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Abstract

Optimal dynamic treatment strategies provide a set of decision rules that are based on
a patient’s history. We assume there are a sequence of decision times 7 = 1,2,..., K. At
each time a measurement of the state of the patient S; is obtained and then some action
A; is decided. The aim is to provide rules for action choice so as to maximise some final
value Y.

In this thesis we will focus on the regret-regression method described by Henderson
et al. (2009), and the regret approach to optimal dynamic treatment regimes proposed by
Murphy (2003). The regret-regression method combines the regret function with regres-
sion modelling and it is suitable for both long term and myopic (short-term) strategies.

We begin by describing and demonstrating the current theory using the Murphy and
Robins G-estimation techniques. Comparison between the regret-regression method and
these two methods is possible and it is found that the regret-regression method provides a
better estimation method than Murphy’s and Robins G-estimation.

The next approach is to investigate misspecification of the Murphy and regret-regression
models. We consider the effect of misspecifying the model that is assumed for the actions,
which is required for the Murphy method, and of the model for states, which is required
for the regret-regression approach. We also consider robustness of the fitting algorithms
to starting values of the parameters. Diagnostic tests are available for model adequacy.

An application to anticoagulant data is presented in detail. Myopic one and two-
step ahead strategies are studied. Further investigation involves the use of Generalised
Estimating Equations (GEEs) and Quadratic Inference Functions (QIF) for estimation.
We also assess the robustness of both methods. Finally we consider the influence of

individual observations on the parameter estimates.
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Chapter 1

An Overview of Optimal Dynamic

Treatment Regimes.

1.1 Thesis Outline

Dynamic treatment methodology has had considerable attention in recent years. It has
become an important tool for making decisions in many research areas. It also provides
an ethical and flexible set of formal rules to study the treatment effects that can vary over
time. Murphy (2003) introduced dynamic treatment regimes to the mainstream statistics
literature. She defined it as a list of decision rules over time intervals, when the level of
treatment can depend on the response of a patient so far.

The regret-regression method introduced by Henderson et al. (2009) provides an al-
ternative method in order to improve the optimal dynamic treatment regimes. It provides
quicker estimation and allows diagnostics which can be used to compare a variety of can-
didate models. We begin the thesis with an introduction to causal inference to understand
the effect of various covariates and responses to treatment. Then, in Chapter 2, we will
demonstrate the theory behind the optimal dynamic treatment regimes using Murphy and
Robins G-estimation methods. We will make comparison between the regret-regression
method with these two methods using simulations.

An investigation of misspecification of the regret-regression method and the Murphy
method will be described in Chapter 3 to discover the sensitivity of the methods. We will
test the sensitivity of the methods by misspecifying the initial values for the action model
for the Murphy method while for the regret-regression method we misspecify the state
model. We extend our investigation of the regret-regression method by introduce some
covariates into the model in Chapter 4. Using simulations, we will make comparison
between the models and diagnostics using the residual plot and wild bootstrap test. In
Chapter 5, we apply the regret-regression method to data on anticoagulation. We extend
the method to myopic decision rules in Chapter 6 which is the main idea of this thesis.

Chapter 7 and Chapter 8 demonstrate the use of Generalised Estimating Equations

(GEE) and Quadratic Inference Function (QIF) in myopic regret-regression for estima-
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tion via simulation and application. The possibility of influential observations in myopic
regret-regression is investigated using the anticoagulation data in Chapter 9. Conclusions

are presented in the closing chapter.

1.2 Causal Inference

Causal inference has been the subject of study for many years. It is focused into the main

areas of:
e Non parametric structural equations
e Graphical models
e Counterfactual Analysis

Causal inference is rooted in empirical research which motivates much research es-
pecially in health, social and behavorial sciences. For example, what is the efficiency
of a medicine when applied to a certain population? In order to express causal assump-
tions mathematically, some extensions in statistical theory are required. Previous work
includes advances in graphical models (Pearl, 1988; Lauritzen, 1995) and (Cowell et al.,
1999), counterfactual or potential outcome analysis (Rosenbaum & Rubin, 1983; Robins,
1986; Manski, 1995; Angrist et al., 1996; Greenland, 1990), structural equation models
(Heckerman & Shachter, 1995) and (Pesaran & Smith, 1998). More recent work has
attempted to combines these approaches into a single interpretation (Pearl, 1995a) and
(Pearl, 2000).

There are three major types of causal models for health-sciences research: graphi-
cal models (causal diagrams), potential-outcome (counterfactual) models and sufficient-
component cause models. Graphical models can illustrate qualitative population assump-
tions and sources of bias not easily seen with other approaches. The sufficient-component
cause models can illustrate specific hypotheses about the treatment action. The potential-
outcome and structural-equations models provide a basis for quantitative analysis of ef-

fects.

1.2.1 Graphical Models

The following is a brief summary of concepts and causal diagrams. For further explana-
tions refer to Greenland (1999) and Robins (2001). For example, if X — Y where there
is an arrow from a variable X to another variable Y it means that variable X is a parent
of Y,and Y is called a child of X.

A sequence of arcs connecting X and Y is a path between two variables X and Y.
A path whose first arc is an arrow pointing to X is a back-door path from X to Y. In
Figure 1.1(a), there is no back-door path from X to Y. The path X —U—Y in Figure 1.1(c)
is a back-door path from X to Y. The pathsof X —U - Z —-Y and X —Z -V - Y

2
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Figure 1.1: Four causal diagrams. The variables .S, U, V, X and Z are the exposures and Y is the
outcome variable.
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in Figure 1.1(b) are open paths, whereas X — U — Z — V — Y is closed or blocked path
because U — Z — V is a parent-child-parent sequence. A directed path is a sequence of
arrows such that the child in the sequence is the parent in the next step. The variable X is
called an ancestor of Y and Y is called a descendant of X if there is a directed path from
XtoY.

A graph is acyclic if no directed path forms a closed loop or if there is no node which
is both ancestor and descendant. A graph which is both directed and acyclic is a called
directed acyclic graphs or DAGs which is shown in Figure 1.1 where each graph is a
DAGs. A graph is causal if every arrow represents the presence of an effect of the parent
(causal) variable on the child (affected) variable. Each graph in Figure 1.1 shows causal
relationships within a population of individuals, where each variable represents the states
or events among individuals in that population. For example, if X is a treatment variable,
then the value of X represents the level of treatment received by the individual. Missing
direct paths from X to Y indicates that the causal null hypothesis has no alteration to the
distribution of X which could change the distribution of Y.

Suppose in Figure 1.1, part (a): the variable X represents a 6-month weight loss
programme that is randomly chosen for a cohort of cardiovascular patients. A patient who
is assigned the programme has, X = 1 and we set X = 0 for not assigned. The variable
Z represents a set of clinical CHD (Coronary Heart Disease) risk factors (serum lipids,
blood pressure) measured upon completion. The variable Y represents death within the
year following completion and U represents a set of unmeasured genes that affect death
risk both directly and through the clinical factors Z.

Although U does affect Y it is not a confounder of the X — Y association because it
is independent of X. A common approach to analysing effects of weight on health is to
adjust for serum lipids and blood pressure. The reason of Z is a child of both U and X,
either U or X should be associated with Z. Consequently, U can become a confounder
with Z, although it was not the variable to begin with.

The variable Z generates confounding where Z and Y share the same causes besides
X. The association of Z with Y is confounded, and often the estimated indirect effect of
X on Y. The four plots in Figure 1.1 represent four of the sets of assumptions we might

make.

1.2.2 Potential Outcomes or Counterfactual Models

A graphical display provides a visualisation of the qualitative assumptions about the in-
dependence and causal directions in a population. Meanwhile a quantitative model spec-
ifies in detail the assumptions on the effects of exposures. The quantitative models from
Neyman (1923) and Fisher (1925) are in later terminology counterfactual or potential-
outcome models. These models formalise the cause and effect interpolation which is
widely found in philosophy and epidemiology studies.

Counterfactual (potential) outcomes are the outcome of the model under conditions
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contrary to fact; that is in reality, not all subjects follow a given exposure history. Models
for counterfactual outcomes are sometimes known as structural or causal models (Hernan,
2005). A counterfactual is a potential outcome, prior to the actual outcome being ob-
served. If a person had followed a particular treatment regime it is defined as a person’s
outcome which is possibly different from the regime that he or she was actually observed
to follow. The causal effect of a regime may be seen as the difference in outcomes if he

had followed the regime when compared to a placebo or a standard treatment.

1.2.3 Structural-Equation Models

Structural-equations modelling (SEM) was initially developed from the informal use of
graphs where the network of causation is modelled by a system of equations and inde-
pendence assumptions Fornell & Larcker (1981) and Anderson & Gerbing (1988). Each
equation shows how an individual response variable changes as its direct (parent) causal
variables change. Similar to causal diagrams, the individual may be the unit of interest.

A variable may appear once in equation as a response variable, but may appear in any
other equation as a causal variable in the system. A response variable in the system is said
to be endogenous (within the system), otherwise it is exogenous.

The qualitative schematic for a structural-equations models is a causal graph (Pearl,
1998; Loehlin, 2012) and (Greenland & Brumback, 2002). For example, Figure 1.1(a) is

a schematic for the linear system

Z = oz + Buzu+ Bxzx
Y =ay + Buyvu + Bxyx + Bzyz (1.1)

in which u, x, z are specific values of U, X, Z. The intercepts, oz and «y are unmeasured
random disturbances of Z and Y, and oz, ay, U and X are assumed to be jointly inde-
pendent between each other. A different linear system but referring to the same schematic

Figure 1.1(a) is

Z =ayz+ Puzu+ Bxzr + Puxzux
In(Y) = ay + Buyu + Bxyx + Bzyz (1.2)

where az, ay, U and X again are assumed to be jointly independent. The system in Equa-
tion (1.1) is different from the system in Equation (1.2) since the product term has been
added to the Z equation, and the Y equation has changed to log-linear instead of linear.
Otherwise both systems share the same properties from the schematic Figure 1.1(a).

The variables U and X are the two exogenous variables which directly affect two
endogenous variables Z and Y, and Z directly affects Y, indicated by the arrows from U
and X to Z and Y, and also straight from Z to Y. The exogenous variables and random

disturbances are jointly independent of one another which means there are no connections
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among these variables.

1.3 Causal Effects

Although the definition for cause is difficult and complex, the concept of the causal effect
of a treatment in empirical research seems to be more straightforward and practically
useful (Roderick & Rubin, 2000). The idea of explaining the causal effects is through
potential outcomes.

The comparisons of potential outcomes provides causal effects. Let us consider the
case of two treatments, numbered 0 and 1. The i*" of the N units under study has a
response Y;(1) that would have resulted if it had received treatment 1, and a response
Y;(0) if it had received treatment 0.

Causal effects are based on comparisons between Y;(1) and Y;(0), for example Y;(1)—
Y;(0) or Y;(1)/Y;(0). Since each unit receives only one treatment, either Y;(1) or Y;(0) is
observed, but not both so comparisons of Y;(1) and Y;(0) will bring speculation.

Nevertheless, estimating the causal effects of treatments is a missing data problem,
since either Y;(1) or Y;(0) is missing Fisher (1951) and Kempthorne (1952) followed by
(Rubin, 1974, 1977, 1978) and (Rubin, 1980). Hamilton (1979) also had similar approach.
The structure would not be adequate if the response of unit ¢ treatment depends on the
treatment given to unit j. Rosenbaum & Rubin (1983) estimated the average treatment

effects as
E[Y;(1)] - E[Y;(0)]

where E[.] denotes the expectation in the population and N units are viewed as a simple
random sample from that population.

The target of estimation, is defined as the average difference between treated and un-
treated for all units in a population or in some subpopulation. For example the population
of males and females. This approach is commonly used in statistics and epidemiology
(Efron & Feldman, 1991) and (Greenland & Robins, 1986). This approach is known as
the Rubin Causal Model, RCM by Holland (1986). The RCM provides a link between
various approaches (Hearst et al., 1986; Holland, 1988; Permutt & Hebel, 1989; Sommer
& Zeger, 1991) and (Imbens & Angrist, 1994).

1.4 Longitudinal Data

Longitudinal data is defined as a set of repeated measurements of an outcome and a set of
covariates for each of many units. The aim of statistical analysis is to model and estimate
the marginal expectation of the response variable as a function of the covariates while
accounting for the correlation among the repeated observations for a given unit (Zeger &
Liang, 1986).
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Longitudinal data have repeated observations on the same subject over time. In clin-
ical trials, each patient’s response to a treatment will be recorded at each decision point.
We do not always have interest only in how the mean response differs across treatment,
but as sometimes we wish to see the change in mean outcome over time and other issues
regarding the relationship between response and time. Thus it is necessary to represent
the situation through a statistical model that acknowledges the way in which the data were
collected.

Specialised methods of analysis are required to complement the models. Although
repeated measurements most often take place over time, that is not only way that mea-
surements are taken repeatedly on the same unit. For example human subjects may be
taken as units. For each subject, reduction in diastolic blood pressure is measured in sev-
eral occasions with each occasion involving administration of a different dose of an anti
hypertensive medication. Thus, the subject is measured repeatedly over dose (Davidian
et al., 2008).

1.4.1 Observational Studies, Randomised Trials and Causal Effects

In a randomised trial, each subject is randomly assigned to a treatment group or control
group before the start of treatment. Sequential ignorability is required when we wish
to compare the effects of dynamic treatment regimes from a sample treatments and out-
comes. This depends on the assumption that new treatment is assigned independently
of potential future responses to treatment, conditional on the history of treatments and re-
sponse to date. The assumption of sequential ignorability must be assumed in longitudinal
observational studies for randomisation (LLavori & Dawson, 2004).

Individuals are randomly assigned to a treatment and control group in randomised
trials. If the groups are found significantly different after treatment, then the treatment is
assumed to cause the difference. Meanwhile in observational studies, more assumptions
are needed before we can conclude a treatment have a causal effect.

Definition Let A; be a binary (random) treatment variable for unit i where i =
1,2,...,n. Consider fixed (non random) but possibly unknown potential outcomes, Y;(1)
and Y;(0), for each i. Then the following sample average causal effects of interest can be
defined by + 5" | (Y;(1) — Y;(0)).

Definition The treatment is said to be randomised if the treatment variable A; is in-
dependent of all potential outcomes, Y;(a), for all units, i.e..Y;(a) L A; for all a and all
1. (Dawid, 1979)

1.4.2 Time-Varying Treatment

A time-varying variable obviously is a variable that changes over time. These are com-
monly used in survival analysis. In our context the dose of a drug is a time-varying

covariate, if a person is treated at many time points with different doses.
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Treatment policies where the type of treatment or the level of treatment changes over
time are known as time-varying treatment regimes. When there are fixed care policies,
the same dose is maintained over time. For example, a patient taking the same dose twice
a day at the same time for 4 weeks. Meanwhile a patient who takes different types of
drugs over four weeks is considered as following a time-varying regime. A time-varying
regime can be dynamic or non-dynamic. A dynamic treatment regime is one in which
the level of treatment received depends on time-varying patient diagnosis. Consider the
following example for a dynamic treatment regime: Varying doses are needed for each
patient treated with Warfarin for anticoagulation. There can be severe bleeding if dose
is too high while too little can cause blood clots. Classical methods cannot predict how
much of the drug a person will need. To measure how fast the blood clots, physicians
measure the patient’s International Normalised Ratio (INR) continuously and estimate
the dose of Warfarin that should be given to the patient. The next example is of a non-
dynamic time-varying regime; The control of the side effects from Chemotherapy for

cancer treatment.

1.4.3 Assumptions for Causal Inference

Three assumptions for causal inference are usually needed (Rosenbaum & Rubin, 1984).

First, let us introduce some notation

e a; be a possible treatment decision at time point j;

e A, be the observed decision at time point j, where A; is selected from all possible

decisions {a, };
o A; = (Ay,...,A;) denote all past decisions up to and including A;;

e 5, be the status (possibly a vector) at the beginning of time interval j. Generally S;

contains predictors of the response;

e S; = (51,...,95;) denotes all past states up to and including S;;

Y be the response at the end of a final time interval K.

Assumption 1 No interference between units. Let A be an N dimensional vector
of treatment assignment, where the i'* element represents the treatment value of unit i
fori = 1,2,...,N. Let Y;(A) be the potential outcome of unit ¢ given the treatment
assignment for all units A. Then, the assumptions implies that Y;(A = z) = Y;(A = y)
whenever x = y. This assumption is sometimes called the stable unit treatment value
assumption (SUTVA) (Rubin, 1978) also known as consistency assumption (Rosenbaum
& Rubin, 1984). The results of a subject’s allocation are not affected by other subjects’

treatment allocation.
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Assumption 2 No unmeasured confounders. The treatment received in any interval is
allowed to be conditional on history, but is independent of any future potential outcomes
meaning that Y, | A|S = s for each possible value a of A and s of S. This assumption
is sometimes called conditional exchangeability. It holds in a randomised experiment in
which treatment is randomly assigned (Robins & Wasserman, 1997).

Assumption 3 Positivity. When the treatment is not deterministically allocated within
level s of covariates S, not all source population subjects with a given value s of S are
assigned to be treated or untreated (Herndn & Robins, 2006). If P(S = s) # 0 (the
population marginal probability that S takes the value s) then P(A = a|S = s) > 0 (the
conditional probability that A takes the value a among the subjects in the population with
S equal to s). The above assumed S and A to be discrete variables.

The optimal regime might be estimated from among the set of feasible regimes with-

out any additional assumptions (Robins, 1994) as will be described in the next chapter.

1.5 Conclusions

The problem of estimating the treatment effects from observational studies is a multistage
decision problem. Dynamic treatment regimes are designed to deal with this problem.
There are defined as a set of decision rules which are tailored through time to suit individ-
ual conditions and history. The regime is optimised when the mean response is maximised
at the end of a final interval.

In the next chapter we will explain in detail the optimal dynamic treatment regimes
method introduced by Murphy (2003).



Chapter 2

Estimation Techniques for Optimal

Dynamic Treatment Regimes

2.1 An Overview of Dynamic Treatment Regimes

A dynamic treatment regime is defined as a set of decision rules which are based on the
observation or history of the patients at the decision time point. The set of decision rules
or actions forms the treatment regime Murphy (2003). Since it depends on time-varying
measurements, it may be influenced by earlier treatments and patient responses.

Optimal dynamic treatment regimes provide optimal decision rules over a time inter-
val, aimed at for example producing the highest mean response at the end of the time
period. The structure of optimal dynamic treatment regimes consists of multistage deci-
sion points. Suppose only one decision is made at every time interval. At interval j in
{1,2,..., K}, A; denotes the treatment decision while S; denotes the status of the patient
at the beginning of the time interval. The response at the end of time interval time K is

denoted Y. The sequence is S, a1, So, ..., ak, Y.

2.1.1 Notation

Finding the optimal dynamic treatment regimes is a sequential or multistage decision
problem. We consider the treatment regime to be a set of decision rules with one rule per

time interval. At each time point j € {1,2,..., K}, let

a; be a possible treatment decision at time point j;

A, be the observed decision at time point j, where A; is selected from all possible

decisions {a; };
- A; = (Ai,..., A;) denote all past decisions up to and including A;;

- 5} be the status (possibly a vector) at the beginning of time interval j. Generally .S;

contains predictors of the response;

10
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- S; = (51,...,95;) denotes all past states up to and including 5;;

d; be the decision rule for time point j and d; = (dj,djt1, ..., dk) is the vector of

decision rules from j onward;
- c_l?p " be the collection of best possible decision from time point j onward (unknown);

- Y be the response at the end of time interval K. So the order of occurrence is

(S1, A1, Ss, ..., Ax,Y).

In summary, lower case is a possible action and will be used usually as the argument
of a function. Upper case A is the action actually chosen. We use d to imply rules, S for
observational states, and Y for the final response. In the above, we have distinguished
decision rules from actions. The rule is a policy or algorithm to be followed in deciding
upon an action.

Suppose, we consider the HIV data from Moodie et al. (2007). In Figure 2.1, Moodie
et al. (2007) only considered two-time intervals, j = 2. The first interval, ¢; is from 0 to 6
months while the second interval, ¢, is from 6 to 12 months. The status variables, .S; and
Sy are the C'DA4 cell counts and the C'D4 count is also used to determine the optimal rule
for AZT (Zidovudine) dose at each interval. The C'D4 is the T-cells in the white blood
cell that play an important role to the immune system. The larger values of Y or high
C D4 cell counts is aimed at the end of study.

The C' D4 cell counts for S, Sy and Y are at, 0 (baseline), 6 and 12 months respec-
tively. A patient who received AZT treatment at first interval is denoted as A; = 1 and
equivalently A, = 1 for second interval. Meanwhile A; = 0 at j = 1, 2 is for patient who
did not received the AZT treatment.

11
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S1 —» —» S2 » — > Y
t1l t2
CD4 —» —» CD4—» —» |CD4
\ | |
0 month 6 months 12 months

Figure 2.1: Illustration of data for two intervals.(a)The structure of the dynamic treatment regime
and (b) The order of occurrence of HIV data

12
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2.1.2 Assumptions
We make the following assumptions:

1. Consistency: If the regime is followed, the potential outcomes under any particular

treatment or action correspond to the actual outcomes.

2. No unmeasured confounder: The action, A; cannot depend on the potential out-
comes except through the observed history (S;, A;_1).

3. Positive probability of treatment occurring in the data.
4. Finite second moment for Y.

5. Between-subject independence

Assumptions (1) and (2) are the standard assumptions for causal inference. Assump-
tion (3) is adopted when the treatment is discrete and non-parametric methods are used,
or when we have parametric models for treatment effects in the simulation or application
data. The final assumptions, that are the assumption (4) and (5) are to make sure that the

least squares estimators to introduced later will work correctly.

2.2 Murphy Method

2.2.1 The Murphy Regret Function

Murphy (2003) introduced a method to estimate optimal decision rules with the aim of
producing the highest mean response at the end of the study. Murphy’s method uses
experimental or observational data to construct the estimator.

One approach is to model the multivariate distribution of (Sx, Ak, Y’) and then apply
a dynamic programming method. Dynamic programming is a backward induction method
which is used to find the decision rules that maximise the mean response. It can be
impractical computationally for realistic problems.

Murphy’s contribution is to show how dynamic programming can be avoided through
the introduction of regret functions combined with an iterative estimation method. This
method is semi-parametric because it only parametrises the regret function and then esti-
mates it rather than parametrising the conditional density of Y, E[Y'|S;, 4;_4].

Y (d5” ") is defined as the response under the best possible decisions from time j and

we define the regret functions foreach j = 1,..., K as

1;(a| Sy, Aj_1; ) = BIY (d)]S;, Aj1] — E[Y (a;,d5,)1S;, Aj1] (2.1)

&1

where the first term is the best expected value of Y at time point j given the past whilst
the second term is the best expected value of Y from time point j choosing decision a;

given the past but still under optimal future decisions.

13
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Thus, the loss in expected response is measured by the regret when comparing a; with
the best action at time point j, with both cases following the optimal regime later. Each

(t; defined in Equation (2.1) must satisfy the constraint,
inf {1(a;15;, A;_1;4)} =0

This constraint ensures the regret should be equal to zero when the optimal decision is
chosen at time j or equal to positive values since our target is to maximise the response,
Y.

Murphy (2003) shows that the mean of Y given (Sk, Ax) can be written in terms of

the regrets as

K K

E[Y|Sk, Ak) = Bo(S1) + > 0i(Sj-1, Aj-1,9) = > 1i(4418;,4,0)  22)

J=1 J=1

where
¢;(Sj1: 4j-1, ) = BIY (d”'[Sj-1, Aj1..5))] = E[Y (d7'[Sj-1, A1) (23)

From Equation (2.3) we see that the function ¢; compares the expected response under
the optimal rule after S; is revealed with the expected optimal rule response before S;.
The optimal response Y is influenced by ), chosen actions A; and the states .S;. We
see that the states S; enter through the ¢ terms and the chosen actions A; enter through
the regrets p. The [y term is the initial condition and also the expected maximal mean
response at optimal decisions, since each ¢; has expectation zero (over .S;) by definition.

Thus, the expression of the maximal mean response is

K

Bo(S1) = E[Y|Sk, Ax] + ZE(MJ(Aj‘gjaﬁj—l))

J=1

where the ¢-function is considered as type of noise and ZJKZI E(¢;(Sj-1,4;-1,5;)) =0,
foryj=1,..., K.

The combination of parametrising the regret function and the estimation method will
lead to real practical advantages, as discussed by Murphy (2003). Besides that, this
method can be useful in testing whether particular features of the past information are

needed in the optimal decision rule.

2.2.2 Murphy Estimation Procedure

The model for the regrets, 11;(S;, A;;1) is developed with a p-dimensional unknown pa-
rameter ¢ so that inf,{sx;(S;, A;_1,a;1)} = 0. The estimation is based on a sum of

squares which contain the observed responses and the regret functions for estimation of

14
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the unknown parameter 1) C R” and ¢ C R an unknown scalar. Murphy considers

K K 2
> P, {Y ot Y (S Ay ) + (S, Ay ) — Ej(p(al Sy, Aj; ?/1))} :
j=1 I=1,1#]

(2.4)
Here P is an average over the sample data defined as P{f(X)} = (2) Y%, f(X;) (as-

suming that the sample observations are drawn independently from a distribution) and
Ej(pi(al S, Aj) = p(alS;, Ay )p;(alS;, Ay).

We assume at least to begin with the conditional probability, p;(a|S;, A;) is known. This
assumption can be relaxed by for instance estimating the density of actions using say
maximum likelihood. For example, & can be estimated from the model p;(alS;, A;; @)

with unknown o by maximising the log-likelihood

K
P() logp;(4;15;, Aj-1; ).
j=1

Murphy’s method will be described later. The method is based on the following relation-
ship, which Murphy proved:

K K 2
Z]P)n {Y + ¢ + Zm(gl, Apaby) — Zﬂj(a\gp Ajibn)pi(alS;, Ay dn)}
J=1 =1 a

K K
<> P, {Y+c+ > Sy, A b)) + (S, Ay )
j=1

I=1,I#]
2
- Z 15 (alS;, Az )p;(alS;, Aj; dn)} (2.5)

Introducing the scalar ¢ was suggested by Murphy as a way to stabilise her estimation

routine and Murphy showed that the scalar ¢ does not affect its consistency.

2.2.3 Murphy Simulation Scenario

We will follow the simulation procedure taken by Murphy (2003) based on a hypothetical
educational programme for children. The data are simulated as follows. As a start, we
choose a sample size, n = 1000, and K = 10 time points.

For each interval there are two possible actions, where the first action (A;) is binary
1 = yes;0 = no. This first action is about whether the child should receive special
education. If the child requires special education, level 1 will be assigned otherwise
level O for not receiving special education. This simulation is a sequentially randomised

experiment where the actions about whether the child should receive special education

15
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are uniformly distributed {0,1}, i.e equally likely.

The second action (A,) is about the amount of the appropriate treatment to be de-
cided. The treatment amount if receiving special education (A; = 1) is uniform on
{1,2,3} and treatment amount for not receiving special education (A; = 0) is uniform
on {0,1,2,3}.The conditional density of Y given (S, Ax) is normally distributed with

variance 0.64 and mean

K K

E[Y|Sk, Ak) = Bo(S1) + > 0i(Sj-1, Aj-1,9) = > 1i(4418;,4,0)  (2.6)

=1 j=1
where 3y = 30 and ¢;(S;, A;_1) = —5(S; — E(S;|S;-1, A;_1)). The marginal density
of 51 is Normal with mean; = 0.5 and variance=0.01. The conditional density of each .S;
given (Sj_l, flj_l) for j > 2is Normal with meanm; = 0.5+0.25;_; —0.07A,_1A;_»—
0.014,_1(1 — A,_») and variance=0.01.
The true regret function 11;(A;|S;, A;_1, ) for this simulation is defined to be

(A5, A q, ) = Z@m (Ayj — 1(S; > 1hs))?

7j=1

Zw Aj) % (Agj = (3 +U55)))

+ 1/)7(1 — Ay;)(Ag; — (Y6 +185;))°

Note that 3, is the optimal mean response if the regrets are equal to zero.
For estimation, Murphy proposed an iterative procedure based on the right hand side
of the Equation (2.5). Let

(w(l ZP{Y+C+ Z M SlaAla )+/’L]<S]7A]ﬂ¢ )

1=1,l#]
2

_ZMJ(G|SJ7AJ'13¢(2))pj<a’5j714j1)} (2.7)

The function has two versions of the parameter vector v, say /(") and ¢(?, together

with a constant, c. Murphy’s method is as follows:

1. Set the initial estimates of ¢/(!). In this simulation, our initial estimates of 1/(!) is
the true value of . Therefore /(") = {6,5/9,0,1.5,2,0,1.5,5.5}.

2. Fix 9. Minimise S(p("), % ¢) with respect to 1)(?) and c using the Newton-
Raphson method:

p2Imew :zp(z)ozd_( 0S >‘1 83

@7 ) 5@
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3. Set M) = (2,
4. Test for convergence. If [1)() — )(2)| < ¢, then stop. Otherwise return to Step 2.

Murphy also approximates the non-smooth function /(S; > ) for the first action (4;)
in her estimation of the yes-no special education decision.

Theorem 2 from Murphy (2003) justifies this procedure as providing consistent esti-
mates of the regret parameter, 1. Below is an example of minimisation of S(¢(") (), ¢)
at Step 2. We are going to show how to derive the first derivative and second derivative of

(2) and ¢ from the true regret function. Suppose the regret function is,

1i(S;, A, ) = P (A — 1(S; > ¥§)? + 9P (Ay) (Ag; — (57 + 950 S;))?
+ P (1= Ay (Agy — (8 + 07 8))%. 2.8)

We differentiate the sum of squares from Equation (2.7) with respect to ¢ and ¢§2). The

first derivative with respect to c is

oS
80_22_:P{Y+C+ Z 1 ShAlﬂ/) )+ﬂJ(SJaAJ7¢ )

1=1,l#j

- Zﬂj(a|§j,Aj—1;¢(2))Pj(a|5jaAj—1)} :

The second derivative with respect to c is

028

—_— = 2.
dcocT

We continue to differentiate the sum of squares S ()", 9 ¢) with respect to 1/)9

95 T
—QZIP’{Y+C+ > S, A ™) + (S, Ay @)
6¢1 j=1 I=1,l#j

- 0

_Zﬂj(a|5jaf‘_lj—l;?/)@))%(a@jﬂj—l)} 55 i (S, Aj; )
a 1

= > n(al Sy, Ay ;0 ®)p;(al Sy, Ay )

where 5
W(M(Sj,ﬁj;@b@))) = (Ayy = 1(S; > ¥5”))%.
(0
Note that this is equal to 1 if Ay; = 1 and I(S; > 1/152)) =0or A;; = 0and I(S; >
2 =1, otherwise — 2) (115(S;, Aj; @) is equal to 0. The probability p;(Ay;]S;, A;_1)
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is always 1 for A;; = {0,1} and so

N _ _ _ 1 1 1
Ej(pi(alS;, A ™)) =~ pi(al Sy, Ajoy; v ®)pj(alS;, Aj1) = (0 x ) Txg) =5

Hence

0S K K o -
@ QZP{Y+C+ > ‘“1(517141;1#(1)) +15(S;, Ay @)
! 7=1 I=1,1#]

- ZEj<uj<a\sj,Aj;w<2>>>} x {(Au- —1(8; > 457))* ~ %}

a

Furthermore, the second derivatives with respect to 1052) are:

as - v 1)
— E L ' 22 _ -
aw§2)a(¢§2))T =2 — P {(Alj [(SJ > 1y )) 2}

and

S - @ve 1
20 0c :2ZP{(A1j—I(5j >y ))2—5}

j=1
Other than 1/19, which appears in the indicator function, the derivatives of S with respect
to all the other parameters can be calculated in a similar way, though the terms involved

are more complicated. Details are omitted.

