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Abstract 

Petri nets were introduced by C.A. Petri as a theoretical model of concurrency in which the causal 
relationship between actions, rather than just their temporal ordering, can be represented. A~ 
a theoretical model of concurrency, Petri nets have been widely successful. Moreover, Petri nets 
are popular with practitioners, providing practical tools for the designer and developer of real 
concurrent and distributed systems. 

However, it is from this second context that perhaps the most widely voiced criticism of Petri 
nets comes. It is that Petri nets lack any algebraic structure or modularity, and this results in 
large, unstructured models of real systems, which are consequently often intractable. Although 
this is not a criticism of Petri nets per se, but rather of the uses to which Petri nets are put, the 
criticism is well taken. 

We attempt to answer this criticism in this work. To do this we return to the view of Petri nets 
as a model of concurrency and consider how other models of concurrency counter this objection. 
The foremost examples are then the synchronisation trees of Milner, and the traces of Hoare, 
(against which such criticism is rarely, if ever, levelled). The difference between the models is 
clear, and is to be found in the richness of the algebraic characterisations which have been made 
for synchronisation trees in Milner's Calculus of Communicating Systems (CCS), and for traces 
in Hoare's Communicating Sequential Processes (CSP). 

With this in mind we define, in this thesis, a class of high level Petri nets, High Level Petri Boxes, 
and provide for them a very general algebraic description language, the High Level Petri Box 
Algebra, with novel ideas for synchronisation, and including both refinement and recursion among 
its operators. We also begin on the (probably open-ended task of the) algebraic characterisation 
of High Level Petri Boxes. 

The major contribution of this thesis is a full behavioural characterisation of the High Level Petri 
Boxes which form the semantic domain of the algebra. Other contributions are: a very general 
method of describing communication protocols which extend the synchronisation algebras of 
Winskel; a recursive operator that preserves finiteness of state (the best possible, given the 
generality of the algebra); a refinement operator that is syntactic in nature, and for which the 
recursive construct is a behavioural fix-point; and a notion of behavioural equivalence which is 
a congruence with respect to a major part of the High Level Petri Box Algebra. 
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Chapter 1 

Introduction 

Petri nets were introduced by C.A. Petri [Pet62] as a model of concurrency in which the causal 

relationship between actions, rather than just their temporal ordering, can be represented. With 

the ability to represent causal relationships comes a semantics of concurrency that does not 

depend upon the reduction of its components to the non-determinism that characterises so

called interleaving approaches (for instance, [MilSO, HoaSS]). Petri nets therefore provide a 

theoretical approach that distinguishes concurrency from non-determinism. 

It appears always to have been the intention of Petri [Pet62] that his nets should provide practical 

tools for the designer and developer of real concurrent and distributed systems, and, indeed, 

much of the literature.is taken with the investigation of the benefits and problems in the use 

of nets in this wider setting. In this context, the positive ability of nets to represent the basic 

situations of concurrent and distributed systems is far outweighed by the lack of structuring 

mechanisms, with the corollary that attempting the methodological synthesis of realistically 

sized systems produces nets that are large, unwieldy and opaque. 

A partial solution to this problem is provided by higher level Petri nets. These have generally 

developed from the notion that the tokens that populate them may be imbued with an algebraic 

structure, suitable for the immediate representation of data items, abstract data types, even 

whole algebraic structures. From this enhancement comes much of their descriptive power; with 

the thus orthogonality of 'control flow' and 'data flow', we have a separation of concerns that well 

matches the situation in (imperative) programming languages, and leads to powerful models in

cluding Predicate Transition nets [GLS1], Coloured Petri nets [JenS']. SEGRAS [Kra8S. Kra8,j, 

Algebraic nets [VauS7, RV87, Rei91], Multi-sorted High Level ~ets [BiI89]. Abstract Data nets 

[BCC+S6], OBJSA nets [BdCMS8], CO-OPN [BG91a] and A-nets [KP9S]. 

1 



CHAPTER 1. INTRODUCTION 2 

The expressive power of these higher level models is usually greatly increased over the original 

(low level) model of Petri, allowing a more compact representation, often finite, of situations 

that in the low level net model would be necessarily infinite. Many of them provide powerful 

structural and behavioural analysis techniques (for instance, [Gen89, Jen92]). 

One widely voiced criticism of Petri nets is that they have, per se, no algebraic structure, and such 

criticism is not a priori addressed by the high level models. Although the criticism is certainly 

potent, it misses the mark in the sense that the status of Petri nets is as a model of concurrent 

and distributed systems, and so should be placed, theoretically, alongside, for instance, Hoare's 

traces [Hoa85] or Milner's synchronisation trees [Mil80], and other models on which an algebra 

may be built. A partial but immediate response to the criticism is to ask whether the algebraic 

structures of those two (and other) approaches have a meaning when interpreted on Petri nets. 

The literature now includes a full discussion of this question, including [dCdMPS83, DdNM8.5. 

DdNM87, DdNM88, DdNM90, Bes87, Go188, GM84, Old87, Old91, HHB92, HH91], with a 

rather complete presentation in [Tau89]. 

The criticism will only be fully answered, however, when we find an approach that fully develops 

any inherent algebraic nature of Petri nets, in the same sense that CCS has developed as the 

algebraic characterisation of synchronisation trees or TCSP as the algebraic characterisation of 

traces. To do this we should first step back and see Petri nets not as complete but as requiring 

investigation into the expression they give to the semantic characterisations of situations and 

their interrelation and to express them within a suitable syntax. 

It was with this intention that we began this work. 

1.1 High Level Petri Box Algebra 

Beyond this original direction, the motivation for the work presented here was to extend and 

complement the original Petri Box model [BH92, BDH92], which was based on the fundamental 

net class of (weighted) Place/Transition (PIT) nets, with one based on high level nets. The 

model we have chosen for this is the Predicate Transition (PrT) nets of Genrich and Lautenbach 

([GL81, Gen87]). Through a more expressive class of high level nets it was originally hoped that 

the unbounded nature of computation that necessitates infinite structure in low level models 

could be encoded in the individuated tokens that may appear therein, allowing finite represen

tations of process terms. However this is too demanding, even for high level nets as has been 

shown by Taubner [Tau89, Pg. 154], following Goltz [GoI88]: the process algebra TCSP [BHR~-t] 



CHAPTER 1. INTRODUCTION .1 

contains the possibility for synchronisations in which no a priori finite limit on the Humber of 

processes which partake can be given. Taubner argues that a high level net semantics as ex

pressive as PrT nets must reflect this with infinite structure. Although we concur with Taubner 

that the underlying structure must be infinite, we show that the encoding of state in such nets 

may remain finite; only infinite numbers of transitions are required, places may remain finite 

with judicious choice of operators. Moreover, the notion of label algebra and its use in the High 

Level Petri Box model means that much useful reasoning can be performed on an associated, 

wholly finite graph. 

Besides that mentioned above, another possibility for unbounded behaviour occurs in the 

modelling of data. However, the process algebra of nets we describe does not include 'data 

building' operations as basic. Such an explicit representation of (algebraic) data structures 

within high level models proceeds independently of this work, in very general terms and 

in ways that are orthogonal to the representation of this presentation; see, for instance, 

[BdCM88, BG91b, Rei91, Pet91, KP95, DK95]. 

Perhaps the most obvious possibility for unbounded behaviour occurs in control flow, through 

iteration and recursion. In the light of the comments above, we provide a 'cardinality preserv

ing' semantics for recursion (from which operators equivalent to iteration are derivable). By 

'cardinality preserving' we mean that there are High Level Petri Boxes to which recursion has 

been applied but for which the set of places is not of finite cardinality. However, it is not the 

modelling of the recursive construct that causes the infinity. 

1.2 High Level Petri Boxes 

A High Level Petri Box is a structured high level Petri net, the structure being indicated through 

a net annotation. The tokens of a High Level Petri Box are individuated, and carry information 

that affects the behaviour of the High Level Petri Box. The structure of a High Level Petri Box 

allows its presentation as a regular object with interfaces for control and communication, which 

may thus be used to abstract away from implementation details. 

The conceptual model for a High Level Petri Box appears in Figure l.l. 

The low level net underlying a High Level Petri Box is a PIT net ([RT86]), called the skeleton. 

In notation adapted from [GoI88], the skeleton is 'transition centred', by which we mean that 

a transition is extensionally equal to any other with the same pre- and post -set (and annota-
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~ntry Interface 

Control Interface 

~xit Interface 

Communication Interface 

Figure 1.1: The Conceptual Model of a High Level Petri Box, showing the control and commu
nication interfaces. 

tion). Transition centredness has disadvantages, as we shall see, but is less disadvantaged than 

traditional notation for our purposes. 

On top of the skeleton is built the annotation. Places, transitions and arcs each are annotated 

and identify components of a High Level Petri Box that can be manipulated through the con

structions defined herein. This leads to a highly modular structure: we encourage the view of a 

High Level Petri Box as a single block whose discernible features are control and communication 

interfaces, and whose internal detail is hidden. This view creates a natural block structure on 

High Level Petri Boxes that leads to a highly modular model. 

To synthesise High Level Petri Boxes the user must decide the details of the process to be 

modelled, for which we provide a process algebra, the High Level Petri Box Algebra, which is 

parametrised by a description of how a High Level Petri Box communicates with other High 

Level Petri Boxes, for which we provide label algebras. The coupling between a High Level Petri 

Box and the model it uses for communication is loose in that we may alter the communication 

protocol independently of the structure of the High Level Petri Box. One benefit of this is 

that the process algebra (described in Chapters 4 and 6) is compact, with the possibilities for 

increasing expressivity being through the manipulation of the communication model. 
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1.3 Structure of the Thesis 

The thesis is structured as follows. Because of the wide range of topics touched on in the thesis, 

each chapter provides its own short survey of the relevant literature. 

Chapter 2 gives the definitions upon which the structure of a High Level Petri Box is built. 

It begins with the introduction of a very general method for the description of communication 

protocols, so-called label algebras. Expressions within label algebras form the 'atomic actions' of 

the High Level Petri Box model. A characterisation of these atomic actions is given through a 

single Structured Operational Semantics-style (or SOS style, [Plo81]) rule, called H -synchrony, 

which not only includes and extends the behaviour of the traditional Asynchrony and Synchrony 

SOS rules for the description of concurrency but also that of Morphism (see, for instance, 

[Old91]). 

The language from which are taken the individuated tokens of the high level model is described 

in terms of label algebras, and this allows us to investigate properties of the H -synchrony rule 

that are the basis for the properties of the behaviour of a well-behaved sub-class of High Level 

Petri Boxes. 

The chapter continues with the definitions of High Level Petri Boxes and certain useful auxiliary 

operators, and safe and unsafe markings of High Level Petri Boxes. 

The chapter concludes with the description of a partial order on High Level Petri Boxes based 

on the label algebra upon which the High Level Petri Box is defined. 

Chapter 3 introduces the standard denotation of High Level Petri Boxes, in terms of a well

known and much studied class of high level Petri net, the PrT nets of Genrich and Lautenbach. 

The translation to PrT nets gives technical soundness of our approach, and leads to the definition 

of the formal notion of the behaviour of a High Level Petri Box, from which we see how the 

properties of the H -synchrony rule determine the behaviour of a sub-class of High Level Petri 

Boxes. 

Also defined is a low level Petri net unfolding, which together with the PrT net semantics 

provides for the definition of a rich collection of structural and behavioural equivalences on High 

Level Petri Boxes. 

Chapters 2 & 3 introduce the High Level Petri Box model. With Chapter .f we commence the 

description and characterisation of the class of High Level Petri Boxes with the introduction of 

the first portion of the algebra, that including concurrent, causal and choice composit iOIlS. and 
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relabelling. After the definitions come a number of technical results that justify our claim to 

have established an algebraic structure upon High Level Petri Boxes, called the High Le\-el Petri 

Box Algebra 1 . 

We conclude the technical contribution of the chapter with the demonstration of certain proper

ties of the sub-class of High Level Petri Boxes defined in the chapter that witness their modular 

properties. 

Chapter .5 shows that the sub-class of High Level Petri Boxes defined in Chapter 4 are well

behaved in the sense that their behaviour is to some extent independent of their initial marking. 

This result is used to transfer certain properties of the H-synchrony rule to the behaviours of 

this class of High Level Petri Boxes_ 

Chapter 6 completes the description of the class of High Level Petri Boxes with the introduction 

of the operators of refinement and recursion. Refinement is proved to have properties similar 

to those of the operation of 3-reduction rule of the A-calculus [Bar84]' or equivalently. the 

substitution operators of Order Sorted Algebra [Gog78] (in terms of which it is defined). 

The chapter continues with the definition of the last of our operators, recursion. With recursion 

comes full Turing expressibility of the High Level Petri Box Algebra, which is demonstrated by 

the modelling of a registEr. 

Chapter 7 provides the major technical contribution of this work: a full behavioural character

isation of the High Level Petri Boxes which form the semantic domain of the High Level Petri 

Box Algebra. \Ve also develop a concurrency preserving strong bisimulation on such High Level 

Petri Boxes. 

We use this behavioural characterisation to show three other important results of such High 

Level Petri Boxes: that they are safe and memoryless; that concurrency preserving strong 

bisimulation is a congruence with respect to a large part of the algebra-concurrent, choice and 

causal compositions, and relabelling-and a partial congruence with respect to refinement and 

recursion; and that the recursive construct is a behavioural fix-point of the refinement operator 

(the being the strongest result generally possible gi\-en the finite nature of the construction). 

Chapter 8 collects the main results of the thesis to provide an algebraic characterisation of High 

Level Petri Boxes as a model for the High Level Petri Box Algebra. \Ye conclude with some 

pointers to where further effort might be gainfully employed. 

1 Extended in Chapter 6. 



Chapter 2 

The High Level Petri Box Model 

In this chapter we introduce the semantic domain of t lIP Algebra. High Level I"":ri H()\,'," We 

begin with the description of the model for the \'ery general communication protorob we allow. 

called label algebras. 

2.1 Labels and Label Algebras 

A label algebl'll describes how labels of a process algebra interact through s~'nchronisat ion to allow 

multi-way synchronous communication between proccs~(':;, The model for multi-way s~;nchroni

sation is very general and is related to, but is strictly more powerful than, the "'IIIlChl"OlIisatioTl 

algebras of Winskel ([\\'in,~.')]). 

We first introduce our language for the description of multi-\\"ay synchroni"ations, throu?;h Label 

.\lgebras. \V(' t hen show how more traditional models may be expressed as instancl'", 

2.1.1 Labels 

.\ label is the effect of an action. i.e .. a label is that entity by which the occurrence of an action 

is recorded, \ rc will assume that the collection of all labels forms a countable set. lL. called 1 hI' 

label U II i l'f rsf. 

\ Yc assume that processes of a particular process algebra produce labels from a single alphabd: 

a non-empty Sll bset of lL (usually denoted A. decorated as necessar~'). Examples of alphabf't s 

are those of (TS ([:'Iil~O]): A ('('5 = {T, a. a. b. b ... . }: TCSP ([BHH q]): A TCSP = {~, a. b., . . }: 
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and the PBC ([BDH92, BH92]): ApBC = .\ltA {a, a. b, b, ... } )1. 

Concurrent processes wishing to synchronise contribute their individual labels to a (commu· 

tative, associative) formal sum. The traditional model of parallel composition is as a (be

haviourally) commutative operator, which is the reason for a formal sum and not an orderpd 

structure, such as a tuple. Moreover, a set is not necessarily sufficient. as many processes may 

wish to contribute the same label. For example, the formal sum al ~ ... ~ an represents the 

attempted synchronisation of n processes, one of which contributes al. one of which contributes 

a2, etc. The 'wish' to synchronise is not sufficient. Processes must be allowed to synchronise 

by the communication model. For instance, a process contributing a together with a process 

contributing a would not be permitted to synchronise in the ces communication model, but 

would in the TCSP model. 

To produce the synchronisations of a particular communication model, then, we mu~t be able 

to manipulate formal sums of labels. To this end we introduce label algebras. 

2.1.2 Label Algebras 

A label algebra provides a representation for the interaction of labels. A label algebra is a ,'i- tuple, 

£ = (A,EB,O,t,R) where A is an alphabet, (AEI),EB,O) is a monoid (commutati\'{' opf'Tation or', 

zero 0), called the label monoid (providing the formal sums mentioned above): R is a countable 

set of relabellings; t is the (natural) inclusion of A in AEI). 

0, the zero of the label monoid, represents the dead action, I.e .. an action which may never 

occur. A relabelling r E R is a mapping on the label monoid r: AEI) - A~ which although 

not necessarily being a monoid homomorphism, is such that reO) = 0, meaning that the dead 

action is never 'reincarnated'. The general form of a relabelling will, in addition to disallowing a 

synchronisation (by mapping to 0), and allowing a synchronisation (by mapping to an element 

of A), allow a third possibility of don't know (by mapping it to a member of A -= \ (l( A) U {O}». 

Such a dormant synchronisation, as it were. is disallowed from occurring as it stands, but may 

contribute its label to a further attempted synchronisation, as we shall see. 

We will usually omit the monoid operation, zero and inclusion components of a label algebra. 

writing (A, EB, 0, t, R) as (A. R). 

EXAMPLE 2.1.1 Let £0 = (Ao, Flo) be such that ...1.0 {T.a,a} and Ro {rn.r} with 

1 Where .\.1,·(S) is all finite multisets on the set S, 
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(,(,.'i(a EEl 71) = ('('s(aEEl a) = T, ccs(a) = a, cC8(a) = a, ((,i,) = ;- and cc,(k) = 0 otherwise: 

r(a) = a, rCa) = (1. reT) = T. riO) = 0 and r(lI S"'EEl In) = r(/t) -:-·,·EEl r(ln) otherwi~p, 

The actions of thp relabellings may be described as: 

I, the action of all relabellings on 0 is prescribed, 

2, processes offering a and a, and wishing to synchronise \vill offer a it a, ('ull~idE'r thE' 

label 7J as the conjugate of label a in the CCS sense; this is allo\\'E'd by the ('( 'S-t~'pE' 

synchronisation, u's, which maps it to '. 

3, as above. processes offering a and o. and wishing to synchroni,p \\'ill ofrer ati-a, l\t('Ildill~ 

the analogy with CCS, this should not contribute to behaviour: I he action of ('('S is to 

disallow the synchronisation by mapping a EEl a to 0 which, irrp\'(·rsibly. prn('III s it from 

contributing to behaviour, 

1. ('('S'S action on T is consistent with the C(,S analogy, 

5, as well as being a relabelling, r is also a monoid homomorphism and such n·l,dH'lIillg, play 

no part in forming synchronisations, .l,l.l 

2.1.3 Expressivity of Label Algebras 

Our multi-way sYllcilrollisdtions arE' not limited to binary synrhronisations as III ('( 'S, nor to 

synchronisat iOlls of T( 'SP and thE' Lo\\' Level Petri Box model in which ',\'nchronisation is no 

longer necessarily binary but which may always be (\PC()IIIP(),('d into iterated binary sYlJchroni

sation. That this forms a strict extension to the expn'"i\'ity of the synchronisation algpbras of 

Winskel [Win85] is shown in the following example: 

EXA~lPLE :2.1.2 

such that: 

h(k) = {: 

Let La. = ('-1", Ra) be the label algebra with .\, = {a} alJd Ra = {h} and 

otherwise 

Then La disallows all forms of synchronisation other than tertiary, :'!orpon'r. there is no binary 

decomposition of such synchronisations in this label algebra, .2,1.2 
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2.1.3.1 Taubner's Label Algebra 

In [Tau89], Taubner introduces a relatively general method for the expression of (binary) syn

chronisation, renaming, restriction and hiding operators based on the union of the features of 

those operators in process algebras such as CCS, TCSP and ACP ([BW90]). Each synchroni

sation operator of these generating languages is binary, and Taubner assumes the same binary 

nature for his, proposing unordered pairs of basic actions to represent synchronisation. 

In more detail, Taubner assumes the existence of a count ably infinite alphabet Alph of names; 

a disjoint copy of Alph, Alph, of eonames, together with a bijection ~: A.lph ~ Alph (with 

inverse also written ~ so that a = a, for instance). His visible actions, \'is. are taken from 

Alph U Alph. Unordered pairs of visible actions are extended visible actions, El'is. His action 

alphabet definition is completed through the inclusion of Milner's silent action r: 

Act = {r} U Vis U EVis 

Taubner does not explicitly state that Fis and EVis are disjoint. However, it is clearly a simpli

fying assumption that they are disjoint as this implies that a synchronisation is composed only 

of (completed) binary synchronisations; and otherwise Taubner's parallel composition operator 

(*) is not behaviourally associative: (a* b)* e being able to perform the action [[a, b], c] but 

not [a, [b, ell. As associativity of parallel composition is to be desired we assume that Taubner 

requires Vis and EVis to be disjoint, in which case [a, b] does not appear in Fis. whence it is 

not available for (a* b) to perform. 

In the representation of Taubner's communication model as a label algebra, we need not explicitly 

include the unordered pairs of El'is in the alphabet, as these may be represented by sums 

of length two. Moreover, Taubner's undefined symbol, .1, may be represented by our dead 

label O. We may thus define the alphabet of Taubner's algebra, A, in our setting as AA = 

{r} U Alph U Alph, with Alph = {a, b, c, .. . }. 

The equivalent of a relabelling in Taubner's algebra is called an action manipulation operator. 

Any function f: Aet U {O} -+ Act U {O} which preserves 0 and r is allowed as an action manipu

lation operator. Taubner does not explicitly state whether the range of an action manipulation 

operator may have non-empty intersection with EFis. While allowing this appears to have no 

undesirable ramifications, Taubner appears never to use this property in his exposition. For 

completeness we do allow it, defining 

RA = {f E Aet Efl -+ ActEfl I f(O) = 0 1\ f(r) = r 1\ f(k) = 0 when Ikl > 2} 
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11 is a simple matter to define the label algebra of Taubner's algebra A as: 

/)UI\ITI01" 2.1.3 [Taubnu's Label Algebra) LA ! .~A' RA. is the label algebra for A . 

• 2.L{ 

2.1.4 Label Algebras for CCS, TCSP, and PBC 

For comparison with Taubner's descriptions of the communication models of ('('~ ([~[il"lf) and 

TCSP ([BHR84]) we give the label algebra encoding. Also included is the label algebra for the 

communication model of the (Low Level) Petri Box ('<lkl!ll!~ ([BDH92]). 

In the sequel. let A be the action alphabet {n. b, c, .. . }. -:\1 h(' Sf'1 {a. b. r .. .. }. disjoint from .\. 

and suppose T rf. il U A. We assume that I he label universe. L, contains I U -:\ U {T}. 

2.1.4.1 CCS Label Algebra 

For C'CS we define: 

DEFINITION 2.1.4 [eeS Labrl Algebra} Let..l ees = {T} U I U l' be the alphabet for (,(,S. 

Define relabellings for CCS syn('hronis([tioll. IJI ees such thaI 

E 
k E Aces 

IJI ces( k) k = I EEl 7 and IE . I 

otherwise. 

For B ~ .Ices \ {T}, define relabellings for ('( ''1 rf."tridian Y~('s such that 

kEB 

/,: E Aces \ B 

otherwise. 

:\ relabelling f is a C'C'S relabelling whenever f(·-1 ecs) ~ Aces. f(a) = f( a). f(l::":k) = f(l) : f( k) 

for l. k E Aces, and f(k) = 0 otherwise. Let Gees = {f I f is a CCS relabelling}. 

Define {el's = (Aces, {IJI ccs} U {Y~CSh~AcC5\{T} U Gees) as the label algebra for ('(''l . 

• 2.1..1 

2.1.4.2 TCSP Label Algebra 

For\'( 'S P "'e define: 
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DEFINITION 2.1..5 [TCSP Label Algebra] Let ATCSP = {T} U A. be the alphabet for T('SP. 

For B ~ A TCSP \ {T} define relabellings for synchronisation iJ!fcsp. for restriction Tfcsp and 

for hiding elfcsp such that 

[ k E A TCSP \ B 

iJ!lfcsp(k) k = 1 EB I and I E B 

otherwise 

n 
kEB 

Tlfcsp(k) = k E A TCSP \ B 

otherwise 

E 
if k E B 

elfcsp(k) if k E A TCSP \ B 

otherwise 

Define iTCSP = (ATCSP, {iJ!lfcsp, Tfcsp, elfcsp} B~(ArCSP\{T}) as the label algebra for T('SP. 

_2.1..5 

2.1.4.3 PBC Label Algebra 

For the PBC we define: 

DEFINITION 2.1.6 [PBC Label Algebra] Let APBC = MF(AUA). the finite multisets on /1 uA. 

Synchronisation in the PBC is parametrised by a label, so let a E A. Let k E AtB{" Then 

k = it EB ... EB Is EB Is+1 EB ... EB ls+n where ~a. aa n Ii 1- 02 if and only if i ~ s (always possible 

as EB is commutative). Define 

sya(k) 

rs a(k) = 

{ 

k k E ApBC 1\ ~ a. aa n k = 0 

O

(L:i=1 Ii) \ (s - 1)~ a, aa n = 0 1\ min(L:i=1 h( a). L:i=1 lj(a) 2: s - 1 

otherwise 

{ 
O

k k E ApBC 1\ ~a. aa n k = 0 

otherwise 

Define ipse = (ApBC, {sy a, rs aLEAPBc) as the label algebra for the PBC. _ 2.1.6 

2We use {I 51, ... , 5 n a to represent the multiset consisting of the elements SI • .•.• Sn. D U is the empty multiset. 
Set operators such as U, n, and relations E. ~, ;2, ~tc. will not. in general, be distinguished from their multiset 
counterparts; which to use being distinguished by the type of the operands. Definitionally, we use the following: 
for a multiset 5, 5(5) is the multiplicity of S in 5 and s E 5 if and only if 5(s) > 0; for multisets 5 and T. 
(S U T)(s) = 5(s) + T(s), (5 n T)(s) = min(5(5), T(s» and (S \ T)(s) = max(5(s) - T(, i. 0): 5 ~ T if and 
only if S(5) ~ T(t) for all s E S; for a positive integer n, (n.5)(s) = n.s. 
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s 

Figure 2.1: The distributed transition system transition {SI' . , '. Sol a -
2.2 Behaviour of High Level Petri Boxes 

Although it may appear a little premature to begin a discussion of the behayiour of a High Lewl 

Petri Box, the motivation for many aspects of our approach Il1a~' be found in the derivation of 

the behaviour of a single transition. In this section we in trod uce a generali ,ed s~'nc h rony rule 

for the description of multi-\vay synchronisations in distributed transition systf'lTIS as tllf' basis 

of this behaviour. 

In being a Petri net, the behaviour of a High Level Petri Box will follow from this in combination 

with the interrelationship between transitions defined by the graph structure of the skpietoll. 

2.2.1 Distributed Transition Systems 

Essentially, the relationship between the Disil'ibu/((! j'mllsition ,C,IJ.,I( TIIS (DTS) of npt!,<lno (I 

al. [DdNM8i, DdNM88] and Petri nets is that the S((jill niia! compoTU:lli,., of a I( I'm in their 

algebra may be identified with the places of a net and that a (DTS) transition betwf'f'll 1\ ... ·0 ~(>ts 

of sequential components, {51, .... '\'} _a_ {T I •. ". Tn}, ma:, be identified with a transition. 

Such a transition is illustrated in Figure 2.1. 

The details of the decomposition of a term into its sequential components is not of releyanre 

to our present ation. other than the fact that sequential components are recombined into (full) 

processes using the U operator: we also use distributed union in this role below. The (>ssential 

detail that we assume of a single sequential component. i.e .. when n = 1. is that it pf:'fforms 

its first action3 with label a. as long as a i= 0-4. The transitions of High Leyel Petri Aox('~ aff' 

motivated by DTS transitions in the following wa:,. 

'Expressed through prefix in [Dd\'M8:'], but we prefer sequential composition (see Chapter", for a di,cussion), 
4The expression of deadlock as a dead action is supported in the notation of label algebras, and i, di,cu5"ed 

with reference to the expression of causal dependence through sequential compo~ition through prefix in ('hap!( r 4, 
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Binary asynchronous parallel composition in a distributed transition system is modelled by the 

disjoint unions of its operands. Degano introduces contexts I- and --l5 with which he annotates 

the operands of the union, so ensuring disjointness. Contexts do not, by themselves. alter 

the behaviour of a process as the transition rule for asynchrony (adapted from the elegant 

presentation of distributed transition systems given by Olderog in [Old91]) shows: 

Asynchrony 
P~P' 

P[I-] a 
---+ P'[I-] 

P ~ P' 

P[--l] a 
--+ P'[--l] 

Moreover, the appearance of contexts within a concurrent process indicates which sub-processes 

should be considered concurrent as the synchrony rule shows. The synchrony rule presented be

low is adapted from Olderog, but is more general in that it allows the label of the synchronisation 

to be different from those of its constituent actions (Olderog uses the COSY synchronisation 

model ([Bes87])). We have expressed this in terms of a relabelling 'It. taken from some label 

algebra. However, in this case, the rule finds equally natural expression through the relabellings 

of the synchronisation algebras of Winskel: 

2-synchrony 
P ~ P' Q~ Q' 

------------- l{I(aE!)b)#O 

P[I-] U Q[--l] l{I~b) P'[I-] U Q'[--l] 

where 'It is a binary synchronisation in the sense of Winskel and U is the a 'disjoint union of 

processes' . 

The commutativity of the formal sum EEl implies that we may interchange P and Q in the 2-

synchrony rule and not be able to distinguish the result by its behaviour. This is, of course, the 

behavioural commutativity of parallel composition. 

As we may continue to distinguish operands using I- and --l we may derive higher order synchro

nisations from 2-synchrony. For instance, two applications give: 

p~p' Q~ Q' 
_____________ l{I(aE!)b)#O 

3-synchrony P[I-] U Q[--l] l{I~b) P'[I-] U Q'[--l] R ~ R' 
...-..::.....::._..:...:.-=--___ -=--=---=--=---------- I{I(I{I( aE!)b ).::,c ) ,to 

P[I-I-] U Q[-ll-] U R[--l] 1{I(1{I(~)E!)c) P'[I-I-] U Q'[--ll-] U R'[--l] 

However, such explicit rules for n-synchrony, for each n E N, are not required as they may be 

derived. 

Within the High Level Petri Box model we will also model asynchronous parallel composition 

by disjoint union (of nets, called concurrent composition, and defined in Chapter ~) and use 

5 Degano actually uses the symbol lid written postfix and id I written prefix to distinguish left and right opera/ld~. 
but the effect is equivalent. 
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contexts as Degano does, to ensure disjointness. Moreover. through a unification of contexts 

and relabellings, so that contexts are considered as nominal relabellings6 , we are able to combine 

morphism, asynchrony, and synchrony rules into a single rule, which we will call H-synchrony'. 

that allows the expression of the more general communication models which are expressible 

through label algebras (and because of this, is not derivable from any simple rule it replaces). 

2.2.2 H-synchrony 

The H-synchrony rule is described by the following (distributed) transition: 

p. ~p' 
t t 

H-synchrony 
---------------- Flow(at,···,an.Rt.· ... Rn) 

Label(4t, ... '4n.Rt ... ·.Rn) U '[ ] 
----> Pi Ri 

Where the Pi are processes, Ri are strings of relabelling names (which may now include 

f- and -I) so that Pi[Rd is process Pi in the scope of relabellings Ri. The definitions of 

Label( al, ... , an, Rl , ... , Rn) and of Flow( al, ... , an, Rl , ... , Rn) are rather complex, as we shall 

see; so as to be able to fully motivate their form, we approach their definition through a com

parison with the rules replaced. 

2.2.2.1 Relabelling 

The relabelling rule of Olderog [Old91]8 is parametrised by a relabelling9 r and is given by: 

P~ P' 
Relabelling ------ r( a)#O 

P[r] ±1 P'[r] 

i.e., given a process which produces action a, the process P in the scope of relabelling r may 

perform action r(a), as long as r(a) is not the dead label. Now, for a single process, the 

H-synchrony rule is 

P ~ P' 
H-synchrony Flow{a,r) 

P[r] La~,r) P'[r] 

Comparing the two we see that, if Label( a, r) equals r( a) and Flow( a, r) => r( a) =f 0, H

synchrony includes the behaviour of relabelling. When r is a relabelling we define Label( a. r) 

6ef. Taubner [Tau89]. 
7The 'H' in H-synchrony is derived from the juxtaposition of the nominal relabellings f- and -1. so: H. 

pronounced H. 
8 Actually called morphism, but we use Winskel's language. 
9 A unary relabelling in [Old91]. 
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to be r( a). The full definition of Flow is complex and is given in Section 2.-1. It will. however. 

be seen to have the property that Flow( a, r) => r( a) =fi O. 

2.2.2.2 Asynchrony 

The two rules for asynchrony (given above) may be regarded as particular instances of relabelling. 

given that we have allowed f- and -I to be considered as nominal relabellings. ~loreovE'r. we see 

that, when interpreted as relabellings we should regard them as being the identity relabelling. 

2.2.2.3 2-synchrony 

Using juxtaposition to represent the composition of relabellings (so that (.r)f-'II = 'II(f-(l'», for 

instance) we may derive the 2-synchrony rule from H-synchrony with two processes, thus: 

P~P' Q~Q' 
----------------- Flow( a,b,1-1lI ,--illl) 

P[f- 'II] U Q[ -lIlT] a [1-1lIj!![--iIll] P'[f- 1lT] U Q'[ -lIlT] 

when a[f-IlT] Ell b[-IIlT] = llT(a Ell b) and Flow(a, b,f-IlT,-I'II) => llT(a Ell b) =fi O. The behavioural 

commutativity of parallel composition implies that 1lT( aEllb) = 1lT( bElla), reflecting our assumption 

that Ell is commutative, and implying that a[f-IlT] Ell b[-IIlT] = a[-IIlT] Ell b[f-IlT]. 

2.2.2.4 Expressivity of H-synchrony 

In the context of the expressive power of label algebras, it is interesting to note that II -synchrony 

with three processes is not necessarily 3-synchrony as described above. Consider: 

P~P' Q ~ Q' R -:..... R' 
------------------------- llI(aE!)bE!)c)eA 

P[f-f-IlT] U Q[-If-IlT] U R[-IIlT] 1lI(~E!)c) P'[f-f-IlT] U Q'[-If-IlT] U R'[-IIlT] 

in which a three way communication has been formed without the requirement of being decom

posable into binary synchronisations. We will therefore be able to use the full expressive power 

of label algebras through the H-synchrony rule and hence, as High Level Petri Box transitions 

are derived from it, in High Level Petri Boxes as well. 

2.3 Contexts in High Level Petri Boxes 

In High Level Petri Boxes, rather than a context being only a f- or a -I, it will be a string of 

relabelling names and nominal relabellings, as in [Tau89]. 
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Like the DTS approach, we have a natural decomposition of a process into its sequential com

ponents, through f-s and ... k Unlike the DTS approach, however, the block structure of High 

Level Petri Boxes, expressed through the conceptual model, naturally introduces t he notion of 

the scope of a relabelling. There are, thus, two uses of contexts in the structure of High Level 

Petri Boxes: 

1. as annotation of input and output arcs of a High Level Petri Box, defining the beginning 

and ending of scope for relabellings inscribed thereon, and 

2. as a token holding a sequential component of the process, together with the relabellings 

that are currently in scope. 

Intuitively, a token 'passing along an arc from a place to a transition' has the context annotating 

that arc 'pushed' onto it. Similarly, a token 'passing along an arc from a transition to a place' 

has the context annotating that arc 'popped' from it. The popping of a context from a token in 

this way is not always well defined. However, for the class of syntactically generated High Level 

Petri Boxes defined in Chapter 4 we show that the enabling of a transition never depends on 

the well-definedness of this popping. 

Unlike Taubner, and due to the special requirements of the choice composition in the presence of 

refinement (discussed in Chapter 4) and of recursion in the presence of sequential composition 

(discussed in Chapter 6), we introduce three other nominal relabellings, l, J and .l, each of 

which will be interpreted, like f- and -I, as the identity relabelling on labels. We thus require, 

for any label algebra £ = (A, R), that R n {f-, -I, l,J,.l} = 0. 

DEFINITION 2.3.1 £-context Given a label algebra £ = (A, R), an L-context is a term in the 

language defined through the following syntax 

C .. -.. - the trivial context 

Cf fER 

CN N E {f-, -I, l,J,.l} 

A simple context is a context in which no nominal relabellings appear. .2.3.1 

We will denote the language of contexts on the label algebra £ by C£ although we will often 

omit the label algebra decoration when it is clear by context. Parentheses will often be used to 

delimit contexts especially in the case of the trivial context, when we will write (.) instead of 

just .. 
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The operation of pushing is actually only context concatenation: 

DEFINITION 2.3.2 Define contr:::ti concatenation. _- _:CxC - C such thatiO C~ D = D[Cf.) . 

• 2.:3.2 

c ~ D will often be abbreviated to CD. 

2.3.1 Signed Contexts 

Although the action of popping contexts from a sub-class of High Lewl Petri B(l\:!'" is always 

well-defined, we may not assume this for all High Level Petri Boxes. To catch t he possibility of 

'underflow' from a pop we will define sigllrd conluls: 

DEFINITION 2.:3.:1 A signed contut is a term of the following syntax: 

D +C -c 

where C E C. The collection of signed contexts will be denoted SC. • :z.:u 

We will make the usual correspondence between C and SC so tha t + C will usually b(' writtC'[} 

C and C will be regarded as a subsC't of SC. \\'(' will identify the representations of thp ('lIlpty 

stack, it being either (.) or -(.). We will also define a unar,\" minus operator to convert COlJt!'xts 

to signed contexts and back again: 

DEFINITION 2.3.4 Define a unary operator -: SC --+ SC such that for a signed COlit ('xt C. 

{
-C 

-(C) = 
C' 

CEC 

(' = - C' 1\ C' E C 

.2.:3.1 

C has t\Yo useful partial orderings: is-a-prefix-of and is-a-postfix-of 

lOWhere A[ C / B] is the simultaneous textual replacement of B by C throughout A. 
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DEFIN ITIO\ 2.3.') Define the relations ~ . ~ on C such that: 

1. C ~ D (C is a prefix of D) if and only if there is a context E such D = C ~ E. 

2. (' ~ D (C is (/ postfix of D) if and only if there is a context E such D = E - C. 

As usual, we will use the symbols < and c when the ordering is strict. i.e .. when. in addition. 

E -:f (.). 

The binary operation of context minus finds. for a pair of contexts comparable under ~, till' 

longest suffix by which they differ. It uses signed contexts to record the information as to which 

of the pair was the longer context: 

DEFINITION 2.3.6 

(' _ D = {E 
-E 

where E E C. 

Define a partial binary operator. _ - _: C x C - SC . by 

C= D~ E,i.e., D ~ C 

D = C ~ E, i.e .. (' ~ D 

.2.:Ui 

That _- _ is partial is a corollary of the fact that not all contexts are comparable under ~. \()1(' 

that, when (' = D, (' - D = (.) = D - ('. 

The relationship between contexts and manipulations of labels ma~' now be defined: 

DEFINITION 2.3./' Let £ = (A. R) be a label algebra, and let k EIEll. For (' E Cc w(' define 

{

k 

k[ C] = f(k)[ C1 

k[C'] 

(' = (.) 

(' = (.f) - C' with fER 

C = (.f) - (" with f E {f--,-L L,J.1-} 

.2.3.1 

EX.HIPLE :2.3.8 Examples of the applications of the operators and relations defined above 

1. (.fh) - (.g) = (·fh)(·g) = (.g)[·fhf.] = (·fhg), 

2. (.) = -(.). b~' definition. 

3. (.f) ~ (.fg) and (.f) < (.fg). 



CHAPTER 2. THE HIGH LEVEL PETRI BOX MODEL 20 

4. (.g)!; (·fg) and (.g) c (.fg), 

5. (.fg) - (.f) = (.g), 

6. (.f) - (.fg) = -(.g), 

7. (a EEl a)[.'l1ccs] = ('l1ccs(a EEl a))[(.)] = r[(.)] = To • 2.3.8 

2.4 The Flow Predicate 

The conditions for the derivation of 2-synchrony from H-synchrony require that a[I-'l1] EEl b[ --I'l1] = 

'l1(a EEl b) or, more generally, that a[<pll-'l1] EEl b[<P2--1'l1] = 'l1(<pl(a) EEl <p2(b)). which will be seen 

to be a corollary of the definition of the Flow predicate. This extends to the 3-synchrony rule 

as (a[I-I-'l1] EEl b[--II-'l1]) EEl c[--I'l1] = 'l1(a EEl b EEl c), so that repeated synchronisations (without 

intermediate binary synchronisations) are independent of the order of the compositions. The 

properties of higher order synchronisations follow from this by a natural extension. 

Note that, in general, a[ <PI 'l1] EEl b[ <P2 'l1] i- a[ <PI I- 'l1] EEl b[ <P2--1'l1] = 'l1( <PI (a) EEl <P2( b)). which explains 

Taubner's observation of the same, [Tau89, page 124]. We also note that the equality holds 

when 'l1 is a monoid homomorphism. 

Given this, the Flow predicate must combine the following observations of the synchronisation 

of the Pi[Ri] of the H-synchrony rule: 

1. that they be executing concurrently, which is expressed through the structure of the I-s 

and --Is which appear in the (con texts) Ri, 

2. that no 'sub-synchronisation' is a deadlock; for example, a[<pll-'l1] EEl b[<P2--1'l1] should not be 

allowed when either <PI (a) = 0 or <P2( b) = 0, 

3. that the action produced by the whole synchronisation is from the alphabet of the process. 

Of course, we might allow a 'sub-synchronisation' to be an arbitrary non-zero formal sum, 

4. that the order of the asynchronous parallel compositions which produced the concurrency 

between the Pi should not be important to the generated label. For instance, and as we 

have seen, we will require that a[I-I-'l1] EEl b[--II-'l1] EEl c[--I'l1] = a[I-'l1] EEl b[I---I'l1] EEl c[--I--Iw] = 

w(a EEl b EEl c). 

Intuitively, the definition of Flow may be approached inductively on the number of its argument s. 

as follows: 



('IlAPTEN 2. THE HIGH LE\TL PETRI BOX .\IODEL 11 

2. given lhal we have Flow(al, .... an .R1 ..... Rn) and Flow(bl ..... bm.Ql ..... Q·). then 

we should check that Rj = R;('r--C). i = 1, .... n and Qi = Q~(-1C). i = l. .... m. 

whence if Label(01 ..... an,R1 .... ,Rn) = Df- and Label(bt ..... bm.Q] ..... Q) = D~ 
then Flow(al .. ··· (In' b1 ..... bm, R1 ..... Rn. Q1 ..... Qm) should require that Dr- r 0 and 

D~ i- 0 and A = (Df- ED D~)[C] EA. The label of the transition will then be A. 

To extend this to the general ca:-,p we must only make sure that the synchronisation i~ indepen· 

dent of the order in which the aj and Ri. and the bi and Qi are presented .. \~ \\'a~ lh(' ras(' 

for D above, in the following \'v'P will often distinguish 'left' and 'right' using I- and -1 writ t('11 

subscripted. 

DEFINITION 2.4.1 

such that 

Given a label algebra £ = (l.R). define Flowo ~ .~IF(.\ X Cd x j\) 

1. Flowo( ~(o. R)I}, orR]) ¢:> a[R] i- 0 

2. Flowo( Pf- uP -j, (Df- ED D-d[ C]) ¢:> Flowo( P~. Df-) 1\ FIO\\'o( P~. D~) 1\ (Dr- fi; D~ )[r'] i- 0 

when 

Pf- ~(al' R](.I-)C) ... ., (an' Rn(.I-)C)G i- ~G 

P-j {I(b], QI(.--1)C), .. .,(bm • Qm(.--1)C)G i- ~G 

and 
P~ {I ( 01 , R I ) .... , ( (Ill • R n ) G 

p~ ~(bl' Qd,·· .,(bm , Qm)G 

3. Flowo(P, D) ¢:> falsi otherwise. .2.1.1 

We note that the partitioning given by Pf- and P-j is unique, as I- i- --1. 

For Flowo to be satisfied, its first argument must be a set: 

LE\I~IA :2.1.2 Given labels 01 •... ' an and contexts RI , .... Rn of some label algebra then 

o 2..t.2 

Proof: A~~llme Flowo(~(al,RI) ..... (an.Rn)G.D) holds. The proof proceeds b .. , induction over 

11. 

Base Case: II = 1 the result is immediate. 
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Inductive Step: Suppose n > 1 and that the result holds for all i < n. 

From the definition, we may partition ~(aJ, R1), .. " (an, Rn)~ into Pf- and Pooh such that 

(a, Q) E Pf- implies Q = Q'(.I-)C and (s, Q) E P-1 implies Q = Q'(.-l)C. If Ri E Pf- and 

Rj E P-1 the result follows immediately. 

Otherwise Rj, Rj E Pf- or Rj, Rj E P+ We will assume, without loss of generality, the 

former. Suppose Rj = RH·I-)C and Rj = Rj(.1- )C. Then. from the definition, D = (~EB 
D-1)[C] and FlowQ(P~, Df-) holds, where P~ = ~(a, Q') I (a, Q) E Pf- 1\ Q = Q'(J-)C~. 

As P~ f: ~~ we have that IPf-1 < IPI, so that R: f: Rj from the induction hypothesis, 

and the result follows. .2A.2 

Given Lemma 2.4.2, when FlowQ is satisfied for particular P and D, we have that P is a set, 

whence we will often write P using set notation rather than multi-set notation. 

We are now in a position to define the Flow predicate: 

DEFINITION 2.4.3 Given a label algebra C = (A, R) and n E N, define a relation Flown: ._1 n X 

C.c such that 

Define Flow = U Flow n . .2.4.3 

From Lemma 2.4.2: 

PROPOSITION 2.4.4 02.4.4 

2.4.1 Label Produced by a Transition 

The derivation of the Flow predicate was motivated by the H-synchrony rule. We have so far, 

however, defined only the enabling conditions for application of the rule through Flow; the 

transition also generates a labeL This label appears within the Flow predicate-it is the Dover 

which FlowQ is quantified in the definition of Flow: 

D 2 4 5 S Fl ( R R ) holds Define the transition label EFINITION . . uppose owa1, .. ·,an. 1 .. · .. n . 

Label(a1, ... ,an,R}, ... ,Rn) to be the D such that FlowQ(~(a1,Rd, .... (an,Rn)~.D). 

We have that: 
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PROPOSITION 2.4.6 The transition label is well-defined. =:; 2..1.6 

Proof: That D exists is a corollary of the fact that Flow(aI, .... an,Rt •.. . ,Rn } holds. That 

it is defined uniquely follows from the fact that the partitioning of P in Flowo{ P. D) is 

unique and that EEl is commutative. .2.-t.6 

2.4.2 Symmetries of the Flow Predicate 

The commutativity of the EEl operator is motivated by the commutativity of the H-synchrony 

rule, which in turn motivated by the commutativity of the synchrony and asynchrony rules of 

the literature. For instance 

and 

P~P' Q~Q' 
--------------- (aEJ)b)[rl~O 

P[f-r] U Q[-1r] (a~rl P'[f-r] U Q'[-1r] 

Q~Q' p~p' 
--------------- (bEJ)a)[rl~O 

Q[f-r] U P[-1r] (b~r] Q'[f-r] U P'[-1r] 

are indistinguishable by the label they produce. 

This is reflected in the definition of Flowo (and hence the Flow predicate) in that, given that 

Flowo(P, D) is satisfied for a particular choice of P and D, the partitioning of P is unique and 

symmetric in the f- and -1 allowing the polarities to be reversed whilst retaining the truth of 

Flowo. For instance, if P = PI- U P., with 

PI- {( at, Ri (.f-) C), ... , (an, R~ (.f-) Cn 

P., {( b1 , Qi(. -1) C), ... , (bm , Q:n (. -1) Cn 

then Flowo(PI- UP." D) {:} Flowo( Or U Q." D) where 

Or {( at, Ri (.-1)C), ... , (an, R~( .-1)Cn 

Q., {( bI, Qi(.f- )C), ... , (bm , Q:n(.f-)Cn 

with the label, D, an invariant of the transformation. 

More generally, we may see the recursive partitioning of the first argument of the Flowo as 

defining a strictly binary tree [TA86], with arcs labelled by (.f-)j(,-1) pairs. Such transformations 

as described above may be applied to any non-leaf node of the tree. 
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Moreover, this observation leads to other useful symmetries which, instead of working on single 

(.I--)/(.-l) pairs, apply to n-tuples, and corresponding to the (generalised) associative nature 

of the synchrony and asynchrony rules. For instance, consider labels and contexts satisfying 

Flowo( n( at, d1 ), (a2' ~), (a3, d3)~, D) such that the contexts have the following form: 

(J- )C3 

(.I-)C3 

q (.-l)C3 

in which the context which would be in 'position' C2 is missing. Fsing arguments similar to 

those above we may transform this to 

di C1 ( .1- ) C3 

d~ C{(.I-) (.-l)C3 

d~ C~(.-l) (.-l)C3 

while preserving the truth of Flowo( n( aI, di), (a2' d~), (a3, ~)~, D). 

We will see, in Chapter 5, how these symmetries of the Flow predicate translate to the commu

tative and associative nature of certain operators on High Level Petri Boxes; namely concurrent 

and choice compositions, defined in Chapter 4. 

2.5 High Level Petri Boxes 

The structure of a High Level Petri Box is an annotated Petri net with the following components. 

2.5.1 Places and Place Labels 

Let P be a countably infinite set. We will choose the places which form our High Level Petri 

Boxes from P. Places will usually be written in italic script s, with decoration and subscripting 

as necessary. 

2.5.1.1 Ensuring Disjointness of the Name Space 

For technical reasons it will be necessary to assume that P is closed under taking arbit rary 

binary (commutative, associative) Cartesian products with itselfll. This condition will ensure 

llWith definition A ® B = {a ® b I a E A II b E B}. 
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that the name space from which we choose the set of places underlying a High Level Petri Box i~ 

sufficiently structured to allow a form of place multiplication (often used for Petri net composition 

and used, for instance, in [Win84]) as the basis of our structural composition operators. The 

reason for the commutative associative binary nature of the ®-product is that Cartesian product 

is too concrete in distinguishing (s, s') and (s', s), and « s, s'). s") and (s, ( s', s")). This has the 

corollary that the commutativity and associativity of certain operators is structural equality. 

rather than just isomorphism. We see this as a refinement of the usual place multiplication 

scheme. 

Examples of members of P are, then, S1 ® S2 ® S3 ® S4 and s ® s' ® s". 

For the PBC [BDH92] a very general scheme for the generation of place names must be given 

to be able to describe the arbitrarily complex refinements underlying the fix-point semantics 

of recursion; see [Dev95, Dev93]. This is the best possible for a low level model, due to the 

restricted modelling power of P IT nets. However, for the class of High Level Petri Boxes 

generated through the High Level Petri Box Algebra, place manipulations are finite. This 

explains our simpler 'calculus' of place names. 

Each collection of places may be assigned an 'identity', i.e., something which distinguishes it 

'sufficiently' from other sets of places, the use of which will permit arbitrary compositions on 

pairs of High Level Petri Boxes. The flavour of the place multiplication we use generates place 

names 'on the fly' and so it is worth being a little careful, initially, as to which pairs of sets of 

places we allow to be composed. Examples illustrating the problems which may occur are given 

in Chapter 4. 

DEFINITION 2.5.1 The identity of the place s = S1 ® ... ® Sn is ides) = {S1 .... , sn}. Given 

a set of places S ~ P define the identity of S, ide S) = USES ide s). .2..1.1 

For instance, the set {S1 ® S2 ® S3, S4 ® S1} has identity {S1. S2, S3, S4}' Sets of places may be 

different, whilst not having distinct identities. Such sets will be called anti-social. It is the pairs 

of sociable sets of places with which we prefer to deal. They have certain desirable properties 

which are preserved across place multiplication. Formally: 

DEFINITION 2.5.2 Let S1 and S2 be sets of places. We say that S1 and S2 are sociable if 

and only if ide S1) n ide S2) = 0. Otherwise S1 and S2 are anti-social. .2 . .5.2 

A non-empty set of places is always anti-social with itself. Tri\'ially: 
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PROPOSITION 2.5.3 For S1 and S2 sociable sets of places. S1 n S2 = 0. 02 .. 5.3 

We will later transfer the property of sociability to High Level Petri Boxes. 

2.5.1.2 Place Labels 

Let Ap , the alphabet of place labels, be the set12 Jr{E, X}. The annotation of places by members 

of Ap will identify the control interface of our High Level Petri Boxes: the labels of Entry places 

will contain E; those of eXit places will contain X; internal places will have the label 0. It 

follows that places with the label {E, X} are both entry and exit places. 

2.5.2 Local Transitions 

A transition of a sequential component of a distributed transition system, at least when not in 

the context of other processes, might be thought of as local. A local transition within a High 

Level Petri Box represents this. Thus, the information a local transition must carry should 

include pre- and post-state, the action label (taken from some label algebra alphabet, but which 

may also be 0, to represent inaction), together with the contribution it makes to an enclosing 

'block' (contexts of the same label algebra annotating its arcs): 

DEFINITION 2.5.4 [Local Transition} Given a label algebra [ = (A, R) define an [-local tran

sition as a five-tuple (S,G,k,G',S') where S,S' ~ P are finite, non-empty sets of places, 

C, G' E e.c are [-contexts, and k E AU {O} is an [-label. 

The collection of [-local transitions will be denoted loc.c. .2.5.4 

As usual, we will tend to omit the label algebra decorations when no ambiguity arises. 

DEFINITION 2.5.5 Let 1= (S, G, k, G', S') E loc be a local transition. Define 

-z S the pre-set of Z, 

I- S' the post-set of I, 

Cz G the pre-contexts of Z, 

ZC G' the post-contexts of Z, 

I k the label of I. 

12Where lP'S is the power set of the set S. 
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We will also use the ab breviation -1- for the set -I u 1-. 

