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Abstract

This thesis describes four approaches developed towards the fabrication of conductive
1-dimensional copper nanostructures, or nanowires, using a DNA-templating strategy.
Cu-DNA nanowires are of interest for miniaturised interconnects in microprocessors.
The chemical identity of the nanowires was characterised using X-ray Photoelectron
Spectroscopy (XPS) and powder X-ray Diffraction (XRD) methods. Structural
investigations were performed using Fourier-Transform Infra-Red (FTIR) Spectroscopy
and Atomic Force Microscopy (AFM) to study the Cu™-DNA interaction mode(s) and
nanowire size/morphologies, respectively. The electrical properties of nanowires were
elucidated using Electrostatic Force Microscopy (EFM), Conductive-AFM (C-AFM)
and a two-probe semiconductor device analyser for recording current-voltage (i-V)

relationships.

One method describes a non-aqueous route to the formation of 1-D Cu nanostructures.
This was achieved by doping of surface-immobilised DNA (the template) with Cu™ ions
from Cu(CH3CN)4.PF¢ followed by chemical reduction to the zero-valent metal using
phenylsilane and organic solvent, under inert conditions. Metallic copper was confirmed
to have formed on DNA and copper hydroxide (Cu(OH);) was also identified as a
surface overlayer on this material. The final structures were ~6 nm in height and show
complete coverage of the template. The material was polycrystalline due to observations
of a densely packed series of Cu nanoparticles along the template axis. However,
electrical studies indicated these structures to be highly resistive. Thermal annealing of
the templated material resulted in a considerable structural transformation, from tightly
packed particles to the formation of a sporadic array of larger clusters well separated

along the structure length.

Another approach involved an aqueous solution-based synthesis, whereby Cu®* from
Cu(NOs3), and ascorbic acid were added to a solution of DNA. This resulted in
nanowires, ~7 nm in height, which were mostly continuous in morphology and
noticeably absent of inter-particle boundaries. The Cu®*:DNA(phosphate) ratio (n) was
found to be critical for the formation of smooth nanowires (n= 0.05) as opposed to
aggregated assemblies of material (n> 0.1). Chemical characterisation of the reaction
product confirmed the presence of metallic copper as well as a surface layer of

Cu(OH),. Nanowires were confirmed to be conductive and i-V measurements gave a



conductivity value of 0.94 Scm™; the first recorded conductance for copper templated

on DNA, over micron length scales.

Attempts were made to passivate the nanowires formed in solution by attachment of
thiol molecules (p-mercaptobenzoic acid) onto the copper surface. This modification
resulted in the formation of a Cu(l)-thiolate layer on Cu® and significantly protected the
nanowires from oxidation, resulting in the formation of almost pure metallic Cu
nanowires. The electrical conductivity (1.01 Scm™) was similar to that obtained for the
unprotected wires (0.94 Scm™). This suggested that, although the degree of oxidation
was minimised significantly, other factors must be more accountable for causing

resistance in these wires such as surface and/or grain boundary scattering.

Finally, a physical-based approach towards metallisation of DNA was performed using
a vacuum deposition method. This was achieved by suspending single molecules of
DNA between two electrodes, across a trench etched into the substrate. This was
followed by metallisation of the sample by evaporation of copper in a sealed vacuum
chamber. Electron Microscopy data showed that nanowires lay taut across the trench
and were highly continuous in coverage. This process resulted in a working two-
terminal nanowire device which was conductive due to nanowire(s) bridging between

insulating gaps.
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mL Millilitre

mM Millimolar

nm Nanometre

Q-dot Quantum dot

R Resistance

RC Resistance-Capacitance
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Chapter 1: Introduction

1.1. Nanochemistry & Nanotechnology

Nanochemistry is related to the reaction and assembly of molecules, atoms or clusters of
atoms as a synthetically driven approach towards the synthesis of nanoscale materials.
Thus, the field of nanochemistry is interwoven with the concept of bottom-up self-
assembly, whereby the organisation of matter on a molecular level can lead to the
production of matter on a larger-scale in one, two or three dimensions.® The field of
nanochemistry is more widely concerned with the study and control of the chemical and

physical properties of nanoscale materials.

Nanoscale materials are defined on the basis that their size is 1-100 nm (1 nm= 1x107
m) in in at least one spatial direction.? * This size range includes atoms and molecules
which places chemistry as a central theme of nanostructure formation. Nanoscale
materials can be further defined based on the number of dimensions which exist within
this size regime. Figure 1.1 attempts to classify the three types of nanoscale structures.
Materials constrained to the nanoscale in one, two or three spatial directions are known
as nanofilms, nanowires and nanodots (also known as quantum dots or Q-dots),
respectively. Alternatively, these materials are named based on the number of bulk
dimensions within the structure. Nanofilms are therefore considered as 2-dimensional
materials as they possess two bulk dimensions and one nanoscale dimension. Nanowires
are considered 1-dimensional structures (one bulk dimension, two nanoscale
dimensions) and nanodots are 0-dimensional (zero bulk dimensions, three nanoscale
dimensions). This thesis is concerned with the bottom-up synthesis of 1-dimensional

conducting nanomaterials, or nanowires.

<100 nm
zero- one- two-
dimensions dimension dimensions

Figure 1.1: Scheme showing the classification of the three types of nanostructured materials



The distinct field of nanochemistry emerged in the early 1990s following G.M.
Whiteside’s early work on molecular self-assembly as a chemical strategy for synthesis
of nanostructures. Self-assembly is a process whereby molecules or atoms (as building
blocks), spontaneously assemble, organise and grow in a controlled manner to form
well-ordered aggregates. Based on this principle, the general approach in nanochemistry
is to utilise established synthetic procedures and methods, primarily reserved for
molecular synthesis, for building nanostructured materials. For this purpose the
chemical synthetic approach to nanostructure formation has been compared with the
“self-organisation of matter.” Geoffrey Ozin’s leading article ‘“Nanochemistry:

Synthesis in diminishing dimensions,”

also describes the approach of self-assembly of
molecular species for highly controlled growth of nanostructures of a defined shape,
size and composition, based upon known chemical principles. Nanochemistry is a
challenging area which lies at the interface between molecular synthesis and the growth
of large-scale structures in the bulk phase. There is often a thermodynamic driving force
for the assembly of nanoscale materials in order to compensate for the decrease in
entropy of forming ordered systems.' Therefore, formation of nanostructured materials
requires high precision of assembly (of the building blocks) and careful consideration of

the growth conditions.®

As a more general appreciation of this approach, Richard Feynman is widely credited as
the most inspirational figure within the field. The conceptual basis of bottom-up
strategy for the generation of structural complexity was first alluded to by Feynman in
1959 during his popularised lecture, “There’s Plenty of Room at the Bottom.”’
Feynman envisaged an atom by atom approach for the creation of sophisticated and
complex structural designs on a very small level. This was considered a radical idea at
the time. Advancements in chemical engineering, synthesis and understanding of
fundamental physical principles have allowed this concept to flourish and have since
shaped the field of nanochemistry and nanotechnology as it stands today. The term
nanotechnology refers to the application of nanomaterials at these dimensions. The
invention of the Scanning Tunnelling Microscope (STM) in 1981 by Binning and
Rohrer made it possible to visualise individual atoms at a surface. It was since used by
Don Eligler and Erhard Schweizer to strategically position atoms on a nickel surface to

spell out the letters “IBM” (see figure 1.2).°



Figure 1.2: Scanning Tunnelling Microscopy (STM) images of 35 Xe atoms arranged on a Ni(110)
surface using the STM tip, to spell the letters “IBM.” Adapted from reference [8]

Strategic manipulation of chemical properties such as molecular function/recognition,
bonding characteristics and crystallinity can lead to the development of nanoscale
assemblies with well-defined physical features and properties." Exploitation of these
molecular properties has led to nanostructures of a pre-defined complexity via the self-
assembly of simple building blocks.? Figure 1.3 shows an example of how spontaneous
formation of simple building blocks can lead to ordered structures. Polymer coated gold
nanoparticles were aligned on the surface via self-assembly leading to the stripy pattern
shown in the image.™® The ability to control the size and composition of such materials
and management over their properties for the desired application is becoming an

increasingly sophisticated and reproducible feat.

=

Figure 1.3: SEM image of a striped gold nanoparticle array (ref. [10]). Scale bar= 100 uM
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The properties of materials on the nanoscale often behave remarkably differently to
their bulk-like counterparts. This change occurs during the transition from solid-state
structure to isolated molecular structure.™* If a bulk material is reduced in size to the
nanometre regime it commonly exhibits ‘unexpected’ properties for a range of 0-D,**™3
1-D® ** *° and 2-D'® nanomaterials. For example, a bulk material has similar properties
irrespective of how ‘bulky’ it is. However, within the nano size regime (1-100 nm) there
exists a size-dependent ‘window’ for tuning of the material properties. Hence it is

I 11 I 14,17 I 12,17
1 1 )

possible to alter the chemical,™ electrica optica and magnetic properties®® of

a material, simply by varying its size on the nanoscale. One can therefore tailor the size

of the structure for use in a particular application and this has led to the emergence of

19.20 nanowires® and quantum dots,™® with a wide

20, 22

materials based on quantum wells,
range of potential applications from quantum lasers to molecular switches.* % The
potential to produce materials which display these unusual and unique properties is

what drives the field of nanochemistry.

There are two size-dependent factors which are responsible for the properties of

11,18 \which is related to the fraction of

12,17,18

nanoscale materials; (i) the surface/volume ratio,
atoms residing at the surface and (ii) quantisation of the electronic band structure.
Both the surface/volume ratio and the quantisation of the electronic structure increase as

size is reduced.

The surface effects relate to the fact that atoms residing at the surface of a material are
chemically inequivalent to atoms residing in the bulk of the material. As the size is
reduced further the surface/volume ratio increases also. Hence the physio-chemical
properties of the nanostructure change with size. By way of an explanation, surface
atoms have a lower coordination number than bulk atoms and are less tightly bound to
the lattice. Therefore atoms at the surface are more energetic than atoms in the bulk.
The surface effect therefore governs the physio-chemical properties of the material and

the way it functions on the nanoscale.

As an example, the size-dependence of melting temperature (T,,) for Au particles has
been reported.”® Particle sizes above 40 nm exhibit melting temperatures around 1337
K, typical of bulk gold. As Au particle size is scaled down, a melting point depression is
observed; with the bulk T, depressed by ~50% to 700K for 20 nm particles. Figure 1.4
shows a graph of melting temperature against particle size and it highlights the abrupt
drop in T, (depression) at small sizes (<40 nm). This effect is explained as follows; the
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surface tension caused by the presence of high energy surface atoms becomes
increasingly high as surface/volume ratio increases and can be minimised by converting
the solid into the liquid phase. The lowering of T, therefore becomes more

energetically favourable as particle size decreases.

| T°K)
m._p. bulk
13000 — I
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Figure 1.4: Graph of melting temperature (T,,) of Au particles as a function of size. Figure from ref. [25]

The second type of size-dependent effect is the quantisation of the electronic band
structure, otherwise known as quantum confinement. In order to describe this, it is
necessary to classify the electronic structures of bulk metals, semiconductors and
insulators. Figure 1.5 is a schematic illustration of this. In a bulk metal there is a
continuous range of energy levels available for an electron to access. In such materials
there is no band gap for the electron to overcome. The electron may move freely
through the lattice and act as an electrical conductor. The band gap can be defined as the
energy difference between the filled valence band and the empty conduction band (Eg),
between which there are no electronic states for an electron to occupy. The valence
band is the highest occupied electronic state of a structure; much like the HOMO
(Highest Occupied Molecular Orbital) of a molecule. The conduction band is the next
available state that an electron can occupy if the valence band is filled; akin to the
LUMO (Lowest Unoccupied Molecular Orbital) of a molecule. If Eg is too high for the
electron to overcome then the material is an insulator as electrons do not populate the
conduction band. If Ey is small enough in energy then electrons may enter the

conduction band and conduct electricity. Hence, the size of Eq distinguishes between
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conducting and insulating materials. Semiconductors have an Egy between that of a
conductor and an insulator. The distinction is somewhat arbitrary and a value of 3.1 eV
IS chosen here.

4 Conduction band
E | Conduc’rion band | Eg=large 23.1eV
Conduction band Eg=<3.1leV

Metal Semiconductor Insulator

Figure 1.5: Schematic showing the electronic structure of solids. The valence band is populated and the
conduction band may be partially filled for metals and semiconductors. For insulators the conduction
band remains empty due to the large band gap (E,)

The size of the band gap, Eg, in a semiconductor restricts the intrinsic population of
electrons in the conduction band. Such transitions may be aided by light to provide the
energy needed for electrons to excite into the conduction band.?® Electrical conduction
generated in this way is called photoconductivity. For metals, the absence of a band gap
means there is little change in the electronic structure down to very small sizes.
Therefore the quantum confinement phenomenon is mainly discussed in relation to
semiconductors, as semiconductors have a band gap which can be easily manipulated by

varying the size of the structure.

As a microcrystalline material is scaled down in size to the molecular level there is a
corresponding change in the spacing of electronic energy levels within the structure (see
figure 1.6). The electronic structure of the material is determined by the number, type,
strength and symmetry of bonding orbitals formed between individual atoms. These
factors govern the distribution (density) of electronic states and the size/location of band
gaps. For a molecule, there are a set number of energy levels which are gquantised in
energy. Here the HOMO-LUMO band gap is the most important factor in determining
the electronic properties of the structure. Nanoscale structures have an electronic
structure which corresponds to somewhere between the bulk and molecular band
structures. On the nanoscale, the band structure is no longer continuous (as in the bulk)

and discrete energy levels begin to emerge (as a molecule); the system is said to be
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quantised and the electrons are confined to discrete energy levels with defined band

gaps. Nanoscale materials may be quantised in one, two or three dimensions.

Conduction
Band

—H-
—H-

Isolated Nanoscale :
molecule solid

Bulk

Figure 1.6: Schematic showing the change in band structure from bulk solids to the nanoscale, compared
to the electronic structure of an isolated molecule. The band gap increases as size is scaled down.
Formation of discrete energy levels indicates that the structure is quantised

The size of the band gap increases as size is scaled down (i.e. the structure becomes
more ‘molecular-like’) and thus reduces the probability of exciting an electron from the

valence band into the conduction band at a given temperature.

A demonstration of how size-dependent quantisation, which can also be applied in a
functional way, is the case of Q-Dots. These are nanoscale particles which are quantised
in three dimensions. CdSe-ZnS core-shell nanoparticles can emit light (luminesce)
efficiently via photoexcitation of electrons at specific energies, depending on the size of
the band gap, Eg.17 Since Eg4 depends on the physical size of the material, there is the
remarkable ability to tune the optical properties through physical/size-dependent or
chemical manipulation. Figure 1.7 shows the change in colour of solutions containing

CdSe-ZnS nanoparticles from blue to red as the size is increased.



CdSe/ZnS Nanoparticles

Figure 1.7: Solutions containing CdSe-ZnS core-shell nanoparticles. The particle size increases in each
solution from left to right and so the wavelength of emitted light also increases. Figure adapted from
reference [17]

For a nanowire, electron mobility is confined to the two nanoscale dimensions and the
electron is free only to traverse along the wire in the one bulk direction. Size effects
may therefore dramatically affect the electronic properties of nanowires.** *> We have
so far discussed how such size-dependent effects emerge and can be useful. However,
for the purpose of preparing conductive metal nanowires, size scaling may become
prohibitive beyond a certain limit, as the number of mobile carriers within the band
structure is reduced, thus reducing conductivity. In some critical application areas,
notably integrated electronics, there is a drive to miniaturisation on the nanoscale,
whereby bulk-like properties are desirable. As this thesis is concerned with the
formation of conductive copper nanowires, the alternative challenge is to actually retain
the bulk-like properties of the metal on the nanoscale and overcome the problems that
quantisation and surface effects may present as we access deeper into the nanoscale.
The next part of the introduction aims to address the reason why size-scaling remains

very important, for other reasons than those mentioned thus far.

To summarise, the ability to organise matter on this scale makes the potential for new
functional materials immense. Nanochemistry has the potential to fulfil some of the
most important technological challenges modern society is confronted with. In
particular the demand for reduced component size in integrated devices, as set out by
the International Technology Roadmap for Semiconductors (ITRS),?” has been made
achievable by Nanoscience. We need to continue working in this field in order to

sustain society’s increasing technological demands.
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1.2. Drive to Miniaturised Electronics

Since the invention of the integrated circuit (IC) in 1959 the microprocessor industry
has dramatically improved upon computing performance on a yearly basis, increasing
both processing power and efficiency.?® ICs are now used in the vast majority of
electronic devices in operation today. These comprise an array of electronic circuits
integrated onto a single semiconductor chip (usually Si) which, in turn, consist of
several components; transistors, resistors, capacitors, diodes and inductors etc.
Interconnections (or interconnects) are required to provide electrical connections
between these components. An interconnection is a conductive metal wire used to link
two otherwise isolated components on a chip. For example as a line in a series of
transistors, or as a VIA (vertical interconnect access) that act to electrically connect
multiple layers of components on a single chip. These conductive lines are essential to
device operation in terms of distributing clock signals and maintaining signal levels

during processing, as well as providing power to various circuits in the microprocessor.

In order to increase device performance, it is necessary to fit more components onto the
circuit in a given area.” This will lead to an increased density of transistors. Current
state of the art technology is able to manufacture billions of transistors on a single 300
mm semiconductor wafer. In order to increase the density of components on a circuit, a
reduction in the size of the transistor (defined by the gate length, also known as feature
size) is essential. This reduction in feature size must also be accompanied by a reduction
of the interconnect line width. Ideally this should be achieved without incurring
significant increase to the resistance-capacitance (RC, resistance X capacitance) time
delay of signal propagation in a circuit. The signal time delay increases as the resistance
of the metal interconnect increases, which is inevitable as the line width is reduced.
However, as distances between transistors scale with decreasing feature sizes the
increase in line resistance may not lead to an overall increase in signal delay.”® Thus,
miniaturisation of all device components is considered beneficial for enhanced circuit
performance, providing the electrical conductance of metal interconnect is not

compromised significantly as size is reduced.*

Efforts to maintain device scaling have been met by increased interest in
nanotechnology. This has influenced a rapid surge in computing power over the past
five decades. The trend of down scaling within integrated circuits was predicted by
Gordon. E. Moore at Intel Corporation in 1965 and is often expressed as ‘Moore’s
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Law.”®® ‘Moore’s Law’ predicts an approximate doubling of information density every
18 months,?® which has been sustained up to the present time. The ‘law’ may also be
expressed as the doubling of the number of transistors on a chip every two years. Figure
1.8 is a graph of ‘Moore’s Law’ showing the trend for reduction in transistor size, since
its invention, to its projected size reduction in the future. In order to aid the industry in
continuing to meet this trend, the International Technology Roadmap for
Semiconductors (ITRS)?” was initiated in 1999. This organisation aims to give a 15 year
estimate as to the industries current development and research needs. The current
consensus suggests that device scaling at the current rate cannot be sustained beyond the
next decade as the downsizing of silicon chips is limited by current conventional

manufacturing methods.*

Moore's Law Trend Line
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Figure 1.8: ‘Moore’s Law’ plot of transistor size reduction over time. From reference [3]

Copper is currently the material of choice as interconnect due to the materials low
electrical resistivity (p= 1.7x10® — 1.9x10® Qm) and relatively high resistance to
electromigration, compared to the previous material of choice, aluminium.®® 3
Electromigration is a physical phenomenon experienced in interconnects, which can
lead to circuit damage and failure. This occurs when the current density is high and
transfers a large amount of momentum from electrons to copper ions. As a result mass
diffusion of ions can occur within the conductor, causing build-up of copper to give
unintended connections (hillock failure). Electromigration can also lead to the

occurrence of voids in the conductor (open circuit). These effects become more
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significant when the line width is reduced and therefore poses a major issue for

continued miniaturisation of circuit components.

The resistance in a metal is attributable to the scattering of electrons off lattice
vibrations within the structure. The application of a voltage causes electrons to
accelerate, which then scatter off a lattice vibration causing a change in velocity. After a
certain amount of time (the relaxation time) they reach a steady speed. For a true metal,
the effect of raising the temperature leads to an increase in the resistance of the metal.
This is due to there being more lattice vibrations available to scatter electrons off
course. This lowers the steady speed of electrons and causes an increase in the

resistance of the metal.

There are an additional two factors responsible for the increase in metal resistance
which become highly significant as the size/width of the metal (d) is reduced on the
nanoscale. These are (i) grain boundary scattering and (ii) surface scattering.* 3% %
Grain boundary scattering is the scattering of electrons at the interface between two
grains in a metal (i.e. when the metal is not a single crystal, as is usually the case for
copper interconnect) and thus contributes to electrical resistance. This effect becomes
highly pronounced at diameters (d) comparable to the mean-free path of the electron.®*
% For copper this is 30 nm (at 27°C).*” Surface scattering depends on how many and
how often electrons transfer near to the surface. This depends on the surface: volume
ratio and becomes more significant as the metal becomes thin.*® Figure 1.9 shows a
schematic diagram to illustrate these effects. The scheme shows that for a thinner metal,
surface scattering becomes more significant. Scattering of electrons at lattice vibrations

still occurs in both cases.
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Figure 1.9: Schematic illustration of the effects of electron scattering at (a) grain boundaries and (b)
surface boundaries. The latter effect becomes more pronounced as the metal diameter (d) is reduced

Figure 1.10 shows how copper interconnect resistivity changes as a function of
linewidth (d). Resistivity abruptly increases at diameters smaller than ~100 nm. One of
the challenges in nanotechnology for the fabrication of copper nanowires (for
application as interconnects) is to retain conductivity values as close to that of bulk

copper (5.96x10” Sm™ at 20°C) on the nanoscale.
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Figure 1.10: Resistivity of copper interconnects as a function of line width (diameter). The data was
collated from various different sources as denoted by different coloured points in the figure. Figure
adapted from reference [14]. Data originally extracted from reference [37]
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Current methods for the fabrication of miniaturised electronics utilise ‘top-down’
processes, such as lithography. Lithography is a technique used to etch small features
into a bulk substrate in order to create a patterned surface for subsequent processing
towards a working device. Photolithography, which utilises light, and electron beam
lithography, are two primary examples of the techniques implemented to create these

patterned surfaces.

An important top-down procedure in the electronics industry is concerned with the
fabrication of copper interconnect. Fabrication of these structures is currently achieved

39, 40

via a three step process, known as the “Dual Damascene” process, whereby (i)
initial dry etching of the lithographically-patterned silicon oxide substrate to create
narrow trenches, is followed by (ii) electroplating of copper to fill the trenches and
finally (iii) chemical mechanical polishing (CMP) for planarization of the substrate
surface and to remove excess material.** *? Figure 1.11 shows a schematic illustration of
the manufacturing process. Electroplating (also referred to as Electrochemical
Deposition) is a process used to deposit metal layers onto a conductive surface, and
therefore requires a metal seed layer on top of the wafer prior to deposition. In the
damascene process this is made of copper which improves the adhesion and uniformity
of the subsequent electroplated copper.*” The process of electrochemistry involves the
transfer between electrical energy and chemical energy. In the damascene process,
metal deposition takes place in an electrolytic cell containing an anode (usually copper),
a cathode (e.g. the metal surface) and a solution of electrolyte containing copper ions
(e.g. copper sulphate).** When a current is passed through the cell, deposition of the
metal takes place at the cathode (negative) by reduction of copper ions, whilst oxidation
at the anode (which may also be comprised of copper) occurs to generate copper ions

and maintain the flow of electrical current.
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Figure 1.11: Schematic of the “Damascene” process used to fabricate metal interconnects embedded
within the substrate. One or more masks are used to pattern the surface with photoresist before the
channels are etched to create lines and/or vias. The pattern is then removed. Copper is deposited in the
open trench by electroplating and is overfilled. Finally CMP is used to planarise the substrate surface.
Image reprinted from reference [44].

However, such top-down routes will carry severe limitations in terms of reproducibility
at the low end nanometre regime (sub 10 nm) and an overall lowering of the economic
benefit that such methods generate. Importantly, photolithography, a technique which
has been heavily employed in the past to create patterned substrates, has resolution
limitations dictated by the wavelength of the light used. As of 2012 the lowest
reproducibly achievable target was the 22 nm node (defined as half the distance
between individual features), based on Intel’s 3-D Tri-gate technology (see figure 1.12).
This is expected to extend to 14 nm node technology by 2014, according to Moore’s
Law. It is worth noting that a reduction in the node size (hm) also requires a reduction
in interconnect width (nm). These two sizes are generally very similar and are projected

to remain so.*®
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Figure 1.12: Intel’s 22 nm Tri-gate transistor. Credit: Intel

In order to continue meeting these size demands by ‘top-down’ methods it will become
necessary to utilise shorter wavelength radiation to etch the minimum feature size.
Extreme Ultra-Violet Lithography (EUV) is now becoming the favoured manufacturing
process by the industry,” as opposed to conventional photolithography (longer
wavelength than EUV), which has served well up to current limits. Indeed, EUV also
commands a fundamental limit to the lowest accessible feature size, as dictated by its
wavelength (124 nm — 10 nm), and so will have major difficulty in accessing sub 10 nm
structures on a reproducible level. Other associated issues include increased cost and
material damage due to the high energy impact of EUV radiation. At present we are
approaching the limits of miniaturisation using current ‘top-down’ methods and this

may limit the progress in the development of integrated circuit (1C) design in the future.

As mentioned, the top-down fabrication of interconnects beyond the current limits is
proving difficult. The main reasons for this are due to the optical limitations of creating
the patterned substrates, the procedural difficulty of depositing metal into ever
decreasing trench widths and the subsequent increasing fabrication costs of sub-20 nm
structures. Therefore, as size scaling via top down procedures into the future generations
of microprocessor (requiring sub-10 nm feature sizes) becomes prohibitively
challenging, there is a drive for a fundamental change of thinking in the way devices are
fabricated. The alternative is to utilise so-called ‘bottom-up’ methods, as opposed to
‘top-down,’ for device fabrication. These ‘bottom up’ approaches are currently being
investigated at research level for the development of nanoelectronic technology.*®

These involve self-assembly methods, chemical reactions, and a general synthetic route
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to the fabrication of molecular level electronic components such as nanowires. Figure
1.13 illustrates Intel’s technology pipeline from 2009 to 2015+ and how future
fabrication techniques rely heavily on research at the bottom-up level.

Innovation Enabled Technology Pipeline
Our Visibility Continues to Go Out ~10 Years

32nm 22nm 14nm 10nm 7nm 5n
2009 2011 2013 2015+

Manufacturing Development Research

Future Options
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Figure 1.13: Image showing Intel’s developmental pipeline for microprocessor technology. Research is
being funded by the industry for the development of nanowires for use as electronic components. Credit:
Intel

‘Bottom-up’ methods offer considerable potential for construction at the nanoscale. The
benefits of adopting such an approach are numerous, including reduced cost, higher
control over metal growth and potential access into sub-10 nm feature sizes. In
particular, the integration of copper interconnect as a material using bottom up routes
will ease the transition from top-down to bottom-up methods and this has attracted
much interest from researchers. The work contained in this thesis is concerned with the
development of bottom up methods for construction of copper nanowires (CuNWs),
which could have potential use as interconnections.
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1.3. Bottom-up Routes to Copper Nanowires

Bottom-up fabricated nanoscale structures are currently of huge importance and interest
to the electronics industry for the construction of ever better-performing devices.*®*
The fabrication of such components and the drive to make them electrically conductive
has dominated the field of nanotechnology in recent years. The aim is set out to develop
nanodevices that are capable of functioning more efficiently than current state of the art
technology can deliver, by way of higher switching speed or reduced power
consumption.”® The ability to fine tune the electrical properties of bottom-up
constructed components to give the desired properties has led to the engineering of

materials with ever smaller dimensions.

Nanowires are widely anticipated to play a major role in future nano-scale devices and
are particularly applicable to the electronics industry for wiring-up circuits.®> * The
high interest in nanowires is due to these being the smallest structure for efficient
transport of electrons. In many cases, the low dimensionality and high aspect ratio
(length: width ratio) of these materials proffers potential for them to replace current
technology in ICs. Therefore, these one-dimensional conducting structures are
considered useful for application as interconnects. There are numerous examples of
bottom-up strategies to nanowire formation. Indeed metal nanowires consisting of Au,>
Ag™ and Pd> have already been fabricated as interconnections within 2-terminal
devices and exhibit electrical conductance. However, as copper is the material of choice
for interconnect material in the current state of the art technology, the majority of this
introduction is concerned with the strategies involved in the bottom-up fabrication of

copper nanowires.>

It is generally agreed that the intrinsic properties of metal nanowires, such as electrical
conductivity, are mostly determined by their shape, size, composition, structure and
crystallinity.>” Intensive efforts are therefore being made from the bottom-up
perspective to demonstrate precise control over such factors as size and crystallinity. In
this manner one is able to attain the desired chemical and physical properties of the
material for a particular application, such as for miniaturised interconnect. Investment in
this field could therefore lead to reduced line widths affording higher density transistor

lay outs.

However, before we discuss copper-based strategies in detail, we first outline an

example of a material which demonstrates the remarkable (and rare) ability of self-
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assembly into 1-dimensional nanostructures, as is the case with trigonal-selenium (t-Se).
As mentioned previously the ability for molecules, atoms or clusters of atoms to
spontaneously self-assemble can be useful for the controlled growth of nanowires with
defined sizes and crystallinity. Nanowires consisting of t-Se have been shown to grow
via self-assembly from single seeds of t-Se in solution.”® This material has a number of
interesting properties such as its high photoconductivity (~0.8 x 10° S cm™) and
catalytic activity. These t-Se nanostructures form by the spontaneous epitaxial growth
of selenium into single-crystalline 1-dimensional strands and thus do not require a
physical external guide to control their growth. This method is classed as a non-
templated approach to nanowire synthesis. Figure 1.14 shows a proposed mechanism
for the formation of t-Se nanowires based on a solid-solution-solid pathway. Reduction
of selenious acid with excess hydrazine is followed by nucleation and growth of t-Se
particles in one dimension. Nanowires did not grow from amorphous selenium (a-Se) as
these particles tended to aggregate in solution. Rapid cooling of the reaction mixture is
required to generate the t-Se seeds to drive the growth of nanowires, which is consistent
with a nucleation and growth pathway. This process is accompanied by the dissolution
of a-Se. These nanowires were grown with controllable lateral dimensions in the range

~10 to ~800 nm and have lengths up to hundreds of micrometres (see figure 1.15).
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Figure 1.14: Schematic illustration of the nanowire growth mechanism. Chemical reduction of selenium
salt generates a-Se colloidal particles (a) which aggregate in solution (b). Trigonal-Se seeds are formed
upon rapid cooling of the reaction mixture to RT, and nanowires grow from these seeds (d) in the form of
hexagonally packed spiral chains of Se atoms. Image taken from ref. [58]
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Figure 1.15: Transmission Electron Microscopy (TEM) image of t-Se nanowires. Image adapted from
ref. [58]

There are also a few examples of non-templated chemical synthetic routes to copper
nanowires.>® ® The following non-templated methods require a chemical(s) in the
reaction solution such as surfactant, in addition to the source of copper and reductant, in
order to aid the anisotropic growth of copper in one dimension. Such structures have
been shown to have a single-crystalline morphology. It is ideally desirable to form
single-crystalline nanowires as these are intrinsically free of grain boundaries (i.e.
mismatches in the crystal lattice are not present) and should therefore not exhibit effects

of resistance which are attributed to electron scattering at these interfaces.

The current techniques for CUNW synthesis mainly rely on aqueous-media reduction of
copper salts, such as those synthesised by the reduction of Cu(NO3), with hydrazine in
the presence of ethylenediamine (EDA).®* These were formed as films of nanowires
(~90 nm diameter, ~ 10 um lengths) for transparent conducting electrodes. A similar
method has been performed in nonaqueous media.®® Zhang et.al have demonstrated the
self-catalytic growth of CuNWSs from Cu(acac), in a liquid crystalline medium
consisting of hexadecylamine (HDA) and cetyl trimethylammonium bromide (CTAB)
to form hexagonal-shaped single-crystalline CUNWSs.®? In this method, a heated mixture
of HDA and CTAB form a tubular liquid-crystalline structure. Copper ions can then
coordinate within this tube-like medium. Figure 1.16 shows the proposed formation
mechanism. This process occurs at a Pt surface which acts to catalyse the reduction of
Cu ions to form metallic particles. The initially formed particles act as seeds for

crystallisation to occur along a single crystalline axis. This generated ultra-long
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nanowires (10-100s pm’s) that are ~78 nm in width (see figure 1.17) and consist of
copper metal, as suggested by X-ray Diffraction (XRD) data. These types of syntheses
require surfactants/capping agents in order to control the growth. The surfactant acts as

a structure directing agent, and thus, these methods are considered as a scaffold-based

synthesis.
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Figure 1.17: (a) Scanning Electron Microscopy (SEM) image of a film of CuNWSs and inset showing the
hexagonal shape of a wire, (b) Transmission Electron Microscopy (TEM) image of single wires. Figure
adapted from reference [62]

Hydrothermal/solvothermal methods are also commonly used for the controlled growth
of nanowires.®® ® These techniques are used for precipitating solids from solution into
crystalline materials including noble metal, ceramic, and polymer nanoparticles.®* In the
presence of a synthetic growth-directing agent (i.e. surfactants) the crystallisation can
take place along a single axis to afford 1-dimensional nanocrystals, as previously
discussed. In the solvothermal method, the reaction mixture is heated above the boiling
point of the solvent, often in an autoclave, at high pressure (when water is used as the
solvent, the process is described as the hydrothermal method). These conditions present

accelerated crystal growth, narrow structure size distribution and smoother structure
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morphologies than synthetic routes can afford. Such methods can lead to structures of
varying morphology/homogeneity and size, which is tailorable by varying the reaction

conditions.

Zhao et.al demonstrated what is described as a “soft synthesis” of single-crystal CUNWSs
based on various hydrothermal/solvothermal methods.”® These preparations were
carried out in a Teflon-lined stainless steel autoclave at temperatures of ~160 °C, at
atmospheric pressure for over 24 hours. The authors describe this approach as an
alternative to various “hard” approaches such as chemical vapour deposition (CVD) and
organometallic CVD (MOCVD), which require higher temperatures, higher cost and
complex reaction processes. Figure 1.18 is a schematic of the solvothermal method for

growing nanocrystals in one dimension.
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Figure 1.18: Solvothermal synthetic route to single-crystal CUNW formation [65]

One such method employed was the solvothermal reduction of Cu(NO3), H,O solution
using ethylene glycol (EG) in the presence of polyvinyl pyrrolidone (PVD) for 24
hours, whereby the latter acts as the crystal capping agent.®® The capping agent is
necessary to control the growth rate, to afford good nanowire dispersibility and restrict
the growth of copper to a single crystalline face. This process led to very straight
nanowires with an average diameter between 30-50 nm and lengths between 5-20 um.
Figure 1.19 shows SEM data of a network of copper nanowires and a TEM image of a
single wire, indicating their smooth surface morphology. The composition of the

product was examined by Energy Dispersive X-ray Analysis (EDX) which indicated the

~21 ~



presence of copper. These nanowires were found to be stable to oxidation when
protected with n-hexane. Further X-ray analysis confirmed that these nanowires are
single-crystals and grow along the [110] axis with a face centred cubic (fcc) symmetry.
The shape of the nanowires was found to be tuneable by varying the PVP concentration

and reaction time and temperature. However, the electrical properties of this material

were not investigated.

Figure 1.19: (a) SEM image of CUNWs obtained by a solvothermal process with PVD and (b) TEM
image of a loose end of a nanowire. Figure adapted from reference [65]

Mohl et.al utilised a simple hydrothermal method employing glucose to reduce copper
ions and HDA as the surfactant.’’ These formed straight, single-crystalline copper
nanowires ~68 + 8 nm diameter and a few micrometres in length. Electrical analysis
was carried out upon networks of this material by recording current-voltage curves (i-V)
at the surface of the nanowires. These results confirmed their conductive properties.
Resistance was shown to increase with temperature, which is typical for true metals.
However, upon heating the sample in an inert atmosphere up to 360 K the sample was
easily oxidised and the resistance rose dramatically. This effect was found to be
irreversible despite further changes in temperature. The authors also claimed that cluster

formation was evident along the nanowires upon heating them to 550 K.

Other non-templated methods to the synthesis of copper nanowires include ink-jet
printing,®® vacuum-vapour deposition,®” and direct electrochemical AFM (Atomic Force
Microscopy) lithography.®® In the case of direct AFM lithography, Kwon et.al
demonstrated precise control over copper nanowire formation in terms of structure size,
shape and alignment, simply by controlling the movement of an electrically biased
AFM tip on the surface. The silicon surface was first modified with SAM, before spin
coating of a Cu(Il) acetate resist layer on top.?® Application of a negative bias resulted
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in the localised reduction of copper ions beneath the tip, decomposition of the SAM,
and formation of copper lines in the direction of the electrical field (see AFM and SEM
images in figure 1.20). i-V analysis was performed using conductive-AFM (C-AFM)
(see figure 1.21) on a single wire (34 nm height, 20 um length). This gave a resistivity
value of 44 puQ.cm, which is ~25 times higher than that of pure copper. This was
ascribed to oxidation of copper and grain boundary scattering effects. The
polycrystalline nature of the material is clearly evident in the magnified SEM image in
figure 1.20b where particle-particle boundaries are present along the line and thus may

partly explain the higher resistivity.

Figure 1.20: AFM image (a) and SEM image (b) of copper lines formed on a silicon surface by reduction
of copper ions using an AFM tip. Figure from reference [68]
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Figure 1.21: (a) scheme of C-AFM set-up to measure wire resistivity and (b) i-V plots recorded of Cu
wire which exhibits ohmic behaviour compared to Si surface which is non-conductive. Figure from
reference [68]
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Generally, the non-templated construction of nanowires is a relatively rare case. Most of
the routes described thus far have led to the formation of copper nanowires with
diameters >50 nm and thus cannot be considered as plausible alternatives to the top-
down fabrication of copper interconnect, which can be manufactured to sub-50 nm
widths using current top-down technology.®® There is also the added difficulty in
isolating single nanowires for two-terminal device purposes where many of the reported
procedures result in dense networks of material. However, in many of these syntheses
the copper nanowires is not for the solution of interconnect technology. Copper
nanowires are also known to be suitable for transparent electrodes (which require dense
networks of nanowires) as candidates to replace ITO (indium tin oxide): the currently
used material for thin solar cells. The interest in CuNWs for such an application is due

to their better transparency, mechanical flexibility and conductive behaviour.

Additionally, non-templated methods usually require precise and/or rigorous processing
conditions such as elevated temperature and/or pressure and may be considered tedious
to perform. Indeed, the spontaneously assembled growth of nanowires as in the case of
t-Se does not occur for the majority of materials. For most materials, a physical
template is required to control the growth of the building blocks in a single uniform

direction to construct nanowires of a defined size.

Template synthesis of nanowires has become a popular approach since the pioneering
work of Martin’s group.’® ™* There are a range of templates available for construction of
copper nanowires in particular.”” " The most widely used approach is the porous
templating procedure. Some of the most common porous-templates used are track ion

etch membranes,”® ™ 75-79

porous alumina membrane (Al,O3), polycarbonate
membrane,® and porous silica (SiO-).>® ® 8 8! The pores are usually created by anodic
oxidation of the solid substrate, except for the case of ion etch membranes. Formation
of copper nanowires within these templates has been achieved by electrochemical
deposition (ECD),*> ¢ & 7" 8 chemical vapour deposition (CVD),> ¢ &

57, 60, 63

hydrothermal/solvothermal processes, solid-state reduction,” or solution-phase

chemical reduction.®* &

These templated methods have led to copper nanowires of varying morphologies, sizes
and properties, whereby the size of the nanowires are defined by the diameter of the
pores within the substrate, whereby the pores themselves be tailored to defined sizes.
One of the most common methods for the preparation of CuNWs is via the porous
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template-directed electrochemical method. Figure 1.22 shows a schematic illustration of
the porous templating procedure for the formation of metal nanowires using
electrochemical deposition (ECD). Based on this approach, Gao et.al fabricated copper
nanowires with diameters of ~60 nm and lengths of 30 pm.%* The template used was
porous anodic alumina (PAA) prepared by anodic oxidation of aluminium in 0.3 M
oxalic acid solution. ECD was used to generate metallic copper within the pores of the
template. The process takes place in a three-electrode bath containing the cathode
(template substrate), the reference electrode (standard calomel electrode, SCE), the
counter electrode and an electrolytic solution containing CuSQO,4.5H,0. A gold layer was
deposited onto the back of the PAA template to act as one electrode. The copper ions
infiltrate the pores of the substrate by capillary action. A fixed potential was applied (-
0.15 V) to drive the reduction of copper ions at the cathode (or working electrode),
which in this case is the PAA substrate, and copper nanowires are grown. Electron
microscopy data revealed these to be dense and continuous along their entire lengths
(see figure 1.23). However, no electrical characterisation was carried out on these

nanostructures.
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Figure 1.22: A schematic diagram of the template synthetic process. (a) The porous template, (b)
evaporation of conductor layers on one side of the template, (c) the metal ECD process, and (d) metal
nanowires after removing the template. Figure and caption adapted from reference [82]

Figure 1.23: SEM images of CuNWs grown by ECD in PAA template, (a) top-down view and (b) lateral
view. Figure taken from reference [82]
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A similar strategy was performed by Bid et.al. except that a porous polycarbonate
template was used.** Also, the ECD setup was slightly different to Gao’s, as the counter
electrode used was a microtip (~100 um diameter) fitted to a micropositioner which
enables site specific growth of copper within the template. Figure 1.24 shows a
schematic of this setup. After growth of the copper wires the template was removed by
dissolving the substrate in dichloromethane (DCM), and then the wires were
characterised. The smallest wires observed by TEM were 15 nm. These were shown to
be single-crystalline and conductive. The metallic nature of the wires was confirmed by
temperature dependent resistivity measurements, which gave a positive temperature
coefficient (i.e. resistance increases with temperature). To the best of our knowledge
these are the smallest conductive bottom-up grown CuNWs reported in the literature.
The electrical measurements were performed on arrays of wires (between 2-50 wires).
The estimated resistivity (p) obtained for 15 nm copper wire ranged from ~2.0 x10° —
~5.0 x10® Q.cm between 0 — 350 K. For larger wires (~30 nm diameter) the resistivity

was found to be lower, which was suggested to be a result of reduced surface scattering.
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Figure 1.24: Schematic of the ECD set-up using a microtip for site-specific growth of copper within the
porous membrane. Figure taken from reference [84]

Another example of electrodeposited CuNWs was demonstrated by Toimil Molares
etal. using polycarbonate etched ion-track membranes as the template.”
Electrodeposition was carried out again in a three-electrode bath with electrolyte
containing CuSO,4.5H,0. Variation of the deposition parameters such as temperature

and applied voltage, resulted in both polycrystalline and single-crystalline NWs. The
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membrane was dissolved in DCM and the wires were detached from the support by
sonication. Gold electrodes were deposited onto a single wire (60 nm diameter) by
means of optical lithography and the i-V characteristics of the wire were plotted (see
figure 1.25a). This demonstrated clear ohmic behaviour with increasing resistance as a
function of temperature, indicating metallic behaviour. The resistivity of the wire (p)
was calculated as 1.71 x 10™ ©.cm, which is ~10 times higher than that of bulk copper
at 300 K. This was ascribed to the effects of oxidation, high contact resistance and
surface scattering. The increased resistance of a wire over a 12 hour time period (t; — ts)

(see figure 1.25b) highlights the ageing process due to oxidation.
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Figure 1.25: (a) i-V characteristics of a single 60 nm CuNW and (b) i-V measurements of another wire
showing resistance drops as a function of time; indicating ageing by oxidation. Figure from reference [73]

However, these porous-directed growth procedures present an issue for removal of the
auxiliary template following nanowire formation, which often require rigorous
processing conditions. Additional processing steps such as centrifugation are sometimes
required in order to obtain isolated nanowires rather than films, networks or aggregates.