2.3 Robins Method

2.3.1 The Blip Function Model

Robins (2004) introduced blip functions as a route to find an optimal regime. The blip
function is based on the idea of structural nested mean models (SNMM). An SNMM is
defined as an expected difference between a person’s counterfactual response on a specific
treatment regime from j + 1 onward and on another specific regime from j conditional on
history.

Suppose H; is the history of the treatment decision and status up to the beginning of
time j but not including the treatment decision at time j, so H; = (S, Ay, S2, As, ..., 5;).
The optimal blip-to-reference function is defined as the difference between expected out-
come using a reference regime dif' = df'(H;) rather than a; at time j. The optimal

blip-to-reference function is
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dref _ —
j] (a]|SJ7 A] 1)=FE [Y(a], djitl”‘s Aj 1] - [ (d§°f7d§$1)|5 Aj- 1} (2.9)

Another version of the blip function is the blip-to-zero function which is also sug-
gested by Robins (2004). This blip-to-zero function replaces the reference regime d;-ef
with ‘zero’ at time j. This ‘zero’ action means the standard treatment or placebo in the

medical case. Then,

d5'=0 0 o x re 0
'7]' (aJ|Sj7 )=k [Y(a],d]ﬂ:lﬂs A 1} - K [Y(djf = 7d]$1)’S]’AJ 1]
(2.10)
The optimal blip is,
(45185, Aja) = B [Y (a5, &%), Ajoa] — E [Y(d)]S;, Aj-1] (2.11)

The regret function from Murphy (2003) defined at (2.1) is the negative of the optimal
blip.

pi(a;18;, Aja) = E [Y(d™)1S), Aja] — B [Y (a5, dF1)|S;, Aji] (2.12)

2.3.2 G-Estimation

Robins (2004) introduced g-estimation and has produced a number of estimating equa-
tions using structural nested mean models (SNMM). G-estimation estimates the parameter

1 either from the optimal blip-to-zero or the regret function. The h-function is defined as,

K

h](¢) =Y + Z [’Ym(dfgwgma Am—l; ¢) - ’Vm(Am|S’m> Am—l% @D)} (213)

m=j

Substituting the observed values (S;, A;) into h;(¢)) will give a patient’s actual outcome,
Y added to the expected difference between the outcome for someone who received a;
treatment with someone who was given the reference regime such as placebo or control
treatment at time j, and were treated optimally when both had the same treatment and

history to that interval.
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Thus, returning to the blip function

S VA A1) — B [V S AU

_E [Y(Am,disiolém,ﬁmfl;w] + B [Y (A0 ) Sy A1 9] }

=Y+ Z {B [Y(@)1Sm: Amrs 0] = B [Y (A d3251)| Sy Ay ] }
(2.14)

For example, if we have K=2 then the h-functions will be

ho(¥) =Y + E [Y(d3)|Sa, Ar;¢0] — E [Y(As)|Sa, Ar; ¥
hi(¥) =Y + E[Y(d™)[S1;¢] — E [Y (A1, d™)|S1; 9]
+ B [Y(dy)S2, A1; 9] — E [Y(A3)|S2, Ar; 9]

The difference in Equation (2.14) is equivalent to the regret function defined at Equa-
tion (2.12) and therefore,

K
hi() =Y + > pio(A| S Apr). (2.15)
iy

Let v;(A;) be an arbitrary vector with length dim(v) determined by states and actions to

time j. Specifying the functions /,;(¢) and v;(A;) for estimation, we define

=2 1) {vi(A)) = Bl (4))15, 4]} (2.16)

Setting U (1)) = 0 defines an unbiased estimating equations and we can estimate ¢/ by
the value for which U (¢)) = 0. By construction, h;(1) is the expected value of response
Y with optimal decision taken at time j onward rather than the actual decision A;, con-
ditional on (S;, A;_1). This means that h; is dependent on previous actions, A; ; =
(A1, Az, ..., Aj1) but independent of the future actions A; = (A, Ajy1,..., Ap). We
define

=Bl E {v(4) ~ B [1(4)]5;, 4]}
+c0v[ {V] [ j(Aj)lgj’AJ_l} }]

Previously we have mentioned that /(1)) depends on A;_; given the past but is inde-
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pendent of A; given its earlier history so that E {v;(A;) — E[v;(A;)]S;, A;_1]} = 0 and
cov[h;(¥), {v;(A v;(A;)|S;5, A;-1]}] = 0. Thus we have E[U(¢))] = 0 and so an
unblased esnmatlng equatlon, as stated.

The estimators are not efficient however, Robins (2004) has refined the equation (2.16)
to gain efficiency. Let

ZZ(hj(¢)—E[hj(¢)I5 1)) < {v(4)) = Elv;(45)18;, A} @217)

Introducing the E[h;(¢)|S;, A;_1] gives estimation which can be shown to be more
efficient than found in Equation (2.16) even if the model is misspecified. However, ob-
taining E[h;(¢)|S;, A;_1] is problematic in practice. Therefore, we prefer the Equa-
tion (2.16).

2.3.3 Relating the Two Methods

As seen Robins uses blip models while Murphy uses regret functions, but both are math-
ematically equivalent. Moodie et al. (2007) demonstrated the similarities between these
methods. For estimation of model parameters, Robins uses g-estimation whilst Murphy
uses the iterative minimisation for optimal regimes (IMOR) described above. Moodie
et al. (2007) have related these two methods together by using the h-function which is
found in g-estimation. To relate these two methods, first, we consider the regret function:

pi(aj] Sy, Ajr) = E[Y (d7]S;, Aj-1)] — B[Y (a;, &7,[S;, Aj-)].
[Y(d"pt\SpAg D] = Bl (d5, 3‘11|5]7Ag 1)]

J

- {E (a;,d%415;, Aj1)] — BV (d5', &% [S;, A1)}
Hence,
115(a;1S5, Aj 1) = VN (dSs, Aj-1) — A5 (05185, Ajoa).-

Then, we consider the blip function:

’Y;ef E[Y(aj,doﬂ:l\sj, j-1)] — E{Y(dref 0, dOI:Lt1|SJ=AJ V)]
:E[Y(ajﬂdoptl‘SJvAJ 1)] E[Y(dqptwijj—l)]
—{E[Y(d|S;, Aj-1)] — EIY (df', d7, 1S5, Aj)]} -

We can write this as

1]
-)I}

Vi = EBIY(dS;, A0 = BIY (d5, dF4 1S5, Ay
—{E[Y/(d}"S), Aj—1)] = B[Y (a5, d5%4]5;, A

=j+1
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Thus
= g (5155, Ajr) = (a1 Aj).

Recall the Murphy’s regret function from Equation (2.8) and re-write it in shorter

notation as

15 = Y1 (Ajn — I((S;) > 12))? + LaAji(Aje — 3 — ¥55;)°
+ 7 (1 — Aj1)(Aj2 — v6 — ¥s5;)°
= P1vj1 + Yavjs + Prvjy (2.18)

From Equation (2.15) above, we get,

K
hj(w) =Y+ Z /’Jm(/_lm| _ma Am—l)
m=j
K K K
=Y+¢1zvm1 +¢4zvm4+¢7zvm7- (2.19)
m=j m=j m=j

Next, we define djl = Vj1— Ej [Ujl], dj4 = Vja — Ej [Uj4] and dj7 = Vj7— Ej [Uj7]. We will
use these to obtain the estimating equations for v, 14, 17 conditional on ¥y, 13, V5, Vg, Us.

Since, as seen h;(1)) is independent of actions after time j, it follows that

K
Z hjdjl == O
7j=1

is an unbiased estimating equation. Expanding the h; function from Equation (2.19) to

8k K K K
Z{Y+¢12Um1+¢4zvm4+¢7zvm7} dj1 =0
j=1 m=) m=j
and so
K K K K K K K
— Z Ydj = (Z Z Umldj1> U1+ (Z Z Um4dj1> Vg + ( Z Um'?d]l)
j=1 j=1 m=j j=1 m=j j=1 m=j

Similarly, for the other two coefficients ¢/, and )7, we use
K
Z hjdj4 = 0
j=1
K
Z hjdj7 — 0,
j=1
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leading to,
K K K K K K K
- Z Ydj, = (Z Z Umldj4> 1 + (Z Z Um4dj4> Yy + (Z Z Um7dj4) (s
j=1 j=1 m=j j=1 m=j Jj=1m=j
and
K K
— Z Ydj; = (Z Z Um1d 7) Py + <Z Z Um4dj7> Yy + (Z Z Um7dj7> (U
j=1 m=j j=1 m=j Jj=1m=j

We can write these three equations in general form as,
K K K K K K K
S v (z 5 vmldﬁ> - (z 5 vm4dﬂ> bt (z 5 vmdﬂ) "
o , : , : , :

for7 = 1,4, 7. Itis also possible to write these equations collectively in vector form as
Z = B X,

where B is a symmetric matrix which we require to be invertible, v, = (1, ¢4, 7) and
7 is the vector of left hand sides of the above. Therefore, a closed form for ¢(S;, A; ;) =

(¥1,%4,17) conditional on ¢y, 13, Vs, Y, Vs is
U, =B'Z (2.21)
For the other parameters 3, 15, Vg, s excluding 1, we use a Newton-Raphson method:

1. Set the initial estimates of ). In this simulation, our initial estimates of ¢ are the

values of 13, V5, Vg, V5.

2. Fix 1. Estimate 11,4 and v; using Equation (2.21). Then solve using Equa-
tion (2.19) for the other parameters 3, V5, 1, 15 using Newton-Raphson:

82U<w>)‘1 oU (1)

new __ ,jold
== (5ai) o

The parameter 15 is more awkward, as will be discussed later. For the moment we

assume that 1)y is known.
3. Set ,¢new — 77/}old

4. Test for convergence. If [)°'¢ — ¢)"?| < ¢, then stop. Otherwise return to Step 2.

2.4 Regret-Regression Method

Henderson et al. (2009) proposed another method for determining optimal dynamic treat-
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ment regimes from observational data that follow all the assumptions above. This method,
which they called regret-regression, was applied to an anticoagulant dataset in order to
choose the best potentially time-varying dose for patients on long term treatment. Rosthg;j
et al. (2006) applied the Murphy (2003) regret function to estimate the optimal decision
from the anticoagulant data but they were only able to fit a very simplified model.

From Equations (2.1), (2.2) and (2.3), we have

¢;(Sj-1,A;1,5;) = E[Y(d"|S;-1, 421, S;)] — E[Y (d™'|Sj-1, A1)
= E[Y(d"'|5j-1,Aj-1,5)] — Es,5, 1.4, , {EIY(d'|Sj-1, Aj—1, 5))]}
(2.22)

and we note Es |5, , 1, , [¢;(Sj-1,4;.1,5;)] = 0.

Henderson et al. (2009) suggests to parametrise the ¢;(S;_1, A;_1, S ) function from
Equation (2.2) rather than avoiding it. Besides that, they model gbj( i—1,A4j-1,55; ) as a
linear combination of residuals between S; and their respective conditional expectations
given (S;_1,A;_1). Let Z; = S; — E[S;|S;_1, A;_1] and assume,

K

K
E[Y|Sk,Ag] = Bo(S1) + Z B (81, Aj1) 25 — Z 1 (A;18;A45150)  (2.23)
j=1

Jj=2

Notice here that 3;(S;_1, A;_1) is a coefficient vector which measures the effect of S,
after (S;_1, A;_1) is observed and supposing that the best actions have been chosen from

time point j onwards.

2.4.1 Regret-Regression Estimation Procedure

The regret-regression method is a full parametric model where it parameterise the con-
ditional density of Y, E[Y|Sk, Ax]. We use the linear regression method to model
B(S;_1, flj 1) term by defining the residuals between S; which depend on previous his-
tory, Z; = S; — E[S;]Sj_1,A;_1]. Then, we follow the Murphy method to parame-
terise the regret function, ,uj(ajlgj, flj_l). Suppose Equation (2.23) is always true and

ﬂj( i—1,4,_1) depends on (Sj 1, A;_1). We minimise the sum of squares function

n

SSE = Z(Yl — E[Y;|Sik, Aik])*

i=1

2
- Z (Y ﬁO Sh ZBT j— 127 Jj— 1z j’L Z,u/j A_]’L’ Jiy ] 1,z7w)>

(2.24)

to obtain the estimated parameter 3 and 1& The bootstrap method is used to estimate the

variance, including re-estimation of the residuals Z;; at each resample. Henderson et al.
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(2009) propose diagnostic checking to examine the residuals between observed and fitted

value of Y, which is not possible under the Murphy or Robins estimation methods.

2.5 Simulations

2.5.1 Murphy Simulation

In this section we discuss results obtained from the simulation scenario proposed by Mur-
phy. Based on the results, we examine estimation accuracy using different sample sizes
n with 1000 repetitions and make a comparison between the estimated parameter z@ with

true ¢ and recall we have fixed 1, for the most part.

Sample Size || Percentage of successful convergences,(%)
250 89.8
500 94.0
1000 98.8

Table 2.1: Successful convergence rates for different sample sizes based on Murphy’s method with
1000 repetitions

We begin the estimation procedure by fixing /(1. We set 1)(!) to be an initial estimates.
In this simulation we consider the initial estimates to be the true value of ¢). Murphy
has set the true value of ¢ as (6,5/9,0,1.5,2,0,1.5,5.5). Then, we minimise the least
squares, S(¢(M 1)) ¢) in Equation (2.7) using the Newton-Raphson method to obtain
1. We then set 1)) = 9/ and test for convergence, [¢)(!) — ()| < ¢ by comparing
the initial estimates, zﬂ(l) with the new estimates, w@). If the differences is small, i.e.
e = 0.001, we stop the process otherwise we continue until it converged.

One immediate problem we found in this simulation is that the Murphy iterative rou-
tine did not always converge even though our initial parameter estimates are in fact the
true values. We notice that the estimation procedure is not a standard estimation pro-
cedure. Murphy method is found sensitive to the starting value (Rosthgj et al., 2006).
Rosthgj et al. (2006) also has tested many different starting values using the one search
root-finding algorithm.

Table 2.1 shows the convergence rate improves as we increase the sample size. We
start the simulation with sample size 250 and we found 89.8% of simulations converged.
This percentage has increase to 94% as we increased the sample size to 500. Sample size
1000 leads to a very impressive 98.8% convergence. We are not considering the sample
size smaller than 250 where there will be a convergence problem if sample size is too low
(Rosthgj et al., 2006).

Table 2.2 shows that on average the parameter estimates 1/3 are close to the true values
1 as sample size increases when 1), is fixed based on successfully converged samples.
The standard error (SE) and the root mean square error (RMSE) decreases as sample size

increases as we expected. We will drop the sample size 250 in future analysis because

25



Chapter 2. Estimation Techniques for Optimal Dynamic Treatment Regimes

Sample Size,(n)
Parameter | 250 500 1000
1 =6.000 | 5987 | 6.011 | 5.994
3 = 0.000 | 0.004 | -0.006 | -0.013
Yy = 1.500 | 1.521 | 1.493 | 1.495
Mean | 15 = 2.000 | 2.001 | 1.997 | 2.017
g = 0.000 | 0.000 | 0.006 | 0.004
Py =1.500 | 1.495 | 1.498 | 1.504
g = 5.500 | 5.510 | 5.494 | 5.488
(3 0.132 | 0.088 | 0.063
Y3 0.178 | 0.122 | 0.084
Wy 0.130 | 0.087 | 0.064
SE Vs 0.264 | 0.188 | 0.129
Vg 0.112 | 0.079 | 0.061
WUy 0.062 | 0.044 | 0.033
g 0.256 | 0.177 | 0.141
(3 0.143 | 0.093 | 0.069
3 0.217 | 0.124 | 0.085
Wy 0.146 | 0.096 | 0.064
RMSE Vs 0.294 | 0.199 | 0.131
Vg 0.119 | 0.083 | 0.061
Uy 0.066 | 0.044 | 0.034
(N 0.272 | 0.192 | 0.145

Table 2.2: The Mean, standard error (SE) and root mean square error (RMSE) of the estimated
parameters obtained from Murphy’s method with different sample sizes and 1000 simulations.

we found that it gives poor estimates when compared with the other two sample sizes, as

well as having the convergence issues.

2.5.2 Murphy Smooth Function

The regret function of the first action, A; is,

i1 (aj|Sk, Aj—1;10) = i(aj — 1(S; > 1s))? (2.25)

As suggested by Murphy (2003), we replace the non-smooth function I(.S; > 1)9) with

the smooth function

exp{30(S; — ¥2)}/[1 + exp{30(5; — ¢2)}]

Thus, our new approximate regret function for the first action, A; is,

pir(an] Sk, Aj1;9) = ti(aj — (exp{30(s; — 1)} /[1 +exp{30(s; — 12) }]))* (2.26)

Table 2.3 compares the convergence rate when we estimate 1), using the smooth func-

tion with what happens when we assume 1), is fixed. We found using the smooth function
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Figure 2.2: The smooth function approximation to indicator function.

Samples(n) | Percentage of successful convergences,(%)
Smooth Function(estimated 1)) | Fixed 1o
500 52.6 93.9
1000 414 98.8

Table 2.3: The percentage of successful convergences between the smooth and fixed functions for
the estimated )5 at sample size 500 and 1000. This simulated study is repeated 1000 times.

to estimate 1)y has lower convergence rate almost by half than the convergence rate for
fixed v5. When sample size increases, the convergence rate also increases for fixed 15 but
not for the smooth function where the convergence rate is poorer at just 41.4% at sample
size 1000 due to the random simulation noise.

Table 2.4 shows the mean, SE and RMSE using both methods at sample size n = 500
and n = 1000. As we can see the mean, SE and RMSE when using the smooth function
give poor estimates of v for all the parameters, often far away from the true ¢/ even at
the large sample size n = 1000. The bias is huge especially for the parameters v); and
1g. This is in contrast to the fixed 1) function where the simulations provided very good
estimates with a very small bias. This fixed 1), works best at sample size n = 1000.

Since our main concern is with the general performance and not the difficulty of in-
corporating non-differential functions, for the remainder of this work we shall regard 1/,

as fixed.

2.5.3 Comparison Between All Three Methods

We have described the Murphy simulation scenario in the previous section and have re-
lated the Murphy method to the g-estimation procedure of Robins. It is also possible to
link the Murphy method with the regret-regression method. We begin with the mean from
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Smooth approximation Fixed )9
Samples(n) | Parameter

Mean SE RMSE | Mean SE RMSE

Y1 =6.000 | 7.524 | 0.409 | 1.578 | 6.011 | 0.088 | 0.093
19 = 0.556 | 0.556 | 0.005 | 0.005 | 0.556 | 0.000 | 0.000
Y3 = 0.000 | 0.429 | 0.281 | 0.513 | -0.006 | 0.122 | 0.124
Yy =1.500 | 1.573 | 0.152 | 0.169 | 1.493 | 0.087 | 0.096

500 Y5 =2.000 | 1.435 | 0.388 | 0.686 | 1.997 | 0.188 | 0.199
1 = 0.000 | 0.174 | 0.148 | 0.228 | 0.006 | 0.079 | 0.083
Y7 =1.500 | 1.600 | 0.086 | 0.132 | 1.498 | 0.044 | 0.044
g = 5.500 | 5.018 | 0.366 | 0.605 | 5.494 | 0.177 | 0.192
Y1 = 6.000 | 7.533 | 0.306 | 1.622 | 5.994 | 0.063 | 0.069
19 = 0.556 | 0.556 | 0.004 | 0.004 | 0.556 | 0.000 | 0.000
Y3 = 0.000 | 0.466 | 0.111 | 0.480 | -0.004 | 0.084 | 0.085
1000 Yy =1.500 | 1.574 | 0.127 | 0.156 | 1.500 | 0.064 | 0.064

Y5 =2.000 | 1.422 | 0.281 | 0.693 | 2.004 | 0.129 | 0.131
e = 0.000 | 0.179 | 0.110 | 0.230 | 0.002 | 0.061 | 0.061
Y7 =1.500 | 1.598 | 0.068 | 0.123 | 1.501 | 0.033 | 0.034
g = 5.500 | 5.005 | 0.256 | 0.600 | 5.496 | 0.141 | 0.145

Table 2.4: Parameter estimates between the smooth approximation and fixed v, at sample size
500 and 1000. This simulated study is repeated 1000 times.

Murphy simulation:

K

E[Y|Sk, Ak] = Bo+ 1 Y _(S; —my) — ZWl(%l — I{S; > ¥»})’

j=1

— Ya(ajo — 3 — ¥55;)” + ¥r(aje — Y6 — 1sS;)*}. (2.27)

It seems that the Equation (2.27) is equivalent to Equation (2.23). The Murphy proce-
dure models the potential outcomes or counterfactual potential outcomes, E[Y|(Sy, Ak )]
semiparametrically and works only on the regret functions z; found in Equation (2.2). The
initial values 3y and the ¢ term are treated as nuisance parameters.

This is in contrast to the regret-regression method where the potential outcomes are
treated as full parametric model. The method parameterises the ¢ term as well as the
w1 term from Equation (2.2). The regret-regression method models the ¢ term as a linear
combination of residuals between \S; and the expected of S; given the past. This is defined
as Z; = S; —m; found in Equation (2.27).

The Murphy estimation procedure requires the actions and previous history (S; 1, A;_1)
in order to find expected regrets over all possible decisions. In contrast the regret-regression
method models the states given history to obtain the residuals. We discovered that the es-
timation in the regret-regression method is more direct than the Murphy estimation in
addition to being less challenging in computation compared to the Murphy method. This
can supported by simulation which will be discussed in detail later.
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Simulation using Fixed v, for All Methods

Percentage of successful
Methods convergences,(%)
n=500 n=1000
Murphy 93.9 98.8
Regret-Regression 100.0 100.0
Robins 81.1 96.6

Table 2.5: Percentage of successful convergences between methods when )5 is fixed with sample
size, n = 500 and n = 1000

Table 2.5 shows the rate of convergence for the different methods. We compared
these methods at two different sample sizes, n = 500 and n = 1000. From all the meth-
ods, the regret-regression method shows the highest percentage of successful convergence
with 100% convergence at both sample sizes. This is followed by the Murphy procedure.
The Robins method has the poorest convergence rate especially at n = 500 with 81.1%,
though this increased to 96.6% when sample size, n = 1000. We continue our investiga-
tion of these three methods by looking at mean, SE and RMSE given in Table 2.6.

From the simulations, we found that the regret-regression method works very well for
parameter estimation followed by the Murphy method and then Robins. We also found
that the regret regression estimates have small bias compared to Murphy and Robins.
There is also less bias when the sample is large, n = 1000. Robins method has poor
performance in the parameter estimates where the mean values are often far away from
the true v and the RMSE can be very large.
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Simulation using Smooth Approximation of 1), between Murphy and Regret-Regression

Methods
Samples(n) Percentage of successful convergences,(%)
Murphy’s smooth approximation | Regret-regression smooth approximation
500 52.6 100.0
1000 414 100.0

Table 2.7: The convergences rate for the Murphy and regret-regression methods using smooth ap-
proximation to estimate the parameters based on sample sizes 500 and 1000 with 1000 repetitions.

Murphy’s Regret-regression
Samples(n) | Parameter

Mean SE RMSE | Mean SE RMSE

Y1 =6.000 | 7.524 | 0.409 | 1.578 | 5.997 | 0.127 | 0.127
19 = 0.556 | 0.556 | 0.005 | 0.005 | 0.556 | 0.001 | 0.001
Y3 = 0.000 | 0.429 | 0.281 | 0.513 | -0.009 | 0.193 | 0.193
Yy =1.500 | 1.573 | 0.152 | 0.169 | 1.509 | 0.215 | 0.215

500 Y5 =2.000 | 1.435 | 0.388 | 0.686 | 1.999 | 0.017 | 0.017
1 = 0.000 | 0.174 | 0.148 | 0.228 | 0.003 | 0.065 | 0.065
Y7 = 1.500 | 1.600 | 0.086 | 0.132 | 1.490 | 0.227 | 0.227
g = 5.500 | 5.018 | 0.366 | 0.605 | 5.499 | 0.024 | 0.024
Y1 = 6.000 | 7.533 | 0.306 | 1.622 | 6.001 | 0.039 | 0.039
19 = 0.556 | 0.556 | 0.004 | 0.004 | 0.556 | 0.000 | 0.000
Y3 = 0.000 | 0.466 | 0.111 | 0.480 | 0.002 | 0.043 | 0.043
1000 Yy =1.500 | 1.574 | 0.127 | 0.156 | 1.497 | 0.054 | 0.054

Y5 = 2.000 | 1.422 | 0.281 | 0.693 | 2.000 | 0.009 | 0.009
e = 0.000 | 0.179 | 0.110 | 0.230 | 0.000 | 0.032 | 0.032
Y7 =1.500 | 1.598 | 0.068 | 0.123 | 1.503 | 0.051 | 0.051
g = 5.500 | 5.005 | 0.256 | 0.600 | 5.500 | 0.013 | 0.013

Table 2.8: Parameter estimates for Murphy and regret-regression methods using the smooth ap-
proximation. This simulation is based on sample sizes 500 and 1000 and repeated 1000 times.

We repeat the experiment of Section 2.5.2 using the smooth approximation to estimate
15 and apply it to the regret-regression method. The purpose of this test is to see whether
the regret-regression method still provides consistency in the parameter estimates and
better efficiency compared to Murphy procedure with smooth estimation. Robins meth-
ods will not be considered here due to its poor performance compared to the other two
methods in the previous simulation (see Table 2.5 and Table 2.6).

The regret-regression method successfully converged with 100% convergence using
the smooth approximation which is far better than Murphy at both sample sizes in Ta-
ble 2.7. Table 2.8 shows that the parameter estimates are consistent with means that
are close to the true parameter values and greatly improved efficiency as sample size in-
creases. In each sample, we found the regret-regression method has less bias and smaller

standard error than the Murphy procedure with smooth estimation.
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In Murphy’s method, the parameters are estimated using the Newton-Raphson method
except 1. The parameter 1), is possible to estimate by replacing the indicator variable in
(a;|S;-1, A;_1) with the smooth approximation function which is discussed in the previ-
ous section. In contrast the regret-regression method is feasible with or without changing
the function in p(a;|S;_1, A;_1). This gives greatly improved efficiency compared to
Murphy method and also provide a quicker estimation procedure compared to the other

two methods.

2.6 Conclusions

In this chapter we have shown that the regret-regression method can provide excellent
performance in estimating optimal dynamic treatment regimes where in our simulations it
always provide a good estimates with smaller standard error in the simulations. We found
that the regret-regression estimates have less bias than Murphy or Robins. Estimation
for 1) is possible with or without the smooth approximation to estimate the parameters.
The regret-regression method estimates the parameter more directly than the Murphy or

Robins techniques and it is less challenging in computation than the other two methods.
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Chapter 3

Misspecification and Sensitivity

3.1 Sensitivity Analysis Under Murphy Method

A misspecification of a model means it provides an incorrect description of the data.
In this chapter we will investigate performance of the Murphy and the regret-regression
techniques when the model is misspecified, or when the initial values for the estimation
method are not taken to be the true values. In the previous section we assumed them to
be equal to the true values which is evidently unrealistic. Using uncertain initial values is
not of course a misspecification. This part is included to assess sensitivity. We begin with
the Murphy method.

We start the simulation with the initial parameter vector, v/, which has seven elements
since 1, is fixed. Then, for each 1[}]‘ we find the estimated standard deviation, ¢}, from

simulations. These are given in Table 3.1.

n Py 3 Yy s (8 (I g
250 | 0.132 | 0.178 | 0.130 | 0.264 | 0.112 | 0.062 | 0.256

500 | 0.088 | 0.122 | 0.087 | 0.188 | 0.079 | 0.044 | 0.177
1000 | 0.063 | 0.084 | 0.0647 | 0.129 | 0.061 | 0.033 | 0.141

Table 3.1: The estimated standard deviation, ¢; at different sample sizes n when 1) is fixed

In each simulation we first generate Z; ~ N (0, 032-) to form a vector Z with seven

elements. We will assume that the initial values for the simulations are taken as

o=+ kZ

and where appropriate we constrain elements of 1y to be positive and ) is a true value
from Murphy simulation found in Chapter 2. Here ¢ takes the values of (6,0, 1.5,2,0,1.5,5.5)
where ¢, = 5/9 is fixed and k is a scalar with values chosen from k£ = 0,0.5,1,2,5,6, 7.
In this way the error in the chosen initial value is meaningfully scaled.

We will consider cases where either just one parameter has an incorrect starting value,

or all parameters are initialised wrongly.
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Secondly, we will investigate misspecification of the action model. Recall that we
assumed that our model has equal probabilities for all the actions for both A; and A,. To
investigate, we will add unequal probabilities of the action into the model, when generat-
ing the data but will falsely assume equal probability when estimating.

Investigation is divided into several parts:-

e Part(a). All initial values are not set at the true values, with the same scale factor, k.

e Part(b). The initial values are not the true values for one parameter at a time, i.e.
Z = kZ; where Z; is a vector of zero everywhere except the element j which is
N(0,0%) and k is a scalar. For example k = 5 and Z is simulated with k67 =
5 x (0.088)2. In this case only 1/, has been allocated a wrong initial value whilst

the other parameters are initialised at their true values.

e Part(c). Generate data with unequal probabilities for the first action, A; and the
second actions, As|(A; = 0) and As|(A; = 1) in the model but falsely assume

these probabilities are equal in estimation.

e Part(d). Allow the action probabilities to depend on state .S; at time j when gener-
ating data. Assume the action probabilities are independent of state when fitting the

model.

Besides of investigating the sensitivity analysis in Murphy method, we extend our inves-
tigation by misspecifying the model using the regret-regression method. The misspecifi-

cation is devided into three different parts:

e Part(I). We fit the model using the correct state model.
BE[S;1Sj-1, Aj—1] = Bo + B1Sj-1 + PaA 1A o + BsA;1(1 — Ajs).

e Part(II). We extend our analysis by fitting the model using the wrong state model,

which does not depend on previous actions, i.e. we falsely assume
E[S;|Sj-1,Aj1) = Bo + B1Sj-1.

e Part(IIl). Again, we fit the model using the wrong state model by ignoring the pre-

vious states. The assumed model is
E[Sj‘gjfla Aj—l] = B0+ f1Aj—1Aj_a + B Aj (1 — Aj_s).

In this study, we only investigate the parameters g, 97 and 1s. These parameters
appear in the regret function for the second action of A, given A; = 0. In the Murphy
simulation, the second action A, has a greater range of possible values than the first binary
action A;. Hence parameters have more scope for high influence than the other parameters

in the regret function.
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Figure 3.1: Convergence rates for different sample sizes and different value of k.

3.1.1 Murphy Sensitivity Analysis: Part(a)

Table 3.2 and Figure 3.1 show the percentage of successfully converged simulations when
using the Murphy estimation method and all parameters may have initial values which
differ from the true ones. We increase the scale factor k& from O to 7 standard errors.

We simulated 1000 data sets as described earlier and for each simulation the algorithm

was stopped after 100 iterations of the outer loops or if converged (Table 3.2).