2.5.3 Abstract Transitions 

An abstract transition is the High Level Petri Box equivalent of an application of the H-synchrony 

rule. 

The model of a distributed transition system transition as a Petri net transition collects together 

finitely many transitions of sequential components to produce a synchronisation. Abstract tran

sitions are, thus, finite multisets of local transitions. A multiset, rather than a set, will allow 

the contribution towards a synchronisation by two separate processes to come from the same 

local transition (this being a requirement for the finite representation of recursion, in which 

unbounded numbers of processes sharing the same High Level Petri Box structure may be gen

erated through dynamic process creation). That we prevent infinite numbers of processes from 

synchronising together implies that the number of transitions contained in a (syntactically gen

erated) High Level Petri Box will be at most count ably infinite. Moreover, this will not prevent 

an observable synchronisation from occurring for such High Level Petri Boxes as an 'infinite 

synchronisation' may then only occur through the 'creation of an infinite number of processes'. 

The only way of achieving this for High Level Petri Boxes will be through applications of the 

recursive operator (introduced in Chapter 6). From the definition of that operator, all recursive 

processes are guarded so that any such synchronisation will be possible only through an infinitely 

long execution which, by definition, will therefore not be observable. 

DEFINITION 2.5.6 [Abstract Transition} Given a label algebra c', an c'-abstract transition, t, 

is a finite multiset of c'-local transitions, i.e., t E MF( loc.c). 

The order of an abstract transition t, Itl, is the sum of the multiplicities of its constituent local 

transitions. The collection of abstract transitions on the label algebra C, will be denoted T.c . 

• 2 .. 5.6 

As usual, we will omit the decoration when the label algebra is clear by context. 

An abstract transition of order n represents the attempted synchronisation of actions from n 

local transitions. In being a finite multiset of local transitions an abstract transition t can be 

regarded as having an element of A €a as label. Examples of abstract transitions appear in Figures 

2.2 and 2.4. 

The components of an abstract transition are given by the following operators: 
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DEFINITION 2.5.7 Let t = ~ ll' ... , In ~ E Tc for some label algebra C. Define 

U. e[. 
I I the pre-set of t, 

te Ui lie the post-set of t, 

t II Ee ... Ee In the label of t 

.2.5.1 

As for local transitions, we will use the abbreviation ete for the set et U te. 

2.5.4 Pre-High Level Petri Boxes 

A High Level Petri Box is a restricted form of pre-High Level Petri Box. 

DEFINITION 2.5.8 

(8, T, A), such that 

Given a label algebra C, a pre-High Level Petri Box over C is a triple, 

8 c P 

TeTe such that Vt E T: ete ~ 8, 

A 8 ---+ Ap 

The class of pre-High Level Petri Boxes on a label algebra C will be denoted PH.CPBc ' 

• 2 . .5.8 

The pre-High Level Petri Box B = (8, T, A) over the label algebra Co of Example 2.1.1 (page 8) 

is illustrated in Figure 2.2, where 

T {to,td 

A {so ---+ {E,X},SI ---+ 0,S2 -+ {E},S3 -+ {X}.S4 ---+ {E.X},ss ~ {X},S6 ~ {E}} 

to ~({ so}, .g, a, .g, {S2}), ({ sd,.j, a, .J, {S3})~ 

tl = ~({ss},.g,O,.I-,{SS,S6})~ 

We use the usual graphical representation, Le .• places are denoted as circles, transitions as 

squares, with the flow relation being indicated as directed arcs between them. As a notational 

convenience, we will often refer to the structure of a pre-High Level Petri Box by name without 

explicitly listing its components; for instance, given a pre-High Level Petri Box with the name 

E, the components of B will be distinguished by B written subscripted: for example, a pre-High 
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{E,X} 

0 4 

Figure 2.2: The pre-High Level Petri Box B. 

Level Petri Box of name B1 comprises (SBI , TBI , )..B1 ); or by annotating the components with 

the structure's decoration; for instance, (S}, T1 • )..1) in the previous case. Also, in an attempt 

to clarify figures containing pre-High Level Petri Boxes, we will often omit the names of places 

and transitions, the annotation of internal places, and the trivial context when used as an arc 

annotation. 

2.5.4.1 Operators on Pre-High Level Petri Boxes 

As for local and abstract transitions, we define the operators which extract the components of 

a pre-High Level Petri Box: 

DEFINITION 2.5.9 

e 
B 

LT(B) 

GB 

BG 

Given a pre-High Level Petri Box B, define 

{s E SB lEE )..( s)} 

{s E SB I X E )..(s)} 

SB \ (e B U Be) 

{l E tit E TB} 

{Glil E LT(B) /\ el ~ eB} 

{lG Il E LT(B) /\ le ~ Be} 

the entry interface of B 

the exit interface of B 

the internal places (or midset) of B 

the local transitions of B 

the entry contexts of B 

the exit contexts of B 

.2 .. 5.9 

As usual, e Be will abbreviate e B U Be. Moreover, we will often talk of the input (output) arc.' 

of a pre-High Level Petri Box, by which we will mean the arcs which are incident on and flow 

from, the pre-set (respectively, incident on and flow to, the post-set). 
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A pre-High Level Petri Box with a single local transition may be constructed directly from that 

local transition using the augment operation: 

DEFINITION 2.5.10 Define a partial mapping [_]: JOCL - P1t£PBc such that [I] = 
(ele,{~l~},{el X {E},le X {X}}) when el n Ie = 0, and undefined otherwise. \\"hen defined. 

[1] is called the augment of 1. .2 .. j.1O 

Although it would be simple enough to remove the partiality of the augment operator. we will 

never be required to augment a local transition such that el n Ie f. 0. 

2.5.4.2 A Partial Order on pre-High Level Petri Boxes 

We may define a simple containment relation on pre-High Level Petri Boxes: 

DEFINITION 2.5.11 For pre-High Level Petri Boxes Bl and B2, define Bl C B2 whenever 

.2.5.11 

Clearly, ~ is a partial order. 

2.5.4.3 Sociability of pre-High Level Petri Boxes 

We have assigned to each set of places an identity (Definition 2.5.1). As pre-High Level Petri 

Boxes comprise sets of places we may lift the concept of identity to pre-High Level Petri Boxes: 

DEFINITION 2.5.12 

B as id(B) = ideS). 

Given a pre-High Level Petri Box, B = (S, T, A), define the identity of 

.2.5.12 

Pairs of pre-High Level Petri Boxes may thus be regarded as sociable: 

DEFINITION 2.5.13 Let Bl and B2 be pre-High Level Petri Boxes. We say that Bl and B2 

are sociable when id(Bl) n id(B2) = 0. .2 .. ').13 

The following properties of sociable pre-High Level Petri Boxes follow easily from Proposi

tion 2.5.3: 
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PROPOSITION 2.5.14 Let Bl and B2 be sociable pre-High Level Petri Boxes. Then: 

2. LT(Bt) n LT(B2 ) = 0, 

o 2.;J.U 

2.5.5 High Level Petri Boxes 

The following properties characterise High Level Petri Boxes from pre-High Level Petri Boxes. 

DEFINITION 2.5.15 Let B = (8, T,>.) be a pre-High Level Petri Box. Then B is a High 

Level Petri Box if, in addition: 

2. - B = -LT(B) \ LT(B)- and B- = LT(B)- \ -LT(B), 

3. for each local transition Z E LT(B), either -Z ~ -B or -Zn -B = 0 and either /- ~ B- or 

Z- n B- = 0. 

For a label algebra £, the class of £-High Level Petri Boxes will be denoted 13 1-{£PB~ . 

• 2..5.1.') 

Properties 1-3 ensure of a High Level Petri Box the following properties: 

1. that each High Level Petri Box has both an entry and exit interface, giving a well-defined 

interface for compositions involving control flow. Property 1 also implies that the markings 

expressing initialisation and termination of a High Level Petri Box (so-called standard 

initial and standard terminal markings) are non-empty, 

2. that the entry places of B should be those places which have no preceding local (and hence 

abstract) transitions. (The motivation for this will be found in Chapter 5.) One half of 

the equality, ~, prevents entry places being re-marked after the firing of an initial abstract 

transition (with a symmetric statement holding for exit-places). (The reverse inclusion 

which completes) Property 2 will be shown to be necessary for preserving the strurt ure of 

13The undecorated name, HCPBi:, is used for the subclass of syntactically genErated High Level Petri Boxes in 
Chapter 4. 
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o a a 

a. b. c. 

Figure 2.3: illustrating the independence of the properties of Definition 2 . .5.15. In a. only 
Property 1 fails, in b. only Property 2 fails, in c. only Property 3 fails. 

a High Level Petri Box through compositions-without this condition it is possible to move 

outside of the class of High Level Petri Boxes (and indeed pre-High Level Petri Boxes) on 

a given label algebra using the operators we define; see Section .t.9.2 for a discussion. That 

this is a deficiency of pre-High Level Petri Boxes and not of the operators we hav(' chosen 

will also be argued, 

3. that the pre-set of a local transition should either be wholly contained in the entry places 

of a High Level Petri Box or have an empty intersection is again made to ensure, together 

with Property 2, that High Level Petri Boxes are closed under application of the operations 

we have defined. 

Properties 1-3 although interrelated, are independent, as the pre-High Level Petri Boxes of 

Figure 2.3 show. (It is to be assumed that all transitions of the pre-High Level Petri Boxes have 

order 1). Pre-High Level Petri Box a. satisfies all conditions except 1; b. satisfies all conditions 

except 2; c. satisfies all conditions except 3. We also note that the definition of pre- and post

contexts of a local transition, together with Property 1 above, implies that the entry contexts 

(resp. exit contexts) of a High Level Petri Box are precisely those contexts which annotate the 

input (resp. output) arcs of a High Level Petri Box. 



CHAPTER 2. THE HIGH LEVEL PETRI BOX MODEL 33 

Figure 2.4: The High Level Petri Box B'. 

Figure 2.4 gives the example of the High Level Petri Box B' = (5', T',,AI) over the label algebra 

Lo of Example 2.1.1, where: 

T' {t} 

,AI {Sl - {E}, S2 - {E}, S3 - {X}, S4 - {X}} 

and t is the abstract transition consisting of the local transitions ({sd, .ccs, a. J-, {S3}) and 

({S2},., a, .ccs, {S4})' 

2.5.5.1 Markings of High Level Petri Boxes 

Given a label algebra £, the tokens which populate a High Level Petri Box over L are the 

contexts of C.c. As we allow multiple copies of the same token on a place we may define a 

marking as: 

DEFINITION 2.5.16 

M: 58 - MF(C.c). 

Let B be a High Level Petri Box. A marking of B IS a mapping 

If, in addition to being a function in14 5B - ,\.1F(C.c), a marking .1/ is also a function in 

58 - IPC.c, we will say that M is a safe marking. .2 .. 5.16 

At a safe marking the tokens which form the marking of any particular place are distinguishable. 

This is equivalent to the property of strictness for PrT nets. However, a safe marking of a High 

HWhere, if S is a set, we use the natural injection IP'S - MF(S). 



CHAPTER 2. THE HIGH LEVEL PETRI BOX MODEL .1-1 

Level Petri Box corresponds to a safe marking in the basic net model semantics defined in 

Chapter 3, which is why we use the term safe rather than strict. 

To represent a marking as a function we will often omit mention of elements of the domain of 

the function whose image is the empty set. For instance, for a High Level Petri Box B with 

5B = {St, S2,S3}, the marking {SI f-+ ~~,S2 f-+ ~.,.f~.s3 f- ~~} will be represented as, simply, 

{S2 f-+ ~.,.f~}. 

2.5.5.2 Standard Initial and Terminal Markings 

There are two classes of markings in which we are particularly interested, the standard initial 

and standard terminal markings. In general, the behaviours we will consider of High Level Petri 

Boxes will be from standard initial markings, and termination of a behaviour will be achieH'd 

only when a standard terminal marking is attained. 

DEFINITION 2.5.17 Let B be a High Level Petri Box and let d E Ct:.. The standard initial 

marking of B on d is the marking MJ,B such that 

E E A(S) 

otherwise 

The standard terminal marking of B on d is the marking MT'B such that 

X E A(S) 

otherwise 

When d is the trivial context (.), we will refer to the constructed marking as the standard initial 

marking (i.e., without mentioning d), and similarly for the standard terminal marking . 

• 2 .. 5.17 

We will often abbreviate MJ,B to MJ and MT'B to M[ when this can be done without causing 

ambiguity. 

We note that the standard initial and terminal markings are safe as defined in Definition 2 .. 1.16. 

In the next chapter we define a symbolic firing rule for High Level Petri Boxes, i.e .. the allowed 

transformation of markings into markings, from which comes notions of behaviour. reachability. 

etc. 
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2.5.6 Why pre-High Level Petri Boxes? 

In general, and until Chapter 4, we will not use pre-High Level Petri Boxes in the description of 

the High Level Petri Box Algebra or its semantics. However, with the increased requirements 

of our recursive construct (given in Chapter 6) certain sub-classes of pre-High Level Petri Boxes 

will be used to facilitate the definition. Their definition is left to that chapter. 

The composition of pre- and High Level Petri Boxes is, however, potentially 'explosiye' in that 

we are able to move outside the class of High Level Petri Boxes through the seemingly innocuous 

combination of the two. A discussion of this phenomenon follows the description of the initial 

portion of the High Level Petri Box Operators, in Chapter 4. 

2.5.6.1 On the Representation of High Level Petri Boxes 

An immediate corollary of Definition 2.5.15(2) is that entry and exit places of a High Level Petri 

Boxes are disjoint: 

LEMMA 2.5.18 Given a High Level Petri Box B, e B n Be = 0. 02 . .5.18 

This means that a place label in a High Level Petri Box may never be {E, X}, only one of 0, 

{E} or {X}. For clarity, we will usually omit the set brackets in figures. 

2.5.7 Isomorphism of High Level Petri Boxes 

For High Level Petri Boxes to be isomorphic means we may relate the components with bijections 

which preserve the interface and relative structure of the High Level Petri Box: 

DEFINITION 2.5.19 Let £ = (A, R) be a label algebra. An isomorphism. </J, between £-High 

Level Petri Boxes, Bl and B2, is a triple of bijections, (0", K., T), such that: 

0" SB I -+ SB2 

K. LT(Bd -+ LT(B2 ) 

T TBI -+ TB2 

and such that diagram in Figure 2.5 commutes. .2 .. 5.19 
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y Ap 

~ 
SBI q .. SB2 

• • A • • -, -

/ ~ 
-, -

"" LT~ .. LT(B2) 

C /c 
_ 3 _ - 3 _ 

TBI 
T 

TB2 

Figure 2.5: A commutative diagram for the isomorphism </>: Bl == B2. 

That </> is an isomorphism between Bl and B2 we will denote15 </>: Bl == B2, or just Bl == B2, 

when the isomorphism is clear from context or unimportant. When the components of the 

isomorphism are to be made explicit we will write, for instance, (a, "", T): Bl == B2. 

From bijection composition and a little 'diagram chasing' we have that: 

PROPOSITION 2.5.20 == is an equivalence relation. 02.5.20 

Definition 2.5.19 includes a bijection on the local transitions of a High Level Petri Box, a 

component which is not explicit in the definition of High Level Petri Boxes. However, this device 

will often help us in technical details of the sequel for, as the following proposition demonstrates, 

there is a strong relationship between the components of an isomorphism of High Level Petri 

Boxes (as might be expected), with the local transitions 'midway' between places and abstract 

transitions. 

PROPOSITION 2.5.21 Given (a, "", T): Bl == B2 then 

1.",,=0-

2. T = 0-

o V').21 

15We will also use the symbol == to represent isomorphism between arbitrary structures. 
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Proof: 1. From the commutativity of Figure 2.5 we know that 

a(el) eK(l) 

a( ze) K(lt 

cl C K(l) 

ZC = K(l)C 

7 K(l) 

whence 

K(l) (a(el), cl,7,lc,a(le)} 

a(l) 

Hence the result. 

2. Similar. • 2.5.21 

A corollary of Proposition 2.5.21 is that, to show isomorphism, we must only find a bijPction 

between the constituent places which 'lifts' to an isomorphism of local and abstract transitions. 

That isomorphism implies a bijection on places is a very strong condition for the isomorphism 

of High Level Petri Boxes and, in particular, is much stronger than the duplication equivalence 

of [BDH92]. However, the development of High Level Petri Boxes will proceed, in this text, 

through the provision of a model for a particular algebra, and so we will have a much ·tighter' 

control on the High Level Petri Boxes that are composed than was assumed in [BDH92]. 

This tight control appears to imply that we generate the 'natural' equivalence class representative 

under duplication equivalence. 

Isomorphism of High Level Petri Boxes, is the renaming equivalence of [BDH92]' given that we 

are using a place centred representation for our High Level Petri Boxes. We will subsequently 

show that such a renaming is a congruence with respect to the operators we define (under certain 

'sociability conditions'). This indicates that to consider individual place names as distinguishing 

High Level Petri Boxes is too concrete in some senses. In fact, it is the relationship between 

local and abstract transitions that is carried by places in which we are most interested, rather 

than being able to name any particular state. The abstraction from named states is formalised 

in Chapter 4. 

However, the operators we propose in Chapters .t and 6 find their natural expression through 

the place names of a High Level Petri Box so that we prefer to work with this "too concrete' 

representation, for the moment. 
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2.6 Summary 

In this chapter we have introduced label algebras. which allow multi-way synchronisation. to

gether with the semantic domain of High Level Petri Boxes. For High Level Petri Boxes we haw 

provided an 'intuitive' characterisation of their behaviour in terms of the H-s~·nchrony rule. In 

the next chapter we define the formal denotation of a High Lewl Petri Box. from which follow, 

a formal behavioural characterisation. 



Chapter 3 

The Meaning of a High Level Petri 

Box 

In this chapter we present a denotational semantics of High Level Petri B().\('~. The ~1'III;lI1tirs is 

given in terms ofPrT nets [GUn, Gen8i]. Through this denotation WE' establish tl1l' relationship 

between High Level Petri Boxes and a well-known net class. From (a modified H'rsion of) t Ii!' 

standard semantics of PrT nets we lIlay give a low level net denotation of a High 1.1'\1'1 I'I't ri 

Box, from which notions of behaviour and behavioural equivalence for High L(,H'I Petri !lO\I', 

stem. 

It is for the syntactically gr nrmtf(l High Level Petri Boxes, i.e., 1 hose which arise as 1 he dl'llot <1-

tions ofterms ofthe High Level Petri Box Algebra that the semantics is intenciPd. The defillit iOll 

of the semantics is, therefore, partial: it is from the definitions and properties of the algebra 

and its semantics, in Chapters .j and 6, that the totality of the semantics on the syntacticall~' 

generated High Level Petri Boxes follows. 

3.1 Predicate/Transition Nets 

PrT nets are a class of high lewJ Petri nets. As such. along with control flow. PrT nets allow 

tokens to carry other information which may be used to influence behaviour. Structurally, PrT 

nets build an algebraic structure upon a PIT net (called the shffton). This algebraic structure 

lllily be characterised as a signature (i.e., constants, operators. relational predicates) on top of 

which is built a first order pl'fdicatr logic. The link between the algebra and net parts is forged 

through the net annotation: specifically. dynamic (relational) predicatfs. which annotatl' places. 

39 
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act as variable types for variables of the first order language to range over. At a given marking 

of a PrT net, the members of the dynamic types are the tokens which form the marking of the 

place which the dynamic predicate annotates. 

The standard denotation (or unfolding) of PrT nets is in terms of Condition/Erulf (C/E) 

systems [Pet76, Thi87]. C/E systems were introduced by Petri as a 'common reference model 

for net theory'. They have strict structural requirements for their definition: there may be no 

side-loops, i.e., no place may be a member of both the pre- and post-set of a single transition: 

there may be neither isolated places nor transitions; nor may there be dead transitions l . The 

behaviour of a C/E system is defined through a 'look-ahead' firing rule which prevents unsafe 

markings from being produced. Practically, this means that not all syntactically well-formed 

PrT nets have denotations as C/E systems. 

Our original requirement of a basic net semantics for High Level Petri Boxes was to allow the 

derivation of a symbolic firing rule for High Level Petri Boxes which was consistent with that 

of the low level Petri Box model, i.e., PIT nets. To this end we use a PIT net denotation 

of PrT nets rather than the standard C/E system semantics. As PIT nets are definitionally 

less complex than C/E systems, this has the benefit of allowing a simplified presentation of the 

unfolding. 

The unfolding we define is derived from and has much in common with that of Genrich [Gen87]. 

As in that approach, we will assume that any PrT net to be unfolded is safe2 . This establishes 

a proof obligation that the PrT nets derived from High Level Petri Boxes are safe (and explains 

the partiality of the semantics). We will later show that all markings reachable from standard 

initial markings of syntactically generated High Level Petri Boxes are safe, and this extends 

trivially to the safeness of their denotations as PrT nets. 

A complete introduction to PrT nets is unnecessary for the presentation of this thesis. The PrT 

net model was introduced in [GL81]. A technically complete description appears in [Gen87], to 

which we refer the reader. 

Each marking of a PrT net defines an interpretation for a first order predicate logic. As the 

marking of a PrT net changes through the firing of transitions. the interpretation changes. The 

parts of the interpretation which are permitted to change in this way are restricted to a pre

defined set of so-called dynamic predicates, llv; all other predicates are called statir' to make 

ll.e., no reachable marking enables them. 
2Genrich uses the term strict, with meaning multiple occurrences of [the same} token [. .. } on places arr 

disallowed. This concurs with the definition of being safe given in Definition 2.5.16. 
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the distinction clear, and form the set lIs. Dynamic predicates are not directl~· permitted to 

appear in formulae: reference is made to them only by arc annotations through which they form 

generalised quantifiers for the logical variables appearing in formulae. 

The following definition of PrT nets is adapted from [Gen87]. 

DEFINITION 3.1.1 [cf., Definition 2.10, [Gen87, Pg. 216}} Let L be a first order language 

and let Ls designate the sub-language using only lIs, the predicates denoting static relations. 

A Predicate/Transition net, P = (N, W, M), is an unmarked annotated P /T net .Y, together 

with its annotation W in L, and its marking M, i.e, 

1. N is an (unweighted) PIT net, N = (5, T,F), 

2. W is the annotation of N, W = (WN' Ws, WT, WF) where: 

(a) W N is a first order structure for Ls called the support of M; 

(b) Ws is a bijection between the set of places, 5, and the set of dynamic predicates, lIv; 

(c) W T is a mapping of the set of transitions, T, into the set of formulae (called transition 

selectors) that use only operators and static predicates (i.e., are in La); 

(d) WF is a mapping of the set of arcs, F, into the set of symbolic sums of tuples of terms 

of L, LC, such that for an arc (x, y) E F leading into or out of a place ,<; (i.e., x = .'; 
or y = s) and n being the index of the predicate annotating s, Wdx, y) E Lcn. 

3. M is a marking of the places: it is a mapping that assigns to each place s E 5 a set 

of constants of the first order language. If, for each place s, M (s) = 0, we will call P 

unmarked, and permit M to be omitted from the triple, writing instead P = (.\', W) . 

• 3.1.1 

3.2 Predicate/Transition Net Semantics of High Level Petri 

Boxes 

In this section, given a High Level Petri Box over a particular label algebra we will define a 

PrT net as its formal denotation. The translation which underlies the denotation is relati\"E'I~· 

transparent, the only non-trivial part being the translation of the stack-like behaviour of a local 

transition. 
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3.2.1 The Language and Logic of High Level Petri Boxes 

The following definitions give the algebraic signature of the first order language and the term 

and formula building operations of the logic underlying the denotation of a High Lewl Petri 

Box (equivalently, defining the PrT net sub-class). We then define a structure (the model or 

interpretation for the logic) in terms of label algebras, contexts and places. 

Notationally we follow Genrich and use o(n) to denote that the formal symbol 0 is an operator 

or predicate of arity n. n(n) (respectively, II(n) ) is the collection of all operators (respectively. 

predicates) of arity n. Operators of arity zero are constants3 . The formal symbols introduced 

here will be provided with interpretations in Definition 3.2.2. 

DEFINITION 3.2.1 

Define 

Let £ (A, R) be a label algebra and let S ~ P be a set of places. 

n(O) {C(O) ICE Cd 
n(2) {~(2)} 

for all i > 1 

and II(O) = 0, n(i) = 0 for all i rt. {D, 2}. 

We define a first order language, L.c, with n = U n(i) and II = U II(i) as vocabulary. The 

vocabulary is augmented with a count ably infinite collection of variables V, disjoint from both 

n and II. 

The dynamic predicates are in bijective correspondence to the set of places,S: IIv 

{s(1) I s E S}. All other predicates are static: IIs = II \ IIv. 

The rules for building terms and formulae over L.c are: 

1. Terms: 

( a) a variable is a term, 

(b) each constant is a term, 

(c) for terms u, v. ~(u, p) is a term (usually written infix, so: u ~ r), 

( d) no other expression is a term. 

3Predicates of arity 0 are propositional variables, but these are not used in the semantics. 
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2. Formulae: 

(a) if u and v are terms then u = v is a formula, 

(b) for labels al, ... , an and terms Ul, .•. , Un' there is a formula Flow (41 •.... an) ( Ul, ... , Un). 

(C) for a formula p, ""p is a formula; for pairs of formulae p and q, p A q and p V q are 

formulae, 

(d) for a variable v E V and a formula p, 3v: p is a formula, 

( e) no other expression is a formula. 

By regarding Flow( al, ... , an) as a predicate of arity4 n we may define a structure for the static 

portion of the language Le. 

DEFINITION 3.2.2 [Structure for L.cl Let £ = (A, R) be a label algebra and let S ~ P be a 

set of places. Define 

• 3.2.2 

Then: 

LEMMA 3.2.3 Under the correspondence 

c(O) ---+ C C E Ce 

~(2) ---+ _ ~ _: Ce X Ce ---+ Ce 

Flow~~I ..... ai) ---+ Flow(ab···,ai) ~ ci i 2: 1 

Rc forms a first order structure for the static portion of Le· 03.2.3 

3.2.2 The Denotation of a High Level Petri Box 

We are now able to construct an unmarked PrT net from an unmarked High Level Petri Box. 

480 that Flow(al •...• an} ~ C.G. 
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Figure 3.1: The High Level Petri Box of Example 3.2.5 and its PrT net denotation. 

DEFINITION 3.2.4 Given a High Level Petri Box B = (S, T, oX) define an unmarked PrT net 

PrT(B) = (N, W) as follows: 

1. N = (S, T, F) is a PIT net with flow relation F 

{(t,s)E TxSlsEt-}. 

{(s,tjESx TlsE-t} u 

. . 
2. W = (WN' Ws, WT, WF), is the annotation, where WN = R£ ands ~VS = _: S - S. 

3. Suppose t = ~ 11, ... , In ~ E T. For each Ii choose fresh variables6 :rj and Yi· For s E - t 

define WF(S, t) = +{ilsE"1,} (Xi), and for sEt- define WF(t, s) = +{ilaE/,O}(Yi)' 

4. Let the variables which annotate the arcs into t = n/l, ... ,ln~ be {Xl .... ,Xn }. those out 

of t be {Yl, ... , Yn}. Define 

WT(t) = 3xi, ... , x~: /\7=1 xi = C Ii ~ Xi 1\ /\7=1 xi = lie - Yi 

1\ Flow (4, ... ,/,;) (x~ .... , x~) 

3.2.2.1 Examples of the Denotation 

.3.2.4 

Throughout this section we will assume that all label algebra relative properties are defined with 

respect to the label algebra £0 of Example 2.1.1 (page 8). 

5With S = {S I s E S}. 
6I.e., previously unused in the semantics. Always possible as V is infinite. 
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Figure 3.2: The High Level Petri Box of Example 3.2.6 and its PrT net denotation. 

EXAMPLE 3.2.5 When an abstract transition consists of only a single local transition the 

translation is particularly simple. For, consider the High Level Petri Box B = (5, T,)..), shown 

in Figure 3.1, where 

T {t} 

).. {81 -t {E}, 82 -t {E}, 83 -t {X}} 

Then PrT(B) is the labelled PrT net with components ((5, T,F),(WN' Ws, WT, H'F)), where 

F 

WN 

Ws 

WT(t) 

WF(8I, t) 

WF(t,83) 

Rco 

~: 5 -t S 

3xi: xi = (.) ~ Xl 1\ xi = (.) ~ YI 1\ Flow(r)(xi) 

WF(82, t) = (Xl) 

(YI) 

.3.2 .. 5 

EXAMPLE 3.2.6 When an abstract transition consists of more than a single local transition, 

synchronisation must be accommodated in the PrT net denotation. Consider the High Level 
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Petri Box B = (S, T, A) of Figure 3.2, where 

T {t} 

~ ({ sd, (.I-ccs), a, (.I-ccs), {S3}), ({ S2}, (. -ices), a, (. -ices), {S4})rr 

A {Sl -+ {E}, S2 -+ {E}, S3 -+ {X}, S4 ---+ {Xn 

PrT(B) is the labelled PrT net with components ((S, T. F), (WN, Ws. W T . WF)). where 

F = {( s}, t), (S2' t), ( t, S3), ( t, S4)} 

WN Rco 

Ws :: S ---+ S 

WF(SI, t) (Xl) 

WF{S2, t) = (X2) 

WF{t, S3) (YI) 

WF(t, S4) (Y2) 

WT{t), partially elided in the figure, is: 

WT(t) = 3x{, x~: x{ = (.I-ccs) ~ Xl /\ x{ = (.I-ccs) ~ Yl 

/\ x~ = (.-iccs) ~ X2 /\ ~ = (.-iccs) ~ Y2 

/\ Flow(a,li"){ X{, x~) 

3.2.2.2 Predicate/Transition Net Denotations of Markings 

• 3.2.6 

We conclude this section and the definition of the PrT net semantics of High Level Petri Boxes 

with the denotation of a marking of a High Level Petri Box. The definition is simplified consid

erably as a High Level Petri Box and its PrT net denotation share the same places: 

DEFINITION 3.2.7 Let M be a marking of a High Level Petri Box B. Define the PrT nt t 

denotation of M to be the marking PrT(M) of PrT(B) defined as PrT(:\1) = M. • 3.2.1 

Because of their proximity, we will usually write M for both itself and its PrT denotation. 
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3.3 The Behaviour of a High Level Petri Box 

The behaviour of a High Level Petri Box is defined as that of its denoting PrT net which is 

defined in this section. 

In the following we will assume that 1: = (A, R) is a label algebra, B = (S, T,'x) is a High Level 

Petri Box and that P = PrT(B) = (N, W) is its denoting PrT net with S = (S, T. F) and 

W = (WN' Ws, WT, WF). 

3.3.1 Indices and Substitutions 

For a transition, t, of a PrT net, P, we will define the index of t, index(t). to be the 

variables which annotate the arcs incident on t. From Definition 3.2..1, when It I = 11, 

index( t) = {Xl, ... , xn, YI, ... , Yn}. To be able to evaluate the transition selector of a tran

sition, t, we must give values to the variables which appear in the index of t. The variables 

of the index of t will be bound to particular tokens which populate the places around t. Ref

erences to the variables inside the transition selectors of t are thus instantiated with contexts. 

Substitutions are the mechanism through which this binding is achieved: 

DEFINITION 3.3.1 

a: index(t) -+ Ce. 

A substitution for a transition t over the label algebra L is a mapping 

.3.3.1 

An a-instance of an object 0, O:a, is defined as O[a(xdl Xl," ., a(xn}lxn, a(yI)IYl .. ..• 

a(Yn)IYn]. 0 may be any term, predicate, symbolic sum, etc. 

3.3.2 Local-Strictness 

Related to strictness is a property which we will term local-strictness for future reference. Local

strictness is used but not named by Genrich ([Gen87, Pg. 218, Definition 2.13(2)]). It ensures 

that substitutions evaluated on arc annotations produce sets. Practically. this implies that 

weighted nets are not required in the unfolding. As we will later define an unweighted PIT net 

unfolding of the High Level Petri Boxes which form the denotation of the algebra, we thus have 

established a proof obligation that High Level Petri Boxes produce locally-strict PrT nets. This 

is discharged for syntactically generated High Level Petri Boxes in Theorem .1.8.10. 



CHAPTER 3. THE MEANING OF A HIGH LEVEL PETRI BOX 

DEFINITION 3.3.2 A substitution a is locally-strict if it creates a set on every arc incident on 

t, i.e., for every place s and arc annotation a = WF(S. t) or a = WF(t, sf. 0 ~ a:a ~ +CEc{C}, 

• 3.J.2 

When a transition selector is satisfied by a locally-strict substitution a. i.e, WT(t): a holds, the 

transition may fire. In this case the substitution is said to be feasible. The feasible substitutions 

for a transition t are distinguished as: 

DEFINITION 3.3.3 Let t E T. Define subsP(t) = {a I a locally-strict and lrT(t):a}. 

• :3.3.3 

We may extend local-strictness to PrT nets: 

DEFINITION 3.3.4 A PrT net, p, is locally-strict if for each transition t. each sat isfying 

substitution for t is locally-strict. • 3.:3.-1 

A High Level Petri Box B is locally-strict if PrT(B) is locally-strict. 

There are pathological cases of (marked) High Level Petri Boxes for which the marking defines 

a satisfying substitution of a transition of PrT( B) which is not, however, locally-strict. An 

example is shown in Figure 3.3 in which local transitions it and l2 with the same pre- and post

set appear in the same abstract transition. The marking shown satisfies the transition selector 

of t: 

WT(t) 3x~,x~: x~ = (.I-ces) ~ Xl /\ X~ = (.I-ccs) ~ YI 

/\ x~ = (.--Iees) ~ X2/\ ~ = (.--Iccs) ~ Y2 

/\ Flow(a,"itj(xf, x~) 

(elided in the figure) in the label algebra Co of Example 2.1.2 but the evaluation of WF(so, t) 

under the substitution Xl 1-+ (.), X2 1-+ (.) is ~(.). (.)~ which is not a set, meaning that the 

substitution is not locally-strict and so is not feasible. As mentioned above, such situations do 

not arise in syntactically generated High Level Petri Boxes. 

3.3.3 Label Produced by a Feasible Substitution 

The label produced by a transition has already been defined in terms of substitutions for the Ri in 

the Flow relation (Definition 2.4.5). As feasible substitutions satisfy the transition selectors. and 

hence their Flow conjunct, we may define the label of a transition under a feasible substitution. 

7In which comparison is done component-wise. 
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3x{,~: ... 

B PrT(B) 

Figure 3.3: A High Level Petri Box at a marking whose PrT net denotation does not define a 
locally-strict substitution. The elided transition selector is given in the text. 

DEFINITION 3.3.5 Let t = ~ 11, ... , In ~ and let 0' E su bsP ( t). Define the label produced by 

.3.3 .. 5 

3.3.4 A Symbolic Firing Rule for High Level Petri Box 

To define the behaviour of a High Level Petri Box we must define what it means for an abstract 

transition to fire at a given marking, i.e., we must define the symbolic firing rule. 

3.3.4.1 A Symbolic Firing Rule for Predicate/Transition Nets 

Genrich defines his symbolic firing rule for PrT nets so that it commutes with his C/E system 

unfolding. Here we define a symbolic firing rule for PrT nets which commutes with a PIT net 

semantics, and which is subsequently used to define a symbolic firing rule for High Level Petri 

Boxes. 

DEFINITION 3.3.6 [cf., [Gen87, Pg. 219, Definition 2.16}} Let P = (N, A) be a PrT net. Let 

M and M' be (not necessarily safe) markings of P, let t be a transition and 0' a substitution 

replacing the index of t by constants. Then the a-occurrence of t at M leading to "/' is 

designated as M[t: O')M' and defined by the following requirements: 

1. 0' is a feasible substitution for t, 

2. for all arcs (s, t) entering t, WF(S, t): 0' ~ M(s), 

3. for all places s, M'(s) = (M(s) \ WF(S, t): 0') U WF(t, s): 0'. • 3.3.6 
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That there exists an a such that M[t:a)M' we will denote JU[t).'/'. That there exists a .\1' 

such that M[t)M' we will denote M[t). That there exists a t such that J/[t), we denote .l/[). 

Genrich's definition has a fourth requirement, omitted in the above, that WF ( t. s): 0 n;\/ (s) = 0 

which, together with his assumption of the purity of P, models the 'look ahead' firing rule for 

C/E systems. 

3.3.4.2 Notions of Behaviour for High Level Petri Boxes 

As Band PrT(B) share the same places, transitions and flow relation, we may lift, directly. 

the notion of a-occurrence of a transition to a High Level Petri Box from which we may deri\"(' 

notions of behaviour for High Level Petri Boxes: 

DEFINITION 3.3.7 Let M and M' be markings of a High Level Petri Box B. We say that 

M' is directly reachable from M, or that M' is an immediate follower marking of ;\/. denoted 

M[)M', if there is a transition t E TB and a feasible substitution 0 for t such that JI[t: 0);\/'. 

M'is reachable from M ifS M[)* M'. Note that M[)* M. 

The set of reachable markings of B from the standard initial marking d is defined as9 

M~ = {Mi} <l ([)*). 

.3.3.7 

We may combine an a-occurrence together with Definition 3.3.5 to produce a labelled 0-

occurrence: 

DEFINITION 3.3.8 Let t be an abstract transition in some High Level Petri Box. Given 

the assumptions of Definition 3.3.6 define the labelled o-occurrence of t to be Al[ t: 0).\1'. where 

M[t: o)M' is the a-occurrence of t. .3.3.8 

We write M [:~~) M' for the combination of labelled and unlabelled (0- )occurrences. 

Other standard notions of behaviour follow directly. 

8Where [f is the reflexive, transitive closure of D· 
9Where <I is domain restriction, i.e., for a relation R and a set S, S <I R = {r I (s. r) E R 1\ s E S}. 
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3.3.4.3 Interpretation on High Level Petri Boxes 

The intuition behind the symbolic firing rule for High Level Petri Boxes interprets a local tran

sition as a stack-like object, in which pre-contexts are 'pushed' and post-contexts are ·popped'. 

Consider a transition t = ~ 11, ... , In ~ in some High Level Petri Box B. That a su bst i t u tion 0 

forms an a-occurrence of t implies that we may find tokens Cj E C covering the pre-set of local 

transitions Ii, such that 

SFRl. C Ii ~ a( Cd( = xi) E C, i.e., we may 'push' the pre-contexts of the local transitions onto 

the tokens, 

SFR2. C lja( Cd - Ii C E C, i.e., we may 'pop' the post-contexts of the local transitions from the 

tokens, 

SFR3. Flow( 11, ... , In, X~, ••• , x~), i.e., the H -synchrony rule would permit the firing of t he tran

sition. 

Thus the firing of a transition of a High Level Petri Box derives from the properties of the H

synchrony rule under the proviso that the push/pop behaviour of the local transitions of which 

it comprises is well-defined. 

3,3.4.4 Examples 

We return briefly to Examples 3.2.5 and 3.2.6 to illustrate the firing rule for High Level Petri 

Boxes. 

EXAMPLE 3.3.9 [Example 3.2.5 continued] Let M be a marking of the PrT net such that 

M{Sl) = ~(.)~ = M(S2) and M(S3) = ~~. Transition t is enabled at 1\1 with feasible substitution 

Q, such that a(xl) = a{Yl) = (.). H-synchrony requires only that T(.) = TEA which is, indeed, 

the case. The follower marking is M'. defined by M'(SI) = ~~ = JI'(S2), .1I'(s3) = ~(·m, i.e .. 

M[t: a)M'. .3.3.9 

EXAMPLE 3.3.10 [Example 3.2.6 continued] Assume a standard initial marking ,\11 to be 

given, i.e., such that M(Sl) = M(S2) = ~d~, and that we wish to detennine whether transition 
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t may fire at this marking. To this end we form the substitution Q such that Q( Xl) = d = o( Xl)' 

Performing the substitution WT(t):Q gives 

WT(t):Q ¢:> 3xf,x~ E C.co : x{ = (J-ccs)d = (.I-ccs)d 

A x~ = (.-1ccs)d = (.-1ccs)d 

A Flow(a,a)( x{,~) 

We may choose the xl consistently if and only if x{ = (.I-ccs)d and ~ = (.-1ccs)d. 

Substituting for the xl in the definition of Flow when n = 2 gives~ 

Flow( a, a, X{, x~) 

¢:> 3D E Ao: Flowo( ~(a, CI(.I-) C), (a, C2(. -1) C)~, D) 

¢:> 3D E Ao: Flowo(~(a, Cd~,DI) A Flowo(~(a, C2)~' D2) A D = (DI EB D2)[C] 

¢:> 3D E Ao: a[ CI ] -lOA a[ C2 ] -lOA D = (a[ CI ] EB a[ C2l)[ C] 

Substituting for CI , C2 and C we see that transition t may fire when 

a -lOA a-l 0 A (aEBa)[(.ccs)d] = T[d] E A 

which does not impose any further restriction on d, due to the definition of T. The follower 

marking, M', is then M'(SI) = ~~ = M'(S2) and M'(S3) = ~d~ = M'(S4)' The label produced 

by the transition is then T[ d] = T. Hence 

M [ T ) M'. 
t: Q 

.3.3.10 

3.3.4.5 Distinguishability of Substitutions 

M[t: Ql)M' and M[t: (2)M' does not necessarily imply that t: QI = t: Q2, so that distinct /

instances may be distinguishable through the labels they generate. An example of this is given 

in Figure 3.4. 

However: 

PROPOSITION 3.3.11 Let B be a High Level Petri Box with t = ~l~ E TB and -Z -I Ie. 

Then M[t: QI)M' and M[t: (2)M' implies QI = Q2. 03.3.11 
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a 3x{: ... 

a. b. 

Figure 3.4: A (a) (portion of a) High Level Petri Box and (b) its PrT net denotation in 
which two occurrences between the same markings can be distinguished. At the marking 
M = {s -+ ~.f, .g~}: if QI(XI) = ·f, QI(YI) = ·f, Q2(Xt) = .g, Q2(YI) = .g then M[~/a:Ql}M 
and M[~Z~:Q2}M, but ~Z~:QI i- ~Za:Q2 whenever f(a) i- g(a). 

Proof: Suppose to the contrary, that M[t: QI}M' and M[t: Q2}M' but Ql i- Q2· Suppose 

index(t) = {x, y} (x annotating input arcs, Y annotating output arcs) and let tj = Qi(~') 
and fi = Qi(Y), i = 1,2. As QI i- Q2 and ~ is single valued, tl i- e2 and it i- h

Moreover, as M[t: QI}M' and M[t: Q2}M', we have that 

Now, as -Z i- Z-, there is a place s E (-Z\l-)U( Z-\ -Z). Assume that s E -1\ I- (the other case 

is similar) whence, if M(s)(ej) = nj > 0, i = 1,2, then, under QI, M'(s)(ed = nl-1 

and M'(s)(e2) = n2 whereas, under Q2, M'(s)(ed = nl and M'(s)(e2) = n2 - 1, a 

contradiction. 

Hence the result. .3.3.11 

In particular, then, t: QI = t: Q2 and t = ~Za and hence we may write .U[t};'!' without ambiguity. 

3.4 The Most Permissive Label Algebra 

Given two label algebras sharing the same signature, we will consider one more jJtrmissit'( than 

another if the former prevents less synchronisations from occurring than the latter. This defines 

a pre-order on label algebras with the same signature. Of particular interest is the maximal 
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label algebra with respect to this ordering, which we call the most permissit'/: label algebra: it is 

the label algebra which does not prevent any synchronisation: 

DEFINITION 3.4.1 Given an alphabet A, relabellings R = {f, ... } forming a label algebra £, 

and an element a E A, a most permissive label algebra £MP = (A, R) (on A. and R u'ith rfSIXct 

to a) is defined so that f(O) = 0 and f(k) = a for all other k EA-=-. .3.4.1 

By definition, an alphabet A is non-empty, so that we may always choose a E A. As the choice 

of a is unimportant we will generally speak of the most permissive label algebra. 

We note that the references to labels within the Flow predicate test whether the label produced 

by the transition evaluates to an allowable action of the label algebra. Therefore if, for t he label 

algebra £ = (A, R), we were to substitute the most permissive label algebra over (A, R) these 

components would only check whether the label produced is O. As is clear. the finding of a 

partitioning is independent of the label algebra so that substituting the most permissivp label 

algebra in this way does not otherwise affect the satisfaction of the predicate. 

3.4.1 Positive Monotonic Properties 

The importance of the most permissive label algebra can be seen when considering certain 

marking related properties of High Level Petri Boxes which are monotonic in the permissiveness 

of the label algebra over which the High Level Petri Box is defined. This means that, for a High 

Level Petri Box, B, and a property of markings P, if P holds of B in label algebra £1 and £2 

is less permissive that £1, then P holds of B in the label algebra £2. Therefore a proof for the 

most permissive label algebra constitutes a proof for all other label algebras for such properties. 

Proving such properties in the most permissive label algebra is made easier as we do not have 

to consider the la.bel produced by a transition in a firing, and we will thus be able to consider 

marking theoretic properties of High Level Petri Boxes even for which we have no notion of 

'labelled' beha.viours. This will be particularly important when we extend label sets wit h proCf 88 

variables, and introduce constructs on High Level Petri Boxes which model refinement and 

recursion. 

DEFINITION 3.4.2 Let P be a property of High Level Petri Boxes. Then P is said to be 

positive monotonic on label algebras if, when P holds of B over label algebra £1 and £2 is les~ 

permissive than £1, then P holds of B over the label algebra £2' .3...1.2 
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3.4.2 Completeness and Decoupling in the Most Permissive Label Algebra 

In a complete High Level Petri Box all local transitions appear as abstract transitions: 

DEFINITION 3.4.3 

implies ~l~ E TB· 

Let B be a High Level Petri Box. B is said to be complete if lEt E T B 

.3.4.3 

However, even in a complete High Level Petri Box we cannot be sure that if t is enabled at a 

marking then any local transition lEt, when regarded as an abstract transition, is enabled at 

that marking. In the most permissive label algebra, however, no non-dead transition is disabled. 

Hence: 

LEMMA 3.4.4 [Decoupling Lemma] Suppose M[t)M' in a complete High Level Petri Box 

B over the most permissive label algebra. Then t = ~lt, ... , ln~ implies there are markings 

03.·U 

Proof: As B is complete, Ii E t E TB implies ~li~ E TB. M[t)M' implies there is a feasible 

substitution a such that M[t: a)M'. As we are working with the most permissivE' label 

algebra, that a is a feasible substitution for t at M implies10 for each i, al{x"y,} forms 

a feasible substitution for ~ li ~ at M, where Xi and Yi are the variables corresponding to 

the local transition Ii. 

The result follows. .3..1.4 

We will call a transition sequence which contains only local transitions considered as abstract 

transitions a local transition sequence. For a local transition sequence we will usually write 

M[l)N for M[~I~)N. We will also write a(i) for al{x"y,} as identified in the proof Lemma 3.4.4. 

The particular value of the decoupling lemma is that it allows the proof of positive monotonic 

properties to be conducted in the most permissive label algebra, on local transition sequences, 

but with full generality. 

LEMMA 3.4.5 Let P be a property of reachable markings of High Level Petri Boxes which is 

positive monotonic in the permissiveness of the label algebra. Then for all complete High Lewl 

Petri Boxes B over a label algebra C if P holds of markings reachable through local transition 

sequences of B over the most permissive label algebra CMP then P holds of all reachable markings 

of B over C. O:U.·'J 

IOWhere, for a function f: U - F. f Lw: (U n IV) - V is such that !lw( w) = f( u'), the restriction of f to W. 
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Proof: In a complete High Level Petri Box over a label algebra £, using Lemma 3.4.4. we may 

generate all reachable markings of B by considering the local transition sequences of B. 

The result follows. .3.4.·) 

Hence, to establish a positive monotonic marking theoretic property of a complete High Level 

Petri Box B over a label algebra £, we need establish it only for local transition sequences of B 

in the most permissive label algebra. 

Examples of positive monotonic properties of High Level Petri Boxes are safeness and memory

lessness (which are defined in Section 4.8.3.4). 

Working with local transition sequences provides us with much freedom as to the order in which 

we consider the firings of the local transitions: 

LEMMA 3.4.6 Let it, 12 E LT(B) for some High Level Petri Box B, and suppose ,\[[/1 : (1) 

M'[12: (2)N. Then it- n -12 = 0 implies there is a marking M" such that ;\/[/2: (2);\/"[/1: (1)S. 

03A.6 

Proof: 11- n-12 = 0 implies 02 is a feasible substitution for 12 at M. The result follows. 

3.4.3 Initial Marking Independence 

For a local transition Z to be enabled at a marking M there must be a token e such that 

ez X ~e~ ~ M and C Z~ e _Zc E C. But then, for any dEC, C Z~ (e ~ d) _zc E C also. Whence 

THEOREM 3.4.7 Let B be a complete High Level Petri Box over the most permissive label 

algebra. Then M EMf.) impliesll M( d) E Mf. 03.4.7 

The reverse result is not so general. Consider the High Level Petri Box B illustrated in Figure 3.5. 

Then, even though B's single transition may fire at a standard initial marking M(~)" it is disabled 

at standard initial marking M(~. The best we can achieve is: 

THEOREM 3.4.8 Let d be a context. Then for B a complete High Level Petri Box over a 

most permissive label algebra such that \:1M EMf, \:Ie E ran(M). d ~ e, M E -',tff implies that 

the unique marking M' such that M = M' (d) satisfies J/' E .\..1 f.)' 
I1Where M(d) = n(s, e - d) I (s, e) E MG· 

o 3.t.S 
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a 

B 

Figure 3.5: A High Level Petri Box, B, in which the push/pop behaviour is not always well
defined. 

Proof: As we work in the most permissive label algebra, the Flow component of the symbolic 

firing rule will not cause a transition to be disabled. Let M E M ~. The proof will be by 

induction over the length of the transition sequence which led to M. From Lemma 3.4..!, 

we need only consider local transition sequences for full generality. So let 

be a local transition sequence which led to M. 

If n = 0 then M = Mj and M' = M{) satisfies the property. 

Otherwise n > o. Suppose the property holds for n - 1, i.e., :J·\f~_l EMf) such that 

Mn- 1 = M~_l (d). As Zn is enabled at Mn- b there are contexts f and f such that 

-Z X ~e~ ~ Mn- 1 , f = CZne -Zn C and 

As Mn E M~ we have, from the hypotheses, that d ~ e so that -Zn X ~e~ ~ Mn- 1 = 

M~_l(d) implies -Zn X ~e - d~ ~ M~_l. Moreover, as d ~ f, f -d = CZn(e -d)-Zn C E C 

and there is a marking M' EMf) such that 

Moreover, M'( d) = Mn. Set Mn = M' for the result. • 3A.~ 

As, in the proof, we relate markings using the same local transition, we have actually proven 

much more with Theorems 3.4.7 and 3.4.8; namely that, under any unlabelled notion of be

haviour, the behaviours of B from standard initial marking (.) and from standard initial marking 

d are equal (modulo the d postfix). 
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Establishing the hypotheses of Theorem 3.4.8 for certain classes of High Level Petri Boxes will 

occupy much of the remainder of this thesis. For the High Level Petri Boxes of Chapter .t. the 

result is obtained by consideration only of the structure of the High Level Petri Box (in the 

sense as explained in that chapter). For the High Level Petri Boxes of Chapter 6, the result is 

obtained for a wider class of High Level Petri Boxes (those involving our recursive construct) 

although, for this wider class, we are required to consider the behaviours of the High Level Petri 

Box, rather than just structure. 

3.5 A PIT Net Unfolding of High Level Petri Boxes 

In Chapter 5 we will be required to show that two structurally different High Level Petri Boxes 

have the same behaviour. This equivalence is defined as the isomorphism of reachable subnets 

of the following PIT net unfolding of a High Level Petri Box. The unfolding derives from the 

CjE system unfolding of PrT nets which appears in [Gen87]. The differences are that: 

1. we do not insist on the purity of the source High Level Petri Box, B, i.e., there may be 

transitions t E TB such that • tnt· f; 0, and 

2. we do not remove isolated transitions and places from the denotation of the High Level 

Petri Box. 

Each allows us to simplify the presentation a little. 

3.5.1 A Transition Centred Place/Transition Net Model 

The target PIT net model used in the unfolding is, like High Level Petri Boxes, transition 

centred: 

DEFINITION 3.5.1 Given a set A, N = (S, T) is an A-labelled PIT net where S is a set of 

places, and T ~ IF S x A x IF S is a set oftransitions. N = (S, T . .if) is a marked A-labelled PIT 

net if (S, T) is an A-labelled net and M: S --+ N. 

.3.5.1 

The following are standard: a transition t is enabled at a marking M if • t ~ .\1. If a transit ion 

t is enabled at a marking M of a marked net N, then t may fire. written .\1 [~) .\/', when 
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M' := (M \ ·t) u t· and a = t. We write M[a)M' if there is a transition t such that .\l [~) .\1 ' . 

and M[)M' if there is an a such that M[a)M'. M' is reachable from J[ if .\l([)*).\/'. The 

reachable markings of a marked net N = (S, T, M) is the set [M) = J[ <J ([}*) .. \ marked 

net N := (S, T, M) is safe if for all M' E [M) and for all s E S, J['(s) ~ 1 (whence we may 

treat each marking as a set rather than a multiset). The reachable subnet of a safe markEd net 

N := (S, T, M) is the (safe) marked net Reach(N) = (U[M), {t E T 13M' E [.\I):·t ~ .\I/}. :\1). 

For details of the properties of such transition centred representations of P IT nets we refer the 

reader to, for instance, [GoI88]. 

3.5.2 a-Instances of Transitions 

Due to the special form of the dynamic predicates of our relational structure (i.e., they are 

unary) and as we require a labelled PIT net denotation, we define the following specialisation 

of the a-instances of transitions of Genrich: 

The reader will recall that we are assuming £ = (A, R) is a label algebra, B is a High Level 

Petri Box over £ and that P = PrT(B) is its denoting PrT net. 

