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Abstract 

The evolution of software engineering knowledge, technology, tools, and practices has 

seen progressive adoption of new design paradigms. Currently, the predominant design 

paradigm is object oriented design. Despite the advocated and demonstrated benefits of 

object oriented design, there are known limitations of static software analysis 

techniques for object oriented systems, and there are many current and legacy object 

oriented software systems that are difficult to maintain using the existing reverse 

engineering techniques and tools. Consequently, there is renewed interest in dynamic 

analysis of object oriented systems, and the emergence of large and highly 

interconnected systems has fuelled research into the development of new scalable 

techniques and tools to aid program comprehension and software testing. 

In dynamic analysis, a key research problem is efficient interpretation and analysis of 

large volumes of precise program execution data to facilitate efficient handling of 

software engineering tasks. Some of the techniques, employed to improve the efficiency 

of analysis, are inspired by empirical approaches developed in other fields of science 

and engineering that face comparable data analysis challenges. 

This research is focused on application of empirical network analysis measures to 

dynamic analysis data of object oriented software. The premise of this research is that 

the methods that contribute significantly to the object collaboration network's structural 

integrity are also important for delivery of the software system’s function. This thesis 

makes two key contributions. First, a definition is proposed for the concept of the 

functional importance of methods of object oriented software. Second, the thesis 

proposes and validates a conceptual link between object collaboration networks and the 

properties of a network model with power law connectivity distribution. Results from 

empirical software engineering experiments on JHotdraw and Google Chrome are 

presented. The results indicate that five considered standard centrality based network 

measures can be used to predict functionally important methods with a significant level 

of accuracy. The search for functional importance of software elements is an essential 

starting point for program comprehension and software testing activities. The proposed 

definition and application of network analysis has the potential to improve the 

efficiency of post release phase software engineering activities by facilitating rapid 

identification of potentially functionally important methods in object oriented software. 

These results, with some refinement, could be used to perform change impact prediction 
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and a host of other potentially beneficial applications to improve software engineering 

techniques.
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Chapter 1.  Introduction 

1.1  Motivation 

 

Computers and the Internet have revolutionised life in many ways, enabling us to use, 

transform, and share information. At the heart of this revolution is an intangible man-

made thing we call software.  

In the developments from Turing's machine to Von Neumann's machine, from machine 

languages to higher level programming languages and many computing paradigms, the 

only constants have been higher levels of abstraction, more complex software systems, 

change, and the evolution of use and users.  

Humans have written large volumes of software. These large volumes of software data  

in human readable and machine readable form pose a serious storage challenge, 

however this challenge can be addressed through the provision of more capable storage 

media and storage solutions. 

The challenges that software engineers and computer scientists face today are not in 

creating innovative and complex software solutions, but in ensuring that the software is 

dependable, that it is designed optimally, and that the development processes are 

efficient and scalable. It is not sufficient to just produce a software solution but it should 

be constructed in a manner that facilitates efficient software testing and maintenance. 

The need to measure product quality, design quality, and development process 

efficiency has resulted in a wide variety of metrics and measures that cover structured 

programming, object oriented programming, UML design, and project processes. The 

efficacy of these proposed metrics and measures is not clearly established in the absence 

of comparable empirical evidence and the lack of widely accepted standards. 

Software engineering is a human participation intensive activity, making software 

products and services expensive to produce. Software products and services are not yet 

covered by robust commercial legal structures that protect consumers against poor 

product quality, and the consequence of product failure on the producers is typically not 

as severe as in the case of products from other more established fields of engineering.  

A result of this has been inadequate motivation for investment in the development of 

software testing infrastructures.  

We live not just in the age of information networks, but also of software networks. For 

instance, consider the case of internet enabled online banking, which makes it possible 
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for us to gain access to our bank accounts and associated services on our mobile 

computing devices or desktop computing devices, without having to walk into a bank. 

Recently a large UK based banking group was unable to provide these service as a 

result of a software malfunction, which left the customers without access to full banking 

services whether online or at the branch [1]. This resulted in financial loss due to the 

disruption of normal operations spanning several weeks. Such failures are not 

exceptional, in fact software failures are more common than is acknowledged, 

representing economic losses totalling 50-60 Billion US Dollars annually according to a 

report from the National Institute of Standards and Technology (NIST) on this subject 

[2]. 

In the last two decades the prominent emergence of the Internet, new innovations in 

digital storage technology, and further advances in computer processor technology has 

resulted in a huge growth in the volume of data being produced, processed, and 

consumed. Software systems have evolved not only in size but in the complexity of 

composition. Whilst software engineering tools, techniques, and technology have 

evolved,  there is concern that the pace of this growth has not been sufficient to address 

the significant engineering challenges that these large, complex, and highly 

interconnected software systems present [3].  

It is widely acknowledged that it is difficult to understand real world natural, physical 

and man-made systems characterised by increasing size and complexity. Research on 

the various phenomena of these systems, as a means to gain understanding and support 

reasoning, has progressed along various parallel approaches with varying degrees of 

success. One of these approaches is to view these systems in light of complex systems 

theory, which has been influenced by theory of general systems. The basic premise is 

that the dynamical behaviour of these systems is greater than the sum of its parts.  

One of these emergent approaches in complex systems theory is Complex Networks 

modelling. This approach provides a skeletal framework to represent real world systems 

as a network graph of essential system objects and pair-wise interaction relationships 

amongst these objects. This skeletal framework can be used as the basis to analyse the 

dynamic and non-dynamic properties of the system being modelled, by over laying this 

framework with temporal information. It is also possible to analyse the evolutionary and 

growth properties of the system using this modelling technique. This skeletal 

framework also facilitates reasoning based on correlation between the systems 



 

3 

 

functional integrity and the structural integrity of the underlying network graph 

representation. 

Statistical physics [4] of these network models enable researchers to answer such 

questions as; what are the most important system objects, how robust to failure is the 

system being modelled, or what are the conditions under which the modelled system is 

likely to lose functional integrity. The network graph itself is a mathematical model, and 

the reasoning is based on empirical models that need to be developed for systems that 

are sought to be modelled. This approach makes it possible to reason about both the 

global and local properties of a system and provides an avenue to take a holistic or 

reductionist view as appropriate, to support reasoning [5]. 

The challenges posed by software complexity, size, and the recognised lack of 

scalability of the current software engineering techniques to measure properties of 

interest, to isolate design, or implementation problems quickly, is the motivation that 

underpins this research.  

Inspired by research that applies Complex Networks modelling to real world systems to 

discover key elements of these systems; this research hypothesises that such an 

approach may be applicable to software systems too.  The ability to identify the 

importance of a system’s elements in the context of the function of a system is non-

trivial, especially when such a system has many elements that collaborate to deliver 

functionality. The other issue is that in computing science, the concept of the 

importance of system elements may be intuitive but the precise semantics of what it 

means to be important and the properties that enable the easy identification of 

importance do not exist.  

It is however possible to provide a surrogate definition that relies on the structural 

properties of network graphs and user perception of correct functional behaviour of 

object oriented software at runtime. Such a definition can then be reasoned in the 

context of established computer science theory, and empirically verified using 

established network analysis techniques. 

The rationale behind attempting to define the concept of functional importance 

(discussed in Chapter 4) of elements of an object oriented software system, in terms of 

its user observable behaviour, is that this ability to identify important elements can be 

used to significantly improve the efficiency of activities like program comprehension 

and software test prioritisation by using user acceptance testing.  
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While the ranking and sorting of class methods according to the importance of their 

contribution to the delivery of software functionality (especially the user-observable 

aspects of this functionality) is pragmatically used by software engineers [6], the 

concept of the functional importance of class methods in the context of object oriented 

software has so far not been systematically investigated. In contrast, the concept of 

functional importance [7, 8] is well established in the context of the analysis of complex 

biological and social systems. For example, well-defined and relatively small areas of 

the cortex in the brain are functionally important for the generation and understanding 

of human speech (for instance the Broca and the Wernicke areas of the cortex [9]). 

Similarly, a relatively small group of actors may play a functionally important role in 

maintaining successful teams of actors that can deliver highly successful movies (e.g. 

see the analysis of the network of movie actors [7]). Network analysis is often used to 

find functionally important components and other important characteristics of large-

scale networks representing complex biological, social, or technological systems [7]. 

For example, in the case of protein interaction networks characterizing bacterial cells 

such analysis can identify around 80% of the critically essential proteins that are 

required for the survival of the organism in normal growth medium [8]. In this context, 

a component of the system being ‘functionally important’ means that this component of 

the system is critical for the delivery of the normal overall functionality of the system. 

For example, in the case of bacteria, network analysis is used to determine proteins that 

are functionally important for the survival of the bacterium (for instance  if any of these 

proteins get blocked or are not produced within the cell, the bacterium dies or is unable 

to reproduce) [8]. In this case, the network of protein interactions is analysed. 

Functional importance of a protein can be predicted on the basis of the structural 

importance of the node in the network that corresponds to the protein. The structural 

importance of nodes is evaluated using a range of network analysis methods [4]. 

1.2 Aim, objectives and contributions 

 

1.2.1 Aim 

 

The primary aim of this thesis is to empirically validate discovery of functionally 

important methods in object oriented software. This process will also validate the notion 

that empirical models based network analysis measures that quantify centralities of a 
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network's structural elements may be used to discover functionally important methods 

of an object oriented system.  

1.2.2  Objectives 

 

The objectives of this thesis are: 

 To define the intuitive yet abstract concept of functional importance, in the 

context of our understanding of intra-systemic object interactions/collaborations 

in object oriented software systems. 

 To use network analysis to analyse the network graph representation of intra-

systemic object interactions/collaborations, based on dynamic execution trace of 

the software to predict structurally important elements of the network. 

 To empirically verify that the predicted structurally important elements are truly 

important by exploiting the notion that structural integrity and functional 

integrity are correlated, i.e. structurally important elements are also functionally 

important elements of the subject system. 

Network analysis is currently used in social, socio-technical, technological, and 

biological networks analysis. In many of these fields, the identification of elements of 

importance is a necessary part of analysis and reasoning about the dynamic phenomena 

of these systems. In many of these fields, it is difficult to gain access to the data and to 

carry out even non-destructive testing to verify predicted importance. This is especially 

true in animal brain networks analysis, which tries to understand the brain process link 

of the axonal structure of the brain to its normal and abnormal functional characteristics. 

Whilst current models of brain networks and assumptions about importance of 

structural-functional elements have been found to correlate with clinical observations, it 

is not possible to claim so, because the reliability of network measures is not known and 

verification cannot be attempted in clinical or laboratory environments because it is just 

not practical.  

In software engineering however, data collection is relatively simpler and quicker, 

making it possible to not only use network analysis to predict the importance of 

elements, but also simulate the notion of network perturbation by leveraging the notion 

of code mutation. The research presented in this thesis has no direct connection with the 

application of network analysis for research on animal brain disease.  

In my view this work has developed a generic prototype technique, which can be used 

to validate the discovery of functionally important methods in Object Oriented software 
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by leveraging the concepts of mutation testing to simulate network perturbation. In the 

event that Object Oriented software and dynamic analysis data are considered as 

surrogates to animal brain networks data, the prototype empirical validation technique 

developed may find application in animal brain networks research. 

1.2.3 Contributions 

 

This thesis makes three contributions: 

 Provide the first definition of functional importance in the context of software 

engineering. In fact, despite its wide use, the concept has not been defined even 

for Biological systems where it is widely used. 

 Empirically verify that, in addition to other techniques, network analysis may be 

used to discover functionally important elements in software systems. 

 Development of a generic prototype technique that makes it possible to 

empirically validate network analysis by using dynamic analysis data from 

Object Oriented software. This technique simulates the notion of network 

perturbation by leveraging the concepts of software mutation testing.   

1.3 Outline of the thesis   

 

The thesis is organised into eight chapters, including this chapter. Chapter 2 introduces 

the background material on program analysis, covering static analysis of object oriented 

software systems, software inspection, program comprehension techniques, network 

analysis, and cloud computing. Chapter 3 discusses the dynamic analysis of object 

oriented software and the use of dynamic analysis for program comprehension and 

software testing. This chapter also discusses the application of network analysis for 

dynamic analysis of object oriented software systems. Chapter 4 discusses the concept 

and definition of functional importance and the research questions. Chapter 5 discusses 

the techniques used in the experiments, covering data collection, data analysis, and 

experiment workflow. Chapters 6 and 7 discuss the results of the empirical software 

engineering experiments conducted on JHotDraw and Google Chrome software for this 

research. Chapter 8 is the concluding chapter, in which results and potential future 

research directions are discussed. 
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Publications 

 

This research has produced one workshop publication and two technical reports [10-12] 

and these deal with the discussion presented in Chapters 3, 5, and 6. The main focus of 

these works deals with the validation of network analysis measures and initial 

development and validation of the concept of functional importance.  The concept of 

functional importance and validation of the concept led to one workshop publication 

[13] and a book chapter on the application of cloud computing for software testing [14]. 

Chapters 2, 3, 5, and 7 are based on [13, 14]. Building on the run-time data collection 

and network analysis aspects of this research, a further piece of collaborative research 

was undertaken to explore mixed mode software analysis for characterising mismatches 

between intended object oriented design and its realisation. This work used network 

motif detection techniques and method stereotype analysis, leading  to the final 

publication [15]. The main contribution of this thesis to [15] is in the data collection and 

in the network representation generation aspects discussed in Chapter 5.    
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Chapter 2. Background  

2.1 Introduction 

 

Software engineering challenges are highlighted by Goth [3], using large and ultra-large 

software systems as examples. In [3], the primary concern is the need to develop new 

software engineering techniques that can tackle the issues of size and complexity in a 

scalable and cost effective manner to ensure systems are reliable. The discussion 

follows two main strands: software development process efficiency and the engineering 

of large and complex software.  In response to these challenges, this thesis proposes the 

concept of the functional importance of methods of object oriented software, and a 

technique to discover functionally important methods by using offline analysis of large 

and complex software execution (dynamic analysis) data through network graph 

modelling. The motivation behind using this technique is the successful application of 

such network modelling to comparable large and complex data in other fields of 

science. 

The proposed concept and techniques can help software engineers reduce the time spent 

on manually searching complex and large code, and to prioritize testing efforts. The 

idea is that if the search effort is minimised, then the inefficiency of the process is likely 

to be reduced and time spent on testing and software maintenance can also be reduced. 

Improvement of process efficiency is a possible outcome, but it is not an immediate 

concern of this research. However, process efficiency is a motivator, and (therefore) it is 

important to briefly review and to explore the various software development life cycle 

process issues, and the issues related to the size and complexity of software that are 

common to a wide range of research directions closely aligned to this work. These 

topics may be considered as common background for most program analysis research. 

The strongest motivator of this work is the empirical validation of the concept of 

functional importance, and of the core assumption that network analysis measures can 

be used to predict functionally important methods in large object oriented software. The 

proposed concept of functional importance for object oriented systems, and the network 

analysis based technique to identify functionally important classes and methods based 

on dynamic analysis, are both novel ideas that need to be validated on software before 

the benefits of using this software analysis technique can be applied to  improve the 
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efficiency of software engineering process cycle activities like program comprehension 

and software test prioritization 

2.1.1 Scheme of review and tables of classifications 

 

The topics explored in this review are primarily program (dynamic) analysis in the 

context of large scale (object oriented) software systems, complex network analysis 

applied to program analysis, and cross-disciplinary influences. This review does not 

cover formal methods, embedded systems, or real time software systems, though 

references are made where these are relevant. 

The review covers 322 published research papers including book chapters. All the 

topics covered have relevance to program analysis and span a wide timescale of almost 

80 years. The numbers of papers that belong to a 40-year period (1930-1970) are only 

seven, and the following 20-year period (up to 1990) contains 38 papers. The period of 

approximately 20 years starting from 1990 contains 277 papers (see Table 2.1).  The 

papers span eight broad topics, whose classifications can be refined (see Table 2.2). The 

papers are further classified based on whether they discuss static analysis, dynamic 

analysis, mixed mode analysis, and a fourth category for those that cannot be classed in 

any of the preceding (see Table 2.3). 

In Table 2.4, the papers reviewed have been classified based on the technique discussed. 

Four categories have been used: papers that discuss techniques based on; 1) classical 

graph theory, 2) complex networks, 3) other non-graph theoretic techniques that cannot 

be classified into the first two categories, and 4) techniques are partly based on graph 

theory. 

The classification of papers by year in Table 2.1 uses three categories, early research, 

recent research, and current research. There may be differing views on this 

categorization. In this review, recent research starts from 1970. The rationale behind 

using this 20-year period is that work in this period continues to have conceptual 

relevance and is mentioned in several current references on program analysis. The 

period from 1990 to the present has been classified as Current Research because the first 

discussions on object oriented design appear to originate around 1987-88, followed by a 

large number of publications from 1990 onwards. 
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By year: 

Year of publication Category 1 Number of references 

1930 – 1970 (40 years) ER (Early research) 7 

1970 – 1990 (20 years) RR (Recent research) 38 

1990 – 2010 (20 years) CR (Current research) 277 

Table 2.1 Spread of literature by year of publication. 

 

By broad subject/topic: 

Subject/Topic Category 2 Number of references 

Computer Architecture CA 4 

Computer Science CS 20 

Software Engineering SE 238 

Psychology in Computer 

Science 

CP 4 

Information science/systems IS 2 

Mathematical/statistical in 

Software engineering 

SM 37 

Computational Biology CB 16 

General theory influencing CS GT 1 

Table 2.2 Literature spread by broad categories. 

 

By specific topic in program analysis: 

Specific topic in program 

analysis 

Category 3 Number of references 

Static analysis SA 82 

Dynamic analysis DA 51 

Mixed mode MA 120 

Not applicable NA 69 

Table 2.3 Literature in program analysis spread by categories. 
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By technique used/discussed: 

Technique used Category 4 Number of references 

Classical Graph Theory GT 18 

Complex Network CN 72 

Not Graph Theory/Not 

Complex Networks 

OT 214 

Mixed with Classical Graph 

Theory 

OT/GT 18 

Table 2.4  Literature in program analysis spread by categories. 

 

This research deals with program analysis of object oriented systems. One of the aims 

of this review is to understand whether there is a gap in analysis techniques that may be 

addressed by the use of complex networks modelling of software program data. The 

following sections of the review presents the background research on program analysis 

using static analysis techniques, focusing primarily on program comprehension, 

software testing, object oriented metrics, and complex network analysis. 

2.2 Program analysis overview 

 

The evolution of software, from small scale to large scale programs, has made the 

comprehension of programs, and consequently the maintenance of programs, 

challenging, and made the task of constructing dependable systems complex. The 

problems associated with efficiently performing software testing, program 

comprehension, and software maintenance at the product level is often linked to the 

software development process. 

Adherence to best practice in software development processes is expected to make the 

development of software manageable, and it is also expected to result in the production 

of associated documentation that aids program comprehension and software 

maintenance related activities. It is now widely recognised that in practice, development 

of large scale software typically follows an iterative pattern, similar to the Spiral model 

proposed by Boehm [16], and other models such as the Waterfall model proposed by  

Royce [17] and the V model proposed by Forsberg and Mooz [18]. An associated 

concept is that of software evolution discussed by Lehman [19] through the SPE model 

of software programs. The central idea is that S, P, and E represent three types of 
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software with a characteristic evolution pattern based on complexity of program design. 

As a software program evolves through an iterative process, design, source code, and 

associated documentation should theoretically be kept up to date to reflect any relevant 

changes. In practice this does not typically happen [20], which impedes the rapid 

identification of the source of problems when they occur, and necessitates the analysis 

of program code, documentation, and information from execution. 

Iteration in the software development process introduces a nonlinear relationship 

between the time taken for the software development process to complete and the cost 

of the resultant product[16]. The primary reason behind the iterative nature of the 

software development process is the need to converge requirements, specification, 

design, and the software produced, and this includes deviations introduced by the 

discovery of bugs or other defects in the software [19, 21]. 

The length of time that a software development project may require is often determined 

by various factors, such as requirements, design and perceived complexity of the 

system, resources associated with the project, and other factors such as experience of 

engineers and communication with stakeholders, amongst many others. It is nontrivial 

to predict the cost of software products or how much software maintenance tasks are 

likely to cost. Rules of thumb for estimation exist, and in some cases as much as 70% of 

the cost of software is associated with post construction software maintenance activities. 

Some effort and cost estimation models like COCOMO [16] exist. However, the 

efficacy of such models is not clearly established, specifically when these models rely 

on the lines of code measure [22-24] that can vary significantly, based on the technique 

used to count lines of source code. 

Program analysis encompasses a wide range of software engineering techniques that 

enable software engineering challenges to be overcome, by supporting engineering 

decision making in an effective and cost efficient manner. This thesis predominantly 

deals with the dynamic analysis of object oriented software programs and application of 

complex networks based modelling in this context. The software engineering challenges 

that this research addresses are data analysis of a large volume of dynamic analysis 

program data. The potential applications of the research outcome are in the program 

comprehension process and software testing from the point of view of prioritization. 

The discussion above identifies how the conceptual interplay of software process 

models, the notion of iteration, and software evolution and complexity makes the 

estimation of the effort and cost of software development projects non trivial. Program 
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analysis enables us to capture information about a software program or product to 

facilitate software engineering activities, and also to make the software development 

process efficient through prioritization. Software testing and program comprehension 

are typically software development process activities that take place after the software 

has been constructed, for instance at the pre-release or at the post-release software 

maintenance stages respectively. In modern process models, where continuous 

integration and test driven development techniques are followed, it is common to find 

unit tests [25, 26] being developed simultaneously with development of the main body 

of program code. However, unit testing does not replace activities that deal with final 

post-construction software testing activities, often referred to as integration testing and 

user acceptance testing. The advantage of unit testing is that units of the program are 

tested in isolation every time a change occurs, thus reducing the time required to 

perform integration or user acceptance testing at the final pre-release stage. The current 

philosophy that guides software testing according to Gelperin and  Hetzel [27] is 

preventative testing, although Jackson [28] points out that it is not the volume of testing 

but the quality of testing guided by real usage context that can improve the 

dependability of software. 

Program analysis is an established and active field of computer science research, and 

topics like software testing and program comprehension are not new. It is possible to 

classify research and techniques in program analysis of object oriented software into 

two broad categories: static analysis and dynamic analysis. In practice there exists a 

crossover category where techniques straddle both static and dynamic analysis. Figure 

2.1 presents the schematic diagram that illustrates how the various techniques fit under 

the broader umbrella of program analysis. The other important idea is program data, 

which has been referred to many times in this literature review; Figure 2.2 is a 

schematic illustration of the data typically associated with program analysis. 

Figure 2.3  presents the schematic overview of metrics [29] pertaining to software 

projects and software design and code.  In the context of static and dynamic program 

analysis, this review is primarily concerned with the analysis performed by the use of 

computer assisted software engineering (CASE) tools.  In this regard, it must be 

mentioned that aside from static and dynamic analysis, it is also possible to characterise 

the analysis as online or offline. In the online mode, the workflow, from program data 

collection through data analysis and result presentation, happens in one continuous 

unbroken step. Such analysis requires tools that are fully integrated with all data sources 
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and analysis engines. In this literature review such a tool was not mentioned, although 

their existence in industrial environments cannot be ruled out. 

 

 

Figure 2.1 Schematic illustration of program analysis based on techniques employed 

 

 

Figure 2.2 Illustration of data used in program analysis (binary format logs and traces not 

shown). 
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Figure 2.3 Schematic overview diagram of software metrics. 

 

Most software analysis and measurement tools and techniques that have appeared in the 

literature reviewed explicitly mentioned or implied the use of offline analysis. In such 

analysis, the workflow containing data collection, data exploration, data analysis and 

result presentation is usually not implemented as one unbroken chain  in the CASE tool. 

Program analysis of object oriented software has primarily focused on the analysis of 

program structures using static analysis, and adopted most of the techniques from static 

analysis techniques [30-34] developed for procedural programs [35]. Despite known 

limitations, static analysis of object oriented systems has continued to remain popular in 

the absence of reliable tools to support dynamic analysis. 

2.2.1 Static analysis 

 

The fundamental notion of static analysis is program analysis that does not involve 

executing the program. Based on the literature review, the dominant theme in static 

analysis seems to revolve around modelling program data based on the semantics and 

syntactic rules of the programming language of construction, or to model the data such 

that some objects of interest may be characterised based on the global and local 

properties imparted by their pairwise collaboration. The models are mathematical and 

may be based on set theory, graph theory, statistics, or similar. 
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Ernst [36] defines static analysis as that which  " operates by building a model of the 

state of the program, then determining how the program reacts to this state. Because 

there are many possible executions, the analysis must keep track of multiple different 

possible states." Therefore, it is possible to define static analysis as an approximate 

conservative modelling of the state space of a computer program, that may be used to 

analyse dynamic properties (i.e. behaviour), structural properties such as coupling and 

cohesion, as well as potential sources of program errors. 

The other aspect of static analysis deals with utilising data mining techniques to obtain 

program information (available in the form of source code, and other textual 

documentation containing both technical and nontechnical information about a 

program), to support program comprehension [37], traceability link recovery [38], 

specification mining [39], among other similar activities. 

The issue of the structural property of a program, based on the analysis of source code, 

suggests that at some point the notion of good programming practice began to be 

discussed. The concept of structured programming using higher level procedural 

programming languages was first formally discussed by Yourdon  and Constantine in  

Structured Design [32]. This work aimed to motivate software engineers and computer 

scientists to follow good programming practices, write code in a modular fashion, and 

also discussed how one may measure three important concepts: coupling, cohesion, and 

code complexity. 

Coupling is a conceptual property of the system that is a measure of the strength of 

interconnection between system modules. Therefore, coupling is an inter-modular 

measure. 

Cohesion is a measure of intra-modular functional relatedness. Thus, a module is better 

designed if all the functional elements in the module are present, because they belong 

together and define the module’s function. 

Qualitatively, modular design means the system has low coupling and each module is 

composed of highly functionally cohesive elements. This essentially leads to the notion 

of low structural complexity. That is, each module, if needed, can be independently 

modified without affecting other parts of the system. Such an approach to system design 

helps program maintenance, program comprehension, and defect isolation as well as 

assessment of the impact of design or module change. 

In the context of object oriented software (which is the focus of this thesis) many 

structural design quality measurement frameworks have been proposed, of which the 
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most prominent is  known as the Chidamber and Kemerer metrics suite, or C&K metrics 

[40]. Many subsequent research works have fashioned their metrics on the C&K metrics 

model, and proposed extensions; influential among these are the frameworks for 

coupling and cohesion metrics proposed by Briand [41, 42]. 

Object oriented metrics often depend on legacy complexity measures, two of these are  

Cyclomatic complexity [30] proposed by McCabe, and the FanIn-FanOut measure 

proposed by Henry and Kafura [33]. 

McCabe's paper [30] demonstrates, through a series of empirical experiments on 

FORTRAN programs, that program complexity is not a function of size but of the 

decision structure of the program alone. Henry and Kafura [33] proposed structural 

measures of procedural large scale software systems, based on information flow 

analysis.  Cyclomatic complexity [30] and FanIn-FanOut measures [43] are both based 

on the use of a control flow graph extracted from program source code, as opposed to 

program execution data (used in this thesis). A recurring concept that finds mention in 

static and dynamic analysis literature is complexity. In discussing complexity, Kearney 

et al. [34] explain  "complexity as a measure of the resources expended by a system 

while interacting with a piece of software to perform a given task. If the interacting 

system is a computer, then complexity is defined by the execution time and storage 

required to perform the computation. If the interacting system is a programmer, then 

complexity is defined by the difficulty of performing tasks such as coding, debugging, 

testing, or modifying the software. The term software complexity is often applied to the 

interaction between a program and a programmer working on some programming task." 