Percentage of successful convergences, %
k

n 0 0.5 1 2 5 6 7
250 | 90.5|77.0 570 45 | 45 | 3.1 | 15
500 | 939 | 874|775 517|142 | 99 | 8.7
1000 | 98.8 | 93.6 | 859 | 70.5 | 27.7 | 20.4 | 15.9

Table 3.2: Convergence rates using different sample sizes n and various scalar £ with 1000 repe-
titions

Sample size 250 has the poorest convergence rate. This can be seen most obviously
in Figure 3.1. It shows that at sample size 250 there is a dramatic reduction starting at
k = 0. Sample size 500 and 1000 have slower reductions in the percentage converged
though even at sample size 1000 the convergence rate is very poor once initial values are

in the region of 5 standard errors from the true values.
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k

Parameter \ n \ 0 \ 0.5 \ 1 \ 2
Mean

250 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.01 | 0.14
Y =0 500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.13 | 0.07
1000 | 0.00 | -0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02
250 | 1.50 | 1.50 | 1.50 | 1.50 | 1.46 | 1.54 | 1.41
Y7 =151 500 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.39 | 1.43
1000 | 1.50 | 1.50 | 1.50 | 1.50 | 1.49 | 1.48 | 1.48
250 | 550 | 5.51 | 547 | 548 | 529 | 5.40 | 4.79
g =25.5 | 500 | 551 | 5.50 | 549 | 550 | 548 | 495 | 5.16
1000 | 5.51 | 5.51 | 5.51 | 551 | 545 | 5.42 | 5.38
Standard Error, SE
250 | 0.12 | 0.12 | 0.19 | 0.13 | 0.36 | 0.14 | 0.49
g =10.0 | 500 | 0.08 | 0.08 | 0.10 | 0.08 | 0.09 | 0.53 | 0.26
1000 | 0.06 | 0.06 | 0.06 | 0.06 | 0.11 | 0.17 | 0.21
250 | 0.07 | 0.07 | 0.11 | 0.07 | 0.31 | 0.07 | 0.51
;=15 ] 500 | 0.04 | 0.04 | 0.09 | 0.04 | 0.04 | 0.47 | 0.39
1000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.17 | 0.22 | 0.23
250 | 0.27 | 0.27 | 0.55 | 0.31 | 1.39 | 0.36 | 2.26
Yg=25.5 | 500 | 0.19 | 0.18 | 0.35 | 0.20 | 0.24 | 2.11 | 1.42
1000 | 0.14 | 0.14 | 0.14 | 0.14 | 0.62 | 0.80 | 0.95

Root Mean Square Error, RMSE
250 | 0.12 | 0.12 | 0.19 | 0.13 | 0.37 | 0.14 | 0.51
Yg =10.0 | 500 | 0.08 | 0.08 | 0.10 | 0.08 | 0.09 | 0.54 | 0.27
1000 | 0.06 | 0.06 | 0.06 | 0.06 | 0.11 | 0.17 | 0.21
250 | 0.07 | 0.07 | 0.11 | 0.07 | 0.31 | 0.08 | 0.51
Yr;=1.5 ] 500 | 0.04 | 0.04 | 0.09 | 0.04 | 0.04 | 0.48 | 0.40
1000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.17 | 0.22 | 0.23
250 | 0.27 | 0.27 | 0.55 | 0.31 | 1.41 | 0.37 | 2.37
g =25.5 1 500 | 0.19 | 0.18 | 0.36 | 0.20 | 0.24 | 2.18 | 1.46
1000 | 0.14 | 0.14 | 0.14 | 0.14 | 0.62 | 0.80 | 0.96

| 5[ 6 ]7

Table 3.3: Parameter estimates using different sample sizes and different value of k.

36



Chapter 3. Misspecification and Sensitivity

Table 3.3 summarises the mean, standard error (SE) and the root mean square error
(RMSE) of the estimates for the simulated samples where we successfully obtained con-
vergence. The mean indicates that even for these successfully converged samples there
can be biased parameter estimates when the initial values for the procedure are not close
to the true values. There is a lot of uncertainty in the data because of the small number
of convergences in places and also because there were occasionally highly extreme but
converged estimates. Nonetheless the patterns are clear. We have positive bias, which
increases with k, for 1)g and negative bias for ¢); and 5. There is less bias at the larger
sample sizes.

There are occasional very unusual values, caused by highly extreme estimates in some
samples, but overall a pattern of increasing uncertainty as £ increases is clear. Again, the
sample size has an effect, with more reliable results, as expected, for larger samples. The
same conclusions can be drawn for RMSE which combines both bias and variability.

Overall it is clear that there needs to be accuracy in the initial values if the Murphy
estimation method is to be recommended. This is supported by Rosthgj et al. (2006)
where she found the Murphy method is sensitive to the starting values. For example, this
is the simple four parameter model taken from Rosthgj et al. (2006) paper. Rosthgj et al.
(2006) define the regret function as

_ I(a; # 0)(B) + Boa? S; =0
1(a;j|S;, Aj-1) = (0, # 0) (5 2 J) ’ 3.1)
Bs(a; — B4S;) S; #0
for j = 1,2,..., K and the parameters (35, 33 and 3, should be non-negative since the

regret function is non-negative. Rosthgj et al. (2006) has fixed two of the parameters,
B1 = 5.89 and [y = 1.59 as well as ¢ = —59.23 and estimated 33 and (3, using the grid
search for the initial values. The parameter (33 varies between (0.01, 0.80) and 3, between
(—5,3).

The Figure 3.2 show how the Murphy iterative method is performed. The grey dots
indicate that the values of 3 and (8, which algorithm is converged while the red dots
represent the values that the algorithm did not converged. The black dot is the solution
for the regret function. Although the simulation study is limited, we have shown enough
evidence to support the conclusion that the Murphy estimation method is sensitive to the

initial values.

3.1.2 Murphy Sensitivity Analysis: Part(b)

The question now arises as to whether some of the parameters are more robust to initial
values than the others. In this part, we will vary the initial values, one at a time using only
sample size 500.

Table 3.4 and Figure 3.3 show how the convergence rate is affected when just one

parameter has an incorrect initial value. The parameter 17, which is the scale factor in the
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Figure 3.2: A plot for starting values for Murphy iterative procedure. The x-axis represent the
value of the parameter 33 and the y-axis represent the value for S4.
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Figure 3.3: Successful convergence rate plot when only one parameter has an incorrect initial
value using sample size n = 500
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Percentage of successful convergences, %

k

Parameter | 0 0.5 1 2 5 6 7
Vg 952 1913 | 85.7 | 84.1 | 584 | 51.2 | 443
U7 93.7 1934|899 | 87.1 | 743 | 684 | 63.0
(5 948 | 86.3 | 85.0 | 74.2 | 50.9 | 43.6 | 38.4

Table 3.4: Percentage of successful convergences using different value of &k at sample size n = 500

regret function at (2.27) is more robust than the other two parameters 15 and s.

Table 3.5: Estimation of mean, 1/;

k
Parameter with incorrect
initial value Parameter 0 0.5 1 2 5 6 7
g = 0.0 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01
Vg vy =151 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50

Py =155 | 552 | 551|550 550|549 | 544 | 548

e = 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00
(e Y7 =15 1] 150 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50
Pg=15.5 | 550 | 550 | 5.50 | 5.49 | 5.50 | 5.49 | 5.50

g = 0.0 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.02
Vg Y =15 1| 149 | 1.49 | 1.50 | 1.49 | 1.50 | 1.50 | 1.48
g =55 | 552 | 551 | 551|544 |548 | 550|540

Table 3.6: Estimation of standard error (SE), @Z

k
Parameter with incorrect
initial value Parameter | 0 0.5 1 2 5 6 7
g =0.0 | 0.08 | 0.08 | 0.08 | 0.09 | 0.08 | 0.11 | 0.08
Vg Yy =15 10.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.13 | 0.05

Pg =155 10.19|0.19 | 0.19 | 0.20 | 0.19 | 0.45 | 0.19
e = 0.0 | 0.08 | 0.08 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08
V7 Y7 =15 | 0.04 | 0.04 | 0.05 | 0.05| 0.04 | 0.05 | 0.04
Pg=15.5 {019 | 0.18 | 0.20 | 0.20 | 0.19 | 0.19 | 0.18
e = 0.0 | 0.08 | 0.09 | 0.08 | 0.15 | 0.08 | 0.08 | 0.17
g Y7 =15 10.04 | 0.04 | 0.04 | 0.15| 0.04 | 0.05 | 0.20
Yg =955 10.19 | 020 | 0.18 | 0.57 | 0.18 | 0.19 | 0.84
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Table 3.7: Estimation of root mean square error (RMSE), 1[1

k
Parameter with incorrect
initial value Parameter | 0 0.5 1 2 5 6 7
g = 0.0 | 0.08 | 0.08 | 0.08 | 0.09 | 0.08 | 0.11 | 0.08
Vg Yy =15 10.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.13 | 0.05

PYg =55 10.19]0.19 | 0.19 | 0.20 | 0.19 | 0.45 | 0.19
e = 0.0 | 0.08 | 0.08 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08
V7 Y7 =15 |0.04 | 0.04 | 0.05] 0.05| 0.04 | 0.05 | 0.04
Pg =55 10.19 | 0.18 | 0.20 | 0.20 | 0.19 | 0.19 | 0.18
g = 0.0 | 0.08 | 0.09 | 0.08 | 0.15 | 0.08 | 0.08 | 0.17
Vg Y7 =15 10.04 | 0.05|0.04 | 0.15| 0.04 | 0.05 | 0.20
Pg=15.5 1019|020 | 0.18 | 0.57 | 0.18 | 0.19 | 0.84

Table 3.5, 3.6 and 3.7 provide the mean, standard error and root mean square error
for the successfully converged samples. The left column indicates which parameter has
an incorrect initial value. Table 3.5 shows that using a single incorrect initial value has
little effect on the mean results provided convergence can be obtained, except perhaps for
1g. There is some evidence of increased variability when 1) or 1)g have incorrect initial
values (Table 3.6 and Table 3.7). It is perhaps worth noting that the estimation routine
does not necessarily converge to a unique value. There is no theorem to the effect that the
converged value is unique. Recall also that the method is very unusual, in that we are not

attempting to minimise the sum of squares defined at (2.7).

3.1.3 Murphy Sensitivity Analysis: Part(c)

We now turn to the action probability model. In estimation based on (2.7) we assume
that p;(a;|S;, A;_;) is known. In simulating the data and subsequent estimation we have
taken actions to be equally likely (uniformly) over possible values. To investigate, we
now simulate with alternative action models but fit assumed equally likely actions. We

will consider in turn:
1. Action 1, (4;)
2. Action 2, (A2|A; = 0)

3. Action 3, <A2|A1 = 1)
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Action 1, (A;)

Action 1 is binary with values 0 and 1. The default is equally likely values. We investi-

gated using alternative data generating models, denoted (P, 1— P;), where P, = P(A; =

0).
P(A)
Sample Size,(n) | (0.2,0.8) | (0.3,0.7) | (0.4,0.6) | (0.5,0.5) | (0.6,0.4) | (0.7,0.3) | (0.8,0.2)
250 84.9 82.6 87.9 88.4 92.9 95.6 96.5
500 85.2 854 90.7 94.9 97.9 994 99.7
1000 85.7 86.7 94.2 97.5 99.8 100.0 99.7

Table 3.8: Percentage of successful number of convergences when action A; has different proba-
bilities and for various sample sizes n.
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Figure 3.4: Percentage of successful convergences plot when action A has different probabilities
and for various sample sizes n.

Table 3.8 and Figure 3.4 show the convergence rates for the different sample sizes for a
variety of choices. Each result is based on 1000 repetitions. Results show that the conver-
gence rate decreases if a false value of P, is mistakenly assumed, though not dramatically.
We note here that in principle the action model is obtainable from the observed data, and
hence in this simple example at least we would not expect gross misspecification.

Note here we found that P, = 0.2 gives poorer convergence than P, = 0.8. This is
because the action A;|A; = 0 has greater range than Ay|A; = 1 and hence high influence
in the regret function. Therefore the probability P, indirectly affects the estimation and

the convergence rates in this simulation.
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Table 3.9: Results when action A; has different probabilities P; for various sample sizes. This
simulation is based on 1000 repetitions.

P(A) = (P,1—P)
n | Parameter | (0.2,0.8) | (0.3,0.7) | (0.4,0.6) | (0.5,0.5) | (0.6,0.4) | (0.7,0.3) | (0.8,0.2)
Mean
Vg 0.01 0.01 0.00 0.00 0.00 0.00 -0.01
250 Uy 1.51 1.51 1.50 1.49 1.50 1.50 1.50
g 5.46 5.47 5.49 5.51 5.51 5.52 5.52
Vg 0.01 0.01 0.00 0.00 0.00 -0.01 -0.01
500 U7 1.50 1.50 1.50 1.50 1.50 1.50 1.49
g 5.47 5.49 5.49 5.51 5.51 5.52 5.52
Vg 0.02 0.01 0.01 0.00 0.00 0.00 -0.01
1000 U7 1.51 1.51 1.50 1.50 1.50 1.50 1.50
g 5.46 5.47 5.48 5.50 5.50 5.51 5.52
Standard Error, SE
Vg 0.12 0.11 0.12 0.12 0.11 0.12 0.11
250 U7 0.07 0.06 0.06 0.06 0.06 0.06 0.06
Vg 0.28 0.27 0.27 0.27 0.27 0.27 0.27
Vg 0.08 0.08 0.08 0.08 0.08 0.08 0.08
500 Uy 0.05 0.05 0.05 0.05 0.05 0.05 0.04
g 0.19 0.19 0.19 0.19 0.19 0.19 0.19
Vg 0.06 0.06 0.06 0.06 0.06 0.06 0.06
1000 U7 0.03 0.03 0.03 0.03 0.03 0.03 0.03
g 0.14 0.14 0.13 0.14 0.14 0.13 0.13
Root Mean Square Error, RMSE
Vg 0.12 0.12 0.12 0.12 0.11 0.12 0.12
250 U7 0.07 0.06 0.06 0.06 0.06 0.06 0.06
g 0.28 0.27 0.27 0.27 0.27 0.27 0.27
Vg 0.08 0.08 0.08 0.08 0.08 0.08 0.08
500 U7 0.05 0.05 0.05 0.05 0.05 0.05 0.04
g 0.19 0.19 0.19 0.19 0.19 0.19 0.19
Vg 0.06 0.06 0.06 0.06 0.06 0.06 0.06
1000 U7 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Vg 0.15 0.14 0.14 0.14 0.14 0.13 0.13

Table 3.9 shows the mean, SE and RMSE of successfully converged estimates. There

is no real evidence of systematic bias or increased uncertainty for parameter estimates if
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the action model is wrong in the described way. Hence it appears there is some robustness

to this misspecification for the simulation scenario under consideration.

Action 2, (A5]A; = 1)

We now turn to the second action: choice of treatment amount for those subjects with
A; = 1 where three possible values are taken from {1,2,3} with possible probabilities
(1/3,1/3,1/3) by default. In this case, each probability is P(A; = 1|A; = 1) = 1/3,
P(Ay = 2|A; = 1) = 1/3 and P(A; = 3|A; = 1) = 1/3. There are four models
to consider. We will label these as ()1, ()2, @3, 4 and ()5. The three probabilities just

mentioned are taken to be:
1. Q1:(0.4,0.2,0.4)
2. Q2:(0.167,0.333,0.5)
3. Q3:(0.333,0.333,0.333)
4. Q4:(0.5,0.333,0.167)

5. Q5:(0.111,0.778,0.111)

Note that (); gives high probability to the extreme actions. Choices ()5 and (), are skew,

and choice ()5 gives low probability to the extremes.

P(As|A; =1)
Number of Samples,(n) | Q1 | Q2 | Q3 Q4 Q5
250 89.7190.7 | 88.4 | 994 | 854
500 94.6 | 85.1 | 94.9 | 100.0 | 954
1000 97.7 | 81.9 | 97.5 | 100.0 | 98.6

Table 3.10: Percentage of successful convergences when action, As|(A; = 1) has different prob-
abilities for various sample sizes n.

Table 3.11: Estimation of the parameters when action, A2|(A; = 1) has different probabilities
from various sample sizes n which based from 1000 repetitions.

P(A3|A; =1)
n Parameter | Q1 | Q2 | Q3 Q4 Q5
Mean

1 = 0.0 | 0.00 | 0.00 | 0.00 | -0.01 | 0.01
250 | Y =15 | 1.50 | 1.50 | 1.49 | 1.50 | 1.50
Yg =5.0 | 549 | 550 | 5.51 | 5.52 | 5.49

Continued on next page
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P(Az|AL =1)
n Parameter | Q1 | Q2 | Q3 Q4 Q5
e = 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
500 | ¢, =15 | 149|150 | 150 | 1.50 | 1.50
Yg=15.5 | 551|551 551 551 | 551
e = 0.0 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00
1000 | ¥, =1.5 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50
Yg=25.5 1549|549 | 550 | 549 | 549
Standard Error, SE
e =10.0 | 0.08 | 0.12 | 0.12 | 0.08 | 0.08
250 | ¥y =1.5 |0.05]0.07 | 0.06 | 0.05 | 0.05
Yg=25.5 1019 | 028 | 0.27 | 0.19 | 0.19
g =10.0 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08
500 | ¥ =1.5 [0.04 ] 0.05]|0.05 | 0.05 | 0.05
g =155 10.18 | 0.19 | 0.19 | 0.19 | 0.19
Yg = 0.0 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06
1000 | ¥ =1.5 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03
g =255 1013 |0.14 | 0.14 | 0.14 | 0.13
Root Mean Square Error, RMSE
g =0.0 | 0.08 | 0.12 | 0.12 | 0.08 | 0.08
250 | ¥ =1.5 [ 0.05]0.07 | 0.06 | 0.05 | 0.05
g =155 1019 | 0.28 | 0.27 | 0.19 | 0.19
Yg =10.0 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08
500 | ¥, =1.5 |0.05]0.05]0.05| 0.05 | 0.05
g =255 1019 |0.19 | 0.19 | 0.19 | 0.19
e = 0.0 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06
1000 | ¥, =1.5 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03
Yg=>5.5 1013 |0.14 | 0.14 | 0.14 | 0.13

Table 3.10, 3.11 and Figure 3.5 show the effect of generating data with unequal prob-
abilities, but mistakenly assuming equality in estimation. Convergence is generally good,
though affected to some extent at the smaller sample size. The optimal decision for
As|A; = 1 is usually near A, = 1 where states tend to be near 0.5. Note that con-
vergence is worst under Q2 where there is high probability of choosing A, = 3 which is
far away from the optimum. There is no obvious effect on the mean, SE or RMSE of the

estimates.

44



Chapter 3. Misspecification and Sensitivity

100
|

95

Convergence rate (%)

80

200 400 600 800 1000

Sample size (n)

Figure 3.5: Convergence rates when action As|(A; = 1) has different probabilities for various
sample sizes n.

Action 2, (A5|A; = 0)

We repeat the above form of investigation, this time for the second type of treatment,
without special education, A; = 0. Now four values are allowed, {0, 1,2, 3}, with by
default equal probabilities (1/4,1/4,1/4,1/4) meaning P(A; = 0|A; = 0) = 1/4,
P(Ay = 1|A; =0) = 1/4, P(Ay = 2|A; = 0) = 1/4and P(Ay; = 3|A; = 0) = 1/4.
We simulate with seven possibilities of different distributions with, in an obvious notation:

1. R1:(1/4,1/4,1/4,1/4), equal probabilities;

2. R2:(3/7,1/7,1/7,2/7), skewed towards small values;

3. R3:(4/7,1/7,1/7,1/7), skewed towards small values;

4. R4:(2/7,1/7,1/7,3/7), skewed towards large values;

5. R5:(1/7,1/7,1/7,4/7), skewed towards large values;

6. R6:(3/8,1/8,1/8,3/8), extreme values more likely, higher variance;

7. R7:(1/8,3/8,3/8,1/8), extreme values less likely, smaller variance.
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As|(Ar = 0)
Sample Size,(n) | R1 R2 R3 R4 R5 R6 R7
250 88.4 190.2 | 83.8190.7 | 594 1994 | 854
500 94.9 | 96.1 | 87.7 | 94.7 | 48.5 | 96.5 | 94.5
1000 97.5 | 984 | 91.9 | 98.6 | 36.0 | 98.4 | 97.5

Table 3.12: Rate of convergence when action, As|(A; = 0) has different probabilities for various
sample sizes n

o
S |
— I
/77——
7
o | — R1
®© — R2
_ — R3
S R4
I — R5
S R6
S o | R7
c o
(]
<y
(]
>
c
(o]
O
o _|
<
o _|
N
I I I I I
200 400 600 800 1000

Sample size (n)

Figure 3.6: Convergence rates when action, Az|(A; = 0) has different probabilities for various
sample sizes n

Table 3.13: Parameter estimates based on 1000 simulations when action, As|(A; = 0) has differ-
ent types of probabilities in various sample sizes.

P(A2|A1 - 0)
n Parameter | R1 R2 R3 R4 R5 R6 R7
Mean

g = 0.0 | 0.00 | -0.02 | -0.41 | 0.00 | 0.68 | -0.01 | 0.01
250 | Y =15 | 149 | 1.50 | 1.80 | 1.50 | 1.32 | 1.50 | 1.50
PYg=D5b | 551 | 555 | 574 | 549 | 458 | 552 | 549
g = 0.0 | 0.00 | -0.02 | -0.40 | 0.01 | 0.67 | -0.01 | 0.00
500 | ;=15 | 1.50 | 1.49 | 1.79 | 148 | 1.30 | 1.49 | 1.51
PYg =055 | 551 | 555 | 575 | 551 | 460 | 554 | 548
g = 0.0 | 0.00 | -0.02 | -0.40 | 0.01 | 0.66 | 0.00 | 0.01
1000 Continued on next page
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P(A24, = 0)

n Parameter | R1 R2 R3 R4 | RS R6 R7
Yr=15 ]150] 1.50 | 1.79 | 1.49 | 1.30 | 1.49 | 1.51
g =255 550 553 | 574 | 549 | 4.65 | 552 | 547
Standard Error, SE
Y =10.0 | 0.12 | 0.12 | 0.10 | 0.08 | 0.18 | 0.08 | 0.08
250 | ¥y, =1.5 | 0.06 | 0.07 | 0.08 | 0.05 | 0.12 | 0.05 | 0.05
g =255 10271 028 | 025 [ 0.19 | 0.46 | 0.19 | 0.19
g =10.0 | 0.08 | 0.08 | 0.07 | 0.08 | 0.12 | 0.08 | 0.08
500 | ¥, =1.5 {0.05] 0.05 | 0.06 | 0.05|0.11 | 0.05 | 0.05
Pg =155 1019 0.19 | 0.17 | 0.19 | 040 | 0.19 | 0.19
g =0.0 | 0.06 | 0.06 | 0.05 [ 0.06 | 0.09 | 0.06 | 0.06
1000 | 7 =1.5 [ 0.03 | 0.03 | 0.04 | 0.03 | 0.05| 0.03 | 0.03
Pg =55 1014 ] 0.14 | 0.12 [ 0.14 | 0.22 | 0.14 | 0.14
Root Mean Square Error, RMSE
250 | ¥g=10.0 | 0.12 | 0.12 | 0.42 | 0.08 | 0.71 | 0.08 | 0.08
Yy =15 1006 | 0.07 | 0.31 | 0.05|0.22 | 0.05 | 0.05
Pg =155 1027 ] 028 | 0.34 | 0.19 | 1.03 | 90.19 | 0.19
g =10.0 | 0.08 | 0.09 | 0.41 | 0.08 | 0.68 | 0.08 | 0.08
500 | ¥y, =1.5 [ 0.05] 005 | 0.29 | 0.05 | 0.22 | 0.05 | 0.05
Yg =55 10.19 | 0.20 | 0.30 [ 0.19 | 0.98 | 0.19 | 0.19
g =0.0 | 0.06 | 0.06 | 0.40 | 0.06 | 0.66 | 0.06 | 0.06
1000 | ¢, =1.5 | 0.03 | 0.03 | 0.29 | 0.03 | 0.21 | 0.03 | 0.03
Yg =255 10.14 | 0.14 | 0.27 [ 0.14 | 0.88 | 0.14 | 0.14

From Table 3.12, 3.13 and Figure 3.6, almost all of the samples provide a good per-
centage of convergence except for R3 and R5. Obviously we found the probability R5
has low convergence rate compared to others especially when the sample size is small fol-
lowed by [?3. Again, we see there is an effects on the mean for 3 and R5 where all the
estimates are far away from the true values with large effects on errors and biases. This is
because the probability of choosing A; = 0|A; = 01is 4/7 for R3 which is far away from
the optimal decisions where A, should be around 1 when S; near to 0.5. Similar to 5
where we choose A; = 3|A; = 0 with probability 4/7.

Overall when we test the sensitivity of the Murphy method using the unequal proba-
bilities for the first action A;, we found P, less than 0.5 will have slightly low convergence
rate and estimates than P, greater than 0.5. This is because As|A; = 0 has greater range

and high influence in the regret function than As|A; = 1.
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The probability of choosing the second actions, either A;|A; = 0 or A3|A; = 1 which
is far away from the optimal decisions will give poor estimates with large biases and very
large in errors where the optimal decisions for the second actions suppose to be A, = 1

when the states is near to 0.5.

3.1.4 Murphy Sensitivity Analysis: Part(d)

In the previous parts we investigated the Murphy method with misspecification for the
action models. We have assumed that the actions did not depend on states for estimation
and have estimated the marginal probabilities for all actions.

In this part we further our investigation by allowing the action model to depend on
states, S;. The misspecification for the first binary action was discussed in Rosthgj et al.
(2006) but we also will look into misspecification for the second action.

The first binary action, A; = (0,1) has equal probability where P(A; = 1) =
P(A; = 0) = 0.5 by default. We now change it to

p= P(Al = OlS] > 05)

SO

The second action A, depends on the first. In this work we will investigate the effect
of second action when the first takes the value A; = 0. In this case there are four pos-
sible values for A, i.e. 0, 1, 2 or 3. The default in generating data and the assumption
in estimation, is that these values are equally likely. Let ¢ be the probabilities for the
four values, so ¢ = (1/4,1/4,1/4,1/4) by default. Similar to Section 3.1.3, the equal
probabilities ¢ = (1/4,1/4,1/4,1/4) indicate that P(A; = 0|A; = 0,5; > 0.5) = 1/4,
P(Ay = 1|A; = 0,5; > 0.5) = 1/4, P(Ay = 2|4, = 0,5; > 0.5) = 1/4 and
P(A; =3|A; =0,5; > 0.5) = 1/4. We will also vary ¢ as described below.

We have 8 misspecification models to investigate. The first four models, 7'1 to 74
use the misspecification on the first actions while models 7'5 to 7'8 have the misspecifi-
cation for the second action given A; = 0. The model 70 is the true model with equal

probabilities for first and second actions.
1. TO: p=05,1—-p=05;q=(1/4,1/4,1/4,1/4)
2. Tl:p=03,1—p=0.7
3. T2:p=0.7,1—p=0.3
4, T3:p=04,1—-p=10.6
5. Td:p=06,1-p=04
6. TS: ¢=(0,1/3,1/3,1/3)
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7. T6: ¢ = (1/3,1/3,1/3,0)
8. T7: ¢ = (0,0,1/2,1/2)
9. T8 ¢ = (1/2,1/2,0,0)

The model T'5 is skewed toward higher values of A, whilst T6 is skewed towards
smaller values. The model 7'7 allows only higher values and model 7’8 allows only lower

values of As.

Percentage successfully converged
Model
n TO | T1 | T2 | T3 | T4 | TS | T6 | T7 | T8
500 | 94.7 | 48.7 | 53 833 |47.1 879|877 | 87.6 | 86.8
1000 | 97.9 [ 429 | 6.0 | 79.5 | 44.6 | 86.4 | 91.0 | 89.4 | 90.5

Table 3.14: Number of times in 1000 simulations in which the estimation algorithm converged for
different sample sizes n
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Figure 3.7: Percentage for estimation algorithm converged plot for two sample sizes (500 and
1000).

The first four models (7'1 to T'4) represent the misspecification for first action model
that depends on state while the last four models (7'5-7'8) correspond to misspecification
for the second action that depend on state. From Table 3.14 and Figure 3.7 we see that the
misspecification of the second model leads to higher convergence rates than the misspec-

ification for first action except for model 7'3. As sample size increases, the convergence

49



Chapter 3. Misspecification and Sensitivity

rate does not always improve due we presume to simulation noise. Model 72 has very

poor convergence rate.
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Table 3.15: Estimated parameters from 1000 simulations when action Az|(A; = 0) which depend
on states S;_1 for sample size 500 and 1000.

Model

n Parameter | TO | TI1 T2 T3 T4 TS T6 T7 T8
n = 500
g = 0.0 { 0.00 | 036 | -0.41 | 0.19 | -0.21 | 0.15 | -0.10 | 0.14 | -0.10
Mean | ;=15 | 1.50 | 1.64 | 1.34 | 1.58 | 1.41 | 0.86 | 1.51 | 0.86 | 1.51
g =55 1550|453 | 655 | 50 | 6.06 | 632|576 | 6.34 | 5.77
g =0.0 { 0.08 | 0.08 | 0.10 | 0.09 | 0.09 | 0.15 | 0.08 | 0.16 | 0.08
SE Yy =15 10.05]0.06 | 005 | 0.05| 0.04 | 0.04 | 0.03 | 0.04 | 0.04
Pg=15.5 10.19 020 | 0.28 | 0.20 | 0.21 | 0.28 | 0.18 | 0.28 | 0.19
g =0.0 | 008|037 | 042 [ 021 | 023 | 0.22 | 0.12 | 0.21 | 0.13
RMSE | v =15 [ 0.05]0.15| 0.16 | 0.09 | 0.10 | 0.64 | 0.04 | 0.64 | 0.04
Pg =155 10191099 | 1.08 | 0.54 | 0.60 | 0.87 | 0.32 | 0.89 | 0.33
n = 1000
g = 0.0 | 0.00 | 0.36 | -0.40 | 0.19 | -0.21 | 0.15 | -0.10 | 0.15 | -0.10
Mean | ;=15 | 1.50 | 1.64 | 1.33 | 1.58 | 1.41 | 0.86 | 1.51 | 0.86 | 1.51
g =55 | 550|453 | 657 | 499 | 6.06 | 6.32 | 576 | 6.33 | 5.76
g = 0.0 | 0.06 | 0.06 | 0.04 | 0.06 | 0.06 | 0.10 | 0.05 | 0.10 | 0.05
SE Yy =15 10.03]0.04 | 002 | 0.04 | 0.03 | 0.03 ] 0.02 | 0.03 | 0.02
Pg =55 |0.14 | 0.14 | 0.07 | 0.14 | 0.14 | 0.19 | 0.13 | 0.18 | 0.12
Pg=0.0 | 0.06 022 040 | 020 | 0.36 | 0.18 | 0.11 | 0.17 | 0.11
RMSE | v =15 [0.03|0.09 | 0.17 | 0.09 | 0.15 | 0.64 | 0.03 | 0.64 | 0.03
g =155 10.14 058 | 1.08 | 0.53 | 098 | 0.84 | 0.29 | 0.85 | 0.28

Table 3.15 shows as usual the mean, standard error and root mean square error (RMSE)
for these misspecification. We see that the estimates are generally very sensitive to the
assumed action model, and large biases with high variability that can occur if the assump-

tions are false.

