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A b s t r a c t  

Trillions of microorganisms inhabit mucosal surfaces of the human body. Despite increasing 

evidence of their impact on human health, many of the molecular mechanisms underlying host-

microbial interactions (HMI) are poorly understood. To contribute to our understanding of HMI 

at mucosal surfaces, we investigated the novel family of M60-like/PF13402 domain-containing 

proteins and their putative functional partners.  

M60-like domains are shared by proteins from several mucosal microbes including two important 

human mucosal microbes; the bacterial mutualist Bacteroides thetaiotaomicron and the protist 

pathogen Trichomonas vaginalis, suggesting these proteins are important for interaction with the 

mucosal layer. We initially tested our hypothesis that these are glycoprotein-targeted metal 

dependent proteases in both these organisms. The three M60-like domains of B. thetaiotaomicron 

proteins (BT4244, BT3015 and BT4272) exhibited mucin protease activity. This proteolytic 

activity was shown to be inhibited in a mutant version of the protein (BT4244-FL-E575D) as 

well as in the presence of Ethylenediaminetetraacetic acid (EDTA), implying BT4244 and its 

relatives are metal dependent proteases. All M60-like proteins from B. thetaiotaomicron contained a 

carbohydrate binding module (CBM) from family 32 and these were shown to be capable of 

binding galacto-configured sugars that are common to mucin glycans, while in contrast the 

putative carbohydrate binding PA14 domain of the T. vaginalis TVAG339720 M60-like protein 

interacted with heparin and its sulphated derivatives. Mucins are glycoproteins and prominent 

components of the mucus secreted at mucosal surfaces while heparin is a close relative of 

heparan sulphate which typically exists as part of proteoglycans in the glycocalyx of mucosal 

epithelia. Although the actual target of the M60-like domain of TVAG339720 and its relatives in 

T. vaginalis are not currently known, the interaction of the TVAG339720 PA14 domain with 

heparin suggests that these may be proteases targeting proteoglycans and play a role in adhesion 

of the pathogen to the epithelial layer, a key initial step in pathogenesis. 

M60-like domain-containing proteins of B. thetaiotaomicron are also components of Sus-like 

systems. Sus-like systems are Bacteroidetes specific machinery that comprise a suite of cell-

envelope located carbohydrate-active enzymes and sugar binding proteins that target complex 

glycans, with each Sus-like system tuned to the degradation of a specific glycan. The Sus-like 

system containing the BT4244 enzyme (BT4240-50), encoded by the polysaccharide locus (PUL) 

PULBT_4240-50 was characterised in this study. The results demonstrated that BT4244 is a 

surface protein and that its proteolytic activity is part of a concerted action of BT4240-50 

components to utilise complex mucin glycoproteins containing the T (Galβ1-3GalNAc) and F 

(GalNAcα1-3GalNAc) antigens. Gene deletion studies revealed that PULBT_4240-50 provides a 

competitive advantage to the organism when grown on mucins, probably through its possession 

of the N-acetylgalactosamine (GalNAc) kinase BT4240, which was shown to be crucial for 

GalNAc utilisation. Finally, although variably conserved in closely related Bacteroides, the high 

frequency of PULBT_4240-50 components in this group of organisms suggests it may be an 

important evolutionary adaptation for survival at mucosal surfaces. Our findings not only set the 

stage for future functional studies on the novel M60-like/PF13402 family of proteins and their 

functional partners, but also further our understanding of host-microbial interactions at mucosal 

surfaces.  
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   CHAPTER I 

G e n e r a l  I n t r o d u c t i o n  

I.1 Introduction 

An understanding of the genetic and molecular mechanisms underlying host microbial 

interactions in disease and health remains crucial to the development of novel and innovative 

strategies for the management and improvement of health care. The importance of studies aimed 

at revealing new insights into some of these processes thus cannot be overemphasized especially 

now that demand for novel solutions to many of our world’s health problems is also on the rise.   