For example, in Feliciano’s preparation of copper nanowires in anodic alumina
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membranes, the template was removed by dissolution in 20 M NaOH and agitation for 1

day.” Traces of the membrane were also found in the final characterised product.

Other metal templating procedures involving the use of molecular-based templates have
been investigated which afford considerably smaller structure sizes.® ® % These are
comparable to the order of the molecular diameter (i.e. often <10 nm) and smaller than
those obtained by all of the previously described methods. Molecular-templating also
presents great potential for generation of structures with precisely controlled and well-
defined sizes on a reproducible basis. Molecular-templating methods are often relatively
simple to perform and can be carried out at room temperature under standard laboratory
conditions (i.e. bench-top preparations), unlike most of the previously described
methods which require higher temperature and high pressure. Another advantage of
using a molecular-based template is that the templates can be deposited on to a flat
surface prior to metallisation and there is therefore no requirement to remove the
template subsequent to metal growth. Moreover, the possibility of aligning single
molecules onto a surface in a predefined arrangement may offer considerable potential

to create templated circuit-like features on the surface.”* %

By far the most widely explored molecular templates are biological macromolecules,
which are highly promising candidates for the growth of conductive materials.>® 8%
Proteins, viruses and biopolymers such as cellulose,® can provide a solution to the
construction of wires on the nanoscale as they naturally exist within this size regime.
However the poor physical stability and poor electrical characteristics of these
molecules have prevented their direct use in electrical devices. However, as mentioned,
they can be used to direct the growth of conductive material such as metals into the
form of nanowires. The first example of a biomolecular template used in this way were
phospholipid tubules.”* Other examples include proteins such as the use of self-
assembling amyloid protein fibres for the covalent attachment of colloidal gold particles

via the readily accessible cysteine residues.*®

Another example of a widely used bio-template is the tobacco mosaic virus (TMV). The
cylindrical shape, hollow interior, high aspect ratio and self-assembling properties of
this molecule, as well as the ability to coat metals onto its interior surface make it
attractive for forming nano-sized electronic components. The external width of the
structure is 18 nm, with a 4 nm interior. Both cobalt and nickel have been crystallised
within the central channel of TMV to afford nanowires ~3 nm thick and lengths up to
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several micrometres.’? However, despite this method being categorised as a molecular-
templating approach, it is also reminiscent of the previously described porous-
templating. The same group also showed how the external surface of the TMV can be
metallised with nickel and cobalt clusters following a Pd(11) activation step.”® The Pd is
required to provide nucleation sites for the self-catalytic growth of metal along the
external surface of the structure. This was found to occur at site-specific locations on
the surface, which has a variety of functional groups available to bind metal ions. The
metal ions are reduced on the surface of TMV by electroless chemical reduction. By
varying the chemical parameters of the reaction procedure, such as pH and duration of
treatment, the specificity of metal ion interaction with certain functional groups can be
controlled. Figure 1.26 shows TEM images of TMV metallised with Ni (a) and Co (b).
The metal structures were found to be not smooth as revealed by metal cluster formation

along the surface.

SO0 nm

(b)

Figure 1.26: TEM images of TMV coated with Ni (a) and Co (b) following activation with Pd(I1). Figure
from reference [93]

Another bio-polymer template, which has received considerable interest for growth of
metal nano-architectures, is DNA.”* ** DNA is an ideal shape and size for the
construction of nanowires. It is ~2 nm wide and available in precise lengths over the



nanometre to millimetre range in 3.5 A increments. Other notable properties of DNA
that add to its growing interest within this field, for the growth of nanostructures, are the
highly sophisticated structure building aspects. This is based on the self-assembling
properties of DNA resulting from the complementary hydrogen bonding of the
nucleobases. The highly predictable base-pairing rules of duplex DNA, known as
Watson-Crick base-pairs (adenine-thymine and cytosine-guanine), can afford higher
order DNA-based architectures.®® ° The recently developed “origami” approach
demonstrates the ability to design precise patterns based on these properties.®® This
could lend an extension to the growth of more complex nanoscale systems in one, two

or three dimensions for the construction of more sophisticated device components.**%

However as DNA is not sufficiently conductive for use in electrical components,'®

104

despite contention in the scientific community to prove otherwise,™ it is necessary to

modify the structure with conductive material.

For the context of this thesis, the interest lies in the ability of DNA to bind metals and
control their growth in a single dimension. DNA-templated methods for nanomaterials
fabrication offer a highly sophisticated method for control over the assembly of metal
ions. DNA emerged as a highly desirable agent for the templating of conductive species
since the early work by Braun in 1998.>* Braun was able to fabricate a conductive
DNA-templated silver nanowire device by metallisation of a single DNA strand
stretched between two electrodes. Since then, a range of different nanoparticles and
nanoclusters have been assembled onto DNA.** 1% In a general sense, the attention that
DNA has received for building nanosized components stem from its highly
sophisticated structure-building properties. This aspect of DNA will be discussed only
briefly in the proceeding section. More specifically however, the high interest in DNA
for templating metallic species stems from its remarkable ability to bind metal ions.
Therefore, in order to understand how DNA can be used as a template for metallisation,
it is necessary to develop an understanding of the fundamental principles of DNA-metal

ion complexation.
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1.4. DNA-Metal lon Binding

DNA structure

Deoxyribonucleic Acid (DNA) is a macromolecular biopolymer responsible for
encoding the genetic information of living organisms. The structure of DNA was
elucidated by James Watson and Francis Crick in 1953, based on X-ray Diffraction
data.’®® DNA is a double helix structure, made up of two polymeric strands running in
opposite directions. Each strand consists of a series of nucleotide units comprising a 2-
deoxyribose sugar unit, a phosphate group, and one of the four nucleobases: adenine
(A), thymine (T), cytosine (C) or guanine (G). Figure 1.27a shows the chemical
structure of a single strand of DNA. Each base is bound to the deoxyribose ring at the 1’
—carbon position. The nucleotide units are connected by phosphodiester linkages
between the 3’-hydroxyl group of the sugar moiety and oxygen of the phosphate group
of the preceding nucleotide. This comprises the backbone of DNA and is polyanionic
owing to the presence of the negatively charged phosphate groups (one negative charge

per phosphodiester entity).

2-DEOXYRIBOSE RING

Figure 1.27: (a) Structure of a single DNA strand, (b) structure of the bases and their complementary
binding through H-bonds. Atoms denoted with ‘* indicate where on the base where the sugar is attached

The bases can be categorised into two distinct groups: purines (G and A) consisting of a

bicyclic framework with one 5-membered ring and one 6-membered ring; and

pyrimidines (C and T) consisting of a single 6-membered ring framework. The bases are
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complementary to one another and pair up on opposite strands via intermolecular H-
bonding, known as Watson-Crick base pairs, in the manner A-T and G-C, as shown in
figure 1.27b. It is this predictable nature of DNA which makes it such a sophisticated
tool for structure building.’” % Isolated fragments of DNA containing the nucleobase
bound to the sugar group (no phosphate attached) are termed nucleosides. The DNA
structure is approximately 2 nm in diameter and can range in length from nanometres to
millimetres. The length can be readily controlled based on the number of base pairs

within the strand. The spacing between each base pair is 3.5 A,

gj
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Figure 1.28: Scheme showing the DNA double helix structure and ‘zoomed’ in region showing the
chemical structure of the backbone and complementary base pairs. Regions of metal ion binding to the
phosphate groups and nucleobase sites are indicated. Binding at the N7 position of guanine (coloured in
green) and adenine (red) is particularly common

The DNA structure provides ideal binding sites for metal-ions.*®” Metal binding can
take place at the phosphate groups, the sugar entity, at various donor positions on the
nucleobases, or a combination thereof via inter-strand (between two individual strands)
or intra-strand (between neighbouring sites on the same strand) complexation.’® Metal
chelate formation via complexation to multiple nucleobase binding sites,
simultaneously, is also known to occur, but is relatively rare.*” ® One such study
provides evidence of a possible guanine (N7)-chromium-phosphate chelate complex.'®
Binding of metal ions to the ribose oxygen atoms is possible,*? but this type of bonding
is not general and is only applicable to RNA. Figure 1.28 shows a schematic of the

DNA double helix, indicating regions of where metal ion complexation can occur at



local sites within the structure (as denoted by the positions of M™). The basic modes of
DNA-metal ion interaction can be divided into two types; non-covalent interactions and
coordinate bonding.

Phosphate vs. base binding affinity

Firstly, non-covalent, electrostatic attraction of positive metal ions at the negatively
charged phosphate groups is a major mode of interaction. This can be enhanced by
additional interactions involving potential H-bonding between coordinated ligand
molecules and phosphate groups, as for example, with the amine groups of
cobalt(I11)hexammine.**® The phosphate interaction is probably the most important
mode for coordination of metal ions, particularly for alkali and alkaline earth metals, as
these represent natural counterions of nucleic acids in cells.*” Thus, metal ions such as
Mg?®* for example, tend to bind non-covalently with the backbone of DNA due to their
low affinity for the bases, compared to other metal ions such as the late transition
metals. Generally, phosphate binding to positive metal ions is highly favourable as this
results in charge neutralisation of the polyanionic backbone.'*! In this perspective, metal
ions can condense around DNA in a cylindrical manner which is known to stabilise the
duplex.”? The increase in stability is attributable to a lessening of repulsive forces
between individual charged molecules. This charge compensation can lead to
condensation of DNA and result in the formation of folded DNA assemblies or
aggregates of many strands. It is considered that metal ions of +3 charge are required to
trigger DNA condensation, such as that induced by Co®*".**®* However divalent metal
ions (+2 charge) are also known to induce DNA condensation at higher metal ion

concentration.!** 1

The second mode of interaction is coordinate bonding with the DNA bases. The bases
can form coordinate bonds with metal ions through their electron donor sites (primarily
through ring N atoms) to suitable vacant orbitals on the metal atom.™® " Most
commonly the donor sites are provided through the endocyclic nitrogen atoms which
comprise part of the heterocyclic rings. Exocyclic amino groups of C, A and G can only
become metal binding sites following deprotonation of the amine group.’®” This is
because there is no available lone electron pair to permit metal complexation, but rather
this is delocalised into the aromatic ring. DNA base sites can also H-bond to metal

ligands, as the phosphates do.
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Direct metal-base binding is considered to destabilise the DNA double helix and
accelerate DNA denaturation.™® This is thought to result from disruption to base-pairing
interactions, which is partly responsible for holding together the helical shape of DNA
(along with base-stacking interactions). The effect of denaturation of the double helix,
after being treated with metal ions, can be examined by recording the DNA melting
temperature (Tm) as a function of metal ion concentration. The melting temperature is
defined as the temperature at which half of the DNA molecules are in the single-
stranded state (i.e. when the double helix unravels). Consequently, a reduction in T,
would be indicative of a destabilising effect on the DNA structure. A classic study by
Eichorn and Shin revealed that a range of metal ions, including Mg(ll), Co(ll), Ni(ll),
Mn(l1), Zn(11), Cd(11) and Zn(1l), can be placed into a series (as written) that indicates,
qualitatively, their relative phosphate to base binding affinities (decreasing from left to
right) based on rationalisation of melting temperature data."'® In this study the T, of
DNA was recorded as a function of metal ion concentration. The resulting graph is
shown in figure 1.29. The sequence was elucidated by determining at what metal ion
concentration the T, is at a maximum for each metal ion. The metal for which the
maximum T, occurs at the lowest concentration, was Cu(ll). This suggests that Cu(ll)
has a particularly high binding affinity for the nucleobases relative to the phosphates.
On the contrary, it was found that hard metal ions such as Mg(ll) favour direct binding
to oxygen of the phosphate groups, whereby the T, continues to increase in the range
of concentrations studies, implying increasing stability of the DNA helix attributable to

further charge neutralisation of the DNA backbone.
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Figure 1.29: “Variations of Ty, of solutions of DNA as a function of divalent metal ion concentration.”**®

Given the importance of Cu™-DNA interactions in this thesis, an overview of the
interactions that have been well characterised for known crystallised compounds was
undertaken, using the Cambridge Structural Database (CSD). More specifically, this
review was to deduce where the most prominent binding sites are on DNA for Cu™" (for
the nucleobases in particular). The search was constrained to copper ions complexed
with any of the four nucleobase substructures, so as to encompass single nucleobases,
nucleosides and nucleotides. In all reported crystal structures, copper was in the +2
oxidation state. There was no literature precedent for crystal structures of the univalent
copper ion, Cu(l), bound to DNA. This is presumably due to the high likelihood of
Cu(l) salts oxidising to the more stable Cu(ll) state, in air, or aqgueous DNA solution.

In the following reports copper ions are coordinated to single nucleotide units or dimers.

Phosphate binding

In the majority of crystal structures reported, the divalent copper ions bind to the

phosphate groups in preference to the bases.® 12122 |n most cases, Cu(Il) ions were



deduced to bind two oxygens of a phosphate group, as these both carry a negative
charge in a single nucleotide. Figure 1.30 shows one example of a Cu(ll) phenanthroline
complex coordinated to one oxygen of one phosphate group and to another oxygen of a
phosphate group on a second nucleotide (adenine) unit. This affords a dimeric Cu(ll)
nucleotide complex. There was no evidence of metal binding to the nucleobase sites in
this example. Thus it is considered that although Cu®* has a particularly high base to
phosphate binding ratio, comparative to other metal ions, binding to the phosphate
group remains the primary mode of interaction. This can be better understood when
considering the stabilising effect metal ion phosphate binding has on the DNA double
helix.

Figure 1.30: Crystal structure of copper(I1)-1,10-phenanthroline complex bound to the phosphate groups
of N(1)-protonated adenosine 5'-monophosphate [120]

However, as has been proven in the literature, the phosphate vs. base binding is metal
ion concentration dependent.**® % 2 Andruschenko et.al. investigated the effect of
Cu?* binding to DNA as a function of the Cu®*:DNA(phosphate) ratio (or [Cu]/[P]),
using vibrational spectroscopy.® These studies revealed that at low metal ion
concentrations (with respect to a constant DNA concentration), in the range 0.2-0.4
[Cu/[P] ratio, Cu** binding at the phosphate groups is the only detectable interaction.
Upon increasing the concentration of Cu®* (0.7 [Cu]/[P]) the base pairs become
significantly distorted indicating strong interaction at nucleobase sites. Furthermore,
according the Eichorn and Shin experiments, Cu®* in particular has a comparatively

large destabilising effect on DNA even at low metal ion concentration (~0.1
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[Cul/[P]).™*® Hence it is clear that Cu®* has high base-binding affinity, especially when
compared to other transition metal ions such as Co?* or Cd**. However, as suggested,
phosphate binding is still the major mode of interaction of metal ions with DNA, even
for Cu®*. Thus, one of the challenges in this thesis will be to prevent major
conformational change to the DNA structure when binding copper ions. Based on the
reported evidence, this can be facilitated by controlling the [Cu]/[P] ratio and
appreciating these competing modes of interaction (phosphate vs. base).

Base binding

Various structures have been crystallised based upon Cu®* binding to thymine, guanine,
cytosine and adenine with or without the sugar/phosphate attached. Figure 1.31 shows
where the most prominent binding sites are on the nucleobases (denoted with ‘*’),

following a review of the CSD for copper-nucleobase related compounds

NH> ()’“O NH, 0
?*N ‘\I\i*' 7*N 1% \\NS* 3*
/ / NH NH
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Figure 1.31: Structure of the nucleobases with common metal ion binding sites indicated

By far the most common and predominant binding site for metal complexation with the

107, 111, 124, 125 Cu2+

purines, guanine and adenine, is at the N7 position, coordinated to

each of the N7 positions of guanine within a duplex DNA hexamer (six base pairs long)
has been characterised."®® This is perhaps unsurprising considering N7 is readily

accessible within the major groove of the double helix and is not involved in base-

127

pairing interactions.”" Another example is the Cu(ll) hydrate complex bound to two

guanines at the N7 position (the crystal structure is shown in figure 1.32). Binding at the

8

N1 position of adenine,*® is also possible. For guanine, deprotonation of the N1

hydrogen is necessary for this interaction to occur. Binding of Cu?* at the N3 of adenine

129

is also relatively common.'®® A complex of Cu?* bound at the N3 position of guanine
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has also been crystallised where the N7 position is also coordinated to another Cu®* ion
on the same nucleobase.*® In this example, binding at the N7 position is presumably the
initial and predominant interaction. Additionally, metal binding can also take place at
the O6 position of guanine,**! but is less common. Deprotonation at the N9 position (no
sugar) opens up many more possibilities for metal complex formation, including those
of metal chelates.’® However these examples are not relevant to DNA strands (where
the sugar moieties are present) and will not be discussed here. In the case of the
pyrimidines, thymine and cytosine, interactions at the N3 position can occur (following

deprotonation for thymine).3* 33

Hy©

Figure 1.32: Crystal structure of a Cu(ll) complex bound to two guanines at the N7 position [125]

Other situations involving mixed chelates have been verified by X-ray analysis,
including Cu(Il) binding at the N3 position of guanine and simultaneously at the N7
position of a neighbouring guanine (an example of an intrastrand cross-link).**
Complex formation between two neighbouring guanines at the N7 and O6 positions,

respectively, is also known to occur.**

Additionally it is not uncommon for phosphate
oxygen to become involved in coordinating to metal ions as is the case when Cu(ll) is
bound at the phosphate group as well as at the N7 position of guanine.** This was also

identified as a possible complex in Andruschenko’s study of Cu(l1)-DNA binding.??

Importantly, in the context of templating, DNA metal binding sites are sufficiently close
to permit metal-metal interactions; an aspect that will become important for

metallisation of DNA and the growth of conductive 1-dimensional nanostructures.
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1.5. Templating Metals on DNA

DNA has been a key building block in nanotechnology within the distinct field of DNA-
templated self-assembly since the earliest work by Alivisatos,'* Mirkin,** and Braun.>*
A wide range of metals have since been deposited on single DNA molecules or arrays
of DNA-based nanostructures, including Pd,>® 136 Ag,>* 102 137. 138 | 139,140 \jj 141 py 142
and Au.'®* This has resulted in the formation of nanowires, in some cases with sizes
at the low-end of the nanometre regime (<10 nm), which have potential for use in
nanoelectronic  devices.'* Although DNA-based nanowire fabrication is most
extensively applied in the case of metals, binary materials such as compound

semiconductors (e.g. CdS) have been used,**

105, 146

as well as organic conductive

polymers.

The general approach towards DNA-templated metal nanowires is based on an
electroless two-step procedure. The first step exploits the metal-ion binding properties
of DNA, as discussed in the previous section, by incubating the DNA structure with
metal salt. This serves to extensively ‘dope’ the template with the positive metal ions of
interest, such as Cu?*, as shown in figure 1.33. The initial doping entails either (i)
mixing the appropriate metal cations with a solution of DNA (solution-based approach)
or more commonly (ii) immobilisation of DNA onto a solid support before incubation

with metal ions (surface-based approach).
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Figure 1.33: Schematic of the two-step ‘doping/reduction’ procedure for templating metal at DNA

Following doping of the template, DNA-bound metal cations are reduced to the zero-

valent metal, by use of a suitable reducing agent (as illustrated in figure 1.33). Chemical
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136 d 139
1

reductants such as dimethylaminoborane (DMAB),*® or ascorbic aci are commonly
used for this step. Other reducing agents have also been utilised such as H, gas,**’ or
even reduction induced by photo-irradiation of metal ions such as the UV initiated
reduction of Pt** bound to DNA.**® The two-step ‘doping/reduction’ procedure results
in metal seed particles bound along the length of DNA strands. Upon extended
incubation with metallising agents, further deposition proceeds autocatalytically at the
surface of these DNA-bound seed particles (so-called nucleation sites) and can lead to
dense metal coverage of the template (as illustrated in figure 1.34). Thus the growth

mechanism is via a ‘nucleation and growth’ pathway.
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Figure 1.34: Schematic of the ‘nucleation and growth’ mechanism. Autocatalytic growth of copper takes
place at the surface of nuclei bound to specific sites on DNA, affording the desired metallic nanostructure

For the surface-based approach to DNA-templating it is necessary to immobilise the
template on a solid support, prior to metallisation. This step is enabled by the ability to
separate and stretch out individual molecules of DNA onto a flat surface (e.g. Si/SiO,).
This is important for the purpose of obtaining linear strands of DNA for the subsequent
formation of nanowires. Furthermore, manipulation of the template in this manner is
useful for the precise positioning of nanoscale components in circuit-based devices.
Surface-alignment of DNA can be achieved by a variety of methods including
electrophoretic stretching,*® and molecular combing.**®® The latter technique is the one
utilised in our work due its simplicity and effectiveness for obtaining parallel arrays of
isolated molecules of DNA on a surface. Molecular combing was first developed by
Bensimon et.al.,*>* whereby individual DNA molecules are stretched across the surface
by way of a receding meniscus. In this process, one end of DNA anchors to the surface,
whilst the surface tension created by the moving air/solution interface, perpendicular to
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the direction of withdrawal, is enough to stretch out molecules onto the surface. The
motion of the droplet can be abetted by air flow, suction, or physical movement with a
pipette tip, for example. Figure 1.35 illustrates how the molecular combing technique is
implemented in this work. A single droplet of DNA solution is pipetted onto the surface
and is combed in a raster pattern across it using a micropipette tip. Afterwards the

solution is withdrawn and the sample is briefly washed with Nanopure water.

DNA
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Figure 1.35: Schematic showing the molecular combing technique used to align DNA on a Si/SiO,
surface. In this illustration the surface is modified with an organic monolayer (yellow layer) in order aid
the combing motion and control the density of DNA bound to the substrate

Prior to the combing process, modification of the surface with an organic self-

assembled monolayer (SAM) (e.g. trimethylsilane (TMS)),*?

is required to make the
surface hydrophobic and enable a fluid combing motion. Surface modification with
TMS is achieved by exposure of the bare silicon surface to a vapour of chloro-
trimethylsilane. The time of exposure can be used to tailor the wetting properties of the
surface. Higher surface hydrophobicity favours the deposition of low density material
and isolated molecules. In all Scanning Probe Microscopy (SPM) studies carried out in
this thesis, the surface was pre-modified with TMS. This modification step is omitted in
the case of sample preparations for chemical analysis, as these experiments require a
higher density of surface bound material, and thus a hydrophilic surface. The
hydrophobicity of the surface can be monitored by recording static contact angle

measurements on the solution-surface interface.

As mentioned, a variety of metal nanowires have been grown using the two-step DNA-
templating strategy. Most notably, electrically conductive silver™® and palladium®*’

nanowires have been fabricated based on this approach, specifically for the development
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of interconnections. One of the earliest examples of metal templating on DNA was
demonstrated by Braun et.al. for the fabrication of silver nanowires. In this study a 16
um length A-DNA molecule was attached between two gold electrodes.> To facilitate
the positioning of DNA between the electrodes the authors used a process known as
“sticky end synthesis.” Two different 12-base oligonucleotides (oligo A and oligo B)
modified with a disulfide at one end were attached to each set of electrodes by thiol-
gold interaction. A-DNA molecules with the complementary base sequences at both
ends (A’ and B’: sticky ends) then hybridised between oligos A and B, forming a DNA
bridge between the electrodes. The DNA immobilised substrate was then treated with
AgNOs. The Ag® doped DNA was then reduced with a solution of hydroquinone. This
resulted in the formation of a series of Ag nanoclusters along the template. A further
“developing” step (more extensive metallisation) was required to transform the
morphology of the structure into a continuous metal wire consisting of closely packed
grains (~30-50 nm dia.) and wires ~100 nm in diameter, as analysed using AFM (see
figure 1.36). Current-voltage (i-V) measurements initially indicated non-ohmic
behaviour around zero bias, as well as dependency of the current on the scan direction,
which is not characteristic of metallic behaviour. Ohmic behaviour was observed for
wires after more extensive metal coverage and/or application of >50 V bias to eliminate
the zero-current plateau. Control experiments were carried out in order to show that
deposition of metal without DNA to act as a template does not result in a conductive

bridge. This result clearly shows that the metal is selective for the DNA template.

Figure 1.36: AFM image of a DNA-templated silver wire with granular morphology, connecting two
gold electrodes (12 um separation). Image area= 1.5 pm?. Figure adapted from reference [54]
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Recent attempts to extend these two-step DNA-templating methods to copper metal-
based materials have not been as straightforward as for other metals such as Ag, Pd and
Au.™® There are currently no examples of conductive DNA-templated copper wires.
There has been keen interest towards the growth of copper-based nanostructures, largely
due to this material being the current choice for interconnect within the semiconductor
industry.®* Moreover, the interest in copper-based nano-devices stems from coppers
high resistance to electromigration and high electrical conductivity, which is second

only to silver.

The first such report for templating of copper on DNA was made Woolley et.al.**

These studies utilised AFM to investigate the deposition of copper on surface-
immobilised DNA using an aqueous solution of Cu(NOs), as the source of Cu®* and
ascorbic acid as the chemical reductant. This process led to granular structures of ~3 nm
in height with incomplete coatings due to metallisation taking place at differing extents
along the template (see AFM image, figure 1.37). A repeat metallisation process on
these as-formed nanostructures yielded increased structure heights up to 10 nm.
However, excessive non-specific deposition on the substrate surface (i.e. non-DNA-

templated copper) limited this process to two cycles.

Figure 1.37: AFM height image of A-DNA treated once with Cu(NOs), and ascorbic acid. Arrows point
to raised area along the template where specific copper deposition has taken place. Scale bar= 1 pM,
height scale= 5 nm. Figure adapted from reference [139]

A slight alteration to this method involved the use of dimethylsulfoxide (DMSO) as the
solvent in replace of water.**° It is reasoned that polar solvent molecules may actually
compete with DNA donor sites for complexation of metal ions. This refinement led to



enhanced interaction of copper ions and the DNA template, which is thought to result
from more competitive interaction of positively charged copper ions for negative
phosphate groups of DNA, in the absence of a higher dielectric solvent such as water
(compared to DMSO). The resulting metallised structures exhibited more extensive
coverage of the template after a single doping/reduction treatment (~7 nm structure
height), as shown in the AFM image below (figure 1.38), but still exhibit a non-uniform
structure morphology due to appearance of irregular sized clumps of material along the
template. Although the structural morphologies of the nanomaterial were analysed

extensively by AFM, there were no chemical or electrical data to support these studies.

Figure 1.38: AFM height image of a DNA-templated copper nanostructure after a single
Cu(NO3),/ascorbic acid treatment, whereby Cu®* was dissolved in DMSO. Scale bar= 1 um, height scale=
5 nm. Figure from reference [140]

The ‘nucleation and growth’ mechanism by which metallisation of DNA occurs has
been exploited by other groups as an alternative approach to metal nanowire formation.
These routes specifically take advantage of the ‘seeding’ aspect of the mechanism
whereby the growth of metal particles on the template act to catalyse the further growth
of a second metal; so-called heteroatom seeding. Kudo et al*>* developed a heteroatom
seeding approach for DNA-templating, analogous to that of the Damascene process
used for growing copper interconnect. In Kudo’s method, DNA was first ‘activated’ by

growth of a palladium seed layer, followed by metallisation with copper in an
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electroless plating bath containing CuSO,, sodium potassium tartrate, NaOH and
HCHO. In this method the use of a seeded surface was thought to encourage increased
copper deposition. Indeed this process led to extensive deposition of copper along the
DNA/Pd nanostructure. Figure 1.39 shows an AFM image of a single copper metallised
DNA/Pd nanostructure. Individual metal clusters are clearly discernible and are
continuous in coverage along the template. Furthermore Kudo’s group was able to
demonstrate precise control over structure size by variation of the plating-time. An
average plating rate of ~0.75 nm/s for 30 seconds gave nanostructure diameters of ~30
nm. Again however, these studies lack chemical and electrical analysis. Such data may
provide crucial evidence for progress in this field and the subsequent implementation of

these methods in future electronics manufacturing.

Figure 1.39: AFM height image of a DNA molecule after palladium activation/copper electroless
deposition. Image area= 500 nm?, Height scale= 22.6 nm. Figure from reference [154]

More recently, our group has reported on a similar method to Woolley’s, for
investigations into the fabrication of highly conductive DNA-templated copper
nanowires.’ In this method, DNA was immobilised onto a TMS-modified Si/SiO,
substrate by means of molecular combing. Cu(NO3), was used to dope the template
with Cu®* ions and ascorbic acid to reduce these to the zero-valent metal. Figure 1.40
shows a scheme for this process. These studies provide comprehensive structural,
chemical and electrical characterisations of the resulting material. The coatings
consisted of pure metallic copper and showed no signs of oxidation as revealed by X-

ray Photoelectron Spectroscopy (XPS) and powder X-ray Diffraction (XRD) studies.
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Although the coverage can be described as continuous by means of AFM, the
morphology was highly granular in appearance (see AFM image, figure 1.41). It was
determined that the resulting structures resembled a so-called ‘beads-on-a-string’ motif
as opposed to a single copper coating on DNA. A detailed statistical analysis of the
materials’ size revealed a peak modal range of 3.0-5.5 nm. An additional issue
associated with this method is the extensive amount of non-specific deposition.
Evidence for this is seen in figure 1.41, where metal particles are observed to deposit of
on the substrate background.
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Figure 1.40: Schematic illustrating the procedure for preparing DNA-copper nanowires on silicon wafers:
(i) Si/SiO, surface is modified with trimethylsilane SAM, (ii) a solution of DNA is pipetted onto the
substrate and combed across the surface, (iii) DNA molecules are immobilised and aligned on the
substrate, (iv) the DNA-immobilised substrate is treated with Cu®* ions, (v) DNA/Cu®" is reduced to the
zero-valent metal with ascorbic acid and finally (vi) copper nanowires are formed following incubation
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Figure 1.41: AFM height image of a copper nanostructure formed by the reduction of Cu(NO3),/DMSO
with ascorbic acid on surface immobilised-DNA. The image reveals an extended chain of particles
deposited along the template. The arrows highlight regions on the DNA where less substantial Cu®
deposition has taken place. Scale bar = 200 nm, height scale = 8 nm. Figure from reference [152]

Most significantly however, investigation of the electrical properties, using Electrostatic
Force Microscopy (EFM), a non-contact method for mapping electrostatic interactions-
explained in chapter 2, revealed that these structures carry negligible current and are
highly resistive. This was attributed to the small lateral dimensions of the nanostructures

and significant electron scattering at interparticle boundaries.
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1.6. Challenges and Project Aims

In light of these previous studies it is apparent that a number of issues need to be
addressed, with regards to the formation of smooth and conductive DNA-Cu nanowires.
Namely, an improvement in the morphology of the copper coatings is paramount. As
has been highlighted in this introduction, many of these molecular-templating methods
for the growth of copper nanostructures produce granular coatings akin to a ‘beads-on-
a-string” appearance. The granular nature of the copper coatings may cause reduction in
nanowire conductivity, where the effects of grain boundary electron scattering are likely
to become significant, causing high resistance along these structures.® In fact the DNA-
templating of metals in a general sense has proved problematic in this field of study,
especially when compared to those of DNA-templated polymers, which afford much
smoother morphologies and are often conductive.”™ *® The prospect of producing
highly continuous and smooth metal structures, via the DNA-templating approach, is an

on-going challenge.

It is reasoned here that the ‘beads on a string’ composite may be in part due to the
choice of solvent system adopted for metallisation. Despite the use of DMSO for
solubilisation of Cu?* in Woolley’s and Watson respective methods, the reducing agent
(ascorbic acid) is dissolved in water. Therefore, the reaction scheme employed in those
studies is not entirely non-aqueous. By way of utilising non-aqueous reaction
conditions, an enhancement of interaction of copper ions with DNA may result, and
lead to denser populations of metal particles along the template. Moreover, selective
metallisation of the DNA template needs to be enhanced so that the non-specific
deposition of copper is minimised. The use of non-agueous reaction conditions during
metallisation of DNA may therefore facilitate more extensive metal coverage of the
DNA template and smoother structure morphologies. This thesis attempts to develop
such an approach by exploiting organic-based reaction conditions, for the fabrication of

smooth DNA-Cu nanowires.

Another aim of this project is to explore the alternative, solution-phase, two-step
chemical approach to metallisation of DNA. To the best of our knowledge the solution-
phase synthesis of DNA-templated copper nanowires has not yet been attempted. The
results from these studies could give insight into the fundamental differences between
surface and solution based syntheses in terms of the principles of metal growth at DNA-
templates and their resulting properties.
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This project is also dedicated to the chemical passivation of DNA-Cu nanowires based
on thiol self-assembly. It is well known that copper is easily oxidised under ambient
atmospheric conditions,”® and so passivation of these nanostructures against

atmospheric corrosion may become a necessity for future nanoelectronic manufacturing.

If the problems mentioned above can be suitably addressed, namely by optimisation of
the reaction conditions, then the DNA-templating of metal nanowires could be better
suited to replacing current top-down methods for copper interconnect fabrication than
the, other, competing methods described in section 1.3. This thesis is concerned with the
development of new approaches towards the formation of smooth and conductive DNA-
templated copper nanowires. We aim to demonstrate these electrical properties by

integration of a DNA-Cu nanowire in a working two-terminal device.

We also aim to provide comprehensive structural, chemical and electrical analysis of
these products, which has been somewhat lacking in previous reports. Each chapter in
this thesis describes a unique approach to copper nanowires based on a DNA-templating
strategy. Throughout this project a range of techniques were used to characterise the
nanostructures. In each separate study we first describe how these structures are formed
before the chemical composition of the material is elucidated using X-ray Photoelectron
Spectroscopy (XPS) and powder X-ray Diffraction (XRD). An in-depth structural
analysis is then carried out using AFM for examination of the structure morphology.
FTIR was used to study the interaction of copper with DNA. And lastly the electrical
properties of the nanostructures were examined using Scanning Conductance
Microscopy (SCM).
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Chapter 2: Analysis Techniques and Theory

This chapter describes some of the main techniques used for DNA-templated

nanomaterials characterisation.

2.1. Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy is a method used to acquire an image of a sample surface,
by scanning a physical probe across it. SPM has contributed a large proportion of the
experimental results presented in this research. These studies have been mainly
concerned with the morphology and electrical characterization of nanowires. SPM
encompasses a wide variety of specialised techniques for these purposes, such as
Atomic Force Microscopy (AFM) for the analysis of structure morphology and sizes,
Electrostatic Force Microscopy (EFM) for qualitative assessment of the conductive
properties of nanowires and Conductive-AFM (c-AFM) for quantitative analysis of the

conductance. This section provides an introduction to the principles of these techniques.

Processing of data acquired from SPM experiments was carried out using both
Nanoscope version 7.00b19 (Veeco Inc., Digital Instruments) and WSxM4.0 Develop
12.6 (Nanotech Electronica S. L., Madrid, Spain) software.

2.1.1. Atomic Force Microscopy (AFM) [1]
The Atomic Force Microscope invented by Gerd Binnig, Christoph Gerber, and Calvin

Quate in 1986,% provided a method for mapping topographical surface features at atomic
resolution (typically 2-10 nm lateral resolution (x-y) and 0.1 nm height resolution (z)).
Principally this involves the use of a cantilever with a tip (typically 10-20 nm in radius)
at the end, which is used to track across the sample surface by scanning in a raster
pattern across it. Control over the movement of the tip in the x-, y- and z-directions is
enabled by the use of x-, y- and z-piezoceramic elements, with an appropriately applied
voltage across them. The distance between the tip and the sample surface is modulated
by the voltage applied to the z-piezoceramic element, which is termed the “set-point”
value. This is regulated so as to maintain a constant vertical force of the probe during

imaging. Figure 2.1 illustrates the main components of the atomic force microscope.
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Figure 2.1: Schematic diagram showing the principle components and operation of an AFM

Deflections of the cantilever in the z-direction, caused as the tip encounters features on
the surface during scanning, are detected by a laser that is reflected off the back of the
cantilever onto a four-segment, position sensitive photodetector. Changes in the position
of the laser along the detectors y-axis as the cantilever is deflected, with respect to the
x-y coordinate of the tip at the surface, is used to construct a 3-dimensional image of the
sample surface. Fluctuations in the height of the tip relative to the surface, as it interacts
with surface features, is compensated by a change in the probe’s z-position by use of a
feedback loop, to maintain a constant vertical force. The interactions of the tip with the
sample surface include attractive (van der Waals interactions) and repulsive (atomic)

forces, which are due to long range and short range interactions, respectively.

AFM can be operated in a variety of modes, each with its own benefits. The most well

established modes of imaging include “contact,” “non-contact,” and “TappingModeT'V'”

AFM.
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2.1.1.1. Contact mode

In contact mode, the AFM tip remains in constant contact with the surface at a defined
set-point value, figure 2.2. Set-points used are typically low (compared to the other
modes of AFM operation) corresponding to a higher vertical contact force, on the order
of nano Newtons (nN). For this reason, contact mode probes are usually flexible (low
spring constant, k) and fabricated from hard, robust materials such as silicon nitride
(Si3Ng) to limit tip damage during imaging. The high forces experienced during contact
mode are one of the primary drawbacks of the technique, especially for the imaging of
soft samples such as biological materials, where the potential to cause damage to the

sample is greater.

Contact AFM is the mode of operation used in Conductive-AFM, which is used to map
surface topography and current. In this experiment, a bias is applied to the tip during
imaging and an additional feedback loop is used to detect current, simultaneously with

the surface topography.

Figure 2.2: Principle of contact mode AFM

2.1.1.2. Non-contact mode and TappingMode™

Non-contact mode is an alternative means to image surface topography. In contrast to
contact mode, where repulsive forces cause cantilever deflections, non-contact mode
operates within a set distance of the sample surface where attractive forces (van der
Waals) dominate the tip-sample interaction. In this technique, a cantilever of high spring
constant (k) is oscillated close to its resonant frequency (fo) (typically at 100 — 400 kHz)
at low amplitude near to the sample surface through application of an appropriate set-
point voltage, as illustrated in figure 2.3. The forces exerted on the tip as it encounters
surface features are measured by monitoring the corresponding variations in the
resonant frequency or vibrational amplitude of the tip. In an analogous fashion to

maintaining a constant vertical force during contact mode, a feedback mechanism is
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used to maintain a constant frequency and/or amplitude for regulating a constant tip-

sample distance.
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Non-Contact

TappingMode™

Figure 2.3: Principles of non-contact and TappingMode ™ AFM. The thin liquid layer on the surface is
represented in blue

The nature of the non-contact mechanism makes it more suitable for imaging of soft
organic or biological materials. This is primarily due to the low force exerted on the
sample in comparison to contact mode. Additionally, lateral forces (such as drag),
which are commonly experienced in contact mode and can lead to surface damage, are
virtually eliminated in non-contact mode. A potential disadvantage of this technique
however is the result of the tip “sticking” to the surface after coming into accidental
contact with the thin liquid film present upon the sample. In such circumstances, the z-
scanner must retract the tip far enough away from the surface to overcome the adhesive

meniscus force. Such events can result in anomalies in the acquired image.

TappingMode™ AFM, arguably one of the most common forms of AFM microscopy
today, circumvents such issues by oscillating the tip at higher amplitude above the
sample surface (shown in figure 2.3).> The tip, which is usually made of silicon,
oscillates at a frequency of 50-500 kHz. In TappingMode™ AFM (also known as
intermittent contact mode), the tip comes into brief contact with the surface at the end of
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its oscillation period. Over time, this can lead to gradual blunting of the tip and result in

reduced resolutions.

Throughout this thesis, AFM imaging of surface topography was performed in air in
TappingMode operation on both a Multimode Nanoscope Illa and Dimension
Nanoscope V instruments (Veeco Instruments Inc., Metrology Group, Santa Barbara,
CA) using ‘TAP300AI-G’ or ‘TESP7’ probes (n-doped Si cantilevers, Veeco
Instruments Inc., Metrology Group), with a resonant frequency of 234-287 kHz, and a
spring constant of 20-80 Nm™. Data acquisition was carried out using Nanoscope
version 5.12b36 (Multimode I1l1A) and Nanoscope version 7.00b19 (Dimension

Nanoscope V) software (Veeco Instruments Inc., Digital Instruments).

2.1.1.3. Force curves

Information can be extracted about the tip-sample interactions by generation of a “force
curve,” in which the deflection of the cantilever is monitored with respect to the set-
point (i.e. its displacement in the z-direction). The cantilever deflection is plotted as the
probe contacts and withdraws from the surface (at a single point) during z-piezo
extension and retraction. A typical “force-distance” plot, as shown in figure 2.4, can be

interpreted based upon the attractive, repulsive and adhesive tip-sample interactions.

Quantitative data about the vertical forces generated by the tip can be elucidated by
observation of the measured maximum displacement of the tip (x) prior to tip retraction,
relative to the set-point value. Using “Hookes Law” where “k” represents the cantilever
spring constant and “x” represents the displacement of the spring (the cantilever) the

vertical force (F) can be calculated:

F= -k.x (equation 2.1)
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Figure 2.4: Typical “force-distance” curve obtained upon the one cycle of tip extension and retraction.
Firstly the tip begins at large distance from the sample surface, at the deflection set-point, where no
interactions are experienced(A). As the probe approached the surface and the cantilever z-position is
lowered, a slight deflection is observed (B). As the probe continues in extension, the short-range repulsive
forces begin to take effect and the cantilever is deflected well beyond the deflection set-point (C). After
reaching maximum vertical force, the tip begins to retract causing a decrease in the deflection (D) until a
minimum is obtained (E*) which is due to attractive forces between the tip and surface. Finally the tip
pulls away from the surface completely when these forces are overcome and the deflection set-point is
reached

Such information is also useful for attempting to make deliberate contact between the
AFM tip and a nanowire, for example. The force curve can be used to confirm when
contact has been made. This is specifically useful for the recording of i-V (current-

voltage) plots.

2.1.2. Electrostatic Force Microscopy (EFM)

EFM provides a qualitative, quick and contactless means to elucidate conduction
pathways in nanostructured materials.*® In this experiment a sample of nanowires are
immobilised upon an insulating, dielectric surface (SiO,); a thermally grown polarisable
layer sandwiched between a conductive silicon substrate and a conductive AFM tip. An
applied potential to this set-up results in a capacitance acting between the tip and the
substrate where an electric field is stored. As electrons within the nanowire move in the
same electric field, the effect of the nanowire is to perturb the tip-substrate capacitance

and affect the amount of charge stored. Fluctuations in this capacitance, with respect to
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the applied voltage, can be monitored to obtain data relating to the electrical properties
of the nanowire. Data collection is made by use of a ‘two-pass’ technique, as illustrated
in figure 2.5. The first pass involves acquiring the sample topography, in standard
TappingMode™ AFM. The second pass involves collection of the EFM signal, at a set-
raised height above the sample surface (typically 40-100 nm), which correlates spatially

with the topography of the sample.

The role of the AFM tip in the second pass is to detect changes in the electrostatic force
gradient as it tracks over the sample. The force gradient is mapped by application of a
DC voltage and observing the phase angle (¢) of the tip in response to the force gradient
(with respect to the driving force applied to the cantilever). Essentially, a change in the
electrostatic field gradient, due to variations in the tip-substrate capacitance, causes a
phase lag in the AFM tip, also known as a phase shift (A¢). Typically the tip is held 40-
100 nm above the nanowire, where topographical related information does not affect the
phase angle, and long range electrostatic forces dominate the tip-sample interaction.
Thus the EFM technique is highly sensitive to surface charges and can be used to
qualitatively determine the polarisability of electrons within the sample directly beneath

the tip (i.e. whether electrons are insulating or conducting).