Therefore, one can view program complexity in two ways: as the interaction between 

software components of the computer system, and as the human interaction with 

computer programs. 

In this context, Kearney [34] discusses the underlying conceptual relationship between 

McCabe [30] and Henry and Kafura's measures [33], and Halstead's [43] quality 

measurement approach that is based on static lexemic analysis of the vocabularies of 

operators and operands, and the number of occurrences of each operators and operands, 

in the source code of computer programs. 

In the context of the discussion on Halstead's work [43], Misek-Falkof's work [44] on 

unifying the software science approach and the computer assisted text analysis approach 

based on lexemic analysis is relevant, because it introduces the basis of how associated 
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program data may be parsed to facilitate the use of natural language based querying to 

support data mining. 

In contrast to the dynamic analysis techniques used in the empirical work in this thesis, 

static analysis techniques are predominantly based on text analysis techniques that are 

conceptually similar to the approach adopted by Halstead's work [43] and Misek-

Falkof's work [44]. Static analysis is a broad area of research. In the following sections, 

the review focuses on static analysis approaches for program comprehension and 

software testing that have informed and influenced the research presented in this thesis. 

Software inspection and defect detection 

 

Manual or tool driven software inspection is a common software engineering activity. 

However, such activities are often ad hoc. The process oriented Fagan code inspection 

scheme [45, 46] in which code quality is improved by using a manual code review and 

inspection by teams of developers exists as an early example of a methodical approach 

to manual code inspection. Porter et al. [47] discuss various code inspection schemes, 

and try to present findings of a controlled experiment conducted  in industrial settings 

that tries to study the effectiveness of these schemes. Porter concludes that for almost all 

the considered schemes of organizing source code inspection, despite the increasing 

number of reviewers and the varying frequency of inspections, the defect density before 

and after the process showed no significant improvement. Also, the rate of detection of 

defective code identification did not improve significantly. In large scale software 

development environments, manual schemes have generally been found to be 

ineffective because of time and resource expenses, resulting in the use of automated 

static analysis based techniques. 

Static analysis based tools are often used to detect bad programming practices such as 

cloning, discussed by Kamiya in the context of the CCFind tool [48], and unused or 

uninitialized variables, discussed by Ogasawara in [49]. In this paper, Ogasawara 

describes implementation of a static analysis based software quality assurance process  

(called High Quality software creation) adopted at the Toshiba Corporation, and  [49] 

reports on the effect of static analysis based software quality assurance processes on 

software quality improvement. Nathaniel et al [50] discuss the industrial experience of 

using common tools such as FindBugs for bug or defect detection. The problem 

discussed by most of the programs seems to be a high level of false positives in the 

detection. Heckman and Williams systematic review [51] on actionable alerts from 
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static analysis tools reviews techniques for weeding out false positive alerts from static 

analysis tools, which are slowly getting embedded in IDE tools. Most of these tools rely 

on program analysis models built using Cousot's abstract analysis formal methods based 

techniques [52-55], Halstead's static lexemic analysis approaches [43], and sets of text 

processing rules.  The improvement in form of actionable alerts is primarily 

implemented by user directed optimisation of the rules and application of the rules that 

the tool learns, based on acceptance or rejection of alerts by the users. 

Emanuelsson and Nilsson [56] discuss the various models and theoretical underpinnings 

of static analysis tools, and present experience of the evaluative use of  some of the 

widely used commercial tools on commercial software produced by Ericsson. The 

conclusion generally arrived at is that static analysis technology has matured to a level 

where these may be used instead of testing in some cases. The problems that the authors 

highlight are the propensity to generate reports containing a large number of false 

positives, and the lack of scalability of the tools and technique when handling large 

volumes of source code. However, the development of tools that facilitate user driven 

adaptive filtering, and intelligent refinement of results based on historical data, has been 

cited as a way to mitigate the problems. The conclusions appear to echo the conclusions 

reached by Nathaniel et al. in [50], which discusses a similar evaluation of static 

analysis tools conducted at Google. 

Challet [57] discusses the bug propagation boundary of impact by considering the 

software function call graph's incoming and outgoing link degree distribution 

asymmetry. This work attempts to use scale free networks [7] to motivate discussion 

surrounding likely boundaries of bugs in large scale software, concluding that "fragility 

of software can be in part attributed to its very structure, which unfortunately seems to 

arise naturally from optimization considerations". In other words, the author attributes 

the fragility of software to be dependent on the use of optimisations in design of 

software, because optimisations alter the structural organisation of dependency graphs 

in software. Challet's study [57]  uses dependency graphs and studies asymmetries in 

connectivity distributions at the level of functions. Hassan's paper [58] on dynamic fault 

prediction proposes metrics based on code change/project patterns that can be quantified 

as a synthetic heuristic measure. Based on this quantification risk analysis of change, 

proneness of code and prioritisation can be executed to guide software testing. 

The discussion in the above papers presents the progressive evolution of code 

inspection schemes, from purely human driven manual processes to the adoption of 
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static analysis techniques based automated tools, leading to the current practice in use of 

semi-automated tools that use rule based inspection, which are then optimised using 

human choice. The final point leads to Challet's work [57] which brings together 

Halstead's FanIn-FanOut measures and the complex networks based approach of data 

analysis that attempt to link potential software bugs to organisation of dependency 

graphs. This approach is novel because it attempts to use properties of a contemporary 

probabilistic graph theoretic model to predict where potential bugs may occur in the 

software and how such defects may propagate through a system. A crucial difference, 

when compared to the technique discussed in this thesis, is that the data capture uses 

non object oriented source code (Linux OS), and application of the Scale Free model 

does not include the verification of limiting cases. 

Object oriented design  

 

Number Metrics Formula 

1 Weighted Methods 

Per Class(WMC) 
          

 

   

 

                                       

 

2 Depth of Inheritance 

tree (DIT) 

DIT = length; will be the maximum length from the node to 

the root of the tree. 

3 Number of Children 

(NOC) 

number of immediate subclasses subordinated 

to a class in the class hierarchy. 

4 Coupling between 

object classes (CBO) 

is a count of the number of other classes to which it is 

coupled. 

5 Response For a Class 

(RFC) 

           where                              

                                      

                                

6 Lack of Cohesion in 

Methods (LCOM) 

                         

              

Where P and Q are sets of interaction instance variables of 

two interacting methods M1 and  M2. 

Table 2.5 C&K metrics suite [40] for OOD. 



 

21 

 

A key application of static analysis is in the analysis of the design quality of object 

oriented (OO) software. Design quality measures are used as indicators of potential 

problems in the software that are a result of poor design or poor implementation of 

design. The most popular metric suite proposed is the C&K metrics [40], consisting of a 

set of 6 metrics (see Table 2.5) to study the design quality of object oriented (OO) 

software. Chidamber and Kemerer’s paper [40] not only proposes and defines the metric 

suite formally, but also discusses empirical validation in the context of two commercial 

software applications. Popularly known as C&K metrics, these metrics are widely used 

for static analysis of OOD. In [59], Briand et al.. discusses the state of empirical studies 

and research on object oriented metrics, concluding that despite significant research, the 

practical impact of the proposed metrics suites has been limited. 

Briand et al. [59] attributes  the lack of practical impact to the neglect in consideration 

of relevant topics such as the behaviour of object oriented software structures in the 

dynamic context, because the proposed metrics suites are based on analysis of single 

classes that  fail to scale when applied to the  analysis of real world OO software. 

Briand et al. [59] also highlights the weak connection between interpretation of the 

metrics in the context of external attributes like reliability, fault proneness, and reuse of 

software,  as a reason behind the lack of practical impact and adoption of the vast 

majority of the static analysis based object oriented metrics proposed by various studies. 

Two pieces of research by Briand [41, 42] formally define cohesion and coupling 

metrics using a set theoretic approach, and refine a very large number of similar OOD 

metrics. The papers empirically validate Briand's measures on a suite of OO software 

systems, and also improves C&K metrics [40]. The outcome is 12 measures of cohesion 

and 30 measures of coupling. In the context of empirical studies of quality models, 

Briand and Wust’s research [60] is a comprehensive and critical survey of research on 

OOD metric sand, which puts into perspective the techniques employed by various 

researchers using a classification of 7 broad categories leading to the following 

observations: 

 On design measures, the observation is that many of these measures are 

redundant, with only about 15 of the proposed measures being able to capture 

distinct design quality information. However these 15 measures are difficult to 

capture and require expensive analysis to compute, resulting in the continued 

popularity of the C&K metrics suite[40]. 
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 Among the design measures used in the fault proneness models, coupling and 

size have been found to be good indicators, as opposed to cohesion measures 

and inheritance measures. 

 Similarly for effort indicator models, size seems to be the only measure that has 

been found to be reliable; structural measures based models using coupling and 

inheritance did not bring substantial gains.  

 On the predictive power of the fault proneness models, the observation is that 

models that use class level design measures in the prediction models, on average 

tend to demonstrate classification accuracy close to 80%, and find about 80% of 

the faults. 

In [60], the following comment summarises the results: “Overall, the results suggest 

that design measurement-based models, for fault-proneness predictions of classes, may 

be very effective instruments for quality evaluation and control of OO systems.” A 

general overarching observation made in [60] concerns the specificity of the empirical 

models to the environment, explaining the issue of the lack of reliable results when such 

models are used without careful consideration across projects. 

In the case of OO software systems, numerous works have established a clear empirical 

relationship between class level couplings and some external attributes, such as fault 

proneness, by leveraging static analysis of source code, listed by Briand and Wust in 

[60] and [61]. It is widely recognised that such models often suffer from imprecision 

because of many factors, some of which are OOD related, such as polymorphism and 

late binding that cannot be accurately captured through static analysis. The other major 

cause behind imprecision has also been attributed to the tools involved,  not discounting 

dead source code elements that result from bad software engineering practices [35]. 

Martin [62] discusses the issues of bad architectural design and program design in terms 

of some OOD principles, and proposes the I metric to quantify the architectural stability 

of OO software. Martin's discussion on the use of architectural and object oriented 

design patterns to build software systems  is essentially the support of best practice in 

light of concepts of OOD. None of these are new; in fact, they result from awareness of 

the practical impact of bad design, and the process of organic evolution of software 

which Lehman identified in the laws of software evolution [19]. 

Research on applications of OOD metrics, like the C&K metric suite or Briand's metric 

suites, has seen development of bespoke synthetic metrics. For instance, the work by 

Shin et al. [61] explored the relationship between complexity, code churn, and 
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developer activity metrics with vulnerabilities. Complexity and developer activity 

metrics were found to be actionable metrics. Actionable metrics are metrics that may be 

used by consumers of the metrics to initiate corrective actions in the context of software 

development projects for which these metrics have been calculated. Much of this work 

focuses on file change information available from source code repositories, in addition 

to information on initiators of these changes. Similarly, Zhang and Jacobsen [63] 

discuss an aspect of the mining technique based on fan-in fan-out graph, page rank, and 

random walk based algorithms. Two rankings are proposed for statically parsed and 

analysed program elements to help separate core elements and cross cutting concerns 

through computational approximation of the typically human driven manual process. 

The advantage is to reduce inconsistency in analysis, by reducing the human element 

and also by automating the process. 

Briefly, whilst parallels may be drawn, the diversity of approaches and motivations 

behind the proposed OOD metrics suites and information on their empirical validation 

does not lend itself to comparison as to which one of these metrics is truly effective. 

Object oriented metrics research has seen significant empirical verification and, despite 

the apparently contradictory results, this has led to work on synthetic process metrics 

like [61], [63] and  [64], that appear to be using more powerful data analysis techniques 

such as complex networks modelling to improve understanding of OOD and program 

source code data.  

Feature location 

A potential application of the research presented in this thesis is program 

comprehension. One key software engineering technique, which is often used in 

practice for program comprehension, is feature detection using static analysis. Dit et al. 

in [65] define features as follows: "In software systems, a feature represents a 

functionality that is defined by requirements and accessible to developers and users". 

So, a feature may be an operation implemented in software such as "Open File". Rajlich 

and Wilde in [66] provide the following working definition for concepts in the context 

of program comprehension in software: "Concepts are units of human knowledge that 

can be processed by the human mind (short-term memory) in one instance.". Concepts 

are considered domain knowledge related that can be associated with the distinct 

functionality of a system, for instance in an online financial transaction system "Online 

Card Payment" may be considered a concept. 
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Chen [67] in his paper on feature detection, proposes the concept of an abstract system 

dependence graph. An abstract system dependence graph contains both control flow and 

data flow graph elements of the system. Use of this graph facilitates concept location in 

a semi-automated way. Programmers may initiate computer assisted concept/feature 

location in conjunction with the use of dynamic analysis, to set a starting point of the 

concept/feature location search.  Empirical validation of this feature location technique 

was carried out on a C language program.  

Liu [68] discusses the modelling cohesion of a software system based on Information 

retrieval using the Latent Dirichlet Allocation (LDA) technique. This paper proposes a 

novel approach that uses information entropy in conjunction with information retrieval 

technique to measure class cohesion. The paper proposes a new metric, Maximal 

Weighted Entropy (MWE) that captures complementary but new dimensions of 

cohesion, in comparison to existing measures of cohesion. The paper reports that the 

result of empirical experiments and principal component analysis indicates that MWE in 

conjunction with LOC or LCOM (i.e. Lack of Cohesion, see Table 2.5 on C&K metrics) 

forms a good model for defect prediction. 

In a similar context , Hill et al. [69] discusses a technique that automatically extracts 

natural language phrases from source code identifiers, and categorizes the phrases and 

search results in a hierarchy. This research [69] proposes a natural language information 

retrieval technique to perform a search based on contextual information as opposed to 

the technique based on use of verb direct objects. The technique proposed by Hill et al. 

[69] is comparable to the approach used by  Halsted in [43] to measure the quality of a 

program by using static leximic analysis of vocabularies of operators and operands, and 

the frequency of occurrence of  each class of information found in the program source 

code text. Misek-Falkof’s [44] work attempts to reconcile Halstead's approach for 

programs with application of the same token counting based approach to English 

language text to comprehend natural languages. The parallel lies in what Hill's paper is 

categorizing, in order to support natural language queries to aid program 

comprehension. Hill uses Verb-Active Object pairs in a similar fashion to Noun-verb 

pairs used by Misek-Falkof [44]. Hill [69] goes further, by associating these pairs 

(referred to as signatures) with comment phrases. Hill's technique [69] is a recent 

refinement of the static analysis approach proposed in [43] and  [44] , and Hill reports 

the improved performance of natural language queries for program comprehension, 
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achieved by using both contextual phrases from methods and field signatures, yielding 

more positive results than using just Verb-Active Objects pair alone. 

A related research is presented by McMillan et al. in [38], that  discusses  a technique 

which combines textual and structural analyses of software artefacts – two widely 

accepted techniques for recovering traceability links. In [38] McMillan et al. uses the 

JRipples tool for structural analysis, and Information Retrieval, LSI techniques, and F 

test for statistical validation. McMillan et al. reports that the proposed new technique 

resulted in only minor improvement over existing techniques and suggested the need for 

further investigation. 

The above research on static analysis based feature detection discusses the need to 

associate features and control flow graphs that may result from user action. A key 

drawback of the static analysis of OO systems is that runtime effects of OOD, such as 

polymorphism and late binding, cannot be reliably captured by static analysis. This 

circumstance led Chen [67] to use a mix of static and dynamic analysis for empirical 

validation. The graph based data analysis used by Chen [67] is theoretically similar to 

the work presented in this thesis. However, there are a number of key differences. First, 

the work presented in this thesis is based entirely on dynamic analysis data and is likely 

to be more precise, albeit for a distinct scenario. Second, the focus of the thesis is on 

empirical verification of the concept of functional importance of methods, rather than 

on discovery of features. 

Design patterns and method stereotypes 

Design patterns are similar to solution templates for recurring design problems that 

facilitate communication of the design problem concisely, and also implementation of a 

standard programming solution. Therefore, design patterns have been referred to as 

standard solutions to common design problems that may be applied when such 

problems are identified in a system design. The seminal text on design pattern is 

attributed to the Gang of Four: Gamma et al. [62, 70] containing 23 patterns. This list 

of 23 has been augmented many times. The philosophy of design pattern-led software 

design has also been criticised [71, 72]. However, it is widely used in practice, and leads 

to the concept of Anti-pattern, and Bad Smells in software code. 

Method stereotypes classify methods according to their functional role. Stereotypes 

proposed by Dragan in [73] have been classified into 3 categories: structural, 

collaborational, and creational. Structural stereotypes have two further subcategories: 

accessor and mutator.  Another way of thinking about design pattern is that it provides a 
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recipe for organising functional elements of code into units that collaborate to deliver a 

task in an object oriented system. Method stereotypes are a classification of the 

functional role fulfilled by the functional element.  Knowing the stereotype of a method 

may facilitate program comprehension and software maintenance. 

Dragan [73-75] presents first the taxonomy of method stereotypes. It then uses 

lightweight static analysis to extract stereotype information about OO software system. 

Stereotypes are presented as useful information for OO design recovery in reverse 

engineering. Method stereotypes facilitate classification of the method by its functional 

role, in contrast to design patterns that provide common compositional stencil to 

achieve a functional outcome. The notion proposed is that a method in an OO software 

can be stereotyped based on its interface signature. Each OO software has a unique 

distribution of stereotyped methods. In another corresponding research, Guéhéneuc et 

al. [76] discuss a constraint satisfaction problem (CSP) based approach, to identify 

complete and incomplete occurrences of design motifs in object oriented programs. In 

this approach, experimentally built numerical signatures of classes are prepared. These 

signatures characterize the classes based on their roles in design motifs. In [76], an 

explanation based approach was enhanced through the use of numerical signatures. The 

aim of this work is to improve computational performance and precision of the search 

for complete and incomplete use of design motifs. The results of this approach indicate 

that the approach proposed has more precision than a purely structural approach while 

preserving recall properties. The paper claims that this approach reduces instances of 

false positives, and has high performance and perfect recall. It also provides explanation 

for identified micro-architectures and interactions that may be useful to software 

maintainers. 

Boussaidi and Mili [77] argue that an explicit representation of the design problem, 

solved by a design pattern, is key to supporting the three tasks in an integrated fashion. 

This work proposed a representation of design patterns consisting of triples <MP, MS, 

T> where MP is a model of the problem solved by the pattern, MS is a model of the 

solution proposed by the pattern, and T is a model transformation of an instance of the 

problem into an instance of the solution. Given an object oriented design model, model 

fragments are matched to MP, and when one is found, transformation T is applied, 

yielding an instance of MS. In effect, this approach is an approach of code 

transformation to replace a nonstandard design pattern model with a standard one, with 

potential use in automatic code generation from design models. 
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Program comprehension, through design pattern detection and method stereotype 

analysis, are both novel techniques that rely significantly on graph theoretic analysis. 

Similarly to Guéhéneuc et al. [76] and Boussaidi and Mili [77],  one can argue that the 

ability to classify architectural components by using method stereotypes and pattern 

detection may be used as in [15] to facilitate the analysis of mismatches between design 

intention and realisation, and instances of mismatches can be used as triggers to 

prioritise program comprehension and software testing activities. 

In the next sections, the literature review discusses network analysis and probabilistic 

graph theoretic models that have the premise to facilitate efficient analysis of real world 

systems, including large object oriented software.   

2.3 Network analysis 

2.3.1 Network Graph theory basic definitions and measurements 

 

In mathematics and computer science, graph theory is the study of graphs, which are 

mathematical structures used to model pairwise relations between objects from a certain 

collection. A graph refers to a collection of objects represented as nodes (also called 

vertices) and a set of edges (also called arcs or ties) connecting the nodes. The edges 

represent the relationships between the node elements. An example of a simple graph of 

6 nodes is represented in Figure 2.4. Traditionally, nodes are represented by a dot and 

edges by a line. In the figure below circles should be taken as dots. 

 

 

Figure 2.4 A graph containing 6 nodes. 

Mathematically, a graph G is represented as     

              

  h                                                     

                         h           , thus elements of E are two-element subsets 
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of V i.e. a set of vertices [78]. In Figure 2.4;                    is the set of 

vertices.                                              

Measures of a Graph 

The number of vertices of a Graph is referred to as its order, written as | G |, and its 

number of edges is written as || G ||  

Degree of a vertex is equal to the number of neighbours of a vertex  

v.                                                    

Degree of a graph           

          
 

   
                    

A path is a non-empty graph of form                                  

                , where xi  are all distinct. The vertices x0 and xk are linked by P and 

are called ends; the vertices x1,…xk-1 are the inner vertices of P. Path length is the total 

number of edges in P denoted by P
k
. 

Shortest path problem refers to the problem of finding a path between two nodes in a 

graph, such that the sum of weights of constituent edges is minimized. In a non-

weighted graph that would normally be finding the path with the least number of edges 

to traverse between two nodes. 

The material presented above is a very brief summary of basic network graphs. Various 

types of simple graphs and measures are discussed in [78]. One can trace the origins of 

graph theory to Euler’s solution of Konigsberg's bridge problem. Graphs have been 

used to model the structure of many physical, social, socio-technical, and technological 

systems. The models widely used belong to a family of models broadly known as 

regular graphs. For instance, lattices are widely used to represent molecular structure. 

These graphs assume a fixed number of homogeneous nodes and links, with the 

structure remaining static and conforming to some underlying symmetry. The problem 

is that large real world systems rarely contain a fixed number of homogeneous nodes 

that are always connected in a regular fashion. Real systems have dynamic properties 

that give them characteristic spacio-temporal structures. For instance, the road network 

of a country shrinks and expands, airline networks evolve, and social networks which 

are composed of humans change over time. Efforts to gain a better comprehension of 

these systems have led to new graph theoretic models that incorporate notions of 

heterogeneity, growth, and evolution. Micro and macro structural network models, 
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functional network models, and a combination of these have been proposed in a large 

number of fields, prominent among them sociology, systems biology, and also computer 

science. Although existing measures and properties of regular graphs still apply, many 

of the new models have proposed empirical measures that apply only to a certain class 

of models, based on the statistical properties of distribution of nodes and links. These 

new graph theoretic models broadly constitute the field of complex networks. The data 

analysis in this thesis is based on the premise that complex dynamic analysis data of 

large OO software can be facilitated by utilising the complex network based models 

discussed in the following section. The basic network graph model and measures 

continue to remain relevant when applying complex network modelling to data analysis. 

2.3.2 Complex networks 

 

Erdős-Rényi (ER): Random graphs 

 

 

Figure 2.5 An example of a random graph (Erdős and Rényi [79, 80]).  

 

Erdős  and Rényi introduced the concept of a random graph in [79]. A random graph is 

simple to define. One takes a number N of nodes or "vertices" and places connections or 

"edges" between them, such that each pair of vertices i, j has a connecting edge with 

independent probability p. An illustration of a random graph, as discussed by Erdős and 

Rényi [79, 80], is presented in Figure 2.5. In this case, the number of vertices N is 16 

and the probability p of an edge is 1/7. 

This model is very popular and extensively researched in discrete mathematics. 

However, as a model of a real world network it has some serious deficiencies, primarily 
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when the degree of distribution in a random graph is quite unlike what is seen in 

networks representative of the real world. 

A vertex in a random graph is connected with equal probability p with each of the N - 1 

other vertices in the graph, and hence the probability    that it has the degree exactly k 

is given by the binomial distribution: 

 

         
 

                  (2.3) 

 

If average degree of a vertex in the network is considered as         , we can 

write Equation (2.3) as  

 

    
 

  
                       (2.4) 

In Eqn. (2.4) approximate equality becomes exact in the limit of large N. This 

distribution is the Poisson distribution. Average degree distribution of the large random 

graph follows the skewed Poisson distribution, which typically resembles a distorted 

bell shape. Bullmore and Sporns [81] and others characterise this as symmetrically 

centred Gaussian distribution, which is true in the case of continuous random variables. 

In the literature concerning complex networks, a normal approximation of Poisson 

distribution is often used based on application of Central Limit Theorem and the Law of 

Large Numbers [82]. 

Newman et al. [80] discuss some special cases where random graph models may be 

used to model some real world networks. However, in general, the research literature 

tends to agree that random graphs provide a poor approximation of real world networks. 

In this regard, Newman has analysed social (affiliation) networks, like the affiliation 

network of the board of directors of 1999 (Fortune 1000), and the scientific 

collaboration network in Physics. 

Watts-Strogatz (WS): Small-world networks 

 

Regular graphs like lattices are known to have long path lengths that increase linearly as 

the number of vertices increases, high clustering coefficient, and the non-random 

probability that determines the connection between two individual vertices. ER model 

random graphs have low clustering coefficient, short path length, and a constant random 



 

31 

 

independent probability of connection between two vertices. Real world networks 

contain neither regular nor random probability of connection between vertices, where 

instead they have hub like topological features. That is, some vertices have more 

connections than other vertices. It is often found that real world networks have local 

triadic closures or cliques, or clusters of vertices that are connected to each other. In 

many real world networks, most vertices can be reached from others through a small 

number of edges, this is known as small world property. The most famous example in 

this regard has led to the idea of 6 degrees of separation, based on Milgram’s famous 

experiment [83]. 

The model proposed by Watts and Strogatz in [84] is the most popular small world 

model characterised by its abundance of short loops. A small-world network can be 

constructed starting with a regular lattice of N vertices, in which each vertex is 

connected to k nearest neighbours in each direction, totalizing 2κ connections, where N 

≫ k ≫ log(N) ≫ 1. Each edge is then randomly rewired with probability p. When p = 0 

we have an ordered lattice with a high number of loops but large distances, and when p 

→ 1, the network becomes a random graph with short distances but few loops. Figure 

2.6 illustrates the notion of the intermediate regime between regular and random graphs 

with increasing chance of two vertices being connected with independent random 

probability. 

 

Figure 2.6 Illustrative figure that shows intermediate regime between regular and random 

graphs where small world graphs exist [84]. 

 

In an intermediate regime, the presence of both short distances and a large number of 

loops has been shown by Watts and Strogatz. The degree distribution for small-world 

networks is similar to that of random networks, with a peak at      = 2k. The rise of 

short distances is attributed to short cut edges. That is, edges between distant vertices 

that help reduce the distance between two vertices that would otherwise be long. 
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Figure 2.7 Graph of characteristic path length vs. clustering coefficient in small world graphs 

[84]. 

 

In Figure 2.7, it can be seen that characteristic path length           and clustering 

coefficient           show different rates of drop, with path length registering a rapid 

drop whilst clustering coefficient remains stable at regular graph values. This drop of 

path length in the intermediate region signifies the onset of small world behaviour, and 

the fact that clustering coefficient remains almost stable means that it is not possible to 

determine small world behaviour from local properties. It can also be seen that there 

exists a wide window of intermediate probabilities in which the small world model is 

true. 

Research has established that network representation of a number of real world systems 

has properties with characteristic of WS small world networks [85].  Amaral et al. in 

[85] discuss the different classes of small world networks. These classifications are 

based on the decay connectivity in the degree distribution of small world networks. The 

three classes are: (a) scale-free networks, characterized by a vertex connectivity 

distribution that decays as a power law; (b) broad-scale networks, characterized by a 

connectivity distribution that has a power law regime followed by a sharp cut-off; and 

(c) single-scale networks, characterized by a connectivity distribution with a fast 

decaying tail. 

Barabási-Albert (SF): Scale-free networks   

The scale-free networks model was proposed by Barabási and Albert [7, 86, 87]. These 

networks are characterized by uneven degree distribution, in contrast to ER and WS 

models where vertices have random patterns of connection with a characteristic degree. 

In fact such a distinction may not be totally accurate, because real world networks 

which are characterised by growth and preferential attachment may also be in part a 
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result of random connectivity process, and this aspect continues to be a topic of research 

[88]. In this model, some vertices are highly connected whilst others have few 

connections, with an absence of characteristic degree. The degree distribution has been 

found to follow power law for large k. 