Recent findings that the human microbiota especially our resident gut microbiota does not only 

potentially encode a more extensive proteome than the human genome but  can also negatively 

influence our health under certain physiological circumstances, have drawn a great deal of 

attention from the research and medical community (Qin et al., 2010, Sekirov et al., 2010) . Our 

resident gut microbes have now been implicated in many important public health hazards 

including obesity, diabetes, cancer, allergy, autism (Turnbaugh et al., 2006, Sekirov et al., 2010, 

Clemente et al., 2012), a situation that is only further worsened by our currently limited 

knowledge of the molecular and genetic underpinnings of most of the processes involved.  Even 

so, a lot about the mechanisms by which they positively impact on our health, something they are 

generally known for, still remains obscure. Foreign invading pathogens on the other hand have 

been the subject of intensive research for so many years and their threat to human health is well-

known and documented. Although significant progress has been made over the years with this 

group of microbes, just like their resident counterparts, a lot about the mechanisms by which 

they influence human health also remains unclear.   

To date, two major approaches have been used to study the human microbiota and interactions 

with its host. The first is largely sequencing – based and currently adopted by large-scale 

metagenomic projects including the Human Microbiome Project (HMP) 

(http://commonfund.nih.gov/hmp/). Data from this and other metagenomic projects have so 

far revealed vital insights into the content, diversity and functioning of human-associated 

microbial communities (Yatsunenko et al., 2012, Ling et al., 2013, Martínez et al., 2013). There is 

also the function-driven approach involving the molecular and biochemical characterisation of 

microbial encoded factors. This rather painstaking approach remains one of the most reliable 

ways of predicting the activities of our resident microbiota (including foreign invading microbes) 

and the various mechanisms by which they interact with us to influence our health.   
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The current study is in line with the latter and focuses on host-microbial interactions at mucosal 

surfaces involving two important human gut and urogenital tract microbes; Bacteroides 

thetaiotaomicron and Trichomonas vaginalis, respectively. Both mucosal microbes are known to share 

several genetic features including genes encoding the novel, putative surface-exposed M60-like 

domain-containing family of proteins (PF13402) (Nakjang et al., 2012), which alongside their 

functional partners in B. thetaiotaomicron were of major interest in this study.   

I.2 Mucosal surfaces in the human body 

Mucosae represent layers of tissue, contiguous with the skin and lining areas of the body that 

come in contact with air. Mucosal tissue lines internal organs and important tracts in the human 

body such as the respiratory, gastrointestinal and the urogenital tracts (RT, GIT and UGT 

respectively) (Figure I.1), forming a protective barrier in these areas. The surface of mucosal 

tissue (mucosal surfaces) is home to a wide range of secretions, the most prominent being the 

characteristic mucus of the gastrointestinal and respiratory tracts (Atuma et al., 2001, Nataro et al., 

2005). Mucus, secretory IgA (SIgA), defensins, proteolytic enzymes, epithelial cell surface 

glycocalyx components and resident microflora all constitute important elements of the mucosal 

immune system (Macdonald, 2003, Kaiserlian et al., 2005).  

I.2.1 Mucus  

Mucus is a thick, viscoelastic, sticky substance, synthesized, stored and secreted by goblet cells in 

mucosal tissue and some glands of the body. Components of mucus include water (95%), 

glycoproteins (mucins) (1-10%), antibodies, electrolytes and nucleic acids (Hollander, 1963, Allen 

and Snary, 1972, MacFarlane et al., 2005). Studies on mucus in the rat stomach and small intestine 

reveal that secreted mucus actually forms two continuous layers over mucosal surfaces where it is 

secreted. These include an upper loosely adherent, movable gel layer overlying a less movable 

adherent layer in direct contact with epithelial cells (Atuma et al., 2001, Johansson et al., 2011). 

The stomach and colon contain well-defined and continuous layers of each type of mucus while 

the small intestine rather shows a discontinuous mucus organisation without well-defined layers 

(Figure I.1). It has also been reported that unlike the lower less movable layer, the upper movable 

layer in the mouse colon is home to many gut microbes (Johansson et al., 2008).  
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Figure I.1 – Examples of systems in the human body containing mucosal tissue and surfaces.    A: 

Gastrointestinal system, A1: Cross-sectional view of gastrointestinal tissue showing mucus layers B: Respiratory system and C: 

Urogenital system in both males and females. C1 & C2: Rest of urogenital system in males and females respectively. Images were 

modified from Johansson et al., (2011) and Encyclopaedia Britannica online (Written by Harrison R J) 
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Some important functions of the mucus bilayer include lubrication (e.g. during digestion) and 

physical protection against invading pathogens, toxins and other potentially harmful 

environmental substances (Macfarlane et al., 2005, Thornton and Sheehan, 2004). There is indeed 

evidence of up regulation of mucus components such as mucins following exposure to bacterial 

lipopolysaccharides (Dohrman et al., 1998). Paradoxically, mucus is a potentially rich source of 

carbon and nitrogen for gut microbes, some of which encode mucin degrading enzymes 

