 

with the Isis Toolkit." IEEE Computer S ociery Press, USA, 1994. 

[Birman96] K. P. Birman, Building Secure and Reliable Network Applications, 

Manning, 1996 

[Birman99] K. P. Birman. "A review of experiences with reliable multicast." 

Software, Practice and Experience, 29(9) p741-774, Sept 1999. 

[Black98] D. Black, C. Low and S. K. Shrivastava, "The Voltan Application 

Programming Environment for Fail--Silent Processes", Distributed 

Systems Engineering, vol. 5,pp. 66-77, June 1998. 

[Bracha95] G. Bracha and S. Toueg. "Asynchronous Consensus and Broadcast 

Protocols." Journal ojthe ACM, 32(4), 1995. 

117 



[Brasileiro96] F. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava, N. Speirs 

and S. Tao, "Implementing fail-silent nodes for distributed 

systems", IEEE Transactions on Computers, 45(11), pp. 1226-1238, 

November 1996. 

[Castro99a] M. Castro and B. Liskov. "A Correctness Proof for a Practical 

Byzantine-Fault-Tolerant Replication Algorithm". Technical Memo 

MIT/LCS/TM-590, MIT Laboratory for Computer Science, 1999. 

[Castro99b] M. Castro and B. Liskov. "Authenticated Byzantine fault tolerance 

without public-key cryptography." Technical Report /LCS/TM-595, 

MIT, 1999. 

[Castro99c] M. Castro and N. Liskov. "Practical Byzantine fault tolerance." In 

Proceedings of the Third Symposium on Operating Systems Design and 

Implementation (OSDI '99), New Orleans, USA, pp. 173-186, February 

1999. 

[CastroOO] M. Castro and B. Liskov. "Proactive recovery in a Byzantine fault­

tolerant system." In Proceedings of the Fourth Symposium on Operating 

Systems Design and Implementation (OSDI '00), San Diego, USA, pp. 

273-287, October 2000. 

[Chandra91] T. D. Chandra and S. Toueg, "Unreliable Failure Detectors for 

Asynchronous Systems", Proceedings of the Tenth Annual ACM 

Symposium on Principles of Distributed Computing, pp. 325-340, ACM, 

August 1991. 

118 



[Chandra96] T. D. Chandra and S. Toueg, "Unreliable Failure Detectors for 

Reliable Distributed Systems ", Journal of the ACAl, 43(2), pp. 225 -

267, March 1996. 

[Chandra98] S. Chandra and P. Chen, "How fail-stop are faulty programs?", 

Proc. of Fault tolerant Computing Symp., FTCS-28, June 1998, pp. 

240-249. 

[Chandy85] K. M. Chandy and L. Lamport. "Distributed snapshots: 

determining global states of distributed systems." ACM Transations 

on Computing Systems, 3(1) pp.63-75, 1985. 

[Charron-BostOO] B. Charron-Bost, Rachid Guerraoui, and Andr' e Schiper. 

"Synchronous system and perfect failure detector: Solvability and 

efficiency issues." In International Conference on Dependable Systems and 

Networks (IEEE Computer S ociery), 2000. 

[Chase98] C. M. Chase and K. G. Vijay. "Detection of global predicates: 

Techniques and their limitations." Distributed Computing, 11(4) 

pp.191-201, 1998. 

[Cristian85] F. Cristian, H. Aghili, H. Strong, and D. Dolev. "Atomic Broadcast: 

From Simple Message Diffusion to Byzantine Agreement." In 

International Cotiference on Fault Tolerant Computing, 1985. 

[Cristian91a] F. Cristian, "Understanding Fault-Tolerant Distributed Systems", 

Communications of the ACM, 34(2), February 1991. 

119 



[Cristian91b] F. Cristian, "Reaching Agreement On Processor Group 

Membership In Synchronous Distributed Systems", Distributed 

Computing, 4(4), pp. 175 - 187, 1991. 

[Cristian99] F. Cristian and C. Fetzer, "The Timed Asynchronous Distributed 

System Model", In IEEE Transactions on Parallel and Distributed 

Systems, Vol. 10 (6), pp. 642-57, June 1999. 

[Cukier98] M. Cukier, J. Ren, C. Sabnis, D. Henke, J., "AquA: An Adaptive 

Architecture that provides Dependable Distributed Objects", 

Proceedings 17th IEEE Symposium on Reliable Distributed Systems, West 

Lafayette, Indiana, USA, October 1998, pp.245-253. 

[CukierOl] M. Cukier,]. Lyons, P. Pandey, H. V. Ramasamy, W. H. Sanders, P. 

Pal, F. Webber, R. Schantz,]. Loyall, R. Watro, M. Atighetchi, and]. 

Gossett, "Intrusion Tolerance Approaches in ITUA," FastAbstract 

in Supplement of the 2001 International Conference on Dependable Systems 

and Networks, pp. B64-B65, 2001 

[Deepak96] T. D. Chandra and S. Toueg. "Unreliable failure detectors for 

reliable distributed systems". Journal of the ACM, 43(2) pp.225-267, 

March 1996. 

[DeMilio82] R. DeMilio, N. Lynch and M. Merritt. "Cryptographic Protocols" 

Proc. 14th ACM Symposium on the Theory of Computing, 1982. 

120 



[Dolev82] D. Dolev and H. R. Strong. "Polynomial Algorithms for Multiple 

Processor Agreement". Proc. I-I-th ACM Symposium on the Theory of 

Computing, pp.401-407, 1982. 