DEFINITION 3.5.2 Let a E subsP(t). Define an a-instance of t, t: a, to be the triple 

·t: a {Ws(s)d Is E ·t 1\ d E WF(S. t): a} 

t:a· {Ws(s)dlsEt·l\dE WF(t,s):a} 

• 3.5.2 

a-instances of a transition are combined in the construction that follows to form a P IT net from 

a PrT net. Each corresponds to a transition of a PrT net enabled at a marking (which determines 

a feasible substitution), together with the label that would be produced by the transition and 

the follower marking if fired. Note that, as a is feasible and hence locally-strict, sets (and not 

multi-sets) are sufficient to define • t: a and t: a· . 

3.5.3 The Construction 

We may now define the construction of a P IT net unfolding of a High Level Petri Box: 
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s 5 5·f 5.Jf 8. 

0 
t a t t: al f(a) t: a2 f(f( a)) 

·f 

r T- .0 
s.g 

B PrT(B) P / T( PrT(B)) 

Figure 3.6: illustrating the relationship between a PrT net and its unfolding. a1 = 
{Xl -+ (.f), YI -+ (.)} and a2 = {Xl ----> (·ff), Y1 -+ (·f)} are the illustrated feasible substitutions. 
The markings of the various nets shown are equivalent. 

DEFINITION 3.5.3 Given the unmarked PrT net denotation of the High Level Petri Box 

B, P = (N, W) where N = (S, T, F) and W = (WN' Ws, WT, WF), define an unmarked 

A-labelled P /T net, P / T(P) = (S', T') with 

S' { W s ( s ) dis E S /\ dEC} 

T' it: a It E T /\ a E subsP(t)} 

Define the PIT net unfolding of B, P/T(B) = P/T(P). • 3 . .5.3 

The places of the P /T unfolding of B consist of place/token pairs: a marking of a place 5d in 

the P /T net corresponds to the marking of the place s by d in the PrT net. This correspondence 

is illustrated in Figure 3.6 in which is shown a single transition of some High Level Petri Box B 

(over a label algebra with a single label a and two relabellings f and g such that f (a) = a and 

g(a) = 0), its PrT net denotation, PrT(B), and its PIT net unfolding, P/T(B). To determine 

the transitions of the P /T net unfolding corresponding to the transition t we must calculate 

the feasible substitutions for t. Given the interpretation of the transition selector for t (elided 

in the figure) is WT(t) = 3x{ E C: x{ = (.) ~ Xl /\ x{ = (.f) ~ YI /\ a[x{] E A, these consist 

of substitutions of the form {an I an = {Xl 1-+ .r. YI 1-+ .J(n-l)} /\ n ~ I}. Two such feasible 

substitutions, al and a2, are illustrated in the figure together with other places which do not 

contribute a-instances of t. 

Using this correspondence between markings, we may define the marking of the P /T net un

folding of a High Level Petri Box B corresponding to a standard initial marking ,\11. It consists 
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of the set Sd = {Ws(s)d lEE 'x(s)} ~ Sf. 

If PIT(B) = (S,T) and (S,T,Sd) is a safe marked net, we define Reach(B.d) 

Reach ( (S, T, Sd}), i.e., that sub net of PI T( B) which is reachable from the marking Sd. 

3.6 Relations on High Level Petri Boxes 

61 

In addition to equality, =, and isomorphism, =, of High Level Petri Boxes, the rich semantics 

defined in this chapter provides an equally rich collection of relations which may be defined 

between High Level Petri Boxes. We briefly define and describe their interrelationship in this 

section. 

DEFINITION 3.6.1 Define relations =PrT ,=PrT, =P/T, and =P/T on High Level Petri 

Boxes such that, for High Level Petri Boxes B1 and B2: 

1. B1 =PrT B2 ¢} PrT(B1) = PrT(B2) (modulo a-congruence of variables of arc annota

tions), 

2. B1 =PrT B2 ¢} PrT(B1) = PrT(B2) as unmarked PrT nets (modulo a-congruence of 

variables of arc annotations and logical equivalence of transition selectors), 

4. B1 =P/T B2 ¢} PI T(B1) = PI T(B2) as labelled PIT nets. 

Additionally, for d a context, define 

5. B1 =~each B2 ¢} Reach ( Bll d) = Reach ( B2, d), i.e., the subnets of the labelled PIT 

denotations of B1 and B2, reachable from a standard initial marking d. are isomorphic. 

We will write B1 =Reach B2 when B1 =tach B2 for all contexts d. 

Suitable definitions of the class isomorphisms are available in the literature. Their interrelation 

is given in Table 3.1. Of some note is that =PrT ~ =, i.e., High Level Petri Boxes are in bijective 

correspondence with a subclass of PrT nets. 

From its definition the reader will note that =~each characterises behavioural equivalence between 

High Level Petri Boxes in terms of the structure of their respective PIT net unfoldings. The 

relation is used in Chapter 5 where we will wish to show that structurally unequal High Level 

Petri Boxes have the same behaviours. 
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=PrT 

=P/T 

=-P/T 
_d 
=Reach 

c 

c 

c 

c 

c 
=-PrT 

c 

c 

c 

c 

c 

=-P/T 

C 

C 

C 

C 

C 

-d 
=Reach 

C 

C 

C 

C 

C 

C 

Table 3.1: Interrelation between High Level Petri Box Equivalences. 

3.6.1 Showing Reachable Equivalence from a Standard Initial Marking 

62 

We have mentioned that the symbolic firing rule for High Level Petri Boxes commutes with 

that of its PIT net unfolding. Essentially, what this means is that M [ a ) M' in PI T( B) if 
t: Q 

and only if MPrT [t~Q) MPrT' with MPrT = {s ----> else E M} and MPrT = {s -+ else E .\I'}. 

Note that, when defined in this way, (Sd)PrT = MJ. 

The establishment of reachable equivalence at the level of High Level Petri Boxes then reduces 

to: 

PROPOSITION 3.6.2 

with d E ee, such that: 

Let B}, B2 be High Level Petri Boxes over a label algebra I:- = (A, R) 

2. there is a bijective correspondence \l1: LT(B1 ) =- LT(B2 ), such that -\l1(l) = -l, \l1(l) = 7, 

\l1(Z)- = Z-, and such that \l1: TI =- T2 , with \l1(~Z1.""Zn~) = ~\l1(lI)'"'' \l1(ln)~: 

3. there is a bijection X: Mfl -+ Mf2 such that: 

(a) X(MJ) = Mi, 

(b) for all M, M' E MBd1, t E T1 , Q E subsB1(t) such that M [ a ) M' in Bl there is a t:Q 
unique feasible substitution 'Y E subsB2 (\l1( t)) such that 
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(c) for all M, M' E M~, t E T2 , a E subsB2 (t) such that J! [ a ) .\/' in B2 there is a 
t:a 

unique feasible substitution, E subsB1 (\}i-l (t» such that 

X-1(M) [ a ) X-1(M'). 
\}i-l(t):, 

03.6.:2 

Proof: (Outline) Follows by an inductive argument over the reachable markings, using the com

mutativity of symbolic firing rules for High Level Petri Boxes and PIT nets to extend 

Hypotheses 3( a )-3( c) to the reachable subnets of the PIT net unfolding. • 3.6.2 

There are more general statements of Proposition 3.6.2-for instance, we may relax the re

quirement that 81 = 82 to be a bijective correspondence, and allow the relationship between 

feasible substitutions to be one-many. However, such generality is unnecessary in the following 

treatment. 

It is useful tonotethatifX:Mf1 --+ Mf2 is defined such thatX(M) = ~s --+ Xs(f) I s --+ f E .HI} 

where, for each place s E 81, Xs: C.c ....... C.c with xs n (dom(xs) X ran(xs)) a bijection, then Items 

3(a)-3(c) are sufficient to establish the bijective nature of X:Mfl == Mf2. 

3.7 Discussion 

3.7.1 A Comparison with the Denotation of Taubner 

The shorthand notation of Taubner gives PrT net denotations of certain terms 12 of his algebra 

A. Whereas we have discussed his algebra with regard to expressivity and label algebras, there 

are interesting parallels between the structure of his and our denotations. 

Taubner's synchronisations, as we have seen, are inherently binary in nature. Although Taub

ner does not explicitly refer to the order of a transition (as defined in Definition 2 . .'5.6), the 

notion may be usefully applied to his transitions: his 'singular' transitions have order 1, his 

'synchronisation' transition have order 2. No transition has order greater than 2. 

For High Level Petri Boxes, in the case that It I = 1, i.e., t = ~[~, that t does not contribute to a 

synchronisation is reflected in the simplification ofthe transition selector W T( t) at a substitution 

Q to: 

WT(t):a ¢} 3x{ E C:x{ = c[a(xt} 1\ x{ = [ca(yt} 1\ l[x{l E A 

12Those without initial parallelism in a choice composition, and with guarded recursion. 
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This is, essentially, the transition selector of Taubner, the differences being syntactic. Indeed 

in this case, we have a very simple firing rule which does not depend upon any synchronisation 

considerations-the transition is enabled if the push/pop behaviour is well-defined and if the 

relabelled label is in A. 

The case for It I = 2 is somewhat different: Taubner generates two transitions for each synchro

nisation transition, one for each possible ordering of the 'synchro-ands'. Because of t he nominal 

relabellings distinguishing the operands of a parallel composition, one of these transitions is 

redundant: one of the transitions is always dead at any (safe/reachable) marking. Each of these 

transitions may thus be considered to hold 'half' of the transition selector of our unique tran

sition: Taubner's scheme for his transition selectors is equivalent to the distinguishing of the 

partitioning in the definition of Flowo. A corollary is that, whereas our scheme always produces 

only a single transition, Taubner's scheme (in the case of n = 2, and were it to be generalised 

to synchronisations of orders n > 2) would give 2n
-

1 transitions for a synchronisation of order 

n, at least all but one of which are dead at any reachable marking. 

3.8 Summary 

In this chapter we have related the semantic domain of High Level Petri Boxes to the well-known 

high level Petri net model PrT nets. With this relation we have been able to ascribe to High 

Level Petri Boxes, through the PrT net annotation and its subsequent unwinding, a symbolic 

firing rule which derives its properties directly from the H-synchrony rule introduced in the 

previous chapter. Indeed we will see, in Chapter 5, that for the syntactically generated High 

Level Petri Boxes many of their behavioural properties follow from those of the H-synchrony 

rule. 

As the behaviour of a High Level Petri Box is defined through that of its PrT net denotation 

and, hence, through the unfolding of that denotation into a P /T net, we will often be required 

to consider these more concrete models in the proofs of behavioural properties in the sequel. 

We have, in giving a PrT net denotation, shown that the structure of the class of High Level 

Petri Boxes is well-defined. We next identify a particular property rich subclass of High Level 

Petri Boxes which are those forming the semantic domain of our High Level Petri Box Algebra. 



Chapter 4 

Algebra and Semantics I 

In this chapter we introduce the initial portion ofthe High Level Petri Box Algebra, Le., constants 

and operators for the expression of causal dependency, conflict, concurrency and relabelling, and 

their expression ·on the semantic domain of High Level Petri Boxes. 

As the algebraic characterisation of processes is well developed we have, in general, followed the 

literature to guide the development of our algebra: for instance, we provide operators for the 

expression of the important process concepts of causal dependence and independence, conflict, 

synchronisation and recursion 1 . 

However, process algebras appear not to have reached the point in their development at which all 

non-essential characteristics oftheir model based development2 have been lost: in particular, the 

(traditional) trace denotation of processes brings with it the operationally appealing expression 

of causal dependency as the countable infinity of prefix operators, one for each atomic action 

Ct, with signature D:._: Process ---+ Process. As prefix is not just a 'Curried' application of some 

single binary 'causal' operator on processes (which would, we feel, be a more traditional algebraic 

expression) we might see it as emphasising the essential difference in type between an atomic 

action and a process, which is that between the items in a trace and the trace itself. 

4.1 Ternlination and Deadlock 

The action bias within interleaving models of concurrency allows the notion of state to be almost 

entirely abstracted away. This has benefits for the tractability of, for instance, trace models: it 

I See Chapter 6 for the definition of the recursive construct, as well as that of refinement. 
2By which we mean, essentially, the interleaving model based development. 

65 
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is detrimental to the expression of concepts naturally expressed in terms of state. 

The expression of termination in CCS, for instance, is in terms of the constant nil. nil is not 

an action; rather, it forms a terminal symbol of the CCS syntax and has as semantics the non

deterministic choice between zero processes, a construct which is always deadlocked. The model 

of termination using nil is then the deadlocking of a process on reaching its terminating nil 

and is, thus, indistinguishable from other deadlock situations. With the expression of causal 

dependence through prefix this is unremarkable as there can be no extension of a process after 

termination. 

However, this 'confusion' is unfortunate for a compositional expression of the causal dependence 

of one process on another. Milner's derivation of sequential composition from prefix [Mil~9] is 

rather complex. It involves being able to distinguish the deadlock before nil from other dead

locks. This is done by prefixing all instances of nil by the distinguished action ../, termination 

then being a process which has performed the action ../ and is deadlocked. To derive sequential 

composition, two other distinguished actions, ../1 and ../2' are required; the sequential compo

sition of terms P and Q (each with ../-prefixed nils) being3 P;Q = (P[../l/.j] 1../1·Q) - {../1}· 

Causal dependence is, then, given through the synchronisation of the two operand processes on 

the silent action derived from the renamed ../. 

Although this is sufficient when process P terminates sequentially, it is insufficient when dis

tributed termination is involved as there may then be many terminating ../s, one from each 

concurrent process. In resolving this, Milner [MiI85] defines a new parallel composition operator 

which forces (the equivalent of) a sequential termination from a distributed one and is defined, 

again using the notation of CCS, as: 

which, in effect, produces a single ../ from those of the individual processes. 

4.1.1 Sequential Composition 

In Petri net theory an action bias is missing and we are able to refer to states explicitly: (although 

this is not done in many net models) in the case of a High Level Petri Box we identify an explicit 

exit interface whose purpose is to indicate the terminal state of a process. For the expression 

of causal dependence of a causally superior High Level Petri Box over a causally inferior High 

3Using the symbols of ees: I being ees parallel composition. 0'._ prefix by 0', _ - - hiding, and [-I -J renaming 
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Level Petri Box we force the provision of an initial state for the causally inferior High Level Petri 

Box to be dependent on the terminal state of the causally superior High Level Petri Boxes. 

An explicitly deadlocked process (the High Level Petri Box equivalent of nil) still has its uses: 

as in the low level Petri Box Calculus we will define stop to be the already deadlocked process; 

the essential detail of its semantics, as we shall see, is that it is not able to reach its terminal 

marking. Its semantics is the simplest possible (given the structural restrictions on High Level 

Petri Boxes): a transition labelled with the dead label, 0, present in every label algebra. 

4.1.2 The Terminal State of Parallel and Choice Compositions 

Within the distributed transition system of Section 2.2, the behaviour of the asynchronous 

parallel composition of two processes is modelled by the 'disjoint union' of the behaviour of 

the operand processes. The corresponding operator for High Level Petri Boxes is also disjoint 

union of its operands, although we compose structure rather than behaviour. One of the main 

requirements of the asynchrony rule in the distributed transition system is that it should indicat(' 

which actions are able to synchronise. This is also a requirement of our concurrent composition 

operator defined below; the method of distinguishing the operands of the composition is similar, 

as will be seen. 

Because of the apparent acceptance of the 'prefix approach' to process algebras and the confu

sion of terminal state and deadlock, there appears no agreement on the provision of the final 

state to parallel compositions in the literature: for Olderog [Old91] the final state of a paral

lel composition is the disjoint union of those of its operands, which are, thus, held separate; 

for Taubner [Tau89] (motivated by Goltz [GoI88]) the final state of the operand processes are 

identified. These two possibilities are illustrated in Figure 4.1. 

While such properties are incidental in combination with prefix, the issue as to which is 'cor

rect' for High Level Petri Box is forced by our inclusion of sequential composition. This issue 

is simple to resolve: for sequential composition with, as causally superior process, a parallel 

composition, Olderog's expression (distributed termination) is preferable as we do not generate 

'unsafe' markings through it. 

However, for the expression of conflict, Olderog's scheme does not, in general, determine whether 

its terminal state should be distributed or not. Again, with sequential composition. it becomes 

an issue. For us, that the terminal state of a choice should not be a 'distributed termination' of 

the operands is clear. given that choice does not introduce concurrency. We will thus identify ler-
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a. b. 

Figure 4.1: The Parallel compositions of (a.) Taubner and (b.) Olderog. 

minal states. This gives a pleasing (and useful) structural symmetry for the choice composition 

operator. 

As an aside, it is worth noting that in Milner's derivation of sequential composition from prefix 

with, as the causally superior process, a choice composition the identification of terminal states 

is achieved: it is a corollary of the replication of actions which occurs through the parallel 

composition of CCS. 

4.2 The Pragmatic Choice is Sequence over Prefix 

That prefix is an inadequate expression of causal dependence is certainly not proven by the 

difficulties described above. In fact, we see the beauty and simplicity of Milner's characterisation 

of communicating systems as those with no right distributive law of prefix over choice as powerful 

arguments in favour of prefix; the same statement in terms of sequential composition and choice 

is, although possible, certainly not as clean. Moreover, the derivation of sequential composition 

from prefix is complex, leading us to believe that sequential composition is an inherently more 

complex operation. However, pragmatically, sequential composition is the construct of choice4 

for, for instance, the expression of local scope and concepts derived from it. i.e., modularity. 

scalability, manageability, etc. It is for this reason that we have included it here. 

4If you will forgive the unfortunate choice (or sequence) of words. 
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4.3 Algebra, Semantics, Compositionality and Modularity 

An algebra consists of a syntax for forming terms. A process algebra is an algebra in which there 

is a sort corresponding to process. This is, traditionally, the only sort. 

The major requirement for the High Level Petri Box Algebra was that we should be able to 

provide a compositional semantics. By semantics5 we mean a functional relationship between 

two collections of (mathematical) objects (the domain will be the High Level Petri Box terms, 

the range High Level Petri Boxes). 

DEFINITION 4.3.1 [Semantics} Let C be the collection of terms of the language generated by 

a syntax T. Given a collection of objects forming a semantic domain, V, a V-semantic8 for the 

language C is a mapping sem: C -+ V. sem will be called the semantic function. • .t.:3.1 

A compositional semantics is a semantics in which the semantic function is a homomorphism 

between syntactic and semantic domains: 

DEFINITION 4.3.2 [Compositional Semantics} A V-semantics is compositional if the semantic 

function, sem, extends to a homomorphism between syntactic and semantic domains, i.e., for 

each operation symbol of the syntax op of arity n there is an operation on V, op on t he semantic 

domain, also of arity n, such that for terms t1, . .. , tn the homomorphism condition holds: 

sem( op( t1, . .. , tn)) = Op(sem( tt}, ... , sem(tn )). 

• ~L3.2 

By reading the homomorphism condition as a definition rather than a constraint, and given 

interpretations of the constants of a syntax together with interpretations of the operators, we 

may often be able to recursively define a compositional semantics for a syntax: 

DEFINITION 4.3.3 Let C = {C1 ... , cm } be the collection of the constants of a syntax T, 

and 0 = {01' ••. , on} be the collection of the operators, where OJ has arity hj • Given a semantic 

domain V, interpretations of the constants, {db' ... dm }, and interpretations of the operators, 

{Pl, .. . ,Pn}, we may define a compositional V-semantics of T, cs, where for each constant Cj, 

cs( Cj) = di, and for a term t = Oi( tt, .... th, ). cs( Oi(t1 .. .. , th,)) = pj( CS(t1) . ... , cs( th , )). 

• .t.3.3 

5We would like to use the term denotational semantics in the sense that we provide an element from the 
semantic domain as the denotation of a term. However, denotational in its traditional sense also implies that 
fix-point techniques are used for the description of recursion, and this is not a property of our semantics. 
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cs will then satisfy the conditions to be considered as a compositional denotational semantics. 

4.3.1 Modularity 

Compositionality is an absolute property, depending only on the properties of the semantic 

function. Modularity, when applied to a semantics, appears to mean 'serving to hide structure', 

which may be true to a greater or lesser extent. 

We claim, for the High Level Petri Box, high modularity of both structure and behaviour. Our 

justification for this is twofold: 

1. (at the structural level) that knowledge of much of the 'implementation' of a process 

through a High Level Petri Box is not needed to be able to perform the compositions on 

pairs of High Level Petri Boxes, 

2. (at the behavioural level) that, given two simple conditions, High Level Petri Boxes with 

the same behaviour compose in the same way, and are relatively independent of the struc

ture which produced the behaviour. (This will be shown in Chapter 7.) 

4.4 Notation and Conventions 

Before beginning the description of the semantic domain of the High Level Petri Box Algebra, 

it will be useful to review the relationship between functions and relations. 

4.4.1 Functions and Relations 

By regarding the Boolean algebra 2 (the set {false, true} together with the usual meets, joins 

and inverse) as a set, and given sets A and B, there is a well-known bijection between A - If' B 

and A X B -+ 2. As we may interpret A X B ---7 2 as the collection of binary relations between 

A and B, A f-+ B, we thus have a bijection between A -+ If' B and A .....,. B, the details of 

the correspondence being that the function f: A -+ If' B maps to the relation F: A '- B where 

( a, { bI, ... , bna }) E f if and only if for all j E {1, ... , na }, (a, bj ) E F. 

Clearly, a function from A to If' B will not, in general, remain a function when interpreted under 

the bijection as a relation between A and B. However, we use the bijection to justify the free 

interchange of function from A to lP' B and relation between A and B in the sequel. using the 

symbols f, g, ... for each. 
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Other observations will also be useful: even though in general PAUPB i= P(AU B) we have that 

r AU P B ~ peA U B); with the natural injection from set A into P A (in which elements map to 

singleton subsets), we may interpret the set of partial functions A - B as a subset of A - P B. 

and hence also as a relation. As usual, for f: A ---+ P B a function, we will extend f: PA - P B 

(and to M;:-(A) -7 M;:-(A» by interpreting f(S) = UsEsf(s), for S ~ A. 

4.4.2 Sane and Separable Relations 

We next introduce sane and separable relations. That a relation is sane will ensure that it can be 

lifted to a High Level Petri Box. It is a property of a class of relations that includes t hose used 

in the definitions of causal and choice compositions, later in this chapter, and that of refinement 

in Chapter 6. 

DEFINITION 4.4.1 A relation f: A ---+ P B is sane if V s, s' E A: s i= s' ¢:> f ( s ) n f (s') = 0. 

• .! ... U 

We note that sanity is, in particular, stronger than injectivity which would require only that 

sf: s' => f(s) i= f(s'). 

A consequence of the reverse implication is that f( s) i= 0, for all s E dome!)· 

That a relation is separable will ensure that it may be used for place multiplication (in the sense 

given by Proposition 4.4.3). 

DEFINITION 4.4.2 A relation f: S ---+ P S U P( S 0 S') is separable (on Sand S') if there is a 

function Pj: S ---+ P S' such that 

f(s) = { 
{s} Pj ( s) = 0 

{s} 0 Pj( s) otherwise 
.4.4.2 

The relationship between sociability, sanity and separability is partially characterised by the 

following: 

PROPOSITION 4.4.3 Let S, S' ~ P be sociable sets of places. Then f a separable relation 

on Sand S' implies f is sane. o '!A.3 

Proof; For f to be sane we must show that s i= s' ¢:> f( s) n f( s') = 0. 
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=>: Suppose not, i.e., 3s:l s' E 5:/(s) n/(s'):1 0. Let s" E I(s) n/(s'). Then 

s" = {S Pj ( s) = 0 (1 ) 

s ® p some p E Pj(s) (2) 

{ 

s' 

s' ® p' 

Pj(s') = 0 

some p' E Pj ( s') 

The proof follows by comparison of cases: 

1&3 imply s = s', contradicting the assumption that s :I s'. 

(3) 

(-!) 

-.} 
1-

1&4 imply s = s' ® p' so that p' E id( 5) n id( 5'), contradicting the sociability of 5 

and 5'. 

2&3 is similar to the previous case. 

2&4 imply s®P = s'®p'. As 5 and 5' are sociable it follows from Proposition 2 . .1.:3 

(page 26) that s = s' and p = p', contradicting the assumption that s:l s'. 

~: Clear, as for all s, l(s):I 0. • -1.4.3 

Sanity is preserved through composition: 

PROPOSITION 4.4.4 I and 9 sane implies log sane. o -! .-L-! 

Proof: Suppose not, i.e., 3t E 10 g( s) n 10 g( s') with s :I s'. Then, for such a t, 3tI E g( s). t2 E 

g( s') such that t E 1(t1) n I( t2), and hence tl = t2, as I is sane, so that t} E g( s) n g( s'). 

But then s = s' from the assumption on g, a contradiction. .4.4A 

Given a High Level Petri Box Band 5' ~ P sociable with 5B, a sane relation f: 5B ---. 5' will 

be called a sane relation on B; a separable relation I: 5B - IP5B U IP(5B ® 5') will be called 

separable relation on B. 

EXAMPLE 4.4.5 Given sociable High Level Petri Boxes Band B' such that 5B = {So, sd, 

.4A . .1 

(In Example 4.4.5 we have, surreptitiously, specified the place multiplication of the exit places 

of B (when B- = {sd) with the entry places of B' (when -B' = {S2,S3})' Separable relations 

are sufficient to describe place multiplications. Moreover, as long as they are defined on sociable 

High Level Petri Boxes, then the relational descriptions of place multiplications they give rise to 
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will be sane. Although there are many ways of expressing causal dependence. possibly the most 

conceptually attractive scheme for Petri nets and the one adopted in this exposition. is that of 

place multiplication for the expression of the structural dependence. Place multiplication was 

first suggested as a method for composing nets in [GM84]. It has the advantage of being relatively 

straightforward, entails little technical overhead to express and, unlike the CCS derivation of 

sequential composition, introduces no silent transition between the processes. 

4.5 A uxiliary Operators 

The observation is not new ([Kot78, Win84, BDH92], for example) that there are 'basic' oper

ations on nets from which may be derived net implementations of traditional process algebra 

operations. In this section we identify a number of auxiliary operations on High Level Petri 

Boxes from which we derive the semantics of the operators of the High Level Petri Box Algebra. 

These correspond to component-wise manipulations of their operand High Level Petri Boxes. 

4.5.1 High Level Petri Box Union 

The first auxiliary operator introduced is that of High Level Petri Box union (shortly union) 

which forms a single High Level Petri Box from its two operands. This it achieves by identifying 

parts of their control interfaces. Other than their control interfaces, we will assume that the 

operands to a union are disjoint. Moreover, we will assume that the operands share the same 

label algebra (which is promoted to be that of the union). Whereas these assumptions make 

the definition of High Level Petri Box union partial, they are sufficiently permissive to cover all 

cases that arise through the semantics. 

DEFINITION 4.5.1 [High Level Petri Box Union} Let B1 and B2 High Level Petri Boxes such 

that: 

• • 
2. B1 n S2 = 0 and B2 n S1 = 0, 

Define the High Level Petri Box union of B1 and B2 as 



CHAPTER 4. ALGEBRA AND SEMANTICS I ,4 

E 

So 

B1 a 

a 

0(= {X} n {E}) 

S1 
Bl U B2 

b 
B2 b 

X 

S2 

Figure 4.2: An example of the High Level Petri Box union of two High Level Petri Boxes. SI is 
a place shared by both B1 and B2. It is internalised in their union. 

where 

{ 

A1(S) n A2(S) 

A(S) = Al(S) 

A2(S) 

if S E SI n S2 

if S E SI \ S2 

if S E S2 \ SI' 
.4 . .1.1 

Pairs of High Level Petri Boxes satisfying Conditions 1,2 and 3 of Definition 4.5.1 will be termed 

unionable. 

Figure 4.2 illustrates the definition of High Level Petri Box union. 

Conditions 1-3 ensure the following properties of the operand High Level Petri Boxes of a union 

and will be essential in the derivation of its properties: 

a that their respective entry and exit interfaces should be either disjoint or exactly coincide. 

On coincidence of respective entry and exit places, their union should be internalised, and 

otherwise left as interface places. The form of place labels and the definition of the new 

place labelling provides an agreeable way of achieving this (as is illustrated in Figure .t. 2). 

b that they should have no internal places in common. and 
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c that the composed net should retain both an entry and exit interface. 

We have the following: 

PROPOSITION 4.5.2 

Level Petri Box. 

For B1 and B2 unionable High Level Petri Boxes, B1 U B2 is a High 

o -L,j.2 

Proof: The proof depends on the following easily checkable lemma which allows us to relate the 

interface of a High Level Petri Box union to those of its operands: 

LEMMA 4.5.3 For A, B, C, D sets such that A n enD = 0 = DnA n B. then 

((A \ B) \ (C \ D)) U ((D \ C) \ (B \ A)) = (A U D) \ (B U C). 

That B1 U B2 is a pre-High Level Petri Box is clear from the definition. We are required 

to show that B1 U B2 has Properties 1-3 of Definition 2.5.15. We will find it convenient 

to demonstrate Property 2 first: 

Property 2 We show that -(B1 U B2) = -LT(B1 U B2) \ LT(B1 U B2)-, the result for 

(B1 U B2)- following by symmetry. Note that SB1UB2 = S1 U S2. 

-(B1 U B2 ) 

{s E S1 U S2 lEE AB1UB2 (S)} 

(- B1 \ S2) U (- B2 \ St) U (- B1 n -B2) 

- -[B2 n S1 = 0 = B1 n S2] 

- B1 \ (- B2 U B2 -) U - B2 \ (- B1 U B1 -) U (- B1 n -B2) 

[Lemma 2.5.18] 

- B1 \ B2 - U - B2 \ B1 -

[Lemma 4.5.3] 

(- LT(Bt} U - LT(B2)) \ (LT(B1)- U LT(B2)-) 

- LT(B1 U B2) \ LT(B1 U B2)-

Property 1 we show that -(B1 U B2) f:. 0. The result for (B1 U B2)- following by sym

metry. But from the proof of Property 2 we see that -(B1 U B2) = -B1 \B2-U- B2 \B1-

which is non-empty, as B1 and B2 satisfy Property 3 of Definition -L,j.l by assump-

tion. 
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Property 3 we will show that: 'VI E LT(BI U B2): -In-( Bl U B2) = 0 V -I ~ -( Bl U B2)' 

the case for the post-set following by symmetry. 

From the definition, LT(BI U B2) = LT(Bd U LT(B2) so that 1 E LT(BI U B2) ~ 

z E LT(B1 ) U LT(B2). Assume without loss of generality that 1 E LT( Bl ). Suppose 

that Property 2 does not hold of the union, i.e., that -/ n -(Bl U B2 ) 1= 0 and 

-Z ~ -(B1 U B2)' Let s E -I n -(B1 U B2), s' E -I \ -(Bl U B2)' Then 

Also 

s E -Z n -(Bl U B2) 

=> E E .AB1 UB2 (S) 

=> [.AB1 UB2 (S) ~ .Al(S) as s E -I ~ 51] 

EE.Al(S) 

=> s E - Bl · 

s E 5B2 

=> [.AB1 UB2 (S) ~ .AB2(S) as s E 5B2] 

Assume s' rf. -B1 . Then -Z n -Bl f. 0 and -Z ~ - Bl contradicting Property :3 of 

Definition 4.5.1 for Bl . Hence s' E - Bl so that as s' E -Z \ -( Bl U B2), by Property 2 

of Definition 2.5.15 s' E B2 - . 

Hence we may assume that s' E - Bl n B2- 1\ s E - Bl 1\ (s E 5B2 => s E - B2 )· 

Distinguishing the cases when s E 5 B2 and s rf. 5 B2 : 

s E 5B2 : whence: 

s, s' E - Bl 1\ S' E B2 - 1\ s E - B2 

=> {- Bl f. 0} 

- B2 = B2- f. 0 
contradicting Lemma 2.5.18. 

s rf. 5B2 : whence s, s' E - Bl and s' E B2- and s rf. 5B2 implies - Bl n B2- 1= 0 and 

- Bl f. B2- contradicting Property 1 of Definition 4.5.1. 

Hence the result. 
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E 

a 

b 

x 

B 

Figure 4.3: An example of the combinational closure of a High Level Petri Box. 

4.5.2 Combinational Closure 

The H-synchrony rule relaxes the restriction on the formation of synchronisations that they 

be necessarily binary in nature. The combinational closure of a High Level Petri Box has the 

same places, place labelling and local transitions as its operand, but has as its set of abstract 

transitions all "combinations of those of its operand, i.e., one corresponding to each possible 

multi-way synchronisation. As there are a countable infinity of such combinations we will then 

have a countable infinity of abstract transitions in the High Level Petri Box to which combina

tional closure has been applied. However, we note that the cardinality of the collection of local 

transitions underlying the High Level Petri Box does not alter. 

DEFINITION 4.5.4 [Combinational Closure} Given a High Level Petri Box B, define the com-

binational closure of B, Bffi = (S, Tffi,).) 6 • • 4 .. S A 

Note: 

1. as there is no restriction on the multisets formed it is possible that (directly or indirectly) 

causally independent local transitions are part of the same abstract transition. Figure 4.3 

illustrates this situation. The 'cardinality preserving' semantics of recursion, developed 

in Chapter 6, requires this possibility, as through it, two disjoint processes may share the 

same net structure, 

6Where, for T a set, T~ = {h U ... U tn I t. E T /\ n 2: I} with U being multiset union. 
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2. diagrammatically, combinational closure introduces four problems in the representation of 

High Level Petri Boxes: 

(a) as we have no natural ordering on the members of a multi set with which to form the 

correspondence between local and abstract transitions in diagrams we will use the 

following scheme for describing this relationship. A multiset appearing in a diagram 

will be written as a (formal) sum in which summands of an additive partitioning of 

the multiplicity of a member are written prefixed (or omitted when unity) to copies of 

the label: for instance, the multiset ~a, a, a, b~ may be written as 3a EEl b, 2a EEl b EEl a. 

b EEl a EEl 2a, etc. The particular partitioning of the multiplicity of a member ma~' 

then be related to the ordering of the local transitions whose labels contribute to 

that multiset: for instance, for local transitions 1.0, kl and k2 with labels a, b and a 

respectively, we might write the multiset of labels corresponding to two appearann's 

of 1.0, one of kl and one of k2' in that order, as 2a EEl b EEl a. 

(b) related is the problem of arc annotations: for local transitions repeated in the same 

abstract transition (such as that labelled 2a in the figure) we will draw a single arc 

and, singly, the context annotating it. This will allow us to clarify the figures as 

follows: 

(c) for clarity in the figures, a line (---) through any number of arcs together with a 

context indicate that that context forms the annotation of each of those arcs. 

(d) the representation of an infinite number of abstract transitions causes problems. How

ever, because of the regular nature of the construction, the use of ellipsis ( ... ) will 

generally be sufficient. 

We have the following: 

PROPOSITION 4.5.5 

Box. 

Let B be a High Level Petri Box. Then B4 is a High Level Petri 

04 . .5 .. ) 

Proof: That BtJJ is a pre-High Level Petri Box is clear from the definition. the only non-trivial 

part being that TtJJ ~ T, which follows from t E TtJJ implying 3r{, ... , r!t E T not 

necessarily distinct, such that t = r{ u ... u r!t' But then t E MF(lOC). 

We also note that it follows from this that LT(BtJJ) = LT(B). 

Properties 1-3 of Definition 2.5.15 for Btt: follow from the corresponding properties for 

B. 
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Hence the result. .4.·i .. i 

An important structural property of combinational closure is the following: 

PROPOSITION 4.5.6 For High Level Petri Boxes Bl and B2. BlEB = B2 -=- implies that there 

exists a High Level Petri Box C such that C ~ B1 , B2 ~ CiS. 04.5.6 

Proof: Suppose Bi = (Si, Ti,>"i). As BlEB = B2EB we know that Sl = S2, >"1 = >"2 and LT(Bd = 
LT(B2). Define C = (S1, T', >"1) such that T' = {~l~ II E LT(B1 )}. C clearly has the 

desired properties. • 4.5.6 

4.5.3 Context Manipulation 

Context manipulation appends its context operands onto the annotating contexts of the input 

and output arcs of its operand. It corresponds (in all uses except for that in refinement) to the 

definition of the scope of a relabelling. 

DEFINITION 4.5.7 [Context Manipulation] Let B be a High Level Petri Box and C, (" E C. 

Define the context manipulation of B, B 8 (C, C') = (S, T',>..) where T' = {t(C, C')Blt E T} 

and 

and 

t( C, C')B 

I(C, C')B 

D {~) 
{ 

c' 
(.) 

D' 

{ I ( C, C') B Il E t} 

(el C I ~ D 7 I C ~ D' Ie) , , , , 

otherwise 
Ie ~ Be 

otherwise 

Figure 4.4 illustrates the definition of context manipulation. 

.4 . .5.7 

Given the many uses of context manipulation in the sequel, we will often write B : C for 

B 0 (C, C), t( C)B for t( C, C)B, l( C)B for l( C, C)B and. when I is a local transition, f(l)B for 

t(cI,lc)B and B(l) for B 8 (cl.lc). 

From the properties of B, the following is immediate 
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E E 

a a 

B B :: (.f, .g) 

b b 

Figure 4.4: The context manipulation B I~ (./, .g). 

PROPOSITION 4.5.8 Let B be a High Level Petri Box. Then for C, C' E C, B ; (C. C') is 

a High Level Petri Box. 0 -l..,>.8 

4.5.4 Relational Lifting 

Relational lifting extends the effect of a relation from the places of its operand High Level Petri 

Box to the structure of that High Level Petri Box. 

DEFINITION 4.5.9 [Relational Lifting] For B a High Level Petri Box, S' ~ P and f: SB ~ S' 

a relation define the relational lifting of B under f, J ( B) = (J (S B),f ( T B),f (>. B)) where f (1) = 
(f(el), C l, 7, lC,f( le)), f( ~l}, . .. , ln~) = ~f( h), . .. ,f(ln)~ and f(AB)( r) = UrE/(p) AB(P)· 

• 4.5.9 

Note: 

1. if the relation f is sane the control interface of the resulting High Level Petri Box is that 

of the operand as, in this case, r E f(p) nf(p') implies p = p' and AB(P) = AB(p'), 

2. the distributed union of the definition of the label of related places ensures that the rela

tionallifting is well-defined when the intersection of images of places are not disjoint. It 

will also be required for the definition of the recursive construct in Chapter 6, 

3. for notational convenience we will omit the: decoration, writing f for both f and its lifting. 
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B J(B) 

with f defined as 

f(r) = {r} 
f{$) = {s} ® {t. u} 

as shown. 

Figure 4.5: An example of the relational lifting of the sane relation f to a High Level Petri Box. 

4. in passing we note that, in the notationally sparse situation of f being applied to the 

empty multiset of local transitions we have that f(~~) = ~~. This will be of use in the 

definition of refinement in Chapter 6. 

Figure 4.5 illustrates the definition of the relational lifting of a sane relation to a High Level 

Petri Box. 

PROPOSITION 4.5.10 For B a High Level Petri Box and f a sane relation on B. then f(B) 

is a High Level Petri Box. 04 .. 1.10 

The proof depends on the following lemma which allows us to relate the components of an High 

Level Petri Box and its lifting: 

LEMMA 4.5.11 For B a High Level Petri Box and f a sane relation, the following hold: 

1. VI E LT( B), -I(I) = 1(-1) and I( I)- = f(1-), 

2. LT(f(B)) = f(LT(B)), 

3. f(. LT(B)) = -f(LT(B)) and f(LT(B)-) = f(LT(B))-. 

4. f(- LT(B) \ LT(B)-) = 1(-LT(B)) \ f(LT(B)-) and f(LT( B)- \ - LT( B)) = f( LT( B)·) \ 

f(. LT(B)), 
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5. e f( B) = f(e B) and f( B)e = f( Be), 

6. ef(B) = eLT(f(B)) \ LT(f(B))e and f(B)e = LT(f(B)t \ eLT(f(B)). 0-1.5.11 

Proof: All follow from the sanity of f· • -LUI 

Proof: That f(B) is a pre-High Level Petri Box is clear from the definitions. 

It remains to show that f( B) has Properties 1-3 of Definition 2 .. S.15. 

1. From Lemma 4.5.11, ef(B) = I(e B) f 0, as B is a High Level Petri Box and f is 

sane. The case for f(B)e is symmetric. 

2. Follows from Lemma 4.5.11. 

3. Suppose [' E LT(f(B)) = f.(LT(B)), by Lemma 4.5.11(3), i.e., there is an 1 E LT(B) 

such that [' = f(l). 

Suppose eZ'nef(B) f 0. Then 

e[' n ef(B) f 0 

=} l( eZ)nf(eB)f0 

=} [J is sane] 

eZn eBf0 

=} [Hypothesis] 

e[ ~ e B 

Hence the result. 

4.5.5 Auxiliary Operator Precedence 

.4 .. 5.10 

For the parsing of expressions involving the auxiliary operators we define relational lifting to 

have highest precedence, then combinational closure, context manipulation and, with lowest 

precedence, union. We will also use parentheses liberally to disambiguate. 

4.6 Top Level Operators 

We now define the top level operators of the High Level Petri Box Algebra. 

For notational convenience throughout the remainder of this section, WE' will assume that a 

particular label algebra £ = (A, R) has been chosen, with respect to which all label algebra 
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Figure 4.6: The concurrent composition of High Level Petri Boxes Bl and B2 in terms of the 
conceptual model. 

relative concepts are defined. In addition, we will assume that B1 , B2 and B are High Level 

Petri Boxes with Bl and B2 sociable. 

4.6.1 Concurrent Composition 

Concurrent composition is the High Level Petri Box implementation of asynchronous parallel 

composition. As in distributed transition systems, we achieve this through taking the 'disjoint 

union' of the operand High Level Petri Boxes. Disjointness is ensured by the annotation of 

the operand High Level Petri Boxes by the nominal relabellings f- and -L The interface of the 

composed High Level Petri Box is inherited from those of the operands. 

DEFINITION 4.6.1 [Concurrent Composition] Define the concurrent composition of Bl and 

B2 , BI11B2 = (Bl 8 .f-) U (B2 8 .-1). .4.6.1 

Figure 4.6 shows an example of the concurrent composition of two High Level Petri Boxes. 

Although the decoration of the operands clearly destroys the structural commutativity and 

associativity of the concurrent composition, it does not destroy their behavioural equivalents. 

which follows from the symmetries present in the feasible substitutions of the PrT Denotation 

of a High Level Petri Box given in Chapter 2. The only complication in the argument is that the 

symmetries derive from the properties of the Flow predicate and not the transition selectors of 

the PrT semantics. The relationship between the two is obviously very close: we have described 

the action of the conjuncts of the transition selectors other than the Flow predicate as modelling 
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E E 

x x x 

Figure 4.7: In which the behavioural commutativity of concurrent composition is compromised 
by poor scoping: from the standard initial marking, BIll B2 may fire transition labelled (J. whereas 
B211B1 may not. 

the 'scope' of the contexts which annotate the input and output arcs of a transition and, as such. 

the symmetries apply to already 'scoped' processes. 

It is possible, then, that if this scoping operation is not well-defined with respect to the structure 

of the High Level Petri Box it may affect the commutativity of the behaviour of the High Level 

Petri Box. This situation has already been discussed in Section 3.3.4 and is further illustrated 

in Figure 4.7. To see that this does not happen when a High Level Petri Box is syntactically 

generated we must wait until Chapter 5. 

Similar arguments apply for behavioural associativity. 

We have the following: 

PROPOSITION 4.6.2 

Level Petri Box. 

Given sociable High Level Petri Boxes B1 and B2, B111B2 is a High 

04.6.2 

Proof: As B1 and B2 are sociable, Proposition 2.5.3 implies that 51 n 52 = 0. From Defini

tion 4.5.7, 5B0.j = 5B, so that B1 0 J- and B2 ~' .. -1 are also sociable and so satisf~' the 

preconditions of Definition 4.5.1. The result then follows from Propositions .L.,).S and 

4.5.2. .4.6.2 
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4.6.2 Causal Composition 

Causal composition makes each initial transition of its second operand dependent for an enabling 

marking on the firing of each of the terminal transitions of its first. This is achieved through 

place multiplication of the exit places of the first operand with the entry places of the second, and 

is implemented through relational lifting in the manner of Example 4.4.5. The entry interface 

of the composition is that of the first operand, the exit interface is that of the second, with the 

multiplied places becoming internal. 

DEFINITION 4.6.3 [Causal Composition] Define separable relations ;1: 51 - (51 U (51 ® 52)) 

and ;2: 52 +-+ (52 U (51 ® 52)) such that 

{ {s} ® - B2, if s E B1-
;1 (s) 

{s }, otherwise 

{ B1• ® {s}, if s E • B2 
ds) 

{s }, otherwise 

• -1.6.3 

Figure 4.8 illustrates the causal composition of two High Level Petri Boxes. 

PROPOSITION 4.6.4 Given sociable High Level Petri Boxes B1 and B2, Bl ;B2 is a High Level 

Petri Box. 0-1.6.-1 

Proof: ;1 and ;2 are separable relations on sociable sets and so are sane. Also, as Bl and B2 are 

sociable then ;l(Bl ) and ;2(B2) are unionable. Hence the result. .4.6.-1 

Causal composition is not, of course, commutative. However, and unlike concurrent and (to 

follow) choice composition, for sociable High Level Petri Boxes causal composition is structurally 

(and hence behaviourally) associative: distinguishing of the operands is achieved through place 

multiplication. 

PROPOSITION 4.6.5 

Bt;(B2;B3). 

For Bl , B2 and B3 pairwise sociable High Level Petri Boxes, (Bl ;B2);B3 = 
04.6.5 

Proof: That B2 is a High Level Petri Box implies • B2 n B2• = 0. so that the domains of definit ion 

of the auxiliary relations, ;1 and ;2 are disjoint. The result follows easily. .·Lb.·') 
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E E 

Figure 4.8: The causal composition of High Level Petri Boxes Bl and B2 in terms of the con
ceptual model. 

4.6.3 Choice composition 

Choice composition places each of the initial transitions of its operand High Level Petri Boxes 

in conflict. It also produces a local termination of the composition through the identification of 

their exit places. This is achieved through union and place multiplication. The entry and exit 

interface places are inherited, although in a place multiplied form, from the operands. 
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DEFINITION 4.6.6 [Choice Composition} Define separable relations +1: 51 ....... (SI U (51:; 52)) 

and +2: 52 ~ (52 U (51 ® 52)) such that 

fS} ®oB" if s E - Bl 

{s} ® B2-, if s E B1 -

{s }. otherwise rB1
®{S}' 

if s E - B2 

B1 - ® {s}, if s E B2-

{s }, otherwise 

.4.6.6 

As with concurrent composition, choice composition distinguishes its operands, labelling its left 

operand with l, and its right operand with J (which is the source of the embedded context 

manipulation of the definition). To distinguish the operands of a choice composition may. at 

first, appear strange; however, in Chapter 6 we introduce the operator of refinement for High 

Level Petri Boxes which we will require to be 'syntactic', i.e., its application commutes with 

that of the other operators of the algebra. For this property to extend to choice composition 

requires, essentially, that we should force the semantic High Level Petri Boxes of a and of a+a 

to be distinct, which is achieved though the annotation. (This is the greatest disadvantage 

of our transition centred approach.) As for concurrent composition, this annotation does not 

destroy behavioural commutativity and associativity of the operator, the proof of which follows 

the same lines as that for concurrent composition, given in the next chapter. 

Figures 4.9 and 4.10 illustrate the choice composition of two High Level Petri Boxes. Figure 4.9 

gives the simpler situation in which the operand High Level Petri Boxes have singleton pre- and 

post-sets so that the effect of the context manipulation by the auxiliary contexts land J can 

be seen clearly. Figure 4.9 shows, essentially, how arc annotations are manipulated through the 

operation. Figure 4.10 shows how the interface places are manipulated in the more complex 

situation when entry and exit interfaces are non-trivial. 

PROPOSITION 4.6.7 

Level Petri Box. 

Given sociable High Level Petri Boxes B1 and B2, B1 +B2 is a High 

0-1.6.7 

Proof: Follows from a combination of the arguments for concurrent and causal composition . 

• 4.6.7 
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E E E E 

a a a a 

c 

Figure 4.9: The choice composition of High Level Petri Boxes Bl and B2 , both with interfaces 
consisting of single places. High Level Petri Box C shows the result of the choice composition 
if we were to omit the annotation of the arcs with nominal relabellings, a situation we wish to 
avoid. 

a b + 

Figure 4.10: The choice composition of High Level Petri Boxes Bl and B2 • both with interfaces 
consisting of two places. Notice that firing any initial transition in the image of Bl disables each 
initial transition in the image of B2 and vice versa. 
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B B[J] 

Figure 4.11: The relabelling of the High Level Petri Box in terms of the conceptual model. 

4.6.4 Relabelling 

Relabelling implements the relabelled multi-way synchronisation of its operand High Lewl Petri 

Box. The embedded combinational closure forms all possible 'don't care actions', whereas the 

context manipulation creates the scope of the relabelling. 

DEFINITION 4.6.8 {Relabelling] 

B[j] = Bffi 8 .f. 

Given a relabelling f, define the relabelling of B under f, 

• 4.6.8 

The reader will note the use of the combinational closure of B in the above definition: it provides 

the higher order abstract transitions which will be considered for synchronisation under the 

relabelling .f. 

Figure 4.11 shows an example of the relabelling of a High Level Petri Box. 

PROPOSITION 4.6.9 

Level Petri Box. 

Given a High Level Petri Box B and a relabelling f then B[J] is a High 

04.6.9 

Proof: Follows from the definition, noting that its operand satisfies Property 3 of Defini-

tion 2.5.15. • ~1.6.9 

The following is immediate from the properties of combinational closure: 
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PROPOSITION 4.6.10 

BIf][g] =PrT B[jg]. 

Given a High Level Petri Box Band relabellings f and g then 

0-1.6.10 

4.7 Basic High Level Petri Boxes 

The synthesis of the algebra of High Level Petri Boxes over a label algebra L is through the 

repeated application of the operators defined in the previous section. The starting point of the 

synthesis are Basic High Level Petri Boxes, which correspond to the interpretation of the labels 

of the label algebra. 

Apart from the observation that it is a High Level Petri Box, the denotation of a label is 

unremarkable. The 'place-transition-place' structure appears to be the natural denotation of an 

'atomic' action as a net, and may be found many times in the literature [GoI88, Tau89, Old91. 

BDH92]. 

DEFINITION 4.7.1 [Basic High Level Petri Boxes] Given the label algebra L = (.4, R) and 

label U E A U {O} define the Basic High Level Petri Box 

Boxc(u) = [({sd,(·),u,(.),{S2})] 

where [_] is the local transition augment (Definition 2.5.10) and S1 and S2 are fresh place names . 

• ·1.7.1 

From the definition: 

PROPOSITION 4.7.2 

Level Petri Box. 

For L = (A,R) a label algebra and u E Au {O}, Boxc(u) is a High 

04.7.2 

The denotation of the label a of the label algebra Lo of Example 2.1.1 and stop are illustrated 

in Figure 4.12. 

4.8 The High Level Petri Box Algebra 

We now define the initial portion of the High Level Petri Box Algebra (consisting of constants. 

and the operators of concurrent, causal and choice composition, and relabelling) and its com

positional semantics in terms of High Level Petri Boxes. The definition of the algebra and its 

semantics is completed in Chapter 6. 
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o 

stop 

Figure 4.12: The Basic High Level Petri Boxes Box.co(a) and stop = Box.co(O}. 

4.8.1 Syntax 

The initial portion of the syntax of the High Level Petri Box Algebra is given by: 

DEFINITION 4.8.1 [High Level Petri Box Syntax} Given a label algebra I = (.4. R), we define 

the I-Syntax of the High Level Petri Box Algebra as follow: 

t .. - stop 

u uEA 

til t Concurrent composition 

tjt Causal composition 

t+t Choice composition 

t[f) Relabelling, where fER 

An I-term is a term of the language generated through the I-syntax. The collection of I-terms 

will be denoted Terms£.. • 4.8.1 

As usual, we will omit label algebra decorations when they are clear by context. 

4.8.2 Semantics 

From Definition 4.3.2, to supply a compositional (denotational) semantics to the language gener

ated from the High Level Petri Box Syntax we must identify the semantic domain and a semantic 

function which is a homomorphism. There are no7 'surprises' in the definition of the semantics. 

7 Almost; see Section 4.8.2.1. 
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The semantic interpretation of the constants and of the operators is that of the previous sections; 

compositionality is implied by an appeal to the homomorphism condition. 

DEFINITION 4.8.2 Let £ = (A, R) be a label algebra and let t be an L-term. Define 

Boxc(O) t = stop 

Boxc( t) tEA 

HLPBc(t) = 
HLPBc( tl )IIHLPBc(~) t = tlllt2 

HLPBc( tl );HLPBc( t2) t = tl;t2 

HLPBc( tl)+HLPBc( t2) t = tl +t2 

HLPBc(tl)[fl t = tl [j], fER 
• -1.8.2 

For the parsing of terms, we define relabelling to have highest precedence, followed by concurrent 

composition, causal composition and, with lowest precedence, choice composition. We will, 

however, use parentheses freely for disambiguation. 

To end the definition of this portion of the semantics, we define the class of syntactically gener

ated High Level Petri Boxes over the label algebra £: 

DEFINITION 4.8.3 1t£PBc = ran(HLPBc). • 4.8.3 

We return to 1t£P B c in Chapter 6. 

4.8.2.1 Well-definedness of the Semantic Function 

Actually, we have been a little premature in defining the class of syntactically generated High 

Level Petri Boxes, as Propositions 4.6.2,4.6.4,4.6.7 and 4.6.9 are not, in themselves, sufficient 

to show that the semantics of all terms of the High Level Petri Box Syntax are High Level 

Petri Boxes: it might be possible that through some previous composition, the operands of a 

concurrent, causal or choice composition may be unsociable. Theorem 4.8.4 shows that this is 

never the case. The result is, in fact, uncomplicated and follows from our (careful) restriction 

on Basic Boxes that their constituent places must be 'fresh'. 

