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ABSTRACT 

Automatic extraction of focused regions from images with low depth-of-field 

(DOF) is a problem without an efficient solution yet. The capability of 

extracting focused regions can help to bridge the semantic gap by integrating 

image regions which are meaningfully relevant and generally do not exhibit 

uniform visual characteristics. There exist two main difficulties for extracting 

focused regions from low DOF images using high-frequency based techniques: 

computational complexity and performance.  

A novel unsupervised segmentation approach based on ensemble clustering is 

proposed to extract the focused regions from low DOF images in two stages. 

The first stage is to cluster image blocks in a joint contrast-energy feature space 

into three constituent groups. To achieve this, we make use of a normal 

mixture-based model along with standard expectation-maximization (EM) 

algorithm at two consecutive levels of block size. To avoid the common 

problem of local optima experienced in many models, an ensemble EM 

clustering algorithm is proposed. As a result, relevant blocks, i.e., block-based 

region-of-interest (ROI), closely conforming to image objects are extracted. 

In stage two, two different approaches have been developed to extract 

pixel-based ROI. In the first approach, a binary saliency map is constructed 

from the relevant blocks at the pixel level, which is based on difference of 

Gaussian (DOG) and binarization methods. Then, a set of morphological 

operations is employed to create the pixel-based ROI from the map. 

Experimental results demonstrate that the proposed approach achieves an 

average segmentation performance of 91.3% and is computationally 3 times 

faster than the best existing approach. In the second approach, a minimal graph 

cut is constructed by using the max-flow method and also by using 

object/background seeds provided by the ensemble clustering algorithm. 

Experimental results demonstrate an average segmentation performance of 91.7% 

and approximately 50% reduction of the average computational time by the 

proposed colour based approach compared with existing unsupervised 

approaches.  
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Chapter 1 

1. INTRODUCTION 

1.1 Region-of-Interest Extraction  

With the development and widespread use of digital cameras, mobile 

phones with built-in cameras, and their ability to focus on any object within a 

taken photo, the number of Web images with focused regions is dramatically 

growing. Focused regions usually represent the visual attention objects and 

meaningful content of images. The recognition of visual attention objects plays 

an important role in many computer vision and multimedia applications. In 

photography, low depth-of-field (DOF) is an important technique commonly 

used to help viewers in understanding the depth information within a 2-D photo 

[1-2]. This technique usually produces a visual effect like object-in-focus, 

which means that only the objects/regions of interest (OOI/ROI) are in sharp 

focus, whereas background regions are typically blurred, being out-of-focus [3]. 
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Low DOF images can be seen in different types of images such as sport, 

telephotos, close-up, and macro [3]. Figure 1.1 illustrates the different types of 

low DOF images. 

 

 
 

 

(a) 

   

(b) 

   

(c) 

   

(d) 

 

Figure 1.1: Type of images with low DOF. (a) Sport. (b) Telephoto (i.e., long focal 

length). (c) Close-up (i.e., large aperture). (d) Macro. 
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Extracting focused objects [4], or more generally focused regions, in an 

image is a very important task for a wide range of image processing and 

computer vision applications such as image enhancement for digital cameras [3], 

target recognition [5], microscopic image analysis, image indexing [6], 

content-based image retrieval (CBIR) [7-10], object-based image retrieval [11], 

region-based image/video compression [12], image target searching [13], focus 

tracking in video frames in TV programs, and video target indexing [14].  

1.2 Motivation and Challenges   

Extracting automatically focused regions is a problem with no efficient 

solution yet. The capability of extracting focused regions can help to bridge the 

semantic gap [8], by integrating image regions which are meaningfully relevant 

and generally do not exhibit uniform visual characteristics. The main 

characteristic of low DOF images is that the focused regions normally have 

more high-frequency information than the defocused ones. This may be the only 

clue that one can utilise to automatically extract focused regions from a low 

DOF image. Focused regions representing the region of interest may not be 

homogeneous with respect to low-level features such as colour and texture. 

Therefore, typical segmentation algorithms [15-24] are not suited to this 

problem. In typical segmentation algorithms, an image is segmented into similar 

colour and texture regions irrespective of this fact that a region is a part of ROI 

or background. Figure 1.2 illustrates a number of segmentation results obtained 

from Normalized Cut method [17].   
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(a) (b) (c) 

 

Figure 1.2: Illustration of utilising a typical segmentation algorithm (e.g., Normalized 

Cut Segmentation Technique [17]) over a number of low DOF images. (a)-(c) 

Segmentation results when using two, three, and five partitions, respectively. The red 

lines indicate the boundary of partitions. The segmentation process takes more than 20 

seconds (on average over the four low DOF images) on a Core2 Due 2.66GHz Intel 

processor and 2.00 GB of RAM.     
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There are two main challenges in automatic segmentation of interest 

regions in a low DOF image that should be addressed. One challenging aspect 

of this work is dependency on high-frequency contents [25]. Most existing 

techniques extract focused regions by exploiting high-frequency components. It 

has been shown that concentrating on high-frequency contents alone often 

results in errors in both focused and defocused regions. Therefore, the 

extraction of interest regions should be supported by some supplementary 

methods or other cues. Another challenge in this type of extraction which has 

not been adequately addressed is processing time and computational complexity. 

Proposing a time-efficient approach to extract objects from a low DOF image or 

video frame is very demanding in a variety of practical multimedia applications. 

This is especially important since low DOF images are most frequently used 

within Web images and consequently a real-time processing is required. 

1.3 Thesis Aim and Objectives 

The original aim of this work is to investigate and develop an efficient 

meaningful region extraction approach for images with low DOF to support a 

new region-based functionality in multimedia applications. The project aim 

includes identifying objects in the image foreground and removing meaningless 

blurred regions in the background in a way that overcomes the weaknesses of 

the current low DOF segmentation techniques. The effort toward achieving the 

thesis objectives includes the following aspects: 

 

- Initial classification of focused regions at the level of block size using 

a reliable clustering approach 
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- Develop a novel clustering method that overcome the weaknesses of 

dependency on initialisation process in clustering methods 

- Constructing a binary region saliency map (RSM) from the initial 

clustering result 

- Post-processing step to obtain the shape and boundary of interest 

regions using morphological operations  

- Incorporating the graph cut optimisation technique and colour 

information into our initial classification approach   

1.4 Thesis Contributions 

The original contributions presented in this thesis are summarised as 

follows: 

- A novel algorithm was developed and implemented for block-wise low 

DOF image segmentation. The proposed algorithm can effectively 

identify ROI and background blocks in a grayscale low DOF image. 

The proposed algorithm comprises a two-level based ensemble 

expectation-maximization (EM) clustering technique.   

- To augment the visibility of low intensity variations of the regions and 

boundaries, a novel methodology was developed and implemented. 

The proposed methodology includes optimising a threshold in 

difference of Gaussian (DOG) image and using morphological 

operations. 

- The last contribution of this thesis is to develop a colour-based 

automatic segmentation by incorporating the graph cut optimisation 

technique into our block-wise EM clustering algorithm.     
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1.5 Outline of Thesis 

The thesis presents the work carried out by the author in attempting to 

achieve the aim and objectives outlined earlier in Section 1.2. The structure and 

content of the thesis is described in the following on a chapter-by-chapter basis. 

Chapter 2 introduces the DOF technique in photography and its 

relationship with image segmentation. We also present a number of well known 

techniques used in this context including an image blurring model, wavelet 

transform, and also k-means clustering algorithm. In addition, the literature 

review of low DOF image segmentation techniques is provided.  

Chapter 3 proposes an ensemble clustering approach which is suitable for 

efficient block-based low DOF image segmentation. The proposed approach 

utilises a mixture of Gaussian model, EM algorithm, and an ensemble fusion 

decision approach. The outcome of this approach is a reliable partition (i.e., 

clustering result) conforming image objects (i.e., interest regions) at the level of 

block size.     

Chapter 4 aims to extract interest regions at the level of pixels in two 

different approaches. In the first approach, a DOG method and a threshold 

optimising technique are firstly employed. Then, to identify the underlying 

region shape and the boundary of an object, a set of morphological 

transformations is utilised. In the second approach, a colour-based graph cut 

modelling is utilised. Visual segmentation results for both approaches are also 

provided.        

Chapter 5 analyses the performance of the proposed approach by adopting 

a segmentation performance criterion and using two main datasets that include 
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more than 250 low DOF images. It presents the segmentation performance of 

the proposed approach in comparison with existing state-of-the-art approaches. 

To demonstrate the generalisation ability of the proposed approach, we also 

tested it using a number of images over a specified range of resolutions. 

Moreover, more than 100 images are chosen to assess the effect of changing the 

threshold on the performance of the approach.    

Chapter 6 discusses and concludes the overall results and contributions. 

The chapter ends with some pointers and comments to the future work derived 

from the thesis.  
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Chapter 2 

2. THEORETICAL BACKGROUND 

AND LITERATURE REVIEW 

2.1 Introduction 

The aim of this chapter is to review the low DOF technique in 

photography and its relationship with image segmentation. Low DOF is an 

important technique used to highlight a certain object of an image. With low 

DOF, only ROI is in sharp focus, whereas background objects are typically 

blurred to out-of-focus. In theoretical background, a number of high-frequency 

based techniques such as DOG and Wavelet, which have the potential to 

achieve low computational complexity, are presented. K-means clustering 

which is one of the most popular and well-known clustering algorithms is also 

discussed. Moreover, the literature review representing a number of strong 



10 

 

techniques used in the context of low DOF image segmentation is presented and 

discussed.  

2.2 Depth of Field and Photography 

 This section describes the characteristics of DOF in photography.  Figure 

2.1 illustrates a typical imaging system (i.e., single lens camera) containing an 

image plane and the depth information within a 2D photograph. In a typical 

imaging system, DOF is defined as the range of distances, behind and in front of 

the object, from a typical camera lens where the object appears reasonably or 

fairly sharp [1]. Most professional photographers aim to make use of a wider 

aperture, longer focal length, or closer camera-to-object distance to put the 

region of interest in the zone of sharpness (this is why we call this high-level 

information). In other words, the object points in only one plane (ideal object 

plane) in front of the camera, which are at the same level of camera-to-object 

distance, are completely focused (i.e., sharp focused). However, moving farther 

away from this plane causes blurred discs, i.e., circle of confusion (see Figure 

2.1). Accordingly, a reasonable degree of sharpness for all objects within the 

depth of field zone is obtained. 
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Figure 2.1: Illustration of depth of field in a typical imaging system at maximum 

aperture. 

It is worth mentioning that transition from sharp focused to out of focused 

regions is usually gradual, which may not even be perceived by the human eye. 

This gradual transition representing various degrees of sharpness may lead to 

smooth regions in an image.  

             

Figure 2.2:  Three examples of typical low DOF images in grayscale format. 