[Dolev87] D. Dolev, C. Dwork, and L. Stockmeyer "On the Minimal 

Synchronization Needed For Distributed Consensus", Journal of the 

ACM, 34(1), pp. 77 - 97, January 1987. 

[Dolev93] D. Dolev, S. Kramer, and D. Malki, "Early Delivery Totally Ordered 

Multicast in Asynchronous Environment", Digest of Papers, 1-'iCS-23, 

Toulouse, p544-553, 1993. 

[Dolev95] D. Dolev., D. Malki, and R. Strong. "A. framework for partitionable 

membership service." Technical Report 954, Institute of Computer 

Science, The Hebrew University of Jerusalem, March 1995. 

[DolevOO] S. Dolev. "Self-Stabilization." MIT Press, 2000. 

[Dwork88] C. Dwork, N. Lynch, L. Stockmeyer, "Consensus in The Presence 

of Partial Synchrony", Journal of the ACM, 35(2), pp. 288 - 323, April 

1988. 

[Ezhilchelvan95] P. Ezhilchelvan, R. A. Macedo, S. K. Shrivastava "NewTOP: a 

fault-tolerant group communication protocol", 15th IEEE IntI. Conj 

on Distributed Computing Systems, Vancouver, pp. 296-306, May 1995. 

[Ezhilchelvan01] P. D. Ezhilchelvan, A Mostefaoui, and M Raynal, 

"Randomized Multivalued Consensus", In Proceedings of the Fourth 

121 



International IEEE Symposium on 0l?ject oriented Real-time Computing 

(ISORC), Magdeburg, Germany, pp. 195-201, May 2001. 

[Ezhilchelvan02] P D Ezhilchelvan, "A Middleware Architecture for 

Intrusion Tolerant Service Replication", In Proceedings of the 

International Workshop on Intrusion Tolerant Systems, pp. C61 - C67, In 

association with IEEE International Conference on Dependable 

Systems and Networks (DSN02), Washington, DC, June 23 - 26, 

2002. 

[Felber98a] P. Felber, R. Guerraoui and A. Schiper, "The implementation of a 

CORBA object group service", Theory and Practice of Ol?ject Systems, 

4(2),1998, pp. 93-105. 

[Felber01] P. Felber and F. Pedone. "Probabilistic atomic broadcast". Technical 

report, Bell Labs, Lucent, Dec. 2001. 

[FelixOO] F. C. Gartner and S. Kloppenburg. "Consistent detection of global 

predicates under a weak fault assumption". In Proceedings of the 19th 

IEEE Symposium on Reliable Distributed Systems (SRDS2000), pp. 94-

103, N"urnberg, Germany, October 2000. IEEE Computer Society 

Press. 

[Fetzer96] Christof Fetzer , Flaviu Cristian, "Fail-awareness in timed 

asynchronous systems", Proceedings of the fifteenth annual ACM 

!Jmposium on Principles of distributed computing, p.314-321, Philadelphia, 

Pennsylvania, United States, May 23-26, 1996. 

122 



[Fischer82] 1\1. J. Fischer and N.A. Lynch. "A Lower Bound on the Time to 

i\ssure Interactive Consistency". Information Processing Letters 14, pp. 

183-186, 1982. 

[Fischer83] M. Fischer, "The Consensus Problem in Unreliable Distributed 

Systems", Proceedings of the International Conference on Foundations of 
Computing Theory, Sweden, 1983. 

[Fischer85] MJ. Fischer, N.A. Lynch, and M.S. Paterson, "Impossibility of 

Distributed Consensus with one faulty Process," Journal of the ACM, 

Vol. 32, No.2, pp. 374-382, April 1985. 

[Fischer86] 1\1. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility 

proofs for distributed consensus problems. Distributed Computing, 1, 

pp. 26-39, 1986. 

[Fuchs97] E. Fuchs, "Validating the Fail-Silence Assumption of the MARS 

Architecture", Sixth IFIP Conj on Dependable Computing for Critical 

Applications (DCCA-6), Germany, March 1997. 

[Garcia-Molina91] H. Garcia-Molina, "Ordered and Reliable Multicast 

Communication", ACM Transactions on Computing Systems, Vol. 9, No. 

3, pp. 242-271, August 1991 

[GoldreichOO] O. Goldreich. "Secure multi-party computation", Working draft, 

version 1.2, March 2000. 

123 



[GuptaOO] Gupta, 1., Renesse, R. v., and Birman, K. P. "A probabilistically 

correct leader election protocol for large groups." TR, Department oj 

Computer Science, University of Cornell, 2000. 

[Hadzilzcos93] J. Y. Hadzilzcos and S. Toueg, "Fault-Tolerant Broadcasts and 

Related Problems", ACM Press Frontier, Addison-Wesley, Chapter 5, 

pp. 97-145, 2nd edition, 1993. 

[Halpern84] J.Y. Halpern, B. Simons, H.R. Strong and D. Dolev, "Fault-tolerant 

Clock Synchronization", Proc. Third ACM Symp. on PODC, 

Vancouver, Canada, pp.89-102, August 1984. 

[Krishnamurthy02] S. Krishnamurthy, "An Adaptive Quality of Service Aware 

Middleware for Replicated Services", Ph.D. Thesis, Cniversity of 

Illinois, 2002 

[Kiishnamurthy03] S. Krishnamurthy, W. H. Sanders, and M. Cukier. "/\n 

Adaptive Quality of Service Aware Middleware for Replicated 

Services", IEEE Transactions on Parallel and Distributed Systems, vol. 14, 

no. 11, pp. 1112-1125, November 2003. 