------ 1st Pass (topography) R S ) | -3
...... 2nd Pass (electric field gradient) YR Y AR AL
—_— E—
drive - @ @
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|
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Figure 2.5: Schematic diagram showing the two-pass EFM method for mapping conductance in a
nanowire
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In practice, the phase shift is measured by changes to the cantilever spring constant (k).
Principally there are two contributions to the total energy (E) stored in the tip; electrical
and mechanical. As stated, the electrical energy created upon application of a bias can
perturb the resonance of the tip and cause a phase shift (A¢). When the capacitance of
the system changes (i.e. due to the presence of a conductive wire) the electrical energy
stored in the tip changes and this causes the tip to deflect by Ax and the phase of the
cantilever shifts accordingly. However, as the mechanical energy (the second
contribution to the total energy of the tip) stored in the tip also changes with respect to
‘x” one can monitor the phase shift (A¢) by altering the spring constant (k) of the
cantilever. This will change the stiffness of the cantilever in response to the electric
field, effectively mimicking changes to the tip/substrate capacitance. Finally, because
the capacitance (C) is sensitive to the presence of a conductive nanowire one can use A¢
to determine if the wire is conductive. When a wire is modelled as a thin dielectric strip

lying under a tip of defined radius (Rp) the phase shift can be estimated by:®

o , 2“TREi & l‘l’Rfi &0
tan(Ag) == > P P i
2% " \(h+t/eox)®  (h+t/eox+d]e) (equation 2.2)

Where Q is the quality factor, k= cantilever spring constant, V is the applied voltage, t=
oxide thickness, d= nanowire diameter, and € and ¢, are the relative permittivity of the
nanowire and oxide. The important term in the equation above is the tip radius (Ruip).
For an insulator, the electric charges are polarised under bias, and are therefore confined
to regions directly beneath the tip and the part of material it is probing. Therefore
changes in the capacitance are due to polarisation effects (i.e. an insulator). This makes
the second term in the equation small, resulting in a positive phase shift (bright contrast
in phase image with respect to background) that tends to infinity as the electrons

become decreasingly responsive to the electric field.

On the other hand, for a conductive wire, electrons not tied to their nuclei are free to
travel the full length of the wire (L). Therefore the capacitance is now determined by L
rather than Ryp, making the second term in the equation large. This results in a negative

phase shift (dark contrast in phase image).
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Hence the sign of the phase shift can be used as a qualitative assessment of whether a
structure is insulating or conducting. In principle, for a conductor, a plot of the phase
shift against bias should result in a parabolic curve due to the second order relationship
of electric field to potential (E= 1/2CV?). The data for this experiment is presented as a
correlation between the phase shift and the bias applied to the surface (usually from -
10V to +10V). The resulting data, where the phase shift correlates with the nanowire
under scrutiny, provides a useful, practical, and straightforward means for indicating

whether a structure is conducting or not.

EFM measurements were carried out in air on a Dimension Nanoscope V system in
TappingMode operation, using MESP probes (n-doped Si cantilevers, with a metallic
Co/Cr coating, Veeco Instruments Inc., Metrology Group), with a resonant frequency of
ca. 70 kHz, a quality factor of 200-260, scan rate of 0.3 Hz and a spring constant of 1-5

Nm™. Data acquisition was carried out using Nanoscope version 7.00b19 software.

2.1.3. Conductive Atomic Force Microscopy (C-AFM)

C-AFM is a secondary imaging mode of contact mode AFM which allows for
conductivity variations across a sample surface to be mapped.®® This is achieved by
contact scanning a metal coated AFM tip (consisting of a Co/Cr alloy) with low spring
constant (0.1-1.0 N/m) across it. In our experiments, a 5 pL solution of nanowires is
deposited onto the surface and allowed to dry in the form of a dense macrodeposit on
top of an insulating layer of SiO,. Typically, individual nanowires can be located from
the edge of the macrodeposit using contact mode AFM. It is important during imaging
in contact mode that the vertical contact force is lowered to an appropriate value (by
adjustment of the set-point) so as to prevent damage to the nanostructures, such as
cutting. This is especially important for thin nanowires, where the contact force can

cause displacement of the nanowire across the surface.

The C-AFM technique is carried out under application of a direct current (dc) bias
between the AFM probe and the sample. Then as the tip scans in a raster pattern across
the surface, it simultaneously detects current in the sample whilst acquiring
topographical data.® For a conductive 1-dimensionial structure, the current signals
acquired are expected to match the topography of the structure along its entire length.

Figure 2.6 shows a schematic of C-AFM in operation. C-AFM is capable of detecting
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currents as low as ~10 pA; and so has considerably less sensitivity than EFM. However,
due to the contact nature of the technique, C-AFM is quantitative and can be used to
acquire i-V curves, whereas EFM cannot (non-contact).
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Figure 2.6: Schematic illustration of C-AFM in operation. An increase in the current signal is detected as
the tip scans over regions of high conductivity, in contact with the surface

The general C-AFM set-up (as illustrated in figure 2.7) is comprised of a nanowire
connected between two electrodes. One macro contact is made directly to the sample
using a drop of conductive paste (Ga/In eutectic). This acts to electrically connect the
macrodeposit to the AFM chuck. A conductive AFM tip is then used to probe the
topography of the surface and contact the nanowire at a single point of interest, thus

acting as the second, mobile electrode.
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Figure 2.7: Schematic of the C-AFM experimental set-up. A conductive paste is applied to a dense
macrodeposit of nanowires, acting as one electrode. A second, mobile, electrode is provided by the AFM
tip in contact with a single nanowire

The acquired data is interpreted in terms of a simple series circuit consisting of three
separate resistances: Riip, Rext and Ruire, Where Ryjp is the tip-nanowire contact resistance,
Rext 1S the resistance between the nanowire and the external circuit and Ryire is the
resistance along the length of the wire from the edge of the macrodeposit contact to the
AFM tip. In order to calculate the resistivity of the wire, it is necessary to measure the
value of Ruire. However due to the additional contributions from R, and Rex to the
overall resistance, it is not possible to obtain an exclusive measurement of Ry, directly.
In order to isolate this value from the overall resistance, one can assume that all of the
distance dependence (d) to resistance lies in Ryie. Hence a plot of resistance as a

function of distance (d) should contain information relating only to the wire resistivity
(Rwire)-

The closed-loop feedback mechanism capabilities of the Dimension V AFM, used in
this work, enables accurate “point-and-click” positioning of the AFM probe on a sample
surface to allow for distance-dependent current-voltage (i-V) measurements to be
carried out. In this experiment a series of i-V plots are recorded as a function of distance
(d) along the nanowire (i.e. points 1, 2 and 3), as shown in figure 2.8a. The resistance is
expected to increase linearly as the current flows though increasing lengths of the wire.

Figure 2.8b shows a plot of resistance vs. relative distance (d) from the tip (following

~ 69 ~



the course of a wire) to the edge of the macrodeposit.” The inset shows an image of the
nanowire under investigation, where the red crosses mark the position of tip contact, for
generation of an i-V plot. For different applied contact forces the measured resistance is
different at each point. The general trend shows that higher contact forces lead to a
decrease in resistance; presumably due to a reduction in contact resistance. However,

the gradients of the plots match closely, indicating similar resistivity values.
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Figure 2.8: Schematic diagram of the C-AFM technique used in a series of distance-dependence i-V
measurements. Each measurement is recorded at a different point along the nanowire of interest (a). Plots
showing resistance as a function of relative distance along the nanowire for different applied forces (b),
inset shows a current map of the nanowire and red crosses indicate the position of the tip for recording i-
V plots [9]

2.2. Two-probe semiconductor device analyser [10]

Two-probe i-V measurements can be carried out for more accurate determination of
nanowire conductivity with fA-level measurement capability. This is achieved with use
of a Microtech probe station situated on a vibrational isolation system and fitted to a
semiconductor device analyser and thermal chuck apparatus (see figure 2.9a). In this
method a nanowire is alignment, typically by molecular combing, between two
microfabricated metal electrodes (e.g. Au) on a thermally oxidised Si chip (figure 2.9c).
The sample is then placed inside the chamber of the probe station where two needles
(made of tungsten, 10 um radius) are positioned onto each of the electrode pads for

recording i-V plots, as in figure 2.9b.
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Figure 2.9: Photograph showing the probe station and various fitted components (a), inside the probe
station: gold electrodes with probe needles in contact (b), and an AFM image showing a nanowire
bridging between the two electrodes, scale bar= 1 um (c)

The resistance (Q, VA™) between the two electrodes can be determined from the i-V
plot, given by the reciprocal of the gradient (AV™) around zero bias. For an ideal
conductor, this relationship would be expected to be linear. In the case of a metal, the
resistance would also be expected to increase with temperature, due to the increased
electron scattering events at lattice vibrations. Whereas, for a semiconductor the
resistance is expected to decrease with rising temperature due to further population of
the conduction band.*! Thus, it is possible to distinguish between the physical nature of
a conductive material using temperature. The probe station used here is able to perform
temperature-dependent i-V analysis for this purpose. From the measured resistance, the
conductivity (o, Scm™) of a nanowire with defined length and cross-sectional area is
calculated from the equation:

o=1/RA (equation 2.3)

In this work, the length and diameter of the structure is estimated based on the AFM
data. The cross-sectional area is calculated based on the assumption that the shape of the

structure is a perfect cylinder.
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2.3. X-ray Photoelectron Spectroscopy (XPS) [12, 13]

X-ray Photoelectron Spectroscopy (XPS), or more traditionally, Electron Spectroscopy
for Chemical Analysis (ESCA), is a surface sensitive chemical analysis technique used
to obtain elemental information and the chemical state of elements within a sample. The
technique is quantitative and can be used to garner information relating to sample
composition. For instance, the relative area of an XPS peak is directly related to the
number of atoms in the sample giving rise to that peak. XPS is able to identify all
elements with an atomic number (Z) of 3 and upwards. The principles of XPS are based
on the photoelectric effect, whereby the interaction of photons with matter results in
ionisation and the emissions of ‘photoelectrons.” The associated energy of an emitted
electron contains all of the relevant chemical information about the sample for
identification of the elements present within. Samples for XPS analysis are usually
required to be solid as XPS requires ultra-high vacuum (UHV).

X-ray source

Data recorder

UHV
chamber

Pumps

Figure 2.10: Basic components of an X-ray Spectrometer. The sample is irradiated with X-rays from the
X-ray source. A photoelectron is ejected from the irradiated specimen and collected by a lens system
which focuses the electron into an energy analyser. An electron detector is then used to count the number
of electrons as a function of energy

As illustrated in figure 2.10, an X-ray Photoelectron Spectrometer typically consists of a
monochromatic X-ray Source (typically MgKa (1253.6 eV) or AlKa (1486.6 ¢V))

focused onto the sample surface, an electron detector and a photoelectron energy



analyser. Penetration of the X-rays occurs to within 10 micrometres of the sample
surface. The interaction of X-rays with the atoms in the sample causes an electron from
a core orbital (e.g. 1s, 2s, 2p) to be ejected (as illustrated in figure 2.11). As the electron
is pulled away from the nucleus, upon excitation with an X-ray photon, the attraction
between the two decreases until the electron reaches the Fermi level (highest occupied

state by an electron) enters the ionisation continuum.

2p

Emitted
electron

T e

“Core hole”

Figure 2.11: lllustration of the photoelectric event. An X-ray photon interacts with a core orbital and
causes emission of a photoelectron leaving behind a core hole

Given that the mean free path (L) of electrons is considerably smaller than that of
photons; only those electrons that originate from the top 1-10 nm of the sample surface
leave the surface without energy loss. This makes XPS a highly surface sensitive
technique. The emitted electrons produce the peaks in the spectrum, where each peak
(or set of peaks) correspond to a different chemical species, and provide the most useful
information for chemical analysis. Those detected electrons which have undergone
inelastic collisions upon interacting with matter, before escaping from the surface, have

reduced kinetic energies and form the background of XPS spectra.
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Figure 2.12: Schematic illustration of the surface sensitivity of XPS. Electrons from deep atomic layers
(>10 nm) undergo inelastic scattering with electrons from other atoms leading to a reduced kinetic
energy. Electrons from the top layer easily escape without undergoing energy loss [14]

Information relating to the chemical identity of a compound, from where the emitted
electron escaped, is conveyed by the respective electron binding energy (Ep). The
binding energy is the energy required to remove an electron from its ground state level
to vacuum level. The binding energy for each core electron is highly specific and is
therefore characteristic to every element. The XPS spectrum is a plot of the electron
binding energy (Ep) relative to the number of electron counts. E, can be determined
based on the kinetic energy of the escaping electron (Ex) and the energy of the incoming
X-ray (or photon energy, Epnoton), Using the equation below, where ¢ is the spectrometer

work function:

Eb= Ephoton — (Ex + @) (equation 2.4)

One of the most important aspects about XPS is that the binding energy depends on the
chemical state of the element under investigation. This includes the nature of the bound
atoms or ligands and the oxidation state of the element. For example a core electron of
an element in +3 oxidation state will generally have a higher binding energy than it
would if that element was in a +2 oxidation state, due to the higher attraction from the
nucleus. Here XPS not only provides information about the elements present, but also

give information about their chemical state.
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Chapter 3: A Non-aqueous route to Cu-DNA
nanostructures

3.1. Introduction

This chapter describes a ‘non-aqueous’ route to the fabrication of DNA-templated
copper nanostructures via electroless metallisation of surface-immobilised DNA
templates.

Due to the difficulties encountered in previously described ‘wet’ solution based
approaches towards the preparation of smooth and conductive DNA-templated copper
nanowires, a new ‘dry’ solution based DNA-templating approach is explored here.
This approach is based on the use of a Cu(l) coordination complex,
tetrakis(acetonitrile)copper(l) hexafluorophosphate (Cu(CH3CN)4.PFg) for ‘doping’ of
surface bound DNA with Cu™ ions and phenylsilane (PhSiHs) as the chemical reductant.
Figure 3.1 illustrates the reaction scheme employed. The two-step ‘doping/reduction’
procedure on surface-immobilised DNA templates was adopted in this work. For
convenience, tetrakis(acetonitrile)copper(l) hexafluorophosphate is referred to simply as
‘Cu().’

AN .

Tetrakis(acetonitrile)copper(l)
hexafluorophosphate

- /
V— |

Incubation Period Reduction period

\ Phenyisilane

Figure 3.1: Schematic showing the order of addition of reaction components. The reaction is split into
two steps; incubation of Cu(l) salt with DNA and then reduction to metallic copper using phenylsilane
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To date, all methods for the fabrication of Cu-DNA nanostructures are reliant on the use
of Cu(ll) complexes for coordination to the DNA duplex as part of a two-step
‘doping/reduction’ procedure. > > This is primarily because Cu(ll) is the most stable
and common oxidation state for copper and that Cu(ll) salts, such as Cu(NOgz), and
Cu(S0Q,), are easily solubilised in water. Furthermore, the coordination chemistry of
Cu?/DNA interaction has been studied in depth over the years (as has the chemical
reduction of Cu?*).° Significantly however, the preparation of electrically conductive

Cu-DNA nanostructures based on Cu(l1) complexes has thus far proved elusive.*

Divalent Cu(ll) salts typically require strongly coordinating (polar) solvents for
solubilisation and supply of the divalent copper to the DNA structure. These strongly
coordinating solvent molecules may actually compete with DNA donor sites for
coordination of copper ions, and may result in copper nanostructures which are
structurally irregular. Previous studies have sought to replace water, for a solvent which
has a lower dielectric constant, such as DMSO.> ® The use of a lower polarity solvent
for the delivery of copper ions is understood to enhance the binding efficiency of copper
for the DNA template resulting in more ‘intimate’ interaction of the copper ion to DNA.
However, in both cases where DMSO was used as a solvent instead of water, the
resulting morphologies of copper coating on DNA remained irregular (see introduction,
section 1.5). Such structures are perhaps best described as a ‘beads on a string’ type
assembly.

The aim of these current studies is to develop a new non-aqueous route for the
fabrication of Cu-DNA nanowires using a univalent Cu(l) coordination complex. To the
best of our knowledge, attempts to prepare DNA-templated copper nanostructures using
Cu(l) salts have not been carried out. Use of a low oxidation state copper salt and a
weakly coordinating solvent used for delivery of these ions, may result in the generation
of more extensive copper coverage along the DNA template, affording smoother
nanostructures. In this sense, Cu(l) salts are considered desirable candidates for
templating on DNA, as they can be more easily solubilised in non-polar solvents (lower
dielectric values) compared to Cu(ll) salts due to the lower charge density on the copper

ion.

Equally importantly, many Cu(l) complexes have better compatibility with organo-
soluble reducing agents than Cu(ll) complexes, negating the need to use aqueous
solvents during the metallisation process. The method described in this chapter is based
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on a single solvent system with both Cu(l) ions and reducing agent (phenylsilane) in the
same solvent phase (acetonitrile), in which the DNA-immobilised substrate is
submerged (see figure 3.2). The reaction is carried out in a N»-filled Schlenk flask in
order to prevent oxidation of Cu(l) to Cu(ll) and to ensure moisture is excluded from
the system. All solvents used were dry and de-gassed in an ultrasound bath and/or

bubbling N, through the solution.

DNA-immobilised Copper containing
silicon substrate  solution + reductant

Figure 3.2: Photograph of a DNA-immobilised silicon substrate under treatment with the copper/silane
solution

The copper complex chosen for these studies, tetrakis(acetonitrile)copper(l)
hexafluorophosphate (Cu(CH3CN)4.PFg), is relatively air-stable compared to other Cu(l)
salts such as CuCl, Cu(OAc) and Cul. This is largely attributed to the bulky counterion,
hexafluorophosphate (PFg), which stabilises the metal ion complex by sterically
hindering access, of solvent molecules for example, to the metal centre."*
Hexafluorophosphate is also a weakly coordinating counterion which is beneficial for

the interaction of Cu® ions with DNA.

In addition, the oxidation state of this Cu(l) complex is stabilised by the acetonitrile
ligands, which prevent rapid oxidation to the Cu(ll) state.** Upon their removal the

complex is readily oxidised to Cu(ll). However, in a solution of acetonitrile, the salt is
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stable to oxidation for several weeks.” A previous report describes the use of acetonitrile
as solvent for the synthesis of copper nanoparticles (CuNPs), which acts as a protective
agent against oxidation, as well as stabilising the nanoparticle colloid.*” Also, copper
nitrile ligands are reasonably labile,*® allowing for better coordination of Cu(l) with
DNA.

Takahashi et.al. sought to investigate a range of chemical reducing agents for reduction
of Cu(l) complexes to form metallic copper nanoparticles.* Hydrosilanes were shown
to be suitable candidates for the reduction of Cu(l) salts under mild conditions. A series
of reactions were carried out with various hydrosilanes and Cu(l) salts such as
Cu(OCOCHg), CuCl and CuBr using a range of solvents at room temperature. It was
found that phenylsilane (PhSiH3) was the most successful candidate for the preparation
of high purity CuNPs.

Based upon Takahashis’ series of experiments and some of our own, phenylsilane
(PhSiH3) will be used as a reductant for [Cu(CH3CN)4][PFs] at DNA-immobilised
surface templates to drive CuNP formation; where DNA can act to restrict growth to a
single axis. Acetonitrile was chosen as the solvent, primarily because it can solubilise
both components of the reaction, but also as the solvent increases the stability of the
Cu(l) complex, as previously discussed. It is speculated that this method will lead to
formation of a regular and densely packed array of copper nanoparticles along the DNA

template, resulting in little or no exposed regions of bare DNA.

This work describes a novel ‘water free’ approach to the fabrication of DNA-templated
copper nanostructures via a two-step ‘doping/reduction’ approach on surface-
immobilised DNA. The ultimate aim is to develop a reproducible method for the
fabrication of conductive copper nanowires using DNA templates. These could have

potential use for interconnect material in integrated circuitry.

“ It was indicated through a simple experiment that the Cu(l) complex is more stable to air when in a solution of
acetonitrile. A portion of the pure salt was placed on a watch glass, and then left exposed to air for 24 hours. The
solid changed colour from white to green (indicating oxidation to Cu(ll)) whereas the Cu(l) solution remained

colourless.
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3.2. Experimental

All general chemical reagents were obtained from Sigma-Aldrich unless otherwise
stated, and were Analytical grade or equivalent. Lambda () DNA was from New
England Biolabs, cat no. N3011S (New England Biolabs (UK) Ltd. Hitchin, Herts,
United Kingdom). Silicon <p-100> wafers, boron doped 100 mm. diameter, 525 + 50
pm thickness, 1-10 Q cm resistance were purchased from Compart Technology LTD.
(Peterborough, Cambridgeshire, United Kingdom). Silicon <n-100> wafers with 200
nm SiO; layer, Arsenic doped, 100mm. diameter, 500 & 25 um thickness, < 0.005 Q cm
were purchased from Virginia Semiconductor (1501 Powhatan St., Fredericksburg VA

22401). All water used was Nanopure with resistance 18.2 Q.cm.

To ensure consistent and comparative results, all sample preparations were performed
on surface immobilised DNA. NOTE: For control experiments the preparation and
method of deposition was carried out in the same way, as described below, but in the
absence of DNA.

Two types of DNA were used throughout this work. For the puposes of SPM analysis
lambda DNA was used (see details below) and for chemical characterisations (except

where stated otherwise) calf-thymus DNA was used.

Lambda DNA (purchased from New England Biolabs, 500 pgmL™) is a duplex DNA
solution isolated from bacteriophage lamda and is 48,502 base pairs in length. The DNA
is isolated by phenol extraction and dialyzed against 10 mM Tris-HCL (pH 8.0), 1 mM

EDTA and stored in the same solution.

Calf-thymus DNA (purchased from Sigma-Aldrich) sodium salt is a fibrous material
isolated from calf-thymus tissue. DNA from calf-thymus is 41.9 mole % G-C and 58.1
mole % A-T. Fibres were dissolved in nanopure water and concentrations were
measured using a BioPhotometer and standard rectangular plastic cuvettes. The
BioPhotometer is an absorption single-beam photometer with reference beam and
several fixed wavelengths. The absorbance at 230 nm, 280 nm and 320 nm are
measured, as well as the ratios A.go/Asgo and Aueo/Azzg and the absorbance at 260 nm.
The resulting concentration of DNA is calculated is calculated from these
measurements. Amax for calf-thymus DNA is 259 nm (100 mM phosphate buffer, pH
7.0). The molar extinction coefficient at 260 nm (&260) is 13,200 bp cm™ M™ (base pair).
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3.2.1. Cleaning of substrates and alignment of 2-DNA

Silicon <p-100> wafers were cut into 1cm? pieces with a diamond tip pen. The wafers
were then sequentially swabbed in high purity acetone, propanol and Nanopure water
using a cotton bud. The surface was then further cleaned by treatment with a sodium
dodecyl sulphate (SDS) solution, heated to 50°C (0.01g SDS per 100mL H,0O) for 20
minutes. This was followed by thorough washing with copious amounts of Nanopure
water. The wafers were treated in “piranha” solution (4:1 H,SO4:H,0;) for 45 minutes
which serves to oxidise the surface and remove any residual organics. After washing
with Nanopure water and drying in an oven for 30 minutes the wafers were modified by
treatment with chlorotrimethylsilane (SiMesCl) vapour to produce a self-assembled
monolayer of trimethylsilane (TMS) on the wafer surface. This involved the wafers
being placed on top of a small sample tube contained in a larger sealed sample tube with
200uL of MesSiCl and left to stand in the vapour for 8 minutes. Static contact angle
measurements, using Nanopure water as the probe liquid, carried out upon the TMS-

modified surfaces, revealed them to have contact angles of 65° (typically).

Molecular combing was used to align DNA molecules on the TMS-modified substrate
for AFM/EFM analysis; 5 pL of A-DNA solution (stock 500 ugmL™ diluted to 300 pg
mL™") was placed on the substrate surface and the droplet combed in a uniform direction

across the surface using a micropipette tip. This procedure was repeated 20 times.

Wafers used for EFM analysis were silicon <p-100> n++ with a 200 nm thick thermally
grown oxide layer on top. Before cleaning and alignment of DNA, one side of the wafer
was treated with HF solution (10% ag.) to remove the oxide layer and provide an

electrical contact for future measurements.

3.2.2. Metallisation of surface immobilised DNA

DNA metallisation was performed under an inert N, atmosphere using Schlenk
apparatus at room temperature. The copper salt solution was sonicated for several
minutes prior to use in order to achieve the best solubilisation possible. The DNA-
aligned substrates were incubated with a solution of tetrakis(acetonitrile)copper(l)
hexafluorophosphate ([Cu(CH3CN)4][PFs]) (10 mM, 1 mL, dry CH3CN) in a Schlenk
flask for 20 minutes to afford Cu(l) doped DNA. This was then treated with the
dropwise addition of phenylsilane (PhSiH3) (20 mM, 1 mL, dry CH3CN). The substrate
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was left to incubate in the solution for 4 minutes, after which a colour change in the
solution from colourless to a pale golden brown was observed. Finally, the sample was
removed from the metallising solution, washed with dry acetonitrile and finally dried

under a flow of nitrogen.

The final DNA-templated copper nanostructures were characterised using powder-
XRD, XPS, FTIR and AFM. The electrical properties were tested using EFM and C-
AFM.

3.2.3. X-ray Diffraction (XRD)

For analysis of DNA-templated copper nanomaterial, two samples were prepared. The
first sample was prepared using surface-immobilised DNA and the second sample
prepared in solutions of DNA in order for the product material to precipitate as a
powder. Both preparations follow the ‘doping/reduction’ approach described in section
3.2.2.

The surface based sample was prepared in the same manner to samples prepared for
AFM/EFM studies (see section 3.2.2.2) with the exception of using porous silicon as
opposed to flat silicon wafers. The high surface area of the porous Si yields a higher
density of material on the substrate, sufficient enough to afford adequate signal to noise
ratio in the powder spectrum. The type of DNA used was calf-thymus DNA (0.5 mg
mL™).

Porous silicon was prepared by electrochemical etching. Firstly, the silicon wafer was
washed with high purity acetone before loading into an electrochemical cell. HF:EtOH
(1:1 v/v) was added to the cell and a current (10 mA) was applied to the set-up for 10
minutes, after which the sample was removed, washed with copious amounts of
Nanopure water and dried under a flow of nitrogen. Deposition of DNA was carried out
by drop casting the solution into the pores of the substrate and leaving to dry for 2-3
hours in a laminar flow cabinet. The process was repeated to ensure a high quantity of
DNA deposited. The sample was then transferred into a N,-filled Schlenk flask and
metallisation was carried out as described in section 3.2.2. The concentration of Cu(l)

salt and phenylsilane used were 25 mM and 50 mM, respectively.

The second sample was prepared in a solution of calf-thymus DNA (0.5 mg mL™, 10

mL) dispersed in equal volumes of Nanopure water and acetonitrile. The solution was



briefly sonicated using an ultrasound bath (60 Hz, Sonomatic, Langford Ultrasonics) in
order to achieve good dispersion. The Cu(l) reagent was then added to the DNA
solution and magnetically stirred for 20 minutes before addition of two equivalents of
phenylsilane. The reaction mixture was continuously stirred until the solution turned
from colourless to light golden brown and a dark brown precipitate had formed. The
powder was collected by decanting off the solution and filtering using a Buchner funnel
and dried (99.1 mg, 62% yield). The supernatant was kept and centrifuged at 5000 rpm
for 5 minutes and the colourless liquid containing Cu-DNA nanostructures were aligned
onto a clean silicon substrate for AFM analysis. The powder was washed with ethanol,

Nanopure water, dried and then submitted for XRD analysis.

Powder X-ray diffraction data was obtained using a PANalytical X’Pert Pro
Diffractomer equipped with a Cu Kay radiation source (A= 1.54 x10™0M).

3.2.4. X-ray Photoelectron Spectroscopy (XPS)

Samples were prepared similarly as for AFM/EFM analysis (see section 3.2.2) in order
to make direct correlation between the two sets of techniques (i.e. to determine the
chemical identity of what is observed by AFM). XPS requires a higher density of DNA
on the surface in order to obtain high photoelectron signal, therefore a solution of DNA
(500 ug mL™, 60pL) was evaporated upon the SiO, surface. Silicon substrates used for
XPS analysis were not modified with trimethylsilane in order to increase the wettability
of the sample surface. In this way a thin film of DNA is adsorbed onto the surface. The
sample was then placed in an oven at 60°C for 15 minutes to dry. Metallisation of the
substrate was carried out as detailed before (section 3.2.2) except that the concentrations
of the reagents were increased 5 fold in order to compensate for the higher density of
DNA bound to the surface compared to AFM/EFM sample preparations.

XPS was carried out using a Thermo K-Alpha XPS system with a microfocused,
monochromated Al Ka X-ray source at a take-off angle of 90°. The size of the X-ray
spot was 400 um x 700 pm. Linear backgrounds were used for singlet fitting and
Shirley backgrounds in the case of doublets. Line shapes consisted of a mixture of
Gaussian and Lorentzian models. Signal intensities are measured in counts (of

photoelectrons) per second (CPS).

During data acquisitions, a low energy electron/ion gun was used for charge

compensation of the sample. Fine binding energy adjustments were made by
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referencing to the internal adventitious carbon peak at 284.8 eV * 0.1 (C1s), which
arises from carbon contamination from air. The presence of the adventitious carbon
layer is a convenient charge reference for conducting samples on an insulating
surface.”> *® For copper nanoparticles an adjustment of +0.7 eV was required for
calibration of these spectral files. For Cu-DNA nanostructures a +2.3 eV correction was

required.

3.2.5. Fourier-Transform Infra-Red (FTIR) Spectroscopy

Two samples were prepared for analysis by FTIR. Sample ‘A’ is prepared by adopting
the usual two-step ‘doping/reduction’ approach on surface-immobilised DNA (as is
used for all other studies in this chapter). Sample ‘B’ preparation follows the

‘doping/withdrawal/reduction’ approach (described below).

Sample A- Formation of Copper Nanostructures via ‘doping/reduction’ approach on

surface-immobilised DNA.

The sample was prepared on a DNA-immobilised silicon substrate as for AFM analysis.
DNA (CT-DNA, 1mg mL™?, 60 uL) was deposited onto the surface by drop cast so as to
produce a thick film for sufficient FTIR signal acquisition. An FTIR spectrum was
recorded on the bare DNA film. Metallisation of the DNA film was then carried out, as
described in section 3.2.2. An FTIR spectrum of metallised DNA was recorded.

Sample B- Formation of Copper Nanostructures via ‘doping/withdrawal/reduction’
approach on surface-immobilised DNA

The sample was prepared as follows, (i) the DNA film (prepared by drop cast
technique) was treated with Cu(CH3CN)4.PFe (10 mM, 1 mL, dry CH3;CN) for 20
minutes under nitrogen and then (ii) removed from the solution, washed with dry
acetonitrile and dried under a flow of nitrogen, and finally (iii) the Cu(l)-DNA film was
treated with a solution of phenylsilane (20 mM, 1 mL, dry CH3CN) under nitrogen,
removed, washed with dry acetonitrile and finally dried. FTIR spectra of bare DNA,
Cu()-DNA and metallised DNA were all recorded.

All FTIR spectra (in the range 600-4000 cm™) were recorded in transmission mode at

room temperature with a Bio-Rad Excalibur FTS-40 spectrometer (Varian, Palo Alto,



CA) equipped with a liquid nitrogen cooled deutarated triglycine sulphate (DTGS)
detector, and were collected at 512 scans with 2 cm™ resolution.

3.2.6. AFM and EFM investigations

TappingMode AFM imaging of surface topography was performed in air on both a
Multimode Nanoscope Illa and Dimension Nanoscope V (Veeco Instruments Inc.,
Metrology Group, Santa Barbara, CA) using ‘TAP300AI-G’ or ‘TESP7’ probes (n-
doped Si cantilevers, Veeco Instruments Inc., Metrology Group), with a resonant
frequency of 234-287 kHz, and a spring constant of 20-80 Nm™. Data acquisition was
carried out using Nanoscope version 5.12b36 (Multimode I11A) and Nanoscope version
7.00b19 (Dimension Nanoscope V) software (Veeco Instruments Inc., Digital

Instruments).

EFM measurements were carried out in air on a Dimension Nanoscope V system using
MESP probes (n-doped Si cantilevers, with a metallic Co/Cr coating, Veeco Instruments
Inc., Metrology Group), with a resonant frequency of ca. 70 kHz, a quality factor of
200-260, scan rate of 0.3 Hz and a spring constant of 1-5 N m™. Data acquisition was

carried out using Nanoscope version 7.00b19 software.

For both SPM systems, vibrational noise was reduced with an isolation table/acoustic

enclosure (Veeco Inc., Metrology Group).

EFM samples are prepared by aligning individual nanostructures on a thermally grown
silicon oxide (200 nm) wafer. The backside of the wafer is chemically etched using HF
to provide electrical contact to the AFM chuck. A conductive tip is used to probe the
surface at a set lift height (typically 50-70 nm) above the surface. The tip is operated in
“TappingMode ™ AFM and makes two passes over the surface; the first past acquires a
topography image of the sample and the second pass is performed at a set lift height and
measure changes in the tip-substrate capacitance. We make the assumption that during
the first pass the electrostatic forces are negligible compared to the short range atomic
forces, whereas the electrostatic forces become dominant during the second pass. The
lift height is chosen to be substantially larger than the amplitude of the tip so as to
isolate any changes in the capacitance to the sample composition rather than changes in

the tip-substrate distance. An independently controlled bias was used to create an
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electric field between the tip and the sample (the tip was grounded, whilst the bias was

applied at the sample).

3.2.7. Annealing of Cu-DNA nanostructures

These experiments were performed at the Department of Chemistry, Universidad
Auténoma de Madrid (Spain), under the guidance and supervision of Dr Felix Zamora
and his research team. The DNA-templated copper nanomaterial aligned on silicon
substrates were placed in a 1 inch quartz tube filled with Ar to which an 800 sccm
(standard cubic centimetre per minute) H, flow was added and the sample was heated to
temperatures between 300°C and 500°C. Once the desired temperature was reached the
sample was left to anneal for 1 hour and then the furnace was left to cool to room
temperature before removing the sample.

3.2.8. Conductive-AFM (C-AFM)

These experiments were performed at the Department of Physics of Condensed Matter,
Universidad Auténoma de Madrid (Spain), with the guidance and supervision of Dr
Julio Gomez-Herrero and his research team. Samples of the annealed DNA-templated
copper nanostructures were prepared and isolated on a TMS-modified Si/SiO, substrate
as described in sections 3.2.1 and 3.2.2. A metal contact to the nanostructures was
prepared by deposition of a thin layer of gold (~30 nm) onto the sample surface; firstly a
mask, in the form of a Scanning Probe Microscopy (SPM) cantilever chip, was fixed
onto the sample surface which was then placed in a vacuum chamber at a pressure of
~5x10° mbar. The sample was held face up using a bridge support with a gold filament
(connected to a thermocouple and ammeter) positioned directly underneath the sample.
A current was passed through the filament until a temperature of ~1000°C was recorded
and the gold began to sublime at a rate of 0.6 A s After which, the sample was flipped
upside down until the correct thickness of gold was deposited onto the sample. The
sample was then removed from the chamber and the mask was detached. A drop of
silver ink was applied from the gold to the metallic chuck of the AFM to provide
electrical connection. The circuit was completed via the contact of the metallic AFM tip

to the Cu-DNA nanostructure.
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Conductive-AFM (C-AFM) is usually carried out in contact mode for current imaging;

however, “TappingMode ™

was employed here to acquire topographical data before
mechanical contact to the nanostructure was made to acquire current-voltage (i-V) data.
The tips used were AFM cantilevers with a ~50 nm Au/Pd coating, which serves as the

mobile electrode.
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3.3. Results and Discussion

This section is divided into two parts: part (1) describes the characterisation of copper
nanoparticles (CuNPs) produced from the reaction of Cu(l) with phenylsilane in the
absence of DNA and part (2) describes the formation and characterisation of the DNA-

templated form of this material.

(1) Non-templated  Studies- Formation of  Copper

Nanoparticles

Investigations are made here into the compatibility of phenylsilane (PhSiH3) for
reduction of tetrakis(acetonitrile)copper(l) hexafluorophosphate (Cu(CH3CN)4.PFg) in
the preparation of copper nanoparticles (without presence of DNA to act as a template).
This non-templated approach was investigated first in order to ensure the successful

formation of metallic copper via the reaction scheme employed.

3.3.1. Synthesis & UV/Vis Spectroscopy

Initial studies, based upon spectroscopic evidence, were made to confirm that this
approach provides a successful route to metallic copper. The first general indications of
a chemical change in the reaction solution, following addition of phenylsilane to Cu(l),
were conveyed by a colour change. The colourless Cu(l) acetonitrile solution
immediately turns to dark golden brown upon injection of phenylsilane. After several
hours of incubation a dark red/brown precipitate forms at the bottom of the container
(see fig 3.3). This colour change was studied in more detail using UV-Vis

Spectroscopy.
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Figure 3.3: (left) Image of a solution containing a dispersion of copper nanoparticles in acetonitrile and
(right) the same solution after centrifugation showing the formation of copper powder

The supernatant was decanted and centrifuged to remove residual solid, after which, the
pure solution was diluted for analysis by UV/vis spectroscopy. The dried powder was

kept behind for analysis by powder-XRD (discussed later in section 3.3.2.1).

Figure 3.4 shows the UV/Vis spectrum obtained for the CuNP solution. The broad
absorption centred on ~530 nm is attributed to the surface-plasmon resonance of copper
nanoparticles.!” The resonance is due to oscillation of the free electron density on the
surface of copper nanoparticles; whereby the plasmon is a quantisation of this
phenomenon. The broadness of the absorption may be attributable to a large size

distribution of the nanoparticles.
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Figure 3.4: UV-Vis absorption spectrum copper nanoparticles dispersed in a solution of acetonitrile
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The plasmon absorption at ~530 nm is blue shifted from the typical 560-580 nm bracket
for plasmon absorption of copper nanoparticles found in the literature.'® ** *° A blue
shift could indicate a smaller mean size of copper nanoparticles; leading to an increase
in the metal band gap. However, it is also known that, the position of the plasmon
absorption is affected by other factors such as particle shape, solvent and reducing agent

employed.*?

As mentioned earlier for this reaction, according to Takahashi et.al., the solvent effect

on particle size dispersity and purity was found to be small."

The same group also
tested a range of reducing agents for a variety of Cu(l) salts (including Cu(OCOCHj3)
CuCl and CuBr) in different solvents.** They found PhSiH3 to be the most effective at
reducing Cu(l) salts into copper nanoparticles, which resulted in a fairly low degree of

size dispersity (1-8 nm).

The solution of copper nanoparticles prepared here was diluted in acetonitrile and
deposited onto a TMS-modified silicon substrate for structural analysis using AFM
(figure 3.5, left). The nanoparticles were found to be spherical in shape and typically 4-
10 nm in height; a value consistent with the nanoparticles formed in Takahashi’s
experiment.** Nanoparticles larger than this value (up to 20 nm) were also observed, but
less frequently.

Figure 3.5: (left) AFM topography image of Cu Nanoparticles deposited on a silicon substrate from a
dispersion of the reaction solution in acetonitrile. The heights of the particles observed were generally 4-5
nm. Data Scale= 10 nm. (right) TEM contrast image of Cu Nanoparticles dispersed on a Silicon Nitride
grid. Inset: EDX spectrum of the same material indicating the presence of copper
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The product was also analysed by Transmission Electron Microscopy (TEM) (figure
3.5, right) fitted with an Energy Dispersive X-ray (EDX) analyser to assess the
elemental composition. EDX signals arise due to the emission of X-rays from the
specimen under a focused electron beam. The electron beam may excite an inner-shell
electron causing it to eject from the shell. This leaves a positive hole which is filled by
an electron dropping down from an outer shell. The drop in energy is compensated by
the release of an X-ray. The energy of the emitted X-ray is the difference between the
inner-shell and outer-shell energies and is therefore characteristic of one particular

element.

The EDX spectrum (inset figure 3.5, right) indicates the nanoparticles to consist of
copper. Although EDX confirms the presence of copper, the technique is unable to
determine oxidation state. Therefore EDX is unable to distinguish between copper as a
metal or as an oxide, for example. The particles were found to be ~6-10 nm in diameter,
corresponding quite well with nanoparticle heights measured from the AFM data (~4-10
nm). Measurement of the particle width using AFM is not very feasible, however. The
large radius of the AFM tip (12 nm, maximum), restricts lateral resolution of surface
features, rather substantially. The AFM height date on the other hand, as described, does

correlate with the sizes obtained here.

The data obtained here has shown that copper nanoparticles can be prepared through
reaction of Cu(l) with phenylsilane without the need for a stabilising agent in solution.

We now sought to perform an in-depth chemical analysis of this product.

3.3.2. Chemical characterisation of nanoparticles

3.3.2.1. Powder X-ray Diffraction (XRD)

Powder XRD was employed for determining the chemical identity and crystallite phases
of the nanoparticles. Figure 3.6 shows the XRD pattern obtained from the dried powder
of the reaction. The main reflections seen at 26= 43.3°, 50.5°, 74.1°, 89.9°, 95.1° and
117.0° can be indexed to the crystallographic planes of Cu® in the order Cu (111), Cu
(200), Cu (220), Cu (311), Cu (222) and Cu (400), respectively** '® and a small peak at
~36° due to CuO.
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Figure 3.6: XRD pattern of Cu’ powder prepared in solution by reaction of Cu(CH3CN)..PFs with
PhSiH3. Inset: Expanded region 26= 20-50°, showing a minimal amount of oxidation has taken place.
Analysis of the Cu(111) peak fitted to a Pseudo-Voigt profile using the Scherrer Equation indicates the
average crystallite size to be ~40 nm. Repeat analysis on the CuO (111) peak gave an average crystallite
size of the CuO ~ 4nm

Information from the diffraction pattern (FWHM of peaks) was also able to be used to
assess the average crystallite diameter of the copper material produced, using Scherrer’s

Equation’ (equation 3.1):

1=K\ /Bcos(0) (equation 3.1)

where 7= mean diameter of the crystallite, K= shape factor (constant), A= X-ray wavelength p=

line broadening at full width half maximum (FWHM) and 6= Bragg angle

The mean diameter of the metallic copper phase was 40 nm (based on analysis of the Cu
(111) peak using X’Pert Data Viewer software). The inset of figure 4.6 shows an
expanded region in the spectrum from 20-50°. This reveals a small peak at ~36°

corresponding to the CuO (111) plane. Scherrers’ equation was again employed, for

"It is noted that estimation of particle diameter using the Scherrer equation is limited to nanoscale objects
and thus breaks down with crystallite dimensions >100 nm. The value also constitutes a lower bound to
the estimate.
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estimation of the mean diameter of the CuO phase; albeit to a low degree of accuracy
due to the error associated with measuring the FWHM of this peak. The calculation
gave a value of ~4 nm, which is considerably smaller than that obtained for Cu® and is

unlikely to comprise much of the bulk material in the sample.

The copper surface however, is the most likely region for oxidation to occur and this
will therefore be investigated by X-ray Photoelectron Spectroscopy (XPS), which is an
ideal tool for surface composition analysis.

3.3.2.2. X-ray Photoelectron Spectroscopy (XPS)

XPS is quantitative technique for chemical analysis of solid samples and is highly
surface sensitive. It is used here to elucidate the surface composition of copper
nanoparticles, prepared in the absence of DNA to act as a template. Nanoparticles are
drop cast from solution onto a silicon support for analysis. All peak values are quoted as
binding energies; for 2p spectra these are in reference to the ‘2ps,’ peaks only. The red
line in the spectra represents the sum fit, the grey lines represent the individual peak fits

and the hollow squares represent the actual data points.

The Cu2p spectrum (figure 3.7, top) shows a split band arising from the spin-orbit
coupling of 2p electrons.* The asymmetry in the main Cu2ps, and Cu2py, envelope
peaks, as indicated by the slight shouldering suggests the presence of multiple
components in the spectrum. These can be assigned as comprising two sets of doublets.

Firstly, the peak at 932.7 eV (for Cu2ps, with splitting= 19.8 eV) is known to originate
from Cu® and is in good agreement with the literature values.'*?° However, there can be
associated challenges/difficulties with the interpretation of the Cu2p spectra. The Cu2p
binding energy values for Cu® and Cu' species overlap considerably due to a small
energy separation (~0.1 eV) of these spectral components and they cannot therefore be
easily distinguished from one another. This incidence suggests that the peak at 932.7 eV
could be due to two possible species, Cu' or Cu’. The interpretation is made especially
difficult in view of the fact that neither species gives rise to characteristic satellite
structure (as Cu" does, explained later in this section) as a result of both species
possessing a filled 3d sub-shell.?* Evaluation of additional data such as XRD is

 The +1/2 and -1/2 spins couple with the orbital angular momentum of the p orbital (which is 1) giving
rise to a doublet ina 2:1 (3/2 : 1/2) ratio.
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therefore necessary to make this distinction, in order for us to be confident that the
species in question is indeed metallic copper. As discussed based on the XRD data in
the previous section, the powder obtained from the reaction of Cu(l) with phenylsilane
pointed to pure metallic copper rather than Cu' species such as Cu,O. This supports the

assignment of metallic copper in the XPS data, here.