2.3 Image Feature Extraction and Segmentation 

Extracting image features/data (such as texture, colour, shape, and salient 

points) is regarded as a crucial pre-processing step in all content-based image 

analysis tasks such as object/concept detection, similarity estimation, image 

indexing, and CBIR systems [7, 9]. In the simplest definition, a feature 

describes a certain visual property of an image, either for the whole image 

pixels in a global manner or locally for a small set of pixels. 
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In a global feature extraction technique [9], a single feature for the entire 

image, as a global feature, represents the significant characteristics of individual 

objects in an image.  In local extraction, an image is often split in local regions 

(e.g., blocks) [8] and then features are individually computed for every region. 

This can be efficiently done by dividing an image into small and non-

overlapping blocks. It has been proven that image feature extraction at the level 

of local region is more promising compare with a global feature extraction in 

image representation and characterising [9, 26-29].  

A procedure subsequently needs to be employed to mathematically 

formulate the obtained visual features into vectors or distributions so called 

“image signature” or “visual descriptors”. Figure 2.3 depicts an overview of 

image features, signature types, and mathematical formulation [9]. 

 

Figure 2.3: An overview of image features, signature types and mathematical 

formulation [9]. 

The main goal of image segmentation is to extract relevant/coherent 

regions, which meaningfully correspond to different objects in an image. 

Segmentation by object (or relevant regions) is widely regarded as a difficult 

problem and also an active research area in the image processing community. 

Mathematical formulation 
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Segmentation process plays an important role in many content-based 

image/video applications such as image indexing (or image annotation), image 

archiving, surveillance, traffic monitoring, video conferencing, and focus 

tracking in video frames. 

Extracting meaningful and relevant regions is a major step towards image 

understanding and still remains an open problem [9]. Many segmentation 

algorithms have been developed based on either focusing on similarity of low-

level features [18-25] or incorporating high-level knowledge into the feature 

proximity process [3-4, 13, 25, 30-48]. This knowledge which assists the 

reliable segmentation process can be viewed in several forms: task-driven 

knowledge [30], predefined labels for interactive segmentation [31-35], and low 

DOF information [3-4, 13, 25, 36-48]. In a typical low DOF image, only the 

ROI areas are in sharp focus and the remaining areas are blurred and defocused. 

Accordingly, the ROI areas have more high-frequency components than the 

defocused areas [25]. This property may be the only reliable clue that can be 

used to automatically extract the interest regions of an image.  

2.4 Image Blurring Model and Difference of Gaussian Function  

Blurring effect in an image can be described by a 2D Gaussian function 

called convolution kernel or point-spread function (PSF) [49] 

                                                             
 

    
 
 
     

   
 
                                       

where   is a filter scale (i.e., standard deviation or scale) which controls the 

amount of defocusing in a region. An image with defocused regions denoted 

by         at a pixel       can be represented as the linear convolution of an 
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input image including sharp focused regions denoted by        and a Gaussian 

function                   

                                                                                                                    

where   is the convolution operation in       and     is also considered as a 

Gaussian image or the scale-space of the input image        [50-51]. It has 

been shown that by subtracting two Gaussians with two nearby scales separated 

by a constant multiplicative factor   , a close approximation of Laplacian of 

Gaussian can be constructed [52]. Accordingly, a DOG image is provided by  

                                       

                                                                                                                 

The DOG image in (2.3) can be efficiently constructed by a simple image 

subtraction. This image represents the various intensity changes of the input 

image. Figure 2.4 illustrates an example of a grayscale component of a low 

DOF image, corresponding DOG image, and also its binary image using Otsu’s 

method [53], which is a strong global thresholding method [54]. The low DOF 

image illustrated in Figure 2.4 includes uniform background and also a sharply 

focused object. For this image, intensity (luminance) variation is a 

distinguishing feature that can be utilised to cluster (or segment) the object from 

its background. The parameters   and   in (2.3) are chosen to be 0.8 and 0.5 

respectively for all these experiments [55]. Consequently, if the sharply focused 

regions contain sufficient high-frequency components, it would be possible to 
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distinguish the focused regions from the defocused ones by evaluating or 

comparing the amount of high-frequency contents.    

                  
                (a)                                        (b)                                          (c) 

Figure 2.4: An example of the grayscale component of a low DOF image. (a) Original 

low DOF image. (b) Corresponding DOG image. (c) Its binary image obtained from 

Otsu’s method [53]. 

Practical problems occur, however, when the observed image is subject to 

busy-texture areas (i.e., noise) and when the object and background assume 

some broad range of intensity values. Figure 2.5 shows a set of low DOF 

images including non-uniform/complex background (i.e., busy-texture regions) 

and smooth object boundary selected from the Corel dataset [56-57]. The 

corresponding DOG images are also obtained from (2.3) (Figure 2.5(b), (d)). As 

evident from the Figure 2.5(b), (d), there may be smooth areas in object regions 

that generate errors in these regions. In background regions, despite the blurring 

due to the defocusing, there can be busy-texture regions with high-frequency 

components. Therefore, considering high-frequency components in a low DOF 

image alone often results in errors in both focused and defocused regions.  
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(a) (b) (c) (d) 

Figure 2.5: Illustration of various low DOF images. (a) and (c) Graysacle components 

of a number of low DOF images selected from the Corel Dataset. (b) and (d) 

Corresponding DOG images.  

2.5 Wavelet Transform in Digital Image Processing  

Wavelet transform is a powerful tool for texture analysis and 

representation [58-60]. A wavelet, i.e., small wave, is defined as an irregular 

and asymmetric waveform of effectively limited duration that has an average of 

zero. Wavelet analysis consists of breaking up a signal into shifted and scaled 

versions of the original/mother wavelet. Figure 2.6 illustrates a selection of 

common mother wavelets used in practical applications. The wavelet transform 

of a continuous signal,     , is defined as [61] 
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where the original wavelet is denoted by      and the factor        is used to 

conserve the norm. The parameters   and   denote the location of the wavelet in 

time and scale, respectively. The elements in           are called wavelet 

coefficients, each wavelet coefficient is associated to a scale (frequency) and a 

point in the time domain. The global information of a signal can be 

characterised by a large scale corresponding to a low frequency. Small scales 

correspond to high frequency which can provide the details of a signal [58].  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 2.6: Four mother wavelets. (a) Harr. (b) Gaussian wave (first derivative of a 

Gaussian). (c) Mexican hat (second derivative of a Gaussian).  (d) Morlet (real part) 

 

A fast and practical discrete wavelet decomposition and reconstruction 

algorithm introduced by [61]. This algorithm is a classical scheme known in the 

signal processing community as a two-channel subband coder. The 
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decomposition step generates two sets of coefficients called ‘approximation’ 

and ‘detail’ vectors by convolving the original signal   with a low-pass filter 

and a high-pass filter, respectively, followed by dyadic decimation, i.e., 

removing every odd element of an input sequence, as illustrated in Figure 2.7. 

Reconstruction of the original signal is accomplished by upsampling, filtering, 

and summing the individual subbands [58].    

 

 

 

 

 

 

Figure 2.7: One-level decomposition algorithm introduced by [58]. Downsampling 

process keeps the even indexed elements to reduce the overall number of computations. 

Using the same idea, the two-dimensional wavelet coefficients of an image 

can be achieved by employing separable filters for each dimension (i.e., row 

and column) along with downsampling process as illustrated in Figure 2.8. The 

outputs of the decomposition algorithm in Figure 2.8, denoted   ,    ,     

and    , are called the approximation, vertical detail, horizontal detail, and 

diagonal detail subbands of the image, respectively. 

In Figure 2.9, four-band split of the butterfly image using the Haar wavelet 

[26] and one-level decomposition algorithm has been illustrated. This function 

has been successfully used in a number of image processing applications due to 

its low computing requirements [3, 57, 62].  To obtain multi-level wavelet 
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transform, a successive approximation band being decomposed into four smaller 

subbands, which can be split again, and so on [58]. Figure 2.10 shows a two-

level decomposition wavelet transform for the butterfly image. As illustrated in 

Figure 2.10(c), the high-frequency band information in the diagonal direction 

(located in the bottom right corner) demonstrates interest regions (i.e., a 

butterfly and a leaf) without any background noise for the butterfly image. This 

is because there is no any noisy region in the background in the diagonal 

direction for this image.      

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Illustration of a single level DWT decomposition algorithm for a given image 

introduced by [58].  
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(a) (b) 

  

(c) (d) 

 

Figure 2.9: Four-band split of the butterfly image using the Haar wavelet and 

decomposition algorithm of Figure 2.8. (a) Approximation information. Detail 

information in horizontal (b), vertical (c) and diagonal (d) direction. 

 

 

 

 

 
(c) 

(a) 

(b) 

Figure 2.10: Wavelet representation on two resolution levels. (a) Original grayscale 

butterfly image. (b) Arrangement of three high-frequency bands LH (vertical), HL 

(horizontal), and HH (diagonal) of the wavelet coefficients. (c) Two-level 

decomposition wavelet transform, level separated by borders. 
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2.6 K-means Clustering Algorithm  

Data clustering, also called cluster analysis, segmentation analysis or 

unsupervised classification/learning is a technique of creating groups of objects 

or clusters, in such a way that objects in one cluster are very similar and objects 

in different clusters are quite distinct [63]. Many clustering techniques have 

been and are being developed in the context of image processing and computer 

vision (e.g., object categorisation or low level segmentation) [64]. In this 

context, unsupervised clustering techniques have been categorised into three 

different types [9]: pair-wise distance-based, optimisation of an overall 

clustering quality measure, and statistical modelling. K-means clustering 

algorithm is an example of optimisation-based techniques that has been used in 

this thesis. The low computational complexity of this algorithm makes it an 

attractive candidate for a variety of applications [64].   

In standard k-means clustering algorithm, the number of clusters   is 

assumed to be fixed. There is an error function (i.e., objective function) which 

shows how good a clustering solution is. In this algorithm, an initial k clusters is 

firstly selected. Then the remaining data are allocated to the nearest clusters and 

repeatedly the membership of the clusters is changing according to the objective 

function until the function does not change significantly or the membership of 

the clusters no longer changes [63]. The following demonstrates the procedure 

of standard k-means clustering algorithm.         
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Despite the computational simplicity of this clustering algorithm, it suffers 

from a major disadvantage which is sensitivity to initialisation process. 

Different initialisation can lead to different final clustering results, each 

corresponding to a different local minimum, because this algorithm only 

converges to local minima. One way to address the local minima of the k-means 

clustering algorithm is to run this algorithm with various initial partitions and 

choose the partition with the smallest value of the error [65]. Figure 2.11 

illustrates different clustering results obtained from running the k-means 

clustering algorithm on the butterfly image. In this experiment, the variance of 

high-frequency components of wavelet coefficients is used as a feature for the 

clustering process. The image block size has been also set to      .  