THEOREM 4.8.4 For every £-term, t, HLPBc(t) is a High Level Petri Box. o-uu 

The proof of Theorem -1.8.-1 follows from the properties of the auxiliary operators stated in the 

folloWing lemmata, which: 
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1. characterise the relationship between the identities of the operands and the results of 

applications of the auxiliary operators, and 

2. extend this to the structure of a High Level Petri Box term. 

LEMMA 4.8.5 For B1 , B2 High Level Petri Boxes: 

1. id(Bl U B2 ) = id(Bl) U id(B2), 

2. id(Blffi) = id(B1), 

3. for C, G' E C, id(Bl 8 (G, G')) = id(Bd, 

4. for f: S -+ S' a sane relation, id(f(S)) ~ S'. D·IX.5 

Proof: Immediate • 4.8 . .5 

LEMMA 4.8.6 Consider the parse tree8 Pt of a term t E Terms.c. Then the High Level Petri 

Boxes which are the semantics of disjoint subtrees of Pt are sociable. o c!.8.6 

Proof: Follows from our requirement that the identities of the Basic High Level Petri Boxes 

which form the denotations of distinct leaf nodes of the parse tree are disjoint, and 

Lemma 4.8.5. .4.8.6 

Proof: Follows from Lemmata 4.8.5 and 4.8.6. .4.8.4 

4.8.3 Class-wide Properties of High Level Petri Boxes 

4.8.3.1 Finitary Reasoning on High Level Petri Boxes 

As the operator of relabelling is derived from that of combinational closure, there are syntacti

cally generated High Level Petri Boxes whose set of constituent abstract transitions is (count

ably) infinite. The importance ofthe following result, then, is that it allows finitary reasoning to 

be used for properties of syntactically generated High Level Petri Box, as long as that reasoning 

may be stated in terms of the underlying local transitions or places. 

8In the usual sense. 
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PROPOSITION 4.8.7 Let B a syntactically generated High Level Petri Box. Then 1581 E N 

and ILT(B)I E N. 0-1.8. ;-

Proof: We give the proof for 58; that for LT(B) is similar. Let t be such that B = HLPBd t) 

for some label algebra C. 

The proof proceeds by structural induction on t. For tEA U {O} then 1581 = 2, and the 

result is clear. Suppose t = tl +l:!. Consider the syntactically generated Bj = HLPBd tj). 

Then from the induction hypothesis we have that 158,1 = nj E N. But then, from the 
• • 

definition, 1581 = I·BI ®·B2 UBI· ® B2• U BI U B21 E N. and we have the result. The 

cases for t = tI; t2, t = tllll:! and t = tl ffl are similar. .4.8.7 

4.8.3.2 Completeness 

As we do not remove local transitions from a High Level Petri Box in the applications of High 

Level Petri Box operators another simple inductive argument gives the following: 

PROPOSITION 4.8.8 A syntactically generated High Level Petri Box is complete. 04.8.8 

Moreover: 

PROPOSITION 4.8.9 Let B be a syntactically generated High Level Petri Box. Then for all 

IE LT(B), ·1 n I· = 0. 04.8.9 

Hence, we may apply the Decoupling Lemma (Lemma 3.4.4) and its associated machinery to 

syntactically generated High Level Petri Boxes. 

4.8.3.3 Local Strictness of Syntactically Generated High Level Petri Boxes 

We will use the notation C[-l to represent a 'term with a hole in it,g. For example, C[-l 

a+( bll_);d is a term with a hole. Providing an argument for such a C fills in the hole: in the 

case of the example C[dl = a+( blld);d, whereas C[til for some term t1. is the term a+( blltt);d. 

We may view a term with a hole as defining manipulations on places, local transitions and 

abstract transitions: those which would be applied to the components of its operand in taking 

the semantics of its applied form. For instance, for I E LT(HLPB(t)) and term with a hole 

gOr context, [Bar84, page 29], which we do not use for obvious reasons. 
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C[-J, we may define C[IJ as the I' in LT(HLPB( Crt])) corresponding to l. ~o operator so far 

introduced removes local transitions so that these operations are well defined. Also, we will use 

the symbols ± and =r= to represent the nominal relabellings f- and -I under the convention that 

a 'related pair' of ± and =r= are 'opposite handed', i.e., ± = -I {::} =r= = f-. 

We may now show that syntactically generated High Level Petri Boxes are locally strict: 

THEOREM 4.8.10 Let B = HLPB( t) be a syntactically generated High Level Petri Box. 

Then B is locally-strict. D-UUO 

Proof: We require the following lemma: 

LEMMA 4.8.11 

Then 

Let t be a High Level Petri Box term and 11 :f 12 E LT(HLPB( t)). 

1. • h n el2 :f 0 implies there are terms tl and t2 and a term with a hole C[ -J such 

that t = C[tl+t2J (respectively, t = C[t2+tl]) with II = C[[~J + t2J (respectively, 

II = C[t2 + (li]]), and h = C[tl + [~JJ (respectively, 12 = C[[~J + ttl). for Ii E 

LT(HLPB(tj)), i = 1,2. 

2. for such Ii, there are contexts D1 , D2 and D such that ell = Dl (. DD and e 12 = 
D2(.J )D, or ell = Dl (.J)D and e 12 = D2( .l)D. 04.8.11 

Proof: For a syntactically generated High Level Petri Box, the non-empty intersection 

of the pre-sets of local transitions is produced only through a choice composition. 

The result follows. 

Returning to the proof of Theorem 4.8.10, we will suppose that the result does not 

hold, i.e., B = HLPB( t) but B is not locally-strict. Then there is a transition r = 
~ll, ... ,ln~ E B with s E ere and a feasible substitution a E subsB(r) with WF(s,r):o 

or WF(r,s):a not a set. We will assume that WF(s,r):a is not a set, the other case 

being similar. Then there are i i= j such that a( Xi) = a( xi) = E, say. 

Suppose Xi and Xi correspond to local transitions Ii and Ij E r, respectively. If Ii = Ij then 

eli = e Ii and hence e Ija( Xi) = e Ija( Xj) in contradiction of Proposition 2.4.4. Hence 

Ii :f lj. As s E eli n elj , we may appeal to Lemma 4.8.11 to give contexts D1 • D2 and D 

such that eli = D1 (.l)D and elj = D2(.J)D or eli = D1('J)D and elj = D2(.l)D. \Ye 

assume, without loss of generality, that the first case applies so that C IjO( Ii) = Dl (. DDE 

and CIja(xj) = D2(.J)DE. 
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However, from the definition of Flow, there are also contexts C1 . C2 and C such that 

eli E = C1 (.±) C and C Ij E = C2(.=f) C. This is a contradiction as {f-. -l} n {l, J} = 0. 

Hence, B is locally-strict. • .1.8.10 

4.8.3.4 Safeness and Memorylessness of Syntactically Generated High Level Petri 

Boxes 

A marking of a PIT net is safe [BF86] if defines a set rather than a multiset. :\. PIT net is 

safe from a given marking if all markings reachable therefrom are safe. A PIT net is empty 

[BDKP91, Dev92] or clean [Hac76] if, when it has terminated it leaves no other tokens in the 

P IT net. In this section we extend these properties to High Level Petri Boxes. Later in this 

chapter and in Chapter 7 we show that syntactically generated High Level Petri Boxes, when 

marked with and from standard initial markings, share them both. 

DEFINITION 4.8.12 Let B be a High Level Petri Box and d a context. B is d-safe when for 

all markings M EMf, M is safe. 

B is safe if it is d-safe for all standard initial markings M~. .-I)U2 

For the application of memorylessness to High Level Petri Boxes we must consider the individ

uality of tokens: 

DEFINITION 4.8.13 Let B be a High Level Petri Box and d a context. B is d-memoryless 

when for all markings ME Mf, B- ~ dom(M) implies M = MI. 

B is memoryless if it is d-memoryless for all standard initial markings d. .4.8.13 

That a High Level Petri Box is memoryless implies that, other than for the passage of control, 

no information may be passed in tokens. Interaction with other High Level Petri Boxes is 

therefore solely in terms of the labels a memoryless High Level Petri Box generates. Moreover, a 

memoryless High Level Petri Box has no 'state', in the sense that no information is held between 

'invocations' . 

Not all High Level Petri Boxes are safe or memoryless; an unsafelO High Level Petri Box 'with 

memory' is illustrated in Figure 4.13; other High Level Petri Boxes 'with memory' are illustrated 

in Figure 4.14. 

IOWhich is, nevertheless, locally-strict. 
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E 

a 

b 

Figure 4.13: Example of an unsafe High Level Petri Box. From the given standard initial 
marking, no finite bound can be put on the number of (.) tokens which may be present in the 
exit-place. 

E 

b a 

c 

a b c 

Figure 4.14: Example of High Level Petri Boxes 'with memory'. From the standard initial 
marking, the High Level Petri Box illustrated in a. is not memoryless as covering its exit places 
does not imply all other places are empty. The High Level Petri Box illustrated in b. is also 
not memoryless as it leaves the token .fd in its exit place on termination rather than the token 
d which formed its standard initial marking. In c. an undesirable property of non-memoryless 
High Level Petri Boxes is shown. When f( a) = g( a), but f( b) =I g( c), we are able to distinguish 
which alternative of the upper choice was chosen by subsequent synchronisation on f( b) or g( c). 

even though the labels they generate are equal. 

In being concerned only with the cardinality of markings, safeness and memorylessness are 

properties monotonic in the permissiveness of a label algebra. As the High Level Petri Box 

operators preserve the completeness of their operands. using the techniques of Section 3...1 we 

may reduce the complexity of proofs of these properties by considering only markings reachable 

through local (rather than abstract) transition sequences. 
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The properties of safeness and memorylessness are true not only of the syntactically generated 

High Level Petri Boxes of this chapter, but also of the High Level Petri Boxes which form the 

denotations of terms of the second portion of the algebra defined in Chapter 6. As the proofs 

are essentially the same, although we make the statement of the theorem here, we postpone its 

proof to be presented together with that for Chapter 6. 

THEOREM 4.8.14 

ryless. 

A syntactically generated High Level Petri Box is both safe and memo

DI.~.l-1 

We discuss the importance of safeness and memorylessness in the discussion which ends this 

chapter. 

4.8.4 Isomorphism and Syntactically Generated High Level Petri Boxes 

We have defined a compositional High Level Petri Box semantics for terms from the portion of 

the High Level Petri Box Algebra defined in this chapter. However, the proof that compositions 

always gave High Level Petri Boxes relied upon the fact that all distinct Basic High Level Petri 

Boxes are pairwise sociable. This technical consideration has the logical conclusion that, in 

modelling systems with the High Level Petri Box Algebra we should be aware of all places 

which have ever been used through previous applications of the semantic function. 

We may mitigate this situation if we are able to show that isomorphism of High Level Petri 

Boxes is a congruence with respect to the operators; then, given two unsociable High Level Petri 

Boxes, we can always rename the places of one to arrive at sociable High Level Petri Boxes, 

which we may then compose without problem. 

We note that this does not only apply to High Level Petri Boxes and it is not unrelated to 

the problems associated with accidental capture of bound variables which occurs through, for 

instance, substitution in the A-calculus, as well as many other theories. In fact, the solution we 

propose is only a form of a-conversion for place names of High Level Petri Boxes. 

In content, then, this section is similar to [Bar84, Pg. 25] and we adopt a similar 'moral" [Bar8-1. 

Pg. 27,2.1.14]: that, using the results of this section, we may work with High Level Petri Boxes 

in a naive way. 

PROPOSITION 4.8.15 Let B1 , B{, B2 and B~ be pairwise sociable High Level Petri Boxes 

with B1 == B{ and B2 == B~. Then: 
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2. B1 ;B2 == B~ ;B~ 

4. Bdf] == B2 [J], for relabelling f· O-UU.J 

Proof: We give the proof for choice composition, which is the most complex of the three binary 

cases, and for relabelling. 

3. The only difficulty in the proof is the definition of the 'correct' bijection between 

the composed nets, this is mitigated by the binary product operator. 

From Definition 4.5.7 we have that SBr..,C = SB, for any context C. Hence 0'1: B1 

(.J) == B~ 8 (.J) and 0'2: B2 (:) (.J) == B~ 8 (.J). Moreover, the context manipulated 

High Level Petri Boxes are also sociable. 

From Definition 4.6.6 we have that B+B' = +1(B I:::.l) U +2(B' ; .J). 

{ 

0'1(8) 8 E S1 

0'( 8) = 0'2(8) 8 E S2 

0'1(81) 0 0'2(82) 8 = 81082 E ·(B1+B2)· 

That a is an isomorphism follows by a purely technical manipulation of the defini-

tions. 

4. The result for relabelling is derived from the following properties of the auxiliary 

operators: 

LEMMA 4.8.16 Given an isomorphism a: B1 == B~ then: 

(a) B1ffi == B~ffi 

(b) B1 8 (Gl, G2) == B~ 8 (G1, G2). 

Proof; (a) Follows easily from the observation that 

a(TB @) 
1 

a{n1tdB ... EB nmtm I tj E Ttl 

{n1a(tI) EB ... EB nma(tm) I a(ti) E T2 } 

0'( TB@) 
2 

as a: T1 == T2 by assumption. 

0-1.8.16 
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(b) Follows easily from the observation that it is the relation of places to 

the entry and exit places of the High Level Petri Box which defines the 

manipulation and this relation is not altered by the isomorphism . 

• 4.8.16 

Hence the result. .4.8.1.5 

The other technicality in the result is to show that all Basic High Level Petri Boxes for the same 

label are isomorphic; the result follows immediately from the definitions: 

LEMMA 4.8.17 Given a label algebra £ = (A, R) and u E AU {O} then (using separate 

applications of the semantic function) for Bl = HLPBc( u) and B2 = HLPBc( u), Bl == B2. 

O·UU7 

With Lemma 4.8.17 forming the base case and a simple inductive argument, we may extend the 

result to all syntactically generated High Level Petri Boxes: 

LEMMA 4.8.18 Let tl, t2 be i-terms for some label algebra £, and f ERe.. Through 

separate applications of the semantic function define Bl = HLPBc(td, B2 = HLPBc(t2), B: = 
HLPBc(tl ) and B~ = HLPBc(t2). Then: 

2 B'B - B"B' . 1, 2 == l' 2 

04.8.18 

We have arrived at our goal of this section, that: 

THEOREM 4.8.19 [Congruence Theorem] Isomorphism of syntactically generated High Level 

Petri Boxes is a congruence relation with respect to the top-level operators. D .. l):U9 

4.8.5 Extended High Level Petri Boxes 

That isomorphism is a congruence with respect to the top level operators we have defined in this 

chapter means that we may partition High Level Petri Boxes according to equivalence classes in 

the usual way. As usual let £ == (A, R) be a label algebra. 
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DEFINITION 4.8.20 For B E 1f.CPB.c define the Extended High Level Petri Box, [B) = 

{B' E 1{CP B.c I B' == B}. Define the class of Extended High Level Petri Boxes [1{CP B.c = 

1-u:,PB.cI ==. • -1.8.20 

From the results of the previous section, using the Congruence Theorem, we may define versions 

of the top level operators for Extended High Level Petri Boxes: 

DEFINITION 4.8.21 Let B, Bb Bi, B2 and B~ E 1f.£PB.c such that B~ and B~ are sociable, 

BI == Bf and B2 == B~. From Definition 4.8.20, [B1 ] = [Bn and [B2] = [B~]. Define 

3. [B1]+[B2] = [Bf +B~], 

4. [B][J] = [B[J]], for f a relabelling. • -1.8.21 

Whereas, in general, definitions which follow will be in terms of unextended High Level Petri 

Boxes so that the identity of places (and their manipulation) is evident, we will return to the 

class of extended High Level Petri Boxes when we construct a refinement operator on High Level 

Petri Boxes. 

4.9 Discussion 

4.9.1 An Alternative Representation of stop 

An alternative definition of stop to that given in Definition 4.7.1 is that ofthe low level Petri Box 

Calculus: as single entry and exit places without an intervening transition. Although intuitively 

attractive, this representation removes the property of High Level Petri Boxes, used in Chapter .5. 

that entry and exit places of a High Level Petri Box are necessarily connected, a property that 

facilitates the definition of the normal form for High Level Petri Boxes. We note, however, that 

the PIT net unfolding of stop is, essentially, the low level Petri Box representation. 

4.9.2 The Unit Pre-High Level Petri Box E 

The conditions which characterise High Level Petri Boxes from pre-High Level Petri Boxes 

provide for the representation of abstract transitions as collections of local transitions. We 
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were careful to disallow the 'unit pre-High Level Petri Box', f, as a High Level Petri Box as it 

compromises closure of the class of High Level Petri Boxes under composition by auxiliary and 

top-level operators, as we shall see. 

DEFINITION 4.9.1 Define the unit pre-High Level Petri Box 

E = ({s},0,{s -"> {E,X}}) 

(where, as usual, s E P is a fresh place). • .t.9.1 

As E has no local transitions, it follows that it cannot satisfy the conditions to be regarded as a 

High Level Petri Box. However, if we wished to extend the operators defined in this chapter to 

allow E to be included within their range it would not be difficult to do so. 

However, to include E as a High Level Petri Box causes representational problems. To see this, 

consider the label algebra of Example 2.1.1 (page 8) (or any which has actions a and b) and the 

term E = a;( bilE) in which f is concurrently composed with action b, the resulting expression 

being causally inferior to the action a. The High Level Petri Box semantics of this expression is 

shown in Figure 4.15. As is clear from the figure, this particular combination of concurrent and 

causal composition in the presence of E has the effect of 'unbalancing' the post-places of the local 

transition underlying action a (shown as la in the figure) so that Property 3 of Definition 2.;).15 

(page 31) does not hold for la. This is unfortunate for a subsequent and immediate context 

manipulation as the two output arcs of la would become differently annotated, preventing la 

from being a (single) local transition. 

4.9.2.1 Regaining Closure 

Therefore, whereas, we must disallow f as a High Level Petri Box if we wish to retain our local 

transition decomposition in the general case, if we are able to prevent an immediate context 

manipulation on such High Level Petri Boxes as that deriving from the term E. we will prevent 

the unbalancing of the local transition and, hence, retain represent ability. One method is to 

use the pre-High Level Petri Box f only as part of a derived operation which does not allow an 

immediately following context manipulation. This is adopted in the definition of recursion given 

in Chapter 6. For more details we refer the reader to that chapter. 
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Figure 4.15: In which f, the unit pre-High Level Petri Box, destroys the represent ability by 

local transitions. Bl is the denotation of the term a;( bllf). B2 is the denotation of the term 
(a;(bllf)) 8 ·f· Note that B2 is not a High Level Petri Box as the local transition la does not 
have consistent post-contexts. 

4.9.2.2 A Causal Unit 

Though we must disallow f from being a High Level Petri Box, it has one property that we feel 

is desirable in an algebra-it forms a unit of causal composition (up to isomorphism). With a 

unit of causal composition we conjecture that we have a non-commutative monoid on the class 

of High Level Petri Boxes with causal composition as the operation and (; as the unit. 

It may be beneficial, at some later date, to investigate the properties of High Level Petri Boxes 

in the light of the work of Montanari and Meseguer ([MM89]) in which a monoid structure is 

built on top of Petri nets. 

4.9.2.3 Safeness and Memorylessness 

The transition-like nature of a High Level Petri Boxes endowed through safeness and memo

rylessness is important property for the behavioural characterisation of Chapter i. The non

interference of safe and memoryless operands of the binary operators means that the diagram of 

Figure 4.16 commutes (where Beh is some behavioural semantics. such as the transition sequence 

semantics defined in Section 3.3.4). We discuss further the form of the behavioural equivalents 

of the High Level Petri Box operators (both of this chapter and of Chapter 6) in Section i.1. 
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1 
Beh(B1 ) 

1 
Beh( B1 ) Beh( op) Beh( B2 ) 

1 
Beh(B2 ) 

104 

Figure 4.16: Commuting diagram enabled by the safeness and memorylessness of High Le\'el 
Petri Boxes. Beh is some behavioural semantics; op is one of II, ; or +. The details of Beh(op) 
for each op are outlined in Section 7.1, and are, essentially, different disjoint unions. 

4.10 Summary 

In this chapter we have introduced the High Level Petri Box Algebra, consisting of a collection 

of syntaxes, one for each label algebra and, for each, a compositional semantics in terms of 

High Level Petri Boxes. We have shown that the operator interpretations are well-defined and 

preserve the characterising properties of High Level Petri Boxes. We have also shown that 

isomorphism, defined in Chapter 2, is a structural congruence with respect to the High Level 

Petri Box operators. 

In the next chapter we show that the operators defined in this chapter allow the definition of a 

normal form for High Level Petri Boxes. 



Chapter 5 

Normal Form 

In this chapter we show that every syntactically generated High Level Petri Box has a unique 

normal form. We show that the rewrite system underlying the normal form preserves certain 

characteristic behaviours of a High Level Petri Box, so that equality of normal forms is sufficient 

for behavioural equivalence. We also show that, in the general case, equivalence of behaviour is 

too dependent on the particulars of a label algebra over which a High Level Petri Box term is 

defined for equal normal forms to be considered necessary for equivalent behaviour. 

After the definition and justification, we give a number of applications of the normal form: 

1. we partially characterise the behaviour of a syntactically generated High Level Petri Box 

from a standard initial marking, 

2. we show that stop is a behavioural unit of choice composition. 

3. we show that concurrent and choice compositions are behaviourally commutative and 

associative (discharging our obligation established in the previous chapter). 

5.1 Normal Forms 

Normal forms provide powerful tools in the mathematics and meta-mathematics of a theory. 

Normal forms provide (partial) syntactic characterisations of semantic properties although, given 

their wide applications, the presentation of 'syntax' and 'semantics' is not always that of algebra. 

Of course, syntactic characterisations of semantic properties are not always possible, so that 

normal forms do not exist for arbitrary algebraic systems: for instance the solution of the 

general word problem, that is, whether or not two terms composed of variables and operators 

105 
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can be proved equal as a consequence of a given set of identities satisfied by the operators is 

undecidable whereas it would be decidable given that suitable normal forms existed. 

Normal forms have been used to derive deep properties of formal systems: for instance. the 

Hauptsatz of Gentzen [Kle52] provides a canonical representation of a proof in a sub-theory of 

number theory, which is then used as a basis for the proof of the consistency for that (su b- )theory. 

Well known normal forms used in logic are: disjunctive and conjunctive normal forms. Prenex 

normal form and Skolem normal form [Kle52]. Collectively, these form the basis of decision 

procedures for, amongst other things, a sub-theory of arithmetic (Presburger Arithmetic, [Shall. 

5h079]); the first three constitute the formal underpinning of the logic programming language 

Prolog [CM81]; and there are decision procedures for the propositional calculus based on the 

first two [Kle52]. On a more recreational level, lists of normal form representations of words 

and phrases are provided for crossword addicts, [Dai93], as a truly fast way of determining the 

anagrams of the particular collection of letters. 

The reduction of a proof to its normal form in the Hauptsatz corresponds, as Gentzen described 

it, to: 

[exploiting] the possibilities of the permutation of inferences within [the formal] sys

tem [Kle52]. 

The inferences to which Gentzen refers comprise the formal justification, or proof, of a theorem 

within the formal system. The 'possibilities of permutation of inferences' are not unconstrained 

'rewritings' of the proof but require that the validity of the expression should be preserved. If 

a proof is expressed through a syntax of inferences, with justifiability inherited through such 

inferences, then we might paraphrase Gentzen and say that a reduction to a normal form consists 

of syntactic manipulations that preserve semantics. 

Our normal form consists of a rewrite system at the level of syntax and a semantic property, 

behaviour, preserved by the rewriting. 

5.1.1 Rewrite Systems, Termination and Confluence 

A rewrite system for a syntax is a set of pairs of terms from the language generated by that 

syntax. Usually such pairs of terms of a syntax will be organised into 'meta'-pairs, each rep

resenting a collection of pairs of similar forms which are manipulated by the rewrite system in 

regular ways. 
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By an application of a rewrite system, R, to a term, t, we mean that there is an element of the 

rewrite system with t as the first component of the pair. The result of the application is the 

second component of the pair. Notice that we do not insist that there is a unique pair for which 

this holds, so that there may be more than one possible rewrite of a given term. The reuTite 

of a term t (under R) is the iterated application of the rewrite system to that term. Given a 

term t and rewrites t' and til, t' and til will be called similar. A term, t, is said to be irreducible 

(with respect to R) or in normal form (with respect to R) if there is no rewrite of t (under R). 

A rewrite system is said to be terminating if its transitive closure has no infinite depth branches. 

The proof that a rewrite system terminates often proceeds through the identification of a measure 

for a term, i.e., a function, m, mapping terms to natural numbers, such that for terms t and t' 

if t' is a rewrite of t then m( t) > m( t' ). Termination then follows by induction. 

A rewrite system is said to be confluent if similar terms may always be rewritten to the same 

term. 

A rewrite system is Church-Rosser (or canonical) if it is both confluent and terminating. A 

Church-Rosser rewrite system has the attractive property that it defines a unique normal form 

for each term of the syntax. Given that rewriting preserves semantics this means that there is a 

partial semantic characterisation through syntax, i.e., that if normal forms of terms t and [' are 

equal then they have the same semantics. A rewrite system is complete if the reverse implication 

holds, i.e., in which equal semantics implies equal normal forms. A complete rewrite system is 

particularly attractive as it gives a precise syntactic characterisation of the semantic property. 

(For a lucid discussion of this relation between syntax and semantics see [GLT89].) 

The rewrite system we define in Section 5.2.2 is Church-Rosser but does not have the further 

property of completeness. In fact, this is the best we can hope for with this form of rewrite 

system, as is shown in Section 5.2.1. 

5.1.1.1 Using an Equivalence as a Rewrite 

An equivalence is, in particular, a symmetric relation. To derive a rewrite system based on an 

equivalence we might break the symmetry by choosing, for each instance of the equivalence, one 

side as being 'preferable' to the other, and agreeing always to rewrite a less preferable subterm 

with a more preferable subterm; for instance, if t == t' is an instance of an equivalence, by 

considering the right hand side as preferable to the left we will always replace C[t] by C[t']. 

for C[-] some term with a hole, whenever we encounter it. The full 'Knuth-Bendix' procedure 
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is detailed in [KB70], where it runs to six sections: we do not reproduce it here. To use this 

technique for converting between our equivalences of commuting auxiliaries, derived below. and 

the rewrite rules of our normal form we will be careful to indicate the 'direction of preference'. 

5.1.2 Auxiliary Syntax 

The rewrite system through which the normal form is defined acts on the auxiliary operators. To 

this end we introduce the auxiliary syntax of the 1f£PBc. which is that of Definition ·UU, but 

in which terms are expressed through their constituent auxiliary operators. For inst ance fIll t2 

becomes tl <:) .1- tl U t2 <:) • -1t:/' tl; t2 becomes ;~ tl ,t2) (tt) U ;~tl ,t2) (t2) and t[J] becomes t EB I~' .ft>3!. Note 

that, unlike the top level syntax in which we are able to make the abstraction, we must state 

explicitly all components of a term, including the superscripts to relations and the subscripts 

to context manipulations, for otherwise they may be ambiguous. 

5.2 A Normal Form for High Level Petri Boxes 

For us, the syntax will be that of High Level Petri Boxes and the semantics a certain sub-class 

of High Level Petri Box behaviours. Our rewrite system will comprise the 'possibilities for 

permutation in the auxiliary syntax of High Level Petri Boxes,l. 

There are two observations of some note: 

1. the rewrite system underlying our normal form derives from the possibilities for commuting 

the application ofthe auxiliary operators. However, to be able to apply rewrite rules of this 

form we must first convert a High Level Petri Box term into its auxiliary representation, 

as given in Section 5.1.2. taux will denote this auxiliary representation of a High Level 

Petri Box term t. In fact, with only a slight abuse of our definitions2
, we may consider 

the 'rewriting' of t as taux a rewrite of our system: it clearly preserves the behaviour of 

a High Level Petri Box and can have no effect on either the termination (as it may not 

apply more than once) or confluence (as this auxiliary representation is ohviously unique) 

of the rewrite system so that this abuse is harmless. (For the sake of termination of the 

rewrite system, however, it is not profitable to define an 'inverse' rewrite of faux.) 

lWhere by 'permutation in the auxiliary syntax' we mean commutativity of application of pairs of auxiliary 
operators: to recap, if j and 9 are operators, the application of j and 9 commutes (with respect to =) if and only 
if/og=.goj. 

2Which is that we do not consider rewrite rules defined on top-level operators. 
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u f(-) 8 

u 7 

f(-) 1 8 

G 2 4 9 

EB 3 5 6 10 

Table 5.1: The number of the item discussing the commutativity of auxiliary operator auxl and 
auX2 is given as the entry in row aUXl, column aUX2 

2. in defining the behaviour of High Level Petri Boxes in terms of PrT nets which. in turn. 

have their behaviours defined in terms of PIT nets, we may in the worst case, be required to 

show that the proposed commuting of auxiliary operators preserves the behaviour of PIT 

nets. Unfortunately, this complication does occur in the commuting of union and context 

manipulation. However, for all other pairs of auxiliaries the demonstration is trivial for, 

as we shall see, the commuting of pairs preserves the (static) structure of a High Level 

Petri Box and, thus, obviously the behaviour. The demonstration of the 'worst case', is 

not trivial, however, forming the main part of the technical content of this chapter. 

5.2.1 An Anatomy of the Interrelation of Auxiliaries 

Throughout the following, unless otherwise stated, High Level Petri Box will mean syntactically 

generated High Level Petri Box. We will also assume that we have been given a label algebra 

£ = (A, R) with respect to which all label algebra relative concepts are defined. 

We refer the reader to Table 5.1 for an index to the following discussion of the commuting of 

auxiliaries. 

Discussion: 

1. The table entry represents the commuting of relation lifting and union, i.e., we are compar

ing f(Bl U B2) and f(Bl ) uf(B2) for f a sane relation and Bl and B2 unionable High Level 

Petri Boxes. If, by f applied to Bl and B2, we understand f with a suitably restricted 

domain then, from the definitions f(Bl U B2) = f(Bl ) U f(B2). We thus have automatic 

equivalence of behaviour. To use this equivalence as a rewrite rule we will prefer to apply 

relational lifting before union, so that our rewrite is f(Bl U B2}-f(Bt) U f(B2)· This 

choice, however. is arbitrary. 
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2. The table entry represents the commuting of context manipulation and union. i.e .. we are 

comparing (Bl U B2) G C and Bl S C U B2 0 C. for context C and union able High Level 

Petri Boxes Bl and B2. We distinguish two cases: 

(a) when Bl and B2 are such that - Bl n B2- = 0 = Bl - n -B2 then, from the definitions. 

(Bl U B2) 0 C = Bl G C U B2 G C and, from Table 3.1 with it comes behavioural 

equivalence; 

(b) when Bl and B2 are such that - Bl = B2- or Bl • = - B2 (but not both as we assume 

them unionable) the result ceases to be structural of either the PrT or PIT net 

denotations as the example of Figure .5.1 shows. The figure illustrates High Level 

Petri Boxes Bl and B2 with Bl - = -B2, and standard initially marked High Level 

Petri Boxes (Bl U B2) 0 ·f and (under the conjectured rewrite) (Bl ,:, .f) U (B2 8 .f). 

Comparing the structure and behaviour of the two High Level Petri Boxes we see 

that: 

1. the contexts which annotate the arcs oflocal transitions incident on the respective 

internal places of the two High Level Petri Boxes differ in the two semantics, 

11. if transition ta is enabled at the standard initial marking, then tokens in (BJ U 

B2 ) 0 .j reach the internal place containing the context .j, 

111. if transition t~ is enabled at the standard initial marking, then tokens in (BJ 8 

.f) U (B2 0 .f) reach the internal place containing the trivial context (.). 

iv. transitions ta and t~, and tb and t~ are enabled and disabled together. 

For standard initially marked, syntactically generated High Level Petri Boxes this is, 

in fact, the general case, as is shown below. 

However, from other (non-standard) initial markings, we may distinguish t and tf 

by their behaviours. For. consider the marking in which the context (.) occupies the 

internal place of both High Level Petri Boxes of Figure 5.1. Then (with a suitably 

permissive label algebra) abstract transition t~ is enabled. However, abstract tran

sition tb is not enabled from this marking in any label algebra, as firing tb requires 

being able to 'pop' from the token (.) the context (.f). It will be noted that such an 

intermediate marking is not reachable from any standard initial marking. 

Moreover, when Bl and B2 are not syntactically generated, the proposed rewrite 

does not necessarily produce equivalence of behaviours, even from standard init ial 

markings. A situation in which this occurs is illustrated in Figure ,S.2. 
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b 

Figure 5.1: Demonstrating the necessity of a behavioural equivalence for the postulated rewrite 
rule {3. 

The main result of this chapter is the development of properties of syntactically 

generated High Level Petri Boxes which leads to the formalisation and generalisation 

of the behavioural equivalence underlying this rewrite (subsequently called 13). 

It is notable that this leap in complexity arises only in the use of union for the expression 

of causal composition of two High Level Petri Boxes which is the sequential composition 

of two 'blocks'. Intuitively then, through the conjectured rewrite we are requiring that the 

block structure and sequential composition commute; in terms of the block structure of 

an Algol 68-type language this might be interpreted as forcing 

begin begin 

(1) (1) 

end and to be equivalent. 

begin 

(2) (2) 

end end 

As a rewrite rule we will prefer to apply context manipulations before union, so that we 
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a a a 

b b b 

c c c 

Figure 5.2: In which rewrite f3 does not produce a behavioural equivalence, (Bt U B2 ) • ·f ¢. Reach 

(Bt 8 .f)u (B2 8.f) from the standard initial marking (in a suitable label algebra). The transition 
labelled b of (Bt U B2) 8.f may eventually fire, whereas that of (Bt :,.f) U (B2 :I.f) will never 
be enabled. 

read the equivalence as a rewrite rule in the left to right direction, so that our rewrite is 

3. The table entry represents the commuting of combinational closure and union, i.e., we are 

comparing (Bl U B2)$ and Bl$ U B2$, for Bt and B2 union able High Level Petri Boxes. 

As the following example shows, we may distinguish the semantic High Level Petri Boxes 

of these terms both structurally and behaviourally, even from standard initial markings, 

so that we will not be considering this as a rewrite rule. 

For the High Level Petri Boxes Bl and B2 of Figure 5.3 (in the label algebra Lo of Ex

ample 2.1.1) we see the relative portions of (Bl I~I .f-- U B2 : .--1)$ and its rewrite under 

the proposed rewrite (Bl 0 .f--)$ U (B2 0.--1)$. We see that the left-hand side contains an 

abstract transition labelled a EEl a which is missing from the right-hand side. ~loreo\"E'r. 

given a standard initial marking of (.ccs) (also illustrated) this transition is enabled and 



CHAPTER 5. NORMAL FORM 11.3 

a 

Figure 5.3: The High Level Petri Boxes (BIG .r U B2 G .-I)Ell and (Bl ':' .rEll ) U (B2 0 .-rf) are 
both structurally and behaviourally distinguishable, even from a standard initial marking. 

so may fire. 

4. The table entry represents the commutativity of context manipulation and relational lift

ing, i.e., we are comparing f(B) 8 C and f(B I:) C), for f a sane relation and C a context. 

From the definitions, f(B) 0 C = f(B 8 C), and behavioural equivalence follows imme

diately. We will use this rule as a rewrite in the left to right direction, so that context 

manipulations appear within relational liftings in rewritten terms. 

5. The table entry represents the commuting of combinational closure and relational lifting, 

i.e., we are comparing f(B)Ell and f(BEll), for f a sane relation. From the definitions we 

have structural equality. We will use this rule as a rewrite in the right to left direction, so 

that relational liftings appear within combinational closures in rewritten terms. 

6. The table entry represents the commuting of combinational closure and context manipula

tion, i.e., we are comparing (B 8 C)Ell and BEll ':::' C, for C a context. From the definitions 

we again have structural equality. We will use this rule as a rewrite in the right to left 

direction, so that context manipulations appear within combinational closures in rewritten 

terms. 

The form of the rules now changes, from showing the commutativity of the application of aux

iliaries to that of the iterated application of an auxiliary operator: 

7. The table entry represents the twice iterated application of union, which is more usually 

called associativity, i.e., (Bl U B2) U B3 and Bl U (B2 U B3). It is not difficult to show (and 

follows from a purely technical manipulation of the definition of the place labelling of a 
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union) that when both sides are defined they are equal. Moreover, from Theorem -!.S.4 it 

is not difficult to see that for the syntactically generated High Level Petri Boxes considered 

in this chapter the two sides are always defined. 

Associativity is not usually considered as a rewrite rule per Sf. rather it will justify the 

removal of parenthesis3 . 

8. The table entry represents the twice iterated application of relational lifting. From the 

definitions it follows that fI(h(B)) = (fI 0 h)(B), where fI and h are sane relations. We 

will use this rule as a rewrite in the left to right direction, preferring to perform the 

composition of relations before application. 

9. The table entry represents the twice iterated application of context manipulation. Again 

B 8 C 8 D = B 8 CD follows directly from the definitions. We will use this rule as a 

rewrite in the left to right direction, so that we prefer to concatenate contexts before a 

context manipulation. 

10. The table entry represents the twice iterated application of combinational closure. That 

B$$ = B$ follows from the definitions, through the properties of multi set closure. We 

will use this rule as a rewrite in the left to right direction, so that consecutive applications 

of combinational closure may be removed. 

5.2.2 Derived Rewrite Rules 

By collecting together the rewrite rules derived from the above equivalences we may define the 

following rewrite system4 : 

DEFINITION 5.2.1 Given a High Level Petri Box term t, we say that t' is an auxiliary rrwrite 

of t when there is a term taux such that taux is the auxiliary representation of t and t' derives 

from taux by application of the following rewrite rules: 

(0) J(t} U t2) J(t}) u J(t2) (13) (t} U t2) ,::;:, C t} c::. C U t2 - C 
~ -+ ~ 

(-y) J(t) 8 C -+ J(t 0 C) (8) J(t$) -+ J(t)$ 

(f) t$ 8 C ........ (t 8 C)ffi (0 fI (h( t)) (fIoh)(t) 

(1]) to C0D -+ t8 CD (0) t ffiffi t$ 

3This is not sufficient to produce a unique normal form: we thus stipulate that union associates to the right. 
so that _u _u _= _u (_u _). 

·Dependent on the justification of Item 2(b) of Section 5.2.1. 
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The rewriting of a High Level Petri Box term t to its auxiliary representation lalU will be written 

t ~ alLX taux ; that term tf is the result of rewriting term t under some rule :z will be denoted 

t ~fD t
f 
or t --+ tf when we do not wish to specify the rule name. That there are terms t1 , ... , In 

such that t = tl ---. ~ --+ ••• --+ tn = tf will be denoted t ~ tf. • .j.2.1 

THEOREM 5.2.2 The rewrite system of Definition .5.2.1 is both terminating and confluent. 

0.).2.2 

ProoJ: The. proof consists of two parts: showing local confluence and showing tErmination. 

However, that the system terminates is clear: each of rules 0, ,3. ",:, band f reduces 

the number of 'outer' operator applications over 'inner' ones, e.g., ° reduces the number 

of relational liftings applied to unions by one. Rules (, Tf and () reduce the number of 

relationalliftings, context manipulations and combinational closure, respectively. by one. 

If we define the complexity oj a term as the sum of these metrics, then the complexity 

is reduced by the application of each rewrite. Moreover, any finite term has a finite 

complexity. Hence, we can define a well-ordering on rewritten terms. and the rewrite' 

system is terminating. 

The proof of local confluence is standard. We list the critical pairs of the rewrite system

those terms to which apply two rewrites in two different ways-and show that, through 

the rewrite system, these pairs can be rewritten to the same term. For a full description 

of the technique we refer the reader to [KB70j. 

As an example of a critical pair for the rewrite system, rewrites ° and AI apply to over

lapping, non-trivial subterms of J(tl U t2) IJ C. To show confluence, we must show that 

such critical pairs conflate, Le., can be rewritten to the same term. Now: 

Critical Pair: (0, I) 

(J(tl) U J( t2)) 8 C Q+- f( t1 U t2)21 C --+"Y f((t1 U t2) ::: C) 

J(td 8 C Uf(t2) 8 C (3+- --+13 f((t1 ::: C) U (t2 S C)) 

f(t10 C) U f(t2) 8 C "Y+-

--+ 
"Y f(t1'::: C) Uf(t2 2 C) Q+-

and we have the result for this case. The demonstration of the confluence of all possible 

critical pairs is given in Table 5.2. As all critical pairs conflate. we have the result . 

• . ).2.3 
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Critical Pair: «(x,,) 
(J(tl) UJ(~)) 0 C Cl J(tl U t2) S C ~.., J«(tl U t2 ) ~ C) 

J(tl) 0 C U J(~) ':J C {3- ~i3 J(tl : C) U (t2 ; C)) 
~-y J(tl I~ C) U J( t2 ,~ C) Cl-

Critical Pair: «(x, () 
!t(h(tl) Uh(t2)) Cl !t(h(tl U~)) -( (Jl 0 h)(tl U t2) 

!t (h( h)) U!t (h( t2)) Cl-

(!t 0 h)(tl) U Jl (h(~)) (-

-( (II oh)(tl)U (!t oh)(t2) Cl 

Critical Pair: (13, TJ) 
«tI8 C) U (t2 8 C)) 8 D (3- (tl U t2) I:, C I:, D -TJ (tl U t2) ,~, CD 

(tl 8 C 8 D) U (t2 8 C 8 D) (3<-

(t18 CD) U (t2 8 C 8 D) TJ-

-->7] (tl 8 CD) U (t2 ~,CD) (3-

Critical Pair: (,,6) 
J(t ffi 8 C) -y<- J( tffi) (~I C -8 J(t)ffi; C 

J« t 8 C)ffi) e<- ---. , (J(t)8C)'t 
->8 J( t (:1 C)ffi -y 

Critical Pair: (" TJ) 
J(t) 8 CD 7]<- J(t)8C8D ->-y J(t,~C),;D 

--y J(t~,C;D) 

--y J(t 1:1 CD) 7] 

Critical Pair: (" () 
!t(h( t) 8 C) -y<- !t(h(t)) 8 C ->( (!t 012)( t); C 
Jl(h(t8C)) -y<-

-( (!t 012)( t 8 C) -y<-

Critical Pair: (6, () 
(!t 012)( ('B) !t(h(t)ffi) 8<- !t(h(t ffi )) -( 

!t(h(t))ffi 8+-

-( (!t oh)(t)ffi 8<-

Critical Pair: (6,8) 
J(tffi)ffi 8<- J( tffiffi) -() J( t ffi ) 
J( t)ffiffi 8-

-() J( t)ffi 8~ 

Critical Pair: (E, TJ) 
(t 8 C)ffi 8 D ,+- (tffi) 8 C 8 D ->TJ (tffi) ::: CD 
(t8C8 D)ffi ,+-

-7] (t 8 CD)ffi ,+-

Critical Pair: (E, 8) 
(tffi 8 C)ffi ,- t ffiffi 8 C -() r= :: C 
(t 8 C)ffiffi ,+-

-() (t 8 C)l±' 

Table 5.2: Proof of conflation of Critical Pairs of the rewrite system for High Level Petri Boxes 
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COROLLARY 5.2.3 For each High Level Petri Box term t there is a unique term t n!, called 

the normal form for t, that is the result of an exhaustive application of the rewrite rules of 

Definition 5.2.1. 0·).:2.:3 

From an inspection of the case of the proofs for critical pairs (0', 'Y) and (b" ). it is interesting 

to note that: 

COROLLARY 5.2.4 

and terminating. If 

A rewrite system consisting only of the rules 'Y. (, .,., and () is confluent 

1. 0' is included, then {3 is required for conflation, 

2. b is included, then f. is required for conflation. 05.2.4 

and 

COROLLARY 5.2.5 No proper sub-system Definition 5.2.1 containing rules 0', b, 'Y, (, .,., and 

o is confluent and terminating. 0.).:2 . .5 

The consistency of rewrite {3 thus has increased importance for the normal form. 

A confluent and terminating rewrite system induces a congruence, [KB70]: 

DEFINITION 5.2.6 • .5.2.6 

As usual, [t] = {t' I t =-+ t'}. 

Given the behavioural consistency of the rewrite (3, we have the following important result: 

THEOREM 5.2.7 0.5.2.7 

Proo!' The proof is immediate, given the following lemma: 

LEMMA 5.2.8 [tl] = [t2] implies that 

1. [tl 8 C] = [t2 8 C], 

2. [I(t1)] = [f(t2)]' 

3. [t?] = [~ffi], 
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4. [t1 U tJ = [~ u tJ. o .5.2.s 

Proof: From the confluence of the rewrite system, op( t1) => op( t;1) and op( t2) => 

op( t;1), where op is one of the operator applications above. [tIl = [t2J implies 

t;! = t;! so that op( t1 )n! = op( ~)n!, and we have the result. • .5.2.s 

•. 5.2.7 

Unfortunately, although we have that t and t n! have the same behaviour. many of the interesting 

behavioural equivalences can not be established through the rewrite system of Definition 5.2.1. 

One such instance is the behavioural commutativity of concurrent composition, as we do not 

have rewrite rules transforming t1 0 J- U t2 0 . -j into t1 0 . -j U t2 ':' .f-. Such an extension is not 

trivial: we will discuss the extension further after a short discussion of the properties of terms 

and High Level Petri Boxes in normal form, and the completion of the justification of the current 

rewriting system. 

5.2.3 Flat Terms and High Level Petri Boxes 

The structure of terms in normal form is distinctive: 

DEFINITION 5.2.9 A High Level Petri Box term in normal form will be called flat. If tn! is 

the normal form of t then t n! is said to be the flattening of t. • .5.2.9 

Flat is chosen as descriptive of the normal form representation: all context manipulations, 

relationalliftings and combinational closures are applied only once, and the binary tree structure 

of iterated unions has been flattened. From the (as yet not fully proven) behaviour preserving 

properties of rewriting, the denotation of t and its flattening will have the same behaviour from 

all standard initial markings. Figure 5.5 shows the 'flattening' of the High Level Petri Box term 

(a;(bllc))[fJ. Figure 5.4 illustrates the denotation of the same term and of its flattening. 

From fiat terms corne flat High Level Petri Boxes: 

DEFINITION 5.2.10 A flat High Level Petri Box is a High Level Petri Box which is the 

denotation of a fiat High Level Petri Box term. • .5.2.10 
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.-1 ·-If 

c b c 

J-f ·-If 

X X 
a. b. 

Figure 5.4: The High Level Petri Box of Figure 5.5: (a.) original and (b.) flattened. 

5.2.3.1 Behaviours of Flat High Level Petri Boxes 

The structure of a flat High Level Petri Box B, over some a algebra L = (A, R), is markedly 

simpler than that of a general High Level Petri Box. In a flat High Level Petri Box all context 

manipulations have been applied directly to local transitions, which are thus balanced, i.p .. have 

equal pre- and post-contexts. This balancing implies that the only token which populates a 

marking reachable from a standard initial marking d is d. In terms of the PrT net denotation 

this has the corollary that the feasible substitutions of a flat High Level Petri Box are a subset 

of the substitutions {index( t) ---+ did E C} and, in particular, those from the standard initial 

marking d are a subset of the singleton set {index(t) ---+ d}. 

If Sd = {3d I s E SB} then, in terms of the A-labelled P /T nets5 , we may characterise the 

subnet of P/T(B) = (S, T) corresponding to the behaviour from the standard initial marking 

d as that subnet Bd = (Sd, T d), where Td = Tn (lP Sd X A X IF Sd). 

5.2.3.2 A Low Level Box Model based on Flat High Level Petri Boxes? 

The normal form also provides us with the possibility of creating a compositional semantics of 

(the current portion of) the High Level Petri Box Algebra based solely on flat High Level Petri 

Boxes. Replacing the current definition of context manipulation with the following 'flat' version: 

~Where A is the label set of the label algebra. 
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(a;(bllc))[j] 

-+aux 

-+a 

Figure 5.5: The flattening of the term (a;(bllc))[f]. To aid the reader, in the application of 
the rewrite rules, we indicate the scope of rewrite by an underscore, with dots indicating the 
operators to which the rewrite applies. 

DEFINITION 5.2.11 For B a High Level Petri Box and C, C' E C define the flat context 

manipulation, B 0 (C, C') = (S, T',)..) with T' = {t( c, C')It E T} and 

t(C,C') = {1(C,C')IIEt} 

I(C,C') = (el,Cl~ C,7,lc~ C',le) 

• ,').2.11 

is all that would be required to implement this change. 
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Moreover, as arc annotations are balanced, we no longer need to allow two for each local transi

tion, and so we might consider applying them directly to the label of a local transition. \nthout 

arc annotations, and with single tokens populating reachable markings, a low level net model 

would be possible6
. 

However, contexts provide more than just the way of manipulating single labels-through the 

embedded nominal relabellings, they also provide important information as to how local transi

tions may be combined into synchronisations. Because of the 'run-time' nature of the enabling 

ofa transition, the simple firing rule oflow level net models appears to preclude a representation 

based on local transitions containing such information. 

Why, then, do we base our presentation on the concept of a local transition? We will argue in 

Chapter 6 that the added value of local transitions is more than being just a convenient way 

of forming synchronisations: in Chapter 6 we show that, without complicating the High Level 

Petri Box model, local transitions can provide a basis for the free construction on the semantic 

domain of High Level Petri Boxes, facilitating the provision of process variables, a powerful 

refinement operation and, derived from it, a notion of recursion. 

5.3 Characterising the Structural Relationship induced by .3 

Using the definitions of union and context manipulation, it is straightforward to formally char

acterise the structural relationship between the High Level Petri Boxes (BI ~ .f) U (B2 :) .f) 

and (Bl U B2) 8 .j, as were illustrated in Figure 5.1 (page 111), and to lift this structural 

characterisation to all behaviours from standard initial markings. 

Throughout the remainder of this section we will assume that Bl and B2 are syntactically 

generated High Level Petri Boxes such that B1 - = -B2 , and otherwise sociable. As the reader 

will recall, this was the only non-trivial case arising in the above discussion. For the remainder 

of this section we will abbreviate (Bl 8 .f) U (B2 8 .f) to B, and (Bl U B2) ~ .f to B. 

LEMMA 5.3.1 For all M EMf, s E Bt -, and for all e E M(s), e = (.f)d. 0.).3.1 

The proof of Lemma 5.3.1 is provided in the next section. It proceeds through the identification 

of a partial order on the local transitions of a syntactically generated High Level Petri Box. The 

relation upon which the partial order is defined is that of local causality which is. essentially. 

6 And would look very much like that of the low level Petri Box Calculus, although without recursion and 
iteration. 
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the interrelation between local transitions as given by the intersection of their pre- and post

sets. We go on to characterise the maximal lines of this partial order in terms of the syntactic 

structure of the High Level Petri Box and show that the contexts forming the annotations of 

local transitions may 'migrate' along maximal lines whilst preserving certain behaviours. Due 

to the careful choice of semantics 7 maximal lines of the defined partial order characterise the 

'paths' of tokens through a (syntactically generated) High Level Petri Box from entry to exit 

places, and so many aspects of such a High Level Petri Box's behaviour. 

The close relationship between Band B is characterised by the following proposition: 

PROPOSITION 5.3.2 
~ _d 
B =Reach B. 05.3.2 

Proof: We show that Band B satisfy the hypotheses of Proposition 3.6.2 (page 62), whence the 

result. 

That BB = BE is clear from the definitions. 

Define €: LT(B) -+ LT(B) such that 

((I) = J ;01, C I ,I, ICU) ,10) 

l(ez,cz(.J),7,zC ,ze) 

ze ~ B1
e (= e B2 ) 

ez ~ e B2 

Then €: LT(B1) == LT(B2 ) such that e€(l) = ez, €(l) = 7 and ~(l)e = ie. ~Ioreover, ~ 

lifts to a bijective correspondence between TB and TE· As ~: TB == IE for convenience 

we will assume that index(t) = index(~(t)), and that, for ii E ti. Xi annotates arcs 

(8,t) and (8,€(t)) with 8 E eli = e~(l;), and Yi annotates arcs (t.8) and (~(t).s) with 

8 E lie = ~(Zi)e. 

For each s E BB' define ~s: Ct:. -+ Ct:. such that 

Note that S E BE \ B1
e implies ~s = id, whereas S E B1

e implies ~s:Ct:. ~ (.J) == Ct:.. 

Define '3:M~ == Mf such that '3(M) = {s -+ ~s(e) I s - E E .\1}. 

We show that '3 satisfies Properties 3(a)-3(c) of Proposition 3.6.2, whence the result: 

7In particular, the denotation of stop given in Definition 4.7.1. 
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1 ='(MI,Bl) - M 1,B2 • • ~ d - d • 

{s ~ ~,,( d) I sEe B} 

{s ___ dlsEeB} 

M 1,B2 
d 

2. Suppose M, M' E M~, t E TB, 0' E subsB(t) such that JI [ a ) .\1' in B. 
t: 0' 

12.1 

Define ,(xd = ~s(O'(xd) for s E eli, and ,(yd = ~s(O'(yd) for sElie. That -: as 

defined is unique is clear. Moreover, from the definitions. ~(t): I = t: 0'. Let .Y be 

such that 3(M) [3(:):,) N. We claim N = 3( M'). 

Now, for s E SB: 

N(s) = (3(M)(s) \ Wds.~(t)):,)U WF(~(t).S):1 

(~s( M (s)) \ ~s( W F( s, t): 0')) U ~s( W F( t. s): 0') 

~s((M(s)\ WF(S,t):O')U WF(t,S):O') 

3(M')(s) 

as required. 

3. establishing Property 3( c) is similar. 

Hence the result. •. 1.3.2 

5.4 A Partial Order on the Structure of a High Level Petri Box 

Throughout this section we will assume that all label algebra relative properties are defined with 

respect to the label algebra £ = (A, R), and that B is a syntactically generated High Level Petri 

Box over £. 

