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Abstract

Mudstones are of considerable scientific and economic importance as they are the

dominant sedimentary rock type, forming the main repository of Earth history and

having significance to numerous aspects of petroleum exploration and production, and

many other industries. This study investigated the sedimentological characteristics of

150 diverse mudstone samples. The novel integration of grain size analysis combined

with petrographic observations lead to a framework in which six mudstone grain size

distribution (GSD) types are defined. The grain size types proposed are remarkably

consistent in their form and characteristics and can be understood in terms of well

constrained physical processes of deposition. The basis for this definition reflects

largely the relative contributions of a flocculated, clay-rich component and an

unflocculated silt/sand-rich grain size component. Integration of grain size data, pore

size data and petrographic observations suggests a critical division between: (a) floc-

dominated mudrocks whose structure is supported by the clay matrix; and (b) silt-rich

mudrocks whose structure is supported by a silt/fine sand framework. Floc-dominated

mudrocks with clay matrix support develop low permeabilities and become very good

capillary seals at relatively shallow depths. In contrast, silt-rich mudrocks with

framework support only become low permeability units and very good capillary seals

at much greater levels of compaction. The framework proposed here can form the

basis of predictive flow and seal capacity models for mudrocks. A combined PCA-

cluster analysis approach to the grain size based classification of mudstones showed

that of the six types defined in Chapter 2, types 1 — 4 (floc — silt mixtures) were

consistently partitioned from types 5 — 6 (silt or sand rich mixtures). An attempt was

made to quantify the distribution of key pore parameters, such as mean pore size, by

grouping the data to reflect the matrix (grain size types 1 — 4) and framework (grain

size types 5 — 6) support regimes and dividing into 5% porosity bins. The statistical

distribution of pore network properties could not be verified, principally due to a

combination of sparse sample numbers and highly variable nature of this data. This

work illustrates that variability in mudstone pore size distributions is not constrained

solely by lithology (support regime) and porosity, and thus that other factors must be

taken into account if their evolution during compaction is to be understood.
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Definition of terms:

A number of abbreviations and parameters are referred to throughout this thesis, brief

definitions of each are given as follows:

GSD — grain size distribution

Kranck grain size model terms:

C — is concentration (i.e. weight % or ppm) in a grain size class bin used to

describe the grain size distribution

AQ — is the concentration at a reference settling velocity obtained when fitting the

Kranck grain size model.

w — is the settling velocity of a sphere calculated using the empirical equation of

Gibbs et al. (1971)

m — is hypothesized to be the slope of the size distribution present in suspension at

time of deposition (i.e. the source suspension) obtained when fitting the Kranck

grain size model.

n — controls the nature of the GSD model fit — i.e. flocculated or single grain

obtained when fitting the Kranck grain size model.

k — describes the maturity of the depositional process (i.e. the extent to which the

coarser grains have settled out) obtained when fitting the Kranck grain size

model; k has units of (s cm -1 ) as it multiplies the settling rate

Df - intersection of the floc and single grain settle grain size components,

estimates the grain size diameter at which particle behaviour changes from non-

xi



cohesive to cohesive and thus estimates the maximum particle size which will be

incorporated into flocs.

PSD — pore-throat size distribution

r mean — mean pore size calculated numerically as a function of cumulative porosity

distribution using the average of adjacent pore-throat sizes at each pressure step recorded

by the MICP experiment.

r10% - pore size at 10% non-wetting phase (mercury) saturation calculated numerically

as a function of cumulative porosity distribution using the average of adjacent pore-throat

sizes at each pressure step recorded by the MICP experiment.

CEP — critical capillary entry pressure

CEPng — critical capillary entry pressure for the mercury — air system

CEPnc — critical capillary entry pressure for the oil — water system
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Integration of the sedimentological and petrophysical properties of

mudstone samples

Chapter 1 Introduction

"Possibly many may think that the deposition and consolidation of fine-grained mud must

be a very simple matter, and the results of little interest. However, when carefully studied

experimentally it is soon found to be so complex a question, and the results dependent on

so many variable conditions, that one might feel inclined to abandon inquiry, were it not

that so much of the history of our rocks appears to be written in this language."

Henry Clifton Sorby, 1908

Mudstones are of considerable scientific and economic importance as they form the

dominant sedimentary rock type, and as such are the main repository of earth history in

the geological record (Schieber and Zimmerle, 1998). Mudstones also have significance

to numerous aspects of petroleum exploration and production and many other industries

(Aplin et al., 1999; Slatt, 2003). The quote taken from Sorby (1908) eloquently describes

the situation facing those who work with mudstones, and this situation has remained little

changed over the century that has passed since Sorby's day. Virtually all aspects of our

understanding of this major sedimentary rock type are currently inadequate and lag

behind that of less volumetrically significant sediment types. The terms mud and

mudstone are used here in their most general sense to indicate clastic sediments and

sedimentary rocks which are formed primarily from particles smaller than 1/16mm

(62.511m) following the definition of Aplin et al., (1999). The term shale is avoided as it

implies fissility.

The motivation for this work is focused around furthering the understanding of the

sedimentology of mudstones, particularly the relationship between depositional process

and grain size. The second motivation lies in attempting to gain a greater appreciation of

the relationship between grain size distribution and pore-throat size distribution. This
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work concentrates on understanding the nature of mudstone grain size distributions both

in terms of their sedimentological significance and their importance with regard to

understanding, constraining and predicting fluid flow properties. The aim is to establish a

framework that will allow their sedimentological context to be understood and their fluid

flow properties to be predicted. Therefore this work encompasses the sedimentological

character of mudstones and the influence that grain size, along with porosity, has in

controlling the pore-throat network properties of mudstones.

1.1 Mudstone sedimentology

One of the first quantitative studies of the lithological variability of mudstones was

carried out by Blatt and co-workers in the late 1970's to early 1980's. For example, Blatt

and Totten (1981) utilised the percentage and mean grain size of quartz as an indicator of

distance from the shoreline in ancient mudstones (the Blaine Formation); the study made

some broad generalisations about the composition of marine mudstones with distance

from the shoreline. From the results of this study detrital quartz decreased from 57%

(mean grain size 5.2 phi) at the sand-mud line to —11% (mean grain size 6.9 phi) at —270

km from the shore, indicating an approximate loss of 10% quartz per 60 km (Blatt and

Totten, 1981). However, the degree to which these very generalised fining trends can by

applied universally is questionable; Jones et al., (1992) recorded silts and mudstones with

mean grain sizes of up to 4.3 phi (silt content —72%) at a water depth of —5400m,

indicating that in some situations (especially in settings that are or were close to sediment

point sources) such generalisations may have little use, and indicates that mudstone

variability will alter significantly in different settings.

Sedimentological studies of geological mudstone samples have principally utilised optical

and/or electron microscope techniques (e.g. O'Brien and Slatt, 1990; Macquaker and

Gawthorpe, 1993; Schieber, 1999; Macquaker and Howell 1999). These studies have

provided significant insight, particularly with regard to the stratigraphic interpretation of

mudstone sequences. However such findings are difficult to quantify, and thus lack a

quantitative basis with which to link in physical measurements which further characterize
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the sediment of interest. Investigations of the grain size characteristics of mudstones have

largely been restricted due to difficulties associated with disaggregation. This problem

was addressed by the gentle disaggregation technique proposed by Yang and Aplin

(1997).

Over the pass twenty years a small number of articles have been published concerning the

grain size characteristics of both contemporary and ancient fine grained sediments have

been published. Key studies include Kranck, (1975, 1984); Kranck and Milligan (1985),

Jones et al., (1992), Stevens et al., (1996) and Curran et al., (2004). Kranck (1975, 1984),

who worked with geologically recent material, made the initial observation that the grain

size spectra of fine grained sediments comprised two components: a flocculated, fine

grained, clay-rich population and an unflocculated, relatively coarser, silt rich population.

Kranck and Milligan (1985) attempted to set out a theoretical basis that could account for

the presence of these two components and proposed a numerical model capable of

describing both components. Jones et al., (1992) made detailed descriptions of the spatial

distribution and grain size characteristics of a number of abyssal plain turbidites and were

able to account for their observations with process based interpretations. Stevens et al., 's

(1996) study of the contemporary distribution of grain sizes in the Baltic Sea contributed

to the realization that the models and theories of Kranck and co-workers were seemingly

ubiquitous. Curran et al., (2004) analysed muds deposited as fine grained turbidites on

the Laurentian Fan and Sohm Abyssal Plain; this study investigated the relationships

between deposited grain size spectra and hydrodynamic conditions using a modified

ICranck model. Their findings illustrated that throughtout the dispersal system of the

Laurentian Fan, changes in the volume of the deposited floc fraction reflect perturbations

in energy and suspended sediment concentration downslope. To date the majority of grain

size based studies have focused on case studies of contemporary or geological recent

material; this work will investigate the relevance of the work sited above to geological

samples and aims to take a global view following on from Kranck and Milligan's (1991)

concepts, outlined in an their article on grain size in oceanography.
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1.2 Integration of sedimentology and physical property data for mudstones

The lack of physical data describing mudstones has been noted on numerous occasions.

For example, in his discussion on the relative successes and failure of basin scale fluid

flow modeling Waples (1998) notes the dearth of relevant data for non-reservoir

sediments, such as source rocks and caprocks (which are typically elastic mudstones).

Waples (1998) goes on to note that coupled with the dearth of relevant sample scale data

there is also significant ignorance associated with system permeabilities, which are partly

dependent upon the geometrical arrangement of the various lithologies that create the

basin fill. The 3D distribution of mudstones, and hence their physical properties has been

noted by Bohacs (1998) as a key uncertainty: what are the sizes and shapes of mudstone

lithosomes as a function of depositional environment and how best to describe them? In

addition to these considerations, it is also vital to address the key problem of extracting

depositional information from individual mudstone samples, since these commonly form

the main data source, particularly for calibration of geophysical measurements. How do

we judge depositional environment from common data types such as grain size

distribution, geophysical log response, seismic properties and architectures?

A number of previous studies have certainly set a precedent for integrating the

sedimentological and physical properties of fine grain sediments. Hamilton (1971, 1980)

discussed the prediction of sediment properties based upon empirical relationships

identified by assessing various physical properties (including grain size) and their

potential variability. In the geological literature, Wetzel (1987) and Wetzel and Balson

(1992) applied the inverse of what is attempted in this study by inferring

sedimentological properties from the physical properties of fine grained sediments

recorded using wireline logs. In the geotechnical literature, studies have used facies as a

basis of understanding sediments that exhibit differing physical properties (e.g. Hein and

Gorsline, 1981).

In the geological, geophysical and geotechnical disciplines attempts have been made to

correlate and understand the relationships between sedimentological characteristics (grain
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size distribution) and the physical properties of fine grained marine sediments. However

virtually all this work is focused upon specific case studies, making the generic

implications of such studies difficult to place into a global context. The work in this

thesis will attempt to produce a synopsis of previous work of relevance and establish a

framework in which a holistic approach to fully understanding fine grained marine

sediments in terms of their sedimentological, geotechnical, physical and geometrical

properties. The ultimate goal is to be able to predict the grain size of these sediments and

their therefore their physical properties spatially, potentially forming the basis of

predictive flow and seal capacity models for mudrocks and facilitating accurate

population of large scale fluid flow models.

Studies of the relationship between grain size, compaction and the pore-throat properties

of fine grained artificial slurries, soils and geological samples (e.g. Fies (1992); Griffiths

and Joshi (1989); Dewhurst et al., (1998)) have generally not considered the

sedimentological aspects of the samples in question. Where grain size is reported, it is

typically reduced to some static description such as % particles <21.tm (% clay content).

Fies (1992) did investigate the interaction of clay sized particles with silt and sand sized

material in influencing the pore-throat properties of artificial slurries; however the

relevance of his findings for geological materials awaits conformation.

1.3 Flow properties of mudstones

The Hagen-Poiseuille equation, upon which many pore-throat size distribution based

permeability models are based, shows that permeability rapidly increases with pore-throat

radius and illustrates that it is the pore-throat size distribution of a mudstone that controls

its flow properties (absolute and relative permeability, capillarity etc) (Dewhurst et al.,

1999b). Early studies of the pore-throat size distributions of mudstones showed that with

increasing effective stress or burial the mean pore-throat size decreases, reaching values

<10nm at depths of 3 -5km (Borst, 1982; Griffiths and Joshi, 1989, 1990; Katsube and

Williamson, 1994, 1995). The compaction of mudstones at shallow depths (thus low

effective stresses) has been shown to proceed via the preferential collapse of the largest
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pore-throats with little effect apparent upon the smaller pore-throats (Delage and

Lefebvre. 1984; Griffiths and Joshi, 1989, 1990; Dewhurst et al., 1998). However much

of this work was performed on material simply characterized as mudstone, clay, soil etc

and therefore detailed interpretations were problematic (cf. Dewhurst et al., 1999b). In a

series of papers, Dewhurst et al., (1998, 1999a) and Yang and Aplin (1998) investigated

the hypothesis that lithology (described by the clay content (% particles <2gm)) and

porosity exert a principal control upon the pore-throat size distributions of both

artificially and naturally compacted mudstones. In these papers it was illustrated that the

variation in mean pore-throat sizes seen at a single porosity can be attributed to

differences in grain size (e.g. Yang and Aplin, 1998). At any one effective stress a coarser

grained mudstone has a broader pore-throat size distribution than a finer grained

mudstone, although the degree of difference decreases with increasing effective stress

(Dewhurst et al., 1999a,b).

In summary the flow properties of mudstones are fundamentally related to the pore-throat

networks which in turn are primarily controlled by two variables: grain size distribution

and porosity (compaction state). However within this framework uncertainties remain, for

example Dewhurst et al., (1999a) noted that their data fell into a silt/sand-rich group and

a clay-rich group, which exhibited quite different properties (such as pore-throat size

distribution, porosity-hydraulic conductivity relationship etc). From this data it was

unclear if these properties varied continuously with grain size or whether there is a clay

fraction at which properties change abruptly.

1.4 Significance of mudstones for the oil industry

The importance of the flow properties of mudstones within the oil industry largely falls

into four inter-related contexts: overpressure prediction, migration studies, column height

analysis and prediction and understanding reservoir barriers and baffles. Within these

contexts the first three all involve understanding the fluid flow properties of mudstones; it

is the intimately related characteristic properties of low permeability and high capillary

entry pressure which makes mudstones of quantitative significance in these contexts.
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Mudstones form essential components of petroleum systems, forming both the source

rock and caprock in many clastic petroleum systems. Due to their physical properties they

form the rate limiting component within a petroleum system. To date two approaches

have been implemented in basin scale migration modeling:

(a) capillary pressure field modeling whereby migration is modeled purely as a

function of capillary forces;

(b) full physics Darcy flow modeling.

A fundamental problem besets both modeling strategies; the high resolution of capillary

pressure field models requires a high level of data input, which is currently not matched

by our understanding of the sedimentological heterogeneity and architecture of mudstone

sequences and how this relates to the corresponding pore-throat network properties of the

mudstones. Similarly the full physics approach taken by Darcy flow models requires the

permeability structure along with the multiphase properties of mudstones to be

understood spatially and accurately quantified. Our current understanding of all aspects

of mudstones, particularly the inter-relationships between spatial distribution,

depositional mechanism and fluid flow properties, seriously lags behind our ability to

model the movement of fluids through them. This fact has implications for any attempt to

understand and model how fluids move through and interact with mudstones over

geological time scales.

At the human time scales of petroleum reservoir development and exploitation the low

permeability of mudstones typically leads to their fluid flow properties becoming

irrelevant within reservoir description. However for this very reason they form barriers or

baffles within petroleum reservoirs; laterally extensive mudstones will form barriers to

flow while mudstones of limited extent form baffles. Thus in this context it is the

depositional geometry of mudstones which is of importance (along with any post

depositional deformation).

The work carried out in this study will potentially aid many aspects of the quantification

of mudstones and their flow properties within basin modeling work flows and in

integrating dynamic fluid data with rock property data. In addition, greater understanding
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of the depositional characteristics of mudstones may aid correlations between

depositional process and dimensions, thus allowing their ability to act as barriers or

baffles to be understood.

1.5 Dataset

The samples that make up this dataset have been gathered from the results of analytical

work carried out at the University of Newcastle over a number of years. Although the

dataset was not explicitly collated for this project, it remains a unique repository of well

characterised mudstone data from a broad range of tectonic settings, sedimentary

environments and geological ages.

The raw data from the grain size analysis, grain density, high pressure mercury injection

capillary pressure (MICP) experiments etc was generated by technicians at the University

of Newcastle. The analyses carried out in this work were carried out on this raw data,

which in some cases was manipulated in order to derive the frequency distribution, for

example.

There was generally an absence of ancillary, data geological contextual data for the

samples utilised in this study. Effective stress data, mineralogical data and time-

temperature histories are notable data which were not available, reducing the degree of

certainty associated with any conclusions drawn on the controls of the evolution of

physical properties of these samples. However, the porosity will give a measure of the

maximum effective stress experienced — and is thus used here as an estimate of the degree

to which the samples have been subjected to compressive stresses. The lack of

mineralogical data together with time-temperature histories makes it impossible to get a

significant appreciation of the extent to which to which the grain size and pore-throat size

distributions of the samples have been affected by diagenetic processes, this work

therefore concentrates purely upon the effect of compaction (porosity loss) and grain size

in controlling the pore-throat size distribution. The fact that the grain size distributions

obtained are superficially very similar to those obtained from contemporary sediments
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(e.g. ICranck et al., 1996) provides circumstantial evidence that the effects of diagenesis

in altering the grain size distribution are limited.

1.6 Thesis structure

This work is structured as follows: Chapter 2 examines the sedimentological

characteristics of the samples utilized in this study, focusing on grain size distribution due

to its control upon the pore-throat network (Dewhurst et al., 1998, 1999a,b). Detailed

analysis of the grain size distribution is coupled with observations made from

petrographic thin sections and Back Scattered Electron Microscope (BSEM) images for

the first time. Simplifying strategies or classifications are favoured over detailed

interpretation of single samples because the aim of this project is, in part, to integrate

sedimentological properties with flow properties. In addition, if successful, establishing a

generic, grain size classification, based on relevant criteria will aid communication, and

reduce ambiguity between those engaged in mudstone research (cf. Flemming, 2000).

The third chapter builds on the first chapter and integrates the findings based upon the

sedimentological analysis of these samples with the results of mercury injection capillary

pressure (MICP) experiments, used to characterize the pore-throat size distribution and

hence the pore-throat network of these samples. The nature of the samples pore-throat

networks as functions of both lithology and porosity are investigated.

In the third chapter a numerical classification procedure for application to grouping

quantitative grain size distribution data is investigated. Datasets comprising grain size

percentage (e.g. % clay, % silt etc) and moment statistics, frequency distribution data at

two scales of resolution and a combined dataset are investigated in terms of which data

best segregate differing mudstone lithologies. Each grouping is investigated with regard

to how well the established groups or mudstone grain size distribution (GSD) types

correlate with pore-throat network properties and the classification proposed in Chapter

2.
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The fifth chapter investigates the statistical distribution of parameters used to reduce

pore-throat size distribution data when both lithology and compaction state are

constrained. By constraining both lithology and porosity (shown to be the primary control

upon mudstones pore-throat network (Dewhurst et al., 1999a,b) other factors, such as

sample type, temperature, etc are emphasized allowing their influence to be judged. The

regression and prediction of the critical capillary entry pressure (CEP) is investigated

using differing subsets and predictor variables.

Each of the chapters are written as a standalone piece of work and include full

discussions and conclusions relevant to each individual chapter. In the discussion and

conclusions each of the chapters are described and their findings and conclusions

integrated into a final synopsis of this works major results and findings. A number of

future avenues of research are suggested based on the findings made during this study.
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Chapter 2 On the nature of natural mudstone grain size distributions —

characteristics, processes and typing

2.0 Introduction

Mudstones are the most common sediment type comprising approximately 65% of the

global sedimentary inventory (Aplin et al., 1999). Approximately 50-70% of oceanic

sediment is comprised of continental siliciclastics (Kranck, 1980), and down-slope re-

sedimentation processes are fundamental in the transport and deposition of this material in

marine settings (Gorsline 1984); the —90% turbidite component of abyssal sediments

attests to the importance of these processes in delivering sediment to the deep ocean

(Kranck, 1980). The grain size distribution is one of the most fundamental properties of a

fine-grained sedimentary rock and is utilised routinely in the Earth sciences for

classification (e.g. Blatt et al., 1980), sedimentological studies (e.g. Stevens et al., 1996;

Kranck and Milligan, 1991) and for understanding the physical properties of such

sediments (Hein, 1991; Yang and Aplin, 1998; Dewhurst et al., 1999a; Midttomme and

Roaldset, 1999).

This work aims to distil what is currently known about the nature of mudstone grain size

distributions in terms of both sedimentological interpretations and in terms of

parameterization techniques. Because grain size is fundamental both in linking deposits to

sedimentary processes (Kranck and Milligan, 1991) and in terms of understanding the

physical properties of muds (Dewhurst et al., 1999b; Midttomme and Roaldset, 1999), a

classification methodology based on grain size is pertinent to both sedimentological studies

and studies of the physical properties of these sediments. A new mudstone grain size

classification or typing framework is therefore proposed in this study, reflecting the

integration of a variety of grain size parameters combined with petrographic observations.

This work was carried out on a dataset comprising 166 mudstone samples for which grain

size data were available; in doing so a framework in which further investigations of how

the grain size distribution relates to other properties such as the pore size distribution will

be established (see subsequent Chapters). This classification is proposed for siliciclastic
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mudstones and is therefore not applicable to fine-grained carbonates, biogenic sediments or

true pelagites (which may have significant loess content).

2.1. Background

2.1.1 Behaviour offine-grained sedimentary particles (<6311m) in aquatic environments

In marine settings clay and some silt-sized particles generally act cohesively and are

primarily deposited as flocs. Flocculation is a complex process with at least 14 possible

mechanisms that can cause clay and silt, along with organic, biogenic and colloidal

material etc to aggrade (Eisma, 1993 p.135). The essential processes that drive flocculation

are cohesion and collisions (Whitehouse et al., 2000). Cohesion is a complex property that

is controlled by many factors such as mineral composition, salinity, concentration of

organic matter, etc. Collisions of particles will be a function of the particle concentration of

the water column. Fine-grained sediment exhibits two distinct modes of behaviour in the

marine environment; particles above —10um behave non-cohesively, while particles below

—141m behave cohesively (McCave et al., 1995). This dichotomy in mode of behaviour

can be accounted for on both compositional and physical grounds; below 10um, clay

minerals, whose surfaces have charge imbalances, begin to be present in significant

proportions (Weaver, 1989; McCave et al., 1995). Van der Waals attraction also begins to

become a significant force, for example the ratio of Van der Waals attraction to particle

weight increases by two orders of magnitude from 10um to 1 um (McCave et al., 1995).

Figure 2.1 illustrates that the critical erosion stress (Te) required to entrain quartz particles

into a moving body of water decreases approximately exponentially with particle size

down to —10um, after which it increases signifying the onset of cohesive behaviour

between quartz particles below this size.

12



5

Quartz In water becomes
T	 •cohesive for d < 10,um

(Unsold:1982)
—

 ,.— —
I 

....--

1

I cohesionless behaviour..-

SILT
fine !coarse' 

10	 100
grain size, d pm

0.01

i

.....'0-uartz in water

C . I:1 California

1000

nl:...	 S !!!: ......	 limits

Figure 2.1. Plot of critical bed shear stress TO

(=Te) for the erosion of quartz particles, data

from Unsold (1982) and McCave et al.,

(1995). "C+D" refer to the clayey silt

measured by Caccione and Drake (1986)

and are the mean and range of the in situ

critical erosion stress. "MMK data limits" refer

to the limits of the high quality data evaluated

by Miller et al., (1977). The data in the clay

range are contoured for void ratio (,-- level of

consolidation). From McCave et aL, (1995),

Figure 4.

2.1.2 Mudstone grail: size parameters and their relationship to depositional processes

There have been many grain size distribution parameters applied to mudstones; here three

of these methods, chosen to reflect both ubiquity and sophistication, are used to investigate

and classify the distributions reported in this study.

2.1.2.1 Moment Statistics

The application of moment statistics intrinsically approximate grain size data to a log

normal distribution, the first moment reports the arithmetical mean of the distribution,

subsequent moment statistics quantify departures from log normality (Appendix A2.1). A

number of studies have employed bi-variant plots of various statistical parameters derived

from sedimentary grain size distributions to identify different depositional environments

(e.g. Okazaki et al., 2000) and/or mechanisms (e.g. Stevens et al., 1996). These studies

have been predominantly carried out on samples from known environments and are

therefore used to illustrate separation between pre-determined environments/facies or

geographical areas.
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There has been a large degree of criticism of the use of moment statistical methods in the

analysis of sedimentary rocks (e.g. Ehrlich, 1983); much of this criticism has focused on

the implicit assumption that grain size distributions are approximately log-normal. More

sophisticated methods, such as the log-hyperbolic distribution (LHD), have been proven to

enhance the degree of separation between different sedimentological environments (e.g.

Sutherland and Lee, 1994). Despite the potential improvement offered by these techniques,

they have not been applied to large or diverse datasets; furthermore such techniques are

computationally intensive, have only been applied to sands and do not fit all observed

distributions (Christiansen and Hartmaann, 1991). The majority of the studies reporting

new methods for quantifying grain size distributions have assessed beach environments

and the deposition of sand-sized material, which is a physically distinct system from that of

the sub-aqueous deposition of clay, silt and fine sand. Previous works appraising the log-

normal distribution have had the advantage of knowing from which environments samples

have been drawn; thus differing methods of quantifying grain size distributions may be

assessed with regard to which technique best discriminates between environments;

however, their utility outside the tested depositional settings is entirely unknown. Despite

methods such as the LHD being capable of improved environmental discrimination,

process based arguments for this improvement are not offered (e.g. Sutherland and Lee,

1994). Furthermore, in this study it will be shown that many fine-grained sediment are

composed of bi or tri-modal distributions, each component of which can be adequately

described by the Kranck grain size model (cf. Kranck and Milligan, 1985; Kranck et al.,

1996a, b).

In a study of grain size distributions taken from fine-grained sediment in the Baltic Sea

Stevens et al., (1996) attempted to recognize textural provinces representative of differing

sedimentary processes using cross-plots of moment statistics. The data presented by

Stevens et al., (1996) demonstrate two main trends: the degree of sorting increases for both

the finest and coarsest samples (Fig. 2.6b); the skewness values plot as a diagonal trend

and increase with increasing mean grain size (Fig. 2.6b). The sorting — mean grain size

trend has been suggested to reflect the mixing of two separate populations, representing

different modes of deposition, i.e. a coarse fraction deposited by traction transport and a
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fine fraction deposited by suspension. A minima in sorting (i.e. highest standard deviation)

is recorded when each population is present in approximately equal proportions (Ashley,

1978; Stevens et al., 1996). Stevens et al., (1996) noted that the increased degree of sorting

for the finer grain sizes may not be real as grain size analysis measurements have a

threshold size below which the grain sizes cannot be quantified and thus have to be

summed into a single bin (e.g. 0-2p.m). A similar explanation has been suggested for the

trend observed for the skewness versus mean grain size trend; when tractional transport

dominates, deposition of coarser material will be prevalent, leading to the deposition of a

coarser, positively skewed (phi notation) grain size distribution; when suspension

deposition is dominant the opposite case will occur (Stevens et al., 1996). When both

modes of deposition are approximately equal Stevens et al., (1996) suggest the skewness

value will be —0 (see Fig. 2.6b).

2.1.2.2 Sortable Silt

The first attempt to extract information pertinent to palaeocurrent strength from the grain

size distributions of fine-grained sediments was carried out by McCave et al., (1995).

Sorting occurs via re-suspension and depositional events by processes of selective particle

entrainment and aggregate break up (McCave et al., 1995). The controlling parameters are

critical depositional stress ('t d), critical erosion stress (;) and critical suspension stress (re)

where typically td < 're < Ts for non-cohesive material; when stress is >te and <r„ particles

will move as bedload and some material will be sorted by becoming trapped in the viscous

sublayer, while smaller particles continue to be transported (McCave et al., 1995).

As discussed in Section 2.1.1, fine-grained sediment particles exhibit two distinct modes of

behaviour in the aquatic environment; sediment above —10i_tm behaves non-cohesively

while sediments below —101.tm behaves cohesively (McCave et al., 1995). The silt

component coarser than 101m thus responds to hydrodynamic processes and its properties

may be used in some way to infer palaeocurrent speed (McCave, eta!., 1995).
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2.1.2.3 Kranck model

Research carried out by workers led Kranck and co-workers, during 1980 to 1996, on the

grain size frequency spectra of both suspended sediment and bottom sediment led to the

development of a grain size distribution model able to differentiate between floc and grain

settling processes (Kranck and Milligan, 1985; Kranck et al., 1996a, b). The initial

concepts were set out by Kranck (1980, 1984) based upon a series of settling experiments

performed with differing concentrations of suspended sediment in both fresh and salt

water.
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Figure 2.2. Suspended and deposited grain size distributions for: (a) unflocculated, (b) flocculated

and (c) mixed suspended grain size distributions; tO represents the initial conditions, t1 represents

a point in time where conditions have altered such that material is deposited from suspension.

Based on Kranck (1984).

In Figure 2.2 a series of depositional events are represented. At the initial point (t = 0) the

suspended sediment grain size distribution is shown; after some time step (t = 1) the

hydrodynamic conditions are altered such that material is deposited from suspension (e.g.

due to decreased turbulence, increased sediment concentration). In figure 2.2 example 1
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only the coarsest material is deposited, with the finer grained material remaining in

suspension. This is the expected case for an unflocculated source suspension which settles

out according to the suspended sediment's settling rate (i.e. dependent upon the Stokesian

diameter of the particles). This produces a well-sorted deposit, enriched in coarse material

relative to the suspension. In example 2 material of all grain sizes present in the suspension

are deposited. This case is relevant when the entire suspended grain size spectrum is

flocculated, so that material is deposited independent of the distribution of individual grain

sizes. Example 3 is a combination of 1 and 2; in this case a proportion of material is

deposited in flocculated form and a further component is deposited as single particles at

rates dependent upon their Stokesian diameter. In example 1 Stokesian diameter (i.e. grain

size) is the controlling factor and thus larger particles are deposited prior to smaller ones.

The concentration of suspended sediment is the controlling factor on deposition rate in

example 2, and relates to the assumption that flocs are made up of grains which have the

same size distribution as the whole suspension (Kranck, 1980). The result of this

duplication is that each floc has the same relative settling rate (e.g. Sternberg et al., 1999)

and results in deposits which retain the size distribution of the suspension. The absolute

settling rate is dependent upon the rate at which flocs form and grow, which is dependent

upon particle concentration (Kranck, 1984; Berhane et al., 1997).

The Kranck and Milligan model (1985) can be fitted to the grain size distributions of fine-

grained sediments and is based on the assumption that the deposition of fine particles

occurs at rates proportional to the exponential of their settling rate from an unsorted

turbulent source suspension (ICranck and Milligan, 1991). A simplified form of the

equation describing a component of the size distribution is given by (Milligan and Loring,

1997):

C = AQw(m+n) e-16v
	

(2.1)

where C is concentration in a size class, AQ is the concentration at a reference settling

velocity, and w is the settling velocity calculated using Gibbs et al., (1971). The variable m

is hypothesized to be the slope of the source suspension as defined by the straight line
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portion for the curve starting at 0.7gm and typically has a value between 1 and -1 (Kranck

et al., 1996a; Milligan and Loring, 1997). This model differentiates between floc settled,

single grain settled and coarser material that has been subjected to higher energy and hence

further sorting (Kranck et al., 1996a, b). The exponent n controls the nature of the GSD

model fit — i.e. flocculated or single grain. Material that plots as a straight line on a log-log

plot has been deposited in a flocculated form from an unsorted source suspension; the

exponent n has integer values of 0 for this proportion of the curve (Kranck et al., 1996a;

Milligan and Loring, 1997). For the portion of the curve that corresponds to single grain

settled material, termed a 'one round distribution' by Kranck et al., (1996a, b) the integer n

has a value of one, and values of >1 for the coarsest material (Figure 2.3); K describes the

maturity of the depositional process, i.e. the extent to which the coarser grains have settled

out; K has units of (s cm') as it multiplies the settling rate in the exponent of Eq. 2.1

(Kranck et al., 1996a) and increases as the maximum and mean diameter of the suspension

decreases due to settling. The relationship between the parameters derived in the fitting

routine to the physical processes active during the transport and deposition of fine-grained

sedimentary particles is illustrated in Figure 2.4.

V— irtersection of fbc and single grain popullions, estimates grain size above which the
behaviour tecomes non-cohuive (Floc limt of bAllinio & 14,p,:pg (1997)

The slope of the source suspensbn 'm' relates to the etponert
of the power law which describon the suspended sediment popullion

Figure 2.3. A disaggregated inorganic grain size spectra illustrating the floc and single grain ('one

round') components of a fine-grained sediment.
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Fig. 23.8.

The model of Kranck and Milligan (1985) and Kranck et al., (1996a, b) has never been

verified by laboratory experiments and thus the dependence of K upon factors such as

concentration, shear velocity and depth are unknown. However, Kranck and Milligan

(1985) did show a relationship between K and sediment concentration for data taken from

the surface layer of the Orinoco River (Kranck and Milligan, 1985); they argued that since

a feature of river transport is the relationship between total sediment concentration and

discharge and hence depth-dependent currents — then the coefficient K does describe the

adjustment of sediment size distribution to flow dynamics (Kranck and Milligan, 1985).

The potential for using the Kranck model to quantify physical processes in a global sense,

particularly in energetic environments should not be overstated. The reason for this is that

the physical factors with which the model parameters correspond to, such as the sediment

source (and thus the source suspension slope m), flocculation state (dependent upon

concentration, organic matter (ppm), Ph, mineralogy, salinity), are not constant through

time or for any one setting or location. Therefore the model can only be used in a truly

quantitative manner for samples collected from a single event (e.g. Curran et al., 2004). In

a global sense the model simply provides a useful framework with which to parameterize

mudstone grain size distributions, allowing the qualitative comparison of differing

mudstone samples.
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2.1.3 Grain size studies

A seemingly ubiquitous observation is that fine-grained sediments have bimodal grain size

distributions, irrespective of the grain size analysis technique (e.g. Bulfinch and Ledbetter,

1984; Driscoll et al., 1985; Kranck and Milligan, 1985; McCave et al., 1995; Stevens et

al., 1996).

Examples of the results of some of these studies are shown in Figures 2.5 — 8; Figures 2.5

and 2.6 represent analyses of modern superficial fine-grained sediments whereas Figures

2.7 and 2.8 represent analyses undertaken on Pleistocene cores retrieved from the deep

ocean. Despite huge variations in sedimentary environments, water depths, sediment

sources etc; and the different analytical methods employed, the similarity in the form of the

grain size distributions is striking. Essentially all the distributions either represent entirely

flocculated material or a combination of flocculated and 'Stokes' settled material,

providing strong evidence for the universality of the concepts and models proposed by

Kranck and her co-workers described in Section 2.1.2.3.

Well defined peak in non-cohesive silt range

corresponding to Stokes settled material

Flat tail characteristic of deposition of flocculated

sediment in the cohesive size range (fine silt — clay)

Figure 2.5. Grain size spectra analysed by a Sedigraph 5100 of superficial, nearshore muds from

the Southern North Sea. From Chang et aL, (2004).
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Figure 2.6. (a) Grain size spectra of superficial muds from the southern Baltic Sea (Kattegat and

southern Skagerrak) analysed by a Coultier Counter; (b) and their moment statistic bi-variate cross

plots. From Stevens et at., (2004).

Intermediate layers: floc - Stokes mixtures

Figure 2.7. Grain size distributions from a graded

turbidite, analysed from a core taken from the

Pleistocene of the Sohm Abyssal Plain, North Atlantic.

The distributions represent a well sorted coarse silt

(multi-round), a finer less well sorted silt and a flocculated

mud; note increasing incorporation of the flocculated

component. From Kranck et al., 1996b.

Basal turbidite layer dominated by Stokes settled component
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Figure 2.8. Examples of mudstone turbidites

exhibiting similar textural characteristics at the

decimetre (A) and centimetre scale (B). The

sequence shown in A represents —50cm of a

mudstone turbidite — exhibiting the characteristic

fining-up sequence of turbidite type flow evolving

from tractional dominated to suspension fall out

deposition (Kranck, 1984). B. X-ray radiograph and

analyses exhibiting similar features to those seen

in A at a smaller scale. C, A idealised sequence

through a mudstone turbidite proposed by Jones et

aL, (1992) — the similarity between this sequence

FINE	 COARSE
	 and those in A, and B, is apparent.
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2.1.4 Integration of parameters and models

The inventory of sedimentary basins is typically dominated by mudstones (e.g. Aplin et al.,

1999) which are primarily deposited by density flow processes (sensu Mulder and

Alexander, 2001) These processes are particularly important in the formation of deltas,

channel-levee and deep sea fan lobe systems (Mulder and Alexander, 2001). For example,

it has been proposed by Lindsay et al., (1984) that up to 50% of the sediment deposited in

Mississippi River mouth bar deposits is ultimately deposited in deep water via a variety of

slope failure mechanisms (sub-aqueous density flows sensu Mulder and Alexander

(2001)). Curran et al., (2004) suggest that much of the mud present in marine sedimentary

basins is deposited by turbidity currents (Piper, 1978). Thus the majority of volumetrically

significant mudstones in sedimentary basins will have grain size distributions which can be

understood in terms of a floc and 'Stokes' settled component and may conform to the

sequences present in Figure 2.5 — 2.8.

Recently Curran et al., (2004) studied a single red-brown turbidite cored at six locations

following an offshore transect across the Laurentian Fan. Stow and Bowen (1980) had

previously studied similar sediments from the same area using standard grain size

techniques and moment statistics, demonstrating that there is a decrease in modal grain

size down-slope (see Fig. 2.9). Stow and Bowen (1980) suggested that as single silt grains

and flocculated silt plus clay particles are deposited from a turbidity current the increased

turbulence near the sea bed breaks up a high proportion of the flocs resulting in a

preferential deposition of coarser silt grains upslope, as once flocs are destroyed the small

constituent particles are ejected back into the flow. Turbulence decreases down-slope

where lower shear permits an increasing proportion of finer material (and weaker flocs) to

be deposited, resulting in a down-slope decrease in the average bottom sediment grain size

(Stow and Bowen, 1980; Curran et al., 2004). The work carried out by Stow and Bowen

(1980) allowed Curran et al., (2004) to compare grain size parameters and the insights into

the depositional process that they can potentially provide.
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Figure 2.9. Down-slope fining of a series

of fine sands / coarse silts (A) and muds

(B) from a transect on the Laurentian fan

from a proximal to distal location. From

Stow and Bowen, (1980).
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In Curran et al.,' s (2004) study, moment statistical values, sortable silt values and the

Kranck model were all applied allowing comparison of these techniques on a well

constrained set of samples. The results and analysis of Curran et al., (2004) suggested that

the sortable silt parameter provided the least information, simply revealing that the mean

diameter of the sortable silt decreased down-slope due to preferential deposition of the

coarsest grains (Fig. 2.10a). However, they did not consider the percentage of sortable silt.

In terms of the moment statistics, it was shown that the mean grain size mirrored the down-

slope fining trend picked out by the sortable silt parameter (see Fig. 2.10b). This down-

slope trend was accompanied by an increase in sorting quantified by the decrease in

standard deviation (Fig. 2.10c). Stevens et al., (1996) suggested that mean grain size —

sorting trends reflect the interplay of cohesive and non-cohesive grain size populations;

when they are equally mixed the sorting (i.e. standard deviation) is maximized and when

one mode dominates it is minimized (Section 2.1.2.1). Thus the trend probably reflects the

increasing proportion of flocculated material down-slope. Skewness was also seen to

decrease down-slope (Fig. 2.10d), possibly reflecting the increasing influence of

suspension deposition (cf. Section 2.1.2.1; Stevens eta!., 1996).
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Figure 2.10. Boxplots showing the variability and down-slope evolution of various grain size

parameters for each core taken across the Laurentian Fan; the box represents the lower, middle

and upper quartiles of the data set. The lines extending from the box show the extent of the data

set within 1 . 5 of the interquartile range, and 'x' represents outlier values. Sortable silt mean

diameter (dss pm) computed according to McCave et al., (1995) decreases down-slope similar to dA

of the 'inverse floc model' of Curran et aL, (2004), reflecting the progressive slowing of turbidity

currents as they deposit sediment (A). Measures of moments of mean phi diameter (B), standard

deviation of mean phi diameter (C) and skewness (D) are also shown. From Curran et aL, (2004).

In terms of the Kranck model parameters, Curran et al., (2004) used a second generation

model termed the 'inverse floc' model. In this model two new parameters were introduced;

% corresponds to the intersection of the floc and non-cohesive silt components and d^

corresponds to the maximum floc size and replaces the K parameter. From the analysis of

the six Laurentian Fan cores Curran et al., (2004) demonstrate that the m ('source slope')

parameter only varies slightly as expected for a turbidite deposit of the same composition

or source (Fig. 2.11a). The Df ('floc limit') is virtually constant except for the most distal

core. Curran et al., (2004) suggest that this indicates that the packing of fine grains does

not change significantly down-slope for —300km (Fig. 2.11b). There is a significant

decrease in Df at the most distal core taken on the Sohm abyssal plain. This observation,

25



x X	 s:z
80 125 200 215 300 1350

Distance (km)

0
80 125 200 215 300 1350

Distance (km)

0

Core
1 2 3 4 5 6

Core
1 2 3 4 5 6

20

S.

10

30i

0.5 Q

...... 20
Ea
1:r 10

0.5

E

0

0-0.5

30 1

(A)

i'	 6 El3 2 :1
. . i

(D)

ET3t”5
iixx

xX

Core	 Distance (km)
1 80
2 125
3 200
4 215
6 300
7 1350

according to Curran et al., (2004), reflects a decrease in suspended sediment concentration

such that floc formation is hindered. Combined with decreasing turbulence, the decline in

concentration leads much of the sediment to be deposited as single grains rather than flocs

(Curran et al., 2004). The cl" parameter (which is approximately inversely proportional to

the fitted floc mode K value) exhibits a clear evolution down-slope (Fig. 2.11b); in

proximal locations cl" is highest indicating that floc size is maximized, probably reflecting

relatively high suspended sediment concentrations. The ci A value is seen to decrease across

the fan as the suspended sediment population evolves and the concentration and turbulence

decreases (Fig. 2.11d). In the most distal location d^ is low reflecting the depletion of the

largest grains from the available sediment population and the decreases in concentration

and turbulence.

Figure 2.11. Boxplots showing the down-slope evolution of the inverse floc model (=Kranck model)

parameters across the Laurentian Fan. Boxplots show the variance of each parameter with depth

for each core, the box represents the lower, middle and upper quartiles of the data set. The lines

extending from the box show the extent of the data set within 1 . 5 of the interquartile range, and 'x'

represents outlier values. The 'source slope' m (A) is uniform down-slope, as expected for

turbidites formed from the same source material. The 'falloff diameter', d" (B), 'floc limit', d f (C) and

estimated mass fraction deposited as flocs, Kf (D) show variation with down-slope position that can

be explained by a simple conceptual model of particle packing. From Curran et aL, (2004).
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Overall application of the second generation Kranck model did not specifically change

Curran et al., 's (2004) interpretation and conceptual model of deposition on the Laurentian

Fan relative to that of Stow and Bowen (1980) who used more basic procedures. Even so

the application of the model did improve the understanding of the packing and the nature

of deposition of mud on the Laurentian Fan (Curran et al., 2004).

To summarise, three grain size distribution reduction techniques have been discussed;

moment statistics, sortable silt and the Kranck model. From the examples of mudstone

grain size distributions presented here it is clear that they are commonly bimodal in form

and thus their approximation to log-normality will usually be poor. However, despite this,

the mean grain size in combination with the standard deviation and skewness parameters

can be used to differentiate samples and infer the relative proportions of floc- and Stokes-

settled components in a qualitative manner. The mean sortable silt diameter has been

shown to typically mirror the moment mean grain size (Curran et al., 2004). As the

information it carries may be quite subtle this parameter is likely to be of more use in

detailed regional studies where multiple samples from well constrained stratigraphic

settings are available for analysis. The Kranck model has been shown to separate and

quantify the floc- and Stokes settled components of fine-grained sediment grain size

distributions allowing understanding of the nature of deposition and particle packing of the

sediment. There is currently no quantitative link to distinct depositional mechanisms or

settings, and the parameters are sensitive to many factors such sediment concentration,

turbulence, sediment source, sea water chemistry, etc, which may change rapidly on a

geological time scale. All three techniques are utilized in this study in order to extract the

maximum information from each grain size distribution analysed.
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2.2 Samples

The samples selected for analysis in this work represent an extremely broad range of

sedimentary settings, including dryland river / ephemeral lake, nearshore deltaic to deep

water continental slope environments. Such diversity in environments provides a global

aspect to this dataset and any significant difference between the grain size distributions

derived from such different settings are likely to be readily apparent. However, the

ancillary data associated with the samples utilized in this study was typically extremely

sparse, complicating any interpretation of the processes responsible for their deposition.

Brief summaries of each of the areas used are given below.

2.2.1 Deep water, Iota Area (IOTA)

The samples from the Iota Area were recovered from 3 deep water wells and are of Plio-

Pleistocene to Miocene age. The wells penetrate mud-rich siliciclastic sequences contained

within mini-basins formed by salt withdrawal in approximately 2500 — 3000m of water on

deep water fan and continental slope environment.

2.2.2 Deep water, Eta Area (ETA)

The samples were recovered from two wells on a continental slope at 1200 — 1500ms water

depth. The depositional setting in this area is a continuous depositional system which

connects through the slope topography, passing from the upper slope into intra-slope

basins. The sediments are predominantly siliciclastic and are associated with channel fed

re-sedimentation events (largely in the form of turbidites and debris flows) which are inter-

bedded with hemipelagic intervals.
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2.2.3 Jurassic sediments, North and Central Viking Graben, North Sea

The samples used in this study are drawn from the Lower, Middle and Late Jurassic

sediments of the Central and Viking graben. The formations represented in this study are

briefly described below:

2.2.3.1 Lower Jurassic: Dunlin Group

Drake Formation (NOR-1; NOR-4; NOR-6; NOR-9; NOR-10; NOR-22; NOR-23; NOR-

24; NOR-25).

The Drake Formation is composed of a unit of sandy and calcareous grey marine

mudstones (originally named as the Dunlin Shale Member or Drake sub-unit) lying above

the sand-prone Cook Formation, and is overlain erosionally by the Middle Jurassic Brent

Group (Underhill, 1998). The Drake Formation commonly contains thin beds of oolitic

sideritic ironstones; similar units exposed in the onshore equivalent Cleveland Ironstone

Formation have been interpreted by Macquaker and Taylor (1996) as representing the

correlative equivalent of sequence boundaries or part / all of the forced regression system

tract. The upper parts of the Drake formation show evidence of shallowing thought to be

due to progradation above the acme of the early Jurassic transgression (point of maximum

retrogradation) (Underhill, 1998). The Drake unit represents deposition in an open shallow

marine shelf setting (Partington et al., 1993).

2.2.3.2 Middle Jurassic: The Viking Graben — Brent Group

The Brent Group represents the most important reservoir sequence within the North Sea; it

was deposited in a paralic, deltaic and shallow marine environment (Partington et al.,

1993) and represents a broadly regressive-transgressive wedge of diachronous sediment

recording the outbuilding and subsequent retreat of a large wave-dominated delta

(Underhill, 1998).

29



Rannoch Formation (NOR-12; NOR-26)

The Rannoch Formation is the stratigraphically lowest member of the Brent Group; the

formation represents a progradational stage and is dominated by sandstone deposition in a

high energy, storm-dominated, middle shoreface environment (Underhill, 1998).

Ness Formation (NOR-2; NOR-3; NOR-7; NOR-8)

The Ness Formation records the last major stage of progradation of the Brent Delta and

also includes the onset of its retrogradation (Underhill, 1998); the formation consists of a

heterolithic sequence of sandstones, mudstones and coals thought to represent deposition

in a delta-top environment (Underhill, 1998).

Brent Formation (NOR-27; NOR-29)

2.2.3.4 Late Jurassic — Humber Group

Heather Formation (NOR-5; NOR-11; NOR-21)

The Heather Formation records deposition in the North Sea during the most significant

phase of synrift extensional activity (Underhill, 1998). The Heather Formation is

dominated by grey, silty marine mudstones deposited in restricted marine shelf (Partington

et al., 1993) and lies between the coarse siliciclastics of the Brent and Fladen groups and

the more organic- rich Kimmeridge Clay Formation (Underhill, 1998).

2.2.4 Zeta Area

The sediments of the Zeta Area were deposited in a back-arc basin formed in response to

the north-dipping subduction of the Neo-Tethyan Ocean. The sediments record the

evolving drainage systems and exhumation patterns during continental deformation; as

much as 10Icm of sediment have been deposited in the last 5.5Ma. Deposition was greatest
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in the Lower Pliocene when a sea level lowstand (associated with the Messinian salinity

crisis) resulted in several rivers prograding into the basin interior following the palaeo-

sea's isolation from the open ocean. Depositional environments in this setting have been

shown to include sheetflood, fluvial, playa mudflat and lacustrine settings.

2.2.5 Chi Area

The Chi Area, a sub-basin of a foreland basin system, is formed by the obliquely

converging margins of two complex plates. The sedimentary succession is dominantly

siliciclastic and approximately 121cm deep, deposited throughout the Pliocene and

Pleistocene and thus sedimentation has been rapid. This sediment has been primarily

supplied by a palaeo-river into a delta system which has prograded over a current- and

storm-influenced shelf during this period. The siliciclastic wedge is formed by both marine

and terrestrial siliciclastic megasequences as a series of prograding wedges overlying a

pre-Pliocene or lower Pliocene mobile shale fades.

2.3 Methods

2.3.1 Standard Techniques

The samples analysed in the study comprise side-wall cores, core plugs, and cuttings. The

bulk of the analyses were therefore performed on intact pieces of rock —1 cm 3 in size. The

samples were prepared for grain size analysis using the technique of Yang and Aplin

(1997) where samples are subjected to a series of freeze-thaw cycles which gently

disaggregate the sample. After a variable number of cycles, the disaggregated sample was

introduced into a —100m1 solution with a suspended sediment concentration between —1-

2% by weight (in line with the recommendations made by Coakley and Syvitski (1991)

along with 5m1 of dispersant (33g L-1 sodium hexametaphosphate and 7g L -1 sodium

carbonate). The sample was then further disaggregated by subjecting the solution to

ultrasonic treatment for periods of —1 hour. Once this treatment was complete the solution

31



was sieved at 63iim in order to remove the sand fraction (if present) which was then dried,

weighed and recorded.

The sub-6311m grain size distribution was determined using a Sedigraph 5000ET following

the technique of Coakley and Syvitski (1991). Just prior to introduction to the Sedigraph's

settling cell, a further 5 ml of dispersant was added to the solution and the samples were

agitated for 30 minutes using a magnetic stirrer, ensuring no flocculation occurred. The

errors resulting from both electrical and mechanical effects in the Sedigraph method have

been estimated to be +1-1% (Coakley and Syvitski, 1991). Previous intra-laboratory tests

on the precision of the Sedigraph based on repeat testing of samples obtained results found

to be with +/-2% of each individual size subclass on the previous measurement (e.g.

Dewhurst eta!., 1999c).

The resulting grain size cumulative curves were corrected for the removal of the >63 p.m

component using equation 2.2. The clay content (% <211m) and the sortable silt content (%

>10[Im) was derived from the cumulative curve following correction of the Sedigraph data

using an equation derived from intra-laboratory calibration of the Sedigraph to the pipette

method (Yang and Aplin, pers. comm.) (Equation 2.3).

Xcorr = Xsedi(1-X63) 	 (2.2)

Xpip = 5.64 + 0.41386Xc01r + 0.004518Xcorr2	(2.3)

where Xsedi refers to values recorded directly from the cumulative curve generated from the

Sedigraph analysis; X63 refers to the weight % of the material removed from sieving at

631.tm; Xc01-,- refers to the values corrected for removal of the >63 p.m material and Xpip

refers to the values calibrated to the pipette method.

The grain size frequency distribution was derived by directly digitizing the grain size

cumulative curve producing approximately 2000 data points. The data points forming the

digitized cumulative curve were numerically differentiated and summed into 0.2 phi bins,

32



thus describing the sub-64tm grain size frequency distribution as 40 data points. These

data points are only corrected for removal of the >63Rm material; the pipette calibration

was not applied as it was derived for material <20pm and here the entire grain size

distribution is of interest.

In a series of papers published between 1980 and 1996 Kranck and co-workers advocated

the plotting of fine-grained sediment grain size spectra on log-log plots, because portions

of different samples with similar size distributions plot as similar shapes, irrespective of

the nature of the rest the distribution. This approach emphasizes the straight line segments

which reflect the unsorted size distribution of flocculated material, which is thought to be

inherited directly from primary weathering of the source rocks (Kranck and Milligan,

1985). In this study Kranck's technique is followed and the grain size frequency

distributions are plotted as log — log spectra of grain size (Jim) versus weight %.