 

 

 

 

 

 

 K-means Clustering Algorithm 

 

Given a dataset  , Number of Cluster  , Dimensions  , 

{   is the  -th Cluster} 

1: initialisation phase: {               Initial Partition of D} 

2: repeat 

3:      Distance between data point   and cluster   

4:                   

5: Assign data point   to cluster     
6: Re-compute the cluster means of any changed clusters above 

7: until no further changes of cluster membership occur in a complete iteration 

 8: Output results 
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(a) 

 
(b) 

 

(c) 

Figure 2.11: Illustration of a clustering result using running the k-means clustering 

algorithm on the butterfly image. (a) Original grayscale image. (b) Distribution of 

energy blocks after 12 iterations of the algorithm. Focused and background regions 

have been illustrated by blue and black colours, respectively. (c) Clustering result at 

block size level.      
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(a) 

 

(b) 

 

(c) 

 

Figure 2.12: Illustration of clustering results (block-based) in different runs of the k-

means clustering algorithm. (a)-(c) Converging after 5, 10, and 11 iterations, 

respectively.  
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2.7 Related Research 

Several attempts have been made to address the difficulties of low DOF 

image segmentation [4], [3], [40-44]. In [4], an unsupervised edge-based 

segmentation approach using the moment-preserving principle has been 

developed, in which the amount of blur/defocus in an object boundary is 

evaluated. In this approach, an observed image is firstly converted into a 

gradient map using the Sobel edge detector [49]. Then, the amount of blur for 

every edge pixel in an interest region is measured by the proportion of the edge 

region in a small neighbourhood window using the moment-preserving method. 

Then, an edge linking procedure including dilation, thinning, line linking, and 

superimposing is employed to assemble focused edge pixels into closed 

boundaries. Finally, a filling procedure is used to eliminate all pixels outside of 

the closed boundaries. Figure 2.13 illustrates the extraction process for a sample 

image.  

As reported by [3], this approach is only suitable for segmenting closed 

boundary objects. Wang et al. [3] proposed a region/block-based multiscale 

approach that detects the sharply focused objects in a low DOF image. This 

method includes two main steps (See Figure 2.14): 

1) Initial grouping with a large block size using a block-based k-means 

clustering. 2) A multiresolution refining approach for segmenting results 

obtained in the previous step. 
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In the initial grouping step, k-means clustering algorithm and the variance 

of high frequency wavelet coefficients of each block as a feature have been 

employed. The second step, which uses the average intensity of each block, 

includes an iterative process to find the similarity between blocks. 

 

 

    
(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

 

  

 

 (i) (j)  

 

Figure 2.13: The extraction process for a sample image using moment-preserving 

principle [4]. (a) Original grayscale image. (b) Gradient image using Sobel edge 

detector. (c)    image,    is an indicator for the diameter of blur area. (d) Thresholding 

result of (c). (e) Dilation result. (f) Thinning result. (g) Edge linking. (h) 

Superimposing (g) on (a). (i) Filing the background. (j) The extracted object. 
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Figure 2.14: The main steps of the unsupervised multiresolution segmentation approach 

proposed by [3]. The block size   is initialised by 32×32 and is subdivided into child 

blocks at every increased scale (i.e.,      ). The maximum scale is defined 

as    .     

 

Although their experimental results manifested the efficiency of the 

algorithm, their proposed method has several limitations, which can lead to 

unreliable segmentation. The most important limitation lies in the fact that the 

algorithm considers only two classes of regions including out-of-focus objects 

and sharply focused object of interest. Therefore, if a block of object-of-interest 

includes partially sharp focused or smooth regions, the algorithm is 

unsuccessful in extracting the object. Moreover, as the initial grouping process 

has been carried out by k-means algorithm, it may be trapped into a local 

optimum and consequently an undesirable result may be obtained. Figure 2.15 

shows the schematic of segmentation results using k-means clustering algorithm 

at lowest scale and a multiscale approach. Figure 2.16 and 2.17 illustrate a 

number of segmentation results using this approach. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

 

Figure 2.15: The sequence of segmentation results for a sample image using the 

multiresolution segmentation approach [3]. (a) Original grayscale image. (b) Initial 

classification at the lowest scale (block size=32) using the k-means clustering 

algorithm. (c)-(f) a recursive process to adjust the crude classification result using a 

multiscale approach.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  
(g) (h) 

 

Figure 2.16: Segmentation results for a number of low DOF images obtained from the 

unsupervised multiresolution segmentation approach [3]. (a),(c),(e), and (g) Original 

grayscale images. (b),(d),(f), and (h) Corresponding segmentation results. 



30 

 

  

  

  

  

  

  

  

(a) (b) 

 

Figure 2.17: Segmentation results for a number of low DOF images obtained from the 

unsupervised multiresolution segmentation approach [3]. (a) Original grayscale images. 

(b) Corresponding segmentation results. 
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In [40], the author presented a pixel-based approach in which three steps 

have been employed to partition all image pixels into focused object-of-interest 

and defocused background. Firstly, high-frequency components are extracted 

using computing the forth-order moment of all image pixels (i.e., higher order 

statistics map). Then, a simplification process using morphological filter is used 

to remove the errors originated from smooth focused and defocused regions. 

Finally, to extract the object of interest, region merging and thresholding 

processes are applied to the simplified image. Despite more accurate results 

compared with the previous methods such as [4] and [3], the algorithm needs to 

have a sufficiently defocused background and consequently is not suitable for 

segmenting an image with busy-texture (i.e., noisy) regions in its background. 

Moreover, as the first stage of this approach is based on computing the higher 

order statistics map of all image pixels, extracting focused regions requires high 

computation complexity.  

The pixel-wise segmentation algorithm in [41] aims to extract the focused 

objects in low DOF video images based on a matting equation, in which three 

stages have been considered. To create a saliency map using a re-blurring model 

is the first stage of the algorithm. Then, bilateral and morphological filters are 

used to smooth and merge the regions of the map. The final stage attempts to 

extract the boundaries of the focused object using an adaptive error control 

matting scheme. As pointed out by the authors, this method presents a better 

performance than the method presented in [40]. However, the proposed 

segmentation method, which is based on a matting model, suffers from high 

computational complexity, leaving the low-complex extraction of focused areas 
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mostly unaddressed. Figure 2.18 (a)-(b) illustrate the visual segmentation results 

of [40] and [41], respectively. 

 

  
  

  
  

  
  

  
(a) (b) 

 

Figure 2.18: Visual comparison of segmentation results. (a) Results obtained from [40]. 

(b) Results obtained from [41]. 
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In [42], a supervised learning approach has been presented to extract 

attention objects from low DOF images by employing three types of visual 

features including texture, colour, and geometrical property. In their approach, 

they firstly used a supervised learning algorithm to train a cascade of three 

classifiers. Subsequently, the classifiers are employed to identify defocused 

regions in three phases. Finally, region grouping and pixel-level segmentation 

procedures are carried out to improve the accuracy of results. Their 

experimental results based on 89 training images and 117 test images 

demonstrated a good accuracy with 4.635 seconds on a Quad CPU 2.66 GHz as 

the average computation time for extracting focused objects in low DOF images. 

Figure 2.19 and 2.20 illustrate the framework of the approach proposed and a 

number of segmentation results obtained from [42]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Illustration of supervised framework proposed by [42]. 
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(a) (b) 

 

Figure 2.20: Illustration of segmentation results obtained from the approach [42]. (a) 

Manually segmented images (i.e., ground truth masks). (b) Segmentation results using 

the supervised learning approach. 
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The algorithm proposed in [43] aims to segment image pixels into region 

of interest and background in three main stages. In the first stage, sharp pixels 

are identified by using a Gaussian kernel and a clustering approach. The second 

stage of the algorithm generates a binary mask by connecting isolated clusters 

and also using morphological operations. Finally, the obtained mask is refined 

by using a colour segmentation and region scoring technique. Experiments 

conducted on a dataset of 65 low DOF images show the superior robustness of 

the algorithm compared with [41]. However, this algorithm is computationally 

expensive and requires high computational time. 

Recently, an unsupervised method [44] based on an amplitude 

decomposition model, thresholding process, and graph-cut technique has been 

presented to extract focused objects from low DOF images. Their experimental 

results show the method is comparable to the state-of-the-art methods. However, 

this method may fail when the background has a similar colour distribution with 

the focused objects. This method takes an average of about 7 seconds to 

segment a low DOF image of the size 400 300, which is much faster than [41] 

and comparable to [40]. 
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2.8 Image Dataset  

The selection of an image dataset covering a wide range of busy-texture, 

smooth regions, and complex background is still very controversial issue in low 

DOF image segmentation community. A considerable amount of literature has 

been published based on small categories of image datasets. Among the image 

datasets, Caltech [66-67], PASCAL VOC [68], Berkeley dataset [69], and Corel 

database [56-57, 70] have large diversities and classes which have been widely 

employed in object segmentation recognition, classification, image retrieval, 

and annotation purpose [71]. The Corel dataset collection includes about 60,000 

pre-classified images from various concepts collected by Wang et al. [72]. In 

each category of the collection, 100 images have been used. The Corel images 

have been extensively employed as a benchmark by researchers in the field of 

image segmentation, image retrieval and annotation. In this thesis, a number of 

low DOF images with complex background from Corel dataset have been 

selected to evaluate the proposed approach. Moreover, more than 100 low DOF 

Web images along with their manually segmented images which have been 

provided by [42] have been used to provide an empirical comparison with the 

state-of-the-art approaches.  
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2.9 Summary 

In this Chapter, the characteristic of the low DOF technique in 

photography has been presented. The low DOF is an important technique which 

assists a reliable segmentation task by incorporating some high-level knowledge 

into a feature proximity process. Moreover, DOG and wavelet functions as 

high-frequency based techniques for texture analysis and representation have 

been discussed. Despite all the research and development in the context of low 

DOF image segmentation, extracting automatically focused regions from low 

DOF images in an efficient and effective way remains unsolved. In the coming 

Chapter, an efficient and effective solution based on ensemble clustering will be 

presented.  
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Chapter 3 

3. ENSEMBLE CLUSTERING 

APPROACH 

3.1 Introduction 

In this chapter, a novel ensemble clustering approach is developed and 

implemented to extract important objects from a low DOF image at the level of 

block size. The main focus of this Chapter is to address the common problem of 

local optima experienced in many models. To achieve this, we model the joint 

distribution of image features (i.e., contrast and energy) in a certain level with a 

mixture of Gaussian. EM algorithm is also utilised to find the parameters of the 

mixture model and iteratively create different local optimum solutions based on 
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various initial configurations in each level of resolution. Finally, a fusion 

decision approach is developed to combine different solutions; this results in a 

final clustering result for a low DOF image at the level of block size. The 

proposed approach is tested on over 250 low DOF images from two main 

datasets.  