We first recall the definition of a partial order. 

5.4.1 Partial Orders 

DEFINITION 5.4.1 A partial order is a pair (S,~) consisting of a set S, the carrier set. and 

a transitive, reflexive, antisymmetric relation ~ on S X S. the partial order (relation). ..1A.l 

We will assume that the partial order (S,~) is discrete, so that we may find a smallest contained 

relation, the generator -<, such that ~ is the transitive reflexive closure of -<. We will write .' ~ .,' 

to denote that sand s' are related under ~, i.e., (s. s') E ~. As ~ is reflexive, for all s E S. 
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8 ~ 8. 8 and s' are said to be comparable under ~ (or just comparable) when either " ~ .,' or 

8' ~ 8 (or s = s'). We use sis' to denote that sand s' are not comparable. 

A maximal element is 'greater than or equal to' every element to which it is comparable. _-\ 

minimal element is 'less than or equal to' every element to which it is comparable: 

DEFINITION 5.4.2 Let cP = (S,~) be a partial order. We say that m E S is maximal in cP 

when 'tin E S: n#m V n ~ m. We say that m E S is minimal in cP when \In E S: n#m V m ~ n . 

• 5.4.2 

A total order is a partial order in which each pair of elements is comparable: 

DEFINITION 5.4.3 Let cP = (S,~) be a partial order. Then cP is a total order if \Is, ,,' E 

S: -,s#s'. In this case ~ may also be called a total order. • .).Ll 

Within a partial order there are distinguished subsets which form total orders: 

DEFINITION 5.4.4 Let cP = (S,~) be a partial order. A line is a set .\1 ~ S such that 

(M, ~ lMxM) is a total order. A maximal line is a line, K, such that for all m E S \ K, K U {m} 

ceases to be a line, i.e., \1m E S \ K: 3n E K: n# m. ..').1.-1 

As an abuse of notation, we will often denote the partial order (S,~) by ~ when S is clear by 

context and a line K of a partial order cP = (S,~) by K when cP is clear by context. 

5.4.2 A Partial Order on Local Transitions 

The dependence of one local transition on another given by a non-empty intersection of, re

spectively, the post- and pre-sets induces a relation on the set of local transitions which relates 

to the causal structure of the High Level Petri Box. In this section we define and develop the 

properties of this relation. 

Throughout the remainder of this section we will assume that B, Bl and B2 are syntactically 

generated High Level Petri Boxes, with II, 12 E LT( B). 
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DEFINITION 5.4.5 We say that II directly precedes ~ in LT( B). written 11 -< 12 • when 

It· n·h f:. 0. We will refer to -< as the local causality relation. ..5.-t.,5 

From the definition, for 1 a local transition ·1 i= 0 i= l· whence II -< 12 implies that the firing of 

an abstract transition in which 11 is involved leaves tokens in the pre-set of 12 . Local causality. 

then, implies causality in the sense that if Ii E ti, for i E {I, 2}, then II -< 12 only if t2 is causally 

dependent on tl' 

We will prefer to work with the reflexive/transitive closure of local causality: 

DEFINITION 5.4.6 We say that It precedes 12, denoted II ~ [2. when II( -<)"/2, .5.-L6 

DEFINITION 5.4.7 Define CP(B) = (LT(B). ~}. .5.-1.7 

The operators we allow in the construction ofthe High Level Petri Boxes ofthis chapter introdu[(' 

no cyclic dependencies on local transitions. We might therefore expect the following: 

THEOREM 5.4.8 CP(B) is a finite partial order. o .5.·\.8 

Proof: We develop a full characterisation of the partial order CP( B) in terms of its decomposition 

into the application of auxiliary operations (with the proviso that any relation used in a 

relational lifting is sane). 

Base Case: HLPB(u), where u E AU {o}. Follows directly from the definition. 

Inductive Step: Assume that CP(B) = (LT(B), ~}, CP(B1 ) = (LT(B.), ~1} and CP(B2 ) = 

(LT( B2), ~2} are finite partial orders. We consider the application of each auxiliary 

operator to B, or, in the case of union, to Bl and B2 : 

Bffi: From the definition, SB(f) = SB and LT(Bffi) 

(LT(B), -<ffi}' Then 

II -<ffi 12 {::} 11- n -Z2 i= 0 in Bffi 

{::} ZI - n -/2 i= 0 in B 

{::} II -< 12 

LT(B). Suppose CP( B'7:) 

But ~ffi= (-<ffi)* = (-<)* =~, i.e., cp(Bffi) = CP(B). The characterisation and result 

follow from the induction hypothesis. 
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B 0 C: From the definition, SB0C = SB and LT(B: C) 

~(B 0 C) = (LT(B), -<0)' Then 

11(C)B-<0h(B)c ¢} ZI(C)B-n- Z2(C)B:/:0 

¢} II - n -12 :/: 0 

¢} It -< 12 

and the result follows as in the previous case. 

126 

LT(B)( C)B. Suppose 

f(B) for sane f: as f is sane it preserves the intersection of pre- and post-sets, and hence 

local causality. From the definition, Sf(B) = f( SB} and LT(f( B)} = f( LT( B)). 

Suppose ~(f(B» = (LT(f(B», -<f). Then 

f(11)-<ff(12) ¢} f(11)-n-f(12):/:0 

¢} [J sane] 

It-n-12 :/:0 

¢} II -< 12 

and the result follows as in the previous cases. 

(The reader will note that the sanity of f is required; otherwise, loops may be 

introduced into the High Level Petri Box destroying the finiteness of the partial 

order.) 

Bl U B2: as Bl and B2 are unionable, either B1- n -B2 = 0 or - Bl n B2- = 0 (or both). 

Assume, without loss of generality, that - BI nB2 - = 0. From the definition, S B1 uB2 = 
SB1 U SB2' LT(BI U B2) = LT(B1) U LT(B2). 

We first show that ran( -<2) n dom( -<J) = 0. Suppose not. and let I E ran( -<2) n 

dom(-<I) ~ LT(B1 )nLT(B2). Then we can find II E LT(Bd such that I-n-II :/:0. 

-But then Z- ~ Bl whence l-nSB2 = 0, from Property 2 of Definition 4.5.1 (page 73). 

contradicting that I E LT(BJ)nLT(B2)' Hence ran( -<2)ndom( -<J) = 0, as required. 

Suppose ~(B1 U B2) = (LT(BI U B2), ::Su). We claim -<U=-<l U -<2 U -<' where 

whence the result follows from the properties of -<1. -<2 and -<'. and the fact that 

For: 

1. -<u 2-<1 U -<2 U -<': immediate, 

2. -<u ~ -<1 U -<2 U -<': Suppose I, [' E LT(B1 U B2) are such that I -<u ['. As 

[- n -I':/: 0, I- :/: 0 :/: -['. We distinguish three cases (which are exhaustive 
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as Bl and B2 are High Level Petri Boxes) corresponding to the partitioning of 

- --(Bl U B2) by Bt, B2, and B1- n -B2 : 

-(a) 1- n -I' ~ B1 : then, as LT(Bt) n LT(B2) = 0, I, I' E LT(B1 ) \ LT(B2) so 

that 1 -<1 1'. 

-(b) 1- n -I' ~ B2 : by similar reasoning, we have that I -<2 I' 

(c) 1- n -I' ~ B1 - n -B2: then it E LT(Bt) and 12 E LT(B2) (for otherwise, if 

1 E LT(B2) as 1- n -B2 ::f 0 contradicting Property 2 of Definition 2.5.15: 

l' E LT(Bd is similar). But then I -<' I'. and we have the result in this 

case. 

Hence the claim. 

The result follows as in the previous cases. 

Returning to the case when B is syntactically generated; we may consider B as the re

peated application of auxiliary operators (for which, ifthe auxiliary operator is relational 

lifting, then the relation is one of ;1' ;2' +1 or +2, and hence sane). Apply the above 

characterisation to give that iP( B) is a partial order. .5.4.8 

5.4.2.1 Maximal Lines of iP(B) 

We will characterise the maximal lines of the partial order on the local transitions of a syntac

tically generated High Level Petri Box in terms of the structure of the generating High Level 

Petri Box term. 

DEFINITION 5.4.9 Define lJ!(B) = {K I K is a maximal line of iP(B)}. • S.4.9 

We will use an abbreviated notation for the representation of maximal lines. For High Level 

Petri Boxes Bl and B2, with Kl = 11 -<1 ... -<1 Inl E lJ!(Bd, K2 = I{ -<2 ... -<2 1~2 E lJ!(B2), then 

[(1 U /(2 represents the maximal line of Bl U B2 consisting of local transitions 11 -<1 ... -<1 In! -<' 

l{ -<2 '" -<2 1~2 (where -<' is as defined in the proof of Theorem 5.4.8). lJ!(B)( C)B will represent 

the set {K(C)B IKE lJ!(B)}; 1(lJ!(B)) will represent the set {/(K) IKE lJ!(B)} (which are, 

anyway, consequences of the definitional convention of Section 4.4.1). 

From the proof of Theorem 5.4.8: 
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LEMMA 5.4.10 

1. I/I(HLPB(u)) = ({1},0) for u E AU {O} and HLPB(u) = [I], 

2. I/I(Bffi) = !P(B), 

3. I/I(B 8 C) = !P(B)( C)B for a context C (where if K = it -< ... -< In. then K( C)B = 

It( C)B -< ... -< 12( C)B), 

4. I/I(I(B)) = f(!P(B)) when f a sane relation (where if K = II -< ... -< In, then f(A') = 
f(11) -<j ••• -<j f(ln), for -<j defined as in the proof of Theorem .5.4.8). 

• B1 = B2• V B1 • = • B2 

• B1 • n • B2• = ° V (. Bl = • B2 A B1 • = B2·) 
05.4.10 

Whence: 

COROLLARY 5.4.11 

1. I/I(HLPB(u)) = ({1},0) for u E AU {O} and HLPB(u) = [I], 

2. I/I(BIIIB2) = (!P(B1)(.f-)B1 ) U (!P(B2)(.-l)BJ, 

3. I/I(Bl+B2) = (+1(!P(B1)(.l)B1 )) U (+2(!P(B2)(.J)B2))' 

5. I/I(B[1]) = !P(B 8 .f). 05.4.11 

We note that only through Item 4 of Corollary 5.4.11 may two maximal lines of a syntactically 

generated High Level Petri Box share a local transition. Moreover. from Corollary .5.4.11: 

COROLLARY 5.4.12 

line. 

All local transitions of a High Level Petri Box lie on some maximal 

05.4.12 

5.4.3 Further Properties of Local Transitions 

The aUxiliary operators manipulate the places and local transitions of a High Level Petri Box. 

The structure of the contexts which annotate local transitions is. then, closely related to the 

structure of LT( B) induced by the sharing of places which is, in essence, the structure CPt B). Our 

first result characterising this interrelationship relates the minimal and maximal local transitions 

and the entry and exit interfaces of a High Level Petri Box. 
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PROPOSITION 5.4.13 Let B be a High Level Petri Box. Then 1 E LT(B) implies 

1. I is maximal in iP( B) ¢:} Ie ~ Be, 

2. I is minimal in iP(B) ¢:} el ~ e B. 05.4.13 

Proof: We prove Item 1 only, the other following by symmetry. 

::}: suppose I is maximal in iP(B) but that Ie f/: Be. Then, from Property 3 of 

Definition 2.5.15, [e n Be = 0 and hence, from Property 2 of that definition, 

Zen(LT(B)e\ e LT(B)) = 0. From the definition, el =j:. 0 =j:. Ie so that, as /e ~ LT( B)e, 

[e ~ e LT(B) =j:. 0, a contradiction of the maximality of l. 

{::: suppose Ie ~ Be but that I is not maximal. Then there is a local transition, l' say, 

such that Ie n el' =j:. 0. But e[' n Be = el' n (LT(B)e \ e LT(B)) = 0 and Ie f/: Be, a 

contradiction. 

Hence the result. • .jA.13 

From this we see that context manipulations alter the pre-contexts of minimal local transitions 

(as, only for I a minimal local transition, e[ E e B), and the post-contexts of maximal local 

transitions (as then [e E Be). As other operations either preserve local causality, or concatenate 

maximal lines, the contexts annotating local transitions are structured: 

PROPOSITION 5.4.14 For each I E LT(B) either C [ ~ ZC or ZC ~ C Z. Moreover: 

1. Z maximal in iP(B) implies Cz ~ ZC, 

2. I minimal in iP(B) implies [c ~ Cz. 0.5.4.1-1 

Proof: As was the case in Theorem 5.4.8, we again prove a more general result, based on the 

application of auxiliary operators (with all lifted relations being sane). 

Base Case: HLP B( u)B with u E A U {o} whence B = [I] for some local transition I 

and cl = IC for the result. 

Ind uctive Step: Assume the result holds for B, Bl and B2 • We consider the application 

of each auxiliary operator in turn: 

Bffi: follows easily from the induction hypothesis and the characterisation of -<~ given 

in the proof of Theorem 5A.8, 
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/(B) when / sane: / preserves local causality (see the characterisation of4l(f(B)) for 

sane / in the proof of Theorem 5.4.8) and the result follows from the induction 

hypothesis, 

Bl U B2 : follows from the characterisation of 41(Bl U B2 ) of the proof of Theorem .').-t.~ 

and the induction hypothesis, 

B (.) C: let [' E LT(B (.) G). From the definition SB.:',C = SB and LT( B . C) = 
LT(B)(G)B so that there is a local transition 1 E LT(B) with I' = I(C)B. e/' = el 

and [,e = [e. Moreover, by the characterisation of the proof of Theorem 5.4.8. I is 

maximal (minimal) in 41( B) if and only if [' is maximal (minimal) in 41( B ; ('). \ \'e 

distinguish four sub-cases: 

1. [isneithermaximalnorminimalin4l(B): whencel(ClB = [,so that cI(G)B = 
cl::S; IC = [(G)B C, 

2. [is maximal but not minimal in 41(B): whence 

C l( G)B = [[ is not minimal] 

cl 

< [Induction hypothesis] 

IC 

< IC( C) 

[[ is maximal] 

(l(C)B)C, 

3. [is minimal but not maximal in cl>(B): similar, as is 

4. [is both maximal and minimal in cl>(B). 

.5.4.14 

5.4.3.1 "., and Q 

From Section 3.3.4, we see that the effect of firing an abstract transition is. other than creating 

a label, to push and then pop the contexts annotating a local transition onto a token. From 

Proposition 5.4.14. annotating contexts are always comparable, so that this manipulation of 

tokens is always possible in terms of contexts (although we do not yet know that it is sensible in 

terms of behaviour). We will record the nett effect of this manipulation in the (total) function 

17· 
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( .g) 
(.gf) 

13 

1]8 (13) 
a K (13) = 

(a;( b;( clld);e )[g])[j] 

(.) 1]8(14) 
(.gf) Of( (14) 

-(.gf) 
(.) 

1.11 

Figure 5.6: An example of the application of the partial function 0 to a maximal line, K = 11 ~ 
12 ..( Z3 ~ 14 , of a High Level Petri Box. Notice that, for this High Level Petri Box, 0 is total 
and, moreover, has value (.) for the maximal local transition 14 of K. 

DEFINITION 5.4.15 Define a function 1]8: LT(B) ---; SC such that 1]8(1) = cI_ IC. 

•. 5.4.15 

We will usually omit the subscript B when it is clear by context. 

'TJB(l) records changes to tokens wrought by the local transition I: if Z is enabled at a marking 

M, M[Z)M', with M' = (M \ ez X ~e~) U ze X M~, then 

C C { 1]8(1) ~ e ZC ::; C Z 
f = Ze - Z = 

e - (-1]8(1)) C Z ::; l C 

'Summing' 1] over maximal lines characterises the effect of firing the local transitions of which 

it comprises. The 'partial sums' in this process for a particular maximal line K are recorded in 

the partial function a l ( . 

DEFINITION 5.4.16 Let K = II ~ ... ~ in E IfI(B). Define a function oK: K ~ C such that 

leaving of( (li+1) otherwise undefined. • .5.-1.16 

The range of a K consists of the 'partial sums' of the contexts which annotate maximal lines of 

a High Level Petri Box, with the partiality of 0 reflecting that. at some point. we were not able 
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to interpret the cumulative effect of 'T] in terms of tokens (behaviour) rather than just signed 

contexts. An example of the definition of 0 is shown in Figure .).6. We note that. for the High 

Level Petri Box of that figure, oK is a total function with value on the last local transition in h' 

equal to the trivial context, (.). Proposition 5.4.17 shows that this is, for syntactically generated 

High Level Petri Boxes, the general case. 

PROPOSITION 5.4.17 Let K = II -< ... -< In E !li(B). Then oK: K ~ C is total and 

05..!.l' 

Proof: By induction on the structure of B (as usual using auxiliary operators, all lifted relations 

are sane). 

Base Case: for HLPB(B) the result follows by inspection. 

Inductive Step: Assume that the result holds for B, Bl and B2 • For B'::-' and f(B) (f 

sane) the result follows directly from the induction hypothesis. 

B 8 C: we use the following lemma: 

LEMMA 5.4.18 Let K = II -< ... -< In E !li(B). Then Tl 1 implies 

'T]B0c(11(C)B) = 'T]B(lI); n > 1 implies 

1. 'T]B0c(lI(C)B) = 'T]B(ld(C), 

2. 'T]B0C(li( C)B) = 'T]B(l;) when 1 < i < n, 

3. 'T]B0C(ln( C)B) = -(( -'T]B(ln))( C)). 0.5.4.18 

Proof: The proof when n = 1 follows by inspection. 

Suppose n > 1. Note that, as n > 1, h is minimal but not maximal in tP( B), 

and In is maximal but not minimal in tP(B): 

We have 

Cl1(C)B - h(C)B C 

[ll is minimal in B but not maximal] 

C ll( C) - h C 

[11 C ::; C II ::; C II ( C)] 

'T]B(ld( C) 

and we have the result. The other cases are similar. •. 'J.-us 

The minor complexity in the statement of Item 3 arises only because we han> not 

defined context concatenation on (strictly) signed contexts. 
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From the characterisation of ~(B S C) given in the proof of Theorem .)A.~. K' = 

~ -< .,. -< I~ E tJt(B f:J C) if and only if there is K = h -< ... -< 1.,. E tJt(B) such that 

Ii = li( C)B, i.e., such that K' = K( C)B. IT n = L the result follows directly from 

Lemma 5.4.18 and the induction hypothesis. 

Suppose n > L We claim that i < n implies a K ' (In = a K (Id( C). and i = n implies 

aK'(li) = aK(li) = (.), from which the result follows immediately. 

The proof of the claim is by finite induction8 up to and including n: 

Base Case: i = 1: whence: 

1]B0c(lD 

[Lemma 5.4.18] 

1]B(ld( C) 

aK(ld(C) E C 

Inductive Step: Suppose i ~ 2 and assume that the property holds for i-I, i.e., 

For i < n we distinguish two cases: 

1. 1]B0c(lD(= 1]B(ld) E C. Hence: 

1]B0c( IDa K ( C)B( li-1 (C)B) 

1]B( h)aK (li-1)( C) 

a K (ld( C) 

2. 1]B0c(ID E SC \ C is similar. 

For i = n, from the (outer) induction hypothesis we may assume that a K ( Ii) = 

(.) and, as a K is total on K, that a K (Ii-d E C and. hence, that 1]B(ld = 

-aK (li-1) E SC \ C. From the (finite) induction hypothesis we may assume 

that a K ' (lL1) = a K (li-1)( C). 

From Lemma 5.4.18: 

Hence 

1]B0c(lD -« -1]B([i))( C)) 

-( a K (li-1)( C)) 

a K ' (In 

-aK '(/L1) 

a K ' (lL1) - ( -1]E·:; c( 1m 
a K ' (/:_ 1) - a K ' (l:-1) 

(.) 

and we have the result in this case. 

. 8Where the proof by finite induction up to and including m of a property P (in which m does not appear free) 
IS a proof of the property i ~ m => P by 'ordinary' induction. 
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B1 U B2: we distinguish two sub cases: 

If - B1 n B2 - = 0 = B1- n -B2 then tJi( B1 U B2) = tJi( B1) U tJi(B2) and the result follows 

directly from the characterisation of ~(B1 U B2) of Theorem .5.-1.8 for this case and 

the induction hypothesis. 

So suppose that either - B1 = B2- or B1- = -B2: assume, without loss of generality. 

that B1- = -B2 (whence - B1 n B2- = 0, as B1 and B2 are unionable). From the 

characterisation of ~(B1 U B2) of Theorem 5.4.8 in this case, K E tJi( B1 U B2) implies 

K = K1 U K2 = II -<1 ... -<1 Inl -<' ~ -<2 ... -<2 1~2' From the induction hypothesis 

we may assume that af(l is total and af(l (Inl) = (.) and, similarly, a K2 is total and 

af(2(l~J = (.). From the definition we have that a[(I;) = a [(1 (I;), for 1 ~ i ~ n1 

and, in particular, af( (Inl) = (.). I{ is minimal in ~(B2) so that 7]( l{) E C and 

7] B ( IDaf( (Inl ) 

17B2(1i)(.) 

a[(2 (l{) 

and the result follows from the induction hypothesis. 

Hence the result. .5.4.1 i' 

One useful corollary of Proposition 5.4.17 is that the property which formed the hypothesis of 

Theorem 3.4.8 (page 56) holds of syntactically generated High Level Petri Boxes. The property 

was that the token which forms the standard initial marking of a syntactically generated High 

Level Petri Box forms a postfix of all tokens reachable from that standard initial marking. 

Comments of its uses in the context of safeness and memorylessness of High Level Petri Boxes 

are given in the proof of Theorem 7.1.1 in Chapter 7. 

COROLLARY 5.4.19 Let B be a syntactically generated High Level Petri Box. Then for all 

contexts d, and for all M E M~, e E ran(M) implies d I;;;; e. D .,)"!.19 

Proof: Follows from the totality of a, its independence of the initial marking, Theorem .')..!.X 

which implies there are no loops in B, and Corollary 5.4.12, which implies that all local 

transitions lie on some maximal line. • .').-1.19 

With Corollary 5.4.19 we may now exclude High Level Petri Boxes such as those appearing in 

Figure 5.2 as not being syntactically generated, and hence justify rewrite rule .3. Returning to 

the proof of Lemma 5.3.1: 
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Proof: We must show that, for all if E M~, 8 E B1 • and E E .\1(8). E = (.f)d (where.f is as 

defined earlier). 

Let 1 E LT(iJ) be such that 1· ~ B1•. and let 1 EKE 1Ji( i1). As there are no arcs 

to entry places in High Level Petri Boxes, tokens in 8 E B1• must have arrived there 

through the firing of such a local transition. 

From Proposition 5.4.17, there is a maximal line Kl E 1Ji( B) such that K = Kd .f)BjU/h 

whence 

But c/( determines the value of the tokens which arrive in I· so that, for any such token 

e, e = (.J)d, and we have the result. .5.3.1 

5.5 Applications 

5.5.1 stop as a Behavioural Unit of Choice 

Although clearly not a structural unit, flat High Level Petri Boxes provide a simple demonst ra

tion that stop forms a behavioural unit of choice composition. For. consider a syntactically 

generated High Level Petri Box B. Then B+stop contains all abstract transitions of B but 

also an extra one, tstop say, labelled O. For this transition, and because of its dead label, 

index(tstop) -+ {d} is never a feasible substitution from a standard initial marking of d. Hence9 

the behaviours of the flattenings of Band B+stop are the same, a property which lifts to B 

and B+stop. 

5.5.2 Commutativity and Associativity of Concurrent and Choice Composi

tion 

In the spirit of Section 5.3, we may characterise the structural relationship between the High 

Level Petri Boxes (BI8.I-)U(B28.--1) and (B1 0 .--1)U(B21~' .1-). Le., between BI11B2 and B211Bl 

(which we will abbreviate to Band 13, respectively). 

We have the equivalent of Proposition 5.3.2: 

9Clearly, there are more direct proofs which do not use the properties of flat High Level Petri Boxes. 
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PROPOSITION 5.5.1 
d ~ 

For all dEC, B ==Reach B. o .J . .').l 

Proof: We prove the result when d = (.). The other cases are similar. We will show that Band 

B satisfy the hypotheses of Proposition 3.6.2, whence the result. 

That SB = SB is clear from the definitions. 

Define ~: LT(B) -+ LT(B) such that 

where D and E are such that 

D'- { 
(.) Ie n Be = 0 /\ Ie = E' 

(.::r:) Ie ~ Be /\ Ie = E'(.±) 

Then~: LT(B) == LT(B) such that e~(l) = e/, ~(l) = 7 and ~(l)e = Ie. Moreover, ~ lifts to 

a bijective correspondence between TB and TB whence, for convenience we will assume 

that, for t = ~ it, ... , In rr, index( t) = index( ~(t)) = {Xl . .. " Xn} with Xi annotating arcs 

(s,t) and (s,~(t)) for s E eli = e~(ld, and Yi annotating arcs (t.s) and (~(t).s) for 

sElie = ~(li)e. 

For each s E SB, define ~s: C.c -+ C.c such that 

{ 

e sEe Be 
~s( e) = 

e'(.::r:) e = e'(.±) 

Note that for all s E SB' ~s: C.c == C.c. Moreover, if sEe Be. then ~s = id. 

Define '3: Mf) -+ Mf) such that '3(M) = {s - ~s( e) I s -+ e EM}. 

We show that '3 satisfies Properties 3( a)-3( c) of Proposition 3.6.2, whence the result: 

1 ~(MI,B) MI,B . .::. (.) = (.): 

'3(M{jB) {s -+ ~s(.) I sEe B} 

{s-+(·)lsEeB} 

MI,B 
( .) 

2. Suppose M. M' EMf), t E TB, 0 E subsB(t) such that JI [t~~) .\1' in B. 

Define ,(Xi) = ~s(o(xd) for s E eli, and ,(Yi) = ~s(~(yd) for sElie. \\"e first show 

that, is a feasible substitution for ~(t). Suppose not, i.e .. either: 



CHAPTER 5. NORMAL FORM 13, 

(a) there is no consistent value to push onto the tokens populating the pre-set of 

the local transitions of ~(t), i.e., "Y(Xi) rt :=:(Jf)(s) for some s E .~(I;) E ~(t). 

But then, from the construction, a(x;) rt M(s), a contradiction. 

(b) we may push onto, but not consistently pop from. tokens, i.e., there is a local 

transition ~(l) E ~(t) and a context e such that .~(l) x ~E~ ~ ::::(.\/). but 

c ~(l)e - ~(l) C is not defined or is a member of SC \ C. From Corollary 5.-L12, 

we may find a maximal line K E B such that ~(1) E K. But then a K (~(l)) is 

not defined or is a member of SC \ C, contradicting Proposition SA.17. 

Hence C ~(I)e - ~(I) C E C, and ~(l) does not disable ~(t) at 1'. 

( c) the flow predicate is not satisfied under 1', however: 
-- --c C 

Flow( ~(Il)' ... , ~(ln)' ~(llh( Xl)' ... , ~(ln h( In)) 

{:} [Symmetries of the Flow predicate] 
- - C C Flow(ll, ... ,ln, hO(Xl),"" lno(xn)) 

{:} true 

as 0 is a feasible substitution for t. 

Moreover, clearly ~(t):"Y = U; a simple calculation gives that, if :=:(Af) L~b) N 

then N = ::::(M'), whence the result. 

3. the proof of Property Hypothesis 3( c) is similar. 

Hence the result. .5.5.1 

Similar arguments may be used to extend the result to associativity of concurrent composition, 

and the commutativity and associativity of choice composition, giving: 

PROPOSITION 5.5.2 

Then, for all dEC 

Let Bl , B2 and B3 be syntactically generated High Level Petri Boxes. 

05.·5.2 
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5.5.2.1 Extending the Rewrite System 

The addition of a rewrite rule based on the above behavioural equivalence, although an attractive 

option, is, unfortunately, not efficacious-it produces numerous critical pairs which appear. 

moreover, not to produce 'useful' rewrites which may be added to the system: they appear to 

lead to an infinite regress. 

For instance, suppose we were to introduce a rewrite ± defined so: 

With the addition of this rule to the rewrite system of Definition 5.2.1 and. in particular, III 

combination with rewrite (3 we obtain the critical pair: 

Critical Pair: (±,(3) 

(tlUt2)8.f-Ut38.-l ±f- (tIUt2)8.-lUt3G.f- -{3 tl .-lUt2; .-lut38.f-

-+{3 tl 8.f- U t2 8.f- U t3 8.-l 

and we require a rewrite tl 8 . -l U t2 8 . -l U t3 8 .f- -+ tl 8 .f- U t2 8 .f- U t3 ,:;:, . -l for conftation of 

this critical pair. 

There are two points of note: 

1. the addition of this rule to the system does not resolve the problem: the new rule again 

forms a critical pair with (3. In fact, this process appears not to produce any finitely 

characterisable collection of rules; 

2. the requirement of a behavioural equivalence prevents the introduction of an iterative rule 

for the conftuencelO of this critical pair: we may not use the intermediate step of, say, 

tl 8 . -l U t2 8 . -l U t3 8 .f- ---- tl 0 .f- U t2 '::> . -l U t3 I::, .f-, in the quest for conftation, as the 

two are not necessarily behaviourally equivalent. This is illustrated in Figure 5.7. 

DEFINITION 5.5.3 A term, t, is said to be a completed binary concurrent composition if 

there is a term with a hole, C[-J, and terms tl and t2 such that t = C[tlllt2]' 

lfwe are to permit the addition of conditional rewrites to our system, we may define the following 

rule, for which the justification is an extended form of Proposition .) . .).2: 

lOIn this case, even such an intermediate step would not produce the result. it corresponds to the reduction 
of an odd to an even permutation using an even number of permutation pairs. which is well known not to be 
Possible. 
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a. b. 

Figure 5.7: illustrating the non-equivalence of the auxiliary High Level Petri Box terms (a.) 
(;1(a) 8 .-1CCS U ;2( b) 8 .-1CCS U a 8 j--ccs)EIl and (b.) (;1 (a) i~, .-1CCS U ;2( b) : .I-ccs U a :' . -1CCS )EIl. 
Whereas the transition labelled a EB a is enabled in (a.) in the label algebra of Example 2.1.1, 
the corresponding transition of (b.) is not. 

DEFINITION 5.5.4 Given a completed binary concurrent composition t = C[t1 Ilt2], we may 

rewrite t to C[t21Itl]. • .5 . .5.-1 

Whether a term forms a completed binary concurrent composition is clearly decidable so that 

the rule is effectively applicable. 

5.6 Summary 

In this chapter we have shown the existence of a unique normal form for syntactically generated 

High Level Petri Boxes with equality of normal forms implying equivalence of behaviours from 

standard initial markings. We have also seen that these equivalences do not necessarily hold for 

non-standard initial markings, nor for non-syntactically generated High Level Petri Boxes. 

The portion of the algebra we have described so far is deficient in that we are not able to 

describe Turing expressive terms: we may reduce the behaviour of a syntactically generated 

High Level Petri Box to an essentially finite PIT net, and the class of finite PIT nets is not 

Turing expressive [Pet81]. 

To produce Turing expressive High Level Petri Boxes we must forego the normal form, and 

consider High Level Petri Boxes for which the local transitions are not covered b~' a partial 

order. This is done in the next chapter. 



Chapter 6 

Algebra and Semantics II 

In this chapter we complete our description of the High Level Petri Box Algebra with the 

definitions and properties of the operators of refinement and recursion. 

The chapter begins with the development of refinement. 

6.1 Refinement 

Our motivation for the development of the refinement construct comes from the free construction 

on an algebra. The free construction equips a syntax with the familiar concepts of variable and 

assignment (a mapping from variables to terms), together with homomorphism conditions that 

uniquely determine the lifting of a substitution to the syntax extended with variables. Our 

refinement operator is a restricted form of assignment. one which has only a single variable in 

its domain. 

To transfer these notions to High Level Petri Boxes, it will be convenient (and appears entirely 

natural, given the properties of the operator) to identify local transition and variable (in the 

sense given by Definition 6.3.6), and refinement and assignment (in the sense given by Defini

tion 6.4.13). We thus provide a refinement operator which has the desirable quality that its 

application commutes with that of all other operators (in the technical sense given by Propo

sition 6.4.7, Theorem 6.4.15 and Lemma 6.5.9) meaning that it does not extend the semantic 

domain of the algebra and, consequently, does not require specialised proof techniques for most 

of its properties. 

The definition of the refinement construct on High Level Petri Boxes follows that of [GvG89] 

1--tO 
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in that transitions are replaced by net structure whilst preserving connectivity through place 

multiplication of interface places. The idea and the novelty of our approach is that we replace 

the local transitions and not (abstract) transitions with net structure with the advantage that. 

although the cardinality of the set of abstract transitions of a syntactically generated High 

Level Petri Box may be infinite, the set of its local transitions is always finite allowing a full~' 

general iterated derivation of refinement (Definition 6.4.13) from the simpler, auxiliary operator 

of local tran8ition refinement (Definition 6.4.1). (This approach is contrasted with the refinement 

operators of the PBC in the discussion at the end of the chapter.) 

The motivation for refinement stems from algebra and we thus find it convenient to use the 

language of algebra-in particular, the language of Order Sorted Algebra (OSA), [Gog78]-for 

its economical description. The use we make of OSAs is, however, for convenience of expression 

only and is not necessary for the approach. 

We begin with a brief resume of the basic concepts of OSAs. 

6.2 Order Sorted Algebra 

OSA is the study of algebras with subsorts. An OSA represents a datatype as a signature 

declaring various data, possibly augmented by equations giving their interdependence. The 

reader interested in a complete formal development is referred to the excellent [Gog89], from 

which we have adapted our presentation. 

DEFINITION 6.2.1 [Order Sorted Signature} An Order Sorted Signature (OSS) IS a triple, 

(S,~, I:), where: 

1. S is a set of Sorts, allowing each constant and operator to be assigned a sort (this corre

sponds to typing in programming languages), 

2. ~ is a partial order on the set of Sorts: for 81 ~ 82 to appear in the partial order is to say 

that the sort 81 is a 8ub8ort of 82 or, equivalently, that 82 is a 8uper8ort of 81, 

3. I: is an (S*xS)-indexed set1 of operation symbols-where each member of E61 ... sn ,6' is 

intended to represent a function of ranI? 81 ... 8n , 8. For>. E SO(~ S*), the empty string 

of sorts, we will regard each d E EA,. as a constant of type 8. 

IFor T a set, a T-indexed set is a set of sets in one to one correspondence with the elements of T. \\'e will 
write a T-indexed set A = {A ..... } where T = {t, .. . }. 

2I.e., signature. Rank is preferred to distinguish from order sorted 'signature'. 
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In addition the triple (S,~, l:) must satisfy the following monotonicity condition3 : 

An ass is regular if and only if given d in l:w1,31 and tLb ~ tot in 5·. then there is a least rank 

(w, s) E S* X S such that Wo ~ wand d E l:w,s' A regular ass is capable to be extended to 

include variables as a variable of 'higher' type can hold terms of 'lower' type related to it. 

Objects which represent an ass l: are called l:-algebras. 

DEFINITION 6.2.2 [Order Sorted Algebra} Let (S, ~.l:) be an ass. A (S.~, l:)-algebra A is an 

S-indexed set of carrier sets together with an interpretation that assigns a mapping A~'s: Aw -

As to each din l:w,8 (where Aw = As} x ... X Asn when w = 81 •• ·.5n and where A" is a singleton 

so that A~'s represents a constant) such that 

1. s ~ s' implies As ~ As' 

For B another (S,~, l:)-algebra, a (S,~, l:)-homomorphism, h, is an S-indexed function 

h: A -+ B = {hs: As ---t Bs} such that 

4. 8 ~ s' implies hs = As <l hs" • 6.2.2 

As is usual, we denote the ass (S,~, l:) by its third component l:, when this causes no confusion. 

A well-known result is that the class of OSAs on a signature l: (with l:-homomorphisms as 

arrows) forms a category, OSAlgE . The 'standard' semantics for an ass, l:, is the initial 

algebra of this category (which is guaranteed to exist, [Gog89]), the 'prototypical' initial object 

being the term algebra, TE. for that signature. 

DEFINITION 6.2.3 [Term Algebra} Given an ass, (S,~, l:), define the S-indexed set TE of 

all I:-terms to be the smallest set of lists over the alphabet l: U {{.2} (where { and 2 are special 

symbols disjoint from l:) such that 

1. ~.\.s ~ T. for all s E S, 

3Where :$ is extended to S' in the usual way. 
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x ~ T~(X) 

II l!a> 

x a A 

Figure 6.1: The free construction T~(X) on an algebra ~ is that which uniquely extends an 
assignment to a ~-homomorphism a*, which agrees on the values of variables. 

3. For n 2 1, tj E Ts j , i = 1, ... , n, and d E ~SI. ... ,Sn,S then d{t1 , •.. , tn } E Ts. 

The interpretation of T~ as a ~-algebra is that in which d(tl,"" tn ) is represented as 

d~tl,"" tn2 (with the ti similarly represented). • 6.2.3 

It is common to ignore the distinction between the tuple former (, ) and the symbols {,}. 

Terms in the term algebra are ground, i.e., contain no variables. The standard construction by 

which variables are introduced into an algebra is the free construction on the algebra. For the 

free construction on an ass (S,::;,~) a collection of disjoint sets of constants is introduced, one 

for each sort s E S, X = {Xs I s E S} say, called the variable sets. By adjoining the variables 

to a signature we create another signature4 , denoted ~(X). The term algebra on the variable 

extended signature is then T~(x). T~(x) can also be regarded as a ~-algebra by forgetting about 

the variables: this alternative interpretation is called the free algebra on ~, and is denoted 

Tr(X). The following theorem characterises the free construction: 

THEOREM 6.2.4 [GW88} Given a regular ass (S,::;, ~), let A be a ~-algebra and let a: X ~ 

A be an S-sorted function (called an assignment). Then there is a unique ~-homomorphism 

a*:Tr(X) -+ A such that a*(x) = a(x) for each x E X. 06.2.4 

The free construction on an algebra is often illustrated with the commuting diagram shown in 

Figure 6.1. (In the figure, ~ is an inclusion and! asserts uniqueness.) 

We will base our notion of refinement on a restricted form of assignment on T~(x): given a 

variable set X in which only the sorted variable set corresponding to the sort s is non-empt: ... 

.\$ f: 0 say, we will define an s -refinement as an assignment ay: Xs --+ T~(x) such that Oy (.r) = x 

for all .r -:f:. Y E Xs. (ay(Y) may, of course, be chosen arbitrarily from T~(x).) Y is called the 

4With regularity being inherited; see [Gog89] for the details. 
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subject variable of the s-refinement. As ay is. in particular, an assignment, by Theorem 6.2.-1 it 

extends uniquely to a homomorphism between TE(X) and TE(x). 

As a; is a E-homomorphism, we have the important property of a refinement that for each oper

ator d, a; ( d ( tIl ... , tn)) = d ( a; (tt), ... , a; ( tn ) ). As is clear, the homomorphism properties of a; 
together with its action on a variable set characterise it amongst the mappings between T~(X) 

and TE(x). We will use this to show that our High Level Petri Box construct corresponding to 

an s-refinement is the 'correct' one. 

6.3 Order Sorted Algebra Encoding of the High Level Petri Box 

Algebra 

In this section, we wrap the machinery developed in Chapter 4 in the language of OSAs. The free 

construction may then be interpreted in terms of High Level Petri Box Algebras. The remainder 

of the section is taken with the development of the lifting operation _* which produces a unique 

homomorphism from an assignment as defined for the algebra of High Level Petri Boxes. 

DEFINITION 6.3.1 Let £ = (A, R) be a label algebra. An Order Sorted High Level Petri 

Box Algebra (OSHLPB Algebra) on £, E.c is an OSS, (5,~, E), where: 

5 {Alph, Pmc, Rei} 

< {(Alph, Proc)} 

E.\,Alph A 

E.\,Proc {stop} 

E.\,Rel R 

EProc Proc,Proc {-II -, - ; -, - + -} 
~Proc Rel,Proc {-[-]} 

and all other ~w,s = 0, for W E 5*, s E 5. .6.3.1 

We note the subsort relationship between Alph and Pmc. 

The term algebra of an OSHLPB algebra consists of the terms which arise from all finite appli

cations of correctly typed operators to terms. Examples of terms of the term algebra are as one 

would expect: for instanceS, allb, (a;b)[flllc, are OSHLPB terms. 

The object we called Terms.c in Section 4.8 is the carrier set of sort Proc in he' 

~Using infix notation, we use parentheses to denote scope as usual. 
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EXAMPLE 6.3.2 Consider the label algebra Co of Example 2.1.1. The Order Sorted High 

Level Petri Box Signature (OSHLPB Signature) on Co, :E.co, is the signature defined as: 

S {Alph, Proe, Rei} 

< {(Alph, Proe)} 

:E>.,Aiph {T,a,a} 

:E>.,Proc {stop} 

:E>.,Rei {ees, r} 

:EProc Proc,Proc {- II -, - ; -, - + -} 

:EProc Rei,Proc {-[-]} 

As expected, Tr:.t:.o has AProc = {stop, a, (allstop )[ees], a;a, a+o, (T+stop)[r], all(a+stop )[r] .. .. } . 

• 6.3.2 

We now return to the class of Extended High Level Petri Boxes of a label algebra C, £1tCPB c • 

to find examples of :E.c-algebras: 

PROPOSITION 6.3.3 

AProc 

Astop 

A Proc Proc,Proc 
II 

A!'roc Proc,Proc 

A Proc Proc,Proc 
+ 

A Proc Rei,Proc 
-[ -1 

forms a :E.c-algebra. 

Let C = (A, R) be a label algebra. Then 

{[Boxc( u)]1 u E A} 

£1tCPBc 

R 

[stop] 

II 

+ 

06.3.3 

Proof: We have made assignments to the components of the signature. The well-definedness of 

the operators is given by the congruence theorem, Theorem 4.8.19. • 6.3.3 

6.3.1 Process Variables 

As already mentioned, we approach refinement through the free construction on OSHLPB Alge

bras. As we refine only process variables, what we call refinements are, in t he language of OS.\. 
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PV '---- Tr.c(PV) EHLPBfv £1lCPBc(PV) 

II 1!4y 1!-[Y--l 

PV 4 
Tr.c(pv) 

EHLPBfV £1lCPBc(PV) 

Figure 6.2: The commuting diagram between Free Algebra, the extended semantic domain 
[1fCPSc and the extended semantic function EHLPBcCPV). 

actually Proc-refinements. (We remind the reader that IL is the label universe, as was defined 

in Section 2.1.1 (page 7).) 

DEFINITION 6.3.4 Let Y, Z, ... be symbols not in the label universe L ~. Define PV = 
{ Y, Z, ... } to be the collection of process variables. .6.3.4 

To interpret PV as a variable set in the OSA sense, consider it as the sorted family of sets 

{XAlph, XProCl XRel} with XAlph = XRel = 0 and XProc = PV; assignments from PV to TE(pv) 

are thus Proc-refinements. 

We extend Example 6.3.2 to illustrate the free construction on PV. 

EXAMPLE 6.3.5 With the adjunction of PV to ~.co' so that ~>'.Proc = {stop} U PV we 

may form the ~.co (PV) term algebra TELa (pv). The free algebra on TELa (PV) has A~roc = 
AProc U {Y, stopllX, a+a, all Y, Z, ... } as the (free- ) carrier for Proc. As we adjoin only process 

variables to the signature, other carrier sets are as before. 

Then, given a Proc-refinement, ay, with ay( Y) = t, ay lifts uniquely to the homomorphism 

ay between TEeo (PV) and Tr.co (pv), characterised as: 

ay(stop) stop ay(T) T 

aY(a) a ay(a) a 

aY(Y) ay(Y) = t aY(X) ay(X) = X 

aY(tlllt2) ay(tl)lIaY(t2) aY( t1 ;t2) ay(tl);aY( t2) 

ay(tl+t2) aY( tl)+ay (t2) ay( t1[fD ay(tl)[J] 

aY( ccs) ccs ay(r) r 

.6.3 .. 5 
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6.3.2 Characterisation of Refinement for High Level Petri Boxes 

The concept of a refinement has been introduced on the term algebra. To introduce the notion 

on High Level Petri Boxes we need to: 

1. lift the notion of a process variable to High Level Petri Boxes, i.e .. extend the semantic 

domain to include the denotation of a process variable, and extend the semantic function 

suitably. We will call the extended semantic function EHLPB;'v, with E1t£PB~v = 
ran(EHLPHfV) (so that EHLPB;'v is a surjection), 

2. identify an operator on the extended semantic domain which corresponds to the (lifting of 

the) refinement a y . 

Interpreting the homomorphism condition for a Proc-refinement ay with aye Y) = t on the 

extended semantic domain, we arrive at the following characterisation of the refinement construct 

in terms of Extended High Level Petri Boxes: 

EHLPB;V(stop)[Y - t] EHLPB;V( ay(stop)) 

= EHLPB;V(stop) 

EHLPB;V(u)[Y _ t] EHLPB;'V(ay(u)) 

EHLPB;V(u) uEA 

EHLPB;V( Y)[ Y - t] EHLPB;V( aY( Y)) 

EHLPB;V( aye Y)) 

EHLPB;V(t) 

EHLPB;V(X)[ Y _ t] EHLPB;'V( aY(X)) 

EHLPB;V(X) Xf;Y 

EHLPB;V( tllltz)[ Y - t] EHLPB;V( aY( tllltz)) 

EHLPB;V( aye tl )lI a'Y(tz)) 

EHLPB;'V(ay(tt}) ~ EHLPB;'V(ay(tz)) 

EHLPB;V( tt}[ Y - t] II EHLPB;V( tz)[ Y <- t] 

EHLPB;V(tl;tZ)[Y - t] 

EHLPB;V(tt}[Y - t]; EHLPB;v(tz)[Y <- t] 

EHLPB;V(tl+tZ)[Y - t] 

EHLPB;'V(tl)[Y .- t] + EHLPB;'V(tz)[Y <- t] 

EHLPB;V( tl [J])[ Y - t] = -(EHLPB;v(tl))[Y - t][J] 
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Y 

Boxe( Y) 

Figure 6.3: The Basic High Level Petri Box for the process variable Y. 

As ay is the unique extension of ay, an operator on Extended High Level Petri Boxes which 

satisfies the above characterisation, and which agrees with ay on process variables, will auto

matically be the correct extension on the extended semantic domain (up to isomorphism). 

All that remains is to make a choice for the denotation of a process variable in the extended 

semantic domain. Although we might use OSAs to limit the choices we wish to make, creativity 

is still required. In fact the denotation we have chosen for a process variable is essentially that 

of a Basic Box (cf. Definition 4.7.1), albeit labelled with a process variable. This appears the 

most natural possibility. 

DEFINITION 6.3.6 Given a process variable Y E PV define the basic box of Y as the 

augmented local transition: 

Boxc(Y) = [({st},(.), Y,(.),{S2}}] 

where 81 and 82 are fresh places. Define the denotation of Y in the extended semantic domain 

to be the equivalence class: 

i.e., the equivalence class of the basic box with respect to isomorphism of High Level Petri 

Boxes. _ 6.3.6 

The denotation of a process variable is illustrated in Figure 6.3. 
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Given the proximity of the denotation of a process variable to that of a label in the label algebra. 

the redefinition of the operators on the extended semantic domain is trivial, and we will assume 

it has been done. This means, for instance, that we will treat Box c.( }") as a local transition in 

the application of the auxiliary, and hence top-level, operators. 

Note that the application of a relabelling is not defined on a process variable, meaning that we 

may not produce PrT or PIT net denotations of High Level Petri Boxes in which process variables 

appear in its original label algebra. Process variables are, thus, a structuring mechanism for 

High Level Petri Boxes. However, marking theoretic properties of High Level Petri Boxes which 

contain process variables, can be established by adjoining the collection of process variables to 

the alphabet and considering the High Level Petri Box over the most permissive label algebra 

derived from that. 

We define our candidate for the lifting of Proc-refinements to the semantic domain of High 

Level Petri Boxes next. Although relatively complex in comparison with the previous operators. 

it is demonstrably the simplest possible, given the denotation of a process variable and the 

requirements imposed upon it by the characterisation above. After the definition, we show that 

the operator satisfies the characteristic equations above, which identifies it as the unique lifting 

on the extended semantic domain. 

6.4 Semantics of Refinement 

6.4.1 Local Transition Refinement 

That the denotation of a process variable is. essentially, the augment of local transition suggests 

that we might define a refinement operator on local transitions. and derive full refinement from 

it. 

As usual we will assume we have been given a label algebra £ = (A.. R). 

DEFINITION 6.4.1 [Local Transition Refinement} Let Band D be High Level Petri Boxes and 

I a local transition, not necessarily in LT( B), but such that -I n 1- = 0 and -I- n S D = 0. Choose 

a fresh copy of D, D' say6, which is sociable with B, and define separable auxiliary relations 

6I.e., D == D' but the places of D' are fresh. 
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and 

{ 

{8} ® • D' 8 E ·1 

Ii (s) = { 8 } ® D' • s E I· 

{ 8 } otherwise 

{ 

·1 ® {8 } 8 E • D' 

Ii (s) = l· ® {8 } 8 E D' • 

{ 8 } otherwise 

1.50 

Define the local transition refinement of B by D with respect to 1. B[l ~ D], to be the pre-High 

Level Petri Box such that 7 : 

{
f/(SB)Ufi(SDI) IE LT(B) 

f/(SB) otherwise 

{f/(t \ n.~I~) Ufd(r)(l)DI It E TB 1\ t(l) = n 1\ r E Ttn 

{ 
)..1{(B)(8) s E f1/(SB) 

o otherwise 
.6"!.1 

B will be termed the refined High Level Petri Box, D the refining High Level Petri Box and I 

the refined local tran8ition. 

Figures 6.4, 6.5 and 6.6 illustrate the definition of the local transition refinement of a High 

Level Petri Box. Figure 6.4 gives the generic form of local transition refinement. in terms of 

the conceptual model of Chapter 1, and shows a High Level Petri Box refined with respect to 

the local transition which has been affected both by context manipulations and combinational 

closures. 

We note the following of the definition: 

1. we choose a fresh copy of D to form the local transitions of the refined High Level Petri 

Box. The efficacy of this is that by judicious choice of the fresh copy, we may reduce proofs 

of isomorphism to proofs of equality. 

2. the appearance of the pre- and post-contexts of the refined local transition in each of 

the new transitions formed through local transition refinement ensures t hat any context 

7Note that TiJ,· = {Itl EI7 ... EI7 tn It. E D'~, so that TiJ,o = {~~}. Using the observation of Definition 4,'5,9. 
We have that f( ~~) = ~~. The notation t( I)D was introduced in Definition 4.5.7. 
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x r X m 

D D' 

! 

B[l <- D] 

Figure 6.4: illustration of the local transition refinement of a High Level Petri Box in terms of 
the conceptual model. 
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D D' 

B 

Figure 6.5: Local transition refinement of a High Level Petri Box in which the refining High 
Level Petri Box contains more than one local transition. 

ma~ipulation which has been applied to that local transition has its 'scope' extended to 

the whole of the refining High Level Petri Box. 

3. the appearance of the refined local transition n times in an abstract transition of t he refined 

High Level Petri Box implies that combinations of n abstract transitions from the refining 

High Level Petri Box are introduced into the refined High Level Petri Box (achieved by 

requiring that T E TZ,n). Together with Item 2 this will ensure that refinement and 

relabelling commute (for the extent to which this is true of local transition refinement see 

Proposition 6.4.11). 

4. the assumption of the refined local transition that ez n ze = 0 implies that the auxiliary 

relations are well-defined. Whereas this makes the operator partial on the domain of High 

Level Petri Boxes (as we do not prevent local transitions from having intersecting pre- and 

post-sets) the case of refining a syntactically generated High Level Petri Box with respect 

to such a local transition does not arise. 

5. we do not require that the refined local transition appears in the refined High Level Petri 

Box, nor even that they share places. Such a requirement will be seen to be too restrictive 

when we come to demonstrate the homomorphic nature of refinement. 

6. the place labelling of the refined High Level Petri Box is retained: that of the refining High 

Level Petri Box is discarded. 
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b 

B D' D" 

refine w.r.t. II refine w.r.t. 12 

S' l2 h 
S" 

bf2,)t' 
d b 

df2,)t" 

B[ll <- D] B[12 <- D] 

refine W.r.t. 12 \ refine w.r.t. II 

cf2,)r" af2,)r' c0r" 

Figure 6.6: illustrating that (with the judicious choice ofthe copies (D' and D") of refining High 
Level Petri Box D) iterated local transition refinement of a High Level Petri Box is independent 
of the order. 

Given that there will be, in general, many instances of local transition refinement in the following 

we will often decorate the auxiliary relations with an extra subscript, which is the 'name' of the 

refined High Level Petri Box. For instance, in the refinement of a High Level Petri Box Bl by 

D with respect to the local transition I we will write I ~1,1 for Ii. and I ~1,2 for Ii-
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6.4.2 Properties of Local Transition Refinement 

In this section we demonstrate a number of technical properties of local transition refinement 

that enable a simple derivation of (full) refinement and of its syntactic nature. 

We will assume, throughout the remainder of this section, that B. B1 • B2 and D are High Lewl 

Petri Boxes and that I is a local transition. Moreover, unless otherwise stated, B, B1 and B2 

are to be assumed pairwise sociable. 

6.4.2.1 Basic Properties 

Local transition refinement preserves the High Level Petri Box-ness of its operands. The argu

ments are similar to those of Chapter 4. 

PROPOSITION 6.4.2 E[l +- D] is a High Level Petri Box whenever Band Dare. 06.-1.2 

Sociability propagates through refinement: 

PROPOSITION 6.4.3 

sociable. 