2.3.2 Moment Statistics

The moment statistics generated in this study were calculated using the method of Griffiths

(1962, p. 90, table 5.4) for data summed in whole phi bins. (Appendix A2.1).

2.3.3 Kranck in 	fitting

The equation established in the Kranck model (Equation 2.1) may be put into linear form

by taking the log of both sides (Kranck et al., 1996a):

ln C = ln A Q +(m+n)ln w-Kw	 (2.4)

A least squares regression was carried out in Excel to estimate the parameters (ln .61Q,m+n,

K) from the components of observed grain-size distributions. When appropriate the floc-

silt intersection, termed Df after Curran et al., (2004), was also calculated. This parameter

estimates the grain size diameter at which particle behaviour changes from non-cohesive to

cohesive and thus estimates the maximum particle size that will be incorporated into flocs.
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2.3.5 Petrography

Thin sections were prepared for every sample for which sufficient core plug or side-wall

core sample material was available. Sections were thinned to --201.tm due to the opacity of

mudstones, grinding and polishing was performed within oil in an attempt to minimize

sample damage. After initial optical work the samples were carbon-coated and analysed

using a Jeol 6400 Scanning Electron Microscope (SEM) equipped with a Link

backscattered electron (B SE) detector.

2.4 Results

All the data were initially plotted up and analysed in a heuristic manner. Initial analyses of

the 166 samples utilized in this study revealed a spectrum of grain size distributions which

were only loosely related to the sample location. This spectrum ranged from very fine-

grained, entirely flocculated sediments with high clay contents and very few particles

coarser than 101.im to relatively coarse, sand-silt-clay mixtures. Inspection of the data

suggest that the shape of the grain size distribution and the associated Kranck model

parameters are consistent and that a number of 'types' could account for the bulk of

variability present in the dataset. Combining this data with inspection of the corresponding

petrographic and electron microscope images strengthened this contention. Thus analysis

of the shape of the grain size distribution, its Kranck parameters and the microscopy

images lead to a conceptual grain size typing framework being established. The moment

statistics and sortable silt parameters were integrated and assessed once the dataset had

been partitioned into types on the basis described above. For this dataset six grain size

'types' were identified and are described below.
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2.4.1 Type 1 —floc dominated

The first grain size type recognized in this study represents the finest end-member of the

spectrum. Examples of two Type 1 grain size distributions together with their moment

statistic values and Kranck model parameters is given in Figure 2.12. This grain size

distribution type is referred to as low concentration flocculated GSD's as it is dominated

by a floc settled component according to the Kranck and Milligan (1985) model, and

typically has high K values (averaging 239.5). As the value of the K parameter increases

with the 'maturity' of the depositional process (Section 2.1.2.3, Figure 2.4; Kranck and

Milligan, 1985; Kranck et al., 1996a, b) these sediments represent deposition at the distal

ends of sediment transport paths. Examples of this grain size distribution types are drawn

from deep water Iota Area and Zeta Areas only and represent 13% of the total grain size

distribution dataset used in this study. Standard sedimentary parameters and statistics are

given in Table 2.1 and the parameters derived from fitting the Kranck model are given in

Table 2.2. These sediments are typically rich in microfossils (see Figs 2.13, 2.15 and 2.16).

A thin section taken from a deep water Iota Area sample with a Type 1 gain size

distribution is shown in Figure 2.13. This example illustrates the ungraded, homogeneous

characteristic of these sample types. The examples shown in Figures 2.13 and 2.16 exhibit

similarities to the tan, ungraded mudstone facies from the Middle Eocene Cozy Dell

Formation (southern California) pictured by O'Brien and Slatt (1990, p. 83). This facies

was interpreted to have been deposited in a submarine slope setting by slow sedimentation

from hemipelagic settling or from the distal portion of waning turbidity currents in an

environment analogous to the modern Mississippi delta front (O'Brien and Slat, 1990).

Two Back Scattered Electron Microscope (BSEM) images of Type 1 samples are shown in

Figures 2.14 and 2.15. At this scale there is still a lack of any obvious structure and the

sample can be described as homogeneous. The example in Figure 2.15 appears particularly

fine-grained with very few particles >10um visible at all. Some microfossil fragments are

embedded within the clay-rich matrix.
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In Figures 2.16 and 2.17 cm scale images of the thin section are combined with the

corresponding grain size distribution and magnified (x4) image. Figure 2.16 represents a

sample taken from a deep water Iota well as a side wall core. It exhibits very similar

characteristics to the sample shown in Figure 2.12: a very fine grain size, and a

homogeneous, un-laminated appearance at the cm, mm and gm scale (Figs. 2.13 - 16).

These characteristics are thought to be representative of slow sedimentation from

hemipelagic settling or from the distal portion of waning turbidity currents. The high

proportion of microfossils seen in this facies provides possible further evidence for slow

sedimentation rates.

The second example does exhibit bedding at the mm scale, being darker at the base and

lightening upwards, probably indicating coarsening of the grain size. The magnified image

was taken from the base of Figure 2.17a. The magnified image is homogeneous and un-

laminated at the gm scale (Fig. 2.17c). This particular sample is a Zeta Area core plug

sample; the mud dominated section from which it was retrieved has recently been

interpreted as representing a transgression of a regional lake. Thus this sample probably

represents slow sedimentation during a low energy phase of the lake's history.

Figure 2.12. Disaggregated grain size spectra of Type 1 GSD Types on log-log weight percent —

grain size (pm) plots; (a) Iota Area example — 67% clay, 1.4pm mean grain size (mgs), modeled

'floc' parameters: AQ 1.14, (m+n) -0.0933, K 97.16. (b) Zeta Area example — 40.2% clay, 2.0pm

mgs, modeled 'floc' parameters: AQ, 5.2, (m+n) 0.0089, K 113.6.
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Whole distribution stats

Code % Clay % Sand % Silt % >10um Mean Grain Size (um) SD Skewness SS mean (um)

IOTA 3 66 0.5 34 12 1.5 1.5 -0.2 24

IOTA 13 73 0.1 27 12 1.0 1.6 -1.3 24

IOTA 22 73 0.1 27 9 1.0 1.4 -0.7 30

IOTA 30 61 0.1 39 11 1.3 1.6 -0.6 19

IOTA 37 58 0.1 42 13 1.8 1.7 -0.4 21

IOTA 40 67 0.0 33 10 1.4 1.5 -0.6 31

IOTA 43 58 0.6 41 16 1.6 1.8 -0.6 19

IOTA 44 44 0.8 55 21 1.8 1.8 -0.8 25

IOTA 45 71 0.1 29 12 1.0 1.6 -1.0 21

IOTA 63 51 2.6 47 22 1.8 1.8 -0.8 21

IOTA 66 60 0.3 40 14 1.5 1.7 -0.8 26

IOTA 68 52 0.2 48 19 1.9 1.8 -0.9 27

IOTA 69 49 1.7 50 21 2.0 1.7 -0.8 26

IOTA 70 52 4.2 44 12 1.6 1.5 -0.5 21

IOTA 71 55 0.0 45 14 1.5 1.6 -0.7 21

IOTA 73 42 1.1 56 17 2.0 1.7 -0.6 30

IOTA 74 46 0.5 53 25 2.1 1.9 -0.7 21

ZETA 5 53 0.0 47 10 1.4 1.4 -0.2 14

ZETA 7 43 0.5 57 10 1.8 1.3 -0.1 16

ZETA 8 29 2.3 69 23 2.9 1.6 -0.1 18

ZETA 17 40 0.0 60 13 2.0 1.4 -0.1 14

ZETA 23 36 6.4 57 25 2.2 1.6 -0.2 18

Table 2.1. Sedimentary parameters and moment statistics derived from samples with a

Type 1 GSD..
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Kranck Model Parameters

Code 40 log 40 n + m K r2

IOTA 3 1.1 0.1 -0.1 111.0 0.92

IOTA 13 0.1 -2.0 -0.3 56.2 0.91

IOTA 22 31.1 3.4 0.3 1143.7 0.81

IOTA 30 4.4 1.5 0.0 284.4 0.94

IOTA 37 9.9 2.3 0.2 246.0 0.85

IOTA 40 17.4 2.9 0.2 517.1 0.91

IOTA 43 1.5 0.4 -0.1 72.3 0.96

IOTA 44 20.4 3.0 0.2 383.5 0.93

IOTA 45 0.9 -0.2 -0.1 215.4 0.94

IOTA 63 1.8 0.6 -0.1 114.3 0.94

IOTA 66 2.8 1.0 0.0 210.0 0.94

IOTA 68 7.7 2.0 0.1 336.0 0.97

IOTA 69 7.9 2.1 0.1 230.5 0.91

IOTA 70 24.1 3.2 0.2 450.0 0.93

IOTA 71 7.5 2.0 0.1 382.7 0.98

IOTA 73 45.8 3.8 0.3 456.4 0.80

IOTA 74 14.0 2.6 0.2 382.9 0.81

ZETA 5 2.4 0.9 -0.1 210.2 0.95

ZETA 7 24.5 3.2 0.2 260.0 0.95

ZETA 8 41.9 3.7 0.3 170.4 0.96

ZETA 17 6.0 1.8 0.0 102.0 0.96

ZETA 23 15.2 2.7 0.2 156.2 0.95

Table 2.2. Kranck model parameters derived from the fitted floc-component of Type 1

sample grain size distributions.
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Figure 2.13. Transmitted-light photomicrograph (plane light, x4) taken from a thin section of a

sample with a Type 1 grain size distribution (10TA_69). The thin section illustrates homogeneous,

ungraded sediment consistent with deposition from suspension fall-out of flocculated material

primarily <10pm. A number of foraminifera tests are visible in the picture. The scale bar (bottom

right) is 1000pm.
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Figure 2.14. Back scattered electron-optical micrograph (BSEM) of a sample with a Type 1 grain

size distribution (10TA_3). The field of view is —100pm. Silt grains, typically <15pm in size 'float' in

a matrix of finer silt and clay indicating co-deposition of material at this scale.
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Figure 2.15. Back scattered electron micrograph (BSEM) of a sample with a Type 1 grain size

distribution (10TA_30). The field of view is — 100pm. There are very few silt grains, and those that

are present are typically <10pnn in size. These grains along with a number of microfossil types

'float' in a matrix of finer silt and clay indicating co-deposition of material at this scale.
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Figure 2.16. Example of a Type 1 sample (10TA_22) recovered from a deep water Iota Area well

illustrating: (a) an image of the thin section itself, (b) the corresponding grain size distribution, and

(c) a transmitted-light photomicrograph (plane light, x4). The thin section illustrates homogeneous,

ungraded sediment consistent with deposition from suspension fall-out of flocculated material

primarily <10pm. A foraminifera test is clearly visible in the centre of the picture. The scale bar (top

right) is 1000pm.
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Figure 2.17. Example of a Type 1 sample (ZETA_23) recovered from a Zeta Area well illustrating:

(a) an image of the thin section itself, (b) the corresponding grain size distribution, and (c) a

transmitted-light photomicrograph (plane light, x4). The thin section illustrates homogeneous,

ungraded sediment consistent with deposition from suspension fall-out of flocculated material

primarily <10pm. The scale bar (bottom right) is 1000pm.
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2.4.2 Type 2— high concentration flocculated spectra

Further analysis of the sediments dominated by a floc deposited component led to the

recognition of the Type 2 grain size spectra termed 'high concentration' flocculated

spectra. This grain size distribution (GSD) type is similar to that of Type 1; however, it

also incorporates a significant silt component as floc deposited material. Examples are

given in Figure 2.18. A low K parameter derived from the Kranck model fit is

characteristic of these sample types (averaging 27) (Table 2.4). Examples of these grain

size distribution types are drawn from all the locations included in this study (deep water

Iota Area, Jurassic North Sea, deep water Eta, Chi and Zeta Areas) and represent 19% of

the total grain size distribution dataset used in this study. Sedimentary statistics are given

in Table 2.3 and the parameters derived from fitting the Kranck model are given in Table

2.4.

Figure 2.18. Disaggregated grain size spectra of Type 2 GSD examples on log-log weight percent

— grain size (pm) plots; (a) Iota example — 59% clay, 2pm mean grain size (mgs), modeled 'floc'

parameters: AQ 3.82, (m+n) -0.0464, K 20.84. (b) Deep water Eta example — 48% clay, 2.2pm

mgs, modeled 'floc' parameters: AQ 1.57, (m+n) -0.0577, K 11.495. (c) Chi example — 37% clay,

2.8pm mgs, modeled 'floc' parameters: AQ 4.23, (m+n) 0.06, K 17.57. (d) Zeta example — 25%

clay, 3.9pnn mgs, modeled 'floc' parameters: AQ 11.05, (m+n) 0.1694, K 23.3.
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The observation that the spectra characteristic of Type 2 GSDs incorporate material >10pm

deposited as flocs is somewhat contradictory to the evidence given for the boundary

between non-cohesive and cohesive behaviour at —10p.m for fine-grained sediment

particles in section 2.1.1. It is proposed here that these sediments have been deposited from

a flow or water column with a high suspended sediment concentration. Implicit in the

fitting of the Kranck grain size model is the use of a settling velocity (Ws) as calculated for

settling under 'clear water' Newtonian conditions; however, as sediment concentration

increases grain / floc settling becomes hindered. A simplified model for calculating the

hindered settling velocity (Wh) is:

wh = Ws (1- CD"
	

(2.5)

where Cf is the volume concentration and n is an exponent, here taken as 2.32 (Richardson

and Zaki, 1958; Talling, 2001). Holding the model parameters in Equation 2.5 constant but

altering the settling rate shows that as sediment concentration increases, the grain size

incorporated into the floc settled component also increases (Figure 2.19).

When fitting the model the effect of sediment concentration is accounted for by the K

parameter (Section 2.1.2.3; Kranck and Milligan, 1985); thus the low K values recorded for

Type 2 GSD spectra are thought to reflect their deposition from high concentrations. A

relationship between K and sediment concentration was presented by 1Cranck and Milligan

(1985) for samples taken from the Orinoco River (Section 2.1.2.3). Further evidence for

deposition from high sediment concentrations comes from petrographic analysis of

samples in this classification. In Figure 2.20 a thin section taken from a Zeta Area sample

shows an example of a Type 2 grain size distribution in which mudstone clasts are clearly

visible; the presence of such clasts in a matrix of primary deposited material indicates that

the flow must have been of high concentration in order to generate the competence

required to transport and deposit mudstone clasts.
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Figure 2.19. Result of applying the Kranck grain size model holding the AQ, (m+n), and K

parameters constant but altering the settling velocity using Equation 1.5 for increasing sediment

volume concentrations (Cf).

Figure 2.20. Thin section (plane light) taken from a Zeta Area sample with a Type 2 grain size

distribution. Intraclasts of mudstone are clearly visible in a matrix of silt and clay providing evidence

for deposition from a high concentration (non-Newtonian) flow. The field of view is —2.7mm.
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Whole distribution stats

Code % Clay % Sand % Silt % >10um Mean Grain Size (um) SD Skewness SS mean (gm)

IOTA_9 64 0.3 36 14 2.0 1.8 -0.3 16.9

IOTA_14 61 0.0 39 14 1.9 1.8 -0.4 18.1

IOTA_17 61 0.1 39 17 2.2 1.9 -0.4 19.1

IOTA 21 59 0.2 41 19 2.0 2.0 -0.5 19.2

IOTA_28 60 0.1 40 19 1.7 1.9 -0.5 15.8

IOTA_46 48 0.0 52 21 2.1 1.8 -0.3 17.2

1OTA_48 59 1.3 40 18 1.6 1.8 -0.7 17.5

IOTA_59 39 1.9 60 30 2.6 1.9 -0.6 22.8

ETA_4 60 0.4 40 19 1.7 1.9 -0.7 19.4

ETA_8 55 0.1 45 17 1.6 1.8 -0.6 17.3

ETA_10 48 1.0 51 25 2.2 2.0 -0.5 19.7

ETA_12 63 0.1 37 14 1.4 1.8 -0.8 17.5

ETA_1 64 0.3 35 18 2.0 2.1 -0.6 21.0

ETA_II 49 3.0 48 23 1.9 1.9 -0.5 17.3

ETA_14 57 0.3 43 20 2.1 2.1 -0.3 17.8

ETA_I 6 57 5.4 38 22 1.5 1.8 -0.8 19.2

ETA_17 54 3.2 42 18 1.6 1.7 -0.4 14.2

ETA_18 56 2.5 42 29 2.5 2.1 -0.6 22.2

ETA_19 57 2.4 41 26 2.3 2.1 -0.5 20.5

ETA_20 59 4.2 37 23 1.8 1.9 -0.6 18.9

NOR_I 0 36 0.2 64 38 3.6 1.9 0.2 17.4

CHI_2 53 0.1 47 18 1.8 1.8 -0.5 17.3

CHI_3 45 0.6 55 30 2.7 2.1 -0.3 20.3

CHI_4 38 0.7 62 29 2.8 1.9 -0.1 18.6

CHI_11 47 0.4 53 23 2.3 2.0 -0.2 18.8

ZETA_1 47 2.3 50 25 2.4 1.9 -0.3 18.1

ZETA_3 48 0.9 51 24 2.4 2.0 -0.4 19.6

ZETA_25 25 0.3 75 38 3.9 1.8 0.3 16.5

ZETA_27 32 2.4 66 25 2.5 1.6 -0.1 15.4

ZETA_14 38 0.1 62 29 2.9 1.9 0.0 17.8

Table 2.3. Sedimentary parameters and moment statistics derived from samples with a

Type 2 grain size distribution.
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Kranck Model Parameters

Code
4Q log L1Q n + m K r2

IOTA 9 1.0 0.0 -0.1 30.0 0.93

IOTA 14 2.7 1.0 0.0 64.2 0.94

IOTA 17 1.9 0.6 0.0 32.2 0.84

IOTA 21 1.3 0.3 0.0 23.8 0.89

IOTA 28 5.1 1.6 0.1 52.4 0.81

IOTA 46 3.4 1.2 0.0 31.9 0.95

IOTA 48 0.7 -0.4 -0.1 16.7 0.87

IOTA 59 0.1 -0.3 -0.2 1.2 0.97

ETA 4 1.6 0.4 -0.1 47.5 0.95

ETA 8 1.4 0.3 -0.1 37.5 0.96

ETA 10 1.5 0.4 -0.1 12.8 0.97

ETA 12 1.1 0.1 -0.1 56.2 0.95

ETA 1 0.5 -0.6 -0.1 2.8 0.66

ETA 11 1.5 0.4 -0.1 16.4 0.96

ETA 14 1.8 0.6 0.0 13.9 0.73

ETA 16 1.1 0.1 -0.1 50.4 0.94

ETA 17 2.9 1.1 0.0 65.1 0.96

ETA 18 1.1 0.1 -0.1 3.5 0.94

ETA 19 1.2 0.2 -0.1 5.8 0.94

ETA 20 1.5 0.4 0.0 32.2 0.95

NOR 10 5.3 1.7 0.1 12.6 0.97

CHI 2 2.5 0.9 0.0 44.0 0.96

CHI 3 2.0 0.7 0.0 6.1 0.94

CHI 4 4.2 1.4 0.1 17.6 0.94

CHI Il 2.1 0.8 0.0 17.4 0.93

ZETA 1 1.4 0.4 -0.1 12.4 0.94

ZETA 3 1.2 0.2 -0.1 7.3 0.94

ZETA 25 11.1 2.4 0.2 23.3 0.93

ZETA 27 8.3 2.1 0.1 64.5 0.87

ZETA 14 5.8 1.8 0.1 22.3 0.97

Table 2.4. Kranck model parameters derived from the fitted floc-component of samples

with a Type 2 grain size distribution.
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It is interesting to note the similarity between the characteristic Type 2 grain size spectra

and the composite grain size spectra derived for a complete turbidite sequence shown in

Figure 2.21; this observation is consistent with the interpretation of flow 'freezing' and en-

masse deposition of suspended material characteristic of high concentration mud-rich

density flows for the formation of Type 2 gain size spectra. A representative BSEM image

of a Type 2 sample is illustrated in Figure 2.22. At this scale the structure is similar to that

seen in Type 1 mudstones; there is a lack of any obvious structure and the sample would be

described as homogeneous and matrix-supported.

Figure 2.21. Typical smoothed weight % grain size

frequency curves recorded by Stow and Bowen (1980)

from mud-rich turbidites. Individual lamina (1-8) were

analysed in this study, and silt, mud and a predicted

whole unit grain size curve (top) are presented. This

section is 8 cm in length. D, (critical) refers to the

smallest grain size settled by Stokesian settling and

indicates a crude estimate of actual stress (T) at the time

of deposition within Stow and Bowen's (1980) model.

Images of thin sections, their corresponding grain size distribution and magnified images

are given in Figures 2.23 and 2.24. At the millimetre scale both samples lack any obvious

structure and no lamination is apparent. The Chi Area sample (Fig. 2.23) is somewhat

coarser than the Iota sample (Fig. 2.24) with clay contents of 60% and 52% respectively;

the Chi sample also has a mean grain size —1 p.m larger than the Iota sample (Table 2.3).

The coarser nature is not readily apparent from visual inspection of the grain size

distributions, although the Chi sample does have a lower K value derived from fitting the

Kranck model (Table 2.4), perhaps signifying a higher transport energy (Figure 2.4).
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However, the coarser nature of the Chi sample is apparent from inspection of the

magnified thin section images (Figs. 2.23c and 2.24c).
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Figure 2.22. Back scattered electron-optical micrograph (BSEM) representative of a sample with a

Type 2 grain size distribution (10TA_46). The field of view is —120pm. Silt grains, typically 5 —

30pm in size 'float' in a matrix of finer silt and clay indicating co-deposition of material at this scale.

There is a high degree of similarity between the structure of the two samples shown in

Figures 2.23 and 2.24. There is a lack of structure at this scale and both samples would be

described as matrix-supported (i.e. larger silt grains, when present, float within a matrix of

finer silt and clay particles), giving a homogeneous appearance to the texture. Comparison

of the BSEM image shown in Fig. 2.22 with Figures 2.23 and 2.24 indicates that the

structure of these sediments is similar at both scales.
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Figure 2.23. Example of a Type 2 sample (CHI_3) recovered from a Chi Area well illustrating: (a)

an image of the thin section itself, (b) the corresponding grain size distribution, and (c) a

transmitted-light photomicrograph (plane light, x4). The thin section illustrates a homogeneous,

ungraded sediment with silt and some sand grains float in a clay and fine silt matrix. The scale bar

(bottom right) is 1000pm.
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Figure 2.24. Example of a Type 2 sample (10TA_28) recovered from an Iota Area well illustrating:

(a) an image of the thin section itself, (b) the corresponding grain size distribution, and (c) a

transmitted-light photomicrograph (plane light, x4). The thin section illustrates homogeneous,

ungraded sediment with coarse silt particles floating in a clay and fine silt matrix. Note that the

alteration in colour is thought to simply reflect variations in section thickness. The scale bar (top

left) is 1000pm.
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2.4.3 Type 3 —floc dominated, floc silt mixtures

The Type 3 grain size distribution represents the finest member of a 3-part classification of

spectra comprising both a floc and 'Stokes' settled mode. This spectra are composed of a

dominant floc-settled component and a minor silt component deposited as single grains

either from a static water column or from a dilute flow. Characteristic of these distributions

is either a silt modeled (m+n) value of <0.7 or of >1 (Figure 2.25). When the (m+n) value

is <0.7 the minor silt component is relatively broad (Figure 2.25b); when this value is >1

the silt component is much tighter (Figure 2.25a), possibly reflecting either distinct

depositional processes and / or distinct grain size populations. Type 3 sediments have an

average floc-non-cohesive silt intersection (Df) value of I Om, with this value ranging

between 5 and 181.1.m. The Type 3 group was split into two further sub-groups where m+n

<0.7 or m+n >0.7. The m+n <0.7 group had an average Df of 7.4tm and a range of 5 -

9pm; whereas the m+n >0.7 group had an average Df of 12Rm and a range of 9 - 181..tm.

This result suggests that when the m+n parameter is large (i.e >0.7), coarser material is

incorporated into flocs and vice versa, potentially providing insight to the hydrodynamics

and processes responsible for the formation of these sedimentary deposits. Examples of

this grain size distribution type are drawn from deep water Iota Area, deep water Eta, Chi

and Zeta Areas and represent —8% of the total grain size distribution dataset used in this

study. Sedimentary statistics are given in Table 2.5 and the parameters derived from fitting

the Kranck model are given in Table 2.6.

A series of images depicting samples with a Type 3 grain size distribution at a range of

scales are given in Figures 2.26 — 2.28. In Figure 2.26 a BSEM image of a Type 3 sample

is shown, illustrating the matrix-supported, homogeneous character of these sediment

types.
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Figure 2.25. Disaggregated grain size spectra of Type 3 GSD Types on log-log weight percent -

grain size (pm) plots; (a) deep water Eta example - 50% clay, 1.9pm mgs, Q 214.8, (m+n) 1.1, K

33.5. (b) Zeta example - 44% clay, 3pm mgs, modeled 'silt' parameters: A Q 1.2, (m+n) 0.72, K

14.6.

Figure 2.26. Back scattered electron-optical micrograph (BSEM) of a deep water Iota sample

(10TA_4) with a Type 3 grain size distribution (field of view -120pm). In this example minor

sortable silt particles 'float' in a matrix of finer silt and clay indicating co- deposition of material at

this scale.
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Whole distribution stats

Code % Clay % Sand % Silt % >10um Mean Grain Size (urn) SD Skewness SS mean (gm)

IOTA 4 60 0.1 40 18 2.0 1.8 -0.6 19.3

IOTA 6 48 0.1 52 22 2.6 1.9 -0.2 18.8

IOTA 7 63 0.2 37 19 1.8 2.0 -0.7 19.7

IOTA 12 57 0.1 43 21 2.5 1.9 -0.4 19.1

IOTA 23 56 0.0 44 21 2.0 2.0 -0.5 19.7

IOTA 26 55 0.1 45 19 1.9 1.8 -0.6 19.3

IOTA 29 56 0.1 44 17 2.2 1.7 0.0 19.0

IOTA 35 54 0.0 46 21 2.5 1.9 -0.2 17.9

IOTA 36 54 0.0 46 20 2.4 1.9 -0.3 18.2

IOTA 58 52 0.8 47 17 1.8 1.7 -0.6 17.1

IOTA 62 50 2.2 48 25 2.2 1.8 -0.5 18.9

IOTA 67 45 1.6 53 14 1.7 1.6 -0.5 21.4

ETA 7 51 0.2 49 22 1.9 1.9 -0.7 20.6

ZETA 1 44 0.3 56 29 3.1 2.0 -0.2 20.1

ZETA 4 56 0.4 44 17 1.8 1.7 -0.7 21.0

CHI 14 56 0.2 44 14 1.9 1.7 -0.4 20.5

Table 2.5. Sedimentary parameters and moment statistics derived from samples with a

Type 3 grain size distribution.

Figures 2.26 - 2.28 show images and grain size data for Type 3 samples from the deep

water Iota Area and Chi Area. The two examples in Figs 2.27 and 2.28 are typical of Type

3 samples with Iota_4 having a clay content of 60% and Chi_14 having a clay content of

56%. The samples are similar in terms of the textures they exhibit at a range of scales.

Each of the samples is homogeneous and unstructured and would be described as having a

matrix-supported texture (i.e. the larger silt grains, when present, float within a matrix of

finer silt and clay particles). The homogeneous character and lack of any sign of

lamination both at the um (Figure 2.25) and mm scale (Figs 2.27 - 28) indicates that the

floc-silt components found in Type 3 grain size distributions are deposited simultaneously,

and do not form discrete layers.
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Floc mode Silt mode

Code AQ log AQ n + m K r2 4Q log 4Q n + m K r2 Df(gm)

IOTA 4 8.5 2.1 0.1 346.0 0.94 4.3 1.5 0.3 16.6 0.65 7.9

IOTA 6 5.7 1.7 0.1 54.4 0.86 75414.9 11.2 3.0 47.4 0.82 18.2

IOTA 7 0.9 -0.1 -0.1 46.5 0.88 589.0 6.4 1.3 61.9 0.96 9.4

IOTA 12 2.6 0.9 0.0 104.1 0.64 5.4 1.7 0.3 23.9 0.86 7.5

IOTA 23 3.1 1.1 0.1 46.1 0.67 1064542927 20.8 4.4 167.0 1.00 12.6

IOTA 26 1.2 0.2 -0.1 122.9 0.89 1.9 0.6 0.1 11.5 0.95 7.6

IOTA 29 6.3 1.8 0.1 149.5 0.74 9627.3 9.2 2.1 70.8 0.97 11.9

IOTA 35 7.0 1.9 0.1 273.0 0.84 8.7 2.2 0.3 31.1 0.95 5.1

IOTA 36 7.9 2.1 0.2 211.4 0.68 45561.7 10.7 2.3 75.6 0.99 11.8

IOTA 58 1.1 0.0 -0.1 73.1 57.3 4.0 0.6 86.1 6.8

IOTA 62 3.7 1.3 0.0 97.1 0.88 1808.0 7.5 1.6 46.0 0.95 11.8

IOTA 67 11.4 2.4 0.1 276.5 0.96 4.6 1.5 0.5 13.3 0.84 9.9

ETA 7 1.2 0.2 -0.1 60.1 214.8 5.4 1.2 33.5 11.0

ZETA 1 6.0 1.8 0.1 115.6 0.74 30.0 3.4 0.7 14.6 0.99 10.4

ZETA 4 4.4 1.5 0.0 233.8 0.96 11.8 2.5 0.6 28.4 0.81 8.4

CHI 14 8.4 2.1 0.1 152.9 0.95 46.3 3.8 1.2 21.7 0.85 13.8

Table 2.6. Kranck model parameters derived from the fitted floc component and non-

cohesive silt components of Type 3 sample grain size distributions.
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Figure 2.27. Example of a Type 3 sample (10TA_4) recovered from a deep water Iota Area well

illustrating: (a) an image of the thin section itself, (b) the corresponding grain size distribution, and

(c) a transmitted-light photomicrograph (plane light, x4). The thin section illustrates homogeneous,

ungraded clay and fine silt matrix. The scale bar (bottom right) is 1000pm.
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Figure 2.28. Example of a Type 3 sample (CHI_14) recovered from a Chi Area well illustrating: (a)

an image of the thin section itself, (b) the corresponding grain size distribution, and (c) a

transmitted-light photomicrograph (plane light, x2). The thin section illustrates homogeneous,

ungraded clay and fine silt matrix. The scale bar (bottom right) is 500pm.
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2.4.4 Type 4—floe silt mixtures

The Type 4 grain size distribution represents sediments composed of approximately equal

proportions of floc settled and Stokes settled silt material (Figure 2.29). Examples of Type

4 grain size spectra are drawn from deep water Iota Area, Jurassic North Sea, deep water

Eta, and Zeta Areas and represent 23% of the total gain size distribution dataset used in

this study. Sedimentary statistics are given in Table 2.7 and the parameters derived from

fitting the Kranck model are given in Table 2.8. The silt — Stokesian settled component

typically has m+n values >0.5 and are generally consistent with the framework established

by Kranck. Type 4 sediments have an average floc-non-cohesive silt intersection (Df) value

of 9.611m, ranging between 3 and 191.tm. Characteristic Type 4 grain size distributions are

presented in Figure 2.29. These samples are thought to form from the co-deposition of

flocculated and single grain material, largely from dilute flows.

Figure 2.29. Disaggregated grain size spectra of Type 4 GSD Types on log-log weight percent —

grain size (pm) plots; (a) Iota example — 48% clay, 2.9pm mean grain size (mgs), modeled 'silt'

parameters: AQ 61.9, (m+n) 0.78, K 20.3. (b) Iota example — 43% clay, 2.5pm mgs, modeled 'silt'

parameters: ,AQ 12.2, (m+n) 0.57, K 5.3. (c) deep water Eta example — 54% clay, 2pm mgs,

modeled 'silt' parameters: AQ 33.8, (m+n) 0.49, K 59.7. (d) Zeta example — 30% clay, 3.4pm mgs,

Q 9.1, (m+n) 0.48, K 6.8 (Figure 2.6 for BSEI of this example).
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Back scattered electron microscope images of examples with Type 4 grain size

distributions are shown in Figures 2.30 and 31; both samples are from a deep water, Iota

Area well. Although the fields of view are different (-1201..tm and —500pm) the images

have a very similar appearance. In both cases sortable silt grains (>10pm) are floating in a

matrix of fine silt and clay. The slightly coarser nature of Type 4 samples can be seen by

comparing the BSEM images of a Type 3 example (Fig. 2.26) with a Type 4 example (Fig.

2.30). Each individual sortable silt grain is typically isolated and is rarely in contact with

more than one other sortable silt grain, this sediment would therefore be described as

matrix-supported.

Figures 2.32 and 2.33 combine images of thin sections (cm scale) with the corresponding

grain size distribution and magnified (x4) images for Type 4 samples. Figure 32 shows

data for a deep water Iota Area sample. The thin section image illustrates that the sample is

an unstructured, homogeneous brown mudstone at the mm scale. The magnified image

shows a featureless sediment with a fine-grained, homogenous texture. Figure 2.33 shows

data for a North Sea sample; the thin section image illustrates the bioturbated nature of this

sample, with numerous flattened burrows. This sample is coarser than the Iota Area

example, with respective clay contents of 36% and 51% and mean grain sizes (pm) are 3.5

and 2.6. However, despite the coarser nature of the North Sea sample, the texture would

still be described as matrix-supported. Inspection of Fig. 2.33c indicates that the majority

of sortable silt and sand grains are isolated by the fine silt and clay matrix. As for Type 3

distributions, the homogeneous character and lack of any sign of lamination both at the p.m

(Figs. 2.30 and 2.31) and mm (Figs. 2.32 - 33) scales indicates that the floc-silt

components found in Type 4 grain size distributions are deposited simultaneously and do

not form discrete layers. The average pf value for Type 4 samples equals 9.6pm in

agreement with the approximate 1 Opm boundary suggested by McCave et al., (1995)

(Section 2.1.1); the only exception is two Eta Area examples (Table 2.8) in which the floc-

silt limit lies at —3-4pm, suggesting that the hydrodynamic and chemical conditions

resulted in material >51..tm largely behaving as single grains.
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Whole distribution stats

Code % Clay % Sand % Silt % >10um Mean Grain Size (gm) SD Skewness SS mean (gm)

IOTA 1 51 0.1 49 21 2.6 1.8 -0.3 19.2

IOTA 5 48 0.1 52 23 2.4 1.9 -0.3 18.7

IOTA 8 51 0.2 49 21 2.3 1.9 -0.5 20.4

IOTA 10 52 0.1 48 18 2.3 1.8 -0.2 16.6

IOTA 16 56 0.2 44 10 2.6 1.9 -0.1 18.0

IOTA 18 56 0.1 44 18 2.2 1.8 -0.3 16.9

IOTA 19 60 0.0 40 19 2.7 1.9 -0.2 18.5

IOTA 20 47 2.8 50 34 2.6 2.3 -0.6 24.9

IOTA 24 47 4.3 49 38 3.6 2.3 -0.2 25.7

IOTA 25 52 0.2 48 13 2.1 2.0 -0.5 19.6

IOTA 27 50 2.7 47 30 2.9 2.2 -0.5 26.5

IOTA 31 46 2.1 52 33 3.2 2.2 0.0 20.1

IOTA 32 50 0.1 50 31 3.1 2.2 -0.1 21.8

IOTA 34 48 0.1 52 33 2.9 2.2 -0.3 21.5

IOTA 39 51 0.3 49 27 2.2 2.2 -0.5 20.3

IOTA 41 53 0.9 46 28 3.1 2.2 -0.3 22.6

IOTA 42 50 2.1 48 30 2.8 2.2 -0.4 23.6

IOTA 47 51 0.1 49 24 2.1 2.0 -0.5 18.6

IOTA 49 47 0.8 52 26 1.8 2.1 -0.8 21.7

IOTA 50 50 0.0 50 28 2.5 2.1 -0.6 23.7

IOTA 51 42 0.8 57 34 2.7 2.2 -0.6 25.9

IOTA 52 44 3.3 52 34 2.5 2.2 -0.7 26.4

IOTA 53 55 0.2 45 34 3.1 2.2 -0.4 26.4

IOTA 54 58 1.9 40 30 2.6 1.9 -0.5 20.7

IOTA 61 50 0.5 49 31 3.0 1.9 -0.3 20.9

IOTA_ 64 45 1.6 53 29 2.6 2.0 -0.5 22.0

NOR 4 36 4.5 59 41 3.5 2.1 -0.1 22.4

NOR 1 41 0.7 59 34 3.0 1.9 -0.1 19.0

ETA 5 47 3.4 50 31 2.3 2.1 -0.7 22.9

ETA 9 60 0.5 39 24 1.7 2.0 -0.9 15.9

ETA 15 54 0.4 45 20 2.1 2.0 -0.3 16.8

ZETA 9 27 3.4 70 38 3.8 2.1 -0.1 23.5

ZETA 10 22 1.8 76 44 4.7 2.0 0.2 22.7

ZETA 11 23 0.0 77 43 4.5 2.0 0.0 23.7

ZETA 20 33 2.5 64 33 3.4 1.9 0.0 18.7

ZETA 19 30 2.7 67 34 3.4 1.9 -0.3 22.2

Table 2.7. Sedimentary parameters and moment statistics derived from samples with a

Type 4 grain size distribution.
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Floc mode Silt mode

Code AQ log AQ n + m K r2 AQ log AQ n + m K r2 Df(grn)

IOTA 1 2.8 1.0 0.02 76.3 0.87 13.9 2.6 0.52 19.9 0.96 11.5

IOTA 5 7.1 2.0 0.12 133.8 0.90 7.4 2.0 0.31 20.5 0.89 8.6

IOTA 8 10.2 2.3 0.15 226.4 0.93 118.5 4.8 1.28 19.9 0.98 10.7

IOTA 10 5.7 1.7 0.11 126.6 0.79 344.7 5.8 0.99 84.0 0.95 8.1

IOTA 16 9.2 2.2 0.19 211.0 0.82 262.6 5.6 0.93 89.5 0.90 6.7

IOTA 18 7.6 2.0 0.14 187.4 0.78 62.3 4.1 0.70 58.9 0.98 7.6

IOTA 19 5.5 1.7 0.15 98.3 0.62 219.9 5.4 0.98 66.8 0.95 8.8

IOTA 20 4.1 1.4 0.08 162.7 0.64 175.2 5.2 1.26 15.7 0.97 10.1

IOTA 24 2.9 1.1 0.06 103.2 0.62 13.1 2.6 0.51 7.4 0.74 8.6

IOTA 25 1.5 0.4 -0.07 55.2 0.75 81.7 4.4 0.88 28.1 0.93 9.9

IOTA 27 4.3 1.5 0.09 183.6 0.52 113.2 4.7 1.34 12.5 0.99 11.1

IOTA 31 8.2 2.1 0.19 275.4 0.59 10.2 2.3 0.35 11.9 0.98 5.2

IOTA 32 2.1 0.8 0.03 70.9 0.39 89.8 4.5 0.89 22.1 0.92 8.8

IOTA 34 1.1 0.1 -0.07 12.3 0.78 61.9 4.1 0.78 20.3 0.79 9.2

IOTA 39 7.0 1.9 0.16 147.6 0.81 213.1 5.4 1.14 25.9 0.98 9.5

IOTA 41 2.1 0.7 0.02 89.4 0.63 17.1 2.8 0.57 12.8 0.88 8.5

IOTA 42 4.0 1.4 0.08 138.8 0.80 22.7 3.1 0.67 13.2 0.87 9.0

IOTA 47 4.3 1.5 0.08 96.9 0.77 19.1 2.9 0.51 23.8 0.95 8.7

IOTA 49 5 - 6 1.7 0.09 142.2 0.91 11.7 2.5 0.51 11.4 0.95 9.4

IOTA 50 1.1 0.1 -0.10 41.4 0.94 14.6 2.7 0.58 9.9 0.93 10.4

IOTA 51 6.3 1.8 0.08 242.4 0.91 133.8 4.9 1.15 14.4 0.93 9.1

IOTA 52 2.0 0.7 -0.04 109.2 0.87 12.2 2.5 0.58 5.3 0.74 9.7

IOTA 53 5.8 1.8 0.08 134.0 0.91 18.5 2.9 0.67 6.9 0.46 10.5

IOTA 54 2.7 1.0 -0.04 105.1 0.98 347.2 5.8 1.22 29.6 0.96 10.3

IOTA 61 6.3 1.8 0.08 101.7 0.81 19.2 3.0 0.58 13.2 0.93 10.8

IOTA 64 5.4 1.7 0.06 152.5 0.74 21.9 3.1 0.81 9.2 0.76 11.2

NOR 4 4.0 1.4 0.06 113.3 0.73 140.3 4.9 0.99 17.7 0.94 9.2

NOR 1 9.6 2.3 0.13 100.5 0.89 12.7 2.5 0.31 20.7 0.906 8.2

ETA 5 2.1 0.7 -0.04 107.1 0.93 82.5 4.4 1.44 10.0 0.85 14.1

ETA 9 1.6 0.5 -0.07 652.6 0.92 536.6 6.3 1.11 57.5 0.78 4.7

ETA 15 2.2 0.8 0.04 311.3 0.33 33.8 3.5 0.49 59.7 0.88 3.5

ZETA 9 6.2 1.8 0.10 27.4 0.77 6.8 1.9 0.45 3.0 0.73 20.0

ZETA 10 17.8 2.9 0.23 86.1 0.94 10.6 2.4 0.34 6.3 0.97 10.9

ZETA 11 14.1 2.6 0.19 92.9 0.89 16.0 2.8 0.46 7.7 0.90 10.9

ZETA 20 7.6 2.0 0.12 66.3 0.73 30.6 3.4 0.51 23.5 0.99 9.7

ZETA 19 12.4 2.5 0.16 142.6 0.94 9.1 2.2 0.48 6.1 0.91 11.0

Table 2.8. Kranck model parameters derived from the fitted floc-component and non-

cohesive silt components of sample with Type 4 grain size distributions.
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Figure 2.30. Back scattered electron-optical (BSEM) micrograph of a deep water Iota (10TA_1)

sample with a Type 4 grain size distribution (field of view — 120 pm). In this example sortable silt

(21%) sits in a matrix of finer silt and clay indicating co-deposition. The black areas visible in the

image are thought to be sample damage (plucking) caused by the preparation process.

Figure 2.31. Back scattered electron-optical (BSEM) micrograph of a deep water Iota (10TA_31)

sample with a Type 4 grain size distribution (field of view — 500 pm). In this example sortable silt

(33%) and some minor sand (2%) sit in a matrix of finer silt and clay indicating co-deposition. The

black areas visible in the image are thought to be sample damage (plucking) caused by the

preparation process.
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Figure 2.32. Example of a Type 4 sample (10TA_1) recovered from a deep water IOTA well

illustrating: (a) an image of the thin section itself, (b) the corresponding grain size distribution, and

(c) a transmitted-light photomicrograph (plane light, x4). The thin section illustrates the

homogeneous, ungraded texture of this sediment which comprises sortable silt (21%) and some

microfossils which float in a clay and fine silt matrix. The scale bar (bottom right) is 1000pm.
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Figure 2.33. Example of a Type 4 sample recovered from a North Sea well illustrating: (a) an image

of the thin section itself, (b) the corresponding grain size distribution, and (c) a transmitted-light

photomicrograph (plane light, x4). The thin section illustrates the homogeneous, ungraded texture

of the sediment with sortable silt (40%) and some minor sand (4.5%) floating in a clay and fine silt

matrix. The presence of burrows prohibits the interpretation of the process responsible for

deposition since the primary fabric is disrupted. The scale bar (bottom right) is 1000pm.
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2.4.5 Type 5 — silt dominated, floc silt mixtures

The Type 5 grain size distribution is characterized by a coarse, silt-rich component and a

minor floc component. Examples of Type 5 grain size distributions are predominantly

drawn from the Jurassic North Sea and Zeta Sea locations; the Chi and the deep water, Iota

Area are also represented. Type 5 grain size distributions represent 11% of the total dataset

used in this study. This sediment type has an average floc-non-cohesive silt intersection

(Df) value of 7.9um, ranging between 2 and 131.tm. Sedimentary statistics are given in

Table 2.9 and the parameters derived from fitting the Kranck model are given in Table

2.10. Grain size distributions of typical Type 5 examples are presented in Figure 2.34.

Combined thin section images, grain size distributions and magnified images (x4) for three

Type 5 examples are given in Figures 2.35 — 37. In Figure 2.35a a —2mm feint bedding

(sensu Macquaker and Adams, 2003) can be seen from the slight variations in colour.

However the thin section image (Fig. 2.35c) illustrates a homogeneous unstructured

texture. In this example the floc-limit (i.e. the intercept between the floc and single grain

settled populations) is at 3um, suggesting that the hydrodynamic and chemical conditions

resulted in material >31.un largely behaving as single grains and thus non-cohesively

possibly relating to the low salinity conditions of the proto-lacustrine system. In Figure

1.36a the thin section image illustrates the homogeneous character of the silt-rich

component; clay-rich material is present as a central feature which apparently intrudes into

the siltier material. This clay-rich feature may be a flame structure indicative of soft

sediment deformation, probably relating to water escape (J. Macquaker, pers. comm.

2004). It is unknown whether or not the grain size distribution was derived from a sample

volume that was composed of only the homogeneous silt-component or both this and the

clay-rich material visible in the thin section image (Fig. 2.36c). The magnified image is of

the silt-rich component and illustrates its homogeneous, unstructured texture. This sample

contains 62% sortable silt (Table 2.9) which can be seen to form a framework, with the

darker, clay-rich areas having a patchy distribution (Fig. 2.36). On the scale of this

magnified image this sample would be described as framework supported. The thin section
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image (Fig. 2.37a) from the third example has a mottled character, with the darker, finer

grained lenses corresponding to infilled burrows. The magnified image (Fig. 2.37c)

illustrates the patchy nature the coarse-silt rich and clay-rich components which comprise

this sediment (Fig. 2.37b). In Figure 2.38 images from a single sample at three scales of

observation are combined; the thin section image clearly shows the well-bedded character

of this sample. The detail of individual lamina is revealed in the magnified image, each

individual lamina having a sharp base and a graded top. The BSEM image was taken from

a silt-rich portion of a single lamina. Lamination formed by the presence of thin beds was

commonly recorded for Type 5 samples; an example is shown in Figure 2.39, the

lamination corresponds to alteration of coarse silt — and clay — dominated deposition; a

discontinuity surface also presents evidence of erosion by bottom currents. Figure 2.40

exhibits a whole range of textures recorded in Type 5 examples, including lamination,

bioturbation and homogeneous textures.

To summarise, the observation's made on Type 5 samples of this dataset has revealed that

these sediments are dominated by 'sortable silt' size material and exhibit four textures:

1) Homogenous, unstructured, coarse silt-rich sediment with minor clay size material

(Figure's 2.35c, 2.36c).

2) Bedding, described as lamination, at various scales (Fig. 2.35a —2rnm; Fig. 2.38b

—0.5mm) indicative of alternating conditions of clay-suppressed and enhanced clay

deposition.

3) Possible flame structures. Clay-rich intrusive material penetrating into a coarse silt

dominated matrix (Fig 2.36a).

4) Bioturbation. Clay-filled burrows formed within a coarse silt dominated matrix

(Fig. 1.37).

Each of these textures constrain the interpretation of the depositional processes responsible

for the formation of these deposits; such as the co-deposition of coarse silt and clay sized

material (1), alternating conditions and / or depositional events (2), and post depositional

processes such as soft sediment deformation (3) and bioturbation (4).
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Figure 2.34. Disaggregated grain size spectra of Type 5 GSD Types on log-log weight percent —

grain size (pm) plots; (a) Jurassic North Sea example — 13% clay, 5.7pm mean grain size (mgs),

modeled 'silt' parameters: AQ 3.5, (m+n) 0.55, K 8.0 (Figure 2.38 for thin-section of this example).

(b) Jurassic North Sea example — 22% clay, 5.9pm nngs, modeled 'silt' parameters: AQ 3.5, (m+n)

0.48, K 12.0. (c) Iota Area example — 27% clay, 8.9pm mgs, modeled 'silt' parameters: AQ 708.7,

(m+n) 1.59, K 11.8. (d) Zeta Area example — 28% clay, 4.5pm mgs, Q 65.8, (m+n) 0.558, K 24.1.
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Whole distribution stats

Code % Clay % Sand % Silt % >10um Mean Grain Size (gm) SD Skewness SS mean (um)

NOR 2 36 1.3 63 49 5.3 1.9 0.7 19.0

NOR_3 16 4.3 80 72 9.6 2.0 1.3 25.0

NOR 5 18 4.7 77 71 10.1 2.0 1.4 25.9

NOR_6 38 4.5 57 48 3.9 2.1 0.2 20.4

NOR 7 27 0.9 72 44 4.1 2.0 0.4 18.7

NOR 8 22 1.7 76 55 5.9 2.0 0.6 21.2

NOR 12 28 3.2 69 42 4.1 1.9 0.2 19.0

NOR 26 13 3.0 84 60 5.7 2.3 0.7 24.6

NOR 28 19 0.4 80 57 6.7 1.6 1.0 18.9

ZETA 12 22 0.1 78 65 6.9 2.0 1.2 19.7

ZETA 13 19 0.0 81 65 7.8 2.0 1.3 21.1

ZETA 15 22 0.2 78 61 6.9 2.0 1.3 19.7

ZETA 6 29 0.0 71 48 4.6 2.0 0.6 18.1

ZETA 16 26 1.9 72 54 5.5 2.0 0.8 19.0

CHI 8 34 0.8 65 36 3.5 2.1 0.0 21.9

CHI 9 22 4.6 74 62 7.8 2.2 0.9 27.6

ETA 21 25 0.0 75 56 5.9 2.6 0.7 32.7

IOTA 75 27 9.8 64 64 8.8 2.4 1.3 31.4

Table 2.9. Sedimentary parameters and moment statistics derived from samples with a

Type 5 grain size distribution.

Floc mode Silt mode

Code JQ log 4Q n + m K r2 AQ log AQ n + m K r2 pf (11m)

NOR 2 8.5 2.1 0.19 6.9 0.92 472.4 6.2 1.05 30.8 0.98 11.6

NOR 3 10.3 2.3 0.24 144.9 0.74 19477.2 9.9 2.06 32.0 0.98 103

NOR 5 3.2 1.2 0.11 40.9 0.74 2613.0 7.9 1.61 22.3 0.99 9.9

NOR 6 7.3 2.0 0.12 96.9 0.79 35.7 3.6 0.53 15.5 0.86 7.6

NOR 7 6.0 1.8 0.12 26.7 0.67 66.5 4.2 0.62 21.7 0.98 8.8

NOR 8 5.8 1.8 0.14 6.6 0.86 32.6 3.5 0.48 12.1 0.99 8.3

NOR 12 16.1 2.8 0.22 68.7 0.95 28.8 3.4 0.44 22.4 0.99 9.4

NOR 26 12.9 2.6 0.24 128.4 0.82 47.0 3.9 0.64 8.7 0.89 7.8

NOR 28 50.4 3.9 0.44 92.8 0.92 213.5 5.4 0.82 24.8 0.98 8.0

ZETA 12 3.1 1.1 0.12 614.6 0.33 55.9 4.0 0.55 13.4 0.96 2.4

ZETA 13 5.2 1.7 0.16 763.5 0.77 90.6 4.5 0.65 16.7 0.94 2.9

ZETA 15 3.9 1.4 0.15 79.1 0.59 961.8 6.9 1.13 33.7 1.00 6.2

ZETA 6 10.1 2.3 0.16 1721.5 0.79 65.8 4.2 0.56 24.1 0.98 2.5

ZETA 16 3.1 1.1 0.07 132.7 0.52 353.0 5.9 0.92 32.7 0.69 5.1

CHI 8 6.0 1.8 0.11 38.4 0.85 25.3 3.2 0.63 11.0 0.91 14.0

CHI 9 5.6 1.7 0.15 62.9 0.80 143.8 5.0 0.97 10.5 0.94 9.9

ETA 21 - - - - 4630.8 8.4 2.40 14.3 0.98

IOTA 75 1.3 0.2 0.00 88.0 0.40 342.9 5.8 1.35 10.2 0.95 10.6

Table 2.10. Kranck model parameters derived from the fitted floc-component and non-

cohesive silt components of Type 5 sample grain size distributions. [Note low Df values

for the Zeta Area Samples].
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Figure 2.35. Example of a Type 5 sample recovered from a Zeta Area well illustrating: (a) an image

of the thin section itself, (b) the corresponding grain size distribution, and (c) a transmitted-light

photomicrograph (plane light, x4) taken from a thin section of a sample (ZETA_13) with a Type 5

grain size distribution; the patchy appearance relates to silt-rich and silt-poor areas. The scale bar

(bottom right) is 1000pm.
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Possible clay-rich flame structure, slurried appearance of the fine sandstone suggests soft sediment deformation

Figure 2.36. Example of a Type 5 sample recovered from a Chi Area well illustrating (a) an image

of the thin section itself (b) the corresponding grain size distribution and (c) a transmitted-light

photomicrograph (plane light, x4) taken from a thin section of a sample (CHI_9) with a Type 5 grain

size distribution; the light appearance of the thin section reflects the silt-rich nature of this sample

(21% clay). The scale bar (top right) is 1000pm.
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]Figure 2.37. Example of a Type 5 sample recovered from a North Sea well illustrating: (a) an

image of the thin section itself, (b) the corresponding grain size distribution, and (c) a transmitted-

light photomicrograph (plane light, x4) taken from a thin section of a sample (NOR_5) with a Type 5

grain size distribution; the mottled appearance of the thin section relates to the bioturbated nature

of this sample. The scale bar (top right) is 1000pm.
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1 0. 0 mm
Figure 2.38. Illustrating 3 scales of

observation for NOR-26 (Rannoch

Formation, Jurassic) with a Type 5

grain size distribution. (a) Thin

section image: lighter, silt rich-lamina

are clearly visible. (b) Transmitted-

light photomicrograph (plane light,

x10) showing alternation of quartz-

rich layers with darker clay and

organic-rich layers (TOC 2.83). The

layers have sharp bases and graded

tops. (c) BSEM micrograph of NOR-

26 (Rannoch Formation, Jurassic

North Sea) illustrating arrangement

of grains. (grain size spectra for this

sample in Figure 2.34a).
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Figure 2.39. Transmitted-light photomicrograph (plane light) of Zeta_12 exhibiting low-Etale

lamination; the lamina have sharp bottom and top contacts indicating the actions of bottom currents

(cf. Schieber, 1999). The field of view is —2.7mm.