3.2 Overview of the Proposed Approach    

In low DOF images, focused regions typically represent important object(s) 

in a foreground. Generally, these areas include focused object(s) of interest and 

possibly some focused regions in the background which are informative and 

mostly relevant to the focused object in the foreground (as illustrated in Figure 

3.1). For convenience, we call the focused regions the ROI and the defocused 

areas the background in this thesis. In this Chapter, local regions (i.e., blocks) 

in an image are classified into three constituent classes which can be used to 

differentiate the ROI from the background at the level of block size. This 

grouping, which is a crude segmentation process, is achieved by a two-level 

based ensemble EM clustering technique. We only use the grayscale component 

of the original colour image for extracting texture features. Figure 3.2 illustrates 

the main components of the proposed segmentation approach. 
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(a) (b) 

Figure 3.1: (a) Illustration of a grayscal image (namely butterfly) and (b) ROI and 

background at the level of block size. 

 

 

 

 

 

 

 

Figure 3.2: The main components of the proposed segmentation approach. Block-based 

ensemble EM clustering technique at two levels (left) and pixel-based ROI extraction 

approach (right). 
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3.3 Region Sampling and Characterising 

Suppose an image of       pixels is represented by a set of uniform and 

nonoverlapping blocks. In our approach, the initial block size, i.e.,       , 

covers approximately 17% of the maximum number of pixels in rows and 

columns of a grayscale image. For example, the block size for an image with the 

size of either 384×256 or 256×384 pixels is chosen to be 64×64. As we need to 

capture the texture details of an image at the level of object, the feasible large 

block size is selected. We also choose the next consecutive level of block size 

of a selected image by dividing each block of the first level into four blocks. 

Figure 3.3 illustrates two consecutive levels of block sizes for the butterfly 

image selected from the Corel dataset. 

Figure 3.3: Illustration of the two consecutive levels of block sizes for the butterfly 

image of size 384×256. (a) and (b) First and second levels including the block sizes of 

64×64 and 32×32, respectively.  

To extract the details of texture in each block, we make use of the 

conventional contrast definition, which is demonstrated in [45, 55], and also 

wavelet coefficients as block descriptors [56, 73]. This selection allows us to 

have a good compromise between effectiveness and time efficiency. The 

dynamic range of gray levels in a block representing the local contrast can be 

  
(a) (b) 
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approximated by 

                                                  
         

         
                                                                  

where      and      denote the minimum and maximum intensity values of all 

pixels in a block. To extract the energy of a block, discrete wavelet transform 

(DWT), which is a multiscale frequency decomposition technique, is employed 

[60]. The high-frequency bands of wavelet coefficients denoted by      

           are able to capture the intensity variations of a block in horizontal, 

vertical, and diagonal directions. The lowest computational cost wavelet 

transform, the Haar transform [62], with one level of resolution is used to 

decompose a block containing    and    pixels into four frequency bands with 

size   
  

 
 

  

 
 . The square root of the second order moment of wavelet 

coefficients in each HFB is defined as [57]: 

                                                   
 

 
        

 

  
 
  

   

  
 
  

   

 
 
                                                    

where       and    denotes the matrix of wavelet coefficients of the block 

in the HFB set. The texture descriptor representing the minimum energy of the 

block, i.e., local energy, can be calculated by 

                                                                                                                    

where    is the energy of the high-frequency bands. A two dimensional 

contrast-energy feature vector, i.e.,          , is then used in a block-wise 

clustering approach to capture interest regions in an image. 
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3.4 Region Definition and Clustering 

All blocks of a low DOF image are divided into three region classes: out-

of-focus (defocused/background), sharp focused (sharp), and uncertain. The 

out-of-focus regions usually contain uniform intensity or small variations in 

gray-level values and are generally related to the areas which are often not the 

main interest of a photographer. In contrast, sharp focused regions characterized 

by distinctive contrast and energy features represent the significant aspects of 

the image (i.e., image object). Regions including partially sharp-focused and 

smooth properties are referred to as uncertain because these sorts of regions 

suffer from lack of adequate distinctive features in unsupervised learning. In our 

experiments, the term class can be interchangeable with the term cluster.  

In order to automatically cluster the blocks into three classes, we model 

the joint distribution of contrast and energy features of image blocks, i.e., 

observed data vector, with a mixture of Gaussian, which has been widely used 

and acknowledged in the context of statistical unsupervised learning [74-75]. 

The EM algorithm [74], which can be considered as a soft version of standard k-

means clustering algorithm [76-78], is also used to find the parameters of the 

mixture model. In standard k-means clustering algorithm [63], each observed 

data vector is assigned to a group with a probability selected from {0, 1}. In 

contrast, for the EM algorithm, the assignment of data vector to a component 

(i.e., cluster/group) is based on a probability selected from [0, 1]. In our 

approach, the EM algorithm aims to estimate the maximum likelihood 

parameters of a three-component bivariate mixture.  Let       
   

 
 be the 

observed data, where   is the number of blocks and    is a two dimensional 
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contrast-energy feature vector of a block. Let also         be a Gaussian 

component parameterized by a mean and covariance of a normal distribution, 

i.e.,              
 , denoted as [74-75] 

                      
          

 

 
      

   
                   

where d=2 is the dimension of the feature space,     is the matrix determinant. 

The Gaussian mixture model (GMM) representing the probability density 

function (pdf) of   is defined as [74-75] 

                                                                                                          

 

   

 

where     is the number of components,      represents the mixing 

weight of the component    and       
   . The unknown parameter set 

denoted as                
  should be estimated for each Gaussian 

component using the following EM algorithm’s steps. Suppose     

   
    

    
     

  be the parameter set in the  -th iteration of the algorithm. The 

first step of the EM algorithm is to initialize the Gaussian component 

parameters denoted as       
    

    
     

 . The centers of the components 

(i.e., means) are selected by a random initialization technique and the 

covariance matrix of each component,   
 , is also initialized as [75] 

                 
   

 

   
      

 

 
             

 
 

   

                                       

where   is defined as the global mean of the feature vectors and   is the identity 

matrix. The mixing weights of the components are uniformly initialized 

by    
         

 . 
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Then, the E- and M-Steps [74] are iteratively employed to re-estimate the 

parameters   
    

    
  for    .  

E-step: Compute the posterior probability that block     belongs to  th 

component denoted as 

                              
      

  
           

      
    

    
            

       
     

    

                                        

M-step: Re-estimate the mean and covariance vectors of each component by 

using   
      , i.e., parameter optimization: 

                                      
  

 

 
   

     

 

   

                                                                

                                      
  

   
        

   

        
 
   

                                                                

                                
  

   
           

        
    

   

        
 
   

                                 

The EM steps, are iteratively used until the conditional expectation of the 

log-likelihood function of the GMM denoted by 

                        
           

         
    

    

 

   

 

   

                              

converges to a local optimum. This convergence is theoretically guaranteed by 

[74]. A local optimum can be obtained when the following criterion is fulfilled 

[75] 

                                                                                           

In (3.12), the absolute values are needed as the log-likelihood function can be 

negative in Eq. (3.11). Fig. 3.4 illustrates clustering results (i.e., partitions) 

corresponding to different local optima obtained from the EM experiment 
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initialized by using a random initialization technique [75] and k-means 

clustering algorithm [63] for a low DOF image. To evaluate different partitions, 

this experiment was individually ran 1000 times at two consecutive levels of 

block size (e.g.,            ) for clustering the butterfly image. Each 

partition consists of three cluster labels illustrated by black, gray, and light gray 

colour for background, uncertain, and sharp blocks, respectively. As shown in 

Figure 3.4, clustering with a large block size (i.e., low resolution) may result in 

preserving the most important regions (object blocks) but compromising the 

details of an object. Conversely, decreasing the block size (i.e., higher 

resolution) may preserve more details of an object but includes irrelevant high-

contrast and low-energy blocks as well. Moreover, the different initialization of 

cluster centres in the EM algorithm may affect the final partition and 

consequently produce different results (see Figure 3.4). 

3.5 The Proposed Algorithm 

The EM algorithm as a local (greedy) method is dependent on 

initialization process [75]. It is also well known that using different 

initializations of component variables and focusing on the highest likelihood 

estimate alone cannot necessarily guarantee to find the best partition (i.e., global 

optimum). As evidenced by our experiments, the EM algorithm initialized by a 

re-sampling technique (i.e., random initialization) or standard k-means 

clustering algorithm may converge to different partitions in different runs of the 

algorithm. 
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Figure 3.4: Illustration of partitions corresponding to different local optima in the EM 

algorithm after 1000 iterations.  (a) and (b) Grayscale image (namely butterfly) with 

uniform partitioning at level       and      , respectively. (c) and (d) Different 

partitions after converging to a local optimum at two consecutive levels. Each partition 

consists of three region classes: defocused (illustrated by black colour), uncertain (gray 

colour), and sharp (light gray).  

To overcome the above disadvantages and obtain the best partition 

representing image object(s) in an efficient and robust way at the level of block 

size, we propose to use the EM algorithm in two consecutive levels of block 

size (i.e., two resolutions) along with a fusion decision approach. In this sense, 

we allow the EM algorithm to iteratively reach different local optima based on 

various initial configurations (i.e., k-means and re-sampling) in each level of 

resolution and create new partitions. For each level independently, these 

partitions are aggregated based on the final posterior probabilities estimated in 

the EM algorithm for a certain block. This process is repeated for all blocks in 

 
(a) 

 
(b) 

      

      

(c) (d) 
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each level. Finally, two obtained partitions are fused by a combining process; 

this results in a final clustering for a low DOF image at the level of block size. 

In the following, the details of the fusion decision approach are explained. 

3.5.1 Aggregation of Partitions 

The basic idea for aggregating a number of partitions is originated from 

the context of multiple classifier systems (i.e., classifier ensembles) [79-80]. In 

clustering ensembles [77-78, 81-85], several partitions are aggregated to 

produce a final clustering of a dataset which is better than each individual 

clustering result. The goal of clustering ensembles is to improve the robustness 

and the stability of a clustering process [77, 81]. To achieve this, one needs to 

address two major difficulties in clustering ensembles including diversity of 

clustering (i.e., how to generate different partitions) and finding a consensus 

function (i.e., how to resolve the label correspondence problem and also how to 

aggregate different partitions). The diversity of clustering can be obtained from 

several sources to produce different partitions such as using different clustering 

algorithms [77, 83], different initial configuration [77, 80-81], splitting the 

original dataset [83], and employing different features [80, 83]. Selecting a 

consensus function from multiple partitions can be approached from different 

perspectives such as hyper-graph-partitioning [81], voting approaches [77], 

quadratic mutual information [78, 83], and co-association matrix [77].  

In our approach, an ensemble can be formed as the result of   different 

runs of the EM algorithm from different initial starting points. To provide 

diverse partitions, the k-means clustering algorithm and a random initialisation 

technique [75] were employed to initialize the centres of the clusters in two 
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levels of resolutions. Since the cluster labels are symbolic and any permutation 

of the symbols corresponds to the same partition, it is necessary to find the 

correspondence between the cluster labels in a partition. This problem becomes 

even more difficult when a clustering ensemble approach deals with different 

numbers of clusters [83]. However, this work utilizes a fixed number of clusters 

and consequently resolving a correspondence problem is straightforward. In our 

approach, the cluster that corresponds to the sharp regions (i.e., sharp focused) 

will have a mean that has the largest Euclidian distance from the centre of the 

contrast-energy feature space. On the other hand, the cluster that corresponds to 

the background regions (i.e., out-of-focus) will have the smallest Euclidian 

distance from the centre of the feature space. This is mainly because sharp and 

background regions are characterized by distinctive contrast-energy features 

which is based on the definition of region classes outlined at Section 3.2. 