3.2 Misspecification and the Regret-Regression Method.

In this section, we investigate the effect of incorrect initial values with the same scale

factor £ as in Part(a), but now using the regret-regression method.
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3.2.1 Regret-Regression Misspecification: Part(I)

We use the correct state model

[S’( i1, Ajo1)] = Bo+ BiSi—1 + BeAj 1 Aj o+ B3A (1 — Ajy)

This is obtained because the conditional density of S;|(S;_1, A;_1) for j > 2 is normally
distributed with mean 0.540.25;_1 —0.07A4;_1A;_5—0.014;_1(1 — A;_,) and variance
0.01 in Murphy’s simulation scenario. The simulation is repeated 1000 times.

k
Parameter \ n \ 0 \ 0.5 \ 1 \ 2
Mean

Vs = 0.0 250 | -0.01 | 0.00 | 0.00 | -0.01 | 0.01 | 0.00 | -0.01
' 500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03
b = 15 250 | 1.51 | 1.50 | 1.51 | 1.50 | 1.51 | 1.50 | 1.50
' 500 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50

1000 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.43
s = 5.5 250 | 5.50 | 5.50 | 5.50 | 5.53 | 5.47 | 5.51 | 5.51
' 500 | 5.49 | 5.50 | 549 | 5.50 | 5.50 | 5.50 | 5.50

1000 | 5.50 | 5.50 | 5.47 | 5.50 | 5.50 | 5.50 | 5.52
Standard Error, SE
250 | 0.02 [ 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02
500 | 0.02 [ 0.02]0.02| 0.02 | 0.02 ] 0.02 | 0.02
1000 | 0.01 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.25
b =15 250 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02
' 500 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01

1000 | 0.01 [ 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.66
250 | 0.04 | 0.06 | 0.04 | 0.06 | 0.06 | 0.04 | 0.06
Pg=15.5 | 500 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04
1000 | 0.03 | 0.03 | 0.25 | 0.03 | 0.03 | 0.03 | 0.18
Root Mean Square Error, RMSE
s = 0.0 250 | 0.02 [ 0.02 ] 0.02 | 0.03 | 0.03 | 0.02 | 0.02
' 500 | 0.02 [ 0.02]0.02| 0.02 | 0.02]0.02 | 0.02

1000 | 0.01 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.25
b = 15 250 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02
' 500 | 0.01 | 0.01 { 0.01 | 0.01 | 0.01 | 0.01 | 0.01

1000 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.66
250 | 0.04 | 0.06 | 0.04 | 0.07 | 0.07 | 0.04 | 0.06
500 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04
1000 | 0.03 | 0.03 | 0.25 | 0.03 | 0.03 | 0.03 | 0.18

| 5[ 6] 7

Y6 = 0.0

Table 3.16: Estimation of v using regret-regression method

Table 3.16 shows that the the estimates are generally good with the means quite close

to the true values with very small error.
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3.2.2 Regret-regression misspecification: Part(Il)

We going to follow the misspecification in the previous part (3.2.1) but fitting the model

using the wrong state model. In estimation we assume the model

E[S;|(Sj-1, Aj-1)] = Bo + B1S;_1.

So that the previous actions are falsely assumed not to influence current state given previ-

ous state.
| K
Parameter | n | 0 |05 ] 1 [ 2 | 5] 6 | 7
Mean
250 | -0.16 | 0.00 | 0.01 | -0.01 | 0.05 | 0.00 | 0.01
e = 0.00 | 500 | -0.12 | 0.01 | 0.48 | 0.00 | 0.00 | -0.02 | -0.04
1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
250 | 1.51 | 1.52 | 1.50 | 1.51 | 1.49 | 1.51 | 1.51
Yy =150 1] 500 | 1.49 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.49
1000 | 1.50 [ 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50
250 | 5.86 | 549 | 546 | 550 | 538 | 549 | 547
Pg =55 | 500 | 549 | 547 | 4.87 | 551 | 551 | 550 | 5.52
1000 | 550 | 5.51 | 55 | 550 | 5.50 | 550 | 5.50
Standard Error, SE
250 | 1.55 | 0.13 ] 0.12 | 0.03 | 047 | 0.02 | 0.03
e =10.0 | 500 | 1.16 | 0.13 | 4.82 | 0.02 | 0.02 | 0.21 | 0.45
1000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
250 | 0.13 | 0.16 | 0.02 | 0.02 | 0.15 | 0.02 | 0.02
Yy, =1.50 | 500 | 0.09 | 0.07 | 0.02 | 0.01 | 0.01 | 0.06 | 0.15
1000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
250 | 3.56 | 0.35]0.35| 0.06 | 1.22 | 0.06 | 0.07
Pg=5.5 | 500 | 0.17 | 0.33 | 6.30 | 0.04 | 0.04 | 0.07 | 0.38
1000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03
Root Mean Square Error, RMSE
250 | 1.56 | 0.13 | 0.12 | 0.03 | 0.48 | 0.03 | 0.03
e =10.0 | 500 | 1.17 | 0.13 | 4.85| 0.02 | 0.02 | 0.21 | 0.45
1000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
250 | 0.13 [ 0.16 | 0.02 | 0.02 | 0.15 | 0.02 | 0.02
Yy =150 | 500 | 0.10 | 0.07 | 0.02 | 0.01 | 0.01 | 0.06 | 0.15
1000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
250 | 3.58 [ 0.35]0.36| 0.06 | 1.22 | 0.06 | 0.07
Yg=5.5 | 500 | 0.17 | 0.33 | 6.34 | 0.04 | 0.04 | 0.07 | 0.38
1000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03

Table 3.17:

Estimation of ¢ using misspecified regret-regression model

Table 3.17 shows that although we fit the misspecified the state model we still find

the estimates are good at sample size n = 1000. At sample size n = 250 we found there

is some unreliability. When n = 500, the estimates for )4 are a little far away from the

true values at £k = 1 but generally the estimates are still good with small error and bias
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especially when we increase the sample size, n. We believe the occasional evidence of the
poor performance is due to a small number of simulations where the estimates converge,
but to the very extreme values. We suggest that in practice this type of odd behaviour

would be noted, especially if the diagnostics we will describe later are applied.
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k
Parameter | n \‘ o J]os5 | 1 | 2 | 5 | 6 | 7
Mean

250 | 146 | 227 | 025 | 193 | -3.06 | 1.06 | 0.01
g =0.00 | 500 | -0.88 | -0.15 | 0.19 | -043 | 435 | -2.27 | -0.82
1000 | -1.25 | -0.01 | -0.02 | 0.20 | 096 | 0.03 | 0.52
250 | 1.36 | 0.73 | 1.27 | 1.25 | -9.01 | 1.38 | 1.53
Yy =150 1| 500 | 1.23 | 1.26 | 1.22 | 142 | 1.20 | 1.14 | 1.07
1000 | 1.28 | 1.48 | 1.36 | 0.60 | 1.30 | 092 | 1.18
250 | 273 | 2.84 | 447 | 1.30 | 11.19 | 6.61 | 540
Y =15.5 | 500 | 6.23 | 6.57 | 431 | 648 | -2.65 | 851 | 5.59
1000 | 8.13 | 552 | 573 | 630 | 497 | 3.67 | 3.94
Standard Error, SE
250 | 3.86 | 3.19 | 0.56 | 11.46 | 822 | 13.37 | 0.02
e =0.0 | 500 | 3.39 | 051 | 246 | 099 | 11.37 | 9.10 | 1.44
1000 | 3.29 | 0.04 | 0.18 | 0.56 | 2.01 | 529 | 1.35
250 | 1.11 | 246 | 0.69 | 0.58 | 33.25 | 0.75 | 0.03
Py =150 | 500 | 0.60 | 0.55 | 0.62 | 038 | 1.24 | 093 | 0.74
1000 | 0.57 | 0.12 | 033 | 2.70 | 2.89 | 0.82 | 0.63
250 | 6.65 | 7.75 | 2.40 | 18.63 | 18.41 | 31.25 | 0.06
Yg =155 | 500 | 5.26 | 2.53 | 540 | 3.04 | 20.12 | 14.14 | 0.68
1000 | 6.27 | 0.29 | 0.54 | 2.19 | 1.13 | 838 | 3.60
Root Mean Square Error, RMSE
250 | 413 | 391 | 0.61 | 11.62 | 8.77 | 13.41 | 0.02
e =0.0 | 500 | 3.51 | 0.54 | 247 | 1.08 | 12.18 | 9.38 | 1.66
1000 | 3.52 | 0.04 | 0.18 | 0.59 | 223 | 529 | 145
250 | 1.12 | 258 | 0.73 | 0.63 | 3487 | 0.76 | 0.04
Y =150 | 500 | 0.66 | 0.60 | 0.68 | 0.39 | 1.28 | 1.00 | 0.85
1000 | 0.61 | 0.12 | 036 | 2.85 | 290 | 1.00 | 0.71
250 | 7.21 | 820 | 2.61 | 19.10 | 19.27 | 31.27 | 0.12
Yg =155 | 500 | 5.31 | 2.75 | 553 | 3.19 | 21.70 | 14.46 | 0.69
1000 | 6.80 | 0.29 | 0.58 | 2.33 | 1.25 | 8.58 | 3.92

Table 3.18: Estimation of ¥ using misspecified regret-regression model

3.2.3 Regret-Regression Misspecification: Part(III)

In Section 3.2.2, we fitted a misspecified state model but we found the estimates are rea-
sonable using the regret-regression method. In this section, we investigate a misspecifica-
tion by fitting a different misspecified state model which now only considers the previous

actions. The model is

E[S;[(Sj—1, Aj-1)] = Bo + P1Aj 142 + B2Aj1(1 — Ajy)

Table 3.18 shows that the estimates are very poor when we fit this misspecified model.
We also see that there are very large errors and biases as £ increases. The bias and errors
improves as we increase the sample size n. When we compared the results in Section 3.2.2

and 3.2.3, we found the previous states is more important than the previous actions in the
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state model. However, the combination of both previous states and actions gives good

estimates for the state model using the regret-regression method.

3.3 Conclusions

In this chapter we have investigated the sensitivity and misspecification to the initial val-
ues for the Murphy and the regret-regression techniques. To begin with we looked at the
role of initial values. We furthered our investigation by using unequal action probabili-
ties or by allowing the action probabilities to depend on state at time j when generating
the data but falsely assuming equal probabilities when fitting the model in both cases. In
general, we found Murphy estimates are quite sensitive to the assumed action model with
large biases and very large in errors.

For regret-regression method we found that misspecifying the state model might or
might not make a difference. In Section 3.2.2 we ignored previous actions and found
good results. However, in Section 3.2.3, where we ignored previous state, the results
were poor. Just as for the Murphy action model, we note that the state model is fit to the

observed data and so gross misspecification should be seen.
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Further Investigation of the
Regret-Regression Method

4.1 Regret-Regression Method with Inclusion of Covari-

ates

The regret-regression method incorporates the regret functions of Murphy (2003) into a
regression model for observed responses. We found that this method is more straight-
forward to implement than the Murphy or Robins techniques. Besides providing direct
estimates of the parameters, the method also allows diagnostics and model comparisons
as will be illustrated later.

In this chapter we will allow the regret function to depend on covariates. There have
been no previous investigations of this method in the presence of subject-specific covariate

effects. To explore, we will focus on simulations using one type of action.

4.2 Simulation using Regret-Regression

In this section we use an example to illustrate the regret regression procedure. The or-
dinary least squares method is chosen for parameter estimation and bootstrap variance
estimation is used. There are no distributional assumptions on Y because we only model

the mean response.

4.2.1 Regret-Regression Simulation Procedure

We follow a simulation scenario similar to Murphy (2003). We again take ' = 10 time
points but this time have just a single action type chosen randomly from 0, 1,2, 3 with

equal probabilities. Each individual starts with first states simulated as

Sy ~ N(0.5,0.01)
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and then for j = 2,...,10

S; ~ N(mj;,0.01)

where m; = 0.5 + 0.25;_; — 0.07A;_;. Associated with each individual is a single

covariate, x distributed as

z ~ N(0,0.25).

We suppose the final response Y has the optimal mean value of 30. The regret function at

each time point is

N1<Aj|5ja [1]',1) = ewﬁwzx(/lj — 3 — 1/1451' - %37)2-

This regret function has been modified from the regret function found in Equation (2.27).

The mean final response follows as

10 10
E[Y|S;, Aj] =30 — 5Z(Sj —mj) — Z VYA — by — uS; — hs)?
=1 j=1

We then generate Y as a normally distributed with variable mean E[Y|S;, A;] defined
above and variance 0.64. As stated, in estimation we do not assume normality as we only

model the mean response Y .

4.3 Regret-Regression Estimation
The regret at time point j is

1 = (45185, Ajr) = €TV (A) — by — YuS; — s)’

The aim of having no regret is achieved if action j follows the optimal rule

d;?pt = 13 + 4S5 + 5.

We will use the regret-regression method to estimate when the regret function is cor-

rectly or incorrectly specified. As stated, the true model is

My @ iy = e? 720 ( Ay — 4y — a5y — sz)?.
Next, we propose fitting a misspecified model. We consider five alternatives:
1. Model M1 = ewl (AJ — wg — 77/148]' — ¢5l’)2

2. Model My : pij = eV 7922 (A; — ohy — hsx)?
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Models
Parameter) | Truep | My | My | M, | Ms | My | M;
U 0.5000 | 0.5005 | 0.5366 | 0.6531 | 0.4282 | 0.7161 | 0.6323
(1 0.5000 | 0.5000 - 0.7715 | 0.7149 | 0.6098 -
U3 0.1000 | 0.1007 | 0.1432 | 3.1053 | 0.2082 | 3.0062 | 3.2489
Uy 5.5000 | 5.4975 | 5.4749 - 5.4966 - -
s 0.3000 | 0.3000 | 0.9650 | -0.2041 - - -

Table 4.1: Mean of the parameter estimates of 1& for all the models My-Ms.

3. Model Mg = eleﬂpZI(Aj — 77[}3 - w4Sj)2
4. Model My : p; = e¥ %25 (A, — h3)?

5. Model M5 Uy = ewl (A] — w3)2.

The first misspecified model M is similar to the true model but with missing 5. The
purpose of introducing this model is to assess the impact of missing the covariate = term
from the scale factor in the model. Model M, has missing 1/, which is related to the states
while model M3 with missing 15 is again related to the covariate = term. The models My
and model M are created to see the effects of missing both states and covariates .

The optimal decision which leads to zero regret is given below for each model.
1. Model M : d* = 1pg + 945} + 15w

2. Model My : d7" = o3 + 5

3. Model M : d' = 13 + 45,

4. Model My : d" = i)

5. Model M; : d7" = o).

The optimal decision for the first misspecification model, M, is identical to the opti-
mal decision for the true model M,. The optimal decisions for the last two models M,
and M are the same, i.e djo-pt = 3.

The data are generated from the simulation procedure described earlier. Then, all the
models are fitted using the built-in function, optim in R to estimate the parameters (3, 1 in
Equation (2.23). After each simulation, we generate new datasets with sample size 1000
and 1000 repetitions. We obtained the optimal decisions using the estimated, 1& from the
fitted models. We also estimate the mean, SE and RMSE of 1& as well as the maximum
achieved response, Y under the assumed optimal rules and the standard deviation of that
response for all models.

Tables 4.1 and 4.2 show the mean, SE and RMSE of the estimates of ¢ for all the
models. We found that model M, leads to parameter estimates which are quite close to

the true values of v as expected with smaller standard error and bias. Model M; with
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Models
Parameter¢) | My, | My | My, | My | My, | M;
U 0.0044 | 0.0313 | 0.0380 | 0.0137 | 0.0568 | 0.1476
Yo 0.0040 - 0.1369 | 0.0051 | 0.0163 -
SE U3 0.0084 | 0.0613 | 0.0972 | 0.0284 | 0.0677 | 0.2591
Yy 0.0223 | 0.1428 - 0.0646 - -
Vs, 0.0054 | 0.0148 | 0.1920 - - -
m 0.0045 | 0.0482 | 0.1577 | 0.0731 | 0.2235 | 0.1982
Yo 0.0040 - 0.3040 | 0.2149 | 0.1110 -
RMSE Y3 0.0084 | 0.0750 | 3.0069 | 0.1118 | 2.9070 | 3.1596
Wy 0.0225 | 0.1450 - 0.0647 - -
Vs 0.0054 | 0.6652 | 0.5394 - - -

Table 4.2: SE and RMSE of 1[1 for all the models My-Ms.

Model
Gold Random
Mean 29.9338 | -32.9823
Standard Deviation | 1.7700 | 38.7552

Table 4.3: The achieved response, Y when using gold standard and completely random actions

missing 1), provide a good estimates for 11,13 and 14 but poorly estimate for 5. We
found the SE and RMSE for v, in Model M, is slightly higher than the others except
for 15 with large bias. Model M, with missing 14 poorly estimates the parameter of .
We found ¢/, and 15 have slightly higher in standard errors while the bias for 13 is quite
large. Model M3 closely estimates 1)y and 1), but poorly estimates 1), and 3. The last
two models M, and M5 produced poor estimates for /5 in particular with large in bias.

Table 4.3 show the optimal response Y when using the gold standard and completely
random actions. The gold standard happens when there are zero regrets in the model.
We found the mean for gold standard is quite close to the optimal mean response Y with
smaller in standard deviation. A negative optimal mean response Y with large errors was
obtained when we have a model with completely random actions with equal probabilities
with higher variability.

Table 4.4 gives the mean achieved Y and standard deviation. As expected, if the
correct model M is used in estimation and the basis for future decisions, then the response
is maximised. If a misspecified model is assumed however then there is a price to be paid.

Models My, M, and M; would lead to severe reduction in response. The correct model

Model
M() M1 M2 M3 M4 M5
Mean 29.9923 | 27.8664 | 8.6145 | 29.5267 | 12.7918 | -0.8370
Standard Deviation | 1.7677 | 4.3711 | 7.3200 | 1.8564 | 5.2383 | 7.8683

Table 4.4: The achieved response, Y when actions are selected using assumed optimal decisions
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formulation thus seems to be crucial. We found the optimal mean response for model
My is almost similar to the gold standard with small standard deviation. The model M,
which has similar optimal decision as M also provide a good optimal mean response with
small standard deviation but model M3 has better optimal mean response with smaller
standard deviation than model )/, although model M3 has different optimal decision than

the correct model M.
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Figure 4.1: Estimated regret function for model My, M; and Ms. The first row is for model M,

second row is the model M; and the third row represents model Ms. Each subplot consists of

different levels of the single covariate. We indicate high states as the h line, medium states as the
and the | line as low states.
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Figure 4.1 shows the estimated regrets at mean parameter values for models M,, M,
and M,. The first row is for model M, second row is the model M; and the third row
represents model M. The left plot is for a subject with a low covariate. The middle plot
is for a subject with a medium covariate while the right plot is for a subject with high
covariate. Each plot shows regret at three levels of states: low states, /; medium m; and
high states, h. The states and covariates are continuous variables and so we categorise
the states and covariates into three different levels to simplify the analysis and help with
interpretation of results.

The top row of Figure 4.1 corresponds to My, the true model. Consider the regrets
at medium state. As the covariate increases the optimal action also increases, though
generally within the range of actions shown the regrets can be quite low. At high state
there is a very obvious effect of covariate, and all regrets are very high. The regret pattern
for low states changes with covariate, with optimal action increasing as x does.

The middle row corresponds to M, a misspecified model. The pattern in the centre
plot is similar to M, where the true regret is used. At low or high x however there are
some marked differences. The optimal action at low x is reduced, and the regret seems
to increase more rapidly. At high = the optimal action is higher than if the true regret
function is used.

Model M, is the misspecified model with the regret function p; = e ™%27(A; —
13 — 1sx)?. In Figure 4.1 we see that there are no differences between states. This is
because the regrets and the actions do not depend on states in this misspecified model. If
we choose low actions the regrets will be high at all levels of the covariates x. The regret
goes very high especially at higher covariates. To achieve zero regret we need to choose

high actions at all levels of the covariate.
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Figure 4.2:

Estimated regret function for model M3, M, and Ms5.
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The fourth model Mj3 in Figure 4.2 is the misspecified model with the regret function
of the form p; = "1 ™¥2%( A; — 4h3 — 145;)%. To minimise or obtain zero regret, we need
to choose the optimal action as d}” " = b3+ 14S;.

From Figure 4.2 (first row) we see model M3 has a similar pattern to model M, where
low actions at higher states will have higher regrets at all levels of the covariate. Either
low actions at low states or high actions at medium states will have low regrets at all levels
of the covariate. The main difference is in the right plot with high covariates, where low
actions in high states reach the highest regret.

Model M, in the second row in Figure 4.2 has assumed the regret function p; =
e¥1 2% ( A — 1)5)%. The patterns are quite similar to model M. To minimise or achieve
zero regret, we choose the optimal action, d;-’p - 13. We see that there is no effect of
state and the actions do not depend on covariate x. Low actions have higher regrets whilst
higher actions minimise the regrets at all levels of the covariate.

Our last model M5 is the misspecified model with regret function of p; = e¥*(A; —
13)?. We choose the optimal action, d?p " = 45 to achieve zero regret as shown the third
row in Figure 4.2. We see similarity to model M, with a decreasing pattern as the actions
increase though the regret function now does not vary with covariates. Low actions give
higher regrets whilst higher actions minimise the regret at any covariate level regardless
of the effects of the states.

We have seen the effects of the estimated regrets with different types of actions. We
next extend our analysis by comparing the true regrets with the estimated regrets for all
our models. If the estimated regrets of the chosen model are close to the true regrets then

in practice the model is effective, even if misspecified.

64



Chapter 4. Further Investigation of the Regret-Regression Method

25
25
|
25

Estimated regret
15
|
Estimated regret
15
!
Estimated regret
15
|

T T T T T T T T T T T T T T T T T
3 4 5 6 7 20 21 22 23 24 2 4 6 8 10 14

True regret True regret True regret

Estimated regret
10 20 30 40
| |
Estimated regret
10 20 30 40
\\ ! ! !
Estimated regret
10 20 30 40
| | | |
\\

o/

4 o -
T T T T T T T T T 1 T T T T T 1
4 6 8 10 2 3 4 5 6 7 8 10 15 20 25 30 35 40
True regret True regret True regret
o o o
N — N - N -
- - -

Estimated regret
40 80
L1 1
Estimated regret
40 80
[
Estimated regret
40 80
L1 1
\\\

o / o - o -
— T T 1T T T 1 T T T T T T T T T
4 6 8 10 14 5 10 15 20 25 40 60 80 100
True regret True regret True regret

Figure 4.3: Comparison between true regret and the estimated regret for all the models. Each
row of the subplot represents different levels of covariate x with low, medium and high covariates
while each column represents different level of states with low states, medium and high states.
The colours in each subplot indicate the estimated regret function for all the models. We represent
red line for model M, the for model M, the dark blue line for model Ma, the light
blue line for model M3, the purple line for model My and the for model Ms.
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Figure 4.3 shows the true regrets against the estimated regrets for all the models, M, —
Ms;. The plot consists of 9 subplots where rows represent different levels of the covariates
x while columns represent different level of states. The first row represents low covariate,
the second row for medium levels and the third row is the high level covariates. The
first column for the plot is for low states, the second column for medium states and third
column is for high states. As mentioned earlier we categorise the states and covariates to
simplify the analysis and interpret the results.

The x-axis represents the true regret function while the y-axis represents the estimated
regret function. The colours in the subplots represent the estimated regret function for all
the models, My — Ms;. The red line shows the regret function for model M, the green
line model M, dark blue line for model M, light blue line for model M3, purple line,
model M, and yellow line for model M.

Note that the y-axis is not on the same scale as the z-axis for every plot. This is be-
cause the fitted regret was sometimes much higher than the true regret. This is particularly
true for the final row, where we needed to have much wider range on the y-axis than on
the x-axis.

From these subplots, there are no obvious patterns. The first subplot shows that at
the low covariate x and low level of states, the estimated regret function for model M; is
very high with the green line well above the red line. The other models are under the red
line which indicates under estimation of regrets. The second row represents the medium
covariate x with different levels of states. At medium states, we see that models A/, and
Ms have similar estimated regrets to model M, with the three lines overlapping each
other. The estimated regrets in the final column, high state, are often high. We note that

this is true for the true model also.

4.4 Diagnostic Assessment in the Regret-Regression Method

Diagnostic methods are used to examine whether model assumptions are valid and to
identify any unusual characteristics of the data that may influence the conclusions (Cook
& Weisberg, 1983). Graphical procedures are often found useful in validating the model
assumptions followed by statistical tests. Residual plots are often useful for assessing the

fit of a model to the data and to check whether the model is useful.

4.4.1 Regret-Regression Residual Plots

Residuals can be used to assess model adequacy. A residual plot is particularly useful for
identifying patterns in the data which may suggest heterogeneity of variance or bias due
to misspecification (Mansfield & Conerly, 1987). Nevertheless, in this analysis we have
not assumed a constant variance in our model. As previously stated we only model the

mean response and we have not assumed normality for the model.
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If the model is a correct model, the residuals should have zero mean for all states,
regrets and covariates x. However, to define a pattern in a residual plot due to misspecifi-
cation or natural variation can be challenging (Johnston & So, 2003).

The residual is defined as the difference between the observed data and the fitted
values. For each model, we follow the simulation procedure which we described earlier
to obtain the parameters B and @@ The residuals of states Z; are obtained from the linear
model of S; given history S;_;, A;_;. From Equation (2.23), the fitted Y is

V= s Y B2 - Yl A ).
J J
Then, the residual between the observed data and fitted Y is
Y-V =Y 38 — ZBij + Zﬂj(aﬂgja Ajoii).
J J

Note that residuals would not be obtained if the Murphy or Robins method are used, as no
model for E[Y|Sk, Af] is specified. We can plot the residuals against the states, actions
or covariate x. It is possible to plot at each time point. To illustrate, we begin by pooling
over the the time points in order to see if there any trends or unusual pattern in our models.
If the model is correctly specified, the mean residual should always be zero.

We simulate with sample size n = 1000. To combine all 10 time points, we replicate
the residuals and pool together the regrets at each time point. We will have 10000 residuals
and 10000 regrets for all time points. We repeat the same procedure for the states function.

Figure 4.4 shows the residuals plotted against the regret for the models My, — Ms.
The smooth trend in the plot for M is almost perfectly straight at value zero. Thus, as
required, there is no evidence against the model. There is some evidence of trend for M,
M3 and perhaps Mo, though the later decrease towards the right may simply reflect more
sparse data.

The mean residual is almost constant at zero for model M,. The smooth line also
looks perfectly straight for model M5 but this does not mean that there is no evidence
against the fitted model. The model M5 only contains the actions values A; = {0, 1, 2, 3}
in the regret function. This is the reason why the residual against regret plot for this model

does not look like those for other models.
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Figure 4.4: Residuals plotted against fitted regrets for all models. In each plot, all the time points
are pooled together, i.e. each residual is replicated 10 times and plotted against the 10 estimated

regrets. The line represents a smooth trend through the data.
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Figure 4.5 shows the residuals against states, again all time points are pooled in each
plot. There is some evidence against the fitted model for M5 and M, but overall no strong
trends occur in all the models.

Figure 4.6 shows plots of residuals against the covariate x. This time there is strong
evidence against the model M; and M; but no trends occur for the other models.

Instead of combining all the time points, it is possible to examine whether there are
trends at individual time points. We further our investigation by looking at the residuals
against the states or the regrets at every single time point. Several residual plots for all the
models can be found in Appendix 11.1 and Appendix 11.2.

We found similar results combining the time points for residuals versus the regrets
with no trend for models M,, M, and Mj5 but there are some trends for models M;, M,
and Mj3. Model M5 only contains the actions with the range of values of {0, 1,2, 3}.
Also for residuals against the states there is evidence against model M, and M, and no

evidence against the other models, where the results again matched the plots with pooling.

4.4.2 Wild Bootstrap in Regret-Regression Method

Bootstrapping, introduced by Efron (1979) is a general approach in statistical inference
based on building a sampling distribution. The idea is to use the sample data as a pop-
ulation. We assume the sample data are independent and identically distributed. The
bootstrapping method can be implemented by constructing a number of resamples (as-
sumed to be of equal size) obtained by random sampling with replacement from the orig-
inal dataset. We can use the repeated bootstrap samples either to compute the estimated
standard error of an estimator or to perform hypothesis tests.

Inference on the parameters needs some special care especially when handling error
terms which are heteroskedastic (Atkinson, 1982; Eicker, 1967). For the bootstrap to be
effective usually there is an assumption that the responses are identically distributed.

To overcome these problems, a modification of bootstrapping called the wild boot-
strap has been proposed (Wu, 1986; Liu, 1988; Mammen, 1993; Franke & Halim, 2007;
Davidson & Flachaire, 2008). Under a variety of regularity conditions, the wild bootstrap
is asymptotically justified. The wild bootstrap can be used to form a test based on the
residuals from the regret-regression model (Henderson et al., 2011).

Suppose D; = {D;,D,,...,D,} are independent with mean zero and finite vari-

ances, which are not required to be equal. Then suppose

1 n
T=—-5"D

converges in distribution to a variable D. Let w; for i = 1,2,...,n be independent and

identically distributed with mean zero and unit variance. Then the wild bootstrap is based
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on the result that
1 n

for: = 1,2,...,n also converges into distribution . The wild bootstrap generates N
independent copies of w; and then N repeated values for 77,75, ..., T as an empirical
estimator of the distribution of 77,75, ..., T. Note that each D; occurs exactly once in
each 77" meaning that there is no duplication or exclusion which usually happens in the

standard bootstrap method.

4.4.3 Wild Bootstrap Simulation

The standard bootstrap does not require an assumption of an identical distributions but
we do need to assume independence for all the subjects. The independence assumption is
not true when the residuals r; = Y; — E[Y;| Sk, Ag] fori = 1,2, ..., K from a model are
used as our statistics D; in the definition of Section 4.4.2. Our aim is to build a test based

on a contrast
1 n
Ti=— g Gl
\/n “
=1

where )" | ¢; = 0. We then obtained N resamples of

1 n
*
17 = _\/ﬁ E W;iCiT;.
i=1

An estimated p-value can be obtained by comparing the observed test statistic 7" with
the wild bootstrap replicates 7. In this case we will use multipliers (w;) either with
random standard normal Z ~ N(0,1) or random uniform U{—1,1} distribution. The
wild bootstrap residuals are thus moved up or down but on the same vertical line. Then,
the mean residuals from the original samples will be compared with the mean residuals
from the wild bootstrap samples. Five different tests have been designed to investigate the
slope and trends in the plots. The first four tests are of the form 7" = \/LE > | ¢iri where
>, ¢ = 0. We now assume the data are appropriately ordered. We do N = 200 wild
bootstrap samples of sample size n = 1000 and calculate the value for each of the tests.

The following tests will be considered:-

1. Test 1: The mean of the first half of the residuals when ordered against say state
or regret, is contrasted with the mean of the second half. This means we split the
x-axis into two parts and calculate the difference between them. This test is to see

if there is an overall trend in the model.In this test,

Note here that [§] = 500 for sample size n = 1000.
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2. Test 2: The middle third is contrasted with outer third to see whether there is curva-
ture but not a sustained trend in the models. The z-axis is split into three parts and

a contrast between them is found. Here,
=94 +2 i=[2+1,..., [
In this case [%] is equal to 333 when we round it up for sample size n = 1000.

3. Test 3: For this test we look for trend only in the left tail by contrasting the first
sixth of the data with the second sixth.

+1oi= [+ 1. %]
=49 -1 i=[2]+1,...,n
0 i <[22

5. Test 5: This test is based on the extremum of the cumulative residuals. This will no

longer have a contrast like in previous tests, but is investigated for completeness.

Ci = m?X{Z(Tz‘)}

We calculate the residual 7; = Y; — E[Y;|Sik, Aix] then in all bootstrap samples

and compare the difference.