            (2.5) 

These networks typically display the presence of hubs. That is, vertices are linked to a 

significant number of edges of the network. 

The Scale Free (SF) network model is based on two basic rules: growth and preferential 

attachment. The generation of this type of network starts with an initial set, containing   

m0 number of unconnected vertices.  Growth of the network happens in a step-by-step 

manner with the addition of new vertices. For each new vertex, m new edges are 

inserted between the new vertex and some previous vertex. The vertices that receive the 

new edges are chosen following a linear preferential attachment rule. That is, the 

probability of the new vertex i to connect with an existing vertex j is proportional to the 

degree of j 

                        . 

This is the random distribution that determines the presence of links between nodes, 

leading to the emergence of what may be characterised as the “rich get richer” 

phenomenon. 

Barabási and Bonabeau in [7] provide an overview of scale free networks. The main 

points of the discussion can be summarised as follows: 1) These networks have some 

vertices that have many more links, as compared to other vertices in the networks, 

leading to the notion of hubs that act as nodal points in the network. 2) These networks 

are resilient to random attacks, especially on peripheral vertices, but are vulnerable to 

directed attacks on hub nodes. 3) Understanding the properties of the network structure 

can help us to take corrective action, so as to prevent exploitation of vulnerabilities that 

could lead to impairment of the system’s functional integrity. 

The SF network, discussed by Amaral et al. in [85], is a type of small world network. 

Actual classification of a network into any one of the three types is not easy, partly 

because of the complicated statistics involved in dealing with borderline cases. Li et al. 

[89] provide a critical review of the research on complex modelling that erroneously 

associates systems as having scale free distribution 
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Table 2.6 Comparison of essential properties of ER,WS and SF network models  [90]. 

 

The observed models are instances of log-normal distribution, or truncated scale free 

distribution, where part of the distribution may be exponential. Li et al. [89] highlights 

the common errors in network classification.  

 

 

Figure 2.8 Distribution of node linkages in Random (left) vs. Scale Free networks (right) [7]. 

 

Clauset et al. in [91] discuss more reliable techniques to approach statistical and 

graphical classification of the network graphs generated from empirical data. Table 2.6 

compares the essential properties of the three network models discussed in this section. 

Figure 2.8 (reproduced from Barabási and Bonabeau [7]) shows how degree distribution 

differs in Random and Scale Free graphs. 

Network analysis measures 

Node degree, degree distribution, and assortativity: 

A fundamental measure of networks is node degree. Node degree      is the total 

number of connections that links a node or vertex to the rest of the network. In a 

directed network, one can differentiate between in-degree     and out-degree     . 
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Generally, the degree of a vertex in random networks is statistically distributed, and 

[92] provides the following definition and equations for degree distribution. 

Considering the case of undirected networks, if vertices can be distinguished (which is 

normally the case in growing networks) the degree distribution of a vertex s is given by 

the probability p that the vertex belongs to a network of size N and has k connections 

(i.e. k nearest neighbours)          . Knowing the degree distribution of individual 

vertices, it is possible to derive the degree distribution of the total network given by 

        
 

 
                 

    

 

 

Table 2.7 Definition of the power-law distribution and several other common statistical 

distributions [91]. 

 

Clauset et al. in [91] provide a table of power-law and other common distributions 

found in complex networks (see Table 2.7). 

Assortativity is the correlation between the degrees of connected nodes. Positive 

assortativity indicates that high-degree nodes tend to connect to each other [81, 93]. 

Clustering coefficient and motifs: 

Complex networks, in clear deviation from the behaviour of random graphs, show the 

property of transitivity, or clustering. If the nearest neighbours of a node are also 

directly connected to each other they form a cluster (i.e. if there are three vertices 

A,B,C, that are neighbours and each of these are connected to each other, they form a 

cluster).The clustering coefficient quantifies the number of connections that exist 
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between the nearest neighbours of a node as a proportion of the maximum number of 

possible connections [81, 94]. 

   
                                  

                                       
   (2.9) 

Or for a vertex 

     
                                         

                                      
          

This leads to  

   
 

 
       (2.11) 

Random networks usually exhibit low clustering, whereas complex networks tend to 

demonstrate high clustering, which is often associated with high local efficiency of 

information transfer and robustness. 

Motifs are recurring significant patterns of interconnections noticed in the network. 

Thus, whereas degree distributions provide a global property, motifs enable us to 

comprehend local properties. Milo et al. [95] discuss a large number of network motifs 

which can be found in social, ecological, and technological networks, and how motifs 

may be used to reason about correlations between structural and functional networks. A 

particularly interesting application of this is the search for Ego networks in software 

systems to detect potential post release defects, used by Zimmermann and Nagappan in 

[96]. 

Path length and efficiency: 

Path length is the minimum number of edges that must be traversed to go from one node 

to another. Random and complex networks have short mean path lengths (high global 

efficiency of parallel information transfers), whereas regular lattices have long mean 

path lengths. Efficiency is inversely related to path length, but is numerically easier to 

use in estimation of topological distances between elements of disconnected graphs. 

If two vertices are i and j, then geodesic distance between i and j is     if a path exists 

between i and j.          

            

               

                                 

  

                                                              

The average geodesic distance is given by 
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This is also known as E or global efficiency, where the reciprocal of E is the harmonic 

mean of global geodesic distances is     
 

 
 . This measure is often used in studies of 

information flow in the network [90]. 

Connection density or cost: 

Connection density is the actual number of edges in the graph as a proportion of the 

total number of possible edges, and is the simplest estimator of the physical cost, such 

as the energy or other resource requirements of a network. 

Hubs, edge, centrality, and robustness: 

Hubs are vertices or nodes with a high number of incoming and outgoing links, and also 

vertices which fall on a large number of the shortest paths between two other vertices of 

the network. Thus, a hub has a central position and has relatively more influence in 

comparison to other nodes, in the context of interactions within the network. 

Interactions may be information flow, traffic flow, etc. Bullmore [81], discussing 

animal brain network modelling, states "The importance of an individual node to 

network efficiency can be assessed by deleting it and estimating the efficiency of the 

‘lesioned’ network. Robustness refers either to the structural integrity of the network 

following deletion of nodes or edges, or to the effects of perturbations on local or global 

network states." 

It is possible to quantify the importance of a hub or edge of a network by computing its 

centrality. Many authors have proposed different ways to compute the centrality of 

nodes and edges of graphs. In this review, two ways are presented: one; to compute 

vertex centrality, and another; to compute the centrality of an edge in the graph. A wider 

selection of these can be found in [90, 97, 98] [99]. 

The betweenness centrality of a vertex or edge u is given by 

      
        

            (2.12) 

Where          is the number of shortest paths between i and j that passes or contains 

vertex or edge u, and        is the total number of shortest paths between i and j, and 

the sum is the overall pairs of distinct vertices i, j. 

Koschützki et al. [97], in discussing shortest paths, provide the following equation to 

compute Vertex Stress Centrality related to communication networks. 
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                                (2.12) 

where u, i and j are vertices, V is the set of vertices and         denotes the number of 

shortest paths between j and j that passes through u. 

The edge stress centrality is given by: 

                        (2.13) 

where i and j are vertices of the graph, V is the set of vertices, ε is an edge of the graph, 

and        is the number of shortest paths between i and j that passes through edge ε. 

 

 

Figure 2.9  Illustration of graph modularity with 3 clusters, adopted from [100]. 

 

Modularity: 

The concept of modules arises from clusters of nodes with a central hub, where these 

clusters appear like islands in the graph, with one or more inter-cluster links. Analysis 

of graphs to detect communities of nodes, motifs, or just groups of nodes that belong 

together, is quite common and has application in the study of social science networks 

[100] and biological science networks [101]. This concept is illustrated in Figure 2.9, 

taken from [100], and modified with labels to annotate cluster and hub. 

2.3.3 Use of Complex network modelling 

 

Complex network modelling is essentially a statistical graph theoretic approach to data 

analysis. Network graphs provide a domain independent skeletal mathematical 

framework to analyse data, based on pair-wise relationships that exist between objects 
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of interest in the data represented as vertices or nodes and links or edges of a network 

graph. 

The concept of functional importance of methods in classes of OO software is based on 

a key property of scale free networks, where these networks have a large number of 

vertices with few connections and network hubs that are connection rich network 

features. The existence of hubs makes these networks robust and yet fragile from a 

structural and functional integrity point of view because a random removal of vertex 

does not lead to network breakdown, however if a hub is removed it can lead to loss of 

structural integrity of the network, if not its complete collapse. The majority of literature 

on the application of complex network modelling and empirical network analysis 

measures arises from contemporary research on social systems, socio-technical systems,  

and computational and systems biology. Elements of research from these broad areas 

have led to the exploratory use of complex network modelling for software program 

analysis. The following sections review a selection of papers on the application of 

complex network models that has influenced the data analysis and empirical validation 

technique developed in this thesis. 

Social and socio-technical systems 

 

Travers, Milgram and Newman et al. in [80, 83, 93, 94, 98, 100, 102-105] discuss the 

application of complex networks analysis in the context of social science and represents 

the early work on social network analysis and small world networks. These works are 

motivated by Milgram's research [83]  on social network's and acquaintance networks, 

that led to the concept of 6 degrees of separation. Many of these papers discuss the 

networks built from public databases trying to model the susceptibility of populations to 

the spread of virus and other infections like sexually transmitted diseases, and also 

provide empirical methods which are widely used to measure global and local properties 

of social networks.  Related research in software engineering are  Zimmerman's and 

Tosun's works [96, 106] on software defect detection that uses Ego networks and 

Givan's community detection [105, 107] to predict post release defects in Windows 

server software.  
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Computational and systems biology 

 

Albert surveys the literature on scale free networks in cell biology in [87], discusses the 

practical implications of scale free distributions, and tries to explain the growth, 

evolution and robustness of biological networks. The survey illustrates, through the use 

of selected research, that graph representations of cellular networks and quantitative 

measures characterizing their topology can be extremely useful for gaining system-level 

insights into cellular regulation. These illustrative examples discuss how protein-protein 

interactions, gene regulation, and gene duplication, as well as network motifs of protein-

protein interactions and topology, can be used to study local characteristics. Almaas 

[108] discusses the complex network analysis of protein-protein interaction network and 

alludes to the functional importance of important proteins, identified as critical through 

network analysis. Almaas argues that network graphs can be used to model protein 

metabolism, and that information about gene regulation and a protein's contribution to 

the known biological function need to be collated in order to facilitate better 

comprehension of how individual proteins in a protein network influence metabolism. 

In [81], Bullmore and Sporns review the use of network analysis for animal 

neuroscience research, and discuss the challenges associated with the use of data from 

multiple clinical sources to build up knowledge about brain structural and functional 

networks. These networks are used to analyse the functional importance of topological 

features that represent neural elements, by using network structural perturbation 

techniques. These techniques are used to gain a deeper understanding of brain disease 

and treatment of diseases like Alzheimer’s. The review concludes that certain aspects of 

the organization of complex brain networks are highly conserved over different scales 

and types of measurement, across different species, and for functional and anatomical 

networks. Bullmore and Sporns also hypothesise that the small world characteristics of 

brain networks may be a result of the natural evolutionary tendency to achieve a high 

efficiency of information transfer and at low connection cost, while at the same time 

trying to achieve an optimal balance between functional segregation and integration that 

yields high complexity dynamics. The review concludes that this hypothesis needs to be 

explored to gain a better understanding of brain networks. 
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Complex networks and program analysis 

 

Since 2002, approximately 18 research papers have been published on software 

engineering that uses complex network based modelling to reason about software 

systems phenomena using static analysis techniques. These papers explore the 

applicability  [109], [110] of complex network based empirical models to propose new 

OOD metrics [111], to study software evolution and stability from a structural point of 

view [64], and to characterize software defect distribution [112]. There are two main 

differences between the key papers of interest presented in this review and the approach 

presented in this thesis. First, the research presented in the reviewed papers does not 

attempt to explain how the complex networks modelling space, and its properties and 

measures, can be logically mapped to the software space, such that network graph 

models can be used as a surrogate for software models. Second, all the empirical 

complex network models originate primarily from physical and life sciences research, 

which (however successful) does not guarantee that empirical network measures apply 

to models built from software program data. 

In [110], Myer looks at a software system as a complex network inspired by similar 

studies on biological networks and OO collaboration diagrams [113]. Myer’s approach 

to software network graphs considers edge directionality to account for the hierarchical 

organisation of software systems. In  [110] the author also discusses software networks 

in light of exponential and power law connectivity distribution  and empirical 

verification, that verifies the hypothesis that OO software may be modelled using power 

law scale free networks. The author also discusses OO collaboration graphs in light of 

network concepts like assortativity, redundancy, degeneracy, and robustness of software 

networks generated using static analysis techniques. The key finding in the case of 

procedural systems included in the study was a lack of cluster formation in the 

collaboration networks representing these software systems. A related research is [114] 

by Wheeldon and Counsell, which discusses the power law characteristics of class 

relationships in OO software and verifies that power law distributions exist in object 

oriented class relationships and attempts to correlate the findings to the C&K coupling 

metrics discussed in [40]. 

Jenkins and Kirk [64] investigate the stability and evolution of the structure of 

consecutive versions of a series of software architecture graphs through complex 

networks analysis. Comparison, between scale free distribution and second order phase 
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transition, leads to the proposal of a new design metric (Icc) to quantify the instability of 

the structure of software as it evolves. The  metric developed is in terms of an 

understanding of its scale-free characteristics overlaid on the instability metric I, 

proposed by Martin [62]. 

    refers to the instability of the entire software class-class graph and its value ranges 

from 1 to 0, with 1 being maximally unstable and 0 being stable. This metric is based on 

degree distribution, and is a measure of the maintainability of software as it evolves. In 

the view of Jenkins and Kirk, evolution of hub-like structures point to bad 

programming, but it cannot be entirely avoided in practice. The metric proposed is 

based on scale free networks and can be used to quantify maintainability at various 

levels of granularity, like classes, packages, and libraries. Valverde et al.  [109] discuss 

organic evolution of software and how this leads to large scale software gaining small 

world network and scale free characteristics. The notion explored is that as evolution 

occurs, software attains fundamentally non optimal design due to complexity in 

aggregation of different elements. The study analyses software based on the largest 

component using an undirected network. 

Concas et al. [111] present research that studies connectivity distribution models of a 

large number of properties of OO software. The research is exploratory in nature and 

aims to investigate the statistical distribution of C&K metrics [40] for the whole 

software system, and to reason about these metrics in the context of degree distributions 

found by computing in and out degree at the class level, using a directed network as a 

representation of the software graph. Murgia [112] tries to characterise defect 

distribution within a system and concludes that it roughly follows Pareto distribution – a 

form of power law. Murgia also reports the finding of correlations among social 

network analysis (SNA) metrics and bugs that  are generally comparable with C&K 

metrics, and reports that SNA - EGO metrics [105] show the strongest correlation. 

In [115], Zheng et al. perform an empirical analysis of the Gentoo network, and analyse 

network properties including degree distribution, sparsity, clustering coefficient, degree 

growth rate, and node growth. In [96], Zimmermann and Nagappan describe defect 

prediction in post release Microsoft 2008 server software, based on Social Networks 

Analysis (SNA) metrics (proposed by Newman and Givan in [105]). A directed binary 

dependency network was built from escrow or master copy of binaries of Microsoft 

Server 2008 server software network. It was found that the SNA based approach has 
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10% higher recall than traditional complexity metrics based defect prediction 

approaches used in Microsoft. 

The common characteristics of these studies is that they primarily explore evolution and 

fault tolerance aspects of complex networks, apart from macro and micro level 

properties arising out of network topology [116]. This topic is still in its infancy 

therefore little empirical validation exists, and how it can be used is still a research 

topic. As a result, there is a difference of opinion in the literature as to when directed or 

undirected network representation should be used. Most of the research in this field is 

exploratory in nature and few publications report clear conclusions. Despite significant 

research efforts, it appears that the application of complex networks in software 

engineering has not made significant progress beyond the construction of software 

networks, and exploration of what network properties might mean when interpreted in 

the context of object oriented  software. A common problem associated with program 

analysis is the computational and data storage costs associated with performing the data 

analysis. In this thesis, a part of the data analysis required the use of cloud computing 

resources. The basics of cloud computing,  related to experiment process optimisation, 

are discussed in the following section. 

2.4 Use of the Cloud 

 

Cloud computing services do not currently have a defined standard, primarily because 

they are still evolving. The ideas behind cloud computing can be traced back to grid 

computing. Grid computing developed out of research on meta computing [117], high 

performance computing [118], and high throughput computing [119]. The motivation 

was to provide secure, reliable resource sharing to support computational science. The 

concept of grid was presented by Foster and Kesselman in [120] and the subsequent 

development of Globus Middleware [121] can together be considered as a de-facto 

standard for the grid. National research initiatives led to development of a grid service, 

where notable examples include the National Grid Service (NGS) [122] in UK and 

TeraGrid [123] in USA, among others. The research on grid infrastructure setup and the 

use of grid computing has had a wide focus, which included work on facilitating 

usability of the infrastructure. This aspect focused on security and access. An interface 

similar to Web Service was proposed, named Grid Service. However, it proved 

complicated and access was predominantly based on the use of secure shell (SSH), or a 

web interface embedded with SSH console. Grid software infrastructure is 
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predominantly based on Unix/Linux, and did not use virtualization. Major grid services 

use Globus based software infrastructure, which aids interoperability and resource 

sharing. However, to the user the grid resources present a set configuration. Grid 

operations are mostly sponsored by research funding, and operation is non-commercial 

in nature. 

Cloud computing is primarily enterprise driven, and services are offered on a 

commercial basis. Cloud infrastructure and services differ widely, and there is no 

explicit support for interoperability. Cloud resources are highly flexible in comparison 

to grid resources, enabling users to adopt the base infrastructure for a wide range of 

computing end use, by virtue of the use of virtualization [124, 125] . The user interface 

of most cloud services is web service based, and interactive access is possible using 

platform specific access technology, like SSH on Linux/Unix platform, or remote 

desktop on Windows platform. Figure 2.10 presents a schematic diagram of the cloud 

infrastructure setup. The aim is to be vendor independent. However, for illustrative 

purposes, some Amazon cloud service names have been used. Cloud service providers 

currently maintain large facilities for housing computers that can be used for 

computation and storage. The facilities are usually provisioned with a fast 

communication network, computers that front-end and back-end software based 

services. The services may be web services based interface facilitating user interaction 

with the services. The services may deal with account setup, management, and using 

cloud based resources. Amazon, Microsoft, Google, Rackspace, and Salesforce are all 

commercial cloud service providers. Cloud services use the utility model [126, 127] of 

charging for use of the services. In this model, users pay for resources used, and there is 

no standing charge. 

The current interest in cloud computing infrastructure, platforms, services, and 

applications is partly driven by marketing ‘hype’, and partly by the genuine hope that 

this technological innovation can help to address issues in large scale computing, 

particularly that of access to resources on demand. In software testing, the often quoted 

statistic is that software testing is resource intensive and can account for between 40% -

70% of the cost of software through its life cycle. Most of this cost is incurred in the 

post construction, production use, and maintenance phases. The main issues are how 

much to test (test sufficiency), how and where to direct testing resources (test 

prioritization) in order to achieve maximum reliability, and consequently achieve high 

assurance. The latter question forms the central theme of program comprehension 
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research. The issue of resource is determined by decisions on test sufficiency and test 

prioritization factors, in addition to test objectives, and the need for test environment 

fidelity to target use environment. In some cases the test resource is also determined by 

how the software is operated. That is, whether the software is primarily graphical user 

interface (GUI) driven, command line driven with or without scripting, or both. 

 

 

Figure 2.10  Conceptual diagram of  a cloud service setup on Amazon. 

 

Most standard software testing today – regardless of whether its purpose is system 

integration, regression testing based on a set of unit tests, or performance testing – relies 

on predetermined workflows that afford a degree of automation to the test process. In 

most cases, the testing infrastructure is captive in nature, with a significant degree of 

control over how the infrastructure is managed and operated. Early research on software 

testing in the cloud [128] explored how software testing workflows need to be adapted 

to work in the cloud. Riungu [128] also discusses the research viewpoint on what 

considerations may form the basis on which a decision may be formed to migrate 

testing to cloud. Riungu [128] also presents some examples that deal with testing as a 

service (TaaS), where many of these services are built on top of the Amazon cloud 

platform, and target small and medium enterprise involved in software application 
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testing. These services facilitate migration of an existing testing process that uses a 

captive infrastructure to use a cloud infrastructure; for example [129]. 

In this research, the use of cloud technology has been mainly to support large scale 

mutant test build, task farmed data processing, and large volume data storage, which 

was not possible to achieve with existing captive resources available locally and that 

had been allocated to the research. 



 

47 

 

Chapter 3.  Review of Dynamic Analysis Literature 

3.1 Introduction 

 

This research is focussed primarily on the verification of empirical measures of complex 

network models, when used in dynamic analysis of large software systems to support 

prioritization of program comprehension and software testing. Chapter 2 of this thesis 

discussed the essential background information on software development life cycle and 

static (program) analysis techniques, developed to support program comprehension and 

software testing of object oriented (OO) software. The key problems that need to be 

overcome to enable analysis of complex real world systems, including software 

systems, in an efficient manner are how to manage the size and complexity of the data 

that is produced in an effort to study these systems. As discussed in Chapter 2, complex 

network models and measures provide a domain-independent skeletal framework to 

efficiently analyse large and complex data. In the following sections of this chapter a 

review of literature on dynamic analysis and application of complex network analysis in 

dynamic analysis of OO software is presented. 

Computer science and software engineering research into the prioritization of software 

engineering process tasks has used predominantly static analysis techniques. The bias in 

choice when adopting static analysis is primarily due to the lack of sufficiently 

developed dynamic analysis tools to undertake dynamic analysis research in a cost 

effective manner. Application of complex network modelling in software analysis is 

relatively rare in comparison to other more established statistical techniques of data 

analysis, primarily because these techniques are new. However, complex network based 

modelling and data analysis techniques are rapidly gaining in popularity, driven 

primarily by successful application of the research in the study of socio-technical 

systems and in system level studies in the life sciences. 

 

3.2 Dynamic analysis 

 

The intuitive notion of dynamic analysis is program analysis that involves execution of 

the program. A computer program is a practical realization of the universal machine 

[130, 131] that makes a computer system behave in a certain way, based on the 

sequence of commands executed. These commands (typically machine instructions) can 
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be moving data from one memory store to another or applying transformations to the 

data, such that some input data may be processed into some desired output. In the case 

of object oriented (OO) software written in higher level languages like Java or C++, 

classes and methods are compiled into machine instructions or byte-code. Although it is 

possible to work at the low level of machine instructions, it is typically avoided for 

reasons of efficiency. In this thesis, the dynamic analysis technique relies on the 

standard approach of working at the level of source code and the compiled program.  

 

Figure 3.1 Schematic illustration of program analysis based on techniques employed. 

 

Figure 3.1 presents an illustration of program analysis techniques (reproduced from 

Figure 2.1). The right branch of the tree presents three broad dynamic analysis 

techniques: testing, profiling, and tracing. The data collection from empirical 

experiments used in this thesis relies primarily on profiling and tracing, while the 

verification of functional importance utilises the software testing techniques of dynamic 

analysis. The following definitions captures the rationale behind use of the dynamic 

analysis techniques used in the experiments in this thesis. The IEEE SWEBOK [132] 

definition mentions program behaviour a key concept used in the verification of 

functional importance and Ernst [36] mentions the testing and profiling as standard 

techniques used to carry out dynamic analysis. These definitions considered with Glen's 

definition of profiling [133] justifies the motivation behind use of the profiling 

technique used to gather runtime data in this research.  

The IEEE SWEBOK [132] defines software testing as follows: "Software testing 

consists of the dynamic verification of the behavior of a program on a finite set of test 

cases, suitably selected from the usually infinite executions domain, against the 

expected behavior." 
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Ernst [36] states “Dynamic analysis operates by executing a program and observing the 

executions. Testing and profiling are standard dynamic analyses. Dynamic analysis is 

precise because no approximation or abstraction need be done: the analysis can examine 

the actual, exact run-time behavior of the program.” 

Glen [133] defines profiling as follows: "A program profile attributes run-time costs to 

portions of a program’s execution. Profiles can direct a programmer’s attention to 

algorithmic bottlenecks or inefficient code, and can focus compiler optimizations on the 

parts of a program that offer the largest potential for improvement. Profiles also provide 

a compact summary of a program’s execution, which forms the basis for program 

coverage testing and other software engineering tasks." 

Ball [134] discusses two approaches to dynamic analysis based on profiling: frequency 

spectrum analysis (FSA) and concept coverage analysis (CCA). In FSA, program 

runtime information, like invocation frequency of program entities, is used to facilitate 

the understanding of performance of program sections, and also help with performance 

optimisation related activity. In CCA, the concept analysis technique is applied to test 

coverage data to help compute dynamic analogues to static control flow relationships, 

such as domination and post domination regions.  Comparison of this dynamic data and 

static program data can be used as a prioritisation aid to optimise testing efforts. 

It is important to notice that dynamic analysis is only possible to perform at the coding 

phase in the form of unit tests, at the pre-release stage of the software life/process cycle, 

and at the maintenance phase, because an essential requirement of dynamic analysis is 

the existence of an executable program. It is true that at the coding phase the complete 

system may not be available, and therefore the unit test is performed at the level of 

modules or units on a test rig that usually tests software units based on inputs and 

outputs. A common way to verify that software behaves as expected is by interacting 

with and observing its manifestation when it is executed. That is, when the software 

responds to stimuli or interaction. We perceive the program’s behaviour based on its 

response. Theoretically, a set of stimuli can produce many responses from an executing 

program, especially from a large software system of Lehman's P and E type [19, 135]. 

In this context, Milner's and Fokkink's discussion  [136, 137]  on a formal methods 

approach to modelling sequential and parallel behaviour of modern computer systems at 

the process level explains why static analysis [138] and formal methods based 

modelling and verification can become un-scalable. Namely, this is due to the potential 

for state space explosion, due to the almost infinite set of possible inputs, execution 
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paths, and outputs that result from modelling Lehman's Type A (P,E) systems. In static 

analysis, state space modelling allows us to reason approximately, but soundly, about 

software phenomenon during runtime. In dynamic analysis, if we consider the state 

space model, the data collected is precise [36], [134] and applies to a particular  

exercised execution scenario, as described by a specific set of interactions with the 

executing program.   

Howden [139, 140] discusses the issues of functional testing: how it is performed and 

the selection of input values determined from the domain (i.e. verification of what the 

function is designed to compute, the intended range of  inputs, the expected path the 

function should take, and the expected outputs). The discussion is close to what is 

sought to be achieved through unit testing or mutation testing. Yue and Harman survey 

the concepts and techniques of mutation testing in [141], discuss various approaches to 

mutation testing, and mention the cost intensive nature of such testing. The 

experimental work presented in this thesis uses techniques very closely related to those 

discussed by Howden [139, 140] and Yue and Harman [141], but for OO software. A 

key challenge for dynamic analysis is data collection, data exploration, and visualization 

[142, 143]. In the following sections a discussion of the key dynamic analysis literature 

is presented.  

3.2.1 Software testing and profiling 

 

Meyer [144] discusses seven best-practice based principles of software testing, covering 

test definition, tests versus software specifications, regression testing, contracts as 

oracles, manual and automatic test cases, empirical assessment of testing strategies, and 

assessment criteria. The core principles are that software must be tested with the aim to 

make it fail, but software tests cannot be a replacement for system specifications. 