Therefore, all three region classes in a partition are assigned by their 

corresponding labels. Figure 3.5 illustrates the contrast-energy feature space of 

the butterfly image at level two (e.g.,      ) and three possible partitions of 

regions. 
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(a) (b) 

Figure 3.5: Illustration of the three possible clustering results (partitions) of 96 

blocks for the butterfly image at level two (e.g.,      ). These partitions use 

different sets of labels (column (a)). Sharp and background components will have the 

largest and smallest Euclidean distance from the centre of contrast-energy feature space. 

(b) Corresponding labelled blocks. The sharp, uncertain, and background blocks have 

been illustrated by the colours light gray, gray and black, respectively. 
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Assume that a partition is represented as a set of cluster labels which have 

been assigned by the EM algorithm. Let          
   be a set of    partitions 

obtained from different runs of the EM algorithm in a level. Suppose that the 

estimates of posterior probabilities for a block in different partitions at a level 

are given as N-dimensional vectors    
      

           ,         , where 

  
 
       

      denotes the final estimated posterior probability of the block 

   in  -th component/cluster obtained from (3.7). The     partitions for the 

block    can be organized as the matrix 

                             

 
 
 
 
 
   

     
 

  
     
 

   
     

  
 
    
 

  
     

 

     
     

  
     
 

  
     
 

     
      

 
 
 
 
 

                                                  

The posterior probability values in column   of the matrix   are the individual 

supports for component  . We use a set of     weights, one for each partition. 

The weight for a partition is based on the value of log-likelihood estimate in the 

EM algorithm. The larger the log-likelihood estimate, the more likely the 

important partition. Suppose the log-likelihood value of  -   partition is denoted 

by              . The weight for  -   partition can be calculated by     

  

   
  
   

, where    
  
     . The overall degree of support for component   can 

be obtained by a weighted averaging operator [80] 
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The final decision is made by using a maximum combination function such that 

the cluster label of the block    is found as the index of the maximum     
    

                                                   
 
      

                                                            

Therefore, a new partition at a level can be obtained by repeating the above 

procedure for all the blocks in an image. In Figures 3.6(a) and (b), the final 

partitions using aggregating different clustering results at the first and second 

levels have been illustrated. As expected, the object blocks of the image are 

correctly labelled as sharp blocks illustrated by light gray colour at the first 

level (see Figure 3.6(a)). Moreover, the final partition at the second level mostly 

includes more details of the object along with a number of uncertain blocks 

which are originally related to the defocused areas. Hence, an approach is 

necessary that can consolidate cluster labels from the two consecutive levels 

and provide a partition which represents an image object.  

3.5.2 Combining Partitions at Two Consecutive Levels 

In our approach, by using two partitions obtained from our ensemble 

clustering approach at two consecutive levels of block size and a combining 

process, we aim to achieve a reliable partition at the level of block size.  For 

convenience, we call a block at the low resolution (e.g., 64×64) as a parent 

block and its four subdivision blocks at the higher resolution (e.g., 32×32), 

which are at the same spatial location, as child blocks (Figure 3.6(c)). As 

illustrated in Figure 3.7, a parent or child block in a partition can accept one of 

the three existing cluster labels: sharp, uncertain, and background. By 

evaluation of 100 low DOF images at the level of block size, we found that if 

the cluster label of a parent block is sharp or uncertain, the clustering process at 
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the level two is able to identify the true cluster labels of its child blocks. In other 

words, the cluster label of a child block remains unchanged when its parent 

cluster label is sharp or uncertain in combining two partitions. For a parent 

block with a background cluster label, if the cluster label of a child block is 

sharp and at least one of its 4-connectiveity neighbours (i.e., horizontal and 

vertical) has been labelled as sharp, the label of this block is changed to 

uncertain in combining partitions; Otherwise, the cluster label is change to 

background. Figure 3.8 illustrates the aggregating and combining processes for 

the butterfly image. 

 

 

 

  

 

 

 

Figure 3.6: (a) and (b) Final clustering results obtained from the aggregation of 

partitions at two consecutive levels, respectively. (c) Illustration of a parent block and 

its subdivision blocks as child blocks. 
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Figure 3.7: Illustration of combining the blocks of two consecutive levels. 
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(a) (b) 

    

(c) (d) 

    
(e) (f) (g) (h) 

 

Figure 3.8: Illustration of various partitions and the fusion decision process. (a) and (c) 

Grayscale images with uniform partitioning at two consecutive levels, i.e.,       and 

     . (b) and (d) Various partitions corresponding to different local optima at the first 

and second level, respectively. (e) and (f) partitions after aggregating process in each 

level. (g) Final partition after combining (e) and (f). (h) Clustered image. 

 

An algorithmic outline of the ensemble EM clustering is provided below. 

The input is a low DOF image in any format (e.g., JPEG, GIF, etc.). The 

grayscale format of the original image is used in this algorithm. The output of 

the algorithm is interest regions at the level of block size. We empirically found 

that        , the number of ensemble members, was more than a sufficient 

number of iterations to reach different local optima in all experiments.  
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3.5.3 Clustering Results 

In this section, a set of partitions as the results of the proposed algorithm is 

presented. A set of images from Corel dataset [56-57, 70] have been selected to 

test the algorithm. As shown in Figure 3.9-3.11, each clustering result (or 

partition) includes three region classes: defocused, uncertain, and sharp areas 

illustrated by black colour, gray colour, and light gray, respectively. As it can be 

seen from the results, the algorithm is able to effectively separate background 

areas from the objects in foreground at the level of block size.    

 

 
Algorithm Ensemble EM Clustering 

 
1. Select the number of ensemble members    (number of iteration) and the number of 

cluster   

2. Initialize the level and size of resolution:    ,         where 

                              , and           denote the number of pixels in row 

and column of a given image, respectively.  

3. Divide the image into    uniform blocks with the size of    and extract the local 

contrast and energy of the blocks as data points:       
    

  ,          

4.     

5. Cluster data points at the level of   to find partition    as follow: 

a) while        

i. Apply the EM algorithm's steps to find a local optimum, i.e., a new 

partition 

ii. Add partition    to the ensemble          

iii.       

  

6. Aggregating process on   to find partition   
   

7.         
 

 
          

8. If     , go to step   

9. Combining partitions    
     
   

10. Return the final partition 
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(a) (b) (c) (d) 

Figure 3.9: Illustration of final partitions for a number of images obtained from the 

algorithm with      . (a) and (c) Grayscale test images. (b) and (d) Final partitions 

after employing the combining process.  
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Figure 3.10: Illustration of final partitions for a number of images obtained from the 

algorithm with      . (a) and (c) Grayscale test images. (b) and (d) Final partitions 

after employing the combining process. 
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Figure 3.11: Illustration of final partitions for a number of images obtained from the 

algorithm with      . (a) and (c) Grayscale test images. (b) and (d) Final partitions 

after employing the combining process. 
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3.6 Summary 

In this chapter, a novel ensemble clustering algorithm for low DOF images 

has been presented. Existing clustering techniques are incapable of reliable 

clustering due to the dependency on an initialisation process. The proposed 

ensemble clustering algorithm is developed to extract meaningful information at 

the level of block size. One of the advantages of the proposed algorithm is that 

it considers the three types of regions including out-of-focus (i.e., background), 

sharp focused, and uncertain. Therefore, if a block of ROI includes partially 

sharp focused and smooth regions, the algorithm is successful in extraction the 

object. Moreover, block-wise processing in this stage makes the algorithm very 

time efficient compared with the methods which employ whole image pixels of 

a low DOF image. 
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Chapter 4 

4. PIXEL-BASED ROI EXTRACTION 

APPROACHES  

4.1 Introduction 

In this chapter, two approaches for extracting ROI are introduced. The first 

approach, which is the main focus of this Chapter, aims to create a binary 

saliency map of all smooth and focused regions from the block-based interest 

regions in a clustered image. To achieve this, we have developed a new 

methodology by optimising a threshold in a DOG image and by using 

morphological operations. The second approach benefits from the advantages of 

a graph cuts segmentation algorithm. In this approach, the ensemble clustering 

algorithm imposes certain hard constraints for segmentation by indicating 

certain pixels that have to be part of the object and certain pixels that have to be 

part of the background. The rest of the image is segmented by computing a 
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global optimum among all segmentations satisfying the hard constraints. 

Segmentation results for both approaches are also provided using images 

selected from Corel dataset and the Web.      

4.2 Extracting Interest Regions at the Level of Pixel by Determining 

Optimum Threshold 

In the previous chapter, we segmented an image into three classes of 

regions at the level of block size (e.g.,       for image size of 384 256 or 

256 384). As shown in Figure 3.9-3.11, the uncertain blocks illustrated by gray 

colour in the final clustering results are mostly related to the object regions (i.e., 

interest regions) which have low intensity changes, partially sharp properties, 

and smooth boundaries. Therefore, the blocks with sharp and uncertain cluster 

labels are integrated and considered as block-based interest regions (i.e., ROI 

blocks).  

In order to extract pixel-based interest regions from the block-based 

regions, an approach needs to be employed to augment the visibility of low 

intensity variations of the regions and boundaries while reducing the effects of 

noise which originates from the block-based grouping. To address this problem, 

we have developed a new methodology by optimizing a threshold in a DOG 

image and by using morphological operations. The main focus of this 

methodology is to create a binary saliency map of all smooth and focused 

regions from the block-based interest regions in a clustered image. 

4.2.1 DOG and Binarization Functions  

To detect intensity variations present in the block-based interest regions, 

the DOG is used [86-92]. This function, which is the approximation of 
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Laplacian of Gaussian, is computationally efficient and can be suitably 

constructed by subtracting two Gaussians with different standard deviations (i.e., 

filter scales) given by [91] 

                                                                               

where          
 

    
 
 
     

   . The filter scales    and     which control the 

thickness property of edges, were set to 0.8 and 0.5, respectively. It has been 

shown that this function is able to satisfactory detect intensity variations in a 

region when the filter scales are selected from the ratio 1:1.6 [90]. We filtered a 

clustered image including ROI blocks using the DOG function and obtained a 

DOG image denoted by 

                                                                                                          

where            denotes the ROI blocks and    is the convolution operation in 

  and  . 

The DOG image pixels are thresholded with an intensity value   , i.e., 

                    ; we will discuss the choice of   shortly. Then, the 

image     is converted to a binary image based on a global thresholding 

technique which is defined by Otsu’s method [53]. The Otsu’s method assumes 

that the gray-level histogram of a given image is bimodal, i.e., the image 

includes object and background classes. This method was experimentally found 

to be the most efficient global thresholding method amongst others [54]. 