The other doublet at 934.5 eV (for Cu2ps;, with splitting= 20.1 eV) is attributable to
Cu(OH),.% The integrated area of the Cu and Cu(OH), doublets are ~38% and ~36%,

respectively.
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Figure 3.7: (top) Cu (2py, and 2p3;,) and (bottom) O (1s) XPS spectra of Cu powder NP’s (as for XRD)
deposited on a silicon support. The asymmetry of the Cu2p doublet peak suggests multiple lines arising
from Cu® and Cu(OH), at 932.7 eV and 934.5 eV, respectively, with splitting values of 19.8 eV and 20.1
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eV, respectively. The existence of the satellite peak at ~942.3 eV is indicative of Cu(ll) paramagnetic
species, which confirms the presence of Cu(OH),

2+

The presence of a Cu“" “shake-up” satellite peak at 962.1 eV could also be identified
and is fitted as a separate peak. The satellite peak originates from the poorly charge-
screened state of Cu?* (2p°3d°) following a 2p electron ejection, whereas the main Cu?*
doublet peak corresponds to the well-screened state (2p°3d™®). The latter originates from
charge-transfer of a ligand electron into a 3d orbital of copper.?* ?* This serves to screen
the core-hole charge following ejection of a core electron (2p°). The satellite signal

further verifies the existence of a Cu®* species (i.e. Cu(OH),) on the sample surface.??

Analysis of the O1s spectrum (figure 3.7, bottom) of the CuNP’s reveals an
asymmetrical peak owing to the presence of two single components; Cu(OH), at 530.5
eV, which is in good agreement with a previous report,”® and SiO, at 532.2 eV.

In summary, XRD confirmed the nanoparticles to consist of metallic copper, but was
unable to provide evidence of Cu(OH), on copper in the sample. This is due to the
technique’s relativity low surface sensitivity compared to XPS. XRD is a bulk
diffraction technique and can therefore provide positive identification of species in the
bulk phase, only. Based on analysis of both sets of data, it is logical to assert that, the as
formed nanoparticles are comprised of a metallic copper core (bulk) encapsulated by a
Cu(OH); shell layer. The presence of high oxidation species on the surface of copper is
likely a consequence of the material being in contact with air. It has been noted in the
literature that the formation of copper hydroxide, a metastable overlayer, is part of a
mutually dependent process towards the full oxidation of metallic copper to the more
stable Cu0.?®
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(2) DNA-templated Studies- Formation of 1-D Copper

Nanostructures

It has so far been demonstrated that copper nanoparticles can be successfully formed
through the reduction of Cu(l) ions using phenylsilane as a reducing agent in low

polarity solvent.

In the following section, reactions are performed at DNA-templates immobilised on
TMS-modified silicon substrates. The role of DNA is to generate 1-dimensional
nanostructures on the surface by guiding and controlling the formation of the previously
described copper nanoparticles in a single uniform direction. In each experiment the 2-
step (‘doping/reduction’) chemical templating approach (as described in section 3.2.2)
on surface-immobilised DNA is adhered to. This involved (i) doping of DNA with
Cu(l) ions and (ii) reduction of DNA-Cu(l) by addition of phenylsilane. Various
techniques were employed to characterise the DNA-templated copper nanomaterial
chemically (XRD, XPS), structurally (FTIR, AFM) and electrically (EFM, C-AFM).

Firstly, chemical characterisation of the product material was carried out using XRD
and XPS.

3.3.3. Chemical characterisation of 1-D nanostructures

3.3.3.1. Powder X-ray Diffraction (XRD)

As well as preparing a surface-based sample by reduction of Cu(l) on surface-
immobilised DNA, as described above, analysis of a copper “powder” was also
obtained by carrying out a large-scale preparation in agueous DNA solution (see section
3.2.3).

Surface-based sample. In order to obtain useful XRD data of surface based material, it
Is necessary to increase the density of both DNA and copper in the sample compared to
usual AFM sample preparations; designed for single molecule analysis. It was found

that typically flat silicon wafers do not support/hold a sufficient density of material on
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the surface required to yield adequate ‘signal to noise’ ratio in the XRD spectra (even
over long scan intervals). To overcome such limitations, one may increase the surface

area of silicon.

Porous silicon has a large specific surface area capable of supporting a high density of
material, > ? such as DNA. It has been used extensively in the preparation of
nanocomposite materials and doped/modified porous networks.?” 23! Such materials
have been shown to offer more efficient output properties, such as luminescence.*
Electroless metallisation of porous silicon has also been used in the past to form metal
contacts such as nickel.?® Indeed thin copper films have been grown onto
electrochemically prepared porous silicon and were characterised by XRD.* In this
experiment the high surface area of the porous substrate, formed by electrochemical
etching also, is exploited for pore filling by means of adsorption of DNA from solution.
After which, the substrate is metallised by electroless deposition of copper, as described

in section 3.2.2.

Electrochemical etching, using HF(aqg.), of a clean silicon substrate resulted in a dense
H-terminated porous silicon structure, as indicated by a simple FTIR transmission
spectrum (figure 3.8). The spectrum reveals a split band owing to three separate Si-H
stretches, at 2087.9 cm™, 2111.1 em™ and 2138.6 cm™, corresponding to SiH, SiH, and
SiHs, respectively.®® Another strong absorption was found at 913.6 cm™ which is
assigned to the SiH. scissors mode.** The presence of these four distinct Si-H stretches

in the FTIR spectrum confirmed the porous nature of the silicon substrate.

~97 ~



D
o
1l

(O
o
1l

Transmittance (%)
w B
o o

N
o
1l

=
o

2500 2000 1500 1000 500
Wavenumber (cm™)

Figure 3.8: FTIR spectrum of porous silicon showing the distinct Si-H stretches synonymous with a
porous silicon substrate

DNA was then deposited onto the porous silicon substrate and metallised with copper
via the usual 2-step doping/reduction approach in dry acetonitrile. The XRD spectrum

was recorded, as shown in figure 3.9, on this metallised DNA-porous silicon sample.
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Figure 3.9: XRD spectrum in the region 30-80° of Cu-DNA nanomaterial formed on a porous silicon
surface, with inset showing narrow scan containing the highest intensity reflection attributable to metallic
copper
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A weak copper signal is observed at ~43°; the expected position for the main reflection
of metallic copper (111). The narrow scan at this region (figure 3.9, inset) shows this
peak more clearly and provides evidence for metallic copper in this sample. In order to
provide higher intensity XRD data, a sample is prepared in DNA solution in order to

precipitate a ‘powder’ and a further spectrum is recorded.

Solution-based sample. This sample was prepared under different reaction conditions
than for the surface-based sample. Namely, the sample was prepared in a solution of
DNA. DNA is insoluble in acetonitrile, which is required for solubilising Cu(l) and
phenylsilane, but is highly soluble in water. Therefore a mixed water/acetonitrile
solvent system was used in this preparation. For the surface-based approach where

DNA is fixed to the substrate, pure dry acetonitrile was used as solvent.

Figure 3.10 shows the powder-XRD spectrum obtained on the dried copper material
obtained by precipitation from DNA solution. The set of reflections seen at 43.3°
(FWHM= 0.64°), 50.5°, 74.1°, 90.0° and 95.2° can all be indexed to the
crystallographic planes of metallic copper as quoted earlier in the chapter (section
3.3.2.1). The remaining two peaks at 36.5° (FWHM= 0.62°) and 61.5° are attributed to
the two most intense reflections of cuprous oxide (Cu,0), the (201) and (111) planes,
respectively. Although, another intense reflection of Cu,O is masked by the main Cu
reflection at ~43°, where there is a clear shouldering of the peak present. The use of
‘wet’ solvent conditions (i.e. the presence of water) in this large-scale solution
preparation may have led to the oxidation of copper to Cu,O. Oxide species were not
clearly present in the XRD for copper nanoparticles (see section 3.3.2.1), where almost
pure metallic copper was formed, and this may be due to the use of entirely dry reaction

conditions in their preparation.
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Figure 3.10: XRD spectrum of powder sample of Cu-DNA nanostructures formed in a solution of DNA

The mean crystallite size of Cu® based on the (111) reflection was calculated as 13.2
nm, based on the Scherrer equation (3.1). This value indicates that the material formed
is nanoscale and may be in fact DNA-templated. Comparison of this value to that
obtained for the non-templated copper nanoparticles at 40 nm mean diameter suggests
that DNA is responsible for controlling the growth/aggregation of nanoparticles in
solution. The role of DNA should, ideally, serve to produce efficient packing of copper
material along the template axis for generation of smooth and continuous one-
dimensional architectures. For Cu,O the mean crystallite size was calculated as 13.3

nm, based on the (111) reflection also.

Powder-XRD studies conducted by Watson et.al on their DNA-templated copper
powder samples revealed that the material formed was microcrystalline.” This is in

contrast to the material obtained here which is nanoscale.

The data presented thus far has indicated that metallic copper has formed in the
presence of DNA templates (and a small amount of oxidised species), in both solution

and surface studies, and the resulting material is nanoscale.
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3.3.3.2. X-ray Photoelectron Spectroscopy (XPS)

The aim of this experiment is to provide further evidence of metallic copper in the
sample, as suggested by XRD, and assess the surface composition. XPS is a highly
surface sensitive technique, which should provide conclusive evidence of (potential)

surface oxidation species, such as CuO or Cu(OH),, residing on the nanostructures.

The C1s spectrum of the sample is shown in figure 3.11 (left) where the adventitious
carbon peak is identified. The higher binding energy peaks fitted to the spectrum (four
of them) are due to other carbon based functionality such as those that make up the

DNA nucleobases and sugar groups.
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Figure 3.11: (left) Cls and (right) P2p spectra of Cu-DNA nanomaterial formed on a silicon substrate.
TheC1s spectrum is used to identify adventitious carbon (marked with an asterisk) and the P2p spectrum
is used to characterise DNA

The presence of DNA on the surface is confirmed by analysis of the P2p spectrum
(figure 3.11, right). There are two sources of phosphorus in this sample: (i) DNA
phosphate and (ii) PFg counter ion of the Cu(l) salt. Both species were resolved in the
P2p fit. The phosphate peak was identified at 133.9 eV which is in good accordance
with the literature,® and the peak at 137.2 eV is close to the reported binding energies
for salts containing the PFg counter anion.®® The presence of the counterion within the
sample may suggest that the Cu(l) salt was not fully solubilised and had precipitated

onto the surface.
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The Cu2p spectrum, shown in figure 3.12, displays an asymmetrical doublet which can
be ascribed as comprising three individual doublets. These lines were fitted to 932.8 eV
(splitting=19.8 eV), 934.4 eV (splitting= 20.0 eV) and 936.2 eV (splitting= 19.9 eV),
which match the binding energies and splitting values generally reported for Cu°,
Cu(OH), and CuF,,*" respectively. The area under each peak was calculated as a
percentage of the total area of the fitted spectrum. These values give an estimated %
composition of the various forms of copper in the sample. The resulting composition of
Cu®, Cu(OH), and CuF, was 42.9%, 29.3% and 15.5%, respectively, indicating much of
the material to consist of metallic copper. The presence of copper and copper hydroxide
in the sample agrees with the identification of these species in the XPS data of the non-
templated copper nanoparticles (see section 3.3.2.2). This could originate from the
disproportionation of Cu* to Cu® and Cu®* (i.e. Cu(OH),. Another explanation offered,
for the origin of Cu?*, is due to the oxidation of copper metal upon being formed, after
being in contact with air. Following prolonged exposure to air Cu(OH), may convert to
the more stable CuO.

CuF; on the other hand, is an impurity likely to originate from the presence of F* of the
counter ion. The presence of Cu®" species in the sample is further supported by the
origin of the Cu®* satellite peak at 934.5 eV.
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Figure 3.12: Cu2p (py, and ps2) spectrum of Cu-DNA nanomaterial showing doublet formation owing to
the splitting of individual lines. The asymmetry of the main envelope peaks indicates the presence of
multiple components in the sample. These are labelled 1-3
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Cu(OH), was identified as a singlet in the Ol1s spectrum (figure 3.13) at 531.3 eV,
which is in good agreement with the literature.®® * The remaining two peaks at 532.9
eV and 534.5 eV are due to the SiO; substrate and, to a lesser degree of confidence,

ketone functionality.

33000
1= Cu(OH),,531.3 eV O1s

2=S5i0,,532.9eV
3= ketone, 534.5 eV
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Figure 3.13: O1s spectrum of Cu-DNA nanomaterial formed the silicon surface. The peak was fitted to
three different components as indicated by numbers 1-3

Copper hydroxide (Cu(OH),) is observed as a major component in the XPS spectra
here, but was not identified in the XRD pattern. Based on this evidence it seems likely
that the copper hydroxide resides primarily on the surface of the copper as a thin layer
(as was hypothesised for copper nanoparticles). The low surface sensitivity of XRD
could explain why Cu(OH), was not observed in this case. Taking all of the XRD and
XPS data into account, the Cu-DNA nanostructures produced from the surface-based
reaction are likely to be comprised of a metallic copper core encapsulated with a copper

hydroxide shell.
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3.3.4 Structural characterisation of 1-D nanostructures

3.3.4.1. Fourier Transform Infra-Red (FTIR) Spectroscopy

FTIR spectroscopy is employed here as a technique to investigate and elucidate the
interaction(s) of DNA with Cu(l) ions. The interaction of DNA with Cu(ll) ions has
been well reported,'® “>*? however to the best of our knowledge there are currently no
spectroscopic data for the analogous interaction of DNA molecules with Cu(l).
Investigations into the possibility of forming such DNA-complexes are limited to
theoretical studies.** ** Indeed, to the best of our knowledge there is no experimental
evidence for Cu® binding to nucleobase sites of DNA or at the phosphate groups. A
search of the Cambridge Structural Database (CSD) did not return any results for Cu®
complexes binding to any of the nucleobases sites (unmodified or modified

nucleobases).

The potential to use weakly coordinating solvents to solubilise the reaction components
was a motivating factor for opting to use a Cu(l) precursor in preference to the standard
Cu(Il). The use of less polar solvents may lead to enhanced interaction of Cu(l) with
DNA binding sites, as a result of the ions being ‘free’ of strongly coordinating
molecules. These sets of experiments comprise the first FTIR studies, indeed the first
experimental studies, reported for Cu(l) ion-DNA interaction. Furthermore the binding
properties of copper metal on DNA are investigated by chemical reduction of the
DNA/Cu(l) nanomaterial.

Two approaches to Cu-DNA nanostructures will be investigated by FTIR in this section.
The first method is the ‘doping/reduction’ procedure (Method A), which involves
combining the Cu(l) and phenylsilane solution (both in acetonitrile solvent) during
reaction at surface-bound DNA to afford the in situ metallised DNA sample. This
experiment allows for FTIR comparison of DNA before and after metallisation. The
second method (Method B) is the ‘doping/withdrawal/reduction’ procedure, whereby
surface bound DNA is doped with Cu(l) and examined by FTIR. After which, the Cu(l)-
DNA sample will be placed into a pure reducing solution of phenylsilane, removed, and
then another spectrum will be recorded (full details given in section 3.2.5). This
experiment allows for FTIR comparison of DNA before and after complexation with

Cu(l) ions and then reduction to the zero-valent metal.
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Indications of Cu(l) and Cu(0) interaction with DNA are conveyed by significant
changes in the DNA peak positions/intensities following treatment with Cu(l) and
phenylsilane. All peak shifts reported are relative to the peak positions of bare DNA.

Method A- Formation of Copper Nanostructures via ‘doping/reduction’ approach on

surface-immobilised DNA

The spectrum of bare DNA (figure 3.14, black line) displays a range of backbone and
nucleobase vibrations/stretches of adenine (A), thymine (T), cytosine (C) and guanine
(G). The split band centred at 1670 cm™ (peaks 1 and 2) originates from C2=0 stretches
of guanine and cytosine, as well as the overlapping adenine, thymine and guanine
stretches. Other intense peaks are attributable to the phosphodiester backbone stretches
in the region 1050-1300 cm™. (peaks 10, 11 and 12). The remainder of the spectrum,
1300-1600 cm™, consist of less well defined peaks owing to the various C-C and C-N
stretches of the nucleobases in the double helix, as well as the C-C and C-O stretches in
the sugar moieties <1050 cm™. Full peak assignments are given in table 3.1 below and

are supported by references.> #>8

A number of small peak shifts in the FTIR spectrum (figure 3.14) of DNA are observed,
subsequent to the metallisation of DNA by treatment with combined Cu(l)/phenylsilane
solution (orange line). The numbers highlighted in red are the peaks which are affected

most strongly (>2 cm™).

~ 105~



Wavenumber (cm-')

1800 1700 1600 1500 1400 1300 1200 1100 1000 200
105 " A A N A N A A

—DNA ——Cu(0)/DNA

100 /\

95
90

85

Transmittance (%)

80

75

) @ (3) @ (5) (6) M 6 ©  (10) (11)(12) (13) (14)

70

Figure 3.14: FTIR spectra overlay of DNA film before (black line) and after (orange line) treatment with
Cu(CH3CN),4.PFg and phenylsilane. The numbers below the graph point to individual vibrations/stretches
of the DNA backbone and nucleobases. The numbers highlighted in red refer to absorptions which have
shifted by >2 cm™ (the resolution of the spectrometer) due to DNA-Cu® complexation, and they
correspond to the red numbers in the table below

Peak Assignment Wavenumbers (cm™)
number

N-H thymine; Adenine vibration; C6=0 stretch of 1692.8 1693.3
guanine

C=N cytosine; N-H adenine; C=7 adenine 1606.7 1606.7

| S=Niguanine &nd sderine sttotiy | [asmei ol ] fts7m2 ]
= In-plane vibration of guanine and cytosine 1529.8 1533.5 -

| CeNcoupled with aring vibrafon of guanine [ 14866 [148L4 ]
= C-N stretch of thymine, guanine and cytosine 1415.7 1417.8 -

[CNshechofguninesndoyiosine [T [BT
= C-N stretch of adenine 1324.8 1324.2 -

___-

PO2- symmetric stretch 1101.1 1097.4 3.7
- C-O deoxyribose stretch 1024 1020.4
_—_-

Table 3.1: Assignment of FTIR absorptions of DNA before and after metallisation with
Cu(CH3CN),4.PF¢/phenylsilane. The corresponding wavenumber shifts of each stretch due to metal
binding are shown in the table; the larger the shift the stronger the interaction. Each shift is in reference to
the bare DNA peak position
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Peaks 10-14 are all shifted by several wavenumbers. Each of these peaks is attributed to
the phosphodiester backbone of DNA. In addition to a change in peak position, the
phosphate band around 1050-1175 cm™ (comprising peaks 11 and 12) is significantly
reduced in intensity, indicating metal coordination at the DNA phosphate groups. The
negative charge of oxygen within the phosphate groups facilitates the interaction with
positive metal ions, providing partial charge neutralisation of the DNA duplex.*

Binding of metal ions frequently occur at these sites, particularly hard metal ions.**>°

Coordination to the nucleobases via the N and/or O donor sites may also be a possibility
for Cu* and is known for Cu?*.>>* A combination of both nucleobase and phosphate
binding has also been reported for Cu?*.>* > However there is no literature precedent for

Cu’” binding to un-modified nucleobase sites of DNA.

In these current studies, interaction at the nucleobase sites of G and C is implied by
peak shifts of the G and C ring vibrations (5 and 6) and a reduction in intensity at these
positions, following metallisation of DNA. The in-plane vibration of G and C increased
in wavenumber by 3.7 cm™, whereas the C8-N of adenine (A) decreases by 5.2 cm™.
The N7 site of G and A is a major binding site and is particularly common for metal
ions, irrespective of the nature of the metal ion.™® Other common binding modes are at
the 06 of G and N3 of A and C.>*

It has been demonstrated in the literature that a GC rich DNA environment is more
affected by addition of Cu?* than for AT rich DNA, indicating interaction at G and C
sites primarily.> % This result agrees with our FTIR data which indicated some
interaction of copper with C and G. Basu et.al compared the interactions of the four
nucleobases with individual Ag nanoparticles and determined the strength of interaction
of Ag to nucleobase in the order C >G > A > T.*® The exocyclic nitrogen of cytosine

was thought bind Ag more strongly.

Interestingly in figure 3.14 the intensity of the C6=0 stretch of guanine (peak 1) within
the split band centred at around 1680 cm™ remains unchanged after metallisation,
whereas the C2=0 stretch of cytosine (peak 2) is reduced in intensity following
metallisation. This could indicate preferential binding to the cytosine nucleobases over

guanine.
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Method B- Formation of Copper Nanostructures via the ‘doping/withdrawal/reduction’
approach on surface-immobilised DNA

FTIR spectra (figure 3.15) were recorded for comparison of (a) bare DNA, (b) Cu(l)
doped DNA and (c) Cu metallised DNA, via the ‘doping/withdrawal/reduction’
procedure described in section 3.2.5. The spectra are overlaid for direct comparison.

Table 3.2 gives the position of each peak and corresponding peak shift for comparison.

The recorded FTIR spectrum of DNA after Cu(l) doping treatment (b) does not result in
significant change to the spectrum relative to bare DNA (a). Additionally, there was
little change to the FTIR spectrum following reduction of the DNA-Cu(l) sample to
DNA-Cu(0) (c).

Wavenumber (cm?)
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100 " " " " " " " "
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Figure 3.15: FTIR spectra comparison of DNA before (black line), after treatment with Cu(CH3CN),.PFg
(blue line) and then following subsequent treatment with phenylsilane (orange line). The numbers below
the graph point to individual vibrations/stretches of the DNA backbone and nucleobases. There were no
significant changes to report in peak positions or intensities
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Peak Assignment Wavenumbers (cm™)
number

N-H thymine; Adenine vibration; C2=O  1692.5 1694.7 1693.7
stretch of guanine

C=N cytosine; N-H adenine; C=7 1606.9 1605.5 1604.9
adenine
In-plane vibration of guanine and 1530.3 1530.5 1529.8
cytosine

- C-N stretch of thymine, guanine and 1417.7 1418.6 1418.6

cytosine

_ C-N stretch of adenine 1326.2 1325 1327

- PO2- symmetric stretch 1102.5 1104.2 1101.9

C-O deoxyribose stretch 1017.1 1016.3

- ! | | | | |

Table 3.2 Assignment of FTIR absorptions of DNA before and after complexation with
Cu(CH3CN),4.PFg and reduction with phenylsilane. The corresponding wavenumber shifts of each stretch
due to Cu(l) binding Cu metal formation are shown in the table. Each shift is in reference to the bare
DNA peak position

As noted, there were no significant changes in the peak positions after DNA was treated
with Cu(l) ions. However, the most noticeable shifts included the C2=0 stretch of G (1)
which shifted by +2.2 cm™, the C-N stretch of G and C (8) shifting by -4.9 cm™ and the
PO? asymmetric stretch (10) shifting by -2.5 cm™. After the same sample was treated
with a solution of phenylsilane, the spectrum revealed the peak positions of 1 and 8
shifted back to a position matching more closely that of bare DNA. Only the
asymmetric phosphate stretch remained shifted (relative to bare DNA) after treatment

with phenylsilane.

The lack of significant changes in the FTIR spectra here may suggest that copper is less
strongly coordinated to the DNA template and/or less copper is bound per DNA
phosphate. These FTIR results are in contrast to those obtained from ‘Method A,’
whereby reduction of Cu(l) at DNA took place in situ. That approach led to more
change in the FTIR spectrum of bare DNA, in terms of changes in peak positions and

absorption intensities.

Indeed, the AFM data (figure 3.16) of Cu-DNA nanostructures prepared by each
respective method supports these results. An AFM topography image of a Cu-DNA
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strand produced by ‘Method B’ indicates an incomplete level of metallic coverage along
the template. In this example bare DNA is left exposed between particles, affording a
‘beads-on-a-string” assembly (refer to figure 3.16b). This is in plain contrast to the Cu-
DNA nanostructure prepared by ‘Method A’ which appears relatively smooth and
‘wire-like” (figure 3.16 a).

Method A

Method B, /

(b)

Substrate
background Substrate

i I background
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Figure 3.16: AFM topography images ‘a’ and ‘b’ of a Cu-DNA nanostructure prepared by ‘Method A’
and ‘Method B, respectively. Line traces are included underneath each image which shows the height
profile along the length of each nanostructure. Height scales= 10 nm, scale bars= 200 nm

A line trace was recorded along the length of the nanostructure in each image (shown
underneath) which displays the change in height as a function of distance along the 1-D
structure. The series of sharp peaks observed in the line trace of nanostructure ‘b’
indicates the granular morphology arising from the structures being comprised of a
series of nanoparticles, ~4-8 nm in height, distributed along the DNA template. The
regions between the sharp peaks in the line trace are likely to be bare DNA, where the
height is ~1-2 nm. The smoother line trace for nanostructure ‘a’ suggests the appearance
of a ‘wire-like’ structure or at least a continuous assembly of nanoparticles where the

height ranges from 5-8 nm.
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These results give insight into the growth mechanism of copper on surface bound DNA.
It has been previously reported that copper growth takes place via a ‘nucleation and
growth’ pathway,™ °> whereby nucleation sites act as seed platforms for growth of metal
to form ‘wire-like’ material. It is reasoned here that the ‘doping/withdrawal/reduction’
procedure (‘Method B’) does not provide nucleation sites in close enough proximity
along the DNA template for continuous metal growth to occur. Furthermore, in ‘Method
B,’ during chemical reduction of the Cu(l) bound DNA material, there is no further
source of Cu(l) in the reaction solution (other than that already bound to DNA) to drive
further metal growth. Conversely, for the ‘doping/reduction,” procedure (‘Method A”)
there is a further supply of Cu(l) in solution for extended metallisation of the DNA
template to occur. However, it remains in doubt whether structure ‘a’ is consistent with
nanoparticles densely packed together along the template or whether they are coalesced

into a single coating.

Therefore, a more comprehensive study of the Cu-DNA nanostructure morphology
prepared by ‘Method A’ is investigated by Atomic Force Microscopy (AFM). This is a
useful imaging technique for obtaining topographical information regarding the

nanoscale structures, and can be used to determine structure heights and morphology.

3.3.4.2. Atomic Force Microscopy (AFM)

AFM was carried out in “TappingMode™,” which is useful in particular for imaging
biological material, such as DNA. Structure sizes are determined by their heights using
step profile analysis in the AFM software. This is drawn as a line intersecting the

nanostructure at the point of interest.

As mentioned, this section is dedicated to the morphological analysis of the Cu-DNA
nanostructures obtained via ‘method A,’ described in the previous section (3.3.4.1). An
AFM image of a single nanostructure produced by this method was shown in figure
3.16a. However, before more of this data is discussed in detail, we first set out to
establish how a suitable set of reaction conditions for obtaining these smooth and
isolated Cu-DNA nanostructures (based on ‘method A’), were originally determined.
This was achieved by experimenting with the concentration of the reaction precursors,
Cu(l) and phenylsilane, for metallisation of DNA. Initially, samples were prepared
based on concentrations of 25 mM and 50 mM for Cu(l) and phenylsilane, respectively,

on DNA-immobilised silicon substrates.
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Figure 3.17 shows an AFM height image of a sample prepared in this manner.
Inspection of the image reveals a single strand covered by a dense layer(s) of
nanoparticles. Clearly the nanoparticles are non-selective for the DNA template under
these conditions. Nanoparticles seemingly deposit randomly over the entire substrate.

Thus, these concentrations lead to an excessive amount of non-specific deposition.

Figure 3.17: AFM “TappingMode ™ height image of a Cu-DNA nanostructure formed using high
concentrations of Cu(l) and phenylsilane. The high level of background material masks the 1-d
nanostructure. Data scale= 50 nm. Scale bar=2 uM

The concentration of Cu(l) and phenylsilane were reduced accordingly to 10 mM and
20 mM, respectively. At reduced concentrations less non-specific deposition was
observed and copper nanoparticles become more selective for binding to the DNA

template.

Figure 3.18 shows a selection of AFM topography images obtained of bare DNA (a)
and Cu-DNA nanostructures (b,c,d) prepared at these concentrations. Height analysis of
images ‘a’ and ‘b’ determined an increase in the structure height of bare DNA (~ 1 nm,
typical height of bare DNA is 1-2 nm) compared to metallised DNA (~6 nm). The
heights of the Cu-DNA nanostructures are uniform along the entire length of the
structure, indicating that copper nanoparticles are deposited evenly along the template;

thus affording smooth structure morphology.
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Figure 3.18: AFM “TappingMode ™ height images of (a) bare DNA strands immobilised on a silicon
wafer, (b) a Cu-DNA molecule showing the packing of individual nanoparticles along the template, (c)
well aligned Cu-DNA nanostructures (yellow circle highlighting a large artefact residing on the
nanostructure) and (d) AFM deflection error image of Cu-DNA nanostructures obtained in contact mode.
Insets show height profiles of the nanostructures in reference to coloured markers in the image. Data
scales= 10 nm. Scale bars= (a,c,d) 1000 nm and (b) 500 nm

Figures 3.18c is an AFM height image revealing 1-dimensional DNA-templated
structures aligned on the surface. These structures appear to be smooth and continuous
in morphology. Contamination on the substrate background resulting from the non-
specific deposition of copper is relatively low, indicating good selectivity for DNA,
compared to the poor selectivity observed in figure 3.17 where the concentration of
precursors was higher. However, there are some artefacts on the surface which indicates
that a small amount of copper is deposited non-specifically on to the surface.
Occasionally aggregates of material are formed along DNA where large globular
particles are located along the structure length (figure 3.18c, yellow circle highlights an

example of this).
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The alignment of the nanostructures is a direct result of the molecular combing
technique used to comb DNA molecules onto the substrate prior to metallisation. This
technique serves to stretch out individual molecules onto the surface, as is discussed in
the techniques section (Chapter 2). The aligned molecules are approximately 16 uM in
length, the typical length for lambda DNA which contains 48,502 base pairs. The long
length and small width of the resulting Cu-DNA nanostructures offer excellent aspect

ratio for potential use as interconnect lines in future microprocessors.

Further analysis of the structure morphology was made using contact mode AFM.
Figure 3.18d is a deflection error image acquired at a different area on the sample
surface. The deflection error is the measured tip deflection relative to the set point. This
image again shows 1-dimensional structures aligned on the substrate, which appear to
be smooth and continuous in morphology.

At a smaller AFM scan size, as in figure 3.18b (height image), one can observe an
individual Cu-DNA nanostructure in which close interparticle packing of nanoclusters
(~6 nm) along the template axis can be clearly identified. This closely packed assembly
of nanoclusters appears to contain multiple particle-particle boundaries. This would
suggest that the copper material deposited on DNA is polycrystalline, as opposed to a
single-crystalline metal coating which would be absent of such boundaries. It is known
that the intrinsic properties of nanoscale structures depend on cystallinity>’ (amongst
other factors) where the focus has been made at producing single crystal nanowires.>®*
It has been demonstrated elsewhere that the presence of grain boundaries can lead to
increased electron scattering along the wire and therefore increase its electrical

resistivity.®® ©2

Despite the observation that nanoclusters are tightly packed along the template, these 1-
dimensional strands are almost completely continuous in morphology. They resemble
wires rather than a ‘beads on a string’ motif where nanoclusters are sparsely distributed
along the template and bare DNA is exposed between these clusters. In that respect, the
morphologies of the structures prepared in this route are notably different to Cu-DNA
nanostructures prepared by other routes,” ® as well as other metal-DNA nanostructures
where the coatings are highly irregular and non-continuous (the ‘beads-on-a-string’
assembly).?*®® The structural data provided in these current studies shows that the
particles templated on DNA are more extensive in coverage. Despite observations of
interparticle boundaries along the DNA template, it was observed that bare DNA is left
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unexposed by copper. Therefore, these Cu-DNA nanostructures are described as

consisting of a continuous metal coating, but of a polycrystalline nature.

However, further inspection of the AFM data revealed that, occasionally, gaps are
formed in the copper coating. Figure 3.19 illustrates one example of where a ‘gap’ or
break is observed in the nanostructure. A magnified region of the AFM image, shown to
the right, illustrates this feature more clearly. Such defects may inhibit the flow of

electrical current along the entirety of these nanostructures.

Figure 3.19: AFM topography images of DNA-templated copper nanostructures formed after solution
treatment of surface immobilized A-DNA with Cu(CH3;CN),.PFg and phenylsilane. Scale bar= 500nm
(left). Data Scales= 10 nm

Statistical analysis of DNA and Cu-DNA strands were carried out in order to obtain a
histogram of structure heights before and after metallisation. The results are shown in
figure 3.20. The data was compiled by measuring the average height of 100 bare DNA
strands and 100 metallised DNA strands over four identically prepared samples. In each
measurement the average structure height was taken as the mean of three individual

height measurements along each strand. In total 600 height measurements were made.
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Figure 3.20: Height distributions of 100 bare DNA molecules aligned on silicon before and after
treatment with Cu(l) and phenylsilane

For bare DNA, a positively skewed distribution is apparent with a peak modal value of
1-2 nm. Larger structure heights for bare DNA are the result of DNA ‘bundling’ in
solution, which leads to the formation of ‘DNA ropes.” This phenomenon has been
documented in the formation of DNA-polypyrrole nanostructures.®® DNA bundles have
been shown to act as more efficient templates, than for single DNA duplexes, for

growth of densely populated nanoparticle chains.®’

Analysis of these Cu-DNA nanostructures reveals an almost symmetrical distribution of
structure heights around a modal value of 5-6 nm and with a small spread of heights,

typically 4-7 nm. The mean structure height was calculated as ~6 nm (s.d. = 3.04 nm).

In an effort to metallise between the gaps in the coatings of these prepared Cu-DNA
nanostructures a repeat metallisation treatment was performed on the sample. This
repeat treatment would also be expected to increase the size of the resulting
nanostructures. These so-called ‘developing’ steps have been implemented by numerous
research groups including those of Braun et al® in their fabrication of Ag-DNA

1°® in their Pd metallised DNA nanowires. In Braun’s study

nanowires and Richter et a
the use of a developing step transformed the morphology of individual Ag nanoclusters
on DNA to a continuous metal nanowire. In Richter’s study the use of additional growth

treatments demonstrated the ability to control the diameter of the nanowires. In such
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treatments the nanoclusters attached to DNA act as a self-seeding platform to encourage
further metal growth along the template axis. As stated, the aim in this experiment is to
‘seal’ any voids in the nanostructure coating, as well as potentially demonstrating

control over the materials’ size.

Figure 3.21 shows examples of copper metallised DNA strands following two
successive growth treatments using Cu(l) and phenylsilane. The insets show height
profiles of three points across the structures, with measured heights of 10-40 nm; a
significant increase in height from the average 6 nm, estimated following a single
metallisation treatment. However the metal coating has become less uniform in both
size and shape, with large clusters of material forming at seemingly random points

along the structure.

Figure 3.21: “TappingMode™” AFM height images of Cu-DNA nanostructures after two successive
metallisation treatments with Cu(l) and phenylsilane. Insets show height profiles of at various locations
across the nanostructures. Data scales = 10 nm. Scale bars= (left) 500 nm and (right) 2000 nm

The increased height of the metal nanostructures occurs at the expense of extensive non-
specific deposition on the surrounding substrate surface. It may be the case that,
material residing in the background from the initial treatment serves as catalytic seeds to
encourage further aggregation. This would explain the observation of even larger
artefacts in the background following the second treatment. Non-specific deposition of
material across the substrate is undesirable and therefore the use of developing steps in
this study cannot be exploited for the fabrication of larger nanostructures which are free

63
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of gaps in the metal coating. An alternative approach implemented by Richter et al™ for
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demonstrating control over the size of the material was to increase the incubation time
used for metallisation. This led to the formation of ‘quasi-continuous’ Pd nanowires and
exhibited good ohmic behaviour. Such an experiment could be attempted here as part of

a future study.

In the next section of this chapter, Electrostatic Force Microscopy (EFM) will be used
to assess the electrical properties of a single Cu-DNA nanostructure prepared using a

single metallisation treatment.
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3.3.5. Electrostatic Force Microscopy

Electrostatic Force Microscopy (EFM) is a form of Scanned Conductance Microscopy
(SCM) and offers a convenient contactless method for measuring the conductance of
single nanowires isolated on a dielectric Si/SiO, substrate. This technique is used for
initial and rapid assessment of the wires’ electrical performance, prior to utilisation of
contact electrical techniques such as Conductive AFM for quantitative data. The EFM
technique does not require dense deposits of wires on the surface or the need for metal

electrodes to contact the structures.

EFM is a highly sensitive technique for measuring electrical conductance. Even at very
low levels of detected current the technique would indicate conductance but not
quantitatively. If the material is indeed highly resistive then the technique can provide a
definitive answer to this question. EFM essentially provides a yes or no answer to the

materials conductivity and is useful for initial verification.

The EFM set-up is comprised of a metal AFM tip held high above a silicon oxide
dielectric surface, thus behaving essentially like two metal plates separated by an
insulating gap, much like a capacitor. When a voltage (V) is applied a capacitance (C) is
stored in the insulating gap. The presence of a nanowire perturbs the electric field,
resulting in a phase shift relatable to the conductive nature of the ‘wire.” For further

details on EFM theory refer to Chapter 2.

An EFM image of a single Cu-DNA strand is shown in figure 3.22 (aligned onto a
TMS-modified substrate by molecular combing). The left image shows AFM
topography (height) and to the right is the phase map generated at a fixed bias of 10V.
The nanostructure is of typical height of ~6.5 nm (see height profile, left inset). The
height will affect the magnitude of the phase shift but will not affect the sign. As can be
seen in the phase image, the 1-D nanostructure displays continuous positive (bright)
contrast with respect to the background. Positive contrast was observed at all applied

potentials, indicating that these nanostructures are highly insulating.
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Figure 3.22: (left) AFM Topography image of a A-DNA molecule subjected to treatment with
Cu(CH3CN)4.PFg and phenylsilane as described in section 3.2.2 (inset: height profiles of copper
nanostructure taken at various points along the structure) and (right) the corresponding EFM phase image
map at an applied bias of 10V. Scale bars= 500 nm. Data scale scales are 20 nm and 2° respectively

The size of the phase shift decreases with decreasing voltage. When the voltage passes
through zero to negative bias a positive phase shift is again obtained. A plot of tan(®)
against voltage, shown in figure 3.23, produces a positive parabolic curve, as expected.
This positive feature indicates that capacitance effects dominate tip-sample interactions,

as opposed to the effects of conductance which are absent in this sample.
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Figure 3.23: Plot of measured phase shift, corresponding to green cross section on phase image, versus a
function of bias. The positive parabola obtained is indicative of a highly resistive structure
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The positive EFM phase shifts obtained here are attributable to highly resistive
structures. Lack of negative phase shift signals, indicate the lack of a viable conductive
pathway along the nanostructure.

Based upon all of the results described in this chapter so far, there may be two
contributing factors to the materials’ high resistivity; (i) chemical impurity/oxidation of
copper, i.e. Cu(OH), overlayer on surface (as evidenced by XPS) and (ii) structural
defects, such as inter-particle boundaries (as evidenced by AFM). The latter effect in
particular, may lead to substantial electron scattering at the particle interfaces.

In an effort to transform Cu-DNA into nanowires (i.e. conductive) a thermal anneal
process was applied in an attempt to sinter the particle-particle boundaries that are
present in the copper nanostructures. The annealing was performed under an atmosphere

of hydrogen, which will act to reduce any surface oxide to metallic copper.®®

3.3.6. Annealing of 1-D nanostructures

Annealing involves a heat treatment whereby a materials’ properties such as hardness
and ductility is altered by the supply of energy and a structural transformation occurs.
Annealing of nanostructured materials, copper interconnect lines for example, has been
used for transforming the surface from rough or heterogeneous morphology to smooth
homogenous morphology.”®"? Thereby we aim to produce continuous (or single
crystalline) Cu-DNA nanowires by eliminating grain boundaries. Previous reports have
described the sintering of printed Cu interconnects and films in N,/H, reducing
atmosphere for reduction of surface oxide species (e.g. Cu,0).%* ™ The transformation
occurs at temperatures between 250°C-500°C. Such structural reformations have led to

improved electrical properties of the resulting material.

Initially we set out to establish the optimum annealing temperature. The first set of
experiments involved annealing of Cu-DNA nanostructures aligned on Si/SiO, at 300°C

for 1 hour. Structural analysis of the annealed structures was again carried out by AFM.

As can be seen in the AFM image shown in figure 3.24, the Cu-DNA nanostructure
following annealing does not appear to be significantly transformed and shows a high
degree of structural retention when compared to the non-annealed Cu-DNA
nanostructures shown earlier in fig 3.18b. The resulting nanostructure still displays a

smooth morphology with densely packed nanoparticles along the template, but the
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particle-particle boundaries are still present. A height trace was measured along the
length of the structure (see inset) and resulting profile is shown to the right of the image.
The profile shows a regular height of ~6 nm, consistent with that observed prior to
annealing. Occasionally large aggregates are formed along the structure (indicated by

the two large peaks in the height profile). However this was not unusual even for the

non-annealed nanostructures.
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Figure 3.24: (top, a) AFM topography image of DNA-templated copper nanostructure (prepared as
described in section 3.2.2) annealed at 300°C and (bottom, b) small scan size AFM image of structure.
High levels of structural retention are observed after annealing. Data Scales= 10 nm. Insets: Topology
height profile images with corresponding data scales shown to the right

Structural analysis of a freshly prepared sample annealed at a temperature of 400 °C for
one hour was obtained. At this elevated temperature the Cu-DNA nanostructures

undergo a significant structural transformation.

As shown in figure 3.25, with the corresponding height profile to the right, large
clusters are located periodically along the entire length of the nanostructure. These
particles are considerably larger in height than the portions of the structure which lie
between the clusters (which we will call the ‘base structure’). The height profile
illustrates this more clearly where these two features can be easily distinguished. The
base structure is ~3 nm in height (c.f. to ~ 6 nm observed in the nanostructure following
annealing at 300 °C) and the large clusters are up to ~ 16 nm in height, indicated by the
sharp peaks. These results suggest that formation of the larger particles along the
template come at the expense of a reduction in size of the base structure; providing

evidence for diffusion of copper within the structure. This could be explained by the
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lowering of the melting temperature (T,,) phenomenon of nanoscale materials (T, of Cu
(bulk) ~1084 °C).”
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Figure 3.25: Cu-DNA nanostructures annealed at 400°C under an atmosphere of hydrogen for 1 hour.
Data Scale= 10 nm. Inset: Topology height trace image with corresponding height profile shown to the
right. A morphological change to the structure is apparent from this image (c.f. to the non-annealed
samples). This is indicated by the formation of larger clusters (6-35 nm) at more regular points along the
template at the expense of a decrease in height of the base structure (~3 nm)

Figure 3.26 shows a comparison between a non-annealed Cu-DNA strand (a) and an
annealed Cu-DNA strand at 400°C (b). The height profiles are markedly different: a
regular height in the non-annealed nanostructure indicates a smooth morphology and an
irregular height profile in the annealed nanostructure (b) again indicates formation of

nano clusters along the structure, which are indicated with arrows in figure 3.26b.
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Figure 3.26: “TappingMode ™ AFM height images of Cu-DNA before (a) and after annealing (b) at
400°C for 1 hour. A transformation of the nanostructure surface morphology is observed, as indicated by
the height profiles (below). Red arrows point to locations of clusters along the structure. Insets show the
path of the line trace along the nanostructure. Scale bars= 500 nm, height scales= 10 nm

The annealing process did not lead to the formation of smooth Cu-DNA nanostructures.
The results were unexpected owing to the periodic formation of large clusters along the
nanostructure. Nonetheless, despite the presence of these large clusters, the particle-
particle boundaries along the ‘base structure’ may have been eliminated by the
annealing. Consequently, the annealed copper nanostructures may present improved
electrical properties over the non-annealed nanostructures. The final section of this
chapter aims to examine these electrical properties using a 2-point probe technique,
Conductive-AFM  (C-AFM)

and conductive measurements were made by bringing the tip into

where surface topography was imaged in

“TappingModeTM”

contact with the structure.
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3.3.7. C-AFM of annealed 1-D nanostructures

The C-AFM technique, similarly as for EFM, delivers simultaneous mapping of both
topography and conductance via two separate feedback loops. C-AFM is set apart from
EFM as it is a contact technique consisting of two electrodes; a stationary electrode
such as gold or conductive paste and a mobile electrode which is the metal coated AFM
tip used to contact the nanostructure at the point of interest (or indeed anywhere on the
sample). This feature is facilitated by the closed loop system of the AFM allowing
movement of the cantilever to predefined positions on the sample surface. During
mechanical contact between the tip and sample, a current-voltage (i-V) plot can be
recorded. Figure 3.27 is a photograph of a typical C-AFM set up.