Ideally, tests must consist of both automatically or tool generated test code, and also 

manually generated test code, and every failed regression test must lead to a new test 

case with a clear test-end indicator. On the subject of test strategies, Meyer's principle 

advocates empirical assessment, and the assessment criteria should be reliably based on 

measurement of time bound fault detection. These ideas fit neatly with the discussion of 

testability and test sensitivity by Voas [145-147] and the discussion of the benefits of 

agile process and test driven development processes by Talby et al.'s [26], which are 

complementary to Meyer's principles [144]. However, Jackson presents a contrasting 

view [28, 148], in which he points to the futility of large scale testing and recommends 
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user driven testing, like user acceptance testing, as an effective testing scheme. Yue and 

Harman discuss the wide range of techniques employed to carry out mutation testing 

[141]. Some of these techniques have also been used to generate mutants in empirical 

experiments on software testability and test sensitivity by Voas in [145-147]. The 

problem with software mutation testing is that it is expensive and requires enormous 

human effort [141]. The dynamic analysis techniques adopted in the experimental part 

of this thesis use a form of user acceptance testing for data collection, and mutation 

testing for verification of predictions of functional importance. 

Data collection in dynamic analysis research is a key bottleneck in this context, where 

Waddington et al. [149] discuss a wide range of tools that facilitate the profiling of 

multi-threaded software systems and techniques to collect dynamic analysis data. The 

discussion on dynamic and binary instrumentation (DBI) frameworks is particularly 

insightful and shows the growing popularity of virtual machine based DBI frameworks. 

Waddington et al. [149] also discusses the performance bottleneck that is typical in 

profiling large scale software and provides a comparative overview of the tools, 

although the paper does not report empirical results. The main thrust of the discussion is 

to demonstrate effects like the slowdown of the application and problems with response 

time under two different execution conditions: with instrumentation of the executable 

program, and without instrumentation of the executable program. The results are then 

used in discussion of a scaled-up scenario where the actual application being profiled 

can be many times larger. The applications used for performance experiments are 

common benchmark codes used in testing both software tools and platform 

performance, especially those connected with performance profiling, such as LU 

DECOMP and Huffman. 

3.2.2 Data collection  

 

In the context of Waddington et al.'s discussion [149] on data collection bottlenecks and 

the use of DBI, a contrasting technique is static instrumentation to the source code. 

Geimer et al. [150] discuss the TAU framework that conducts static instrumentation of 

program code and is primarily used in High performance computing (HPC) 

environments. The paper [150] investigates the basic constructs required to specify user-

defined method entry/exit instrumentation in a generic fashion. It also investigates 

generic building blocks that can be applied as instrumentation, and features like 

keyword substitution, which are found useful in taking advantage of participant 
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knowledge at the time of instrumentation. The idea behind key word substitution is to 

build in an intelligent instrumentor that is aware of build tools.  

Cain et al. [151] discuss improvement to the instrumentation mechanism in Paradyne 

PC (performance consultant) profiler software, where selective dynamic instrumentation 

is implemented by incorporating call graph searches that takes into account the path 

being taken as the program executes. This discussion of performance improvements, 

due to use of this new instrumentation technique, has been illustrated by using 6 

example programs that are procedural in construction and written in C ad Fortran. The 

reason behind improved performance is that the scheme searches for valid paths to 

instrument, rather than using blanket instrumentation. The main reason behind the slow 

performance of dynamically instrumented applications at runtime is that more time is 

spent on instrumentation tasks that are never used, than on actual computation related to 

the application.   

Nethercote and Seward [152] discuss the Valgrind tool, which can be used to carry out 

dynamic binary instrumentation/introspection of a binary program. The instrumentation 

scheme is based on intermediate representation, and is known to be a heavyweight 

technique. This technique is known as heavyweight because intermediate representation 

makes the scheme more flexible for use with different compilers, architectures, and 

software tools, but use of the Valgrind scheme requires significant programming effort 

and the technique is also computationally intensive because of the translation related 

load associated with the use of intermediate representation. Tools like Valgrind provide 

a framework upon which user profiling tools can be built. However, such endeavours 

require significant effort. Intermediate format use requires mapping from microcode to 

intermediate format, then instrumentation occurs in the intermediate format level, which 

is turned back into microcode and executed, essentially requiring two stages of 

translation. 

Hundt [153] introduces the HP Caliper framework for program analysis. The framework 

is a probe-based dynamic instrumentation framework that relies on a virtual machine 

scheme, as opposed to the intermediate representation scheme used by Nethercote and 

Seward [152] in Valgrind. The HP Caliper framework tool is based on the ATOM 

library, which provides an API for dynamic instrumentation. Skaletsky et al. and Moshe 

[154, 155] introduce and discuss how Intel's Pin library [156] based tools can be used 

for tracing and dynamic analysis of large binary applications. Pin [156] is a VM based,  

profiler directed instrumentation framework. Dynamic instrumentation typically 
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requires significant effort to implement, and often the approach has been to write very 

low-level assembly language code to achieve this. The problem frequently encountered 

is that instruments became application specific and not easy to use for different 

applications on the same platform. The other major problem has been in the 

performance of the instrumented application, due to the overhead associated with the 

instrumentation process. Pin tool, which is in part inspired by ATOM, is a framework 

for dynamic binary instrumentation. The tool provides an application programming 

interface (API) for high level programming languages, primarily C and C++. The API 

abstracts some of the low level architecture details that earlier approaches had to deal 

with, making it possible to build generic tools that can be used to build profilers, tracing 

tools, and so on. These frameworks take advantage of compilers to achieve optimisation 

of the instrumentation process during runtime. The common low level intermediate 

format used by the C, C++, and Fortran programming languages has been utilised in the 

VM layer with the tool, such that application binaries written in these languages for 

x86-32, x86-64 and other architectures based on x86  can use one single instrumentation 

tool. DynamoRIO [157] is another tool that provides facilities similar to Pin and 

ATOM. 

Binder et al. [158] present a new framework for dynamic byte code instrumentation in 

Java and FERRARI, based on BCEL, and discuss both static and dynamic binary 

instrumentation of java applications. Tanter et al. [159] discuss Aspect-oriented 

programming (AOP). AOP  based techniques  and tools[160] are popular and used 

widely in dynamic analysis [142] and software testing and profiling to collect runtime 

data, especially for software written in Java [161]. A major attraction is the use of a 

compiler based weaving technology with a high-level interface (i.e. API) that does not 

typically require programmers to work at the level of microcode. 

Couture et al. [162] reviews a wide range of tools available for static and dynamic 

instrumentation that are currently available, primarily for applications written in Java. 

The data collection techniques used in our research utilised static Java byte code 

instrumentation Eclipse Probekit [163] which is similar to the scheme discussed by  

Geimer et al. [150], and the Eclipse TPTP [164] that employs DBI, similar to the 

scheme discussed by Binder et al. [158]. In the case of C++ programs used in our 

research, the instrumentation scheme  used was built on Microsoft Debugger 

technologies that are similar to techniques discussed by  Hundt [153] and Zhao et al. 

[165]. In the case of Zhao et al. [165], the technique discussed uses the GNU Debugger 
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[166, 167]. The key difference with [165] is in the use of break points. The techniques 

that are fundamentally different in approach, such as Nethercote and Seward [152] and 

Cain et al. [151], were both tried but were found to suffer from significant scalability 

problems discussed in [149].  

3.2.3 Object oriented design quality 

 

Dynamic analysis based research concerning object oriented design (OOD) quality is 

limited, primarily because of the lack of robust tools to support data collection and the 

popularity of static analysis based metrics. In this context, Arisholm et al. [35] propose 

a dynamic coupling measure, formal definitions, and a framework to define 

external/external coupling measures. Arisholm et al. [35] describes a prototype data 

collection and analysis tool to perform dynamic coupling measurements, and presents 

empirical validation to demonstrate  that dynamic coupling can be used as a change 

proneness predictor. The dynamic coupling metrics suite developed by Arisholm et al. 

[35] is similar to static coupling metrics suite  proposed by Briand [41, 42]. Chhabra 

and Gupta [168] present a comparative survey of important dynamic analysis metrics. 

The key findings are that despite being found to be more precise than metrics computed 

by static analysis, little research exists because of the expense of calculating these 

metrics from dynamic analysis data. The survey [168] reports that pseudo-dynamic 

metrics is a topic that has not received much research interest, and suggests that the use 

of pseudo-dynamic metrics may be beneficial because these may be cheaper to compute 

and comparable to metrics extracted by purely dynamic means. 

3.2.4 Program comprehension 

 

Zaidman et al. [169] propose a technique that uses web mining principles for 

uncovering important classes in a system’s architecture, using graph theoretic page 

ranking techniques and the HITS algorithm [170]. This technique is also known as the 

web mining technique, popularised by Brin and Page [171]. Algorithms of this class 

have also been discussed by Newman [102] while discussing power laws. In [169], the 

HITS algorithm is used to discover rank classes, based on analysis of the object-object 

interaction network built from execution traces. The aim of this work is to support 

program comprehension by providing developers with a starting point for the 

comprehension process. The premise is that the objects (instances of classes) which are 

ranked highly by using the HITS analysis are likely to  indicate important objects, and 
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consequently classes, in the software. The authors also mention the CBO coupling 

between objects metric discussed by C&K [40], and present this ranking as essentially 

uncovering highly coupled classes. Zaidman et al..’s work in [169] is very similar to the 

work on the identification of functionally important methods in OO software. A crucial 

difference is that no effort is made to associate the network analysis model to the 

software engineering domain in terms of class collaboration networks, as in [110] and 

[172]. In addition, the data collection technique used to collect the class level dynamic 

interaction data is not described. 

Cornelissen et al. [173, 174]  discuss how large volumes of dynamic analysis data can 

be visualised to support program comprehension through dynamic analysis. The 

technique adopted to collect execution trace data is based on use of the tracing aspect, 

written in Java using AspectJ [160, 161]. The visualization scheme organises 

hierarchical execution trace data, collecting class level interactions into circular bundles 

of entities. These entities are expandable and collapsible, based on how the user 

interacts with the visualisation tool. All the entities are displayed along the 

circumference of a circle in the visualisation tool. Intra-elemental communication 

events (i.e. message exchanges) are denoted by lines connecting the elements, with line 

thickness denoting the intensity of communication. The research presents a program 

dynamic analysis data visualisation tool to support program comprehension, controlled 

experiments to validate the scheme of visualization, and also validation of the scheme in 

the context of Shneiderman's [175] seven criteria for user interface design. 

Lienhard et al. [176] present an approach to track and visualise object flow through its 

lifetime, to understand software behaviour during runtime. Object references are treated 

as first class entities for tracking object flows as the system executes. The approach 

presented by Lienhard et al. [176] contrasts with dynamic analysis techniques 

dominated by a message passing view of the system presented by Cornelissen et al. 

[173, 174]. In the message passing view, it is primarily the control flow that is being 

analysed; in the object centric view, it is the data flow that is being analysed. The 

authors have implemented their object tracking system for a Smalltalk system and a web 

application, but not for Java. It may be easier to track objects in some languages (like 

Smalltalk) than in others, particularly when the languages are pseudo-object oriented 

(like Java that allows class members to be both native types and objects). The research 

is presented as visualisation of object flows to support program comprehension, and the 
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authors claim that it provides complementary information to message passing dynamic 

analysis. 

Bohnet et al. [177] discuss a concept and feature visualisation technique that facilitates  

pruning and scalable visual exploration of large traces to support program 

comprehension. They discuss how pruning of large information traces is achieved in 

order to facilitate scalable visualisation. Similar and repeated function call sections of 

the trace are collapsed into single elements by computing the call fingerprint function, 

which is represented as a bit vector. The bit vectors are analysed for similarity, which 

leads to pruning. 

Singer and Kirkham [178]  discuss dynamic concept analysis, visualisation, profiling 

and the Java virtual machine's garbage collection. They also discuss the use of aspect 

oriented programming [160, 161] and program and behaviour comprehension. The key 

idea discussed in [178] is feedback directed concept assignment, where the user assigns 

a concept to parts of code based on tool driven code inspection and subsequently 

executes it to verify and update the assignment of concept to code. Singer and Kirkham 

[178] suggest that similar feedback directed optimisation of a concept assignment can, 

in future, be implemented in a profiler tool to support interactive concept analysis. The 

authors state that the user annotation based approach demonstrated in the paper is 

currently not possible using standard tools, despite compiled code retaining a significant 

amount of information. The need exists to develop techniques for profiler directed 

optimisation; in order to perform an automated concept assignment based on the 

annotated information that already exists in the compiled code. The automated concept 

assignment can then be refined by the tool based on user feedback.  

Hamou-Lhadj et al. [179] and Hamou-Lhadj and Lethbridge [180] present a semi-

automatic approach for summarising the content of large execution traces. The 

summarisation is achieved by using Use Class Modelling (UCM), as opposed to UML. 

UCM provides a compact way to represent method call graphs generated from 

execution traces. Another aspect is to remove contributions in the trace, due to utility 

methods or helper methods, by using an algorithm that uses fan-in, fan-out analysis 

[33], and manual adjustment of thresholds which help to filter out utility methods. It is 

widely recognized that large traces are difficult to analyse with information (that can be 

considered as noise) obscuring the core information required for program 

comprehension. The research is reported as initial work on small systems that has 
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yielded encouraging results. Hence, further validation of the technique is required on 

larger systems. 

Kuhn and Greevy [181] discuss the issue of dynamic trace analysis posed by size and 

complexity. They propose the use of signal processing techniques to treat trace entries 

as events and look at the coarse grain view while preserving essential information, 

while reducing storage and computational cost at the same time. They also present a 

technique for visualising trace information as a time-series of events extracted from the 

trace using a signal processing technique. The research represents an effort at trace 

abstraction, by use of data mining to support program comprehension. 

Dynamic analysis research, used to support program comprehension, suffers from the 

challenges posed by large volumes of complex data that is generated and the lack of 

robust data collection tools. AspectJ or profiler based tools appear to have been used in 

most of the papers considered [173, 174], [179], [180] and [181], presenting the first 

significant difference with the data collection technique employed in this thesis. The 

common thread is the collection of full traces. In this respect, this thesis draws 

significant motivation from [173, 174]. 

3.2.5 Complex networks based modelling 

 

Potanin et al. [172] argue that object interaction network graphs of object oriented  

software display no characteristic scale. They present results which indicate that in-

degree and out-degree object reference distribution has scale free power law 

distribution. The research actually corroborates the results discussed by Myers [110] in 

the context of static analysis. Potanin et al. [172] uses custom stack tracking for data 

collection and tracking objects, which is a technique that can be considered to provide 

better performance when compared to full scenario tracing, because the size of the data 

collected can be significantly reduced depending on requirement. However, the 

technique has a significant potential for error, unlike the Java Eclipse TPTP [164, 182, 

183] based approach employed in this thesis. A significant difference in the analysis 

approach with this thesis is the use of directed network measures. However, the author 

does not explicitly mention which network measures were used, unlike this thesis, 

thereby making the empirical validation questionable. 
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3.3 Mixed mode analysis 

 

It should be increasingly apparent that static and dynamic analyses are rarely mutually 

exclusive in practice. Ernst [36] advocates the need for "hybrid analysis that combines 

static and dynamic analyses. Such an analysis would sacrifice a small amount of the 

soundness of static analysis and a small amount of the accuracy of dynamic analysis, to 

obtain new techniques whose properties are better-suited for particular uses than either 

purely static or purely dynamic analyses." Jackson and Rinard in [28, 148] seem to echo 

a similar thought when discussing the dependability of software systems, and Meyer 

[144] states that in some cases random testing yields similar results in comparison to 

complicated and testing schemes, leading to his seven principles.  One can interpret 

several techniques discussed in the literature as applicable to either mode: they are not 

purely static, nor are they purely dynamic. There is still no universal theory that applies 

to all modes of software analysis, although that would be ideal according to Bertolino 

[184].  In this section, the discussion presents literature that uses both static and 

dynamic analysis techniques to support software testing and program comprehension.  

3.3.1 Software testing and profiling 

 

Taitelbaum et al. [185] introduce the concept of synergistic assurance and propose a 

technique that demonstrates its implementation in real programs, by mixing formal 

verification and dynamic verification – almost like contract driven testing. Rothermel et 

al. [186] discuss several techniques for using test execution information to prioritise test 

cases for regression testing, including: 1) techniques that order test cases based on their 

total coverage of code components, 2) techniques that order test cases based on their 

coverage of code components not previously covered, and 3) techniques that order test 

cases based on their estimated ability to reveal faults in the code components that they 

cover. The test suites considered in the empirical analysis were untreated, randomly 

ordered, and optimally ordered. The results indicate that prioritisation improved the rate 

of fault detection, even in the case of the least sophisticated prioritisation scheme. It was 

also found that while techniques based on the fault exposing potential outperformed 

other techniques in some cases, these techniques are generally not cost effective and 

may require further research to perfect. As a result, interest is likely to be limited to 

academic rather than industrial uses. 
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3.3.2 Data collection 

 

Ayewah et al. [187] describes a lightweight instrumentation framework built by 

Microsoft that is used to collect usage data on static analysis tools, bundled with various 

Microsoft provided development platforms. These data are used to improve the usability 

of the tools and to schedule maintenance activities. The key feature of this framework is 

that it facilitates collection of application usage data in an unobtrusive manner from a 

wide range of applications, thereby enabling efforts to minimise post release defects by 

pre-emptive maintenance. 

3.3.3 Program comprehension 

 

Poshyvanyk et al. [188] recasts the feature location problem as a decision making 

problem. They use dynamic analysis (SPR), static analysis data, and an information 

retrieval (IR) technique (LSI) to create a new hybrid technique PROMESIR. SPR is a 

feature location application that uses dynamic analysis based on scenarios, and IR 

approaches are used for various tasks such as traceability link recovery (i.e. linking 

source code to documentation). PROMESIR is a tool that implements a hybrid of SRR 

and IR approaches. The tool has been used for bug location, by utilising complementary 

analysis techniques and data that SPR, and IR based on LSI, represents. PROMISIR is 

found to be accurate but computationally expensive. 

Eisenbarth et al. [20] use static and dynamic analyses for feature location using concept 

analysis, and dynamic analysis to reduce the search space. First, the feature location of 

system components is achieved by scenario execution and generation of traces. Then, 

concept analysis is carried out using static analysis. Empirical validation is conducted 

on the Mosaic and Chimera browser software. The authors argue that partial 

architecture recovery using this technique can support program comprehension. 

Bohnet and J. Döllner [189] present a mixed mode static/dynamic analysis based 

technique to visualise the call tree control flow graph of very large software (>1MLOC) 

along with feature location, in order to support program comprehension and 

maintenance tasks. The authors argue that feature location, and comprehension of how 

the features map to architectural components, are both important from the software re-

engineering point of view making  visualisation of  source code features, call graph, and 

architectural components important. The prototype tool facilitates program 

understanding through visualisation. 



 

60 

 

Rajlich and Wilde [66] discuss the learning of domain concepts from a program through 

static and dynamic analyses. The authors discuss the importance of concept location, 

and decomposition of a system, based on concepts. This is an early research paper 

which discusses a decomposition scheme called de-location, which appears to be 

counting concepts in marked parts of code. Few details of the technique employed are 

provided, but it appears to be an interesting approach to mapping domain concepts to 

source code, purely based on a tagged instrumentation scheme to generate the data. 

Kontogiannis et al. [190] discuss the challenges facing program comprehension in the 

context of software constructed using multiple languages. In single language 

implementations, the tasks typically revolve around uncovering the dependencies 

between concepts, features, and code. However, this task is more challenging in systems 

written in multiple languages and containing many libraries and complex inter-language 

interfaces. This problem has also been mentioned by Goth [3]. 

Voigt et al. [143] discuss large execution trace exploration and visualisation. The 

authors propose a data model to map an execution trace into a visualisation system; the 

aim being to enable efficient scalable visualisation of dynamic analysis data, and to 

facilitate program understanding through understanding of non-local effects of object 

oriented software design and construction. The work contrasts with, and also is 

comparable with at a certain level, the work of Cornelissen et al. [142]. Voigt et al. 

[143] and Cornelissen et al. [142] are comparable because both works deal with 

dynamic analysis program data visualisation as a program comprehension aid. The 

contrast arises at the level of data collection techniques adopted, with Voigt et al. [143] 

using profiler debugger facilities whilst Cornelissen et al. [142] relies on the use of an 

AOP based custom trace data collector. Based on the discussion in [149] one may 

conclude that the data collection approach used by Voigt et al. [143] would be more 

scalable.   

The data collection and analysis approach of this thesis is significantly different from 

most of the research presented in this review that covers dynamic analysis to support 

software testing and program comprehension. Our research identifies closely with the 

scenario driven runtime trace data collection technique adopted by Cornelissen et al. 

[142] for software written in Java, and Voigt et al. [143] for software written in C++. 

The conceptual basis of our research is closest to Zaidman et al. [169], Potanin et al. 

[172], and Myer [110]. The review so far has presented only those papers that provide 
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inspiration for different aspects of our research except empirical analysis, which we 

review in the next section. 

3.4 Empirical experiment in software engineering 

 

Software engineering experiments follow an iterative process consisting of the 

following four phases:;1) definition, 2) planning, 3) operation, and 4) interpretation, 

according to a framework proposed by Basili et al. [191]. This work [191] and Shull et 

al. [192] both recognise that the techniques and methods employed in software 

engineering experiments are likely to be characterised by diversity and guided by the 

context in which the experiments are conducted. 

Today, with the increasing use of sophisticated models in static and dynamic analysis, 

coupled with a multitude of metrics, there is a need to state clearly what is sought to be 

measured, how accurately the models are able to measure properties of interest, and 

how widely applicable these measure are across a class of software systems. It is also 

good practice to clearly state any threats to the validity of the analysis, and the 

assumptions that have been made in building the models. Deeper discussion of the topic 

of experiments in software engineering, encompassing elements of measurement theory 

and statistics, is beyond the scope of this review. However, no current review should 

ignore the empirical experimental aspect and the trend towards evidence driven 

practices both in research and industry [193]. 

Application of measurement theory, modelling, and experiments 

Fenton and Pfleeger [29, 194] and Briand et al. [59, 195] discuss the fundamental 

concepts of measurement theory in terms of the Empirical Relational System and 

Formal Relational System, and discuss how measures of software can be developed in 

the context of these theoretical underpinnings.  

Name of Scale Transformation g 

Nominal Scale Any one-to-one g 

Ordinal Scale g - Strictly increasing function 

Interval Scale            

Ratio Scale         

Absolute Scale        

Table 3.1 Statistical scales and valid transformation that can be applied [196]. 
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The main issues discussed in this context are scales of measures and transformations 

that can be applied to such measures based on its scale (see Table 3.1). The statistical 

methods used in data analysis are typically determined by how the data is collected, 

what it represents, and what is sought to be measured or modelled based on the data (see 

Table 3.2). 

Pickard et al. [197] discuss the use of meta-analysis and vote counting techniques to 

conduct empirical studies in software engineering. The aim of the research is to 

motivate empirical software engineering experiments to follow standard techniques in a 

rigorous way, so that the conclusions reached can be relied upon to be widely applicable 

across the reported studies. 

Scale Type Examples of appropriate 

statistics 

Type of  appropriate 

statistics 

Nominal Mode,  

Frequency,  

Contingency Coefficient 

Nonparametric Statistics 

Ordinal Median,  

Kendall's tau,  

Spearman's rho 

Nonparametric Statistics 

Interval Mean 

Pearson's correlation 

Nonparametric Statistics and 

parametric statistics 

Ratio Geometric Mean 

Coefficient of Variation 

Nonparametric Statistics and 

parametric statistics 

Table 3.2 Illustration of scale types, possible software measures and appropriate statistics [196]. 

 

El-Emam [198] discusses in detail the statistical aspects of validating software product 

metrics. The need for good experimental design is stressed, coupled with the choice of 

statistical technique. According to El-Emam, the choice of statistical technique depends 

on the scale type of the independent and dependent variables in the model. The author 

also states that there is significant scope for research on the statistical aspects and their 

application to analyse experimental data in software engineering. However, El-Emam 

warns that statistical analysis techniques need to be applied with care in empirical 

software engineering, because application of these techniques can often appear too 
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restrictive and can also produce spurious results, for instance Fenton's discussion on the 

Goldilock’s Conjecture in [194]. 

Kitchenham et al. [199] provide preliminary guidelines to design, prepare, conduct and 

analyse, interpret, and present the results of empirical software engineering 

experiments. There are four guidelines that relate to the interpretation of results alone; 

1) define the population to which inferential statistics and predictive models apply, 2) 

differentiate between statistical significance and practical importance, 3) define the type 

of study, and 4) specify any limitation of the study. The authors propose the guidelines 

based on deficiencies highlighted by their survey, and in the belief that if the guidelines 

are followed then the deficiencies could be substantially addressed. Sjoeberg et al. [200] 

state that the classical method for identifying causal relationships is to conduct 

controlled experiments. Their paper surveys the quality of research and techniques 

adopted in the context of controlled experiments. They report that only 1.9% of the 

surveyed literature actually discussed controlled experiments. According to the authors, 

a major finding of the survey is: "reporting is often vague and unsystematic and there is 

often a lack of consistent terminology. The community needs guidelines that provide 

significant support on how to deal with the methodological and practical complexity of 

conducting and reporting high-quality, preferably realistic, software engineering 

experiments." This observation was also made by Kitchenham et al. [199]. In the 

context of this thesis, a significant part of the experimental results depend on empirical 

analysis. The following literature deals with the quality of empirical software 

engineering experiments: Fenton and Pfleeger  [29, 194], El-Emam  [198] and 

Kitchenham et al. [199], and each provide  guidance on good practices to follow in the 

conduct and reporting of empirical software engineering experiments. The topic of 

statistical physics of complex networks, network analysis, and ranking techniques has 

not been discussed, highlighting the need for more work on this topic. 

3.5 Network analysis 

3.5.1 Complex networks and program analysis 

 

In this section we begin the review with a work by Pastor-Satorras et al. [201] that 

discusses the growth of the world wide web and reasons for its susceptibility to directed 

attacks, based on the node-edge connectivity distribution and properties of the Scale 

Free network model[7, 202]. The remaining papers describe the key exploratory 



 

64 

 

research dealing with the application of complex network models to analyse OO 

program data. Finally, two papers are reviewed that present the application of a complex 

networks inspired software test engineering technique, for defect detection in the 

context of a large scale industrial software production environment. These papers, along 

with a paper by Bullmore [81], are the key motivators behind the complex networks 

modelling used in this thesis. 

Pastor-Satorras et al. [201] show that the internet’s growth and structure have been 

found to have a connectivity pattern that follows the power law model. There has been 

significant interest in modelling the growth of the internet and also the World Wide 

Web (WWW). In the case of the internet, data is generated primarily using trace route 

program output, while for the WWW, data has been generated by web trawling. In web 

trawling, links on the page are taken as out-going links and followed iteratively, which 

provides data about the incoming and outgoing links of each webpage. This data is then 

analysed using network analysis, either to cluster or to rank pages using different 

criteria, for example, in page ranking algorithm and web search optimisation by Brin 

and Page [171]. Another focus of the modelling of technological networks is robustness 

to directed attacks and accidental failure, given the economic importance of the internet 

and its autonomous functioning.     

Myers [110] and Potanin et al. [172] discuss how software systems also display power 

law network properties. While Myer's work uses static analysis data and object oriented 

class collaboration network [113] parsed from source code, Potanin's work [172] is 

complementary and uses objects (i.e. dynamic data from software executions) to 

confirm that software networks display scale free properties. Both works represent early 

curiosity-driven exploration of complex networks modelling of software/program data, 

possibly using strongly connected component (SCC) detection methods found in 

Dorogovtsev and Mendes [92]. 

Zimmermann and Nagappan [96] and Tosun et al. [106] apply complex networks, 

specifically social network analysis, to the prediction of defects in post release software. 