4.4.4 Simulation Results

The figures in Appendix 11.3 shows that all the lines are at the horizontal level at sample
size n = 500. This indicates that the model M, could be a correct model. The null
hypothesis for the wild bootstrap tests is that the mean residual is zero while the alternative
hypothesis is that the mean residual is not zero for all states, regrets or x. Tables 4.5, 4.6
and 4.7 show the proportion of rejections of the null hypothesis at time points 1,5 and 9
using either Z ~ N(0,1) or U{—1,1}.
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Table 4.5: The estimated test sizes under the null at the first time point

Tests
Test1 Test2 Test3 Test4 TestS

State 007 002 005 002 0.08
U{-1,1} Regrets 0.08 0.09 0.02 0.05 0.04
T 002 004 005 005 0.02
States 003 0.07 005 0.04 0.02
Z(0,1) Regrets 004 003 0.04 002 0.01
T 001 009 0.10 0.06 0.01

State 005 001 0.06 007 0.03
U{-1,1} Regrets 035 0.15 0.03 0.16 0.02
T 035 005 039 009 0.08
States 007 005 003 001 0.07
7(0,1) Regrets 040 0.16 0.06 0.12 0.01
x 029 003 042 0.13 0.09

State 0.04 0.12 0.08 0.09 0.07

U{-1,1} Regrets 0.12 0.08 0.16 0.07 0.18
x 024 010 0.07 0.07 0.00

States 0.04 0.11 006 0.13 0.09

7(0,1) Regrets 0.09 0.07 0.17 0.10 0.19
x 023 015 0.06 0.06 0.00

State 003 006 005 008 0.02

U{-1,1} Regrets 0.05 0.17 0.08 0.09 0.09
x 047 0.10 007 0.15 0.56

States 0.05 0.08 005 0.07 0.05

Z(0,1) Regrets 0.06 025 0.02 0.11 0.17
x 040 014 0.10 0.17 0.1

State 005 009 0.03 0.14 0.12
U{-1,1} Regrets 0.09 0.02 0.06 0.10 0.15
x 0.31 0.07 0.08 0.11 0.00
States  0.07 0.11 0.11 0.12 0.12
7(0,1) Regrets 008 0.05 007 005 0.16
x 025 002 004 0.01 0.00

Continued on next page
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Tests
Test1 Test2 Test3 Test4 TestS

I\

State 005 009 0.06 0.07 0.08

U{-1,1} Regrets 0.02 0.02 0.06 0.13 0.13
T 1.00 069 085 1.00 1.00

States 0.04 005 005 0.08 0.02

7(0,1) Regrets 0.04 0.04 0.02 0.09 0.14
x 1.00 054 087 1.00 1.00

Table 4.5 shows the estimated power of the five wild bootstrap tests, based on 1000
simulations of datasets of size n = 500 using the first time point only. In each case there
are 200 wild bootstrap samples. Under M, all tests have approximately the correct size.
Test 1,2 and to a lesser extent 4 have some power to detect misspecification for the regrets
while Tests 1,2 and 3 have detect misspecification for covariates, « for model M;. We
also found that all tests have the correct size for state for model M. Tests 1 and 2 in
model M> have detected misspecification for the regrets and x and it seems that Test 2
have detect misspecification for all state, regrets and x. For model M3, Tests 1 and 2 have
detected some power against the null for x and Test 2 for the regrets. Meanwhile, model
M, only show some power when Test 1 against x and Test 5 when test against the regrets.

All tests have high power for M5 when plotted against x.

Table 4.6: The estimated test sizes under the null at the fifth time point

Tests
Test1 Test2 Test3 Test4 TestS

Mo

State 0.05 002 0.03 0.08 0.06

U{-1,1} Regrets 0.07 0.04 0.05 0.07 0.05
x 0.02 005 005 0.07 0.01

States 002 0.03 002 0.03 0.02

Z(0,1) Regrets 003 0.05 0.04 004 0.05
T 0.02 003 004 0.05 0.02

M,

State 003 004 006 005 0.02
U{-1,1} Regrets 0.65 0.11 0.05 0.16 0.01
T 024 002 051 0.19 0.10

Continued on next page
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Tests

Test1 Test2 Test3 Test4 TestS

States 0.05 0.10 0.06 0.11 0.01
7(0,1) Regrets 0.60 0.06 0.02 022 0.01
x 024 003 036 0.10 0.07

M,

State 009 040 022 040 046
U{-1,1} Regrets 0.07 0.06 023 0.06 0.12
x 0.17 010 0.13 0.10 0.01

States 0.08 0.38 0.19 024 042
7(0,1) Regrets 0.05 0.05 0.20 0.09 0.12
T 0.27 0.09 0.18 0.08 0.02

M;

State 0.10 007 0.13 006 0.00
U{-1,1} Regrets 0.02 0.17 0.03 0.11 0.08
x 029 009 0.10 0.15 047

States 009 0.16 0.11 0.04 0.01
7(0,1) Regrets 003 0.12 0.05 007 0.08
x 043 0.15 009 022 059

M,

State 0.08 047 021 028 0.36
U{-1,1} Regrets 0.09 0.02 0.06 0.10 0.15
x 023 008 0.10 0.05 0.02

States 006 038 030 037 0.39
7(0,1) Regrets 006 003 005 005 0.13
T 022 005 007 006 0.00

M

State 003 0.10 007 0.18 0.05
U{-1,1} Regrets 0.01 0.05 0.03 0.08 0.03
T 1.00 062 083 1.00 1.00

States 003 0.10 0.12 0.09 0.09
Z(0,1) Regrets 0.07 005 002 0.12 0.12
T 1.00 064 086 1.00 1.00
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Table 4.7: The estimated test sizes under the null at the ninth time point

Tests
Test1 Test2 Test3 Test4 TestS

State 002 005 007 003 0.03
U{-1,1} Regrets 0.02 0.04 0.04 0.05 0.02
T 002 004 005 001 0.01
States 004 0.05 007 0.04 0.04
Z(0,1) Regrets 0.03 004 006 006 0.06
T 001 007 004 002 0.02

State 0.04 006 0.07 0.07 0.01

U{-1,1} Regrets 0.56 0.13 0.04 0.12 0.00
T 033 001 044 0.16 0.10

States 004 0.03 005 007 0.04

7(0,1) Regrets 0.52 0.09 0.04 021 0.02
x 031 002 045 0.13 0.09

State 006 041 020 039 034
U{-1,1} Regrets 0.06 0.03 020 0.09 0.06
x 0.19 008 005 0.08 0.01
States 0.15 042 021 026 043
7(0,1) Regrets 0.03 0.06 020 0.06 0.00
x 024 006 0.09 0.06 0.00

State 0.08 013 0.10 0.09 0.01

U{-1,1} Regrets 0.03 0.15 0.08 0.13 0.04
x 034 008 009 023 0.50

States 0.10 0.10 0.09 0.06 0.03

Z(0,1) Regrets 0.07 0.12 0.02 0.16 0.07
x 038 005 0.14 0.16 049

State 0.06 036 025 028 0.26
U{-1,1} Regrets 0.04 0.05 0.02 007 0.04
x 0.22 007 006 0.09 0.00
States  0.09 033 0.19 033 035
7(0,1) Regrets 006 0.03 006 0.08 0.00
T 024 005 0.06 0.09 0.00

Continued on next page
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Tests
Test1 Test2 Test3 Testd Test5

I\

State 0.07 011 0.08 0.18 0.08

U{-1,1} Regrets 0.05 0.0l 0.02 0.06 0.02
T 1.00 064 087 1.00 1.00

States 0.03 0.10 0.12 0.09 0.09

Z(0,1) Regrets 0.04 004 003 007 0.00
x 1.00 068 087 1.00 1.00

Tables 4.6 and 4.7 show the estimated power using the wild bootstrap tests at time
points 5 and 9. Similar to results found in Table 4.5, the model M, again has the correct
size. Tests 1 and 3 show some misspecification against x and Test 1 against the regrets
for model M, at both time points. For model M5, Test 5 detect misspecification against
state at time point 5 and all tests except test 1 at time point 9 while Test 1 only show
misspecification against x at both time points.

Misspecification for model M3 is detected at Tests 1 and 5 when plotted against x.
The results at time points 5 and 9 are found different from time point 1 for model M,
where at time point 1, some power have shown at Test 1 when test against  and Test 5
when test against the regrets. However, at time points 5 and 9, it shown that Test 1 detect
misspecification when test against x and Tests 2,3,4 and perhaps 5 when test against the
states. Again, we found similar results as time point 1 for both time points 5 and 9 where
all tests have high power for model M5 when plotted against covariate x.

Overall, we found Test 1 has detected some misspecification against = for all models
and only model Mj reject the null hypothesis when test against the covariates, = for all
the wild bootstrap tests.

4.5 Conclusions

The investigation of covariate effects in the regret-regression method is possible by al-
lowing the regret function to depend on covariates. In the simulation, we consider six

possible models where the true model is

My :p; = €w1+w2z(z4j — 3 — a5 — 1/)5x)2.

and we considered five misspecified models. The main purpose of creating a misspecified
model is to investigate the effect of the missing parameters or covariates in the model and

also to test the sensitivity of the model. We assess the model adequacy for each model by
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examining the residuals through the residual plots and wild bootstrap test. We found that
the true model had no trend in the residual plot while the wild bootstrap test show that the
model is correct either by using U{—1, 1} or Z(0, 1) multipliers.

At any level of x, the optimal response is achievable if we choose low actions with
low states or medium level with medium states but this decision was not correct for model
M at low x where low actions with low states does not give an optimal response. We
also found that the estimated regrets are almost equal to the true regret when covariates x
are at a high level with a medium level of states.

The diagnostic method is used to identify any unusual characteristics that may influ-
enced the decisions. We divided the diagnostic into two parts, i.e the residual plots and the
wild bootstrap. The wild bootstrap is used to perform a test to confirm about the pattern
or trends in the models.

We found that the residual plots against regret and covariates x have shown some
pattern and trend in the models whereas the residuals against states have not shown any
pattern or trend for all of the models.

The wild bootstrap test showed that similar results occurs either in Z ~ N(0, 1) or
U{—1,1}. We also found that all the tests are good to test the residuals. Testing against
covariates, x was found to be the best for model M5.

According to the previous results we can conclude that true model, M is of course
the best among the rest in terms of the parameter estimates of ¢/ and the estimates of
the optimal response, Y using the optimal decisions supported by the wildbootstrap test.
This is in contrast with model M; where it show poor performance in estimation and also
when testing against x using the wild bootstrap tests. Besides of the true model M, we
can say that models M, and M3 are performing well for this analysis and perhaps these

three model can be used for future analysis.
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Chapter 5

Application of Regret-Regression in

Dose-Finding for Anticoagulant Data.

In this chapter we illustrate the use of regret-regression on data giving anticoagulation
treatment for a group of 303 patients. The anticoagulant in use was Warfarin which is
also known as Coumadin, Jantoven, Marevan, Lawarin, and Waran. Initially it was a pes-
ticide against rats and mice and is still marketed for this purpose, although more potential
poisons such as brodifacoum have been produced (Kohn & Pelz, 2000; Rost et al., 2009).
Warfarin was found in the early 1950s to be effective and safe for preventing thrombosis
and embolism (abnormal formation and migration of blood clots).

Warfarin works against vitamin K which is particularly found in fresh plant-based
foods. Vitamin K plays an important role in our body’s natural clotting process in the
liver to make blood clotting proteins. Warfarin reduces the liver’s ability to use vitamin
K to produce normally functioning forms of the blood clotting proteins (Bell & Caldwell,
1973; Suttie, 1990).

Prothrombin time (PT) is a blood test that measures the time to blood clot and can be
used to check for bleeding problems. It is commonly measured using blood plasma. A
PT test is also known as INR (International Normalized Ratio) test. The INR provides a
way of standardising the results of Prothrombin time tests. The INR is used to determine
the blood clotting time, in the measure of Warfarin dosage, liver damage, and vitamin K
status (Poller, 2004; Christensen et al., 2010; Kim et al., 2010).

The result (in seconds) for Prothrombin time (PT) performed on a normal individual
will vary depending on what type of analytical system is used. The INR was devised to
standardise the results. The ISI value(International Sensitivity Index) has been introduced
to indicate how a particular batch of tissue factor compares to an internationally standard-
ised sample. The ISI value is usually between 1.0 and 2.0. The INR is the ratio of a

patient’s Prothrombin time to a normal (control) sample, powered by the ISI value.

PTtest st
INR = ————— .
PTnormal
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The Prothrombin time is the time that takes plasma to clot after addition of tissue
factor obtained from animals. This measures the quality of coagulation. The speed of
coagulation is affected by levels of factor VII in the body. Factor VII has a short half-life
which needs vitamin K. The Prothrombin time can be prolonged as a result of deficien-
cies in vitamin K, which can be caused by Warfarin, malabsorption, or lack of intestinal
colonisation by bacteria (such as in newborns). Moreover, poor factor VII synthesis due
to liver disease or increased consumption of vitamin K may prolong the PT.

A high INR level such as INR=5 indicates that there is a high chance of bleeding,
whereas if the INR is low such as 0.5, then there is a high chance of having a clot. The
normal range for a healthy person is 0.9 to 1.3, and for people on Warfarin therapy, 2.0 to
3.0.

5.1 The Warfarin Data

Rosthgj et al. (2006) analysed data on 350 patients given Warfarin from one hospital
between February 1995 till August 2000. The treatment time varied from 16 days to
almost five years which involved 2 to 124 clinic visits. The data also contain covariates
which include age, sex and diagnosis.

The original data were unbalanced but Rosthgj et al. (2006) used a subset of complete
cases where she concentrate on the first 14 clinic visits for the 303 Warfarin treated pa-
tients with at least 14 visits. The first four visits were considered as induction and the
analysis concentrated on the remaining 10 visits. At each visit, j the state S; is defined.
After consultation Rosthgj et al. (2006) selected

{ 0 (INR inrange)

S5 = D, .

= (otherwise)

where D; is the difference (positive or negative) between INR at time j and the nearest
boundary of the target range, and R is the width of that target range where R typically is
between 1 or 2. Half of the visits had INR in range, i.e S; = 0. The INR of the patient
has positive skewed distribution with range -1.53 to 5.00. The lower and upper quantiles
is between -0.19 and 0.80 and the median is 0.25. The final response, Y is the overall
percentage of time INR was within target range over the ten visits.

For the actions, Rosthgj et al. (2006) defined A; to be change in prescribed dose at
visit 7, since usually a decision consists of two stages: first, whether or not to change dose;
second, if changing to what value. There is also a third stage but this was not considered.
The dose level (and change in dose) is a discrete variable, determined by the 0.5, 1, 3 and
omg of Warfarin tablet, but in practice, a fairly large number of combinations have been
used. Rosthgj et al. (2006) found 61 per cent of visits leave the dose unchanged. The
dose change distribution is fairly symmetric which is about zero, with standard deviation

close to 1mg but sometimes changed to very large changes with the range between -9 to
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Figure 5.1: Regret function with link function f(u) = wif u > 0 and f(u) = u? otherwise.

+8 units.

5.2 The Regret Model

Henderson et al. (2009) selected a model which was based on a categorisation of the
current states, S7. The categorised values were ST = 2, 1,0, —1, —2 which corresponded
to very high, high, zero, low and very low INR values. The median of the positive S; was
the cut-off between very high and high level while the median of the negative S; was the
cut-off between the low and very low INR values.

The optimal actions were bounded at £3. Only three out of the 2727 observed actions
fell outside of this range. For each category of state, a separate asymmetric regret function
was fitted. Henderson et al. (2009) has fitted several regret models to the data. However,

the regret function

15(aj|Ss, Aj1, S; = 5390) = ¥ f(Aj — Psa — ¥3551)

fit the data reasonably well for category ST = s. The link function for the regret function
is f(u) = wifu > 0and f(u) = u? otherwise (see Figure 5.1) and the optimal decision
rule is d;pt =Yg + V5355 1.

Rosthgj et al. (2006) have tried to use Murphy’s method but could only fit a very
simple model, Equation (3.1) and discussed some problems that occur when fitting the
model into the application of the anticoagulant data. Furthermore, Henderson et al. (2009)
have found that the regret-regression gave different parameter estimates when using this
simple model.

Figure 5.2 shows the residuals against fitted regret and observation state for the war-

farin data. The plots show an adequate fitted model with an apparent random scatter. The
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20 40
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Residuals
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I
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Figure 5.2: Residual plots for anticoagulant data, comparing residuals with fitted regrets and state
observations

blue line show a smoother through the data. It is seen that this is almost flat, except per-
haps at very low states. Table 5.1 shows the parameter estimates for v/ and the associated
SE from 100 bootstrap samples. The parameter 15, indicates that if the current state is
low, there is a need to increase the dose and if the current state is high, then a decrease of
dose is needed. There is no need to change the dose if the current state is in range.

Figure 5.3 of the estimated regret function is similar to that given by Henderson et al.
(2009). This plot shows the estimated regret functions with categorised state, 5. The
three lines in each subplot indicates whether the previous state was in range (solid green
line), above the range (dotted blue line) and below the range (dashed red line). The first
subplot indicates that at a very low current state where the clotting time is found too short,
an increase of dose is suggested to minimise the regret. A similar explanation applies to
the low current state.

If the current state is in range, there is no need to increase or decrease the dose. If
we choose to decrease the dose when the previous state was in the low range, the regrets
tends to increase. The last two subplots show the current state at the very high or high
level, where the regrets start to increase as we increase the dosage.

From the regret function j1;(a;]S;, A;_1, S} = s;1), we know that the parameter 3
is related to the previous state, S;_;. We can describe the parameter 13 if we refer to
the Table 5.1 and Figure 5.3 together. We see the actions are influenced by the previous
states, S;_1 for the first four categories of S7 . If the current state and the previous state
are in low condition, an increase of dose is needed to reduce the regrets. If the current
and previous state are in high level, the dose needs to be reduced to minimise the regrets.
From these two conditions, more drastic dose changes are needed if the two states have
the same signs while smaller changes of dose are recommended if they have opposite

signs. In the fifth category of S, the previous state, S; seems unimportant for an optimal

83



Chapter 5. Application of Regret-Regression in Dose-Finding for Anticoagulant Data.

Sj* 1/151 SE ¢s2 SE ’lbsg SE
-2 -0.6023 0.0825 2.1333 0.0805 -1.0763 0.0427
-1 -0.3981 0.0776 2.7917 0.1432 -1.5835 0.0698
0 -0.9600 0.2079 -0.1193 0.0674 -1.1317 0.1018
1 -2.3450 0.0760 -2.3211 0.0500 -0.9170 0.1283

2 -2.8208 0.1292 -2.9614 0.0900 0.2296 0.1188

Table 5.1: Parameter estimates and bootstrap standard errors

actions.
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Figure 5.3: The estimated regret functions for categorised state, SJ’-‘ = s. The three lines in each
subplot indicate whether previous state was in range (solid green line), above the range (dotted
blue line) and below the range (dashed red line).
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5.3 The State Residual, Z;

The state residuals Z; = S; — F[S;|S;_1, A;_1] were obtained from a mixture model for
S;. This mixture model has two components: a logistic component when P(S; = 0) (INR
values are in range) and a linear component for |S;| when (S; # 0). When the INR of the
patient is in range, Henderson et al. (2009) used the logistic function and linear function
when the INR of the patient is out of range.

The covariates used in the model consisted of the previous states and previous actions
as well as a variety of indicator variables for states and actions. We use indicator to
indicate the INR status of the patient. The indicator of states known as istate has the
value zero if the states is not equal to zero (INR values are not in range) and one if the

states is equal to zero (the INR values in range):

, 0,5; #0 (INR not in range)
istate =
1,5;,=0 (INR in range).

Similarly, we use indicator if dose is changed. This indicator, iacts takes the value zero

if there is a change in dose and one if there is no change in dose:

, 0 (changing dose)
lacts =
1 (no change in dose).
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Coefficient SE Z p-value

Intercept 0.238 0.192 1237 0.216
S -0.128 0.147 -0.869 0.385
istates;j_q -0.238 0.203 -1.171 0.242
A -0.105 0.131 -0.798 0.425
iactsj_q -0.157 0.185 -0.850 0.395
Si_a -0.104 0.075 -1.382 0.167
istates;_o 0.008 0.149 0.056 0.956
Ao -0.114 0.084 -1.347 0.178
iacts;j_o 0.117 0.096 1.216 0.224
Si_3 -0.042 0.046 -0.898 0.369
istates;_s 0.015 0.083 0.174 0.862
Aj_s -0.025 0.050 -0.495 0.621
iacts;_s 0.010 0.083 0.120 0.904
Si_a -0.048 0.045 -1.069 0.285
istates;j_4 0.023 0.082 0.280 0.779
Ay -0.042 0.05 -0.837 0.402
iacts;j_q -0.053 0.082 -0.647 0.518
Sf_l -0.113 0.042 -2.683 0.007
Sj_le_l 0.033 0.036 0924 0.356
Si—1Aj 1 -0.029 0.056 -0.511 0.609
Aj_qistatesj_; -0.006 0.153 -0.042 0.967
Aj,lS]?fl 0.055 0.044 1.261 0.207
iacts; 1551 -0.161 0.108 -1.494 0.135
tacts;_qistates;_q 0.481 0.202 2376 0.018
Si—aSj-1 -0.076 0.052 -1.459 0.145
Sj_qtstates;_; 0.053 0.102 0.517 0.605
Si_oAj -0.096 0.056 -1.708 0.088
Si_stacts;_q -0.062 0.101 -0.610 0.542
istates;j_qgistates;_y 0.046 0.179 0.255 0.799
istates;_oAj_q -0.014 0.088 -0.162 0.872
istates;_otacts;_q -0.162 0.180 -0.899 0.369
A; 2854 0.017 0.057 0.292 0.771
Aj_oistatesj_; -0.052  0.110 -0.471 0.637
Aj0A; 0.024 0.059 0416 0.678
Aj_stactsj_y 0.026 0.109 0.236  0.813
A; 2S5 9 0.042 0.045 0934 0.350

Table 5.2: Logistic regression model for S; when P(S; = 0)
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Coefficient SE Z p-value
Intercept 1.467 0.066 22.146 0.000
Siq 0.119 0.049 2424  0.015
istates; 0.100 0.071 1.400 0.162
A 0.123 0.045 2.735 0.006
tactsj_q 0.060 0.062 0960 0.337
Si—o -0.036 0.025 -1.433 0.152
istates;j_o 0.002 0.051 0.036  0.972
Ao -0.044 0.029 -1.477 0.140
tacts;j_o 0.000 0.033 -0.005 0.996
Si_3 0.005 0.016 0330 0.741
1states;_3 -0.025 0.028 -0.893 0.372
Aj_s -0.014 0.017 -0.864 0.388
tactsj_s -0.058 0.028 -2.081 0.038
Si_a -0.017 0.015 -1.114 0.266
istates;_4 -0.032 0.028 -1.161 0.246
Ay 0.002 0.017 0.096 0.923
tactsj_a 0.007 0.028 0.256  0.798
532—1 0.050 0.014 3.539  0.000
Sj_lsf_l -0.036 0.012 -3.077 0.002
Si—1A 0.037 0.018 2.105 0.035
Aj_qistatesj_; -0.081 0.052 -1.546 0.122
Aj,lSj{l -0.036 0.014 -2.483 0.013
tacts;_155-1 0.010 0.035 0.277 0.782
tactsj_jistatesj_q -0.067 0.069 -0.967 0.334
Si—aSj-1 0.028 0.017 1.711  0.087
Sj_ststatesj_; 0.043 0.035 1.227 0.220
Sj_oAj 1 0.008 0.018 0.459 0.646
Sj_giacts;_ -0.012 0.034 -0.359 0.719
istatesj_sistatesj_q 0.004 0.062 0.062 0.951
istates;_oAj_q -0.039 0.030 -1.289 0.198
1states;j_gtacts;_q -0.106 0.062 -1.729 0.084
Aj_95;1 0.033 0.018 1.792  0.073
Aj_oistatesj_; 0.053 0.037 1438 0.151
Aj0A; -0.015 0.019 -0.772 0.440
A _stactsj_y 0.026 0.035 0.740 0.459
A; 28 9 -0.010 0.015 -0.637 0.524

Table 5.3: Linear regression model for |S;| when S; # 0
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We also included all the main effects, pairwise interaction and quadratic terms (based
on the best model selection) up to lag 4. We have explained earlier that the first 4 time
points are the burn in period. Henderson et al. (2009) argued that all of these terms may
always not be needed but since there is no interest in the model for S; per se, therefore
there is no harm in overfitting the model.

Tables 5.2 and 5.3 show that only Sf_l and iacts;_jistates;_; are statistically sig-
nificant at the 5% level for logistic regression while the coefficients Sj—1, Aj_1, tacts;_s,
S? 1,8;-157 1, Sj—1A;_1and A;_, S}, are found significant for the linear model. In this
work we are going to use a simplified state model where we remove the nonsignificant
terms.

Coefficient  SE Z p-value

Intercept 0.294 0.119 2467 0.014
istates;_, -0.325 0.163 -1.991 0.047
iacts;_q -0.492 0.108 -4.566 0.000
5]2_1 -0.125 0.036 -3.498 0.000

istates;_qiacts;_; 0.818 0.166 4.930  0.000

Table 5.4: Logistic regression model for S; when P(S; = 0)

Coefficient  SE Z p-value
Intercept 1.494 0.025 59.160 0.000

Sia 0.093 0.038 2461 0.014
Ajq 0.057 0.024 2356 0.019
iacts;_s -0.063 0.028 -2.271 0.023
Sj{l 0.044 0.010 4.321  0.000
Si—1Aj 0.036 0.014 2.600 0.009
Sj_lS]{l -0.024 0.011 -2.210 0.027
Aj_lSj{l -0.012 0.010 -1.212  0.226

Table 5.5: Linear regression model for |S;| when S; # 0

Tables 5.4 and 5.5 present the results of fitting the simplified models, using backward
selection. From Table 5.4 it seems that whether that state is likely to be in range is affected
by whether the previous state was in range and whether the previous action was no change
in dose. If these are both true then there is a high probability of being in range, but if only
one is true there is a low probability. If the previous state was a long way from range then
(from the quadratic term) there is reduced probability of being in range.

Table 5.5 show an estimates and variables included in the linear regression for the
state of the patient when INR not in range. As expected, the previous state, S;_; was
significant. We can see that |S;| tends to be larger if |S;_;| is large, especially if the
previous action was non-zero. We also found that the previous actions, A;_; and as far as
third visits earlier, iacts;_3 were significant too. The effect of actions at lag 3 is negative,
suggesting that the previous decision of changing dose need to be the opposite direction.
However, we left it in the model for completeness.
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Figure 5.4: Results of fitting logistic model to each time point separately. The points mark the
estimates and the vertical lines £2 standard errors. The red line represents the combined estimate.

In obtaining Tables 5.4 and 5.5, the pooled data over visits were used, following (Hen-
derson et al., 2009). In Figures 5.4 and 5.5 we re-fit the model, one visit at a time, to see
if there are major differences between visits. We see that overall estimates are gener-
ally within the individual confidence intervals and hence we are content with a common
model.

Table 5.6 shows the new estimates and Figure 5.6 the new regret functions. The es-
timates and regrets are quite close to the previous state model, except for an increase in
standard error. We conclude that we can choose this simplified state model for future

analysis.
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S]* %1 %2 wsi’y SE(wsl) SE(%Q) SE(@%S)
-2 -0.4498 1.6734 -0.0852 0.2436 0.4142 0.5221
-1 -0.4467 25477 -1.0053 0.1416 0.5116 0.5046
0 -0.2621 0.1831 0.3177 0.2482 0.4579 0.5533
1 -25079 -1.7253 -0.6259 0.3554 0.3208 0.3705
2 34457 -1.7340 0.2643 0.4802 0.3216 0.2639

Table 5.6: Parameter estimates and bootstrap standard errors for new model
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estimate.
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5.4 Conclusions

The regret-regression method has provided consistent estimates and is high in efficiency
in the simulation and also found suitable to apply to the anticoagulant data. In this chapter
we have introduced a simplified state model and we found the estimates and the regrets
are quite close to the previous state model with slightly higher standard errors. Due to
not much difference in performance from the previous state model, we decided to use the
simplified state model for future analysis. We have not investigated the wild bootstrap

diagnostic tests in this chapter but will discussed it in the following chapter.
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Chapter 6

Regret-Regression with Myopic
Decision Rules: Application in

Anticoagulation.

Henderson et al. (2009) and Rosthgj et al. (2006) described analyses of data on the use
of Warfarin for patients on long term anticoagulation. In this Warfarin data, there are
303 patients with 14 clinic visits each. At each visit, the blood clotting time using the
International Normalised Ratio (INR) is taken. If the INR is too high, there is a risk of
severe bleeding whilst if the INR is too low, the patients will suffer from thrombosis.
Therefore, it is important to carefully adjust the dose to ensure that the INR stays within
the prescribed target range.

In the analysis of Chapter 5 the state variable was either the standardised INR S},
or a discretised version 57, with five categories: very low, low, in range, high or very
high. The action A; is the change in Warfarin dose (mg), at visit j. The first four visits
were considered as stabilisation period and since there is no information after the final
visit, only K = 9 was considered. Therefore, the data for 303 patients consisted of states
S1,9,...,59 and actions Ay, As, ..., Ag.

In Chapter 5 the overall percentage time in range was used as an target measure for
controlling the INR. To calculate the overall PTR a linear interpolation was used between
measured INR values, and the proportion of time the interpolated INR was in range was
taken to be the overall PTR, which was considered to be the response Y to be maximised.

6.1 Myopic Decision Rules using the Regret-Regression

Approach

A regret-regression approach can be used to estimate myopic decision rules. This can be
fulfilled by taking as response a value, Y; which is measured at the end of the jth interval,

for 7 = 1,2,..., K where K = 9 for our application. Each interval is then treated
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individually without considering future measurements. In general, we fit the model at the
end-of-interval response,Y; not the end-of study response Y.

We will investigate this approach using regret-regression. Each S; is regressed on
history (S;, A;_;) as before and each Z; = S; — E[S;|S;_1, A;_1] is calculated. The
state residuals Z; were obtained from a mixture model for S;. This mixture model was
divided into two parts: logistic for P(S; = 0)(INR in range) and linear when (S; # 0),
as described in Chapter 5.

For long-term strategy, we estimated parameter vectors 5 and ¢ for the effects of

residuals and regrets respectively, by minimising the sum of squares

n K K 2
> {Y — Bo(S1a) = D BT (Sj—1is Ajmri) Zyi — 3 (Al Sjiy Aja s w} (6.1)

i=1 =2 j=1

For the myopic strategy, the proposed sum of squares is now given by
n K B B B B )
Z Z {Y; = 87 (S)a, Aji) Zjsas — i (Al Sjay Ajris )} (6.2)
i=1 j=1

Where Y; is now the proportion of time between visit 5 and j + 1 over which the inter-
polated INR is in range. A bootstrap standard error can be obtained from the bootstrap
samples and we can examine the residuals between the observed and fitted values for

diagnostic assessment, as previously.
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6.2 Comparison between Long-Term and Myopic Deci-
sion Rules to Optimise the PTR Response with Appli-

cation to Warfarin Data

PTR response Sj* ¢51 %2 1/133 SE(¢51) SE(¢S2) SE(¢S3)
-2 -0.4498 1.6734 -0.0852 0.2436 0.4142 0.5221

-1 -0.4467 25477 -1.0053 0.1416 0.5116 0.5046

Long-term, Y 0 -0.2621 0.1831 0.3177 0.2482 0.4579 0.5533
1 -2.5079 -1.7253 -0.6259 0.3554 0.3208 0.3705

2 -3.4457 -1.7340 0.2643 0.4802 0.3216 0.2639

-2 -0.8677 1.8034 -0.1056 0.2136 0.3631  0.3526

-1 -0.3921 2.2565 -0.2116 0.1825 0.3835  0.2647

Myopic-term, ¥; 0 -0.2503 -0.0123 -0.1969 0.1874  0.2930  0.3009
1 -2.4391 -14150 -0.1851 0.3994 0.2287  0.2553

2 -3.1987 -1.5248 -0.1538 0.3855 0.1545 0.1368

Table 6.1: Parameter estimates and bootstrap standard errors for long-term and myopic PTR re-
sponse

Results are presented in Tables 6.1 for the overall response and the myopic response
using the regret functions in Section 5.2 and 1000 bootstrap samples for standard errors.
The estimates are generally very similar, except perhaps for 1253, though these are all
within noise of zero.

Figure 6.1 compares the estimated regret functions between these two responses at a
variety of combinations of current and previous state. This plot shows that there is little
difference in regrets for both strategies except at the very high current state where the
long-term strategy is slightly higher than the myopic strategy. We can conclude that the
general patterns in this plot suggest that if the current state is low (clotting time is quick)
then we need to increase the dose and if the current state is high or at the very high level,

then a decrease is suggested for both of the strategies.
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Figure 6.1: Comparison of the estimated regret functions for categorised states S between long-
term response Y and myopic response Y;. The three coloured lines in each subplot indicates
whether the previous state was in range (solid green line), above the range (dotted blue line) and
below the range (dashed red line) when the myopic response Y; is used. The grey lines, with the
same styles, show regrets when the overall response Y is used.
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6.3 Number of Visits with INR In Range

In this section we investigate a new response Y * which is the percentage or proportion of
visits for which INR is in range. This new response Y * has only two possible values, zero
and one at each visit. The value one indicates that INR is in range (S; = 0) while value

zero indicates that INR is not in range (S; # 0). The new response Y thus is given by

. ) 0,8;#0 (INR;notin range)
’ 1,S; =0 (INR;in range)

For the long term strategy, the response Y™ is sum of the Y}, the overall measured
INR in range scaled by 100. The regret-regression method can again be applied here to
estimate myopic decision rules for the new response Y;". The response Y;* is measured at
the end of the jth interval, for j = 1,2,..., K where K = 0.