B1 [l +- D] and B2 are sociable whenever B1, B2 and D are pairwise 

06.4.3 

6.4.2.2 Places 

When the refined local transition does not appear in the refined High Level Petri Box the effect 

of refinement reduces to the lifting of the first auxiliary relation, AI; when it( s augment) is the 

refined High Level Petri Box it reduces to the lifting of the second auxiliary relation, f1: 

PROPOSITION 6.4.4 

1. I ¢ LT(B) implies E[l +- D] = fi(E), 

2. [/][1 +- D] = fi(D'). 

3. -I- n 5B = 0 implies B[I +- D] = B. 06.4.4 

Proof: Items 1 and 2 follow directly from the definitions. Item 3 is a simple corollary of Item 1, 

as -/- n 5B = 0 implies that fi is the identity. .6AA 
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6.4.2.3 Local Transition Refinement modulo Isomorphism 

That isomorphism is a congruence with respect to the top level operators introduced so far is 

an important result, allowing us to abstract away from the identities of places. It follows from 

the assumed sociability of the respective operands, and by careful choice of refining High Level 

Petri Box: 

PROPOSITION 6.4.5 

1. Local transition refinement is independent of the choice of copy of D, up to isomorphism, 

as long as that choice is sociable with B, 

2. Let <1: B == B'. Then8 B[l <- D] == B'[<1(l) <- D]. o 6.-1..5 

6.4.2.4 Local Transitions 

The local transitions of a refined High Level Petri Box are those of the original, other than the 

refined local transition, together with those of the refining High Level Petri Box, if the refined 

local transition appeared in the refined High Level Petri Box. The following characterisation is 

evident9 : 

PROPOSITION 6.4.6 

{ 
fll(LT(B) \ {I}) U fd(LT(D(l))) 

LT(B[1 <- D]) = 
fi(LT(B)) 

IE LT(B) 

otherwise. 

6.4.2.5 Commutativity of Local Transition refinement with Itself 

06.4.6 

The requirement that the refining and refined High Level Petri Boxes are sociable implies that 

we should choose a copy of D so as to be able to iterate local transition refinement. If we are 

sufficiently careful with the choice, we may always ensure that: 

SWhere (J' applied outside of its domain is to be considered the identity. 
9 D(l) was defined in Definition 4.5.7. 
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PROPOSITION 6.4.7 Let Band D be as in the statement of Definition 6...1.1. Let 11. 

h E LT(B) such that -Ii n Ii- = 0 and -Ii- n Sn = 0, i = 1.2. Then B[l1 - D][~ - D] = 

B[h (-- DJ[~ <- D] where ~ = 1111 (12) and ~ = 1i2 (lt). 06.4 .• 

Proof: The altering of the refined local transitions is necessary so as to compensate for the case 

when -11- n -h- =I 0. Otherwise the result is straightforward, requiring only a careful 

choice of the copy of D and the commutativity and associativity of ® and multiset union . 

• 6..1 .• 

We note, in particular, that, if -It - n -12 - = 0, then IiI (12) = 12 and 1i2 (/d = 11' This observation 

will be useful in the subsequent development of the recursive operator. 

6.4.2.6 Commuting Local Transition Refinement with the Top Level Operators 

The homomorphism condition required that a (Proc- )refinement commutes with the top-level 

operators of the algebra (at least, up to isomorphism). That our candidate for the refinement 

operator has this property is shown next: 

PROPOSITION 6.4.8 Let 1 E LT(B1I1B2) so that either 

1. [= ['(J-)B1 for [' E LT(B1), or 

06.4.8 

Proof: As B1 and B2 are sociable, LT(B1) n LT(B2) = 0 so that, as a simple extension of 

Proposition 6.4.4, either (B1 8 .f- )[[ <- D] = B11Z,.f- or (B2 I::; .-1)[1 - D] = B2 -: .-1. The 

result follows. .6.4.8 

PROPOSITION 6.4.9 Let 1 E LT( B1 ;B2) so that either 

1. 1 = ;1 (1') for [' E LT( Bd, or 

06.·VJ 
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D D' 

;2 
-------'""----.... 

15, 

1 

Y
'03'01 '04'01 

u 

Figure 6.7: illustrating the proof of Proposition 6.4.9 when I- ~ B1-. Note that we must choose 
D' simultaneously sociable with both Bl and B2. Place annotations have been omitted for 
clarity. 

Proof" Again we have that LT(B1 ) n LT(B2) = 0. Assume, without loss of generality, that 

IE LT(B1). If Z- n BI - = 0, then BI[l f- Dj- = B1- and the result follows easily. When 

Z- ~ B1- we must be a little careful, as then B1[l f- Dj- = (B1-\I-)UZ-0D-, and we must 

verify that the application of ;2 to B2 as defined between Bl [I f- Dj and B2 rather than 

between Bl and B2 is compensated for. However, this follows from the commutativity 

and associativity of 0. .6.4.9 

PROPOSITION 6.4.10 Let Z E LT( Bl + B2) so that either 

06.-1.10 

Proof" We may assume that Bl and B2 are sociable so that LT(Bd n LT(B2) = 0. The result 

follows as a combination of those of Propositions 6.4.8 and 6.4.9. .6.4.10 
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The assumption that BI and B2 are sociable is only sufficient to ensure that the internal places 

of the High Level Petri Boxes are disjoint, after the application of the auxiliary relations + I 

and +2, as was illustrated in Figure 4.9 (page 88). This gives the motivation for the use of the 

nominal relabellings Land J which produce distinct local transitions in BI +B2 when BI = [il]' 
B2 = [h] with G1I = G12 , 1; = 12 , llG = l2G. 

PROPOSITION 6.4.11 For 1 E LT(B), B[J][l(.f}B ~ D] = B[l - D][J]. 06.4.11 

Proof: The annotation of the entry and exit arcs of D by the contexts annotating the refined local 

transitions, together with the addition of n copies of abstract transitions of D' to each 

abstract transition of B in which l appears n times is sufficient to ensure isomorphism. 

With the careful choice of D', the copy of D used in the refinement. we may strengthen 

this to equality. .6..1.11 

6.4.3 Full Refinement 

From Proposition 6.4.7, we may commute the order of applications of local transition refinement 

and retain the same High Level Petri Box. This allows the convenient derivation of (full) 

refinement from local transition refinement and permits the simple transfer of the properties 

between auxiliary and top-level operators. 

The derivation of refinement of a (syntactically generated) High Level Petri Box B with respect 

to (process variable) Y and (refining High Level Petri Box) D, follows from the identification of 

the set of the local transitions of B annotated by Y and, choosing an arbitrary order, applying 

local transition refinement to each in turn. 

DEFINITION 6.4.12 Let B be a High Level Petri Box and Y E PV(B). Define Ly(B) = 
{I E LT(B) 17 = Y}. .6.4.12 

For brevity, we will often refer to l ELy( B) as a }" -local. 

Full refinement. our candidate for the lifting of a Proc-refinement to the semantic domain, is 

defined as: 

DEFINITION 6.4.13 

}' E PV. Define 

Let B, D be syntactically generated High Level Petri Boxes and suppose 

E[Y.- D] = B[LdB) .- D] 
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where 

B[0..- D] 

B[{Ibh, ... ,In }..- D] 

B 

B[II ..- D]({~, ... l~} ..- D] 

1.59 

.6.4.13 

That Definition 6.4.13 provides a unique value for B[Y ..- D] (up to isomorphism) is a corol

lary of the commutativity oflocal transition refinement with itself (Proposition 6.4.7), and the 

following property of the auxiliary relations of Definition 6.4.1, which implies that using the I: 
to refine B(l f- D] in the 'continuation' of the iterated refinement does not unduely affect the 

result. 

LEMMA 6.4.14 

f(2 (IJ) (ff2 (13 ))' 

Let II. 12 and 13 E Ly(B) be distinct local transitions. Thenf{;1(~)(ffl(13)) = 

06.4.14 

Proof: Follows from a simple consideration of cases, the commutative nature of 0, and a simple 

technical manipulation of the various auxiliary relations. .6.4.1-1 

6.4.3.1 Commutativity of Refinement with the High Level Petri Box Operators 

Another benefit of the iterative definition of refinement may be seen in combination with the 

properties of Ly(B), the local transitions of a High Level Petri Box with the (process variable) 

Y as label. Given that the operand High Level Petri Boxes of a top-level operator are required 

to be sociable, we may partition the constituent local transitions of the composition into, essen

tially, those of the operands. For instance, in the case of sequential composition we have that 

Lr(B}iB2) = LY(il(B1)) U Ly(dB2)), etc. As Ly does not depend on the details of the local 

transitions which carry the label Y, to refine the composition we need only refine the operands 

and compose: 

THEOREM 6.4.15 

}' E PV: 

For B1 , B2 and D syntactically generated High Level Petri Boxes and for 
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4. B[JJ[ Y <- D] = B[ Y <- D][J] 06.-U.j 

Proof: The result follows easily from the corresponding results for local transition refinement. 

a careful choice of copies of D, and the following characterisations of Ly for the \'arious 

cases: 

1. L y ( BIll B2) = L y (BI 8 .1-) U L y (B2 8 . -1). 

2. Ly(Bl jB2) = LY(;I(BI )) u LY(;2(B2)). 

3. Ly(BI +B2) = Ly( +1(BI ) 8. U U Ly( +2(B2)'~ .J). 

4. Ly(B[J]) = Ly(B 8.f). .6.4.15 

With Theorem 6.4.15 we have shown that refinement on the semantic domain of High Level 

Petri Boxes corresponds precisely to that of a Proc-refinement on the free construction. 

The reader will note that in the proof of the above, we have not required any properties of 

refined or refining High Level Petri Boxes (other than the local transition to be refined on, I, 

is such that ez n ze = 0, and that eze n SD = 0 ensuring the well-definedness of the refinement 

construct but which, through renaming, is trivially enforceable). The properties of this section 

will thus extend to other classes of High Level Petri Boxes, such as those introduced in the next 

section in which the recursive construct has been applied. 

6.5 Recursion 

Recursion and refinement are closely linked when a fix-point semantics is chosen as together 

they allow one to answer the question: 

is there a solution Q to the equation 

Q == pry <- Q] (6.1 ) 

Le., by refining Y by Q in P do we again arrive at something with the same meaning (determined 

by the behavioural or structural equivalence ==) as Q? Given certain properties of the semantic 

domain (essentially, that it forms a partially ordered set with directed joins) the fix-point theory 

of Scott [8c082] may be used to provide unique (but, in general, infinite) structural solutions to 

the equation. This is, essentially, the approach used for the low level Petri Box model and more 
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recently in the A-nets of [DK95]. Throughout the remainder of this chapter, we will refer to }" 

in Equation 6.1 as the 'recursed-on variable', P as the 'recursive body' and Q as 'the solution'. 

Equation 6.1 may be used to finitely encode certain infinite behaviours. In [~lin 12]. ~linsky 

shows that the collection of behaviours defined by such recursively defined terms correspond 

to those generated by Turing machines. This collection of behaviours is, as Hack [HaC/.5] first 

showed, outside of those that a low level Petri net model can describe. A corollary is that any 

semantics which provides a solution to Equation 6.1 in PIT nets must contain nets with infinite 

structure. 

Whereas there are mechanisms which can be added to low level Petri net models which permit 

finite denotations of such terms, such as inhibitor arcs and priorities [JK91], such models have 

not been widely investigated (generally, the extensions are translated into vanilla PIT nets), 

Moreover, as they complicate the graph-theoretic structure of Petri nets, they are generally less 

tractable. 

Another solution, investigated in this section, is to look to our high level Petri net model, and 

to encode those components of control flow which cannot be expressed within finite nets within 

the individuated tokens. 

Such an approach appears first to have been systematically explored by [Tau89]. Taubner also 

argues there that there is no fully expressive finite semantics of TCSP even within a high level net 

model due to the TCSP communication protocol synchronisations between unbounded numbers 

of parallel processes may be effected. We concur with Taubner's analysis wishing only to add 

the observation that it is only the set of transitions of the high level net which is required by 

his arguments to be infinite; the set of places may be finite. 

And indeed, all operators on High Level Petri Boxes, including recursion, preserve the finiteness 

of the set of places of a High Level Petri Box. Also, all operators preserve the cardinality of 

the set of local transitions of a High Level Petri Box. It is only relabelling which produces a 

cardinality change, in producing a countable infinity of abstract transitions. 

Moreover, Proposition 4.8.8 (page 94) continues to hold of High Level Petri Boxes to which the 

rl:'cursive construct has been applied, so that we may continue to use the Decoupling Lemma 

(Lemma 3.4.4, page 55) for finitary proofs of properties which are positive monotonic properties 

in the permissiveness of a label algebra. Indeed, the behavioural properties of the recursive 

construct established in the next chapter are proven using such techniques. 
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6.5.1 Semantics of Recursion 

To describe such equations as that which appears above we will introduce a new syntactic 

construct, recursion (the notation for which should, however, be familiar from the literature). 

Our Q (our solution to Equation 6.1 for High Level Petri Boxes) we will denote as Jl LP. It is 

defined in Section 6.5.7. The proof that it is a solution to Equation 6.1 is given in Chapter 7 

(Section 7.3). 

The recursive construct is derived from two auxiliary operators: guarding which ensures that 

the recursive operator is constructive in its High Level Petri Box operand; and winding which 

performs the folding of structure mentioned above, allowing recursive invocations of a process 

to use the same High Level Petri Box structure. 

In this section we give the semantics of our recursive operator. We have been careful to provide 

definitions which preserve as many properties as possible of High Level Petri Boxes (this will 

explain some slight complications in the definitions). However, we lose the normal form denota

tion of High Level Petri Boxes which existed of syntactically generated High Level Petri Boxes 

due to the necessity of the introduction of loops into the semantics. 

6.5.2 Pre- and Post-Guarding and Winding 

The (pre- )guarding of a recursive call is predicated on the observation that we are able to prefix 

a silent action to a process without altering its observable behaviour. In Definition 6 . .5.1 we 

introduce a silent action, denoted Jl (to distinguish it from the T of CCS), into the alphabets of 

all label algebras, with communication properties (similar to T) as defined by Definition 6.5.2. 

6.5.2.1 Why Post-Guarding? 

The infinite terms all(Jl;(all" ');Jl) and allall'" are behaviourally equivalent (when Jl is silent). 

Their respective denotations are given in Figure 6.8. In Figure 6.8( a) the arc annotations of 

the abstract transitions labelled Jl and a are regular: each pre-guarding Jl has a pre-context of 

.-1 and an empty post-context; each post-guarding Jl an empty pre-context and a post-context 

of .-1; each a has pre- and post-contexts .1-. In Figure 6.8(b) arc annotations (in particular the 

post-contexts) are not regular: the annotations of the (a-labelled) abstract transitions are of 

the form .1- or .I--ln. The regularity of the arc annotations of the first High Level Petri Box will 
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E 

J-

a a a a 

.1-

x 

a. b. 

Figure 6.8: (a) Regular and (b) irregular denotations of the same (observable) behaviour. 

allow us to 'fold' it into a finite structure with the same behaviour lO . This is not possible with 

the second High Level Petri Box. 

6.5.3 Winding 

As already mentioned, to produce a cardinality preserving semantics of High Level Petri Box 

terms, we fold together certain repeated structures. One possibility for doing this would be to 

develop a Scott domain [Sc082] on top of High Level Petri Boxes, produce the approximants 

to the behaviour of the fix-point, and show that the folding commutes with the formation of 

chains. However, for our recursive construct we will perform the folding monolithically on the 

original process term. For obvious reasons we will call this process winding. 

Winding operators appear naturally in structured operational semantics of prefix based ap

proaches. Our operator is a generalisation of this form in which we consider also the terminal 

state of a process. So, in addition to the practice (of the literature) of identifying the initial state 

of the recursive body (the P of Equation 6.1) with the state directly preceding the recursed-on 

variable (Y of Equation 6.1), we will also identify the terminal state of the recursive body with 
10 

Actually, we will add more structure first. 
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the state directly succeeding the recursed-on variable. 

This does not, as yet, bring into play any particular properties of high level Petri net models. 

and we note that if winding were sufficient it would be simple matter to produce a Turing 

expressive labelled finite I-safe PIT nets. However, such nets are not Turing expressiw so 

that this cannot be the case. Examples of two ways in which winding can fail (together with 

solutions) are illustrated in Figure 6.9 when the term to be wound is (a; Y; b)+c. Winding this 

term should produce the (complete) behaviours described by the set of strings {an cb n I n EN}. 

In Figure 6.9(b) a 'best-try' denotationll of the winding is given. This net generates the language 

{an cb m I n, m E N}-we are not able to record the depth ofthe recursive call so that we do not 

know how may times to allow it to unwind. 

By adding (what we will call) an accounting place we allow this information to be recorded, but 

at the cost of moving to unbounded PIT nets. An accounting place is added to Figure 6.9( c), 

with resulting language {a ncb m I m ~ n E N}. 

Unfortunately the behaviours of Figure 6.9( c) are not preserved through composition: by com

posing the net 'in sequence' with the action d, as shown in Figure 6.9(d), the language generated 

is not {ancbnd I n E N} as we might hope, but {ancbmd I m ~ n EN}: we are not able to 

disable the (initial) transition of the causally inferior net until the recursion of the first is fully 

unwound. A solution is given in Figure 6.9( e), at the cost of introducing inhibitor arcs. 

The same problems are encountered in High Level Petri Boxes. The solutions we provide are 

those of the figure: we use a device equivalent to inhibitor arcs, but without moving outside of 

the High Level Petri Box model. 

6.5.4 Silent Labels 

As has already been mentioned, we will guard a recursive call with the silent action J1. To 

this end, we introduce a silent action into the label universe, and extend each label algebra 

accordingly. Recall that lL is the label universe (as defined in Section 2.1.1) and that PV is the 

collection of process variables (as defined in Definition 6.3.4). 

DEFINITION 6.5.1 Let J1 ¢ ][}~ U PV. Define the J1-Extended Label Universe, lLll' as lL U {J1} . 

• 6.·5.1 

lIIn terms of finite, I-safe PIT nets. 
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a a 

a a c c 

c c c b 

b b 

b d 

a. b. c. d. e. 

Figure 6.9: (a) A low level net 'denotation' of the term (aiYib)+C, (b) a labelled I-safe PIT 
net which generates the collection of strings {an cb m I n, mEN}, (c) a labelled unbounded PIT 
net which generates the collection of strings {ancb m I m ~ n EN}, (d) sequentially composed 
with another net, generating the language {ancbmd I m ~ n E N} and (e) in which an inhibitor 
arc provides a solution. 

As J.l fj. Vll, a label algebra may be extended to include J.l as a label, and retain its action on 

non-J.llabels: 

DEFINITION 6.5.2 Let e = (A, R) be a label algebra. Define the J.l-extension of e, e,.,. = 
(AIL' R,.,.) where A,.,. = A U {J.l} and such that for each I E R, there is a relabelling I,.,. E R,.,. with: 

{

J.l k=J.l 

I,.,.(k)= 0 k=J.ltJJlltJJ .. ·tJJln,n~L{lt, ... ,ln}~A,.,. 

I ( k ) otherwise. 
.6 .. 5.2 

Corresponding to each I E R there is a relabelling IJI. E R,.,. in e,.,. whose action on labels in which 

J1. does not appear is the same as that of Ii which allows J.l singlYi but prevents any attempted 

synchronisation in which J.l appears. 
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In common with other approaches, the introduction of silent labels into our algebra allows us 

to extend notions of behaviour with observable behaviour. The construction of an obsen"ational 

transition and step sequence semantics is straightforward, and we do not do it here. Howe\"er. 

we must be careful in our algebraic manipulations of the silent action to ensure that the com

plications associated with it do not arise. We mention and deal with these as they arise in the 

sequel. .. 

6.5.5 The Guard Auxiliary Operator 

Guarding adds a call/return mechanism to a High Level Petri Box by both pre- and post-fixing 

it with a silent action. 

For reasons which will become clear, it will be convenient to allow the guarding of a superset of 

High Level Petri Boxes, those termed able pre-High Level Petri Boxes: 

DEFINITION 6.5.3 Let P be a pre-High Level Petri Box. Then P is an able pre-High Levfi 

Petri Box if P satisfies Properties 1 and 3 of Definition 2.5.15 (page 31). .6 . .5.3 

In an able pre-High Level Petri Box entry places may have incoming arcs and exit places may 

have outgoing arcs. We show later that the guarding of an able pre-High Level Petri Box returns 

a High Level Petri Box. 

Recall that .1 is the nominal relabelling introduced in Chapter 2 and that € is the unit pre-High 

Level Petri Box of Definition 4.9.1. 

DEFINITION 6.5.4 [Guard] Let P be an able pre-High Level Petri Box over a label algebra 

Lit' Define the guarding of P, r(p) = (BOXc,..(Jl);(P U €);Boxc,..(/1)) <:> . ..1. .6.·5.4 

Note: 

1. The mixing of top-level and auxiliary operators in the definition allows it to be abbreviated 

somewhat and indicates more clearly the structure of the guarded (pre- )High Level Petri 

Box; 

2. the definition of the guarding auxiliary uses the unit pre-High Level Petri Box to provide 

the accounting mechanism. As we have mentioned, through compositions involving ( we 

are in danger of moving outside of the class of High Level Petri Boxes. This does not 

happen as we prevent an immediate subsequent context manipulation being applied: 
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accounting place 

Figure 6.10: The guarding of a (pre- )High Level Petri Box in terms of the conceptual model. 

3. it will be convenient to be able to notationally distinguish the two occurrences of J.l in the 

guarding of a High Level Petri Box: the basic box forming the pre-guard of the operand 

will be referred to as J.le (for call), the post-guard will be referred to as J.lr (for return); 

4. guarding provides a single accounting place for each J.le/ J.lr pair. Moreover, as by definition 

1- may not appear as a relabelling within a label algebra, it is only through guarding that 

the nominal relabelling may be introduced into a High Level Petri Box, and then only as 

a prefix of the pre-context of a J.le or the post-context of a J.lr; 

5. if s the accounting place, te = ~lc~ the call transition, and tr = ~lr~ the return transition 

introduced through an application of the guarding operator, then Ie (respectively, lr) is the 

unique local transitions of a guarded High Level Petri Box such that s E 1/ (respectively, 

s E e1r). 

Figure 6.10 illustrates the guarding of a High Level Petri Box in terms of the conceptual model. 

As is clear from the figure, from a standard initial marking d, the firing of J.le produces a marking 

d(.1-) of the 'entry places' of its operand, together with the marking of the accounting place by 

the same token. As 1- is a nominal relabelling, the behaviours of a High Level Petri Box from 

standard initial markings of d and of d( . ..L) are the same. For the termination of the guarded 
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High Level Petri Box, it is necessary that the operand terminates covering its 'exit places' with 

d(.J..) as otherwise the transition labelled flr will not be enabled. If this is the case. whence 

we may fire flr and the standard terminal marking d of the guarded High Level Petri Box is 

restored. 

If, for some reason, the initial marking of the guarded High Level Petri Box was unsafe there 

would be the possibility ofthe tokens 'over-taking' one another in their passage through the net. 

However, we show in Chapter 7 that all reachable markings of High Level Petri Boxes are safe 

from standard initial markings, so that this problem does not arise. 

Guarding produces High Level Petri Boxes from able pre-High Level Petri Boxes: 

PROPOSITION 6.5.5 

Box. 

For P an able pre-High Level Petri Box, r( P) is a High Level Petri 

06.5.5 

Proof: Property 1 of Definition 2.5.15 is established anew by the addition of the new ent ry and 

exit interface. Property 3 extends to r( P) as the local transitions we have added share 

the property. 

Property 2 holds of f(P) as LT(f(P)) = LT(P) U LT(flc) U LT(flr) so that - L1'([( P)) \ 

LT(r( P))- = -flc \ flr - = -f( P). The other case is symmetric. .6 . .')..'j 

6.5.5.1 Y -guarded High Level Petri Boxes 

That observational equivalence does not extend to a congruence without further conditions being 

imposed on initial actions means we must be careful that the prefixing by a silent action to a 

process contained in the guarding auxiliary does not alter the behaviour of the process. The 

restriction we must impose is derived from that well-known from the literature: we ensure that 

the subject process variable is not in conflict, so that refinement by the silent action does not 

alter the initial commitment behaviour. Through the annotations of the operands of a choice 

composition, this property is easily checkable. 

DEFINITION 6.5.6 Let B be a High Level Petri Box over some label algebra £~, and let }' 

be a process variable. Then B is Y -conflict-free if. for each 1 E Ly(B), neither l nor J appears 

in c 1. .6 .. 1.6 

We note that Y-conflict-freeness in combination with the properties of the definition of the 

/i-extended label algebra is sufficient to prevent changes in the commitment behaviour even 
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a y 

(all y)ffi 

Figure 6.11: The Y -guarding of a High Level Petri Box in which a Y -local has been involved 
in a synchronisation. 

when the process variable appears as part of a synchronisation. Note that we do not require 

Y-conflict-freeness to be able to apply the recursive construct to a High Level Petri Box. 

We may guard the process variable of a Y -conflict-free High Level Petri Box without problem: 

DEFINITION 6.5.7 Let Y be a process variable and B a }' -conflict-free High Level Petri 

Box over some label algebra £.W The Y -guarding of B is defined as B[ Y +- f( Y)] 

A High Level Petri Box which is the Y -guarding of some other High Level Petri Box will be 

termed Y -guarded. .6.·').1 

The }' -guarding of a High Level Petri Box produces, for each local transition I E L dB). an 

accounting place sl. We define Accy(B) = {sl II E Ly(B)}. We will also wish to refer to all 

accounting places which appear within a High Level Petri Box. As accounting places appear 

'between' call/return pairs, we define Acc(B) = U{/-n-I'I1.::; CIA 1.::; l'e}. 

Note that, if Ll'(B) = 0, B is its own } "-guarding. Also. if B is the }'-guarding of B', then for 

any High Level Petri Boxes D, B[ Y +- D] = B'[ Y +- f(D)]. The second observation is useful in 

that, if D is only an able pre-High Level Petri Box, then B[ Y - D] will not be defined whereas. 
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as f(D) is a High Level Petri Box, B'[Y +- r(D)] will be. In this case we will define B[l' +- D] 

to be B'[ Y +- f(D)]. 

6.5.6 The Winding Auxiliary Operator 

As already explained, winding identifies the initial state of a High Level Petri Box with that 

state directly preceding a recursive call, and the terminal state with that directly following. 

Clearly, these are, respectively, the entry and exit places of the High Level Petri Box and the 

pre- and post-sets of the subject process variable( s). 

DEFINITION 6.5.8 Let Y be a process variable, and BaY-guarded High Level Petri Box 

over the label algebra £1-" Define nAB) = In(B[Y <- stop]) where 

{

eB sEeF 

In (s) = Be S E Fe 

{ S } otherwise 

and eF = UIELy(B)I/(el), i.e., the image of eLy(B) under the refinement, and Fe = 
UIELy(B) iI'(le) , i.e., the image of Ly(B)e under the refinement. .6.5.8 

Note: 

1. that e F and Fe are well-defined follows from the fact that B is assumed }' -guarded. 

2. other than for the trivial case when L y (B) = 0, In is not sane: sEe Band s' EeL y ( B) 

implies that In (s) n In (s') i:- 0. (fn is used to introduce loops into the operand High Level 

Petri Box, and such loops are not possible using sane relations.) We should not expect 

the properties upon which rested the normal form of Chapter 5 to hold, and so should not 

expect the results of that chapter to apply to wound High Level Petri Boxes. 

3. however, the definition of In ensures that a wound High Level Petri Box is at least able as 

Properties 1 and 3 of Definition 2.5.15 are inherited from the operand High Level Petri Box. 

When Y appears in B, eLT(ny(B)) \ LT(ny(B))e = 0 = LT(ny(B))e \ eLT(ny(B)). 

Hence, winding followed by an immediate application of guarding, i.e., f(ny(B». returns 

a High Level Petri Box. 

4. the Ilc and Ilr transitions of a Y -guarded High Level Petri Box may be ent ry and exit 

transitions when the operand High Level Petri Box contained }'-locals which bordered on 
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the entry or exit interface. The application of In in the definition of the recursi\'e construct 

may thus produce a local transition, I, such that l2 -/ n /- 1= 0. We have seen that the 

commutativity of refinement with the top-level operators assumes that the refined local 

transition has disjoint pre- and post-set so that there is a potential problem for High Level 

Petri Boxes involving recursion. However, as PV n LJl = 0, we will never be required to 

refine such local transitions and so do not encounter the problem. 

One important corollary is that the proofs of commutativity of refinement and the top

level operators extends to High Level Petri Boxes to which the recursive construct has 

been applied. 

5. the use of stop in the definition allows us to replace the refined process variable by a 

transition which does not contribute to behaviour, simultaneously ensuring that there 

are no remaining Y -locals in the High Level Petri Box (essentially, all that we do is 

change the label on the Y-Iocals to 0). In figures we will usually omit such transitions, 

as they contribute nothing to the behaviour of the resulting High Level Petri Box while 

complicating its illustration. The two versions are illustrated in Figure 6.12. Note that. 

after winding, all abstract transitions which originally included a Y -local are dead. 

6. the reader will note that, as the pre- and post-contexts of all Y -locals are (.) and as the 

application of the auxiliary relation In identifies the pre-set of all }' -locals with -Band 

the post-set with B-, all copies of stop introduced into a High Level Petri Boxes through 

the winding auxiliary have the same pre- and post-sets, pre- and post-contexts and, of 

course, a 0 label, i.e., are the same local transition. 

7. the proof of local strictness (Theorem 4.8.10 of Chapter 4) depended upon the fact that, 

if 11, 12 E t E TB (for B a syntactically generated High Level Petri Box) with -II n 

-/2 1= 0, and M E M~ is such that M[ t) then ell = C1 L C{ and c 12 = C2J q (or vice 

versa). Unfortunately, for wound High Level Petri Boxes this property no longer holds: 

for instance, when It and 12 are distinct return transitions on Y, then -II n -/2 = B-. 

without necessarily having embedded nominal relabellings land J. Fortunately, such local 

transitions never partake in synchronisation, and it is not difficult to see that the property 

of local strictness continues to hold of wound High Level Petri Boxes (as we do not alter 

the annotating contexts of other local transitions). 

12But never such that ./ = /., so that Proposition 3.3.11 (page 52) always applies. 
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1-

B 

fh(B) (finessed) 

Figure 6.12: Winding a High Level Petri Box with (upper) and without (lower) dead transition. 

The following structural properties of the guarding and winding auxiliaries will facilitate the 

development of their behavioural properties in Chapter 7: 

LEMMA 6.5.9 For D a High Level Petri Box 

1. r(B)[Y -- D] = f(B[Y ~ D]). 

2. if Ly(D) = 0 then Z E PV, Z =J Y implies ny(B)[Z ~ D] = fh(B[Z - D]) 06 .. 5.9 

Proof: 1. Follows by inspection from Theorem 6.4.15, given that JL rt. PV. 
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2. The result follows from a calculation of the composition of the various auxiliary 

relations. Note that, as B is Y-guarded, and Z i= Y. LdB) = Ly(B[Z - D]). 

Moreover, with a careful choice of copy of D for the refinement. • Ly( B)- n SD = 0. 

Note also that B[Z ~ D] remains Y-guarded so that the hypotheses of Defini-

tion 6.5.8 are satisfied. • 6.5.9 

Lemma 6.5.9 extends the syntactic nature of refinement as far as may be reasonably expected; 

i.e., we may not add to or remove from the Y -locals of B and expect the property to hold. ~ote 

that, from Proposition 6.4.4, ny(B)[ Y f- D] = fh(B), as Ly(ny(B» = 0. 

If B is syntactically generated then: 

LEMMA 6.5.10 For Y i= Z E PV then 

1. B is Z-guarded if and only if ny(B) is Z-guarded. 

2. Accz(B) = Accz(ny(B» 06.5.10 

6.5.7 The Recursive Construct 

We derive the recursive construct from the auxiliary operation of guarding and winding: 

DEFINITION 6.5.11 [Recursive Construct} Let Y E PV and let B be a High Level Petri Box, 

with B' its Y-guarding. Let B" = f(ny(B'». Define 

J,LY.B = B[Y f- B"] 

.6 .. 1.11 

Note: 

1. The outer guarding in the definition of the recursive construct is made to ensure that the 

operand of the embedded refinement is a High Level Petri Box, rather than just a pre-High 

Level Petri Box. 

2. B" contains no Y-Iocals as it is derived from the winding of B'. Refining }' in B by B", 

therefore, ensures that no Y -locals remain in J,L LB. In repeated applications of recursion. 

such as would be required to form the semantics of the term J,L LJ,L LB, we do not haH' 

erroneous variable capture between inner and outer scopes. 
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E £ 

B 

x x 

B[Y ~ f(B)] J.lY.B 

Figure 6.13: The recursive construct applied to the conceptual model (finessed). 

3. the inner guarding (the definition proceeds with a }O-guarded version of B) produces a 

second guarding mechanism inside J.l Y.B. This inner guarding mimics the behaviour of the 

outer guarding, so that their guarding behaviours coincide. It is used in the demonstration 

that Equation 6.1 holds of our recursive construct in Section 7.3. 

The definition of the recursive construct is illustrated in terms of the conceptual model in 

Figure 6.13. Note that we have elided the dead transitions introduced through the application 

of the winding auxiliary. Section 6.7 discusses and illustrate the expressive power and the 

immediate properties of the recursive construct. 

From the properties of refinement we have that: 

PROPOSITION 6.5.12 LdB) = 0 implies J.l }o.B = B. o (i . .).l:! 
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Proof: Ly( B) = 0 implies 

j1Y.B B[0 ~ B"] 

[Definition 6.4.13, B" as defined above] 

B 

1/5 

.6.·).12 

Given that we have introduced the recursive construct, we continue the presentation with the 

extension of the High Level Petri Box Algebra to include it. 

6.6 The High Level Petri Box Syntax 

To be able to refer to refinement and recursion in High Level Petri Box Algebra terms we will 

extend the syntax defined in Definition 4.8.113. For clarity, the presentation of the extended 

syntax is given in the style of Chapter 4 rather than as an OSA: 

DEFINITION 6.6.1 [High Level Petri Box Syntax] Given a label algebra [, = (A, R), \\'(' define 

the C-syntax of the High Level Petri Box Algebra as follows: 

E .. - stop 

u uEA 

Y Y EPV 

EIIE Concurrent composition 

E;E Causal composition 

E+E Choice composition 

E[J] Relabelling, where fER 

E[Y ~ E) Refinement, where Y E PV 

j1Y.E Recursion, where Y E PV 

An C-term is a term of the language generated through the £-syntax. .6.6.1 

We will assume that operators which also appeared in Definition 4.8.1, i.e., concurrent, causal 

and choice compositions and relabelling, have the same precedence. Refinement and recursion 

are defined to have the same precedence as relabelling. 

In the sequel, unless otherwise stated, the term High Level Petri Box Syntax refers to t hat of 

Definition 6.6.1. 
13F . or the very last time! 
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6.6.1 Ground Terms and Free variables 

A process variable which is the subject variable of a refinement or recursion will be deemed to 

be bound by the refinement (resp. recursion) (or just bound). Variables which are not bound are 

free: 

DEFINITION 6.6.2 

tively as follows: 

Given an extended £-term t, define the free variables of t, FV( t ). ind uc-

FV(stop) 

FV(u) 

FV(Y) 

FV(tlll~) 

FV(tlj t2) 

FV( tl +t2) 

FV(tl[J]) 

FV( tl [Y <-- t2]) 

FV(p Y.tl) 

o 
o 
Y 

FV(t1 ) u FV(~) 

FV( tl) U FV( t2) 

FV( tl) U FV( t2) 

FV(tI) 

FV(tl) \ {Y} U FV(t2) 

FV(tI) \ {Y} 

Term t is ground when FV(t) = 0. 

uEA 

Y EPV 

• 6.6.2 

By relation to the semantic domain we may define the notions of ground and non-ground High 

Level Petri Boxes to be the High Level Petri Box denotation of terms with those properties, 

with FV(B) = FV(t), where B = HLPB(t). An important property of ground High Level Petri 

Boxes is that they contain no process variables so that PrT and P IT net unfoldings, as defined 

in Chapter 3, exist. Clearly, under the current definitions this cannot be the case of non-ground 

High Level Petri Boxes under a strict interpretation of process variable: they are place-holders 

and should have no labelled net representation. 

6.6.2 Non-ground Terms and Structural Induction 

The non-existence of PrT and P IT net unfoldings is a serious disadvantage if we wish to prove 

behavioural properties by structural induction. For instance, consider an induction step in a 

proof by structural induction of some property P for the High Level Petri Box term p }'. t. for 

which process variable }' appears in t. For the inductive step we are required to be able to 
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assume property P of the subterm t. But t will not, in general, be ground and so can not. 

naively, be assigned a behaviour. 

We thus introduce process variable extended label algebras in which process \·ariables are consid

ered 'ordinary' labels. The construction of the extension is similar to that used in the construc-

tion of JL-extended label algebras of Definition 6.5.2. We recall that PV n (V'S U {JL} ) = 0: 

DEFINITION 6.6.3 Let L = (A, R) be a label algebra and let a E A. Define a PV-extension 

of [" [,pv = (APV, R
PV

) where APV = AuPV and such that for each! E R, there is a relabelling 

jPv E RPV such that 

• 6.6.3 

Corresponding to each! E R there is a relabelling !PV E RPV in L PV whose action on labels in 

which a process variable does not appear is the same as that of!; but which generates the label 

a for any synchronisation label in which a process variable appears. As the relabellings of Land 

[PV are in bijective correspondence, and as !PV lAEll = !, we will usually use! to represent both 

f and rv. This has the benefit of allowing us regard C£ and C£Pv as being equal. :'[oreover, as 

for the most permissive label algebra, the important characteristics of the PV-extension are not 

dependant on the particular label chosen for a so that we will usually speak of the PV-extended 

label algebra. 

We note that, for a ground High Level Petri Box, B, the behaviours of B over L and over L PV 

will coincide. 

6.7 Examples of the Recursive Construct 

6.7.1 Tail-end Recursion 

Figure 6.14 gives the denotation of the tail-end recursive term JL Y.( a; Y +b), whose complete 

behaviours generate the strings {an bin EN}. The embedded choice composition in the 

recursive term allows termination as, by taking the action b, the recursive call is then forced 

(figuratively) to 'unwind'. The structure of the figure makes clear the dependence of the correct 

behaviour on the presence of both outer and inner accounting places: the outer place (30 of 

the figure) allows us to check for correct termination of the 'inner' High Level Petri Box; the 
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firing of the initial call transition (from the standard initial marking) leaves the token .-il in 

this accounting place; the final return transition will be enabled if and only if the other place in 

its pre-set (41 in the figure) contains the same .1. L token, which can occur if and only if there 

have been an equal number of firings of the inner call and return mechanisms, i.e., the recursion 

has fully unwound. The final return transition may then fire, allowing the standard terminal 

marking of the High Level Petri Box to be reached. 

Figure 6.15 gives an example firing sequence of the High Level Petri Box from the standard 

initial marking (using the combined transition sequence semantics defined in Section 3.3.-1). 

The main points to note are the disabling of transitions v and y at certain markings. This 

disabling depends crucially on the presence of the accounting place, and the nominal relabelling 

1. as an arc annotation. 

6.7.2 Unbounded Parallelism 

Figure 6.16 illustrates the situation in which there is a concurrent composition under the recur

sive construct, in which case concurrent processes may be dynamically created, all within a finite 

net structure. Behaviourally, the High Level Petri Box illustrated in Figure 6.16 is equivalent 

to that of Figure 6.8(a). 

6.7.3 Unbounded Parallelism and Synchronisation 

Figure 6.17 illustrates the situation in which there is a concurrent composition under the recur

sive construct together with a synchronisation across levels of recursion. The correct behaviour 

and synchronisation of such processes is guaranteed by the careful use of nominal relabellings, 

loops and accounting places of the recursive construct. 

An example of a transition sequence for this High Level Petri Box is given in Figure 6.18. 

6.7.4 Interwoven alignment preambles are not allowed 

Knuth [Knu86, Pg. 299] in the chapter on Recovery from Errors provides the following com

ment on the error message Interwoven alignment preambles are not allowed (limiting the 

complexity of definition of an alignment): 

If you have been so devious as to get this message, you will understand it, and you 

will deserve no sympathy. 
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B = HLPB((a;Y)+b) f"!y(B') 

1 

B' = B[ Y ~ r( Y)] 

Figure 6.14: The stages in producing the denotation of the tail-end recursin' term 
IlL((a;Y)+b). Note the naming convention used for the places of J1LB. 
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{1° ~ {J} [; ) {20 ~ {l}} 

[:c) { l' ~ { . .L ll,} 
3° -7 elL} 

[; ) {21 ~ U~D'} 
3°-, {.J..L} 

[:c) 111 - { . .Ll.L ll,! 
31 ~ {·J..lJ..L}, 

3°-. {.J..L} 

[; ) 121 ~ {l.L l.L ll'l 
31 -+ {.J..lJ..l}, 

30 -{.J..L} r -{ . .L l.L l.L l}· ! [:c) 31 - {.J..lJ..l,.J..lJ..lJ..L}, 

3° ~ {.J.. L} 

[~ ) 
131 ~ { . .Ll.L, . .Ll.Ll.Lll'l transition y not enabled, as 

3° - {.J.. L}, 
M(30) n "J(4 1) = 0 

41 - {·J..lJ..lJ..L} 

[JL: ) 
r ~ { . .Ll.Lll'l transition y not enabled, as 

3° -+ {.J.. L}, 
AJ( 3°) n .\J( 41) = 0 

41 -+ {·J..lJ..l} 

[JL: ) {30 ~ U:.D'} transition v not enabled, as 

41 
--+ {.::U} M(31) = 0 

[JL;) {40 -+ {.} } 

Figure 6.15: A firing sequence for the recursive term JLY.((a;Y)+b). To aid the reader, the 
tokens which partake in the firing of a transition are underlined. 

The High Level Petri Box Algebra is more forgiving in the complexity of terms which include 

recursion. The term JL Y.(a;JLX.(( YIIX) + b);c) (of wrnch Figure 6.19 illustrates the denotation 

of the inner loop ny(a;JLX.((f( Y)IIX) + b);c)) has process variables with overlapping scope. A 

local transition firing sequence of the inner loop is given in Figure 6.20. 
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E 

J-

a 

.f-

x 

Figure 6.16: Unbounded parallelism in a finite High Level Petri Box: the denotation of the term 
pY.all Y. 

6.7.5 Thring Expressivity 

The demonstration of Turing expressivity of a computational model is given by exhibiting a 

register14
. The state of a register represents a natural number. The number can always be 

incremented; it can be decremented if non-zero; and it can be tested for zero. 

Minsky [Min72] shows that any computation of a Turing Machine may be simulated by a 2 

register machine. For the High Level Petri Box Algebra, his construction translates to a term 

with the following structure: 

(Registerlll Program II Register2) [ compute] 

where Program encodes the specific computation, and compute synchronises the communications 

of the program with the two registers. (For details of the construction in terms of general counters 

see [Min72].) 

Although we do not give the details of the construction for the Program (which is. of course. 

14 At least in folklore of the subject. Taubner makes this more precise in [Tau89]. A register is also known as a 
countel'in the literature [Age75]. 
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2a 

Figure 6.17: Synchronisation and unbounded parallelism in a finite High Level Petri Box: the 
denotation of the term J.L Y.( all( Y[r]))[ ccs], in the label algebra Lo of Example 2.1.1. 

computation specific) nor the relabelling compute, we will define a register as a High Level Petri 

Box term. 

We will say that a J.L-extended label algebra, L = (A, R), contains a register if {J.L, zero, inc, dec} ~ 

A and {zero-to-dec}.~ R, where zero-to-dec is such that 

{

dec k = zero 

zero-to-dec(k) = k k E A 1\ k of zero 

o otherwise 

The definition of the register is then 

Register = J.LR.(zero+inc;R[zero-to-dec];R) 

The High Level Petri Box denotation of the inner loop of the Register term is shown in Fig

ure 6.21. 
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{ lO ..... {·}.2° ..... 0 } 

lO ..... {.}, 

[~: ) 

The calculation of the label 
produced in the firing of 13 is 
(a(f)( a[.L r])[ ccs)=( a(f)aH ccs )=r 

183 

Figure 6.18: A firing sequence for the recursive term Jl Y.all( Y[r)Hccs) from the standard initial 
marking. To aid the reader, the tokens which partake in the firing of a transition are underlined. 

6.8 Discussion 

6.8.1 Other Net Theoretic Approaches to Variables and their Denotation 

Within the labelled net semantics of Taubner [Tau89] (following [Gol88]) variables appear, but 

only as the subject variable of the recursive construct (refinement does not appear in Taubner's 

Algebra). In a way similar to the representation of nil as discussed in Chapter 4, process variables 

represent state information, having as semantics a single place which is used to indicate which 

states should be identified in an iteration-like recursive operator15 . Hence, there need be no 

interpretation of variables as place holders for terms. Moreover, as they represent only state 

information in the semantics they need have no interpretation as actions either. 

In Olderog's approach, [Old91], variables again only appear as the subject variable of the re

cursive construct and his semantic function provides representations of only ground terms using 

I~By this we do not mean that Taubner's recursion is pure tail-end, as non-tail end recursion may be represented 
through the same device as that of CCS in its derivation of sequential composition. 
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Figure 6.19: The denotation of the mner loop of the High Level Petri Box term 
J.L Y.( a;jLx.( ( YIIX) + b );c). 

the usual SOS rule for recursion which, essentially, identifies the terms jLX.P and P[X / jLX .P], 

whence the behaviour is derived from that of P and need not consider process variables. In his 

denotational semantics, fix-point techniques are used to provide the denotation of the recursive 

construct and, again, this removes the need for the explicit representation of process variables. 

In the PBC, process variables form hierarchical labels to annotate transitions, as in our approach. 

However, hierarchical labels are structured (unlike here) allowing labels such as f( X) which 

provide for a compositional approach to relabelling; f is applied to the labels of any box which 

refines X. Only closed terms are given a behavioural semantics in the PBC, so that process 

variables need not be considered as having a behaviour. 

6.8.2 The Refinement Operators of the Low Level Petri Box Model 

The original refinement operator of [BDH92] was defined iteratively although, because the ap

proach did not distinguish local and abstract transitions, the iteration was over ordinary transi

tions. This meant that the approach did not extend to the refinement of an infinity of transitions. 

Moreover, it was not clear that the result was independent of the ordering of the iteration, and 

the operator did not interact well with the hierarchical interface (Le .. those transitions labelled 
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{ 1 --+ {J} [/1) {2 --+ {J} 
3--+{.} 

[13 ) l~ = ::~:~~) 
3 ~ {.} 

[11) 1: = :;~:~ll) 
4 -- { .. lJ-l} 

[ [s) 

5 --+ { . .l-ll} 

6--{ . .l-ll} 

8--+ { . .l-ll} 

2 --+ { . .ll-l} 

3 --+ { . .ll-l} 

4 -> { . .ll-l} 

10--{ . .l-ll} 

11 --+ { . .l -l l} 

2 --+ { . .ll-l} 

3 --+ { . .ll-l} 

4 -> { . .ll-l} 

8--{ . .l-ll} 

13 --+ {.} 

2 -- { . .ll-l} 

3 --+ { . .ll-l} 

4 - { . .ll-l} 

[[12) 1:: = : :~:~Ll) 
4 --+ { . .ll-l} 

[Ig) 1:: = ::~~Ll) 
4--{ . .lI-l} 

[4) {:::g} 
[Ig) {14-{.}} 

Figure 6.20: A local transition firing sequence of the High Level Petri Box of Figure 6.19 . To 
aid the reader. the tokens which enable a local transition are underlined. 
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. 1.. zd 
JLc 

JLr 

JLc 

JLr 
.1..J 
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Figure 6.21: A register using the recursive construct (inner 'loop' only). The relabelling 
zero-to-dec is shown as zd. 

with hierarchical labels ) of a Petri box, restricting its syntactic nature in particular with respect 

to relabelling. 

In [BDE93] was defined a more general operator which addressed these problems through the 

definition of simultaneous refinement. This version uses a labelled tree device as a generalisation 

of the Cartesian product (used here in its commutative form; and elsewhere [GvG89]). This 

device allows transitions to be refined, as here, by replacement and allows it to work in the very 

general situations that appear in the low level PBC. For instance, the construction deals with: 

possibly infinite numbers of refined transition; arbitrary arc weights; a (possibly) continuous 

infinity of entry /exit places. The tree-based construction also endows the refinement operator 

with very nice properties, even in its complex setting; these properties include its congruence 

nature with respect to a number of (structural) equivalences, and the (structural) fix-point 

nature of the recursive construct derived from it [DK95]. 
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6.8.3 Tail-End and Non-Tail-End Recursion 

In comparison with the prefixed-based literature, the register representing term of Section 6. i' .. 5. 

i.e., 

Register = J.LR.(zero+inc;R[zero-to-dec];R) 

is notable for the absence of an embedded concurrent composition. One of the pragmatic defi

ciencies of prefixed based approaches is the necessary transformation of non-tail-end recursion 

into tail-end recursion; one is not able to prefix a process variable to a term. One solution used 

widely in the literature is based on Milner's derivation of sequential composition from prefix, as 

described in Chapter 4. 

The reader will recall from that chapter that Milner's derivation depends on the postfixing of 

each term with an action (-/) whose execution indicates termination and whose synchronisation 

with j permits the causally inferior process to begin. In the transformation of non-tail-end 

recursion into tail-end recursion, then, to avoid requiring the 'prefixing' of the process variable 

onto the j (as the -/ should indicate the termination of the recursive call) one must push the 

terminating action 'through' into the recursive call itself. 

Taubner uses this transformation to produce a term which simulates a register16
: 

RegisterTau = I1R.( zero;nil+inc;( (R[-/zero]II-/;dec;zero;nil)[ hidey'])) 

where instead of disable-zero the zero action is converted to a terminating j using the rela

belling: 

jzero(k) = {~ k = zero 

otherwise 

The marked difference in the complexity of the two terms is due precisely to the complexity of 

the derivation of sequence from prefix. It will not surprise the reader to hear that we prefer the 

simplicity of the High Level Petri Box term. 

6.8.3.1 Refinement and ,B-Reduction 

Finally, process variables as expressed here together with the substitutive nature of refinement 

provide what appears to be a novel Petri net equivalent of variables in a functional theory; process 

16 Actually, Taubner uses Agerwala's term Counter [Age75J. 
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variables may be substituted for by arbitrary terms. In this sense. our refinement operator has 

properties similar to the ,B-reduction of the A-calculus. 

This is not accidental: one of the longer term aims of the work is to be able to investigate the 

question as to whether a high level Petri net model for concurrency could be developed within 

a more general, functional framework (following the pioneering categorical approach of \\"inskel 

[Win85]). For such an approach it appears that a refinement operator with these properties 

would be useful. 

6.9 Summary 

In this chapter we have introduced the top level operators of refinement and recursion. To do 

this we have: 

1. introduced the notion of a process variable, 

2. introduced the auxiliary operator of local transition refinement, which will replace a lo

cal transition within a High Level Petri Box with another High Level Petri Box, while 

preserving causality (by respecting place multiplication), distributed scoping information 

(inherited from the replaced local transition), and from which (full) refinement is derived 

via a finitary construction based on the finiteness of the local transitions which appear 

within a syntactically generated High Level Petri Box, 

3. extended the syntax to include the concrete representation of refinement as tdX - t2], 

where tl and t2 are High Level Petri Box terms, and X is a process variable. 

The operator of refinement is a semantic version of syntactic substitution, common to all algebraic 

systems. The characteristic property of syntactic substitution is that its application commutes 

with the application of all other operators; we have shown that, modulo isomorphism of High 

Level Petri Boxes, the operator of refinement shares this property, thus justifying the adjective 

'syntactic' . 

We have also introduced a recursive construct which preserves finiteness of state on syntactically 

generated High Level Petri Boxes, i.e., if B is a syntactically generated High Level Petri Box 

then IS/.LY.BI < 00. 

We have shown that the addition of the recursive construct to the syntax of the High Level Petri 

Box Algebra provides a very compact description of both tail-end and non-tail-end recursion. 
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in contrast with those of the literature. We hope in the future to be able to show that the 

descriptions are tractable as well. 

In the next chapter we explore the behaviours of syntactically generated High Level Petri Boxes, 

showing that the semantic interpretations of the High Level Petri Box Algebra operators have 

many desirable behavioural properties. 



Chapter 7 

Algebra and Behaviour 

In this chapter we explore the behaviour of High Level Petri Boxes which include applications 

of the refinement and recursion operators. The increase in complexity of such High Level Petri 

Boxes makes the analysis of their behaviours less amenable to structural characterisation, and 

leads to proofs which proceed by induction over prefixes of behaviours. This approach should be 

contrasted with that of Chapter 5 in which behavioural arguments were developed. but which 

were derived from purely structural arguments. 

The major result of the chapter is the full behavioural characterisation of the property rich 

subclass of syntactically generated High Level Petri Boxes (given in Lemma 7.1.2). The result 

provides many tools for the general manipulation of behaviours of High Level Petri Boxes, which 

are used in subsequent sections. 

Although this result is important in its own right, it also provides justification for many of 

the choices which have been made in the development of the High Level Petri Box model. In 

particular, the proof of the property depends upon the annotation of the operands of concurrent 

composition by the nominal relabellings1 f- and -1; the careful construction of the guarding 

auxiliary, including the annotation of arcs with the nominal relabelling ..l, and the presence of 

the accounting place; and the identification of state which is a part of the winding auxiliary and 

the once unwinding (Le., the embedded refinement) in the recursive construct. 

This behavioural characterisation is stated as a lemma for in the demonstration of the safeness 

and memorylessness of syntactically generated High Level Petri Boxes (Theorem 7.1.1) in which 

We find its first use. 

lThe nominal relabellings Land J having already been justified in Proposition 6.4.10 (page 1.5i). 