While Zimmermann and Nagappan propose the technique, Tosun validates the results 

by partially reproducing the study. The reason behind the partial reproduction is that 

Zimmermann and Nagappan [96] used Microsoft's internal development versions of 

Windows server software. Recent research by Murgia [112] uses software defect reports 

data and complex networks analysis (but not social network analysis) to explore 

software defect distribution patterns, and concludes that defect distribution may be 
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characterised by Pareto distribution (i.e. 80% of defects arise in only 20% of the 

system). The question as to whether this can be due to programming errors, design 

errors, or other causes has not been discussed. 

3.6 Review notes     

 

Dynamic analysis is not new, and software engineers regularly engage in the process. 

The problems of object oriented software systems in forward engineering are not as 

acute as the problems with reverse engineering. The main problem is in mining a large 

volume of program data to gain an appropriate level of comprehension. Another 

problem is in generating or capturing dynamic program data in a reliable way. A 

significant number of papers discuss the prioritisation of maintenance tasks by using 

information gained from static analysis, while others discuss how to narrow the search 

space of software artefacts to investigate. A large number of works discuss defect 

detection or prediction, and some discuss impact analysis. 

In complex network analysis, one problem is clearly the validation of empirical 

measures. The majority of papers appear to be using empirical methods arbitrarily, 

inspired by claims of success in fields for which these methods were originally defined. 

Data concerning social networks is relatively easier to acquire today, given both the 

spread of software and computers, and the popularity of the internet and WWW. Acute 

data collection problems and validation challenges are present in the area of animal 

neuroscience. It is possible to characterise brain networks as having scale free 

distribution, and also possible to theoretically map structural and functional networks; 

but it is hard to see how the results of any analysis can be verified easily in a clinical or 

laboratory environment without significant investment of time and money. An 

alternative to clinical verification and validation is to explore if software program data 

may be treated as a surrogate for biological data, given that software systems are often 

considered similarly complex. If such an approach works in validating the network 

analysis, determining whether conjectures about robustness or structural-functional 

network correlation actually hold will become significantly easier. This approach is also 

likely to benefit the field of software engineering. 

A key problem in dynamic analysis is extraction of runtime data from multi language 

object oriented software systems. This is due to tools being unstable or non-existent. 

Another problem is the need to define and collect data collection and storage standards 
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that apply across languages. In addition to these issues, performance of the dynamic 

analysis environment has also been discussed in the literature, primarily noting the cost 

of data collection on performance and the scalability of existing testing schemes. 

In this review, a large volume of peer-reviewed literature and information published 

online was considered. A selection of these items, that was considered most relevant, 

has been reviewed in this thesis. 
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Chapter 4.  Concept of functional importance 

4.1 The concept of Functional Importance   

 

The concept of functional importance is present by the implication of various 

approaches to software comprehension, testing, evolution, and software maintenance [6, 

186, 203]. Naturally, finding such important elements (e.g. classes, methods) of the 

software is critical for appropriate test prioritisation or efficient program 

comprehension. Here we provide our definition of the concept of functional importance 

for methods. 

A given functionality of the software can be mapped onto a set of usage scenarios for 

the software – for example by considering variations of use cases relevant for a 

functional requirement of the software system. A usage scenario is defined by a 

sequence of user operations that are expected to be executed without the user 

experiencing undesired software behaviours. The expected behaviours of the software 

are set by the requirement’s specification of the software system. From the user’s 

perspective, the usage scenario can be represented as a set of user events, including both 

user perceptions and actions, which are arranged in temporally ordered patterns. Thus, 

an event can have a duration. Note that several user events may happen fully or partly 

simultaneously, such that they may start and end at the same time or at different times. 

The user events E1 and E2 are temporally consecutive if event E1 has to terminate 

before the start of another event E2, and there is no intervening interval during which 

these two events overlap. The temporal consecutiveness of user events defines a 

temporal ordering graph over the set of user events corresponding to a usage scenario. 

An example of a temporal ordering graph representation of a partial usage scenario is 

shown in Figure 4.1. In Figure 4.1, the user-events represented by dashed surroundings 

are user perceptions, while the user events indicated by continuous surroundings are 

user actions. Temporal consecutiveness of user events is indicated by arrows. 

From the perspective of the software system, the usage scenario is represented by a 

trace that consists of a set of software events that are arranged in temporally ordered 

patterns. The trace may include multiple threads of software events (or operations) that 

can be considered at different levels of granularity. It is possible to consider the 

software events in terms of method calls that are executed between object instances of 

classes (an object may call one of its own methods, and two object instances of the same 

class may also call each other’s methods). 
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Figure 4.1. Temporal ordering graph representation of a partial usage scenario from the 

perspective of the user.  

 

Just as in the case of user events, several software events in the form of method calls 

may happen sequentially or simultaneously, and the temporal ordering of software 

events is determined by the inherent temporal consecutiveness relationship between 

these events, which can be defined in the same way as  user events were defined in the 

preceding discussion. The temporal ordering of software events defines a temporal 

ordering graph of these software events, and represents the trace corresponding to the 

usage scenario from the perspective of the software system. 

The temporally ordered graphs of user events, corresponding to a usage scenario, forms 

two user experience equivalence classes UC
+ 

and UC
–
. UC

+
 is the equivalence class of 

such graphs that correspond to the appropriate execution of the scenario that fits with 

the desired behaviour of the software from the user’s perspective; and UC
–
 is the 

equivalence class of all other such graphs that correspond to the inappropriate execution 

of the usage scenario that includes undesired behaviour of the software (e.g. 

experiencing a crash or the inability to execute a required operation).  

The desired behaviour of the software may include some unexpected behaviour of the 

software, if these unexpected behaviours do not affect the expected functionality of the 

software (e.g. a slight change in the colour shade of the background of the menu bar 

may be unexpected but may not affect the expected functionality of the software, 
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because it is functionally unimportant). The undesired behaviour of the software always 

includes some unexpected behaviour that the software should not do if it conforms to 

the specification of the user requirements. We should also note that the desired 

behaviour of the software may depend to some extent on the user as well, and on the 

strictness of the definition of what desired behaviour is and what desired behaviour is 

not. For example, changing the background colour of a panel from light blue to light red 

may be regarded as acceptable and within the limits of desired behaviour by one user, 

while the same may be regarded as undesirable by another user. The desirable behaviour 

is defined as the expected behaviour according to the requirements specifications – this 

defines the UC
+
 equivalence class. To construct an approximation of the UC

-
 

equivalence class, we may consider all kinds of possible undesired disturbances of the 

user experience – of course, some of these may have no corresponding software 

execution trace. 

The UC
+
 and UC

–
 equivalence classes induce a corresponding equivalence class 

structure over the possible temporally ordered graphs of software events that correspond 

to the considered usage scenario: SC
+
 is the equivalence class of such graphs of 

software events that correspond to user event graphs in UC
+
; and SC

–
 is the equivalence 

class of software event graphs that correspond to user event graphs in UC
–
. It is possible 

that more than one software event graph corresponds to a single user event graph 

because the software event graphs include all software events that correspond to a usage 

scenario, and some of these events may not have any user-observable impact on the 

software behaviour. Consequently in such cases, somewhat different software event 

graphs correspond to the same user event graph (see Figure 4.2). In Figure 4.2, the 

dashed arrows represent the mapping of user event sequences onto software event 

sequences. Note that the same user event sequence may correspond to more than one 

software event sequences due to software events that produce no user observable effect. 

A method is defined as functionally important with respect to the functionality of the 

software represented by a set of usage scenarios. This set can be divided into 

equivalence classes UC
+
 and UC

-
, respectively. This notion of a method’s functional 

importance can be verified and further qualified by adopting ideas from mutation testing 

[141]. A change to the methods code body that maintains semantic and syntactic 

correctness of the code, i.e. a mutation, must cause change to at least one execution 

trace of the software. This change in execution trace is such that the trace no longer 

belongs to equivalence class SC
+
 but SC

-
. 
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Figure 4.2 A representation of user experience (UC+, UC–) and software execution (SC+, SC–) 

equivalence classes. 

4.2 Definition of functional importance 

 

A method is defined to be functionally important if a syntactically and semantically 

correct change of the code of the method causes the software to produce some undesired 

behaviour, from the perspective of the user, with respect to a usage scenario. 

4.3 Functional importance and functional requirements 

 

The SWEBOK [132] provides the following definitions for functional and non- 

functional requirements of software. 

"Functional requirements describe the functions that the software is to execute; for 

example, formatting some text or modulating a signal. They are sometimes known as 

capabilities."[132] 

"Non-functional requirements are the ones that act to constrain the solution. Non-

functional requirements are sometimes known as constraints or quality requirements. 

They can be further classified according to whether they are performance requirements, 

maintainability requirements, safety requirements, reliability requirements, or one of 

many other types of software requirements"[132] 

Nuseibeh and Easterbrook [204], discussing the software requirements engineering, 

highlight the goals and constraining factors that determine software specification. The 

analysis of software requirements leads from goals to functional requirements, and the 

constraining factors provide the non-functional requirements. The functional 
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requirements lead to design specifications where domain concepts like an "online 

shopping system" is mapped to a set of software functions, such as the system's 

necessity to have "a shopping cart" and "an online payment" subsystem amongst other 

things. These subsystems together compose the online shopping system. The object 

oriented design of the system, that involves data modelling and other considerations, 

would contain a set of classes that model the data and class methods that implement 

data exchange and transformations. One or many classes may together deliver a 

functional requirement. In reverse engineering concepts and feature location [66], 

research attempts to associate the visible system functions with the underlying source 

code elements that implement the functionality. The non-functional requirements 

determine the data and functional model, because it sets the envelope of expected 

behaviour, for instance "the online shop must be able to handle 100 stock items and 10 

customers" and "the system must have quick response time of page transitions". In this 

thesis the concept of functional importance is primarily associated with functional 

requirements and the key method interactions that ensure delivery of the functional 

requirements. The verification of functional importance deals with user perception and 

user driven scenarios and may be mapped to non-functional requirements. 

4.4  Practical verification of functional importance  

 

The above definition allows any kind of syntactically and semantically correct changes 

to the code of the method. The range and kind of changes to the method’s code that 

cause the above described effect determine the extent of functional importance of the 

method. Constraining the possible changes to the code allows approximation of the 

functional importance of methods.  

A simple and rough approximation of functional importance of a method can be 

determined by considering the simplest generic and major alteration of the method, 

which is its replacement by a syntactically and semantically correct empty stub that 

satisfies the interface requirements of the method (i.e. input and output variables have 

the appropriate types and are initialized appropriately, when this is required). The 

method is functionally important in this approximate sense, with respect to a certain 

functionality of the software, if the impact of replacing the method with a satisfactory 

empty stub moves at least one of the software event graphs corresponding to the 

delivery of the functionality from SC
+
 to SC

–
. In the following chapters this 

approximation of functional importance of methods is used.  
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4.5 Research questions 

 

This research is based on the conjecture that when network graph representation of 

program data for some large object oriented software systems is analysed, the 

connectivity distribution pattern has small world scale free properties. 

Small world scale-free graphs are known to have some very highly connected nodes, 

whilst the majority of the graph nodes have few connections. This leads to what is 

commonly referred to as fat tail distribution. If such networks are subjected to 

node/edge removal in a random fashion, it is seen that network fragmentation does not 

occur as easily if the nodes or edges removed belong to the nodes that are lightly 

connected. The integrity of the network is not compromised in such cases, and this has 

led to the claim that such networks are robust to node or edge failure. If however, the 

node or edge removed belongs to the highly connected minority of graph nodes, the 

network disintegrates and the graphs structural integrity is compromised, leading to the 

claim that these networks are fragile. In total, the small world scale-free networks are 

known to be robust, yet simultaneously fragile, to node failure.  

This robust yet fragile property has been studied in various social, biological, and 

technological networks. It has been inferred that the network's structural integrity and 

system's functional integrity are highly correlated.    

In the case of the internet, large studies have confirmed that router and autonomous 

level organisations display scale-free properties and a high degree of fault tolerance. In 

biological networks, the study of protein-protein interaction networks has also been 

found to have this property. In biological networks, many studies have used this 

property of highly connected nodes and characterised them as being important for the 

system from the functional integrity point of view.  

The concept of functional importance [7, 8]  is established in the context of the analysis 

of complex biological and social systems. For example, as stated earlier well-defined 

and relatively small areas of the cortex in the brain are functionally important for the 

generation and understanding of human speech (i.e. the Broca and the Wernicke areas 

of the cortex [9]). Similarly, it has been mentioned that a relatively small group of 

actors may play a functionally important role in maintaining successful teams of actors 

that can deliver highly successful movies (i.e. see the analysis of the network of movie 

actors [7]. In the context of software engineering, similar concepts have emerged as 

well. For example, [205] lists four characteristics of important software elements (e.g. 
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classes or methods) in the context of aspect mining: popularity (frequent usage), 

transitive popularity (connected by usage to popular elements), significance (connected 

by usage to a large number of distinct elements), and transitive significance (connected 

by usage to significant elements).  [188] use information retrieval methods to identify 

methods that are important from the perspective of fixing reported bugs of complex 

software systems. The ability to predict such functionally important parts of a software 

system can facilitate efforts to improve the efficiency of software testing and program 

comprehension activities. In general, test prioritisation [186, 203]  can also be seen as 

the identification of the most functionally important parts of the software onto which 

testing should focus. 

In this research a definition of functional importance for object-oriented software 

systems is provided, and this forms the basis on which the following research questions 

arise. 

Q 1. What is functional importance in context software systems? 

 

Q 2. Can network analysis be used to discover functionally important elements of 

object-oriented software systems in the dynamic context? 

 

Q 3. If network analysis can discover functionally important elements in object-oriented 

software systems, how can these discoveries be verified as being truly important? 

 

A problem of large scale testing is the cost associated with the maintenance of captive 

testing resources. In the context of this research, we utilise the Cloud for our empirical 

software engineering experiment and try to answer the following question, 

 

Q 4. Can cloud based testing be gainfully utilised for large scale software testing? 

 

Dynamic and static analysis provides complementary views of the software system and 

in this research we explore the correlation between static signatures of object oriented 

software systems and dynamic patterns, however this is not the main research question 

but rather an attempt to explore potential practical applications of the techniques 

developed as part of this thesis. 
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Chapter 5.  Experiment design and techniques 

5.1 Introduction 

 

In Chapter 1, the concept of functional importance was introduced, followed by the 

concept and definition of functional importance in the context of object oriented 

software systems in Chapter 4.  In this thesis, the main hypothesis is based on the 

concept of functional importance, and the discovery of functionally important methods 

in object oriented software by using complex network modelling of object interactions 

based on dynamic analysis of software. In this chapter, the discussion focuses on the 

choice of network analysis modelling, the generation of network representation from 

dynamic analysis data of software, and the application of network analysis techniques to 

predict functionally important methods and techniques used for verification of 

predictions. This chapter also includes a discussion of the choice of subject software, 

run time (dynamic) data generation, and the experiment workflow used in the empirical 

software engineering experiments. 

In the review of background material (see Chapter 2) we have found that network 

graphs modelling intra-systemic interactions are used as a skeletal framework in a wide 

variety of fields to understand the structural integrity and functional integrity of the 

subject system represented by the network graph. The review also shows that network 

analysis of the network graph for the system enables users to study its local and global 

network properties, analyse the centralities of network's constituent objects based on 

their spatial location in the network. Analysis of the network's degree distributions 

facilitates reasoning about structural-functional correlations. The review also found that 

application of network analysis to study social [83], socio-technical [206] and biological 

systems[86, 87] has led to the development of empirical methods[4] used in various 

studies in the respective fields of development. 

It was also found that network analysis has been applied in dynamic analysis based 

software engineering research (see Chapter 3), leading to some encouraging results [96, 

106, 110, 114, 172]. The use of network analysis in software engineering has not been 

accompanied by development of formal or informal models to explain how the outcome 

of network analysis applied to software networks may be explained in terms of our 

understanding of software systems and the phenomena associated with object oriented 

software systems. 



 

75 

 

Complex networks provide a skeletal framework for data analysis, which includes a set 

of empirical methods that may be used to analyse structural integrity of the network. 

These empirical methods originate predominantly from research on social networks 

analysis, biological networks analysis, technological networks analysis, and data 

analysis in Physics. These methods are essentially similar, with certain elements that 

apply specifically to the field in which they were developed.  

Application of network analysis methods does not depend on the system the network 

represents, because the analysis is based primarily on the spatial structure of nodes and 

edges, where an edge essentially represents a pair-wise relationship between nodes. 

Whether the outcome of the analysis has meaning in the context of the system is 

dependent on the model defined for the system (see Figure 5.1).  

 

Figure 5.1 Relationship between the mathematical space of statistical graph theory and the 

system subjected to network analysis 

 

The concept of functional importance is the structural-functional link that relates the 

structurally central elements of network representations of software systems to 

functionally important methods in object oriented software systems. 

The aim of this research is to empirically validate the predictive performance of the 

network analysis methods to identify structurally-functionally important nodes (objects) 

and edges (methods) of the object collaboration network. when used in the context of 

software dynamic analysis.  



 

76 

 

In the case of brain network analysis, similar structural-functional methods have been 

proposed [81], [9]. However, due to the constraints of data collection and clinical 

constraints it is not always possible to verify the functional importance of animal brain 

elements discovered by using network analysis [81]. In the case of large scale software 

systems, which are similarly complex human-engineered systems, clinical constraints to 

verification do not exist, and although data challenges exist they are not of a similar 

nature to those of clinical research. 

The search for important elements in software systems has often been attempted to 

optimise the program comprehension process [6, 207] and software test prioritisation 

[186, 203]. In this context, if this research is able to verify the functional importance of 

method calls in object oriented software, as predicted by network analysis methods, it 

may contribute to two fields: software engineering and networks analysis. 

5.2 Experiment design 

 

The concept and definition of functional importance proposed in Chapter 4 is based on 

the scale-free network model proposed by Barabási and Bonabeau [7], and the property 

of  simultaneous agility and fragility afforded to these networks due to the existence of 

highly connected network hubs. These network hubs have been found to be critical for 

the maintenance of structural-functional integrity of the systems represented by the 

network [81]. Scale-free networks are characterised by their connectivity of network 

nodes and edges following the Power Law distribution [102].  

5.2.1 Verification of scale free power law distribution 

 

The empirical methods used in this research to analyse the network representation of 

dynamic analysis data (introduced in Section 5.2.2) are applicable to data that have 

power law distribution [4]. Previous work on complex network modelling of OO 

software  by Wheeldon and Counsell [114], Myers [110], and Potanin et al. [172] are all 

based on the assumption that network representation of dynamic analysis data for object 

oriented software have scale-free power law distribution            , with the value 

of exponent α between 2 and 3, i.e.        . 

Measuring power law distribution in natural and man-made systems is not easy [89], 

and this can lead to misinterpretation of data, given that there is no easy way to 

analytically verify power law distribution in data. The standard and widely followed 



 

77 

 

technique is to use a non-parametric density indicator: the histogram of the data. The 

technique followed in this research is the one proposed by Newman in [102] and 

Clauset et al. in [91]. 

Verification of Power Law 

 

The steps followed (after generation of network representation of data) are: 

1. From the network representation calculate the degree of each vertex, using 

                                                  . 

 

2. Generation of histogram. In this experiment, histogram may be represented by  

                         

Let        be a fraction of vertices with degree between           . If 

histogram is a straight line on a log-log scale then,  

                                 

          
      
                              

The histogram itself can be generated using three techniques: a) log-log plot where 

bins are uniformly spaced; b) log-log plots with logarithmic binning; and c) 

cumulative distribution function. The problem with the first two is that they 

introduce noise into the data and also the possible loss of data due to binning 

scheme, making it difficult to verify if the data is really power-law distributed. 

In the context of the experiments conducted (presented in Chapters 6 and 7 of this 

thesis) all distributions have been verified using cumulative distribution function 

(CDF). In this scheme there is no loss of data because there is a value at each 

observed  . The computation provides us with how many values of x are at least 

some value       .The CDF of power law probability distribution is also power 

law distributed but with an exponent    . 

                      
 

 
  

                  
 

   
                 

 

 

 

Figure 5.2 illustrates the typical shapes of histograms that are expected during statistical 

analysis of network connectivity distribution.. In the figure  the normal distribution is 

placed in the centre to illustrate visual difference between histograms with positive or 
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negative skew that is often found in the case of power law distributions. The technique  

typically used  to verify power law distribution is visual identification of the rank -

frequency plot on log-log scale gives a straight line as in equations 5.1 and 5.2. 

 

Figure 5.2 Skewed and normal distribution plots and Rank-Frequency Plot based on CDF gives 

exponent as α -1.  

 

Value of exponent Statistical property 

        

F not only has infinite 

variance but also infinite 

mean connectivity. 

        
F has infinite variance but 

finite mean connectivity. 

       

F has finite mean connectivity 

but diverging variance, 

standard deviation, and 

coefficient of variation. 

 

Table 5.1 Summary of CDF properties based on value of exponent α. 
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3. The third step in this verification is to fit the histogram data, where this gives a 

straight line equation of the form and                            , showing 

goodness of fit. 

The value of exponent of power law α                  has a mathematical 

significance, as highlighted by Shiner and Davison in [208] and Li et al. in [89] where 

the statistical properties of power law distributions are discussed in terms of stochastic 

and non-stochastic definitions and Complementary Cumulative distribution functions 

(CCDF). The following important points have been made as summarised in Table 5.1. 

In the stochastic context, a random variable X, or its corresponding distribution 

function F, is said to follow a power law or is scaling with index              , 

Giving                        , for some constant                 . 

The point is that even with exponent of power law α              , exact verification 

of power law distribution is not possible given the natural constraints on the size of 

samples that can be collected in laboratory environments [208]. In this thesis, following 

the discussion of Clauset et al.. in [91], the continuous variable form of CDF has been 

used, considering only the integral part of the values. This is purely for mathematical 

convenience and has no significant effect on the verification in the context of our 

requirements. 

5.2.2 Predicting functional importance 

 

The concept and definition of functional importance is based on the premise that the 

structural integrity of the network correlates to the functional integrity of the system that 

the network represents. 

In the series of experiments performed in this work, the network generated represents 

objects as vertices and message interactions between objects characterised by method 

invocations as edges. The aim of these experiments is not to study control flow, but the 

importance of elements from the point of view of the functional information network 

and interactions within the network. The network representation derived from these 

experiments is undirected, but the network itself is constructed from a directed network 

represented by the control-flow graph or call tree of a program. In software engineering 

and biological networks research, especially in Brain networks, both directed and 

undirected network representations have been used. While some authorities [110] claim 

that directionality of the hierarchical network must be preserved, others [114]  claim 

that either way no significant difference in results has been noticed.  The other reason 
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for considering undirected networks is that most of the empirical measures found in the 

literature that deal with the centrality of network elements are defined for undirected 

networks, for mathematical and computational convenience. The following section lists 

the network measures considered in this research.  

Network analysis measures 

 

 Hub connection score: this measure of an edge   is defined as the product of the 

connectedness values of the nodes that are connected by the edge. If the edge e 

connects nodes n and m, with connectedness values                           , 

then 

                            . 

 Frequency weighted connection score: this measure of an edge   is defined as the 

product of the connectedness values of the nodes that are connected by the edge. If 

the edge e connects nodes n and m, with connectedness values 

                          , and the call frequency of the method corresponding 

to the edge  , represented by      or       is the measure of frequency of 

invocation of a method m represented by edges e that connect nodes n to the node 

representing the object instance of the class  of the method m, with connectedness 

values v(n), this is calculated considering the call frequency of the method 

corresponding to the edge,       , then 

                                                             . 

 The total call frequency score (CFS): this measure of edges is the sum of the 

frequencies of calls of a method across all recorded calls of the method by all 

classes –        is the frequency of the calls of the method m represented by the 

edge e, originating from object instances of the class represented by node n: 

                      

 

 

 Call frequency score: this measure is the frequency of the invocations of a method, 

irrespective of the caller object instances of the class  (notice that this last metric 

was calculated using the Java Netbeans profiles) 
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 Betweenness score: this measure of a method m, represented by edges e, is the 

maximum betweenness score of these edges, with the edge betweenness score being 

the number of shortest paths connecting nodes of the network that contain the edge; 

there may be more than one alternative shortest paths between two nodes and the 

length of an edge or edge weight  was set to be the inverse of the call frequency of 

the method,  
 

     
 represented by the edge: 

           

 

 

 

                      

 
 

     
 
     

 

    
  

  

    

     
      

    

                   
      

                   
       

                          

         
           

        

                

 

 

 

                                       
                   

   (5.10) 

Betweenness is the only score used in these experiments that requires calculation of 

shortest paths. There are various methods to compute shortest paths and the typical 

variants are: Single Source-Single Sink, Single Source (all destinations from a source s), 

and All Pairs. In this score, all pairs of shortest paths are required, which tends to be 

computationally intensive. In this research, a number of well-known algorithms were 

explored, all of which are in the tool. However, for the sake of robustness, Dijkstra's 

algorithm [78] was used. The running time of this algorithm varies widely, depending 

on the optimization techniques employed during the relaxation stage of the algorithm 

and on network representation. In our case, using the adjacency list and heap the 

running time is approximately          . It is possible to achieve better performance 

by using more sophisticated schemes, which were not considered in the prototype tools. 

In all the experiments on JHotdraw (discussed in Chapter 6), all of the above network 

analysis measures were used. The combination ranking techniques discussed in the 

following section were used only in experiments on JHotdraw. 

In the experiments on Google Chrome (discussed in Chapter 7), all of the above 

network measures except Call frequency score (Eqn. 5.9) were used. Call frequency 

score was collected by using the Netbeans profiler in the initial validation experiments 

on Jhotdraw only. 
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Producing a ranked list of functionally important elements 

Vanilla Ranking 

In all cases, the calculation of scores or network metrics yields an integer number for 

each edge or method, which appears in the set of invoked methods extracted from the 

execution trace data. These lists of edges with corresponding scores, sorted in 

descending order of the score, provided us with a ranked list of functionally important 

elements, one ranked list for each of the measures calculated. 

Combined ranking 

In the analysis, combinations of these rankings of edges were also considered. In order 

to combine rankings, two methods were used. First, the sums of rankings were 

calculated. That is, if a method is ranked   
   according to metric M1, and   

   according 

to metric M2, then the combined score of the method for the combination of metrics M1 

and M2 is calculated as: 

                          .  

The method was re-ranked according to this combined ranking-based score. Second, the 

combined score was also calculated as the product of rank values: 

                        .  

The method was re-ranked according to the combined ranking-based scores. Combined 

ranking was calculated for all three scoring methods using both approaches (i.e. sums 

and products of rank values). 

The reason for choosing this method for combination of rankings is that the scores 

calculated according to the different network analysis methods are not necessarily 

comparable (e.g. one may be a magnitude larger than the other one for all highly ranked 

edges). Since the distribution of the score values is likely to be not normal, 

normalisation and calculation of a z-score (i.e. normalised value = (value – 

mean)/(standard deviation)) is not meaningful, and consequently normalised scores 

cannot necessarily be used for the calculation of a valid combined score. This leaves us 

with the rank-based calculation of combined scores as the method that is sufficiently 

justifiable in the sense of combining comparable values, in order to avoid domination of 

the combined ranking by only one of the considered rankings. 
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5.2.3 Choice of subject software 

 

Table 5.2 provides a tabulated list of the software chosen for empirical software 

engineering experiments, conducted as part of this work and a collaborative work 

exploring future research of network analysis software using dynamic analysis. 

 

Serial 

Number 

Software Version Java or 

C++ 

Traced Comments 

1 JHotdraw [209] 6.0b1 Java Full trace  Included in 

this thesis and 

[10-12] 

2 Google Chrome 

[210] 

72930 

(svn) 

C++ Profile trace Included in 

this thesis and 

[13, 14] 

3 ArgoUML [211] 0.22 Java Full trace 

[212] 

Included  in 

Collaborative 

research 

publication 

[15] and the 

future work 

section of this 

thesis. 