[KloppenburgOO] S. Kloppenburg and F. C. Gartner, "Consistent detection of 

global predicates in asynchronous systems with crash failures", 

TUD-BS-2000-01, Darmstadt, Germany, 2000. 

[Lamport78] L. Lamport, "Time Clocks and The Ordering Of Events in a 

Distributed System", Communications oj The ACM, 21(7), pp. 558 -

565,1978. 

124 



[Lamport82] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals 

Problem", ACM Transactions on Programming Languages and Systems, 4 

(3), pp.382-401, 1982. 

[Lamport83] L. Lamport. "The weak Byzantine generals problem." Journal of the 

ACM, 30(3) pp.668-676, July 1983. 

[I.i93] P. Li and B. McMillin. "Fault-tolerant distributed deadlock 

detection/resolution." In Proceedings of the 17th Annual International 

Computer S oJtware and Applications Conference (COMP SAC'9 3), pp. 224-

230, November 1993. 

[Lotem97] E. Y. Lotem, 1. Keidar and D. Dolev. "Dynamic Voting for 

Consistent Primary Components", In Proceedings of the ACM 

Symposium on Principles of Distributed Computing (PODC), pp. 63-71, 

1997. 

[Malkhi97a] D. Malkhi and M. Reiter. "Byzantine Quorum Systems." In ACM 

Symposium on Theory of Computing, 1997. 

[Malkhi98a] D. Malkhi and M. Reiter, "Byzantine Quorum Systems", Distributed 

Computing, 11 (4), pp.203-213, 1998. 

125 



[Malkhi98b] D. Malkhi and M. Reiter. "Secure and scalable replication in 

Phalanx." In Proc. 17th IEEE Symposium on Reliable Distributed Systems, 

West Lajqyette, Indiana, USA, Oct 1998. 

[MalkhiOO] D. Malkhi, M. Reiter, and A.Wool. "The load and availability of 

Byzantine quorum systems." SL4M Journal on Computing 29(6), pp. 

1889-1906,2000. 

[MatsuiOO] H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. "Fault-tolerant 

and self-stabilizing protocols using an unreliable failure detector." 

IEICE Transactions, E83-D(10) pp.1831-1840, October 2000. 

[McDaniel99] McDaniel, P. D., Prakash, A, and Honeyman, P. "Antigone: A 

Flexible Framework for Secure Group Communication." In 

Proceedings ojthe 81h USENIX Securiry Symposium, Berkely USA, Usenix 

society, August 1999. 

[Melliar-Srnith91] P. M. Melliar-Srnith, "Membership Algorithms for 

Asynchronous Distributed Systems", Proc. OJ 12th Inti. Con] On 

Distributed Compo Systems, p 480-488, 1991. 

[Melliar-Srnith94] P. M. Mellier-Srnith, L. E. Moser, Y. Arnir, and D. A. 

Agarwal, "Extended Virtual Synchrony", Proceedings oj the 14th IEEE 

International Conference on Distributed Computing Systems, Poland, pp. 56 

- 65, 1994. 

[Mittra97] S. Mittra. "lolus: A framework for scalable secure multicasting." In 

SIGCOMM, New York, US/\., ACM press. September 1997. 

126 



[MorganOOa] G. Morgan and S. K. Shrivastava, "Implementing Flexible Object 

Group Invocation in Networked Systems", in the Proceedings oj the 

International Conference on Dependable Systems and Networks, New York, 

June 2000. 

[l'vlorganOOb] G. Morgan and P. D. Ezhilchelvan, "Policies for using Replica 

Groups and their Effectiveness over the Internet", The second 

International Workshop on Networked Group Communications, Stanford, 

November, pp. 119-130,2000. 

[Moser94] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal, 

"Extended virtual synchrony," in Proceedings oj the IEEE 14th 

International Conference on Distributed Computing Systems, pp. 56-65, 

IEEE Computer Society Press, Los Alamitos, CA, June 1994. 

[Moser96] L. E. Moser, P.M. Melliar-Smith D. Agarwal, R. Budhia and 

C.Ungley-Papdopoulous, "Totem: a Fault-tolerant multicast group 

communication system",CACM, 39 (4), April 1996, pp. 54-63. 

[Nancy96] N. Lynch. "Distributed Algorithms." Morgan Kaufmann Publishers, 

1996. 

[Narasimhan99b] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, "Using 

Interceptors to Enhance CORBA", IEEE Computer, pp. 62-68, July 

1999. 

127 



[NarasimhanOO] P. Narasimhan, L. E. Moser and P. 1\1. Melliar-Smith "The , 

Eternal System", In Enryclopedia of Distributed Computing, edited by P. 

Dasgupta and J. E. Urban, I<Juwer Academic Publishers (2000). 

[OMGOO] OMG Technical Committee Document ptc/00-04-04, Object 

Management Group, March 2000. 

[pandeyO 1] P. Pandey, "Reliable Delivery and Ordering Mechanisms for an 

Intrusion-Tolerant Group Communication System," .\JS Thesis, 

University of Illinois at Urbana-Champaign, 2001 

[pease80] M. Pease, R. Shostak, and L. Lamport. "Reaching agreement in the 

presence of faults." Journal of the ACM, 27 (2) pp.228-234, Apr. 1980. 