Figure 2.40. Transmitted-light photomicrograph (plane light, x10) of Zeta_20. This sample

represents a fine-grained example of a Type 5 grain size distribution with a clay content of 33%

and a mean grain size of 3.35pm. In the lower half of the photomicrograph this sample largely lacks

lamina, towards the top indistinct laminae and an erosion surface picked out by a silt-rich layer are

present. A number of flattened burrows are also present. The field of view is —2.7mm.
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2.4.6 Type 6— sandy mudstones and siltstones

Those samples with a sand content >10% were classified as sand-rich mudstones and

siltstones; although these samples were assigned into a single GSD type, three sub-types

were recognized, each of which are described below.

2.4.6.1 Type 6afloc dominated sandy mudstones.

The first sand-rich sample type is only represented by two samples; these samples have a

grain size distribution characteristic of deposition by flocculated material. One of the

examples is from the Zeta Area and the other is from the Jurassic North Sea (Figure 2.41).

Sediment characterized by a mixture of flocculated clay with a significant sand component

is non-intuitive and requires explanation. The Zeta Area example has a flocculated grain

size spectra similar to a Type 1 distribution in what is essentially a sandstone— it has a

mean grain size of 2.4Rm (for the 0 - 63pm component) and a clay content of only 15%

(62% of the distribution was sand). From the thin section image it can be seen that there

are small, discrete darker, clay-rich patches in amongst what is a homogeneous fine sand

matrix; this structure indicates that clay flocs were deposited simultaneously with the sand

particles.

The second example is from the Jurassic North Sea is different to the previous example; its

grain size spectra is similar to that of a Type 2 sediment, characteristic of deposition of

flocculated material from high suspended sediment concentration. The thin section is

darker than Zeta_26 (Fig. 2.41a, b) reflecting the higher clay content relative to the

previous example; this sample has a mottled texture indicative of bioturbation. In this case

the sand component may have been transported within a clay-rich laminar flow (cf. Baas

and Best, 2002) and thus both components would have been deposited simultaneously

initially (see figure 2.41). This sample is presented in Figure 2.42 at three scales of

observation.
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Figure 2.41. Paired thin section images and grain size distributions for Type 6 samples with a

mixed floc-sand grain size distribution (a) Thin section image of ZETA_26 (which is essentially a

sandstone) and (b) disaggregated grain size spectra of ZETA_26 on log-log weight percent — grain

size (pm) plots— 15% clay, 62% sand, 2.4pm mean grain size (mgs), modeled 'floc' parameters: AQ

4.42, (m+n) 0.3528, K 289.88 (c) Thin section image of NOR_24; (d) disaggregated grain size

spectra of N0R_24 on log-log Weight percent — grain size (pm) plots — 28% clay, 13% sand, 3.4pm

mgs, modeled 'floc' parameters: AC? 3.97, (m+n) 0.053, K 9.49 (cf. Figure 2.42 for further images).
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Whole distribution stats

Code GSD type % Clay	 % Sand	 % Silt	 %>10um Mean Grain Size (pm) SD Skewness SS mean (pm)

ZETA 26 6 15 63.0 22 76 2.4 1.8 -0.6 22.2

NOR 24 6 29 13.5 58 46 3.4 1.9 -0.1 19.5

NOR 9 6b 21 16.6 62 61 5.4 2.0 0.5 21.5

NOR 11 6b 13 33.8 54 73 6.6 2.1 0.5 27.7

NOR 21 6b 31 16.6 53 56 3.9 2.4 0.0 25.0

NOR 22 6b 22 23.8 54 52 3.7 1.9 -0.2 22.8

NOR 23 6b 35 11.3 53 50 3.9 2.3 -0.1 24.8

NOR 25 6b 31 22.1 47 54 3.1 2.2 -0.4 25.8

NOR 27 6b 18 25.9 56 70 7.6 2.0 1.0 22.9

NOR 29 6b 20 22.3 58 70 8.4 2.3 1.1 29.6

IOTA 55 6b 34 15.2 51 54 3.7 2.3 0.1 22.3

IOTA 57 6b 31 10.8 59 30 2.8 1.9 -0.3 19.5

IOTA 65 6b 44 13.7 42 20 1.9 1.8 -0.9 25.3

IOTA 72 6b 32 15.6 52 55 3.5 2.3 -0.4 26.4

ZETA 22 6b 24 11.9 64 58 5.2 2.3 0.3 28.1

CHI 11 ? - 6b 47 ? 53 23 2.3 2.0 -0.2 18.8

IOTA 11 6c 32 18.8 49 59 5.5 2.5 0.4 30.7

CHI 5 6c 16 19.2 65 78 13.2 2.1 1.6 32.8

CHI 7 6c 25 12.2 63 64 6.8 2.4 1.0 27.8

CHI 12 6c 31 10.1 59 52 4.8 2.5 0.4 28.5

CHI 13 6c 26 10.1 64 58 6.6 2.3 0.6 28.7

ETA 22 6c 28 10.0 62 57 5.4 2.4 0.6 26.4

ETA 23 6c 29 26.3 45 62 3.4 2.7 -0.2 30.0

ZETA 24 6c 12 33.2 55 72 6.4 2.0 0.5 23.9

Table 2.11. Sedimentary parameters and moment statistics derived from samples with a

Type 6 grain size distribution.
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Floc mode Silt mode

Code GSD type AQ log AQ n + m K r2 tIQ log zIQ n + m K r2 Df(gm)

ZETA 26 6 58.1 4.1 0.31 436.0 0.88 - - - - -

NOR 24 6 3.7 1.3 0.03 10.6 0.93 - - - - -

NOR 9 6b 6.3 1.8 0.11 52.6 0.59 92.9 4.5 0.77 15.4 0.95 9.5

NOR 11 6b 16.4 2.8 0.23 107.2 0.80 43.3 3.8 0.69 7.1 0.89 10.9

NOR 21 6b 2.7 1.0 0.01 391.6 0.77 39.8 3.7 0.67 9.7 0.90 5.3

NOR 22 6b 38.6 3.7 0.30 204.3 0.74 108.7 4.7 0.97 12.6 0.86 10.0

NOR 23 6b 3.1 1.1 0.03 109.8 0.25 222.6 5.4 1.14 16.1 0.85 9.5

NOR 25 6b 2.0 0.7 -0.04 90.2 0.76 115.3 4.7 1.14 11.9 0.79 11.2

NOR 27 6b 9.4 2.2 0.24 24.0 0.81 52.9 4.0 0.63 11.1 0.95 9.2

NOR 29 6b 5.3 1.7 0.14 175.2 0.75 239.7 5.5 1.23 9.6 0.92 8.9

IOTA 55 6b 0.7 -0.3 -0.11 26.7 0.78 66.2 4.2 0.74 15.8 0.97 7.7

IOTA 57 6b 8.7 2.2 0.11 131.9 0.79 8.0 2.1 0.25 16.5 0.97 8.0

IOTA 65 6b 4.6 1.5 0.03 219.2 0.95 33.0 3.5 1.02 12.8 0.68 10.6

IOTA 72 6b 2.5 0.9 0.03 293.0 0.95 70.5 4.3 0.99 11.5 0.95 7.4

ZETA 22 6b 4.0 1.4 0.06 81.5 0.61 322.7 5.8 1.33 12.1 0.95 11.7

CHI 11 ? - 6b 2.1 0.8 -0.03 17.4 0.93 - - - - -

IOTA 11 6c 2.5 0.9 0.04 331.4 0.79 185.6 5.2 1.26 9.7 0.93 6.7

CHI 5 6c 27.3 3.3 0.42 282.2 0.74 69.0 4.2 0.86 4.9 0.97 6.9

CHI 7 6c 27.2 3.3 0.43 107.0 0.86 27.8 3.3 0.58 5.9 0.62 8.3

CHI 12 6c 2.5 0.9 0.06 517.9 0.75 15.5 2.7 0.55 3.8 0.96 4.7

CHI 13 6c 6.7 1.9 0.16 111.2 0.55 59.9 4.1 0.86 7.1 0.96 9.8

ETA 22 6c 2.0 0.7 0.04 18.8 0.85 60.7 4.1 0.89 7.8 0.98 11.9

ETA 23 6c - - - - - 51.5 3.9 0.99 6.1 0.94

ZETA 24 6c 7.5 2.0 0.15 10.6 0.75 36.0 3.6 0.74 6.4 0.83 21.7

Table 2.12. Kranck model parameters derived from the fitted floc-component and non-

cohesive silt components of samples with Type 6 grain size distributions.
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Figure 2.42. Illustration of NOR-24 (Drake Formation, Jurassic North Sea) a Type 6a sample with a

mixed floc-sand grain size distribution: (a) the thin section scale exhibiting a mottled texture

characteristic of bioturbation, (b) a magnified (x4) image, and (c) a BSEM micrograph illustrating a

chaotic arrangement of grains with a broad range of sizes consistent with deposition from high

concentration, as evidenced by the grain size distribution (d).
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2.4.6.2 Type 6bfloe — silt — sand mixtures

The second sand-rich, fine-grained sediment type identified in this study has sub-63pm

grain size distributions similar in form to those of Types 3, 4 and 5 (cf. sections 2.4.3 —

2.4.5). Examples of this type are predominantly drawn from the North Sea Jurassic and

deep water Iota Area, with a single example from the Zeta Area. Representative grain size

distributions for Type 6b sediments are presented in Figure 2.43. These grain size types

represent —8% of the total grain size distribution dataset used in this study. Sedimentary

statistics are given in Table 2.11 and the parameters derived from fitting the Kranck model

are given in Table 2.12. The clay, silt and sand components of each of these grain size

distribution types may have been either deposited simultaneously or separately, as discrete

depositional events. For Type 6b samples the Df value averages 10.1 pm, ranging between

5 and 21pm.

Figure 2.44 shows images and grain size data from a Type 6b sample where the sand

component has been deposited simultaneously with the sub-63 pm component. The

evidence indicative of co-deposition comes from the thin section where sand grains can be

seen to be 'floating' in a clay and fine silt matrix. In contrast, Figure 2.45 shows distinctive

sand and coarse silt rich layers; the contact shown in Figure 2.45c between a silt and clay

layer sharply overlain by a coarse silt — fine sand layer is actually the base of an erosive

feature visible in the thin section. In this example it is likely that the clay and coarse silt

components were deposited by an event distinct from that which deposited the coarse silt —

fine sand material which comprises the erosive feature.
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Figure 2.43. Disaggregated grain size spectra of Type 6 samples composed of floc-silt-sand

components on log-log weight percent — grain size (pm) plots; (a) Iota Area example — 44% clay,

13% sand, 1.91pm mean grain size (mgs), modeled 'silt' parameters: AC) 3.5, (m+n) 1.01, K 12.8.

(b) Iota Area example— 32% clay, 15% sand, 3.5pm mgs, modeled 'silt' parameters: AC) 4.3, (m+n)

0.99, K 11.5. (c) Jurassic North Sea example — 23% clay, 23% sand 3.7pm mgs, modeled 'silt'

parameters: AQ 108.7, (m+n) 0.96, K 12.6 [note poor fit]. (d) Jurassic North Sea example — 30%

clay, 16% sand 3.9pm mgs, AC? 39.8, (m+n) 0.67, K 9.7.
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Figure 2.44. Example of a Type 6b sample recovered from a deep water IOTA well illustrating: (a)

an image of the thin section itself, (b) the corresponding grain size distribution, and (c) a

transmitted-light photomicrograph (plane light, x4) taken from a thin section of a sample (10TA_65)

with a Type 6 grain size distribution composed of floc-silt-sand components; isolated, poorly-sorted

sand grains float in a matrix of clay and fine silt. The scale bar (top left) is 1000pm.
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Figure 2.45. Example of a Type 6b sample recovered from a North Sea well illustrating: (a) an

image of the thin section itself illustrating the presence of at least one coarser grained erosive

feature, (b) the corresponding grain size distribution [note poor fit for the silt component], and (c) a

transmitted-light photomicrograph (plane light, x4) taken from a thin section of a sample (NOR_22)

with a Type 6 grain size distribution composed of floc-silt-sand components; the erosive feature

visible in (a) can be seen in the base of the section. The scale bar (bottom right) is 1000pm.
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2.4.6.3 Type 6c — clay-silt-sand mixture: continuous distribution truncated by sieving

The third sand-rich fine-grained sediment type recognized here is characterized by

seemingly continuous grain size distributions that have been truncated by the sieving

procedure (at 63p,m) carried out prior to Sedigraph analysis; examples of these grain size

distributions are shown in Figure 2.46. Samples with Type 6c grain size distributions are

drawn predominantly from the Chi Area, with some samples from the Iota, Eta and the

Zeta Areas. Type 6c grain size distributions represent —5% of the total dataset used in this

study. Sedimentary statistics are given in Table 2.11 and the parameters derived from

fitting the Kranck model are given in Table 2.12. For these Type 6 samples the % value

averages 8pm, ranging between 4 and 11 pm.

Analysis of the thin sections corresponding to Type 6c grain size distribution samples

showed that a range of textures were associated with this Type 6 sub-type. Two fabrics

characterise the group: homogeneous unstructured textures; and heterogeneous,

combinations of various sedimentary structures. An example of a homogenous Type 6c

sample is given in Figure 2.47, images at three scales of observation (mm to pm) along

with the truncated grain size distribution (Fig. 2.47d) are illustrated. In the thin section

image some feint lamination may be present, corresponding to the slight variation in

colour. It is clear from the magnified petrographic (x4) and the BSEM image that at these

scales this sample lacks any clear structure and the sand grains have clearly been deposited

at the same time as the silt and clay flocs; analysis of these images indicates that this

sample is likely to have been deposited rapidly (cf. O'Brien and Slatt, 1990). Type 6c

samples with homogeneous textures are believed to represent high concentration density

flows where the sand component is 'carried' in a matrix of silt and clay. The prominent silt

peak associated with the apparently continuous distribution seen in Figure 2.47d suggests

that the sortable silt and sand components were hydrodynamically sorted, implying that

turbulence within in the depositing flow was sufficient to allow a degree of sorting.

The second texture associated with Type 6c sediments is illustrated in Figure 2.48 along

with the corresponding grain size. In this case, because of the highly heterogeneous nature
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of the thin section image, analysis of the grain size distribution is complicated; the

distribution may relate to a single bed and thus a single event or may represent a mixture of

a variety of the beds, which could possibly account for the high scatter seen in the clay size

range (Fig. 2.46a, 2.48b). A number of sedimentary structures are visible in the thin section

image including lamination, cross-lamination, coarsening- and fining-up sequences. The

thin section bears similarities to the Sandy Mudstone facies association of Schieber (1999),

interpreted to represent deposition in a nearshore deltaic environment. There are also

similarities with the Moenkopi Formation (Lower Triassic) investigated by O'Brien and

Slatt (1990) which was also interpreted to represent deposition in fluvially and tidally

influenced shallow marine setting.

Figure 2.46. Disaggregated grain size spectra of Type 6c GSD Types on log-log weight percent —

grain size (pm) plots; (a) Chi Area example — 15% clay, 19% sand, 13.2pm mean grain size (mgs),

modeled 'silt' parameters: AQ 69.0, (m+n) 0.86, K 4.9 [note poor fit for the floc component]. (b) Eta

Area example — 28% clay, 10% sand 5.4pm mgs, modeled 'silt' parameters: AQ 60.7, (rn+n) 0.89,

K 7.7.
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Figure 2.47. Example of a Type 6 sample recovered from a deep water Iota well illustrating: (a) an

image of the thin section itself, (b) a transmitted-light photomicrograph (plane light, x4) taken from

the thin section illustrating the unstructured mix of floc, silt and sand components, the scale bar

(top left) is 1000pm, (c) a BSEM image exhibiting a similar texture to that seen in the magnified

image, and (d) the corresponding grain size distribution.

Overall, in contrast to Types 1 — 4 the examples illustrated for Type 6 grain size

distributions represent a highly heterogeneous grouping despite the further sub-division

into the three sub-groupings. Analysis of the grain size distributions and petrographic thin

sections has revealed samples relating to a whole spectrum of sedimentary processes

emphasizing the non-uniqueness of these grain size types in terms of sedimentary

environments highlighting the limitation of using grain size analysis alone in making

process-based sedimentological interpretations.
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Figure 2.48. Integrated image of: (a) a thin section of a Chi Area Type 6c sample illustrating a

variety of sedimentary structures interpreted as representing deposition in marine nearshore

environment (see text), (b) the corresponding grain size distribution [note poor data quality], and (c)

a magnified (x4) image of a coarsening-up sequence. The scale bar (bottom right) is 1000pm.
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2.4.7 Comparison of GSD Types

In this section a series of figures are used to illustrate key distinctions between the grain

size distribution types established in Sections 2.4.1 — 2.4.6 in terms of percentage clay-

silt—sortable silt—sand, moment statistics and Kranck model parameters. The form of the

grain size spectra was the main characteristic upon which the 'Types' were based.

Representative grain size distributions are shown in Figure 2.49. There is clearly a

continuum between these distributions and the progression from very fine-grained, entirely

flocculated sedimentary deposits to coarse grained floc — non-cohesive silt — sand

mixtures.

Figure 2.50 shows magnified thin section and BSEM images characteristic of grain size

Types 1 to 5. Type 6 was omitted because of its heterogeneous nature. Figure 2.50 simply

reflects floc — non-cohesive silt mixtures. Differences in the magnified thin section images

of Types 1 — 4 are subtle and would possibly not be emphasized during a routine

petrographic study. Despite the difference in form of the grain size distribution

characteristic for these sediments (Figure 2.49) they appear largely homogenous at this

scale. There is an obvious difference between the Type 4 and Type 5 thin section images.

In contrast to the thin section images, the BSEM images do clearly illustrate a progressive

coarsening from Type 1 to Type 5. This indicates that grain size analysis more closely

corresponds to BSEM images; possibly due to the greater proximity in terms of scale

between these two methods. The range of the percentage clay—silt—sortable silt—sand for

each of the grain size types is described by box-plots in Figure 2.51. Types 1 — 4 are

essentially indistinguishable based solely on these parameters. Types 5 and 6 clearly

differentiate both from each other, and from Types 1 — 4 based on the percentage silt and

sand parameters (Fig. 2.51b, d).
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Figure 2.49. Exemplar grain size distributions for each of the six grain size types proposed in this

study along with pie-charts describing the distribution of the grain size types as a function of

location.
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Figure 2.50 (previous page). Paired magnified thin section (x4, PPL) and BSEM images for Type 1

(a, b), Type 2 (c, d), Type 3 (e, f), Type 4 (g, h) and Type 5 (i, j) Note. scale change for the Type 5

BSEM image.

The % sortable silt ( cYo>101,tm) shows the greatest correspondence with the grain size types

proposed (Fig. 2.51c). This observation is useful as the sortable silt parameter has been

successful in inferring palaeocurrent strength of depositing flows in deep sea sediments

(e.g. McCave et al., 1995). However, caution is required if sediment concentrations were

high as the —10p.m non-cohesive — cohesive boundary is not rigid but dependent upon

hydrodynamic and chemical conditions. For example, if material up to 15iim is

incorporated into flocs, then this component will not be hydrodynamically sorted and will

therefore not relate to the current strength but would be included with the 'sortable silt'

component. A potential way round this would be to use the Df value, derived from fitting

the floc and non-cohesive silt components, rather than lOpm, as the boundary from which

to calculate the 'sortable silt' percentage and mean size, although further studies would be

required to test this hypothesis.

The range of the moment statistic parameters for each of the grain size types is described

by box-plots in Figure 2.52, whilst moment statistic cross-plots for each of the grain size

types are given in Figs 2.53 and 2.54. From the box plots it can be seen that the mean grain

size, standard deviation and skewness value generally increase from Type 1 to Type 6. The

standard deviation corresponds most closely with the grain size types proposed and relates

to the increasing non-cohesive silt component which decreases the degree of sorting (cf.

Section 2.2.2 - 4; Stevens, et al., 1996). Again, it is clear from the box plots that in terms

of the moment statistics there is a significant jump between Type 4 and Type 5 particularly

in terms of the mean grain size and skewness value. The moment statistic cross plots

illustrate that if these parameters were used alone then it would be very difficult to

differentiate Types 1 through 4. If used in isolation, the end members (i.e. Types 1 and 5/6)

would be differentiated but further resolution of the dataset would not be possible.
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Figure 2.51. Boxplots for the grain size measures for the six mudstone grain size distribution Types

proposed in this study showing: (a) clay content (weight `)/0.), (b) silt content (weight %.), (c)

sortable silt content (weight °/0.), and (d) sand content (weight %.).
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Figure 2.52. Boxplots for the moment statistics for the six mudstone GSD types proposed in this

study showing: (a) mean grain size, (b) standard deviation, and (c) skewness.

The range of the derived Kranck model parameters for the floc components for each of the

GSD types are shown in Figure 2.55. There is a high degree of overlap between the grain

size types, with the exception of the Type 2 K value which has a much tighter distribution

relative to the other grain size types (discussed in Section 2.4.2). Type six GSD's have a

particularly wide range of Kranck parameter values for the floc component, reflecting the

heterogeneous nature of this grouping (Section 2.4.6).
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study.

Figure 2.54. Mean grain size (pm) versus skewness for the 6 GSD types identified in this study.
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flocculated components of the grain size distribution for each respective ype: (a) In Delta Q, (b)

m+n, and (c) K.

An explanation of the Kranck model terms is given briefly below: 4Q is the concentration

at a reference settling velocity. The variable in is hypothesized to be the slope of the source

suspension. Material which plots as a straight line has been deposited in flocculated form

from an unsorted source suspension; the exponent n has integer values of 0 for this

proportion of the curve (Kranck et al., 1996a; Milligan and Loring, 1997). For the portion

of the curve that corresponds to 'Stokes' settled material, the integer /1 has a value of one,

and values of >1 for the coarsest material (these terms are combined in the regression as m

is effectively constant for a particular setting). The K parameter increases as the maximum

and mean diameter of the suspension decreases (i.e. fines) due to settling, describing the

maturity of the depositional process.
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In terms of the K parameter there is a decrease both in terms of the mean and range of the

K value from Type 1 to Type 5, if Type 2 and Type 6 are excluded. This is thought to

represent the increasing turbulence and concentration from Type 1 to Type 5/6 involved in

the formation of these deposits. A relationship between K and sediment concentration was

inferred by Kranck and Milligan (1985). Sediment concentration and depositional energy

(i.e. velocity gradient and turbulence) are interrelated and would vary as a function of

depositional process and distance from point source. These factors are interrelated as

turbulence may be dampened by sediment concentration, particularly clay (cf. Baas and

Best, 2002); essentially higher concentrations encourage floc growth while higher

turbulence hinders and reduces floc growth producing a subtle interplay between these

factors. The decrease of the K parameter from Type 3 to Type 6 is also seen for the non-

cohesive silt component (Fig. 2.56), and again is thought to relate to the increasing

'energy' involved in the deposition of Type 3 to Type 6 GSD's, albeit with a degree of

overlap between the GSD types.

In conclusion, based purely upon the quantitative values of the derived Kranck model

parameters for both the floc and non-cohesive silt components the grain size types, would

be difficult to distinguish. In a similar fashion to the percentage parameters and the

moment statistics the end members would be segregated on the basis of the ICranck model

parameters, but some of the subtleties of the classification are likely to be missed. Implicit

in fitting the model is the visualization of the grain size distribution which provides a

clearer basis upon which to differentiate the grain size characteristics of mudstone samples.
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grain settled components of the grain size distribution for each respective Type: (a) Delta Q, (b)

m+n, and (c) K.

The mean and variation of the floc — non-cohesive silt intersection (D f) for GSD types 3 —

6 is illustrated by the box plots in Figure 2.57. There is a high degree of overlap between

the samples although there is subtle decrease in terms of the mean Df from Type 3 to Type

5. The Df value was not found to correlate well with any of the parameterization described

above. The Df value was also plotted as a function of location, no trends were apparent, but

the mean values were all close to 1Clum (cf. Section 2.1.1, Fig. 2.58). The largest number

of samples were retrieved from the Iota Area, in order to isolate any potential regional

effects, Df was plotted as a function of grain size type for a Iota subset (Fig 2.59),

illustrating that Type 3 samples have a very large spread and that there is a decrease in Df

from Type 3 to Type 6 (Fig. 2.59). The Df parameter relates to the boundary at which

particle behaviour switches between cohesive and non-cohesive and will therefore be a

complex function of many parameters, possibly accounting for the wide range of values

observed for grain size types 3 — 6.
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approximate boundary between cohesive and non-cohesive behaviour.
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Figure 2.58. Floc — silt intersection [Df] values (pm) for 5 locations represented in this study. Note

the mean value is close to 10pm, in agreement with McCave et aL,'s (1995) suggestion that this

value represents an approximate boundary between cohesive and non-cohesive behaviour.
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Figure 2.59. Floc — silt intersection [D f] values (pm) for Iota Area samples. For Types 3 and 4 the

mean value is close to 1 Opm, but there is a high variation. For Type 6 the mean floc-silt size is

lower suggesting flocs were of smaller size. Refer to text for discussion.

2.5. Discussion

The consistency in the form of the grain size distribution reported for both the samples

used in this study and those reported from the literature (Section 2.1.3) is remarkable and

suggests that simplifying schemes for grouping 'global' grain size 'types' for mudstones is

appropriate. The classification presented in the preceding sections provides a framework

within which to place grain size analyses of mudstones. As for many geological

classification systems (e.g. the Wentworth grain size scale) it places a somewhat artificial

structure upon what is likely to be a natural continuum. The continuum is essentially a

mixing of the cohesive and non-cohesive components of a sediment population which

reflects depositional, chemical and sedimentary source factors. It is felt that this

classification aids the process-based interpretation of mudstones and would enhance the

understanding of depositional systems within a case study context. Furthermore,

classifying mudstones into groupings based on grain size will aid the analysis of their

corresponding physical properties, as grain size along with porosity (compaction state) is

the principle control of important physical properties such as permeability (e.g. Yang and

Aplin, 1998).

Previous studies which rely upon some quantitative measure of the grain size distribution

such as Steven et al., 's (1996) moments statistic based study of the fine-grained sediments
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SILT sAND

Code

A-I
All

RI
B-11
B-11I
B-1V

CI
C-H
C-III
C-IV
C-V
C VI•

of the Baltic Basin did reveal large general trends and identified some of the processes

active in the various regions studied. However, that work was largely qualitative in nature

and detailed interpretation of individual samples were not possible with the technique used.

Flemming (2000) proposed a classification for gravel-free mudstones on the basis of

ternary plots of sand-silt (<62.5 - 21.1m)-clay(<2[Im) (Figure 2.60).

CLAY
	

CLAY

Mud content (%) Textural class
<5	 Sand
5-25	 Slightly muddy sand
25 50	 Muddy sand

Mud content (%) Textural class 

	

50-75	 Sandy mud

	

75-95	 Slightly sandy mud
Mud

Code
D-1

D-B1
D-IV
D-V
D-VI

B-HI
13-TV
E-V
13-VI

1 ex rural class
Sand
Slightly silty sand
slightly clayey sand

Very silty sand
Silty sand
Clayey sand
Very clayey sand

Extremely silty sandy mud
Very silty sandy mud
Silty sandy mud
Clayey sandy mud
Very clayey sandy mud
Extremely clayey sandy mud

Textural class
Extremely silty slightly sandy mud
Very silty slightly sandy mud
Silty slightly sandy mud
Clayey slightly sandy mud
Very clayey slightly sandy mud
Extremley clayey slightly sandy mud

Silt
Slightly clayey silt
Clayey silt
Silty clay
Slightly silty clay
Clay

Figure 2.60. Ternary diagrams, percentage boundary table and letter-number code table of the

'hydrodynamic', sand/silt/ratio based classification scheme of Flemming (2000).

Ternary plot based classification have been proposed for various sediment types since the

1950's (Flemming 2000 and refs. therein). Essentially there are an almost infinite number

of ways of dividing up a ternary plot and one method is unlikely to have any more value in

a process sense than any other. Despite the antiquity of the method Flemming's (2000) aim

of harmonizing the various classification schemes proposed is valid. Flemming (2000)
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SAND

presents a series of examples from inter-tidal and shelf environments which illustrate a

progressive fining corresponding to a decrease in depositional energy; two shelf examples

are given in Figure 2.61. The two different locations are clearly differentiated although

with a high degree of scatter. By plotting the sand-silt-clay components on ternary graphs

the implicit assumption is made that these three components have unique hydrodynamic

behaviours; however, as proposed by McCave et al., (1995), the boundary between

cohesive and non-cohesive behaviours falls at approximately 1011m; thus, if to be useful in

a process sense such plots should honour this boundary. It is likely that the trends

identified on conventional ternary plots illustrating the progressive hydrodynamic sorting

would not differ greatly if they were plotted as sand — sortable silt — clay but this would be

an improvement and may reveal subtle trends potentially masked by the conventional

method. It is felt that the separating sand and 'sortable silt' components is valid as sand

predominantly travels as bed-load while silt is transported largely in suspension.

CLAY

Figure 2.61. Ternary diagram illustrating textural trends identified in open shelf environments. Band

1. Bering Shelf. Band 2. Central Gulf of Alaska Shelf. From Flemming (2000).

When classifications of mudstones are adhoc and performed within the confines of isolated

datasets (e.g. Schieber, 1999) the generic implications, if any, of any individual study are

difficult to elucidate. A generic classification scheme was proposed by Macquaker and

Adams (2003). However, this work was entirely focused on investigations of mudstones

using microscopy (optical and SEM) with no reference made to grain size data. This

omission is significant as grain size is a fundamental control upon control on flow

dynamics, particle behaviour and hence sedimentation. Because considerable information
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can be extracted from both optical/SEM studies and grain size studies an integrated

approach offers the way forward in the sedimentological analysis of mudstones. An

example would be a Type 1 calcareous, nannoplanlcton-bearing, clay-rich mudstone; this

description conveys that the sediment is clay rich (in the size sense) and was deposited in

an entirely flocculated form in a low energy, low sediment concentration setting along-side

calcium carbonate formation in waters that were rich in plankton. The addition of terms

relating to the fabric of the sediment, such as `bioturbated' increases the detail of the

description.

From the analysis described in Sections 2.4.1 — 2.4.7 it is clear that the majority of thin

sections analysed, particularly for GSD Types 1 — 4, exhibited structureless textures. A

number of examples of structureless mudstones from a range of marine environments are

presented by O'Brien and Slatt (1990), including:

(a) The argillaceous units of the Ferron Sandstone Member, Mancos Formation

(Cretaceous) representing a marine shelf proximal to a delta complex (O'Brien

and Slatt, 1990, pp.78 — 80, Fig. A2).

(b) The mudstones of the Cozy Dell Formation (Mid. Eocene) representing a

submarine slope facies (O'Brien and Slatt, 1990, pp.82 — 83, Fig. A).

(c) The Pico Formation (Pliocene) representing a deep marine turbidite fades

(O'Brien and Slatt, 1990, pp.86 — 87, Fig. C).

The absence of sedimentary structures is generally thought to indicate rapid deposition

(e.g. O'Brien and Slatt, 1990) and is the preferred explanation for the samples presented in

Sections 2.4.2 — 2.4.4. In the case of Type 1 the lack of structure coupled with the high

occurrence of microfossils may indicate slow sedimentation rates and/or thorough

bioturbation.

The observation that many of the samples analysed here, and particularly those for Types 1

— 4 lack any distinctive sedimentary structures contrasts with some previous studies of

mudstone thin sections (e.g. Schieber, 1999). However slide orientation could potentially

play a role; all the thin sections were made from plug or side-wall core samples — and thus

should have been made approximately perpendicular to bedding. If thin sections were in
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fact made approximately parallel to bedding then the sample may appear much more

homogeneous that it actually appears. Types 5 and 6, when not recovered from deep water

settings, had a much higher occurrence of sedimentary structures. A number of

possibilities may account for this. The slides, particularly the magnified (x4 PPL) thin

section image's were typically 2 — 3mm wide whereas Schieber's (1999) sections were

typically between 6 — 40mm wide, therefore sedimentary structures may simply not be

easily discernable at this scale. It may also simply reflect the nature of the tectonic setting

from which the respective sample sets were retrieved. For example, the Iota Area samples

commonly used as the exemplar for Types 1 — 4 probably have been deposited rapidly via

gravity driven re-sedimentation processes. In contrast, the epicontinental shelf samples

from the North Sea and Chi Area used here, along with those of Schieber (1999) would

have been deposited in significantly shallower water, with potentially much slower

sedimentation rates (thus allowing a greater influence of current, wave and storm

associated processes).

The choice of grain size parameterization applied will depend upon the goal of the study

being carried out (cf. Curran et al., 2004). This study has illustrated that no one

parameterization technique was able to fully account for the GSD types proposed here;

visualisation of the grain size frequency distribution along with observation made from

thin section and BSEM images were found to be most useful in partitioning the grain size

types. But neither of these techniques are quantitative. Combining these techniques with

quantitative descriptions has provided the basis for establishing these GSD types; however,

further work is required before quantitative grain size parameterization techniques can be

linked to specific depositional processes and their hydrodynamic characteristics.

As floc size increases the size spectrum of incorporated grains increases (Kranck, 1991),

therefore as floc size increases there is concomitant increase in the size of the particles

incorporated into the flocs. Both the floc size and disaggregated grain size vary with total

concentration, suggesting that flocs are relatively stable entities which do not chEtae

during alternating settling and re-suspension (Kranck and Milligan, 1992). The wide

variation in the floc — non-cohesive silt intersection or 'floc limit' (Df) seen for Types 3 — 6
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As turbulence increases it exceeds

some threshold such that floc

formation is inhibited and floc begin

to break up
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probability of collisions occurring increases with turbulence
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may relate to the differing hydrodynamic conditions under which the sediment was

deposited; floc size [and hence the size of the material incorporated into the floc] increases

initially with G, the root mean square velocity gradient and then decreases (Fig. 2.62;

Berhane et al., 1997; van Leussen, 1988). Whereas floc size continuously increases with

suspended sediment concentration that acts to dampen turbulence and hence velocity

gradient (cf. Baas and Best, 2002), floc size is not uniquely related to G, but the % of

material > D1 is and thus may be used to infer palaeo-hydrodynamic conditions. However

more detailed work is required to investigate further the potential for extracting palaeo-

hydrodynamic information from the grain size distributions of mudstones. Fully

constrained and quantified laboratory flume based studies are likely to yield the best results

in terms of elucidating the potential relationships suggested here.

G

Figure 2.62. Effect of turbulence on floc size; G is the root mean square velocity gradient. (Berhane

et aL, 1997; van Leussen, 1988).

The value of the insights provided by combining grain size analysis with petrographic and

BSEM based observations lie in interpreting whether or not the floc, silt and possibly sand

modes recognised from analysis of the grain size distribution relate to a specific

depositional event or a series of events. Furthermore, understanding of the fabric of a rock

and knowledge of the nature of its grain size distribution greatly enhances the

interpretation of omni-directional MICP experiments carried out on the same samples. For

example, how you would account for the presence of a bi-modal pore size distribution

would be dependent upon the texture of the sample — it may relate to two domains of
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effective porosity (i.e. in the case of a homogenous rock with a bi-modal grain size

distribution) or may simply relate to a laminated sediment.

On a larger scale previous classifications for sediments have compiled data on modern and

ancient rocks and have integrated this data into facies types representing differing

processes which fit into a series of hypothetical sedimentary models, a good example of

such a classification system is that proposed by Pickering et al., (1986) for deep water

sediments (Figure 2.63). The classification scheme presented in this study integrates with

the scheme of Pickering et al., (1986) with the individual grain size types proposed,

potentially supplemented by Macquaker and Adam's (2003) descriptive scheme, building

into facies which make up Pickering et al., 's (1986) class C, D, E and F (cf. Figure 2.63).
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Figure 2.63. Integration of the deep-water facies classification scheme of Pickering et al., (1986)

with the mudstone GSD types proposed in this study. The hierarchical nature of the scheme is

related to facies class (of Grain size Classes A — G only C to F are relevant here), internal

organisation, and composition. Individual facies are based on internal structures, bed thicknesses,

composition and potentially GSD type, as proposed in this study.
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2.6. Chapter 2 Conclusions

The work presented here proposes a new grain size based siliciclastic mudstone

classification system. Six separate mudstone grain size types have been proposed, based on

work which for the first time integrates: (a) the process based grain size based model of

Kranck (e.g. Kranck and Milligan, 1985), (b) observations made from both petrographic

and BSEM images, and (c) numerical grain size based descriptions. The process based

model of Kranck has been used to infer both the mode of settling (flocs or Stokes settled

single grains) and thus the nature of the particle packing. The classification system

proposed is probably non-exhaustive; however, it is felt that most of the potential variation

which siliciclastic mudstones may exhibit has been captured. The boundaries between the

types are not rigid and the typing scheme and framework could be adapted to suit the goals

of a particular study.

The numerical descriptions utilised had limited success in differentiating and providing

information on the nature and depositional character the sediment. The % sortable silt did

show the best correspondence to the GSD types proposed; but this parameter provided no

information on the process of deposition or the particle packing (i.e. floc or single grain

deposited). The approximate boundary at lOpm between cohesive and non-cohesive

behaviours proposed by McCave et al., (1995) was found to be an appropriate rule of

thumb, but not as an absolute value as Df was seen to vary between 3pm and 21 pm. This

variation could potentially be exploited in order to infer the conditions present in the water

column at the time of deposition; this hypothesis awaits verification. Material >10p,m was

incorporated into flocs based on the analysis of Type 2 samples; this material will clearly

not relate to hydrodynamic conditions as it will not have been hydrodynamically sorted,

thus care should be taken when attempting to apply 'sortable silt' as a palaeocurrent

measure, particularly in locations where high suspended sediment concentrations are

likely.

The moment statistics had a high degree of overlap, particularly for Types 1 — 4. The

combination of the mean grain size, standard deviation and skewness did give a relative
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idea of the potential degree of mixing between flocculated and single grain settled

populations but only to the degree that the end member samples could be separated. The

moment statistic provided no information upon the potential particle packing. The Kranck

model parameters also showed a high degree of overlap; however, the fitting processes and

plotting the log-log grain size spectra allows the recognition of the floc and non-cohesive

silt components which ultimately forms the basis of the grain size typing framework

proposed here. Furthermore, there is the potential of correlating the Kranck model

parameters, particularly K and Df, with the hydrodynamic, chemical and concentration

conditions present at time of deposition.

Analysis using a hindered settling rate suggests that Type 2 grain size distributions are

deposited from high sediment concentration thus potentially allowing the sediment

concentration in at least part of the water column at time of deposition to be estimated for

the first time. This work would potentially allow turbidites and debris flows to be

differentiated. Further work concerning the interplay between hydrodynamic conditions

and concentration and the resulting grain size spectra could substantially increase the

information extracted from the analysis of mudstone grain size distributions.

This classification scheme should not be seen as a rival to other sediment classification

schemes, such as the descriptive scheme of Macquaker and Adams (2003) and that

proposed for deep water sediments by Pickering et al., (1986). Integration of these three

schemes could potentially significantly improve the process-based sedimentological

interpretation of continuous records of sedimentary deposits by providing both a process-

based and temporal record of sedimentation. Indeed it is felt that such a generic, process-

based, descriptive analysis of mudstones will provide the level of detail that will allow

mudstones to be elevated to a level of understanding comparable to that currently enjoyed

by sandstones and carbonates.
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Chapter 3 Integrating detailed grain size distributions with the

characteristics of natural mudstone pore-throat size distributions at

varying compaction states

3.0 Introduction

The lithological inventory of sedimentary basins is dominated by mudstones which

commonly comprise at least 60% of basin fill. Due to their volumetric significance muds

and mudstones are the primary control upon fluid flow in sedimentary basins (cf. Aplin,

Fleet and Macquaker, 1999). The flow properties mudstones have been shown to be

principally controlled by two variables: porosity (which ranges between —80 — 5%) and

grain size (with particle diameters potentially ranging over 5 orders of magnitude)

(Dewhurst et al., 1998; Yang and Aplin, 1998; Dewhurst et al., 1999a,b). Despite the

importance of constraining the flow properties of mudstones there have been relatively

few integrated studies of the porosity, grain size distribution and pore-throat size

distributions of mudstones. In the previous Chapter six clastic mudstone lithologies or

grain size types were proposed, this classification is thought to capture the bulk of

potential variation in terms of grain size for elastic mudstones.

This work describes a detailed study of the influence of grain size 'type' reflecting the

nature of the entire grain size distribution upon the dynamic evolution of the pore-throat

size distribution of mudstone samples taken from five different sedimentary basins.

Detailed grain size analysis of numerous marine mudstones (e.g. Kranck, 1984; ICranck

and Milligan, 1985; Stevens et al., 1996; Jones and McCave, 1998; and this work, see

Chapter 1) have demonstrated that the grain size distributions of such sediments are

composed of (a) flocs and (b) a 'stokes settled' silt and sand component (see Chapter 1).

The aim of this study is to investigate the influence of these components upon the nature

and distribution of the lacunar and clay-fabric pore space with decreasing porosity from a

variety of mudstones from five sedimentary basins, analysed using the mercury injection

capillary pressure (MICP) technique.
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Previous work pertinent to this study has largely been carried out by soil scientists, for

example, Fies (1992) investigated the influence of sand and silt phases (termed skeleton)

in the division of textural porosity which he divided into lacunar pore space and clay-

fabric pore space. This and further work by Fies and Bruand (1998) showed that in

clay/silt/sand mixtures with increasing clay content, the inter-connected lacunar pores

were decreasing in volume and modal size, but continued to exist as 'hidden' pores (not

connected or at least connected by smaller clay fabric pores). In their paper Fies and

Bruand (1998) stated that it is the packing of the elementary particles (i.e. clay-silt or

clay-silt-sand) in soil that largely determines the textural pore space and its dependent

properties such as permeability. Griffiths and Joshi (1989) investigated the microlevel

scale compaction of clays using mercury intrusion porsimetry (MIP).

In studies of geological data Dewhurst et al., (1998, 1999a) investigated the London Clay

and performed a detailed study of the influence of lithology, simplistically described by

clay content (% of particles <2itm) on the loss of porosity and permeability during

artificial mechanical compaction.

3.1 Previous studies of the integration of grain size and pore size data

3.1.2 Artificial slurries

Fies and Bruand (1990) and Fies (1992) investigated the relationship between the grain

size distribution and the distribution of porosity as a function of pore-throat size in soils.

In soil science the porosity formed due to the packing of the particles which make up the

sediment is termed textural porosity (Childs, 1969 p.94). In these studies the bulk textural

porosity is divided between clay-fabric pore space and lacunar pore space (Fies, 1992

and refs. therein); clay fabric pore space relates to that formed by clay-particle packing,

lacunar (simply meaning gap) pore space relates to that formed by silt and/or sand grains

(termed skeleton by Fies, 1992). Earlier work had established that this distinction

between lacunar and clay-pore space was valid for soils (e.g. Fies, 1984); Fies (1992)

noted that as the size and / or proportion of the silt/sand framework decreases, the peak
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corresponding to the lacunar porosity approaches the clay-fabric peak, suggesting that as

the modal size of the silt/sand framework decreases the lacunar and clay-fabric porosity

distributions may merge. To test this hypothesis Fies (1992) mixed sediments composed

of between 5-90% clay (particles <21.1m) with silt components with modal sizes of 4ftm

(2-10iim range), 6i_tm (2-20jim range), 13tim (2-20gm range), 201.tm (20-501.1m range),

and glass beads of 400ttm (400-430iim range); once dried these mixtures were analyzed

using Hg porosimetry. Although Fies (1992) provides no information on bulk porosity,

the synthetic samples formed by initially wet slurries are likely to be of high porosity.

Figure 3.1. Lacunar pore (LP) mode obtained from a volume pore density distribution (VPD) curve

as a function of clay content for different sized silt components; for the sand size material LP

mode virtually remains constant irrespective of clay content; however for the silt clay mixtures,

once clay contents exceed 30%, the LP begins to be influenced by the clay sized particles,

resulting in the LP reducing as a function of clay content.

Pies (1992) results showed that for the glass bead — clay mixtures the volumetric pore

density curves (VPD) where always bi-modal irrespective of clay content, where the

modes represent the clay fabric related pores (SP) and the lacunar pores (LP) related to

the bead framework. For the silt — clay mixtures the VPD curves became unimodal when

clay content exceeded 60%. The size of the LP is dependent upon the size of the size of

the silt component at a single clay content. At clay contents <30% the diameter of the

modal size of the LP peak remains constant for each respective silt component size (see
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Fig. 3.1); however when the clay content exceeds 30% the LP peak decreases as a

function of increasing clay content (see Fig. 3.1 and Fig. 3.2).

Figure 3.2. Lacunar pore (LP) mode obtained from a VPD curve as a function of clay content for

different sized silt components; LP modal values are constant for clay contents <30% and

decrease exponentially with increasing clay content at clay contents >30%.

Figure 3.3. Clay fabric (SP) pore mode obtained from a VPD curve as a function of clay content

for different sized silt components; SP virtually remains constant irrespective of silt component

distribution or clay content.

From Figure 3.4 it can be seen that as the clay content increases the distance between the

lacunar pore peak and clay-fabric peaks reduces, and at high clay contents the distribution
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becomes unimodal (Fies, 1992). From his experimental results, Fies made the following

observations:

1) The modal pore diameter corresponding to the clay fabric pores remains constant

for both the clay-sand and clay-silt mixtures — irrespective of clay content (see fig.

3.3).

2) There is a highly significant linear correlation between the volume of the small

pores and clay content for the clay-sand mixture; whereas such a relationship only

exists for the clay-silt mixtures when clay contents are <40%. The volume of

small pores (Vsp) was calculated by VSp = VT — V0.05 where VT equals total pore

volume and V0 .05 equals pore volume down to 0.05 pm, thus Vsp is equal to volume

intruded between 0.0511m and Ogm theoretically; the value of 0.05ptm was taken

from earlier work by Fies(1984)on the MICP analysis of clays.

These observations led Fies (1992) to claim that for the clay-sand mixture, Vsp solely

represents intrusion into the clay-fabric, with the sand framework being wholly distinct.

For the clay-silt mixtures the Vsp values increase as the modal size of the silt component

decreases; Vsp remains parallel to the clay-fabric Vsp line (determined from the clay-sand

mixture for clay contents <40% (Fies, 1992) indicating that for these clay contents the

lacunar and clay-fabric components are distinct. When clay contents exceed 40% VSP

values move away (i.e. increase in value) from the Vsp determined entirely from clay-

fabric pores (see Figure 3.5), indicating that the Vsp cannot be solely attributed to the

pores formed by the clay-fabric. This suggests that the lacunar pore and clay-fabric pore

populations begin to merge and interact at clay contents >40% in these high porosity

mixtures. Despite this merger of the two textural porosity domains, the diameter of clay

fabric modal pore-throat size seemingly remains constant, implying that the

amalgamation of the two domains does not act in any to increase the size distribution of

the clay fabric pore space.
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Figure 3.5. Effect of the sand / silt framework upon the relationship between Vsp (volume intruded

into pores of diameter 50.05pm) and clay content of the clay-sand / silt mixtures. The regression

line represents the correlation between Vsp and clay content obtained for the glass bead (400pm)

— clay mixtures, the highly significant regression coupled with the observation that the position of

the Vsp modal diameter was constant led Fi6s(1992) to the conclusion that the Vsp measured on

the clay-bead mixtures represents intrusion purely into clay fabric pore space — thus departures

from this line indicates interaction of the Vsp and IlLp domains.
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3.1.2 Soils and soil compaction

Griffiths and Joshi (1989) investigated the microlevel scale compression of clays using

mercury intrusion porosimetry (MIP). Four differing soils were investigated using this

technique; two intrusions were performed on each sample tested. It was proposed by

Griffiths and Joshi (1989) that two types of porosity can be determined from two

successive intrusion cycles; the first intrusion fills all of the connected pore space, thus

giving total ('effective') porosity. The sample is then depressurized which leaves a

proportion of mercury trapped within the pore space. A second pressure cycle re-intrudes

mercury and is thought to define the pore-throat size distribution of the free porosity and

the difference between the two cycles is the 'entrapped porosity' (Griffiths and Josh,

1989). It has been suggested that the free porosity corresponds to intra-aggregate pores

and that the entrapped porosity relates to inter-aggregate pores (Delage and Lefebvre,

1984).

Four standard consolidation tests where performed to a maximum stress of 0.03, 0.12,

0.45 and 1.5MPa. The inter-aggregate or 'free porosity' was estimated by the normalised

first minus second intrusion data (see Griffiths and Joshi, 1989). The results suggested

that consolidation processes affects only the inter-aggregate pores. The intra-aggregate

pores remained near 100% of the liquid limit porosity (i.e. the initial porosity measured

prior to compaction), while the inter-aggregate porosity (as measured by the difference

between the first and second intrusion runs) was related directly to the consolidation

stress (Griffiths and Joshi, 1989). From their results Griffiths and Joshi (1989) concluded

that the volume decrease of pore space during consolidation was due to changes in the

volumes of the largest existing pores, where this change is represented by a shift towards

smaller pore-throat sizes and a reduction in total porosity. Intra-aggregate pore space was

not seen to change with increasing consolidation (although note low stresses), no

evidence for aggregate formation due to consolidation was found. Volume change was

found to be due to deformation and collapse of the inter-aggregate pore space (Griffiths

and Joshi 1989).
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In a reply to the work by Griffiths and Joshi (1989), Nagaraj et al., (1990) proposed a

hypothesis in which the pore space of fine grained sediments could be partitioned into

three levels or types:

1) Intra-floc (z: aggregate) pores between individual platelets in a floc with pore radii

<lnm (10A).

2) Inter-floc pores between two interacting aggregates with radii <10nm and >lnm

(<100A - 10A) depending upon compaction state.

3) Large enclosed pores between multiple aggregates and/silt grains, with radii

>>10nm (>>100A).

Figure 3.6. Schematic representation of a flocculated fine grained sediment illustrating the nature

of the different pore types or levels formed (Adapted from Nagaraj, et al., (1990) Fig. 10) (E-E:

egde — edge clay mineral contacts; E-F: edge — face clay mineral contacts).

Nagaraj et al., (1990) argue that the reason behind Griffiths and Joshi's (1989)

observation that compaction driven deformation and loss of the pore volume is

concentrated in the large pores (2 and 3 above) because that their size is dictated by the

surrounding force system (i.e. the applied load), while the intra-floc pores are better able

to resist the load because they are formed by fewer particles (cf. Dewhurst et al., 1998,

1999a) and are directly influenced by clay-surface interactions (cf. Nagaraj et al., 1990).
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Furthermore at the initial state any load will be focused upon the point contacts which

form the largest pores (3) as compaction proceeds the load will be supported by more and

more point contacts thus even though applied load is increasing over all the surface area

upon which it is applied is also increasing. In conclusion Nagaraj et al., (1990) state that

in a more compressible soil, and thus a finer grained soil (cf. Skempton, 1970; Burland,

1990; Aplin et al., 1995) the preferential collapse of the largest pores will be enhanced

relative to a less compressible (coarser grained) sediments resulting in a smaller, tighter,

better sorted pore throat size distribution with increasing compaction.