AFM cantilever

Au

Figure 3.27: Photograph showing C-AFM set-up using a metallised tip and gold electrode connect to Cu-
DNA nanostructures stretched across the surface. The green rectangle highlights the most likely area to
find nanostructures touching the gold edge. Two lines can be seen protruding into the gold layer resulting
from tips of the cantilever mask

In this experiment individual Cu-DNA nanostructures are formed on the surface using
the previously established method described in sections 3.2.1 and 3.2.2. Then, with the
aid of a suitable mask, gold is evaporated onto the sample to leave isolated copper
nanostructures physically connected to the gold surface (see figure 3.28). The metal
coated AFM tip is brought into mechanical contact with the nanostructure and the i-V

properties were measured between set potentials (typically +3 to -3V).
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Figure 3.28: (a) AFM “TappingMode ™ height image of a Cu-DNA nanostructure connected to the gold
edge with inset showing height profile of gold edge (green line) and (b) 3d representation of same image
with incorporated C-AFM schematic showing the connection from gold to the AFM tip contacting the
nanostructure

Nanostructures could be located protruding from the gold edge (figure 3.28) at a
maximum distance of 15 uM, the approximate length of lambda DNA. The height of
gold was ~60 nm and shows a relatively sharp step edge as indicated by the height
profile (inset figure 3.28, left) corresponding to the green line in the image. A 3-D C-
AFM schematic of a Cu-DNA nanostructure connected to the gold is shown in figure
3.28 (right). The structure morphology is consistent to what was described in the

previous section (3.3.6), where large clusters are observed at points along the structure.

Several contact attempts were made at the nanostructures in figure 3.28 and i-V plots
were recorded at various distances from the gold. However, in each case there were no
observations of ohmic behaviour or significant levels of current in the nanostructure,
indicating that these nanostructures are not conductive. This may be because the anneal
treatment did not result in nanoparticles coalescing along the DNA template and the
metal coating is still of a polycrystalline structure. As discussed previously in section
3.3.4.2, this may lead to electron scattering at the grain boundaries, accounting for the

high resistivity.

Figure 3.29 illustrates what happens to the topography of the nanostructures when a bias
is applied to the sample during imaging of the topography. Three AFM images are
recorded: (i) a nanostructure connected to the gold under zero bias, (ii) during
application of a positive bias (2V) and (iii) during application of a negative bias (-2V).
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Figure 3.29: AFM height image of annealed DNA/Cu nanostructure contacting gold edge (left), with bias
applied (center) and bias applied after contact attempts (right)

The nanostructure contrast appears thicker and more diffuse when under bias (middle
and right image in figure 3.29) than compared to when no bias is applied (left). The
contrast of the nanostructure is comparable to that of the gold surface when under bias.
This is a clear indication of an attractive electrostatic interaction between the tip and
nanostructure, which may suggest that the structure can carry some current. A similar
effect has been observed in the Scanned Conductance Microscopy (SCM) studies of
both single wall carbon nanotubes (SWNTs) and DNA attached to a gold-silicon
substrate.” "® In these experiments a bias is applied to the surface and a change in
contrast is observed for SWNT’s connected to the gold. For those that are not connected
to the gold, no measurable interaction with the tip was recorded. For DNA, there was no

change in contrast at all, indicating a lack of conductance (as expected).

Further attempts at measuring i-V properties were made, this time by increasing the
vertical contact force to ‘press’ the tip harder onto the nanostructure in order to
penetrate the surface oxide around the copper. However, this did not lead to improved i-
V characteristics due to severe damage to the nanostructure, as seen in fig 3.29 (right)
where clear breaks can be seen where the tip was in contact with the structure (marked
by yellow circles). Interestingly from this image, the thick contrast of the nanostructure
ends at the first break point, indicating that the attractive interaction with the tip is now

lost.
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3.4. Conclusions

The data contained in this chapter are the first reported for the templating of Cu(l) ions
on DNA. Phenylsilane has been used as a reductant for Cu(l) to form nanoparticles with
and without DNA to act as a template. The DNA-templated nanostructures, ~5-6 nm in
height, are continuous by AFM but contain particle-particle boundaries and occasional
gaps or breaks are observed in the structures. Reduction of Cu(l) at DNA with
phenylsilane is most effective when carried out in situ as indicated by FTIR and AFM,
which indicate more substantial metallisation of DNA. FTIR DNA peak shifts indicated
that copper is mostly bound to the phosphodiester backbone as well as some
coordination to the cytosine and guanine bases.

Chemical characterisation by XRD indicated the material to consist primarily of Cu’.
XPS analysis indicated a significant amount of Cu®* in the form of Cu(OH), and to a
lesser extent CuF,. These compounds are likely to reside on the surface of the

nanostructures forming a shell layer which encapsulates the copper-DNA core.

Initial electrical characterisation by EFM indicated these nanostructures to be of high
resistivity, which may be due to a combination of structural reasons, such as granularity
of the copper coating, and oxidation of copper.

The structural morphology of the Cu-DNA nanostructures was transformed by thermal
annealing. This led to diffusion of copper along the structure into large clusters. These
were found to reside along the whole length of the template in a periodic fashion. C-
AFM analysis of the annealed Cu-DNA nanostructures indicated that they were non-
conductive. Future work may involve refining the annealing conditions in order to

obtain smoother nanowires with improved electrical properties.

After considerable attempts to make conductive Cu-DNA nanostructures via surface
based routes we now focus our attention to other possible methods. The next chapter
describes the preparation and characterisation of Cu-DNA nanomaterial formed in

solution.
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Chapter 4: Solution-based Preparation of Continuous
DNA-templated Copper Nanowires

4.1. Introduction

4.1.1. Re-cap

Chapter 3 described a surface-based chemical approach for attempts to prepare
conductive DNA-templated copper nanostructures from reduction of a Cu(l) salt at
DNA. However the structures formed were of a polycrystalline nature and exhibited
high resistivity. Additionally as outlined in section 1.5 of the introduction describing
early work on surface metallisation of DNA with copper, it was found that Cu(ll)
coordination to surface-immobilised DNA, and the subsequent reduction by ascorbic
acid, leads to granular structures." Their high electrical resistivity was attributable to
this granular nature. Moreover, the poor packing of copper nanoparticles on the
template resulted in a non-continuous metallic pathway for electron transport along
individual strands. Consideration of Cu(ll) chemistry on surface-immobilised DNA led
to the conclusion that polar solvent molecules (e.g. H,O, DMSQO) used in the delivery of
Cu?* ions would compete with the donor sites of template DNA for the metal, which
would be expected to lead to less effective ‘doping’ of the DNA structure. As a result

this would hinder the subsequent growth of metal along the template.

Therefore, the use of Cu(l) ions as a metal precursor was adopted (chapter 3) as Cu(l)
salts are often more soluble in weakly, or even, non-coordinating (organic) solvents.
Also, in choosing an organosoluble reducing agent, the entire metallisation process can
be performed in a single weakly coordinating solvent. The idea of using a Cu(l)
coordination compound was also appealing because there have been no previous reports
of Cu(l)-based routes for the growth of copper nanostructures on DNA. The
nanostructures resulting from this method were more continuous than those previously
described in section 1.5, as copper deposited more homogenously along the template.
However, upon closer inspection the structures were found to contain densely packed
nanoparticles, and occasionally, significant gaps in the copper coating were observed.

Similarly as for previous methods, the material was shown to be non-conductive.

Various attempts were made to improve the electrical properties of nanostructures and,

despite attempts to transform the polycrystalline morphology of these nanostructures by
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thermal annealing and repeat metallisation treatments, the electrical properties of the
metallic nanostructures were not improved. Ultimately the lack of ohmic behaviour in
the i-V curves encouraged other possibilities to be explored. Namely, the solution based

approach to DNA-templated copper nanostructures, discussed here.

4.1.2. From surface to solution

Hitherto, all of the work in the literature describing the fabrication and characterisation
of DNA-templated copper nanostructures have been performed on surface bound
DNA, ' whereby the preparative route is carried out in two consecutive treatment steps:
(i) doping of surface-immobilised DNA with copper cations and (ii) chemical reduction
of DNA/Cu™ to produce the final DNA/Cu® nanostructures.

A recurring issue amongst these surface based routes is the irregular morphology of the
copper coating on DNA. An improved continuity in the structural morphology of such
DNA-templated copper nanostructures was obtained by Kudo et al., who proceeded to
develop more extensive copper deposition on the template by introducing a Pd ‘primer’
layer on DNA prior to the deposition of metallic copper in an electroless plating bath.°
However, no chemical or electrical characterisation was carried out on the resulting

product.

An interesting study utilised a 2-step treatment of surface-immobilised DNA for
preparation of a compound semiconductor CdS on DNA templates.” In this experiment
the surface-immobilised DNA strands were doped with Cd cations before addition of S*
anions (substituting for the reduction step). It was revealed that a monodisperse array of
CdS particles formed along the template, but lacked continuity (i.e. bare DNA was
present between individual particles). In this same study, a remarkable difference in the
structural morphology was observed when the entire reaction was performed in aqueous
solution. Here smooth wire-like nanostructures of CdS templated on DNA were formed,
which exhibited good electrical conductivity. Based on further observations in this

study, the growth mechanism was likened to that of Ostwald’s ripening of colloids.

A similar distinction between the surface and solution based approaches for DNA-
templated nanostructures were observed in DNA-polypyrrole nanowires where it was
found that surface-immobilised DNA inhibits the polymerisation process whereas the

solution-based approach leads to smooth polymeric nanowires.® This striking
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comparison between the surface-based route and a solution phase method gives an
indication that the templated growth of copper nanostructures on DNA may be better

performed in solution.

Additionally, other workers have found that the initial binding of Cu?* to DNA inhibits
rather than facilitates the subsequent reduction to Cu®.® This may suggest that it is
important to have the metal ion source and chemical reductant together in solution
during the course of metal growth on DNA (as part of a one-pot procedure), as opposed
to the ‘doping/reduction’ treatment on DNA-bound surfaces, which initially involves
extensive doping of DNA followed by reduction to metallic copper. This was
corroborated in the work done on Cu(l)-DNA interaction in chapter 3, where it was
shown by FTIR and AFM that more extensive interaction/metallisation of copper takes
place on the DNA template if reduction takes place in-situ.

There are few reports in the literature where double stranded DNA in solution has been
used as a template for the formation of CuNPs.”™ However, these studies are focused
on the use of DNA as a template to form small metallic clusters to act as fluorescent
probes rather than Cu-DNA strands for purposes of electrical conduction. Furthermore

they make no attempt to characterise the material structurally.

In this chapter, a simple solution reaction of aqueous Cu(NOs3), and ascorbic acid in the
presence of DNA is reported under mild conditions (room temperature, water as
solvent, neutral pH). The aim is to produce continuous copper nanostructures using
DNA as a template (< 10 nm height) which exhibit better structural properties (i.e.
smoother metallic coatings) and improved electrical characteristics than those surface
prepared Cu-DNA nanostructures described in previous reports.

A comprehensive study of Cu-DNA nanowires prepared in solution phase is presented.
Firstly, the synthesis of the Cu-DNA product is described, before proceeding to
characterise the material chemically using XRD and XPS. Structural information was
acquired using FTIR, to elucidate the nature of the Cu-DNA interaction, and AFM to
investigate structure morphology and sizes. Electrical characterisation of the final Cu-
DNA nanowires was investigated by various techniques including EFM, C-AFM and 2-

terminal device measurements.
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4.2. Experimental

4.2.1. Cleaning and preparation of silicon wafers

Silicon <p-100> wafers were cut into 8 x 10 mm pieces with a diamond tip pen. The
wafers were then serial washed in high purity acetone, propanol and Nanopure water
before heating the wafers in a solution of surfactant (sodium dodecyl sulphate, 0.01g per
100 mL water) for 20 minutes followed by washing with copious amounts of Nanopure
water. The wafers were then chemically oxidised in hot “piranha” solution (4:1
H,SO4:H,0,) for 45 minutes at ~50°C in order to oxidise the surface and remove
organic residue. The wafers are then washed with Nanopure water and dried in an oven
for 30 minutes. The surface was chemically modified by vapour deposition, which
involved exposure of the bare silicon surface to chlorotrimethylsilane vapour (MesSiCl)
for 8 minutes leading to formation of the trimethylsilane (TMS) self-assembled
monolayer (Me3SiCl). Static contact angle measurements were carried out on the TMS-
modified Si substrates using a CAM100 system (KSV Instruments LTD., Helsinki,
Finland), with Nanopure water as the probe liquid. Contact angles generally fall
between 60°-70° (for a 6-10 min silination time).

Wafers used for EFM/C-AFM analysis had a 200 nm thick oxide layer on both sides to
form an insulating barrier on the surface. Prior to the previously described cleaning
method the backside of these wafers were treated with a solution of HF (10% aq.) to
remove the native oxide layer and provide electrical contact for subsequent electrical

measurements.

4.2.2. Preparation of Cu-DNA nanostructures

A-DNA solution (500 pg mL™, in 10 mM tris-HCI, pH 8, 1 mM EDTA) was diluted
down to 300 ug mL™ with Nanopure water. Typically, to 10 uL of this solution in a
small Eppendorf tube was added Cu(NO3),.3H,0 (aq. 50 uM, 10 uL) followed by the
drop wise addition of ascorbic acid (aq. 2 mM, 10 pL). This gives a Cu®* to phosphate
ratio (n) of 0.05. The reaction mixture was left to incubate for 3 hours whilst gentle
stirring on a mechanical roller. To purify the suspension of nanowires from
nanoparticles, as well as unreacted starting material, the mixture was centrifuged at
8000 rpm for 2 minutes. The top fraction was discarded and the bottom fraction was

collected for analysis.
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4.2.3. Alignment of Cu-DNA nanostructures upon substrates

DNA-templated copper nanostructures were aligned on TMS-modified silicon surfaces,
for purposes of SPM and C-AFM analysis, using a combination of combing and drop
cast techniques: A 5 pL droplet of the DNA/Cu nanowires suspension was removed
from the bottom of the Eppendorf tube containing the product and pipetted onto the
substrate. The nanowires were then “combed” onto the substrate by slowly withdrawing
a portion of the droplet using a micro pipette and then redepositing onto the surface.
This routine was performed several times before finally allowing the droplet to
evaporate in a ventilated laminar flow cabinet. This left a residual drying ‘stain’ on the
surface from which nanostructures suitable for AFM analysis were seen to protrude

from perpendicular to the edge of the drying mark.

4.2.4. UV/Vis Spectroscopy

Copper nitrate solution (ag. 500 uM, 120 pL) was added drop wise to calf-thymus DNA
(300 pgmL™) and allowed to mix for 1 minute in a quartz cuvette. A UV/vis spectrum
was recorded in the range 400-900 nm at 0.5 nm data intervals. Ascorbic acid (0.12 M,
10 pL) was then added to the cell and the spectrum was re-recorded. Concentrations
were kept as low as possible to prevent precipitation whilst maintaining a Cu** to
phosphate ratio (n) of ~0.05, which is consistent with the established preparation in this

chapter for formation of smooth Cu-DNA nanowires.

Attempts to increase the amount of Cu-DNA material in the cell (in order to increase the
UV absorption intensity) whilst maintaining a Cu ion to phosphate ratio (n) of 0.05 was
prohibited due to saturation of the DNA solution at high concentration (> 1.2 mgmL™).
Increasing the Cu®*/ascorbic acid concentration leads to precipitation, thus restricting
further measurements. At the concentration used in this study where n= 0.05, a

miniscule particle forms in the reaction mixture after several days of incubation.

All spectra were subtracted from the background of Nanopure water. Spectra were

recorded using a Varian Cary-100 Bio UV/vis Spectrometer.
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4.2.5. Fourier-Transform Infra-Red (FTIR) Spectroscopy

Samples for FTIR analysis were prepared by mixing aqueous solutions of calf-thymus
DNA (300 pg mL™, 250 pL) and Cu(NO3),.3H,0 (50 pM, 250 pL), before the drop
wise addition of ascorbic acid (agq. 2 mM, 250 pL). The reaction mixture was left to
incubate at room temperature whilst stirring on a mechanical roller for 3 hours. The
reaction mixture was transferred to an Eppendorf tube and centrifuged at 8000 rpm for 2
minutes to separate the suspension of nanowires from nanoparticles. 60 uL of the
solution was pipetted from the bottom of the tube onto a “piranha” cleaned n<100>-
silicon wafer and left to evaporate overnight in a ventilated laminar flow cabinet to
leave a thin film of copper coated DNA material on the surface. The film thickness was

increased by repeating the above procedure twice.

FTIR spectra (in the range 600-4000 cm™) were recorded in transmission mode on a
Bio-Rad Excalibur FTS-40 spectrometer (Varian., Palo Alto, CA) equipped with a
liquid nitrogen cooled deutarated triglycine sulphate (DTGS) detector, and were

collected at 512 scans with 2 cm™ resolution.

4.2.6. X-ray Powder Diffraction (XRD)

Samples for X-ray powder diffraction were prepared by mixing aqueous solutions of
calf-thymus DNA (1 mg mL™?, 10 mL) and Cu(NO3),.3H,0 (0.5M, 10mL), before the
dropwise addition of ascorbic acid (1.0M, 20 mL) affording a [Cu]:[DNA(P)] ratio (n)
of ~ 150. An immediate colour change in the solution from bright blue to bright green
was observed. The reaction mixture was left to stir overnight at room temperature after
which a small amount of red precipitate was seen to have formed on the walls of the
container. The mixture was then placed in a refrigerator for a further 24 hours during
which time more red precipitate had formed and settled to the bottom of the flask. To
obtain the product, the mixture was centrifuged at 8000 rpm for 30 minutes, after which
the supernatant was decanted and the red solid was collected on a Buchner funnel,
washed with Nanopure water, HPLC grade ethanol and dried under vacuum. Powder X-
ray diffraction data was obtained using a PANalytical X Pert Pro Diffractomer equipped
with a Cu Ko radiation source (A = 1.54 x101° M).
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4.2.7. X-ray Photoelectron Spectroscopy (XPS)

Samples for X-ray Photoelectron Spectroscopy were prepared similarly as for XRD
analysis. However the concentration ratio of [Cu]:[DNA(P)] was lowered to ~10. The
product was deposited on “piranha” cleaned silicon substrates (silanisation of the
substrate was omitted in order to increase the wettability of the substrate surface). A
small particle was formed in the reaction solution which was then separated from the
liquid, washed with ethanol and finally dispersed in Nanopure water. The solution was
drop casted (60 pL) onto a clean silicon wafer and dried in vacuo. XPS analysis was
obtained on the dried material. The density of Cu-DNA material deposited on the
surface is higher than that for AFM samples but is necessary to obtain sufficient signal
in the XPS spectra.

The supernatant from the product solution was kept behind and purified by

centrifugation and then deposited onto a clean silicon wafer for AFM analysis.

XPS was carried out using a Thermo K-Alpha XPS system with a microfocused,
monochromated Al Ka X-ray source at a take-off angle of 90°. An electron/ion gun was
used to neutralise any charge build-up during analysis. The size of the X-ray spot was
400 um x 700 um. Calibration of binding energies was achieved by referencing to the
internal hydrocarbon peak at 284.8 eV. Peak fitting was carried out using the CasaXPS
software and a mixture of Guassian-Lorentzian peak shapes was used. Within the XPS
spectra the black line shows the real data, the grey lines represent peak fits and the red
line represents the sum fit. In all instances, the minimum number of peaks was fitted in
order to obtain a good fit. This is to ensure that the number of components in the spectra
Is not overestimated; especially since it is not possible to resolve all of the components
in the spectra in many cases. FWHM'’s were allowed to vary flexibly within the region
of 1-2 eV and remain consistent for peaks within the same series. Linear backgrounds
were used for all 1s spectra and Shirley backgrounds for 2p spectra. Two Shirley
backgrounds were used for 2p fitting (for 2ps, and for the 2p;;). The data was

collected at grazing emission in order to enhance the surface sensitivity.

4.2.8. AFM/EFM studies
TappingMode AFM imaging of surface topography was performed in air on either a
Multimode Nanoscope Illa or a Dimension Nanoscope V instrument (Veeco
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Instruments Inc., Metrology Group, Santa Barbara, CA). TESP7 probes (n-doped Si
cantilevers, Veeco Instruments Inc., Metrology Group), with a resonant frequency of
234-287 kHz, and a spring constant of 20-80 Nm™ were used as tips. Data acquisition
was carried out using Nanoscope software version 5.12b36 (Multimode I11A) and
Nanoscope software version 7.00b19 (Dimension Nanoscope V) (Veeco Instruments

Inc., Digital Instruments).

EFM measurements were carried out in air on a Dimension Nanoscope V system using
MESP probes (n-doped Si cantilevers, with a metallic Co/Cr coating, Veeco Instruments
Inc., Metrology Group), with a resonant frequency of ca. 70 kHz, a quality factor of
200-260, and a spring constant of 1-5 Nm™. Data acquisition was carried out using
Nanoscope version 7.00b19 software. For both AFM systems, vibrational noise was

reduced with an isolation table/acoustic enclosure (Veeco Inc., Metrology Group).

The reported EFM phase images show the phase of the tip oscillation at a set lift height
above the sample surface (typically 40-100 nm). Samples used in EFM studies were
deposited upon Si <n-100> substrates with a thermally grown 200 nm (£ 10%) thick
oxide layer on top, prepared as described earlier. Processing of data acquired from AFM
and EFM experiments was carried out using both Nanoscope version 7.00b19 (Veeco
Inc., Digital Instruments) and WSxM4.0 Develop 12.6 (Nanotech Electronica S. L.,
Madrid, Spain) software.

4.2.9. Conductive-AFM (C-AFM) studies

Conductive-AFM (C-AFM) was carried out in contact mode on samples of Cu-DNA
nanostructures fixed to TMS-modified Si/SiO, supports, using the Dimension
Nanoscope V instrument. Samples were prepared by drop casting 5-40 pL of the copper
nanowire suspension onto the SiO, surface and leaving the droplet to evaporate at room
temperature. The surface tension created by the receding meniscus is enough to align
the wires on the substrate parallel to the direction of solvent withdrawal. This results in
a small circular ‘stain’ on the surface, which contains a dense deposit of nanomaterial at
its centre and aligned wires extending from the periphery of the main body. A drop of
In/Ga eutectic was applied to the edge of the nanomaterial deposit and the metallic
chuck of the AFM to provide electrical contact. The circuit is completed via the metallic

AFM tip as it contacts the Cu-DNA nanostructure during imaging. The tip is positioned
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on a nanowire of interest approximately 1mm from the eutectic contact. Typically, a
bias of between 1-10 V was applied in order to obtain sufficient current signals for

analysis. All measurements were made at room temperature.

4.2.10. 2-probe nanowire device fabrication and measurements

Two-terminal conductivity measurements were performed using gold electrodes
deposited on clean silicon oxide substrates. Electrodes were fabricated in the School of
Electrical Engineering, Newcastle University, by Prof. Nick Wright and his research
team. First, an appropriate mask was prepared with four pairs of large pads and small
fingers and patterned using a reverse photolithography process on the clean substrate.
Next, reactive ion etching was used to make a 100 nm deep trench in a 220 nm thick
SiO, dielectric; this reduces the step height at the boundary between the gold electrodes
and the oxide gap in the final device and facilities alignment of nanowires across the
gap. The trench was filled with e-beam-evaporated metals (10 nm Cr adhesion layer
followed by 90 nm Au). Next, a lift-off process was used to remove unwanted Cr and
Au. The gap between each pair of fingers was 3, 7, 9 and 14 uM and the two larger pads
in each pair are separated by 80 puM. The two small gold fingers provide contact points
to the DNA-templated copper nanostructures, with the two large gold pads serving as
electrical contacts for macroscopic probes to the external circuit. Lastly the whole
substrate was treated with Me3SiCl vapour for 10 minutes to make the surface
hydrophobic. This facilitates the combing motion used to deposit the nanowires and

controls the density of material on the surface.

Cu-DNA nanostructures were aligned across the electrode gaps by placing two 2 pL
droplets of an aqueous solution of Cu-DNA nanowire suspension on the electrodes and

physically moving the drops across the gap using a ‘soft’ nitrogen flow.

Electrical measurements were performed on a probe station (Cascade Microtech) and a
B1500A semiconductor analyser (Agilent). For each of the current-voltage (i-V)
sweeps, the current was measured for applied voltages from -3 to 3 V in 30 mV steps. A
further sweep was performed between -1 and 1 V for higher resolution data around 0V
bias. All of the electrical measurements were carried out under a steady flow of nitrogen

in the dark. i-V curves were acquired at a constant temperature of 20.0°C maintained in
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the probing chamber using a thermal chuck system (Model ETC- 200 L, ESPEC,

Japan). The probes used were tungsten, 9 uM radius.

~ 143 ~



4.3. Results and Discussion

4.3.1 Synthesis

Cu-DNA nanowires were prepared in solution phase by the addition of aqueous
Cu(NOs), to a DNA containing solution prior to the addition of ascorbic acid, which
serves as the chemical reductant. The reaction mixture was allowed to incubate for 3
hours on a mechanical roller. Figure 4.1 shows a graphical representation of the general
reaction procedure: (i) DNA solution is measured out, (ii) copper nitrate is added to
‘dope’ DNA, (iii) ascorbic acid is added for reduction of copper ions on the DNA
template, providing nucleation sites, (iv) the solution is incubated for 3 hours, during
which time, further metal growth takes place at the boundaries of copper grains formed
on DNA and (v) the final Cu-DNA product is obtained as a suspension of

nanostructures in solution.

[Red)

Cu(NO,),3H,0 (SOPM)> AscorbicAcid (2mM, %O)

5 mins

DNA-cation association

DNA/Cu?**

3 hours

<€

Nucleation and growth

DNA/Cu® —

Figure 4.1: Image showing the general reaction procedure for the preparation of DNA-templated copper
nanostructures in solution

Initial studies designed to establish suitable reaction conditions for the preparation of
the target Cu-DNA nanowires relied on characterisation by Atomic Force Microscopy

(AFM). These experiments sought to identify continuous coating of the DNA molecular

~ 144 ~



template which was smooth and regular in height. A variety of experimental conditions
were explored in which the concentration ratio of Cu?*: DNA (phosphate) is varied.
These preliminary studies aimed to analyse copper metallised DNA structures isolated
from the various different preparations. In all cases the concentration of A-DNA used
was 300 ugmL™ (diluted from 500 pgmL™ stock solution) and the concentration of Cu?*
was varied (excess ascorbic acid) to give varied [Cu]/[DNA(P)] ratios (n). Four ratios
were investigated altogether; where n= 500, 25, 1 and 0.01.

Figure 4.2 shows a typical AFM height image (with corresponding height profile inset)

for each ratio (‘n’) investigated.

) I
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Figure 4.2: AFM height images of Cu-DNA nanomaterial prepared at various different ratios of Cu:DNA
(Phosphate) (n): (@) n=500 (b) n=25, both images shows Cu-DNA in a highly packaged form, (c) n=1,
Cu-DNA strands appear significantly shorter than expected and (d) n=0.01, long Cu-DNA strands with
low levels of metallisation. Insets show heights profiles corresponding to the line traces in the image.
Scale bars= 300 nm, height scales= 5 nm

It was found that at a high concentration of Cu®* (500 mM) and ascorbic acid (1000
mM), relative to DNA (300 pgmL™) where n= 500 (figure 4.2a), the reaction did not

~ 145 ~



afford high aspect ratio copper “nanowires” as desired. Instead the AFM data revealed

the product to consist of a dense aggregation of nanostructured material.

As can be seen in the AFM height image (figure 4.2b, n= 25) the product formed was
also densely packed DNA nanomaterial with no evidence of extended, isolated ‘wires.’
Dilution of the mixtures in water as well as varying the incubation time did not lead to
formulation of the desired morphology, nor did changing the method of deposition.
Both images ‘a’ and ‘b’ show the height profiles (inset) corresponding to the line trace
across the material in each AFM height image. These two profiles display a similar
trend with sharp variations in the height between 1-2 nm reflecting the nature of the

densely packed material.

Such features may result from the condensation of DNA brought about by the
incorporation of positive metal ions to the DNA structure in aqueous solution.*? The
positive charge of the metal ion leads to charge neutralisation of the negative DNA
(phosphodiester) backbone, thus minimising repulsive electrostatic forces between
DNA strands in solution and allowing the formation of condensates which consist of
tightly bound DNA aggregates. Although it is generally considered that cations of
charge +3 or greater is required to induce DNA condensation, such as that brought
about by incorporation of hexaammine cobalt(I1) ([Co(NHs)s]*") to DNA,*® divalent
transition metal ions can result in DNA aggregation at high enough metal ion
concentrations.** * It has even been suggested that the concentration of metallizing
agents strongly influences the conformational behaviour of DNA in solution, and at

high concentration, DNA condensates form.***’

DNA duplexes are also known to undergo cross-linking when incubated with divalent
metal ions.” It is well established that metal ions can bind through the N7 atom of
guanine and adenine of duplex DNA.* Cu(ll) ions boast better DNA base binding
ability compared to other metal ions such as Mg(Il), Co(Il) and Ni(ll), which instead
have higher affinity for phosphate.’® This higher affinity for the bases (although
interaction with the phosphate groups is still likely to be the major interaction) means
copper(Il) has a large destabilising effect on the DNA structure, at high concentrations,
and lowers the melting temperature (T,) of DNA.?* % This is likely caused by
disruption to Watson-Crick base pairing in the double helix. It has been demonstrated
by Bloomfield et.al. that partially melted regions of DNA resulting from metal ion-base
binding can cause cross-linking between individual metallo-DNA molecules.®> This
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could account for the highly aggregated appearance of Cu-DNA in these current studies.
Aggregation may become more pronounced at higher concentrations of Cu®* resulting

from more available sites for cross-linking.

Indeed, early studies by Eichorn and Shin have indicated that above [Cu]/[DNA(P)]
ratios of ~0.1, for divalent copper ions, the T, (DNA) of calf-thymus DNA falls
dramatically.® Thus Cu®* can destabilise the DNA structure at high enough
concentration of the metal ion. Figure 4.3 shows a graph of Ty, against [M*]J/[DNA(P)]
for various divalent metal ions studied in the work done by Eichorn and Shin.*® An
abrupt drop in melting temperature of DNA upon increasing copper ion concentration is
observed at > 0.1. This is contrary to what is seen for the various other metals
investigated in the study, which don’t exhibit such a significant destabilising effect on
the DNA structure as much as Cu®* does. FTIR studies in the literature have, likewise,

indicated that denaturation of DNA begins at n= 0.1 and continues up to 0.5.%
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Figure 4.3: “Variations of Ty, of solutions of DNA as a function of divalent metal ion concentration.”*®
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Figure 4.2c shows an AFM image of the Cu-DNA product formed at n= 1. Networks are
not observed at this ratio and instead individual strands are observed. However, these
appear to have been cut, giving substantially shorter segments than the typical length
expected for lambda DNA (16 puM). It is known that Cu?*/ascorbic acid mixtures can
generate hydroxyl radicals (HO-) in situ which are toxic towards DNA in solution and

can lead to DNA cleavage.” >*%°

According to the literature,” CdS templating on DNA in solution at n= 0.7 led to
precipitation of material and no evidence of one-dimensional strands were observed.
When the concentration of cadmium was lowered significantly evidence of nanowire
formation was observed. The concentration dependence of cadmium and sulphide on the
conformation of DNA has been investigated in the literature elsewhere.*” Similarly in
these current studies, when the concentration of Cu(ll) in reaction mixture is low, < 100
uM (n= <0.1), we begin to observe material with the desired feature of continuous,

even, coverage (i.e. nanowires).

Figure 4.2d shows AFM data of Cu-DNA product formed at [Cu]/[DNA(P)] ratios of n=
0.01. Here, long one-dimensional strands of DNA (on the order of microns) were
observed which appeared to be partially coated with copper in some regions due to low
levels of metallisation. The red and blue cross sections of a single nanostructure (see
figure 4.2d, inset) show contrasting heights along the same structure where the
measured height of ~1 nm indicates bare DNA and a height of ~3 nm indicates a small
amount of metallic coverage. These results suggest that a suitable regime for forming
well-ordered copper metallised DNA is above n= 0.01 and below n= 1. Within this
range (0.01- 1) one should expect to see increased metallisation of DNA without

incurring any damage and/or change of shape to the DNA double helix.

Finally a ratio of n= 0.05- 0.1 was selected as giving the most suitable reaction
conditions based on analysis of the products (discussed in detail in section 4.3.4.1). A
suitable concentration of Cu(NO3), and ascorbic acid for a 3 hour incubation time was
found to be 50 uM—100 uM and 2 mM, respectively. The concentration of DNA was
diluted down to ~300 ug mL™ to afford a [Cu2+]/[phOSphate] ratio (‘n”) within the range
0.05 to 0.1. Full AFM characterisation of these Cu-DNA nanostructures is presented in
section 4.3.4.1.

So far, these studies have indicated that the use of high concentrations of Cu®* (> 100

uM) and excess ascorbic acid, with respect to DNA concentration, do not facilitate the
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formation of individual Cu-DNA nanostructures. A ratio of n=0.05 was found to be
suitable for Cu-DNA wire formation. The remainder of this chapter is concerned with
Cu-DNA nanowires prepared using the value of ‘n.’

Purification

Processing of the Cu-DNA containing solution was required in order to separate
unreduced starting material (salt residue) as well as non-templated material (CuNP’s)
from the desired DNA-templated copper nanostructures. This was achieved by
centrifugation of the incubated product mixture at 8000 rpm for 2 minutes in an
Eppendorf tube (see schematic in figure 4.4). AFM data of the top fraction (figure 4.4a)
of the centrifuged solution shows an abundance of non-templated material in contrast to
what is observed from the bottom fraction, which contained pure individual 1-D
nanostructures (figure 4.4b). This procedure allows the large wire-like structures to be
extracted from the lowest part of the Eppendorf tube, whereas the non-templated
material can be discarded using a micropipette.

. 0(\
< >
centrifugation ©
8000 rpm/3 mins Molecular combing

on alkylated p-type Si

Figure 4.4: Schematic showing the purification procedure of Cu-DNA nanostructures by centrifugation.
The top and bottom fractions are separated and combed onto two separate silicon wafers for analysis by
AFM; (a) AFM height image of top fraction and (b) AFM height image of bottom fraction. Scale bars=
10 um, height scales= 10 nm
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Alignment of the Cu-DNA nanostructures was performed on a trimethylsilane (TMS)-
modified silicon substrate using the well-established molecular combing method.?” %
Typically, a small droplet of the solution (5 uL) containing the 1-D nanostructures is
combed across the TMS-silicon substrate several times using a micropipette tip and is

then removed.

The TMS surface modification is achieved via time controlled surface exposure to the
organosilane vapour which forms a self-assembled monolayer of TMS on the silicon
surface. This makes the surface hydrophobic in order to facilitate the combing process.
By controlling the surface exposure to silane vapour one can tailor the surface wetting
properties. The ability to control the hydrophobicity/hydrophilicity in this manner
allows one to control the density of material deposited on the surface. Thus, the surface
tension was optimised in order to obtain well aligned and isolated 1-D nanostructures
for the purposes of Scanning Probe Microscopy (SPM) analysis and electrical
characterisation of isolated nanostructures. However, for FTIR and XPS studies it is
favourable to have a hydrophilic surface in order to have a higher density of bound
material on the silicon surface. The degree of surface wetting was analysed by contact
angle measurements where the ideal contact angle of the surface/solution interface (for
AFM studies) fell between 60-70°.

There are other benefits to using an organosilane monolayer on the silicon surface for
alignment of copper nanostructures. As well as preventing diffusion of Cu into the SiO,
layer at high temperatures, organo-silane monolayers also act as good coupling agents
and adhesion enhancers at the Cu/dielectric (Si/SiO.) interface.”® These aspects will

become important for all future Ultra Large Scale Integration (ULSI) methods.
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4.3.2. Investigation into Cu binding to DNA

4.3.2.1. UV/vis studies

UV/vis Spectroscopy was used to study the reaction between Cu®* ions and DNA (n=
0.05) and the subsequent treatment with ascorbic acid. Figure 4.5 shows the resulting
data for measurements performed on a pure solution of DNA (blue line) and DNA
incubated with Cu®* before (red line) and after reduction with ascorbic acid (green line).
The concentrations of reagents were chosen to afford n= 0.05, as used for the
preparation of DNA-templated Cu nanostructures for AFM analysis. The main feature
to point out from the UV data is the disappearance of the copper nitrate absorption at
~790 nm (red line) due to Cu®* d-d transitions, upon treatment with ascorbic acid;
indicating reduction. The reduction of Cu® is further indicated by the formation of a
characteristic broad plasmon absorption between 540 to 630 nm due to copper metal

(green line).*°

0.1

—CT-DNA
0.09 4
——CT-DNA / Cu2+

0.08 + ——CT-DNA / Cu2+ / ascorbic acid
0.07 4
plasmon resonance

l

0.06 A

DNA/Cu?*
0.05 4

Absorbance

0.04 4

0.03 A

0.02 A

0.01 4

450 550 650 750 850
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Figure 4.5: UV/Vis spectra of DNA (blue line), DNA after incubation with Cu®* (red line) and DNA/Cu?*
after addition of ascorbic acid (green line). Solvent used was Nanopure water. An increase in absorption
after reduction of Cu®* is indicated by the shouldering of the green line at ~600 nm

~ 151 ~



At high values of ‘n” (~25) an obvious colour change in the solution from bright blue to
green is observed, which transforms to a golden brown colour following further
incubation, indicating a change in oxidation state of Cu?* (most likely to the zero valent

metal).

The UV/vis results have indicated the formation of metallic copper. However, little
information can be garnered regarding the interaction of copper with DNA, as the DNA
absorption band (~260 nm) is not significantly affected upon addition of metal ions. In
order to establish details of the interaction, including which of the possible DNA

binding sites are targeted by copper ions, FTIR was employed.

4.3.2.2. FTIR studies

Fourier-Transform Infra-Red (FTIR) Spectroscopy is useful for functional group
determination and obtaining information of chemical bonding and has been used quite
extensively to probe the interaction of metal ions with DNA.?* *** The technique is
used here to elucidate the interaction of copper atoms with DNA following reduction of
Cu?* with ascorbic acid, and hence ultimately determine which sites on DNA are
predominantly influenced by templated copper. An investigation into the effects of
metallisation of DNA was carried out rather than the effects of Cu?*-DNA coordination
as this has been previously reported in detail elsewhere,® ?* 3! whereas, FTIR
characterisation of copper metal templated on DNA has not yet been reported. There is
likely to be a significant increase in copper deposition on DNA when Cu®" is reacted in
the presence of reductant; mainly because metallic nanoclusters act as seed platforms to
encourage further growth of metal along the template via a ‘nucleation and growth’

mechanism. ! 2 3

FTIR spectra (figure 4.6) were recorded on films of both DNA and DNA/Cu® on silicon
wafer and compared and analysed for changes in DNA vibrational peak
positions/intensities. Full peak assignments are given in table 4.1 below and are
supported by references.™ 3 33" Each peak is numbered in the assignment table (table
5.1) and these are referred to in the text.
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Figure 4.6: FTIR transmission spectra of DNA (black line) and copper metallised DNA (turquoise line)
prepared in solution and deposited onto a solid silicon support. Data collected at 2 cm™ resolution, 512
scans

| Peak number | Assignment | | Wavenumber(cm?)] |

] DNA DNA/Cu Shift
| 2]

C=N cytosine; N-H adenine; C7=N adenine 1607 1602 45
C=N guanine and adenine stretch 1578 - -
In-plane vibration of guanine and cytosine 1534 1539 5
“ €8-N coupled with a ring vibration of guanine 1491 1493 2
C-N stretch of thymine, guanine and cytosine 1452 1452 0
C-N stretch of guanine and cytosine 1376 1377 -1
“ C-N stretch of adenine 1326 -

PO* asymmetric stretch 1238 1238 0
TR

C-Odeoxyribose stretch 1013 1009 -4
C-C deoxyribose stretch 966 967 1

Table 4.1: Peak assignment table for selected FTIR stretching frequencies of DNA, before and after
metallisation, with corresponding peak shift values. Data highlighted in red indicate the most prominent
shifts in frequency for particular sites at DNA

As shown in figure 4.6 the FTIR spectrum for bare DNA (black line) shows the various
stretches of the phosphodiester backbone and nucleobases. The bands in the region 900-
1300 cm™ come from the PO, group and the ribose moiety. DNA base stretches are
seen in the region 1300-1800 cm™. A split band containing two well defined peaks

attributable to the C6=0 stretch of guanine (1) and C2=0 stretch of cytosine (2) is seen
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at 1696 cm™ and 1655 cm™, respectively. As for thymine, the C2=0 and C4=0 stretches
are considered to overlap with the C2=0 stretch of guanine and cytosine, respectively.®
% The N-H of thymine is also expected to arise at ~1690-1700 cm™.*

Following metallisation (turquoise line) a rather dramatic shift in C=0 bands are
observed, whereby both are shifted to higher wavenumbers: 1728 cm™ (1) and 1695 cm®
! (2). Additionally both peaks show a reduction in intensity. The large shifts observed
for C2=0 and C6=0 of cytosine/thymine and guanine, respectively, indicate binding of
copper metal at these locations. The C2=0 site of cytosine is located in the minor of
groove of DNA, whereas the C6=0 site of guanine is located in the major groove of
DNA. Therefore, shifts in FTIR absorption bands at these sites suggest that copper
metal has templated around the entirety of the DNA double helix; affording the desired
smooth wire-like metal DNA structure. The data presented here suggests that copper

coordinates with both the phosphates and nucleobases of DNA.

The peaks observed at 1376 and 1452 cm™ belonging to the coupled C-N stretches of
guanine/cytosine and thymine/guanine/cytosine, respectively, remain unshifted but
display an increase in intensity after complexation. According to the work carried out by
Tajmir et.al in their studies of Cu?* binding on the solution structure of DNA, this
change in intensity is an indication of direct metal-base binding.?? Coordination to the
phosphodiester backbone is also evidenced by the dramatic shift in the P-O/C-O stretch
of bare DNA (3) (1064 cm™) to lower wavenumbers in the DNA/Cu spectrum (1031
cm™). The relative intensity of this band displays a shoulder which becomes more
pronounced after metallisation, but a significant reduction in intensity of the whole band
is also apparent. A slight shift in the in-plane vibration of guanine and cytosine (4) is

also notable in the two spectra.

As has been well documented in the literature, there are multiple sites available for
metal ions to coordinate to the DNA structure.'® 3 * Binding to the DNA backbone via
the electrostatic attraction of positive metal ions to the negatively charged phosphates is
a likely possibility. This results in full or partial charge neutralisation of the backbone
and minimises repulsive forces between individual strands of the duplex. The most
common nucleobase binding sites are at the purine bases at N-7 and O-6 of guanine and
N-3 and O-2 of cytosine.** *® Coordination of Cu®* ions may also occur between two
adjacent guanine bases on the same strand or inter strand complexation between a
guanine and cytosine base pair. A combination of both nucleobase and phosphate

~ 154 ~



binding to form a mixed chelate is also possible, as shown in the scheme below (figure

4.7) for a single set of base paired nucleotides.*

O

OH

Figure 4.7: Proposed coordination complex of a guanine-cytosine base pair nucleotide with Cu(ll)
complex. Cu(ll) coordinates with the N7 of guanine and a neighbouring oxygen from the phosphate on
the same strand.