190 
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Subsequently, in Section 7.2, we define a notion of strong bisimulation, :::::, on High Level Petri 

Boxes and use Lemma 7.1.2 to show::::: to be a congruence for the top-level operators of Chapter -l. 

and continue to develop the partial congruence nature of the equivalence with respect to the 

guarding and winding auxiliaries, and the refinement operator, again using Lemma 7.1.2. In 

Theorem 7.3.8, we combine all these results to show that recursion is a behavioural fixed-point 

of the refinement operator, i.e., it satisfies Equation 6.1 with:::::: = :::::. 

We begin the chapter with the demonstration of the safeness and memorylessness of syntactically" 

generated High Level Petri Boxes. 

7.1 Safeness and Memorylessness of Syntactically Generated 

High Level Petri Boxes 

We are now in a position to discharge the proof obligation, established in Chapters -I and 6, 

that syntactically generated High Level Petri Boxes are both safe and memoryless. The proof 

proceeds by induction over the structure of a High Level Petri Box. The induction step is to 

derive a 'compositional behavioural semantics' in characterising the behaviour of a High Lewl 

Petri Box term through the behaviours of its immediate operand High Level Petri Boxes terms, 

as was proffered in Figure 4.16 (page 104). Similar ideas for the method of proof were expounded 

in [BH92, BK95j over the low level net model contained therein. 

As both safeness and memorylessness are positive monotonic in the permissiveness of a label 

algebra we may use the Decoupling Lemma (Lemma 3.4.4, page 55) to simplify the proof con

siderably to the consideration of behaviours definable through local transition sequences over 

the most permissive label algebra. Even with this simplification, however, the proof is rather 

long as there are still many cases to consider. 

The following is a restatement of Theorem 4.8.14 (page 98). 

THEOREM 7.1.1 Let B be a syntactically generated High Level Petri Box over a process 

variable extended label algebra £. Then B is safe and memoryless. 07.1.1 

The lion's share of the proof is done by the following lemma which provides, essentially. a 

compositional behavioural semantics2 of syntactically generated High Level Petri Boxes. As well 

2Strictly, this would require the explicit development of operators on a behavioural semantic domain which we 
do not do. We note, however, that the lemma shows that this would be possible (if complicated). 
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as requiring the operand High Level Petri Boxes to be safe (HI in Lemma 1.1.2) and memory less 

(H2), the lemma also requires that they satisfy three other positive monotonic properties: 

H3. that the behaviour of the operands (at least in the most permissive label algebra) IS 

independent of the initial marking, 

H4. that accounting places are distinguishable by their markings, and 

H5. that accounting places 'record' information as to the identity of the currently activE' recur

sive invocations. 

For the High Level Petri Boxes of Chapter 4, H3 follows from Corollary .5.4.19 (page 134) and, 

as there are no accounting places or process variables in such High Level Petri Boxes, each of 

H4 and H5 follow trivially for the High Level Petri Boxes of that chapter. If the reader wished, 

then, the proof of Theorem 7.1.1 for such High Level Petri Boxes could be considered under 

Hypotheses HI and H2 (and with a considerable simplification of the proof). 

LEMMA 7.1.2 Let Bl and B2 be sociable High Level Petri Boxes satisfying Hypotheses 

HI-H5, i.e., they are: 

HI. safe, 

H2. memoryless, 

and such that, for B = B1. B = B2 

H3. for all contexts d, if M E M~, then for all contexts e E ran(M), d ~ e. Moreover, (H3a) 

for any such M, MlB'~ B- x ~d~, 

H..!. for all contexts d, if M E M ~, then for all accounting places s}, 82 E Acc( B), .\1 (st} n 

M(82) f: 0 implies 81 = 82, 

and if B is Y -guarded then 

H5. for all contexts d, markings M E M~, and C E ran(M) such that d c:: C with ..1 :::; C 

there is an accounting place 8 E Acc( B) such that (8. C) E .\1. If, in addition. there is a 

C' E ran(M), such that C c:: C' then there is an accounting place Eo E Acc(B) \ .-lcC}·(B) 

such that (s, C) E M. 
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Then: 

1. M E Mfl11B2 implies there are markings Mi E Mr.). i 

Ml(.\- )Bl (d) u M2(' "')B2 (d), 
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1. 2. such that3 .\/ 

2. M E M:1 ;B2 implies there is a marking M' E Mr.; such that J/ = :1 (J/')( d) or .W E .\/ff.) 

such that M = ;2(M')( d), 4 

3. M E M~I+B2 implies that there is a marking M' EMf.; such that .\1 = +1(.\I')(.l)B
1
(d) 

or M' E Mr.) such that M = +2(M')(.J)B2(d), 

If we denote Bl by B, then, in addition, we have: 

4. ME Mf[J] implies there is a marking M' E Mr.) such that M = M'(.f)B(d). 

5. M E M~(B) implies M = MI or M = M[ or there is a marking AI' E Mr.) such that 

M = M'( .l..d) U {8 I-t (.l..d)}, where 8 is the accounting place introduced through the 

guarding of B. 

6. if, in addition, B is Y-guarded, then M E M~Y(B) implies there exist n ~ 0,81,"" 8n E 

Accy(B), not necessarily distinct places, Go = d, G1 , .•• , Gn E C pairwise distinct con

texts, Mo, . .. , Mn E Mr.) not necessarily distinct markings such that 

(a) M = (U MiGi) l 
i=O S8\o£y(B)o 

(b) M lAccy(B)= ~(8}, G1), .. . , (8n , Gn)~ 

and such that there is a labelled tree with nodes {O, ... , n} (root 0, node i labelled by 

Mi), such that Properties PI-P3 holdS: 

PI Mi#Mj (Mi and Mj incomparable in the tree) implies C#Gj (Gi and q incompa

rable as contexts under ~), 

P2 Mi ~ Mj (Mj is an immediate child of Mi) implies for all e E ran(MiG;J: e#Gj or 

e ~ Gj, 

3Wh ~ ) {M(S) sEOBO 
ere M(C)(s) = M(s) (C) and M(C)8(S = M(s) ~ (C) otherwise. 

·Where, for a sane relation f, f(M)(s) = M(r) when s E f(r). The well-definedness follows from the sanity of 
f· 

~Where, for convenience, by M. we will mean a marking with concrete index i (equivalent to considering the 
pa.ir (M., i)) so to be able to recover the node i labelled with M. even though the J[, are not necessarily distinct. 
This will allow us to speak only of markings, and not of nodes. 
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such that Sj E elr. 0,.1.2 

A few words of explanation are in order in the last, and most complex, case. For High Level 

Petri Boxes of the statement, the markings of the winding of a High Level Petri Box and those 

of the unwound High Level Petri Box are closely related by the recursive construct. In fact. 

through the ability to distinguish the identities of accounting places, we may distinguish the 

markings of recursive calls, which are represented by the Mi (i ~ 1). The fact that we lose the 

places in • Ly(B)e upon winding explains the slight complication in the statement. The proof 

of this case is considerably longer than those of the other cases, as might be expected, due to 

the complexity of the operator definition. 

Proof: By induction on the length of the local transition sequence which leads to M, Le.: .\11 = 

No[ll)" . Nm-l[lm)Nm = M. 

When m = 0 then M = M 1 and the result is clear in all cases. Suppose, then, that 

m > 0 and that the result holds for m - 1. 

l. M E M~IIIB2: from the induction hypothesis there are markings Mi E Mr.), i = 1,2. 

such that Nm- l = Ml(J-)B1(d) U M2(.-1)B2 (d). As 1m is enabled at Nm-}, there 

are contexts e and f such that elm X ~e~ ~ Nm- b f = Clme -1m C and 

From Definition 4.6.1 we may assume, without loss of generality, that there is a 

local transition I E LT( BI ) such that 1m = 1(.1- )B1 with ez = eZm and ze = Zm e. 

Moreover, as IE LT(BI ), and as BI and B2 are sociable, elm X ~e~ ~ MI(.I-)B1(d), 

and Nm ls2 = N m - l ls2 • 

We show that I in enabled at MI' There are four cases (which are exhaustive as BI 

is a High Level Petri Box): 

(a) elm ~ eBI and ImenBl e = 0: whence clm = cl(.I-) and Im c = IC. As BI is 

a High Level Petri Box, there are no arcs into entry places so that e = d and 

f = C 1m d - 1m C. 

As eZm X ~d~ ~ MI(.I-)B1(d), we have that ez X ~.I-d~ ~ Jh(.l-d). ~Ioreo\'er, 

cZl-d-Z c = clmd-lmc =f, so lis enabled at MI(.I-d) for input token (.I-d). 

Define M' = (MI(.I-d) \ el X m.l-d)~) U ze x ~f~. Then .\h(.l-d)[Z)J['. 

6Where t> is range restriction, i.e., for a relation R and a set S, R t> S = {r I (r, s) E R " s E S}. 
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As M' E M(~~d)' by H3 and Proposition 3.6.2, there is a marking ,\[" E .\.1~; 

such that M1[I)M" and M' = M"(.I-d). But then, as -I ~ -Bl /I. /- n B- = 0 

(M1(.f-)B1 (d)' -I X ~d~) U I- X M~ 

(Nm- 1 Lsl,-lm X ~d~) U 1m- X M~ 

NmLsl 
Set M{ = M" for the result in this case. 

(c) 1m - ~ B1 - and -1m n -Bl = 0: are similar. as is: 

( d) -1m - ~ - Bl - . 

2. ME Mfl;B2. From Definition 4.6.3, we may partition LT(B1;B2) into :l(LT(Bd) 

and ;2(LT(B2)). The proof follows the same lines as that for concurrent composition, 

noting that we do not have annotating contexts to complicate it. The only extra 

difficulty in the proof is at the changeover between markings of the operand High 

Level Petri Boxes, i.e., when 1m is the first local transition to appear in t he local 

transition sequence with -1m ~ ;1 (B1 )-. The result in this case follows from the fact 

that ;1(B1)- = -;2(B2). 

3. M E M~l +B2. Is a combination of the previous cases. 

Again, denoting Bl by B 

4. ME MB[Jj: is similar to the proof for concurrent composition, although we do not 

have to consider the partitioning of the local transitions. 

5. ME Mr(B): clear from the definition of guarding. 

6. M E M~y(B): the most complex case. If Y does not appear free in B, i.e., 

Ly(B) = 0, then the result follows directly from Definition 6.4.13 and the Induction 

Hypothesis. 

Otherwise, Ly(B) =I- 0. From the induction hypothesis we may assume that 

Nm- 1 = U MiCiLsB\oLy(B)O 
iE{O, ... ,n} 

with the Properties P1-P3 holding of the MiCi. 

We first present three lemmata which will be useful in the proof. The first uses the 

annotating 1. on call and return transitions to show that the -< relationship between 

nodes of the tree is reflected in the Ci : 
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LEMMA 7.1.3 

(a) Mi -< Mj implies Gi C Gj, 

(b) s E Acc(B) u -Ly(B)- and (s, G) E MiGi implies C; C C. 07.1.3 

Proof: (a) As Mi -< Mj, by P3, MiG; t> {Gj} = -Lr. where Ir is the unique return 

transition with Sj E -Ir • As -Ir ~ dom( M, G, ) there are previous markings 

K and K' E M~i such that, if k is the unique call transition with !'oj E k-, 

then: 

Mb, ... K[k}K'··· MiGi 

and (Sj, Gj) E K' \ K. Moreover, there is a context C E ran( K) such that 

Gj = G kG - kG, whence G C Gj, as k is a call transition (Le., ..L ~ C' k 

and kG = (.)). But then, from H3, Gi ~ G, and we have the result. 

(b) If S E Acc(B) n -Ly(B) the proof is as above. Suppose.5 E L}"( B)

and let Iy be such that S E Iy-, and k be the call transition such that 

k- n -Iy = {s'}, say, Then there are markings K, K', L, L' E .\;f~., such 

that7 

Mb,'" K[k}K' ... L[ly}L'··· M,G, 

with (s, G) E L' \ L, (s', G) appearing in every marking between K' and 

L, and (s', G) E K' \ K. The remainder of the proof is as above . 

• 7.1.3 

The second lemma states that sharing of tokens between different Mi and .Hj requires 

a parent/child relationship between them: 

LEMMA 7.1.4 

Mj -< Mi. In the former case, e = Gj, in the latter e = Gi. 07.1.4 

Proof: From H3, there are contexts el and e2 such that e = el Gj = e2Gj so that 

either Gi ~ Gj or Gj ~ Gi. In particular, -,Gi#Gj so that from PI. -,Mi#:\fj' 

Assume, without loss of generality, that Mi -<+ Mj in the tree. 

If Mi -< Mk -<+ Mj for some k, then, from P2, e#Gk or e C Gk. From 

Lemma 7.I.3(a), Gk C Gj. But then e#Gk implies e#Gj • and t ~ CI: 

implies e C Gj both of which contradict that e = t2 Cj. 

Hence Mi -< Mj. That e = Gj follows from Gj ~ e and P2. .7.1.-1 

The third lemma states that enabling tokens appear in a unique recursive invocation: 

iThe firing of this }' -local is the first use we have made of the process variable extended label algebra. 
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LEMMA 7.1.5 Let k E LT(ny(B)) be such that -k X ~(~ ~ U .\1, C, and let k' 

be the unique local transition of B such that k = In{ k'). Then there is a unique j 

such that -k' X ~e~ n Mjq I- 0. Moreover. -k' X ~e~ ~ .\!jq. O'.l..j 

Prool: For the first part suppose the result does not follow. i.e .. there are indices i I

j, r},r2 E -k' such that (rl,e) E MiC, (r2,e) E J/JGj. As (: E ran(.HiC,)n 

ran(Mjq) we may apply Lemma 7.1.4 to give that -'Ii ~ Mj or ,\1) ~ J[i. 

Without loss of generality, we will assume the former so that (: = q. From 

P3, rl E -IT where IT is the unique return transition such that "J E -Ir • From 

the construction, then. k' = IT, r2 E -IT and. from P3, - k' ~ .\1, Co t> { Cj }. 

But then r2 E Accy(B)U-Ly(B)- and, as (r2.e) E MJGj. Lemma 7.1.3(b) 

gives that Gj C e, a contradiction. 

For the second part, we must show only that -k' X ~e~ ~ Ui .\I,c,. If k 

is not a return transition then - k = - k', and the result is immediate from 

the hypotheses. Otherwise, k' = IT' -k n -k' = is} E AcC}-(B) whence, by 

Property 6(b), S = Sj and e = q for some j ~ 1. Let Mi ~ M) (exists as 

Mo ~+ Mj), then MiGi t> {q} = -IT' by P3, and -k' X ~e~ ~ Ui MiC, as 

required. - 7.1.S 

Returning to the proof of Lemma 7.1.2, as 1m is enabled at Nm- 1 there are contexts 

e and I such that -1m X ~e~ ~ Nm- 1 , I = C Ime - 1m C and 

Let l E LT( B) be the unique local transition such that 1m = In{ 1). 

We will update the tree formed by the Mi using the local transition I (which we show 

to be enabled in some Mi Gi). We distinguish three cases depending upon whether 

lm is a call or return transition on Y or neither. We begin with the simplest case: 

(a) elm - n Accy(B) = 0: so that 1m is neither a call nor a return transition on L 

From the definition of In in this case, I = 1m , and as 1m is enabled, from the 

Induction Hypothesis, -I X ~e~ ~ Ui J/iC,. Apply Lemma 7.1.5 to give the 

unique j such that -/ X ~ e ~ ~ Mj Gj. As C / = C 1m and Ie = 1m c. I is enabled 

at Mj q and hence at Mj. We replace the Mj label of node j with _\I; where. 

if e' = e - Gj. f' = I - q 

MJ = (Mj \ -I X ~e'~) U 1- X ~/'~ 

i.e .. such that Mj[l).\/;. Then MJ E .'vtr). 
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As -Z X ~e~ n Ui*j MiCi = 0 and -1m - n -Ly(B)- = 0: 

«( U MiCi) U Mfq)LsB,OLy(B)O 
.E{O .... ,n} 

'#J 

and 

«( U MiCiLSB,oLy(B)o)\-lX~E~)Ul-XM~ 
iE{O ..... n} 

(Nm- 1 \ -1m X ~e~)U 1m- X ~/~ 

Nm LAccy(B) = Nm - 1 LAccy(B) 

= ~(Sl' Cd,· .. , (Sn, Cn)~ 

so that Properties 6{ a) and 6(b) continue to hold. 

This case is illustrated in Figure 7.1(a). 

19" 

(b) 1m- nAccy(B) = {Sw}: so that Zm is a call transition on y, i.e" 1m - = -n y{ B)U 

{sw}, -I = -1m , Gl = Glm and IG = Im G. We will update the tree to reflect 

that a recursive call is being made. Apply Lemma 7.1.5 to give the unique j 

such that -I X ~ e~ ~ Mj q. For the parent node we choose not the immediate 

follower marking of Mj as in the previous case but Mf defined by MJ[/)M[lypt; 

w here I y is the Y -local of B corresponding to Sw (that I is enabled at J/, follows 

as in the previous case; that ly is enabled at M is clear) so that, if (' = e - Cj, 

I' = 1- q 
Mf = «(Mj \ -I X ~e/~) U I- X ~f'~) \ -I}, X ~f'~) U I}·- X M/~ 

(Mj \ -I X ~e/~) U (ly- U {sw}) X M'~ 

Set Cw = I and Mw = M{) EMf). Clearly (sw, ('11') E J/;Cj. Also, Cj c: Cw 

and e c: Cw since IG = (.),.1:::; Gl and q ~ e (by H3). 

We show that for all j', Cw i- q, so that creating the new node does not 

compromise the pairwise distinctness of the Ci. 

Suppose that there is some already existing node k :::; n with Ck 

distinguish five cases: 

1. Mk#Mj: whence Ck#Cj c: Cw, and Ck#Cw, a contradiction, 

11. Mk = Mj: whence Ck = Cj c: Cw, a contradiction, 

elL" We 

lll. Mk -<+ Mj: whence Ck c: q c: Cw, by Lemma i'.1.3(a), a contradiction, 

iv. Mj -< Mk: whence (Sk' Ck) E MfCj n MjC; as Jh was pre-existing. As 

(sw,Cw) E MJq, Cw = Ck implies SUo = Sk by H·t. whence (.~u.Cu) = 
(Sk, Ck). But then ~(sw' Cw), (Sk, Ck)~ ~ .V;Cj. a contradiction of HI. 
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v. Mj -<+ Mk, but oMj -< Mk: whence there is a node JIq such that .\1; -< 

Mq -<+ Mk, (Sq, Cq) E Mj Cj and Cj c: Cq c: Ck = Cu' As E E ran( .\!; Cj), 

then P2 implies e#Cq or e ~ Cq. If e#Cq, then E#Cu ' a contradiction. 

Hence, e ~ Cq • We distinguish two cases: 

A. e = Cq : whence Z = Zr, where Zr is the unique return transition such that 

Sq E -Zr, a contradiction as Zm is a call transition, 

B. e c: Cq: Then e c: Cq c: Ck = Cw' Now. noting that each Ci has prefix .1. 

(following from 6(b) and the construction), Cq = .l C f. Ck = .l C' .l C f. 

whereas, from the construction, Cw = .lC"e, with .l not in C", a con

tradiction. 

Hence the Cj remain pairwise disjoint. 

As ez X neG n Ui#j MiCi = 0, ez n e Ly(B)e = 0 and lye ~ Ly(Bt 

(( U MiCi) u Mjq U M{)CwHSB\oLy(B)O 
iE{O, ... ,n} 

i#j 

(( U MiC lSB\OLy(B)O) \ el X neG) U {sw} X nfG U .\!/) Cu. 
iE{O,. .. ,n} 

(Nm - 1 \ elm X neG) U Im e 
X nfG 

Nm 

and, as (sw, Cw) E Mjq, elm n Accy(B) = 0, and 1m en Accy(B) = {sw} 

Nm lAccy(B)= Nm-llAccy(B)Un(Sw, Cw)G 

Setting w = n + 1 re-establishes Properties 6( a) and 6( b) in this case. 

This case is illustrated in Figure 7.1(b). 

(c) elm n Accy(B) = {s}: so that 1m is a return transition on Y, i.e., elm 

Be U {s} = ny(B)e u {s}, Im e = Ie, el = elm and Ie = Im e . 

As s E elm, (s, e) E Nm- 1 so that, by the Induction Hypothesis (Property 6(b»), 

s = Sj and e = Cj for some j ~ 1. As the q are distinct, there is a unique k 

such that Mk -< Mj and, from P3, el X neG ~ MkCk. As el = elm, Ie = 1m e. 

and elm X neG ~ Nm- 1 there is a marking Mfc such that, if e' = e - Ck, 

f' = f - Ck, then 

Mfc = (Mk \ el X ne'G) u I- X nf'G 

Le., such that Mdl)Mfc· Then Mfc E Mr.)' 

Suppose Be X n q G 1:. Mi q. Then, as Be X n Ci G ~ Ui JIi C;, there is a place. 

s' E Be, and some other node, Mi' say, such that (s'. Cj ) E M; 1 C~ I. Hence, by 

H3a, Ci = Ci', contradicting the pairwise distinctness of the c,. 
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Mo Mo ;\10 

M· M· Ml: J ) 

/ / A 
Mi Mi .\f) = .\In .\/, 

! ! ~ 
Mo Mo .\10 

M' M' .\/~ 

7 A '" Mi M· , Mw = Mn+l ;\1; 

a b c 

Figure 7.1: illustrating the proof of Lemma 7.1.2. (a) illustrates the case when 1m is neither a 
call nor return transition: the unique node in which I is enabled is updated; (b) when 1m is a call 
transition: a new leaf node is created corresponding to the recursive call and the parent node is 
updated; (c) when 1m is a return transition: the terminated recursive call is removed from the 
tree, and the parent node is updated. 

Hence Be X ~ Gj ~ ~ Mj Gj and thus (by H2) Mj Gj = Be X ~ (~~, so that MJ 

has no children, and may be removed from the tree without problem. 

As el \ Ly(B)e = elm \ ny(B)e = {Sj} 

(( U MiCi)UMkCdlSB\OLy(B)O 
'E{O, ... ,n} 

I~j 
i~k 

(( U MiCilSB\.Ly(B)o)\{Sj}X~Gj~)UleXM~ 
IE{O, ... ,n} 

I~j 

Nm 

and, as Accy(B) n elm = {Sj} and Accy(B) n 1m e = 0, then 

NmlAccy(B) = Nm-llAccy(B)\{(Sj,Gj)} 

= ~(SI, C1 ), ... , (Sj-I, Gj-d, (Sj+l' Cj+l)" . ., (sn. Cn)~ 
Reindexing the Mi so as to eliminate the gap created by the removal of j re-

establishes Properties 6( a) and 6(b) in this case. 

This case is illustrated in Figure 7.1(c). 

The remainder of the proof is to show that P1-P3 carry forward to the new trep. \Yp 

consider each case of affected nodes in turn: (a)-( c) corresponding to the respective 
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cases distinguished in the construction. For nodes not addressed in the cases, the 

result follows directly from the induction hypotheses. 

PI: (a) elme n Accy(B) = 0: that PI holds of all nodes of the tree follows di

rectly from the induction hypothesis as we alter neither the tree (with the 

exception of Mj replacing Mj) nor q in this case. 

(b) 1m e n Accy (B) :f 0: we should show that the result holds for the new node 

Mw, i.e., that Mw#Mk implies Gw#Gk. 

If MJ#Mk (where Mj -< Mw) then Mj#Mk so that q#GIc, by the induction 

hypothesis. As q c Gw, then Gw#Gk. 

We next show that Gw#Gq for each Mq with MJ -< Mq :f Mw as then, by 

Lemma 7.1.3, we also have that, for all Mk with MJ -< ;\fq -<* :\h. Cw#Gk, 

as required. 

Suppose, then, that Mj -< Mq :f Mw, but that -,Gw#Cq • From the con

struction we know that Gw :f Gq • We show that from the two remaining 

cases, Gw C Gq and Gq C Gw, we may derive contradictions: 

i. Gw C Gq: whence q C Gw c Gq and 1- ~ Gw so that, by H5, there 

is an accounting place, S E Acc(B) \ Accy(B), and so unequal to Sw E 

Accy(B), such that (s, Gw) E MJGj. But then ~(sw' Gw),(s, Cw)~ c 

MJ q, contradicting H4. 

ii. Gq c Gw : is similar. 

Hence the result in this case. 

(c) elm n Accy(B):f 0: follows as for Plea). 

P2: (a) elme n Accy(B) = 0: we should show the result for MJ -< Mj; that for 

Mj -< MJ following directly from the induction hypothesis as we alter neither 

MjGj nor Gj. 

As Mj -< Mj, from P3, (Sj, Gi) E MjGj. Moreover, from Lemma 7.1.3. 

q c Gj and, as 1m is not a return transition in this case of the construction, 

(Sj, Gj) E Mjq. 

From P2, we may assume that for all contexts g E ran( Mj q), g# C or 

g !; Gj. Suppose P2 does not hold of the new marking, i.e., C C g, so that 

q C C c g. As 1- ~ Gj, we may apply H5 to give an accounting place 

S E Acc(B) \Accy(B), and so unequal to Sj, such that (s, C) E .\flC~. But 

then ~(s, Gj), (Sj, Gj)~ ~ Mj Gj' contradicting H4. 
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(b) 1m- n Acc y( B) i: 0: We distinguish two cases: Jfj -< .\1 U' and ;\lj -< .\lj i: 
Mw: 

I. Mj -< Mw: from the construction Cj L Cu and (su" Cu·) E .\1; C) where 

Sw E 1m- n Accy(B). Suppose P2 does not hold of the new marking. i.e .. 

there is a context 9 E ran( Mj q) with Cw L g. But then q L C w L 9 and 

.1. ~ CWo The remainder of the proof follows that of P2(a). 

11. Mj -< Mj i: Mw: is similar. 

(c) -1m n Accy(B) i: 0: we should show that P2 continues to hold when .\I~ -< 

Mi or when Mj -< MI:. The proof of the former follows that for P2(a); that 

for the latter follows directly from the induction hypothesis as we do not 

alter Mj Cj nor Ck. 

P3: (a) -1m - n Accy(B) = 0: we distinguish two cases, when ;\Ij -< .\1, and .\1, -< 

M '· l' 

i. Mj -< Mi: as Mj -< Mj, from P3, we have that MjCj I> {C;} = -'T' where 

IT is the unique return transition such that Sj E -IT' Clearly, -, n -IT = 0, 

so that -IT ~ MJ Cj I> { Cd· 

Suppose the result does not hold, Le., Mjq I> {Cj} 1-IT' Then .\l;(~ I> 

{ Cd ~ -IT and f = Cj. We distinguish three subcases: 

A. -1m- n Acc( B) = 0: Le., 1m is not a call nor return transition on any 

process variable. Then, as .1. ~ Cj. Cj ~ e. If Cj = e then there 

is a place S E -1\ -ITl such that (s,Cd E MjCj, contradicting P3. 

Otherwise, q L Cj L e, .1. ~ Cj and we may apply H5 to give s E 

Acc(B) \ Accy(B) (and so unequal to s;), with (s. Cd E M]C~. But 

then ~(s, Cj), (Sj, C;)~ E Mj q, contradicting H4. 

B. 1m- n (Acc(B) \ Accy(B)) = {s}: then s 1 Sj and ~(.5. Cil, (.5j. C;)~ E 

Mj Cj, contradicting H4. 

C. -1m n (Acc(B) \ Accy(B)) = {s}: as.l ~ Im e we have that (05,1') E 

MjCj, with Cj L e whence, as q L Cj L e and .1. ~ Ci, by M.S, 

there is an accounting place r E Acc(B) \ Accy(B) (and so unequal 

to Si) such that (r,Ci) E MjCj. But then ~(r.C;).(8,.C;)~ E .\lJC~. 

contradicting H4. 

n. Mi -< Mj: follows directly from the induction hypothesis, as \\'(> alter 

neither .\1, C; nor Cj. 
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(b) Im-nAccy(B) = {s}: We distinguish three sub cases corresponding to .\/i ~ 
Mi, Mi ~ MJ and MJ -< Mw: 

1. MJ -< Mj: is similar to P3(a). 

ii. Mj ~ MJ: follows directly from the induction hypothesis. as we alter 

neither Mi Gi nor Cj. 

iii. MJ ~ Mw: whence, from the construction in this case, -Ir X ~('w~ C 

MJ Cj, where Ir is the unique return transition such that 8 u E -Ir . 

Suppose the result does not hold of the new marking, i.e., there is an 

s ~ -IT such that (s, Gw ) E MJGj • But then ($. Cw ) E JfiCj n .\I)C~ . . \s 

Cj c: Gw and .1 ~ Gw , by H.5 we may assume that .5 E Acc( B). As 8 ¢ -Ir • 

s t= Sw' But then ~(s, Gw), (sw, Gw)~ ~ MiGj, contradicting H·t, 

(c) -1m n Accy(B) t= 0: as Mi -< Mj , I t= IT' Th .. remainder of the proof 

is similar to P3(a). That of Mj -< MJ follows directly from the induction 

hypothesis, as we alter neither Mj C nor Cj. Moreover. these are the only 

possibilities in this case. 

Hence the result. .1.1.2 

Given that Lemma 7.1.2 forms the inductive step, we must show that Hypotheses HI-H.5 of 

Lemma 7.1.2 continue to hold of the composed High Level Petri Box. The result is complicated 

a little since, as has already been mentioned, the winding of a High Level Petri Box is not 

necessarily memoryless. However, guarding does not require a memoryless High Level Petri Box 

to produce a memoryless High Level Petri Box, and this will allow us to complete the inductivp 

step: 

LEMMA 7.1.6 Let P be an able pre-High Level Petri Box such that for all dEC. and 

M E M~, P- X ~d~ ~ M implies M = P- X ~d~. Then rep) is memoryless. 01.1.6 

Proof; For convenience, we will assume that Sp ~ Sre p), LT(P) ~ LT(f(P)) and Tp ~ Tr(P)' 

Suppose M E M~(P). We claim that either M = MJ,re
p

), M = AI ['rep) or there is a 

marking M' E Mj,d such that M = M'U {s -+ {( • .ld)}}, whence the result. 

The proof is by induction over the local transition sequence 
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which led to M: 

Base Case: n = 0: the result follows by inspection. 

Inductive Step: Suppose that n > 0, and that the result holds for n - 1. i.e., either 

M - M/,r(P) M MT,r(P) h" P 
n-l - d , n-l = d or t ere IS a marking .\J~_1 E .""' . .ld such that 

Mn-l = M~_1 U {s -+ {( . .ld)}}. We distinguish three corresponding cases: 

1 M M /,r(P) h l' hall" 
. n-l = d ,w ence n IS tee transItIon provided by the guarding auxiliary. 

Choose M~ = M.fd for the result in this case; 

2. M n - 1 = M[,r(P): impossible, as In is enabled at M n- 1 ; 

3. Mn - 1 = M~_1 U {s -+ {( . .ld)}}, for M~_1 E M~d' If In E LT(P), choose .\I~ 

such that M~_I[ln)M~ in M~(P) for the result. Otherwise In is the return transition 

supplied by the guarding whence, as M(s) = ~ . .ld~, and In is enabled at .\In-I, 

p. X ~ . .ld~ ~ M~_I' But then M~_1 = p. X ~ . .ld~, from the hypotheses, and 

M ' - MT,r(P) 
- d • 

Hence the result. .7.1.6 

Whence: 

LEMMA 7.1.7 Let Bi, i = 1,2, satisfy the statement of Lemma 7.1.2. Then each of BI IIB2 , 

B1;B2 , Bl +B2 and (denoting Bl by B) B[f] and J..L Y.B satisfy Hypotheses HI-H.') of that lemma. 

07.1.7 

Proof: For concurrent, choice and causal composition and relabelling the result follows easily 

from the induction hypotheses and Lemma 7.1.2. 

For the recursive construct the result follows from those for guarding and winding (and 

the syntactic nature of refinement from which winding is derived). For Hypotheses HI 

(safeness), H3 (initial marking independence) and H-i (markings of accounting places) 

the result follows directly. 

For H2 (memorylessness) the result is complicated a little since. as has already been 

mentioned, the winding of a High Level Petri Box is not necessarily memoryless. In this 

case we must show that ny(B) satisfies the hypotheses of Lemma 7.1.6, from which. as 

ny(B) is able (note 2, following Definition 6.5.8), we have that f(ny(B)) is memoryless. 

That each of Hypotheses HI-H5 follow for guarding follows easily from the induction 

hypothesis. The proofs for winding follow: 



CHAPTER 7. ALGEBRA AND BEHAVIOUR 205 

H1: we prove that ny(B) is d-safe for all standard initial markings d. For. suppose 

t · th' ki M MOy(B) I no ,I.e., ere IS a mar ng Ed' a pace S E dom(.H). and a context 

e E ran(M) such that M(s)(e) ~ 2. From Lemma 7.1.2 we may assume that.\1 is 

decomposable as is described in 6(a) with Properties PI-P3 holding of the .HiC, 

As the Mi Gj are safe, M ( s )( e) ~ 2 implies there are i i= j such that (..,. f) E 

Mi GinMj Cj, whence Lemma 7.1.4 applies and either Mj -< ",Ij or Jlj -< .\Ii . Assume, 

without loss of generality, the former. Then e = Gj whence s E -Ir by P3 with IT 

the unique return transition such that Sj E -ZT' But then s E AcC)°(B)U-Lr(B)

and (S2' e) E Mj Gj so that Lemma 7.1.3 gives that Gj C t. a contradiction. 

Hence i = j, a contradiction and we have the result. 

H2: from Definition 6.5.8 we have that ny(B) is an able pre-High Level Petri Box. We 

prove that n y( B) also satisfies the other hypotheses of Lemma 7.1.6, i.e., that. for all 

M E M~Y(B) with ny(B)- X ~d~ ~ M, M = ny(B)- X ~d~. From Lemma 7.1.2 we 

may assume that M is decomposable as is described in 6(a) with Properties PI-P3 

holding of the Mi Gj. 

Now, ny(B)- X ~d~ ~ M implies B- X ~d~ ~ MoGo as for all j > 0, d C Cj by 

Lemma 7.1.3. But then MoGo = B- X ~d~ as B is memory less by assumption, 

whence Mo has no children, and we have the result. 

The memorylessness of J.L Y.B follows from the above argument. 

H3: suppose that the hypothesis does not hold, i.e., for M EMf. there is an e E ran(M) 

such that die or e C d. From Lemma 7.1.2 we may assume that M is decomposable 

as is described in 6(a) with Properties PI-P3 holding of the MiGi. 

Let (s, e) E MiGi for some i. As MiG; E M~, we may apply P3 to give that 

d ~ Gj ~ e, a contradiction. Hence the result. 

H4: suppose that the hypothesis does not hold, i.e., there is a marking M such that e E 

M(S1)n M(S2) but that S1 i= S2 for accounting places S1 and S2. From Lemma 7.1.2 

we may assume that M is decomposable as is described in 6(a) with Properties 

PI-P3 holding of the MiGj. 

Suppose (s1,e) E MiGi, (s2,e) E MjGj, but that i i=j. Then, from Lemma i.I . .!. 

we may assume that Mi -< Mj and that e = Cj whence S1 E -Ir where $) E -Ir 

where Zr is the unique return transition such that Sj E -ZT' However, (S2. E) E .\1) Cj 

so that Lemma 7.1.3 applies to give Gj C e, a contradiction. 

Hence i = j and the result follows from the induction hypothesis. 
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H5: suppose that ny(B) is Z-guarded for some Z in PV and let .\/. d and C satisfy 

the conditions of H5 of Lemma 7.1.2. From Lemma 7.1.2, we rna\" assume that .\1 

is decomposable as is described in 6(a) with Properties P1-P3 holding of the .\1, C. 

For the first part of H5, we note that, as dee and "I ~ Ui .\/iC" there is an index 

j, and a place 8 such that (8, C) E MjGj. As MjCj E M~J' by H3, Cj ~ C. If 

Cj c C then C E ran( Mj Cj) and 1. ~ C, so that we may apply H5 for the result in 

this case. 

Otherwise Gj = C. Note that, in this case, j :I 0, as otherwise C} = deC. a 

contradiction. So we may assume j > 0. Then there is a node i such that .\li -< .\I}. 

By P3, (8j, Gj) E MiCi, where 8j E -ZrnAccy(B), with Ir a return transition. Then 

(8j, C) E Mi Ci and we may choose 8j for the result in this case. 

For the second part let 8', C' be such that C c C' and (8', C') E ranCH). As 

deC we may find 8 E Acc(ny(B)) such that (8, C) E M. If Z = Y, then 

8 rt Accz(ny(B)) = 0 and we are done. 

Suppose, then, that Z :I Y so that, from Lemma 6.5.10, B was also Z-guarded and 

Accz(B) = Accz(ny(B)). Let j be as in the first part of the proof, i.e., such that 

(8, C) E MjGj. We distinguish two cases: 

1. Cj = C: whence we may assume that 8 E Accy(B). But .·lced B) ~ 

Acc(ny(B)) \ Accz(ny(B)) and we have the result in this case, 

2. Cj c C: if C' E ran( Mj Cj) then the the result follows directly from the in

duction hypothesis. Otherwise C' rt ran( Mj Gj) whence, by 6( a) and PI, there 

is a node Mq and an accounting place 8 q E Accy(B) such that Mj -< Mq, 

(8q, Cq) E MjCj and Gj C C ~ Cq ~ C'. If C = Cq then (8q, C) E M 

with 8q E Accy(ny(B)) \ Accz(B) and we have the result. Otherwise, 

C C Cq and we may apply the induction hypothesis with Cj c C c Cq 

to give an 8 E Acc(B) \ Accz(B) such that (8,C) E MjCj. But then 

8 E Acc(ny(B)) \ Accz(ny(B)) and (8, C) E M and we have the result . 

• 7.1.7 

Returning to the proof of Theorem 7.1.1: 

Proof; Proof is by induction over the structure of B. 

For B a Basic High Level Petri Box the result follows by inspection. 
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Lemma 7.1.7 for the result. .7.1.1 

We expect that the extra hypotheses of Lemma 7.1.2, over and above safeness and memory

lessness, will be useful tools for reasoning on the behaviours of High Level Petri Boxes. as are 

the decompositions of the markings which were given therein. We, therefore, state them as 

corollaries: 

COROLLARY 7.1.8 For B a syntactically generated High Level Petri Box, J[ E M~ implies 

for all e E ran(M), d!;;;; e. 07.1.8 

COROLLARY 7.1.9 For BaY-guarded syntactically generated High Level Petri Box. for all 

contexts d, markings M E M~, and G, G' E ran(M) such that de G!;;;; G' with ..1 ~ G there 

is an accounting place 8 E Acc(B) such that (8, G) E M. If, in addition G c G', then there is 

an accounting place 8 E Acc(B) \ Accy(B) such that (8, G) E M. 07.1.9 

and 

COROLLARY 7.1.10 Let B be a syntactically generated High Level Petri Box, .H E M ~ a 

marking reachable from a standard initial marking d, and 81 and 82 accounting places such that 

07.1.10 

Finally for this section, given the highly structured nature of the tokens which occupy the 

accounting places, we can show that there is a unique tree at any reachable marking which 

satisfies the hypotheses of Lemma 7.1.2: 

COROLLARY 7.1.11 

U1=o Ni Di lSB \. Ly (B)O with the Mi Gj and the Ni Di satisfying the hypotheses of Lemma 7.1.2. 

Then: 

1. p = q; 

Moreover, we may re-index the NiDi so that, for each i E {O, .. . ,p}. 
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3. Mi -< Mj if and only if Ni -< Nj (so that the trees are isomorphic); and 

07.1.11 

Proof: 1. and, 

2. follow directly from Property 6(b) of Lemma 7.1.2 as the Cj and Dj are pairwise 

distinct, 

3. follows from PI and Lemma 7.1.3(a), 

4. follows from PI-P3 by induction on the structure of the tree (with base case the 

leaf nodes) using from the fact that Cj forms a postfix of all tokens in .\1) C) and Dj 

a postfix of all tokens in Nj Dj . .7.1.11 

In the sequel it will be convenient to assume that a marking M E M~Y(B) has related decom

position under Lemma 7.1.2 Ui=o MiCiLsB,oLy(B)O, with any decoration on M appearing on the 

Mi, e.g., M' = Ui=o M[CiLsB,oLy(B)O, etc. 

Moreover, as all markings will be safe, we may omit multi-set brackets when used in markings, 

e.g., we will write el X {e} ~ M, rather than el x ~e~ ~ M, when M[l} (for some enabling f). 

7.2 Strong Bisimulation on High Level Petri Boxes 

We next develop the notion of a strong bisimulation on High Level Petri Boxes, which we show 

to be a behavioural congruence for syntactically generated High Level Petri Boxes. 

The strong bisimulation we define is based on the concurrency preserving strong bisimulation of 

Olderog, [Old91, pg. 25]. A distinguishing property of Olderog's bisimulation is that it 'preserves 

the concurrency' present in safe PIT nets, in the technical sense that it respects the causal sub

nets of a P IT net, where a causal sub-net of a P IT net is a sub-net in which all choices have 

been resolved. In particular, this implies that causally incomparable transitions are related to 

causally incomparable transitions under the strong bisimulation so that 'true concurrency' and 

'interleaving' interpretations of the same situation are not regarded as bisimilar. 

The translation of Olderog's strong bisimulation to High Level Petri Boxes is a straightforward 

generalisation to the underlying structure of High Level Petri Boxes. Moreover, the definition on 

High Level Petri Boxes preserves concurrency in the technical sense given by Proposition 7.2.6, 

although this result is not stated in terms of 'causal sub-High Level Petri Boxes' but only in 
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terms of concurrent enablings. (The generalisation of 'causal sub-net' to High Level Petri Boxes 

appears not to be straightforward, due to the individuality of tokens: for a characterisation we 

would be required to characterise causal sub-nets of the PIT net unfolding of a High Level Petri 

Box on the structure of the High Level Petri Box, and although this is probably not too difficult. 

it is anyway unnecessary for the following treatment.) 

That strong bisimulation on High Level Petri Boxes preserves concurrency is a necessar~' con

dition for it to extend to a congruence over the High Level Petri Boxes. In particular. the 

demonstration that strong bisimulation and relabelling commute. i.e., if Band B' are strong 

bisimilar then so are B[j] and B'[j], depends crucially on this property. 

The major part of the motivation for the development of strong bisimulation is that it will allow 

us to discharge the claim that the recursive construct is a behavioural fix-point of the refinement 

operator, i.e., we will be able to show that recursion is a solution to Equation 6.1 when ~ is 

strong bisimulation. This means that the 'loops' in High Level Petri Boxes introduced through 

the recursive construct may be partially unwound without affecting the behaviour of the High 

Level Petri Box. We note that, in general, no finite structural solution to Equation 6.1 can exist, 

so that our behavioural solution is a best possible. 

The bisimulation is strong in the usual sense: in that it does not consider equivalence modulo 

silent actions, for instance, a High Level Petri Box B and its Y -guarding may not be strongly 

bisimilar. We do not formally consider weak bisimulations (observational congruences) in this 

work. A short discussion on weakenings of strong bisimulation (whilst preserving its strong 

nature) is given later in this chapter. 

7.2.1 Lifting Interface Respecting Relations to High Level Petri Boxes 

We begin the development of strong bisimulation with a second form of lifting of a relation to 

High Level Petri Boxes: 

DEFINITION 7.2.1 [Cf. [Old91, Pg. 25]] Given safe, able pre-High Level Petri Boxes Bl and 

B2 over the same PV-extended label algebra £ and a relation R ~ SI X S2 we define the lifting 

of'R to be that relation n such that: 

1. for sets Uj ~ Sj, i = 1,2, we write U1 n U2 when ([11 x [/2) n R is a bijection between U1 

and U2 ; 
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2. for local transitions Li E LT( Bd, i = 1,2, we write 11 R h when -II R -/2 , ell c 12 , 

it = h, hC = hC and LI - R he; 

3. for finite multisets of local transitions tl = ~ 11, ... , In ~ E MF( LT( BI )) and t2 = 

~kI'"'' km~ E M;:(LT(B2)) we write tl R t2 when n = m and8 Ii R k j • for each 

i=1, ... ,n; 

4. for finite relations Mi ~ Sj X Cc we write MI R M2 when, for all d E Ce, (.\It t> {d}) R 
(M2t>{d}). 

.7.2.1 

For any High Level Petri Box B, TB ~ M;:(LT(B)) so that Item 3 allows us to relate the 

abstract transitions of BI and B2 • Between abstract transitions the induced relation is very 

strong, viz., tl R t2 implies tl = ~lI, ... ,ln~ and t2 = ~kI, ... ,kn~' with h R ki and, hence, 

'li ii -ki and li- R kj-. In this case, we may assume, without loss of generality, that, index( i I ) = 

index( t2) = {Xl. ••• , Xn, YI. ... , Yn} with Xi annotating arcs (r, tt} and (s, i2) when r E -Ii, S E - ki 

(and r R s)j Yi annotating arcs (t1, r) and (t2, s) when r E lie, S E ki- (and r R s). :'loreover, as 

eli = Ckj, Ii = ki and IjC = kic, under this assumption we have that subsB1 (td = subsB2 (i2 ). 

For any safe (syntactically generated) High Level Petri Box B over C, M~ ~ P(Sj x Cd is 

finite so that Item 3 allows us to relate safe markings under R. In this case, ;\It R M2 implies 

MI = {(sI,dI), ... ,(sn,dn)}, M2 = {(rI,dt}, ... ,(rn,dn)} and9 
Si R ri, i = 1, ... ,n. 

DEFINITION 7.2.2 Let B1 and B2 be syntactically generated High Level Petri Boxes. We 

say that a relation R ~ Sl X S2 is proper if r R s implies, for each Y E FV(BI ) U FV(B2 ) 

4. for IE Ly(B1) and k E Ly(B2) with accounting places sl and sk respectively. then sl R sk 

implies IRk. 

A proper relation R is interface respecting if r R s implies Al (r) = A2( s). 

8With the k. reindexed if necessary. 
9 After reindexing, if necessary. 

.7.2.2 
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A proper relation respects the structure introduced through the Y -guarding of a High Level 

Petri Box, and facilitates the demonstration that strong bisimulation commutes with the recur

sive construct. That a relation R is interface respecting implies. in addition, that if. for local 

transitions IE LT(B1) and k E LT(B2), Iii k, then 1(.f)B1 ii l(.f)Ih· 

7.2.2 Strong Bisimulation 

We are now in a position to define what it means for two High Level Petri Boxes to be strongly 

bisimilar: 

DEFINITION 7.2.3 ref. [Old91, Defn. 2.3.1}} Let [,1 and [,2 be label algebras and d E CL I· 

We say that safe, able pre-High Level Petri Boxes B1 and B2 over [,fv and [,~v respectively are 

pre-d-strongly bisimilar if [,1 = [,2 = [, and there exists a proper relation R ~ 51 X S2 such 

that, in the most permissive label algebra [,~p: 

2. for all markings Mi E M~i, i = 1,2, t1 E T}, and a E subs B1 (t1)' whenever;\/1 R .\f2 • and 

M1[tl: a)Nl there is a t2 E T2 with tl ii t2 and a marking N2 E M~2 such that M2[t2: a).Y2 

and Nl R N2. Moreover, if Nl = MT'BI then N2 = MT'B2 also, 

3. for all markings Mi E M~", i = 1,2, t2 E T2, and a E subs B2 (t2)' whenever .lIt R M2, and 

M2[t2: a)N2 there is a tl E Tl with tl ii t2 and a marking N1 E M~l such that Md tl: a)Nl 

and Nl ii N2. Moreover, if N2 = Ml'B2 then N1 = MJ'BI also. 

If, in addition to being proper, R is an interface respecting relation, we say that Bl and B2 are 

d-strongly bisimilar, written B1 ~d B2. 

Bl and B2 are strongly bisimilar, written B1 ~ B2 if they are d-strongly bisimilar for each 

dEC.c
1 

( = C.c
2

), with the same interface respecting relation R being used for each d. .7.2.3 

Item 1 forms the initialisation property; Items 2 and 3 form the transfer property. If B ~ B' 

with underlying relation R, R is called a strong bisimulation (between Bl and B2). 

That terminal markings should be reached together in the transfer property implies that we 

require the same termination behaviour of (pre- )strongly bisimilar High Level Petri Boxes. How

ever, we also note that, if R is interface respecting, then for syntactically generated (and hence 

safe and memoryless) High Level Petri Boxes these requirements are trivially satisfied and are 
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redundant in this case. (In fact, the notion of pre-d-strong bisimulation and the inclusion of the 

extra requirement is only to provide a slightly more general result in the proof of the congruence 

nature of strong bisimulation which appears below, which facilitates the demonstration of the 

fix-point nature of the recursive construct.) 

Note, also, that we do not consider the label generated in the firing of related transitions. the 

justification that this is unnecessary being given by the following, easily checkable result: 

LEMMA 7.2.4 Let B1 ~d B2 be safe, able pre-High Level Petri Boxes over some label 

algebra, £Pv, and Mi E Mr, i = 1,2, markings such that Ml ii M2. and f, E Ti, i = 1.2 

abstract transitions with t1 R t2' Then Ml [ al ) Nl and M2 [ a2 ) N2 implies al = a2. 
4:0 ~:O 

01.2.4 

It is not difficult to see that ~d and ~ are equivalence relations. Moreover, 

PROPOSITION 7.2.5 0,.2 .. 5 

Proof: If (0', /'i" r): Bl == B2 then 0' is a interface respecting relation between SB1 and SB2 • That 

it forms an interface respecting bisimulation between Bl and B2 follows from Proposi-

tion 2.5.21. .7.2.:> 

7.2.2.1 Strong Bisimulation Preserves Concurrency 

Suppose M[l)M' and M[l')M" in some safe High Level Petri Box over some label algebra. Then 

there are contexts e and e' such that -l X {e} U -l' X {e'} ~ M. If -I X {e} n -I' X {e'} = 0, 

we will say that I and l' are concurrently enabled at M. As for low level models, concurrent 

enabling implies causal independence, we may consider the simultaneous (but not necessarily 

synchronous firing) of concurrently enabled local transitions. 

Suppose B ~d B' are syntactically generated d-strongly bisimilar High Level Petri Boxes with 

underlying bisimulation R. Let Mi EMf, i = 0.1.2,11' 12 E LT(B) and 0i E subsB(ld. be 

such that Mo[li: oi)Mi, i = 1,2, with it and l2 concurrently enabled at Mo· 

As B ~d B', there exist NIl N2 E Mf, kJ, k2 E LT(B') such that Ii ii ki' .\Ii ii Si, and 

No[ki:oi)Ni, i = 1.2. Then 
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PROPOSITION 7.2.6 k1 and 10. are concurrently enabled at No. 0,.2.6 

Proof: If ei = ai(xd, i = 1,2, (Xi annotating the input arcs of Ii). then k1 and k2 not concurrently 

enabled at No implies e1 = e2 = e, say, and - kl n -10. :I 0. 

As Mo ft No we have, in particular, that (Mo I> { e } ) X (No I> { e } ) n R is a bijection between 

(Mol> {e}) and (No I> {e}). As II and 12 are concurrently enabled, but kI and k2 are not, 

I(Mol> {e}) \ (-II u- 12)1 < I(Nol> {e}) \ (-k1 U -k2)1 so that there are places r E -II U-/2 and 

s E (No I> {e}) \ (-k1 U -10.) such that r R s. We will assume, without loss of generality. 

that r E -II' 

That II ft k1 implies, in particular, that (-It X -kd n R is a bijection so that, as r E -II, 

there is a place s' E - k1 (and so unequal to s) such that r R s'. 

But then r R sand r R s', contradicting that (Mo I> {e} ) ft (No I> { f} ). 

Hence the result. .7.2.6 

The main use that Proposition 7.2.6 is put to here stems from the fact that, in the most 

permissive label algebra, the enabling of an abstract transition of a complete High Level Petri Box 

implies the concurrent enabling of each of its constituent local transitions. From the proposition 

we may then find corresponding concurrently enabled local transitions in a strongly bisimilar 

High Level Petri Box, and if these can be combined into an abstract transition then that abst ract 

transition will be enabled in the most permissive label algebra. 

7.2.3 Congruence Nature of Strong Bisimulation 

The next three results develop the restricted congruence nature of strong bisimulation: 

THEOREM 7.2.7 ~ is a congruence relation with respect to the operators of Definition 4.8.l. 

07.2.1 

We will show the restricted congruence nature of strong bisimulation with respect to refinement 

and recursion later. 

Proof; Throughout the proof we will assume that B}, B2 , B3 and B4 are syntactically gen

erated High Level Petri Boxes over a label algebra £ = (A, R) (which, for simplicity. 

we will assume to be maximally permissive and process variable extended). such that 



CHAPTER 7. ALGEBRA AND BEHAVIOUR 214 

Bl ~ Bz with underlying strong bisimulation R12 and B3 ~ B4 with underlying strong 

bisimulation R 34 . 

We must show that BIIIB3 ~ Bz II B4, Bl;B3 ~ Bz;B4, B1+B3 ~ Bz+B4 and. if Bl is 

denoted Band Bz denoted B', then for fER a relabelling, B[J] ~ B'[J]. 

The case for relabelling contains most of the ideas for the other cases so that we present 

it first. For notational convenience we will denote Bl by B, Bz by B' and R12 by R. 

1. B[J] ~ B'[J]: we claim that RIf) = R is an interface respecting strong bisimulation 

between B[J] and B'[J]. 

That RIf) is an interface respecting relation and that the initialisation property 

holds under RIf) are immediate from the same properties of R, as S B = S BIf] and 

SB' = SB'If]' 

For the transfer property, consider an abstract transition t = ~/b .... Ina E TB 

such that M[t:a)M', for M E M~If]. As we work in the most permissive label 

enabled algebra, the local transitions comprising t are concurrently enabled at M. 

Moreover, from the proof of Lemma 7.1.2 there is a marking M~ E Mr.) such that 

M = MM .J)B( d) and to each local transition ii a corresponding local transition 

i[ E LT( B) with ii = i[( .J)B such that if is enabled at MiJ. From that proof, the if 

are also concurrently enabled at MiJ. 