The long-term response Y * is termed as the long-term binary response and the my-
opic response Y is referred to as myopic binary response, for future analysis for easier

differentiation from the PTR responses.

INR response ST ¢y Vs 3 SE(Ws1) SE(Ws) SE(Wg3)

-2 -0.5470 1.5131 -0.0288 0.1951 0.3357 0.2840

-1 -0.9401 2.5647 -0.1900 0.2572 03110 0.1788
Long-term, Y* 0 -0.1793 -0.1130 0.0498 0.1712 0.3236 0.4084
1 -29218 -2.1704 0.1285 0.2436 0.2506 0.2146
2 -3.3429 -1.2335 03744 0.3709 0.1557 0.1787
-2 -0.8381 1.5276 -0.2297 0.2473 0.6998  0.4547
-1 -0.2454 1.2605 0.0397 0.2370 0.9298 0.4014
0 -0.3197 -0.1306 -0.1255 0.2468 0.4673 0.4791
1 -22790 -1.1304 0.1081 0.5395 0.2595 0.2811
2 -2.9447 -1.4597 -0.1410 0.4998 0.2355 0.2024

Myopic-term, Y

Table 6.2: Parameter estimates and bootstrap standard errors for long-term and myopic INR binary
response

Table 6.2 shows the parameter estimates and standard errors obtained from 1000 boot-
strap samples. We see that the parameter estimates for both strategies are quite similar.

Figure 6.2 compares the estimated regrets between long-term binary response and
myopic binary response at a variety of combinations of current and previous states. As
expected, we found that there is almost no difference in both strategies except at the very
high current state where the long term strategy has slightly higher regret than myopic
strategy.
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Figure 6.2: Comparison of the estimated regret functions for categorised states S between long-
term response Y* and myopic response Y*. The three coloured lines in each subplot indicates
whether the previous state was in range (solid green line), above the range (dotted blue line) and
below the range (dashed red line) when the myopic response YJ* is used. The grey lines, with the
same styles, show regrets when the overall response Y * is used.
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6.4 Extended Myopic Decision Rules with Two-Time Points
or Two-Step Ahead

In this section we now look two steps ahead. We also make comparisons between a one-
step strategy and a two steps strategy.
We estimate the the myopic decisions for two-step ahead responses using the regret-

regression method of Section 6.1. The response, Yj(2)

is measured at the end of the jth
interval, for j = 1,2,..., K where K = 8. We will repeat the same procedures for
the analysis using the PTR response Yj@) found in Section 6.2 and binary response }/}(2*)
which is similar to Section 6.3. These responses are defined in the obvious way, as the
proportion of time INR is in range , or the proportion of visits with INR in range, between
visit j and now visit j + 2. We define the sum of squares for the two steps method using

the PTR response as
n K ~ ~ 9
Z { BT ]zaA] Z)Z]+1Z ﬂj(Aj,i|Sj,i7Aj—1,i;¢)} (63)
=1 j=1
and the sum of squares for the two steps method using the binary response

K
L 2
Z{ 2 — B (Sjir Aji) Zjgri — Mj(Aj,i|Sj,i,Aj—1,i;¢)}- (6.4)

i=1 j=1
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PTR response 57 ¢ Vs2 Vs3  SE(s1) SE(¥s2) SE(t)s3)
-2 -0.4498 1.6734 -0.0852 0.2436 0.4142 0.5221
-1 -0.4467 2.5477 -1.0053 0.1416 0.5116  0.5046
Long-term, Y 0 -0.2621 0.1831 0.3177 0.2482  0.4579  0.5533
1 -25079 -1.7253 -0.6259 0.3554 0.3208 0.3705
2 -3.4457 -1.7340 0.2643 04802 0.3216 0.2639
-2 -0.8677 1.8034 -0.1056 0.2136 0.3631 0.3526
-1 -03921 2.2565 -0.2116 0.1825 0.3835 0.2647
One Step, Y 0 -0.2503 -0.0123 -0.1969 0.1874  0.2930  0.3009
1 -24391 -1.4150 -0.1851 0.3994 0.2287  0.2553
2 -3.1987 -1.5248 -0.1538 0.3855 0.1545 0.1368
-2 -1.0601 1.8507 -0.1916 0.5787 0.6350 0.3776
-0.2454  2.1413  -0.0555 0.1565 0.8653 0.6984
-0.4299 -0.1358 0.0050 0.4812 0.7356  0.7813
-2.3144  -1.3927 -0.2272 0.8028 0.4703  0.2518
-2.5635 -1.8319 -0.3547 0.5132 0.2123 0.1723

1
ot

Two Steps, Yj@)

N = O

Table 6.3: Parameter estimates and bootstrap standard errors for PTR response.

Table 6.3 gives the parameter estimates and bootstrap standard errors obtained from
1000 resamples for the Warfarin data. We see the parameter estimates are little different
from the one step strategy and long term strategy but with larger bootstrap standard errors.

Figure 6.3 gives a comparison between the estimated regrets for long-term PTR re-

sponse Y ?) and two steps method PTR response Yj(z)

. At the very low current state and
low dosage, the estimated regrets for two-steps ahead is slightly higher than the long term

strategy. In general there are little differences between the regret functions.
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Figure 6.3: Comparison of the estimated regret functions for categorised states S; between long-
(

term response Y and two steps method response Yj 2 The three coloured lines in each subplot
indicate whether the previous state was in range (solid green line), above the range (dotted blue

line) and below the range (dashed red line) when the two steps method response Yj(Q) is used. The

grey lines, with the same styles, show regrets when the overall response Y (2) is used.
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Figure 6.4 shows the relationships between the optimal actions with long-term PTR
response and the optimal actions using myopic one step strategy (red line) and two-step
strategy (green line). The symbol B indicates low previous state, ® indicates normal
previous state and A indicates high previous state.The first subplot represents very low
previous state, then the remaining plots are low, in range, high and very high previous
states.

We found that there is a positive relationship between one step and long term strategies
except at the very low previous state. A positive relationship also occurs between two step
and the long term strategy except for low and very high previous state, where there is a

slight negative relationship among them.

INRresponse 57 ¢ Vs2 Vs3  SE(ts1) SE(¥s2) SE(¢s3)
-2 -0.5470 1.5131 -0.0288 0.1951  0.3357  0.2840

-1 -0.9401 2.5647 -0.1900 0.2572 0.3110 0.1788

Long-term, Y* 0 -0.1793 -0.1130 0.0498 0.1712 0.3236  0.4084
1 -29218 -2.1704 0.1285 0.2436 0.2506 0.2146

2 -33429 -1.2335 0.3744 03709 0.1557 0.1787

-2 -0.8381 1.5276 -0.2297 0.2473  0.6998  0.4547

-1 -0.2454 1.2605 0.0397 0.2370 0.9298 0.4014

Myopic-term, Y;* 0 -0.3197 -0.1306 -0.1255 0.2468  0.4673  0.4791
1 -22790 -1.1304 0.1081 0.5395 0.2595 0.2811

2 -2.9447 -14597 -0.1410 0.4998  0.2355 0.2024

-2 -0.6894 1.2212 -0.7128 0.4821 0.9212 0.9168

-1 00113 1.3439 0.1414 0.2020 1.2999  1.3355

Two steps, Yj(Q*) 0 -0.5062 -0.3932 -0.2807 0.5915 0.9050 0.7686
1 -1.7245 -1.1495 -0.0251 0.9379 0.5211 0.3293

2 -1.4819 -1.8438 -0.5468 0.3968 0.3481 0.3617

Table 6.4: Parameter estimates and bootstrap standard errors for INR binary response.

Turning now to the binary/count response Yj(Q*)

Table 6.4 gives the parameter esti-
mates and bootstrap error for 1000 resamples. This is to be compared with the corre-
sponding table for long-term and one step binary responses. Figure 6.5 shows the cor-
responding regret functions and Figure 6.6 compares optimal actions. Coefficients are
often, not always, attenuated towards zero, and standard errors are generally high. Over-
all however there is little difference in the fitted regret functions whether we look at one
step, two steps or to the end of the study.

This is similarity to the PTR results for the relationship of the optimal actions where
we found a positive relationship between one step and long term except at the very low
previous state. However there is a slight difference from the two step method as a negative

relationship occurs at the very low, low and very high previous states.
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Figure 6.5: Comparison of the estimated regret functions for categorised states S between long-
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Figure 6.6: The optimal actions for the long-term percentage binary response against optimal
actions for myopic decisions.
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6.5 Diagnostic Test

We compare residuals between observed and fitted values using the long term strategy

and both one step and two steps strategies, and also for both PTR continuous responses

and binary in/out range responses.
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Figure 6.7: Residual plots for Warfarin data. The left plots compare residuals with the state and
the right plots with the fitted regret values. The top row is based on the long-term PTR response
Y, the second row is based on the one-step PTR response Y); and the bottom row on the two-steps

ahead PTR response Yj(2).

Figure 6.7 shows the residuals against fitted regret and states for the Warfarin data for

all three methods, with the PTR response. Generally, all the plots show an adequate fitted

model with random scatter. The blue lines shows smoothers throughout the data. We

use the Friedman’s SuperSmoother, the nonparametric smoothing which can be obtained

from the built-in function, supsmu in R. In all cases, there is no obvious trend in all the
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plots.
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Figure 6.8: Residual plot for Warfarin data. The left plots compare residuals with the state and the
right plots with the fitted regret values. The top row is based on the long-term binary response Y *,
the second row is based on the one-step binary response YJ* and the bottom row on the two-steps
ahead binary response Yj(Q*)

Figure 6.8 provides similar plots for the binary response. Again the smooth trends,
shown as blue lines, are almost flat, suggesting no systematic departure from assumptions
and no real differences between choice of response. There is some evidence that residuals
tend to be negative at very low regret values.
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6.6 Wild bootstrap Tests

We follow the wild bootstrap tests procedure as described to Section 4.4.3 in Chapter 4.
We will run the tests for both the PTR and the binary INR responses at time points 1,5
and 8 using either Z ~ N(0,1) or U{—1, 1} as multiplier.

6.6.1 Wild bootstrap Tests for PTR Response

Table 6.5: Estimated p-value for wild bootstrap tests at first time point

Tests
Test1 Test2 Test3 Testd TestS

Long-term, Y
2(0.1) State  0.000 0.030 0.000 0.035 0.000
Regrets 0.000 0.655 0.205 0.725 0.000
UL States  0.000 0.010 0.025 0.015 0.000

Regrets 0.000 0.650 0.260 0.765 0.000
Myopic-term, Y

State  0.110 0.065 0.000 0.065 0.010

Regrets 0.030 0.155 0.195 0.560 0.005

States  0.175 0.055 0.005 0.170 0.030

Regrets 0.030 0.175 0.230 0.555 0.000
2)

Z(0,1)

U{-1,1}

Two steps, Y;
State  0.695 0.720 0.495 0.340 0.215

Regrets 0.230 0.665 0.560 0.425 0.265

States  0.730 0.665 0.415 0.365 0.270

Regrets 0.210 0.770 0.580 0.365 0.320

Z(0,1)

U{-1,1}

Table 6.6: Estimated p-value for wild bootstrap tests at fifth time point

Tests
Test1 Test2 Test3 Testd TestS

Long-term, Y
2(0.1) State  0.000 0.000 0.195 0.020 0.000
Regrets 0.000 0.125 0.000 0.035 0.000
ULL1} States  0.000 0.000 0.120 0.025 0.000

Regrets 0.000 0.125 0.000 0.010 0.000

Continued on next page
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Tests
Test1 Test2 Test3 Testd Test5

Myopic-term, Y;
State  0.010 0.000 0.005 0.225 0.000
Regrets 0.010 0.000 0.005 0.225 0.000
States  0.010 0.000 0.010 0.240 0.005
Regrets 0.000 0.035 0.690 0.020 0.000
Two steps, Yj@)
State  0.015 0.000 0.005 0.000 0.000
Regrets 0.000 0.045 0.040 0.105 0.000
States  0.010 0.000 0.000 0.000 0.000
Regrets 0.000 0.075 0.025 0.150 0.000

Z(0,1)

U{-1,1}

Z(0,1)

U{-1,1}

Table 6.7: Estimated p-value for wild bootstrap tests at eighth time point

Tests
Test1 Test2 Test3 Testd Test5

Long-term, Y
7(0.1) State  0.000 0.000 0.065 0.000 0.000
Regrets 0.000 0.135 0.000 0.135 0.000
ULL1 States  0.000 0.000 0.060 0.000 0.000

Regrets 0.000 0.105 0.005 0.080 0.000
Myopic-term, Y;
State  0.000 0.000 0.015 0.000 0.000
Regrets 0.000 0.605 0.950 0.0950 0.000
States  0.000 0.000 0.040 0.000 0.000
Regrets 0.000 0.555 0.970 0.110 0.000
Two steps, Yj@)
State  0.100 0.000 0.000 0.035 0.000
Regrets 0.000 0.055 0.250 0.200 0.000
States  0.125 0.000 0.000 0.040 0.000
Regrets 0.000 0.010 0.255 0.240 0.000

Z(0,1)

U{-1,1}

Z(0,1)

U{-1,1}

Tables 6.5, 6.6 and 6.7 show the proportion of rejections at time points 1, 5 and 8 using
either Z ~ N(0,1) or U{—1,1}. For the first time point there are significant departures
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from the model assumptions when considering residuals against state for long term Y,
and some evidence against regrets (Tests 1 and 5). Tests 3 and 5 suggest some problems
for the myopic method when residuals are plotted against states. There is no evidence of
problems with the model for two step responses.

At the fifth and eighth time points most tests give significant results when residuals

are plotted against either states or regrets, with occasional exceptions (notably Test 3)

6.6.2 Wild bootstrap Tests for INR Response

Table 6.8: Estimated p-value for wild bootstrap tests at first time point

Tests
Test1 Test2 Test3 Testd TestS

Long-term, Y
7(0.1) State  0.230 0.265 0.155 0.100 0.040
Regrets 0.075 0.010 0.140 0.180 0.025
ULL1} States  0.165 0.290 0.140 0.090 0.065

Regrets 0.090 0.000 0.185 0.135 0.025
Myopic-term, Y;

State  0.740 0.480 0.310 0.210 0.305

Regrets 0.350 0.850 0.730 0.105 0.195

States  0.775 0.480 0.210 0.200 0.315

Regrets 0.320 0.850 0.625 0.070 0.240
2)

7(0,1)

U{-1,1}

Two steps, Yj
State  0.095 0.270 0.635 0.495 0.505

Regrets 0.355 0.520 0.125 0.815 0.850

States 0.110 0.275 0.555 0.480 0.575

Regrets 0.260 0.510 0.145 0.795 0.875

Z(0,1)

U{-1,1}

Table 6.9: Estimated p-value for wild bootstrap tests at fifth time point

Tests
Test1 Test2 Test3 Test4 TestS

Long-term, Y
State  0.005 0.000 0.040 0.090 0.000
Regrets 0.000 0.025 0.015 0.265 0.000
States  0.000 0.000 0.050 0.075 0.000

Continued on next page
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Tests
Test1 Test2 Test3 Test4 Test5
Regrets 0.000 0.015 0.020 0.250 0.000
Myopic-term, Y;
State  0.035 0.000 0.005 0.260 0.000
Regrets 0.000 0.230 0.385 0.530 0.000
States  0.070 0.000 0.000 0.210 0.000

Regrets 0.000 0.195 0.465 0.610 0.000
2)

7(0,1)

U{-1,1}

Two steps, Yj
State  0.095 0.000 0.000 0.170 0.000

Regrets 0.000 0.925 0.000 0.305 0.000

States  0.040 0.000 0.005 0.130 0.000

Regrets 0.000 0.945 0.000 0.270 0.000

Z(0,1)

U{-1,1}

Table 6.10: Estimated p-value for wild bootstrap tests at eighth time point

Tests
Test1 Test2 Test3 Testd TestS

Long-term, Y
2(0.1) State  0.000 0.000 0.015 0.000 0.000
Regrets 0.000 0.110 0.010 0.840 0.000
ULL1) States  0.000 0.000 0.035 0.000 0.000

Regrets 0.000 0.120 0.005 0.875 0.000
Myopic-term, Y

State  0.030 0.000 0.000 0.000 0.000

Regrets 0.000 0.060 0.185 0.010 0.000

States  0.035 0.000 0.000 0.000 0.000

Regrets 0.000 0.080 0.160 0.020 0.000
2)

Z(0,1)

U{-1,1}

Two steps, Y;
State  0.065 0.000 0.000 0.545 0.000

Regrets 0.000 0.755 0.000 0.115 0.000

States  0.045 0.000 0.000 0.645 0.000

Regrets 0.000 0.755 0.000 0.110 0.000

Z2(0,1)

U{-1,1}
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Tables 6.8, 6.9 and 6.10 show p-values for the wild bootstrap tests when using the INR
response. Generally at time point one the results are not significant, whereas the opposite
is true for time point five and eight. Tests 2 and 4 seems to fail to detect departures more
often than the others.

Overall we found that the myopic two-steps ahead shown no evidence of problem in
both PTR and INR responses and there is slight evidence of problem for the long term
and myopic one-step. At time point one, we can see that almost all the results are non-
significant which indicates that there is no evidence of problem for all the methods either
in state or regrets for both responses.

In considering all these results we bear in mind the large sample size, and the fact that
a significant result is not necessary an important one. From the previous residual plots, it

seems that any trends or patterns in the residuals are quite small.

6.7 Conclusions

The regret-regression approach can be applied to myopic decision rules as well as final
response. The advantage of using the myopic rules is the response Y; is measured at the
end of each interval j and there is no need to wait until the end of the study to measure Y.
For myopic decision rules we have choose the one step method Y or two steps method
Yj(z) to compare with the long term response Y. We considered two different cases which
are the continuous (PTR) case and the discrete/binary (INR) case.

When we compare the estimated regret between the long term response with one step
or the two steps method under the PTR response, we found that there is only slight dif-
ference between these methods and similar results were found under the INR response.
The residual plots show that there is almost no trend or obvious pattern occur for all re-
sponses although many of the wild bootstrap tests are significant, especially at fifth and
eighth time points. Although there is not much difference between the long-term and the
myopic in both responses, we prefer the myopic decision rules because the decision is

much quicker and more practical in application than the long-term response, Y .
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Chapter 7

Generalised Estimating Equations for
Myopic Regret-Regression

7.1 Introduction to Generalised Estimating Equations in

Longitudinal Data Analysis

Linear regression is an approach to obtain the relationship between a dependent variable
Y and explanatory variables ;. We can collect all responses into a vector Y and all
covariates in a design matrix X. If we assume E[Y| = X/ then we can use the ordinary

least squares method (OLS) to estimate 5 by minimising

SS(B) = (Y = XB)'(Y — Xp). (7.1)

N

Minimising the Equation (7.1) is equivalent to solving U () = 0 where U(/3) is the score
function

U(B) = X" (Y = XB).

If the distribution of Y is normal with var(Y’) = oI, then the OLS method is equivalent
to maximum likelihood. Furthermore, if we have Y ~ N (X, Y), maximum likelihood

is equivalent to minimising the weighted sum of squares, WSS((3), to find B where
WSS(8) = (V = XB)" 5 (Y — XB).

Equivalently, B solves
XTE Yy — Xp) = 0.

The Generalised Estimating Equation (GEE) method was introduced by Liang &
Zeger (1986). This provides a general approach for the analysis of correlated data without
requiring distributional assumptions, such as Y being multivariate Normal.

In previous chapters, we have made an assumption for the optimal dynamic treatment

regimes that there is no correlation occur between subject however, if we consider a longi-
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tudinal data set, there is a higher chance that the correlation is possible to happens within
an individual. A GEE model allows the correlation of outcomes within an individual to be
estimated and managed to generate the regression coefficients and their standard errors.
Secondly, the GEE model allows the calculation of robust estimates for the standard errors
of the regression coefficients. For longitudinal data which has a repeated measurements
on each individual suppose that Y; = X, + ¢; is a vector of length m; and var(Y;) = Y.
We solve .
S O XTEINY - XiB) =0. (7.2)
i=1
More generally, we might have Y; = h(X;, 8) + ¢; still with length m; and var(Y;) = X.
We now have the estimating equation

S (Y, - h(X ) = 0. 73

We can show that Equation (7.3) is an unbiased estimating equation for any distribution
of Y by taking expectations with respect to Y given X. This result is not affected if we
change the variance matrix ' to any other invertible matrix, V; of the same dimension.

Hence, the generalised estimating equation (GEE) is given by
"\ Oh .y
Y (53) Vi (Vi = h(Xi, ) = 0. (7.4)

Solving still leads to consistent estimation. Usually V' is referred to as a working correla-
tion matrix (Liang & Zeger, 1986).

Thus the GEE approach provides consistency of estimation of parameters (and stan-
dard errors) even when the correlation structure is misspecified. Choice of V' affects only
the efficiency of estimation, not the large sample validity. Several specifications for V" are

commonly adopted:

1. Independent, V; = I,, where the off-diagonal elements of the working correlation

matrix are zero and the diagonals are the same.

2. Exchangeable, (V;);i = p for j # k where the off-diagonal elements of the corre-

lation matrix are equal.

3. Autoregressive, (Vi) = p=* for j # k which assumes correlations to be an

exponential function of the time lag.

In this analysis we will have 3 different types of p to represent the correlation that occur

between subject:
1. p = 0 for no correlation

2. p = 0.5 for low correlation
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3. p = 0.9 for high correlation

Note here that p = 0 also can be used to obtain the identity working correlation matrix

where the off-diagonal elements are zero and the diagonals elements are equal to one.

7.2 Myopic Decision Rules Using The Regret-Regression
Approach

We have discussed in detail the regret-regression method proposed by Henderson et al.
(2009) in previous chapters. The regret-regression method takes the regret function of
Murphy (2003) into a regression model for observed responses directly. A regret-regression
approach also can be used to estimate myopic decision rules. Previously we assumed that
a final response, Y was available after all decisions are complete. We can also consider
situations where a response Y is available immediately after decision j as described in
Chapter 6. The method is a straightforward adaptation of the previous method: we sim-
ply treat the interval as the only interval that we are interested in and ignore all future
measurements. In general, the model is fitted at the end-of-interval response, Y not the

end-of study response Y. We refer to the general Equation (2.23) and define the model as

E[Yj|Sk, Ak] = Bo(S1) + ¢;(S;]S5-1, Aj—1) — p;(A;S;, Aj—1, 1) (7.5)

The ¢ term is a function that compares the expected response under the optimal rule
at S; and the expected response of the optimal rule at S;_; while the j1; term is the regret,
which contrasts the expected response under the optimal rule with the expected response
under action a;, given the previous history.

We can model ¢ as a linear combination of residuals between S; and define Z; =

S; — E(S;|S;_1, A;_1) as previously. In the myopic case

E[}/}|§K7 AK] = ﬁO(Sl> + /Bl(gjfla Ajfl)Zj - Nj(Aj|Sj7 Aj*hw) (76)

The parameters [ and i) were estimated in the previous chapter by using ordinary least

squares which is equivalent to minimising

SS =Y > {vy - B[]}’

i=1 j=1

n K
=3 AV = Bo— P12y + mis} (7.7)

i=1 j=1

In this case we took no account of correlations between responses Y;; and Yk on the
same person. A weighted sum of squares or GEE method might be applied to the myopic

regret-regression method in an attempt to improve efficiency. In this case we minimise
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WSS = an{Yi - BV Y 21y - E[vi]}

=1

= Z{Yz — B0 — B1Zi + wi} VY, — Bo — B Zi + i} (7.8)
i1

where now Y;, Z; and u; are vectors of responses, residuals and regrets for subject 7. The

generalised estimating equation (GEE) is

“~ (0(Bo + BiZi — i
Z( (B 14i)

T
) R

=1

where h(X;, 5) = By + B1Z; — p; and Y] is the vector of responses for subject ¢ and
V; is a working correlation matrix. We can consider as in Section 7.1 the independence,

exchangeable or autoregressive working correlations.

7.3 Simulation Using The Myopic Regret-Regression Method

In this section we describe simulation using the myopic regret-regression method. No
assumption is made for the distribution for Y;;, since we only model the mean response
E[Y;1S;, Aj).

7.3.1 Generating Data

We start our simulation with sample size n = 1000 with K = 10 time points. We generate
the data similar to Section 4.2.1 in Chapter 4 where we considered one action per time
point chosen randomly from {0, 1,2, 3}. Each individual starts with first state simulated

as

Sy ~ N(0.5,0.01)

then, for j = 2,...,10
S; ~ N(m;,0.01)

where m; = 0.5 4+ 0.25;_; — 0.07A4;_;. We will have one regret function when we
have one action per time point as discussed earlier. Suppose the true regret parameter is

1 = (1.5,0.1,5.5) and the regret function at timepoint j given the previous history is
13 (Az) = 1 (A; — 2S5 — 3)*.
The simulated mean of the response E[Y;] at each time point is

Bi+ Ba(Sj — my) — pi(Aj)
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and we take Y; to be normally distributed with mean F[Y;] and variance o = 0.64.
Specifically
Vi = By + 5255 — my) — p1i(A;) + €5 (7.10)

We take the vector € ~ N(0,0%Y) as a matrix with dimension K x K where Y is
autoregressive true correlation matrix.

We can obtain simulations by taking >J = C'C” by using the Cholesky decomposition.
By definition the Cholesky decomposition is a decomposition of a positive-definite matrix
into the product of a lower triangular matrix and its conjugate transpose. We take e = C'Z
where Z ~ N(0, Ig) and so

var(e) = oy.Cvar(Z)CO7
= 03007
— o2y (7.11)

We then take the vector of K responses (for a generic subject) as

Y = E[Y’SK,l,AKfl] + €.

7.3.2 Fitting The Model

We can estimate the parameter # = (3, ) by minimising the weighted least squares in
Equation (7.8) or using the OLS method found in Equation (7.7). For both methods we
estimated parameters using the optim and /m built-in routines in R.

Our estimation procedure has been divided into two parts so that the algorithms will
converge much faster. Hence we adopt an iterative procedure. We fix 1/, and 3 and esti-
mate the parameters (31, 32, 11) directly since closed forms are available as the expected

value of response is linear in (31, B2, 11 ). We can exploit the general result that
(v = X3) 57V - X7)

1S minimised at
= (XTE X)X ey,

i.e. there is a closed form. We then search for (19, 13) using the optim-method to min-
imise the appropriate sum of squares.

Data are generated from the simulation procedure described earlier with sample size
1000 and 1000 repetitions. In each simulation, we generate using an autoregressive error
structure with parameter p.

Then, we fit the model using the weighted least squares (WLS) method to estimate
1& and ﬁA at different assumed values of p for the working correlation matrix. We are

using the true correlation matrix if we have the same p for generating the data and fitting
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the model or a misspecified working correlation matrix for different values of p between
generating the data and fitting the model. We also estimate the mean and SE of ¢ and

for the model.
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7.3.3 Simulation Result

PTrue = 0.0 PTrue = 0.5 PTrue = 0.9
True Ocst Ose Ocst sk Ocst Ose
B1 =3.000 | 3.0005 | 0.0227 | 3.0006 | 0.0255 | 2.9999 | 0.0305
Ba = —5.000 | -4.9951 | 0.1617 | -4.9922 | 0.1610 | -4.9996 | 0.1423
Passumed = 0.0 | 1 = 1.500 | 1.4999 | 0.0069 | 1.4998 | 0.0070 | 1.5001 | 0.0067
Wy = 0.100 | 0.0995 | 0.0108 | 0.0997 | 0.0109 | 0.0999 | 0.0104
Y3 =5.500 | 5.5012 | 0.0252 | 5.5011 | 0.0257 | 5.5001 | 0.0245
B1 =3.000 | 2.9996 | 0.0231 | 3.0004 | 0.0249 | 3.0007 | 0.0312
By = —5.000 | -5.0026 | 0.1687 | -4.9943 | 0.1584 | -4.9978 | 0.1446
Passumed = 0.5 | 1 = 1.500 | 1.5002 | 0.0068 | 1.4998 | 0.0068 | 1.5000 | 0.0068
¥y = 0.100 | 0.1001 | 0.0107 | 0.0997 | 0.0108 | 0.0999 | 0.0105
Y3 =5.500 | 5.4996 | 0.0251 | 5.5011 | 0.0249 | 5.5004 | 0.0247
B1 =3.000 | 3.0005 | 0.0230 | 2.9992 | 0.0249 | 2.9995 | 0.0305
Ba = —5.000 | -4.9948 | 0.1635 | -4.9999 | 0.1593 | -5.0006 | 0.1396
Passumed = 0.9 | 1 = 1.500 | 1.4998 | 0.0068 | 1.5003 | 0.0071 | 1.5001 | 0.0068
Yy = 0.100 | 0.0999 | 0.0108 | 0.0998 | 0.0111 | 0.0999 | 0.0105
Y3 =5.500 | 5.5006 | 0.0249 | 5.4997 | 0.0263 | 5.5000 | 0.0246

Table 7.1: Parameter estimates using different working correlations of p for one step ahead with
1000 repetitions and sample size n = 1000.

Table 7.1 shows the parameter estimates using different values of p at sample size

n = 1000. We generate the data using py... and use the parameter p,ssumeq When fitting

the model both with autoregressive structure. Results when estimating the parameters

using the true correlation matrix can be found on the diagonal of Table 7.1. The off-

diagonal give results with misspecified p.

Almost all estimates are unbiased with small standard error. Using the true working

correlation matrix, our estimates have slightly smaller standard error when compared to

misspecified working correlations at any p, though the differences are minor.

7.4 Myopic Two-Steps Ahead Using The Regret-Regression
Method.

We further our investigation of myopic decision rules for two-steps ahead using the regret-

regression method. Let our response at the first time point be

Yi=00+512Z1 — i+ e

and at the second time point we take

Yo = Bo + B2Zi — pa + €.
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Then, by combining these two time points we obtain
Y =Y14+Y, =280+ 121 + foZi — 1 — 2 + €1 + € (7.12)
More generally we can write a two-steps ahead response as
Vi =Y+ Y =280+ B;Z; + Bj+1Z; — (W + py1) + (65 + €541) (7.13)

for j = 1,2,..., K — 2. For estimation using the GEE method we need to compute the

covariance or correlation matrix of these new responses. From Equation (7.13)

S/j* = fj(gj, AJ) + €; + €j+1 (714)
and for any «
Y;:-u - fj+u(§ja _j) + €itu + €jtutl (715)
Hence
cov(Y}, Y} Sk, Ak) = cov(e; + €541, €j4u + €j1ust)
= cov(€j, €j4u) + COV(€j, €j1ut1)
+ cov(€j41, €j4+u) + COV(€j41, €j1ut1) (7.16)
where
cov(ej, €) = 02 Vi = ot pl=*! (7.17)

where Vjy, is the element of the working correlation matrix. Therefore

cov(Y}, Y} |9k, A) = o*{pl + pl*tH 4 ple=tl 4 plely
= o?{2p/"l 4 plFtl p plviiy, (7.18)
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PTrue = 0.0 PTrue = 0.5 PTrue = 0.9

True Estimates 0ost Osg 0. Osk Ocst Osk
B1 = 3.000 3.0000 | 0.0117 | 3.0002 | 0.0162 | 3.0005 | 0.0242
By = —5.000 | -4.9992 | 0.0614 | -4.997 | 0.0773 | -5.0003 | 0.0827
Passumed = 0.0 ¥y = 1.500 1.5000 | 0.0013 | 1.5000 | 0.0016 | 1.5001 | 0.0019
Yy = 0.100 0.1001 | 0.0153 | 0.1005 | 0.0190 | 0.1006 | 0.0199
Y3 = 5.500 5.5011 | 0.0354 | 5.4990 | 0.0410 | 5.5006 | 0.0445
£ = 3.000 3.0001 | 0.0122 | 2.9996 | 0.0165 | 3.0012 | 0.0235
By = —5.000 | -5.0012 | 0.0640 | -4.9990 | 0.0763 | -4.9998 | 0.0874
Passumed = 0.5 ¥ = 1.500 1.5000 | 0.0013 | 1.5000 | 0.0016 | 1.5001 | 0.0018
Yo = 0.100 0.1001 | 0.0184 | 0.0997 | 0.0157 | 0.0993 | 0.0103
Y3 = 5.500 5.4987 | 0.0413 | 5.5002 | 0.0349 | 5.5010 | 0.0242
51 = 3.000 2.9994 | 0.0117 | 2.9984 | 0.0176 | 3.0002 | 0.0247
By = —5.000 | -5.0000 | 0.0626 | -4.9992 | 0.0810 | -5.0000 | 0.0839
Passumed = 0.9 Yy = 1.500 1.5000 | 0.0013 | 1.5000 | 0.0017 | 1.5000 | 0.0018
Wy = 0.100 0.0994 | 0.0224 | 0.0989 | 0.0169 | 0.0999 | 0.0082
Y3 = 5.500 5.5019 | 0.0503 | 5.5025 | 0.0384 | 5.5003 | 0.0195

Table 7.2: Parameter estimates using true p and wrong covariance matrices for two steps ahead
with sample size n = 1000 and 1000 repetitions.