It has been demonstrated by Andruschenko et.al that the binding of Cu* ions to DNA is
dependent upon the concentration of Cu?* in solution.** Coordination to the nucleobases
is promoted at high metal ion concentration, whereas binding to the backbone is the
primary mode of interaction at lower metal ion concentration. The concentration
dependence of Cu?*-DNA binding in solution was the focal point in the work carried out
by Tajmir et.al who showed that at a [Cu]/DNAJP] ratio of 0.025 the binding occurs
primarily to the PO, groups. At concentrations >0.05, as is used here, direct binding to
the nucleobases and/or nucleobase/phosphate groups (i.e. N7 atom of guanine and a

phosphate Oxygen) can occur.?

Previously reported solution FTIR studies of Cu®* doped DNA revealed that a
[Cu)/[phosphate] ratio (n) close to 0.1 (close to the ratio used in this study) results in
primary interaction with the DNA backbone, neutralising the negative charge of the
phosphates and increasing the stability of DNA.** Another study reveals that a

[Cu)/[phosphate] ratio of above 0.1 can lead to denaturation of the DNA solution
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structure,? possibly due to extensive coordination at nucleobase sites which may cause
disruption of Watson-Crick base-paring. The ratio used in our Cu-DNA preparations is
kept well below this value, at 0.05.

FTIR studies of Cu?*/DNA coordination in the work conducted by Watson et al., found
shifts in the phosphodiester backbone and a significant reduction of intensity in the P-
O/C-O stretch of the DNA structure,* as was observed here. A shift in absorption from
1074 cm™ to 1063 cm™ was quoted for the P-O/C-O backbone stretch. However in our
study, the reduced copper-DNA material afforded a more significant shift in frequency
from 1064 cm™ to 1031 cm™. This may suggest more extensive interaction of copper
with the phosphodiester backbone of DNA when copper is reduced from Cu®* to Cu’.
The results here are also notably different concerning the carbonyl stretches of guanine
and cytosine, which are shifted quite dramatically- indicating interaction at these
nucleobase sites. Whereas these same stretches remain largely unaffected for Cu®*
doped DNA, in the Watson et.al FTIR studies.
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4.3.3. Chemical characterisations

Samples for chemical characterisation are prepared slightly differently than those
prepared for FTIR and AFM structural characterisations. The two techniques utilised
below (XRD and XPS) require higher quantities of sample in order to obtain meaningful
spectroscopic data. The following studies utilise large scale preparations in order to

precipitate a “powder.”

To achieve this, the concentration of Cu®*/ascorbic acid mixture was increased with
respect to the concentration of DNA. This affords a Cu:[DNA(P)] ratios (n) above what
is used (i.e. > 0.1) for preparation of high aspect ratio Cu-DNA nanostructures studied
by AFM in section 4.3.4.1. Comparison between the XRD and XPS data is made easier
based on both samples being prepared as “powders” from the large scale preparations.
The concentration of DNA is kept as high as possible (though below saturation) in order
to keep the [Cu]:[DNA(P)] ratio (n) as close to that used for AFM studies (n= 0.05), but
high enough to produce enough material for good signal acquisition in XRD (n= 150)
and XPS (n= 10).

4.3.3.1. X-ray Diffraction (XRD) studies

X-ray powder diffraction was used to assess the chemical form and purity of
nanomaterial obtained from these preparations by matching the reflections to a
crystallographic database. This technique allows us to understand the chemical nature of
the nanomaterial, determination of the crystallite size by Scherrers’ analysis and

possible signs of oxidation.

Figure 4.8 shows the XRD pattern for DNA-templated copper material precipitated
from aqueous solution (black line). The reflections seen at 43.3°, 50.4°, 74.1°, 89.9° and
95.1° can be indexed to the (111), (200), (220), (311) and (222) crystallographic planes,
respectively, of metallic copper (Cu®). There is no evidence of oxidation of the copper
as evident by the lack of signal at 20 = 36.4°(111), which is attributable to the most
intense reflection of Cu,O. Nor is there any evidence of higher oxidation species such as
the more stable CuO phase (26 = 35.5°(002)). Even after 24 hours exposure to air, the
sample remained free of signs of oxidation as indicated by the overlaid XRD pattern
below (refer to figure 4.8, red line), which shows formation of pure elemental copper

and no apparent oxidation species.
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Figure 4.8: XRD pattern of Cu-DNA powder prepared in solution (black) and same sample after 24 hours
exposure to air (red). The reflections are consistent with metallic copper

Using the Scherrer equation the average crystallite size (t) was calculated to be ~35 nm,
based on a pseudo-Voigt fit of the Cu(111) peak with FWHM 0.24°. This value is in
accordance with the precipitated material being nanoscale. However, this value does not
correlate with the heights of the Cu-DNA nanostructures obtained via AFM analysis,
which are considerably lower (avg. ~7 nm) (see section 4.3.4.1). The crystallite sizes
may be significantly increased as a result of using higher Cu®*/ascorbic acid

concentrations for XRD sample preparation.

As a control, a sample of copper was prepared in the absence of DNA to act as a
template and the sample was analysed by powder-XRD. In this case it was found that
the average crystallite size from the Cu(111l) peak, to be ~42 nm (FWHM = 0.2°);
slightly larger than that obtained when DNA is present. This result indicates that the
DNA plays a role in affecting the growth of copper in solution.

The XRD results indicate that the “powder” material obtained from the large scale
preparation is copper metal and shows no or little oxide formed, at least over short time
periods. However, XRD cannot provide information on surface composition of the
nanomaterial and this is where oxidation is most likely occurring. It is therefore
important to make assessment of this using X-ray Photoelectron Spectroscopy (XPS).
Therefore, XPS was employed as a tool to further investigate the chemical composition

of the Cu-DNA nanomaterial.
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4.3.3.2 X-ray Photoelectron Spectroscopy (XPS) studies

The higher surface sensitivity of the XPS technique (c.f. to XRD) will allow evaluation
of the chemical state of the nanostructure surface. It is expected that these
nanostructures consist of metallic copper, but as copper oxidises readily in air it is also
expected that the surface contains oxide species.”’ The corrosion of copper has been
well studied using XPS as an analytical tool.*> ** Table 4.2 below shows typical binding

energies of the Cu2ps, and O1s regions for various copper containing compounds.

Binding Energy (eV)

Compound Cu2psp, O1s Refs
cu 932.5-932.8 30
932.6 42
932.67 43
932.4 u
932.6 *
Cu,0 932.5 530.5 22
932.6 530.3 + 0.1 45,45
932.67 530.8 .4
Cuo 933.1 30
933.7 529.5+ 0.1 42,48
933.8 530.3 43,45
934.1 ®
Cu(OH), 935.1 531.7 a2
934.75 531.1+0.15 .48

Table 4. 2: Binding energies of Cu2ps, and O1s XPS peaks for various copper containing compounds

Figure 4.9 shows Cu2p XPS data of the Cu-DNA sample prepared as discussed in the
experimental (5.2.7). The asymmetry of the Cu2ps, and Cu2py, spectral envelope
suggest the presence of multiple components, which can be fitted to two separate
doublets. The two doublets appear at binding energies expected for metallic copper
(Cu%)- peak 1, and cupric hydroxide Cu(OH),- peak 2. The Cu° line in the Cu2psp
region is observed at binding energy 932.8 eV and is split by 19.8 eV, consistent with
the literature.*® The Cu2psy, line at binding energy 934.9 eV (splitting = 19.9 eV) falls in
the range expected for Cu(OH),.** %" This is further supported by the origin of the
satellite structure where two peaks arise within the region 938 - 947 eV. These are
attributable to the presence of Cu®* species in the sample.*® These peaks are commonly

2+

referred to as the Cu“" “shake up” satellite peak and arise due to a charge screening
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effect of the unfilled 3d state, where the main copper doublets represent the screened
state and the satellite peaks represent the un-screened state.* Integration of peaks 1 and
2 reveal the % composition of Cu® and Cu(OH); to be in a 1:1 ratio, approximately.

6.50E+04

1= Cu® (932.8 eV, splitting= 19.8 eV)

Cu2p,/, 2= Cu(OH), (934.9 eV, splitting= 19.9 eV)
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Figure 4.9: Cu2p (py, and ps;p) XPS spectrum of Cu-DNA nanomaterial from large-scale preparation
fitted to two individual chemical species. The black line shows the real data, the grey lines show the
individual peak fits (treated as doublets) and the red line shows the sum fit
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Figure 4.10: O1s XPS spectrum of Cu-DNA nanomaterial from large-scale preparation. The asymmetry
of the singlet peak suggests the presence of multiple components

~ 160 ~



Figure 4.10 shows the O1s data for the sample which can be deconvoluted into three
peaks. The peak at binding energy 531.3 eV in the spectrum corresponds to that of
cupric hydroxide (Cu(OH),), which is of a typical value for this compound and supports
the assignment of copper hydroxide based on the Cu2p data.*® *’ The peak at 532.9 eV
arises from the SiO, background.>® The remaining peak resolved in the O1s spectrum at
532.2 eV is assigned as the oxygen in the phosphate group of the DNA backbone.>
Considering that this peak shows higher intensity relative to copper hydroxide suggests
that there is bare DNA present in the sample and/or the coating around individual DNA
duplexes is quite thin. In order to understand this from a theoretical standpoint one may
consider that the mean free path of the escaping electron is on the order of tens of
Angstroms from the top of the sample surface, compared to the depth at which
ionisation takes place (several micrometres).>? Confirmation of DNA in the sample was
judged from the presence of the P(2p) signal in the survey spectrum. A value at peak
maxima of 134.4 eV was obtained.”® The existence of the phosphorus signal is good

evidence for DNA as this is the only source of phosphorus in the sample.

Since Cu’ and Cu(OH), were detected in the XPS spectra but only pure elemental Cu®

was identified in the XRD pattern it gives reason to suggest that the Cu(OH), species

forms an overlayer around Cu’.

The complementary data allows us to postulate about the compositional nature of the
nanomaterial. Two possible structure models are proposed (figure 4.11): (i)
nanostructures consist of a metallic copper core encapsulated by a copper hydroxide
shell, as stated above, or (ii) nanostructures are less structurally ordered, consisting of a
mixture of copper and copper hydroxide crystallites arranged randomly along the
template. In both cases the DNA molecule remains as the inner thread running through

the centre of the metal-containing sheath.
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Figure 4.11: Scheme showing the two proposed structures of (i) copper hydroxide shell encasing tightly
clustered metallic copper-DNA core and (ii) formation of random distribution of copper hydroxide and
copper nanoclusters on DNA template

It is a reasonable assumption that explanation (ii) is more unlikely than (i) as this would
require evidence for copper hydroxide in the XRD, which is not the case. In view of the
fact that XPS provides the only evidence for Cu(OH), formation it is suggested that the
hydroxide resides on the surface, making scenario (i) most probable. This is the same
conclusion drawn from the XPS data for Cu-DNA nanostructures prepared from the

organosoluble route in chapter 3.

Atomic Force Microscopy (AFM) data for the Cu-DNA nanostructures is now presented
to provide more structural evidence and to investigate the size and morphology of the

prepared nanomaterial.
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4.3.4. Structural characterisations by Atomic Force Microscopy (AFM)

4.3.4.1. Cu-DNA nanowires

It has been demonstrated in section 4.3.1 that high values of ‘n” (>0.1) leads to
undesirable structural morphologies. In order to avoid these effects, the ratio of Cu* to
phosphate (‘n’) is kept relatively low, at ~0.05 resulting in thinly coated DNA
nanostructures (~5 nm in height) as is desired. In this regime, copper metallisation of
DNA appears to take place in a well-ordered fashion along the whole length of the
structure. The following AFM images are of Cu-DNA structures prepared at this value

of ‘n.’

Figure 4.12 shows a typical Cu-DNA nanostructure formed at n=0.05, aligned on a
TMS-modified silicon substrate by combing. The image illustrates the continuous
nature of the wire which is evenly coated along the entire length of template. XPS and
XRD studies have previously identified this coating to consist of metallic copper, with
some residual copper hydroxide on the surface. Three separate height profiles were
recorded along the length of the structure and the heights obtained (~5 nm) were similar
(see inset in fig 4.12) indicating a smooth wire. The height is significantly larger than
what would be expected for the dimensions of a single DNA duplex (<2 nm). A 3-D
representation of the nanostructure is shown to the right in figure 4.12 which shows the
continuity of coverage and smooth morphology more clearly. The homogenous
morphology of the nanostructure is typical of what is observed in several other samples
which were analysed by AFM. It is clear from the image that there appear to be no gaps
in the copper coating that could potentially hinder the flow of electrical current.
Furthermore the AFM data does not appear to show boundaries between individual
particles along the DNA template; indicating formation of a densely packed succession

of nanoparticles or a single-crystalline entity.
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Figure 4.12: (left) AFM height image of a single Cu-DNA nanostructure prepared at n= 0.05, aligned on
a clean TMS-modified silicon substrate and (right) 3-D image of the same structure. Inset shows the
height profiles of 3 intersections of the structure. The consistent height values indicate the smoothness of
the nanostructure. Scale bar= 1000 nm, height scale= 10 nm

Figure 4.13 shows further AFM height images of Cu-DNA nanowires aligned on TMS-
modified silicon substrates prepared at n= 0.05. Four identical syntheses were carried
out and the material was combed onto four separate TMS-modified silicon wafers for
analysis. The images are obtained in order to illustrate the reproducibility of this method
across the four samples. The resulting nanostructures are highly continuous in coverage
and display smooth morphologies. In each image a-d, there was no observation of
‘beads-on-a-string’ structure morphology as has often been observed in the past for
metal coated DNA nanostructures. Additionally at this concentration ratio (n= 0.05),
DNA is rarely exposed.
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Figure 4.13: Four AFM height images a-d of Cu-DNA nanostructures prepared at n=0.05 obtained from
4 separate identically prepared samples. The similarity in structure morphology and generally particulate
free background across these images illustrate the reproducibility of the method. Insets show the various
height profiles relating to the cross sections in the image (colour coded). Yellow arrows in image (a) point
to DNA branching points. Green circle in image (d) identifies a bare DNA strand. Scale bars (a), (c), (d)=
1000 nm and (b)= 500 nm, height scales= (a), (c), (d)= 10 nm and (b)=6 nm

The heights of the Cu-DNA nanostructures in figure 4.13a are ~6-7 nm as indicated by
the red and blue step profiles (inset). Occasionally smaller sub-3 nm high nanostructures
are obtained (see green profile, fig 4.13a), which are approaching typical measured
heights for bare DNA. For comparison figure 4.13d shows both a well-formed smooth
Cu-DNA nanowire of typical height (~ 6nm) next to a much smaller strand of

essentially a single molecule of bare DNA (circled in green).

Less commonly observed were nanostructures of a disproportionately large height, >20
nm (see red profile in figure 4.13a). Such structures are expected to be a result of DNA
bundling in solution, which has been described in the past to explain the formation of

55 53

so-called “nanoropes,” °° rather than a consequence of excessive copper metallisation on
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a single molecule of DNA. Furthermore, evidence of DNA bundling is shown in figure
4.13a where branching locations of the DNA nanostructure can be seen (marked by

yellow arrows).

Parallel alignment of single nanowires on the surface, as opposed to nanowire
aggregates or ‘networks,” can be encouraged by tailoring the surface properties of the
substrate surface. This is achieved by increasing the hydrophobicity of silicon which
reduces the adherence of DNA molecules to the surface and thus the density of attached
material. This enables isolated strands to be aligned as seen in the AFM images. Figure
4.13b is an example of where these Cu-DNA nanowires are aligned very neatly on the
substrate surface, resulting from the combing action used for depositing the wires. The
heights of the wires in this example are consistent to one another, falling in the range 3-
4 nm, as indicated by the step profiles.

Also, in each of these images the substrate backgrounds are largely free of
contamination which may result from deposition of non-templated material. One of the
key requirements for integration of copper nanostructures into an integrated transistor
layout is a clean substrate background, free from impurities. Earlier surface-based
methods for metal-DNA nanowire synthesis have generally led to relatively high levels
of non-specific deposition on the substrate surface. * >* However it seems the solution
based method can circumvent such issues by introduction of a centrifugation step to
discard of impurities from the solution, such as non-templated material. These samples
display remarkably clean backgrounds, which will be beneficial for future device
fabrication within integrated technology.

4.3.4.2. Statistical analysis

A detailed statistical analysis of the Cu-DNA structure heights was carried out over the
four previously discussed samples to give a more thorough insight into the size
distribution of Cu-DNA nanostructures in the sample. For each observed wire three
separate height measurements were recorded and an average height taken. This process
was repeated on 100 individual Cu-DNA nanowires split over the four samples and the
data was compiled into a histogram (figure 4.14). The numbers on the x-axis represent
the maximum structure height value for a given discrete interval. For instance, the bar at
‘2 nm’ denotes the number of structures measured whereby the height falls in the range

0-2 nm and the bar at 4 nm contains the range between 2 and 4nm, and so on.
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Figure 4.14: Histogram showing height distribution of 100 metallised DNA strands (average of 3
measurements per strand) after treatment with Cu(NO3),.3H,0 and ascorbic acid. Data collected over 4
identically prepared samples

The chart displays the distribution of the nanostructure heights, which gives a
monomodal distribution. A positive skewness in the data is also reflected where the
peak modal range falls between 4-6 nm. A series of less frequent observations fall
within the intervals at the tail end of the chart up to 14-16 nm. The mean structure
height was calculated as 7.1 nm with a standard deviation (o) of 4.7 nm. This value
confirms the successful templating on DNA (i.e. significantly > 2nm in height). These
height values also proffer a size small enough for significant downscaling in

interconnect dimensions for future consideration.

4.3.4.3. Insights into the growth mechanism

In a few images some strands were observed which had a variety of different structured
regions. Inspection of these gave some indication of the possible mechanism of growth
of copper along the template. Further AFM analyses of these Cu-DNA nanostructures

were carried out.

Figure 4.15 shows an AFM height image containing two individual Cu-DNA
nanostructures aligned in parallel. The nanostructure on the left is smooth and uniform

compared to the nanostructure to the right where the extent of metallisation, as indicated
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by height, varies quite considerably. While much of the length of the structure is quite
regular, the indicated region shows individual nanoparticles to be tightly packed along
the template axis with regions of low structure height in between the particles. A
smaller scan size image of this non-uniform metallised region of DNA is also shown.
One could interpret this observation as an intermediate growth phase of copper on
DNA. Two cross sections are measured across the nanostructure to the right (blue and
green markers) in order to record the heights at these positions for comparison. The
height at the green cross section is ~6 nm whereas the height at the blue cross section is
~3 nm which indicates a lower degree of metallisation at this region. This result
provides further evidence that copper growth is occurring on DNA and that the
increased heights associated with these nanostructures compared to bare DNA (~1 nm)
are not an artefact of DNA bundling which could conceivably lead to formation of

larger strands.

Figure 4.15: AFM height images of (left) two well aligned Cu-DNA nanostructures prepared at n=0.05
and (right) a magnified area of the nanostructure to the right (shown by white box) to show the formation
of individual nanoparticles along the template. The nanostructure to the right shows different morphology
than the one to the left, which appears very smooth. Inset shows height profiles (colour coded). Scale bars
(left)= 1000nm and (right)= 300 nm. Height scales= 10 nm

Figure 4.16 shows another example of where nanostructures are observed to be at
seemingly various stages of metal growth along DNA. In this example multiple Cu-
DNA nanostructures are aligned on the surface, within the same scan area. These
display large differences in their structural morphologies indicating these structures to
be at varying stages of metal growth, despite being prepared in the same reaction and

deposited onto the surface simultaneously (see AFM image, figure 4.16).
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Figure 4.16: AFM height image of several Cu-DNA nanostructures at varying stages of metal growth
along the template. Some strands can be seen to show thicker metal coverage than others, indicating that
those are metallised to a higher extent. The colour coded height profiles show the difference in heights for
three separate strands; ~3 nm (green profile), ~4 nm (red) and ~5 nm (blue). Height scale= 10 nm. Scale
bar= 500 nm

Figure 4.17a shows three identical AFM height images of the one shown above (figure
4.16). In each respective image a line section is recorded along the entire length of one
of nanostructure 1, 2 and 3 (from left to right), as indicated by the green line in the
AFM image. The height profiles shown underneath (figure 4.17b) illustrate the variation
in structural morphologies of the respective nanostructures. Structure 1 shows a strand
of DNA with low levels of metallisation (~2 nm high) and a seemingly random
distribution of bound particles along the template, as illustrated by the sharp peaks in
the height profile (4- 6 nm), thus resembling a dilute ‘beads-on-a-string’ motif, as has
been described in the past for metal nanowires.® % Structure 2 shows a more heavily
metallised strand of DNA where the average height of the structure is ~4 nm, and a
more continuous structure with less frequent attachment of particles. The height profile
of structure 3 indicates an altogether smoother morphology where individual particles
are not obvious in the image and the height of the structure has increased again to ~4-7

nm. In almost all cases the observed structural morphology of the isolated material fall
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into the latter category (structure 3), demonstrating the suitability of this

forming copper nanowires.
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Figure 4.17: (a) AFM height images of Cu-DNA nanostructures aligned on silicon by combing; including
a line trace along the length of three separate structures 1, 2 and 3 (green lines) for structure height
analysis and (b) height profiles of each structure shown above corresponding to the line trace in the
image. The differences in structure morphologies between structure 1 (granular) and structure 3 (smooth)

gives an insight into the growth mechanism. Scale bars= 500 nm, height scales= 10 nm

Taking these results into account, it is suggested that the growth of copper on DNA

occurs in a competitive manner to form the ’beads-on-a-string’ morphology or smooth

wires. The thermodynamics of templating material on DNA can be defined by two

competing energy terms; (i) the line energy, which represents the adhesion of material

to the template and (ii) the surface tension of copper.”” The line energy (negative) is

responsible for the adhesion of nuclei along the length of the template, whereas the

surface tension of the material (positive) is what drives individual particle formation.

The resulting morphology between ‘beads-on-a-string” or smooth wire formation is

determined by the reaction stoichiometry. If the volume of copper remains under a

certain limit with respect to the length of template then smooth wire formation is

favoured. Use of high concentration metal precursors has previously led to the

formation of ‘beads-on-a-string’ type assemblies when the reaction is performed on

surface immobilised DNA.* **® A possible explanation for this behaviour may relate to

the increased surface tension of the copper surface as a result of the high copper loading
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on DNA and the favoured formation of individual nanoparticles along the axis of the

template (giving the so-called ‘beads-on-a-string’ motif).

This process is similar in effect to the Ostwalds’ ripening of colloids, which has been
used as a model in the past to describe the formation of CdS nanowires in solution.” It
may also be suggested, that, for the formation of smooth nanowires, it is important if
not critical that the reaction is performed in DNA solution rather than on surface-
immobilised DNA. It has also been demonstrated in polymer DNA-based nanowires
that the polymerisation process is inhibited on surface DNA, whereas in solution they
form highly continuous nanowires.?
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4.3.5. Electrical characterisation of Cu-DNA nanostructures

The electrical characteristics of the DNA-templated copper nanostructures were
surveyed using several techniques in order to establish if they were genuine nanowires,
i.e. electrically conducting. The first technique employed was EFM, a non-contact
method of conductance imaging that is a rapid and convenient means to gauge the

‘wire-like’ properties.

4.3.5.1. Electrostatic Force Microscopy (EFM)

Figure 4.18 shows the AFM height image (left) of Cu-DNA nanomaterial combed on to
a TMS-modified Si/SiO, (200 nm) substrate; the height profile is shown beneath. The
tip oscillation phase images at -10V (middle) and +10V (right) bias are also shown. The
phase profiles are shown underneath the respective images, relating to the cross section

over the left most 1-D strand in the image.

As was observed from previous AFM images, the height of the measured 1-D
nanostructure was ~5 nm (shown by the red, blue and green cross sections intersecting
the nanostructure). By comparison, the central strand was ~2 nm and the strand to the
right was ~3 nm in height. The material observed at the edges of the image is a
consequence of non-DNA-templated material (nanoparticles) and was not removed
during the purification step. The blue cross section across the nanowire is taken as the

point of measurement for phase shift analysis.

I

s
RIS Y

(. \ L

N A
N N

50 100" 150 200 250 300 350 400 nm 02' 04 08 08 1 m 02 04 06 08 1 12 14 um

Figure 4.18: (top, left) AFM height image of 3aligned Cu-DNA nanowires, (top, middle) EFM phase
image at -10V bias, (top, right) EFM phase image at +10V bias. Height and phase profiles corresponding
to each image are shown below. Each nanowire displays negative phase shifts along the entire length of
the structure. EFM data collected for analysis from left most wire in the image, at the intersection colour
coded in blue. Data scales= 10 nm (left) and 3.0° (middle, right). Scale bars= 500 nm
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The phase images (middle and right in figure 4.18) show negative phase shifts (A0)
(black contrast), at both positive and negative potentials, associated along the length of
the Cu-DNA nanostructures with respect to the surface background, which is positive
(white). Negative phase shifts were observed at biases ranging from -10 to +10 V which
become more intense at higher potentials. This indicates that a viable conductive
pathway exists along the entire length of these nanostructures. However, the magnitude
of the conductance cannot be determined from this type of experiment. A plot of
tan(A0) versus ‘V’ (figure 4.19) gives the characteristic negative parabolic curve, as

predicted from EFM theory, for conductive 1-D nanostructures.®® >

Also observed are negative phase shifts (A6) in the two smaller Cu-DNA nanowires to
the right of the one measured, despite the reduced thickness (2-3 nm in height). This
demonstrates the sensitivity of the EFM technique but also illustrates that even DNA-
templated copper structures with much lower levels of metallisation can still provide
conduction pathways over several microns. The non-templated nanomaterial on the

other hand shows positive phase shifts (A8), which indicates they are insulating.
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Figure 4.19: EFM phase shift data showing plot of tan(A6) in radians against bias (V). The trend shows
negative parabolic dependence (as indicated by the second order polynomial line of best fit, solid line)
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Negative phase shift (A8) behaviour is a good indication that the electrons are mobile
along the length of the Cu-DNA nanowire and are not confined to regions directly
beneath the tip which would be the case for a polarisable insulator, where a positive
shift (A6) would be expected. However it is not feasible to quantitatively determine the
conductivity from this technique and it is therefore necessary to use alternative methods,

such as conductive-AFM.

4.3.5.2. Determination of conductivity using Conductive-AFM (C-AFM)

C-AFM was employed as an additional electrical characterisation technique in order to
establish a more comprehensive understanding of the electrical properties of the
nanowires. C-AFM is a 2-point contact technique which can be used to acquire surface
topography using AFM as well as simultaneously measuring the current along the wire.
The technique can also provide direct ‘point and shoot’ analysis to record current-
voltage (i-V) curves at any point along the nanowire/surface allowing the collection of
distance-dependent i-V curves. The ‘point and shoot’ function is enabled by the
system’s closed loop positioning mechanism. In a C-AFM experiment, images are

obtained in contact mode.

Figure 4.20 illustrates the C-AFM set-up specifically developed in our laboratory for
this type of analysis. Details of the experimental method are provided in the
experimental section 4.2.9. Figure 4.20a is a photograph obtained via the AFM
microscope showing the Ga/ln eutectic paste contacting the macrodeposit of
nanomaterial and the AFM tip positioned directly over the edge of the material that has
receded during the drying process. Figure 4.20b is a zoomed in image of this particular
area showing the protrusion of very thick nanowires from the edge of the macrodeposit,
from which, smaller nanowires can be located using contact AFM as shown in figure
4.20c. Figure 4.20d is a current map of the previous image at an applied bias of 5V. The
inset shows the current line trace for a single intersection (blue cross section) across the

nanowire of interest (denoted by the black arrows).
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Figure 4.20: Images demonstrate the C-AFM set-up for measuring conductance in our Cu-DNA
nanowires deposited on a Si/SiO, substrate; (a) photograph of area of analysis showing eutectic paste
contacting the macrodeposit and cantilever positioned over the edge of the receded solution, (b)
magnified image of the same area showing extension of wire-like material from the macrodeposit, (c) C-
AFM deflection error image of several Cu-DNA nanowires protruding from the edge of the droplet and
(d) C-AFM current map of the nanowires showing current in the region of tens of nanoamps (as shown by
current profile, inset). Black arrows indicate the nanowire that was analysed and cross section (white line
with blue markers) indicate the point of current measurements

As shown in figure 4.20d, current signals can pass along the nanowire, as indicated by
the white contrast with respect to dark background. Current was measured by taking a
step profile over a single point across the nanowire (see blue line trace (inset) in figure
4.20d). Current of the order of tens of nAs were detected at applied biases ranging
between 1-10 V. These values are substantially lower than would be required for use as
copper-based interconnect. They do however represent the first example of measured

conductance in DNA-templated copper nanostructures.

Figure 4.21 is a current-voltage (i-V) plot obtained by varying the voltage between 0
and 10V (2V increments) and measuring the current at each stage at the same point on
the wire. This plot displays a near ideal linear trend as expected for a conductor as
indicated by the straight line of best fit (solid line).
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Figure 4.21: i-V plot of a Cu-DNA nanowire. Current measurements were obtained by measuring the
current over a single intersection of the wire at different biases. The linear plot indicates ohmic behaviour

Direct measurement of the i-V nanowire properties was achieved by increasing the
vertical contact force of the tip, which results in mechanical contact with the AFM tip
and nanowire surface, and then recording the current over a range of voltages (-3 to
+3V). Figure 4.22 shows an i-V plot obtained after pressing the tip onto the nanowire.
The graph, again, displays linear current-voltage dependence, which is indicative of
conductive behaviour. However, the sign of the current is dependent on the scan
direction which suggests an additional contribution to the circuit resistance from
capacitive effects (e.g. stray capacitance). The scatter in the data is due to external
‘noise’ which is not filtered out by the systems vibrational isolation system. In addition,
the data points do not intersect the origin as expected for an ideal conductor. The non-
zero intercept is significant due to the small standard of error on the intercept (70.0 £

0.4). This may be explained by stray capacitance in the circuit, as mentioned.
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Figure 4.22: C-AFM i-V Plot of a Cu-nanowire prepared in a solution of DNA. A bias was applied to the

wire ranging from -3 to +3V and the current monitored as a function of bias. The length of the connection
comprised by the wire, in this example, was ~560 nm

For this experiment it is important to consider all of the various resistances which are
inherent to the circuit, as each resistance will contribute to the overall current levels
detected. Treating the set-up as a simple series circuit there are three contributions to the
overall resistance which include, Ryip, Rex and Ruire(d) where Ry is the tip to wire
contact resistance, Rey is the resistance of the wire to the external circuit and Ryire(d) is
the resistance of the wire between the tip contact point and the end of the wire (‘d’
represents the relative distance along the nanowire). Re: cannot be adequately
determined as this may vary significantly depending on the quantity of bulk material
and the distance between the macrodeposit and the AFM chuck (typically ~1 mm).
Clearly, however, Ryire is the resistance one needs to measure in order to determine

nanowire conductivity.

The Cu-DNA nanowire resistivity can be estimated using an alternative approach
known as the ‘transmission line method.” In this method, the wire resistance is
calculated by recording a series of i-V sweeps as a function of distance along the wire.*°
This method allows wire resistance to be extracted from other contributions to the
circuit resistance (such as contact resistance, Ryp). For this experiment, a suitable wire
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was located protruding from the macro deposit using standard contact mode AFM (as
shown earlier in figures 4.20c and 4.20d). The average height of the wire was measured
as ~15 nm as determined from the mean of 15 different height measurements along the
structure length. Current signals were detected along the whole length of the nanowire
(as shown in figure 5.19d). i-V curves over the range -3V to +3V were collected at 9
points periodically along a 4.5 um length of the nanowire (~560 nm spacing). Electrical
resistivity (p) can be calculated from this simple equation:

p=R(A/L) (equation 4.1)

‘R’ is resistance, 'A’ is cross-sectional area of wire and ‘L’ is the wire length. Conductivity (o)

is obtained from the inverse of the above equation.

Figure 4.23 shows the graph of resistance against relative distance along the nanowire.
The effect of distance against resistance was monitored by recording several i-V plots
(an example of which is shown in figure 4.23) as stated in the previous paragraph. The
resistance around zero bias for each of these measurements was calculated from the
inverse gradient of the i-V graph and then plotted against the relative distance (relative
tip position to the point of wire protrusion from the macrodeposit). The gradient of the
resulting graph gives units of resistance per unit length (Q.cm™). The resistivity is
determined from this gradient (without needing to know Ryp and Rex) by multiplying
through the cross-sectional area of the nanowire, which was calculated as 1.77 x10™
cm? based on the assumption that the nanowire adopts an ideal cylindrical shape with a
measured height of 15 nm. Finally, the resistivity was calculated to be 1.06 Q.cm, or in
terms of conductivity, 0.94 Scm™. While this number comprises the lower boundary
estimate to the conductivity, it is still many orders of magnitude lower than bulk copper
(5.96x10° Scm™).
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Figure 4.23: Graph showing distance dependence for resistance in a single Cu-DNA nanowire.
Resistance values were obtained from single i-V plots over various points along the wire. Solid line
shows a linear line of best fit

The graph in figure 4.23 displays a linear trend but not ideal as expected for a metallic
conductor. An ideal linear trend is expected only if the resistance of the wire (Ryire) iS
the dominant factor in the experiment. If the dominant contribution to the overall
resistance is due to contact resistance, then the trend may become more sporadic.
Indeed, the line of best fit (solid line) displays a significant non-zero intercept (92 MQ +
73). The standard error is large but is insufficient to account for all of the resistance.
The remaining contribution is due to the contact resistance (~20-150 MQ). This makes

it difficult to accurately determine the nanowire conductivity.

Modified C-AFM set-up

In an attempt to make a more conclusive estimate of Cu-DNA conductivity we modified
the C-AFM set-up by using a thin gold layer deposited onto Si/SiO, as the macro
electrode, instead of a dense nanomaterial deposit used previously. This was prepared
using a cantilever chip as a mask and evaporation of gold over the sample; resulting in a
portion of the substrate surface untouched by gold (fabrication of this type of device is
discussed in chapter 3, section 3.2.8). The metal AFM tip was used as the secondary

mobile electrode as usual. Cu-DNA nanowires are then combed across the gold edge(s)
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resulting in physical contact between the gold edge and the wire, stretched out onto the
bare silicon oxide surface. In this manner the length (L) of the nanowire can be
precisely measured using SPM software analysis, negating the need to perform several

i-V measurements along the nanowire.

Figure 4.24a shows a deflection error AFM image obtained in contact mode of several
Cu-DNA nanowires overhanging from the straight gold edge. Figure 4.24b is the
current image of these nanowires contacted to the gold. However, when attempting to
perform measurements, the current signal is lost midway during the scan due to the
extreme force exerted on the sample at the gold-nanowire interface, as indicated by the
‘noise’ in the image. This results in the nanowires being cleaved from the surface and

no current flows.

Figure 4.24: (a) C-AFM deflection error image of Cu-DNA nanowires connected to a layer of gold
deposited on to Si/SiO, wafer and (b) C-AFM current map of the same image showing the ability of the
nanowires to carry current until the signal is lost due to a broken connection. Dotted white line shows the
slow axis scan direction. Scale bars= 1 um, data scales= 5 nm (a) and 100 nA (b)

In contact mode, the AFM tip exerts substantial force on the nanowires which can cause
mass movement of the material on the substrate surface. In some instances, when the set
point is exceptionally low, the nanostructures can be damaged or even cut by the force
experienced from the tip. An example of this behaviour is shown in figure 4.25 where
the nanowire is cut and displaced from its original position. The yellow arrows in the
deflection error image (a) denote the points of nanowire cleavage. In the corresponding
current image (b) the current signal (white contrast with respect to background) along

the nanowire is lost between these two broken points. It is likely that both points were
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cleaved simultaneously, dislodging a portion of the wire. Thus the current can no longer
traverse this part of the wire until the tip reaches the next in-tact portion of the wire
connected to the circuit via the macrodeposit (point 2). One of the challenges in
operating C-AFM is to optimise the parameters to produce suitable current levels whilst
maintaining good image quality. The technique becomes increasingly challenging when
dealing with small nanostructures as these can become more displaced or damaged, as is
the situation with the Cu-DNA nanowires produced by this method.

s

Macrodeposit
this way

Figure 4.25: (a) C-AFM deflection error image of a single Cu-DNA nanowire after being cut by the tip in
two locations (shown by yellow arrows) and (b) C-AFM current map of same image showing loss of
current within these two regions. Dotted white line denotes slow axis scan direction. Scale bars= 1 pm,
data scales= 5 nm (a) and 100 nA (b)

4.3.5.3. Determination of conductivity by fabrication of a 2-terminal nanowire device
Now, an alternative two-terminal technique is utilised, in order to overcome the
limitations of C-AFM, using a variable-temperature semiconductor device analyser and

probe station.

In this set of experiments the i-V properties of a single Cu-DNA nanowire were
measured, aligned between two gold ‘fingers.” The fingers are connected to gold macro
electrodes which can be probed using two tungsten tips. The electrodes are fabricated so
as to lie flush with the surface to facilitate the subsequent alignment of wires across the
inter-electrode gap, as well as minimising contact resistance with the nanowire-gold
interface. A single Cu-DNA nanowire was aligned between the electrodes and was
located using “TappingMode™ AFM. Full details of the device fabrication can be
found in the experimental section (4.2.10).
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Figure 4.26a shows an AFM height image of a Cu-DNA nanowire bridging the
electrode gap. It is ~13-18 nm in height (see line sections, inset) and spans the gap of ~3
uM (the nanowire is slightly longer in length due to its curvature). An EFM phase
image was recorded of the device (figure 4.26b) and shows a continuous negative phase
contrast extending from the gold finger along the wire to the second gold finger; thus
indicating a continuous conduction pathway for the device. The nanowires which lie
horizontally across the image give positive phase shifts indicating they are non-
conductive. These are likely to be bare DNA strands or so thinly coated with metal that

they appear highly-resistive by EFM.

(a)'

Figure 4.26: (a) AFM height image of a Cu-DNA nanowire spanning across two gold electrodes and (b)
corresponding EFM phase image showing negative contrast along the nanowire. Scale bars= 1000 nm,
height scale= 10 nm, phase scale= 10°

The performance of the device was electrically tested by carrying out a series of i-V
sweeps in the range +3 to -3 V at a constant temperature of 20°C. Figure 4.27 shows the
i-V curve of the device (turquoise line) obtained from one of these sweeps. The graph is
non-linear and affords negligible current (< picoamps) around zero bias indicating high
resistivity. To check the instrument for comparison, measurements were made on a
single gold electrode which was shown to exhibit excellent ohmic behaviour in the mA

regime at close to zero bias (see inset, figure 4.27).
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Figure 4.27: i-V plot of Cu-DNA nanowire device (blue line) and gold electrode (yellow line). Inset
shows the same graph on a different ‘y-scale.” The device shows very low levels of current, whereas the
electrode is highly conductive and ohmic

It has been demonstrated in the literature by Braun et.al in their electrical studies of a
DNA-templated Ag nanowire fixed across two gold electrodes that an initial non-
linearity of -V behaviour can be transformed to more ohmic characteristics by
application of high voltages.®* This is expected to remove surface oxide residing on the
copper surface which could potentially constitute a substantial tunnelling barrier to
electron transport between particles. We performed repeated i-V sweeps through a large
voltage range (-20 to +20 V) and then fixed the potential at 20 V for 1 minute. However
this did not lead to a transformation in the i-V curves or enhancement in the level of

detected current, as hoped.

This data contrasts with the previously described electrical data obtained using EFM
and C-AFM for Cu-DNA nanowires. It was observed from the EFM data that a viable
conductive pathway exists between the electrodes (along the wire itself). However it
must be noted that the EFM technique has far greater sensitivity than the 2-probe i-V
analyser. C-AFM on the other hand is less sensitive (LA — nA’s) than the probe station
(approaching femtoamps), but yet indicated a substantially higher level of current (tens

of nA’s), which is well within the detection limits of the 2-probe device analyser.
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Therefore it would be expected that i-V curves from this device exhibit current in the
nanoamp range at least. It is especially surprising that such low levels of current are
observed given the continuous nature of these nanowires. The lack of current
measurable in the device is suggested as being due to a contact issue between the gold
electrode and the copper nanowire, rather than the electrical capabilities of the nanowire

itself. Evidence to support this was found in further AFM studies.

A 3-d AFM topography image (figure 4.28) of the two-terminal nanowire device reveals
a ‘break’ at the nanowire-gold junction (indicated by the white circle). A ‘break’ or
‘gap’ of this nature would lead to substantial hindrance to the flow of current from wire
to electrode, assuming the gap is too long for electron tunnelling. Hence this could

explain the poor electrical properties exhibited in the i-V curve.

Figure 4.28: AFM 3-D representation of the Cu-DNA nanowire device showing a clear break at the
nanowire-gold junction (circled in white)

Attempts were made to improve the wire to gold contact using heat (200°C) whilst
under vacuum for a period of 24 hours. Thermal annealing of Cu lines and surfaces is a
process often used for the sintering of individual copper grains to form uniform
structures/films.®2®® It was hoped that annealing would fuse the copper-gold interface.
However, despite this further attempt to transform the structural/electrical properties of

the device, the i-V curves did not change in figure 4.27.
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AFM images recorded after the thermal anneal treatment revealed a considerable
structural transformation in the Cu-DNA nanowire (figure 4.29). The nanowire break
remained, but the templated material was found to diffuse along the DNA strand,
aggregating to form one large particle (>100 nm in height) shown circled in yellow in
figure 4.29c. The formation of this particle comes at the expense of a reduction in height
of the nanowire itself from ~15 nm to ~6 nm, suggesting that copper metal diffuses
along the length of the template driving further aggregation. The height of the structure
also becomes non-uniform with regions of low height in some places and large height in
others affording the granular appearance. Similar structural observations were made on
the annealed Cu-DNA nanostructures in chapter 3, where larger particles formed along

the template rather than one continuous structure.

Figure 4.29: Thermal annealing of Cu-DNA nanowire device: (a) AFM height image of the device, (b)
EFM phase image of the device, (c) AFM height image of the device after anneal and (d) EFM phase
image of the device after anneal. Formation of a large particle in the middle of the nanowire (circled in
yellow) is a result of the heat treatment. Scale bars= 1000 nm, height scales= 10 nm, phase scales= 10°

The evidence provided in this experiment and figure 4.29 seems to concur with a

recently published theory relating to the thermodynamics of DNA-templating.”’ It states
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that if too much material is supplied to the template and the system is allowed to reach
equilibrium then a single particle on a chain is the desired morphology. This is due to
increased surface tension with respect to the line energy. In order to minimise the
surface energy it is favourable to form a single spherical particle. The so called ‘beads-
on-a-string’ assembly may also form if the right templating conditions are met. Based
on the evidence, there is justification to assert that, at elevated temperatures the barrier
to formation of such structures is lowered. In almost all studies where DNA metal
nanostructures have exhibited a granular morphology of this nature, they have either
been shown to exhibit low conductivity or electrical measurements have simply not

been performed. % "%

The EFM phase image of the Cu-DNA nanowire device after annealing (figure 4.29d)
indicates that the nanowire exhibits negative phase shifts when under bias. However, a
large positive phase shift is encountered at the location of the large particle. This feature
of the EFM image indicates that the large particle is electrically insulating and may

therefore disrupt passage of current through the structure.