3.1.3 Geological materials

In a series of investigations Dewhurst et al., (1998, 1999a) explored the inter-relationship

between grain size distribution, porosity and the nature of the pore-throat size

distribution. Their data, along with data drawn from both the geotechnical and geological

literature illustrate how the pore-throat size distributions of mudstones evolve with

increasing compaction. The mean pore throat radius of muds declines with increasing

effective stress, with this decrease being primarily driven by the collapse of the largest

pores, with the smaller pores remaining relatively unchanged (e.g. Dewhurst et al., 1998).

These effects were clearly illustrated by the experimental results of Dewhurst et al., '5

investigation of two London Clay samples with distinct grain size distributions (see

Figure 3.7). From Figure 3.7 it can be seen how pores with larger pore throats collapse

preferentially; this effect is enhanced in the coarser sample which incorporates larger

pore throat sizes and a larger overall range of pore throat sizes. The investigation carried

out by Dewhurst et al., (1998) showed that at a given porosity (or effective stress),

coarser grained mudstones will have greater mean and modal pore throat sizes than finer

grained mudstones. Samples classified as clay rich (i.e. clay fraction >50%) have very

few pore throats >100nm even at stresses as low as 1.5 MPa, implying that larger pores in

these sample types are very unstable and readily collapse under very small loads. In the

coarser mudstones the larger pores also preferentially collapse, but do so under much

greater loads (cf. Fig. 3.7b) relative to the finer mudstones, implying that they are more

stable (Dewhurst et al., 1998, 1999a). The relevance of the observations made by
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Dewhurst et al., (1998) for naturally compacted mudstones was confirmed by Yang and

Aplin (1998) who studied mudstones which had been naturally compacted to effective

stresses between 7.2 and 27.5MPa.

The work carried out by Dewhurst et al., (1999a) utilizing artificially compacted samples

of the London Clay illustrated the fundamental influence of clay fraction on the pore

throat size distribution, compressibility, surface area and porosity-hydraulic conductivity

relationship for these sediments. The data presented by Dewhurst et al., (1999a) was

placed into two broad groups of rather distinct properties: a clay-rich group (49% to 66%

clay fraction) and a silt/sand-rich group (27% to 33% clay fraction) (both of which

contained —50% sand sized material!).
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Figure 3.7. Differential pore-throat size distribution curves of two mudstones from the London

Clay experimentally compacted to differing levels of effective stress. The sample in (a) has a

unimodal distribution where the decreases in porosity with progressive compaction occurs

through decreases both in peak height and average peak pore throat radius. Very little porosity

exists in pores with throats >80nm. The sample in (b) exhibits a complex, tri-modal distribution;

peak heights collapse at -5pm and 800 nm with the third peak virtually unchanging with

progressive compaction. The 800nm peak only collapses at the maximum effective stress

(33MPa) From Fig 9 and 11 in Dewhurst eta!., (1998).
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samples initial distribution; (c) comparison of initial and compacted (-10MPa) distributions. From

Dewhurst et al., (1999a).
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The pore-throat size distributions of the initial, uncompacted (preconsolidation stress of

around 1.5 — 2 MPa) silt rich muds (27% and 33% clay fraction) are shown in Figure

3.8a. These distributions are bi-modal (tri-?) in form with modal sizes of —6000nm and

3000nm respectively. In contrast the clay rich samples (56-66% clay fraction) have

unimodal pore-throat size distributions which are very similar in form, with modes

between 60 and 120 nm respectively (Dewhurst et al., 1999a).

Except for the 49% clay sample, the data shown in Figures 3.7 and 3.8 readily divide into

two groups, divided on the basis of clay content, which exhibit significantly different

pore throat size distribution properties. Compared to the coarse grained (low clay) group

the clay-rich group has a much smaller range of pore throat sizes at all levels of effective

stress. Dewhurst et al., (1999a) noted that without more samples with clay fractions

between 33 and 49% it is not clear whether there is a clay fraction at which the properties

change abruptly or that the physical properties of the London Clay vary continuously.

Dewhurst et al., (1999a) argue that the potential for an abrupt change in behaviour is real

due to the decreases in clay content is accompanied by an increase in the amount of silt

and/or sand grains. When this component is comprised of relatively coarse rounded

grains of quartz and feldspar (with distinct properties to platy clay minerals), if its

proportion reaches some critical value the probability of developing a framework or

skeleton is increased creating a sediment which would differ in its geomechanical

properties.

From the London Clay data Dewhurst et al., (1999a) proposed that for the silt/sand rich

samples the silt and sand grains interact strongly, potentially forming a framework or

skeleton which acts to reduce compressibility and thus preserving the larger pores to

greater levels of effective stress. The bimodal forms of the pore throat size distributions

(Figs 3.7b, 3.8a,c) for the silt/sand rich samples imply two levels of particle interaction,

involving the interaction of sand and silt grains, and a second from the packing of the

clay matrix, which dominates in finer gained muds (Dewhurst et al., 1999a). In clay-rich

muds (clay fraction >50%) the clay fabric governs the compaction and any silt or sand

grains are sufficiently isolated that they exert a minor influence on compaction (Dewhurst

119



et al., 1999a). The clay-rich pore-throat size distributions are unimodal, reflecting the

dominance of the clay matrix in controlling the compaction behaviour.

3.1.4 Synopsis — slurries to soils to 'geological' mudstones

A synopsis of the observations made by a variety of workers on the relationships between

clay content and the distribution of porosity in soils and fine grained sediments is given

in Table 3.1. Nagaraj et al., (1990) hypothesized that the ideal distribution of porosity in

a sediment with both aggregates (=flocs) and single grains can be visualized in terms of

intra-floc pore space; inter-floc pore space and large enclosed pore space which is here is

implied as corresponding to the lacunar pore space of Fies (1992). Common between soil

scientists and geologists is the recognition of two modes or 'domains' of porosity which

occur in fine grained sediments relating to pores formed by the silt/sand grains (lacunar

pore space) and the clay matrix (clay fabric pore space relating to intra- and inter-floc

pore space). Fies (1992) showed that when clay fraction is <30% then the lacunar pore

space is constant (at approximately constant porosity). This is observation has led to the

suggestion that below 30% clay content the formation of a silt / sand framework

('skeleton') and thus pore space is inevitable, and exists independently of the clay fabric

pore space. Above 30% clay the two pore space 'domains' begin to interact — the 49%

clay sample of Dewhurst et al., (1999a) provides an example of this interaction (see

Figure 3.8a,b), where the pore throat size is seemingly intermediate between the two end

members (although note the high porosity —47%). Below clay contents of 40% it is

argued by Fies (1992) that the lacunar and clay fabric 'domains' are distinct; similarly

Dewhurst et al., (1999a) hypothesized that between 33% and 49% clay there may be

either a smooth continuation of variation in properties or a clay content at which an

abrupt transition in behaviour occurs. It was illustrated by Fies (1992) that, in highly

porous artificial slurries, as clay content increased between 30% and 60% clay fraction

the lacunar pore mode decreases in both modal size and volume (cf. Figures 3.1, 3.2, and

3.4).
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It was noted by both Fies (1992) and Dewhurst et al., (1998) that the modal pore-throat

size relating to the clay fabric pore space remains relatively constant irrespective of

variation in the grain size distribution (cf. Fies, 1992) or the compaction state (porosity)

(cf. Dewhurst, et al., 1998). The latter point illustrates that the bulk of the volume loss

caused by compaction is contributed to by the preferential collapse of the largest pores,

which decrease in stability as the grain size distribution fines (cf. Griffiths and Joshi

1989, Dewhurst, et al., 1999a).

% Clay Behaviour Comment

<30
Load-bearing framework ('skeleton') formed by silt / sand;

clay sits largely within silt/sand pores

<40 Distinct lacunar or silt/sand and clay fabric pore modes Complex interaction

between the lacunar

and clay fabric

domains?
40-60

The two domains begin to strongly interact; lacunar pore

mode approaches the clay fabric pore mode with increasing

clay content

>60

Clay fabric dominated - the clay matrix forms the load

bearing phase; silt and sand grains sufficiently isolated by

clays to have no influence

Table 3.1. Synopsis of the compactional behaviour and relationship between the lacunar

(or silt / sand) and clay fabric pore space in soils and fine grained sediments. Based upon

the observations and results of Fies (1992); Fies and Bruand (1998); Yang and Aplin,

(1998) and Dewhurst et al., (1998, 1999a).

From Table 3.1 it can be seen that the distribution of effective porosity (i.e. the connected

porosity as measured by an MICP experiment) in fine grained clastic sediments can be

thought of as potentially occurring in three states, partly dependent upon clay content:

1) Effective porosity is mainly present in the form of lacunar pore space; some

minor clay fabric related porosity can also be present (clay contents <40;

particularly when <30%).

2) Effective porosity occurs in both lacunar and clay fabric pore space; which

dominates and how they interact will be dependent upon the overall grain size
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distribution, texture (sedimentary structure) and compaction state (clay contents

30 — 60%).

3) Effective porosity is concentrated in the clay fabric pore space; no lacunar pore

space is present (clay contents >60%).

Obviously the most complex case is in 2, rather than an abrupt change in behaviour at a

particular clay content as hypothesized by Dewhurst et al., (1999a), the transition

between the 'framework' and 'matrix' mode of behaviours is likely to be a consequence

of the complex interaction of detailed grain size distribution, texture and compaction

state. How prevalent this intermediate stage is in geological samples, along with testing

the predictions and observations made by previous workers, is a key aim of this study.

3.2 Methods

All the methods used in the grain size analysis of the samples analysed in this work have

been described in detail in the previous Chapter. Sample selection strived to avoid

cuttings samples whenever possible due to the problems associated with integrating grain

size distribution and pore-throat size distribution data over ambiguous volumes of

investigation.

3.2.1 Mercury Injection Capillary Pressure method — converting to Pore-throat size

distribution

The pore throat size distributions (PSD) were measured by the mercury injection

capillary pressure (MICP) technique using a Micrometrics porosimeter. The pore throat

radius, assuming the surface tension of mercury to be 0.48 N/m and the contact angle

between the mercury and particle surface to be 141°, is given by (Yang and Aplin, 1998).

r
 —(

7  46,000)

P
(3.1)
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where r is pore throat radius in nanometers and p is pressure in kPa. Careful analysis of

the resulting pore throat distributions was carried out. Artifacts in the form of large

cracks (potentially generated by the sample preparation procedure) where assumed to be

represented by secondary peaks on the pore frequency distributions; the true distribution

is assumed to end where the numerical differential of the cumulative pore-throat

distribution reaches the baseline (Yang and Aplin, 1998). Figure 3.9 shows the genuine

pore-throats in blue and the pore-throats generated in the sampling process in red. All

calculations were performed using the pore-throat-throat size distribution defined by

genuine pore-throats as a function of cumulative porosity.
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Figure 3.9. Pore-throat-throat size distribution. Genuine pore-throats are in blue and the pore-

throats generated in the sampling process in red.

3.2.2 Discussion of the Mercury Injection Capillary Pressure method

The MICP technique is a standard technique and has been utilised to quantify the pore

properties of rock for over 40 years. The application of this technique to mudstones has

been criticized; the major contentions were summarized by Hildenbrand and Urai (2003)

as:

sample drying (typically performed using an oven set to —105°C) performed

prior to analysis can lead to significant shrinkage of clay minerals distorting

the pore morphology. Freeze drying techniques can be used to circumvent this

effect (e.g. Matenaar, 2002).
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- The high pressure required to inject mercury into the pores of mudstones may

act to deform the sample.

The omnidirectional nature of standard MICP analysis does not recover any

information about the anisotropy of the sample being analysed.

- Conversion of the mercury-air system to other phases is contentious.

Since the samples analysed in this study were prepared for MICP using the freeze drying

method, effects associated with clay shrinkage should be minimised. The omnidirectional

nature of MICP experiments should minimize sample damage since the pressure in the

mercury phase should be approximately equal in all directions and thus will in effect

support the sample during the experiment. It is conceded that MICP experiments yield no

information upon any anisotropic features and thus will only yield a gross

characterization of a samples pore properties. Hildenbrand and Urai (2003) investigated

the morphology of the pore space of mudstones using both MICP and Wood's metal

injection. From the results they obtained it was suggested that for the finest grained

samples with clay contents above 80%, MICP compresses the sample rather than

penetrating mercury into the sample pore network. This effect is quite feasible since the

compressibility of a mudstone is directly related to its grain size (Aplin et al., 1995).

Hildenbrand and Urai (2003) report that this compression effect is not seen in a sample

with 60% and 10% sand and suggest that this sand content provides a framework which

resists this compression. Only 3 samples for this dataset have clay contents above 70%

and thus for the majority of samples this effect is considered to be negligible.

Hildenbrand and Urai (2003) pointed out that pores with small radii are commonly

overestimated by MICP due to the bottle like nature of a proportion of the pores. This

point is valid and should be considered when analysing MICP data. But the impact of this

observation upon the quantification of fluid flow properties is slight since it is the pore

throat radius which determines both the rate of flow of a single phase through a single

pore and the ability of a non-wetting phase fluid to enter that pore.
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Newsham et al., (2004) applied high-speed centrifuge, MICP and high-pressure porous

plate and vapour desorption techniques to the description of the pore network properties

of tight gas sands to examine the both pore-throat size distributions and capillary pressure

curves. They note issues with the MICP in addition to those recorded by Hildenbrand and

Urai (2003) including:

- lack of standards for calibration

use of contact angle scaling parameters that may not be appropriate for rocks

with ultra-low water saturations and high capillary pressures

The results of Newsham et al., (2004) illustrate that saturation distributions are

consistently lower when derived from MICP capillary pressure curves when compared to

those derived from composite techniques (constructed from vapour desorption, high

speed centrifuge and high pressure porous plate methods). This difference may

significantly underestimate the irreducible water saturation and thus will have an impact

on any mutiphase flow properties derived. The magnitude of this difference was seen to

decrease as the porosity and permeability decreased (for tight gas sands). The source of

the error which ascribe to this difference were suggested by Newsham et al., (2004) to be

the nature of fluids used in the MICP technique and their non-wetting characteristics;

however, Newsham et al., (2004) note that MICP is an excellent tool for quantifying a

rocks pore-throat size distribution.

3.3. Mudstone grain size distribution (GSD) type characteristics

The nature and characteristics of the grain size distributions representative of the six

mudstone GSD types proposed in this study have been described in detail in Chapter 2

and therefore are only briefly summarized here. The key contrasts between the grain size

characteristics of each grain size type are illustrated in Figure 3.10 by box and whisker

plots. These are summary plots based on the median, quartiles, and extreme values. A

line across the box indicates the median. The box represents the interquartile range which

contains 50% of values. The whiskers are lines that extend from the box to the highest

and lowest values, excluding outliers. The data tables describing the grain size

characteristics of each GSD type are given in Chapter 2.
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In terms of the clay and silt fractions (Fig. 3.10a,c) there is a high degree of overlap

between each mudstone GSD type. The grain size typing spectrum essentially

encompasses a spectrum from very fine grained (Type 1) to coarse grained (Type 6) (see

Chapter 2). Inspection of the Fig. 3.10a and 3.10c reveals that grain size Types 1 and 2

have extremely broad clay and silt contents — and thus specifically appear to be

potentially coarser grained than Types 3 and 4. The low clay — high silt samples for

Types 1 and 2 are particularly rich in the 2 - 10gm silt fraction. Compared in terms of the

sortable silt fraction there is a continuous coarsening from Type 1 to Type 6 (Fig. 3.10d).

The low clay — high silt samples for Types 1 and 2 have all been drawn from the Zeta

Area and the high proportion of fine silt material is thought to indicate the significant

input of wind blown material in the Zeta samples as sediments of similar age from this

area have been interpreted as deposits of a dryland river/terminal fan setting. Grain size

Types 1 — 5 have sand contents below 10%. Grain size Type 6 is differentiated from

Types 1 — 5 by its sand content, which is between 10 — 33% for this dataset.

The differences and trends between the grain size GSD types are most clearly shown by

the % >10gm, mean grain size (gm) and standard deviation of the <63gm component.

Although there is a still a high degree of overlap, there is a clear increase in % >10gm

and mean grain size (gm) from Types 1 to 6; in terms of the mean grain size it is typically

<4gm for Types 1 — 4 and shows a high degree of variation for Types 5 and 6.

Furthermore the sorting, quantified by the standard deviation, also increases from Type 1

to Type 6.

Overall it can be seen that the there is gradual, if subtle coarsening between Types 1 to 4

(although their grain size spectra exhibit clear differences (cf. Chapter 2 Fig. 2.49)).

Types 5 and 6 are coarser than the previous types, as is clearly illustrated by the

significant increase in material >10gm (see Fig. 3.10d).
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Figure 3.10. Box and whisker plots describing the grain size distribution characteristics of

mudstone GSD types 1 to 6 for (a) clay fraction (b) sand fraction (c) silt fraction (d) sortable silt

fraction (Y() >10pm) (e) mean grain size (pm) (of the < 63pm component) and (f) standard

deviation (of the <63pm component).
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3.4. Results

3.4.1 Relationship between grain size and pore-throat size distribution: Constant

porosity.

To investigate the influence of grain size distribution on the pore throat size distributions

of mudstones, grain size distribution spectra presented on log-log plots were compared to

the corresponding differential pore-throat size distribution (PSD) for examples of each of

the grain size types identified in Chapter 2 at a constant porosity value. To assess how

this influence may change with differing levels of compaction (porosity levels) 3 sets of

each grain size type were analysed at 26%, 17% and 7-9% porosity.

In Figures 3.11 -3.13 the grain size spectra and PSD's of examples of grain size types 1 -

6 are presented at three compaction states. Although grain size types 1 - 4 exhibit quite

different grain size spectra, however their PSD's have very similar characteristics; each is

unimodal in form with modal values of -30nm which decrease with increasing

compaction, and there are very few pores with radii >80nm. At each porosity level there

is a slight trend to increasing values of r mean and r10% from Type 1 to 4, reflecting the

coarsening of the grain size spectra (see Tables 3.2 - 3.4). These slight differences are

illustrated in Figure 3.14. This figure also illustrates that Types 1 - 4 are distinct from

Types 5 - 6 in terms of the pore-throat size distribution and that as porosity decreases this

difference also decreases (i.e. the difference in pore network parameter values decreases).

For the lowest porosity group the distinction in behaviours occurs between Types 3 - 4

however in this case the Type 4 sample is a cutting (see Table 3.4).

Figure 3.11. (Overleaf) Grain size distribution spectra fitted with the Kranck model (Kranck et al.,

1996a.b) and differential pore throat size distributions for grain size types 1 -6 at -26% porosity.
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(a)

Sample
Depth

(ft)
Depth

(m)

Grain
size

Type

Sample

"8

Corrected
Porosity

r
mean
(nm)

r 10%
(nm)

Temperature
(C)

Total
C (%)

TOC
(%)

Measured
Gs

(g/cm^3)

2.809IOTA_22 12906.0 3933.7 1 SWC 0.263 9.3 18.9 53.9 0.9 0.2

ETA_14 8284.1 2525.0 2 Cuttings 0.259 13.1 22.5 53.3 4.0 3.2 2.518

IOTA _4 10330.0 3148.6 3 SWC 0.25 13.5 26.4 38.4 1.5 0.7 2.741

IOTA _1 9800.0 2987.0 4 SWC 0.261 28.8 48.9 35.2 1.3 0.5 2.75

CHI_9 12707.9 3873.4 5 Core 0.259 571.0 1231.9

NOR_11 6718.7 2047.9 6 Plug 0.265 1403.4 3990.3 59.9 1.0 1.0 2.752

(b)

mmbsfl Whole distribution stats Sortable Silt

Sample Depth
(ft)

Depth
On)

Grain
Size
Type

%
Clay

%
Sand

%
Silt

%
>1 OJIM

Mean
Grain
Size
(pm)

SD Skewness
SS

mean
(Pm)

SD Skewness

IOTA _22 12906.0 3933.7 1 73.0 0.1 26.9 9.3 1.0 1.4 -0.7 29.8 0.9 0.2

ETA_14 8284.1 2525.0 2 56.5 0.3 43.2 20.0 2.1 2.1 -0.3 17.8 0.7 -0.3

IOTA _4 10330.0 3148.6 3 60.0 0.1 40.0 17.6 2.0 1.8 -0.6 19.3 0.7 -0.2

IOTA _1 9800.0 2987.0 4 51.0 0.1 48.9 21.4 2.6 1.8 -0.3 19.2 0.6 -0.1

CI-11_9 12707.9 3873.4 5 21.5 4.6 73.9 62.5 7.8 2.2 0.9 27.6 0.7 0.1

NOR_11 6718.7 2047.9 6 12.7 33.8 53.5 72.6 6.6 2.1 0.5 27.7 0.7 0.1

Table 3.2 (a) Physical property data and (b) grain size distribution data for samples with a

porosity of -26%. Grain size and pore-throat size distributions shown in Figure 3.10.

Relative to the grain size Types 1 - 4, Types 5 and 6 have quite different PSD's and

contrasting grain size spectra. At 26% porosity the PSD's of Type 5 and 6 samples are

both clearly bi-modal, with the mode corresponding to the larger pore-throat size being

dominant. From inspection of Figures 3.11 - 3.13 it call be seen that with increasing

compaction this mode is reduced, reflecting the preferential collapse of the largest pores

with increasing effective stress (cf. Dewhurst et al., 1999, 1999a). The small diameter

mode, thought to correspond to pores associated with the clay fabric (cf. Fies, 1992;

Griffiths and Joshi, 1989; Nagaraj et al., 1990) gradually shifts from -30nm to -5nm but

increases in height relative to the large pore mode, potentially reflecting the contribution

to volume of pores in this size range by compacted lacunar pores (cf. Section 3.1).

Figure 3.12. (Overleaf) Grain size distribution spectra fitted with the Kranck model (Kranck eta!.,

1996a.b) and differential pore throat size distributions for grain size types 1 -6 at -17% porosity.

130



100

10
aR

0 1
0 10 100 00100	 10 00

Grain Size [micron]

Type 1

.	 ......

0

0102020.

0 .0

0.10
	

1.00	 10 00
	

100.00

Grain Size [micron/

Type 2

Type 3

100

10

0.1

10	 100	 1000
	

10000

Pore Throat Radius [nm]

Type 3 [IOTA 62]
02

015

- 01

005

102Ain

2W Mov
Avg 102A_O2)

Type 1 DOTA_71]
0.25

0.2

0.15
X	 02A_71

Fr;	 0.1

0.05

0
10	 100	 1000 10000

Pore Throat Radius [nm]

Type 2 [ETA_10]
0.35

0.3 -

0.25 -
cC •	 ETA_10
o	 0.2

0.15 -2 pel MOv
<	 0.1 - Avg (E2A_10)

0.05 -

o

Type 4 Type 4 [10TA_41]
0.14

0.12

0.1
re

o data
	

0.08

> 0.06

-Silt mode
	

• 

0.04

0.02

X 102A.A1

Avg (10TA_A9

0.06

0.05

ze 0.04
o data

• 0.03
-	 .1loc mode

-4 0.02-silt
0.01

0

100

10
at

• 1

0.1

• CHO

per Moo
Ann (CHO)

Type 6 [CHI_12]

• CHL12

-n2W Mov
Avg (CHL12)

01

008

006

004

002

0

o data

.loc mode

-silt

103

10
at

• 1

0.1

Type 6

o data

-los mode

o data

-floc mode

0 10
	

100	 10 00
	

100.00	 10	 100	 1000	 10000

Grain Size [micron]
	

Pore Throat Radius [nm]

100

10
an

oe''''me""**1'."A>o70

o data

-Sou mode

01

0 10
	

100	 10 00
	

100.00
	

10	 100	 1000	 10000

Grain Size [micron]
	

Pore Throat Radius [rim]

Type 6
	

Type 5 [CHI_8]

0 10
	

1.00	 10 00
	

100.00
	

10	 100	 1000
	

10000

Grain Size [micron]
	

Pont Throat Radius [nm]

0.10
	

1.00	 10.00
	

100.00
	

10	 100	 1000
	

10000

Grain Size [micron]
	

Pore Throat Radius [nm]

131



(a)

Sample
Depth

(ft)
Depth

(m)

Grain
Size
Type

Sample

tYpe

Corrected
Porosity

r
mean
(nm)

r 10%
(nm)

Temperature
(C)

Total
C (°.)

TOC
(%)

Measured
Gs

(g/crnA3)

2.812IOTA_71 22584.8 6775.4 1 SWC 0.17 4.4 8.0 108.6 1.7 0.7

ETA_10 10600.4 3231.0 2 SWC 0.179 4.8 8.6 91.5 1.3 1.2 2.737

IOTA _42 22044.0 6607.0 3 SWC 0.179 6.1 11.6 105.1 2.3 1.8 2.802

IOTA _41 50656.2 4706.1 4 SWC 0.18 13.6 24.5 69.1 1.4 1.3 2.682

CHI_8 12706.4 3872.9 5 Core 0.177 496.7 1209.5

CHI_12 13103.5 3993.9 6 Core 0.181 1497.0 5960.5

(b)

mmbsfl Whole distribution stats Sortable Silt

Sample
Depth

(ft)
Depth

(m)

Grain
Size
Type

%
Clay

%

Sand
%
Silt

%

>1011M

Mean
Grain
Size
(Pm)

SD Skewness
SS

mean
(Prn)

SD Skewness

IOTA _71 22584.8 6775.4 1 55.3 0.0 44.7 14.1 1.5 1.6 -0.7 20.6 0.7 -0.2

ETA_10 10600.4 3231.0 2 48.5 1.0 50.5 25.5 2.2 2.0 -0.5 19.7 0.7 -0.3

IOTA _61 22024.0 6607.0 3 40.0 0.3 59.7 43.3 3.8 2.1 -0.2 24.3 0.8 0.0

IOTA _41 15440.0 4706.1 4 53.0 0.9 46.1 27.9 3.1 2.2 -0.3 22.6 0.7 0.0

CHI_8 12706.4 3872.9 5 34.4 0.8 64.8 36.4 3.5 2.1 0.0 21.9 0.7 -0.1

CHI_12 13103.5 3993.9 6 31.0 10.1 58.9 52.3 4.8 2.5 0.4 28.5 0.8 0.1

Table 3.3 (a) Physical property data and (b) grain size distribution data for samples with a

porosity of 18 - 19%. Grain size and pore-throat size distributions shown in Figure 3.11.

The progression between grain size types and with increasing compaction is illustrated by

Figure 3.14. At 26% and 17% grain size types 1 - 4 are seen to have very similar values

of r mean and r10%, whereas Types 5 and 6 clearly have much broader, hi-modal PSD's

and have pore-throat size distributions that incorporate throats with radii approximately

two orders of magnitude larger than those in Types 1 - 4. With decreasing porosity the

magnitude of the difference between grain size types 1 - 4 and 5 - 6 decreases, so that

when porosity has declined to 7-9% the difference has dropped to approximately one

order of magnitude (cf. Figure 3.14).

Figure 3.13. (Overleaf) Grain size distribution spectra fitted with the Kranck model (Kranck eta!.,

1996a.b) and differential pore throat size distributions for grain size types 1 - 6 at 9 - 7%

porosity.
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(a)

Sample
Depth

(ft)
Depth

(m)

Grain
Size
Type

Sample
type

Corrected
Porosity

r
mean
(nm)

r 10%
(nm)

Temperature
(C)

Total
C (%)

TOC
(°/..)

Measured
Gs

(g/cm^3)

2.786ZETA_5 17097.0 5211.1 1 RSW core 0.093 3.5 7.4 123.0 1.2 0.4

CHI_4 13959.4 4254.8 2 Core 0.074 7.3 8.4

NOR_1 14552.7 4435.7 3 Plug 0.098 2.8 5.8 142.0 1.5 1.5 2.833

ZETA_10 18241.0 5560.0 4 Cuttings 0.07 29.9 66.9 131.8 2.6 1.5 2.677

ZETA _12 18439.0 5620.3 5 RSW core 0.091 52.1 127.5 133.3 1.3 0.1 2.758

ZETA _22 21349.1 6507.2 6 Core 0.091 76.4 310.8 165.3 0.9 0.3 2.766

mmbsfl Whole distribution stats Sortable Silt

Sample
Depth

(ft)
Depth

(m)

Grain
Size
Type

%
Clay

%
Sand

%
Silt

%
>109M

Mean
Grain
Size
(Pm)

SD Skewness
SS

mean
(pm)

SD Skewness

ZETA _5 17097.0 5211.1 1 52.6 0.0 47.4 9.8 1.4 1.4 -0.2 14.5 0.6 -04

CHI_4 13959.4 4254.8 2 37.8 0.7 61.5 29.4 2.8 1.9 -0.1 18.6 0.7 -0.2

NOR_1 14552.7 4435.7 3 40.5 0.7 58.7 33.6 3.0 1.9 -0.1 19.0 0.7 -0.2

ZETA _10 18241.0 5560.0 4 22.4 1.8 75.8 44.3 4.7 2.0 0.2 22.7 0.7 0.0

ZETA _12 18439.0 5620.3 5 22.1 0.2 77.6 61.1 6.9 2.0 1.3 19.7 0.5 0.0

ZETA _22 21349.1 6507.2 6 23.7 11.9 64.4 58.1 5.2 2.3 0.3 28.1 0.7 0.1

Table 3.4 (a) Physical property data and (b) grain size distribution data for samples with a

porosity of 9 - 7%. Grain size and pore-throat size distributions shown in Figure 3.12.

The observations made from Figures 3.11 - 3.13 indicate that the pore networks of

mudstones exhibit two modes of behaviour dependent upon grain size distribution; Types

1 - 4 have tight, unimodal pore throat size distributions corresponding to the load bearing

clay 'matrix'. Types 5 and 6 incorporate a framework created by the interaction and

geometry of silt and sand grains which initially acts as the load bearing phase. These

samples have bimodal PSD's reflecting the presence of the larger silt/sand framework

associated pores and clay matrix associated pores. With increasing effective stress the

clay 'matrix' becomes increasingly load bearing via re-arrangement of the grains as the

lacunar pore space is reduced due to preferential compaction. This progression is

illustrated in Figure 3.14 and indicates that with increasing compaction the influence of

grain size distribution is gradually reduced.
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Figure 3.14. r mean and r10% as a function of grain size distribution type at (a) 26% porosity, (b)

17% porosity and (c) 7 — 9% porosity.

135



3.4.2 Relationship between pore-throat size distributions and porosity: Constant

lithology (grain size distribution type)

To investigate the influence of compaction on the pore-throat size distributions of

mudstones of similar lithology, the pore-throat size distributions of samples of the same

grain size type at a range of porosities were compared. The samples presented here

exhibit similar characteristics to those presented in Section 3.4.1. Initial inspection of the

results again revealed two characteristic forms of the differential pore-throat size

distributions derived from the samples analysed; grain size types 1 — 4 typically had

unimodal distributions with peaks in pore throat radii <80nm with the bulk of the pore

radii being <100nm. Conversely grain size GSD types 5 and 6 typically had bimodal

distributions incorporating significant volumes of pores with radii 100 — 10000nm in size.

Due to this apparent partition in behaviour types 1 — 4 and types 5 — 6 will be described

separately.

Grain size types 1 — 4 exhibit very similar characteristics in terms of their differential

pore throat size distributions and how they evolve with decreasing porosity. All the

PSD's are unimodal in form and are dominated by pore radii <100nm (Figs 3.15, 3.17,

3.19 and 3.21). With decreasing porosity there is a progressive shift in the PSD's with

both modal values and the intruded volume decreasing. Modal values typically reduce

from —50nm to <10nm as porosity decreases from —26% to <10%. As with the pore-

throat size characteristics observed in more porous clay-rich materials the bulk of the

pore-throat size distribution is thought to be associated with the clay matrix (e.g. Fies,

1992; Griffiths and Joshi, 1989; Nagaraj et al., 1990).

To illustrate the evolution of the breadth of the pore-throat size distribution with

decreasing porosities, the 5%, 10%, 20%, 30%, 40% and 50% percentile calculated from

the cumulative pore-throat size distribution were cross plotted against porosity. Figures

3.16, 3.18, 3.20 and 3.22 illustrate that r5% - representing the pore throats at the larger

end of the PSD decline most rapidly (exponentially) with deceasing porosity. This

observation indicates that volume loss ('compaction') is dominantly contributed to by the

136



100

0.1

0 10
	

1 00	 10.00
	

100.00

Grain Size [micron]

IOTA_68

an

10

0 10
	

100	 10 00
	

100.00
	

0.10
	

1.00	 10.00
	

100.00

Grain Size [micron]
	

Grain Size [micron]

ZETA_5

100

10
an	

- - ----.147•••••••••••..s.

• •

01

IOTA_43
100

10
an

°
0.1

0.10
	

1.00	 10.00
	

100.00

Grain Size [micron]

IOTA_30
100

1 0

0.1

b,

. data

• -floc mode

c,

at
3

. data

- -floc mode

a,

• data

• -floc mode

d,

. data

- -hoc mode

10	 100
	

1000
	 e,

Pore Throat Radius [nm]

30.6%

	

0.35 	

0.3

0.25

• 0.2 -

> 0.15

0.1

0.05

	

0 	

• TA_68

• IOTA_43

X IOTA_30

- 2 per M ov
Avg (10TA_68)

- 2 per Moo
Avg (10TA_431

-2 per Nov. 
Avg (10TA_30)

• ZETAS

• OTA_68

• TA_43

- per Moo.
Avg (ZETA_8)

- per Moo
Avg (10TA_68)

- per Nov
Avg. (10TA_43)

f,

1000

collapse of the largest pores, which is in agreement with the observations of Dewhurst et

al., (1998, 1999a).

1 10	 100

Pore Throat Radius [nm]

Figure 3.15. Grain size spectra (a — d) and differential pore-throat size distributions (e — f) of Type

1 grain size examples (porosities are given on plots e and f).
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(a)

mmbsfl Whole distribution stats Sortable Silt

Sample Depth
(m)

Depth
(ft)

Grain
Size
Type

%
Clay

%Sand
%

Silt
%

>10pm

Mean
Grain
Size
(pm)

SD Skewness
SS

mean
(Pm)

SD Skewness

IOTA_30 5211.1 17096.8 1 61.0 0.1 38.9 11.4 1.3 1.6 -0.6 19.1 0.8 -0.4

IOTA _43 6882.6 22580.6 1 58.0 0.6 41.4 15.7 1.6 1.8 -0.6 18.9 0.7 -0.2

IOTA 68 4767.1 15640.0 1 52.0 0.2 47.8 19.1 1.9 1.8 -0.9 26.5 0.9 0.0

ZETA_5 4330.0 14206.0 1 52.6 0.0 47.4 9.8 1.4 1.4 -0.2 14.5 0.6 -0.4

(b)

Sample
Depth

(m)
Depth

(ft)

Grain
Size
Type

Sample
type

Corrected
Porosity

r
mean
(nm)

r
10%
(nm)

Temperature
(C)

Totalc
(%)

TOC
(%)

Measured
Gs

(gicmA3)

ZETA_5 5211.1 17096.8 1 RSW core 0.093 3.5 7.4 123.0 1.2 0.4 2.786

IOTA 68 6882.6 22580.6 1 SWC 0.142 4.7 10.7 108.6 1.5 0.7 2.770

IOTA _43 4767.1 15640.0 1 SWC 0.213 17.0 31.9 70.3 0.7 0.6 2.770

IOTA _30 4330.0 14206.0 1 SWC 0.306 51.3 62.0 61.7 10.0 2.0 2.441

Table 3.5 (a) Grain size data and (b) physical property data for Type 1 samples with a

porosity of 9 - 30%. Grain size and pore-throat size distributions shown in Figure 3.15.

• 15%

• r10%

• rat%

x r30%

x 140%

• 150%

- Expon. (r5%)

- Expon. (50%)

Figure 3.16. Percentile - porosity plot derived from the four Type 1 samples presented in Fig.

3.15; both r5% and r50% decrease exponentially, however the decrease in r5% is much more

rapid illustrating that the bulk of compaction occurs through collapse of the largest pores. The

observed decrease in r50% simply represents the shift in the PSD as the largest pores are lost by

preferential collapse.
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Figure 3.17. Grain size spectra (a — d) and differential pore-throat size distributions (e —1) of Type

2 grain size examples (porosities are given on plots e and f).
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(a)

mmbsfl Whole distribution stats Sortable Silt

Sample
Depth

(ft)
Depth

,
(m)

Grain
Size
Type

%
Clay

%
Sand

%
Silt

%
>10pm

Mean
Grain
Size
(11m)

SD Skewness
SS

mean
(pm)

SD Skewness

CHI_4 13959.4 4254.8 2 37.8 0.7 61.5 29.4 2.8 1.9 -0.1 18.6 0.7 -0.2

NOR_10 7509.0 2288.8 2 35.9 0.2 63.9 37.7 3.6 1.9 0.2 17.4 0.6 -0.2

IOTA_28 13772.0 4197.7 2 60.0 0.1 39.9 18.9 1.7 1.9 -0.5 15.8 0.5 -0.2

ETA_16 9694.9 2955.0 2 56.8 5.4 37.9 21.7 1.5 1.8 -0.8 19.2 0.8 -0.2

(b)

Grain r r Total TOC
Measured

Sample
Depth

(ft)
xDepth

(111/
Size
Type

Sample
type

Corrected
Porosity

mean(nm) 10%(nm)
Temperature

(C)
c

(%)
( '0)(%)

Gs

CHI_4 13959.4 4254.8 2 Core 0.074 7.3 8.4

NOR_10 2288.8 2288.8 2 Plug 0.143 9.6 15.8 84.2 2.7 2.3 2.763

IOTA_28 13772.0 4197.7 2 SWC 0.183 13.6 25.0 59.1 2.4 2.0 2.643

ETA 16 9694.9 2955.0 2 Cuttings 0.269 24.6 32.2 72.7 4.4 3.2 2.512

Table 3.6 (a) Grain size data and (b) physical property data for Type 2 samples with a

porosity of 7 - 24%. Grain size and pore-throat size distributions shown in Figure 3.17.

•	 r5% 100
•	 r10% 90

•	 120% 80
x 130%

r40%
-g 70

60•	 150%
50

-Expon (50%)
-Expon (r10%) 40

300.
Exponential It for
150% tarsus porosity

y = 3 0236e....
Re = 0 7219 = 10 050 0 100	 0 150	 0 200 0 250	 0 300	

Fe

Porosity

Figure 3.18. Percentile - porosity plot derived from the four type 2 samples presented in Fig.

3.17; (a) the 18% porosity example [10TA_28] has a very tight pore throat size distribution relative

to the other samples; removal of these data results in the data plotting in a similar manner to the

other grain size types; r5% decreases exponentially and r50% decreases linearly at much

reduced rate illustrating how the bulk of compaction is contributed by the collapse of the largest

pores.
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Figure 3.19. Grain size spectra (a — d) and differential pore-throat size distributions (e — f) of Type

3 grain size examples (porosities are given on plots e and f).
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Exponential fit for r5% versus porosity:
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(a)

mmbsfl Whole distribution stats Sortable Silt

Sample
Depth

(ft)
Depth,

(m)

Grain
Size
Type

0,
"

Clay
%

Sand
%

Silt
%

>10pm

Mean
Grain
Size
(pm)

SD Skewness
SS

mean
(pm)

SD Skewness

NOR_1 14552.7 4435.7 3 40.5 0.7 58.7 33.6 3.0 1.9 -0.1 19.0 0.7 -0.2

ETA_7 9904.9 3019.0 3 50.9 0.2 48.9 21.9 1.9 1.9 -0.7 20.6 0.7 -0.2

IOTA_35 14879.0 4535.1 3 54.0 0.0 46.0 21.5 2.5 1.9 -0.2 17.9 0.7 -0.3

IOTA_6 10690.0 3258.3 3 48.0 0.1 51.9 22.2 2.6 1.9 -0.2 18.8 0.7 -0.2

(b)

Sample
Depth

(ft)(
Depth,

(m)

Grain
Size
Type

Sample
type

Corrected
Porosity

r
mean
(nm)

r
10%
(nm)

Temperature
(C)

Total
c

(%)

TOC
(cy,A
' -I

Measured
Gs

(g/cm^3)

NOR_1 14552.7 4435.7 3 Plug 0.098 2.8 5.8 142.0 1.5 1.5 2.833

ETA_7 9904.9 3019.0 3 cuttings 0.167 5.6 10.8 82.0 1.1 0.7 2.717

IOTA 35 14879.0 4535.1 3 SWC 0.205 13.0 24.4 65.7 1.3 0.7 2.735

IOTA_6 _ 10690.0 3258.3 3 SWC 0.248 26.7 46.6 40.6 1.7 0.8 2.702

Table 3.7 (a) Grain size data and (b) physical property data for Type 3 samples with a

porosity of 9 - 26%. Grain size and pore-throat size distributions shown in Figure 3.19.

• r5%

• 10%

A r20%

x r30%

x r40%

• r50%

- Expon. (r50%)

- Expon. (r5%)

Figure 3.20. Percentile - porosity plot derived from the four type 3 samples presented in Fig.

3.19; both r5% and r50% decreases exponentially, however the decrease in r5% is more rapid

illustrating that the bulk of compaction occurs through collapse of the largest pores. The observed

decrease in r50% simply represents the shift in the PSD as the largest pores are lost by

preferential collapse. (Note r40% and r50% could not be determined for the lowest porosity

sample [NOR_1]).
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Figure 3.21. Grain size spectra (a — d) and differential pore-throat size distributions (e — f) of Type

4 grain size examples (porosities are given on plots e and f).
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(a)

mmbsfl Whole distribution stats Sortable Silt

Sample Depth
(ft)

Depth
,

(111/

Grain
Size
Type

ok

Clay

ok

Sand

0/0

Silt
%

>10pm

Mean
Grain
Size
(pm)

SD Skewness
SS

mean
(pm)

SD Skewness

IOTA_52 19660.0 5898.0 4 43.0 3.3 53.7 34.0 2.5 2.2 -0.7 26.4 0.8 0.1

IOTA _41 15440.0 4706.1 4 53.0 0.9 46.1 27.9 3.1 2.2 -0.3 22.6 0.7 0.0

IOTA _50 16381.0 4992.9 4 50.0 0.0 50.0 27.8 2.5 2.1 -0.6 23.7 0.7 0.0

IOTA _1 9800.0 2987.0 4 51.0 0.1 48.9 21.4 2.6 1.8 -0.3 19.2 0.6 -0.1

(b)

Sample
Depth

(ft)
,Depth

(mi

Grain
Size
Type

Sample
type

Corrected
Porosity

r
mean
(nm)

r
10%
(nm)

Temperature
(C)

Total
c

(%)

TOC
0/0\

Measured
Gs

 (g/cm^3)

IOTA _52 19660.0 5898.0 4 SWC 0.163 8.0 15.1 89.7 1.2 0.9 2.759

IOTA _41 15440.0 4706.1 4 SWC 0.18 13.6 24.5 69.1 1.4 1.3 2.682

IOTA _50 16381.0 4992.9 4 SWC 0.222 16.3 29.4 74.8 1.0 0.5 2.805

IOTA _1 9800.0 2987.0 4 SWC 0.261 28.8 48.9 35.2 1.3 0.5 2.75

Table 3.8 (a) Grain size data and (b) physical property data for Type 4 samples with a

porosity of 16 - 26%. Grain size and pore-throat size distributions shown in Figure 3.21.

120
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•	 MO%

Exponential fit for r5% versus porosity:

y = 2.29o4e1389'
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Figure 3.22. Percentile - porosity plot derived from the four Type 4 samples presented in Fig.

3.21; T5% decreases exponentially and r50% decreases linearly, illustrating how the decrease in

r5% is more rapid as the bulk of compaction occurs via collapse of the largest pores.

At porosities between 25.9 - 22.3%, the differential pore throat size distributions of grain

size Type 5 samples are bimodal, with the first mode occurring between 500 - 800nm
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and a second mode between 10 — 40nm (Fig. 3.23e,f). The progressive collapse and loss

of the larger mode is illustrated in Figure 3.23e,f; once porosity has decreased to 11% the

larger mode has almost disappeared, and the PSD has become unimodal in form and is

dominated by pore radii <100nm. The two modes observed in the pore-throat size

distributions of Type 5 samples most likely correspond to the lacunar and clay fabric pore

space suggested to occur in clay — silt slurries by Fies(1992). Grain size Type 5 examples

characteristically have a significant coarse silt (>1011m) component that acts to increase

the probability of forming a framework or skeleton that forms the lacunar pore space (cf.

Section 3.1). As with Types 1 —4, the bulk of the volume loss is contributed by the loss

of the largest pores as illustrated by Figure 3.24.

The differential pore throat size distributions of the grain size GSD type 6 examples are

similar to those of Type 5. They are bimodal in form with the first mode occurring at

—1000nm and a second mode occurring —10nm. Again the decrease in porosity leads to a

progressive collapse and loss of the larger mode; the shift in the modal size is not as

apparent as in the Type 5 examples (Figure 3.25e,f). The interpretation of this

observation is complicated by a lack of knowledge of the size distribution of the sand

component itself. Remnants of the larger mode are still present at a porosity of 11%

however by this point the pore space is predominantly represented by the clay fabric pore

space which apparently remains constant irrespective of porosity. Once porosity has

decreased to 7.7% all the pore space resides in pores with radii <20nm (Figure 3.250.

In comparison to the other grain size types presented in this study the percentile —

porosity plot (Figure 3.26) shows the most extreme reduction in r5% values relative to

that of the r50% values with decreasing porosity.
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Figure 3.23. Grain size spectra (a — d) and differential pore-throat size distributions (e — f) of Type

5 grain size examples (porosities are given on plots e and f).
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(a)

mmbsfl Whole distribution stats Sortable Silt

Sample Depth
(ft)

Depth1
(m'

Grain
Size
Type

.

Clay Sand %Silt
%

>10pm

Mean
Grain
SizeSize
(Pm)

Skewness
SS

mean
(pm)

SD Skewness

NOR_5 9386.2 2860.9 5 18.1 4.7 77.3 70.6 10.1 2.0 1.4 25.9 0.6 0.1

CHI_8 12706.4 3872.9 5 34.4 0.8 64.8 36.4 3.5 2.1 0.0 21.9 0.7 -0.1

IOTA_75 18691.0 5697.0 5 26.7 9.8 63.5 64.0 8.8 2.4 1.3 31.4 0.7 0.2

CHI_9 12707.9 3873.4 5 21.5 4.6 73.9 62.5 7.8 2.2 0.9 27.6 0.7 0.1

(b)

Sample Depth
(ft)

Depth1
(m)

Grain
Size
Type

Sample
type

Corrected
Porosity

r
mean(nm)

r 10%
(nm)

Temperature
(C)

Total
c

(%)

TOC
(%)

Measured
Gs

(g/crnA3)

NOR_5 9386.2 2860.9 5 Plug 0.11 24.2 62.0 123.6 0.9 0.8 2.789

CHI_8 12706.4 3872.9 5 Core 0.177 496.7 1209.5

IOTA_75 18691.0 5697.0 5 SWC 0.223 242.7 652.2

CHI_9 12707.9 3873.4 5 Core 0.259 571.0 1231.9

Table 3.9 (a) Grain size data and (b) physical property data for Type 5 samples with a

porosity of 11 - 26%. Grain size and pore-throat size distributions shown in Figure 3.23.
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Figure 3.24. Percentile — porosity plot derived from the four Type 5 samples presented in Fig.

3.23; (a) 17.7% example (CHI_8) has a bi-modal form, this second mode occurs at much larger

pore radii relative to the first mode (cf. Fig. 3.21e,f) resulting in the lower percentiles (r5%, r10°/0)

having very large values. In (b) these percentiles where removed resulting in the data plotting in a

similar manner to the other grain size types; r5% and r50% both decrease exponentially. The rate

of decrease for r5% is much greater signifying that compaction occurs through collapse of the

largest pores.
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Figure 3.25. Grain size spectra (a - d) and differential pore-throat size distributions (e - f) of Type

6 grain size GSD type examples (porosities are given on plots e and f).

149



(a)

mmbsfl Whole distribution stets Sortable Silt

Sample Depth
(ft)
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Grain
Size
Type

%
Clay

%
Sand

%
Silt

%
>10pm

Mean
Grain
Size
(Pm)

SD Skewness
SS

mean
(Pm)

SD Skewness

NOR_24 9181.4 2798.5 6 28.6 13.5 57.9 46.2 3.4 1.9 -0.1 19.5 0.6 -0.1

IOTA_55 21587.0 6476.0 6 36.2 15.2 48.6 54.0 3.7 2.3 0.1 22.3 0.6 0.0

CHI_11 13092.5 3990.6 6 30.9 16.4 52.7 39.2 2.3 2.0 -0.2 18.8 0.8 -0.3

NOR_11 6718.7 2047.9 6 12.7 33.8 53.5 72.6 6.6 2.1 0.5 27.7 0.7 0.1

(b)

Sample Depth
(ft)

Depth,(m)

Grain
Size
Type

Sample
type

Corrected
Porosity

r
mean(nm)

r 10%
(nm)

Temperature
(C)

Total
c

(%)

TOC
04
' " 

\

"

Measured
Gs

(g/cm^3)

NOR_24 9181.4 2798.5 6 Plug 0.079 8.8 11.0 104.6 3.4 2.4 2.696

IOTA_55 21587.0 6476.0 6 SWC 0.111 106.9 146.3 102.2 1.1 1.1 2.662

CHI_11 13092.5 3990.6 6 Core 0.194 731.6 3198.0

NOR_11 6718.7 2047.9 6 Plug 0.265 1403.4 3990.3 59.9 1.0 1.0 2.752

Table 3.10 (a) Grain size data and (b) physical property data for Type 6 samples with a

porosity of 8 - 26%. Grain size and pore-throat size distributions shown in Figure 3.25.
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Figure 3.26. Percentile - porosity plot derived from the four Type 6 samples presented in Fig.

3.25; both r5% and r50% decreases exponentially, the decrease in r5% is more rapid illustrating

that the bulk of compaction occurs through collapse of the largest pores.
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3.4.3 Behaviour of samples with intermediate grain size characteristics

A subset of Type 1 - 4 samples drawn exclusively from the Iota Area was investigated to

assess the consistency of the observations made in Sections 3.4.1 and 3.4.2. Figure 3.27

illustrates the decrease in the mean pore-throat size with decreasing porosity from grain

size types 1 - 4. In general these cross plots illustrate a consistent behaviour whereby the

mean pore throat size decreases exponentially with increasing compaction. There was a

high degree of scatter on the Type 4 r mean - porosity cross plot (Fig. 3.27d). The

assumption was made that the variability observed on this cross plot was not due to

sample quality (all samples were side wall cores).

Figure 3.27. Porosity - r mean cross plots for (a) Iota Type 1 samples, (b) Iota Type 2 samples,

(c) Iota Type 3 samples and (d) Iota Type 4 samples.

A further subset of the Iota Type 4 group of samples with porosities between 21 - 24%

were isolated to assess the degree to which variations in terms of the grain size

distribution could account for the variation observed on the r mean - porosity cross plot

(Fig. 3.28a).

151



IOTA Type 4
	 a,

50.0

40.0 -

E
c

43
E

30.0 -

20.0 -

10.0 -

X
x	 x x

X

X X
X Xx

X	 41/4x

Ix GSD Type 4

0.0

0	 0.05 0.1
:

0.15	 0.2	 0.25

Porosity

03

30

25 -

? 20 -

5 15

10

5

30

25 -

'E" 20

5 IS-

g 10

5

•
•

•

•

• •

b,

• • •

C,

10 1.5 2.0	 25	 3.0	 3.5

Mean grain size (pm)

40 10 15	 20	 25

Sortable alit mean grain size (pm)

30

30

25 -

20 -
C
C	 15 -

E	 10.

5 -

30

25 -

? 20 -

5 15

g 10

5

0

•

d, •

•

e,

•

0
400	 450 500

%Clay (c21im)

55.0 60.0 10.0	 15.0 20.0	 25.0	 30.0

%Sortable silt (>10pm)

35.0 40.0

Figure 3.28. Data for the Iota Type 4 subset depicting (a) the porosity — r mean cross plot, the

lines demarcate the porosity range (21 — 24%) over which the degree to which variations in grain

size distribution could account for the variability seen in the pore-throat size distributions. (b)

mean grain size (gm) — r mean cross plot, (c) mean sortable silt grain size (pm) — r mean cross

plot, (d) clay content — r mean cross plot and (e) sortable silt — r mean cross plot.

Analysis of the mean grain size (1..tm), mean sortable silt grain size (m), clay content (%

<21..tm) and sortable silt content (% >10[tm) revealed no relationship between the

magnitude of these parameters and the r mean value (Fig. 3.28b — e). This result suggests

that when porosity is constrained factors over than grain size distribution play a role in

controlling the nature of the pore-throat size distributions of mudstones. A similar
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investigation for Type 5 — 6 samples could not be carried out as no adequate samples

were available in the dataset used in this study.

3.5 Discussion

Comparison of the each of the grain size types PSD's at similar compaction states clearly

illustrates the two characteristic forms of PSD's observed in this study of naturally

compacted geological samples.