[pedone02] Pedone A., Schiper A., Urban P, Cavin D, "Solving Agreement 

Problems with Weak Ordering Oracles", Technical Report HPL-2002-

44, Hewlett-Packard Laboratories, March 2002. 

[Ramasamy02] H. V. Ramasamy, "Group Membership Protocol for an 

Intrusion-Tolerant Group Communication System," MS Thesis, 

University of Illinois at Urbana-Champaign, 2002. 

[Reiter94a] M. K. Reiter. "Secure agreement protocols: Reliable and atomic 

group multicast in rampart." In ACM Conference on Computer and 

Communication Security, pp. 68-80, New York, USA, November 1994. 

128 



[Reiter94b] M. K. Reiter, K. P. Birman, and R.V. Renesse, "A security 

architecture for fault-tolerant systems." ACM Transactions on 

Computer Systems, 16(3) pp.986-1009, November 1994. 

[Reiter94c] M. Reiter. "Secure Agreement Protocols." In ACM Conference on 

Computer and Communication Security, 1994. 

[Reiter94d] Michael K. Reiter, "A Secure Group Membership Protocol," 

Proceedings if the IEEE Symposium on fusean·h in Security and Privary, pp. 

176-189,1994. 

[Reiter95] M. Reiter. The Rampart Toolkit for Building High-Integrity Services. 

Theory and Practice in Distributed Systems (LNCS 938), 1995. 

[Renesse96] Renesse, R.V., Birman, K.P., and Maffeis, S. "Horus, a flexible 

group communication system." Communications of the ACM, 39(4) 

pp.76-83, April 1996. 

[Schiper93] A. Schiper and A. Ricciardi, ''Virtual Sunchronous Communication 

Based on a Weak Failure Suspector", Digest if Papers, FTCS-23, 

Toulouse, pp. 534-543, 1993. 

[Schiper02] A. Schiper, "Failure Detection vs Group Membership in Fault­

Tolerant Distributed Systems: Hidden Trade-Offs" PAPM­

PROBMIVpp. 1-152002. 

129 



[Schlichting83] R. Schlichting and F. Schneider, "Fail-Stop Processors: An 

Approach to Designing Fault-Tolerant Computing Systems", ACM 

Transactions on Computer Systems, Vol. 1 (3), pp. 222-238, August 1983. 

[Schneider84] F. Schneider, "Byzantine Generals in Action: Implementing 

Fail-Stop Processors," ACM Transactions on Computer Systems, Vol. 

2(2), pp. 145-154, May 1984. 

[Schneider90] F. Schneider, "Implementing Fault-Tolerant Services Using the 

State l\fachine Approach: £\ Tutorial," AC\I ComputingSurveyJ, Vol. 

22, No.4, 1990. 

[Schwarz94] R. Schwarz and F. Mattern. "Detecting causal relationships in 

distributed computations: in search of the holy grail." Distributed 

Computing, 7, pp. 149-174, 1994. 

[Shah84] "~. Shah and S. Toueg. "Distributed snapshots in spite of failures." 

Technical fuport TR84-624, Cornell University, Computer Science 

Department, July 1984. 

[Stott01] D. T. Stott, N. A. Speirs, Z. Kalbarczyk, S. Bagchi, J. Xu, and R.K. 

Iyer, "Comparing Fail Silence Provided by Duplication versus 

Internal Error Detection for DHCP Server", IEEE 15
11

• Int. 

Symposium on Parallei and Distributed Processing, San Francisco, April 

2001. 

130 



[Sullivan91] M. Sullivan and R. Chillarege, "Software defects and their impact 

on system availability - a study of field failure in operating systems", 

Proc. of Fault tolerant Computing Symp., FTCS-21, June 1991, pp. 

2-9. 

[Ver'lssimoOO] P. Ver'lssimo, A. Casimiro, and C. Fetzer. "The timely 

computing base: Timely actions in the presence of uncertain 

timeliness." In Proceedings of the International Conference on Dependable 

Systems and Networks, pp. 533-542, New York City, USA, IEEE 

Computer Society Press,June 2000. 

[Ver'lssimoOO] P. Ver'lssimo, N. F. Neves, and M. Correia, "The Middleware 

Architecture of MAFTIA: A Blueprint," Technical Report DI/FCUL 

TR 00-6, Department of Computer Science, University of Lisbon, 

2000. 

[Verissimo02] P. Verissimo and A. Casimiro, "The Timely Computing Base 

Model and Architecture", IEEE Transaction on Computing Systems, 

51(8), pp. 916-930,2002. 

[Verissimo03] P. Verissimo, "Uncertainty and predictability: Can they be 

reconciled?", Future Directions in Distributed Computing, Springer­

Verlag LNCS 2584, (To appear in) 2003. 

[Vijay98a] K. G. Vijay and J. R. Mitchell. "Distributed predicate detection in a 

faulty environment." In Proceedings of the 18th IEEE International 

Conference on Distributed Computing Systems (ICDCS98), 1998. 

131 



[Vijay98b] K. G. Vijay and J. R. Mitchell. "Implementable failure detectors in 

asynchronous systems." In Proc. 18th Conference on Foundations oj 

Software Technolo!!JI and Theoretical Computer Science, number 1530 in 

Lecture Notes in Computer Science, Springer-Verlag, Chennai, 

India, December 1998. 