Table 7.2 shows the parameter estimates under a variety of working correlation struc-

tures. For this simulation, the naive autoregressive working correlation matrix will be

assumed in estimation. This is to test whether weighted least squares still can give good

parameter estimates or otherwise. Similarly to the one-step ahead, we use the pp;.,. to

generate the data and pyssumeq When fitting the model.

Although we are using the wrong covariance matrix, we see that almost all estimates

are unbiased with small standard error. Using the true p in the assumed working correla-

tions matrix, our estimates have slightly smaller standard error compared to misspecified

p except when prrue = Passumed = 0.5 and prrue = Passumea = 0.9. This may be due

to random simulation noise. We found that as pr,.. is increased, the standard error also

increased.
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PTrue = 0.0 PTrue = 0.5 PTrue = 0.9

True Estimates 0ost Osg 0. Osk Ocst Osk
B1 = 3.000 2.9996 | 0.0118 | 3.0004 | 0.0170 | 2.9990 | 0.0245
By = —5.000 | -5.0017 | 0.0629 | -5.0013 | 0.0767 | -5.0071 | 0.0872
Passumed = 0.0 ¥y = 1.500 1.5000 | 0.0013 | 1.5000 | 0.0017 | 1.4999 | 0.0018
Yy = 0.100 0.0988 | 0.0330 | 0.1005 | 0.0217 | 0.0997 | 0.0131
Y3 = 5.500 5.5016 | 0.0706 | 5.4987 | 0.0480 | 5.5007 | 0.0298
£ = 3.000 3.0002 | 0.0125 | 3.0004 | 0.0166 | 3.0006 | 0.0231
By = —5.000 | -5.0007 | 0.0627 | -4.9998 | 0.0763 | -4.9962 | 0.0832
Passumed = 0.5 ¥ = 1.500 1.5000 | 0.0014 | 1.5001 | 0.0016 | 1.5000 | 0.0019
Yo = 0.100 0.0997 | 0.0496 | 0.0971 | 0.0289 | 0.0994 | 0.0127
Y3 = 5.500 5.5032 | 0.1112 | 5.5063 | 0.0654 | 5.5015 | 0.0282
By = 3.000 3.0002 | 0.0117 | 3.0007 | 0.0169 | 3.0000 | 0.0242
Ba = —5.000 | -4.9995 | 0.0664 | -5.0008 | 0.0796 | -4.9933 | 0.0866
Passumed = 0.9 Yy = 1.500 1.5000 | 0.0013 | 1.5000 | 0.0016 | 1.5001 | 0.0019
Wy = 0.100 0.101 | 0.0544 | 0.0979 | 0.0332 | 0.1002 | 0.0143
Y3 = 5.500 5.4987 | 0.1198 | 5.5059 | 0.0755 | 5.5001 | 0.0318

Table 7.3: Parameter estimates using different p with true covariance matrix for two-steps ahead
method and 1000 repetitions.

Table 7.3 shows the parameter estimates using different values of p when we use

the true covariance matrix obtained from Equation (7.18). When using the true covari-
ance matrix the estimates are all unbiased and have slightly smaller standard error when
compared to the case when misspecified working correlations are used, except when
PTrue = Passumed = 0.0 and prrye = Passumed = 0.9. The standard errors seem to in-
crease as pre increases. When we compare Table 7.3 and Table 7.2 we see that there are
little differences in the parameter estimates when using either the true covariance matrix

or naive autoregressive matrix as a weight for the sum of squares.

7.5 Conclusions

The GEE method provides a general approach for the analysis of correlated data and does
not require any distributional assumptions. It is found suitable to apply to the myopic
regret-regression method either with one-step ahead or the two-steps ahead which has
been highlighted in this chapter.

Generally the estimates using the GEE method are good as almost all the estimates
are unbiased and have small standard errors. Although we have assumed that there are
differences between p when generating data (pr,..) and fitting the model (pussumed), the
GEE still provides consistent estimates but slightly higher in standard errors.

The GEE method provides consistent estimates provided the true correlation struc-
tured is correctly specified. However GEE is not efficient when correlation is misspec-
ified. It is also quite sensitive to the outliers, Diggle et al. (2002) and Qu & Lindsay
(2000).
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The quadratic inference function (QIF) is an extended version of GEE. It is claimed
to be efficient even with a misspecified correlation structure. The characteristics of QIF

will be described in detail in Chapter 8.
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Chapter 8

Quadratic Inference Function (QIF) for

Myopic Regret-Regression.

8.1 Overview of QIF.

The quadratic inference function (QIF) was introduced by Qu & Lindsay (2000). It is
aimed at extending the effectiveness of generalised estimating equations(GEEs). Methods
based on estimating equations are popular since there is no requirement to specify a prob-
ability distribution. The mean response can be modelled without knowing the correlation
structure of the longitudinal data although we do usually specify a working correlation
matrix and choice of that may affect the efficiency of the model. Under the QIF method,
we only need to know the type of working correlation but not the parameter values. A
further advantage is that it is claimed to be robust to outliers (Qu & Song, 2004; Song
et al., 2009).

Under the GEE method, the relationship between the response and covariates is mod-
elled separately from the correlation between repeated measurements on the same individ-
ual. A working correlation matrix between successive measurements, is needed however
when estimating the model parameters (Diggle et al., 2002; Liang & Zeger, 1986). Ex-
amples of working correlation include the independent, exchangeable and autoregressive
of order 1 (AR(1)) forms.

The working correlation matrix under QIF is expressed as a linear combination of un-
known constants and known basis matrices (Qu & Lindsay, 2000). This linear expression
is substituted back to a quasilikelihood function to obtain an extended score vector with a

generalised method of moments (Hansen, 1982).
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8.2 Quadratic Inference Function and Myopic Regret-

Regression

The parameter estimates for myopic decision rules can be obtained by regret-regression

as discussed in Chapter 7. The mean model for time j is defined as
hj(0) = EY;|Sk, Ax] = Bo + B1(S;18;-1, Aj-1) Z; — 11;(A;1S5-1, Ajoas ) B.1)

where Z; = S; — E(S;]S;_1, A;_1) and the 11;(A;|S;_1, A;_1; 1) term is the regret. The
myopic rules maximise the response Y; immediately after decision j in contrast to the long

term response which maximises the final response Y after all the decisions are complete.

8.2.1 Quadratic Inference Function (QIF)

The QIF method uses R(«) as a working correlation structures. The inverse of the work-
ing correlation matrix, R~'(«) can be approximated by a linear combination of several

basis matrices:

m
R'= § 7. M; (8.2)
i=1
where M, ..., M,, are known basis matrices and 71, ..., 7, are unknown coefficients.

Suppose R(«) is an exchangeable correlation matrix with 1s on the diagonal and a’s

everywhere off diagonal. Then R~! may be written as
R_l == ToMO + 7'1M1

where M, is an identity matrix

0
01 ... 0

My=1 . . ) (8.3)
0 0 . 1

1
10 ...1
L (8.4)
11 0

Here we have 7o = —{(K — 2)a+ 1}/{(K —1)a® — (K —2)a—1} and 7y = o/{(K —
1)a? — (K —2)a — 1} and K is the dimension of R. If we have an autoregressive AR(1)
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working correlation matrix with parameter pl*~7! for i # j then
R = 1oMy + 71 My + 7 M,

where again M, is an identity matrix

0
01 ...0

My=1 . . ) (8.5)
00 . 1

0 1
1 0

Mi=l0 1 0 1 ...0 (8.6)
0 N 0

10 0
00 ...0

My = ool (8.7)
00 1

Here 7o = (1 + p%) /(1 — p?), 71 = (=p)/(1 — p?) and 7 = (—p?)/(1 — p?). The GEE

solves the equation

"\ Oh;
— VY, - h) =0 8.8
;( o) Vi (Vi = ) (8.8)
Suppose for each person i, Y; is the response vector (Y;y, ..., Y;x) with length K and

sois h; = (hi,...,hik). LetV; = Dz-l/zR(oc)Dil/2 where D; is the diagonal matrix
of marginal variances and R(«) is the working correlation matrix. The partial derivative
for each person i, Oh; /00 has dimension of K x p with p being the length of the vector
0 = (53, 1). Consider the following class of estimating functions obtained by substituting
Equation (8.2) into Equation (8.8)

u 8hl _1 _1
Z( 90 VYI'D; 2 (i My + ...+ T M) D, % (Y — hy) (8.9)

=1
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The following extended score gy () is a matrix with (mp x 1) dimension defined as

_1 _1
Z?:I (%)T Di QMlDi ’ (Yz’ - hi)
N n o (Oh\T 3 -3
1 1| Yo (%) D °MD;* (Y —hy)
an@®) == al®) =~ | 7 (8.10)
N =1 N
Y (597 DEMLDE (Y- hy)

Using the generalised method of moments described by Hansen (1982) where there are

more equations than unknown parameters, we minimise the QIF as

Qn(0) = gnCy'gn (8.11)

where

N
1
Cn = N2 ng(e)gi(e).
i=1

8.3 Comparisons Between QIF and GEE Methods in My-

opic Regret-Regression using Simulations.

In this section we illustrate the use of QIF in longitudinal data and compare the results
obtained from GEE and QIF using simulations. We generate the data in a similar way to
Section 7.3.1 with sample size n = 1000 and K = 10 timepoints. At each time point, the
actions A; are taken as U ({0, 1, 2, 3}) and the first state is simulated as S; ~ N(0.5,0.01)
and then S; ~ N(m;,0.01) for j = 2,...,10. The mean of S; for j = 2,...,10 is
m; = 0.5+ 0.25;_1 — 0.07A;_;. The mean model for Y conditional on the past at

timepoint j is
hj(0) = EY|Sk, Ax] = Bo + B1Z; — p1;(Aj|Sj-1, 4;-1) (8.12)

where
pj =1 | Aj — by — 38 | . (8.13)

This is different from the regret function found in Section 7.3.1. We chose the absolute
rather than quadratic form to simplify the 0h;/00 term required in Equation (8.9). We
define

i - _ >
[j_{ 1 if A — by — b3S > 0 5.1

-1 if Aj—¢2—¢35j <0
So I is a vector of length K for each person. The response vector Y); has Normal distri-
bution with mean E[Y;] and variance o3 = 0.64. The vector € ~ N(0, 03 X) is a matrix
(K x K) and X is the AR(1) true correlation matrix when generating the data.
To estimate the parameter ¢, we begin by estimating the residuals between S; and a

fitted value to obtain Z; as when using the regret-regression method. Then, we follow
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Equation (8.12) by differentiating h;(#) with respect to 8 = (5o, S1, 91,12, 13) to obtain
Oh;/00 as
hj:Y/j:BO‘f‘ﬂle_wl | Aj —1ba — 355 | .

For each person ¢, the partial derivative with respect to 3 is

1
oh; | .
9o )
1
and the partial derivative with respect to 3 is
oh;
= 7
b

where Z; is the residual vector for person i. The remaining derivatives of h; with respect
to Y1, 1, and 13 are

oh;
- _-[iv
oL
Oh;
: = Ii7
oh;
= ;.
awS wls] i

where as stated /; is a vector of indicators for the sign of the regrets for person 7 found in
Equation (8.14). To minimise the @)y, we first obtain g;(#) defined at (8.10):

P _1 _1
(5)" D;*MD;* (Y~ hy)
Oh; \T DiéM D*% Yz _ hl

For each subject ¢ we have Y; and h; with (K x 1) dimension. The D; is a marginal
variances from the diagonal covariance matrix for the sth person and My, ..., M, are the
basis functions for the working correlation matrix found in Section 8.2.1, which all have
dimension (K x K). The derivatives of the 1;(6) term, Oh” /96 have (p x K') dimension
and so the vector g;(#). We then follow the simulation procedure by getting the extended

score gy (6).

(8.16)
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where for the moment we have assumed D; to be an identity matrix. By minimising @)y

found in Equation 8.11, the estimated parameter 0 is obtained
6 = argmin gy Cx' g

where
| X
Oy = <2 2 97 (0)i0).
=1

The data are generated as described earlier with sample size n = 1000 and repeated 2000
times. At each simulation, we generate using an AR(1) error structure with parameter
p. Then we fitted the model using the @)y function with various extended score gy (f)
structures. We assume the AR(1) to be the true correlation matrix and we use AR(1) for
generating the data and fitting the model and assume the exchangeable or any other matrix

form to be a misspecified working correlation for this simulation.
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8.4 Simulation of QIF Method with Constant Covariance
Structure D; = I,

In this section we demonstrate a simulation using constant variance when fitting the
model. We assumed D; to be an identity matrix with an extended score gy (f) as in
Equation (8.16). When generating the data, the ¢ ~ N(0, 0% Y) where 0% = 0.64 and X

is an AR(1) correlation structure for all time points.

8.4.1 QIF with AR(1) Working Covariance Structure

PTrue = 0.0 PTrue = 0.5 PTrue = 0.9

True eest 93E eest QSE eest 95E
B1 =3.000 | 3.0010 | 0.0220 | 3.0006 | 0.0246 | 3.001 | 0.0261
By = —5.000 | -4.9941 | 0.1605 | -4.9996 | 0.1736 | -4.9993 | 0.1863
GEEp,..pmedoo | U1 = 1500 | 14996 | 0.0068 | 1.4999 | 0.0076 | 1.4997 | 0.0083
o = 0.100 | 0.0999 | 0.0105 | 0.1005 | 0.0121 | 0.1002 | 0.0134
3 =5.500 | 5.5012 | 0.0243 | 5.4995 | 0.0274 | 5.5005 | 0.0303
By =3.000 | 3.0004 | 0.0253 | 3.0007 | 0.0231 | 3.0002 | 0.0230
By = —5.000 | -5.0000 | 0.1576 | -4.9967 | 0.1411 | -4.9930 | 0.1405
GEEp,...moac0s | 1 =1500 | 1.4999 | 0.0068 | 14999 | 0.0056 | 1.4998 | 0.0057
Py = 0.100 | 0.1001 | 0.0110 | 0.0998 | 0.0090 | 0.0996 | 0.0093
3 = 5.500 | 5.5002 | 0.0257 | 5.5006 | 0.0211 | 5.5012 | 0.0218
B1 =3.000 | 2.9989 | 0.0305 | 3.0000 | 0.0261 | 3.0003 | 0.0257
By = —5.000 | -4.9970 | 0.1444 | -4.9985 | 0.1017 | -4.9960 | 0.1006
GEEp,..omedoo | 1= 1500 | 15000 | 0.0067 | 1.5001 | 0.0050 | 1.4999 | 0.0038
Py =0.100 | 0.0998 | 0.0105 | 0.1000 | 0.0061 | 0.0999 | 0.0048
3 =5.500 | 5.5004 | 0.0250 | 5.5000 | 0.0171 | 5.5005 | 0.0121
B1 =3.000 | 3.0000 | 0.0138 | 3.0000 | 0.0162 | 3.0004 | 0.0223
By = —5.000 | -4.9992 | 0.1146 | -4.9986 | 0.0984 | -4.9986 | 0.0569
QIF s ¥ = 1.500 | 1.5000 | 0.0063 | 1.4999 | 0.0034 | 1.4999 | 0.0028
Py = 0.100 | 0.1002 | 0.0074 | 0.0999 | 0.0055 | 0.1001 | 0.0035
3 = 5.500 | 5.4997 | 0.0201 | 5.5004 | 0.0138 | 5.5001 | 0.0104

Table 8.1: Comparisons of parameter estimates using QIF and GEE methods with AR(1) work-
ing correlation. Sample size, n = 1000 and 2000 repetitions. The GEE method estimated the
parameter using different values of p. We used p = (0.0,0.5,0.9) where p = 0.0 represents low
working correlation, p = 0.5 represent medium working correlation and p = 0.9 for high working
correlation for GEEs.

Table 8.1 show the results using the GEE and QIF methods. Each column in the
table represents a different value of p used when generating the data. We used GEE with
three different values of p in an assumed autoregressive working correlation matrix. The
true correlation matrix can be found on the diagonal of Table 8.1 while the off-diagonal
provide the results with misspecified p.

The true correlation matrix should gives a better results than the misspecified p but

this is not happen for true correlation matrix, GEE with p = 0.5 where the standard errors
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for 5, and [, are slightly higher compared with the others on the same row. This is due
the random simulation noise but the differences is not too obvious.

For QIF we again assumed the autoregressive form, but this time there is no need to
specify a parameter. In all cases the estimates are apparently unbiased but there is strong

evidence that QIF is more efficient.

8.4.2 QIF with Exchangeable Working Covariance Structure

PTrue = 0.0 PTrue = 0.5 PTrue = 0.9
True Hest GSE eest 95E Hest GSE

By =3.000 | 3.0002 | 0.0223 | 3.0007 | 0.0231 | 3.0010 | 0.0235

By = —5.000 | -5.0019 | 0.1642 | -4.9965 | 0.1641 | -4.9900 | 0.1637

GEEp,..pmedoo | U1 = 1500 | 15000 | 0.0068 | 1.4997 | 0.0069 | 1.4996 | 0.0072
o = 0.100 | 0.1001 | 0.0106 | 0.0999 | 0.0111 | 0.0997 | 0.0111

3 =5.500 | 5.4998 | 0.0253 | 5.5008 | 0.0256 | 5.5015 | 0.0258

B1 =3.000 | 2.9996 | 0.0253 | 3.0002 | 0.0240 | 3.0009 | 0.0255

By = —5.000 | -5.0007 | 0.1584 | -4.9977 | 0.1532 | -4.9906 | 0.1591

GEEp,...ooac0s | 1 =1500 | 1.5000 | 0.0068 | 1.5000 | 0.0066 | 1.4998 | 0.0069
Py = 0.100 | 0.1001 | 0.0108 | 0.0998 | 0.0101 | 0.0995 | 0.0101

3 =5.500 | 5.4998 | 0.0253 | 5.5005 | 0.0239 | 5.5013 | 0.0247

B1 =3.000 | 3.0004 | 0.0306 | 3.0005 | 0.0264 | 3.0007 | 0.0274

Ba = —5.000 | -5.0017 | 0.1421 | -5.0022 | 0.1202 | -4.9962 | 0.1250

GEE,..omedc0o | %1 =1500 | 15000 | 0.0068 | 1.5000 | 0.0056 | 1.4998 | 0.0047
Py = 0.100 | 0.1001 | 0.0103 | 0.1002 | 0.0070 | 0.0999 | 0.0070

3 = 5.500 | 5.5000 | 0.0244 | 5.4997 | 0.0177 | 5.5006 | 0.0176

B1 =3.000 | 2.9996 | 0.0137 | 3.0002 | 0.0176 | 3.0000 | 0.0226

By = —5.000 | -4.9981 | 0.1123 | -5.0021 | 0.1065 | -4.9993 | 0.0755

QI Ferchangeable P = 1.500 | 1.4999 | 0.0061 | 1.5000 | 0.0045 | 1.5001 | 0.0037
Py = 0.100 | 0.1000 | 0.0074 | 0.1000 | 0.0067 | 0.1000 | 0.0044

3 =5.500 | 5.5003 | 0.0195 | 5.4999 | 0.0169 | 5.4999 | 0.0127

Table 8.2: Comparisons of parameter estimates using QIF and GEE methods with exchangeable
working correlation. Sample size, n = 1000 and 2000 repetitions.

Results in Table 8.2 were obtained from the GEE and QIF methods under the ex-
changeable correlation structure. We have found that there is a random simulation noise
occur for the true correlation matrices, GEE p = 0.0 and GEE p = 0.9 which have slightly
higher SE than the others on the same rows especially for the parameter estimates [3; and
B2. Overall we see that both methods give consistent parameter estimates and it is also
seen that QIF has better efficiency than GEE.

8.4.3 Misspecification of the QIF Method

In Table 8.3 we give results when the QIF method is used but the form of the assumed
correlation matrix may be incorrect. The data are generated with autoregressive AR(1)

structure and that form is correctly assumed for the first block of results. In the second
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PTrue = 0.0 PTrue = 0.5 PTrue = 0.9

True eest 93E‘ eest 05E eest HSE'
B1 =3.000 | 3.0000 | 0.0138 | 3.0000 | 0.0162 | 3.0004 | 0.0223
By = —5.000 | -4.9992 | 0.1146 | -4.9986 | 0.0984 | -4.9986 | 0.0569
QIFsr(1) ¥ = 1.500 | 1.5000 | 0.0063 | 1.4999 | 0.0050 | 1.4999 | 0.0028
o = 0.100 | 0.1002 | 0.0074 | 0.0999 | 0.0061 | 0.1001 | 0.0035
3 =5.500 | 5.4997 | 0.0201 | 5.5004 | 0.0171 | 5.5001 | 0.0104
By =3.000 | 2.9996 | 0.0137 | 3.0002 | 0.0176 | 3.0000 | 0.0236
By = —5.000 | -4.9981 | 0.1123 | -5.0021 | 0.1065 | -4.9993 | 0.0755
QI Feychangeable | Y1 = 1.500 | 1.4999 | 0.0061 | 1.5000 | 0.0056 | 1.5001 | 0.0037
Py = 0.100 | 0.1000 | 0.0074 | 0.1000 | 0.0067 | 0.1000 | 0.0044
3 =5.500 | 5.5003 | 0.0195 | 5.4999 | 0.0177 | 5.4999 | 0.0127
B1 =3.000 | 3.0008 | 0.0173 | 2.9999 | 0.0227 | 2.9999 | 0.0302
Ba = —5.000 | -5.0026 | 0.2595 | -4.9970 | 0.2536 | -5.0087 | 0.2637
QIFsr()m12 P = 1.500 | 1.4999 | 0.0124 | 1.4995 | 0.0121 | 1.5001 | 0.0121
Py =0.100 | 0.1002 | 0.0160 | 0.0997 | 0.0155 | 0.1001 | 0.0157
3 =5.500 | 5.5002 | 0.0380 | 5.5016 | 0.0357 | 5.4997 | 0.0383
B1 =3.000 | 3.0002 | 0.0306 | 3.0006 | 0.0294 | 3.0007 | 0.0317
By = —5.000 | -5.0026 | 0.2728 | -5.0013 | 0.2678 | -4.9948 | 0.2651
QIFsr(ym2 P =1.500 | 1.4998 | 0.0143 | 1.4999 | 0.0145 | 1.4998 | 0.0147
Py = 0.100 | 0.0993 | 0.0185 | 0.1003 | 0.0186 | 0.1001 | 0.0188
3 = 5.500 | 5.5018 | 0.0490 | 5.4999 | 0.0484 | 5.5003 | 0.0487

Table 8.3: Comparisons of parameter estimates using QIF AR(1) and exchangeable working cor-
relation matrices. The rows labelled Q1 For(1)ar12 and QI F 4p(1)ar2 are the misspecified model
with different types of M working correlation structures found in Section 8.2.1. The simulation
uses sample size, n = 1000 and 2000 repetitions.

block we mistakenly assumed an exchangeable form. Meanwhile in block three we use
just the matrices (8.6) and (8.7) in the expansion (8.2) and in block four we use just
matrix (8.7).

In all cases the mean parameter estimates are close to the true values. The standard
errors when the exchangeable structure is mistakenly assumed are only a little higher than
when the true correlation structure (AR(1)) is used. If however, only part of the series

expansion (8.2) is used then standard errors are increased.

8.5 Simulation of the QIF Method using Unequal Vari-
ances, D, #* I,

We now consider the effect of constant or different variances at each time point. We

consider two approaches:

1. Q1: When generating the data, we take Var(e;) = 03X where o0f = 0.64 and ¥
is take to have AR(1) correlation structure for all 7. We assume D; = [, so there

is homogeneity in variance when fitting the model. The extended score, gy () for

133



Chapter 8. Quadratic Inference Function (QIF) for Myopic Regret-Regression.

PTrue = 0.0 PTrue = 0.5 PTrue = 0.9
True Hest HSE eest 05E eest HSE

B1 =3.000 | 3.0000 | 0.0138 | 3.0000 | 0.0162 | 3.0004 | 0.0223
By = —5.000 | -4.9992 | 0.1146 | -4.9986 | 0.0984 | -4.9986 | 0.0569
AR(1)g1 | 1 =1.500 | 1.5000 | 0.0063 | 1.4999 | 0.0050 | 1.4999 | 0.0028
Py = 0.100 | 0.1002 | 0.0074 | 0.0999 | 0.0061 | 0.1001 | 0.0035
Y3 =5.500 | 5.4997 | 0.0201 | 5.5004 | 0.0171 | 5.5001 | 0.0104
£y =3.000 | 6.5988 | 0.0619 | 6.5891 | 0.0678 | 6.5730 | 0.0729
By = —5.000 | -4.5793 | 0.5397 | -4.6395 | 0.5689 | -4.7760 | 0.5843
AR(1)g2 | 1 =1.500 | 6.0980 | 0.0429 | 6.0974 | 0.0406 | 6.0940 | 0.0376
Py = 0.100 | -0.4231 | 0.0294 | -0.4229 | 0.0299 | -0.4162 | 0.0299
Y3 =5.500 | 6.1767 | 0.0661 | 6.1714 | 0.0686 | 6.1525 | 0.0705

Table 8.4: Comparisons of parameter estimates between QIF methods using the general covariance
structure and constant covariance structure for the autoregressive (AR(1)) covariance structure .
Sample size, n = 1000 and 2000 repetitions.

constant variance is

P8 My (Y- )
ahi)T My (Y;—h;)

P2 M, (Y- hy)

2. (Q2: We simulate the first five time points with Var(e;) = o X and the remaining
five time points with Var(e;) = 202 3. We take o3 = 0.64 and the correlation
matrix Y is taken to have autoregressive form. We fit the model by assuming the
diagonal elements of D; to be unequal as described above. The extended score will
be

==

aw(®) = 3 > 9(6) =

8.5.1 Comparison of the QIF Method using the AR(1) Working Co-

variance Structure

Table 8.4 shows the parameter estimates using the AR(1) true covariance structure. We
found the (), structure has poor performance when compared to the true covariance struc-
ture (); where almost all the estimates are far away from the true values. Although @)
has poor estimates, the standard errors for all the parameters are small for all parameters

except 5. Recall that in (), we falsely assume unequal variances, as described previously.
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8.5.2 Comparison of the QIF Method using the Exchangeable Work-

ing Covariance Structure

PTrue = 0.0 PTrue = 0.5 PTrue = 0.9
True eest GSE eest 95E eest HSE

B1 =3.000 | 2.9996 | 0.0137 | 3.0002 | 0.0176 | 3.0000 | 0.0236
By = —5.000 | -4.9981 | 0.1123 | -5.0021 | 0.1065 | -4.9993 | 0.0755
Exgr | ¥ =1.500 | 1.4999 | 0.0061 | 1.5000 | 0.0056 | 1.5001 | 0.0037
1o = 0.100 | 0.1000 | 0.0074 | 0.1000 | 0.0067 | 0.1000 | 0.0044
3 =5.500 | 5.5003 | 0.0195 | 5.4999 | 0.0177 | 5.4999 | 0.0127
B1 =3.000 | 6.5272 | 0.0643 | 6.5058 | 0.0646 | 6.4874 | 0.0687
By = —5.000 | -6.0642 | 0.6019 | -6.3394 | 0.583 | -6.5974 | 0.5761
Exgs | Y1 =1500 | 6.1144 | 0.0387 | 6.1121 | 0.0395 | 6.1114 | 0.0387
Py = 0.100 | -0.3717 | 0.0331 | -0.3639 | 0.033 | -0.3548 | 0.0323
3 =5.500 | 6.0356 | 0.077 | 6.0135 | 0.0758 | 5.9874 | 0.0747

Table 8.5: Comparisons of parameter estimates between QIF methods using the exchangeable
working covariance structure. We use sample size n = 1000 and 2000 repetitions.

Table 8.5 show the parameter estimates using the exchangeable covariance structure.
As expected, the (), exchangeable structure has similar results to the ()o AR(1) with poor

estimates. Clearly we need to be sure that ; is correctly specified when using QIF.

8.6 Application to Warfarin Data

We extend the investigation of estimating equations in myopic regret-regression by con-
sidering their application to the Warfarin data. The Warfarin data has been described in
detail in Chapter 5.

The response Y; is measured at each time point j for j = 1,2,..., K where in this
application we have K = 9 as described in Chapter 6. Each S is regressed on previous
history (S;_1, A; 1) and each residual Z; = S; — E[S;|S;_1, A;_] is defined. Such
state residuals Z; were obtained from a mixture model for S;. As presented in detail in
Chapter 5, this mixture model has a logistic part when P(S; = 0) where INR is in range
so S; = 0 and linear when S; # 0. The mean model for Y; given the previous history at
time point j is

hi(0) = Bo+ B1Z; — i (A;1S5 -1, Aj1;90).

Similar to Section 8.3, the regret function at time j is
1 (A1Sj-1, Aj1) = | Aj — 2 — 135

We define /; to be a vector of length K for person i with

I =

J

1 0f A — 4 — 055, >0
-1 if Aj—¢2—¢35j<0
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which is to simplify the 0h;/0¢ term in Equation (8.9). We begin by obtaining Z; by
estimating the residuals between states, S;. We follow the method in Section 8.3 for
obtaining the g;(#), the extended score g (#) and the partial derivatives 0h; /06 for each
person. In estimation we use 6 equal to (8.00, 0.00,2.00, 0.25, —5.00) as an initial value
and obtain ¢ by minimising

0 = arg min InCON' 9N
where

N
_ 1
CN1 - N2 Z%T(Q)gi(@)-
1=1

We make a comparison between QIF and GEE methods using different types of covari-
ance structure similar to Section 8.4 and 8.5. We further investigate the use of QIF method
by misspecifying the method in a similar way to Section 8.4.3. This is to test the consis-
tency and efficiency of the QIF method in an application to real data.

The QIF method is easy to apply as long as we know the basis matrices ;. However,
there is some limitation in using the known type of covariance structure when we have
no idea which working correlation structure is the most appropriate. To overcome this
problem we are going to apply an unspecified covariance structure to the QIF method by
Qu & Lindsay (2003) and Qu & Song (2004). For the unspecified covariance structure,
we have the basis matrices M, an identity matrix, and M; = U, where

1

U= (Yi=h)(Yi—h)".

We use the initial value of 6 = (8.00,0.00,2.00,0.25, —5.00) to calculate the h term,
given that 6 is unknown for this application and follow the QIF estimation procedure to
estimate § and obtained SE from 1000 bootstrap resampling. The matrix U is a consistent
estimator of the variance matrix of Y (Qu & Song, 2004). By using the unspecified
covariance structure we can compare it with the known type of covariance structure, i.e.
AR(1) and exchangeable covariance structures.