At porosities below —30% the pore-throat size distributions of Type 1 — 4 mudstones are

unimodal. Essentially all pore diameters are smaller than 80nm, with modal values

decreasing from —50nm to <10nm as porosities decrease from 30% to <10%. Type 1 — 4

mudstones have mean grain sizes <4pm, are typically comprised of >40% clay particles

(% <2p,m) and have sortable silt fractions (% >10pm) below 40% (see Figure 3.5). It is

inferred that the load bearing phase in these mudstones is dominated by the clay matrix

and that the PSD represents the clay fabric associated porosity suggested by Fies(1992) to

exist in dried clay — silt slurries.

In contrast the PSD's of types 5 — 6 are typically bimodal implying the presence of pore

space relating to both, the clay fabric, and silt and/or sand framework. At high porosities

pores with diameters up to —10,000nm are incorporated into the PSD's of Type 5 — 6

samples; modal values decrease by up to two orders of magnitude as porosities decrease

from 30% to <10%. At low porosities the larger mode is lost due to the preferential

collapse of the largest pores and the PSD's evolve to be similar to those of Type 1 — 4

samples with the pore diameters <100nm. Type 5 — 6 mudstones have mean grain sizes

>411m, are composed of <40% clay particles (% <2p,m) and have sortable silt fractions

(% >10p,m) above 40% (see Figure 3.5). It is inferred that the load bearing phase in these

mudstones is initially dominated by a sortable silt (>10p,m) and / or sand framework and

that the PSD represents the lacunar porosity suggested by Fies(1992) to exist in dried clay

— silt slurries.
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Previous work has illustrated that a finer grained sediment will compact at a faster rate

than a coarser sediment given an identical loading history (e.g. Skempton, 1970; Burland,

1990, Aplin et al., 1995; Dewhurst et al., 1998, 1999). Therefore the grain size Types 1 —

4 would be more compressible than Types 5 — 6. This difference may be accounted for by

the differing modes of load bearing regime hypothesised to exist and account for the

differing behaviour seen for Type 1 — 4 and Type 5 —6 with regard to their pore-throat

size distributions

The progressive shift and modal decrease in the unimodal PSD's of types 1 — 4 coupled

with the percentile — porosity plots illustrates how the bulk of porosity loss

predominantly occurs via the collapse of the largest pore (throats), this results in a

progressive shift of the PSD to smaller pore throat radii with decreasing compaction

quantified by the exponential decrease in r50%. This is thought to reflect both the paucity

of large pores in types 1 — 4 and the re-arrangement processes termed densification and

volume distortion by Dewhurst et al., (1998). Densification refers to the collapse of clay

aggregates, because marine mudstones are partly formed by the deposition of clay flocs

or aggregates (cf. Kranck and Milligan, 1985) they can be thought of as one of the

elementary building blocks of these sediment types. Volume distortion occurs through the

grain boundary shearing / sliding within the aggregates and between the aggregates and

the silt and/or sand grains present (cf. Dewhurst et al., (1998) and refs. therein).

The observation that these sample types lack lacunar pores space, which is consistent

with their grain size distribution characteristics, coupled with the observation that

compaction seemingly occurs through the collapse of all pores is thought to reflect the

fact that a framework or skeleton comprising silt and/or sand grains is not present. Thus

the load is applied to the large surface area corresponding to the clay-silt 'matrix' formed

predominantly by clay aggregates and individual silt grains.

The results of Sections 3.4.1 and 3.4.2 indicate that Type 5 and 6 grain size GSD types

exhibit bimodal PSD's which evolve into unimodal PSD's with increasing compaction.

The clay fabric pore space present in types 5 and 6 is comparable in terms of its range of
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pore-throat radii to the PSD's encountered in types 1 — 4. The lacunar pore space

corresponding to the silt and / or sand framework comprises pores with radii up to 3

orders of magnitude larger than those in the clay fabric pore space. Such a difference in

size would clearly have a significant influence upon physical properties that are partly

dependent upon the pore network such as permeability (e.g. Dewhurst et al., 1999). The

percentile — porosity plots for types 5 and 6 where similar to those derived for types 1 —

4; however the degree of reduction seen in r5% was much greater.

The degree to which 'within type' lithological variation accounted for the scatter seen in

mean pore-throat size — porosity cross plots was investigated in Section 3.4.3. The

majority of samples were shown to behave in consistent manner as illustrated in section

3.4.1. Type 4 samples did show a high degree of scatter; analysis of a number of grain

size parameters failed to account for the differing r mean values when porosity was

constrained. This result suggests that when grain size and porosity are effectively

constrained, other factors not accounted for in this study such as diagenetic history and

mineralogy, also play a role in determining the nature of the pore-throat size distributions

of mudstones.

The division of the data into two distinct groups comprising types 1 — 4 with unimodal

PSD's (corresponding to clay fabric pore space) and types 5 — 6 with bimodal PSD's

(corresponding to both clay fabric and lacunar pore space) is largely in agreement with

the studies carried out by Dewhurst et al., (1998, 1999a). Dewhurst et al., (1999a) did

observe the presence of a sample seemingly intermediate between two these groups (see

Figure 3.8, 49% clay sample). Dewhurst et al.,'s (1999a) results illustrated that for

samples with clay fractions between 33 and 49% it is not clear whether there is a clay

fraction at which the properties change abruptly or that the physical properties of the

London Clay vary continuously. It was argued that the potential for an abrupt change in

behaviour is real as the decreases in clay content is accompanied by an increase in the

amount of silt and/or sand grains. When this component is comprised of relatively coarse

rounded grains of quartz and feldspar (with distinct properties to platy clay minerals), if
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its proportion reaches some critical value the probability of developing a framework or

skeleton is increased which would lead to differing geomechanical properties.

The results of this study imply that there is an abrupt change in behaviours but it is not

solely dependent upon the clay content. Unfortunately there are very few samples with

clay contents between 33% and 49% in the sample set utilized in this study at similar

levels of compaction and therefore further work would be required to investigate the

nature of the transition between the two behaviours observed in this study.

3.6 Chapter 3 Conclusions

The work presented here effectively represents a continuum of the work carried out by

Fies(1992) on artificial clay — silt and clay — sand slurries; observation made upon soils

by Griffiths and Joshi (1989) and analysis carried upon artificially and naturally

compacted geological samples carried out by Dewhurst et al., (1998, 1999a) and Yang

and Aplin, (1998) respectively. This study has illustrated that the division of porosity into

clay fabric pore space and lacunar pore space is applicable to naturally compacted

geological mudstone samples. The samples analysed here clearly exhibited two modes of

behaviour, generally marine mudstones types 1 — 4 (typically with clay contents >40%)

below porosities of 30% had unimodal pore throat size distributions, here implied to

represent porosity within and between clay flocs and silt grains. These distributions are

almost entirely composed of pores with throat radii <100nm; modal values decreased

from —50nm to <10nm as porosity decreases from —30% to <10%. Grain size types 5 — 6

typically have clay contents <40% and exhibit bimodal pore throat size distributions; the

smaller diameter mode was comparable to the clay fabric mode characteristic of types 1 —

4, and the second mode comprised pore throats with radii — 2 orders of magnitude larger

than the clay fabric mode. This second mode is considered to represent pore space

created by silt and / or sand grains and corresponds to the lacunar pore space of

Fiês(1992). This second mode was seen to decrease both in size and in volume with

decreasing porosity and is eventually lost, producing unimodal pore throat size

distributions similar to those of types 1 — 4. Overall it has been demonstrated that the
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observations made by Fies(1992) upon artificial slurries are relevant and applicable to

naturally compacted geological media.

Examples exhibiting intermediate characteristics between these two characteristic modes

of behaviour were not observed in this study implying that these modes of behaviour are

distinct, at least in naturally compacted geological samples with less than 30% porosity.

There was a paucity of samples with grain size characteristics that are likely to be

transitional between the two modes (i.e. clay contents in the 30 — 40% range); the

majority of those that did fall into this range were the terrestrial samples from the Zeta

Area and were particularly rich in fine silt in the 2 - lOpm range (cf. Section 3.3). If the

loess rich Zeta samples are disregarded then it would seem that the sortable silt content is

a key lithological predictor in determining the nature of a mudstones pore-throat size

distribution, however further work would be required to further elucidate this statement.

From the results presented in this study an abrupt change in behaviours is favored over a

smooth transition; the grain size parameters that dictate this transition are complex, clay

content alone is insufficient to account for the behaviour of mudstones because once its

drops below —40% the size distribution of the silt content and the sand content become

significant. Sortable silt has the potential to be a useful lithological description for

mudstones as it corresponds well with both the clay content and with the nature of the silt

content for the majority of samples.

The observation of these two modes of behaviours has significance for the fluid transport

properties of such sediments as they are largely dependent upon the pore throat size

distribution (cf. Dewhurst et al., 1999a). The distinction in behaviours implies that

permeability models should perhaps be calibrated to predict the porosity-permeability

relationship of one mode of behaviour or the other as a single model is unlikely to

accurately predict the properties of both. Greater understanding of how the grain size

distribution influences the pore throat size distributions of mudstones will lead to

improved capillary seal risking strategies, and will enable regional seal studies to be
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focused upon the distribution and dimensions of grain size GSD types likely to constitute

significant seal risk.

Future work could include the integration of more detailed analysis of sedimentary

environments and modes of deposition with analysis of the grain and pore-throat size

distributions. For example, the Type 2 PSD's are particularly tight containing very few

pores with radii >50nm even at 26.9% porosity. It was proposed in Chapter 2 that type 2

samples represent deposition from high concentrations, for example density flow deposits

such as debris flows. The high internal stresses coupled with the likely instantaneous load

upon deposition (due to their rapid deposition) characteristic of such deposits may result

in particular closely packed textures resulting in the observed tight PSD's such

hypotheses could prove valuable in predicting physical properties (flow, acoustic etc) and

warrants further investigative studies of well constrained data.
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Chapter 4 Combined PCA-cluster analysis based classification of mudstone grain

size data

4.0 Introduction

In Chapter 2 a number of mudstone grain size distribution types were proposed to account for the

variability and characteristics commonly recorded in the analysis of mudstone grain size data. The

six grain size types proposed were defined upon the basis of integrated grain size analysis, including

grain size distribution modelling and observations made from thin section and BSEM images. The

types were defined arbitrarily and as such this work proved to be time consuming and laborious.

Besides providing a framework in which to understand the depositional processes responsible for the

formation of fine grained sedimentary deposits, the definition of a number of mudstone grain size

types could facilitate the definition of low permeability flow units or facies for input into large scale

geological fluid flow models known as basin models. By proposing a number of mudstone 'types' a

priori, we can simply provide basin modellers with options on how to populate the fine grained

section of their models. Additionally, by utilising a classification partially based upon depositional

mechanism, grain size fining trends and perhaps more complex sedimentary variations may be

included in large fluid flow models.

This work has three purposes. Firstly, to propose the definition of grain size based mudstone types

with which to 'build' a low permeability facies atlas. Secondly, to discuss classification

methodologies and introduce a combined principal component — k mean analysis scheme with which

to facilitate the definition of grain size mudstone types. Thirdly, to test a combined PCA-cluster

analysis classification technique on four datasets which utilise differing data reductions of grain size

data to assess sensitivity of the approach to differing grain size data types. The results are compared

to the mudstone types proposed in Chapter 2 and the relationship between grain size type and the

petrophysical properties is also discussed.
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4.1 Classification and clustering of geological data

The various techniques of multivariate pattern recognition and classification methods were reviewed

by Doveton (1994) with regard to their use in relating petrophysical and geological data thus

allowing facies and geologically significant variations to be recognised purely from petrophysical

data. In this work the aim is to integrate the flow, petrophysical and sedimentological properties of

mudstones. Similar approaches have been taken previously by: (1) Driscoll et al., (1985), who used

principal component analysis (PCA) to map grain size trends related to zonations of current speeds,

water properties and abyssal eddy kinetic energy across the Nova Scotia lower continental rise; (2)

Gill et al., (1993), who proposed numerical cluster analysis as a useful tool in the zonation of

petrophysical data; (3) Watney et al., (1999), who applied cluster analysis to the petrophysical

properties of sandstone reservoirs in a `petrofacies' analysis of the Arroyo Field (Kansas, USA).

Doveton (1994) contrasts "deductive" or top-down approaches which impose a solution with

"inductive" or bottom-up approaches that are solely based upon the characteristics of the data; these

two approaches can be seen as end-members. In Chapter 2 a number of grain size groups were

deduced in a heuristic manner and therefore a solution was imposed upon the dataset. Geological

phenomena are typically continuous in nature and thus such classifications can represent a false-

hood; however they also allow for greater understanding of the data and provide ways in which it

may successfully be used to solve geological problems. Here an inductive approach is taken where

classification using a combined PCA-cluster analysis approach is based purely upon the data

(although it is presented in comparison to the deductive solution proposed in Chapter 2). Three

questions are associated with the combined PCA-cluster analysis approach taken here:

1) How well does the PCA extract factors that account for variation present in the dataset?

2) How good is the clustering result?

3) How well do the clusters correlate to the flow and petrophysical properties of the samples

analysed?

The complexity of the relationship between the grain size distribution and the evolution of the pore-

throat-throat size distribution with increasing compaction has been illustrated and discussed in

Chapter 3. Due to the ambiguous nature of the exact relationship between grain size distribution and
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pore-throat-throat size distribution a number of datasets relating to grain size are used here, as the

clustering result will only be as good as the significance of the principal components extracted. If the

components extracted related to sedimentary parameters, which play a minor role in the evolution of

the pore-throat network then the defined clusters will not separate out samples whose pore-throat

networks behave in a similar manner. Furthermore the dataset used here is comprised of data of

widely varying geological ages and settings, so that factors such as mineralogical content,

cementation history etc may perturb any simple relationships.

4.2 Dataset and Data Manipulation

The basic aim of this work was to develop a methodology for the rapid classification of mudstones

based on some description of their grain size distributions. Four differing combinations of grain size

data were utilised. The same combined PCA — k-means clustering approach is applied to each

dataset. The first dataset comprised a range of sedimentary parameters defined below; the second and

third dataset comprised the grain size frequency distribution data, and the fourth dataset comprised a

combined sedimentary statistic-grain size distribution dataset. The content and manipulation of each

dataset is explained below. All data were standardised by scaling to a range between 0 (minimum

values) and 1 (maximum value).

4.2.1 Moment statistics and sedimentary parameters dataset

The 8 sedimentary parameters included in the principal component analysis are described below;

many of these data types had to be manipulated or standardised prior to input into the principal

component analysis, a description of which is also given below:

% Clay: ranges between 0 — 1. Proven lithology — physical property predictor (e.g. Yang and Aplin,

1998, Yang and Aplin, 2004)

% Sand: ranges between 0 — 1 (in reality always <0.3). Plays an increasingly dominant role in the

compaction behaviour of fine grained sediments as it increases above 10% (>0.1).
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>10gm: ranges between 0 — 1. Was proposed as a `palaeocurrent' proxy by Yokokawa and Franz

(2002). May also play an important role in the compaction behaviour of fine grained sediments

(Chapter 3).

Mean grain size (gm) (0-63gm component): records the mean grain size of the 'mud' component of

the grain size distribution derived by the method of Griffiths (1967). The range of values was scaled

to lie between 0 and 1.

Standard deviation (0-63gm component): Standard deviation of the grain size distribution derived by

the method of Griffiths (1967). The range of values was scaled to lie between 0 and 1.

Skew (0-63gm component): Skew of the grain size distribution derived by the method of Griffiths

(1967). Because PCA does not allow negative values the Skewness scale had to be rescaled; this was

done by simply adding the maximum absolute skew value to each skew value, shifting the range into

an entirely positive range. This led to the range of the skew values and the distance between samples

values remaining the same, but simply removed the negative values. The range of values was then

scaled to lie between 0 and 1.

Mean grain size of the Sortable Silt fraction (gm) (10-63gm component): records the mean grain size

of the sortable silt component of the grain size distribution, proposed as a `palaeocurrene proxy by

Bianchi et al., (1995) derived by the method of Griffiths (1967).

Skew of the sortable silt fraction (10-63gm component): Skew of the sortable silt grain size fraction

derived by the method of Griffiths (1967). The skewness scale had to be rescaled because PCA does

not allow negative values, this was done by simply adding the maximum absolute skew value to each

skew value, shifting the range into an entirely positive range. The range of values was scaled to lie

between 0 and 1. This parameter was included as an attempt to differentiate: (1,) entirely flocculated

(Type 1 and 2, see Chapter 1), (2,) floc - silt mixtures / pure silts (Types 3, 4 and 5 Chapter 1) and

(3) truncated distributions (Type 6c Chapter 1). Entirely flocculated distributions will have negative

values (or low after manipulation to remove negative values prior to PCA) because the bulk of these

distributions lies below 20gm (Figure 4.1). Mixtures of flocculated and silt material and pure silts

will have a proportion of sediment lying between 10 - 63gm, which will typically approximate a log-
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normal distribution and hence skew vales will be close to zero (Figure 4.2) Truncated distributions

result from the sieving process (at 631.tm) performed prior to Sedigraph analysis to remove the sand

component — where the fine sand and silt components form a continuous distribution the sieving with

truncate the distribution at the high end, resulting in a positively skewed distribution (Figure 4.3).

Figure 4.1. The distribution of sediment in the sortable silt range (10-63pm) for an entirely flocculated sample

(Type 2) from the deep water Iota Area (note most grains have a diameter <10pm). The distribution

parameters are as follows: mean grain size 5.79 phi (18.06pm), standard deviation 0.83phi, skew -0.43 phi.
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Figure 4.2. The distribution of sediment in the sortable silt range (10-63pm) of a floc — silt mixed grain size

distribution (Type 5) from the shallow marine Heather Formation (Late Jurassic North Sea). The distribution

parameters are as follows: mean grain size 5.27phi (25.95pm), standard deviation 0.6phi, skew 0.08phi.

Figure 4.3. The distribution of sediment in the sortable silt range (10-63pm) of a floc — silt — sand mixed grain

size distribution (Type 6) of a sample from the deep water Iota Area. The distribution parameters are as

follows: mean grain size 5.03phi (30.71 pm), standard deviation 0.71 phi, skew 0.16phi.
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4.2.2 Whole phi bin dataset

The second dataset consisted of the grain size frequency distribution in the form of weight percent

per grain size bin. Bin boundaries were taken at integer phi values (converting grain size class limits

in mm to base-2 logarithms and changing the sign) so that each grain size bin represents a smaller

size range than the previous one, reflecting the highly skewed nature of these distributions (e.g.

Davis, 2002). The sum of each weight percentage value per sample was set to equal 1.

4.2.3 0.2 phi bin dataset

The third data set used was identical to the whole phi bin data set, except that the bin boundaries

where set at 0.2 phi values, increasing the resolution of the dataset (with 41 grain size bins as

opposed to 9), but also potentially enhancing the significance of small errors present in the dataset.

The sum of each weight percentage value per sample was set to equal 1.

4.2.4 Combined dataset

The final dataset combined the dataset defined in 4.2.1 and 4.2.2; each value per sample from each

dataset was divided by 2 so that when the datasets were combined, the total value for the sum of the

parameters was equal to 1 per sample. Therefore no preferential weighting was given to either

dataset or any one parameter. This dataset is referred to as the combined dataset in the text below.

3.3 Methodology: Combined PCA-k-means clustering of mudstone sedimentary

parameters

Initially each dataset was subjected to PCA analysis using SPSS; components were extracted from

the dataset using the principal component method without rotation. The PCA was carried out for two

reasons: (a) to reduce the data prior to input into the k-means cluster routine; (b) to derive a set of

orthogonal parameters for use in the cluster analysis routine. This second point is significant as many

of the parameters included in the various data sets are highly correlated (see Davis, 2002) which will

induce errors in the clustering procedure (see Wishart, 2003a). The extracted components were then

classified using cluster analysis. The k-means clustering technique was preferred as other cluster
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analysis methodologies typically incorporate a hierarchical ordering of the clusters; the classification

of mudstones based on their grain size distribution characteristics is not thought to be structured

hierarchically and therefore the k-means approach is utilised.

The cluster analysis procedure forms groups or clusters of maximum homogeneity and thus acts to

minimise within-cluster variance. Initially the 162 cases, each described by the significant

components (i.e. eigenvalues >1) derived in the PCA analysis were clustered to form a tree by the

Increase in Sum of Squares (ISS) method (see Appendix 4.1), also known as Wards method.

Subsequently the 'best cut' and 'validation' options in ClustanGraphics were used to estimate the

best number of clusters for each dataset. Although the optimum number of clusters may differ

between each dataset, having the same number of clusters for each dataset greatly eases comparison

between the results obtained for each dataset. Therefore a compromise value best for all datasets was

judged to be the best approach to take. Furthermore, because one aim of this work is to assess the

degree of correspondence between rapidly classified grain size 'clusters' and the pore-throat network

(quantified here by r mean), a requirement of this study is that each cluster is sufficiently populated

to make such a judgement, thus precluding the definition of a large number of clusters per dataset.

As a guide to the optimum number of clusters to use the 'best cut' option in ClustanGraphics was

used. This ClustanGraphics module aims to assess how many clusters are present in a dataset by

applying a significance test to a series of fusion values in the data tree, the upper tail significance test

was utilised; all partitions up to the largest number of clusters significant at the 5% level are given

(Wishart, 2003a) i.e. the significance of decreasing the variance by increasing the number of clusters

by one was assessed.

Once the number of clusters was specified, each dataset was subjected to the FocalPoint k-means

clustering analysis procedure in ClustanGraphics to refine the cluster model by case relocation. The

case relocation procedure allows, at each iteration, every case to be compared with the clusters in the

current solution and are either left where they are, assigned to a new cluster or designated as

unclassified (i.e. an outlier) (Wishart, 2003b). A case will only be relocated if this reduces the

Euclidean Sum of Squares (ESS) (see Appendix 4.1) (Wishart, 2003b). In ClustanGraphics both the

k-means and FocalPoint routines use an 'exact relocation criteria' (termed exact assignment test by

Wishart, 2003a). A case i from cluster p is assigned to a new cluster if:
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ESSp + ESSq> ESSp_ i + ESSq_ i	(4.1)

where ESSp is the error sum of squares for cluster p, ESSq is the error sum of squares for cluster q,

ESSp_ i is the remaining error sum of squares, if case i is moved towards cluster q. ESSq_ i is the error

sum of squares, if case i is added to cluster q.

Each analysis performed 5000 iterations and the case order was randomised at the start of each

iteration as k-means analysis is particularly sensitive to case order (Wishart, 2003b). The starting

strategy utilised an initiation of random clusters, after which subsequent steps modify the partition to

reduce the sum of the distances for each case from the mean of the cluster to which it belongs. The

running means option was used, specifying that the cluster mean is re-calculated every time a case is

moved, rather than once every iteration (Wishart, 2003).

4.3.1 Cluster — Pore-throat-throat size distribution (= flow properties) linkage

To make an assessment of the relationship between the cluster groups defined and their flow

properties, the mean pore-throat-throat size was used as a simple parameter relating to the flow

properties of the sediment. The mean pore-throat-throat size is highly correlated with r10% - the

upper tenth percentile of the pore-throat-throat size distribution (Figure 4.4) commonly used to

estimate the critical capillary entry pressure of mudstones; furthermore the mean pore-throat-throat

size is used as input into porosity-permeability models (Figure 4.5) which have been found to be

superior to other model types based on grain size, surface area etc (cf. Yang and Aplin, 1998;

Dewhurst et al., 1999a, b).

The principal controls upon the flow properties of mudstones are porosity (compaction state) and

grain size distribution (cf. Yang and Aplin, 1998; Dewhurst et al., 1999a, b). By cross plotting the r

mean parameter against porosity the degree to which the flow properties of the samples placed into a

single group or cluster (accounting for grain size) behaved in a consistent manner was assessed.
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Figure 4.4. r mean [nm] versus r10% [nm] for mudstone data held at the University of Newcastle (porosity

range 4.2% to 36.4%; clay content range 11% - 90%); 'cuttings' samples were removed from this dataset.

Figure 4.5. r mean [nm] versus K, [m2] derived from the Yang and Aplin (1998) permeability model for

mudstone data held at the University of Newcastle (porosity range 4.2% to 36.4%; clay content range 11% -

90%).

4.4 Results

4.4.1 Principal Component Analysis

The number of principal components extracted varied for each of the four datasets considered in this

study. The scree plots derived from the PCA analysis of each of the datasets are shown in Figure 4.6.

A scree plot is a 2-dimensional plot with factors (components) on the x-axis and eigenvalues (an

eigenvalue Y for matrix X is the scalar multiple of c, the eigenvector of X, such that X c = Y c) on

the y-axis. Eigenvalues are derived from PCA and represent the variance accounted for by each

extracted component. In SPSS eigenvalues <1 are assumed to represent error variation and therefore

are disregarded.
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Figure 4.6. Scree plots derived from PCA analysis of: (a) the sedimentary statistic / parameter dataset, (b) the

whole phi bin grain distribution dataset, (c) the 0.2 phi bin grain distribution dataset, and (d) the combined

dataset.

From Figure 4.6 it can be seen for the sedimentary statistic and parameter data set only the first two

components have eigenvalues >1. Together these two components account for 73.28% of the total

variance (Table A4.2.1). For the whole phi bin dataset 3 components are extracted, accounting for

85.38% of the total variance (Table A4.2.2). A total of six factors were extracted accounting for

89.89% of the variance exhibited (Table A4.2.3). Finally, the combined dataset was reduced to 4

components which account for 84.07% of the variance exhibited by the dataset (Table A4.2.4).

4.4.2 k-means clustering

The significant components (i.e. eigenvalues >1) derived in the PCA analysis were clustered to form

a tree by ISS and a 'best cut' with validation test was performed in ClustanGraphics in order to

investigate which number of clusters best accounts for the variability of the dataset. Some of the

results of these analyses are shown in Figure 4.7, which plots the Cumulative Euclidean Sum of

Squares (CESS) (Appendix 4.1) as a function of the number of clusters. The sedimentary statistic

and parameter dataset shows the most dramatic drop in cumulative ESS as the cluster number is

increased, while the 0.2 phi bin dataset does not exhibit a distinct drop; the other two datasets are

intermediate between these two (Fig. 4.7). From this procedure it can be seen that between 6 and 8
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Figure 4.7. Validation of the 'best cut' analysis carried out in ClustanGraphics software, plotting Cumulative

Euclidean Sum of Squares versus cluster number for: (a) the sedimentary statistic / parameter dataset, (b) the

whole phi bin grain distribution dataset, (c) the 0.2 phi bin grain distribution dataset, and (d) the combined

dataset.

Focal point clustering was then carried out in order to find the most stable clustering grouping for

this dataset; 5000 iterations were performed, the cluster number being allowed to vary between 6 and

8. The statistics relating to the focal point cluster solution are given in Tables A4.3.1 — A4.3.4; the

reproducibility for the cluster solutions was consistently low for each of the datasets (<1 — 15% of

5000 iterative trial solutions). The author of the Clustan software expressed surprise at this given that

the dataset only comprised two to six variables, suggesting a bug in the software (D. Wishart, 2004,

pers. comm.); as Clustan are at present the only software vendors offering this type of analysis the

cluster solution with the lowest CESS was selected rather than the most reproducible one (Tables

A4.3.1 — A4.3.4).

A key aim here is to test the application of rapid techniques for classifying mudstone grain size data

and to integrate these with petrophysical and flow property data. No matter how accurate the cluster

analysis is, if the dataset is clustered on parameters which have a poor correspondence to

petrophysical and flow properties, the ultimate aim of this study is unattainable using these
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procedures. For these reasons, the accuracy, dependency and precision of the cluster analysis is of

secondary importance compared to the degree to which the grain size clusters correspond to the grain

size type and to the pore-throat network (represented by r mean). Emphasis will therefore be place

upon the interpretation of the cluster population.

4.4.3 Cluster Population

Each of the cluster analyses output a set of eight grain size clusters that correspond to the grain size

types identified in Chapter 2 to varying degrees. The sedimentary statistic and parameter dataset

showed the poorest correspondence to the pore-throat networks and grain size types (Figure 4.8); the

majority of the defined clusters correspond to multiple grain size types and the scatter on the porosity

— r mean cross plots is typically high. Only clusters 2 and 5 show any degree of constrained

correspondence to grain size types 1 / 2 and 5 / 6 respectively. This is reflected by the consistent

behaviour seen on the corresponding porosity — r mean cross plots which generally have a lower

degree of scatter relative to those for the other clusters (Figure 4.8).

The whole phi bin does slightly better identifying clusters composed of either Types 1 — 4 or Types 5

-6. Most groups are fairly heterogeneous, however cluster six is composed entirely of Type 5

samples and cluster eight is dominated by Type 1 samples. It is perhaps not surprising that these

grain size types represent the end members in the clay-silt mixing spectrum. The r mean — porosity

cross plots show reasonable trends with much of the scatter attributable to the inclusion of cuttings in

the dataset.

The 0.2 phi bin cluster result has a reasonable correspondence to the grain size types identified in

Chapter 1. Cluster one is composed entirely of Type 5 samples and cluster two, three, four, seven

and eight are dominated by grain size Types 2, 1, 6b, 6c and 4 respectively. Of the remaining

clusters, cluster five is composed of a mix of Types 1,2,3 and 4; the majority of cuttings samples are

present in this cluster which is reflected in the r mean — porosity cross plot. Cluster six is

predominantly comprised of a mix of Types 2 and 4.
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Figure 4.8. Results of the sedimentary statistic and parameter dataset PCA — cluster analysis, showing grain

size distributions, r mean — porosity cross plots and grain size type partitions for each cluster (Cl to C8).
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The combined dataset also produced satisfactory results; again a single cluster (three) was entirely

composed of Type 5 samples. Cluster four mainly comprised of a mix of Types 5,6b and 6c while

cluster eight was dominated by grain size Type 6b. Clusters one, two, five, and six were dominated

by grain size Types 1 and 4, 3, 4, and 1 respectively; Cluster seven is an approximately equal mix of

Types 1,2,3 and 4 with the majority of cuttings samples being present in this cluster which is

reflected in the high degree of scatter on the r mean — porosity cross plot. For this dataset the

segregation between Types 1 — 4 and 5 — 6 was less clear as Type 5 and Type 6b samples occurred in

Type 1 — 4 dominated clusters (see clusters seven, two and one).

Overall the numerical classification methodology used here differentiates grain size Types 1 — 4 from

grain size Types 5 — 6 irrespective of the grain size description on which the data is based. The

degree of correspondence between the clusters and the grain size types proposed in Chapter 2

increases as the complexity of the description increased. This is illustrated by the observation that the

sedimentary statistic and parameter dataset, described by 2 principal components, had the poorest

correspondence to the Chapter 2 grain size types; whereas the 0.2 phi bin data, described by 6

principal components had the best correspondence to the grain size typed defined in Chapter 2.

Although this is seemingly obvious, it does illustrate that more complex methods of describing

mudstone grain size data do not contain redundant data.

The degree to which r mean was correlated to porosity as a function of a specific cluster was

generally quantitatively poor. Tables 4.1 — 4.4 describe the cluster population in terms of the grain

size types proposed in Chapter 2 and the correlation coefficients obtained from regressing r mean as

a function of porosity for each of the datasets used. Generally the correlations are greatest when

Types 1 — 4 are segregated from Types 5 — 6 which is consistent with the behaviours observed in

Chapter 3. Common to all datasets are clusters composed of Types 1 — 4 which depict a low gradient

trend and a cluster or clusters composed of Types 5 — 6c which depict a higher gradient trend

illustrating the two modes of behaviour elucidated in Chapter 3. Departures from these trends are

typically associated with:

(a) the inclusion of Type 1 — 4 samples in a dominantly Type 5 — 6 cluster or vice verse,

(b) the inclusion of cuttings, and

(c) regional differences.

173



100

"01

1CO

as 10

0,

'CO

ye 10

01

100 	

# 10

1CO

01 10

,

too

ia

ry,	

01

01

01

CI

CO

101
Grain Si.. (mictord

C3

101
Grain Size [micron]

Cl

St	 I 	 10
Grain We PMMon)

0.1	 1	 10
Grain Sis• (micron)

CO

	

01 •	

	

0.1	 1	 10
Grain al. (micron)

Cl

01	 I	 10
Grain Sire [micron]

C B

	

Dl •1'	

	

01	 1	 10
Grain Sazo (micron)

100

103

100

103

100

100

100

E IX°

I

▪ 

to

10033

1000

103

10

10

10

I CCM

1030

1013

10

10000

1C08

5 100

10

100

10

005	 01

CI

02
Porosity

02

0	 000 01 015 02 025 03 035
Porosity

O 005	 01	 015	 02
Porosity

CA

O 01:5	 01	 015	 02
Porosity

los

a	 ari• • oy, 
01.

015
Poromity

Co

•

005	 01	 015	 112	 025	 03
Porosity

C7

03

025	 0

025

02	 025	 03

04

03

1
O 005	 01	 015	 02	 025

PoroOty

CS

O 005 01	 015	 0.2	 025 03	 035
Pormity

174

•01

• 060.07
oCEINS

„ on

; 04

1 02
0

roe

on

•cz 04

02

I 08

a

04

02

0

08

08

y4C4 _ 04

013

On

.C5 = 04

I02

0

taa

ja6

I 04

I02

5-
=
t 08

04

1 02

Cl

2	 3	 4	 5
020 1250

C2

1	 2	 3	 4	 5
0501725

03

2	 3	 4	 5
050 125.

C4

c5

1	 2	 3	 4	 5
0513 Type

CZ

C7

CO

2	 3	 4	 5
0001)31

1	 2	 3	 •	 5	 Cea	 Bc
030100.

2	 3	 4	 5	 Bb 00	 00

000 Typo

2	 3	 4	 5	 CC
030 Type

50	 Pc	 no

• CI

• C2

• C21

• CA

• cs

• 03

• 07

• C8
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mean — porosity cross plots and grain size type partitions for each cluster.
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— porosity cross plots and grain size type partitions for each cluster.
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Cluster Number GSD types porosity - r mean r2 Notes

1 1,2,4 0.72

2 1,2 0.21 Narrow porosity range

3 1,2,3,4 0.42 1 outlier removed from regression [spurious data]

4 1,2,3,4 0.56

5 5, 6b,6c 0.6

6 1,2,3,4, 6b 0.14 Inverse relationship i.e. as phi], r mean i
7 1,2,3,4, 5 0.03 Mixing framework and matrix supported samples?

8 3,4,5,6b,6c 0.38 Mixing framework and matrix supported samples?

Table 4.1. Sedimentary statistic and parameter dataset: distribution of the grain size types proposed

in Chapter 2 as a function of cluster and the corresponding r2 values for the porosity versus r mean

regression [note cuttings were removed from this dataset].

Cluster Number GSD types porosity - r mean r2 Notes

1 1,2,3 0.58 1 outlier removed from regression [spurious data]

2 4,5,6b,6c 0.51

3 5,6b,6c 0.3 Broad age range (Jurassic to Plio-Pleistocene)

4 1,2,3,4 0.55 1 outlier removed from regression [spurious data]

5 2,3,4,5 0.46 Mixing framework and matrix supported samples?

6 5 Porosity range too narrow for regression to be significant

7 1,2,4,6b 0.05 Mixing framework and matrix supported samples?

8 1,2,3,4 0.68 All IOTA except 1 ZETA area sample

Table 4.2. Whole phi bin dataset: distribution of the grain size types proposed in Chapter 2 as a

function of cluster and the corresponding r2 values for the porosity versus r mean regression [note

cuttings were removed from this dataset].

Cluster Number GSD types porosity - r mean r2 Notes

1 5 Porosity range too narrow for regression to be significant

2 1,2,3,4 0.67

3 1,3 0.71

4 4,5,6b,6c 0.46 Mixing framework and matrix supported samples?

5 1,2,3,4,5 0.26 Mixing framework and matrix supported samples?

6 1,2,3,4 0.06 Porosity range very narrow

7 5,6b.6c 0.71

8 1,2,3,4,5 0.001 Mixing framework and matrix supported samples?

Table 4.3. 0.2 phi bin dataset: distribution of the grain size types proposed in Chapter 2 as a function

of cluster and the corresponding r2 values for the porosity versus r mean regression [note cuttings

were removed from this dataset].
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Cluster Number GSD types porosity - r mean r2 Notes

1 1,2,3,4,6b 0.49

2 2,3,4,6b 0.49

3 5 Porosity range too narrow for regression to be significant

4 5,6b,6c 0.49

5 1,2,3,4 0.63 1 outlier removed from regression [spurious data]

6 1,2,4,6b 0.52 1 outlier removed from regression

7 1,2,3,4,5 0.34

8 6b 0.92

Table 4.4. Combined dataset: distribution of the grain size types proposed in Chapter 2 as a function

of cluster and the corresponding r2 values for the porosity versus r mean regression [note cuttings

were removed from this dataset].

4.5 Discussion

The results presented here show that the cluster analysis, irrespective of the dataset used, generally

segregates grain size Types 1 — 4 from Types 5 — 6, effectively separating those grain size types with

low capillary seal risk from those with appreciable capillary seal risk (Chapter 3). The cluster

analysis routine was typically unable to partition types 1, 2, 3 and 4, even though Types 1 and 2 have

a fully flocculated form while Types 3 and 4 comprise floc-silt mixtures (Chapter 2). This indicates

the rather subtle differences in the grain size distributions of type 1 — 4 mudstones. However,

differentiation of Type 1 — 4 mudstones is probably of minor importance in terms of flow property

modelling and seal prediction as these grain size types typically exhibit very similar pore-throat

network properties (see Chapter 3 and Figures 3.7 — 3.10). The whole phi bin, 0.2 phi bin and

combined datasets all isolated the bulk of the Type 5 samples into a single cluster, suggesting that

these grain size types exhibit some fundamental differences from the others analysed in this study.

Similarly, these datasets also all gathered the majority of the cuttings into a single cluster (cluster 5

in the whole phi and 0.2 phi bin datasets and cluster 7 in the combined dataset).

It is interesting that in the case of the 0.2 phi bin dataset, types 1, 2, 5 and even types 6b and 6c were

differentiated. Type 6b and Type 6c were loosely defined on the basis of the continuity between the

0-63um component and the sand (>63).un) component — this definition was used as it was

conjectured that when a significant coarse silt (>10iim) component was present to 'bridge' between

the sand and fine silt — clay components the probability of creating and maintaining an effective
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framework or skeleton is increased. Type 6b samples had 'discontinuous' distributions in that it was

interpreted that the grain size distribution was bi-modal with a significant 'gap between the silt and

sand components; conversely Type 6c samples were interpreted as having continuous grain size

distributions. On this basis Type 6b samples should show greater affinity with Type 3 and 4 samples

and Type 6c samples should show greater affinity to Type 5 samples. This is borne out to some

degree by clusters 4 and 7 respectively (Figure 4.10). Differentiating such grain size types can

potentially have a significant impact on the geometrical arrangement of the grains (sedimentary

fabric) and upon the flow properties; these observations and ideas are discussed in Chapters 3 and 5.

The results presented in Chapter 3 illustrate that only grain size Types 5 and 6 have the potential to

maintain relatively open, broad pore-throat throat size distributions below porosities of —20%, so that

only they constitute a capillary seal risk. Here, the possibility of segregating these grain size types

from other mudstones (i.e. Types 1 — 4) using rapid data reduction and numerical classification

techniques has been proven on a number of differing grain size datasets. If the capillary sealing

behaviour of mudstones can be placed into a bi-partite partition of 'good' and 'bad' capillary seals,

only 2 grain size clusters may be required. Further investigations would be required to assess the

degree to which the segregation between grain size types 1 —4 and 5 — 6 would be maintained if only

two cluster groups were allowed. Furthermore, such a bi-partite partition would not contain enough

information with which to make subtle interpretations that can be made in the detailed analysis of

mudstone grain size distributions as presented in Chapter 2 when PCA-k-means cluster groups are

defined using high resolution frequency distribution data, such as the 0.2 phi bin dataset.

4.5.1 Relationship between clusters and petrophysical data

In this section the relationship between the clusters and their corresponding wireline log data is

investigated. The petrophysical data relating to the samples in each of the clusters identified were

investigated with regard to assessing the degree to which they could be identified purely from their

petrophysical response. The aim was to assess the extent to which grain size data (i.e. the solid

matrix) corresponds to the petrophysical response; because most logs respond to both the solid

matrix and pore-throat network and its filling fluid the wireline logs were transformed in an attempt

to remove the influence of the pore-throat network (cf. Yang et al., (2004). The petrophysical data

179



(4.4)

assessed included the gamma ray, and the m log, the D log and the Atrn log defined in Yang et al.,

(2004):

1). m log: The m log is derived from the resistivity and density logs, m is the coefficient in the

Archies equation and is dependent upon the rock type and texture (Rider, 1996):

F =
1

Om

	 (4.2)

where F is the formation resisitivity factor and 0 is the porosity. The formation resisitivity factor is

defined as:

F=
	

(4.3)
Ru,

where Ro is the overall rock resistivity (ohm m2 m-1 ), derived from the deep resistivity log, and R,„ is

the resistivity of the formation fluid, which is assumed to be 0.1 ohm m 2 m-1 . Combining equations

(2) and (3) gives the equation used to calculate m:

2). D log. The D log is derived from the sonic and resistivity logs and is based on the work of Meyer

and Nederlof (1984) who used a sonic-resistivity cross-plot to identify petroleum source rocks.

Meyer and Nederlof (1984) described a parameter, D, which is related to transit time and resistivity

as:

D = —6.906+ 3.186log(At)+ 0.487(log(R 75 )	 (4.5)

Where R75 is resistivity at 75°F (ohm m2 m-1 ) and At is transit time (its ft-1). R75 is derived from the

measured resistivity at the corresponding temperature, T (°F):

180



0	 1	 2	 3	 4	 5
	

6

Cluster

02

0.1

0
.	 -0.1

? -0.2
P -0.3

-0.4
-0.5

-0.6
0

.

.

. ,

. 1

i•

i I
•

61	 2	 3	 4	 5

Cluster

I

D T+7 
R75 = .a.,

82

3). Atn, log. The Atm log is derived from the sonic and density logs. At n, is the transit time of the rock

matrix and can be calculated from Wyllie et aL,'s (1956) relationship between measured velocity and

porosity. Their equation can be arranged as:

At = 

At — 0Atf

m	 1-0

where Atf is the transit time of the interstitial fluid, taken here as 200 vs ft-1.

In Figures 4.12 and 4.13 the range of petrophysical properties for each of the clusters defined for the

0.2 phi bin and combined datasets are presented. Inspection of these figures clearly shows that there

is a significant degree of overlap between the clusters and that no one petrophysical parameter would

facilitate discrimination of these mudstone GSD type proxies.
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Figure 4.12. Plots illustrating the range of petrophysical responses as a function of cluster derived from the

0.2 phi bin dataset for: (a) Gamma Ray log (APU), (b) m log, (c) D log, and (d) the Atm log. See Figure 4.10 for

the grain size distribution and r mean — porosity cross plots corresponding to each cluster. Clusters 1, 4 and 7

are dominantly composed of type 5 — 6 samples.
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Figure 4.13. Plots illustrating the range of petrophysical responses as a function of cluster derived from the

combined dataset for: (a) Gamma Ray log (APU), (b) m log, (c) D log, and (d) the Atm log. See Figure 4.11 for

the grain size distribution and r mean — porosity cross plots corresponding to each cluster. Clusters 3, 4 and 8

are dominantly composed of Type 5 — 6 samples.

The reasons behind the poor discrimination between what are distinct mudstone lithologies are

thought to be three-fold:

1) Scaling issues. The analyses upon which the mudstone typing carried out in Chapter 1 were

based on samples of the order 1 cm 3 in size whereas geophysical logging tools investigate

volumes upwards of 50 cm 3 (Rider, 1996) leading to loss in correspondence between tool

response and lithology in the presence of any sedimentological heterogeneity.

2) Regional effects. The approach taken in this study has been broadly 'global' in that location

has not been explicitly considered. It is apparent that such an approach fails to extend to

defining petrophysically different ranges in a global sense. This is perhaps unsurprising given

the common requirement to perform regional calibration of petrophysical data prior to

interpretation (for example finding the 'shale baseline'). It is interesting to note that the

gamma ray (Figure 4.12a and 4.13a) fails to discriminate the clusters defined and therefore

does not apparently relate to mudstone lithology, as is commonly assumed. These results are

in agreement with Yang et a!., 's (2004) observations. This result is to be expected given that
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the gamma ray log measures radioactivity which is strongly influenced by mineralogy rather

than grain size (Rider, 1996).

3) Porosity — Lithology matrix. The dataset is unbalanced in terms of porosity ('compaction')

and lithology (and typically in terms of geological age). The finest samples typically have the

highest porosities (and are thus geologically youngest) and vice versa (see Figure 4.14); thus

despite efforts made in transforming the logs to remove the effect of porosity, effects

associated with geological age are likely to effect tool response.

Figure 4.14. Cross plot illustrating the 'lithology (quantified by clay content) — porosity' matrix and the

imbalance present in the dataset used in this study.

In his discussion on the challenges facing mudstone sedimentologists, Bohacs (1998) posed the

following key questions: (a) 'What are the characteristic responses of mudrock environments on

conventional well logs?' and (b) 'Is depositional environment the major control on well-log response

— or is it sediment provenance, diagenetic history, tectonic setting?' From these results it would seem

that log responses are unlikely to relate to specific depositional settings in a global sense. Similarly,

this work indicates that correlating grain size to a single log response would be at the very least

problematic. These results stress that multi-variate techniques which are calibrated to regional

settings represent the best approach to discriminating mudstone lithologies and hence depositional

environments (cf. Yang et al., 2004). Further work, particularly well-constrained laboratory-based

investigations upon well characterised mudstone samples, would greatly enhance efforts to link

mudstone sedimentology to petrophysics.
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4.6 Potential application — defining mudstone 'flow' facies as building blocks in

geological models

It is a commonly stated fact that the sedimentary fill of the majority of sedimentary basins is

dominated by fine grained sediments (e.g. Aplin et al., 1999; Schieber et al., 1998). Therefore

attempts to model fluid flow within such environments require a quantitative understanding of these

sediment types. Current exploration efforts are largely focussed in deep water, mud rich settings

where the reservoirs are embedded in a three-dimensional, low permeability matrix — it is both the

interconnectedness of these high- and low-permeability facies (Fogg, 1990) and the bulk properties

of the low-permeability sections that is critical to the understanding of large scale fluid flow

phenomena. Here, the bulk properties of the low-permeability matrix are considered. In this work

flow and petrophysical properties refer to different aspects of a mudstone's physical properties,

"flow properties" embraces features such as porosity, permeability, and capillarity used as inputs to

fluid flow models; "petrophysical properties" is used to relate the response of a mudstone to the

geophysical techniques used in wireline logging. In reservoir models the flow unit concept provides

the framework within which sedimentologically defined architectural elements are integrated with

petrophysical (flow) properties to create fluid flow model layers. The flow unit concept was

introduced by Ebanks (1987), who defined a flow unit as a volume of rock within which the

geological (texture, fabric etc), petrophysical and flow properties (porosity, permeability, capillarity)

that affect fluid flow are internally consistent and predictably different from the properties of other

rock volumes. Flow units are characterised by Corbett (1997) as:

1) Having similar petrophysical and flow properties (particularly porosity and permeability)

2) being correlatable between wells

The basic building blocks of reservoir models thus comprise geobodies or architectural units (i.e.

stratal, genetic) (cf. Corbett, 1997) which require quantitative data in the form of length scales and

geometries. There are a number of difficulties in applying similar concepts to basin models and there

are also some important differences between reservoir and basin models that need to be addressed.

The fundamental difference between reservoir and basin models is the timescales involved; reservoir

models are typically run over their production lifecycles (typically 10 to 20 years); due to the short

time scales the flow properties of the sediments involved, with the exception of relative permeability,

are static — they generally do not change with time, accept in stress sensitive reservoirs (e.g. chalk);

the only parameters to change over time are phase and saturation (which of course effect relative
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permeability). In basin modelling geological time scales are involved and therefore not only do

saturations and phases change, but also the physical properties of the sediments being modelled.

Furthermore, this difference in timescales reflects the differences in the nature and rates of fluid flow

phenomenon. Work carried out in the SMACCERS 1 project showed that at realistic oil feeding rates

(in mudstones) flow is highly focussed and is controlled by the ratio between buoyancy and capillary

forces. In sandstones flow paths become less focussed as the flow regime changes from capillary

dominated to viscous dominated (Carruthers, 1998). This work showed that it is the capillary

pressure field which ultimately controls migration trajectories in fine-grained sediments. The rates of

migration, despite being very low, do vary and are important if dynamic models are to be produced

(i.e. if dynamic leakage assessing charge versus leakage for differing trap volumes are to be

investigated). Also the capillary pressure field and permeability field are related — both are a function

of a sediment's (or flow unit's) pore-throat network and are not static — both will reduce with

increasing compaction. Furthermore, if hydrodynamic effects such as overpressure are to be included

in modelling studies (which may have significant impact on migration trajectories which invasion

percolation based models will miss) then (relative) permeabilities are essential model inputs.

The differences described above do not preclude the application of a flow facies concept in basin

model applications. The way that mudstones compact and the range of flow properties that they

exhibit is a function of their grain size distribution (Aplin et al., 1995; Yang and Aplin, 1998;

Dewhurst et al., 1999b). Therefore facies types delimited in terms of their grain size distribution

should have similar flow properties which should evolve with mechanical compaction in a similar

fashion. As noted above, establishing flow units within basin models is complicated by a lack of data

both in terms of quantitative data describing the geometries and length scales of mudstone units (cf.

Bohacs, 1998) and, until recently, in terms of their physical properties. The problems facing basin

modellers have been discussed on numerous occasions (Aplin et al., 1999; Duppenbecker and Iliffe

1998); the two most commonly cited issues are the lack of information regarding the geometrical

arrangements of various lithologies and facies on the basin scale; and the lack of relevant data for

mudstones which dominate the basin fill. Advances in 3D seismic, coupled with advances in our

understanding of deep marine sedimentary systems offers an opportunity to begin to address these

problems in a truly three dimensional data volume.

1 An EU sponsored study aimed towards an increased understanding of petroleum migration through fine-grained rock
sequences.
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4.7 Conclusions

The work presented in this study has illustrated that the PCA — k means technique utilised in this

study generally differentiates grain size Types 1 — 4 from grain size Types 5 — 6 irrespective of the

description used. The entirely flocculated grain size Types 1 and 2 are not generally differentiated

from the floc-silt mixtures of grain size Types 3 and 4. The coarser grain size Types 5 and 6 are in

some cases differentiated, but are grouped more often than not.

The segregation between grain size Types 1 — 4 and 5 — 6 was particularly good, especially for the

whole phi bin, 0.2 phi bin and combined datasets. In general the degree of partitioning within these

two groups improved with the increasing information content of the dataset used; the 0.2 phi bin

dataset proved to be most effective at producing clusters with the best correspondence to the grain

size types (Table 4.3). In contrast, the combined dataset proved to be most effective at producing

clusters with the highest degree of correlation between porosity and r mean (Table 4.4). The

sedimentary statistic and parameter dataset proved to have the poorest correspondence to both the

grain size types and r mean values (see Table 4.1). Therefore the PCA-k means technique should be

applied to the highest resolution data available. Further work would be required to investigate which

dataset out of the 0.2 phi bin and combined dataset is best at discriminating mudstone grain size

types. Combining sedimentary statistic data with frequency data at the 0.2 phi bin resolution, (rather

than at 1 phi bin as in the combined dataset used here) may lead to further improvement in the

defined clusters.

While the 'global' approach taken in this study seemed to work well in discriminating mudstones

into similar grain size types, which exhibit similar ranges of flow properties (such as permeability,

critical capillary entry pressure), it is apparent that it cannot be extended to petrophysical properties.

This result poses a problem in the practical application of this work, although it is believed that with

regional calibration, a similar technique could meet with success.

Overall this study provides a technique with which to rapidly understand, group and model mudstone

grain size data and relate it to flow properties. It is ultimately suited to undertaking case studies

within areas with significant data coverage and would potentially allow for improved capillary seal

prediction and risking.
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Chapter 5 Investigation of the statistical distribution of pore-throat network

parameters of mudstones as a function of both lithology and porosity

5.0 Introduction

At present the understanding and quantification of the variability of the pore-throat size

distributions of mudstones is an area of considerable ignorance. The pore-throat size distribution

of a mudstone is the principal control upon fluid flow properties, such as permeability (e.g. Yang

and Aplin, 1998) and has been shown to be strongly influenced by both porosity and grain size

1 distribution (e.g. Dewhurst et al., 1999a, b). The pore-throat size distribution as derived from an

MICP experiment is commonly reduced to single numerical value such as the mean pore-throat

size (herein termed r mean) or some percentile giving an approximation of the values contained

within either the lower or upper tails of the pore-throat size distribution. Such pore-throat

network parameterizations are typically used to simply describe the pore-throat size distribution,

for input into permeability models (e.g. Yang and Aplin, 1998), and for estimating capillary entry

pressure (e.g. Schowalter, 1979; SchlOmer and Kroos, 1997). In this chapter exploratory data

analysis of two numerical descriptions of the pore-throat size distribution r mean and r10%, is

performed using standard statistical techniques. The availability of multiple samples of similar

lithology and at a similar level of porosity provides the opportunity to make an initial assessment

of variability of such parameters, if lithology and porosity are accepted as the principal controls

of a mudstones pore-throat size distribution. Such analysis is currently missing from the

literature; this is a serious omission given that it is of vital importance if the sensitivity and the

level of uncertainty associated with the prediction of properties strongly correlated with pore-

throat size distribution (such as permeability and capillary entry pressure) are to be quantified.