132 



Bibliography 

[Agarwal94] D. A. Agarwal, "Totem: A Reliable Ordered Delivery Protocol for 

Inter-connected Local Area Networks", PhD Thesis, Department oj 

Electrical and Computing Engineering, University of California, Santa 

Barbara, 1994. 

[Alpern85] B. Alpern and F. B. Schneider. "Defining liveness". Information 

Processing Letters, 21, pp. 181-185,1985. 

[AlvisiOO] L. Alvisi, D. Malkhi, E. Pierce, and R. Wright. "Dynamic Byzantine 

quorum systems." In Proceedings oj the International Conference on 

Dependable Systems and Networks, June 2000. 

[ArnirOO] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. 

Schlossnagle, J. Schultz, J. Stanton, and G. Tsudik, "Secure group 

communication in asynchronous networks with failures: Integration 

and experiments." In International Conference on Distributed Computing 

Systems, IEEE Computer Society Press, USA, April 2000. 

[Amir92] Y. Amir, D. Dalev, S. Kramer, and D. Malki. "Transis: A 

Communication Sub-System for High Availability." In FTCS 

conference, USA, IEEE Computer Society Press. 

http://www.cs.huji.ac.il/_transis. pp. 76-84, July 1992. 

133 



[Amir98] Y. l\mir and J. Stanton, "The spread wide area group communication 

system," Tech. Rep. 98-+, Johns Hopkins University Department of 

Computer Science, 1998. 

[Arlat90] J. M. Arlat, L. Aguera, Y. Amat, J.C Crouzet, J.C Fabre, E. Laprie, 

D. Martins, D. Powell, "Fault Injection for Dependability 

Validation: a Methodology and Some Applications", IEEE Trans. on 

Soft. Eng., 16 (2), pp. 166-182, February 1990. 

[Babaoglu94] O. Babaoglu, R. Davoli, L. Giachini, M. G. Baker, "Relacs: a 

communications Infrastructure for Constructing Reliable 

Applications in Large-Scale Distributed Systems", BROADCAST 

Prqjed deliverable report (available from Dept. of Computing Science, 

University of Newcastle upon Tyne, UK). 

[Babauglu94] O. Babaoglu and A. Schiper, "On Group Communications in 

Large-Scale Distributed Systems", Proceedings if the 6th ACM SIGOP S 

European Workshop, pp. 17 - 22, Germany, 1994. 

[BazziOO] R. A. Bazzi. "Synchronous Byzantine quorum systems." Distributed 

ComputingJournal Volume 13, Issue 1, pp. 45-52, January 2000. 

[Bennett84] C H. Bennett and G. Brassard. "An update on quantum 

cryptography." In G. R. Blakley and D. Chaum, editors, Advances in 

Cryptology: Proceedings if CRYPTO 84, volume 196 of Lecture Notes in 

Computer Science, pp. 475-480. Springer-Verlag, 1985, 19-22 August 

1984. 

134 



[Birman87] K. P. Birman and T. Joseph, "Exploiting virtual synchrony in 

distributed systems," in 11 tlJ Annual Symposiumon Operating Systems 

Principles, pp. 123-138, November 1987. 

[Birman91] K. Birman, "Design Alternatives for Process Group Membership 

and Multicast", Technical Report TR!J1-1257, Department of 

Computing Science, Cornell University, December 1991. 

[Burns87] J. E. Burns and N. A. Lynch. "The Byzantine firing squad problem." 

In F. P. Preparata, editor, Advances inComputing Research, Parallel and 

Distributed Computing, volume 4, JAI Press, Inc., Greenwich, Conn., 

pp. 147-161, 1987. 

[Canneti92] R. Canneti and T. Rabin. "Optimal Asynchronous Byzantine 

Agreement". Technical Report #92-15, Computer Science 

Department, Hebrew University, 1992. 

[Charron-Bost95] B. Charron-Bost, C. Delporte-Gallet, and Hugues 

Fauconnier. "Local and temporal predicates in distributed systems." 

ACM Transactions on Programming Languages and Systems, 17(1) pp.157-

179, January 1995. 

[Coan89] B. A. Coan, D. Dolev, C. Dwork, and L. Stockmeyer. "The 

distributed firing squad problem. SIAM Journal on Computing, 18(5) 

pp.990-1012, Oct. 1989. 

135 



[Cristian96a] F. Cristian, "Synchronous and Asynchronous Group 

Communications", Communications oj The ACM, 39(4), pp. 88 - 97, 

1996. 

[Cristian96b] F. Cristian, B. Dancey, and J Dehn, "Fault-Tolerance in Air 

Traffic Control Systems", ACM Transactions on Computer Systems, Vol 

14, No.3, pp.265-286, August 1996. 

[Diffie76] \'V
r 

Diffie. And M. Hellman. "New directions in cryptography." 

IEEE Transactions on information Theory, IT-22:644--654, November 

1976. 

[Dolev83] D. Dolev and H. R. Strong. "Authenticated algorithms for Byzantine 

agreement." SIAM Journal on Computing, 12(4) pp.656-666, 1983. 

[Dolev96] D. Dolev and D. Malkhi, "The Transis Approach to High 

Availability Cluster Communication", Communications oj the ACM, 

Vol. 39, No.4, pp. 64-74, April 1996. 

[Ezhilchelvan01] P D Ezhilchelvan, i\ Mostefaoui, and 1\1 Raynal, 

"Randomized Multivalued Consensus", In Proceedings oj the Fourth 

International IEEE Symposium on Olject oriented &al-time Computing 

(ISORC), May 2001, Magdeburg, Germany, pp. 195-201. 