B'If) ~ Suppose N E Md is such that M RIf] N. Then, from Lemma 7.1.2, we can find 

NiJ EMf,; such that N = NM.J)B(d). Moreover, as R is interface respecting then 

M nlf) N implies MiJ n NiJ· 

We may now use the assumed strong bisimilarity of Band B' to give local transitions 

ki, .. . , k~ E LT(B') which are concurrently enabled at NiJ (by Proposition 7.2.6) and 

such that If( .J)B nlf) ki(.J)B' (as RIf) is interface respecting). From the definition 

of relabelling, t' = ~kH.J)B,a u ... U ~k~(.J)B,a E TB'If)' Moreover, as the k[ are 

concurrently enabled at NiJ then there is a marking N' such that N[t': a)N'. It is 

not difficult to check that t nlf] t' and M' nlf) N', whence the result in this case. 

The method of the proof is illustrated in Figure 7.2. 

The other direction is similar 

2. B1 l\B3 ~ BzIIB4: the relation RII 

relation between BIIIB3 and BzIIB4' 

R1z U R34 is clearly an interface respecting 

That the initialisation property holds under RII is immediate from the definition. 
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M,M' E M~[tl 

B[tl 
Mo,.··,Mn E Md 

M=M~(.f)B(d) 
M'=M~(.f)B(d) 

~ 

M6, . .. , M~ E Mr.) R[tl 

No' N' M B ' 0"'" n E (.) 

N E Mf[tl 

M 

Mo 

M.' o 

No' o 

[ l{} 

[t:o:} .l!' 

.lIn 

[l~} ;\I~ 

R 

[k~} V' • n 

Figure 7.2: illustrating the proof that B ~ B' implies B[J) ~ B'[J). 

215 

E . \It ~[tl 

in L.MV 

Lem. 7.1.2 

as B ~ B' 

Defn.L6.S 

E Mf[tl 

That the transfer property holds under RII follows from a simple application of 

Lemma 7.1.2, noting that TB1IIB3 = TBl U TB3 and TB211B4 = TB2 U TB4· 

4. B1+B3 ~ B2+B4: follow similarly, with underlying bisimulations1o R; = ;l(R12 ) U 

;2(R34 ), and R+ = +1 (R12 ) U +2(R34 ), respectively. 

.7.2.7 

PROPOSITION 7.2.8 Let B ~ B' be strongly bisimilar syntactically generated High Level 

Petri Boxes with underlying strong bisimulation R. Then 

1. f(B) ~ f(B'), 

2. if, for all t E M:F(LT(B)), t' E M:F(LT(B')), t ii t' implies t E TB ~ t E Tal then 

fly(B) ~ fly(B'). 07.2.8 

Proof: 1. f(B) ~ f(B'): we claim that f(B) ~ f(B') with underlying bisimulation, Rr. 

defined such that, if s is the accounting place added by the guarding of Band s' 

that added by the guarding of B', then Rr = (-f( B) X -r( B')) U (f( B)- X f( B')-) U 

{(s, s')} U R. That Rr is interface respecting is clear from its definition. 

lOWhere ;,(R) = U {;,(r) x ;,(s) I (r, s) E R}, with the individual :,5 being calculated in the obvious way. 

+,(R) is defined analogously. 
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The remainder of the proof is similar to that of Theorem 1.2.1. 

2. f2y(B) ~ ny(B'): we claim that ny(B) ~ ny(B'). with underlying bisimulation 

Ro = RLsB\OLy(B)O, when Band B' satisfy the extra hypotheses of the proposition. 

That Ro is an interface respecting (and, in particular. proper) relation and that the 

initialisation property holds under Ro follow from the same properties of 'R. that 

• Ly(B)· n· B· = 0 and that • Ly(B')· n· B'· = 0 (as Band B' are } "-guarded). 

o (B) 0 (B') ~ For the transfer property, suppose M E M d y and N E }vt d y with .'1 'Ro .Y. 

Then, from Lemma 7.1.2, we may write 
p 

M = U MiGiLsB\oLy(B)O 
j=O 

and 
q 

N = U NjDj LSBI\oLy(BI)O 
j=O 

with the properties of that lemma holding of the Mj Gj and Nj Dj . 

We first show that M Ro N implies p = q, and that 11 Gj = Dj and Mj C; R Nj Dj 

for each i = 0, .. . ,p. 

That M LAccy (B) Ro N LAccy(BI) follows directly from the fact that 'Ro is proper. But 

then, as M LAccy(B)= {( Sl, Gl ), ... , (sp, Gp)}, N LAccy(BI)= {( rl, Dt), .... (rq• Dq)} 

we have that p = q, and thatll Sj Ro rj and Gj = Dj, i = 1, ... , p. Moreover, 

Go = Do = d. It follows (from PI and Lemma 7.1.3(a)) that Mj ~ Mj if and only 

if Ni ~ Nj, so that the respective trees are isomorphic. 

We claim that for all i E {O, ... , p}, Mj Gj R Nj Gj. To see this we will consider the 

sets U = Uf=o Mj Gj and V = Uf=o Nj Gj, such that M ~ U and N ~ V. 

From the tree construction of Lemma 7.1.2 we have that 

and 

(with the di distinct), whence 

and 

11 After reindexing if necessary. 
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where {Si' sa = -IT (the unique return transition in B corresponding to "') and 

{ri' r[} = -/~ (the unique return transition in B' corresponding to r;). \Ye note that 

M Rn N implies M R N, from the definition. 

We will show that U R V, whence the claim follows from the interface respecting 

nature ofR. 

Suppose, otherwise, that -, U R V, i.e., 3g E Cr. such that -,( F t> {g}) R ( \. t> {g}). 

As M R N, we may assume that g E {d1 , ... , dn }; let i be such that g = dj • 

Now, -,( U t> {di}) R (V t> {di}) implies either that 3r ESt> {di} such that si R r. 

or 3s E Mt>{dd such that s R ri, contradicting that R is proper. or that -,s; R ri, 

contradicting Item 4 of Definition 7.2.2, as Si R ri, by assumption. Hence C' R \'. 
and we have the claim. 

As the markings MiCi and NiDi of Band B' are related under R, we can use the 

transfer property between them to show that the transfer property holds between 

D,y(B) and D,y(B' ). So, suppose that M, M' E M~Y(B) and t E Tny(B) are such 

that M[t:a)M' for some a E subsny(B)(t), and that N E M~Y(B') with .\[ Rn S. 

I 7' N' Mny(B') h h -n I We must show that there is atE .Lny(B')' E d suc t at t 1'-0. t, 

M' Rn N' , and N[t' : a)N' . 

We first consider the case when t is an augmented local transition, t = ~IU say. 

Let I' E LT(B) be such that 1= fn(l'). Then, from Lemma 7.1..5, there is a unique 

j such that Mj Cj [I') MJ Cj. Moreover, from the above, JIj q R .Y; q. Hence, as 

B ~ B', there is a local transition k' E LT( B'), and a marking Sf Cj E M~;, such 

that I'R k', Njq[k/)NJq and MJq R NJq. 

Define t ' = fn(k') E TB~, whence t Rn t'. Define N' such that N[t/:a}N '. That 

M' Rn N' follows easily. 

To extend to the general case we will consider when t = ~h, ... , lnU with n > 1. 

Then, as we work in the most permissive label algebra and as B is complete, ;\[ 

concurrently enables the Ii. Hence, as B ~ B', we may find local transitions kj E 

LT(B'), with Ii R kj , and which are, by Proposition 7.2.6, concurrently enabled at 

N. 

Define t' = ~ kl' ... , kn U. Then t R t' whence, from the hypotheses, t' E T B'· If 

N' E M~Y(B') is such that N[t':a)N' , it is not difficult to check that "I' R Y. 

Hence the result. 

The proof of the transfer property in the other direction is similar. .7.:2.-': 
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An important observation for the demonstration of the fix-point nature of the recursive construct 

is that nr, as constructed in the guarding case of the above proof, is interface respecting even if 

'R is proper but not interface respecting. For the fix-point result we will construct a proper (but 

not, in general, interface respecting) relation which forms a pre-strong bisimulation betw~n 

(able pre-High Level Petri Box) ny(B) and (High Level Petri Box) Jl 1'.B for a }'-guarded High 

Level Petri Box B. Through an immediate subsequent application of the guarding operator (as 

occurs in the recursive construct) we will then have that f(ny(B)) :::::: f(Jl Y.B). 

COROLLARY 7.2.9 For Band B' as in Item 2 of Proposition 7.2.8, and for D a syntactically 

generated High Level Petri Box, D[ Y +- B] :::::: D[ Y - B']. 0 7.2.9 

Proof: Suppose D = HLPB( t). From the syntactic nature of refinement there is a (possibly 

auxiliary) High Level Petri Box term (' such that D = HLPB(t') and which contains no 

applications of refinement (but in which nz(_) and r(-) might appear). Using structural 

induction on t' rather than t, we may use Theorem 7.2.7 and Proposition 7.2.8 for the 

result. .7.2.9 

As an example of the relationship between t and t' in the proof of Corollary 7.2.9, consider the 

case when t = JlZ.((all(Z+ Y))[Z +- f(Z)]). Then t' = all(f(nz(all(f(Z)+ }')))+ Y), whenc(' 

we may apply structural induction to ('. 

We discuss the requirements for a full congruence with respect to refinement and recursion in 

the Discussion at the end of this chapter. 

7.3 The Fix-Point Relationship between Refinement and Recur-
. 

Slon 

From the definitions, the reader will understand that ny(B) and Jl Y.B may have vastly differing 

(but finite) numbers of places (according to the number of times that the subject process variable 

}' of the refinement appears free in B). We observe that there will, in general. be no structural 

equivalence between Jl Y.B and B[Y .- Jl Y.B] to extend to a behavioural equivalence (unlike 

Chapter 5). This has motivated the development of the strong bisimulation in the previous 

section; in this section we will use the congruence properties of strong bisimulation to show that 

11. Y.B :::::: B[ Y +- Jl Y.B]. 
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The demonstration of the relationship is, as we shall see, technically involved. However. it is 

also intuitively very simple and is based on the following observation of the relationship between 

the structures of D,y(B) and JL Y.B: 

OBSERVATION 7.3.1 [Naming Convention] As we are concerned with characterising the struc

tural relationship between D,y(B) and JL Y.B, we will use a convention for the naming of places of 

the High Level Petri Boxes, which is based on the following observation: that for B a }' -guarded 

High Level Petri Box with Ly(B) = {lb ... ,In }, n 2: 0, then JLY.B consists. essentially. of one 

copy of B together with n copies of f!y(B). Fixing an (arbitrary) ordering, 11, .... In. of the 

set Ly(B), and of the accounting places related to them, SI, •.. , sn, we may: 

1. annotate the places of JL Y.B which are also in B by 0, 

2. annotate the places of JL Y.B which are also in the copy of f!y(B) which replaces Ii. withi . 

• 7.3.1 

To illustrate the ideas underlying the proof we refer the reader to Figure 7.3 in which is shown a 

Y -guarded, syntactically generated High Level Petri Box B (the Y -guarding of the denotation 

of the High Level Petri Box term t = (a;Y;c)ll(b;Y;d)) together with J.lY.B and f!y(B). The 

places have been decorated under the naming convention of Observation 7.3.1. With this example 

we will show that the existence of the strong bisimulation is crucially dependent upon the 

characterisation of reachable markings of f!y(B) provided by Lemma 7.1.2. and so is further 

justification of the particular choices which have been made in the development of the High 

Level Petri Box model. 

As can be seen in the figure, to each local transition12 of f!y(B) there corresponds three local 

transitions in J.l Y.B, one corresponding to each of the two occurrences of the process variable 

}' in B, and one for the original corresponding local transition of B. 

As an example, we will consider behaviours from the respective standard initial markings13 

M{tY(B) and MU-,Y·B. Fire (in any order possible) the abstract transitions labelled a. J.lc, b, 

Ile of f!y(B) and J.l Y.B, respectively, so as to have reached the marking 

1. ME Mfr(B), where M(l) = M(2) = { . ..LI--, . ..L-l}, M(7) = { . ..LI--}. M(8) = { . ..L-l} (with 

all other places empty), and 

12We have chosen a High Level Petri Box in which no relabelling has taken place, so that abstract transition, 
correspond to local transitions. This simplifies the illustration somewhat, although the ideas of the illustration 
are entirely general. 

13Which, for clarity, do not appear in the figure. A prepared reader will already have equipped themselves with 
'token-able' material for the token game which follows. 
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IlYE 

Figure 1.3: The denotation of the High Level Petri Box term (0: }':c)ll(bY:d)P' - f( Y)J. with 
the recursiVE' and \\'inding operators applied. Places are annotated according to the naming 
convention of Observation 1.3.1. 
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2. M' E M<.rB such that M'(1(1») = M'(2(1») = {.lJ-} .. \['(1(2») = .\['(2(2») 

M'(7(0») = {._U-} and M'(8(0») = {.1..-I} (with all other places empty). 

221 

{.1.. -I}. 

The reader will note that for all s E SOy(B), UiE{0,1,2} M'(s(i») = M(s) and will quickly see that 

the obvious generalisation of this property is, in fact, an invariant of the symbolic firing rule. 

lt provides a many-one mapping between reachable markings of M~Y.B and ,\.1~y(B). \Ye wish 

to show that a bijection exists so that we should provide an inverse mapping to t his many-one 

mapping. The extra information by which this resolution is possible is contained in the markings 

of the accounting places-as can be seen from the figure, the firing in f! y( B) of any part icular 

j.Lc-transition at a marking reachable from a standard initial marking simultaneously places a 

token in the initial places of f!y(B) and in its associated accounting place. The token in that 

accounting place, by Corollary 7.1.8, forms a postfix of all subsequent markings of the recursive 

call; it is this token's postfixing of reachable markings of J.l LB from which we may determine 

the copy of f!y(B) in J.l Y.B in which a token should appear. 

For instance, by examining the accounting places (7 and 8) we see that all tokens with postfix 

. ..Lr were generated by the firing of the left-hand side J.lc-transition, i.e., that guarding Y -local II 

of B, and hence should mark the corresponding places, Le., those decorated with (I). Similarly. 

tokens with postfix .1..-1 were generated by the firing of the right-hand side J.lc-transition, i.e .. 

that guarding Y -locall2 of B, and should mark places decorated by (2). A similar device may be 

used to determine the occupancy of accounting places of J.l Y.B. Tokens which are not postfixed 

by a token in an accounting place appear in places decorated by (0). 

By firing the local transitions of J.l Y.B corresponding to those fired in f!y(B), the reader will 

rapidly be convinced that this produces the correct correspondence between markings. 

7.3.1 The Nature of the Behavioural Relationship Between 0. y {B) and J.l Y.B 

We will show, in this section, that the naming convention of Observation 7.3.1 is a proper relation 

which satisfies the weaker precondition of the case for guarding in the proof of Theorem 7.2.7 

(as was noted after Proposition 7.2.8). 

Throughout this section we will assume that B is a Y -guarded, syntactically generated High 

Level Petri Box over a maximally permissive PV-extended label algebra £. :'1 o reo\"(' r , we will 

assume that B, f!y(B) and J.l Y.B have had their places decorated as given by Observation 7.3.1 

and that Ly(B) = {ll, ... ,ln}. n ~ 0 (with corresponding accounting places {Sl, ..... ,n}). For 

notational convenience, we will denote f!y(B) by Bn and J.l Y.B by' BIl. 
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7.3.1.1 Formalising the Naming Convention 

The naming convention is formalised as a proper (but not necessarily interface respecting) rela

tion J( ~ SBn X SBI' defined such that J( = {(r, r(i)) IrE SBn 1\ i = 0, .... n}. ~ote that It: is 

interface respecting if and only if n = 0, i.e., there were no Y-Iocals in B. As It: ~ SBn X SBI'. 

using Definition 7.2.1, J( lifts to a relation, R, between the components of BO and BJ.l. such 

that: 

1. for U ~ SBn, V ~ SBI', U K V implies U 

where jj E {O, ... , n} for i = 1, ... , m. 

2. for h E LT(BJ.l), if: 

(a) h is in the 'outer' copy of B, then either: 

i. ·h· n Accy(B) = 0 whence there is a unique [' E LT(B) such that h = ['. For 

[ E LT(ny(B)) the unique local transition such that [ = 10(1') we will write 

h = [(0) in this case, 

11. • h·nAccy (B) = {si} whence there is a unique [' E LT( B) such that 14 h = It (I'). 

For [ E LT(ny(B)) the unique local transition such that I = 10(1'), we will write 

h = [(0) in this case. 

(b) h is in the 'inner' copy of ny(B) which replaces Y-Iocal Ii E Ly(B) whence there is 

a unique [' E LT(B) such that h = 11'Uo(l')). For I E LT(ny(B)) the unique local 

transition such that I = 10(1'), we will write h = I(i) in this case. 

Given this naming of local transitions, we conclude that, for I E LT(Bo), h E LT(BIl), 

[R h if and only if hE {[(i) liE {O, ... , n}}. 

Moreover, when [R h, then ci = ch, 7 = Ii, [c = hC. and: 

·1' n Accy(B) = 0 

.[' n Accy(B) = {si}; 

and 

I'· n Accy(B) = 0 

I'· n Acq-(B) = {si}; 

14Where 1/, i = 1,2. are the auxiliary relations defined for the local transition refinement of a High Level Petri 

Box, and In is the auxiliary relation defined for the winding auxiliary. 
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(b) if h = Z(i), i > 0, then 

and 

3. for tl E MF(LT(Bo)) and t2 E MF(LT(BJ.t)), tl K t2 and tl 

JlZ(i!) z(im)n.' h' {O }' 1 t2 = lJ 1 , ... , m If' WIt Ji E , ... , n , z = , ... , m. 

4. for M E IF(SB!1 X C.c) and N E IF(SBI-' X C.c) (both finite markings). M K /\' and JI = 

{(sI,d1), ... ,(sp,dp)} implies N = {(sli!),dl), ... ,(s~jp),dp)}, for ij E {O, .... n}, i = 
1, ... ,p. 

We claim that K n (Mt X Mf"') is a bijection between Mt and Mr. To see this we must 

look more closely at the 'switch tokens' which appear in the accounting places of o.y(B). As 

we saw in the above illustration, these 'switches' consisted of the first tokens to arrive in the 

accounting place. These are the tokens contained in M min: 

DEFINITION 7.3.2 Let M E M~!1. From Lemma 7.1.2 there is a unique decomposition 

M = Ui MiCi lSB\oLy(B)O, with the properties of that lemma holding. Define 

Mmin = MoColAccy(B) 

• 7.3.2 

Then: 

LEMMA 7.3.3 For all M EMf: 

2. For each i > 0 there is a unique j with (Sj, Cj) E Mmin and Cj ~ Ci· 07.3.3 

Proof: 1. We have that Mo -< Mi and Mo -< Mj and Mi#Mj in this case, whence PI of 

Lemma 7.1.2 gives the result. 

2. That there is at least one such j is clear. To show there is at most one, suppose 

there is Ck f. Cj such that (Sk, Ck) E Mmin with Ck ~ C. By assumption, Cj ~ C. 
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so that CIc c q or Cj C CIc. Assuming the former (the other case being similar) we 

have that MIc -<+ Mj, whence (Sj, Cj) rt Mmin, a contradiction. 

Hence the result. • 1.3.3 

In the sequel for M E Mf\ if (s,g) E MaCa, we will write 6M (s.g) = 0; if (s.g) E J/ie we 

will write 6M (s,g) = k, where Sj (as given by Item 2 of Lemma 7.3.3) is sl.: (the accounting 

place associated with [Ic E Accy(B)). Clearly, from 7.1.11, 6M (s,g) is well-defined. ~Ioreowr. if 

ILy(B)1 = n then 6M (s,g) E {O, ... ,n}. 

The characterisation of the naming relation of reachable markings is approached through j, 

which will turn out to be, simultaneously, a bijection, and K n(Mf X Mr'). 

~ 11 ~ 

DEFINITION 7.3.4 Define a relation .J ~ M~ X P(SBI' X C.c) such that Ml .J ;\/2 when 

MI = ~(s}, dI ), ... , (sn' dn)~ and M2 = ~(s~jd, dIl, . .. , (s~n), dnlrr with ji = 6M1 (Sj, dd· 

.7.3.4 

Then: 

PROPOSITION 7.3.5 

1 .J~. MBI1 - MBI'. 
. • d = d' 

2. (a): j(MJ,BI1) = Mf'BI' and (b): j(MrBI1) = MrBI'; 

07.3 .. 5 

Proof: 1. That j ~ M~11 X P(SBI' ---+ C.c) is a total, injective function follows from 

Lemma 7.3.3. As j is functional, we will write j(M) for the unique N such 

that M j N. 

As J is injective, it is bijective onto its range. For the result, then, we must show 

only that ran(J) = M~I'. 

2: we show that, for each N E M~I', there is a marki~g M E Mt such that :V = 
J(M). The proof proceeds by induction on the length of the local transition 

sequence 

Mf'BI' = NO[ll) ... Nn-l[ln)Nn = N E M~I' 

which led to N. 
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B C I BP 
ase ase: n = 0, whence N = Md' . Choose.\/ 

follows from the definitions. 

Inductive Step: Let n > ° and suppose the result holds for n - 1. i.e .. there 
. Bn ~ 

eXIsts Mn- 1 E Md such that Nn- 1 = 3(Mn- 1 ). As Sn-l[ln)Sn. there are 

contexts e and I such that I = C In e - Zn C and 

Nn = (Nn- 1 \ -Zn x {e}) U Zn - X {f} 

Let Z E LT(Bo.) and i E {O, ... , n} be such that In = l(i). and let I' E 

LT(B) be such that Z = 10.(/'). From the definition of j, that .Yn - 1 = 
{(s~i1),dt), ... ,(s~m),dm)} implies M n - 1 = {(sl,dt),,,,,(sm,dm )}. Moreover, 

as C Z = C Zn and ZC = Zn c, if 

M' = (Mn - 1 \ -Z x {e}) U Z- X {f} 

then Mn - 1 [l)M' E M~. 

We show that N =j (M'), whence we may set M = M' for the result. 

There are six cases to consider corresponding as to whether I is a call or a 

return transition, or neither, and as to whether i = ° or i > 0. We give the 

proof for one case only, that when Z is a call transition and i = 0, the others 

being broadly similar. 

As 1 is a call transition, we may assume that I- n Accy(B) = {sw} with Sw the 

accounting place corresponding to Ik E Ly(B), and that I = Cw as defined 

in Lemma 7.1.2. As i = 0, -Zn = -1'(0) = {s(O) I s E -I'} and In- = 1'(0)- = 

{s~O)} U {s(k) Is E -Bo. }. 

From the proof of Lemma 7.1.2 and th~ definition of b M ( s, g), it follows that 

(a) for all (s,g) E M n - 1 n M', bM~_l(S,g) = bM,(s,g), 

(b) -Zn = {s(m) I s E -I /\ m = bM~_l(s,e)}, 

(c) In- = {s(m) I s E I- /\ m = bM,(s,f)} 

whence 

j (M') 

as required. 

j«Mn - 1 \ -I x {e}) U I- x {f}) 

(j (M n -1) \ -In X {e}) U In - X {f} 

N 

~: we show that, for each M E Mt, j(M) E .\It~p. As for the previous case, the 

proof proceeds by induction on the length of the local transition sequence 

IBn - - - - Bn 
M/ = Mo[l1) .. ·Mn- 1[ln)M n = M E .\ltd 
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which led to M. 
. . ~ I Bn I B~ 

Base Case: n = 0, ImmedIate, as :J(M/ ) = JI/ . 

Inductive Step: Let n > 0, and suppose the result holds for n - 1. i.e .. 
~- B~-

:J(M n-1) E Md . As M n-1[ln)M n, there are contexts f and I such that 

I = C in e - in C and 

M n = (M n -1 \ -in X {e}) U In - X {J} 

We claim that J(M n-l )[/ii))J( M n), where j = min {~n-l (.5. f) I .5 E -In} (the 

min appearing for return transitions in the outer copy of ny(B) in J.l LB; these 

transitions have presets which include a (0) decorated accounting place). The 

result follows by a purely technical manipulation, for which we present only the 

case when In is a return transition on Y, which is typical (and is the source 

of the min). From Lemma 7.1.2, we may write .\1 n-l = U MiGi lSB,.LY(B).· 

As Mn-1[ln)M n, by Lemma 7.1.5, there is a unique j such that .\I}q[/')M;C} 

where in = 10(1'). Whence, for s E -I', (s, e) E Mj q. Suppose -In nAccy(B) = 
{sk} (the accounting place associated with Zk E Ly(B)). We distinguish two 

cases: 

(a) j = 0: so that bMn_1(Sk,e) = 0 and for s E B-, bMn_1(s,e) = k whence 

min {bMn_1(S, e) Is E -Zn} = 0 and -1~0) X {e} ~ J(Mn-d, 

(b) j > 0: whence bMn_1(s,e) = k, min {bMn_1(s,e) I s E -In} = k and _/~k) X 

{e} ~ J(Mn-d. 

In either case, there is an M' E MfA such that J(M n-d[lii))M', with j = 

min{bMn_1(s,e) Is E -In}. That M' = J(Mn) follows from a purely technical 

manipulation. 

Whence the result. 

2. (a) follows from the prooffor Item 1. (b) follows from the definitions and the proof 

of Lemma 7.1.2. 

3. Denote k n (Mf X Mf) by f). Then: 

~: that J c f) is clear. 

:2: as J is a bijection, if J =I- f) and N J M, then either: 

(a) there is an N' E Mf such that N' =I- l\.j with S' f) :1!. But S' f) .\1 and 

N f) M implies N' = N. a contradiction, or 

(b) there is an M' =I- M E M ~~ such that .Y f) .U'. As J is a bijection there 

is an N' E Mf such that X' =I- X but .Y' f) -'I'. But. again . .Y f) .\1' and 
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N' U M' implies N = N', a contradiction. 

.7.3 . .5 

As we have seen, if ILy(B)1 > 0 then JC is not interface respecting. However. JC is proper and 

satisfies the following: 

COROLLARY 7.3.6 For JC ~ SBn X SBP as defined above, and for each dE C.c: 

2. for all markings M, M' E Mf
n

, N E Mf P
, t1 E TO and a E subsBn(td, whenever 

M R N, and M[t1: a)M' there is a t2 E Til- with t1 R t2 and a marking X' E MfP such 

[ 
~ T B n T BP 

that N t2: a)N' and M' JC N'. Moreover, if M' = Md' then N' = Md' also, 

3. for all markings M, M' E M f P
, N E M f

n
, t1 E Til- and a E subs

Bp 
(t1), whenever 

M R N, and M[t1: a)M' there is a t2 E TO with t1 R t2 and a marking N' E Mfn such 
~ T BP T Bn 

that N[t2: a)N' and M' JC N'. Moreover, if M' = Md' then N' = Md' also. 

07.3.6 

~ n 
Proof: Follows from the proof of Lemma 7.3.5, given that JC n(Mf X Mr) is a bijection 

between Mf and Mfp. .7.3.6 

/c is, thus, a pre-d-strong bisimulation between D,y(B) and J.L Y.B for each dE C.c. 

The only other result we need is that D,y(B) and J.L Y.B (as Band B', respectively) satisfy the 

hypotheses of Item 2 of Proposition 7.2.8, : 

LEMMA 7.3.7 Let t E MF(LT(Bo)), t' E MF(LT(BIl-)) with t ii t'. Then t E T Bn if and 

only if t' E TBp. 0 7.3.7 

Proof: Follows easily from the construction. • 7.3.7 

Whence we have: 
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THEOREM 7.3.8 Let B be a Y-guarded syntactically generated High Lewl Petri Box. Then 

fLY.B ~ B[Y <- J.lY.B]. 0,.3.8 

Proof: From Corollary 7.3.6, K satisfies the weaker conditions for Kr, as defined for the guarding 

case of the proof of Proposition 7.2.8, to be an interface preserving strong bisimilarity 

between r(ny(B)) and r(J.l Y.B). As B is Y-guarded there is a B' such that B = 
B'[ Y <- r( Y)], J.l Y.B = B'[ Y <- r(ny(B))] and B[ Y <- J.l Y.B] = B'P" <- r(J.l Y.B)], 

and the result follows from the syntactic nature of refinement and the congruence nature 

of strong bisimulation (Theorem 7.2.7, Proposition 7.2.8 and Corollary 7.2.9). .,.3.8 

7.4 Discussion 

7.4.1 Strong Bisimulation of High Level Petri Boxes 

We have demonstrated the fix-point nature of the relationship between the denotations of Jl Lt 

and t[ Y <- Jl Y.t]. Although there was no simple structural equivalence between the High Level 

Petri Boxes which formed the respective denotations, the result went through due to the ability 

to define an operational behavioural equiValence on the High Level Petri Boxes in question. 

As was mentioned, this operational definition is based on the concurrency preserving strong 

bisimulation of Olderog, [Old91]. Olderog's definition of strong bisimulation is stronger than 

those of [Pom85, vGV87], for instance, in that it uses structure (i.e., places) rather than be

haviour (i.e., marking) for the basis of the state-relationship. From the proof of Theorem 1.2.7 

(and, in particular, the case for relabelling), we see that this feature of the strong bisimulation 

is necessary for the extension of strong bisimulation to a congruence; marking based notions of 

strong bisimulation would not, in general, suffice. 

As an example, compare the terms tl = alia, and its 'interleaved' version t2 = (a;a)+(a;a). We 

will assume that we have a marking based notion of strong bisimilarity which identifies these 

terms. Consider now relabelled versions tl [ccs] and t2 [ccs] (with ccs the CCS-style relabelling 

of Example 2.1.1, page 8) which are clearly not strongly bisimilar: tl can perform a silent action 

stemming from the synchronisation of a and a whereas t2 cannot. 
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7.4.2 Strong Bisimulation as a Full Congruence 

The congruence nature of strong bisimulation as given by Proposition 7.2.8 and Corollary 7.2.9 is 

partial in that: for winding (and hence recursion), we require that High Level Petri Boxes have 

the same 'synchronisation structure' (i.e., abstract transitions in the High Level Petri Boxes 

must correspond); for refinement the congruence holds only with respect only to the second 

operand. 

That full congruence in the case of refinement does not follow from its syntactic nature can 

be seen from considering syntactically generated High Level Petri Boxes B, B1 = HLPB( td 

and B2 = HLPB( t2) with B1 ~ B2· To use the syntactic nature of B1 and B2 to show that 

B1 [Y .- B] ~ B2 [ Y .- BJ, would require t1 = ~ which, of course, is not the case in general 

(cf. Theorem 7.3.8). However, we conjecture that a more direct proof of the congruence with 

respect to the first operand could be developed from a characterisation of the behaviours of 

B[Y.- B'] in terms of those of Band B' (as was given by Lemma 7.1.2 for the other operators). 

This leads us to the conjecture that: 

CONJECTURE 7.4.1 07.4.1 

It would appear that strong bisimulation is a full congruence for winding when the strong 

bisimilar High Level Petri Boxes are syntactically generated. To see why this is we will consider 

the High Level Petri Boxes Band B' which appear in Figure 7.4: although B ~ B', f!y(B) ¢ 

D,y(B). The non-congruence is a corollary of the fact that the abstract transition labelled 

a EEl b is dead at every reachable marking of B' (even in the most permissive label algebra) in the 

unwound High Level Petri Boxes, whereas the marking {1 -> { . .ll-f} , 2 - { . .ll-f} , 3 -> {.-If}} E 

M~r(B) n Mfr(B
1

) enables it in fly(B') whereas, in ny(B), there is no corresponding abstract 

transition to be enabled. The reader will note, however, that B is not syntactically generated: 

the f in the arc annotations must appear through a relabelling, and that relabelling would 

produce the required abstract transition. This leads us to conjecture that: 

CONJECTURE 7.4.2 

D,y(B'). 

For B ~ B' syntactically generated High Level Petri Boxes, ny( B) ~ 

07.4.2 

We note that the full congruence nature of strong bisimulation was not required for the fix-point 

nature of the recursive construct. 
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Figure 7.4: In which B ~ B' but f!y(B) 'I:- f!y(B'). The marking 
{1-+{.JJ-f},2-{.JJ-f},3-{.--1f}} enables transition labelled a EB bin f!y(B') but 
there is no corresponding transition in f! y( B') to be enabled. This marking is reachable in 
neither B nor B'. Note that B is not syntactically generated. 

7.4.3 Weaker Bisimulations 

The definition of strong bisimulation is just about the strongest one could imagine (while still 

allowing loops to be unwound in High Level Petri Boxes). Whereas this was sufficient for the 

purposes to which it was put, i.e., the demonstration that the recursive construct is a fix-point of 

the recursive operator, it does mean that we will distinguish many High Level Petri Boxes which 

are behaviourally indistinguishable, and which cannot be distinguished through composition. 

For instance, the commutativity and associativity of concurrent and choice compositions are not 

included under the strong bisimulation, i.e., for syntactically generated High Level Petri Boxes 
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B1 and B2, B111B2 ':f- B211B1 • This would, of course, be a desirable property. as (we conjecture) 

B111B2 and B211B1 are not distinguishable through composition. 

The reason that strong bisimulation does not include the above case is that we have been very 

strict in preserving the 'absolute' rather than the 'relative' identities of processes involved in 

the High Level Petri Boxes, i.e., strong bisimulation does not consider that the swapping of 

't-/-1 pairs in the arc annotations of local transitions as 'harmless'. Intuitively, all that would 

be required to accommodate such changes is not to force the pre- and post-contexts of a local 

transition to be equal: equality modulo f- /-1 pairs would be sufficient. 

Technically, at least definitionally, this change would not be too difficult. However. it would 

require a more formal treatment of the symmetries of the Flow predicate and, as a brief inspection 

will confirm, would complicate many of the proofs of the congruence nature of tlH' resulting 

strong bisimulation. 

Another example in which the weakening would be attractive is that we have defined strong 

bisimulation using the most permissive label algebra. In particular, this forces 'dormant' la

bels (Le., those with order strictly greater than 1) to be considered as part of behaviour. An 

interesting question is, then: 

Is it possible to define a strong bisimulation which is a congruence with respect to the 

High Level Petri Box Algebra, which does not require the firing of transitions labelled 

with dormant labels? 

Unfortunately, the answer appears to be 'no'. To illustrate this, we will briefly consider the 

properties of the following weaker flavour of strong bisimulation which considers behaviours in 

the actual label algebras over which its operands are defined (and which are, of course, not 

necessarily maximally permissive): 

DEFINITION 7.4.3 Let £1 and £2 be label algebras and d E eLl' We say that High Level 

Petri Boxes B1 and B2 over1S £1 and £2 respectively are label algebra d-strongly bisimilar. 

written Bl >:::.1a B2 , if £1 = £2 and there exists an interface respecting relation R ~ 51 X 52 such 

. that: 

15Not .cjV and .cfv as previously. 
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2. for all markings Mi E M ~', i = 1,2, tI E TI , and 0: E subsBl (td. whenever Jh R .'h. and 

MI[tI: o:)NI there is a ~ E T2 with tI R ~ and a marking S2 E .'vt.tp such that .\f2[t2: o:)S2 
~ TB Tlh and Nl R N2. Moreover, if NI = Md ' 1 then N2 = Md' also, 

3. for all markings Mi E M~j, i = 1,2, ~ E T2, and 0: E subs lh (t2). whenever -'h R Jh. and 

M2[~: o:)N2 there is a tI E TI with tI R t2 and a marking NI E M~l such that -'fI[tI : 0).Y1 
~ T B T B and NI R N2. Moreover, if N2 = Md ' 2 then NI = Md ' 1 also. • i'.-l.3 

We will assume that ~/a bears the same relationship to ~1a as ~ does to ~d. 

That ~/a is not a congruence is shown by the example of Figure 7 .. 5 in which are illustrated High 

Level Petri Boxes Band B' (the denotations of High Level Petri Box terms stopll( b+ Y)[J] and 

all(b+Y)[J]' respectively) and for which B ~/a B' in any label algebra in which f(b) fi A, but 

for which J-lY.B ¢/a J-lY.B' if f(a ffif(b)) EA. (We note that B ¢ B'.) 

Prohibiting the synchronisation behaviour which is seen in the example of the figure would be 

one way of recovering the congruence nature of the weaker notion of strong bisimulation. More 

generally we conjecture that, for even weaker notions of bisimilarity, the congruence nature may 

be determined through the restriction of the synchronisation behaviour allowed in label algebras. 

A taxonomy of label algebras and their congruence inducing properties would be an interesting 

topic for future work. 

7.4.4 Finite Approximants to Recursive Behaviours 

U sing Theorem 7.3.8, we may develop the notion of a finite approximant to a recursive behaviour. 

Given a syntactically generated Y -guarded High Level Petri Box B, we may construct a class 

of High Level Petri Boxes, the finite approximants to J-l Y.B, {B~;) liE N} such that 

B(O) 
ref 

B(i+I) 
ref 

B[Y f- stop] 

B[Y f- B(i)] 
ref 

We note that B;~) is a syntactically generated High Level Petri Box in which winding does not 

appear, and so which fits within the syntax of Definition 4.8.1 (modulo the possible appearance 

of guarding and process variables other than Y). Moreover, from Theorem 1.3.8, it is not 

difficult to see that B;~) contains (at least) the markings of J-l Y.B which can be reached from a 

standard initial marking by firing n of fewer local transitions. 
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~la 

B B 

I-'c 

I-'r 

Figure 7.5: In which B ~/a B' but J.L Y.B ¢Ia J.L Y.B'. The figure illustrates that f!y(B) ¢Ia 

ny(B') in any label algebra in which f( a) = 0, f( a EEl b) = 0 but f( a EEl f( b)) E A. The marking 
{1 -+ {(.)}, 2 ---* {(. L -1f .1. J f-f)}} does not enable transition t in f! Y( B) but enables transition t' in 
nY(B')' This marking is not reachable in B nor B'. 

As B!~) contains no applications of the winding auxiliary, (with minor extensions for the guarding 

operator and process variables) the constructions of Chapter 5 will apply (mutatis mutandis, 

giving a normal form which applies to all finite behaviours of the recursive construct. This 

may give a simple method for showing that the commutative and associative nature of parallel 

and choice compositions, based upon the symmetries of the H-synchrony rule, extend to all 

syntactically generated High Level Petri Boxes. 

Finally, we note that the accounting places used in the recursive construct serve no purpose in 

the finite approximants, but are 'harmless'. 
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7.5 Summary 

In this chapter we have demonstrated certain important behavioural properties of syntactically 

generated High Level Petri Boxes. The demonstration of these properties is by no means trivial, 

but has justified each of the choices which have taken in the development of the High Level Petri 

Box model. 

More specifically, we have shown developed a full behavioural characterisation of syntactically 

generated High Level Petri Boxes in Lemma 7.1.2. This characterisation is most interesting in 

the case of recursion, in which we have shown that any reachable marking of an application of the 

recursive construct can be modelled by a tree, and behaviours correspond to 'tree'-morphisms. 

Indeed, with suitable generalisations, the behaviour of applications of each operator might be 

interpreted this way. 

We have also developed the basis of a family of behavioural congruences (concurrency preserving 

strong bisimulations) on High Level Petri Boxes. Moreover, and importantly for the ultimate 

goal of the work, such bisimulations will form the basis of a rich algebraic characterisation of 

the High Level Petri Box model. 

We have also shown the fix-point nature of the recursive construct. With this result comes 

the possibility of producing finite approximants to recursive behaviours, and with them the 

possibility of extending the normal form of Chapter 5 to the behaviours of all syntactically 

generated High Level Petri Boxes. 

It is interesting to note that the proofs of the congruence nature and of the fix point nature 

relied crucially upon the behavioural characterisations of Lemma 7.1.2. This lemma and its 

corollaries would, then, seem to be important tools for the manipulation of the behaviours of 

High Level Petri Boxes. 

In the next chapter we summarise the results and contributions of this work, and consider how 

the current state of the High Level Petri Box Algebra and of the High Level Petri Box model 

may subsequently be developed. 



Chapter 8 

Conclusions 

The goal of this work was to define an algebra of high level Petri nets and to begin the char

acterisation of its properties. In this chapter we will review the contribution the work reported 

here may be seen to have made towards this goal. 

8.1 Summary 

8.1.1 Label Algebras 

Label algebras encode communication models as commutative, associative structures. Unlike 

the synchronisation algebras of Winskel which they extend, label algebras are not limited to 

inherently binary synchronisations, allowing communication models in which, for instance, syn

chronisation is 3-way, but in which no 2-way synchronisations are allowed (cf. Example 2.1.2). 

We have provided label algebras for the most well-known of the communication models of the 

literature: Le., CCS and TCSP, together with those for the low level Petri Box Calculus and 

Taubner's algebra, A. 

8.1.1.1 H-Synchrony 

We have introduced a new SOS-style rule called H-synchrony which combines aspects of the 

SOS-rules for the expression of Asynchrony, Synchrony and Morphism (Section 2.2.2). The 

H-synchrony rule synchronises actions from concurrently executing processes (if that synchro

nisation is allowed by the chosen label algebra), and is used to characterise the conditions under 

235 
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which atomic actions of a High Level Petri Box may be executed (i.e., the conditions under 

which abstract transitions may fire). 

8.1.2 The High Level Petri Box Model 

We have defined a highly modular class of high level Petri nets. High Level Petri Boxes, consisting 

of entry and exit, and communication interfaces through which all composition between High 

Level Petri Boxes is performed. The claim to modularity is justified through the fact that the 

innards of a High Level Petri Box are hidden during composition. We have shown that High 

Level Petri Boxes are equivalent to a subclass of the PrT nets of Genrich, in terms of which 

is defined their behaviour (Section 3.3). Incorporated in the translation is the logical encoding 

of the H-synchrony rule as the selectors of the PrT net transitions, which ensures that their 

behaviour is derived therefrom. 

The notions of completeness, decoupling and most permissive label algebras were introduced 

in Section 3.4, and in that section we have given important tools for the characterisation of 

behaviours of High Level Petri Boxes, underlying much of the su\:>sequent work: 

1. that we may consider only local behaviour in the determination of positil'e monotonic 

properties (Lemma 3.4.4), and 

2. that for an important subclass of High Level Petri Boxes (including those forming the 

denotation of the algebra), behaviour is independent of the initial marking when behaviours 

are considered in the most permissive label algebra (Theorems 3.4.7 and 3.4.8). 

8.1.3 The High Level Petri Box Algebra 

We have introduced an algebra of high level Petri nets, the High Level Petri Box Algebra, with 

underlying model a subclass of High Level Petri Boxes. 

The organisation of High Level Petri Boxes into the semantic domain of the High Level Petri 

Box Algebra was achieved in Chapters 4 and Chapter 6 through the definition of a compositional 

semantics on the following syntax: 

DEFINITION 8.1.1 [High Level Petri Box Syntax} Given a label algebra £. = (A, R), the £.-
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Syntax of the High Level Petri Box Algebra is defined as follows: 

t .. - stop 

U uEA 

Y Y EPV 

til t Concurrent composition 

t;t Causal composition 

t+t Choice composition 

t[j] fER Relabelling 

try - t] Y EPV Refinement 

J.L Y. t Y EPV Recursion 

.8.1.1 

The syntax is parametrised by a label algebra, £, whence for each communication model there 

is a High Level Petri Box Algebra. There are, therefore, High Level Petri Box Algebras for ('CS. 

TCSP, the PBC, etc. 

Which operators to include in the algebra was, more or less, determined by the existing process 

algebra literature. We have operators for the expression of asynchrony (concurrent composi

tion), causal dependence (causal composition), conflict (choice composition), synchronisation 

(relabelling), modularity (refinement), and infinite behaviours (recursion). 

We note only that: 

1. The use of causal composition rather than prefix (which is the more traditional expression 

of causality in action based approaches and therefore many net based approaches) was 

motivated (in Chapter 4) to be the pragmatic choice for the expression of causality seeing 

the equal prominence given to state and action in the net setting. As we have seen, prefix 

and sequence are interderivable; however, as we have also seen the derivation of prefix from 

sequence is very much easier than the derivation of sequence from prefix. In particular, 

the expression of non-tail-end recursive terms is very much facilitated by using causal 

composition rather than prefix (Section 6.8.3). 

2. Relabelling is an entirely novel operator. Relabelling allows us to remove from concurrent 

composition any synchronisation component, allowing that operator to be both commu

tative and associative. Relabelling is, in consequence, the only operator of the algebra in 

which are found details of the parametrising label algebra £. 
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3. Refinement is a purely syntactic operator, by which we mean that its application commutes 

with the application of all other operators. The High Level Petri Box Algebra with and 

without refinement is, therefore, equally expressive. Refinement operators are known to 

provide for modularity and economy of expression, and we have included one such for this 

reason. 

4. It is also notable that concurrent, causal, and choice compositions have become disjoint 

unions of 'processes' (as should surely be the case), each with a different method of dis

tinguishing the operands of the union: concurrent and choice composition through the 

nominal relabellings f-, -I, Land J, and causal composition through manipulations on 

places. 

The semantic interpretation of the operators was, of course, determined by the High Level Petri 

Box model, although we have been guided in their definition by operators of the literature and, 

in particular, those based upon place multiplication. 

8.1.4 Structural and Behavioural Characterisation of the Semantic Domain 

In Chapters 4, 5, 6 and 7 we have partially characterised the structural and behavioural interre

lation of elements of the semantic domain in terms of = and == Reach (defined in Chapter 3) and 

~ (defined in Chapter 7). Table 8.1 summarises (and names) the established equivalences. 

In addition we have provided an elementary, but full, behavioural characterisation of the seman

tic interpretations of the High Level Petri Box operators in Lemma 7.1.2. With this result we 

have determined that: 

1. concurrent composition, B1 11B2, allows Bl and B2 to proceed independently; 

2. causal composition, Bl ;B2' behaves first like Bl and then, when Bl has terminated, like 

B2 ; 

3. choice composition, Bl +B2, behaves either like Bl or B2, depending as to whether the first 

action executed belonged to Bl or B2; 

4. relabelling, B[fl, for a relabelling j, allows concurrent processes of B to proceed indepen

dently or synchronise if allowed under the H -synchrony rule; 
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Concurrent composition 

[CON-COM] BIIIB2 =Reach B2 II Bl 

[CON-ASS] (B1 IIB2)IIB3 =Reach B11I(B21IB3 ) 

Causal composition 

[CAU-ASS] (B1 ;B2);B3 = BIj(B2;B3 ) 

Choice composition 

[CHO-UNIT] B + stop =Reach B 

[CHO-COM] B1+B2 =Reach B2+B1 

[CHO-ASS] (BI +B2)+B3 = Reach BI +(B2+B3 ) 

Refinement 

[REF-ID] B[Y -- B'l = B y rt FV(B) 

[CAU-REF-DIST] (BI ;B2)[Y -- B'l = BI[Y -- B'l;B2[Y -- B'l 

[CHO-REF-DIST] (BI +B2)[Y -- B'l = BI[Y .- B'l+B2[Y -- B'l 

[CON-REF-DIST] (BIIIB2)[Y -- B'l = BI[Y -- B'lIIB2[Y -- B'l 

[REL-REF - DIST] B[j][Y -- B'l BI [ Y ~ B'l[jl 

Recursion 

[REC-CON] j..LY.B ;::::: B[Y -- j..LY.Bl when B is Y -guarded 

Table 8.1: Equivalences of High Level Petri Box Terms. 
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6. recursion, J.L Y.B, behaves as B[ Y ~ J.L Y.B] (when B is Y -guarded). 

With Lemma 7.1.2 we thus claim to have shown that the operators of the High Level Petri 

Box Algebra have the behaviour that would be expected ofthem, given the description of their 

counterparts in the process algebra literature. 

8.2 Future Work 

Many aspects of the work presented in this thesis are, we feel, essentially complete in themselves. 

These include the basic notions underlying High Level Petri Boxes such as, for instance. the 

definition of label algebras (Section 2.1); the PrT semantics and the behaviour of High Level 

Petri Boxes (Chapter 3); the algebra (Chapters 4 and 6); and the structure of its semantic 

domain (Definition 2.5.15 and Chapters 4 and 6). 

However, there are many areas in which the work is incomplete, and would provide the basis for 

productive future work. Among the nearer-term goals should be: 

1. The introduction of 'restricted' combinational closure operators into the algebra. For 

instance, consider the class of operators {_Ell.}. each of which introduces multisets of tran

sitions into a High Level Petri Box, but restricted so that the multisets introduced have 

order less than or equal to i. The important property of such operators is that, unlike com

binational closure, they preserve the cardinality of the set of transitions of their operand 

High Level Petri Boxes. 

However, only for the special case when i = 1 is _Ell. idempotent; indeed, B'·"· ... '} = lJ'~"}. 
Rewrite () (Definition 5.2.1), and the normal form based thereon. fails to hold for an 

algebra based on these operators. Moreover, because of the (multiplicative) nature of the 

properties of _ Elli a naive extension of this rewrite would not exist. 

The single case when _Elli is idempotent, i.e., when i = 1, is harmless, and perhaps even 

useful (and, in effect, it already appears as the context manipulation component of rela

belling). If we were to consider promoting context manipulation to the top level operators, 

we would have the extra laws for a renaming (see Example 2.1.1), following directly from 

Proposition 5.4.17 and as expressed in Table 8.2. 

2. The weakening of strong bisimulation to a congruence modulo the commutative and as

sociative nature of concurrent and choice compositions (if such exists. which we strongly 

believe to be the case). 
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Relabelling (Extra Laws) 

[CAV-REL-COM] (B1;B2) 0 .f (B1 ; ·f;B2 0 .f) 

[CHO-REL-COM] (B1+B2) 0·f = (B1 ; ·f+B2 -: .f) 

[CON-REL-COM] (B11IB2) G·f = (B1 S ·f1lB2 0 .f) 

Table 8.2: Partial characterisation of transformation rules for a restricted combinational closure 
operator in combination with a renaming f. 

The goal of this weakening would be the development of observational congruences, the 

. existence of which would offer the possibility of sound (and ultimately complete. if they 

exist) axiomatisations of instances of the High Level Petri Box Algebra. It would appear 

that the obvious way of characterising sub-algebras is in terms of the label algebras over 

which instances of the High Level Petri Box Algebra are defined. Initially, we would aim 

to follow the work of the literature on the provision of observational congruences for, for 

example, CCS, attempting to derive the same results which appear therein in a High Level 

Petri Box setting. 

Related to this, the equivalences in terms of which Table 8.1 is expressed are not ordered 

by inclusion (= ~ == Reach and = ~ ~, but == Reach and ~ are incomparable). Consequently, 

the table is not expressible in terms of anyone equivalence we have defined in this work; 

a weaker bisimulation may provide such an equivalence. 

3. The development of a full, compositional behavioural semantics of the algebra as was im

plied possible in the comments following Lemma 7.1.2. We suggest that a semantic domain 

based on the notion of reach ability graphs of High Level Petri Boxes would be initially 

feasible: the current proof of Lemma 7.1.2 (mutatis mutandis) provides the description of 

this new semantic domain, together with the justification of the homomorphism condition 

(required for compositionality). 

Of course, a truly concurrent behavioural semantics should be our goal. In fact. and 

as we have seen in Chapter 5, many aspects of the structural semantics appear to lend 

themselves to analysis through partial orders based on local causality. ~Ioreover, using 

the finite approximants which were developed from the fix-point nature of the recursive 

operator we may be able to extend such techniques based to the reachable behaviours of 

all syntactically generated High Level Petri Boxes. 
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Of a more speculative and long-term nature are the following: 

1. We should develop an operational semantics, almost certainly in the Structured Opera

tional Semantics-style of Plotkin. Initially this is envisaged to be an interleaving (single 

global state) semantics, although of real value would be a fully distributed operational 

semantics (it la Degano et af). The development of an interleaving semantics would be 

relatively straightforward (based on ideas similar to those expressed in the operational 

semantics of [BK95]); a fully distributed semantics would present more of a challenge. 

The obvious result to look for here would be to show that the operational semantics and 

behaviour of the denotational semantics coincide. 

2. In the spirit of Taubner, we should attempt to characterise sub-algebras that correspond to 

the traditional (and stable) process algebras of the literature, CCS, TCSP, ACP, and Taub

ner's A, for instance. This would require us to find suitable derivations of the operators 

in the various process algebras in terms of those of the High Level Petri Box Algebra (we 

suspect this is relatively straightforward). More challenging and importantly, we should 

show that this characterisation extends to behaviours. We note that, initially, it would be 

sufficient to show that Taubner's A is contained as an instance of the High Level Petri 

Box Algebra as this includes large portions of the other approaches. 

This would most likely be approached through the operational semantics proposed by the 

previous item, as the abstractions possible from the particular details of our net-based 

approach (in particular, the explicit representation of state) may reduce the complexity of 

the arguments required. 

3. In the spirit of Devillers, we should investigate an S-invariant analysis of High Level Petri 

Boxes. The work in Chapter 5 on the definition of flat High Level Petri Boxes (perhaps 

extended to work on finite approximants of recursive behaviours, as mentioned above) will 

be of relevance here as it states, essentially, that higher and lower level Petri Box models 

are closely linked. 

4. The syntax (Definition 6.6.1) of the High Level Petri Box Algebra might be used as a 

rudimentary specification language for concurrent and distributed systems. However, a 

longer-term aim should be to provide tools for the end-user of High Level Petri Boxes. 

Initially, in the spirit of Best et at. ([BH93, BF93]), this would be through a linear 

design language allowing the algebra to be encoded using more or less traditional and 
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familiar programming constructs, hopefully making the formalism accessible to engineers 

of concurrent and distributed systems. 

That the underlying graphical and true concurrency semantics of the design notation (as 

provided by High Level Petri Boxes) is important in this regard is clear. As has been 

understood since their inception, the graphical representation of Petri nets provides much 

insight into the workings (or failings) of concurrent systems and we should make the most 

of this for engineers of such systems. For instance, tools which allow the animation of a 

specified system at the net level would, we feel, increase dramatically the accessibility of 

the formalism. 
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