However, this assumption is not critical for our method because we aim to find 

that value of   which best suits the visibility of the interest regions in an image. 

Figure 4.1 shows the results obtained from the DOG and binarization functions 
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for the ROI blocks while using a same threshold   in different images. As the 

images show, the objects that include regions and boundaries which are highly 

smooth are not correctly recognized. The reason for this is that the same 

threshold   has been used in DOG images for the different types of images. An 

elegant solution to this is to define a content-based threshold, which is able to 

extract the low intensity variation details of the object based on the degree of 

smoothness in a low DOF image. 

 

Figure 4.1: Illustration of DOG (left) and corresponding binary images (right) with a 

same threshold  . (a) An image includes mostly closed boundaries. (b) Image includes 

noisy regions in the block-based interest regions. (c) and (d) Highly smooth region and 

boundary 

4.2.2 Determining Optimal Threshold 

The threshold   determines the sensitivity of the DOG function for 

extracting the details of intensity variations in ROI blocks. In general, let us 

denote all ROI and background binary blocks by    and    , respectively, 

where                       ,                      , and 

        is referred to as all binary blocks in an image obtained from the 

    
  (a)   (b) 

    
  (c)   (d) 
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DOG and binarization functions. For convenience, we denote a pixel with the 

value ‘one’ or ‘zero’ by white or black pixel in a binary image, respectively. 

Suppose every binary image is characterized by two functions             

         , where    and    denote the minimum and maximum intensity 

values of the image        obtained from (4.2), respectively. We define the 

function      as the ratio of retrieved high-energy ROI blocks to the total 

number of ROI blocks including sharp and uncertain cluster labels in a clustered 

image as shown in (4.3). The value of this function represents the strength of 

visibility of the ROI areas so that the higher value shows the more visible 

regions. We considered an ROI block as high-energy if the total number of 

white pixels in that block is more than 5% of the total area of the block as 

shown in (4.4). For instance, a high-energy block with       pixels covers at 

least 50 white pixels. 

The function      is denoted by 

                                   
 

  
         
  
                                                 

          
                       

     
       

   
                   

   
 
   

                       

  

where        
     

   
    

   
  represents the value of pixel       in an ROI block    

of the binary image, and    is the number of ROI blocks. 

The busy-texture properties of the background blocks (background noisy 

blocks) are also considered for extracting the details of intensity variations in 

the ROI blocks. The function     , representing the noisy characteristics of the 

background blocks, is defined as the number of retrieved busy-texture blocks in 

background areas to the total number of background blocks as shown in (4.5). 
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We also experimentally found that a background noisy block is mostly visible 

when there are more than 0.5% white pixels in the block total area according to 

(4.6). For example, a block with       pixels is assumed as a noisy block 

when it has more than 5 white pixels.  

                              
 

  
          
  
   ,                                                

            
                            

      
        

   
           

 

   

 

   

                                                                                   

                 

where        denotes the smallest block size in the algorithm (e.g.,    

  ). The value of pixel       in a background block     of the binary image is 

represented by          
      

   
     

   
 . 

To determine the content-based threshold, the following optimization 

problem is defined and solved: 

                                                
         

         
 

                                                  

The optimization problem in (4.7) suggests that the optimal value of   ,    , 

should maximize the percentage of high-energy blocks in the binary image 

which are matched with the ROI blocks in the clustered image and 

simultaneously minimize the effect of noise in these blocks. Accordingly, a 

reduction in the intensity of noisy regions is shown in Figure 4.2(a) and (b) and 

an increase in the intensity of smooth regions of the ROI blocks have been 

achieved in Figure 4.2(c) and (d). This results in effective identification of 

boundary and shape of objects in morphological operations. The effect of 
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changing threshold   on the performance of the proposed approach is also 

discussed in Section 5.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Illustration of DOG (left) and corresponding binary images (right) with 

optimal threshold. 

4.2.3 Morphological Processing 

In order to identify the underlying region shape and the boundary of an 

object, morphological operations are employed. These local pixel 

transformations are able to efficiently extract the form and structure of an object 

and also eliminate noisy regions in a binary image. We make use of a series of 

  

(a) 

  

(b) 

     

(c) 

     

(d) 
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masks as structuring elements along with dilation, erosion, and filling 

operations [49, 94] to construct the ROI in a low DOF image. 

In the previous Section, we constructed the optimized gray-level DOG 

image covering focused and smooth regions from the clustered image. To create 

an RSM from a gray-level DOG image, we firstly employ the dilation and 

erosion operations (i.e., close operation with a disk structuring element) into the 

DOG image. Then, the result is converted into a binary image by using the 

Otsu’s method [53] (see Figure 4.3). The obtained RSM is viewed as the initial 

set for the following dilation operation [49]: 

                                                                                                                    

where   is a dilation operator and                 is a structuring element. 

The majority operation [93] is then applied to the dilated image for filling small 

holes in boundaries as follows: 

                                              
                      

    

               

                                  

where    is the set of eight-connectivity neighbor pixels with respect to the 

origin pixel      . The close operation [49, 93] with a disk shape structuring 

element is the next step in this methodology to smooth the contours of the 

object and fuse short gaps between regions defined as 

                                 

                                                                                                                    

where   is an erosion operator and     is a circle mask with 4 pixels in its 

radius. The close operation provides a closed region for the filling process. To 

extract the boundary, firstly, the interior pixels and then the small and 
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disconnected objects which have areas less than      pixels (for an image 

size of 384 256 or 256 384) are removed. Finally, the estimated mask 

(i.e.,     ) is created using the closing and filling operations. Figure 4.4 shows 

experimental results from each morphological operation. 

 

 

 

 

 

 

 

Figure 4.3: Illustration of RSM construction from a clustered image. (a) Clustered 

image. (b) DOG image obtained by using optimal threshold. (c) Closed image after 

employing dilation and erosion operations on (b). (d) RSM result after employing 

Otsu’s method [53] on (c).  
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Figure 4.4: Experimental results from each morphological operation. (a) RSM. (b) 

Dilated image. (c) Majority operation. (d) and (e) Closing and filling processes. (f) 

Removing interior pixels for boundary extraction. (g) Removing small and 

disconnected objects covering an area less than      pixels. (h) Filling gaps with 

closing operation. (i) Filling operation to obtain the estimated mask. (j) Interest regions.  

4.2.4 Experimental Results 

This Section provides experimental results obtained from the DOG 

optimisation and morphological operations. We tested the proposed 

optimisation technique over a number of selected images from the Corel dataset. 

Figures 4.5-4.10 illustrate these results.  

   
(a) (b) (c) 
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(a) (b) (c) (d) 

Figure 4.5: Illustration of final clustering results. (a) Block-based interest regions using 

the ensemble clustering algorithm. Region saliency map (b). Estimated mask by the 

proposed approach (c). Final segmentation results (d).  
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(a) (b) (c) (d) 

Figure 4.6: Illustration of final clustering results. (a) Block-based interest regions using 

the ensemble clustering algorithm. Region saliency map (b). Estimated mask by the 

proposed approach (c). Final segmentation results (d). 
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Figure 4.7: Illustration of final clustering results. (a) Block-based interest regions using 

the ensemble clustering algorithm. Region saliency map (b). Estimated mask by the 

proposed approach (c). Final segmentation results (d). 
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Figure 4.8: Illustration of final clustering results. (a) Block-based interest regions using 

the ensemble clustering algorithm. Region saliency map (b). Estimated mask by the 

proposed approach (c). Final segmentation results (d). 
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Figure 4.9: Illustration of final clustering results. (a) Block-based interest regions using 

the ensemble clustering algorithm. Region saliency map (b). Estimated mask by the 

proposed approach (c). Final segmentation results (d). 
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Figure 4.10: Illustration of final clustering results. (a) Block-based interest regions 

using the ensemble clustering algorithm. Region saliency map (b). Estimated mask by 

the proposed approach (c). Final segmentation results (d). 
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4.3 Extracting Interest Regions at the Level of Pixel by Colour-Based 

Graph Cut Modelling 

In this Section, we utilise the graph-cut technique [33] along with colour 

information to extract interest regions at pixel level. This technique which 

belongs to energy-based optimisation approaches has already shown a great 

potential for solving many problems in computer vision and graphics [33, 95-

96]. Despite its simplicity, it benefits from the best features of combinatorial 

graph cuts methods in computer vision such as global optima, practical 

efficiency, and numerical robustness [97]. Figure 4.11 illustrates the schematic 

of the proposed approach for segmenting a colour low DOF image into the ROI 

and background regions by using ensemble clustering and graph cut 

optimisation approaches. As it can be seen from the Figure, block-based interest 

regions are identified using the proposed ensemble clustering algorithm 

presented in Chapter 3. The certain pixels (seeds) of the object and background 

blocks are used as a topological constraint for the graph cut module. This 

constraint which is a prior knowledge about image pixels can be used to reduce 

the search space of feasible segmentation and makes an algorithm time-efficient. 

In this module, a minimal graph cut is constructed using object and background 

seeds, which is based on the max-flow method [95, 98], and as a result a 

corresponding pixel-based interest region is achieved.   
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Figure 4.11: The schematic of the proposed approach. 

 

4.3.1 Graph Model Construction and Binary Segmentation    

In order to extract pixel-based interest regions from the block-based 

regions, we utilize the graph cuts method proposed by [33]. This method has 

been successfully applied to a wide range of problems in interactive object 

segmentation [24, 32, 99, 100, 101]. Suppose an image is represented by a 

graph        , where  ,   are defined as a set of all nodes (i.e., image pixels) 

and a set of all edges connecting neighbouring nodes, respectively. In this graph, 

there are two terminal nodes representing “ROI” and “background” labels 

(called source and sink nodes:       ). Edges between pixels called  -      and 

an edge between a pixel and a terminal called   -    . In this framework, a 

segmentation energy function is formulated in terms of regional and boundary 

properties as  
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Block-wise Ensemble Clustering 

Approach at Two Consecutive levels 

Low DOF Image 



79 

 

                                                                  

   

                                                    

 

                                  
       

          
          
          

                            

 

where          
   

denotes a binary vector (pixel class labels) whose elements 

   can be either “1” (i.e., ROI) or “0” (i.e., background). The coefficient     

controls the relative importance between      (i.e., regional term) and      

(i.e., boundary term).      represents the costs of  -      where      represents 

the costs of  -     . The function      is optimized by solving the max-flow 

algorithm [95, 98]. In this framework, we considered the pixels of strongly 

sharp blocks as object seeds. In our ensemble clustering algorithm, these blocks 

have been labelled as sharp in both consecutive levels. The pixels of 

background blocks are also considered as background seeds. We adopted the 

boundary energy term as demonstrated in [100] using RGB colour information 

and constructed a graph model. The boundary term is computed by using the 

L2-Norm of the RGB colour difference of two pixels. We also used the 

max-flow algorithm to minimize the graph cut problem and as a result a 

corresponding segmentation achieved. Figure 4.12 and 4.13 shows a number of 

original low DOF images along with corresponding segmentation results by 

using graph cut modelling. 
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Figure 4.12: Original low DOF images (left) and corresponding segmentation results 

(right) obtained by the proposed approach. 
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Figure 4.13: Original low DOF images (left) and corresponding segmentation results 

(right) obtained by the proposed approach. 