[Ezhilchelvan86] P. Ezhilchelvan and S. K. Shrivastava, "A characterization of 

faults in systems." Proc. oj 5th IEEE Symp. on &liabili!J in Distributed 

Software and Database Systems, Los Angeles, pp. 215-222, January 

1986. 

136 



[Ezhilchelvan89] P. D. Ezhilchelvan, S. K. Shrivastava and A. Tully, 

"Constructing Replicated Systems Using Processors \\'ith Point to 

Point Communication Links", The Proceedings oj 16th Annual 

Symposium on Computer Architedure, Jerusalem, pp.177-184, June 1989. 

[Ezhilchelvan91] P. D. Ezhilchelvan and S. K. Shrivastava, "j-\ Distributed 

Systems Architecture Supporting High Availability and Reliabilitv', 

Prot: oj 2nd IHP Con] on Dependable Computingfor Critical Applications, 

Arizona, February 1991. 

[Ezhilchelvan99] P. Ezhilchelvan and S. K. Shrivastava, "Enhancing Replica 

Management Services to Tolerate Group Failures", Proceedings oj the 

second International Symposium on Oo/ect oriented Real-time Computing 

(ISORC), St Malo, France, May 1999. 

[Fekete97] A Fekete, N. Lynch, and A Shvartsman, "Specifying and using a 

partionable group communication service," In Proceedings oj the 16th 

annual ACM Symposium on Prinaples oj Distributed Computing, (Santa 

Barbara, CA), pp. 53-62, August 1997. 

[Felber98b] P. Felber, "The CORBA Object Group Service: a Service 

Approach to Object Groups in CORBA", PhD thesis, Ecole 

Poly technique Federale de Lausanne, 1998. 

[Feldman97] P. Feldman and S. Micali. ".l\n optimal probabilistic protocol for 

synchronous Byzantine agreement." SIAAJ Journal on Computing, 

26(4) pp.873-933, Aug. 1997. 

137 



[Fitzi01] M. Fitzi, N. Gisin, and U. Maurer. "Quantum solution to the 

Byzantine agreement problem." Plrysical Review Letters, 87(21), Nov. 

2001. 

[Fitzi02a] M. Fitzi, N. Gisin, U. Maurer, and O. von Rotz. "l'nconditional 

Byzantine agreement and multi-party computation secure against 

dishonest minorities from scratch." In Advances in Cryptology, 

EUROCRYPT 2002, Lecture Notes in Computer Science, 2002. 

[Fitzi02b] M. Fitzi, D. Gottesman, M. Hir, H. Holenstein, A. Smith, 

"Detectable Byzantine agreement secure against faulty majorities", 

ACM Press, Monterey, California, pp.118 -126, 2002. 

[Garay98] J. Garay and Y. Moses. "Fully Polynomial Byzantine Agreement for n 

3t Processors in t+l Rounds." SL4M Journal of Computing, 27(1), 

1998. 

[Goldwasser02] S. Goldwasser and Y. Lindell. "Secure computation without a 

broadcast channel." http://eprint.iacr.org/2002/040.ps, j\pr. 2002. 

[Gong95] L. Gong, P. Lincoln, and J. Rushby. "Byzantine agreement with 

authentication: Observations and applications in tolerating hybrid 

and link faults," 1995. 

[GottesmanOl] D. Gottesman and I. Chuang. "Quantum digital signatures." 

Manuscript, 2001. 

[GutmannOl] P. Gutmann, "Cryptlib Security Toolkit," .\pril2001 

138 



[Hardjono99] T. Hardjono, B. Cain, and N. Doraswamy. "A framework for 

group key management for multicast security." Technical Report draft­

ietf-ipsecgkmframework-01.txt, IETF, Network security subworking 

Group, 1999. 

[Hamey97a] H. Harney, and C. Muckenhim. "Group key management protocol 

architecture." RFC 2094, IETF, 1997. 

[Hamey97b] H. Harney and C. Muckenhirn. "Group key management protocol 

specification." RFC 2093, IETF, 1997. 

[HaydenOl] M. Hayden, "Ensemble Reference Manual," Cornell University, 

2001 

[HiltunenOO] M. A. Hiltunen, S. Jaiprakash, R. D. Schlichting, R. D., and C. A. 

Ugarte, C. A. "Finegrain configurability for secure communication." 

Technical Report TROO-05, Department of Computer Science, 

University of Arizona, June 2000. 

[Hiltunen96] Hiltunen, M. A. and Schlichting, R. D. "Adaptive distributed and 

fault tolerant systems." International Journal if Computer Systems Science 

and Engineering, 11 (5) pp.125-133, September 1996. 

[Kihlstrom98] K. P. I<.ihlstrom, L. E. Moser, and P. M. Melliar-Smith, "The 

SecureRing Protocols for Securing Group Communication," 

Proceedings if the 31st IEEE Hawaii International Conference on System 

Sciences, pp.317-326, 1998 

139 



[KimOO] Y. Kim, A Perrig, and G. Tsudik. "Simple and fault-tolerant key 

agreement for dynamic collaborative groups." In 7th ACM Conference 

on Computer and Communication Securiry, New York, l'S"\, November 

2000. ACM press. 

[Lala91] J. H. Lala, R .. E. Harper, and L. S. Alger, ".A Design Approach for 

Ultrareliable Real Time Systems", IEEE Computer, pp.12-22, l\Iav 

1991. 