4 JabRef [213] 2.6 Java Full trace 

[212] 

Included  in 

Collaborative 

research 

publication 

[15] and the 

future work 

section of this 

thesis. 

5 muCommander 

[214] 

0.8.5 Java Full trace 

[212] 

Included  in 

Collaborative 

research 

publication 

[15] and the 

future work 

section of this 

thesis. 

Table 5.2 Table of data selected for series of experiments 

 

In the context of the work [10-14] reported in this thesis, the choice of data JHotdraw 

[209] was motivated by work reported by Cornelissen et al.. in [142], and the choice of 

Google Chrome [210] was motivated by work reported by Voigt et al. in [143]. 

Jhotdraw is a medium sized application written in Java and is an exemplar 

implementation that incorporates design pattern, while the Chromium browser is a large 

scale open source application with advanced features written in C++. 
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In Table 5.2, data in rows with serial numbers 1 and 2 were used in all the experiments, 

performed to validate the concept of functional importance and for validation of 

network analysis measures. The comments column also lists the work’s inclusion in the 

thesis and any publication that resulted from the experiments. Data in rows with serial 

numbers 3, 4 and 5 are publically available dynamic analysis data that were used with 

permission from SEMERU [215]. These data sets were used in a collaborative research 

experiment related to exploration of future research that would use both dynamic and 

static analysis techniques to study dynamic method stereotype distribution. 

5.2.4 Collection and management of data 

 

Collecting data program execution trace data has required significant investment of 

effort. This effort was primarily spent on three activities: a) preparing software build 

and execution environment, b) evaluating and choosing tools and techniques including 

deciding the format of collected data, and c) execution and recording of scenarios. 

There is a line of argument that supports the use of publically available dynamic 

analysis data instead of expending effort on data collection. The problem is that not 

much data, in the correct format and with the verifiable provenance, was available as 

open data at the start of this research in 2009. Data from SEMERU [215] became 

available in 2011-12, and was used with permission because most of it was found to 

have the necessary provenance information. 

Research on software engineering that discusses empirical software engineering 

advocates the need to collect data in a principled manner, recording the decisions, 

techniques, and tools in reasonable minutiae so that it is possible to rerun the 

experiments and reproduce the results.  This approach of recording decisions may seem 

cumbersome, but it helps to reduce instances of ‘re-invention of the wheel’ [192]. 

Data collection for dynamic analysis usually involves some form of instrumentation of 

the source code or executable binary code of the software program. The following 

section discusses the techniques and tools evaluated and used to perform data 

generation. This evaluation was not done from a performance evaluation point of view, 

and choices are based on perception of tool performance reinforced by experiences 

published online and in the literature, for instance Waddington et al.. in [149]. 

All the software engineering experiments carried out in this research used dynamic 

analysis. The dynamic analysis techniques chosen were execution tracing and profiling 

with full tracing of control flow. The analysis in all cases was offline analysis. That is, 
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data was first collected then analysed, as opposed to data analysis occurring 

simultaneously with data collection. 

In software engineering execution, tracing can be performed in two ways: a) limited 

scenario based tracing which is analogous to grey-box testing. That is, the tester has 

access to the source code and is also aware of the top-level features such as menu 

operations, but is not aware of the underlying organisation of the source code (i.e. 

classes, methods and libraries) that contributes to realization of the feature. In this 

tracing mode, only the feature is exercised, by executing a scenario that is expected to 

exercise the feature and help localise the extent of its interactions with different 

enabling elements within the source code. This technique is similar to the technique 

discussed by Poshyvanyk et al.. in [188]. 

The second method b) is analogous to user acceptance testing of software. In user 

acceptance testing, the end user operates the software in a manner that mimics typical 

usage based on the users’ expectation of the functionality of the software. In this mode, 

the software is exercised by using typical usage scenarios. The scenarios are not limited 

to just one feature but can involve many features (as in real life). In theory, this is 

comparable to black box testing, in which the software tester does not have access to the 

source code, and the primary goal of such scenarios is to simulate real life usage where 

one can do several tasks that can involve using a set of features. In practice, as in these 

series of experiments, access to the source code was available and the technique used is 

similar to the technique used by Cornelissen et al in [142]. In some real life situations 

software engineers may not have access to all of the source code, and are constrained to 

rely solely on execution logs or traces for reverse engineering and software maintenance 

activities. 

Manual instrumentation 

 

 Instrumentation of source code can be attempted manually (by using print statements), 

and this is a common practice among software engineers attempting to debug or inspect 

small programs or a small part of a program. The advantage of this approach is that 

engineers can inject instrumentation code fragments in a pin pointed and selective 

manner into regions of interest, and extract data in a format that makes it easy to 

perform further analysis. The disadvantage is that in the context of large scale programs, 

with the source code spanning many thousands of lines of code and also spread across 

many source code files, the process is cumbersome and prone to errors. 
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Tool driven instrumentation 

 

Computer assisted software engineering (CASE) tools are widely used to instrument 

software. These tools can be classified according to the form of the software the tool 

instruments take as input (i.e. source code or binary code including byte code). 

Source code instrumentation 

 

It is possible to qualify source code instrumentation further, based on whether the tool 

uses text parsing based on custom tokenisation and a regular expressions matching 

approach to insert instrument code, or some special compiler that decomposes the 

source and weaves in the instrumentation code. 

Token based tools 

 

In this approach, a software program or tool is used to instrument the source code or 

executable binary code of another program. Tool driven instrumentation can employ 

text analysis, tokenisation, and some custom intermediate forms to instrument un-

compiled source code such as the Tau tools [216] as discussed by Geimer et al. in [150]. 

Tools of this type reduce the effort needed, as in the case of manual instrumentation, but 

some manual intervention is required when instances of code obfuscation is 

encountered. In cases where the instrumented code is not inspected, errors can occur in 

the instrumentation process, leading to collection of spurious data. 

Special compiler based tools  

  

Static analysis of source code can also be performed by using compiler dependent tools, 

which require manual instrumentation using special constructs or directives in the code 

body. Popular tools in this class are tools that utilise concepts of aspect oriented 

computing (AOP). In these tools, special constructs are introduced in the code body, 

where these constructs can be used to define rules based on patterns in the source code. 

When code is compiled using the special compiler, code fragments are inserted at points 

as and when these fragments satisfy the rules defined by the programmer. These code 

fragments are executed as dictated by the rules during normal program execution. There 

are many tools that claim to provide AOP functionality: in the case of programs written 

in Java, AspectJ is the most popular tool [160, 161]. Cornelissen et al. in [142] uses a 
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custom tracing tool that uses AOP and the AspectJ tool. In this research, an AOP based 

tracing technique was explored at an initial stage and tracing aspect that utilised the 

Worm-hole pattern discussed by Laddad in [160] was used. It was found that AspectJ 

based tracing solutions severely affected the response performance of the application 

being traced. The work discussed here does not use AOP based tracing. 

Static Binary instrumentation of executable systems  

 

The class of tools similar to AspectJ, but without the need for special compilers, is 

based on Java2's instrumentation framework that is part of the Java Machine Tool 

Interface (JVMTI). An example of this tool is Eclipse Probekit [163]. In some public 

static, classes are written with static methods. These methods are written in standard 

Java and do not use any special construct. These classes and methods are inserted before 

or after call sites in the byte code of Java application, by utilising Java's compiler 

technology that supports binary instrumentation as discussed by Binder in [158]. Such 

techniques are often referred to as trampolining in the context of compiled language 

instrumentation. In this work, part of the data for [10-12] was collected using the 

Eclipse Probekit tool. The advantage of this tool is its relative ease of use, in 

comparison to the AspectJ or Tau tool suite. The disadvantage of this tool, as noticed in 

the most current version of Eclipse, is that it has thread safety bugs, especially in the 

case of large scale Java applications. Part of this problem is that IBM's Eclipse TPTP 

project has come to an end and no further development or maintenance is currently 

being carried out. In addition, this tool also introduces response performance problems 

in instrumented applications. 

Dynamic Binary instrumentation of executable systems 

 

Instrumentation of an un-instrumented executable software program as execution 

progresses, or at the start of execution, is termed dynamic binary instrumentation. At the 

conceptual level, most of these tools rely on some form of intermediate layer of 

software stack, such as virtual machines or runtime environments, to implement 

dynamic binary instrumentation. This is true whether we consider the case of programs 

written in languages like Java or C# that are compiled to bytecode, or languages like C, 

C++ and Fortran that are compiled using native binary. Most of these tools have been 

implemented in recent years with improvements to compiler technology, and are 

primarily aimed at communities engaged in software profiling. Profiling tools 
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implemented the earliest form of profiling using special compiler flags, which 

instructed the compiler to introduce special instruction fragments to count various types 

of events, like frequency of function invocation or frequency of a particular path in a 

program being executed. Typically, profiling tools came with a set of fixed features, and 

did not provide users the option to implement custom profiling features without having 

to develop most of the tool from scratch. 

Oracle's Sun Java JVMTI [217] technology provides two functionalities for binary 

instrumentation: a) static binary instrumentation similar to implementations like 

Probekit, and b) a profiling agent based framework in which a server agent acts as the 

runtime data collector and the subject application loads a library containing the 

instrumentation library which acts as data generator. The data generator and data 

collector execute on two separate processes, but share the Java Virtual machine’s 

memory and exchange data over TCP/IP or sockets. JVMTI provides the interface that 

can be used to write the custom profiling or tracing library. One such implementation 

that is widely used is Eclipse TPTP profiler and tracer[163, 182]. TPTP based tracing 

tools use XML4Profiling [183] to output the event trace of the application being 

profiled. In this work, all software in Table 4.1 has been traced using the TPTP profiling 

and tracing tool.  

In the case of compiled languages such as C++, collection of trace data was found to be 

a major challenge, primarily because of a lack of quality tools, both open source and 

proprietary, that could be customised to produce data in a format required without the 

significant need to engineer a solution. The tracing tool that is used in a compiled 

language space is Valgrind [218].This tool represents the heavyweight approach to 

profiling and tracing, where it is highly customizable but also prone to errors and 

frequent crashes. The tool uses an intermediate format to represent binary instructions, 

and works by patching code with instrumentation fragments at runtime. Further details 

are available from Nethercote and Seward's discussion in [152]. 

A particularly interesting dynamic instrumentation framework that uses a virtual 

machine is Pin [154, 156], which is a more advanced implementation of HP's ATOM 

and Caliper tools [153]. Pin is similar to JVMTI, and provides users with a higher level 

interface to write a custom profiling and tracing tool. In this research, a custom tool was 

written for both Windows and Linux platforms. However the data extracted was too 

large, because tracing was taking place at a lower level of granularity than required. In 

this respect, the Intel VTune tool [219], which uses Pin based profiling, was also 
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evaluated with the aim of using it as a tracing tool. However, its format was found to be 

proprietary and not customizable to our requirements. 

Microsoft software development tools, predominant among which is the Microsoft 

Visual studio tools suite, include an enterprise class compiler for Microsoft supported 

languages and tools for profiling, tracing and testing. These tools belong to one of the 

two classes depending on the type of language. That is, interpreted languages from 

Microsoft like C# are called managed languages and require a runtime environment 

called CLR [220] similar to  Oracle's JVM [221], while the other type constitutes tools 

meant for native executables that are compiled directly into executable PE format [222]. 

In this work, data was collected from Google Chrome, executable in PE format. 

Microsoft Visual Studio (MSVS) 2008 Team Studio and Ultimate Edition 2010 both 

provide access to profiling tools. These tools use a standalone profiler that is provided 

with an application programming interface (API) that facilitates building custom tools 

by using the MSVS profiler [223]. At the evaluation stage it was discovered that MS 

Visual studio contained a tool that could extract trace data in xml format containing 

caller-callee event sequences. However, it was also found that the output format was 

fixed and not open to easy customisation. This problem in the output data format is 

similar to the problem noticed in the case of Intel VTune and AQTime [224], another 

tool that uses the MSVS profiler. In the case of Google Chrome, data was collected 

using SlimTune [225], an open-source profiler that uses the MSVS profiler and a 

profiler meant for CLR dependent programs. The advantage of using SlimTune is that it 

is customisable, and in the case of this project the customisation was carried out to 

remove sampling of events. In most profilers, sampling cannot be removed completely, 

whereas in this case it was possible. The cost of removing sampling is that the tool 

becomes sluggish in trying to manage the large volume of events. The other advantage 

of this profiler is that data is stored in portable SQL-Lite database files, in a format that 

is easy to read and manipulate. 

In addition to the tools and techniques discussed above, a range of compiler flag-based 

instrumentation techniques were evaluated for the purpose of extracting trace data from 

Google Chrome. These techniques involve the use of a) "-finstrument-functions" flag 

available in GnuCC [166] and b) the "/Gh" flag available in MSVC compiler as Hookit 

functionality [226]. A problem in using these compile time function entry and exit point 

instrumentations is that they can cause application crashes, and in projects like Google 

Chrome – with approximately 480 large projects with multiple optimizations and 
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custom built steps –  it is difficult to locate where these flags need to be introduced, 

because the build itself is automatically generated.  

Process interference, injection and process sluggishness  

 

In collecting execution trace data, it was necessary to manage the platform very 

carefully, as the tools are often unstable and susceptible to interference from other 

processes running on the same processor and accessing the memory system. These 

issues have been discussed by Ferreira et al. in [227], particularly in the context of noise 

injection in the data. Waddington et al. in [149] discuss various challenges in profiling 

and tracing multi-threaded and multi-language programs executing on multi-processor 

platforms, many of which we encountered during our data collection effort. 

Program preparation 

 

In order to collect dynamic analysis data, the first step is to gain access to the source 

code, and compile the source distribution of the software. In this context, the tools used 

are Netbeans, Eclipse IDEs, and Microsoft Visual Studio 2008 Team Studio edition. 

It was noticed that many of the Java programs had out of date build configurations and 

libraries, even in projects where Maven-like tools were used. In the case of JHotdraw 

(version 6.01b) significant problems were encountered relating to the format of source 

code and name space conflicts with current Java built-in classes. 

In the case of Google Chrome, the problem was with custom built program GYP, which 

ties in 480 projects and automatically generates platform specific optimized build 

scripts for the development environment being used. The optimizations often generated 

platform specific assembly language code, and these fail on instrumentation.  

While the Java programs prepared in this project were compiled on standard desktop 

systems, compilation of Google Chrome required an especially large memory, multi-

processor system and took 3-4 hours for each build. 

Managing data 

 

Dynamic analysis traces, from a few 100 Megabytes to 130 Gigabytes each, have been 

generated in this work. The total volume of raw trace data is nearly 2 Terabytes, 
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representing 30-60 scenario runs for each software. A significant part of this data is 

expected to be available online. 

In addition to the raw trace data, each processed data file, and various files that contain 

data from the analysis, and results have also been saved. These files have been tagged 

and named in a unique manner so that it is possible to go from results to the source data. 

In total, the data – comprising source code, built binaries, instrumented binaries, raw 

traces and analysis files – for the two systems included in this thesis is nearly 600 

Gigabytes. 

Programs have mostly been stored on a subversion server, and data has been stored on 

the Amazon Cloud S3 storage service and on SAN disks available at Newcastle 

University. 

 

5.2.5 Data analysis using Network Analysis 

Generation of network representation 

 

Generation of network representation, starting with raw trace data, is a five step process. 

This process was followed and implemented in the tool chain developed for this 

research. 

Step 1: 

In this work, raw trace data was generated in three formats: a) Probekit trace in ASCII 

text using custom static instrumentation of Java bytecode (see Figure 5.3); b) TPTP 

profile trace in XML4Profiling [183] ".trcxml " format (see Figure 5.3); and c) in SQL 

Lite data base format (see Figure 5.4).  

 

Figure 5.3 Trace fragments of TPTP Probekit trace and TPTP Profile trace. 
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Figure 5.4 Google Chrome trace data in SQL Lite table. 

 

Step 2: 

Raw data is processed into call sequence data using the form given below: 

<call sequence serialized according to stack depth > Caller class: caller method # 

signature: callee class:callee method # signature # threadid #<ENTRY/EXIT> 

 

Step 3: 

The data is then transformed into a modified form of network data in Rigi standard 

format [228], as discussed in [142]. The use of this format is not strictly necessary. 

However, this format was used in initial exploratory work on reproducing the results of 

Cornelissen et al. [142]. The network analysis tools developed in this research required 

input data in Rigi format files. 

 

 

Figure 5.5 Google Chrome object-method calls network. 
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Step 4: 

Data in Rigi format was transformed into one of the standard network visualisation 

formats.  In this thesis, all visualisation was generated using Pajek [229]. Other 

visualisation tools and formats such as Graphviz [230] and JUNG [231] were also 

evaluated, and tools produced as part of this work can produce visualisation in all the 

three formats. Figure 5.5 is a network graph visualisation generated from Google 

Chrome data. 

 

Step 5: 

The next step of data transformation that occurs within the tools is generation of the 

adjacency matrix and incidence matrix of the data. In this analysis, all network 

representation was generated using incidence matrix representation. Incidence matrix 

representation is a more compact representation and is particularly suited for large 

sparse networks.  

Let G be a graph with n vertices, m edges, and no self-loop. The incidence matrix A of 

G is      matrix         , whose n rows correspond to the n vertices and the m 

columns correspond to m edges such that: 

      
                                       

            
  

In this thesis, all incidence matrices ignored self-loops in the non-weighted networks. 

Ignoring self-loops does not have any effect because the shortest path is zero in such 

cases. In weighted networks, the shortest path has a value determined by the weight 

associated with the self-loop. In these cases, the effect of self-loops was considered, but 

with weights taken as the inverse of frequency of invocation, the contribution was 

small. In the case of connectivity distribution, self-loops make no difference. Incidence 

graphs provide the most memory efficient data structure to store network data. 

However, a current drawback is the representation of concurrency, in which multiple 

incidence graphs are used to represent different threads of execution. This particular 

technique is inefficient. 

5.2.6 Verification of network analysis results 

 

The network representation, generated from scenario based execution tracing of a 

software application in our research, consists of a set of vertices that represent objects or 
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classes and edges that represent method invocations. The assumption is that during 

scenario executions, the user did not encounter any user observable deviations from 

expected normal operation of the software. That is, the software functioned normally. 

Therefore, the network is considered structurally sound from the point of view of 

functional integrity. 

The verification is based on the hypothesis that if the network is perturbed at the level 

of edges, it is likely to lead to one of the following outcomes: a) the software will 

experience a fatal crash; b) the software will experience errors but not crash (i.e. it will 

experience run-time state corruption); and c) the software will continue to function 

normally. 

In scale-free power law distributed small-world network parlance, network analysis is 

supposed to predict the edge elements of the system that are central for structural, and 

consequently functional, integrity. The approach used in this work to verify this is to 

introduce a perturbation in the edge interaction network. If the network elements 

perturbed exhibit low connectivity or a tail of distribution elements, then the system is 

likely to continue to operate normally. However, if the elements belong to the few 

highly connected hubs it is likely to lead to network fragmentation of some sort, such 

that it is functionally impaired. 

Generation of mutant programs 

 

In software engineering, an often employed technique is the introduction of dummy 

code that is syntactically and semantically correct. That is, code that accepts inputs and 

returns outputs such that type errors do not occur. One can also view dummy code 

introduction as mutant generation, and in our case the mutant is specification complaint 

and the application compiles as normal. 

The replacement of a method with an empty stub with an appropriate interface is a 

maximal alteration of the method. Other kinds of interface that contain compatible and 

syntactically and semantically correct alterations of the method are also possible. If a 

method is functionally important for the delivery of functionality of the software, the 

maximal alteration of the method that is applied will have a significant impact on the 

delivery of functionality of the software. However, such maximal alteration may also 

lead to significant alteration of the delivery of the software functionality of other 

methods as well, that have much less impact on the delivery of the software 

functionality if their alteration is less extensive. Thus, in principle it is an interesting 
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question to know the minimum level of alteration of a method that causes significant 

impact on the delivery of functionality of the software. In particular, it would be useful 

to have a principled method of imposing varying levels of alterations of methods, in 

order to make possible the investigation of the extent of functional importance of 

methods. 

It is often found that OO software contains empty methods, where in such cases 

maximal alteration makes no difference because in effect mutation will have no effect 

on the method body. 

Verification of functional importance 

 

The verification process aims to execute mutant builds of the software, following the 

scenarios executed at the time of data collection. In this regard the ranked list is marked 

1 to indicate fatal failure and state corruption, and 0 if the software keeps functioning 

normally with minimal or no user-observable effect due to the underlying mutation. The 

result of analysis is discussed in chapters 6, 7 and 8. 

Producing random lists to establish a baseline for comparison 

 

The premise of these experiments is that network analysis can identify functionally 

important elements. The question that naturally occurs is: with what degree of accuracy 

is it possible to determine when a method or a set of methods is chosen at random that 

some or all of the methods are functionally important? In the experiments discussed 

here, 100 methods were chosen at random from a list of methods that appeared in the 

traces. These methods were evaluated by mutation analysis. The result of the mutation 

test on the random list of methods provided a baseline against which prediction 

performance was compared. 

5.2.7 Experiment workflow 

 

In this research all experiments followed the stages that appear in the schematic 

illustration in Figure 5.6, starting with the source code on the left, generation of 

instrumented executable, trace data collection from scenario executions, data analysis of 

data, evaluation, and verification of data analysis results. 
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Figure 5.6 Diagrammatic illustration of experiment workflow. 

 

 The elements of this workflow include the choice and preparation of the instrumented 

software, scenario driven execution trace data collection, data analysis using network 

analysis methods, the process of evaluation of data analysis, and verification of the 

results. Post verification is the interpretation of the results in the context of relevant 

aims and understanding of software engineering of object oriented systems. Post 

verification results and interpretation are discussed in chapters 6 and 7. 

5. 3 Discussion 

 

In the preceding sections of this chapter, the discussion focused on the design of 

experiments to perform verification of the concept of functional importance, and the 

network metrics that can be used to predict functionally important methods or objects. 

Subsequently, the workflow diagram identified the different stages of our experimental 

process, consisting of program preparation, data collection, network representation 

generation and analysis, and showed how these stages are connected, culminating in 

verification of the concept of functional importance. In the context of this research, use 

of the Cloud has been discussed in terms of scalable software testing technique and as 

an enabling resource. In the remaining chapters of this thesis, the focus moves from 

discussion of experimental techniques to the empirical software engineering 

experiments and their results. 
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Chapter 6. Experiments on JHotdraw 

6.1. Introduction 

 

In Chapter 5, Figure 5.6 gives the schematic diagram of the experimental process 

workflow used in all empirical software engineering experiments presented in this 

thesis. The discussion in Chapter 5 focused on experiment design, data collection, data 

verification, network analysis, and finally the process of verification of functional 

importance. In this chapter, the outcome of data analysis will be discussed. Mechanistic 

process details concerning data collection and the generation of network representation 

have not been repeated here, except for a brief description of the typical usage scenarios 

used to generate the execution traces. 

In experiments where analysis of feature location [67] is the aim, scenarios often 

involve executing the program using a short scenario [188] that exercises specific 

functionalities, like open and save file by using the menu option for this feature 

available through the user interface. Short scenarios generate full traces of smaller size, 

thereby making the process of mining the data to link feature to code relatively easier 

than the case where a typical usage scenario is used, which leads to large traces that 

contain events from many features. In this research the aim is to explore whether 

functionally important method interactions can be discovered using network analysis, 

based on typical usage scenarios of an application. A typical usage scenario is simulated 

by executing scenarios similar to the scenarios used in user acceptance testing of 

software. 

The JHotdraw software [232] is an object oriented framework for graphical applications 

written in Java. Although the 2D graphics  framework was originally written (by 

Gamma and Eggenschwiler) as an exemplar to demonstrate the use of object oriented 

design patterns [70], it has several features that were unique to it at the time of its 

development, such as the use of generic containers and advanced features for graphical 

user interface development like a desktop pane. These features have been incorporated 

as standard features in Java’s second edition, specifically, Java Swing and AWT classes. 

The standard distribution of JHotdraw [232] contains many example applications, one 

of which is the desktop application for drawing and manipulating geometric shapes and 

image files. One may find that JHotdraw is comparable to the popular application 

‘Paint’ available on Windows platforms. 
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The version of JHotdraw [232] used in empirical experiments discussed in this thesis is 

6.0b1. This version has approximately 71267 lines of code (LOC) including test 

packages, organised into 16 packages, and containing 344 classes. The framework has 

188 classes including 20 core framework classes. These classes implement 

approximately 3694 methods including test classes.  Figure 6.1 gives a class hierarchy 

diagram of the core Jhotdraw framework, and Figure 6.2 gives the UML diagram that 

presents the organisation of core framework classes which the exemplar application 

used in this experiment relies on.    

 

Figure 6.1 Class hierarchy diagram of JHotdraw. 

 

In Figure 6.2, the draw application class is highlighted in red because that is the main 

class of the Jhotdraw framework that needs to be extended by any 2D graphics 

application built using the JHotdraw framework. The sample standalone graphics 

application uses approximately 165 framework classes and implements 1000 methods, 

including constructors and utility methods. 

The trace data collected using Eclipse TPTP framework, when spread across all 

scenarios, achieved 60% coverage of the framework classes’ methods and 100 % 

coverage of the application consisting of 1 main class. 
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Figure 6.2 The UML diagram of core JHotdraw framework. 

 

The scenarios used in this experiment to generate execution traces were first briefly 

discussed by Cornelissen et al. in [142] . In these scenarios, a new drawing pane is 

opened from the menu option, then five standard geometric figures: a triangle, square, 

rectangle, circle and a rhombus are selected from the shapes menu to be drawn in the 

drawing pane. The scenarios used in this project extend these scenarios: by creating 

three panes; using copy, cut and paste functions; group and ungroup functions; setting 

image layers; mixing images and standard figures; figure animation in single and 

multiple panes; and changing figure attributes like colour, line and border pixel width. 

In the initial exploratory experiments where the technique was still being developed, 

recording of the scenario was non-textual. These scenarios were mostly saved as a series 

of final state screen shots. A problem with this approach is that a significant amount of 

information necessary to rerun the scenarios is lost, and this is the case even with [142]. 

This is not ideal and considerable effort was made to find tools that could record 

scenarios by recording mouse clicks, and rerun these recordings. It was found that tools 

that record mouse clicks are unreliable. The other option used to record scenarios was to 

use video screen capture software, which allows annotations to be made. The problem 

with video screen capture is that such software interferes with the tracing application, 

adversely affecting an already slow process. In later traces the technique used by the 

feature location community, of textually describing scenarios, has been adopted, 

drawing inspiration from the data made available on the SEMERU website [215]. The 

problem of exact replication still remains, because users often interpret what was meant 
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in the textual description in slightly different ways, and as a result, with existing tools, it 

seems exact retracing of steps may not be possible. 

6.2 Data from execution trace 

 

Figure 6.3 is a composite of two figures: Figure (6.3 A) is the network representation of 

JHotdraw 6.0b1, where nodes represent objects and edges represent method calls; and 

Figure (6.3 B) is a graph of connectedness distribution. The distribution of the log 

(connectedness) values of the nodes of the network links together with the best linear fit 

line and its equation, and the R
2
 value is given in the upper right corner (R

2
 value close 

to 1 indicates a good fit between the data points and the linear relationship estimation). 

In the execution traces, 165 classes of JHotdraw 6.0b1 were found to have been covered 

by the execution scenarios. The network representation contains nodes that represent the 

object of these classes and edges represent method calls.  

The connectedness distribution of the network nodes refers to the connectedness of a 

node as the number of edges connecting a node to other nodes. Considering all edges 

for all nodes representing classes, the best fitting distribution of the connectedness 

values is log-linear (see Figure 6.3B). 