Why do we want to test distribution type? In reservoir modeling it is nearly always the case that

sufficient data have been collected such that histogram transformation procedures alleviate the

need for the data to follow a parametric distribution (Deutsch, 2002). Within basin-scale fluid

flow models there may be very sparse data to work with. Therefore model population strategies,

particularly when downscaling, typically resort to some statistical distribution from which grid

cells may be populated. Two parameters used to describe the pore-throat size distribution, the

mean pore-throat size and the pore-throat size at the ninetieth percentile of the cumulative pore-
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throat size distribution (r10%), are investigated with regard to their respective correspondence to

normal and log-normal distributions at constant porosity and 'support mechanism' controlled by

grain size distribution (Chapter 3).

Greater understanding of how the pore-throat size distributions and their parameterizations vary

would provide a greater understanding of the processes operating when mudstones are subjected

to burial. Furthering our understanding of these processes would have implications for:

(a) the prediction of fluid flow properties of mudstones;

(b) application of petroleum system analysis involving two phase flow through mudstones

1
	 sequences.

In Chapter 2 of this thesis six mudstone grain size distribution 'types' (referred to as GSD types

from hereon), were proposed, based upon analysis of the moment statistic vakes, apcbcation of

the Kranck grain size model, and observations made from thin sections. Analysis of the influence

of the grain size distribution, and specifically the GSD type, on the nature of the pore-throat size

distribution and its evolution with decreasing porosity illustrated that Types ) - 4 behaved as

matrix supported sediments, whereas Types 5 and 6 exhibited framework supported behaviour

(Chapter 3). Below porosities of 30% Types 1 - 4 (typically with clay contents >40%) had

unimodal pore-throat throat size distributions, considered to represent textural porosity within

and between clay flocs and silt grains. These distributions were, almost. tntixtl tom-posed of

pore-throats with throat radii <100nm; modal values decreased from -50urn to <Want with

decreasing porosity. Grain size Types 5 - 6 typically had clay contents <40% and exhibited

bimodal pore-throat throat size distributions, a smaller mode comparable to the clay fabric mode

characteristic of Types 1 - 4 and a second mode comprising pore-throats with radii - two orders

of magnitude larger than the clay fabric mode. This second mode was seen to decrease both in

size and in volume with decreasing porosity and is eventually lost, producing a unimodal pore-

throat size distribution similar to those of Types 1 - 4. It was suggested in Chapter 3 that the

pore-throat size distributions of GSD Types 1 - 4 are controlled by the clay fabric and thus relate

to a matrix-supported sediment. Conversely the pore-throat size distributions of GSD types 5 and

6 are controlled by both the clay fabric and the structure of the silt and/or sand grains and

therefore relate to a framework-supported sediment.
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Attempts to derive functions which predict properties of mudstones typically rely on a regression

based approach where the property in question (permeability, critical capillary entry pressure etc)

is regressed as function of porosity and some lithological parameter such as clay content (e.g.

Hildenbrand and Urai, 2003). This technique has been used with some success, but has

disregarded the important statistical principle that a point estimate, an interval estimate and a

confidence level must be added if the prediction is to be successfully applied. With regard to

modeling petrophysical properties such as capillary entry pressure (CEP) and permeability within

numerical fluid flow models it is desirable to understand and quantify the statistical distributions

from which these parameters are drawn, as functions of both lithology and porosity (as these two

variables are important controls upon the pore-throat size distributions of mudstone's (cf.

Dewhurst et al., 1999a, b). Furthermore, data analysis techniques such the 'least squares'

techniques used in regression assume that data are normally distributed (Kirkup, 2002, p.128,

Corbett, 1997). Therefore an attempt to understand which transforms may be applied to result in

normality is also of interest.

The hypothesis that mudstones exhibit either a matrix or framework controlled compaction

behaviour is tested by analysing the distribution of pore-throat network parameters as a function

of porosity and the pore-throat network support type. The assessment of the distribution type

represented by the pore-throat network parameters is coupled with statistical tests of variability

and sample support commonly applied in a reservoir engineering context (e.g. Jensen et al.,

1997). This is done in an attempt to quantify the heterogeneity of the data and to provide

reassurance that the number of samples is adequate to accurately quantify the variability

exhibited.

The main aim here is thus to test the hypothesis that at r mean and r10% within a 5% porosity bin

are:

a. Normally distributed

b. Log-Normally distributed

For two distinct datasets, comprising of a matrix-supported mudstone dataset and a framework-

supported mudstone dataset.
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5.1. Samples and methods

5.1.1 Sample selection

An attempt to replicate the grain size classification framework proposed in Chapter 2 using a

combined PCA — k means classification approach illustrated that Types 1 — 4 were generally

grouped together, as were Types 5 and 6. This illustrated numerically that GSD Types 1 —4 and 5

— 6 are essentially indistinguishable in terms of the classification procedure and grain size

parameterizations used (Chapter 4).

When data is partitioned the aim is to reduce variability allowing improved understanding of the

controls upon the property of interest. The hypothesis proposed in this work is that mudstone

pore-throat size distributions and their evolution with increasing compaction exhibits two modes

of behaviour dependent upon the nature of the grain size distribution (Dewhurst et al., 1999a).

The grain size control upon mudstone pore-throat networks is considered to be reflected

principally in how the pore-throats are constructed (which is manifested in the size distribution of

the pore-throats). In one mode the clay fabric (i.e. the spatial arrangement and structure of the

clay particles <10[tm) forms the load-bearing phase, whilst in the second mode both the clay

fabric and the silt and/or sand grains forms a load-bearing framework (Chapter 3). Similar

suggestions have been made in previous studies of artificial slurries (Fies, 1992) and natural

mudstones (Dewhurst et al., 1999a); the clay content at which the mode of behaviour is thought

to switch is thought to lie between 30 — 40% (Fies, 1992; Dewhurst et al., 1999a). Work on

artificial slurries performed by Fies (1992) showed that at clay contents below 30% the modal

pore-throat size was directly related to the size of the silt material indicating that the pore-throat

network was intimately related to the framework of silt grains (Figure 5.1). As clay contents

increased above 30% the size of the modal pore-throat size steadily decreased as the clay sized

material began to interact with the framework reflecting the transition from a framework- to

matrix-supported regime (Figure 5.1).

In this chapter the sample set is separated into two groups: one is comprised of GSD Types 1 —4,

hypothesized to have a matrix-load bearing structure; and a second comprising GSD Types 5 and
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6, hypothesized to have a framework-load bearing structure. This division yields a clay-rich

group (clay >40%) termed Group 1 and a silt/sand-rich group (clay <40%) termed Group 2. The

clear division of the grain size properties of the groups is shown in Figure 5.2, and is most

obvious when the Zeta Area samples are removed owing to the fact that these samples are

typically very rich in fine silt (2 — 1011m) (see Figure 5.2b, d). The division between these two

groups was made to reflect both observations made by Fies (1992) and the observations made on

the nature of the grain size distributions (Chapters 2 and 4) and the grain size — pore-throat size

relationship (Chapter 3).

Figure 5.1. Lacunar pore-throat (LP) mode obtained from a volumetric pore-throat density distribution

curve as a function of clay content for silt components ranging in diameter from 4 - 400pm. At any one

clay content the size of the LP mode is dependent upon the size of the silt component — with

approximately an order of magnitude difference between a silt component size of 20pm to one at 4pm. For

the sand size material LP remains virtually constant irrespective of clay content; however for the silt-clay

mixtures, once clay contents exceed 30%, the LP mode begins to be influenced by the clay sized

particles, resulting in the LP reducing as a function of clay content.

To account for the effect of compaction on pore-throat size properties the two groups were

divided into 5-10%, 10-15%, 15-20% and 20-25% porosity bins where possible and the

distribution of two pore-throat network parameters assessed. The parameters used are the r mean
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and r10%, reflecting the mean pore-throat size and the pore-throat radius at the 90 th percentile of

the relative pore-throat size distribution which is commonly assumed to give the critical threshold

pressure from which one estimates seal capacity (e.g. Schowalter, 1979). If these pore network

parameters can be shown to be drawn from distinct distributions when constrained by porosity

and support regime (matrix- versus framework-supported) then the evidence that these two

modes of behaviour are characteristic of the compaction behaviour of mudstones will be

strengthened.

Gp. 1

Figure 5.2. Grain size characteristics of the GSD types proposed in Chapter 2 (a) % clay, (b) % clay with

the Zeta Area samples removed (c) % sortable silt and (d) °/0 sortable silt with the Zeta Area samples

removed.
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5.2 Methods

5.2.2 Pore-throat size distribution

Pore-throat throat size distributions were measured by the mercury injection capillary pressure

(MICP) technique using a Micrometrics porosimeter. A description of the technique along with a

discussion of its advantages and disadvantages is given in Chapter 3.

5.2.1 Statistical analysis

A number of statistical terms are used within this chapter, here they are briefly explained: Testing

hypotheses is an essential part of statistical inference, to formulate such a test, usually some

theory has been put forward, either because it is believed to be true or because it is to be used as a

basis for argument, but has not been proved; here, the suggestions that r mean and r10% are

normally tested or that they are log-normally distributed are tested independently. Thus the null

hypothesis is that the data are normally (or log-normally) distributed. A test statistic is a quantity

calculated from the sample of data. The value of the test is used to decide whether or not the null

hypothesis should be rejected in our hypothesis test. The critical value(s) for a hypothesis test is

the threshold to which the value of the test statistic in a sample is compared to determine whether

or not the null hypothesis is rejected.

The assumption of normality was tested on both untransformed and log-transformed using the

graphical analysis, Anderson-Darling and Ryan-Joiner tests. Due to the small sample numbers (n

typically <20) graphical methods were perhaps the most robust method with which to test the

assumption of normality. Probability plots and histograms were derived allowing visual

inspection of the data. The morphology of the probability plots can be used to interpret the nature

of the dataset; Jensen et al., (1997) proposed a series of 'thumb print' forms to aid the

interpretation of these plots (Figure 5.4). Bottom truncation results from a situation where the

smallest values in the parent population are under sampled; similarly, top truncation results from

a situation where the largest values in the parent population are under sampled. Distinct breaks or
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changes in slope on the plots result from the presence of two parent populations that may or may

not intersect (cf. Figure 5.4).

The details of the Anderson-Darling (AD) and Ryan-Joiner (RJ) tests and their interpretation are

described in Appendices A5.1 and A52 respectively. Although the basis of the two tests are

different both calculate a test statistic, in the AD case the test statistic has to be lower than the

critical value (Appendix A5.1); in the RJ case the test statistic has to exceed the critical value

(Appendix A5.2). The test statistic for both tests may be used to test the null hypothesis (i.e. that

the data have been drawn from a normal distribution). In both tests a p-value is also calculated

which allows a confidence to be assigned to the result of the statistical test. The interpretation in

relation to the p-values obtained from the statistical test is given in Table 5.1. It should be noted

that with regression the interpretation of p-values is not equivalent to that when they are obtained

from normality tests. Within regression the derived p-values relate to the probability that the

correlation obtained is coincidental if x and y are not in any related. Thus the lower the p-value

the stronger the evidence that x and y are related by some underlying process allowing the

possibility that the correlation is coincidental to be rejected.

p-value
Interpretation

p >0.1 No evidence against the null hypothesis. The data appear to be consistent with the null hypothesis

0.05 <p <0.1 Weak evidence against the null hypothesis in favour of the alternative

0.01 < p <0.05 Moderate evidence against the null hypothesis in favour of the alternative

0.001 <p <0.01 Strong evidence against the null hypothesis in favour of the alternative

p <0.001 Very strong evidence against the null hypothesis in favour of the alternative

Table 5.1. Interpretation of the p-values obtained when perform the AD and RJ test for normality;

in both cases the null hypothesis is that the data have been drawn from a normal distribution (or

log normal if the data have been transformed).
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Figure 5.4. Thumb print cumulative distribution function plot morphologies — which can be used in the

interpretation of probability plots (x = probability; F = variable) (From Jensen eta!., 1997, Figure 4.18).

5.2.2 Variability measures and sample support

In any statistical examination it is important to have an assessment of whether or not your sample

size is sufficient to quantify the population you wish to describe. An assessment of the variability

and data support (i.e. the number of samples in relation to the exhibited variability) of the two

groups identified in this study with regard to their pore-throat network properties was carried out

using the co-efficient of variation (C,) and N-zero (No) methods (after Hurst and Rosvoll, 1990;

Corbett and Jensen (1992); Jensen et al., (1997).

The co-efficient of variation (Cy) is a normalised standard deviation:
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(5.1)

(5.2)

Fa—r(k)
C=

v	 E(k)

and can be estimated by:

C = 
a

_
(k)

v	 k

_
where var(k) and E(k) are the variance and expectation of k (always estimated!), c(k) and k are

the standard deviation and mean of the sample population (Ringrose, 2002). When calculating Cv

a decision has to be made on which mean to use: here, the arithmetic mean was discounted due to

it is sensitive to high values, which were commonly present in this dataset due to the inclusion of

cutting data. The harmonic mean was preferred over the geometric mean as it is considered to be

appropriate for bed normal (vertical) flow (cf. Corbett, 1997) thought to be the predominant form

of flow in mudstones (cf. England et al., 1987). Due to the small sample numbers typically

involved in each analysis the standard deviation was multiplied by a correction factor (Corbett,

1997):

[

1+ 	 1 	1
4(n —1)

The interpretation of C,, values can be guided by the classification proposed by Corbett and

Jensen (1992) who used a wide range of petroleum reservoir heterogeneity data to infer that:

• C„ <0.5 implies an effectively homogeneous dataset

• 0.5 < C,, >1.0 implies a heterogeneous dataset

• Cv >1 implies a very heterogeneous dataset

The 1\10 measure gives an estimate of the sample number required to give an estimate of the true

mean with a 20% tolerance:

(5.3)
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L	 P
(5.4a)

No = (10C,) 2	(5.4b)

where t is the critical t-value (taken from standard statistical tables) and varies with size of

sample and confidence level. All t-values were taken at the 0.05 level (95%) (note t is sensitive

when n is small i.e. varies significantly with low sample numbers); C, is the coefficient of

variation determined from (Eq. 5.2) and P is the % tolerance taken as 20% in this case (Corbett

and Jensen, 1992). For large datasets Eq. 5.4a can be approximated by 5.4b (Corbett, 1997). If

the actual sample number is significantly less than No then the sample set is insufficient, given

the variability exhibited, to be useful statistically (Corbett, 1997). The No estimate was intended

originally to maximise sampling programs so that they fully capture the heterogeneity (with

effective sample spacing, etc) while remaining cost effective; here it is simply used as a guide to

the level of confidence that can be placed in the interpretations and statistics of the datasets

presented below.

5.3 Results

The probability plots and related histograms for each of the data partitions are presented in

Figures 5.6 — 5.30; the results of the Anderson-Darling and Ryan-Joiner normality tests are

presented in Tables 5.2 and 5.5 and the associated Ryan-Joiner probabibty elots are given )/7

Appendix A5.4. The numerical normality tests may not be particularly robust due to the low

sample numbers present in most of the porosity 'bins' analysed; the Ryan-Joiner test is more

reliable when sample numbers are small (Ryan and Joiner, 1976). The results of the normality

tests will be unreliable where data are bi-modal.

5.3.1 Group 1 (matrix-supported samples — GSD Types 1 — 4).

The null hypothesis for both the theory that r mean and r10% are normally distributed and the

theory that r mean and r10% are log-normally distributed would be rejected on the basis of the
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results of the data analysis for the 15 — 20%, 20 — 25% and 20 — 25% Iota Area datasets. This

rejection is based on the appearance of probability plots and histograms (Figures 5.10— 11, 5.12

— 13 and 5.14 — 15); furthermore, these data also failed the test criteria of both the AD and RJ

tests strengthening the case to reject the null hypothesis for both theories. This result is believed

to be due to the fact that these datasets appear to be bi-modal.

For the 15 - 20% dataset the morphology of the probability plot indicates the presence of two

intersecting parent populations (compare Fig. 5.4 and Fig. 5.10); the histograms were also clearly

bi-modal (Fig. 5.11). Consideration of the datasets in terms of location, sample type, temperature,

and % TOC did not reveal any obvious reason why two populations should be present (see Table

A5.3.3 in Appendix A5.3). Both parameters are heterogeneous and sampled insufficiently to

quantify the exhibited variability according to the C v and No estimates (Table 5.2). The data is

drawn dominantly from the Iota Area and is comprised of a mix of all 4 GSD Types, mainly in

the form of side wall core samples (Fig. 5.5).

The 20 - 25% dataset exhibits similar characteristics to the 15 - 20% dataset; again the

morphology of the probability plot indicates the presence of two intersecting parent populations

(compare Figs. 5.4 and Fig. 5.12) and the histograms are bi-modal (Fig. 5.13). The rejection of

the null hypothesis as indicated by the AD and RJ tests reflects the bi-modal nature of the dataset.

Analysis of the porosity values, GSD Types and sample types with regard to the r mean and r10%

values did not reveal any obvious reason why the two populations may be present. It was evident

that cuttings have disproportionately larger r mean and r10% values relative to side wall core

samples (Figure 5.12; Table A5.3.4) possibly reflecting the more heterogeneous nature of these

sample types (i.e. they sample a much larger volume of rock).

The 20 - 25% dataset included 23 side wall core samples from a single Iota Area well. These

samples were used to form a new group and were plotted as probability plots and histograms

(Fig. 5.14 and Fig. 5.15) and were subjected to AD and RJ tests (Appendices A5.1 and A5.2, Fig.

A5.5). The morphology of the probability plots and the histograms revealed that the data were

still bi-modal. The AD and RJ statistics and their associated p-values indicated that this dataset is

poorly described by both normal and log normal distributions (Table 5.2 and Appendix A5.4, Fig.
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A5.4.5) despite these data being drawn from a single well and thus being particularly well

constrained in terms of thermal effects.

The results of the test statistics (Table 5.2) and inspection of the probability plots and histograms

(Figures 5.8 and 5.9) are ambiguous and no clear result is apparent. In terms of the AD and RJ

test statistics the acceptance criteria is met in all cases (Table 5.2). The absolute values of the test

statistics and p-values indicate that the hypothesis that r mean is log-normally distributed would

be accepted with greater confidence. In the case of r10% the AD test indicates that normality

would be accepted while the RJ test indicates log-normality (Table 5.2). The C, indicates that

both r mean and r10% are homogeneous, but only r10% is sufficiently sampled to quantify the

exhibited variability (Table 5.3).

The null hypothesis that the r mean and r10% values are log-normally distributed for the 5 - 10%

and 25 - 30% datasets is accepted; while the theory that they are normally distributed can be

rejected given the nature of the probability plots, histograms (Figures 5.6, 5.7 and 5.16, 5.17) and

the results of the AD and RJ tests (Table 5.2). In both cases the log transform yields improvement

in the approximation to log-normality as indicated by the decrease in the AD values, increase in

RJ values and the increase in both p-values (i.e. the probability that the data have been drawn

from a normal population) and the improved approximations to straight lines on the probability

plots relative to the untransformed data. The Ryan-Joiner normality test statistic exceeded the

critical value in both cases and thus indicated that the null hypothesis that these datasets are

accurately described by a log-normal distribution.

Despite their close approximations to log-normal distributions these two datasets are quite

different in many respects. The 5 - 10% porosity dataset is dominated by core plugs and cuttings

from the Zeta Area region and represents a mix of all four GSD Types (Figure 5.5). The

coefficients of variation indicate that both r mean and r10% are highly variable (Figure 5.18,

Table 5.3). The No estimate indicates that the dataset is significantly under sampled in terms of

quantifying the variance (see Table 5.3). The 25 - 30% dataset is largely comprised of side wall

core samples from the Iota Area and also represents a mix of all four GSD Types (see Figure

5.5). The untransformed r mean is indicated to be heterogeneous according to the coefficient of
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variation (Cu) and the dataset is under sampled according to the No estimate (see Table 5.3). The

r10% parameter is homogeneous and is adequately sampled according to the No estimate (No = n)

(see Table 5.3).

Overall the datasets whose No estimates indicate that the there is sufficient data with which to

quantify the variability (i.e. the 15 — 20%, 20 -25% and Iota Area 20 — 25% datasets (reference

the No values in Table 5.3) the null hypothesis is rejected both in terms of the data being normally

distributed and log-normally distributed due to the bi-modal form of the distributions (see Figures

5.11, 5.13 and 5.15). Where the statistical tests pass their respective acceptance criteria, as in the

5 -10% and 25 — 30% datasets, the No estimates indicate that the data are insufficient to

accurately quantify the variance exhibited (reference the No values in Table 5.3). In the one

example where the sample number is reasonably close to the No estimates and the distributions

are not bi-modal an ambiguous picture emerges as both respective hypotheses i.e. that r mean is

normally or log normally distributed is accepted given the inspection of the probability plots,

histograms and AD and RJ test statistics.
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Figure 5.5. Group 1 pie charts illustrating the distribution of grain size distribution type and sample type for

each of the five porosity bins comprising GSD Types 1 — 4 defined in this study.
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Type 1 — 4 and a 5 — 10% porosity range (averaging 8.2%). Note that two outliers were removed.
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Figure 5.8. Probability plots of: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10% for GSD Type 1 —4

samples with a porosity range of 10— 15% (averaging 12.7%).

Figure 5.9. Histograms for: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10% for GSD Type 1 —4 and

a porosity range of 10— 15% (averaging 12.7%).
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Figure 5.10. Probability plots of: (a) r mean, (b) log r mean, (c) r10°/0, and (d) log r10°/0 for GSD Type 1 —4

samples with a porosity range of 15— 20% (averaging 17.4%).

Figure 5.11. Histograms for: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10% for GSD Type 1 —4

with a porosity range of 15— 20% (averaging 17.4%).
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Figure 5.12. Probability plots of: (a) r mean, (b) log r mean, (c) r10`)/0, and (d) log r10°/0 for GSD Type 1 to

4 samples with a porosity range of 20-25% (averaging 22.8%). [Note. The group with larger values incor-

porates a high proportion of cuttings (see Appendix A5.3., Table A5.3.3)].

Figure 5.13. Histograms for: (a) r mean, (b) log r mean, (c) r10')/0, and (d) log r10`)/0 for GSD Type 1 to 4

samples with a 20-25% porosity range (averaging 22.8%).
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Figure 5.14. Probability plots of: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10°/0 for GSD Type 1 to

4 samples from a single Iota Area well with a 20-25% porosity range (averaging 22.7%).

Figure 5.15. Histograms for: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10% for GSD Type 1 to 4

samples from a single Iota Area well with a 20-25% porosity range (averaging 22.7%).
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Figure 5.16. Probability plots of: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10°/0 for GSD Type 1 to

4 samples with a 25-30% porosity range (averaging 27.6%).

Figure 5.17. Histograms for: (a) r mean, (b) log r mean, (c) r10`)/0, and (d) log r10°/0 for GSD Type 1 to 4

samples with a 25-30% porosity range (averaging 27.6%).
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Dataset Parameter No.

Critical AD (0.05 -
the AD

be <the
stat. has

crticalto
value)

AD p-value

Critical RJ (0.05 -

to
the 

be
RJ

> the
stat. has

crtical
value)

RJ p-value

8.20%

r mean 10 0.685 1.806 <0.005 0.918 0.94 >0.1
r 10% 10 0.685 2.002 <0.006 0.918 0.932 0.091

log r mean 10 0.685 0.257 0.657 0.918 0.983 >0.1
log r10% 10 0.685 0.246 0.693 0.918 0.98 >0.1

12.70%

r mean 10 0.685 0.355 0.384 0.918 0.958 >0.1
r 10% 10 0.685 0.201 0.833 0.918 0.983 >0.1

log r mean 10 0.685 0.305 0.507 0.918 0.992 >0.1
log r10% 10 0.685 0.483 0.176 0.918 1 >0.1

17.40%

r mean 17 0.715 0.778 0.035 0.944 0.951 0.082
r 10% 17 0.715 1.077 0.006 0.944 0.934 0.035

log r mean 17 0.715 0.506 0.174 0.944 0.973 >0.1
log r10c/o 17 0.715 0.868 0.02 0.944 0.951 0.083

22.70%

r mean 31 0.733 1.575 <0.005 0.965 0.941 <0.010
r 10% 31 0.733 1.894 <0.005 0.965 0.924 <0.011

log r mean 31 0.733 0.997 0.011 0.965 0.965 0.05
log r10% 31 0.733 1.103 0.006 0.965 0.96 0.038

22.8%
Iota
Area

r mean 23 0.725 2.162 <0.005 0.955 0.905 <0.01
r 10% 23 0.725 1.761 <0.005 0.955 0.908 <0.01

log r mean 23 0.725 1.246 <0.005 0.955 0.948 0.019
log r10% 23 0.725 0.944 0.014 0.955 0.956 0.038

27.60%

r mean 15 0.709 0.576 0.113 0.938 0.926 0.033
r 10% 15 0.709 0.356 0.409 0.938 0.96 >0.1

log r mean 15 0.709 0.414 0.293 0.938 0.972 >0.1
log r10% 15 0.709 0.206 0.84 0.938 0.987 >0.1

Table 5.2. Normality test statistics for the pore-throat network parameterizations of the samples

with type 1 - 4 grain size distributions partitioned by porosity. The lowest AD values and the

highest RJ values greater than the critical value (at 0.05), and their related p-values are in bold.
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Figure 5.18. Cross plots of average porosity versus: (a) co-efficient of variation for r mean and r10%, (b)

co-efficient of variation for log r mean and log r10°/0, (c) No for r mean and r10°/0 and (d) No for log r mean

and log r10°/0. The number of samples is shown on both plots (c) and (d). (Note the 8.2% dataset values

were extremely large (Table 5.3) and were thus removed for clarity).

Porosity
Range

Ay
Porosity

No. r mean Coy r mean N-0 r10% CoV r10% N-0 Log r mean Coy Log r mean N-0 Log r10% CoV Log r10% N-0

5-10% 0.082 10 1.34 187 1.77 328 0.41 17 0.33 12

10-15% 0.127 10 0.43 20 0.27 7 0.23 6 0.11 1

15-20% 0.174 17 0.57 34 0.58 35 0.24 6 0.18 3

20-25% 0.228 31 0.53 29 0.52 28 0.16 3 0.12 2

20-25%** 0.227 18 0.43 19 0.36 13 0.13 2 0.09 1

25-30% 0.276 15 0.56 33 0.38 15 0.15 2 0.10 1

Table 5.3. Coefficient of variation and No estimates for the five porosity-based data partitions of

Group 1 (GSD Types 1 - 4) for untransformed and log-transformed pore-throat network

parameterizations. [** = Iota Area subset].
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5.3.2 Group 2 (framework-supported samples — GSD Types 5/6).

Analysis of the probability plots and histograms for the lowest porosity bin (average 7.8%)

composed of samples with type 5 or 6 grain size distributions reveals that the pore-throat network

parameters have a bi-modal distribution (Figs. 5.20 and 5.21). The two populations identified on

the r mean and r10% probability plots are clearly related to locality, one population

corresponding to the Zeta Area samples while the second relates to North Sea samples. Therefore

this dataset was further subdivided on the basis of location.

The 5 — 10% Zeta Area dataset's r mean and r10% values are more closely approximated by a

log-normal distribution according to inspection of the probability plots (Fig. 5.22), histograms

(Fig. 5.23), AD and RJ (Table 5; Appendix A5.4 Fig. A5.4.8) statistics, and thus the null

hypothesis is accepted in this case. However, r mean and r10% are highly variable and sampled

insufficiently to quantify the exhibited variability according to the C„ and No estimates (Table

5.5); it is interesting to the note the degree to which this variability is masked by the log-

transform (Fig. 5.31; Table 5.5). Conversely the low porosity (average 7.1%) North Sea dataset's

r mean and r10% values seem to be intermediate between a normal and log-normal distribution

based on analysis of the probability plots and AD statistics, with the acceptance criteria for the

AD and RJ test statistics being met in all cases (Fig. 5.24; Table 5.4). The Cv values indicate that

both r mean and r10% are homogeneous; r10% is sufficiently sampled to quantify the exhibited

variability according to the No estimate (Table 5.5).

Examination of the 10 — 15% porosity dataset again revealed the presence of two intersecting

parent populations (Fig. 5.26) and the corresponding histograms are obviously bi-modal (Fig.

4.27). The null hypothesis that the data are normally or log-normally distributed is rejected in

both cases in terms of the AD test which fails its test criteria in every case (Table 5.4). The RJ

values are only significant for the log r mean and log r10% parameters (Table 5.4). In contrast to

the previous dataset the two populations do not correspond to locality. The group comprising the

lower values is dominated by North Sea samples (but includes a Iota Area sample), while the

group with larger values includes samples from the North Sea, Iota Area and Zeta Area (Table

A5.3.10). As no obvious basis was apparent, this dataset is not further subdivided. The C, and No
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estimates indicate that both r mean and r10% are highly heterogeneous and sampled insufficiently

to quantify the exhibited variability (Table 4.5).

The probability plots and histograms for the 15 — 20% dataset (Figs 5.28 and 5.29) both indicate

that the null hypothesis, that r mean and r10% are best described by a log-normal distribution,

would be accepted. This assertion is supported by the AD and RJ statistics (see Table 5.4). This

dataset was dominated by Type 6 grain size types from the Iota Area, Eta Area and Chi Area in

the form of side wall core and plug samples (Fig. 5.19). Both r mean and r10% are highly

variable and are extremely under-sampled to quantify the exhibited variability, according to the

C,, and No estimates (Table 5.5). Similarly the null hypothesis that r mean and r10% are log

normally distributed would be accepted for the 20 — 25% porosity dataset as indicated by the

probability plots, AD and RJ statistics (Figs 5.30; Table 5.4). A histogram was not plotted since

there were only four samples. This dataset was also dominated by Type 6 GSD Types from the

Iota Area, Jurassic North Sea and Chi Area in the form of plug and side wall core samples (Fig.

5.19). According to the C„ and No estimates both r mean and r10% are highly heterogeneous and

are extremely under-sampled to quantify the exhibited variability (Table 5.5).

Overall no clear conclusion can be made from this data; location appears to be important in the 5

— 10% porosity dataset, but not in the 10 — 15% dataset, but in both cases the r mean and r10%

values have a bimodal distribution. In terms of the 15 — 20% porosity dataset and the 20 — 25%

datasets the null hypothesis that r mean and r10% are log-normally distributed is accepted, but

both datasets are extremely under-represented and exhibit significant variability (Table 5.5).
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Figure 5.19. Group 2 pie charts illustrating the distribution of grain size distribution type and sample type

for each of the four initial porosity bins comprising GSD Types 5 — 6 utilized in this study.
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Figure 5.20. Probability plots of: (a) r mean, (b) log r mean, (c) r10°A, and (d) log r10% for samples with

Type 5 —6 grain size distributions with a porosity range of 5— 10% (average 7.8%).

Figure 5.21. Histograms for: (a) r mean, (b) log r mean, (c) r10`)/0, and (d) log r10% for samples with Type

5 — 6 grain size distributions with a porosity range of 5— 10% (average 7.8%).
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samples with Type 5 — 6 grain size distributions with a porosity range of 5— 10% (average 8.5%).
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Figure 5.23. Histograms for: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10°/0 for Zeta Area samples

with Type 5 — 6 grain size distributions with a porosity range of 5 — 10% (average 8.5%).
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Figure 5.24. Probability plots of: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10% for North Sea
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Figure 5.25. Histograms for: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10% for North Sea samples

with Type 5 — 6 grain size distributions with a porosity range of 5 — 10% (average 7.1%).
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Figure 5.26. Probability plots of: (a) r mean, (b) log r mean, (c) r10`)/0, and (d) log r10% for samples with

Type 5 — 6 grain size distributions with a porosity range of 10 — 15% (average 11.4%).
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Figure 5.27. Histograms for: (a) r mean, (b) log r mean, (c) r10°/0, and (d) log r10% for samples with Type

5 — 6 grain size distributions with a porosity range of 10— 15% (average 11.4%).
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Figure 5.28. Probability plots of: (a) r mean, (b) log r mean, (c) rl 0%, and (d) log r10`)/0 for samples with

Type 5 —6 grain size distributions with a porosity range of 15— 20% (average 17.5%).

Figure 5.29. Histograms for: (a) r mean, (b) log r mean, (c) r10%, and (d) log r10`)/0 for samples with Type

5 — 6 grain size distributions with a porosity range of 15— 20% (average 17.5%).
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Dataset Parameter No.

Critical AD (0.05
-the AD stat. has
to be <the crtical
value)

AD p-value

Critical RJ (0.05
- the RJ stat. has
to be > the
crtical value)

RJ p-value

7.80%

r mean 14 0.71 2.12 <0.005 0.935 0.748 <0.01
r 10% 14 0.71 2.576 <0.005 0.935 0.708 <0.01

log r mean 14 0.71 0.668 0.063 0.935 0.955 >0.1
log r10`)/0 14 0.71 0.891 0.063 0.935 0.938 0.061

8.5% Zeta
Area.

r mean 6 0.63 1.089 <0.005 0.889 0.783 <0.01
r 10% 6 0.63 0.984 <0.005 0.889 0.804 <0.01

log r mean 6 0.63 0.615 0.057 0.889 0.907 0.09
log r10% 6 0.63 0.441 0.182 0.889 0.934 >0.1

7.1% NS

r mean 7 0.65 0.177 0.876 0.898 0.982 >0.1
r 10% 7 0.65 0.389 0.278 0.898 0.957 >0.1

log r mean 7 0.65 0.214 0.756 0.898 0.997 >0.1
log r10% 7 0.65 0.349 0.359 0.898 0.999 >0.1

11.40%

r mean 14 0.71 1.05 0.006 0.935 0.914 0.021
r10% 14 0.71 1.129 <0.005 0.935 0.886 <0.01

log r mean 14 0.71 0.791 0.03 0.935
,
0.949 >0.1

log r10% 14 0.71 0.95 0.012 0.935 0.948 0.098

r mean 7 0.65 0.737 0.029 0.898 0.865 0.021
r 10% 7 0.65 1.185 <0.005 0.898 0.784 <0.01

log r mean 7 0.65 0.354 0.346 0.898 , 0.961 >0.1
17.50% log r10% 7 0.65 0.246 0.634 0.898 0.979 >0.1

r mean 4 0.57 0.381 0.201 0.873 0.923 >0.1
r 10% 4 0.57 0.496 0.086 0.873 0.887 0.081

log r mean 4 0.57 0.2 0.692 0.873 0.988 >0.1
23.80% log r10% 4 0.57 0.281 0.419 0.873 0.957 >0.1

Table 5.4. Normality test statistic values for the pore-throat network parameterizations of the

samples with type 5 - 6 grain size distributions partitioned by porosity. The lowest AD values

and the RJ values greater than the critical value (at 0.05) are in bold.
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Figure 5.31. Group 2 cross plots of average porosity versus: (a) co-efficient of variation for log r and (b) No

for log r mean and log r10%. The number of samples is shown on plot, (b). When location is not

considered both Cs, and N- 0 apparently increase with decreasing porosity; however the significant drop in

both C, and N-0 when samples from the same porosity bin are further divided by location is clearly

illustrated. Therefore this increasing heterogeneity may reflect the increasing impact of local factors such

as burial history, thermal gradient, etc.

Porosity bin PorAovsity No. r mean Coy r mean N-0 r10% CoV r10% N-0 Log r mean CoV Log r mean N-0 Log r10% Coy Log r10% N-0

5 - 10% 0.078 14 10.58 11695 17.26 31133 0.67 47 0.53 29

5 - 10% 0.071- 7 0.39 16 0.28 8 0.22 5 0.11 1

5 - 10% 0.085 6 1.67 293 2.52 665 0.17 3 0.18 3

10- 15% 0.114 14 3.49 1275 3.90 1590 0.49 25 0.38 15

15 - 20% 0.175 7 21.02 46179 42.22 186332 0.55 31 0.48 24

20 - 25% 0.238 4 1.91 382 2.09 457 0.17 3 0.15 2

Table 5.5. Coefficient of variation and No estimates for the five porosity-based data partitions of

Group 2 (GSD Types 5 - 6) for untransformed and log-transformed pore-throat network

parameterizations [** = North Sea subset * = Zeta Area subset].
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5.4 Discussion

5.4.1 Data distributions and sample support

From the results no clear conclusions can be drawn for Group 1, typically the null hypotheses

that r mean and r10% are normally distributed and that they are log-normally distributed were

rejected due to the data were bi-modal in form. This was not the case in two cases, the 5 — 10%

and 25 — 30% datasets, and here the null hypothesis that r mean and r10% values were log-

normally distributed was accepted, albeit with the qualifier that the data were highly variable and

under sampled (Table 5.3). In one case, the 10 — 15% dataset, the data were not bimodal and was

sufficient in terms of accounting for the variability exhibited; however, the results of the

statistical tests were ambiguous with neither the hypothesis that the r mean and r10% values are

normally distributed or that the r mean and r10% values are log-normally distributed being

conclusively proven or refuted.

In terms of the C,, and No estimates for the untransformed r mean and r10% no clear trends are

seen with decreasing porosity for Group 1, the 5 - 10% dataset is highly heterogeneous possibly

reflecting the large proportion of cuttings in the dataset (Table A5.3.1). According to the No

estimate for r mean only the bi-modal 20 - 25% dataset is populated adequately to quantify

precisely the variability; for r10% the 10 - 15%, 20 - 25% and 25 - 30% datasets are all populated

sufficiently illustrating that r mean has a higher variance than r10%. It would be expected that the

variability of the pore-throat network parameters would decrease as porosity decreases as data

from numerous studies has illustrated that the mean pore-throat size and standard deviation of

pore-throat size decreases with burial (i.e. increasing effective stress and temperature) e.g. Borst

(1982); Griffiths and Joshi (1989, 1990), Katsube and Williamson (1994, 1995); Dewhurst et al.,

(1998). For the log-transformed r mean C,, is seen to slightly increase with decreasing porosity,

this trend is mirrored by the No estimate (Fig. 5.18). No clear trends are apparent for the log-

transformed r10% parameters.

221



From these results clear conclusions cannot be drawn for Group 2; the 5 — 10% porosity Group 2

dataset was clearly bimodal and was comprised two populations relating to the North Sea and

Zeta Area localities. Once partitioned on this basis the Zeta Area 5 — 10% dataset's r mean and

r10% values appeared to conform best to a log-normal distribution and thus the null hypothesis is

accepted — although with the qualifier that the data were highly variable and under sampled

(Table 5.5). The North Sea 5 — 10% dataset was under sampled for r mean, but sufficiently

sampled for r10% (Table 5.5); however, the results of the statistical tests were ambiguous with

neither the hypothesis that the r mean and r10% values are normally distributed or that the r mean

and r10% values are log-normally distributed being conclusively proven or refuted (refer to AD

values, p-values and RF values in Table 5.4).

The 10 — 15% dataset was clearly bimodal, the null hypothesis that the data are normally

distributed and that they are log-normally distributed is rejected on the basis of the probability

plots, histograms and AD statistical test results. However, in contrast to the previous dataset the

underlying cause of this bimodality was not obvious. Furthermore the dataset was significantly

under-sampled (Table 5.5). The null hypothesis that r mean and r10% are log-normality

distributed would be accepted for both the 15 — 20% and 20 — 25% datasets as indicated by the

probability plots, histograms, Ad and RJ statistical tests. Both datasets are again significantly

under sampled.

Initial inspection of the relationship between the coefficient of variation and No to porosity

indicates that both these parameters increase with decreasing porosity (Figure 5.31); which as for

Group 1 is contrary to what would be expected given the results of previous studies which have

illustrated that the mean and standard deviation of pore-throat size distributions decrease with

decreasing porosity (e.g. Katsube and Williamson 1994, 1995). If the 5 — 10% dataset is

partitioned by location and the 20 — 25% dataset (which only comprises four samples) is

disregarded then such a relationship is observed (Figure 5.31). However, to prove conclusively

that this was the case many more samples would be required.

As a result of the bimodal and/or heterogeneous nature of the data combined with the low sample

numbers per dataset, the degree to which statistically robust statements can be made about the
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nature of r mean and r10% when constrained by porosity and support regime is at best limited.

More samples would be required to carry out the initial aims of this work accurately. Below

further consideration will be given to the validity of the assumption that the samples segregated

into the Group 1 matrix-supported subset and the Group 2 framework-supported subset were

truly different. Further consideration is also given to the underlying properties which may have

caused the common observation of bimodality seen in the datasets analysed above.

5.4.2 How different are Groups 1 and 2?

To assess how different the distributions are between the two groups proposed in this study

datasets of each group corresponding to the same porosity bin were plotted on the same

probability plots (Fig. 5.32). It is obvious from the 20-25% porosity bin that the two groups are

significantly different, so that establishing the two groups was valid. The 10-15% porosity bin is

also plotted (Fig. 5.32 c, d), it is apparent that the Group 2 data is bimodal whereas the Group 1

data is approximately unimodal. Group 2 samples are thought to have a framework-support

regime where the load is supported by the interaction of silt and sand grains (minimizing the

surface area responsible for bearing the applied load); as compaction proceeds the grains are re-

arranged until at some point the sediment evolves to a matrix-supported regime (greatly

increasing the surface area bearing the load). The controls of this inflection point are unknown

but are likely to be at least partly dependent upon the nature of the grain size distribution

(Chapter 3). At this transition from framework- to matrix-supported many of the largest pore-

throats will be lost and the pore-throat size distribution will evolve to resemble that of an entirely

matrix supported sediment type (Fig. 5.32c, d, Chapter 3). The bimodal form of the Group 2 10-

15% porosity dataset could simply represent a mix of samples which have maintained a

framework and those that have evolved to be matrix-supported. The group of samples from

Group 2 with smaller pore-throat network parameters certainly has a distribution which is

comparable to that of the Group 1 dataset (Fig. 5.32c, d). The process proposed above would be

consistent with the suggestion of a critical compaction point made by Katsube and Williamson

(1995) all muds, irrespective of grain size, will evolve to effective zero porosity if subjected to

sufficient mechanical and thermal stress.
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Figure 5.32. Probability plots for Groups 1 and 2 for: (a) r mean from the 20-25% porosity bin, (b) r10%

from the 20-25% porosity bin, (c) r mean from the 10-15% porosity bin, and (d) r10% from the 10-15%

porosity bin.

5.4.3 Bimodality in the r mean and r10% pore-throat size parameters

The observation that the pore-throat network parameters for a number of the porosity based data

partitions are bimodal for both GSD types 1 — 4 and 5 — 6 was not anticipated. It could be

suggested that the bimodality is related simply to the low sample number and that increasing the

sample population would result in a filling in of the data gap which results in the bi-modal form.

However, the Group 1 20 - 25% Iota Area subset was extremely well constrained and still

exhibited a bi-modal form. This suggests that, factors other than grain size (and its relation to the

support regime) and porosity play a role in determining the nature and behaviour of mudstone

pore-throat size distributions.
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Group 2 samples with porosity 5 — 10% are clearly derived from two differing parent

populations; these populations were shown to relate simply to two differing regions. Further

analysis of the two distributions revealed that the Zeta Area dataset had much larger and more

variable values of r mean and r10% and appeared to be best approximated by a log-normal

distribution. In contrast the North Sea r mean and rl 0% values were much less variable and were

closer to a normal distribution. Differences between the Zeta Area and North Sea data may reflect

the action of creep closure and/or chemical diagenesis, as the North Sea (Mid to Late Jurassic)

samples are significantly older than the Zeta Area samples (Pliocene). Although the Zeta Area

samples are actually hotter the North Sea samples would have been exposed to a greater degree

of thermal stress as they are much older.
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Figure 5.33. Probability plots of r mean and log r mean for (a) the 20 - 25% grain size type 1 — 4 dataset

and (b) the Iota Area well subset illustrating that on average those samples with larger pore-throat size

distributions have a higher temperature.

The 20 — 25% porosity partition for samples with Type 1 — 4 grain size distributions are also

derived from two differing parent populations. This dataset incorporated 23 side wall core

samples from a single Iota Area well, which also show bimodal pore-throat characteristics. In this

case the origin of the two populations is less obvious; however, the group with larger pore-throat

size parameters has a slightly higher than average CaCO 3 content, both for the full dataset and for
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those data drawn exclusively from a single Iota Area well (Fig. 5.33). Also the group with larger

pore-throat size values contain a high proportion of cuttings therefore it would seem that these

two factors — sample type and carbonate content combine to create the second population with

larger pore-throat network parameters.

The dataset comprising only side wall cores from a single Iota Area well showed an even greater

contrast in carbonate contents. The group with smaller pore-throat network parameter values (and

thus smaller mean pore-throat sizes with lower standard deviations) had an average carbonate

content of 4% while the second group, with larger pore-throat network parameters has an average

carbonate content of 14.2% (see Fig. 5.33b). In this case, the sample type is identical reducing

uncertainty in interpretation; potentially the difference seen in the two pore-throat size modes can

be attributed purely to the increased carbonate content. This carbonate content may be in the form

of microfossils or cements; microfossils such as coccoliths and foraminifera are two orders of

magnitude larger than the majority of grains which make up these sediment types. The fact that

the samples with higher pore-throat network values have higher CaCO3 contents suggests that it

is involved in creating and/or maintaining larger pore-throats although further work would be

required to understand what mechanisms (i.e. cements, microfossils or a combination?) are

actually causing this to be the case.

In some cases the factors leading to bimodality are unclear. For example, the 15 - 20% porosity

dataset from samples with Type 1 — 4 GSD's clearly have a bimodal character (Figs 5.10 and

5.11), with the morphology of the probability plots indicating the presence of two intersecting

parent populations. Analysis of the location, porosity value, GSD type, CaCO3 (%), sample type

and temperatures did not reveal any obvious basis which could explain the presence of these

populations. Similarly, the 10 - 15% porosity dataset from samples with Type 5 — 6 GSD's also

have a bimodal character (Fig's 5.26 and 5.27). Again, analysis of the locations, porosity values,

GSD types, sample types and temperatures with regard to the r mean and r10% values did not

reveal any obvious basis which could explain the presence of these populations. The group with

lower r mean and r10% values was dominated by North Sea samples, but the presence of North

Sea samples in the group with larger values indicates that factors other than locality are of

importance. Obviously many factors, such as mineralogy, can potentially vary strongly within a
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single locality; further analyses such as quantitative XRD would be required to more fully

understand the behaviour of these samples. Overall for these two dataset analysis of the

temperature, % carbon and organic carbon data values (which are generally unremarkable) did

not reveal any obvious differences between the samples.

5.4.4 Implications for techniques used to predict mudstone flow properties

Basin model population strategies and capillary seal assessment require knowledge of the

physical properties of mudstones such as permeability and critical capillary entry pressure, and

how they evolve with increasing compaction. The physical properties of mudstones pertinent to

fluid flow are intimately related with the nature of the pore-throat size distribution (e.g. Dewhurst

et al., 1999a, b). Previous studies have illustrated that the pore-throat size distribution is

controlled principally by the porosity (compaction state) and grain size distribution (e.g. Yang

and Aplin, 1998; Dewhurst et al., 1998; Chapter 3). The sealing capacity of a mudstone is

quantified by the critical capillary entry pressure (CEP), sometimes termed the displacement

pressure, and is defined as the pressure at which the seal is penetrated by sufficient volume of

non-wetting phase fluid to allow flow of the non-wetting phase (e.g. Hildenbrand et al., 2002).

The data presented in this chapter were unable to validate the hypothesis that at approximately

constant porosity and support regime the r mean and r10% pore-throat network parameters are

normally or log-normally distributed. These hypotheses were neither proven nor refuted due to

the insufficient samples numbers. This result highlights the requirement for further analysis of

well characterized mudstones. Despite this result an attempt at deriving a predictive equation for

capillary entry pressure (CEP) using regression techniques will be made; previous work will be

introduced briefly and the implications of the choice of predictive parameters, and those inherent

in the use of regression used to estimate CEP will be discussed.

Regression techniques are typically employed to estimate a parameter over a continuous range of

an independent parameter or parameters; in carrying out such analysis several assumptions are

made, including the assumption that the variables are normally distributed (e.g. Kirkup, 2002).

The detailed analysis carried out in Section 5.3 has highlighted the impact of both differing
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localities and sample types (Figures 5.14 and 5.20) upon the range, absolute values and potential

distributions of the r mean and r10% pore-throat network parameters. This work highlights the

dangers of performing regressions on datasets unconstrained in terms of lithology, location,

sample types etc; without taking into account the subtleties outlined in this work regressions will

be degraded both in regard to their degree of fit and predictive ability. The results in this suggest

that a 'global' approach is unlikely to be successful and that regional calibration is a vital

procedure if physical property prediction is to be successful.

Although numerous studies have reported on the sealing properties of mudstones (e.g. Krushin

(1997); SchlOmer and Krooss (1997)) the only function which has been published describing the

relationship between critical entry pressure (displacement pressure), clay content and porosity is

that of Hildenbrand and Urai (2003):

CEPH, = — 10.24 + 0.47C — 0.150	 (5.5)

where CEPHg is the mercury-air displacement pressure in MPa, C = fractional clay content and 0
= porosity. The r2 value determined for the Hildenbrand and Urai (2003) dataset equals 0.88 after

it was screened for high clay content and calcareous samples. This dataset comprised 19

mudstone samples taken from outcrops ranging in age from Pliocene to Eocene; Hg-derived

('effective') porosities ranged between 14.6 and 32.7%. Clay contents ranged between 24 and

95% while sand content ranged between 0 and 32% (Tables 1 and 2, Hildenbrand and Urai,

2003). A relationship between critical entry pressure (displacement pressure), clay content and

sand content is also published by these authors, but is not considered here as it has been

illustrated that porosity is a fundamental control upon the nature and evolution of pore-throat

throat distributions in mudstones (e.g. Yang and Aplin, 1998; Dewhurst et al., 1999a,b).

In the previous section an attempt to characterize the distribution of r mean and r10% at

approximately constant porosity and support regime was made; in the light of the inconclusive

result obtained an assumption on the distribution has to be made if regression techniques are to be

employed. From inspection of cross plots of porosity versus r10% [nm] and CEP Hc [MPa] made

for each Group (Fig. 5.34) it is clear that: (a) the two groups are different, and (b) that a normal
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distribution could not account for the variance exhibited (particularly for Group 2), however, the

clear scatter within the data plots indicates clearly that other factors are of significance in

agreement with the work above.

Figure 5.34. Porosity versus r10% [nm] (a) and CEP h, [MPa] (converted to an oil-water system using an

oil-water interfacial tension of 0.051NI/rn and a wetting angle of 0 0 ) for both Groups collectively (a, b) and

for Group 1 (c, d) and Group 2 (e, f) individually.

Lithological variation within the two groups could potentially play a significant role in

contributing to this observed variance in r10% for the two groups. From these plots the

assumption is made that r10% is log-normally distributed. The untransformed CEP value was

regressed as a function of the porosity and lithological parameter (Fig. 5.35). Due to the

exponential form of the relationship between natural logarithm of the critical pore-throat radius

and the CEP when mean Log-r10% is large (i.e. > 2.3 (z200nm)) the entry pressure will be small

and due to the exponential form of the relationship its potential spread (variance) is small (Figure
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5.35). Conversely, when the mean Log-r10% is small (i.e. 1.9 (c-z8Onm)) the entry pressure will be

large and so will its potential spread (variance). Due to of the exponential relationship between

Log-r10% [nm] and CEPHg [MPa], if Log-r10% is normally distributed for a particular data

partition then CEP should also be normally distributed - its variance will be dependent upon the

mean and spread of the Log-r10% population (Fig. 5.35).

Figure 5.35. Plot of the exponential relationship between critical pore radius and capillary pressure (with

constant wetting angle and interfacial tension) illustrating the inter-relationship between statistical

distributions used to represent these parameters (see text for discussion).

The CEP tig was regressed using the following equation:

CEPHg a+ bx + CX2
	

(5.6)

where CEPHg is the mercury — air CEP, xi is the fractional porosity, x2 is a lithological parameter

(either clay content or sortable silt) and a, b, and c are regression coefficients to be determined

(reported as Intercept, X Variable 1 and X Variable 2 in Appendices A5.5 — 8). This equation was

regressed on to a Group 1 dataset and a Group 2 dataset. The Group 1 dataset was further divided
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into a dataset which comprised all the data, a second in which cuttings were removed, a third

dataset where all the Zeta Area samples were removed, and a fourth where both cuttings and Zeta

Area samples were removed. The Group 2 dataset was further divided into one set which

comprised of all the data, and a second where the Zeta Area samples were removed (no Type 5 —

6 GSD's corresponded to cutting samples).

The initial analysis correlates mercury — air entry pressure (CEPHg) to porosity and to one of two

lithological parameters, the clay content (% <2[1m) and the sortable silt content (% >10mm) to

test which parameter has the greatest correspondence to CEP. This analysis was carried out on

both Group 1 and Group 2 sample sets. A second series of regressions was performed on two

regional data sets: a Group 1 (GSD Types 1 — 4) Iota Area subset and a Group 2 (GSD Types 5 —

6) Jurassic North Sea subset; in these analyses porosity, clay, sortable silt and temperature are

assessed.