[Lamport77] L. Lamport. "Proving the correctness of multiprocess programs." 

IEEE Transactions on Software Engineering, 3(2) pp.125-143, March 

1977. 

[Lamport86] L. Lamport. "On interprocess communications." Distributed 

Computing, pp. 77-101, 1986. 

[Lamport89] L. Lamport. "The Part-Time Parliament." Technical Report 49, DEC 

Systems Research Center, 1989. 

[Lamport95] L. Lamport. "How to write a proof." American Mathematical 

MonthlY, 102(7) pp.600-608, August/September 1995. 

[Lindell02] Y. Lindell, A. Lysyanskaya, and T. Rabin. "On the composition of 

authenticated byzantine agreement." In ACM Symposium on Theory oj 

Computing (STOC '02), 2002. 

140 



[Little9Z] M. C. Little, "Object Replication in a Distributed S\"stem" PhD , , 

Thesis, University of Newcastle upon Tyne, 199Z. 

[Little99] M. C. Little, S. K Shrivastava, "Implementing high availability 

CORBA applications with Java", Proceedings of the IEEE Workshop on 

Internet Applications, San Jose, California, June 1999. 

[Macedo95] R. J. De A. Macedo "Fault-Tolerant Group Communication 

Protocols For Asynchronous Systems", PhD Thesis, Department of 

Computing Science, University of Newcastle upon Tyne, 1995. 

[Malkhi96] D. Malkhi and M. Reiter. "A High-Throughput Secure Reliable 

Multicast Protocol". In Computer S ecuri(y Foundations Workshop, 1996. 

[Malkhi97b] D. Ma1khi and M. Reiter. "Unreliable Intrusion Detection in 

Distributed Computations." In Computer Securi(y Foundations 

Workshop, 1997. 

[Matt01] B. Matt, B. Niebuhr, D. Sames, G. Tally, Brent \V'hitmore, and David 

Bakken, "Intrusion Tolerant CORB.,\ Architectural Design," 

Technical Report 01-007, NAI Labs, ZOO1. 

[Mellier-Smith97] P. M. Mellier-Smith, P. Narasimhany, L E Moserz. "Replica 

Consistency of CORBA Objects in Partitionable Distributed 

Systems", Distributed Systems Engineering, p 139-150, 1997 

141 



[Mishra93] S. Mishra, L. Peterson and R. D. Schlichting, "Consul: i\ 

Communications Substrate for Fault-Tolerant Distributed 

Programs", Distributed Systems Engineering, pp. 87-103, 1993. 

[Morgan99] G. Morgan, S. K. Shrivastava, P. D. Ezhilchelvan and M.e. Little , 

"Design and implementation of a CORBA fault-tolerant object 

group service", Proceedings of the conference on Distributed Applications and 

Interoperable Systems, 1999. 

[Mpoeleng03] D. Mpoeleng, P. D. Ezhilchelvan and N. A.Speirs. "From Crash 

Tolerance to Authenticated Byzantine Tolerance: a Structured 

Approach, the Cost and Benefits", In Proceedings of the 2003 IEEE 

International Conference on Dependable Systems and Networks (DSN '03), 

San Francisco, California, USA, 22-25 June 2003 pp. 227-236 IEEE 

Computer Society Press 2003. 

[Narasimhan97] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, "Replica 

Consistency of CORBA Objects in Partitionable Distributed 

Systems", Distributed Systems Engineering (4), pp. 139-150, 1997. 

[Narasimhan99a] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. 

Melliar-Srnith, "Providing support for survivable corba applications 

with the immune system," in Proceedings of the 19th IEEE International 

Conference on Distributed Computing Systems, (Austin, TX), pp. 507-516, 

May 1999. 

142 



[ptzmann96] B. Ptzmann and M. Waidner. "Information-theoretic pseudo­

signatures and Byzantine agreement for t >= n=3." Research report, 

IBM Research, Nov. 1996. Submitted for Publication. 

[powell88] D. Powell, G. Bonn, D. Seaton, P. Verissimo and F. Waeselynck, 

"The Delta-4 Approach to Dependability in Open Distributed 

Computing Systems", Digest of Papers, FrCS-18, Tokyo, pp. 246-251, 

June 1988. 

[Reiter96] M. K. Reiter, "Distributing trust with the rampart toolkit," 

Communications of the ACM, vol. 39, pp. 71-74, Apr. 1996. 

[Reiter96] M. Reiter. "A Secure Group Membership Protocol." IEEE 

Transactions on Software Engineering, 22(1), 1996 

[Renesse97] Renesse, R.V., Birman, K. P., Hayden, M., Vaysburd, i\., and Karr, 

D. "Building adaptive systems using ensemble." TR 97-1638, 

Cornell University, July 1997. 

[Rivest78] R. Rivest, A. Sharnir, and L. Adleman. "A Method for Obtaining 

Digital Signatures and Public-Key Cryptosystems." Communications of 

the ACM, 21(2), pp.120-126, 1978. 

[Rivest92] R. Rivest. "The MD5 Message-Digest Algorithm." Internet RFC-1321, 

1992. 

143 



[RodehOOa] O. Rodeh, K. P. Binnan and D. Dolev. "Optimized group rekey for 

group communication systems." In Symposium on Network and 

Distributed System Security, USA, Internet Society. Febuary 2000. 