 

Figure 6.3 The network representation of the JHotdraw message interaction  network. 

 

The probability density function of the connectedness values is found to be 

         
                  

 
        

This does not represent probability density function as corresponding to scale free 

power law e.g.                    , where the literature on real world systems 

claims the value of  α should be in the  range         . However, in the distribution 
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presented here the tail is much longer than an exponential distribution,          , 

which leads us to conclude that the data  may be appropriate for network analysis. 

6.3  Network Analysis of data 

6.3.1 Vanilla analysis of network measures 

 

The network analysis measures (introduced in Chapter 5) used in the data analysis are 

presented below for convenience. In Table 6.1, the top-5 methods of JHotdraw 6.0b1 in 

the top-20 ranked list is presented. The ranking was produced by network analysis of 

the following scores: HCS, WCS, and BWS. Table 6.1 also includes the top-5 methods 

that appear in the list of methods from the Netbeans profiler ranked by frequency of 

call, presented as the CFS(p) score. The measures used to generate these rankings were 

discussed earlier in Chapter 5: 

 

 Hub connection score:                             

 Weighted connection score:  

                                                 

 

            

 Netbeans call frequency: 

             

 

   

                                          

 Betweenness score: 
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All of these scores, except CFS (Equation 5.9), were generated using the Netbeans 

profiler. In this context, it should be mentioned that both Eclipse Probekit and TPTP 

Agent profiler can be used to generate call frequency information. In the early phase of 

these experiments, the Probekit based instrument was found to be unreliable in 
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gathering invocation frequency information, resulting in the use of Netbeans profiler 

[233]. In the course of this research, it was realised that invocation frequency 

information can be extracted from the full trace too, simply by counting trace events 

with identical end points and edges (i.e. methods). This is in fact a relatively more 

efficient way of generating invocation frequency information, because it excludes the 

possibility of sampling induced errors, if one assumes that full traces capture all events. 

In most of the scores generated, this technique has been used. 

 

Betweenness is the only score used in these experiments that requires the calculation of 

shortest paths. There are various ways to compute shortest paths. The typical 

algorithmic variants for computing the shortest path between two nodes in a network are 

Single Source-Single Sink, Single Source (all destination nodes from a source node s), 

and All Pairs of nodes. In the BWS score, all pairs of shortest paths are required, which 

tends to be computationally intensive. In this research, a number of well-known 

algorithms were explored and implemented using the prototype network analysis tool. 

However, for the sake of robustness, Dijkstra's algorithm [78] was used, where the 

running time of shortest path computation using Dijkstra's algorithm can vary 

depending on the optimization techniques employed at the relaxation stage of the 

algorithm, and reliant on the network representation data structure on which the 

algorithm is applied. In our case, using the  adjacency list and the heap, the running time 

is approximately           where E is the number of edges and V is the number of 

vertices/nodes. Using Dijkstra's algorithm without optimization can lead to the worst 

case performance of                    It is possible to achieve better performance 

by using more sophisticated schemes, which were not considered in the prototype tool. 

 

In Section 5.2.4, the discussion focused on the verification of predictions of functional 

importance, produced by each of the network analysis measures considered. Table 6.1 

presents a summary of the mutation analysis, performed to validate the predictions 

produced by network analysis score based ranking. The column labelled ‘name/results’ 

contains both the name of the scene and the results of the network analysis. For 

instance,  scn1_WCS implies scenario 1 and validation of  the ranking produced by 

WCS scoring. The column labelled ‘Fatal’ captures mutation testing which led to 

complete failure or crash of the Jhotdraw software. Similarly, ‘Non-Fatal’ captures non 

crash failures, ‘No effect apparent’ means no effect of the mutation was noticed during  

testing, and ‘Non JHotdraw’ indicates the presence of a method on the list of predictions 

that did not belong to the JHotdraw software. Table 6.1 lists the summary of validation 

testing of the top 20 predictions, generated from 4 scenarios by each of the network 

measures considered. This table does not include the testing based on Netbean’s profiler 

based CFS(p) measure. In all cases, the top 50 predictions were analysed. However, for 

brevity only the top 20 are presented in the thesis. The results across all scenarios are 

identical even though the extraneous scenarios were not used. Table 6.2 provides the 

statistical analysis performed after validation mutation testing was complete. In this 

case, the figures in the table are from scenario 4. 
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Table 6.1 Tabulation of results of verification of predictions of functional importance of 

JHotdraw. 

 

 

Table 6.2 Results verification of the Top 20 ranked methods of JHotdraw. 

 

Table 6.2 illustrates how the results of validation testing led to calculation of the 

probability of success for the predictions. In this table, fatal and non-fatal failures are 

scored as 1, and where there was no effect apparent this is marked as 0. The cumulative 

value of score is generated per rank per measure, denoted by the column prefixed ‘cml’, 

and this is followed by calculation of cumulative score of density per rank position for 
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each of the considered measures. This value is stored in the column labelled 

‘cml_measure/rnk’ (e.g.cml_HCS/rnk).  

 

Figure 6.4 The performance of vanilla ranking produced by edge ranking methods. 

 

 

Table 6.3 The top-5 ranked methods of JHotdraw 6.0b1. 

 

Discussion 

 

In Figure 6.3 A and Figure 6.3 B presented above, the network representation and the 

graph of the connectedness distribution extracted from network graph representation of 

execution traces are shown. In these experiments it was found that JHotdraw network 

graphs tend to fit log-linear or log-normal connectivity distribution.  This may be 

explained by considering two facts. First, JHotdraw is a medium size software, and only 

165 classes were covered by the extensive scenarios used in these experiments. Second, 

the exemplar application built on top of the framework uses a small number of key GUI 
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classes that act as aggregators. The first point leads to the notion of constraints to 

network growth by design, whilst the second point leads to the notion of the emergence 

of giant components which have a large number of incoming links. If the classes 

‘StandardDrawing’, ‘DrawingEditor’ and ‘MDI_DrawApplication’ are considered, it is 

seen that the DrawingEditor interface has been designed to act as a mediator, and 

MDI_DrawApplication is a concrete implementation of the mediator design pattern. All 

other classes, such as Tools, are made available only through active figure objects that 

are drawn in the drawing editor.  If fact this points to small-world single scale networks 

discussed by Amaral et al. [85], where such networks are not scale-free, but borderline 

cases that are constrained by design. It is quite possible that a different application 

developed using the JHotdraw framework would display different connectivity 

properties. In this case, the results indicate a hub-like structure may exist, making it a 

good candidate for application of network analysis. 

Table 6.3 presents the result of network analysis without any combination of scores (i.e. 

the vanilla analysis). It is seen from this table that StandardDrawing appears as the top 

class in score for HCS and Betweenness (BWS) (i.e. when it is on the shortest path). It 

is logical to expect this, because this object acts like a container, holding other objects 

and associated tools that operate on the figures. In the list of invocation frequency 

extracted from Netbean’s profile invocation frequency, it can be seen that the methods 

associated with the object of the Figures class appear in the top level on the list. This is 

also logical because invocation frequency for figure-related methods is likely to be 

much higher than on the window that contains the methods. A figure is likely to invoke 

methods more frequently to keep redrawing itself as a response to a user’s mouse clicks. 

These invocations are not normally expected to have influence on the container such as 

a panel within which the figure object is drawn.  Chapter 5 introduced the steps 

involved in network generation, verification  and analysis. In Table 6.2,  the actual 

calculation of the Cumulative Probability density function (CPDF) was shown for a 

selected scenario. 

Figure 6.4 presents the result of the mutation analysis used to verify that the predictions, 

based on network analysis score, truly indicate functionally important methods. In 

Figure 6.4, the lines present the results for the four ranking methods (based on network 

measures HCS, WCS, BWS and NetBeans call frequency – CFS(p)) by showing the 

percentage of the ranked methods up to a given rank, which are experimentally checked 

to be functionally important methods. For example, 100% for a rank r, means that all 
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methods up to rank r are functionally important, whilst 50% means that only half of 

them up to this rank are functionally important. The horizontal dashed line shows the 

percentage of randomly chosen methods that are functionally important. The vertical 

axis shows the probability of methods that are checked to be functionally important out 

of the top r ranked methods. The value of r is given by the horizontal axis.  

As discussed in chapters 4 and 5, the mutations to the software were carried out by 

introducing syntactically and semantically correct stubs that provided shortcuts to the 

method’s functionality. This is to simulate the condition of network edge removal. An 

error free compilation attempt is made to re-execute the scenarios with the new mutated 

software. If no effect of the change on normal operation of the software is experienced, 

the result is marked as "0". In the case that normal operation is partially or wholly 

affected the result is marked as "1". 

In addition to the mutation tests on the lists of scores, another list is generated 

containing 101 methods chosen at random. These methods are also subjected to 

mutation testing. The scenarios used to test the mutant software can be chosen at 

random from one of the existing scenarios. It was found that 95% confidence interval, 

of the cumulative distribution function of the random tests, lie at 0.60 and 0.49 

respectively for the upper and lower limits. The average was found to be approximately 

0.55. 

In Figure 6.4, the results of random analysis appear as black dashed lines denoting the 

upper and lower limits of the 95% confidence interval. The average of the distribution 

appears as a solid black line. The results for the analysis of random selection of methods 

provide a base line against which the results of mutation testing of network analysis 

ranked methods can be compared. This comparison is to show whether the performance 

of network analysis methods is better than by chance, or otherwise. 

The results of validation of functional importance predictions shown in Figure 6.4 

corresponds to the Top 20 methods predicted by the network analysis measures 

considered, namely: HCS,WCS, BWS and CFS(p). There is no particular reason to 

choose the first 20 highest ranked methods from the list, except the convenience to 

present the findings and also the thought that if the top 20 predictions are given to a 

developer it would represent a manageable number of items to verify, rather than a 

larger number. In this case, the logic of the 80-20 split, based on Pareto analysis rule of 

thumb, has not been used as that number would be 33 for 165 classes. The analysis has 

been done for the first 50 methods in all cases. The results indicate that HCS, WCS and 
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NetBeans call frequency rankings are more likely to be functionally important than 

randomly picked methods for the first 14-15 positions of the ranked lists. However, the 

functional importance prediction performance for these rankings is comparable or below 

the random chance for the ranks above 14/15 in the case of call frequency and HCS 

ranking, and above 20 in the case of WCS ranking. The ranking based on BWS metric 

does not predict important methods better than chance. 

It can be seen that scores do not consider the method invocation frequency information 

CFS (m) or CFS (p) similar to the Hub connection score (HCS), and the Betweenness 

score (BWS) generally performs poorly. In contrast, scores that use method invocation 

frequency CFS (m), such as the WCS, demonstrates performance comparable to the 

profiler generated score CFS(p). However, results indicate that the top five methods 

indicated by CFS (p) are not found to be functionally important in the analysis, and this 

indicates that the top profiler invocation frequency ranks may not be a real indicator of 

the functional importance of methods. 

6.3.2 Combined analysis of network measures 

 

In Section 5.2.2, the scheme used to generate combined rankings based on the sum and 

product of network analysis scores for individual methods in separate ranked lists was 

discussed (see equations 5.11 and 5.12). 

 

                           

                           

 

In cases where the scores are comparable and normalisable, non parametric ranking 

approaches exist (e.g. Wilcoxon rank-sum/Mann-Whitney U test). However, in the case 

of network analysis, use of these established statistical techniques may not be 

appropriate, because the ranked lists based on network analysis scores are not 

comparable. However, linear transformation [234] can be applied as a  standard 

technique to shift the search plane.This particular interpretation is in the context of 

vector space transformation, where some dimensions are nullified due to 

transformation. In Table 6.4, the top 2 vanilla ranked methods and rankings achieved by 

sum and product combination of network analysis scores are presented.The mutation 

analysis was performed to verify that combination rankings predict functionally 
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important method calls. The mutation analysis technique followed in the case of 

combination ranking analysis is identical to the technique used  for verification of 

vanilla rankings discussed in Chapter 4, 5 and in the previous section. 

Figures 6.5-6.7 provide a graphical representation of the performance of the ranking 

methods considered. These combinations are: a) HCS-BWS, b) HCS-CFS(m), c) HCS-

BWS-CFS(m), and d) BWS-CFS(m). In Figure 6.5, the results of considered rankings 

are derived by summation of the network analysis scores. In Figure 6.7, results of the 

considered rankings are derived by calculating the product of the network analysis 

scores. In Figure 6.6, the results presented exhibit the BWS-CFS(p) metrics for both 

sum and product operation derived rankings. In all, the figures present the result of 

mutation analysis of the 101 randomly selected methods of JHotdraw software. These 

appear as a continuous black line for the average value of randomly selected methods 

that appear to be functionally important. The dashed black lines correspond to the upper 

and lower bounds of the 95% confidence interval for the random selection test. 

 

 

Table 6.4 The top-2 ranked methods according to each individual and combined metric. 
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Figure 6.5 The performance of combination ranking from the summation of network analysis 

scores.  

 

 

Figure 6.6 The performance of combination ranking from the summation and product of 

network analysis scores.  

 

Figures 6.5-6.7 all present the performance of network analysis derived rank 

combination analysis. The solid back line in these figures represents the result of 

mutation analysis on a random selection of 100 methods, and the dashed black lines 

indicate the upper and lower bounds of the confidence interval for the mutation analysis 

on the randomly selected methods. 
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Figure 6.7 The performance of combination ranking from the product of network analysis 

scores.  

6.4 Discussion 

 

In Table 6.4, for the sake of brevity and clarity the top two methods appearing in each 

of the 11 ranked lists have been presented. This table presents rankings obtained by 

combining the results of rankings obtained by vanilla analysis. The scheme used to 

generate the combined ranking has been discussed in Chapter 5 and in the preceding 

section. 

The performance of a network analysis metric, or of a metric combination, is calculated 

as the percentage of methods that are identified as important on the basis of the 

metric(s), and which turn out to be important according to the functional evaluation of 

methods. If all of the top-n ranked methods turn out to be functionally important then 

we have 100% performance for the ranking up to the n, and if only half of the top-n 

methods turn out to be functionally important then the performance of the ranking for n 

is 50%. The performance results are presented in Figures 6.5-6.7. 

The results (see Figure 6.4) show that most of the top-15 ranked methods according to 

the HCS and CFS analysis metrics are highly functionally important, while this is not 

the case to the same extent for ranking of methods based on the BWS metric. In the case 

of combined metrics, the results show that the additive combination or rank orders did 

not produce better combined metrics than the individual metrics. However, in the case 
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of rank product based combination of metrics, the performance of combined metrics 

improved for the top-50 methods, except for the metric combination HCS – BWS. 

The results show that the HCS – BWS combination in both cases of rank combinations 

(sum and product) led to a combined ranking of methods that identified a smaller 

percentage of functionally important methods than the rankings based on the individual 

metrics. This indicates that these two metrics are likely to identify different kinds of 

methods as important, and combining the separate rankings in a sense cancels the 

correct identification of functionally important methods. Notably, the triple combination 

of rankings does not perform better than the paired combinations of rankings, which 

again is likely to be due to the cancellation effect of the combination of HCS and BWS 

rankings. It is also noticed that combinations which include CFS score tend to produce 

improved detection performance.  It can also be seen in Table 6.4 that in some cases the 

result of combination rankings leads to utility methods rising to the top of the rankings, 

particularly when combinations include BWS score. The reciprocal element of 

invocation frequency, used to weigh edges on the shortest paths, seem to be leading to 

this phenomenon. These utility methods have lower invocation frequency, in 

comparison to utilities that belong to the tool bar classes. For instance the auto scroll 

helper method is only likely to be invoked in the event of zoom tool operation, to enable 

scrolling in the drawing pane. Its functional significance in the context of overall 

functional delivery is negligible in the context of the definition of functional importance 

used in these experiments. 

In experiments of this nature, many scenario runs are typically required to quantify the 

statistical significance of results with a reasonable degree of confidence. Random tests 

alone provide some confidence, but are generally considered weak. A lesson drawn 

from these experiments concerns the fragility of Eclipse TPTP tools, and tools generally 

built with Java BECL, that underpin both static and dynamic instrumentation 

frameworks. The problems encountered are two-fold: a) the upgrades of JVM classes 

related to concurrency, and b) TPTP project’s inability to maintain reliability. Through 

most of this research, the instrumentation technique of choice has been TPTP Probekit. 

This tool (discussed in Chapter 5) has static binary instrumentation capability and 

provides a user friendly interface that facilitates definition of custom probes. The 

versions of TPTP and JVM used during the initial proof of concept phase of these 

experiments were 4.5.5 and 1.6.0. At that point, all traces generated were verified for 

structural sanity, but the TPTP tool had stability problems. The later version (4.6.2) was 
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relatively more stable, but it had introduced a subtle bug related to thread safety due to 

changes in JVM. This bug is particularly severely manifested in cases of large 

applications that make intensive use of threading. In this experiment, 60 long scenarios 

were generated using this bug hampered version. The bug introduced interleaving and 

overlapping of sections of the execution trace. This problem was identified and 

mitigation efforts did not lead to desirable results. Figures 6.8 and 6.9 provide 

illustrations of mitigation efforts which attempted to resolve thread safety issues noticed 

in Probekit.  Figure 6.8 is an illustration of the use of ThreadSafeTracer library and 

Figure 6.9 illustrates the inline use of the "ReentrantLock()" function in the body of the 

TPTP probe. 

 

Figure 6.8 TPTP Probes using ThreadSafeTracer library. 

 

The advantage of Probekit, apart from custom probe insertion, is that it is able to 

capture every event of interest, which may not be the case with TPTP Agent profiler. 

Custom structured traces also produce relatively smaller trace files compared to Agent 

profiler generated traces in the XML4Profiling format. The sanity checks found that 

later files had between 3-8% interleaved event writing, with errors increasing as the 
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number of active threads increased in the application. In the case of Probekit generated 

traces, due to the custom structure and lack of redundant information or tags, a trace 

sanity checker was able to write to verify trace quality. However, with TPTP traces that 

can often be large (e.g. multi-gigabyte files) writing a sanity checker may not be easy. 

Both Agent profiler and Probekit use the same underlying framework, which raises 

concerns about the quality of TPTP profiler generated traces too. 

 

Figure 6.9 TPTP probe with inline use of ReentrantLock(). 

 

In experiments of this nature, it is important that not only the results of the experiments 

are statistically significant, but also that the trace data itself is largely error free. 

Effort has been made to improve the quality of statistical treatment in the experimental 

results in Chapter 7, which builds on the early work presented here, albeit with a very 

large C++ software system. 
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Chapter 7. Experiments on Google Chrome 

7.1 Introduction 

 

Google Chrome [210] is a popular open source web browser, managed by Google and 

supported by an active development community. The Google Chrome project provides 

open and free access to development documentation and source code, making it an 

attractive choice for empirical software engineering experiments. In Chapter 4, the 

concept of functional importance was proposed and defined, and a technique to verify 

the functional importance of methods was discussed.  In Chapter 5, the network analysis 

measures used to predict functionally important methods were discussed as part of the 

experiment design, and the verification technique was discussed. A key assumption 

behind the network based analysis used in this thesis is that object oriented software 

networks follow the power law connectivity distribution. In this context, it was also 

noted in Chapter 5 that power law distribution is difficult to identify, and often 

distributions fall in the border-line cases due to fat tail distribution characteristics. In 

Chapter 6, we found that the network representation of JHotdraw (version 6.0b1) 

displayed the log-normal distribution instead of the pure power law distribution. This 

chapter is focused on presenting the results from the experiments on Google Chrome. 

These experiments used custom profiler generated dynamic analysis data and the 

experiment techniques discussed in Chapter 5. The only key variation in the workflow 

compared with the experiments on JHotdraw is the use of Cloud based mutation testing 

for verification [14]. 

7.1.1 Google Chrome 

 

The version of Google Chrome used for this experiment was 72930.  The total source 

lines of code (SLOC) was found to be 8,942,123 – spread over 480 Microsoft Visual 

studio projects and 9 source code packages: base, chrome, content, media, native_client, 

net, printing, remoting and webkit. The  lines of code (LOC) was calculated using 

UNIX tool SLOC-Count [235]. Google Chrome incorporates many advanced and novel 

features, such as support for HTML5, native client execution, and a highly optimized 

java script engine and compiler called V8. The design objectives behind this browser 

were motivated by the need to implement better program abstraction within web 

browser application for improved performance [236]. Notice that the choice of Google 

Chrome for this experiment is not based on comparative evaluation of comparable 
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browser applications, since we believe that every application is likely to display a 

unique signature from complex network analysis. Google Chrome was chosen because 

it is professionally designed object oriented software, which is open source and 

available on a wide range of OS platforms. The availability on a wide range of 

platforms makes it attractive for use in software engineering experiments. 

The use of Google Chrome was found to be challenging, because of the custom built 

system it uses. The ‘Generate your projects’ (GYP) scripts that are used to build this 

complex application are not easy to modify for experimental purposes, such as static 

instrumentation based on compiler features. Execution trace profile data was collected 

by using  a modified version of  the Slimtune [225] tool. This tool is based on Microsoft 

Visual Studio profiler and dynamically instruments Google Chrome to collect program 

execution trace data. 

7.2 Data from execution profile trace 

 

In Chapter 5, the technique used to convert execution profile trace information into the 

graph representation containing objects as nodes and method calls as edges was 

discussed. The same technique was employed in the experiments on Google Chrome, 

the only difference being the profile trace data was stored in a SQLlite database file by 

Slimtune profiler. This network representation has been visualized (see Figure 7.1 a) 

using the Pajek tool [229]. Figure 7.1b presents the cumulative node connectedness 

distribution of the network representation of dynamic analysis data, as generated by the 

execution of the Google Chrome. The linear relationship between the 

log(Connectedness) and log(CumFreq) indicates that the distribution follows a power 

law. 

 

Figure 7.1 The network representation of Google Chrome.  
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The power law distribution was verified by analysing the cumulative connectedness 

distribution of the network nodes (the connectedness of a node is the number of edges 

connecting a node to other nodes). Considering all edges for all nodes representing 

classes, the best fitting distribution is an integrated power law distribution (see Figure 

7.1 b) with the cumulative probability density function of the connectedness values 

given as 

                              

 

This distribution (Eqn. 7.1) satisfies the general requirement for the application of 

network analysis methods. That is, the network should have a power law node 

connectedness distribution. In Chapter 5, the discussion of power law verification 

mentioned various research publications, proposing alternate methods to verify power 

law distribution in network graph data. The technique used in this thesis is appropriate 

for our purposes, and application of network analysis can be used to predict the 

functionally important methods in Google Chrome. 

7.3  Network Analysis of data 

 

The network analysis measures (from Chapter 5) used to analyse Google chrome 

network are:  

 Weighted connection score (WCS) 

                                                 

 

           

 The total call frequency score (CFS(m)) 

                      

 

 

The method's invocation frequency score was captured by the Slimtune profiler tool in 

the traces. 

 Betweenness score (BWS) 

The Betweenness score is the only  measure that requires the computation of shortest 

paths, and the technique used to calculate the shortest paths, as discussed in Chapter 5 

and Chapter 6, is based on use of Dijkstra's algorithm [78]. 
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   (5.10) 

For brevity, Table 7.1 presents the top 6 predictions for all the scores for 4 

scenarios.The predictions generated by all the network measures have been presented in 

this table. The validation included the top 50 predictions. 

 

 

Table 7.1. Top-6 predictions from network analysis of Google Chrome. 
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7.3.1 Use of the cloud in mutation testing work flow 

 

In the context of this experiment, a key challenge in performing mutation testing to 

verify the predictions of functional importance presented in Table 7.1 was the size and 

build complexity of Google Chrome. This led to the requirement to build multiple 

manually prepared mutants of Google Chrome based on our prediction in the Cloud. As 

part of the experiments, the mutation build process was automated to enable the 

mutation testing process to be performed efficiently. 

The data collection platform in our experiment (which uses the technique and workflow 

discussed in Chapter 5, Section 5.2.5 and Section 5.2.7) was Microsoft Windows 7 

Professional 64 bit. The user driven test scenarios were generated by using data from 

Google Chrome Windows browser application. The scenarios used were similar to the 

user acceptance testing scenarios used for web browser applications that simulate the 

typical use of web browser applications. 

The natural choice of platform for building mutants would have been Microsoft 

Windows 7 Professional 64 bit. However, we found that neither Amazon nor Microsoft 

Azure services offer Microsoft Windows 7 Professional 64 bit as a choice. In this 

experiment, only function calls within Google Chrome are considered, which in theory 

means the application can be built on another platform, based on the assumption that 

non-system higher level method calls are common for all platforms. From the analysis 

point of view, this introduces a threat to validity. However, as far as the use of the 

Cloud is concerned, the process is valid. In this experiment, the Cloud instances used to 

build Google Chrome mutants were based on the Ubuntu 10.04.1 64 bit platform. 

The experiments to verify predictions of functional importance for methods in Google 

Chrome required the building of 820 mutants. A scheme was implemented to manage 

all the data, so that for each mutant the input and output data could be isolated. This was 

done in the first instance by using an unambiguous naming scheme for the mutants. This 

mutant test naming scheme was automated in the workflow script. A careful scan of the 

data was carried out for all the scenarios to ensure that no duplicate mutant was 

prepared. A large number of common elements occurred across predictions, and in all 

these cases only one mutant was prepared, and the analysis log  was  used in the 

instance for which the mutant was previously generated. In this way, 820 builds were 

reduced to 186. This is approximately a 75% reduction in initial estimation of costs. The 

total input data across all builds was approximately 100 Gigabytes (GB), and the output 
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data, consisting of only the built executable and supporting libraries, was 52 Gigabytes 

(GB). 

The total computation time, as per Amazon, was approximately 561 hours, which 

represents a 25% reduction over the 744 hours it would have taken to run the same test 

using the local workstation. These figures fail to point out that 561 hours is actually 

clocked in 7 days of test runs and includes some repeats. 744 hours on a local 

workstation would have taken 31 days with the building process running 24 hours a day. 

The compressed input data of 0.5 GB expands during build time to around 15GB each, 

which would require about 2.7 Terabytes (TB) of storage. The total charge for use of the 

Amazon Cloud for this experiment is approximately $1000.00. This includes the use of 

data transfer, use of S3 storage, and m2.xlarge EC2 instances. The cost advantage of 

using the Cloud is amply clear, in addition to the time efficiency related saving. If cost 

and time saving are the main factors that influence the use of Cloud based testing, this 

presents a clear advantage over captive storage and computational infrastructure. 

However, these may not be the main influencing factors. In our view, the main factors 

are flexibility of configuration and the use of a test platform. The workflow adopted to 

implement the Cloud based mutation testing workflow [14] is presented in Figure 7.2. 

 

 

Figure 7.2 Schematic diagram of the Cloud-based mutation testing. 
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A selection of results from the mutation testing spanning all the scenarios is presented 

in Table 7.2. The results are tabulated into 3 outcomes of the mutation: a) software 

crash (i.e. fatal), b) runtime state corruption (i.e. non-fatal), and c) the mutation has no 

noticeable effect on software operation. Table 7.3 is an illustration of the data analysis 

steps used to calculate the probability density function, and the 95% confidence interval 

from the result data set. The statistical analysis steps have been labelled at the bottom of 

the table. The equation used to calculate confidence intervals is  

                
 

  
         

In this case,   is the average of the cumulative probability density function for chosen 

rank. Number   is sample size, where in this case it is 4; corresponding to 4 scenario 

data sets.  

 

Table 7.2 Tabulation of the results of verification of predictions of functional importance of 

Google Chrome. 