When assessing the electrical capabilities of a metal nanowire it is worth considering
the effect size has on conductivity. There are two main effects which cause resistance in
a metal: (i) electron scattering off lattice vibrations, particularly at grain boundaries (due
to mismatch in metal lattice) and (ii) surface scattering; where a higher proportion of the
materials’ electrons reside near the surface, becoming more significant as the materials’

dimensions shrink.%"-°

The continuous morphology of the nanowires prepared in this work ensures that
lattice/grain boundary scattering is kept as low as possible, whereas surface scattering
may become more significant due to the small width of the nanowires. However, it must
be noted that this explanation alone is insufficient to account for the number of
magnitudes drop in conductivity of copper. While the nanowires prepared in this work
appear highly continuous by AFM, it may be that the wires are still granular or are of a
polycrystalline nature, which may indicate that the contribution of scattering at particle-
particle interfaces along the structure is highly significant. This effect, along with the
combination of increased surface scattering (due to small size) and contact resistance,
may account for severe drops in conductivity relative to the bulk material. The presence
of copper hydroxide in the Cu-DNA nanowire may also cause a conductivity drop in the

nanowire. An insulating layer around copper particles may constitute a tunnelling
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barrier to electron transport along the wire. However this is perhaps unlikely to be the
major factor causing resistance in the wire, as DNA-templated conductive Cu,O
nanowires (12-23 nm in height) have been prepared elsewhere,”® which are in fact more

conductive (2.2-3.3 Scm™) than the copper nanowires prepared here (0.94 Scm™).
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4.4. Conclusions

DNA-templated copper nanowires were successfully formed in DNA solution at a low
Cu?:DNA(phosphate) ratio (0.05). The concentration of copper relative to DNA was
found to be critical in controlling the formation of Cu-DNA aggregates or nanowires.
AFM studies revealed that the resulting nanowires were highly continuous and
reproducible, and the growth mechanism was likened to the Ostwalds’ Ripening of
Colloids. Product solutions were purified by centrifugation. Copper was found to bind
to the DNA structure through primary interaction with the phosphate groups as well as
interaction with the guanine and cytosine bases, as indicated by the appropriate FTIR
peak shifts. A combination of XPS and XRD techniques confirmed that metallic copper
had grown on the DNA template and an overlayer of copper hydroxide (Cu(OH),) had
formed on the surface.

EFM and C-AFM confirmed the conductive nature of the nanomaterial; the first
example of conductive DNA-templated copper nanowires. However, the low current
values obtained by the latter technique were accounted for by the high contact resistance
of the tip-nanowire interface. Fabrication of a two-terminal Cu-DNA device was
successful but electrical characterisation was thwarted by the poor electrode-wire
contact. Attempts to improve the contact issue by thermal annealing resulted in a
substantial change in the nanowire morphology and suggested that transformation to
‘beads-on-a-string” morphology was promoted at elevated temperature. Ultimately the
low conductivity of these nanowires may be due to a combination of contact resistance
and the possibility for electron and surface scattering taking place along the wire, as

well as the insulating barrier presented by the presence of copper hydroxide.
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Chapter 5: Passivation of Cu-DNA Nanowires by thiol
self-assembly

5.1. Introduction

In chapter 4, Cu-DNA nanowires formed in solution were confirmed to be conducting,
but electrical analysis indicated a conductivity value many orders of magnitude less than
for bulk copper. This was despite the wires appearing highly continuous by AFM.
Chemical characterisation indicated that the nanowires are composed of a DNA-metallic

core encapsulated by a shell of copper(Il) hydroxide (see chapter 4, section 4.3.3).

According to some recent studies, the formation of the hydroxide overlayer on copper
comprises one part of a mutually-dependent process towards the full oxidation of
copper to cupric oxide (CuO). Firstly, formation of Cu,O via ionic transport of Cu
towards the oxide-oxygen interface occurs, followed by growth of the metastable
Cu(OH), overlayer before finally converting to the more stable CuO upon lengthy

exposure to the atmosphere.

The presence of the hydroxide layer on the surface of copper will diminish the
conductive capability of the nanowires. Passivation of the copper surface may prevent
this from occuring. A chemically assembled passivating adlayer on the surface will
serve to block the initial formation of oxide/hydroxide and prevent further oxidation of
copper in air. It is particularly important for the performance of copper-based
interconnect that the surface remains free of oxide and is suitably protected from other
corrosive species such as those present during wet etch processes (e.g. F~ and CI" based

chemicals).®*

Thiols have proved to be a useful class of molecules for self-assembly onto metal

surfaces such as gold,> ® silver’ and copper® * & °

and can afford an array of different
surface chemistries.’® The thiol groups form strong bonds with these metals through the
sulfur atom, particularly with gold,™* affording a protective layer on the surface which is
stable and easy to prepare. Unlike gold however, copper is easily oxidised in air,*?
making the ability to form protective layers on copper surfaces extremely important.
When thiols react at copper they form a self-assembled thiolate adlayer. It is thought
that the initial assembly step involves oxidation of thiol to disulfide, which concurrently
reduces surface copper oxide to the zero-valent metal.* The resulting oxidised thiol

species desorb from the surface and are replaced by new thiol molecules, which
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assemble on the pure copper surface to form the ordered copper-thiolate interface. Thus,
it is considered possible for thiols to form a self-assembled metal-organic interface
which acts to reduce surface oxide and protect copper against corrosion.®

Evidence suggests the resulting thiolate (Cu-SR) may oxidise to sulfonates in air (Cu-
SOz R).* 1 The oxidised thiol species (e.g. sulfonate) desorb more easily from the
surface than the thiolates do. Upon desorption the oxidised thiol species are
subsequently replaced by new thiol molecules from solution. In such a way, the UV
mediated oxidation of thiol-modified copper surfaces has been demonstrated in order to
create patterned surfaces using a mask.!* The unexposed areas of the surface are
oxidised by irradiation to create the patterned substrate. The sample was then placed
into a different thiol-derivative containing solution, which acts to selectively replace the
oxidised thiols bound to the surface for this alternative thiol, thus affording a chemically

patterned surface.

Alkanethiols have been shown to form densely packed monolayers on copper, which
makes the surface strongly hydrophobic.® ° > ® The resulting thiolate layer is
hydrophobic and forms a diffusion barrier between O, and other attacking species
potentially capable of corroding the surface. These properties make alkanethiolate
coatings extremely useful for retarding the atmospheric oxidation of copper. It has been
demonstrated that the protection efficiency is good and increases with chain length as a

result of the increased crystallinity of the monolayer.> "8

Self-assembled monolayers (SAMs) formed from aromatic thiols also afford densely
packed arrangements on metal surfaces and form uniform molecular assemblies, thus
providing good surface passivation.® However, these have been less extensively
investigated than alkane thiols.®?! The packing ability of aromatic thiols is perhaps
enhanced by the ability of individual thiol molecules to n-stack through benzene rings.

This may afford a more efficient corrosion barrier than alkanethiols.

This work is aimed at the use of an aromatic thiol, para-mercaptobenzoic acid (figure
1a), for passivation of DNA-templated copper nanowires. The thiol can be solubilised in
an ethanol/water mixture, which can also solubilise DNA and the metallising agents to
be used (Cu(NO3), and ascorbic acid). Consequently, modification of the DNA-Copper
surface with thiol can be performed as a one-pot reaction. The chemical structures of

potential oxidation species of para-mercaptobenzoic acid are shown in figure 5.1. A

~ 194 ~



schematic showing the proposed structure of the thiolate SAM on a Cu-DNA nanowire

Is shown in figure 5.2.

(a) SH (b) S
HO HO

(c) OH
WavRes
S (0]

OH

Figure 5.1: (a) para-mercaptobenzoic acid, (b) thiolate form, (c) disulfide and (d) sulfonate

copper DNA
core ‘template’

Figure 5.2: Schematic showing thiolate adlayer formed on oxide-free surface of DNA-templated copper
nanowire by self-assembly of para-mercaptobenzoic acid in solution. The thiolate molecules are shown to
overlap in some cases to illustrate the potential for high density stacking

Aside from acting as a corrosion barrier for copper, thiolate SAMs may stabilise
nanoparticles, control the particle size dispersity and suppress the aggregation of
clusters in solution.?*  This was explained in the work by Dow et.al involving the

formation of uniform thiolate SAMs on Cu films by adsorption of disulphide.?* In these
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studies it is noted that disulfides can react with metallic copper to generate Cu(l)-
thiolate clusters. This can lead to progressive etching of the copper-modified surface
due to the ability of the Cu(l)-thiolate clusters to precipitate and resolubilise in
solution.®> Such a process therefore helps to restrict the aggregation of nanoparticles.
Hostetler et.al., demonstrated remarkable control over nanoparticle size by varying the
reaction conditions such as thiol concentration and the rate of reduction.”” Furthermore,
the synthesis of less aggregated and stable nanoparticles may provide for better packing
of individual grains along the DNA template. Figure 5.3 shows a schematic of a
thiolate-capped CuNP. Such a structure should also be prevented from developing into

larger clusters due to the hydrophobic thiolate layer surrounding the particle.

Figure 5.3. Schematic of a thiolate-protected copper nanoparticle

In this chapter Cu-DNA nanowires are modified by thiol SAM in effort to protect the
copper surface from oxidation. The thiolate-capped Cu-DNA nanostructures formed in
this chapter are characterised using XPS, AFM, EFM and C-AFM.
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5.2. Experimental

All general chemical reagents were obtained from Sigma-Aldrich unless otherwise
stated, and were Analar grade or equivalent. Lambda (A) DNA was from New England
Biolabs, cat no. N3011S (New England Biolabs (UK) Ltd. Hitchin, Herts, United
Kingdom). Silicon <p-100> wafers, boron doped, 100 mm. diameter, 525 + 50 pum
thickness, 1-10 Q cm resistance were purchased from Compart Technology LTD.
(Peterborough, Cambridgeshire, United Kingdom). Silicon <n-100> wafers with 200
nm SiO, layer, Arsenic doped, 100mm. diameter, 500 + 25 pm thickness, < 0.005 Q cm
were purchased from Virginia Semiconductor (1501 Powhatan St., Fredericksburg VA
22401).

5.2.1. Preparation of thiol-modified Cu-DNA nanowires

A-DNA solution (500 pg mL™, in 10 mM tris-HCI, pH 8, 1 mM EDTA) was diluted to
300 pg mL? with Nanopure water. Solution A was prepared by addition of
Cu(NO3)2.3H,0 (ag. 50 uM, 10 uL) to the A-DNA solution (10 uL) and was left to
incubate for 5 minutes. Solution B was prepared by mixing ascorbic acid (ag. 2 mM, 10
uL) and 4-mercaptobenzoic acid (68 pM, 10 pL) in a 1:1 H,O:EtOH mixture. Equal
parts of solution B were then added to solution A and the solution was left to incubate
for 3 hours, with gentle stirring on a mechanical roller. To separate the suspension of
nanowires from nanoparticles/aggregates, the mixture was centrifuged at 8000 rpm for 2
minutes. The top fraction was discarded and the bottom fraction was collected for

analysis.

The concentration of the thiol was chosen to afford a copper:sulfur ratio of 0.74:1, as
has previously been used in the preparation of thiol stabilised gold nanoparticles.” %
Prior to use, 4-mercaptobenzoic acid (pKa~ 6) was pH adjusted from a reading of pH
4.3 to a reading of pH 8.0 by addition of 50 mM NaOH (ag.) aliquots. However in some

experiments, the pH of the thiol was not adjusted.

5.2.2. Cleaning and preparation of silicon wafers
Silicon <p-100> wafers were cut into 8 x 12 mm pieces with a diamond tip pen. The

wafers were serial washed in high purity acetone, propanol and Nanopure water, after
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which the wafers were heated in a solution of surfactant (sodium dodecyl sulphate,
0.01g per 100 mL water) for 20 minutes followed by washing with copious amounts of
Nanopure water. The wafers were then chemically oxidised in hot “piranha” solution
(4:1 H,S04:H,0,) for 45 minutes at ~50°C in order to oxidise the surface and remove
organic residue. The wafers are then washed with Nanopure water and dried in an oven
for 30 minutes. The surface was chemically modified by vapour deposition, which
involved exposure of the bare silicon surface to chlorotrimethylsilane vapour (MesSiCl)
for 8 minutes leading to formation of the trimethylsilane (TMS) self-assembled
monolayer (Me3SiCl). Static contact angle measurements were carried out on the TMS-
modified Si substrates using a CAM100 system (KSV Instruments LTD., Helsinki,

Finland), with Nanopure water as the probe liquid.

Wafers used for EFM/C-AFM analysis contained a 200 nm thick oxide layer on both
sides to form an insulating barrier on the surface. Prior to the previously described
cleaning method the backside of these wafers were treated with a solution of HF (10%
ag.) to remove the native oxide layer and provide electrical contact for subsequent

electrical measurements.

5.2.3. Alignment of thiol-protected Cu-DNA nanowires upon substrates

For purposes of SPM and C-AFM analysis, thiol-protected DNA-templated copper
nanowires were aligned upon TMS-modified silicon substrates by a combination of
combing and drop cast techniques: A 5 pL droplet of the nanowire suspension was
obtained from the bottom fraction of the product containing Eppendorf tube and
pipetted onto the substrate. The nanowires were then “combed” onto the substrate by
slowly withdrawing a volume of the droplet using a micro pipette and then redepositing
onto the surface. This routine was performed several times before finally allowing the
droplet to evaporate in a ventilated laminar flow cabinet. This left a residual drying stain
on the surface from which nanowires suitable for AFM analysis were seen to protrude

from.

5.2.4. AFM/EFM studies

TappingMode AFM imaging of surface topography was performed in air on either a

Multimode Nanoscope Illa or a Dimension Nanoscope V (Veeco Instruments Inc.,
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Metrology Group, Santa Barbara, CA) using TESP7 probes (n-doped Si cantilevers,
Veeco Instruments Inc., Metrology Group), with a resonant frequency of 234-287 kHz,
and a spring constant of 20-80 Nm-1. Data acquisition was carried out using Nanoscope
software version 5.12b36 (Multimode I11A) and Nanoscope software version 7.00b19

(Dimension Nanoscope V) (Veeco Instruments Inc., Digital Instruments).

EFM measurements were carried out in air on a Dimension Nanoscope V system using
MESP probes (n-doped Si cantilevers, with a metallic Co/Cr coating, Veeco Instruments
Inc., Metrology Group), with a resonant frequency of ca. 70 kHz, a quality factor of
200-260, and a spring constant of 1-5 Nm™. Data acquisition was carried out using
Nanoscope version 7.00b19 software. For both AFM systems, vibrational noise was

reduced with an isolation table/acoustic enclosure (Veeco Inc., Metrology Group).

The reported EFM phase images show the phase of the tip oscillation at a set lift height
above the sample surface (typically 40-100 nm). Samples used in EFM studies were
prepared upon Si <n-100> substrates with a thermally grown oxide layer, 200 nm (x
10%) thick on top, prepared as described earlier. Processing of data acquired from AFM
and EFM experiments was carried out using both Nanoscope version 7.00b19 (Veeco
Inc., Digital Instruments) and WSxM4.0 Develop 12.6 (Nanotec Electronica S. L.,
Madrid, Spain) software.

5.2.5. Dynamic Light Scattering (DLYS)

Particle size and particle size distributions of the thiol-capped copper nanoparticles were
determined by Dynamic Light Scattering (DLS) measurements using a HPPS (Malvern)
instrument at 25 £ 0.1 °C and a scattering angle of 173° (backscatter detection).
Nanoparticles were prepared and dispersed in Nanopure water as in section 5.2.1 in the
absence of DNA. The sample solutions were then placed in low volume disposable

PMMA cuvettes and measurements were repeated for accuracy.

5.2.5. X-ray Photoelectron Spectroscopy (XPS)
Samples for X-ray Photoelectron Spectroscopy were prepared and deposited on
“piranha” cleaned silicon substrates by drop cast. Silanisation of the silicon substrate

was omitted in order to increase the wettability of the sample surface.
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Thiolated Cu-DNA nanomaterial was prepared by addition of 4-mercaptobenzoic acid
(1:1 H,O:EtOH, 6.8 mM, 20 uL, ~pH 8) to the ascorbic acid solution, before addition of
this combined solution to the DNA/Cu®* containing mixture for a 3 hour incubation, as
in section 5.2.1. The concentration of copper nitrate used was calculated to give a final
Cu?*: S ratio of 0.74:1. The concentration ratio of [Cu]:[DNA(P)] was 10:1 (c.f. 0.05 for
SPM analysis).

A small amount of solid formed in the eppendorf tube during incubation. The reaction
mixture was purified by centrifugation to remove the solid, diluted in ethanol and then
evaporated onto a clean silicon wafer for XPS analysis. The amount of material attached
to the surface is denser than that for AFM samples but is necessary to acquire high

photoelectron signal.

XPS was carried out using a Thermo K-Alpha XPS system with a microfocused,
monochromated Al Ka X-ray source at a take-off angle of 90°. An electron/ion gun was
used to neutralise any charge build-up during analysis. The size of the X-ray spot was
400 um x 700 um. Calibration of binding energies was achieved by referencing to the
internal hydrocarbon peak at 284.8 eV. Peak fitting was carried out using the CasaXPS
software. All peak shapes were defined from a convolution of standard Gaussian and
Lorentzian except for the fitting of the metal where an asymmetric Lorentzian function
with extended tail parameter (LF) was opted for. FWHM’s varied between 1.2 and 2.0
and remain consistent for peaks within the same series. All fitted 2ps2:2py1, peaks were
in a ~2:1 ratio. For the fitted XPS spectra the grey lines denote peak fits and the red line
represents the sum fit, which matches as close as possible to the real data points (black
line). In all instances the minimum numbers of peaks necessary were fitted to the
spectrum which resulted in a good fit, simply because it is not always possible to
resolve all of the components in the spectra. Linear backgrounds were used for all 1s
spectra and Shirley backgrounds for 2p spectra. The data was collected at grazing

emission in order to enhance the surface sensitivity.

5.2.6. Conductive-Atomic Force Microscopy (C-AFM) Studies

Conductive-AFM (C-AFM) was carried out in contact mode on samples of thiolated
Cu-DNA nanowires fixed to TMS-modified Si/SiO, supports, using the Dimension

Nanoscope V instrument. Samples were prepared by drop casting 5-40 pL of the copper

~ 200 ~



nanowire suspension onto the SiO, surface and leaving the droplet to evaporate at room
temperature. The surface tension created by the receding meniscus is enough to align
the wires on the substrate parallel to the direction of solvent withdrawal. This results in
a small circular ‘stain’ on the surface, which contains a dense deposit of nanomaterial at
its centre and aligned wires extending from the periphery of the main body. A drop of
In/Ga eutectic was applied to the edge of the nanomaterial deposit and the metallic
chuck of the AFM to provide electrical contact. The circuit is completed via the metallic
AFM tip as it contacts the Cu-DNA nanostructure during imaging. The tip is positioned
on a nanowire of interest approximately 1mm from the eutectic contact. Typically, a
bias of between 1-10 V was applied in order to obtain sufficient current signals for

analysis. All measurements were made at room temperature.
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5.3. Results and Discussion

5.3.1. Morphological studies of thiol-protected Cu-DNA nanowires by
AFM

Examination of the products formed from the reactions of para-mercaptobenzoic acid
with copper in the presence of DNA, have indicated a structural dependence of the
resulting material based on the reaction conditions. Two of the most prominent factors
influencing the structure of the thiol-modified nanomaterial were found to be (i) pH of
thiol and (ii) order of addition (of thiol) to the reaction mixture. Control over these
factors can lead to the formulation of nanowires or nanoparticles. The method of
preparation of nanowires was via the two-step ‘doping/reduction’” DNA-templating
route, with the addition of thiol first into the reducing solution (ascorbic acid) or

addition of thiol last, after formation of the nanowires.

(i) pH dependence

In these set of experiments, the thiol was added first into the solution of ascorbic acid.
Figure 5.4 shows AFM analysis of the material formed from thiol assembly on Cu-DNA
nanowires. Figure 5.4a shows 1-D nanostructures formed by addition of thiol at its
regular pH in EtOH/H,0 (1:1) (pH 4.3). The as-prepared thiolated 1-D nanostructures
display a highly aggregated and irregular appearance. The image revealed large
aggregates of nanomaterial attached to DNA ~20-40 nm in height (these appears as
large clusters in the image), as opposed to single continuous nanowires as expected. The
aggregates are observed to (seemingly) form at random points along the DNA template.
In view of the fact that these clusters are not randomly deposited onto the background
substrate, indicates that DNA is indeed acting as a template for alignment of these
clusters in one dimension. The shapes of the particles are spherical, but slightly
elongated. The ability of thiol-modified nanoparticles to precipitate and resolubilise in

solution may be a factor in causing anisotropic growth.* °

A similar aggregation effect was observed for the thiolate-protected CuNP’s (i.e. no
DNA present in the reaction mixture). Flocculation of nanoparticles was seen to occur
to form ‘island’ like features (figure 5.4c) on the surface. It was reasoned that the
thiolated copper species may aggregate via inter-molecular hydrogen bonds through the

carboxyl terminated thiol group. A similar observation of the flocculation effect of
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thiol-stabilised gold nanoparticles has been made previously.® In this report, the same
thiol was used, para-mercaptobenzoic acid. The aggregation was ascribed to H-bonding
between the carboxylic acid groups of the thiolate layers surrounding individual

particles.

---CuNW'’s (Sample, a and b)---

Figure 5.4: Evidence for pH sensitivity on the structure of thiolate-Cu-DNA nanowires. AFM height
images of (a) thiolate-Cu-DNA nanowires formed using para-mercaptobenzoic acid (pH 4), (b) thiolate-
Cu-DNA nanowires formed using para-mercaptobenzoic acid (pH 8), (c) thiolate-Cu nanoparticles
formed using para-mercaptobenzoic acid (pH 4) and (d) thiolate-Cu nanoparticles formed using para-
mercaptobenzoic acid (pH 8). Scale bars= 500 nm (a,b), 2000 nm (c,d). Height scales= 10 nm (a,c,d) and
30 nm (b)

In an effort to restrict or supress the aggregation of material through H-bonding, NaOH
was added to the thiol-containing solution in an effort to generate the anionic
carboxylate form. This form is no longer capable of self-complementary H-bonded
dimers, or indeed any such H-bonding with itself. The introduced anionic charge would

be expected to further reduce aggregation due to electrostatic repulsion effects between
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the carboxylate moieties. In this experiment the pH of the thiol EtOH/H,O mixture was
increased to ~pH 8 (above the pKa of the acidic proton of the carboxylic acid (~6.0 in
60% EtOH)) by addition of NaOH. In both instances, for nanowires (5.4b) and
nanoparticles (figure 5.4d), aggregation was restricted. AFM analysis of the resulting
materials showed evidence of individual nanowire (figure 5.4b) and/or nanoparticle

(figure 5.4d) formation on the surface.

In Evans et.al. work, involving the formation of a carboxylic acid (-COOH)-terminated
thiol-SAM onto a gold surface, the subsequent binding of SiO, nanoparticles was
demonstrated to be pH sensitive.?® This was in regards to how well the nanoparticles
adhere to the surface. The pH of the solution containing the SiO, nanoparticles for
deposition onto the SAM surface was the determining factor. At low pH values (1 and
3) there was significant adhesion of nanoparticles onto the surface. Whereas, at high pH
values (5 and 9), there was little adhesion to the surface. This was ascribed to repulsive
forces acting between the resulting deprotonated COOH group and deprotonated Si-OH
of the SiO, nanoparticles, at high pH. Our work is essentially a reversal of this process,
whereby —COOH terminated thiol SAMs on copper nanoparticles interact with the SiO,
surface. It is clear from image 5.4c that there is significant adhesion of nanoparticles
onto the surface at pH 4. Contrarily, at pH 8, there is significantly less adhesion onto the
surface. This may again be due to repulsive forces acting between the surface and the
deprotonated COOH group of the thiol-modified copper nanoparticles.

(i)  Order of addition of thiol dependence

The order of addition of thiol into the reaction mixture was also found to have an
influence on the isolated material. As copper thiolates can be resolubilised and
precipitated in solution due to the ability of thiols to etch metal particles,> * it is
thought that addition of the thiol, last, to the already formed copper nanowires will lead
to etching of the copper surface and formation of nanoparticles. Conversely, if the thiol
is added to the reaction solution concurrently with the reductant (ascorbic acid) the
copper nanoparticles will be capped by thiol soon after reduction of Cu®* at DNA
templates, or at early stages of growth. Thus, it is suggested that wire-like structures

will be the result as opposed to nanoparticles.

All experiments here are performed at pH 8, which was previously found to restrict

aggregation of nanomaterial. The first set of experiments involved addition of the thiol
~ 204 ~



to the as-prepared Cu-DNA nanowires. For comparison of the resulting material, the
Cu-DNA solution was divided into two halves; one half (a) was deposited onto a silicon
wafer (non-thiolated Cu-DNA, see AFM figure 5.5a) and the other half (b) was
subsequently reacted with the thiol for 30 minutes and deposited onto a separate silicon
wafer (thiolated-Cu-DNA, figure 5.5b).

The AFM results (figure 5.5) of the two samples are quite different. For the non-
thiolated Cu-DNA material (figure 5.5a), isolated nanowires are formed, with a
relatively clean substrate background. This preparation is in fact identical to the one
used in chapter 4 (see section 4.2.2) and the samples appear very similar. The thiolated
Cu-DNA material (figure 5.5b) on the other hand, results in nanowires and an array of
isolated nanoparticles on the surface. The nanoparticles in this image (b) vary in size
somewhat between ~5 and 20 nm in height and appear to deposit randomly across the
substrate background. The formation of individual nanoparticles subsequent to the
addition of the thiol may suggest that the copper surface of the nanowire is etched by
thiol. The nanowire in this image varies in height from top to bottom (~35 nm at the top
and ~15 nm at the bottom); an effect of the wire protruding from an evaporated drying

mark (where the wires become thinner the further they are from the edge of the deposit).

hilated Ca-DNA®

Figure 5.5: AFM height images of (a) Cu-DNA nanowire formed in the absence of thiol and (b) Cu-DNA
nanowire formed in the presence of thiol (pH8). Height scales= 10 nm, scale bars = 500 nm (a) and 1000
nm (b). Insets show height profiles over nanowire

When the reaction is performed by addition of all the reagents at once (i.e. thiol is added
to the Cu®’/DNA mixture concurrently with ascorbic acid), individual nanowire
formation is observed and, importantly, a negligible amount of non-templated material
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(see figure 5.6 below) is generated. This suggests that most of the thiolate protected
copper nanoparticles remain bound to the template. Under these conditions, the
assembly of thiol molecules on the surface of copper occurs directly after the reduction
of copper ions on DNA, thereby capping the seeds and suppressing the size of
nanoparticles grown. The effect may be increased when the thiol concentration is in
excess to the metal, as is used here, which will result in a smaller mean size of

nanoparticles.??

Figure 5.6: AFM height images (a and b) of thiolated-Cu-DNA nanowires aligned on the surface by
combing. Aggregation of structures is limited due the increased pH and nanoparticle formation is limited
by correct order of addition of thiol to the reaction. Height scales= 10 nm (a) and 20 nm (b). Scale bars= 2
pm.

Figure 5.6 shows AFM images of the thiolated-Cu-DNA nanowires, prepared under
these conditions (as described in experimental section 5.2.1.), whereby the anionic form
of the thiol is added concurrently with ascorbic acid to the reaction solution. The AFM
data shows the resulting nanowires to be smooth and continuous in morphology. For the
nanowire shown in figure 5.6a a height profile was recorded along a section of the
structure. The height profile indicates uniform structure morphology in the range 30-40
nm, with respect to the substrate background at 0 nm. There are regions where the
height changes abruptly as indicated by sharp peaks in the profile where substantial

growth or aggregation has occurred at these regions.
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The AFM image in figure 5.6b shows two aligned nanowires; the nanowire to the left is
particularly smooth indicating well-ordered growth of the Cu-thiolate SAM on DNA,
whereas the structure to the right shows a gradual decrease in structure height from top
to bottom. The green, blue and red cross sections indicate decreasing heights of 48.1
nm, 13.9 nm and 3.4 nm, respectively. The latter measurement at 3.4 nm (marked by
line with red crosshairs in figure 5.6 b) could indicate that DNA is uncoated at this
region (or coated to a small degree). Further up the image however, the nanostructure is
more heavily coated suggesting a thicker ‘thiol-SAM’ on copper. A varying height
profile along the structure length, as observed here, was also observed in other Cu-DNA
based samples, whereby the method of nanowire deposition was identical (dropcast).
This phenomenon may be explained based on the idea that bare DNA provides an
‘anchoring point’ to the silicon surface, due to its high charge, as the meniscus edge of

the solution droplet recedes during evaporation.
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5.3.2. Determination of particle size by Dynamic Light Scattering (DLS)
Dynamic Light Scattering (DLS) is used here to determine the mean particle size of
thiol-capped copper nanoparticles formed at thiol pH ~4.3 and adjusted pH ~8.0. DLS is
a method commonly used to analyse the particle size distribution of particles suspended
in a dilute solution. The technique is based on the idea that monochromatic light scatters
off the particles in all directions (Rayleigh scattering) whilst the particles undergo
random Brownian motion in solution. The signal intensity received is a time-dependent
variable, which can be analysed by mathematical models to provide information on
particle size and particle size distribution, which is related to the polydispersity index
(Pdl).

In this experiment, two dispersions in water were prepared at dilute concentrations: (a)
containing thiolate-protected CuNP’s (pH 4.3) and (b) containing deprotonated thiolate-
protected CuNP’s (pH ~8.0). The results are displayed by size distribution analysis of
intensity (%) to particle size (nm) (see figure 5.7). The average particle radii of
dispersion (a) was calculated to be 363 nm (Pdl= 0.158) based on a monomodal
distribution (shown in black). The value obtained, along with information provided by

AFM in section 5.3.1, indicates a highly aggregated assembly of nanoparticles.
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Figure 5.7: Size distribution by intensity of dispersion ‘a’ (black line) and dispersion ‘b’ (grey line)

For dispersion (b) a value of 30.9 nm (Pdl= 0.383) was obtained. In this analysis a
bimodal distribution (shown in grey) of particle sizes was obtained as shown by two
distinct peaks centred on ~15 nm and ~100 nm. The smaller value may comprise single

nanoparticles and the larger value may comprise a cluster of nanoparticles. The average
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particle radius is based on analysis of both of these peaks. For a monodisperse sample a
Pdl value of 0.1 or lower is expected. However, both Pdl values obtained here are
higher than 0.1 and the peak widths are quite large, suggesting a high degree of

polydispersity for each sample.

The results indicate a substantial reduction in the particle size when the pH of the
solution is increased. The DLS data is in good agreement with the AFM data which
showed that flocculation of nanoparticles occurred to give larger aggregations, the
formation of which was subsequently restricted by increasing the pH. A high

polydispersity in particle size was also observed in the AFM data.

5.3.3. X-ray Photoelectron Spectroscopy (XPS) studies

XPS is used as a tool here to elucidate the composition of para-mercaptobenzoic acid
modified Cu-DNA nanowires. It is expected that the Cu(l)-thiolate interface is formed
from assembly of thiol on copper. The corrosion resistance of the SAM is also
examined by analysis of the Cu2p region to identify the presence of copper oxidation

species, or lack thereof.

The following data presented is for the thiolated-Cu-DNA nanowires formed using pH
adjusted thiol solutions (pH 8) as part of a one-pot reaction procedure (see section 5.2.1
for experimental details). The material was deposited onto a clean silicon wafer by drop

cast to leave a thin coated film/network of nanowires on the surface.

The DNA template was identified by analysis of the P2p spectra. This showed the
presence of a single species which could be fitted to a doublet at P2p3z, 134.0 eV (split
by 0.87 eV) owing to the phosphate groups in DNA. This is consistent with examples in

the literature.® %

As can be seen from the Cu2p spectrum shown below (figure 5.8) the near symmetrical
Cu2p doublet is observed with a slight shouldering of the spectral envelope towards the
higher binding energy side. The shape of the spectrum seems to indicate the presence of
a single majority component and a minor secondary component. The Cu2ps, lines are
fitted to 932.8 eV and 934.9 eV which are attributable to the presence of metallic copper
and copper(11) hydroxide, respectively.? 2 Both splitting values are consistent with

metallic copper (19.8 eV) and oxidised copper; Cu®* (20.0 eV). Copper hydroxide was
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also identified in the Ols spectrum at 531.6 eV, which agrees with another report.?

Several other metal hydroxides are found near to this value, including Ni(OH),.2

130000 - 1= Cu® (932.8 eV, splitting= 19.8 eV), 86% area

n 2= Cu(OH), (934.9 eV, splitting= 20.0 eV), 8% area
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Figure 5.8: Cu2p XPS spectrum of thiolate-Cu-DNA on silicon. Doublet formation is observed primarily
for copper metal and copper hydroxide to a small extent

The atomic composition for the whole Cu2p doublet region containing copper and
copper hydroxide were determined from the ‘CasaXPS’ software at 86% and 8%,
respectively, a ratio of ~11:1 Cu: Cu(OH),. Comparing this ratio to that obtained for the
non-thiolated Cu-DNA nanomaterial in Chapter 4, which was ~1:1, indicates that the
formation of copper hydroxide has reduced significantly in the presence of thiol and
virtually pure copper has formed. There is also an almost complete loss of the Cu?*
“shake-up” peak centred on ~945 eV. This peak disappearance was reported in the
literature for alkanethiol adsorption on oxidised copper surfaces, showing that thiols act
to remove oxide residue.™® These results reveal that the oxidation of copper on DNA is

significantly reduced by the presence of thiol in solution.

The chemical nature of the thiol adlayer on copper was determined by analysis of the

S2p region (figure 5.9).
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Figure 5.9: S2p XPS spectrum of thiolate-Cu-DNA on silicon. Three doublets are fitted to the spectrum
for copper thiolate, copper sulfonate and disulfide. The thiolate adlayer is the main species present and
oxidised sulfur species are minor components

All fitted peaks in this region ought to be due to the thiol as this is the only source of
sulfur in the sample. Three sets of doublets were fitted to the spectrum. The major form
of sulfur on copper was identified to be copper-thiolate (Cu(l)SCsH4COOQO") at binding
energy 162.9 eV (S2ps2) and splitting value of 1.14 eV, which is consistent with other
literature values. ® *° Integration of the copper thiolate doublet area reveals a 79%

composition of sulfur in this form.

There is a slight shouldering of the main doublet which indicates the presence of an
additional component between 164-167 eV. This was fitted as a spin-orbit doublet at
binding energy 164.9 eV (2ps;2) and is attributed to disulphide (HOOC-CgH,S), (see
chemical structure in figure 5.1).” Despite being an unwanted side-product of the
reaction, the disulfide constitutes only a small proportion of sulfur-containing product in
the sample (~11%). A reduction in the degree of surface copper hydroxide formation
(compared to nanowires formed in chapter 4) and the presence of oxidised sulfur may

suggest that the two events are related.*®

A third doublet is also observed, well separated from the remainder of the spectrum at
Cu2ps;, 168.1 eV with a splitting value of ~1.26 eV. This is attributable to copper
sulfonates,” indicating that a small amount of thiolate (~10%) is oxidised from oxidation
state S(1I) to the sulfonate (RSO;") which has oxidation state S(VI). The co-existence of
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copper sulfonate and copper thiolate has often been reported in the literature.> * We
have shown that the presence of copper thiolate has coincided with an increase in the %
composition of metallic copper and a decrease in the % composition of copper
hydroxide in the sample. Indeed, it has been reported that the oxidation of sulfur occurs
on the surface of copper/copper oxide and thus reduces higher oxidation state copper
species to elemental copper at the same time.? These findings support the assessment
made in the literature, which suggests that the reduction of copper, formation of Cu(l)
thiolate and the oxidation to sulfonates are all related events.* In a sense, thiols can act
to reduce copper. The effect in our studies is likely to be enhanced by the presence of

ascorbic acid.

A similar idea was proposed by Laibinis and Whitesides in their work involving
alkanethiol stabilised copper films.? It was shown that thiols play a role in the reduction
of Cu(Il). Indeed this explains the presence of disulfides in their sample, which are
oxididation by-products of thiol following the reduction of Cu(ll) by thiol. Sung et.al.
proposed a mechanism for the reduction of CuO films by thiols and the subsequent
oxidation of the thiol to disulphide.’® Earlier work by Keller et.al proposed the same
redox chemistry.*® In this work it is claimed that thiols do not adsorb directly onto the

oxidised surface, but reduce the surface oxide first forming disulphide in the process:
2HSR+ CuO — (SR), + Cu + H,0 (1)
Or for Cu(OH), overlayer on copper we propose:
2HSR + Cu(OH); — (SR); + Cu + 2H,0  (2)

The thiolate monolayer can then form on the pure copper surface, likely by oxidative

addition of the S-H bond and then reductive elimination of hydrogen, as in the formula:
HSR+ Cu(0) — RSCu + 1/2H, 3)

The presence of sulfonate (as indicated by XPS) in these current studies are likely to
form by oxidation of the thiolate in air. Another study reveals that the oxidised sulfur
species (also identified as sulfonates) are easily displaced from the surface and are

replaced by thiol molecules in the solution to re-form the copper thiolate adlayer.?

It is clear from the Cu2p and S2p data obtained here that thiol adsorption onto the

copper surface (i) removes the copper hydroxide overlayer and/or (ii) prevents (to some

extent) the oxidation from taking place in the first place. It is reasoned here that the
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latter explanation is more likely since the thiol adsorption on copper nanoparticles
occurs immediately after their formation, meaning that copper metal is passivated. The
small amount of oxidised sulfur in the form of disulfides indicates that the thiol may
indeed act to reduce copper hydroxide. As only a small amount of copper hydroxide
was observed in the sample, compared to that previously observed for the non-thiolated
Cu-DNA in chapter 4, it indicates the effectiveness of the thiol to passivate the copper

surface.

In conclusion the thiol SAM is formed on the surface of the copper metal affording the
Cu(l) thiolate self-assembled monolayer. This serves to reduce the oxidation of copper

by forming a barrier layer between the copper and oxygen interface.

5.3.4. Electrostatic Force Microscopy (EFM) Studies

EFM is used to establish if the Cu-DNA nanowires remain conductive following the
assembly of thiolate. EFM theory allows one to ascertain if the valence electrons are
mobile and can spread along the whole portion of the nanostructure under investigation
(i.e. a current can flow) or the electrons polarise directly beneath the tip, as in the case
of an insulator. The sign of the phase shift (A0) can distinguish between these two
possibilities; for a conductor a negative A8 is expected with respect to the sample
background and positive A6 for an insulator. The EFM experiment performed here is
qualitative and will therefore not give information relating to the magnitude of

conductance.

A sample of nanowires was prepared as described in section 5.2.1 and deposited upon a
TMS-modified Si/SiO, (200 nm) substrate by combing. Thiol-protected Cu-DNA
nanowires were found by standard “TappingMode™ AFM in topography mode (see
AFM figure 5.10, left). The nanowires lie parallel to one another resulting from the
uniform withdrawal direction of the droplet CUNW suspension. A phase image was
recorded (see figure 5.10, right) by scanning the metal coated AFM tip across the
surface at a set lift height (70 nm) whilst the sample was under bias in the range -10 to
+10 V.
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Figure 5.10: EFM topography image (left) and phase image (right) of aligned thiolate-Cu-DNA
nanowires on a TMS-modified Si/SiO, substrate, with corresponding height and phase profiles shown
underneath (colour coded). Phase map obtained at -10 V applied bias. Height scale= 10 nm, phase scale=

5°, scale bars= 1000 nm

Figure 5.11: 3-D image of nanowires from figure 5.10

It is clear from the topography image (figure 5.10, left) that not all of the wires are the
same size in height and there is a varied amount of coverage along the length of the

DNA strands; the 3D representation of the topography image (see figure 5.11 above) is

~ 214 ~



able to show this more clearly. This is useful as it allows comparison of well-coated
DNA strands (large height) with less well coated DNA strands (small height). One
would expect to obtain positive phase shifts where regions of bare DNA are exposed
(insulating) compared to negative phase shifts where DNA is coated with copper metal
(conducting). Additionally, one would expect to see higher magnitude negative phase
shifts for thicker metallised DNA nanowires, and indeed, both of these characteristics

were observed.

A cross-section was taken across three nanostructures of varying heights. The blue,
green and red cross-sections in figure 5.10 gave nanostructure heights of (1) 1.13 nm,
(2) 3.09 nm and (3) 13.65 nm, respectively. The first of these measurements is in
accordance with the height of bare DNA. The corresponding phase profile at this
intersect gives a small positive phase shift of 0.23° (1) as expected for a structure of
high resistivity such as DNA.*® The second intersect in green giving a nanostructure
height of 3.09 nm (2) is indicative of DNA with low metal coverage and expectedly
gives a corresponding negative phase shift (— 3.42° (2)) as signified by the dark
contrast. For the nanostructure of the largest height, 13.65 nm (3), the phase shift is also
negative and predictably the largest at -6.63° indicating that the conductance and/or

capacitance is higher for the thicker nanowire.

For further analysis, a range of direct current (dc) voltages from -10 V to +10 V was
applied in 2V steps as the tip scanned across the surface. For determination of A6 a
single step profile was taken across a chosen nanowire at the same position for each
voltage step (indicated by dotted arrows in the phase image, figure 6.10). The height of
the nanowire at this position is ~8.8 nm. This is a suitable nanowire for EFM analysis

due to its typical size and smooth morphology.

Figure 5.12 shows three phase images collected at 10 V, 0 V and -10 V. The phase shift
data shows that we obtain zero A0 across the nanowire at zero bias, as predicted by
EFM theory.®" * At positive and negative bias, negative phase shifts are observed
across the nanowire with respect to the background. Negative A6 is observed along the
entire length of the nanowires, signifying a viable current pathway. The inset figures
show the phase profile cross section (blue line) which provides a quantitative value of
A in degrees. Measuring A6 of the nanowire for each voltage applied to the sample

provides a series of data (see figure 5.13) with parabolic dependence, also predicted
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from EFM theory. The graph of tan(A6) vs. voltage (figure 5.13) shows a negative

parabolic shape which is attributable to a conductive nanowire.

Figure 5.12: EFM phase maps of thiolate-Cu-DNA nanowires obtained at applied biases of 10V, 0V and
-10V (from left to right). Cross sections (white line with blue cross hairs) denote the point of
measurements. Insets show the corresponding phase profiles across the nanowire. Negative phase shift
behaviour is observed at all non-zero bias. Phase scales= 5°, scale bars= 1000 nm
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Figure 5.13: (left) Table of phase shift values at different applied biases and (right) plot of tan(A6)
against bias. Solid points represent real data points and dotted line is a second-order polynomial best fit.
Negative parabolic dependence confirms conductive nature of nanowire

The technique has confirmed that the thiol-protected Cu-DNA nanostructures are
conductive. The dependence on structure height to the magnitude of the phase shift was
also demonstrated. Bare DNA was confirmed as non-conductive but larger
nanostructures (with presumably templated metal) are conductive. Quantification of
conductance is not possible using this technique. We therefore seek to address this
question by use of a quantitative method for mapping conductance in C-AFM.
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5.3.5. Determination of conductivity using Conductive-AFM (C-AFM)

A sample of nanowires was deposited onto the silicon oxide surface using the drop cast
technique. This left a drying stain on the surface following evaporation of the solution.
Nanowires could be found to extend from the periphery of the macrodeposit using
contact mode AFM. When a bias is applied to the sample, during contact between the

AFM tip and the sample, current was observed to flow along the nanowires.

Figure 5.14 shows an optical image of the material on the surface. The macrodeposit is
shown to the top left of the image where wires are seen to extend from. Smaller
nanowires are often found to lie between the visible 1-D structures on the surface.
Figure 5.15 shows two images of nanowires imaged using different feedback loops
(deflection and current). The deflection error image in figure 5.15a reveals the smooth
morphology of the nanowires. Towards the top of the image the wire appears thicker as
it approaches the point of extension from the macrodeposit. The largest wire has an
average measured height of 37.8 nm based on 10 individual measurements along the
length. The wires branching off have heights of ~5-10 nm. These smaller nanowires
were more easily displaced from the surface or cut by the shear stress applied to the
nanowire by the movement of the AFM tip. Therefore the larger nanowire was chosen

for electrical analysis due to its stability during imaging.