[RodehOOb] 0 Rodeh, K. P. Binnan, and D. Dolev, "A study of group 

rekeying." Technical Report TR2000-1791, Cornell University 

Computer Science, March 2000. 

[Rodeh98] O. Rodeh, K. Binnan, M. Hayden, Z. Xiao, and D. Dolev, 

"Ensemble security," Tech. Rep. TR98-1703, Cornell University, 

Department of Computer, 1998. 

[Rodrigues01] R. Rodrigues, M. Castro, and B. Liskov. "BASE: Using 

abstraction to improve fault tolerance." In Proceedings of the18th 

Symposium on Operating Systems Principles (SOSP'OI), October 2001. 

[Scheider90] F. Schneider, "Implementing Fault-tolerant Services Using the 

State Machine Approach: a Tutorial", ACM Computing Surorys, 22 (4), 

pp. 299-319, December 1990. 

[Shrivastava90] S. K. Shrivastava, P. D. Ezhilchelvan, and N. A. Speirs,. 

"Fail-Controlled Processor Architectures For Distributed Systems", 

Technical Report, Department of Computing, University of Newcastle 

upon Tyne, 1990. 

[Shrivastava91] S. K. Shrivastava, D. T. Seaton, N. Howard and N. A. Speirs, 

"Fail-Silent Hardware for Distributed Systems", in "DELTA-4: A 

144 



Generic Architecture for Dependable Distributed Systems", (D. 

Powell, ed.), Chapter 11, Spnnger-Verlag, 1991. 

[Shrivastava91] S. K. Shrivastava, P. D. Ezhilchelvan, N.A. Speirs, and D.T. 

Seaton, "Fail-Controlled Computer Architectures for Distributed 

Systems" Tech. Report No. 333,Computing Laboratory, University of 

Newcastle upon Tyne, July 1991. 

[Schiper02] A. Schiper, "Failure Detection vs Group Membership in Fault­

Tolerant Distributed Systems: Hidden Trade-Offs", H. Hermanns 

and R. Segala (Eds.). PAPM-PROBMIV 2002, LNCS 2399, pp. 1-

15, Springer-Verlag Berlin Heidelberg 2002 

[Speirs92] N. A. Speirs, P. D. Ezhilchelvan, S. K. Shrivastava, S. Tao and A. 

Tully, "TheDesign and Implementation of Voltan Fault-Tolerant 

N odes for Distributed Systems ", Tech. Report, Computing Laboratory, 

University of Newcastle upon Tyne, 1992. 

[Speirs93] N. A.. Speirs, S. Tao, F. V. Brasileiro, P. D. Ezhilchelvan, and S. K 

Shrivastava, "The Design and Implementation of Voltan Fault­

Tolerant Systems for Distributed Systems, Transputer 

Communications, 1(2), pp. 1-17, November 1993. 

[Sullivan91] M. Sullivan and R. Chillarege, "Software defects and their impact 

on system availability - a study of field failure in operating systems", 

Proc. of Fault tolerant Computing Symp., FTCS-21, pp.2-9,June 1991. 

145 



[fa095] S. Tao, P. D. Ezhilchelvan and S. K. Shrivastava, "Focused Fault 

Injection Testing of Software Implemented Fault Tolerance 

Mechanisms of VOLTAN TMR Nodes." lEE Distributed System 

EngineeringJournal, 2 (1), pp. 39-49, 1995. 

[fheuretzbacher86] N. Theuretzbacher, ''VOTRICS: Voting Triple Modular 

Computing System", Digest ofpapers, FfCS-16, Vienna, pp. 144-150, 

July 1986. 

[fully90] A. Tully and S.K. Shrivastava, "Preventing State Divergence 111 

Replicated Distributed Programs", Proc. 9th IEEE Symposium on 

Reliable Distributed Systems, Huntsville, pp. 104-113, October 1990. 

[fully91] A. Tully, "Distributed Programming on Transputer Networks - an 

Object Oriented Model for Concurrent Processing", Transputer 

Applications Conference, TA91, Glasgow, August 1991. 

[Venkatesan89] S. Venkatesan. "Reliable protocols for distributed termination 

detection." IEEE Transactions on Reliability, 38(1) pp.103-110, April 

1989. 

[Wallner98] Wallner, D., Harder, E., and Agee, R. "Key management for 

multicast: Issues and architectures." Internet Draft draft-wallner-key­

arch-01.txt, IETF, Network Working Group, (Work in progress) 

September 1998. 

146 



[Wallner99] D. Wallner, E. Harderb and R. Agee." Key management for 

multicast: Issues and architectures." Technical Report 2627, IETF, 

Network security subworking Group, 1999. 

[Wensley78] J. H. Wensley, L. Lamport, J. Goldberg, M.\,\'. Green, K.N. Levitt, 

P.M. Melliar-Srnith, R.E. Shostak and CB Weinstock., "SIFT: 

Design and Analysis of a Fault-tolerant Computer for Aircraft 

Control", Proc. IEEE, 66 (10), pp.1240-1255, October 1978. 

[\V'iener98] M. Wiener. "Performance Comparison of Public-Key 

Cryptosystems." RSA Laboratories' CryptoBytes, 4(1), 1998 

[\V'ong98] C. K. Wong, M. Gouda and S. S. Lam. "Secure group 

communication using key graphs." In SIGGCOM, New York, l'S"\, 

ACM press. September 1998. Science, September 1998. 

1.+7 