5.4.4.1 Group I Porosity — grain size correlations

The regression tables are given in Appendix A5.5-6 and a summary of these results is given in

Table 5.6. From the correlation coefficients and the error estimates it can be seen that the degree

of correlation is generally poor. The error estimates vary from 20MPa for all the data to —16MPa

for the datasets which exclude the Zeta Area and cuttings samples; this range corresponds to a

significant range of —1.9 — 1.5MPa for an oil-water system (assuming an oil-water interfacial

tension of 0.035 N/m and an oil-water contact angle of 00). Recalling the interpretation of p-

values: within regression the derived p-values relate to the probability that the correlation

obtained is coincidental if x and y are not in any related. Thus the lower the p-value the stronger

the evidence that x and y are related by some underlying process allowing the possibility that the

correlation is coincidental to be rejected. The p-values for porosity are consistently lower than

those for either of the lithological parameters; the lower the p-value the more evidence there is to

reject the null hypothesis that the parameter is insignificant in explaining the variance in y.

Therefore from the results given in Table 5.6 it can be stated that for Group 1 samples (GSD

types 1 — 4) porosity is the most significant variable in predicting CEP. This result is contrary to

that of Hildenbrand and Urai (2003) who suggested that clay content was most significant.
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Inspection of their data reveals that after they removed two outliers clay content and porosity

were weakly negatively correlated, i.e. clay content increased with decreasing porosity, which

leads to autocorrelation and an overstatement of the importance of the clay content. For this

dataset the clay content and porosity are weakly positively correlated and the sortable silt and

porosity are uncorrelated (Fig. 5.36). This correlation may lead to a slight underestimation of the

clay content which is reflected in the generally lower p-values for clay relative to the sortable silt

parameter.

Regression weights

Dataset n Intercept p-value Porosity p-value Clay p-value Sortable Sift p-value 1I2
Standard Error in
y estimate (CEP

Hg (MPa))

All - 0 - c la y 83 32.75 7.08E-03 -391.87 2.31E-10 163.21 7.31E-06 0.40 20.28

All - 0 -
Sortable Silt 83 119.11 5.74E-15 -257.57 4.35E-09 -130.18 8.76E-05 0.37 20.89

No cuttings -
0 - clay

66 58.01 1.16E-04 -402.99 4.83E-10 125.41 1.29E-03 0.49 19.19

No cuttings -
0 - Sortable

Silt
66 125.66 6.76E-15 -308.75 2.11E-10 -97.58 4.00E-03 0.48 19.51

No Zeta Area -
4) - clay 71 90.88 3.31E-08 -392.01 2.15E-11 59.53 8.82E-02 0.55 16.70

No Zeta Area -
0- Sortable

Silt
71 138.04 1.19E-16 -380.69 3.88E-14 -81.15 8.51E-03 0.57 16.21

No Cuttings
No Zeta Area -

0 - clay
60 89.67 1.31E-07 -395.84 2.29E-10 65.40 7.10E-02 0.57 16.66

No Cuttings
No Zeta Area -
0- Sortable

Silt

60 137.57 9.94E-15 -379.18 2.40E-12 -76.37 1.73E-02 0.59 16.30

Table 5.6. Summary table of the results obtained from regressing porosity and clay content or

sortable silt content onto CEN for the four Group 1 (GSD types 1 - 4) datasets.
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Figure 5.36. Cross plots of clay content and sortable silt against porosity for the complete dataset (a, b),

the cuttings screened dataset (c, d), the Zeta Area screened dataset (e, f) and the cuttings and Zeta Area

screened dataset (g, h) for Group 1. The extremely low correlation coefficients allows autocorrelation to be

discounted when interpreting the regression results.
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5.4.4.2 Group 2 Porosity - grain size correlations

Analysis of the correlations between CEP Hg, porosity and the lithological parameters indicates

that the regressions for Group 2 samples are of low quality. The regression tables are given in

Appendix A5.6 and a summary of these results is given in Table 5.7. As for Group 1, the porosity

p-values are lower than those for either of the lithological parameters for Group 2; this indicates

that the porosity is more significant in accounting for the variance exhibited by y. In terms of the

lithological parameters inclusion of sortable silt as a predictor variable results in an increase in

the r2, a decrease in the standard error and has lower p-values than the clay content suggesting

that this lithological parameter is of more use in predicting CEP (Table 5.7). In Group 2 neither

of the lithological parameters shows any degree of correlation with porosity (Fig. 5.37). In terms

of the error estimates, the values vary from 27MPa for all the data to -22MPa from the dataset

that exclude the Zeta Area samples; this range corresponds to a significant range of -2.59 -

2.08MPa for an oil-water system. The highest correlation was obtained for the dataset where the

Zeta Area samples were removed and porosity and sortable silt were used as the predictor

variables (Table 5.7).

Regression weights

Dataset n Intercept p-value Porosity p-value Clay p-value Sortable Silt p-value 122

Standard
Error in y
estimate
(CEP Hg
(MPa))

AU- 0 -
clay 39 37.26 4.34E-02 -287.69 1.65E-03 106.46 8.21E-02 0.27 27.61

All - 0 -
Sortable

Silt
39 133.07 4.33E-06 -273.10 1.14E-03 -122.56 2.89E-03 0.38 25.43

No Zeta
Area . 0

- clay
31 75.95 4.76E-01 -396.08 2.82E-05 43.43 4.57E-01 0.48 24.46

No Zeta
Area . 0

-
Sortable

Silt

31 139.30 1.22E-06 -378.17 1.48E-05 -96.04 1.53E-02 0.57 22.20

Table 5.7. Summary table of the results obtained from regressing porosity and clay content or

sortable silt content onto CEP Hg for the four Group 2 (GSD types 5 - 6) datasets.
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Figure 5.37. Cross plots of clay content and sortable silt against porosity for the complete dataset (a,b)

and the Zeta Area screened dataset (c,d), for Group 2 samples. The extremely low correlation coefficients

allows autocorrelation to be discounted when interpreting the regression results.

5.4.4.3 Porosity - grain size - temperature

The results presented above illustrate that despite porosity and grain size being important controls

upon a mudstone's pore-throat size distribution (Chapter 3; Yang and Aplin, 1998; Dewhurst et

al., 1998, 1999a), these parameters yield poor predictions. When the data were partitioned by

location, in addition to porosity and support regime, the variability was seen to decrease

significantly (e.g. Table 5.5). The reduction of variability is thought to reflect the impact of

differing burial histories and mineralogies. In an effort to improve the CEP prediction a Group 1

Iota Area dataset and a Group 2 Jurassic North Sea dataset were further analysed. The regressions

were performed as before (see Equation 5.5), but in also included temperature, in an attempt to

test for a chemical compaction effect. For these regressions the form of the equation was:

CEPH, = a + bx, + cx2 + dx3
	 (5.6)
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where CEPllg is the mercury - air CEP, xi is the porosity, x2 is a lithological parameter - either

clay content or sortable silt, x3 is the temperature (°C) and a, b, c and d are regression coefficients

to be determined (reported as Intercept, X Variable 1, X Variable 2 and X Variable 3 in the

Appendix tables).

5.4.4.3.1 Iota Area subset (Group I)

The results of the regressions carried out upon the Group 1 Iota Area subset are given in

Appendix 6 and summarized in Table 5.8. The degree of fit was improved as evidenced by the

modest increase in r 2 values relative to the 'global' Group 1 dataset (Table 5.6). The inclusion of

temperature is seen to improve the degree of fit of the regressions with the porosity - sortable silt

- temperature dataset having the highest r2, the lowest standard error and has lower p-values than

the clay content suggesting that this lithological parameter is of more use in predicting CEP

(Table 5.8).

Regression weights

Dataset n Intercept p-value Porosity p-value Clay p-value Sortable Silt p-value Temperature
(°C) p-value Fe

Standard
Error in y
estimate
(CEP Hg
(MPa))

Iota
Area -

rD - clay
50 68.97 6.80E-06 -318.36 4.26E-09 65.23 3.26E-02 0.54 12.67

Iota
Area -

(1) -
Sortable

Silt

50 122.66 2.40E-16 -306.06 9.44E-12 -101.75 6.90E-05 0.64 11.22

Iota
Area -

rD - clay
- Temp.

50 18.71 4.16E-01 -160.39 3.18E-02 48.00 1.00E-OA 0.31 1 .05-09 OHO ( 11.91

Iota
Area -

0 -
i ortable

Silt -
Temp.

50 74.86 2.71E-03 -189.73 3.66E-03 -86.44 5.95E-04 0.28 3.19E-02 0.68 10.78

Table 5.8. Summary table of the results obtained from regressing porosity, temperature and clay

content or sortable silt content onto CEP Hg for an Iota Area subset comprising of Group 1 samples

(GSD types 1 - 4).
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The weighting for temperature is positive indicating that as it increases in value the CEP Hg value

also increases (i.e. pore-throat size decreases). This possibly reflects a chemical compaction

effect, but may simply reflect the positive correlation between porosity and temperature (Fig.

5.38) both of which are partly dependent upon burial depth which could mask the true

relationship. The temperature for these samples ranges from 35.8°C to 108.6°C, according to

Aplin et al., (2003) the smectite to illite (I-S) transition occurs at 120°C in similar Iota Area

wells. Therefore the temperature effect seen in these samples is unlikely to be related to the I-S

transition and suggests that some other temperature mediated reaction may be taking place. For

the effect of the mechanically reduced and chemically reduced porosity to be fully assessed

uncorrelated parameters would be required.

Some parameter which is sensitive to temperature but less correlated with porosity would

potentially improve the ability to assess the relative importance of mechanical and chemical

effects; by assessing the p-values the significance of each predictor variable could be gauged. In

this case the p-values for porosity change radically when temperature is included. The p-values

obtained from regressions performed without temperature indicate that porosity is overwhelming

the most significant parameter (see Table 5.8). When temperature is included the p-values for

porosity significantly increase, and increases by about an order of magnitude for the lithological

parameter. This increase will reflect partly that the variance is now being accounted for by three

rather than two predictor variables. Further work would be required to fully explore which

predictor variables are of most use in predicting CEP Hg. For example the CaCO 3 content (%)

could be utilized as a predictor variable in the Iota Area as it seemed to have a role in controlling

the nature of the mudstones pore-throat size distributions in this area (5.4.3, Fig. 5.33).
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Figure 5.38. Cross plots of clay content and sortable silt against porosity (a, b), clay content and sortable

silt against temperature (c, d), and temperature and porosity (e) for the Group 1 Iota Area dataset. The

significant correlation between porosity and temperature prohibits the distinct of porosity and temperature

driven effects upon the evolution of pore networks using regression analysis.
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5.4.4.3.2 North Sea Subset (Group 2)

The results of the regressions carried out upon the Group 2 Jurassic North Sea subset are given in

Appendix A5.8 and summarized in Table 5.9. The degree of fit was improved as evidenced by

the increase in r2 values relative to that of the 'global' Group 2 dataset (Table 5.7). The inclusion

of temperature is seen to improve the degree of fit of the regressions; again the porosity - sortable

silt - temperature dataset has the highest r 2, the lowest standard error and has lower p-values than

the clay content which again suggests that the sortable silt (% >10um) is of more use in

predicting CEP (Table 5.8). For the North Sea subset a number of samples also have significant

sand contents - which will be reflected by the sortable silt value, but not by the clay content

value. The degree of improvement (quantified by r 2) when temperature is included is greater than

that seen for the Group 1 Iota Area subset suggesting that temperature is more significant in

predicting CEP for the older, hotter Jurassic North Sea samples (compare Fig. 5.37e and Fig.

5.38e). For the sample set the temperature ranges from 59.9°C to 140.4°C and therefore is likely

to encompass the range over which the I-S transition takes place which probably accounts for the

increased significance of temperature for this dataset relative to the Group 1 Iota Area subset.

Regression weights

Dataset N Intercept p-value Porosity p-value Clay p-value Sortable Silt p-value
Temperature

CC)
p-value le

Standard
Error in y
estimate
(CEP Hg

•	 Wil'a))

NS - cD -

clay
18 62.63 2.60E-02 -374.68 6.08E-03 111.91 1.73E-01 0.48 24.92

NS - (1) -

Sortable
Silt

18 178.00 1.36E-05 -335.24 3.26E-03 -161.98 4.64E-03 0.66 20.16

NS - 0 -
clay -
Temp.

18 23.66 8.02E-01 -266.32 3.16E-01 116.64 2.10E-01 0.20 7.30E-01 0.53 25.25

NS - 0 -
Sortable

Silt -
Temp.

18 105.94 1.55E-01 -52.60 8.11E-01 -195.74 1.26E-02 0.49 3.00E-01 0.71 19.79

Table 5.9. Summary table of the results obtained from regressing porosity, temperature and clay

content or sortable silt content onto CEPHg for the Jurassic North Sea subset investigated

comprising of Group 2 samples (GSD Types 5 - 6).
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The results for this dataset are similar to those obtained for the Group 1 data; the weighting for

temperature is positive indicating that as it increases in value the CEPHg also increases. Again this

possibly reflects the positive correlation between porosity and temperature (Fig. 5.39) both of

which are partly dependent upon burial depth. The error estimate was again slightly reduced to

that of global Group 2 dataset, ranging between 24.92MPa and 19.79MPa corresponding to a

significant range of -2.33 - 1.85MPa for an oil-water system (again assuming an oil-water

interfacial tension of 0.035 N/m and an oil-water contact angle of 0°).

Figure 5.39. Cross plots of clay content and sortable silt against porosity (a, b), clay content and sortable

silt against temperature (c, d), and temperature and porosity (e) for the Group 2 Jurassic North Sea

dataset. The significant correlation between porosity and temperature prohibits the distinct of porosity and

temperature driven effects upon the evolution of pore networks using regression analysis.
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5.5 Conclusions

The two groups investigated in this study were formed in an attempt to capture variation

observed in terms of grain size distribution (Chapters 2 and 4) and in terms of the pore-throat size

distribution characteristics observed in Chapter 3. It was proposed that GSD Types 1 — 4 relate to

matrix supported sediments where the pore-throat network is form by the clay fabric, these

sediments formed Group 1; GSD Types 5/6 had framework supported pore-throat networks

formed by both the clay fabric and the interaction of silt/sand grains, where the latter collapse

preferentially upon compaction. The analysis carried out in this study attempted to (a)

characterize the statistical distribution of two pore-throat network parameters, r mean and r10%,

when porosity and support regime is accounted for, and (b) capture the behaviours observed in

Chapter 3.

The results obtained were largely inconclusive, with the datasets derived either exhibiting a

bimodal character unrelated to porosity or support range, or exhibiting a high degree of

variability which degraded the confidence of the results of the statistical tests. Therefore the

overall result that the hypothesis that r mean and r10% can be described by a normal distribution

when porosity and support regime are accounted for is neither confirmed or refuted; similarly the

hypothesis that r mean and r10% can be described by a log-normal distribution when porosity

and support regime are accounted for is neither confirmed or refuted. Robust statements about the

nature of the r mean and r10% distributions cannot be made on the basis of the results obtained

here.

Despite the inclusive result it is believed the two groups established in this study are different.

This statement is supported by Figures 5.32 and 5.34, both of which illustrate that Group 2

samples typically exhibit higher variability and have larger r mean and r10% values relative to

Group 1 samples at any one porosity level. The degree of difference is most significant at high

porosities and decreases as compaction proceeds, as the larger lacunar pore-throats of the Group

2 samples are preferentially lost.

The results of this work indicate that when constrained by porosity and grain size distribution and

its relationship to support regime the pore-throat network parameters of mudstones are
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appropriately described by a log-normal distribution. A clearer inference could be made from the

Group 2 data as they were more closely described by log-normal distributions according to the

AD and RJ statistical tests. The Group 1 dataset exhibited more subtleties and in some cases

exhibited bi-modal distributions. The pore-throat network properties were shown to be sensitive

to a number of factors, other than porosity and grain size distribution, including location

(Sedimentary basin), sample type, CaCO3 (%) content, etc.

In terms of the parameters themselves, the r mean parameter was shown to exhibit a higher

degree of variability relative to the r10% parameter for both Groups 1 and 2. Both groups were

shown to be inadequatedly populated and therefore efforts should be made to analyse mudstones

from a range of porosities.

The regressions illustrated that a global approach taken to predict CEP solely using porosity and

a lithological parameter is likely to meet with limited success. This is thought due to the

sensitivity of this parameter to factors other than porosity and grain size distribution. For the

global Group 2 dataset, the Iota Area Group 1 subset and the Jurassic North Sea subset, the

sortable silt parameter was found to show a greater degree of correspondence to the CEP value

than the clay content as indicated by the r 2 values. Including temperature as a predictor variable

was seen to slightly increase the degree of correlation; however, temperature's negative

correlation with porosity complicates interpretation.

The results of the regressions obtained in this study illustrate that despite the high values for error

in the CEP estimate, the transition from poor capillary seals is extremely rapid (due to the form of

the relationship between r10% - and CEP and thus column height (Fig. 5.35). For example for the

Group 1 dataset screened for cuttings and Zeta Area samples the follow equation was obtained

(Table 5.6):

CEPHg = 137.57 — 379.18phi — 76.37ss 	 (5.7)

where CEPHg is mercury-air capillary entry pressure, phi is fractional porosity and ss is fractional

sortable silt content. If the CEP is converted to an oil-water system using an oil-water interfacial
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tension of 0.051N/m and a wetting angle of 00 and a oil column height is calculated, assuming a

water density of 1030kg and an oil density of 800kg, it can be seen that if sortable silt is held

constant at 0.5 (50%) then column height increases from 48m at 26% porosity to 1429m at 20%

porosity.

Similarly, for the Group 2 dataset screened for Zeta Area samples the following equation was

obtained (Table 5.7):

CEN = 139.30 — 378.17phi — 96.04ss 	 (5.8)

where CEPHg is mercury-air capillary entry pressure, phi is fractional porosity and ss is fractional

sortable silt content, Again converting to an oil-water system and calculating an oil column

height using the parameters given above, it can be seen that if sortable silt is held constant at 0.82

(82%) then column height increases from 2m at 16% porosity to 1379m at 10% porosity. These

results illustrate that the transition from poor seals (which would be of high risk) to quality seals

(which essentially cease to be a risk) occurs extremely rapidly over narrow porosity ranges, and

therefore in assessing capillary seal failure it is of vital importance to constrain the range over

which this transition occurs.

Further work is required in terms of simply collecting relevant data which should lead to greater

understanding of the bimodality seen in the datasets utilized in this study. Furthermore the

addition of further data would lead to a greater robustness in the statistics and definition of

statistical distributions for these data types. For both groups 1 and 2 the inclusion of temperature

in the regression was seen to improve the correlation, especially for the North Sea data set where

the temperature ranges between <60°C to >130°C thus encompassing the I-S transition. The

inclusion of data, such as mineralogy (e.g. % I-S) may allow greater appreciation of the interplay

of mechanical and chemical effects operating when mudstones are compacted.
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Chapter 6 Conclusions and future work

6.0 Conclusions and future work

The data presented within this thesis provides an outstanding dataset of mudrocks

collected from a diverse range of settings, representing a wide range of geological ages,

tectonic, and sedimentary settings, etc. The key aim was to evaluate similarities and

characteristics which were apparently of 'global' significance rather than consider factors

likely to be of local importance, which are poorly constrained in this dataset.

In Chapter 2 a generic mudstone typing framework was described; the dataset utilized in

this study was separated into six mudstone 'types' based upon analysis of the grain size

spectra, observations from petrographic and SEM images and standard grain size

descriptions (% sortable silt; moment statistics). This work presents a novel approach and

integrates grain size analysis and microscopy methods (to mudstones) for the first time.

The potential of combining the Kranck grain size model with theory on suspended

sediment behaviour was recognized. Such an approach has the potential to provide

insight into the hydrodynamic conditions present at the time of deposition, making

detailed quantitative interpretations of the sedimentological genesis of mudstones a

reality for the first time. The scheme proposed in Chapter 2 is not a 'silver bullet' and

should not be seen as a stand alone methodology; combining it with the scheme of

Macquaker and Adam's (2003) and the bedding form / association scheme proposed by

Pickering et al., (1986) would provide a generic, process based, descriptive methodology

and classification scheme for mudstones which, particularly in a case study context,

would provide a level of detail allowing significant interpretations of mudstone

sequences to be made. The GSD types proposed in Chapter 2 prove a starting point and

reference for the subsequent analyses undertaken within this study.

In Chapter 3 the relationship between grain size 'type' as defined in Chapter 2 and pore

size distribution at a range of porosities was investigated. The findings of previous

studies of the interplay between grain size and compaction in controlling the pore size
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distributions of artificial slurries, soils and geological materials were summarized and

integrated into this work; this work, on naturally compacted geological materials,

essentially completes a continuum from work on artificial slurries (Fies, 1992), to work

on artificially compacted soils (Griffiths & Josh, 1989)) to work on artificially

compacted mudstone material (Dewhurst et al.„ 1998, 1999a.b). It was illustrated that the

work of Fies(1992) carried out on artificial slurries had relevance for naturally compacted

geological materials. The GSD types defined were found to divide into two groups which

exhibited distinct pore size distribution characteristics. Types 1 — 4 (typically with clay

contents >40%), with porosities below 30%, had unimodal pore throat size distributions,

here implied to represent porosity within and between clay flocs and silt grains (clay

fabric pores), and were hypothesized to be 'matrix' supported. Grain size types 5 — 6

(typically clay contents <40%) exhibited bimodal pore throat size distributions; the

smaller diameter mode was comparable to the clay fabric mode characteristic of types 1 —

4, and the second mode (lacunar pores) comprised pore throats with radii — 2 orders of

magnitude larger than the clay fabric mode. This second mode was observed to collapse

preferentially, in agreement with Dewhurst et al., (1998), decreasing both in size and in

volume as porosity is lost. The lacunar pores eventually disappear, either becoming either

'blind' pores only accessible through clay fabric pores and/or the larger pores themselves

are compacted to an equivalent size to that of the clay fabric pores, producing unimodal

pore throat size distributions similar to those of types 1 — 4. Types 5 -6 were

hypothesized to be framework-supported. Dewhurst et al., (1999a) hypothesized that at

some 'intermediate' grain size there may be either a smooth continuation of variation in

pore properties or an abrupt transition between 'matrix' and 'framework' behaviours.

Unfortunately, there was a paucity of samples with grain size characteristics that are

likely to be transitional between the two modes (i.e. clay contents in the 30 — 40% range).

The data presented in Chapter 3 favour an abrupt change in behaviours rather than a

smooth transition. The grain size parameters that dictate this transition are complex, and

clay content alone is insufficient to account for the behaviour of mudstones because once

it drops below —40% the size distribution of both the silt and the sand components

become significant. The sortable silt content is a likely key lithological predictor in

determining the nature of mudstone pore size distributions as it corresponds well with the
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clay content, with the size distribution of the range silt and with the sand content for the

majority of samples. However, further work is required to investigate the influence of

detailed grain size upon the pore properties of mudstones.

In Chapter 4 the degree of robustness of the six mudstone GSD types proposed in

Chapter 2 was assessed using a numerical classification technique. For the first time a

combined PCA-cluster analysis classification methodology was applied to the grain size

based classification of mudstones. As the results of any classification will be partly

dependent upon the input data, four different datasets encompassing different grain size

data were assessed. The results illustrated that irrespective of input data Types 1 — 4 were

typically segregated from Types 5 — 6; however, the technique was unable to make any

consistent segregations below this level. The clusters derived from this analysis were

assessed with regard to the extent to which they corresponded to petrophysical data. Each

cluster exhibited a high degree of overlap, and could not be identified from petrophysical

measurements alone. While the 'global' approach taken in this study seemed to work well

in discriminating mudstones into similar GSD types, it was apparent that it cannot easily

be extended to petrophysical properties.

Based on the results obtained in Chapter 3 and 4, GSD types 1 — 4 and types 5 — 6 were

amalgamated into two groups in Chapter 5. These groups were then further divided into

5% porosity intervals prior to carrying out an analysis of the statistical distribution of two

pore parameters - the mean pore size (r mean) and the pore size at the ninetieth percentile

of the cumulative pore size distribution (r10%). Due to their common occurrence in

'natural' datasets, the normal and log-normal distributions were tested for. Unfortunately,

due to insufficient sample numbers and complexities within the data neither the

hypothesis that these parameters were normally distributed, not the hypothesis that the

parameters were log-normally distributed could be confidently validated or refuted.

However, it was illustrated that even when accounting for porosity and support regime

(i.e. matrix versus framework), the r mean and r10% parameters were often highly

variable and it was clear other factors were playing a role. In the discussion of this work a

regression based approach was considered for predicting critical capillary entry pressure
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(commonly calculated from r10%). It was suggested that due to the exponential form

between log-rl 0% and critical capillary entry pressure, the transition from a poor

capillary seal to a very good capillary seal was extremely rapid and occurred over a

narrow porosity range, indicating that if capillary seal assessment is to be successful

capturing this range is of fundamental importance.

The work carried out in this study has highlighted several potentially fruitful avenues of

future research. The application of the mudstone typing methodology and mudstone

'types' proposed in Chapter 2 require testing within a case study context in order to

assess their true practical value. Consideration of the interplay between the grain size

characteristics of mudstones and their relationship to depositional mechanisms and

conditions highlights the need for further studies in this area. Laboratory analysis of the

interplay between flocculated and 'autonomous' grain size populations under controlled

hydrodynamic conditions will constrain how the grain size spectra of muds and

mudstones relate to conditions in the water column at the time of deposition. Such

findings will enhance the process-based interpretation of mudstones, particularly where

both grain size and petrographic data are available.

Further detailed descriptions of mudstones, in particular those which combine grain size,

petrographic and MICP analyses on samples recovered from known tectonic and

sedimentological settings, is encouraged. It remains unclear whether or not mudstones

exhibit a smooth or abrupt transition between matrix- and framework-supported

behaviours. Indeed, it may well be the case that these two possibilities are not mutually

exclusive, but rather form the two end-members of the spectrum which describes

mudstone behavior. Further work, in particular laboratory based compaction studies of

well characterized mudstones spanning the behaviours identified in this work could

further resolve the evolution of mudstone pore networks as compaction proceeds, and the

influence of grain size upon this evolution.

From the observation of matrix-supported and framework-supported behaviours revealed

in Chapter 3 to be typical of the compaction characteristics of mudstones, a clear parallel
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can be drawn with the work of Yin et al., (1993) and Pirmez et al., (1997) which

investigated the inter-relationships between porosity, grain size and P-wave velocity (Vp).

Laboratory analysis of simple sand-clay mixtures have made similar findings to those

presented in Chapter 3. Two idealised modes of behaviour of the sound velocity-porosity-

lithology relationship were revealed (Marion et al.„ 1992; Yin, 1993). The two

characteristic domains, according to Yin et al., (1993) are matrix-supported (isostress) or

framework supported (isostrain); the behaviour of these two types differs because when

an acoustic wave propagates through a matrix-supported rock all the sediment grains are

exposed to the same degree of stress, conversely when such an event occurs in a

framework-supported sediment, only those grains forming the framework are exposed to

the stress (Pirmez et al., 1997; Yin et al., 1993). The terms used by Yin et al. (1993) to

describe matrix- and framework-supported sediments are isostress and isostrain

respectively, they are derived from composite mechanics. Isostrain l relates to where both

framework (i.e. the largest grains in contact) and matrix grains (such as clay flocs within

a dominantly silt mixture) are subject to the same strains; while isostress 2 relates to a

composite where both matrix- and framework 'grains' are subject to the same stress.

Within the structure established by Pirmez et al., (1997), which was based on Yin et al's

(1993) work, the behavior of the physical properties such as Vp and porosity change

abruptly between these two domains, where the transition between domains occurs as a

function of grain size distribution, at some critical clay content (Vcrit) . Where Vclay > Vcrit

the sediment is matrix supported, where an increase in clay content results in a decrease

of Vp, and bulk modulus and an increase in porosity. When Vc lay < Vcrit the sediment is

framework supported, as clay is increased it fills the pore spaces increasing the bulk

modulus, which results in a decrease in porosity and an increase in V. However, Yin et

al., (1993) utilized simple clay-sand mixtures, and it has been shown in this work that in

reality the more complex grain size spectra of natural sediments is matched by more

complex behaviours. Laboratory based studies of materials with more realistic gain size

distribution investigating the relationships between grain size, support regime, porosity,

pore size distribution, Vp, and Vs would provide potentially an integration of grain size,

I Strain is the change in length per unit length.
2 Stress is defined as force per unit area.
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pore size (and thus flow property) and acoustic properties of mudstones within a single

framework. Combined studies of grain and pore size distribution and their corresponding

acoustic properties and may well lead to a point where the extraction of mudstone grain

and pore properties from seismic data is possible. The isostrain—isostress regime theory

may be invoked to explain how the pore networks of fine grained sediments evolve with

increasing compaction. For example, those sediments (typically coarser) that maintain

'open' pore networks and thus may define the weak points in a petroleum system are

likely to be in the isostrain regime (GSD types 5 — 6); while GSD types 1 — 4 are likely to

be in the isostrain regime. It would seem that there is a potentially high degree of overlap

between the pore and acoustic properties of mudstones which both relate to the nature of

the grain size distribution and how it is structured.
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Appendix A2.1: Moment Statistics (after Griffiths, 1967)

X = midpoint in each class

f = frequency

X = arithmetic mean

X' = assumed mean

C = class interval = 1 phi

d =
-'

A2.1.1

Moments around the arbitrary origin are calculated as:

Efd 
n = Ef

fd2
n, = 	" Ef

Eft/3
n =

3 f

A2.1.2

A2.1.3

A2.1.4

The Moments around the true man corrected for group data are then calculated as:

mi	 =' + cn,	 A2.1.6

= lraT.	 A2.1.8
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M 3
li-b-i - = A2.1.10

3
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ArIT
Sk =	 1 A2.1.11
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(n4 - 4n3n2 + 6n 1

2
n 2 - 3n 1

4
) A2.1.12

M4 A2.1.13,.. 4
CY

K = b2 — 3 A2.1.14

Thus the summary statistics of the mean, standard deviation, skewness and kurtosis of

grouped grain size data are:

mj, 6" , Sk and K.
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Appendix A4.1. Euclidean Sum of Squares (ESS), Cumulative Euclidean Sum of

Squares (CESS) and Increase in Sum of Squares (ISS).

The Euclidean Sum of Squares (ESS) Ep for a cluster p is given by:

Ep = Ej EpCi WaZijkpj12

where: xii is the value of variable j in case i within cluster p

c i is an optional differential weight for case i

wi is an optional differential weight for variable j

mpi is the mean of variable j for cluster p

The total ESS for all clusters p (i.e. the cumulative ESS) is thus E = SE p and the

increase in the Euclidean Sum of Squares IA (ISS) at the union of two clusters p and

q is:

!pug Epuq  Ep - Eq	 Minimum

In ClustanGraphics k-means has been implemented to minimize the total Euclidean

Sum of Squares E. This is equivalent to minimizing the sum of the weighted squared

Euclidean distances d2 ip between each case i and the mean mp of the cluster p to

which it belongs.
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Appendix A4.2 - PCA results

Initial

Eigenvalues

Extraction

Sums of

Squared

Loadings

Component Total
% of

Variance

Cumulative

%
Total

% of

Variance

Cumulative

%

1 4.57 50.83 50.83 4.57 50.83 50.83

2 2.02 22.44 73.28 2.02 22.44 73.28

3 0.92 10.23 83.51

4 0.70 7.72 91.23

5 0.36 3.98 95.20

6 0.19 2.14 97.34

7 0.14 1.58 98.92

8 0.09 1.01 99.92

9 0.01 0.08 100.00

Extraction Method: Principal Component Analysis.

Table A4.2.1. % total variance accounted for from the principal component analysis of

the sedimentary statistic and parameter dataset.

Total Variance Explained

Initial

Eigenvalues

Extraction Sums

of Squared

Loadings

Component Total
% of

Variance

Cumulative

%
Total

% of

Variance

Cumulative

%

1 4.63 51.41 51.41 4.63 51.41 51.41

2 1.87 20.78 72.19 1.87 20.78 72.19

3 1.19 13.20 85.38 1.19 13.20 85.38

4 0.53 5.84 91.22

5 0.43 4.76 95.99

6 0.17 1.92 97.90

7 0.13 1.43 99.33

8 0.06 0.67 100.00

9 0.00 0.00 100.00

Extraction Method: Principal Component

Analysis.

Table A4.2.2. % total variance accounted for from the principal component analysis of

the grain size distribution (1 phi bin) dataset.
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Total Variance Explained

Initial
Eigenvalues

Extraction
Sums of
Squared
Loadings

Component Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

%

1 18.29 44.6 44.6 18.29 44.6 44.6

2 9.36 22.83 67.43 9.36 22.83 67.43

3 4.47 10.89 78.32 4.47 10.89 78.32

4 2.29 5.59 83.91 2.29 5.59 83.91

5 1.44 3.52 87.43 1.44 3.52 87.43

6 1.01 2.46 89.89 1.01 2.46 89.89

7 0.79 1.93 91.82

8 0.43 1.04 92.86

9 0.4 0.97 93.83

10 0.38 0.92 94.75

11 0.28 0.68 95.43

12 0.24 0.59 96.02

13 0.19 0.45 96.47

14 0.15 0.38 96.85

15 0.13 0.33 97.17

16 0.11 0.28 97.45

17 0.1 0.25 97.7

18 0.09 0.23 97.93

19 0.08 0.21 98.14

20 0.08 0.19 98.33

21 0.07 0.18 98.51

22 0.07 0.16 98.66

23 0.06 0.14 98.8

24 0.05 0.13 98.93

25 0.05 0.11 99.04

26 0.04 0.11 99.15

27 0.04 0.1 99.25

28 0.04 0.09 99.34

29 0.04 0.09 99.43

30 0.03 0.07 99.5

31 0.03 0.07 99.57
.

32 0.03 0.07 99.63

33 0.03 0.06 99.7

34 0.02 0.05 99.75

35 0.02 0.05 99.8

36 0.02 0.04 99.84

37 0.02 0.04 99.88

38 0.01 0.03 99.91

39 0.01 0.03 99.95

40 0.01 0.03 99.97

41 0.01 0.03 100
Extraction Method: Principal Component
Analysis.

Table A4.2.3. % total variance accounted for from the principal component analysis of

the grain size distribution (0.2 phi bin) dataset.
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Total Variance Explained

Initial

Eigenvalues

Extraction Sums

of Squared

Loadings

Component Total
% of

Variance

Cumulative

%
Total

% of

Variance

Cumulative

%

1 8.85 49.18 49.18 8.85 49.18 49.18

2 3.18 17.68 66.86 3.18 17.68 66.86

3 1.71 9.48 76.34 1.71 9.48 76.34

4 1.39 7.73 84.07 1.39 7.73 84.07

5 0.70 3.90 87.97

6 0.51 2.81 90.79

7 0.43 2.39 93.18

8 0.35 1.97 95.15

9 0.21 1.17 96.32

10 0.17 0.93 97.25

11 0.13 0.73 97.98

12 0.11 0.63 98.61

13 0.09 0.48 99.10

14 0.07 0.38 99.48

15 0.06 0.32 99.79

16 0.03 0.17 99.96

17 0.01 0.04 100.00

18 0.00 0.00 100.00

Extraction Method: Principal Component

Analysis.

Table A4.2.4. % total variance accounted for from the principal component analysis of

the combined sedimentary statistic / parameter and grain size distribution (1 phi bin)

dataset.
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Appendix A4.3 - k-means cluster statistics

Solution: 1 Frequency: 39 Reproducibili y: 0.26%. ESS =21.58936310 [+0 070]

Cluster All Cluster: 1 2 3 4 5 6 7 8

162 Number: 12 7 40 27 17 18 17 24

Cluster Means

nr factor 1 0 -0.844 -1.177 -0.573 -0.701 2.043 -0.248 0.569 0.871

nr factor 2 -0 -1.719 2.239 0.119 -0.741 -0.275 1.411 -0.781 0.519

Deviations from the Means

nr factor 1 0 -0.848 -1.181 -0.577 -0.705 2.039 -0.252 0.565 0.867

nr factor 2 -0 -1.717 2.241 0.121 -0.739 -0.273 1.413 -0.779 0.521

Cluster Standard Deviations

nr factor 1 1 0.325 0.397 0.347 0.313 0.386 0.405 0.49 0.351

nr factor 2 1 0.318 0.67 0.281 0.235 0.549 0.429 0.288 0.436

t-Tests on Cluster Means

nr factor 1 -0.846 -1.179 -0.576 -0.704 2.035 -0.251 0.564 0.865

nr factor 2 -1.713 2.235 0.12 -0.737 -0.272 1.409 -0.777 0.52

F-Tests on Cluster Variances

nr factor 1 0.105 0.157 0.12 0.098 0.149 0.163 0.24 0.123

nr factor 2 0.101 0.446 0.079 0.055 0.3 0.183 0.082 0.189

Table A4.3.1. Focal point cluster statistics for the cluster analysis performed upon the

principal components extracted from the sedimentary statistic / parameter dataset.

A4.3.1



Solution: 2 Frequency: 75 Reproducibility: 15.00%. ESS = 36.66257858 [+0.1%]

Cluster All Cluster: 1 2 3 4 5 6 7 8

163 Number: 9 19 10 42 37 9 14 23

Cluster Means

facl_nr 0 0.969 -1.442 -1.635 0.31 0.157 -1.536 0.543 0.976

fac2_nr 0 -1.485 -0.53 -1.737 -0.237 0.92 1.58 0.891 -0.433

fac3_nr 0 -1.5 0.138 1.412 -0.802 0.17 -1.28 1.406 0.694

Deviations from the Means

fac l_nr 0 0.969 -1.442 -1.635 0.31 0.157 -1.536 0.543 0.976

fac2_nr 0 -1.485 -0.53 -1.737 -0.237 0.92 1.58 0.891 -0.433

fac3_nr 0 -1.5 0.138 1.412 -0.802 0.17 -1.28 1.406 0.694

Cluster Standard Deviations

facl_nr 1 0.463 0.514 0.685 0.347 0.437 0.522 0.658 0.464

fac2_nr 1 0.761 0.467 0.664 0.402 0.469 0.367 0.517 0.395

fac3_nr 1 0.601 0.522 0.94 0.504 0.308 0.529 0.471 0.485

t-Tests on Cluster Means

facl_nr 0.969 -1.442 -1.635 0.31 0.157 -1.536 0.543 0.976

fac2_nr -1.485 -0.53 -1.737 -0.237 0.92 1.58 0.891 -0.433

fac3_nr -1.5 0.138 1.412 -0.802 0.17 -1.28 1.406 0.694

F-Tests on Cluster Variances

facl_nr 0.215 0.265 0.469 0.121 0.191 0.272 0.433 0.215

fac2_nr 0.579 0.218 0.441 0.162 0.22 0.135 0.267 0.156

fac3_nr 0.361 0.272 0.883 0.254 0.095 0.28 0.222 0.235

Table A4.3.2. Focal point cluster statistics for the cluster analysis performed upon the

principal components extracted from the whole phi bin dataset.
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Solution: 1 Frequency: 198 Reproducibilit : 1.32%. ESS =58.86563873 [+0.0%]

Cluster All 1 2 3 4 5 6 7 8

162 11 24 23 13 32 13 12 34

Cluster Means

Fac_1_nr 0.043 -1.907 0.7 1.303 -0.897 0.113 0.411 -1.665 0.112

Fac_2_nr -0.163 0.397 -0.686 -0.172 -0.612 0.763 -0.453 -1.382 -0.13

Fac_3_nr 0.016 1.112 0.893 -1.068 -0.639 -0.272 1.435 -1.192 0.179

Fac_4_nr 0.122 1.949 0.126 0.651 -0.046 0.225 -1.359 -0.938 0.077

Fac_5_nr 0.111 0.285 -0.205 0.179 -1.409 0.068 0.349 1.158 0.395

Fac_6_nr 0.025 -0.702 0.9 -0.522 0.011 0.631 -0.982 0.767 -0.43

Deviations from the Means

Fac_1_nr 0.043 -1.95 0.658 1.26 -0.939 0.07 0.368 -1.708 0.069

Fac_2_nr -0.163 0.56 -0.523 -0.009 -0.449 0.927 -0.289 -1.219 0.034

Fac_3_nr 0.016 1.097 0.878 -1.084 -0.655 -0.288 1.42 -1.208 0.163

Fac_4_nr 0.122 1.827 0.004 0.529 -0.168 0.103 -1.481 -1.06 -0.045

Fac_5_nr 0.111 0.173 -0.316 0.068 -1.52 -0.044 0.237 1.047 0.283

Fac_6_nr 0.025 -0.727 0.875 -0.547 -0.014 0.606 -1.007 0.742 -0.455

Cluster Standard Deviations

Fac_1_nr 1.04 0.582 0.385 0.359 0.608 0.5 0.488 0.436 0.556

Fac_2_nr 0.851 0.781 0.557 0.671 0.846 0.475 0.699 0.531 0.544

Fac_3_nr 1.029 0.942 0.659 0.543 0.619 0.571 0.612 0.73 0.511

Fac_4_nr 0.981 0.628 0.568 0.614 1.051 0.572 0.623 0.977 0.569

Fac_5_nr 0.723 0.529 0.324 0.396 0.447 0.451 0.298 1.055 0.349

Fac_6_nr 1.015 1.036 0.888 1.113 0.659 0.439 1.142 0.881 0.379

[-Tests on Cluster Means

Fac_1_nr -1.874 0.632 1.212 -0.903 0.067 0.354 -1.642 0.067

Fac_2_nr 0.659 -0.615 -0.01 -0.528 1.09 -0.34 -1.433 0.039

Fac_3_nr 1.066 0.853 -1.053 -0.636 -0.28 1.379 -1.174 0.158

Fac_4_nr 1.863 0.005 0.54 -0.171 0.105 -1.51 -1.081 -0.046

Fac_5_nr 0.24 -0.437 0.094 -2.102 -0.06 0.328 1.447 0.392

Fac_6_nr -0.716 0.862 -0.539 -0.013 0.597 -0.992 0.731 -0.448

F-Tests on Cluster Variances

Fac_1_nr 0.313 0.137 0.119 0.342 0.231 0.22 0.176 0.285

Fac_2_nr 0.843 0.429 0.622 0.989 0.312 0.675 0.39 0.408

Fac_3_nr 0.838 0.41 0.279 0.361 0.308 0.354 0.503 0.246

Fac_4_nr 0.41 0.336 0.392 1.148 0.34 0.404 0.992 0.337

Fac_5_nr 0.535 0.201 0.3 0.381 0.388 0.17 2.127 0.232

Fac_6_nr 1.042 _	 0.766 1.202 0.422 0.187 1.265 0.754 0.139

Table A4.3.3. Focal point cluster statistics for the cluster analysis performed upon the

principal components extracted from the 0.2 phi bin dataset.
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Solution: 1 Frequency: 58 Reproducibility: 0.39%. ESS = 45.59243393 [+0.0%]

Cluster All 1	 2 3 4 5 6 7 8

162 19 24 12 18 28 13 39 9

Cluster Means

fac l_nr 0.004 0.6 0.674 -1.82 -1.383 0.574 0.707 0.143 -1.23

fac2_nr 0.019 -1.166 0.587 1.131 -1.095 -0.405 0.748 0.612 -0.551

fac3_nr -0.025 0.516 -0.685 -0.619 -0.391 -1.044 1.627 0.364 1.212

fac4_nr -0.033 -1.226 1.012 -0.81 0.195 0.044 0.006 -0.33 1.26

Deviations from the Means

facl_nr 0.004 0.597 0.67 -1.824 -1.387 0.57 0.703 0.139 -1.234

fac2_nr 0.019 -1.185 0.568 1.112 -1.115 -0.424 0.729 0.593 -0.57

fac3_nr -0.025 0.541 -0.66 -0.594 -0.366 -1.019 1.653 0.389 1.237

fac4_nr -0.033 -1.193 1.045 -0.776 0.229 0.077 0.04 -0.296 1.293

Cluster Standard Deviations

facl_nr 1.002 0.497 0.38 0.535 0.548 0.476 0.472 0.536 0.688

fac2_nr 0.973 0.609 0.472 0.696 0.645 0.607 0.666 0.495 0.654

fac3_nr 0.95 0.587 0.611 0.428 0.443 0.476 0.617 0.355 0.59

fac4_nr 0.907 0.877 0.523 0.358 0.866 0.439 0.462 0.449 0.565

t-Tests on Cluster Means

facl_nr 0.595 0.669 -1.821 -1.384 0.569 0.702 0.139 -1.232

fac2_nr -1.218 0.584 1.143 -1.146 -0.436 0.749 0.61 -0.586

fac3_nr 0.569 -0.695 -0.625 -0.386 -1.072 1.74 0.41 1.302

fac4_nr -1.315 1.153 -0.856 0.252 0.085 0.044 -0.326 1.426

F-Tests on Cluster Variances

facl_nr 0.246 0.144 0.285 0.299 0.226 0.222 0.286 0.472

fac2_nr 0.392 0.236 0.511 0.44 0.389 0.468 0.258 0.452

fac3_nr 0.382 0.414 0.203 0.217 0.251 0.422 0.14 0.386

fac4_nr 0.936 0.333 0.156 0.913 0.234 0.26 0.246 0.388

Table A4.3.4. Focal point cluster statistics for the cluster analysis performed upon the

principal components extracted from the combined dataset.
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Appendix A5.1 The Andersen-Darling Test Statistic

The Andersen-Dariling test is classed as a 'Goodness of fit' test based on the cumulative

distribution function. The workings of the test are illustrated in Figure Al; essentially the

data are standardized, ordered from largest to smallest prior to the degree to which the

empirical CDF (from the data) matches the theoretical CDF (the parametric distribution

you are testing against). Within the A-D test the null hypothesis that the true distribution

was drawn from the theoretical CDF with its assumed parameters is rejected if the AD

statistic value is greater than the critical value (CV). The rejection rule is defined as:

AD > CV = 0 .7 52 /(1+ 0 .7 5 / n + 2.25 / n 2 )	 A5.1.1

where AD is the measured Andersen-Darling test statistic, CV is the critical value and n is

the sample number.

Figure A5.1.1 Illustration of the concept behind the distance of Goodness of Fit Tests

such as the Andersen-Darling test.

The larger the AD value the stronger the indication of non-normality, if the p-value is less

than your desired level (0.05 — 95%) then there is evidence against the null hypothesis

and hence against normality for the variable. The Anderson-Darling test is considered an

empirical cumulative distribution function based test and uses the squared difference
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from normality, where normality is based on the normal cumulative density function for a

mean and standard deviation from your dataset (Figure A5.1).
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0.1288 0.6118 1.3505 
cv(n) 1.0063 2 ' for a = 0.05

VT/ n n
A5.2.1

Appendix A5.2 The Ryan-Joiner (RJ) Test Statistic.

In addition to the probability plots, AD tests and their associated p-values, Ryan-

Joiner tests were also performed (see Ryan and Joiner, 1976). As the normal

distribution plot as straight lines on probability plots one obvious way to judge the

near linearity of any plot is to compute its "correlation coefficient." When this is done

for normal probability plots, a formal test can be obtained termed the Ryan-Joiner

(RJ) test. The RJ values needs to exceed some critical value, dependent upon the

number of samples, to be significant. Critical values for the Ryan-Joiner normality

test were calculated from Eq. A2.1 for significance at the 95% level (0.05) (Ryan and

Joiner, 1976):

The reader is referred to the White paper by Ryan and Joiner (1976) available at

http://www.minitab.com/resources/white_papers/normprob.aspx  for further details. In

the case of normality tests p-values need to be greater than some value (usually 0.1)

for the assumption that the data is normally distributed to be supported.
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Appendix A5.3 Group 1 data tables.

Sample
KB

Depth
(m)

gad

type

Sample
type

Corrected
Porosity

r
mean
(nm)

Log r
mean
(nm)

r 10%
(nm)

Log
r10%
[nrn]

CEP
[MPa]

Temperature
(C)

Total
C

(%)
TOC (%)

Measured
Gs

(g/cr•A3)

NOR_1 4435.7 3 Plug 0.098 2.8 0.4 5.8 0.8 12.1 142.0 1.5 1.5 2.833

SCB_5 5211.1 1 RSW core 0.093 3.5 0.5 7.4 0.9 9.5 123.0 1.2 0.4 2.786

TRIN_4 4254.8 2 Core 0.074 7.3 0.9 8.4 0.9 8.3

SCB_23 6618 6 1 Core 0.08 7.4 0.9 20.2 1.3 3.5 168.0 0.7 0.2 2.775

SOB 11 5590.0 4 Cuttings 0.078 11.8 1.1 27.4 1.4 2.6 132.5 1.9 1.0 2.738

SCB_25 6623.5 2 Core 0.076 14.6 1.2 37.4 1.6 1.9 168.2 1.0 0.3 2.79

SOB 27 6633.7 2 Core 0.083 14.6 1.2 34.2 1.5 2.0 168.4 0.9 0.4 2.75

SCB_8 5500.0 1 Cuttings 0.079 15.3 1.2 30.8 1.5 2.3 130.3 1.9 0.9 2.705

SCB_10 5560.0 4 Cuttings 0.07 29.9 1.5 66.9 1.8 1.0 131.8 2.6 1.5 2.677

SCB_19 5680 0 4 Cuttings 0.077 33.3 1.5 91.9 2.0 0.8 134.8 2.4 1.3 2.719

Arith Mean 0.081 14.050 1.031 33.040 1.368 4.388

Geo Mean 0.080 10.733 0.966 23.357 1.309 2.997

Har Mean 0.080 7.902 0.892 15.952 1.247 2.118

SD 0.009 10.568 0.364 28.256 0.414 4.115 r10% CoV 1.77 r10% N-0 328

Min 0.070 2.800 0.447 5.800 0.763 0.762 r mean CoV 1.34 r mean N-0 187

Max 0.098 33.300 1.522 91.900 1.963 12.068
LOP r mean CoV 0' 41 Log r mean N-0 17

Skew 1.130 1.002 -0.334 1.250 -0.237 1.104 Log r10% Coy 0.33 Log r10% N-0 12

Kurtosis 0.747 0.159 -0.584 1.215 -1.002 -0.322 CEP CoV 1.94 CEP N-0 395

Table A5.3.1. Physical property data and statistical data reductions for the 5 - 10%
porosity bin Group 1 subset.

Sample
KB

Depth
(m)

gsd
type

Sample
type

Corrected
Porosity

r
mean
(nm)

LW r
mean
(nm)

r 10%
(nm)

LW
r10%

n

CEP Temperature
(C)

Total
C

(%)
TOO (%)

Measured
GsGs

SCB_17 5631.4 1 RSW core 0.102 3.9 0.6 9.8 1.0 7.1 133.5 1.4 0.2 2.818

TRIN_3 4234 2 2 Core 0.108 3.1 0.5 8.0 0.9 8.8

SCB_7 5235.2 1 RSW core 0.107 3.5 0.5 7.1 0.9 9.9 123.6 1.1 0.4 2.808

GOM_58 6690 4 3 SWC 0.104 4.2 0.6 11.3 1.1 6.2 104.5 1.2 0.8 2.746

GOM_68 6882.6 1 SWC 0.142 4.7 0.7 10.7 1.0 6.5 108.6 1.5 0.7 2.770

GOM 70 6883 7 1 SWC 0.146 5.1 0.7 8.7 0.9 8.0 108.6 2.2 0.6 2.782

GOM 67 6882 3 3 SWC 0.132 5.6 0.7 10.5 1.0 6.7 108.6 1.4 0.7 2.778

GOM_69 6882.8 1 SWC 0.141 6.4 0.8 11.8 1.1 5.9 108.6 1.4 0.7 2.770

GOM_66 6881.9 1 SWC 0.143 7.7 0.9 13.9 1.1 5.0 108.6 2.1 0.7 2.774

NOR_10 2288.8 2 Plug 0.143 9.6 1.0 15.8 1.2 4.4 84.2 2.7 2.3 2.763

Atith Mean 0.127 5.380 0.705 10.760 1.020 6.860

Geo Mean 0.125 5.073 0.690 10.476 1.015 6.681

Har Mean 0.124 4.807 0.676 10.203 1.010 6.505

SD 0.019 2.082 0.158 2.710 0.108 1.699 r10% CoV 0.27 r10% N-0 7

Min 0.102 3.100 0.491 7.100 0.851 4.430 r mean CoV 0.43 r mean N-0 20

Max 0.146 9.600 0.982 15.800 1.199 9.858 Log r mean CoV 0.23 Lop r mean N-0 6

Skew -0.396 1.077 0.464 0.605 0.085 0.423 Log r10% CoV 0.11 Log r10% N-0 1

Kurtosis -2.149 0.707 -0.464 0.130 -0.312 -0.221 CEP CoV 0.26 CEP N-0 7

Table A5.3.2. Physical property data and statistical data reductions for the 10 - 15%
porosity bin Group 1 subset.