 

 



82 

 

4.4 Summary 

In order to extract pixel-based interest regions from the block-based 

regions, two novel approaches presented. The first approach which employs 

grayscale component of the original image is based on optimising a threshold in 

a DOG image and morphological operations. This approach attempts to 

augment the visibility of low intensity variations of the regions and boundaries 

while reducing the effect of noise. The second approach is developed by 

incorporating our ensemble clustering approach and the colour-based graph cuts 

optimisation technique. Despite its simplicity and practical efficiency, it also 

provides a globally optimal solution for a binary segmentation problem.        
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Chapter 5 

5. EXPERIMENTAL RESULTS AND 

COMPARISON 

5.1   Introduction 

In this Chapter, the accuracy, performance, and time efficiency of the 

proposed extraction approach is reported. Several experiments are conducted by 

using the precision-recall framework and two main datasets. To provide a strong 

comparison, our approach is also compared with the state-of-the-art supervised 

and unsupervised approaches. The generalisation ability of the proposed 

approach is also evaluated by using a specified range of image resolutions 

varying from 192×128 to 1536×1024. We also evaluate the influence of the 

propose ensemble EM clustering algorithm on the segmentation performance of 

the proposed approach. 
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5.2 Experimental Results 

To analyze the performance of the proposed approach, several experiments 

have been carried out by using two main image datasets and adopting the 

precision-recall framework [102]. We selected more than 150 low DOF images 

of the size 384 256 or 256 384 from the Corel dataset [56-57, 70] including 

heterogeneous ROI and complex backgrounds. For this dataset, a number of 

segmentation results including block-based and pixel-based interest regions are 

provided. A sample of four test images of this dataset has been selected and our 

results are compared with the results of approaches in [40-44]. In addition, we 

used 117 Web images of different sizes between 260 180 and 400 374 and 

their ground-truth segmentations provided by [42] and compared our results 

with approaches in [40-44]. Moreover, the proposed approach is tested with a 

number of high resolution images selected from an online photo sharing website 

(www.Flickr.com). The approach has been tested on a Core2 Due 2.66GHz 

Intel processor and 2.00 GB of RAM using C++ and MATLAB version R2008a.   

To provide numerical results and evaluate the performance of the proposed 

approach, the precision-recall framework is used [102-103]. We formulate low 

DOF image segmentation as a classification problem of discriminating ROI 

from the background and apply the precision-recall framework using manually 

segmented images from this dataset as ground-truths. The F-measure capturing 

a trade off as the weighted harmonic mean of precision and recall is defined as 

[102] 
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where                                       .        

and    denote the number of true positive, false positive and false negative 

pixels, respectively. Positive and negative terms are denoted as ROI and 

background in (5.1). In this evaluation, the average values of precision, recall, 

and F-measure over test images are computed. We also use      ,      , 

and       in our experiments according to [44,104]. 

5.2.1 Corel Dataset Images 

We selected a sample of four test images from the Corel dataset, namely 

football, butterfly, leopard, and bird. These images have been used as a 

benchmark by several researchers in this field [3, 40-41]. As shown in Figure 

5.1, all approaches including the proposed approach achieve satisfactory visual 

segmentation results for the football, butterfly, and bird images. However, for 

the leopard image, the proposed approach achieves a better visual segmentation 

result than the other approaches when compared with the manually segmented 

binary image shown in column (b). The main reason for this improvement is 

that noisy regions including high-frequency components are removed from the 

image background during the first stage of the proposed approach. For the 

segmentation result of [40], high frequency components in both foreground and 

background have been removed which results the lowest segmentation 

performance (i.e., F-measure). In [41-44], the approaches extracted the ROI as 

well as a part of the unwanted high-frequency regions (i.e., error) in the 

background. In Figure 5.2, these errors are denoted as false negative and false 

positive for the segmentation results of [40] and [44], respectively. Table 5.1 

demonstrates a comparison of average segmentation performance for the four 
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test images of Corel dataset. As evident from Table 5.1, it is observed that our 

proposed approach presents better performance than other approaches for all the 

four test images. Numerical results are calculated by the F-measure criterion 

presented in (5.1). Figure 5.3 shows some examples of 150 final segmentation 

results from Corel dataset obtained from our approach. 

 

Figure 5.1: Visual comparison of segmentation results for the Corel dataset images, 

namely football, butterfly, leopard, and bird from top to bottom, respectively. (a) Low 

DOF images. (b) References by human segmentation [41]. (c)-(g) Results from [40-44], 

respectively. (h) Results from our approach.  

 

 

 

 

 

 

 

 

        

        

        

        

(a) (b) (c) (d) (e) (f) (g) (h) 
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Figure 5.2: Illustration of the error in the background (false negative) and foreground 

(false positive) regions obtained from [40] (a) and [44] (b), respectively.  

 

 

 

 Table 5.1 

Comparison of average F-measure, precision, and recall for the four test images 

selected from Corel dataset. 

 

 

 

 

 

 

 

Approaches 
F-measure (%) 

       

F-measure (%) 

       

F-measure (%) 

       
Precision (%) Recall (%) 

[40] 84.36 83.50 82.85 86.37 78.30 

[41] 85.06 84.39 83.88 86.62 80.26 

[42] 85.92 85.43 85.05 87.04 82.37 

[43] 85.67 85.09 84.66 86.99 81.54 

[44] 85.01 84.31 83.79 86.61 80.06 

Proposed 86.72 86.15 85.72 88.03 82.26 

 

                       

(a) 

False negative error 

 

False positive error 

(b) 
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Figure 5.3: Segmentation results for gray-level low DOF images selected from the Corel 

dataset. 

5.2.2 117 Web Images  

To provide further evaluation and comparison, our approach is also tested 

on 117 test images, which have been provided by [42]. Figure 5.4 illustrates a 

number of segmentation results obtained from our proposed approach as well as 

the different approaches [40-44] for this dataset. 
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Figure 5.4: Segmentation results for the test images provided by [42]. (a) Grayscale 

component of the original low DOF images. (b) Manually segmented binary images 

provided by [42] (i.e., ground-truth masks). ). (c), (d), (e), (f), and (g) Results obtained 

from approaches [40-44], respectively. (h) Results from our unsupervised approach. 

 

 

Table 5.2 shows the comparison of average F-measure, precision, and 

recall values for different segmentation methods. As evident from Table 2, the 

proposed method achieves the highest segmentation performance (F-measure) 

compared with the state-of-the-art approaches. 

 

        

        

        

        

        

        

        

        

        
(a) (b) (c) (d) (e) (f) (g) (h) 
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Table 5.2  

Comparison of average F-measure, precision, and recall values for the 117 test images. 

 

Table 5.3 compares the average computational time between the proposed 

approach and the existing approaches for the 117 test images. 

 

 

Table 5.3 

Comparison of average computational time results for the 117 test images. 

 

 

 

 

 

 

 

Because of space limitation in this thesis, a specified number of 

segmentation results have been illustrated in Figures 5.5-5.7. Segmentation 

results for more than 250 low DOF images may be seen at 

http://www.labvision.co.uk. 

Approaches F-measure (%) 

      

F-measure (%) 

      

F-measure (%) 

      

Precision (%) Recall (%) 

[40] 84.26 81.60 79.68 90.93 67.71 

[41] 84.77 83.37 82.33 88.10 75.28 

[42] 89.41 88.54 87.90 91.41 83.32 

[43] 88.71 87.83 87.16 90.78 82.46 

[44] 85.80 83.60 81.99 91.20 71.66 

Proposed 91.31 90.20 89.37 93.91 83.60 

Approaches Learning Average 

Computational Time 

(Second) 

[40] Unsupervised 7.9967 

[41] Unsupervised > 8.0 

[42] Supervised 4.635 

[43] Unsupervised > 8.0 

[44] Unsupervised 7.0 

Proposed Unsupervised 2.2836 

http://www.labvision.co.uk/
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Figure 5.5: A number of segmentation results for gray-level low DOF images (left: 

original image, right: segmentation result) 
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Figure 5.6: A number of segmentation results for gray-level low DOF images (left: 

original image, right: segmentation result) 
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Figure 5.7: A number of segmentation results for gray-level low DOF images (left: 

original image, right: segmentation result) 



94 

 

To further demonstrate the performance and generalization ability of the 

proposed approach, we tested it over a specified range of resolutions varying 

from 192×128 to 1536×1024 for 50 images selected from an online photo 

sharing website [105] using a fixed set of parameter values. Figure 5.8 

illustrates a typical example of the selected images in different resolutions along 

with their visual segmentation results obtained from our approach. In Table 5.4, 

numerical results including average F-measure and computational time as well 

as parameter values for the images have been presented. From the obtained 

results, it is observed that the higher resolution of an image provides the higher 

segmentation performance. However, the more computational time will be 

required to extract an ROI from a high resolution image. 

 

    

    

    

a) 1536×1024 b) 768×512 c) 384×256 d) 192×128 

 

Figure 5.8: ROI extraction results in different resolutions for an image. Original 

grayscale image (first row), manually segmented binary image (second row), and 

corresponding ROI result (third row) obtained from the proposed approach in four 

different resolutions (a)-(d). 
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Table 5.4  

Illustration of parameter values (parent and child block size and   ), average 

computational time and F-measure in the specified resolutions of images. The 

following results are based on 50 images for each resolution.  

Image Resolution a) 1536×1024 b) 768×512 c) 384×256 d) 192×128 

Parent and Child 

Block Size 

256×256, 

128×128 

128×128, 

64×64 

64×64, 

32×32 

32×32, 

16×16 

  128 64 32 16 

Average 

Computational Time 

(Sec.) 

 

7.2 

 

2.63 

 

2.18 

 

1.83 

Average F-measure 

(%) 

      

94.23 93.99 91.68 87.50 

 

5.2.3 Average F-measure over the 117 Images for Different 

Values of    

The 117 test images are chosen to assess the effect of changing threshold   

on the performance of the approach. We selected a set of discrete neighborhood 

thresholds of   centered at   , where            is the threshold obtained from 

(4.7) described in Section 4.2.2. Suppose for every image  , the thresholds and 

the F-measure values are represented by                              and    

                        , respectively, where           ,    is the total 

number of images,     , and         
 . The F-measure of 

image    corresponding to the threshold    
  is also denoted by      . In all 

experiments, we found that considering 6 neighbors greater and 6 neighbors less 

than the value   
  is good enough for the evaluation. The average F-measure 
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value for a set of thresholds labelled by                     is computed 

by      
 

 
     
 
   . Fig. 5.9 illustrates the relationship between a set of 

thresholds and the average F-measure values of the approach for the 117 images. 