Meanwhile the GEE unstructured working correlation assumes that correlations may
be different for each pair of observation (Pan & Connett, 2002). For example, if we have

an unstructured 3 x 3 working correlation then

I pi2 pi3
Vit=1 pia 1 pog (8.17)
p1z p23 1

It is also possible to compare the QIF unspecified covariance matrix with the GEE un-

structured working correlation which will be described later.
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8.6.1 Comparison of Methods using AR(1) Working Covariance Struc-

ture.

Methods Ests Ioht 5o 3 Yo U3
Regret-regression 0 | 6.3342 | -2.0293 | 0.5858 | 0.0000 | -3.1949
SE; | 0.1311 | 0.1127 | 0.1470 | 0.0036 | 1.2421
GEE ant), o 0 |6.1052 | -2.5687 | 0.8274 | 0.1916 | -1.0278
P=0. SE; | 0.1937 | 0.2131 | 0.4269 | 2.3116 | 3.2735
GEE an1) 6 |5.9260 | -2.7432 | 0.1383 | 0.9995 | -1.9310
p=0.9 SE; | 0.1638 | 0.0895 | 0.2025 | 1.9707 | 2.8979
QIF 6 |9.9736 | 1.4953 | 1.8110 | 0.0497 | -9.8336
SE; | 0.4095 | 0.4263 | 0.2697 | 0.0623 | 0.3963

Table 8.6: Comparison of Warfarin parameter estimates between the regret-regression, GEE and
QIF methods. The GEE and QIF methods use the AR(1) working correlation matrix.

Table 8.6 compares parameter estimates between regret-regression, GEE and QIF
methods using the AR(1) working correlation matrix. Recall we do not use any work-
ing correlation matrix for the regret-regression method. We found the regret-regression
method has more efficient estimates than the GEE and QIF using the AR(1) working
correlation matrix.

The table also show that almost all methods have small standard errors except for
parameters )5 and 13 under GEE when p = 0.5 and p = 0.9. The QIF method under the
AR(1) working correlation matrix seems not to provide good estimates which indicates

that the AR(1) working correlation matrix may not be appropriate for this application.

8.6.2 Comparison of Methods using Exchangeable Working Covari-

ance Structure.

Methods Ests 51 Ba (3 Yo U3
Regret-regression 0 | 6.3342 | -2.0293 | 0.5858 | 0.0002 | -3.1949
SE; | 0.1311 | 0.1127 | 0.1470 | 0.0036 | 1.2421
GEE macnangeatie. . 0 | 6.3299 | -2.0066 | 0.3688 | -0.0010 | -5.0011
7=0> | SE; | 0.1010 | 0.1127 | 0.2529 | 0.0443 | 1.3775
GEE machangeatic, o 0 | 6.3271 | -2.0040 | 0.3170 | 0.0007 | -5.7704
p=09 1 SE; | 0.1811 | 0.3968 | 0.1171 | 0.5047 | 1.4748
QIF 0 | 6.5541 | -2.3530 | 0.4898 | -0.1219 | -2.5758
Ewchangeable SE; | 0.1931 | 0.1788 | 0.1832 | 0.4483 | 0.5982

Table 8.7: Comparison of Warfarin parameter estimates between the regret-regression, GEE and
QIF methods. The GEE and QIF methods are using the exchangeable working correlation matrix.

We found the parameter estimates in Table 8.7 using the regret-regression method still
give apparently better estimates than the GEE and the QIF methods with a exchange-

able working correlation matrix. Almost all the methods have small SE except for 13 in
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GEE for both p = 0.5 and p = 0.9. Although the QIF method under the exchangeable
working correlation matrix has slightly higher SE than the regret-regression and GEE
methods, it gives more reasonable estimates than the QIF method under the AR(1) work-
ing correlation. This indicates that the exchangeable working correlation matrix may be

an appropriate correlation matrix for this application.

8.6.3 Different Forms of QIF.

In this section we make comparison of various types of QIF model:

1. QIF 4p(1)p1 We use the matrix M; with 1 on the two main off-diagonals and 0O
elsewhere,

I
e}
o =
—_

My

0O ... ... ... ... 0

2. QIF 4g(1)n2 Where My is a matrix with 1 on the corners (1,1) and (10, 10) and 0

elsewhere.
0 0
0 0 . 0
M2 —
00 ... 1

3. QIFsg(1)a12 We use both matrices My and M, from the AR(1) basis working cor-

relation matrix.

4. QIFpychangeabiers1 Where we use the matrix M; with diagonal elements 0 and off

diagonal elements 1 from exchangeable working correlation matrix,

1 1
0 ... 1

M; = ,
11 0

Table 8.8 shows the results of fitting with the different forms of QIF. The previous
results have shown that QIF under the AR(1) working correlation matrix was not appro-
priate while QIF g, 1,4 geqpie 18 more suitable for this application. Overall we found that
almost all the parameter estimates have higher standard errors when compared to QIF 4 (¢
and QIF g, pangeapie- NONE of these methods can be recommended.

In the next section we will make a comparison between the QIF method using the

unspecified working correlation with the QIF ;a1 geapie a0d QIF 451y
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Methods Ests 01 5o (3 o U3

QIF 1, 0 9.9736 | 1.4953 | 1.8110 | 0.0497 | -9.8336
SE; | 0.4095 | 0.4263 | 0.2697 | 0.0623 0.3963

QIF 4 0 87751 | 1.1018 | 1.3711 | 0.1400 | -9.6500
SE; | 0.9438 | 1.2146 | 0.6466 | 0.0975 0.9316

QIF 1112 0 6.1423 | -1.8627 | 0.0262 | 0.0032 | -3.4563
SE; | 09176 | 1.0514 | 0.7280 | 0.3305 0.6474

QIF 41113 0 11.6213 | 1.8513 | 4.2489 | 0.3373 -4.973
SE; | 0.8165 | 0.9462 | 0.6124 | 0.3134 0.7946

QIF,, ., 0 6.5541 | -2.3530 | 0.4898 | -0.1219 | -2.5758
wchangeable SE; | 0.1931 | 0.1788 | 0.1832 | 0.4483 0.5982
QIF 0 | 17.2056 | 6.6621 | 0.5336 | -18.3458 | -18.1997
ExchangableM1 SE; | 1.1402 | 2.8030 | 0.4025 | 0.8487 2.7030

Table 8.8: Comparisons of Warfarin parameter estimates using QIF AR(1) and exchangeable co-
variance structures with different types of M basis matrices found in Section 8.2.1.

8.6.4 Comparison of Methods Using Unspecified Working Covari-

ance Structure.

Methods Ests Bi Bs 1 (1 V3
Regret-regression 0 6.3342 | -2.0293 | 0.5858 | 0.0002 | -3.1949
SE; | 0.1311 | 0.1127 | 0.1470 | 0.0036 | 1.2421
GEE.ur(), 0 6.1052 | -2.5687 | 0.8274 | 0.1916 | -1.0278
=05 SE; | 0.1937 | 0.2131 | 0.4269 | 2.3116 | 3.2735
GEE.ir(), o, 0 5.9260 | -2.7432 | 0.1383 | 0.9995 | -1.9310
p=0. SE; | 0.1638 | 0.0895 | 0.2025 | 1.9707 | 2.8979
GEE puoangeatie,. 0 6.3299 | -2.0066 | 0.3688 | -0.0010 | -5.0011
r=05 1 SE; | 0.1010 | 0.1127 | 0.2529 | 0.0443 | 1.3775
GEE puchangeatic. o 0 6.3271 | -2.0040 | 0.3170 | -0.0007 | -5.7704
p=09 1 SE; | 0.1811 | 0.3968 | 0.1171 | 0.5047 | 1.4748
GEEu o uetured 0 6.3031 | -2.0485 | 0.6714 | 0.0025 | -2.8195
SE; | 0.1315 | 0.0984 | 0.1231 | 0.0117 | 0.6586
QIF, N 0 6.2917 | -2.0149 | 0.6271 | -0.0507 | -3.5008
nspecified SE; | 0.1781 | 0.2923 | 0.1791 | 0.1149 | 1.5128

Table 8.9: Comparison of parameter estimates between the regret-regression, GEE and QIF using
unspecified working correlation structure for Warfarin data. We used different types of working
correlation matrices for the GEE method.

In addition to investigating the QIF method using an unspecified working correlation,
we also investigate the GEE method using an unstructured working correlation. Table 8.9
shows that GEE with unstructured correlation structure has better estimates and smaller
standard errors than the exchangeable or AR(1) forms for the Warfarin data.

Based on the results from Table 8.9 we can conclude that the regret-regression method

still gives best performance in parameter estimates and may be robust for this application.
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8.7 Conclusions

The QIF method is suitable for the myopic regret-regression method. Theoretically the
QIF has an advantage of producing parameter estimates with equal or greater efficiency
than GEE. They are equally efficient when the correct covariance structure is assumed but
QIF is more efficient than GEE when the working correlation is misspecified.

Although QIF may have some advantages over GEE, in practice QIF is not guaranteed
to be superior for parameter estimation. The QIF method using the unspecified correlation
structure can provide an optional choice of working correlation when we have no idea
which correlation structure to choose. We also found that QIF under the known type
correlation structure is quite sensitive to the choice of the basis matrices M in the linear
series (8.2).

We can conclude that the QIF method is preferable to GEE due to the desirable charac-
teristics highlighted above. We will further our investigation by assessing the robustness

of GEE for myopic regret-regression method in the following chapter.

140



Chapter 9

Influential Observations in Myopic
Regret-Regression Method: Application
to Warfarin Data.

9.1 Introduction to One Case Deletion for GEE Method

The GEE method has been discussed in detail in Chapter 7. We now introduce one-case
deletion diagnostics for GEE to identify the influence of observations on the estimated
parameters. We will use a Cook’s distance measure to assess the influence of deleting an
observation and introduce a feasible one-step approximation for GEE.

Ziegler & Arminger (1996), Preisser & Qagqish (1996) and Preisser & Qagish (1999)
have developed regression diagnostics for the marginal mean model for GEE using cluster
deletion and Cook’s distance. Deletion diagnostics have been proposed by Haslett (1999)
for a generalised linear model with correlated errors. Christensen et al. (1992), Banerjee
& Frees (1997) and Haslett & Dillane (2004) used deletion diagnostics in the linear mixed
model and generalised linear mixed model by Xiang & Tse (2002). Qu & Song (2004)
proposed using the QIF method when dealing with outliers or contaminated data (Huber,
1981; Ronchetti & Trojani, 2001; Mills et al., 2002; Holland & Welsh, 1977; Hampel
et al., 1986).

9.2 Case Deletion for Multiple Linear Regression

In a linear regression model, an observation is considered to be influential if the important
features of the analysis are changed when the observation is deleted (Cook, 1986, 1979,
1977; Chatterjee & Hadi, 1986). The influence of an observation is related to the residual

and residual variance. Consider a multiple linear regression model

Y =XB+e¢ .1
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where Y is n x 1 vector of response variables. The explanatory variables X form a matrix
which full rank with dimension n x p. The coefficient 5 is the p x 1 parameter to be
estimated and € is a vector of independent random variables with zero mean and unknown

variance 0. By least squares method we get
B=(X"X)"'XTy.
The variance of B is given by
Var(f) = o?(XTX)™.
Then, the fitted Y is

Y = X33
= X(XTX)'XTy
= HY

where the hat matrix H is defined as

H=X(XT"X)"'x", (9.2)
and the variance is
Var(Y) = 0%H.
Suppose the residual vector is
e=Y-Y
= —-H)Y

and has variance
Var(e) = o*(I — H).

Cook’s Distance measures the influence of an observation. It can be used to assess the
influence when deleting an observation on the overall model fit (Cook & Weisberg, 1982).
We follow standard notation as in Velleman & Welsch (1981) where we use Y; to denote
the ith row of Y and subscript notation [¢] to indicate the deletion of the ith observation.

Cook (1977) suggested measuring the influence of the ith data point, through the distance
Di = (B — )" (X" X) (B = B/ (ps”) (9:3)

where B denotes the estimate of 5 and BAM denotes the estimate of [ without the ith data
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point and s? is the residual variance. More generally, we can replace
(XTX)/ps*

by Var—(8) and we now have

~

D; = (B[ﬂ — B)Tvar_l(ﬁ)(g — B) 9.4)

A plot of D; against ¢ will validate which, if any, observations have a large effect on B .

9.2.1 Cook’s Distance for GEE Methods

We begin with the mean model from the myopic regret-regression method
WZ;;0) = E|Y;|Sk, Ak] = Bo + B1(S5155-1, Aj1) Z5 — p15(A;1S5-1, Aj1;9)
where Z; = S; — E(S;|S;-1, A;_1) and the p1; term is the regret function given as

i =1 | Aj — o — 355 |
for simplicity. We define as previously

o)L Ay S >0
Tl -1 i A=y — 438 < 0

For each personi,letY; = (Yj1,...,Yig)fori =1,... ,nand h; = (hjy(Zi1,0), hia(Zis,0), .. .).
The diagnostics measure the influence of a deleted observation m with the overall fitted

model. The deletion diagnostics for person m using Cook’s distance for GEE is given by
Dy = Oy — 0)"Var=(8) (B — 6). (9.5)

Recall in Section 7.2 where we applied the myopic regret-regression to the GEE method.
We minimise the weighted sum of squares (WSS) from Equation 7.8 to obtain 6. We take

A

the value of Var(6) by resampling the data using the bootstrap method.

9.2.2 Approximate Influence for GEE Method

The regret-regression and GEE methods use numerical search procedures to get the esti-
mates and this can be quite slow. Repeating the procedure for each case in turn can be
very slow. Therefore we investigate an approximation method that can be used in GEE.
We start with

0= S (TN — (o) 9.6)

i=1
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where h;(#) is the mean model given by

h;(0) = Bo + B1(S;1Sj-1, Aj1) Z; — 115 (Aj]Sj-1, Aj_1; ).
We now let

8(ﬁ0 + 51Zj
9B

0= (3.49)) = ( ”U VY= (ot BiZy— ) O)

Then (9.6) becomes

n

0= Zfz(é)

=1

Suppose we are interested in case m. Then

0= fu(d)+ > fid 9.8)

i#m
= fu(0) + . (0).
Now suppose we delete person m. We obtain é[m} by solving
0= Fon(Omy)-
Taking a Taylor expansion gives

0 = Fou(Bpm) ©-9)

or,, A
~ F,(0) + W(e[m] 0)

AaF R
= —Fun(6) + 55" By — )

Using where we have used (9.8) generalised inverse matrix to avoid a possible singularity

problem in inverting a matrix, we multiply both sides by

() () ()

where the partial derivatives is a matrix with dimension p X p. To obtain the partial

derivative 0F,,,/06 we start with the f; function defined in the earlier section. Given that

Oh; -
Zfz _1_1 o Vi (= hi) (9.10)
—ZZ ”v (Y = hu),
7=1 k=1
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then the partial derivative for f; is

8fz i
ZZ aeTajevﬂk — hg) 9.11)

B Z Z Oh; _lahlk

7=1 k=1

The first derivatives, Oh;; /00 can be found in Section 8.3. For the second derivatives we

have

00 0 0

00 0 0

(’32hij

00 L; O 0

0 0 S;l;; O 0
1.e. a matrix with dimension 5 X 5 which has 0 on the diagonal and all elements are zero
except

O1Os OOy Y
and oh Ooh
1 - 2] - SUI”

OO0y O30y

Hence the approximation of the distance measure (é[m] — ) is found:

- ((omNT (omN | (0FN\T L
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9.2.3 Case Deletion for Warfarin Data
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Figure 9.1: Cook’s residual plot for regret-regression on Warfarin data.

Plot 9.1 shows the distance measure as in Equation (9.5)
Dy = () — 0)"Var=(8) (B — 6)

for each m when the regret-regression method is used for parameter estimation. We found
there are three possible outliers: cases 22, 116 and 284.

Rosthgj et al. (2006) defined A; to be change in prescribed dose at visit j. The dose
change distribution is quite symmetric with mean —0.01132 which is quite close to 0.
There were occasional very large changes, with range between -9 to +8 units for all pa-
tients. Rosthgj et al. (2006) took the optimal actions to be bounded at +3. For cases 22,
we found there are five times where the dose remain unchanged, with O units but at visit
10, the dose fell out of range with —4 units. This leads to this patient with high influence.
Meanwhile case 116 has 7 visits with unchanged dose and high dose changes (+2.5 units)
at the end of visits, 12 and 13. Case 284 has six visits with unchanged dose but have 2

extreme out of range dose changes at visit 6 with —9 units and visit 7 with +8 units.
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The state at time j, S; is defined as the proportion of the difference, either positive or
negative between INR at time j with the width of that target range. Rosthgj et al. (2006)
decided S; = 0 as INR in range and S; # 0 if INR is not in range. The state distribution
is positively skewed with range —1.53 to 5.00 and the mean is 0.2133. The lower and
upper quantiles are —0.19 and 0.80, and the median is 0.25.

We found there are 4 times where the INR in range for case 22. There are 4 times at
the very high state found at visit 3, 5, 7 and 8, and 2 times at the very low state, at visits 2
and 10. Patient 116 had only 3 times where the INR was in range at visits 5, 6 and 13. We
found at visits 1, 2, 3, 8 and 10 the patient was in very high state and visits 4, 7, 11 and
12 with very low state. Patient 284 had 6 times with INR in range over the visits and 4
times with very high state, at visits 4, 6, 7 and 10 while the very low state was found only
at visit 5. Overall it seems these three cases are influential because they have occasional

very high dose changes.
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Figure 9.2: Cook’s residual plots for Warfarin data under GEE-AR(1) (top row) and GEE-
exchangeable (bottom row) at p = 0.5 (left column) and p = 0.9 (right column).

Figures 9.2 show the Cook’s residual plots for GEE under AR(1) or exchangeable
working correlation for estimation. The first row represent GEE AR(1) working correla-
tion matrix and the second row represent GEE exchangeable matrix. The first column has
GEE with p = 0.5 and second column has GEE with p = 0.9. We see that the different
methods yield very different influential observations. We found a very high influential
observations for cases 77, 130 and 150 under the GEE-AR(1) at p = 0.5 and case 102 un-
der the GEE-exchangeable working correlation at p = 0.9. We also found the influential
observations are scattered around Cook’s distance= 0.8 but cases 150, 250 and 282 are
obviously stand out among the other high influential observations under the GEE-AR(1)
at p = 0.9.

The three previously identified cases usually no longer stand out. This is seen in
Figure 9.3, which show, the Cook’s distance for these cases for GEE under AR(1) or
exchangeable working correlation plotted against the regret-regression Cook’s distance.
We can see there is a positive relationship between the GEEs and the regret-regression
method. The Cook’s distance for GEE-AR(1) when p = 0.5 and GEE-exchangeable
when p = 0.5 and p = 0.9 are smaller than the Cook’s distance for the regret-regression
method. However, the result is difference under the GEE-AR(1) at p = 0.9 where the

Cook’s distance is much higher than the Cook’s distance for the regret-regression method.
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Figure 9.3: Comparison plots between Cook’s distance for regret-regression and GEE using AR(1)
and exchangeable working correlation for one-case deletion Warfarin data. The top row is the
GEE under AR(1) and bottom row is the GEE under the exchangeable working correlation matrix
at p = 0.5 (left column) and p = 0.9 (right column). The red line for deletion case 22, the blue
line indicate the deletion case 116 and the for deletion case 284.

Table 9.1 shows how the parameter estimates change when these cases are deleted.
For regret-regression method we found the distance to be small except for 1&1 and zﬂg.
Deleting cases 116 and 284 give greater changes than deleting case 22. The distance for
GEE under AR(1) with p = 0.5 is also considered small except for @El when deleting case
22. Similar to the regret-regression method, removing patients 116 and 284 gave large
changes.

In contrast to the previous results, we found the GEE-AR(1) at p = 0.9 had large
effects for all cases especially @/33 for cases 22 and 116. There are small changes when
deleting any cases for GEE-exchangeable method at p = 0.5. Similar results apply to the
GEE-exchangeable method with p = 0.9 except for cases 116 and 284, especially 1&1 and
Us.

Table 9.2 shows the comparison of methods using the approximation distance mea-
sures. Using the approximation method, we found the changes in parameter estimates for
GEE either AR(1) or Exchangeable working correlation at p = 0.5 and p = 0.9 are much
smaller and the results are quite similar as in Table 9.1 except there are no longer very
large differences under GEE AR(1) with p = 0.9.
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Without Remove Remove Remove
Deletion 22nd patient 116th patient 284th patient
Methods Estimates Est Diff Est Diff Est Diff

f1=6.334 | 6.340 | 0.006 | 6.352 | 0.018 | 6.345 | 0.011
By =—2.029 | -2.026 | 0.004 | -2.018 | 0.012 | -2.042 | -0.012
Regret-regression 1[31 =0.586 | 0.628 | 0.043 | 0.633 | 0.048 | 0.660 | 0.074

152 = 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
3 = —3.196 | -3.024 | 0.172 | -3.032 | 0.164 | -2.881 | 0.316

f1 =6.105 | 6.115 | 0.009 | 6.136 | 0.031 | 6.131 | 0.026
By =—2569 | -2.565 | 0.004 | -2.545 | 0.024 | -2.560 | 0.009
GEEARr(1)p=0.5 Yy = 0.827 | 0.857 | 0.029 | 0.883 | 0.056 | 0.948 | 0.121

Uy =0.192 | 0.194 | 0.002 | 0.187 | -0.005 | 0.160 | -0.032
1/;3 = —1.028 | -1.021 | 0.006 | -1.056 | -0.029 | -0.969 | 0.058

B, =5.933 | 5930 | -0.002 | 5.957 | 0.025 | 5.950 | -0.155
By = —2.736 | -2.743 | -0.006 | -2.737 | -0.001 | -2.743 | -0.175
GEE 4R(1)p=0.9 Yy =0.275 | 0.142 | -0.133 | 0.169 | -0.106 | 0.317 | -0.511

@/;2 =0.491 | 0997 | 0.507 | 0.951 | 0.460 | 0.444 | 0.253
3 = —1.070 | -1.922 | -0.852 | -1.876 | -0.805 | -1.025 | 0.003

B1=6.330 | 6.335 | 0.005 | 6.346 | 0.016 | 6.337 | 0.008
By = —2.007 | -2.000 | 0.006 |-1.992 | 0.015 | -2.015 | -0.009
GEEg.(p=0.5) wAl =0.368 | 0.373 | 0.005 | 0.377 | 0.009 | 0.372 | 0.004

5 = 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
3 = —5.011 | -5.000 | 0.011 | -5.000 | 0.011 | -5.000 | 0.011

f1 =6.327 | 6.331 | 0.004 | 6.346 | 0.019 | 6.337 | 0.010
By =—2.004 | -1.998 | 0.006 |-1.991 | 0.013 | -2.015 | -0.011
GEEE:(p=0.9) ¢y = 0.317 | 0321 | 0.003 | 0.368 | 0.050 | 0.363 | 0.045

5 = 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
wAg = —5.767 | -5.770 | -0.003 | -5.125 | 0.642 | -5.125 | 0.642

Table 9.1: The parameter estimates and the differences when cases 22, 116 and 284 are deleted in
turn for Warfarin data.
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Without Remove Remove Remove
Deletion 22nd patient 116th patient 284th patient
Methods Estimates Est Diff Est Diff Est Diff

By =6.105 | 6.102 | -0.003 | 6.104 | -0.001 | 6.125 | 0.019
By = —2.569 | -2.564 | 0.004 | -2.559 | 0.009 | -2.579 | -0.010
GEEAR(1)p=05 | 1), = 0.827 | 0.831 | 0.004 | 0.832 | 0.005 | 0.827 | 0.000

1&2 =0.192 | 0.207 | 0.015 | 0.211 | 0.019 | 0.175 | -0.017
3 = —1.028 | -1.049 | -0.021 | -1.063 | -0.035 | -1.060 | -0.032

f1=5.926 | 5.920 | -0.006 | 5.918 | -0.008 | 5.957 | 0.031
By =—2.743 | -2.741 | 0.002 | -2.737 | 0.007 | -2.751 | -0.007
GEE 4r(1)p=0.9 wAl =0.138 | 0.142 | 0.004 | 0.143 | 0.005 | 0.140 | 0.002

Uy =1.000 | 1.013 | 0.013 | 1.016 | 0.016 | 0.985 | -0.014
3 = —1.931 | -1.950 | -0.019 | -1.964 | -0.033 | -1.960 | -0.029

f1 =6.330 | 6.326 | -0.004 | 6.334 | 0.004 | 6.351 | 0.021
By = —2.007 | -1.998 | 0.008 | -1.992 | 0.015 | -2.017 | -0.011
GEEg.(p=05) ¢ =0.369 | 0370 | 0.001 | 0.370 | 0.002 | 0.362 | -0.007

Yy = 0.000 | 0.016 | 0.016 | 0.016 | 0.016 | -0.031 | -0.031
wAg = —5.001 | -5.024 | -0.023 | -5.051 | -0.050 | -5.062 | -0.061

By =6.327 | 6.323 | -0.004 | 6331 | 0.004 | 6.347 | 0.020
By = —2.004 | -1.996 | 0.008 | -1.989 | 0.015 | -2.014 | -0.010
GEEpa(p-09) | 4y =0.317 | 0.318 | 0.001 | 0.319 | 0.002 | 0.311 | -0.006

1/;2 = 0.000 | 0.016 | 0.016 | 0.017 | 0.017 | -0.029 | -0.029
3 = —5.770 | -5.792 | -0.022 | -5.819 | -0.048 | -5.828 | -0.058

Table 9.2: The parameter estimates and the differences when cases 22, 116 and 284 are deleted in
turn, using approximation method for Warfarin data.
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9.3 Conclusions

To test the robustness of the GEE method, we have investigated one-case deletion using
the Cook’s distance and an approximation method. One case deletion is used to identify
influential observations and to see the effect of the deleted observations on the model fit.
We found three cases to be influential in regret-regression, namely 22, 116 and 284. These
patient all had at least one very large dose change.

Usually there was little correlation between influence under regret-regression and in-

fluence under GEE. This is an area of further work.
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Chapter 10
Conclusion and Future Works

This thesis explores an alternative method for finding optimal dynamic treatment regimes,
the regret-regression method. In Chapter 2 we have shown that the regret-regression
method provides better estimates in optimal dynamic treatment regimes with consistent
estimates and high efficiency in the simulations when compared to the Murphy and Robins
methods. It is also less challenging in computation than Murphy and Robins methods.

The sensitivity of the model is tested in Chapter 3, where we misspecified the initial
values for the Murphy and the regret-regression methods. The Murphy method found ro-
bust for large samples in all the misspecification tests through giving a good convergence
rates estimates except for the test with unequal action probabilities which depend on states
at time 7 where a correct specifications of the action model was needed. A similar proce-
dure was used for regret-regression method and it is also robust in estimates. However a
correct state model is needed.

We extended the investigation by including the covariate effects into the regret-regression
method using simulation in Chapter 4. We created six possible models which contain one
true model and five misspecified models with the aim of investigating the effect of the
missing parameters or covariates in the model. Diagnostic assessment was used to iden-
tify any unusual characteristics by looking at the residual plots and using a wild bootstrap
test. The wild bootstrap is used to confirm there are no trends in the residuals.

The regret-regression method was applied to data on anticoagulation. In Chapter 5 we
introduced a simplified state model by removing the nonsignificant covariate terms from
the previous state model due to there being little difference in performance compared with
the previous state model. We used the myopic decision rules for the regret-regression
method with application to the anticoagulant data in Chapter 6.

Myopic decision rules have an advantage we do not have to wait until the end of the
study to measure the response Y and hence these are more practical for real application.

) to compare with

We chose to use the one step method Y; and two steps method Y;.(Q
the long term response Y and considered two different cases: the continuous (PTR) case
and the discrete/binary (INR) case. Overall we found there is a little difference when

comparing between the long term with one step or the two steps method. Diagnostic
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assessment using the residual plot and wild bootstrap were used to investigate the model
adequacy. The residual plots and wild bootstrap tests showed that there was no real trend
for all responses, though some are statistically significant. Therefore, the myopic decision
rules using the regret-regression method is valid for future investigation.

The GEE method provides a general approach for the analysis of correlated data and
does not require any distributional assumptions. The GEE method was applied to the my-
opic regret-regression method either with one-step or the two-steps methods in Chapter 7.
In simulation, we assumed an AR(1) the true working correlation structure and we found
that the estimates are generally good with either the true or misspecified working corre-
lation for one and two step methods and various p. We prefer to use the one step method
rather than two steps methods due to its simplicity.

The extended version of GEE is known as the quadratic inference function (QIF). It is
efficient even with a misspecified correlation structure. The characteristics of QIF were
described in detail in Chapter 8. Both GEE and QIF were investigated using the myopic
regret-regression method via simulation and application to Warfarin data. Similar to the
GEE results, the QIF myopic regret-regression is also robust in estimation. The final part,
Chapter 9 investigated the influential observations in Warfarin data using the GEE myopic
regret-regression method.

We investigated the one-case deletion for GEE method using the Cook’s distance and
the approximation method. Some differences in influence were detected depending on
fitting method. Overall results shown that the observation 284 is considered as most influ-
ential for the myopic regret-regression and GEE methods with AR(1) and GEE exchange-
able working correlation matrices at various p. The approximation method suggested in
this chapter has provided an alternative method to find the influence of a case much more

quickly then by case deletion.

10.1 Future Works

We can extend our work on the influential observations with application to Warfarin data
using the QIF method. Beside of investigating the distance measurement using Cook or
the approximation method, we found it is useful to investigate the parameter estimates
using both methods and then compare the methods together. However, this needs more
research. It also will be useful to investigate the myopic regret-regression with covariates
and then apply it to the Warfarin data.

One of the assumptions made throughout the thesis is that observations are made at
the same times on all individuals. In practice this is unrealistic as visits times in obser-
vational data will vary between individuals and over time. A major research topic for the
future will be to extend the regret-regression or other estimation methods to incorporate
unbalanced data.

In this thesis we only considered one data set and it would be useful further work

154



Chapter 10. Conclusion and Future Works

which involve testing on more data. Other authors have worked with very simple data,
i.e. binary treatments and two time points, and there are no published data sets with more

realistic structures.
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Figure 11.1: Residuals plotted against the regrets for model M at different time points.
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Figure 11.2: Residuals plotted against the regrets for model M at different time points.
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Figure 11.6: Residuals plotted against the regrets for model M5 at different time points.
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represent the timepoints where the first row for time point one, second row for time point five and
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the second column is for the residuals against the regrets at selected time points. Each colour lines
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Figure 11.16: The mean residual plots at selected time points 1,5,9 for model M3. Each row
represent the timepoints where the first row for time point one, second row for time point five and
third row for time point nine. The first column represent the residuals against the states plots while
the second column is for the residuals against the regrets at selected time points. Each colour lines
correspond to the wild bootstrap test for different models on the Murphy’s simulated data. The
green line is for Test 1, dark blue line for Test 2, black line for Test 3, light blue line for Test 4 and
red line for Test 5.
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Figure 11.17: The mean residual plots at selected time points 1,5,9 for model M. Each row
represent the timepoints where the first row for time point one, second row for time point five and
third row for time point nine. The first column represent the residuals against the states plots while
the second column is for the residuals against the regrets at selected time points. Each colour lines
correspond to the wild bootstrap test for different models on the Murphy’s simulated data. The
green line is for Test 1, dark blue line for Test 2, black line for Test 3, light blue line for Test 4 and
red line for Test 5.
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Figure 11.18: The mean residual plots at selected time points 1,5,9 for model Ms. Each row
represent the timepoints where the first row for time point one, second row for time point five and
third row for time point nine. The first column represent the residuals against the states plots while
the second column is for the residuals against the regrets at selected time points. Each colour lines
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