A5.3.1



Sample
KB Depth

(m)
gsd
type

SampleSam
type

Corrected
Porosity

r
mean
(nm)

Loa- r
mean
(nrn)

r 10%
(nm)

Lcigr10%
[nm]

CEP
[MPa]

Temperature
(C)

Total
c

(%)
TOC (%)

Measured
Gs

(g/cm^3)

GOM 63 6802.8 1 SWC 0151 7.0 0.85 13.3 1.12 5.3 106.9 1.3 1.2 2.801

TRIN_14 3207.7 3 Core 0.181 4.2 0.62 9.2 0.96 7.6

GOM_71 6884 2 1 SWC 0.17 4.4 0.64 8.0 0.90 8.7 108.6 1.7 0.7 2.812

ANG_10 3231.0 2 SW core 0 179 4.8 0.68 8.6 0.93 8.1 91.5 1.3 1.2 2.737

ANG 9 3039 0 4 SWC 0.196 5.4 0.73 10.1 1.00 6.9 82.9 1.2 0.5 2.784

ANG_7 3019 0 3 cuttings 0.167 5.6 0.75 10.8 1.03 6.5 82.0 1.1 0.7 2.717

ANG_4 2983.0 2 SW core 0.177 6.1 0.79 11.2 1.05 6.2 80.4 1.6 1.4 2.682

GOM 62 6719 0 3 SWC 0.179 6.1 0.79 11.6 1.06 6.0 105.1 2.3 1.8 2.802

ANG 5 2995 0 4 SWC 0.188 7.0 0.85 10.9 1.04 6.4 80.9 2.0 1.4 2.688

GOM 52 5992 4 4 SWC 0.163 8.0 0.90 15.1 1.18 4.6 89.7 1.2 0.9 2.759

GOM 59 6702 9 2 SWC 0 151 10.2 1.01 22.2 1.35 3.2 104.8 1.3 1.1 2.746

GOM_42 4720 7 4 SWC 0 189 11.9 1.08 24.2 1.38 2.9 69.4 0.9 0.7 2.762

GOM 54 6470 6 4 SWC 0 157 12.9 1.11 24.4 1.39 2.9 99.9 2.4 1.2 2.777

GOM_41 4706 1 4 SWC 0.18 13.6 1.13 24.5 1.39 2.9 69.1 1.4 1.3 2.682

GOM_28 4197.7 2 SWC 0.183 13.6 1.13 25.0 1.40 2.8 59.1 2.4 2.0 2.643

SCB 4 4570-4580 3 Cuttings 0.164 13.8 1.14 25.7 1.41 2.7 112.5 3.1 1.4 2.734

GOM 34 4496 4 4 SWC 0.194 17.6 1.25 32.5 1.51 2.2 65.0 1.1 0.7 2.693

Arith Mean 0.175 8.953 0.908 16.900 1.184 5.056

Geo Mean 0.174 8.095 0.887 15.258 1.167 4.587

Har Mean 0.174 7.353 0.867 13.843 1.151 4.142

SD 0 014 4.218 0.204 7.963 0.206 2.219 r10% CoV 0.58 r10% N-0 35

Min 0 151 4.200 0.623 8.000 0.903 2.154 r mean CoV 0.57 r mean N-0 34

Max 0.196 17.600 1.246 32.500 1.512 8.749 Log r mean CoV 0.24 Log r mean N-0 6

Skew -0.301 0.623 0.179 0.517 0.185 0.163 Lop r10% CoV 0.18 Log r10% N-0 3

Kurtosis -0876 -0.888 -1.430 -1.231 -1.649 -1.471 CEP CoV 0.54 CEP N-0 30

Table A5.3.3. Physical property data and statistical data reductions for the 15 - 20%
porosity bin Group 1 subset.

A5.3.2



Sample
KB Depth

PTO
gsd
tYPe

Sample
type

Corrected
Porosity

r
mean
(nm)

Log r
mean
(nm)

r 10%
(nm)

Log
r10%
[nm]

CEP
[MPa]

Temperature
(C)

 Total
C

(%)
TOC (%)

Measured
Gs

(g/cm^3)

GOM_18 3758.8 4 SWC 0.239 9.0 0.95 18.1 1.26 3.9 50.4 1.1 0.5 2.798

GOM_19 3777.7 4 SWC 0.246 9.2 0.96 20.2 1.31 3.5 50.8 0.7 0.6 2.767

GOM_40 4669.5 1 SWC 0.224 9.5 0.98 16.8 1.23 4.2 68.4 2.1 0.8 2.776

ANG_2 2805.0 4 cuttings 0.232 9.7 0.99 21.9 1.34 3.2 72.4 3.2 2.2 2.622

GOM 37 4614.7 1 SWC 0.221 10.6 1.03 19.0 1.28 3.7 67.3 1.3 0.7 2.784

GOM 20 3867.9 4 SWC 0.212 11.0 1.04 22.1 1.34 3.2

GOM 23 4029.5 3 SWC 0.246 11.3 1.05 19.5 1.29 3.6 55.8 1.1 0.6 2.761

GOM_17 3750.0 2 SWC 0.249 11.3 1.05 19.6 1.29 3.6 50.3 0.6 0.3 2.79

GOM_21 3891.7 2 SWC 0.246 11.4 1.06 19.7 1.29 3.6 53.1 1.2 0.4 2.921

GOM 24 4094.7 4 SWC 0.228 11.9 1.08 25.8 1.41 2.7 57.1 1.0 0.5 2.787

GOM 35 4535.1 3 SWC 0.205 13.0 1.11 24.4 1.39 2.9 65.7 1.3 0.7 2.735

GOM 46 4843.0 2 SWC 0.215 13.2 1.12 26.6 1.42 2.6 71.8 1.4 0.7 2.8

GOM 25 4133.7 4 SWC 0.231 13.3 1.12 25.6 1.41 2.7 57.8 1.6 0.8 2.765

GOM 31 4335.5 4 SWC 0.203 13.5 1.13 24.0 1.38 2.9 61.8 0.9 0.4 2.792

GOM 29 4315.4 3 SWC 0.217 13.7 1.14 26.7 1.43 2.6 61.4 1.2 0.9 2.739

GOM 36 4582.4 3 SWC 0.244 14.4 1.16 27.3 1.44 2.6 66.7 0.9 0.4 2.784

GOM_9 3400.7 1 SWC 0.229 15.1 1.18 24.9 1.40 2.8 43.4 1.4 1.0 2.666

ANG_1 2670 0 2 cuttings 0.247 16.2 1.21 21.8 1.34 3.2 66.3 2.6 2.3 2.607

GOM 50 4992.9 4 SWC 0.222 16.3 1.21 29.4 1.47 2.4 74.8 1.0 0.5 2.805

GOM_43 4767 1 1 SWC 0.213 17.0 1.23 31.9 1.50 2.2 70.3 0.7 0.6 2.770

GOM_32 4455 6 4 SWC 0.22 22.7 1.36 45.1 1.65 1.6 64.2 1.2 0.8 2.776

ANG_11 3340 0 2 Cuttings 0 207 23.4 1.37 52.6 1.72 1.3 96.4 3.6 2.8 2.551

GOM 39 4655 8 4 SWC 0 232 23.9 1.38 44.9 1.65 1.6 68.1 2.0 1.9 2.779

GOM 44 4794 5 1 SWC 0.218 25.5 1.41 37.8 1.58 1.9 70.9 7.4 0.2 2.378

GOM 6 3258 3 3 SWC 0 248 26.7 1.43 46.6 1.67 1.5 40.6 1.7 0.8 2.702

GOM_48 4896 9 2 SWC 0.226 27.4 1.44 24.2 1.38 2.9 72.9 1.2 0.9 3.019

ANG 17 3145.0 2 Cuttings 0.227 27.8 1.44 46.1 1.66 1.5 81.2 4.9 3.5 2.493

ANG_18 3190.0 2 Cuttings 0 238 28.3 1.45 43.8 1.64 1.6 83.2 4.1 2.8 2.544

SCB_2 2690-2700 2 Cuttings 0.216 29.0 1.46 57.1 1.76 1.2 3.1 0.1 2.754

ANG_19 3235 0 2 Cuttings 0 241 33.4 1.52 63.1 1.80 1.1 85.3 4.7 3.5 2.53

ANG 20 3355.0 2 Cuttings 0.205 34.6 1.54 66.0 1.82 1.1 90.7 3.9 2.5 2.582

Arith Mean 0.227 17.848 1.213 32.019 1.469 2.552

Geo Mean 0.227 16.325 1.200 29.466 1.460 2.375

Har Mean 0.226 15.041 1.187 27.430 1.450 2.186

SD 0.014 7.922 0.186 14.252 0.176 0.912 r10% CoV 0.52 r10% N-0 28

Min 0.203 9.000 0.954 16.800 1.225 1.061 r .mean CoV 053 r mean N-0 29

Max 0.249 34.600 1.539 66.000 1.820 4.166 Log r mean CoV 0.16 Log r mean N-0 3

Skew -0.014 0.716 0.335 1.062 0.612 -0.152 Log r10% CoV 0.12 Log r10% N-0 2

Kurtosis -1.158 -0.868 -1.310 0.002 -0.890 -1.141 CEP CoV 0.42 CEP N-0 18

Table A5.3.4. Physical property data and statistical data reductions for the 20 -25%
porosity bin Group 1 subset.

A5.3.3



Sample
KB

Depth
Cm)

gsd

tYPe

Sample
type

Corrected
Porosity

r
mean
(nm)

Log r
mean
(nm)

r10%
(nm)

Log
r10%
[nm]

CEP
[MPa]

Temperature
(C)

Total
C

( %)
TOC (%)

Measured
Gs

(g/cm^3)

GOM_18 3758.8 4 SWC 0.239 9.0 0.95 18.1 1.26 3.9 50.4 1.1 0.5 2.798

GOM_19 3777.7 4 SWC 0.246 9.2 0.96 20.2 1.31 3.5 50.8 0.7 0.6 2.767

GOM_40 4669.5 1 SWC 0.224 9.5 0.98 16.8 1.23 4.2 68.4 2.1 0.8 2.776

GOM 37 4614.7 1 SWC 0 221 10.6 1.03 19.0 1.28 3.7 67.3 1.3 0.7 2.784

GOM 20 3867.9 4 SWC 0.212 11.0 1.04 22.1 1.34 3.2

GOM 23 4029.5 3 SWC 0.246 11.3 1.05 19.5 1.29 3.6 55.8 1.1 0.6 2.761

GOM_17 3750.0 2 SWC 0.249 11.3 1.05 19.6 1.29 3.6 50.3 0.6 0.3 2.79

GOM 21 3891.7 2 SWC 0.246 11.4 1.06 19.7 1.29 3.6 53.1 1.2 0.4 2.921

GOM 24 4094.7 4 SWC 0.228 11.9 1.08 25.8 1.41 2.7 57.1 1.0 0.5 2.787

GOM 35 4535.1 3 SWC 0.205 13.0 1.11 24.4 1.39 2.9 65.7 1.3 0.7 2.735

GOM 46 4843.0 2 SWC 0.215 13.2 1.12 26.6 1.42 2.6 71.8 1.4 0.7 2.8

GOM 25 4133 7 4 SWC 0 231 13.3 1.12 25.6 1.41 2.7 57.8 1.6 0.8 2.765

GOM 31 4335 5 4 SWC 0.203 13.5 1.13 24.0 1.38 2.9 61.8 0.9 0.4 2.792

GOM_29 4315.4 3 SWC 0.217 13.7 1.14 26.7 1.43 2.6 61.4 1.2 0.9 2.739

GOM 36 4582 4 3 SWC 0 244 14.4 1.16 27.3 1.44 2.6 66.7 0.9 0.4 2.784

GOM 9 3400 7 1 SWC 0 229 15.1 1.18 24.9 1.40 2.8 43.4 1.4 1.0 2.666

GOM_50 4992 9 4 SWC 0 222 16.3 1.21 29.4 1.47 2.4 74.8 1.0 0.5 2.805

GOM 43 4767.1 1 SWC 0.213 17.0 1.23 31.9 1.50 2.2 70.3 0.7 0.6 2.770

GOM 32 4455 6 4 SWC 022 22.7 1.36 45.1 1.65 1.6 64.2 1.2 0.8 2.776

GOM 39 4655 8 4 SWC 0 232 23.9 1.38 44.9 1.65 1.6 68.1 2.0 1.9 2.779

GOM_44 4794 5 1 SWC 0.218 25.5 1.41 37.8 1.58 1.9 70.9 7.4 0.2 2.378

GOM_6 3258 3 3 SWC 0.248 26.7 1.43 46.6 1.67 1.5 40.6 1.7 0.8 2.702

GOM 48 4896 9 2 SWC 0.226 27.4 1.44 24.2 1.38 2.9 72.9 1.2 0.9 3.019

Arith Mean 0.228 15.257 1.157 26.965 1.412 2.820

Geo Mean 0 227 14.356 1.148 25.801 1.406 2.713

Har Mean 0 227 13.618 1.140 24.823 1.401 2.596

SD 0.014 5.875 0.152 8.865 0.129 0.763 r10% Coy 0.36 r10% N-0 13

Min 0.203 9.000 0.954 16.800 1.225 1.502 r mean CoV 043. r mean N-0 19

Max 0.249 27.400 1.438 46.600 1.668 4.166 Log r mean CoV 0' 13 Log r mean N-0 2

Skew 0.089 1.099 0.696 1.237 0.749 -0.206 Log r10% CoV 0.09 Log r10% N-0 1

Kurtosis -1.071 -0.094 -0.598 0.655 -0.149 -0.617 CEP CoV 0.29 CEP N-0 9

Table A5.3.5 Physical property data and statistical data reductions for the 20 - 25%
porosity bin Gulf of Mexico Group 1 subset.

A5.3.4



Sample
KB

Depth
(m)

gsd
type

Sample
type

Corrected
Porosity

r
mean
(nm)

Log r
mean
(nm)

r 10%
(nm)

Log
r10%
[nm]

CEP
[MPa]

Temperature
(C)

Total
C

(%)
TOC (%)

Measured
Gs

(g/cmA3)

GOM 16 3706 4 4 SWC 0.252 10.5 1.02 20.0 1.30 3.5 49.4 1.1 0.4 2.795

GOM 26 4146 5 3 SWC 0.257 10.8 1.03 22.9 1.36 3.1 58.1 1.7 0.7 2.832

ANG_14 2525.0 2 Cuttings 0 259 13.1 1.12 22.5 1.35 3.1 53.3 4.0 3.2 2.518

GOM_4 3148.6 3 SWC 0.25 13.5 1.13 26.4 1.42 2.7 38.4 1.5 0.7 2.741

ANG 12 2374.5 2 SW core 0 306 13.9 1.14 21.3 1.33 3.3 46.5 2.5 1.3 2.655

GOM_10 3538.1 4 SWC 0.253 19.3 1.29 33.2 1.52 2.1 46.1 1.2 0.5 2.75

GOM 8 3380.8 4 SWC 0.263 20.7 1.32 36.9 1.57 1.9 43.0 1.7 0.8 2.746

GOM 3 3104.7 1 SWC 0.279 21.6 1.33 29.6 1.47 2.4 37.6 1.4 0.5 2.762

ANG 16 2955.0 2 Cuttings 0.269 24.6 1.39 32.2 1.51 2.2 72.7 4.4 3.2 2.512

ANG 15 2670.0 4 Cuttings 0.279 26.1 1.42 32.1 1.51 2.2 59.8 4.7 3.5 2.521

GOM 15 3700.6 2 SWC 0.338 26.3 1.42 38.5 1.59 1.8 49.3 4.9 0.1 2.894

GOM_45 4817.7 1 SWC 0.277 27.1 1.43 41 5 1.62 1.7 71.3 4.5 0.9 2.764

GOM_1 2987.0 4 SWC 0 261 28.8 1.46 48.9 1.69 1.4 35.2 1.3 0.5 2.75

GOM_13 3616.5 2 SWC 0 297 30.3 1.48 40.6 1.61 1.7 47.6 5.2 0.2 2.686

GOM 30 4330 0 1 SWC 0.306 51.3 1.71 62.0 1.79 1.1 61.7 10.0 2.0 2.441

Ant Mean 0 276 22.527 1.313 33.907 1.509 2.275

Geo Mean 0.275 20.552 1.300 32.263 1.503 2.169

Har Mean 0 274 18 804 1.286 30.773 1.497 2.064

SD 0.026 10.598 0.195 11.629 0.143 0.722 r10% CoV 0.38 r10% N-0 15

Min 0.250 10.500 1.021 20.000 1.301 1.129 r mean CoV 0.56 r mean N-0 33

Max 0.338 51.300 1.710 62.000 1.792 3.500 Log r mean CoV 0.15 Log r mean N-0 2

Skew 1.166 1.392 0.118 1.012 0.269 0.314 Log r10% CoV 0.10 Log r10% N-0 1

Kurtosis 0.931 3.223 -0.248 1.219 -0.399 -0.875 CEP CoV 0.35 CEP N-0 13

Table A5.3.6. Physical property data and statistical data reductions for the 25 - 30%
porosity bin Group 1 subset.

A5.3.5



Group 2 data tables.

Sample
KB

Depth
(m)

gsdtype Sample
type

Corrected
Porosity

r mean
(nm)

Log r
mean
(nm)

r 10%
(nm)

Log
r10%
[nm]

CEP
[MPa]

Temperature
(C)

Total
c

(%)
TOC (%)

Measured
Gs

(g/cm03)

NOR_7 3484.6 5 Plug 0 097 3.1 0.5 7.5 0.9 9.3 1.7 1.3 2.769

NOR 6 3005.45 5 Plug 0.065 4.0 0.6 9.0 1.0 7.8 130.2 1.8 1.5 2.764

NOR_28 3861.82 5 Plug 0.075 4.6 0.7 9.2 1.0 7.6 1.9 1.6 2.747

NOR_29 4133.39 6 Plug 0.055 5.4 0.7 14.0 1.1 5.0 0.1 0.1 2.756

NOR 9 3517 3 6 Plug 0.056 5.9 0.8 13.8 1.1 5.1 132.8 1.6 1.3 2.737

NOR_27 3550.92 6 Plug 0.068 6.6 0.8 14.6 1.2 4.8 1.2 1.1 2.867

NOR 24 2798.5 6 Plug 0.079 8.8 0.9 11.0 1.0 6.4 104.6 3.4 2.4 2.696

TRIN 5 3812.1 6 Core 0.080 29.2 1.5 18.1 1.3 3.9

SCB 15 5620 26 5 RSW core 0 091 52.1 1.7 127.5 2.1 0.5 133.3 1.3 0.1 2.758

SCB 24 6619 17 6 Core 0.069 52.3 1.7 139.5 2.1 0.5 168.1 1.5 0.2 2.709

SCB 6 5227 35 5 RSW core 0.096 67.1 1.8 92.1 2.0 0.8 123.4 1.5 0.2 2.756

SCB 22 6507.18 6 Core 0.091 76.4 1.9 310.8 2.5 0.2 165.3 0.9 0.3 2.766

SCB_13 5615.45 5 RSW core 0.086 105.0 2.0 247.1 2.4 0.3 133.1 1.4 0.2 2.715

SCB_26 6627.1 6 Core 0.079 367.6 2.6 1211.6 3.1 0.1 168.3 1.2 0.2 2.656

Arith Mean 0 078 56.293 1.301 158.986 1.623 3.728

Geo Mean 0.076 20.020 1.144 42.000 1.488 1.667

Har Mean 0 075 9.195 1.003 18.776 1.374 0.440

SD 0 014 97.247 0.669 324.001 0.730 3.356 r10% CoV 17.26 r10% N-0 31133

Min 0 055 3.100 0.491 7.500 0.875 0.058 r mean CoV 10.58 r mean N-0 11695

Max 0 097 367 600 2.565 1211.600 3.083 9.333 Log r mean CoV 0.67 Log r mean N-0 47

Skew -0224 3.021 0.397 3.185 0.718 0.250 Log r10% CoV 0.53 Log r10% N-0 29

Kurtosis -0.962 10.032 -1.117 10.844 -0.791 -1.461 CEP CoV 7.62 CEP N-0 6075

Table A5.3.7. Physical property data and statistical data reductions for the 5 - 10%
porosity bin Group 2 subset.

Sample
KB

Depth
(m)

gad
t

SampleSample
ttype

Corrected
Porosity

r mean
(nm)

Log r
mean
(nm)

r 10%
(nm)

Log
r10%
[nm]

CEP
[MPa]

Temperature
(C)

Total
c

(%)
-roc cm

Measured
Gs

(g/cnY3)

SCB_15 5620 26 5 RSW core 0.091 52.1 1.7 127.5 2.1 0.5 133.3 1.3 0.1 2.758

SCB 24 6619.17 6 Core 0 069 52.3 1.7 139.5 2.1 0.5 168.1 1.5 0.2 2.709

SCB_6 5227.35 5 RSW core 0.096 67.1 1.8 92.1 2.0 0.8 123.4 1.5 0.2 2.756

SCB_22 6507.18 6 Core 0.091 76.4 1.9 310.8 2.5 az 165.3 0.9 0.3 2.766

SCB_13 5615.45 5 RSW core 0.086 105.0 2.0 247.1 2.4 0.3 133.1 1.4 0.2 2.715

SCB_26 6627.1 6 Core 0.079 367.6 2.6 1211.6 3.1 0.1 168.3 1.2 0.2 2.656

Arith Mean 0.085 120.083 1.955 354.767 2.364 0.396

Geo Mean 0 085 90.217 1936. 231.123 2.337 0.303

Har Mean 0.084 76.384 1.919 176.683 2.313 0.197

SD 0.010 127.938 0.333 445.530 0.419 0.265 r10°/0 Coy 2.52 r10% N-0 665

Min 0.069 52.100 1.717 92.100 1.964 0.058 r mean CoV 1.67 r mean N-0 293

Max 0.096 367.600 2.565 1211.600 3.083 0.760 Log r mean CoV 0' 17 Log r mean N-0 3

Skew -0.952 2.316 1.817 2.254 1.303 0.141 Log r10% CoV 0.18 Log r10% N-0 3

Kurtosis 0.272 5.462 3.475 5.228 1.775 -0.840 CEP CoV 1.34 CEP N-0 188

Table A5.3.8. Physical property data and statistical data reductions for the 5 - 10%
porosity bin South Caspian Basin Group 2 subset.

A5.3.6



Sample
KB

Depth
(m)

asd
type

Sample
type

Corrected
Porosity

r
mean
(nm)

Log r
mean
(nm)

r 10%
(nm)

Log
r 1 0%
[nm]

CEP
[MPa]

Temperature
(C)

Total
C

( °/0 )
TOO (%)

Measured
Gs

A(g/cm3)

NOR_7 3484.6 5 Plug 0.097 3.1 0.5 7.5 0.9 9.3 1.7 1.3 2.769

NOR_6 3005.45 5 Plug 0.065 4.0 0.6 9.0 1.0 7.8 130.2 1.8 1.5 2.764

NOR_28 3861.82 5 Plug 0.075 4.6 0.7 9.2 1.0 7.6 1.9 1.6 2.747

NOR_29 4133.39 6 Plug 0.055 5.4 0.7 14.0 1.1 5.0 0.1 0.1 2.756

NOR_9 3517.3 6 Plug 0.056 5.9 0.8 13.8 1.1 5.1 132.8 1.6 1.3 2.737

NOR 27 3550.92 6 Plug 0.068 6.6 0.8 14.6 1.2 4.8 1.2 1.1 2.867

NOR_24 2798.5 6 Plug 0.079 8.8 0.9 11.0 1.0 6.4 104.6 3.4 2.4 2.696

Arith Mean 0.071 5.486 0.718 11.300 1.041 6.564

Geo Mean 0.069 5.220 0.704 10.982 1.035 6.373

Har Mean 0.068 4.965 0.690 10.664 1.030 6.194

SD 0.015 1.942 0.154 2.950 0.117 1.798 r10% CoV 0.28 r10% N-0 8

Min 0.055 3.100 0.491 7.500 0.875 4.794 r mean CoV .039 r mean N-0 16

Max 0.097 8.800 0.944 14.600 1.164 9.333 Log r mean CoV 0.22 Log r mean N-0 5

Skew 0.862 0.719 -0.029 -0.051 -0.257 0.511 Log r10% CoV 0.11 Log r10% N-0 1

Kurtosis 0.651 0.648 -0.064 -2.088 -1.730 -1.137 CEP CoV 0.29 CEP N-0 9

Table A5.3.9. Physical property data and statistical data reductions for the 5 - 10%
porosity bin Jurassic North Sea Group 2 subset.

Sample
KB

Depth
(m)

gsd

4"

Sample
type

Corrected
Porosrty

r mean
(nm)

Log r
me an
(nm)

r 10%
(nm)

Log
r10%
(rim]

CEP Temperature
(C)

Total
C

(%)(%)
TOC (%)

Measured
Gs

(g/cmA3)

NOR_12 3044.9 5 Plug 0.104 4.3 0.6 7.5 0.9 9.3 111.4 1.3 1.3 2.723

NOR 2 4386 4 5 Plug 0.113 4.8 0.7 11.5 1.1 6.1 140.4 2.3 2.2 2.812

NOR 26 3040 6 5 Plug 0.109 7.0 0.8 13.0 1.1 5.4 111.2 3.6 2.8 2.726

GOM_65 6881.0 6 SWC 0.123 7.6 0.9 13.8 1.1 5.1 108.6 1.2 0.6 2.77

NOR 23 2589 8 6 Plug 0.127 7.7 0.9 16.2 1.2 4.3 89.6 1.2 1.1 2.738

NOR 8 2705.9 5 Plug 0.108 8.0 0.9 16.0 1.2 4.4 101.0 0.2 0.2 2.754

NOR_25 2801.6 6 Plug 0.115 10.6 1.0 21.1 1.3 3.3 106.3 1.0 0.8 2.757

NOR_5 2860 9 5 Plug 0.11 24.2 1.4 62.0 1.8 1.1 123.6 0.9 0.8 2.789

NOR_22 2412.9 6 Plug 0.129 45.4 1.7 130.0 2.1 0.5 100.2 2.2 1.9 2.788

SCB_12 5602.1 5 RSW core 0.101 64.3 1.8 141.6 2.2 0.5 132.8 1.3 0.3 2.738

SCB_16 5627.5 5 RSW core 0.102 72.1 1.9 134.8 2.1 0.5 133.4 1.3 0.1 2.755

NOR_3 2657 8 5 Plug 0.127 74.6 1.9 150.0 2.2 0.5 100.7 1.4 1.4 2.76

GOM_55 6579.7 6 SWC 0.111 106.9 2.0 146.3 2.2 0.5 102.2 1.1 1.1 2.662

GOM_72 6884.3 6 SWC 0.114 117.9 2.1 316.8 2.5 0.2 108.6 0.5 0.3 2.702

Arith Mean 0.114 39.671 1.324 84.329 1.640 2.981

Geo Mean 0.113 21.085 1.219 43.628 1.551 1.604

Har Mean 0.113 11.779 1.120 23.480 1.464 0.830

SD 0.010 41.126 0.548 91.557 0.563 2.904 r10% CoV 3.90 r10% N-0 1590

Min 0.101 4.300 0.633 7.500 0.875 0.221 r mean CoV 3.49 r mean N-0 1275

Max 0.129 117.900 2.072 316.800 2.501 9.333 Log r mean CoV 0'49 Log r mean N-0 25

Skew 0.421 0.853 0.150 1.362 0.103 0.813 Log r10% CoV 0.38 Log r10% N-0 15

Kurtosis -1.016 -0.677 -1.851 2.045 -1.801 -0.075 CEP CoV 3.50 CEP N-0 1280

Table A5.3.10. Physical property data and statistical data reductions for the 10- 15%
porosity bin Group 2 subset.
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Sample
KB

Depth
(m)

gad
type

Sample
type

Corrected
Porosity

r mean
(nm)

Log r
mean
(nm)

r10/
(nm)

Log
r10%
[nm)

CEP
(MPal

Temperature
(C)

TotalTotal

(%)
TOC (%)

Measured
Gs

(g/cm^3)

GOM 56 6673.6 6 SWC 0.153 5.6 0.7 12.4 1.1 5.6 104.2 1.5 0.8 2.721

ANG_23 2444.0 6 SWC 0.168 13.1 1.1 22.8 1.4 3.1

GOM_11 3559.5 6 SWC 0.186 103.4 2.0 163.7 2.2 0.4 46.5 1.2 0.5 2.599

ANG_22 4142.0 6 Core 0.183 285.8 2.5 741.2 2.9 0.1

TRIN_7 3835.0 6 Core 0.175 358.5 2.6 676.0 2.8 0.1

TRIN_8 3872.9 5 Core 0.177 496.7 2.7 1209.5 3.1 0.1

TRIN_12 3993.9 6 Core 0.181 1497.0 3.2 5960.5 3.8 0.01

Arith Mean 0.175 394.311 2.109 1255.149 2.460 1.345

Geo Mean 0.174 128.537 1.904 288.633 2.270 0.243

Har Mean 0.174 25.611 1.662 52.040 2.062 0.056

SD 0.012 538.252 0.911 2196.937 0.998 2.272 r10% CoV 42.22 r10% N-0 186332

Min 0.153 5.600 0.748 12.400 1.093 0.012 r mean CoV 21 '02 r mean N-0 46179

Max 0 186 1497.000 3.175 5960.500 3.775 5.645 Log r mean CoV 0' 55 Log r mean N-0 31

Skew -1.341 1.998 -0.668 2.414 -0.334 1.670 Log rl 0% CoV 0.48 Log r10% N-0 24

Kurtosis 1.737 4.387 -0.834 6.045 -0.975 1.904 CEP CoV 40'73 CEP N-0 173480

Table A5.3.11. Physical property data and statistical data reductions for the 15 - 20%
porosity bin Group 2 subset.

Sample
KB

Depth
(m)

gsd
type

Sample
type

Corrected
Porosity

r mean
(nm)

Log r
an

(nrn)

r10%
(nm)

Log
r10%
[nm]

CEP
[MPa]

Temperature
(C)

Total
C

( %)
TOC (%)

Measured
Gs

(g/crnA3)

NOR_21 2090 6 6 Plug 0 205 163.8 2.2 453.7 2.7 0.154 61.2 1.5 1.5 2.767

GOM_75 5697 0 5 SWC 0.223 242.7 2.4 652.2 2.8 0.107

TRIN_9 3873 4 5 Core 0.259 571.0 2.8 1231.9 3.1 0.057

NOR 11 2047.9 6 Plug 0 265 1403.4 3.1 3990.3 3.6 0.018 59.9 1.0 1.0 2.752

Arith Mean 0.238 595.224 2.626 1582.028 3.041 0.084

Geo Mean 0.237 422.470 2.602 1098.201 3.020 0.064

Har Mean 0.235 315.224 2.578 833.374 3.001 0.044

SD 0.031 602.336 0.441 1741.559 0.440 0.063 r10% CoV 2.09 r10% N-0 457

Min 0.205 163.800 2.214 453.700 2.657 0.018 r mean CoV 1.91 r mean N-0 382

Max 0.265 1403.400 3.147 3990.300 3.601 0.154 Lop r mean Coy 0' 17 Log r mean N-0 3

Skew -0.279 1.477 0.564 1.769 1.011 0.147 Log r10% CoV 0.15 Log r10% N-0 2

Kurtosis -4.018 1.884 -1.543 3.134 0.401 -1.640 CEP CoV 1.43 CEP N-0 214

Table A5.3.12. Table A3.11. Physical property data and statistical data reductions for the
20 - 27% porosity bin Group 2 subset.
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Appendix A5.4 — Ryan-Joiner normality test results.

Figure A5.4.1. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10°/0 (c) log r mean and (d) log r10% for samples with type 1 — 4 gsd's and an

average porosity 8.2% (range 7 — 9.8%). The critical value at the 0.05 level is equal to 0.927

for n = 12 and is exceeded for both log r mean and log r10%.
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Figure A5.4.2. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 1 — 4 gsd's and an

average porosity 12.7% (range 10.2 — 14.6%). The critical value at the 0.05 level is equal to

0.917 for n = 10 and is exceeded for both r mean and r10%.
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Figure A5.4.3. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10 c/0 for samples with type 1 —4 gsd's and an

average porosity 17.4% (range 15.1 — 19.6%). The critical value at the 0.05 level is equal to

0.944 for n = 17 and is exceeded for all but r10%.
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Figure A5.4.4. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 1 — 4 gsd's and an

average porosity 22.7% (range 20.3 — 24.9%). The critical value at the 0.05 level is equal to

0.965 for n = 31 and exceeds the values obtained for r mean and r10% and log r10%

indicating strong evidence against normality.
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Figure A5.4.5. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 1 — 4 gsd's from a

single Iota Area well and an average porosity of 22.8% porosity (range 20.3 — 24.9%). The

critical value at the 0.05 level is equal to 0.955 for n = 23 and exceeds all the values except

log r10%.
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Figure A5.4.6. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 1 —4 gsd's and an

average porosity 27.6% (range 25 — 33.8%). The critical value at the 0.05 level is equal to

0.938 for n = 15 and is exceeded by all but r mean.
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Figure A5.4.7. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 5 — 6 gsd's and an

average porosity 7.8% (range 5.5 — 9.7%). The critical value at the 0.05 level is equal to 0.935

for n = 14 and is only exceeded for by log r mean.
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Figure A5.4.8. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for Zeta Area samples with type 5 — 6

gsd's and an average porosity 8.5% (range 6.9 — 9.6%). The critical value at the 0.05 level is

equal to 0.889 for n = 6 and is only exceeded by log r mean and log r10%.
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Figure A5.4.9. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10`)/0 for Jurassic North Sea samples with type

5 — 6 gsd's and an average porosity 7.1% (range 5.5 — 9.7%). The critical value at the 0.05

level is equal to 0.898 for n = 7 and is exceeded all the parameters.
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Figure A5.4.10. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10°/0 (c) log r mean and (d) log r10% for samples with type 5 — 6 gsd's and an

average porosity 11.4% (range 10.1 — 12.9%). The critical value at the 0.05 level is equal to

0.935 for n =14 and is only exceeded by log r mean and log 00%.
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Figure A5.4.11. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 5 — 6 gsd's and an

average porosity 17.5% (range 15.3— 18.6%). The critical value at the 0.05 level is equal to

0.898 for n = 7 and is only exceeded by log r mean and log r1O`Yo.
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Figure A5.4.12. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10` 3/0 for samples with type 5 — 6 gsd's and an

average porosity 23.8% (range 20.5 — 26.5%). The critical value at the 0.05 level is equal to

0.873 for n = 4 and is exceeded by all the parameters.
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Figure A5.4.7. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10')/0 (c) log r mean and (d) log r10')/0 for samples with type 5 — 6 gsd's and an

average porosity 7.8% (range 5.5 — 9.7%). The critical value at the 0.05 level is equal to 0.935

for n = 14 and is only exceeded for by log r mean.
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Figure A5.4.8. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for Zeta Area samples with type 5 — 6

gsd's and an average porosity 8.5% (range 6.9 — 9.6%). The critical value at the 0.05 level is

equal to 0.889 for n = 6 and is only exceeded by log r mean and log r10%.
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Figure A5.4.9. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10°/0 (c) log r mean and (d) log r10°/0 for Jurassic North Sea samples with type

5 — 6 gsd's and an average porosity 7.1% (range 5.5 — 9.7%). The critical value at the 0.05

level is equal to 0.898 for n = 7 and is exceeded all the parameters.
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Figure A5.4.10. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10°/0 (c) log r mean and (d) log r10% for samples with type 5 — 6 gsd's and an

average porosity 11.4% (range 10.1 — 12.9%). The critical value at the 0.05 level is equal to

0.935 for n = 14 and is only exceeded by log r mean and log r10%.
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Figure A5.4.11. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10 3̀/0 (c) log r mean and (d) log r10 .3/0 for samples with type 5 — 6 gsd's and an

average porosity 17.5% (range 15.3 — 18.6%). The critical value at the 0.05 level is equal to

0.898 for n = 7 and is only exceeded by log r mean and log r10%.
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Figure A5.4.12. Probability plots generated from the Ryan-Joiner normality test for (a) log r

mean (b) log r10% (c) log r mean and (d) log r10% for samples with type 5 —6 gsd's and an

average porosity 23.8% (range 20.5 — 26.5%). The critical value at the 0.05 level is equal to

0.873 for n = 4 and is exceeded by all the parameters.
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Appendix A5.5 - Group 1 Regression Tables

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.634537

R Square 0.402638

Adjusted R Square 0.387704

Standard Error 20.28083

Observations 83

ANOVA

df SS MS F Significance F

Regression 2 22178.79 11089.4 26.96102 1.12E-09

Residual 80 32904.97 411.3121

Total 82 55083.76

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 32.74527 11.84642 2.764148 0.007081 9.170114 56.32043 9.170114 56.32043

X Variable 1 -391.874 54.02818 -7.25315 2.31E-10 -499.394 -284.355 -499.394 -284.355

X Variable 2 163.2118 34.01571 4.79813 7.31E-06 95.5183 230.9053 95.5183 230.9053

Table A5.5.1. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and clay content (Variable 2) on the unscreened Group 1 (gsd

types 1 - 4) dataset.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.605046

R Square 0.36608

Adjusted R Square 0.350232

Standard Error 20.89219

Observations 83

ANOVA

df SS MS F Significance F

Regression 2 20165.09 10082.54 23.09949 1.21E-08

Residual 80 34918.67 436.4834

Total 82 55083.76

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 119.1052 12.40192 9.603774 5.74E-15 94.4246 143.7859 94.4246 143.7859

X Variable 1 -257.566 39.0983 -6.58764 4.35E-09 -335.374 -179.757 -335.374 -179.757

X Variable 2 -130.184 31.4994 -4.13291 8.76E-05 -192.87 -67.4983 -192.87 -67.4983

Table A5.5.2. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the unscreened Group 1

(gsd types 1 - 4) dataset.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.703148

R Square 0.494417

Adjusted R Square 0.478367

Standard Error 19.18697

Observations 66

ANOVA

df SS MS F Significance F

Regression 2 22680.63 11340.32 30.80436 4.67E-10

Residual 63 23192.82 368.14

Total 65 45873.45

	  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 58.00555 14.11056 4.110792 0.000116 29.80784 86.20327 29.80784 86.20327

X Variable 1 -402.994 54.80376 -7.35341 4.83E-10 -512.511 -293.478 -512.511 -293.478

X Variable 2 125.4109 37.2303 3.368517 0.001293 51.01201 199.8097 51.01201 199.8097

Table A5.5.3. Regression statistics obtained from a multiple linear regression of CEPllg

on porosity (Variable 1) and clay content (Variable 2) on the Group 1 (gsd types 1 - 4)

dataset screened for cuttings.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.690944

R Square 0.477403

Adjusted R Square 0.460813

Standard Error 19.50715

Observations 66

ANOVA

df SS MS F Significance F

Regression 2 21900.12 10950.06 28.7759 1.33E-09

Residual 63 23973.32 380.5289

Total 65 45873.45

Coefficients Standard Error t Stet P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 125.6566 12.36982 10.15832 6.76E-15 100.9375 150.3758 100.9375 150.3758

X Variable 1 -308.751 40.84809 -7.55851 2.11E-10 -390.379 -227.122 -390.379 -227.122

X Variable 2 -97.58 32.66053 -2.9877 0.004002 -162.847 -32.3131 -162.847 -32.3131

Table A5.5.4. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the Group 1 (gsd types 1

— 4) dataset screened for cuttings.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.740689

R Square 0.54862

Adjusted R Square 0.535344

Standard Error 16.69647

Observations 71

ANOVA

df SS MS F Significance F

Regression 2 23040.26 11520.13 41.32453 1.8E-12

Residual 68 18956.51 278.7722

Total 70 41996.76

	  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 90.87858 14.57909 6.233489 3.31E-08 61.78648 119.9707 61.78648 119.9707

X Variable 1 -392.005 48.97386 -8.00438 2.15E-11 -489.731 -294.279 -489.731 -294.279

X Variable 2 59.52727 34.40996 1.729943 0.088177 -9.13669 128.1912 -9.13669 128.1912

Table A5.5.5. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and clay content (Variable 2) on the Group 1 (gsd types 1 - 4)

dataset screened for Zeta Area samples.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.758077

R Square 0.57468

Adjusted R Square 0.562171

Standard Error 16.20732

Observations 71

ANOVA

df SS MS F Significance F

Regression 2 24134.72 12067.36 45.93988 2.38E-13

Residual 68 17862.05 262.6772

Total 70 41996.76

	 	 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 138.0368 12.60885 10.94761 1.19E-16 112.8762 163.1974 112.8762 163.1974

X Variable 1 -380.689 39.97817 -9.52243 3.88E-14 -460.465 -300.914 -460.465 -300.914

X Variable 2 -81.1523 29.9485 -2.70973 0.008514 -140.914 -21.3911 -140.914 -21.3911

Table A5.5.6. Regression statistics obtained from a multiple linear regression of CEPllg

on porosity (Variable 1) and sortable silt content (Variable 2) on the Group 1 (gsd types 1

— 4) dataset screened for Zeta Area samples.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.754126

R Square 0.568706

Adjusted R Square 0.553573

Standard Error 16.65581

Observations 60

ANOVA

df SS MS F Significance F

Regression 2 20850.75 10425.37 37.58028 3.9E-11

Residual 57 15812.72 277.4161

Total 59 36663.47

	  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 89.66704 14.88491 6.024024 1.31E-07 59.86051 119.4736 59.86051 119.4736

X Variable 1 -395.839 51.50323 -7.68571 2.29E-10 -498.972 -292.705 -498.972 -292.705

X Variable 2 65.40113 35.54145 1.840136 0.070957 -5.76944 136.5717 -5.76944 136.5717

Table A5.5.7. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and clay content (Variable 2) on the Group 1 (gsd types 1 - 4)

dataset screened for both cuttings and Zeta Area samples.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.765959

R Square 0.586693

Adjusted R Square 0.572191

Standard Error 16.3048

Observations 60

ANOVA

df SS MS F Significance F

Regression 2 21510.22 10755.11 40.45609 1.16E-11

Residual 57 15153.25 265.8465

Total 59 36663.47

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 137.5745 13.27301 10.36498 9.94E-15 110.9958 164.1533 110.9958 164.1533

X Variable 1 -379.183 42.68582 -8.88311 2.4E-12 -464.66 -293.706 -464.66 -293.706

X Variable 2 -76.37 31.14136 -2.45237 0.017277 -138.729 -14.0105 -138.729 -14.0105

Table A5.5.8. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the Group 1 (gsd types 1

- 4) dataset screened for both cuttings and Zeta Area samples.

A5.5.8



Appendix A5.6 - Group 2 Regression Tables

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.521796

R Square 0.272271

Adjusted R Square 0.231842

Standard Error 27.61379

Observations 39

ANOVA

df SS MS F Significance F

Regression 2 10270.39 5135.196 6.734493 0.003277

Residual 36 27450.78 762.5216

Total 38 37721.17

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 37.25891 17.79941 2.093266 0.043433 1.160071 73.35774 1.160071 73.35774

X Variable 1 -287.689 84.54642 -3.40274 0.001649 -459.157 -116.221 -459.157 -116.221

X Variable 2 106.4625 59.51966 1.788695 0.082082 -14.2488 227.1738 -14.2488 227.1738

Table A5.6.1. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and clay content (Variable 2) on the unscreened Group 2 (gsd

types 5 - 6) dataset.

A5.6.1



SUMMARY OUTPUT

Regression Statistics

Multiple R 0.618738

R Square 0.382837

Adjusted R Square 0.34855

Standard Error 25.4297

Observations 39

ANOVA

df SS MS F Significance F

Regression 2 14441.06 7220.531 11.16572 0.000169

Residual 36 23280.11 646.6696

Total 38 37721.17

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 133.0682 24.61649 5.405655 4.33E-06 83.14376 182.9927 83.14376 182.9927

X Variable 1 -273.103 77.26257 -3.53474 0.001142 -429.799 -116.408 -429.799 -116.408

X Variable 2 -122.562 38.33431 -3.1972 0.002889 -200.308 -44.8169 -200.308 -44.8169

Table A5.6.2. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the unscreened Group 2

(gsd types 5 — 6) dataset.

A5.6.2



SUMMARY OUTPUT

Regression Statistics

Multiple R 0.69006

R Square 0.476183

Adjusted R Square 0.438767

Standard Error 24.45724

Observations 31

ANOVA

dl SS MS F Significance F

Regression 2 15225.32 7612.661 12.72687 0.000117

Residual 28 16748.38 598.1565

Total 30 31973.7

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 75.94775 18.94851 4.008113 0.000411 37.13345 114.7621 37.13345 114.7621

X Variable 1 -396.082 79.32049 -4.99344 2.82E-05 -558.563 -233.601 -558.563 -233.601

X Variable 2 43.43242 57.59765 0.754066 0.457105 -74.5511 161.416 -74.5511 161.416

Table A5.6.3. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and clay content (Variable 2) on the Group 2 (gsd types 5 — 6)

dataset screened for Zeta Area samples.

A5.6.3



SUMMARY OUTPUT

Regression Statistics

Multiple R 0.753987

R Square 0.568497

Adjusted R Square 0.537675

Standard Error 22.19778

Observations 31

ANOVA

df SS MS F Significance F

Regression 2 18176.95 9088.475 18.44472 7.76E-06

Residual 28 13796.76 492.7413

Total 30 31973.7

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 139.3006 22.64407 6.151748 1.22E-06 92.91626 185.6849 92.91626 185.6849

X Variable 1 -378.169 72.30905 -5.2299 1.48E-05 -526.288 -230.051 -526.288 -230.051

X Variable 2 -96.0422 37.15853 -2.58466 0.015252 -172.158 -19.9264 -172.158 -19.9264

Table A5.6.4. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the Group 2 (gsd types 5

— 6) dataset screened for Zeta Area samples.
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Appendix A5.7 Group 1 Iota Area Subset Regression Tables

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.737485

R Square 0.543884

Adjusted R Square 0.524475

Standard Error 12.66566

Observations 50

ANOVA

df SS MS F Significance F

Regression 2 8990.503 4495.251 28.02196 9.73E-09

Residual 47 7539.686 160.4189

Total 49 16530.19

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 68.96928 13.62231 5.062966 6.8E-06 41.56476 96.3738 41.56476 96.3738

X Variable 1 -318.362 44.29757 -7.18691 4.26E-09 -407.478 -229.247 -407.478 -229.247

X Variable 2 65.23202 29.6187 2.202393 0.032579 5.646939 124.8171 5.646939 124.8171

Table A5.7.1. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and clay content (Variable 2) on the Gulf of Mexico Group 1

(gsd types 1 — 4) data subset.

A5.7.1



SUMMARY OUTPUT

Regression Statistics

Multiple R 0.801256

R Square 0.642011

Adjusted R Square 0.626777

Standard Error 11.22083

Observations 50

ANOVA

df SS MS F Significance F

Regression 2 10612.56 5306.281 42.14446 3.28E-11

Residual 47 5917.627 125.907

Total 49 16530.19

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 122.6596 9.942565 12.33681 2.4E-16 102.6577 142.6614 102.6577 142.6614

X Variable 1 -306.056 34.11664 -8.97087 9.44E-12 -374.69 -237.422 -374.69 -237.422

X Variable 2 -101.749 23.30421 -4.36613 6.9E-05 -148.631 -54.8673 -148.631 -54.8673

Table A5.7.2. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the Gulf of Mexico

Group 1 (gsd types 1 — 4) data subset.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.777798

R Square 0.60497

Adjusted R Square 0.579207

Standard Error 11.91448

Observations 50

ANOVA

df SS MS F Significance F

Regression 3 10000.26 3333.421 23.48225 2.29E-09

Residual 46 6529.927 141.9549

Total 49 16530.19

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 18.71389 22.7874 0.821239 0.415746 -27.1547 64.5825 -27.1547 64.5825

X Variable 1 -160.391 72.42019 -2.21472 0.031772 -306.165 -14.6164 -306.165 -14.6164

X Variable 2 47.99555 28.60179 1.678061 0.100118 -9.5768 105.5679 -9.5768 105.5679

X Variable 3 0.369483 0.138535 2.667066 0.010527 0.090626 0.64834 0.090626 0.64834

Table A5.7.3. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1), clay content (Variable 2) and temperature (Variable 3) on the

Gulf of Mexico Group 1 (gsd types 1 -4) data subset.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.822479

R Square 0.676472

Adjusted R Square 0.655372

Standard Error 10.78241

Observations 50

ANOVA

df SS MS F Significance F

Regression 3 11182.21 3727.404 32.06082 2.44E-11

Residual 46 5347.978 116.2604

Total 49 16530.19

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 74.85554 23.61514 3.169812 0.002713 27.32078 122.3903 27.32078 122.3903

X Variable 1 -189.726 61.94067 -3.06303 0.003655 -314.406 -65.0463 -314.406 -65.0463

X Variable 2 -86.445 23.4367 -3.68844 0.000595 -133.621 -39.2694 -133.621 -39.2694

X Variable 3 0.282931 0.127818 2.213543 0.031859 0.025647 0.540215 0.025647 0.540215

Table A5.7.3. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1), sortable silt content (Variable 2) and temperature (Variable 3)

on the Gulf of Mexico Group 1 (gsd types 1 -4) data subset.

A5.7.4



Appendix A5.8 Group 2 Jurassic North Sea Subset Regression Tables

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.694367

R Square 0.482146

Adjusted R Square 0.413099

Standard Error 24.91509

Observations 18

ANOVA

df SS MS F Significance F

Regression 2 8669.359 4334.679 6.982839 0.007187

Residual 15 9311.426 620.7618

Total 17 17980.79

	 	 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 62.6267 25.34991 2.47049 0.025973 8.594609 116.6588 8.594609 116.6588

X Variable 1 -374.681 117.4332 -3.19059 0.00608 -624.984 -124.378 -624.984 -124.378

X Variable 2 111.9106 78.21478 1.430811 0.172987 -54.8004 278.6215 -54.8004 278.6215

Table A5.8.1. Regression statistics obtained from a multiple linear regression of CEN

on porosity (Variable 1) and clay content (Variable 2) on the Jurassic, North Sea Group 2

(gsd types 5 — 6) data subset.

A5.8.1



SUMMARY OUTPUT

Regression Statistics

Multiple R 0.813004

R Square 0.660976

Adjusted R Square 0.615773

Standard Error 20.15923

Observations 18

ANOVA

df SS MS F Significance F

Regression 2 11884.86 5942.432 14.62232 0.0003

Residual 15 6095.921 406.3947

Total 17 17980.79

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 177.9962 28.13776 6.325883 1.36E-05 118.0219 237.9705 118.0219 237.9705

X Variable 1 -335.239 95.9195 -3.495 0.003257 -539.686 -130.791 -539.686 -130.791

X Variable 2 -161.983 48.75254 -3.32255 0.004639 -265.897 -58.0693 -265.897 -58.0693

Table A5.8.2. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1) and sortable silt content (Variable 2) on the Jurassic, North Sea

Group 2 (gsd types 5 — 6) data subset.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.72835

R Square 0.530494

Adjusted R Square 0.389642

Standard Error 25.25342

Observations 14

ANOVA

df SS MS F Significance F

Regression 3 7205.765 2401.922 3.766329 0.048118

Residual 10 6377.355 637.7355

Total 13 13583.12

Coefficients Standard Error t Stet P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 23.65709 91.79453 0.257718 0.801851 -180.874 228.1881 -180.874 228.1881

X Variable 1 -266.324 252.14 -1.05625 0.315702 -828.127 295.4794 -828.127 295.4794

X Variable 2 116.6358 87.04381 1.339967 0.209908 -77.3099 310.5816 -77.3099 310.5816

X Variable 3 0.198536 0.560383 0.354286 0.730481 -1.05008 1.447148 -1.05008 1.447148

Table A5.8.3. Regression statistics obtained from a multiple linear regression of CEN

on porosity (Variable 1), clay content (Variable 2) and Temperature (Variable 3) on the

Jurassic, North Sea Group 2 (gsd types 5 - 6) data subset.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.843641

R Square 0.71173

Adjusted R Square 0.625249

Standard Error 19.7879

Observations 14

ANOVA

dl SS MS F Significance F

Regression 3 9667.51 3222.503 8.22989 0.004696

Residual 10 3915.61 391.561

Total 13 13583.12

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 105.9394 68.85663 1.538551 0.154933 -47.4827 259.3616 -47.4827 259.3616

X Variable 1 -52.6045 214.7612 -0.24494 0.811453 -531.122 425.9132 -531.122 425.9132

X Variable 2 -195.739 64.49358 -3.03502 0.012569 -339.44 -52.0387 -339.44 -52.0387

X Variable 3 0.493872 0.452067 1.092475 0.300244 -0.5134 1.501139 -0.5134 1.501139

Table A5.8.4. Regression statistics obtained from a multiple linear regression of CEPHg

on porosity (Variable 1), sortable silt content (Variable 2) and Temperature (Variable 3)

on the Jurassic, North Sea Group 2 (gsd types 5 - 6) data subset.

A5.8.4
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