As the result shows, the average F-measure for the threshold      , which is 

obtained from (4.7), is the maximum among a set of neighborhood thresholds. 

 

Figure 5.9: Average F-measure values versus a set of thresholds for the 117 test images. 

5.2.4 Segmentation Performance without using Ensemble EM 

Clustering Algorithm 

We evaluated the influence of the proposed ensemble EM clustering 

algorithm on the segmentation performance of the approach. We tested our 

approach on the 117 test images using the EM clustering instead of the 

ensemble EM clustering algorithm. In this experiment, the EM clustering 

algorithm [74] is independently utilized at two consecutive levels of block size 

and consequently two partitions obtained. The obtained partitions are then 

combined according to Section 3.2 to create a clustered image. The second stage 

of the approach remains unchanged in this experiment. We also set       and 
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computed the average precision, recall, and F-measure. Figure 5.10 shows a 

comparison of average segmentation performance of the approach with and 

without the ensemble EM clustering algorithm. This comparison shows the 

advantage of using the ensemble EM clustering algorithm. This reduction in 

average segmentation performance with the EM clustering algorithm originates 

from the fact that the EM as a local method is dependent on its initialization 

process and cannot necessarily guarantee to find the best partition (i.e., global 

optimum).   

   

91.31

68.12

93.91

79.883.6

65.26

0

20

40

60

80

100

With Ensemble EM 

Clustering

Without Ensemble EM 

Clustering

F-Measure Precision Recall

 

Figure 5.10: Comparison of average segmentation performance (F-measure (%), 

Precision, and Recall) when using the ensemble EM clustering algorithm and without 

the ensemble EM clustering on the 117 test images. 

5.2.5 Evaluation of the Combining Process  

 To quantitatively evaluate the reliability of combining the blocks of the 

two consecutive levels, we randomly chose 50 low DOF images from the 117 

test images. In this experiment, we firstly created 50 ground-truth images at the 

level of block size. All blocks of the ground-truth images at level two have been 

manually labelled based on the definition of the three region classes outlined in 
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Section 3.4. Then, we ran the ensemble EM clustering algorithm on the 50 

selected test images which resulted in 50 final partitions. We considered the 

situation in which the cluster label of a parent block is sharp or uncertain. In this 

evaluation, we achieved 98% accuracy for combining the blocks of two 

consecutive levels. The 2% error occurs when the cluster label of a parent block 

is uncertain and its child block is sharp. The obtained result from the 

combination of the uncertain parent and its sharp child resulted in sharp label, 

whereas the manually labelled block indicates uncertain label. However, this 

error can be neglected as the blocks with sharp and uncertain cluster labels are 

integrated and considered as block-based interest regions. 

5.2.6 Segmentation Performance using Graph Cut Modelling 

Figure 5.11 shows the comparison of average F-measure, precision, and 

recall values for different unsupervised segmentation methods. As evident from 

Figure 5.11, the proposed method with 91.7% average F-measure value 

outperforms existing unsupervised approaches for extracting the ROI in low 

DOF images, which shows an improvement of 5.9%. In addition, identifying 

significant regions at the level of the block size and utilizing the minimal graph 

cut segmentation algorithm makes our approach more time efficient compared 

to the methods that employ whole image pixels for the segmentation process. 

Table 5.5 compares the average computational time between the proposed 

approach and the existing methods for the 117 test images on a same platform. 

Approximately 50% reduction of the average computational time by using the 

proposed approach is evident for unsupervised approach [44]. 
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Figure 5.11: Segmentation performance comparison between the proposed approach 

using graph cut modelling and the state-of-the-art approaches. 

 

Table 5.5 

Comparison of average computational time results for unsupervised learning 

approaches over the 117 test images. 

 

 

 

 

 

 

 

 

 

 

 

 

Approaches 
Average Computational 

Time (Second) 

[40] 7.9967 

[41] > 8.0 

[42] > 8.0 

[43] 7.0 

Proposed 3.4825 
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5.3 Discussion and Summary 

In this Chapter, we tested our proposed approach with different low DOF 

images selected from two datasets.  The approach has also been compared with 

the existing unsupervised and supervised approaches in [40-44]. As evident 

from Table 5.2, our approach with 91.3% average F-measure value outperforms 

existing state-of-the-art approaches for extracting the ROI in low DOF images. 

For the best unsupervised approach [43] compared with our proposed approach 

the improvement is 2.6%. Similarly, for the supervised approach [42] the 

improvement is 1.9%. In addition, identifying significant regions at the level of 

the block size and utilizing morphological operations make our approach more 

time efficient compared with the methods that employ whole image pixels for 

the segmentation process. As illustrated by Table 5.3, approximately 33% and 

50% reductions of the average computational time by using the proposed 

approach are evident for unsupervised [44] and supervised [42] approaches, 

respectively. The reduction in computational time is caused by two main 

reasons: 1) relying on the texture (i.e., energy and contrast) details of the 

regions rather than colour information, 2) identifying salient regions in the 

block-wise ensemble clustering process. This demonstrates that our approach 

while running on a slower platform is computationally more efficient than the 

other approaches. This major advantage would be applicable to a number of 

region-based image retrieval applications that require online processing such as 

image/video target searching and indexing. 
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Chapter 6 

6. CONCLUSION AND FUTURE 

WORK 

6.1 Conclusion 

The problem of efficient and effective interest region (i.e., focused regions) 

extraction from still images is of great practical importance in computer vision 

applications. Extracting meaningful and relevant regions in an image is a major 

step toward image understanding and still remains an open problem. The 

capability of extracting focused regions can help to bridge the semantic gap by 

integrating image regions which are relevant and generally do not exhibit 

uniform visual characteristics. There have been several unsupervised and 

supervised approaches to extract important objects from a complex background 
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in a low DOF image. However, as discussed in this thesis, the existing 

approaches are not successful due to two main reasons: 1) dependency on high 

frequency components, 2) high computational complexity. Exploiting high 

frequency components alone often results in errors in both ROI and background 

regions. In background regions, despite blurring, there could be noisy regions 

(i.e., busy-texture or high contrast) in which high frequency components are still 

strong enough. Therefore, these regions may be classified mistakenly as focused 

regions. On the other hand, focused regions including constant gray-level values 

are prone to be misclassified as defocused regions. Therefore, identifying ROI 

regions using high frequency components should be incorporated with other 

cues or some supplementary techniques. High computational complexity is 

another challenging aspect of ROI extraction task. To extract focused regions, 

most existing methods employ the whole pixels of a low DOF image which 

makes the method too complex and consequently inefficient.        

Block-based ROI extraction technique proposed in this thesis is a reliable 

solution addressing existing problems. As discussed in Chapter 3, this technique 

utilises a two-level block-based clustering process. In this sense, we faced with 

a common problem of local optima experienced in clustering algorithms. 

Optimisation-based clustering algorithms such as k-means and EM clustering 

are highly dependent on initialisation process. Therefore, an ensemble technique 

is developed and incorporated into the EM clustering algorithm which improves 

the robustness and the stability of the clustering process. As our technique 

utilise two levels of resolution, a fusion decision approach is also presented in 

which the blocks of two consecutive levels are appropriately combined. The 
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reliability of this combination has been demonstrated in Chapter 5. The final 

clustering result obtained from the proposed ensemble EM clustering approach 

includes the ROI and background at the level of block size. As segmentation 

results demonstrate, the background regions even including high frequency 

components are successfully recognised and separated in this stage. Therefore, 

this stage overcomes the weaknesses of the current approaches which rely only 

on high frequency components. 

To extract the ROI regions at the level of pixels, two approaches are 

presented. In the first approach, which is one of the main parts of our approach, 

a novel methodology is presented by determining optimum threshold and using 

morphological operations. In this methodology, which employs the grayscale 

component of the original image, a threshold in a DOG image is optimised and 

consequently a binary RSM of all smooth and focused regions from the block-

based ROI is created. To identify the underlying regions shape and the 

boundary of an object(s) in obtained RSM, a set of morphological operations is 

appropriately employed. Visual segmentation results illustrate the effectiveness 

of the proposed methodology. The second approach presented in Chapter 4 aims 

to extract interest regions at the level of pixels by using a colour-based graph 

cut modelling. In this approach, a minimal graph cut is constructed using object 

and background seeds provided by the ensemble EM clustering algorithm. 

Several experiments have been carried out to illustrate the performance 

and time efficiency of the proposed approach. Low DOF image segmentation 

can be considered as a classification problem of discriminating ROI form the 

background and therefore the precision-recall framework is used. Two main 
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image datasets including a specified range of busy-texture (i.e., noisy) and 

smooth regions have been employed to test the proposed approach. As 

discussed in Chapter 5, our main approach (i.e., the ensemble EM clustering 

along with determining a threshold) with 91.3% average F-measure value 

outperforms existing state-of-the-art approaches for extracting the ROI in low 

DOF images. For the best unsupervised approach [43] compared with our 

proposed approach the improvement is 2.6%. Similarly, for the supervised 

approach [42] the improvement is 1.9%. In terms of time efficiency, 

approximately 33% and 50% reductions of the average computational time by 

using the proposed approach are evident for unsupervised [44] and supervised 

[42] approaches, respectively. This demonstrates that our approach while 

running on a slower platform is computationally more efficient than the other 

approaches. This major advantage would be applicable to a number of region-

based image retrieval applications that require online processing such as 

image/video target searching and indexing. The second approach (i.e., the 

ensemble EM clustering along with graph cut modelling) with 91.7% average 

F-measure value outperforms existing unsupervised approaches for extracting 

the ROI in low DOF images, which shows an improvement of 5.9%. 

Approximately 50% reduction of the average computational time by using the 

proposed approach is evident for unsupervised approach [44].  
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6.2 Recommendation for Future Research 

Based on the research presented in this thesis, other possible investigation 

and exploration research can be initiated. This ROI extraction research can be 

extended by several ideas. 

- The proposed approach in this thesis has confirmed the possibility of 

online processing. However, this possibility should be further 

examined by a practical evaluation. 

- The proposed approach does not utilise any pixel refinement method 

for extracting the object boundary. Therefore, a colour based 

refinement approach may help to more accurately extract the boundary 

of ROI regions. 

- In the proposed research, we accessed to only a dataset of 117 low 

DOF images along with their ground-truth segmentation masks. The 

rest of test images used in this thesis which have been selected from 

Corel dataset and Flicker, an online photo sharing website [105], are 

without ground-truth segmentation masks. Therefore, a new dataset of 

a large number of low DOF images and their corresponding ground-

truth segmentation masks need to be provided. 

- In the current TV programs and film productions, low DOF has 

become an important technique to highlight the main objects in order 

to attract user attention in this scene. Therefore, it would be desirable 

to test and evaluate the performance of the proposed approach using 

video frames.              
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