Figure 5.14: Image showing protrusion of wires from the main macrodeposit on a TMS-modified silicon
oxide substrate. The material was deposited by the drop cast technique where a dispersion of nanowires
was evaporated upon the surface. Image obtained using the in-built AFM camera lens.
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(b)

Figure 5.15: C-AFM analysis of thiol-protected copper nanowires aligned on a TMS-modified silicon
oxide substrate. (a) Deflection error image of nanowires extending downwards from the macrodeposit, (b)
current image of same scan area showing continuous current pathways along the wires. Line trace (blue)
was recorded to show change in detected current as the wire extends from the macrodeposit and
corresponding current profile is shown (inset). Points 1-8 indicate the contact position of the metallised
AFM tip with the nanowire for acquisition of i-V curves and resistance measurements. Current was
obtained at a 5V bias. A OV bias was applied for the first few scan lines to show that no current is
detected. Scale bars= 1 uM, data scales= (a) 10 nm (height) and (b) 1 pA (current)

The current image (figure 5.15b) demonstrates that when no bias is applied (0V) there is
no current, as expected. Upon application of a bias (5V) to the sample, current signals
(bright contrast) are detected along the length of the large wire as well as the smaller
wires branching off it. The detected currents were in the range 100 nA — 1 pA+. The
SiO; background appears dark as this is non-conducting. The leftmost wire in image (a)
however does not appear to carry any current as this has been heavily damaged by the
AFM tip.

A line trace was recorded along a 3 um stretch of the thickest wire in the current image.
As can be seen in the current profile (inset) the current decreases further down the
nanowire and there is a particularly steep current drop-off between points 1 and 3.
Visual inspection of the image shows a clear change from bright contrast (points 1 and
2) to a lighter contrast (points 3-8). Points 1 and 2 are approaching the edge of the
macrodeposit where the resistance is assumed to be negligible due to the high density of

conductive material.

By measuring the resistance at each point 1-8 and plotting these values against the
relative distance along the wire (relative to point 1) the resistivity of the nanowire is

determined due to the linear relationship between the total resistance and distance:
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Rtoty= Rcontact) T (p/A).x (Equation 5.1)

Rwn= total resistance in circuit (VA or Q), R (contacyy= tip/wire contact resistance (VA or Q), p=
resistivity of wire (Q.cm), A= cross-sectional area of wire (cm?), x= relative distance along the wire from

edge of macrodeposit (cm)

Based on the assumption that point 1, at the edge of the macrodeposit, carries zero
resistance then the size of the intercept of the graph, resistance vs. distance, is equal to
the contact resistance. Regardless of the assumption however, the gradient of the graph
is equal to the resistivity over cross-sectional area (of nanowire). To measure the
resistance of the wire at each point, a current-voltage (i-V) plot was recorded between -
3and +3 V.

Figure 5.16 shows the graph of resistance against relative distance. A linear relationship

was observed indicating conducting behaviour in the nanowire.
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Figure 5.16: Graph of measured resistance against relative distance along the nanowire from the
macrodeposit. Resistance was determined from a series of i-V measurements along the nanowire. Line of
best-fit indicates a linear relationship for the data-set. Large intercept indicates a significant contribution
of contact resistance

A line of best fit was fitted to the data. The gradient of the line was 1.02 x10* Q nm™
(with standard error on the slope equal to +0.006), which is equal to the resistivity
divided by the cross-sectional area of the nanowire. Based on the assumption that the

wire adopts an ideal cylindrical shape, multiplying the gradient by the cross-sectional
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area of the nanowire (9.74 x10°® nm?), gave a resistivity value of 0.93 Q cm. In terms of
conductivity, the value is equal to 1.01 S cm™. The intercept value is 28 MQ * 4 which
indicates a significant contribution from the contact resistance (Rcontact) between the

metallised tip and nanowire.

The conductivity of the nanowire is only slightly higher than that measured for the non-
thiolated copper nanowire in chapter 4 (0.94 S cm™). Yet the distance dependence graph
obtained here has a significantly lower standard error on the slope indicating more
ohmic behaviour. However due to the estimated error (10 %) on the calculated
conductivity values, both values can be considered as close to 1 S cm™ and are
essentially the same. This would indicate that there was no improvement in the

conductivity of the Cu-DNA nanowires prepared in chapters 3 and 4.
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5.4. Conclusions

DNA-copper nanowire surfaces were successfully modified by self-assembly of the
aromatic thiol, para-mercaptobenzoic acid, to form the Cu(l)-thiolate interface. These
structures were suitably protected from oxidation of copper in aqueous solvent and to
some extent the thiol was shown to act as a reducing agent for copper hydroxide to
metallic copper. The resulting nanowires were found to be highly continuous by AFM
and they remained conductive following thiolation. For preparation of thiol-protected
copper nanowires it was found that the choice of pH and order of addition of thiol to the
reaction mixture influenced the structural nature of product (i.e. nanoparticles or
nanowires). For formulation of high purity thiolated-nanowires, the carboxylic acid
group of the thiol must be deprotonated prior to use and should be present in the
reaction solution during the reduction of copper nitrate on DNA.
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Chapter 6: Physical Vapour Deposition of Copper on
Suspended DNA Templates

6.1. Introduction

Physical Vapour Deposition (PVD) is a vacuum-based method commonly used to coat
thin metal films onto a solid surface (e.g. semiconductors)." 2 The method principally
involves evaporation of a solid (or liquid) phase material (source) into the gaseous
phase and then condensation of the gas onto the solid substrate (target). PVD is a
bottom-up technique for growth of nanomaterials whereby the film thickness and
uniformity can be controlled by optimisation of the deposition process (e.g. deposition
rate/exposure time, vacuum strength and temperature). The method differs from
alternative coating techniques such as Chemical Vapour Deposition (CVD), which is
based on a chemical reaction of the gaseous atoms/molecules at the solid surface. In the
context of this thesis PVD offers an alternative approach to the electroless deposition of
metal nanostructures, which generally relies on solution chemistry. Such chemical
based approaches have been used extensively in our efforts to fabricate conductive

nanowires.

PVD encompasses a range of techniques. Two of the most commonly used routes for
physical deposition of metals are by direct thermal evaporation or via plasma-assisted
sputtering in a sealed vacuum chamber. For evaporative deposition, the process is
carried out under vacuum (< 1 mbar) in order to lower the temperature required to
transform the material into the gaseous phase and allow transport of metal atoms, as
well as preventing the deposition of impurities onto the target substrate (e.g.
atmospheric particles). Sputtering involves the addition of an inert gas (e.g. Ar) into the
vacuum-pumped chamber which is then ionised by application of an electric field to
form energetic Ar” ions. These ions impact onto the source material (cathode) and
dislodge metal atoms, or clusters of atoms, from the surface and into the plasma. The

metal then deposits onto the target substrate to form thin metal films.

The physical method has a number of advantages over wet chemical routes; namely it
does not involve the use of wet chemicals (which is environmentally-friendly) and is
relatively simple and quick to perform. One of the disadvantages of using PVD for
forming metal films is that the technique works less well for unevenly structured
surfaces. For target surfaces which are uneven, the homogeneity of the deposited film
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may be poor. The homogeneity and structure of the resulting film can be manipulated
by controlling the pressure of the system. At low pressures there are a relatively low
number of collisions between source atoms with the background gas. Thus, deposition
of material at the target becomes highly directional. This may cause ‘shadow effects’ at
steps and raised features on the surface. However this ‘shadowing’ effect can be useful
in some cases, as will be illustrated later in this chapter. At high pressures, the impact of
atoms with background gas molecules increases. Thus the directionality of the moving
vapour atoms will be reduced and the shadow effects will be diminished, resulting in a

more uniform film.

It has been shown that, in order to form 1-dimensional nanostructures using the PVD
method, a template is required to guide the formation of the deposited material in an
anisotropic fashion along one axis. There have been several papers published in the field
of physical templating, whereby molecular templates consisting of carbon nanotubes”’
and DNA®® have been utilised. Various different metals or metal alloys have been
coated onto the templated substrate to form a working device. This approach involves
suspending a molecular template above the target surface. The material of choice can
then be deposited along the template using PVD in order to form a nanowire, as
illustrated in figure 6.1. For preparation of nanowires it would be tremendously
beneficial to have the template fixed between a pair of raised electrodes so as to study
the electrical properties of the resulting nanowire.
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Figure 6.1: Schematic illustrating physical templating approach for fabrication of a metal nanowire
device based upon a suspended molecular template. Physical vapour deposition of the metal is performed
over the entire device

Figure 6.2 displays images of various metals grown on suspended templates. PVD
allows the size of the resulting metal nanowires to be controlled via the time at which
the target (template) is exposed to the vapour. Also, the length of the nanowire can be
controlled by varying the inter-electrode distance. For good electrical conduction, the
resulting nanowires should be homogenous in morphology and the metal coatings

continuous.

The physical deposition approach on suspended template molecules was originally
employed by Bezryadin et.al. for fabrication of superconducting Mo/Ge nanowires
using carbon nanotubes (CNTSs) as templates.® Other groups have since used CNTs as
templates for deposition of various metals including Nb® and Os.° Other metals such as
Au, Pd, Fe, Al and Pb have also been templated on suspended CNT molecules.*
However, these form discontinuous metallic coatings on the template. This has been
ascribed to the weak interaction of carbon with the metal and a high diffusion rate of
metal atoms on the surface of the nanotube. Ti on the other hand forms homogenous
coatings on CNTs due to titanium’s low diffusion rate. Titanium was hence used as a
primer layer (~ 1 nm) for deposition of a second metal to form continuous metallic
nanowires.* The resulting nanowires are very thin (< 10 nm) and smooth, as evidenced
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by Transmission Electron Microscopy (TEM) (figure 6.2, middle). However, the

functional properties of these nanowires were not examined.
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Figure 6.2: 1-D metal nanostructures formed by PVD over suspended template molecules. TEM image of
Nb nanowire formed by sputter deposition on a freely suspended carbon nanotube template (left); to
prevent oxidation the wire is further coated with Si. (Adapted from ref.%). TEM images of various metal
nanowires (5 nm) containing a 1 nm Ti buffer layer grown on carbon nanotubes (middle). (Reprinted
from ref.*). SEM image of a A-DNA molecule stretched across a 100 nm trench with AuPd (1.5 nm)
grown on top, and below TEM image of an equivalently prepared wire showing the granularity of the
coating (bottom right). (Reprinted from ref.?). SEM image of a two-nanowire device consisting of DNA
coated with Mo/Ge alloy for fabrication of a SQUID (top right). (Adapted from reference [9])

DNA has also been used as a template for PVD to form nanowires consisting of Os, Nb
and AuPd alloy.® AuPd formed a granular coating on the template (figure 6.2, bottom
right) and thus could not be considered useful for device purposes. Os and Nb on the
other hand deposited onto the template in a more uniform fashion to generate smooth

nanowires.

DNA has been used more extensively for the deposition of Mo/Ge alloy for the
fabrication of a superconducting quantum interference device (SQUID) (see figure 6.2,
top right).”® Templating of the conductive material on the DNA-immobilised substrate
was carried out by sputter deposition. The resulting thin nanowires (5-10 nm) (see
figure 6.2, top right) make seamless contact to the electrodes, are homogenous in

morphology and become superconducting at low temperatures (as low as 0.3 K).

A molecular template such as DNA is well suited for this process as it has the correct
dimensionality to form nanowires; long and thin enough (~2 nm wide) for potential
application in the next generation of electronic circuits. However, as described, the

template must be suspended above the surface for isolation from the underlying
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substrate, which will become conductive following deposition of metal. In principle,
many different metals could be coated onto DNA by this method, making this an
attractive approach to the fabrication of templated metal nanowires. In view of the fact
that copper has not been used as a material for DNA-templating by PVD (or any other
template) the aim of this work is to advance this method for the fabrication of highly

conductive DNA-templated copper nanowires.

In this type of approach, DNA is used as a physical template/support to guide the
deposition of metal in one uniform direction between the raised electrodes. In
previously described chemical approaches to metallised DNA, DNA is exploited
primarily for its expansive ability to bind metal ions through multivalent interactions
with phosphate groups and specific nucleobase sites of DNA. These doped DNA
nanostructures then act as seed platforms to grow more metal atoms in the presence of a
chemical reductant. Such chemical routes have been relied upon throughout this thesis,
and have not led to highly conductive Cu-DNA nanowires. This is despite the observed
continuous coatings on DNA, in most cases. In this physical-based approach, copper
metal is deposited onto the template, rather than copper ions, negating the requirement

for an effective reducing agent.

In this chapter we have implemented a similar physical-based approach to those
previously described for fabrication of a simple two-terminal metal nanowire device by
DNA-templating. In this work, DNA molecules are suspended and isolated between
pairs of raised electrodes over a trench etched into the SiO, substrate. The entire sample
is then coated with metallic copper by evaporative vapour deposition, resulting in
metallised DNA nanowires across the trench and a film of copper upon the SiO,
surface. Images of the device are collected using Scanning Electron Microscopy (SEM).
Chemical characterisation of the metallised device is performed using X-ray
Photoelectron Spectroscopy (XPS). The conductance of the nanowire device is
measured using a 2-probe i-V device analyser to contact the electrode pads. High
definition images of the nanowires for morphological analysis are collected using
Transmission Electron Microscopy (TEM), where wires are suspended across holes in a
perforated silicon nitride (SizN4) TEM grid.

Use of the word ‘device’ in this chapter refers to the two-terminal electrode set-up with

a nanowire bridging between the two electrodes.
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6.2. Experimental

6.2.1. Electrode fabrication

The electrode substrates were prepared in the School of Electrical Engineering,
Newcastle University, by Prof. Nick Wright. The fabricated substrate afforded an array
of two-terminal electrodes for i-V analysis of single nanowires (see figure 6.3). The
electrodes are comprised of aluminium, raised ~3.5 uM above a SiO, (200 nm thick)
layer on a Si support. HF (60%) was used as the etchant to create the channels and
undercuts of the electrodes, whereby the substrate was held ~2 cm above a solution of
the etchant within the vapour. The fumes of HF cause isotropic etching into the SiO;
substrate. Over a long time period, horizontal etching into the aluminium electrodes
occurred. The surface area of the electrodes was ~80 uM? and the distances between the
electrodes were typically 2-5 um. Figure 6.3 shows a typical SEM image of the trench

formed between two aluminium electrodes on the SiO, substrate.

Figure 6.3: SEM image of a trench (~3 um) formed between two raised electrodes

6.2.2. Deposition of DNA and Metallisation

A stock solution of A-DNA with concentration 500 pgmL™ was diluted to 5 pgmL™
using Nanopure water. This concentration was found to be suitable for obtaining
isolated nanowires across the trench for fabrication of a single nanowire device, or for
obtaining single nanowires across holes in a TEM grid. The DNA was aligned between
electrodes by placing a 10 pL droplet onto the surface (see photograph in figure 6.4)
and allowing the solution to dry in a vacuum desiccator. The sample was then rinsed in

Nanopure water to remove residual salt from the surface, originating from DNA buffer.
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For evaporation of copper, the DNA-immobilised sample was placed in an evaporation
chamber. The chamber was evacuated to a pressure of ~1x10® Torr and copper metal
was then deposited onto the sample by heating and evaporating the copper. A thickness
monitor was used to define a 20 nm thick layer of deposited copper onto the surface, at
a rate of ~0.5 nm per second. Figure 6.4 shows an SEM image of electrodes following
deposition of DNA and copper. The ‘layered’ appearance of the electrodes as denoted
by a change in contrast between the top and bottom layers could indicate the presence of

copper on top of the aluminium.
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Figure 6.4. SEM image obtained at 85° tilt angle of the electrode device following deposition of DNA
and copper. The raised electrodes consist of aluminium and the surface is SiO, on Si. Both electrodes and
DNA have a 20 nm thick layer of copper deposited on top

Inspection of the sample by Scanning Electron Microscopy (SEM), discussed in section

6.3.4, reveals that nanowires are pulled taut across the trench and lie very straight.

A control sample consisting of a chip which has no DNA deposited was also prepared

by evaporation of copper onto the surface.

6.2.3. X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) analysis was carried out upon the metallised
nanowire device as prepared in section 6.2.2, using a Kratos AXIS Nova XPS system
with a monochromated Al Ka X-ray source at a take-off angle of 90°. Charge
neutralisation was used for analysis. The analysis area was 400x700 um. Calibration of

binding energies was achieved by referencing to the internal hydrocarbon peak at 284.8
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eV. Peak fitting was carried out using the CasaXPS software. Peak shapes consisted of
an asymmetric Lorentzian function with extended tail parameter (LF). Two Shirley

backgrounds were used for fitting (for 2ps/, and for the 2py,).

6.2.4. Transmission Electron Microscopy (TEM)

Substrates used for Transmission Electron Microscopy (TEM) analysis were ‘holey’
silicon nitride (SisN4) grids, obtained from SPI Supplies (West Chester, PA, USA).
These are perforated silicon nitride membrane window grids with a 200 pum frame
thickness, 0.5 mm? membrane size, 50 nm membrane thickness and 2 pm diameter
holes on 4 pm centres. There are 113 x 113 rows/columns of holes within the
membrane, accounting for 12,545 holes per membrane. All holes are evenly sized and
spaced and are almost entirely defect-free (refer to figure 6.5 for TEM image of the

substrate).

Figure 6.5: (left) TEM image of a bare holey grid and (right) light microscope image of TEM grid
following deposition of DNA and copper. Thick bundles of nanowires are seen to extend across the
surface. Scale bars= 10 pm

Samples were prepared, by first pipetting a solution of A-DNA (5 ugmL™, 2 pL) onto
the TEM grid. The solution was left to dry in a desiccator whilst under vacuum, for 30
minutes. Solution remaining on the surface was wicked off using filter paper. Copper
was then evaporated onto the sample, as described in section 6.2.2. Inspection of the
sample under an optical microscope revealed very thick strands (at least 500 nm thick)

extending over the entirety of the holey substrate, from which smaller nano-sized wires
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are believed to branch off of (see figure 6.5, right). These thick strands are interpreted as
bundles of nanowires. Evidence to support this bundling of nanowires is provided by
SEM and is discussed in section 6.3.4. These bundles seemingly ‘avoid’ the holes on the
substrate (as they are not observable in the TEM), whereas individual nanowires (visible
to the TEM) do extend across the holes.

TEM analysis was conducted on a Philips CM100 TEM with Compustage and high
resolution digital image capture.

6.2.5. Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) was used to locate nanowires spanning across the
electrode trenches, formed as in sections 6.2.1 and 6.2.2. Measurements were performed
using a FEI XL30 ESEM-FEG (Environmental Scanning Electron Microscope-Field
Emission Gun) in low vacuum mode (10 Torr chamber pressure) between 10 and 20
keV. Isolated nanowires were found to lie perpendicular to the trench and span across

the raised electrodes. Nanowires were also observed to lie flat on the surface itself.

6.2.6. Electrical Studies

i-V measurements were carried out upon DNA-templated copper nanowires suspended
between two raised electrodes over a trench etched into the SiO, layer supported on a Si
substrate (prepared as in sections 6.2.1 and 6.2.2). Electrical measurements were made
by using a Probe Station (Cascade Microtech, Inc., Oregon, USA) and B1500A
Semiconductor analyser (Agilent Technologies UK Ltd., Edinburgh, UK), equipped
with Agilent Easy EXPERT software. 1-V measurements were conducted at 293 K
under a N, atmosphere, without light illumination, and by using a voltage range of -3 to
+3 V in steps of 0.03 V.
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6.3. Results and Discussion

6.3.1. Device Design and Process
This section details the strategy involved in the fabrication of a DNA-templated
nanowire device by copper evaporation. Arrays of electrodes were fabricated on the

surface so as to make electrical measurements on individual pairs, where isolated

nanowires are likely to reside (see figure 6.6).
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Figure 6.6: SEM image of the raised aluminium electrode array on a Si/SiO, substrate.

There are important considerations to make regarding the design of the electrodes for
deposition of DNA and for metallisation. Figure 6.7 shows a Scanning Electron
Microscopy (SEM) image of a typical fabricated electrode pair. The image was acquired
at a high tilt angle (85°) for lateral inspection of the electrode construct. It can be seen
from this SEM image that the electrodes are undercut at the base (see dotted yellow

markers).
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Figure 6.7: SEM image obtained at high tilt angle (85°) of a pair of raised aluminium electrodes. The
importance of the image is to show the undercut at the base of each feature

The undercuts form due to an isotropic etch into the SiO, channel where the etch rate of
SiO;, is significantly faster than for aluminium. The channels are over-etched to generate
more pronounced features. Although not clear from this image, the undercuts are
present on all four sides of the electrode feature. The resulting shape of the electrode is

best described as an inverted 3-dimensional trapezoid.

The undercut is very important for the operation of the resulting metallised device. The
electrodes act to mask the deposition of copper which causes a shadow effect around the
perimeter of the electrodes. This provides an insulating enclosure, leaving the electrodes
isolated from the surrounding conductive surface. Thus the shadowing effect can
prevent the formation of short-circuits by deposition of copper at the electrode-surface
interface. A short-circuit can be defined as one which permits the flows of current down
an un-intentional pathway. Therefore, such a design makes it relatively simple to
measure the device conductance where the conductance is attributable exclusively to
copper templated on DNA (i.e. nanowires), rather than non-templated copper (i.e. the
copper film on the surface). Figure 6.8 shows a schematic illustration of the

metallisation process used in this chapter.
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Figure 6.8: Schematic of the metallisation process on the device with DNA molecules bridging across the
raised electrodes. The undercut electrodes act as a mask to prevent deposition of copper at the surface-
electrode interface, resulting in an insulating enclosure around the electrodes

As can be seen from the illustration in figure 6.8 the metal is expected to deposit across
the face of the electrodes and along the DNA-bridge. Copper is also deposited upon the
substrate surface. As discussed, the shape of the electrodes helps to restrict the
deposition of copper around the perimeter of the electrodes and prevent short-circuits.
This affords an isolated and a potentially electrically conductive DNA-templated
nanowire device. A set of electrodes which does not have DNA deposited is used as a
control in order to establish that without DNA bridges the deposition of copper does not
produce conductive devices. The electrical data from both sets of samples is presented

later in this chapter in section 6.3.5.

For deposition of DNA the inter-electrode distances should be made short enough to
facilitate the alignment of DNA molecules across the gap. The DNA used here is A-
DNA, which is ~16 uM long. The inter-electrode distances were typically 2-5 uM and
the trench depth was ~3.5 pM. These dimensions permit the alignment of DNA across
the electrodes, which are raised high enough from the surface for DNA to be freely
suspended. Molecules were stretched across the trench by evaporation of a solution of
DNA. It was found that a DNA concentration of 5 ugmL™ (diluted from a stock solution
of 300 ugmL™) was appropriate for this experiment to afford isolated bridges.
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For deposition of copper, the pure metal was thermally evaporated onto the substrate,
rather than by the alternative method involving plasma-assisted sputtering. The
evaporation technique results in a more directional and uniform coverage of copper on
the substrate and DNA bridges. This controlled deposition helps to further restrict the
deposition of metal around the undercuts of the electrodes. The directionality of
evaporated metal atoms can be enhanced at lower pressures, which results in less
frequent collisions of metal atoms with the background gas. The random direction of
sputter deposition on the other hand, may lead to deposition of copper at the undercuts

of the electrodes causing the un-wanted short connection.
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6.3.2. Chemical Characterisation

X-ray Photoelectron Spectroscopy (XPS) is used here to confirm that the device is
composed of copper metal, as expected. XPS is also used here to establish if the copper
surface is oxidised. The figure below (figure 6.9) is an optical microscope image of the
metallised sample, which shows the approximate area under examination, for collection
of XPS signals. The reddish-brown colour of the sample is a minor indication that

copper metal is present on the surface.

Figure 6.9: Optical microscope image of the metallised sample showing the approximate area under XPS
examination

For pure copper metal, a symmetrical doublet would be expected to arise in the Cu2p
spectrum. For copper metal that is marginally oxidised to Cu®* (e.g. CuO), a slight
shouldering of the copper doublet peak may be expected, accompanied by the growth of
satellite peak(s).® For a significantly oxidised copper surface, the shouldering of the
doublet becomes exceedingly pronounced that inclusion of an additional doublet is

necessary to account for copper oxide as a separate component.

Figure 6.10 shows the Cu2p spectrum obtained for this sample. Analysis of the
spectrum revealed an almost symmetrical doublet at the expected binding energy for
pure metallic copper (932.6 eV for 2psp),** and with the correct splitting value (19.8
ev).
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Figure 6.10: Cu2p XPS spectrum of the sample surface following deposition of DNA and evaporation of
copper. The doublet is attributed to metallic copper. The low intensity satellite structure indicates a small
amount of oxidation of copper

A further two peaks were fitted to the spectrum at binding energies 950.1 eV and 945.8

2+ «

eV, whereby the latter corresponds characteristically to a Cu“” “shake up” satellite peak;
an indication that some copper is oxidised at the surface. The peak at 950.1 eV is
incorporated into the overall fit in order to fit the sloped background profile of the
spectrum, which rises in intensity towards the Cu2py, region. Copper satellite structure
arises due to the presence of Cu®" species in the sample.’? Satellite peaks form as a
consequence of charge transfer to a copper 3d orbital when in the Cu®" state (with
electron configuration 3d®). Charge transfer acts to screen the core hole charge, which is
present following ejection of a copper 2p electron. Satellite structure is absent for
samples containing Cu® and/or Cu* species as these have a full 3d sub-shell (d*°) and

therefore charge screening via charge transfer does not occur.

The low intensity of the satellite structure with respect to the copper doublet, as well as
the near perfect symmetry of the copper doublet peak shape, led us to determine that
assigning Cu?* species as a seprate doublet component was not the correct procedure.
Instead, to account for the slight assymetry, the copper doublet peak shapes were

allowed to tail off assymetrically.
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6.3.3. Nanowire Characterisation

Transmission Electron Microscopy (TEM) was used to examine the morphology of the
DNA-templated copper nanowires formed by evaporation of copper onto suspended
DNA molecules. In order to prepare a sample for TEM, based on this approach, a
specific type of substrate was required. These were perforated silicon nitride (SizNg)
TEM grids. The DNA was stretched across the holes in the substrate by evaporating a
solution of DNA,; in the same manner used to align DNA molecules across trenches in
the electrode based device. Metallisation (by evaporation of copper) of the DNA-
templated TEM substrate was achieved in the same way as for the DNA-templated
electrode substrate. Identical sample preparations, albeit on different substrates, ensures

that both the device and the TEM sample contain nanowires of a similar appearance.

Figure 6.11 shows a large scan size TEM image (~29 pum?) of the substrate following
absorption of DNA and metallisation with copper. It is apparent that there are large
strands (at least 500 nm thick) extending across the surface which avoid crossing over
the holes. These large strands are perhaps representative of those observed under the

optical microscope, shown to the right of figure 6.11, and alluded to in section 6.2.4.

Figure 6.11: (left) TEM image of a perforated silicon nitride grid following deposition of DNA and
copper, (right) optical microscope image of the same sample. Scale bars= (left) 4 um and (right) 10 um

Further inspection of the sample by TEM revealed smaller nano sized wires to bridge
across the holes in the substrate. Figure 6.12 shows a selection of small scan size images
of nanowires bridging across the holes. These images are used to assess the morphology

of the nanowires prepared by this method.
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Figure 6.12: Small scan size TEM images of DNA-templated copper nanowires bridging across holes in
a perforated silicon nitride TEM grid. Top left/right and bottom left are all images of the same nanowire.
The widths of the nanowires are ~50 nm. Scale bars= (top left) 500 nm, (top right, bottom left) 100 nm
and (bottom right) 50 nm

These images reveal the nanowires to be continuous and highly uniform in width (~50
nm). The image to the top left shows a nanowire pulled taut across one of the holes (2
pum in diameter). Magnified images of this nanowire are shown in figure 6.12 (top right
and bottom left). These images show the nanowire to be highly continuous and uniform
in copper coverage. These structures do not appear to exhibit granular defects in the
copper coating and appear highly crystalline. It is also apparent that the DNA template
is left completely unexposed by copper. DNA is not easily observed by TEM due to a
lack of contrast and usually requires a stain to image the nanostructure or other,

innovative, techniques.’* As we observe good continuous contrast along the whole
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length of these wires under TEM it seems likely that the copper coating is also
continuous. The image to the bottom right is an example of a nanowire where the
uniformity of the coating appears to change along the length of the structure and reveals
an underlying coating on the template (shown circled in blue). The high tension of the
nanowire as a result of it being pulled taut may cause the copper to diffuse slightly. This

result may demonstrate that copper is mobile along the length of the nanowire.

A control sample (see TEM images in figure 6.13) was prepared by evaporation of
copper onto a TEM substrate which does not have DNA deposited. As can be concluded
from these images, the deposition of copper does not result in wire-like material,
without the presence of DNA to act as a template/bridge. Even so, the morphology of
the copper coating on the substrate, shown clearly in the image to the right of figure
6.13, is similar to that observed in figure 6.12 (where DNA was present), affording a

highly uniform copper film.

Figure 6.13: TEM images of the control sample; copper metallised TEM grid without DNA templates.
The figure to the left indicates that no wires are formed on the substrate and the figure to the right shows
the morphology of the metallised surface. Scale bars= (left) 2 um and (right) 200 nm
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6.3.4. Device Characterisation

Scanning Electron Microscopy (SEM) was used to characterise the metallised electrode
device and locate nanowires bridging across the trench. SEM is an electron microscopy
method used to acquire topography information of conductive samples, usually by
scanning across the surface in a raster pattern with an electron beam. The electrons
interact with atoms at the surface whereby a variety of signals can be measured in
response to this interaction. Typically, the measured signal is due to secondary electrons
(SE) which are ionization products of the specimen under scrutiny. The energy and
intensity of these SE signals can be used to determine the topography of the sample with
resolution of features below 1 nm. The detected signal varies as the beam scans across
the sample due to changes in the surface topography. The image contrast is used to

convey surface topography which varies in response to the detected signal.

Figure 6.14 shows an SEM image of a pair of raised electrodes with a trench formed in
between, following deposition of DNA and copper onto the chip. The image to the right
shows a smaller scan size image between these two electrodes where the trench is
located. A nanowire (~ 100 nm in width) is seen to bridge across the electrodes (~ 4 um
gap) and is freely suspended above the trench. The nanowire makes seamless contact at
the electrode interface and appears to homogenise with the electrode surface. Namely,
there is no observable anchoring point for the ends of the strand onto the electrode
surface. The wire also appears to be uniform in width and is highly continuous in

coverage.

Figure 6.14: SEM images of electrode device consisting of a DNA-templated copper nanowire bridging
across the trench etched into the SiO, substrate. The nanowire makes contact to both electrodes but
importantly not the underlying surface
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Energy-Dispersive X-ray (EDX) analysis was used to assess the elemental composition
of the sample. The point of analysis is marked with an ‘x’ in figure 6.14. According to
the EDX spectrum (figure 6.15, below), the sample contains the following elements: O,
Cu, Al and Si. Both Si and O arise from the underlying SiO; substrate and the Al from

the electrode. Cu is detected on the surface following its deposition.

Figure 6.15: EDX spectrum of the sample surface. The ‘x-axis’ is in keV

As well as establishing that nanowires could be suspended between electrodes, SEM
also revealed that nanowires were, in some cases, connected from electrodes to the
substrate background. An SEM image in figure 6.16a shows an example of this. As
observed, within the dotted black circle, a strand appears to stretch from one electrode
to the adjacent electrode and then extends further onto the substrate surface. As stated
earlier, conductive bridges connecting electrode to surface may short-circuit the device,
which is unwanted. Figure 6.16b is a smaller scan size image of the device between this
trench, where the same strand is located. The image shows that the strand is composed
of several individual nanowires which are loosely bundled together. This observation
may relate to what was observed under the optical microscope on the TEM substrate
(see section 6.3.3, figure 6.11) where thick strands were seen to extend across the
surface. Such features present a problem for fabrication of single nanowire devices.
Namely, bundles of nanowires are formed and the presence of such, as has been shown

here, acts to potentially short-circuit the device. Indeed, the strand appears to overhang
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from the electrode interface and into the trench below, rather than suspending between

the electrodes, providing further opportunity to short-circuit the device.

(a)

Figure 6.16: (@) SEM image showing a wire extending from one electrode, across the trench to the
opposite electrode, and onto the conducting SiO,/Cu substrate, (b) a smaller scan size image between the
trench which indicates that the ‘wire’ is actually comprised of a ‘loose’ bundle of nanowires. The bundle
appears to overhang down from the edge of the electrode into the trench below. Such features are likely to
short-circuit the device. Images have been sharpened and the contrast adjusted using ‘Microsoft Word
2010.” Scale bars= (top) 10 um and (bottom) 2 um

6.3.5. i-V Measurements
Based upon previously described observations (see section 6.3.4) that DNA nanowires
can bridge across the trench and may also act to bridge between electrode and the

conductive surface, potentially short connecting the device, we sought to examine the
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electrical performance of the device. Figure 6.17 is a diagram detailing a proposed
model of our DNA-templated device. Here, a nanowire is shown to bridge across the
trench from electrode to electrode (point 1 to point 2) as in the real device shown in the
SEM image below (figure 6.18). To illustrate the effect of a short circuit, nanowires are
also shown to bridge from electrodes to the conductive surface (point 1 to point 3 and/or
point 2 to point 3), thus bypassing the insulating enclosure surrounding the electrode
perimeter.
Vv | KA\
| o/
<€—— Probe needle

~20 nm Cu layer on SiO,

Si0, enclosure

Figure 6.17: Proposed model of the DNA-templated copper nanowire electrode device. Nanowires may
bridge the inter-electrode gap (between points 1 and 2) and also act to bridge between electrodes (1,2) to
the conductive copper surface (3). Electrical measurements are made by placing the two probe needles
onto the device (positions 1, 2 or 3) and recording a current-voltage (i-V) sweep
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Figure 6.18: SEM image of a nanowire device. A DNA-templated copper nanowire is shown to bridge
across the trench and between the two electrodes

Electrical measurements were carried out in order to test this proposed model. Current-
voltage (i-V) sweeps were performed between points 1-1, 1-2, and 1-3 using tungsten
probe needles (9 um radius tips). If the model is indeed correct, one would expect to
observe conductance for each set of points. The device to be tested has a nanowire
bridging between the electrodes (points 1-2) and is shown in figure 6.18.

I-V curves are shown in figure 6.19 below. Conductance values were obtained from the
slope of each graph (current/voltage, AV or Siemens (S)). The highest conductance
value, recorded when both probes were positioned onto the same electrode (points 1-1),
was 5x10° S around zero bias with an ohmic current-voltage relationship. To measure
the conductance of the nanowire bridging between the electrodes (as shown in figure
6.18 above) the probes were positioned at points 1-2 (refer to schematic, figure 6.17).
The current-voltage relationship was ohmic, as expected for a conductive wire, and the
zero bias conductance value was also high (2x10™ S). To test if the device is conductive
between electrodes and surface (short-circuit) the probe needles were positioned at
points 1-3 (or 2-3) and a further i-V sweep was recorded. The conductance value was
high (4x10™ S), suggesting that the device is shorted. In fact, the conductance between
the electrode and substrate is double that obtained for the bridging nanowire across the
trench (between electrodes). These results may prove our proposed model to be correct.
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Figure 6.19: Current-voltage (i-V) plots obtained by placing the probe needles at different locations on
the nanowire device. All plots exhibit an ohmic relationship and high conductance

However, in order to verify if the conductance of the device is indeed the result of
metallised DNA bridges, connecting between electrodes (1-2) as well as electrode and
surface (1-3), a further set of i-V measurements were carried out. Here, i-V sweeps are
performed on a control sample which comprises a duplicate set of electrodes, as used in
the previous set of experiments. This sample was metallised by evaporation of copper as
before, but was importantly not DNA-templated.

Figure 6.20 shows the i-V curves obtained between points 1-1, 1-2 and 1-3 (refer to
schematic in figure 6.17).
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Figure 6.20: Current-voltage (i-V) plots obtained by placing the probe needles at different points on the
non DNA-templated, metallised sample (control). Inset: i-V plot obtained when both probes are
positioned onto the same electrode. Significantly low current values are obtained between the electrodes
(1-2) and electrode-substrate (1-3) due to the absence of DNA bridges

As shown, in the absence of DNA to act as a template, there was no conductance
between any two contact points on the surface, except when both probe needles are
positioned onto the same electrode (see i-V plot, inset figure 6.20). These results
demonstrate that the electrodes are functioning as desired. Importantly, the insulating
enclosure around the perimeter of the electrodes has prevented short-circuiting which
may have been expected to occur via the deposition of copper between the electrode and
substrate surface interface (points 1-3 and 2-3). These results support our earlier claim
that DNA bridges are responsible for the electrical performance of the device. In as
much as, DNA must be present to act as a template in order to make the device
conductive by bridging between insulating gaps (i.e. between electrode to electrode or
electrode to surface).
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6.4. Conclusions

Two-terminal nanowire devices have been fabricated by physical vapour deposition of
copper onto suspended DNA templates. DNA strands act to bridge insulating gaps on
the electrode substrate before being metallised in order to make the device conductive.
Scanning Electron Microscopy (SEM) revealed that metallised DNA nanowires were
freely suspended across trenches etched into the substrate surface between two
electrodes. The conductivity of the resulting nanowire device was confirmed by i-V
analysis. Nanowires were also shown to bridge between electrodes to the conductive
surface. The latter effect results in a short-circuit connection to the device, as evidenced
by i-V analysis. A further set of experiments on a metallised sample, which is non
DNA-templated, indicated that the ‘device’ was non-conductive. This result further
confirms that DNA is required to act as a template for deposition of copper in order to
make 1-diemensional bridges across insulating gaps (i.e. the trench) and thus make the
device conductive. This holds true regardless of whether DNA mediated short-circuits

are present.

Individual nanowires were characterised by Transmission Electron Microscopy (TEM)
in order to analyse their morphology. These were shown to possess highly continuous

copper coatings and they were uniform in width along their entire lengths.

The methods presented in this chapter for fabrication of conductive single nanowire
devices may be beneficial to the future manufacturing of interconnect technology. The
ability to fix a template to the substrate, in a pre-determined orientation, is of huge
advantage to the electronics industry. Templating methods could offer great control over
both feature sizes and spatial orientation of device components. Given that that DNA is
a versatile tool for construction of sophisticated nano-assemblies, the potential for
fabrication of defined circuit designs on substrates, via DNA templating in one, two or
even three dimensions makes this approach highly attractive. Thus, such physical-
templating methods could be extended for fabrication of more sophisticated device
elements. Moreover, the effort invested here for construction of copper-based nano
devices may help to ease the transition from top-down fabrication of copper-based
interconnects to the bottom-up assembly of copper interconnects and other electronic

components.
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Chapter 7: Final Conclusions

Much of the work contained in this thesis is directed towards the realisation of a specific
and challenging objective: to fabricate smooth, conductive DNA-templated copper
nanowires at the low end nanometre scale (<10 nm). In this regard, our objectives have
been achieved to some extent. Namely, the results contained in chapters 4 and 5,
whereby nanowires were prepared in the solution phase, have demonstrated those three
principal targets. These approaches resulted in continuous coatings of copper (7 nm)
being deposited along DNA template strands in a uniform manner, and were proven to
carry significant levels of current over micron length scales. What remains apparent,
however, is that the wires produced by these chemical-based methods are not
sufficiently conductive for the realistic application as components within integrated
electronic devices. More specifically, these Cu-DNA nanowires cannot be currently
considered as a candidate for the wholesale replacement of the existing interconnect
technology, which although limited in potential for significant size reduction utilising
the currently established top-down methods, exhibit conductivity many orders of
magnitude higher than the bottom-up routes described here within. However, if the
conductivity of the nanowires produced in this current work can be increased, then these

DNA-based bottom-up routes hold much promise.

One of the more striking outcomes in this research was the insight gained into the
growth processes of copper on DNA and how this can be substantially dependent on
whether the metallisation reaction occurs on the surface or in a solution of DNA.
Chapter 3 describes the two-step chemical templating approach on surface-immobilised
DNA and chapter 4 describes a solution-phase DNA-templating approach. The surface-
based route tended to afford 1-dimensional copper nanostructures, mostly continuous in
coverage, but observably of a polycrystalline appearance, which was attributed to their
high resistivity. Whereas, the solution-based approach afforded smoother looking wires
and were indeed conductive. Based upon these comparisons it is reasoned that the
surface-immobilisation of DNA may lead to the blocking of DNA-metal ion binding
sites and thus inhibit the nucleation of copper along the template. This could in turn
result in the formation of granular structures. On the other hand when DNA is in
solution, DNA-metal ion binding may occur more efficiently along the template leading
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to higher density nucleation and smoother wires. Detailed AFM studies in this thesis

have supported this theory.

Despite the high resistivity encountered for the 1-D structures produced using the
surface-based method in chapter 3, they were found to be noticeably smoother than
other analogous surface based routes in the literature, where DNA was used as a
template for the construction of copper nanowires (see section 1.5). The improvement in
our studies was likely to result from the use of a Cu(l) coordination compound (the first
method to utilise a Cu(l) precursor for metallisation of DNA), as opposed to Cu(ll)
which was used elsewhere in the literature and led to discontinuous nanostructures; so-
called ‘beads-on-a-string’ assemblies (where DNA is the ‘string’ and the ‘beads’ are
copper nanoclusters). The Cu(l) method is a non-aqueous approach whereby organo-
based solvent were exploited during the metallisation step. The choice of solvent here is
likely to be responsible for the morphological dissimilarities in nanostructures produced
on surface-immobilised DNA using Cu(l) compared to those produced using Cu(ll),
where the latter is best solubilised in aqueous media. This is suggested to be attributable
to the competitive binding of solvent molecules and DNA binding sites with copper
ions. DNA-copper ion binding is expected to be enhanced in low polarity solvent (e.g.
acetonitrile) and inhibited to an extent in high polarity solvent (e.g. water). Indeed, the

results contained in this thesis have supported this claim.

Other factors were also found to be critical towards the formation of smooth DNA-Cu
nanowires. One such factor was the Cu:DNA(P) ratio. This had a significant influence
on the structural nature of the final product formed in solutions of DNA. At high
Cu:DNA(P) ratio (e.g. 25) it was found that Cu?* induced DNA condensation, as
evidenced by a high degree of aggregation. At low Cu:DNA(P) ratio (e.g. 0.01)
individual DNA strands were obtained, but contained only low levels of metal coverage.
A Cu:DNA(P) ratio of 0.05 was found to be the most suitable for the preparation of

smooth and conductive nanowires.

Having invested much effort into the development of wet-chemical based approaches
towards the formation of conductive copper nanowires using DNA as a template, an
alternative physical-based DNA-templating strategy was investigated. This was based
on the evaporation of copper (although a wide range of metals and composite materials
could be used in theory) upon suspended DNA templates stretched across raised
electrodes. This resulted in highly conductive DNA-Cu nanowire devices. However, on
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this occasion a conductivity measurement on a single nanowire could not be obtained.
Optimisation of the electrode device layout could help to improve future measurements
for single nanowire characterisation. This method holds much promise for the

fabrication of future bottom-up constructed copper interconnects.
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PostScript

During the final stages of writing this thesis, a report by Woolley et.al., documenting
the first breakthrough in conductive copper metallised DNA nanostructures was
published.! In this work, small DNA origami structures were initially seeded with Pd
particles before copper was deposited electrolessly. The resulting metallised DNA
origami structures covered ~200 x 200 nm? in surface area, and the copper coating was
~40 nm in diameter. These structures were impressively shown to retain the shape of the
folded DNA assembly following metallisation. Moreover the structures were found to
be conductive, following measurements between two gold electrodes. The resistivity
was found to be 3.6 X 10 Q.m, which is 4 orders of magnitude greater than that of bulk
copper. In relation to this work, this paper represents the first published example of
conductivity on a copper metallised DNA structure, of any kind. However, the
conduction is over small length scales (100s of nm’s) in comparison to the conduction
reported in this thesis for copper metallised DNA (see chapters 4 and 5), which is
demonstrated to place over larger length scales (micrometres). Conductivity over such a

length scale will be required for the future fabrication of high aspect ratio interconnect.

1. Y. Geng, A. C. Pearson, E. P. Gates, B. Uprety, R. C. Davis, J. N. Harb and A. T. Woolley,
Electrically conductive gold- and copper-metallized DNA origami nanostructures.
Langmuir, 2013, 29, 3482-3490.
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The End
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