 

In Table 7.3, computation of the probability density function is based on the verification 

of function importance using the mutation tests presented in Table 7.2. In Table 7.3, for 

each rank position all fatal and non-fatal results are marked "1" and results having no 

effect are marked "0". Non Chrome entries are rejected. This scheme is identical to the 

verification and statistical analysis of results presented in Chapter 6, which presents the 

results of experiments on JHotdraw 6.0b1. The only difference in presentation of the 

results arises because the results presented for JHotdraw were based on one scenario 

because of data collection errors, which compromised the quality of the scenarios 

collected using Eclipse TPTP Probekit (discussed in Chapter 6). Data from the 

JHotdraw scenario run Scn4 was found to have no errors and to be verifiable. The final 

verification graphs did not include calculation of standard deviation, except for the 

mutation testing of 10 randomly selected JHotdraw methods. In the case of Google 
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Chrome, the data collection tool was reliable and all four scenes have been included in 

the statistical analysis. This made it possible to calculate the standard deviation as 

illustrated in Table 7.3. The other difference in the presentation of results for Google 

Chrome is that only vanilla analysis is discussed, since no combination analysis was 

performed on the Google Chrome data. This is because (based on the results of 

experiments on JHotdraw) combination analysis did not contribute to the verification of 

functional importance in a substantial way and the techniques may require further 

refinement. 

In Table 7.3, the statistical analysis performed for all 3 network measures is illustrated, 

and is considered to validate the predictions of functional importance. In the table, for 

the sake of conciseness, only the case of WCS measure is presented. The red box 

presents the cumulative probability density function (CPDF) per rank of the scores 

table. The data here has 25 rows for 4 scenes. The Average WCS CPDF per rank is 

calculated from this data. The standard deviation is also calculated. This is used to 

calculate the 95% confidence interval. These results follow from analysis of the data 

behind Table 7.2. 

 

Table 7.3 Probability density and confidence interval calculation of WCS score results. 
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Figure 7.3 The performance of the vanilla ranking of predictions of functional importance of 

methods of objects, produced by WCS scoring. 

 

 

Figure 7.4 The performance of the vanilla ranking of predictions of functional importance of 

methods of objects, produced by CFS scoring. 

  

The graphs for the results of verification of functional importance based on vanilla 

ranking produced by WCS, CFS(m) and BWS measures are presented in Figures 7.3-

7.5. In these graphs, the top 25 methods from the ranked list are presented. The dashed 

lines show the 95% confidence bounds surrounding the average value and the red line 
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shows the expected percentage of functionally important methods among a randomly 

chosen set of methods (50%). 

 

 

Figure 7.5 The performance of the vanilla ranking for predictions of functional importance in 

methods of objects produced by BWS scoring.  

 

The results are presented in Figures 7.3-7.5. These show that all three network analysis 

based edge importance metrics that we considered are indeed better than chance in 

predicting methods of classes that are functionally important for the considered software 

functionality. In all cases, the 95% confidence band around the average prediction of 

accuracy level for all top-25 ranking levels is such that the 50% benchmark level is 

below the lower limit of the confidence band (note that the top ranked method is not 

always functionally important, causing the confidence bound for the top-1 method to 

drop below the 50% mark). In Figure 7.4, the line showing the random average is in the 

middle of the confidence bound, indicating that the method used for this figure does not 

produce results that are significantly better than the random choice of the methods. This 

means that the top-25 methods, selected according to the considered network structural 

importance metrics, in all cases are more likely to be functionally important than 

methods in a randomly picked set of methods, with the exception of CFS score as 

presented in Figure 7.4. Even in this case, for the top-25, the results show a marginally 

better performance than chance. This means that the network analysis of the network 

representation of the software system, based on dynamic analysis data, can be used to 

predict the functionally important methods and thus help the prioritisation of program 
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comprehension, software testing activities, and the evaluation and potential 

improvement of its dependability. 

7.4 Discussion 

 

The results indicate, in the proof-of-concept sense, that network analysis measures of an 

object-method dynamic analysis network, when applied to large-scale software systems, 

can be used to predict successfully the functionally important methods of objects, and 

consequently classes, of an OO system, with respect to a given functionality of the 

software system. 

Figure 7.6 is a diagram of the high level multi-process architecture of the Google 

Chrome browser. The diagram shows 3 blocks or high level components that, when 

combined, can be regarded as layers of applications (see Figure 7.7). Multi process 

descriptions usually attempt to present various components and the high level view of 

inter process communications between these components. In this experiment, the 

scenarios primarily focused on exercising the browser components to the maximum 

extent with respect to typical use. It is possible to argue that typical use can mean many 

things. Today, browsers are used for a wide range of purposes, from browsing the web 

pages on WWW to watching movies. Google Chrome's salient features have been 

discussed in Section 6.1, one of which is advanced support for HTML5 coupled with 

the speed of rendering a wide range of feature rich web pages. One of the scenarios used 

was from the Google Chrome experiment called Arcade Fire [237], which exercises the 

browser by rendering a music video using the latest HTML5 features. The rendering 

utilises the user’s local geographical map in real time, while simultaneously 

communicating with the remote server located on the Internet. The expectation was that 

IPC communication, rendering engine related features, will be exercised as a result of 

this scenario. The other scenario used Internet Explorer’s Fish Bowl rendering speed 

test [238]. In addition to this, standard features like storing favourites using secure web 

based email were used. 

Table 7.1 exhibits all the lists containing methods from features that are expected to be 

exercised frequently. These methods have been highlighted in red. It can also be seen 

that the Slim Tune profiler picked up the system’s large number of built-in C++ 

methods related to Standard Template (STL) classes, some of which were found to have 

been extensively used and overridden on extended form within the Google Chrome 
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browser. In all cases except a few, these were ignored when analysis was carried out. In 

all cases, untraceable methods were given the lowest score of "0", which was to ‘err on 

the side of caution’. This leads to a reduction of the probability density and, as a result, 

scores may appear to have lower performance. 

In the case of experiments on JHotdraw 6.01b1 (discussed in Chapter 6) the maximum 

search space spanned about 71,267 lines of code, as opposed to a million lines of code 

in Google Chrome. The setup of Google Chrome and the manual mutation generation 

were conducted very conservatively and in a principled manner, and the results indicate 

that all the scores performed better than chance. 

 

 

Figure 7.6  Multi Process Architecture of Google Chrome Browser [239]. 

 

Based on the concept and definition of functionally important methods (introduced in 

Chapter 4) results confirm that the method described in Chapter 5 can be used to predict  

functionally important methods with prediction performance that is better than chance. 
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To validate the predictions of functionally important methods, these methods were 

replaced by empty stubs with an appropriate input-output interface. Evaluation of the 

software behaviour following such alterations confirms that the predicted methods are 

significantly more likely to be functionally important than methods picked randomly. 

 

 

Figure 7.7  Google Chrome Conceptual Application layers [239]. 

 

A pertinent question in this context is whether the method followed could be improved, 

such that errors that can be attributed to the human element can be reduced in future 

research. Another question in the same context is whether the effort required when 

performing experiments using this method is the best way to validate the use of network 

measures in dynamic analysis of software. Some of these questions will be discussed in 

the concluding chapter. However, it can be stated that despite the need for further work, 

as proof of concept, the results obtained from this experiment provide encouraging 

indications of the possible uses of network analysis techniques to support program 

comprehension and software maintenance tasks. 
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Chapter 8. Discussion and Conclusion 

8.1  Discussion 

 

In Chapter 4 the following research questions were posed: 

Q 1. What is functional importance in the context of software systems? 

Q 2. Can network analysis be used to discover functionally important elements of object 

oriented software systems in the dynamic context? 

Q 3. If network analysis can discover functionally important elements in object oriented 

software systems, how can these discoveries be verified as truly important? 

Q 4. Can Cloud based testing be gainfully utilized for large scale software testing? 

8.1.1 The concept of functional importance 

 

The abstract concept of functional importance is intuitively understood and widely used 

in some fields of science, for instance systems biology and neuroscience. In this thesis, 

the concept of functional importance has been defined in the context of software 

engineering. A definition has been proposed based on the object-method interaction 

network in object oriented (OO) software systems, the functionality of OO software, 

and the perception of the user concerning the expected normal overall functional 

behaviour of the system when the system is exercised using typical user acceptance 

testing scenarios. 

The notion of the importance of an element, or of a set of elements, for that system in 

the context of "what the system does" (i.e. its functionality) is not easy to define 

precisely. The natural questions that arise are: "how important?",  "in what context is it 

important?", "is the degree of importance measurable in terms of its potential impact?" 

and "is it possible to identify these important elements with reasonable effort?" 

The proposed definition is based on the notion of user perception and the expectation of 

normal delivery of functions of software. The use of network modelling is based on 

empirical scientific research evidence that shows structural-functional correlations can 

be modelled using scale free power law network models. Software engineers would 

often refer to a library as important for functionality, or would characterize part of the 

software as the heart of the system without which the system would fail. In the case of 

both large and small business critical systems, it is common practice to analyse risk and 

evaluate its impacts on the business should the system fail. 
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In dealing with large complex systems, intuition and experience alone may not be 

sufficient to identify correctly elements of the system that pose potential risks. Tasks of 

this nature are often attempted by an iterative process of ‘divide and conquer’. That is, a 

process of progressive elimination of potential candidates that may pose a risk. This 

process is essentially heuristic in nature and is applicable to large and complex software. 

The question arises "why dynamic analysis?" The simplest answer is that only a running 

system will display properties that can be experienced, which then can be evaluated 

against expectations of those properties. Large software today is considered sufficiently 

complex to be use as a experimental substitute system (e.g. in place of animal brain) on 

which emergent data modelling and analysis techniques are validated. The choice of 

complex network technique is partly motivated by the needs of the complex network 

research community for validation of methods proposed in this emergent field. 

However, the primary motivation is to explore whether the properties that scale free 

networks claim to have can be exploited in software engineering to gain program 

understanding in an efficient manner, and then to investigate whether the proposed 

methods can be used to obtain program information that can be used to prioritise 

activities like software testing. In this context, the definition of functional importance 

for methods of OO software proposed in this research is relevant. This definition tries to 

build a conceptual bridge between large object oriented software systems and scale free 

network models, by exploiting the properties of highly connected network hub nodes 

that make these networks both fragile and robust simultaneously. Research on complex 

network models and the structure of object oriented software has only focused on 

exploring whether network representations of software systems can be described by 

using power law and scale free network models, and not on its practical implications or 

application in software engineering. 

8.1.2 Methodology and Results 

 

In this thesis, a technique has been proposed to represent object-method collaboration 

networks built from dynamic program analysis data. Using this technique, empirical 

edge based network analysis measures are then used to analyse the object-method 

collaboration network to predict functionally important edges of the network as a ranked 

list of methods invoked due to scenario driven execution of the software. 

The validation of the predictions of functionally important edges, and consequently the 

performance of the network measures, exploits the concepts of network perturbation 
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through edge removal. A novel technique, based on mutation testing (that simulates the 

condition of edge removal in network graphs), has been developed and used to validate 

the predictions of functionally important method calls in a large OO software system. 

The likelihood of a network measure producing correct prediction of functionally 

important methods was analysed by calculating the cumulative probability density 

function (a standard non-parametric statistical technique) for the results of the mutation 

testing. The use of the non-parametric statistical technique was to quantify the 

performance of these predictions and compare this against the outcomes of application 

of mutation testing analysis on a large set of system methods, which were not chosen 

using the network measures based ranking technique. The performance of mutation 

testing on the random set of methods was used as a benchmark for the purpose of 

performance comparison. 

The mutation testing technique, used to verify the predictions of functional importance 

(obtained by application of network analysis), uses a form of mutation testing that does 

not rely on value replacement, but on control path removal. This mutation technique is 

novel because the control path removal is not a removal of the method, but of the 

information flow through the method, simulating edge removal in network graphs. The 

technique of introducing maximal mutation preserves the system in the sense that all 

interfaces remain unaltered, and only the method body representing an edge is short-

circuited by introducing an empty stub in its place. A drawback in this state-of-the-art 

technique is that it currently does not account for possible multiple calling contexts. 

The results presented, that underpin this thesis, are based on a set of empirical software 

engineering experiments. These experiments were carried out on JHotdraw6.0b1 and 

Google Chrome, and are the main subjects of discussion in chapters 6 and 7 

respectively. Chapter 5 deals with the design of experiments and the techniques 

common to the discussion in chapters 6 and 7. 

A summary of the results of verification is presented in Table 8.1. The table lists the 

connectivity distribution identified for the object-method message network 

representations, generated from the dynamic analysis data for both the systems. The 

random baseline generation found that the probability of mutation of a randomly chosen 

method leading to failure of the system is close to 60%. The table marks measures as 

"Yes" or "No" based on the performance falling above or below the random average 

baseline. In cases where the performance prediction is only marginally better than 

chance, the result has been marked as "borderline", to account for the small sample size 
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and potential data collection tool related issues. In the case of Google Chrome, the 

identification of a parent class of objects was not listed, and as a result HCS(e) measure 

was not used. The results indicate that the Weighted Connection score (WCS(m)), the 

total Call Frequency score (CFS(m)), and the Betweenness score (BWS(m)) all seem to 

indicate better ability than chance to predict functionally important method calls in the 

case  of Google Chrome, a software  with scale free connectivity distribution. In the 

case of JHotdraw, where the connectivity distribution is log-linear and a small world 

borderline case, the indications are that BWS scoring is not a good indicator, while all 

other scores considered perform better than the random baseline average. In all cases the 

top 50 methods of all lists were evaluated. The decision to present the top 20-25 ranked 

positions is arbitrary. If resources and time permitted, a much larger volume of dynamic 

analysis data could have been analysed and it would be meaningful to choose more rank 

positions in the presentation. Another argument would be to present no more than the 

first 7-10 rank positions, taking into consideration Miller's [240] discussion on natural 

limits of the ability to assimilate information. 

 

Software Connectivity 

distribution 

Random 

Baseline 

HCS(e)  WCS(m) CFS(m) CFS(p) BWS(m) 

JHotdraw 

6.0b1 

Log-linear -

Small world 

0.6 Yes Yes Yes Yes No 

Google 

Chrome 

Scale Free 

Small world 

0.59 NA Yes Borderline NA Yes 

Table 8.1  Results summary of verification of functional importance predictor measures. 

 

8.1.3 Implications 

 

In chapters 6 and 7, the predictions obtained have been discussed in the context of the 

overall functionality of the two systems. This discussion happens in the circumstance 

where the user of these predictions is also a programmer with some appreciation of what 

can be expected to be happening at the code level when these systems are used. This use 

is in the form of typical usage. That is, if one is using a graphical application, the 

actions would be to draw figures and manipulate the attributes of the figures. Similarly, 

if one is using a web browser application, the expectation is that the user would point 

the application to fetch a document identified by a unique resource identifier (URL), 
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where this document may download a static HTML document or a dynamic document 

that mimics the notion of interaction through responses to user actions. While deeper 

analysis of individual classes and methods was beyond the scope of this research, it was 

found that in the majority of cases the classes and methods that a programmer may find 

important appeared on the list. For instance, methods related to figure manipulation in 

Jhotdraw6.0b1, methods related to URL access, and rendering of HTML pages in 

Google Chrome. The disabling of these methods adversely affected normal operation of 

the software, and the operating system in certain cases for Google Chrome. There is an 

essential difference between JHotdraw and Google Chrome from the compositional 

point of view. JHotdraw, despite being a framework, is not designed for dynamic 

extension and, as a result, applications written purely with the existing interface of 

JHotdraw 6.0b1 are likely to be constrained for growth and unlikely to retain scale free 

power law properties. In contrast, Google Chrome is more recent software and is 

designed with modularity and dynamic extension as a goal. This coupled with the large 

base size makes it likely that Google Chrome has power law scale free connectivity by 

default as a consequence of design. In this sense, results of verification for functional 

importance indicate network analysis may be useful when identifying functionally 

important methods. 

The empirical network analysis measures and the technique of mutation testing 

employed in the experiments are not new. The novelty of this work lies in exploitation 

of properties of scale free networks to define and then validate the concept of functional 

importance of methods of object oriented systems. Previous research along similar lines 

by Zaidman and Demeyer [6], to identify key classes in software, uses HITS web (data) 

mining algorithm to predict key classes. The key difference with our research is that the 

rationale behind use of the HITS algorithm based technique is not articulated. The HITS 

algorithm based technique applies to network graphs that are power law distributed, but 

the paper [6] does not verify the underlying distribution of the data. Furthermore, the 

paper does not propose what property of network or software makes the use of the HITS 

algorithm appropriate and does not verify the prediction of key classes. In previous 

research, Zaidman et al. [169] used the HITS technique to argue that identification of 

key classes can support  program comprehension. Arguments along similar lines can be 

found in the work by Zimmermann and Nagappan [96], which uses social network 

analysis techniques to detect Ego Network motifs in software networks. The premise of 

this work [96] is that Ego networks may be indicators of locations that may be defect 

prone, and (therefore) are candidates that could benefit from more rigorous testing. In 
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all these cases, the conceptual bridge between the properties of network graphs and 

software is tenuous at best and non-existent at worst. The concept of functional 

importance presented here attempts to bridge the gap that currently exists. The 

techniques and experimental results presented in this thesis adopt a more rigorous 

ground up approach to verify that network analysis measures can truly identify 

functionally important elements of a software system, and thereby the key classes in 

object oriented software. 

The review of literature highlighted that the challenges in static and dynamic analysis 

are primarily the challenges of dealing with large volumes of program data. The 

experience of this research has not been different, where challenges in collection of data 

have been largely overcome, but efficient and scalable data processing has only partially 

been addressed. 

In [14], discussion on use of the Cloud for large scale testing has demonstrated that the 

Cloud can be considered a viable platform for software testing. The workflow used to 

test the Cloud, and the techniques developed to launch and manage the platform, 

processes and the data, is sufficiently generic to be adopted for similar endeavours. The 

challenges of large volume data management and computation faced in this research can 

be considered analogous to similar challenges in industrial environments, particularly 

for software testing. 

The use of Cloud based testing in the context of this research was primarily to address 

challenges of large volume mutant generation in a limited time span. Despite various 

limitations, use of the Cloud was found to be viable and potentially beneficial for 

software testing, similar to the mutation testing done in the experiments on Google 

Chrome. The main attractions behind use of the Cloud for this experiment were,  the 

relatively low cost of unit usage, the flexibility to configure to very specific technical 

requirements (e.g. facility to choose a particular type of processor and  the machine 

contention factor), and the on demand availability of resources. The experience during 

the latter part of this work has been that the Cloud is as efficient as the most inefficient 

software used on it. It has been noticed that inefficient software infrastructure or 

workflow in the Cloud can be very expensive, relative to captive computation resources. 
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8.1.4 Limitations 

 

Validation Technique 

The technique used to perform validation mimics network perturbation through edge 

removal. The aim is to verify whether such removal leads to network fragmentation and 

impairment of the functional network. 

The technique, when applied to software systems, is the most up to date. However, it 

still needs refinement. In a modern multi-threaded object oriented program, a method 

body may not have only one execution context; for instance it can be using another class 

as a field that may be implementing the  observer pattern and executing on a different 

thread. The mutation of the method body can mean disabling multiple control paths. 

The method of mutant generation by using maximalist stub needs to be further refined 

by considering how multiple threads of execution can be accounted for and handled in 

the stub.  Refinements are likely to lead to a more robust validation of the functional 

importance of methods proposed in this research. The technique is extremely expensive 

in terms of human effort, and obviously prone to human error due to the long attention 

span required to ensure that each manual mutation is correctly implemented and 

recorded. However, to the best of our knowledge, this is the best technique currently 

available to simulate perturbation of a network. 

Data Generation  

In the series of experiments conducted in this research, the generation of dynamic 

analysis data has been a major challenge. This is primarily due to the fragility of the 

tools, which were primarily those from the Eclipse TPTP project in the case of software 

written in Java.  In the case of software written in C++, the problem has been in the 

format and quality of data generated by the tools.  A general observation, applicable to 

existing tools in the context of their capability to handle large pieces of software, is 

fragility, especially when dealing with execution trace generation from typical usage 

scenarios. 

Most experiments tend to execute short scenarios on relatively small scale open source 

software. In contrast, our research data was generated for fairly large and popular open 

source software by executing typical usage scenarios. This resulted in execution trace 

files of size ranging from 500 Megabytes (MB) to 120 Gigabytes (GB) each. In the case 
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of TPTP XML4Profiling format files, the standard technique to process these files is to 

use a SAX event based XML parser. These tools have been produced as part of this 

research, and a Cloud enabled processing pipeline has been implemented. The problem 

of scalability remains, primarily because the production quality libraries used have not 

been engineered to handle such large volumes of data in individual files. 

Network representation 

In our experiments, undirected network representation has been used. In itself, this is 

not a problem, because the primary issue explored in this research is whether network 

analysis can identify important elements of the functional network, rather than the 

control flow within the functional network. 

The problem is that most network analysis techniques ignore loops or cycles in the 

network representation. In software systems, not considering cycles in the functional 

network and not considering subgraph branches that may represent concurrent 

processing (i.e. observer patterns) creates the problem of discarding runtime information 

that may be important and may contribute to the scores. 

In the literature, discussion of this aspect of complex network modelling is limited, 

particularly in the context of software systems, which gives the impression that the 

absence of research is due to pragmatic reasons, considering the difficulty in generating 

multi labelled graphs accurately. 

Statistical analysis 

This research has a strong element of experimental software engineering, and while the 

results are encouraging, the volume of experiments that was possible was limited by the 

validation technique adopted. This limitation, coupled with several limitations in the 

data collection infrastructure, reduced the scope of producing more statistically 

significant results. The statistical technique adopted is standard, but the sample size 

needs to be significantly increased by extending these experiments and considering new 

systems. Efforts in this respect have already resulted in the collection of a large volume 

of dynamic analysis trace data. However, the question now is how to automate the 

process of mutation generation in order to improve process efficiency. 

8.2 Conclusion 

 

This thesis proposes the concept and definition of functional importance for the 

methods of object oriented software. This research tests the hypothesis that elements of 
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an object oriented system that are functionally important can be detected by using 

network analysis, in conjunction with scenario driven dynamic analysis. The thesis 

approaches the analysis of dynamic method-object interaction by using network 

representation, and linking the representation and properties of the network model to the 

properties in the software structural-functional space. This ground up approach and 

subsequent validation of the hypothesis represents a significant deviation from previous 

research, which used network models to reason about the structure and behaviour of 

software systems. 

A definition of functional importance has been given, and network analysis has been 

used to predict the functionally important methods in object oriented software. Mutation 

testing has been used to simulate network edge removal and network fragmentation. 

This testing technique has been used to validate the idea that the network analysis 

measures are truly capable of identifying the functionally important structural elements 

of the dynamic software network. It is possible to see the application of this work in 

program reverse engineering, program comprehension, software test prioritisation, 

program vulnerability analysis, and other activities that deal with post release software 

maintenance. 

This research asked four questions. In response, on the basis of the work presented, it is 

possible to claim that: a) our definition of functional importance captures the essence of 

this abstract concept in the context of the current knowledge of object oriented software 

systems; b) network analysis can be used to discover functionally important method 

calls; c) the verification of predicted important method calls should be considered as 

significant, although the initial results are not sufficient and the process needs more 

empirical validation; and d) the Cloud can be gainfully utilized for software testing, 

although the use of the platform should be guided by significant gains in testing process 

efficiency. 

At this point it is relevant to ask about the likelihood that this work will have immediate 

applicability in software engineering practice. It is not uncommon in software 

engineering that an early metric definition is adopted by the community, while later 

refinements fail to gain popularity. An example is C&K metrics and Briand's 

refinements of the C&K metrics. The use of complex network modelling in software 

engineering is in its infancy, where the only techniques that seem to have gained some 

acceptance are based on the use of social networks analysis (SNA).The impact of 

application for this family of models and techniques, to analyse a software program's 



 

136 

 

static or dynamic data, cannot be determined from the limited number of available 

literature. In summary, it is too early to know for sure. 

In contrast to previous work involving the use of complex network models in software 

engineering and program analysis, this research has made a conscious effort to define a 

concept for software systems, and to underpin this definition in terms of a well-known 

property of scale free small world complex network models. This property deals with 

the robust but fragile nature of important structural nodes of such networks. The 

application of network analysis has been motivated by the aim to identify these nodes in 

software networks and validate these predictions experimentally. This validation forms 

the first step towards further empirical validation. Thus, although the validation could 

be stronger with better tool support, it has so far produced encouraging results. This 

provides further opportunity to work on a more rigorous definition and perform further 

experimental validation of the network metrics. 

8.3 Future work 

 

This work presented several practical challenges, which have been discussed in Section 

8.1. Continuation of this research is motivated primarily by these challenges and the 

possible solutions that may improve the quality of the results and the efficiency of the 

research cycle (i.e. data collection, data analysis and interpretation). 

8.3.1 Experiment cycle 

 

Validation technique 

 

The manual validation technique used in this work was extremely resource and labour 

intensive and prone to human error. It is known that dynamic instrumentation tools 

provide the necessary facilities to analyse the function names and instructions from the 

binary code, if the code is generated using the necessary debug flags.  

It may be possible to collect traces that are annotated with control path information and 

also with what led to that path being executed. If the predictions are generated based on 

these traces, all the context information is likely to be present that may eliminate the 

need to generate mutants. In fact mutations may be dynamic, and the methods and 

annotations may form the necessary data to perform context aware mutations at runtime.  
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Such a scheme will require that the software subjected to the dynamic mutation test is 

executed on a virtual machine, so that fatal mutations do not affect the host 

environment. The good news is that both Java’s virtual Machine and Pin Tools’ virtual 

machine provides the necessary isolation. In this context, as part of the evaluation, a 

tool was written to investigate whether mutation testing could be automated. This tool 

functions as expected, but it requires further work. At this point the tool relies on 

standard method names, which is acceptable in Java. However, for C++ it fails to 

distinguish method names, which is not mangled using a standard scheme across 

compilers. 

This type of context aware mutation is a refinement that can benefit the experiment 

process by making it more robust and efficient. 

Data analysis 

The network data analysis tools in this project were written as GUI driven tools, which 

needs RIGI format files as input. These RIGI format files are not strictly necessary, and 

network data generation should be a one step process from the trace file. A tool written 

in C++ has been developed for this purpose. This tool can ingest a trace in standard 

format and generate two representations of the network (directed and undirected). It is 

also able to compute the network analysis measures. The advantage of this tool is that it 

works both as a GUI and in console mode, making it possible to use in batch mode 

remotely in the Cloud. This tool needs to be tested and the numerical results validated 

before it can be used in a Cloud based analysis chain. The primary advantage of this 

type of tool is the ability to carry out complimentary forms of analysis using the same 

data set in an automated way, thereby reducing the need for human involvement except 

at the start and end of the process. 

An important aspect of the data analysis is the ability to parse efficiently very large 

trace data files. In this context, one technique that can be explored is trace abstraction, 

presented in [180] and in earlier work by the same author. 

In addition to this, it is worth exploring whether the NoSQL Database and software like 

Hadoop could be used in the Cloud to mitigate the challenges posed to efficient large 

trace file processing. 

8.3.2 Extension of empirical experiments 

 

In chapters 5, 6 and 7 it was mentioned that the results would cover only part of the data 

that was collected as part of this work. A significant volume of new data, totalling 
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approximately 1.5 terabytes, is now available for further validation work and extension 

of the empirical experiments. 

At this point the work only claims the ability to identify functionally important methods 

in the software. However, it is more meaningful to develop the ability to analyze the 

degree of importance of a functionally important method. In this context, it may be 

worth exploring whether concepts such as design pattern extraction and stereotype 

extraction, which use static analysis techniques, can be utilized to associate contextual 

information in the prediction of importance, based on network analysis of the traces. 

The work presented here is motivated in light of the limitations of static analysis.  A 

logical extension  would be to compare the network analysis-based prediction of 

functionally important methods with a popular static analysis-based approaches. This 

could also lead to production of a gold set against which performance of network 

analysis methods is compared as opposed to the baseline used in this work. 
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