(Hernandez-Gutierrez et al., 2004, Grys et al., 2005, Gutierrez-Jimenez et al., 2008, Szabady et al., 

2011, Ruiz-Perez et al., 2011) 

I.2.1.1 Mucins  

Mucins are high molecular weight glycoproteins (>1000 KDa) and important structural 

components contributing significantly to the lubricative and viscoelastic properties of mucus 

(Gerken, 1993). The general makeup of mucins is a peptide core to which are attached several 

sugar side chains giving it a ‘bottle brush’ appearance (Bansil and Turner, 2006).  

Mucins can be either secreted (gel forming and extracellular) or membrane bound (cell surface 

anchored or membrane tethered) (Figure I.2) and both share a lot of similarities (Perez-Vilar and 

Hill, 1999, Hattrup and Gendler, 2008, Dharmani et al., 2009). An important distinguishing 

feature between them is the presence of a membrane-spanning domain and cytoplasmic tail in 

membrane tethered mucins (Hattrup and Gendler, 2008).  

Mucin gene expression is tissue-specific and to date over 21 human mucin (MUC) genes have 

been identified (Table I.1, Figure I.3). A characteristic feature of almost all mucin types is the 

presence of variable number tandem repeats (VNTR) of amino acid motifs (Vinall et al., 1998, 

Jiang et al., 2000, Perez-Vilar and Hill, 1999). Repeats in different mucin types which may be 

identical or degenerate often contain a high number of proline, threonine and serine residues 

(PTS repeats) (Vinall et al., 1998, Perez-Vilar and Hill, 1999) with serine and threonine 

representing potential glycosylation sites in the structure (Hattrup and Gendler, 2008).  Repeat 

domains are often centrally located in the mucin peptide and flanked by several other types of 

domains typically cysteine rich domains some of which show similarity to C-terminal cystine knot 

domains and von Willebrand factor (vWF) C and D domains (Section I.2.1.1.3, Figure I.8). 

Terminal cysteine rich domains are essential for polymerization of mucins via disulphide bonds 

(Bansil and Turner, 2006, Sheehan et al., 2004). 
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Figure I.2 - Typical structural organization of secreted and membrane bound mucins. Modified 

from Sipaul et al., (2011). 

Mucin gene Form  TR/cysteine Species 

MUC1 Membrane bound TR H, R, M 

MUC2 Secreted Cysteine rich H, R, M 

MUC3A Membrane bound TR H, R, M 

MUC3B Membrane bound TR H, R, M 

MUC4 Membrane bound TR H, R, M 

MUC5AC Secreted Cysteine rich H, R, M 

MUC5B Secreted Cysteine rich  

MUC6 Secreted Cysteine rich H, R, M 

MUC7 Secreted Cysteine rich H, R, M 

MUC8 Secreted Cysteine poor H, R, M 

MUC9 Secreted Cysteine poor H, R, M 

MUC10 Membrane bound TR R, M 

MUC11 Membrane bound TR H, R, M 

MUC12 Membrane bound TR H, R, M 

MUC13 Membrane bound TR H, R, M 

MUC14 Membrane bound TR H, R, M 

MUC15 Membrane bound TR H, R, M 

MUC16 Membrane bound TR H, R, M 

MUC17 Membrane bound TR H, R, M 

MUC18 Membrane bound None H, R, M 

MUC19 Secreted Cysteine rich H, R, M 

MUC20 Membrane bound TR H, R, M 

MUC21 Membrane bound TR H, M 

 Table I.1 - Diversity and properties of human mucins. TR: Tandem repeat, H: Human, R:  Rat M: 

Mouse (Dharmani et al., 2009)  

KEY Secreted mucin 

Membrane bound mucin 

Cytoplasmic tail 

Extracellular 

Plasma membrane 
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Figure I.3 - Mucin gene expression in different areas of the human body. Mucins indicated in 

annotation boxes are colour coded to match the colour of the various organs (in the image) in the human body 

expressing them. MUC21 which is not indicated in the image above is known to be present in the lungs, large 

intestines, thymus and testes (Dharmani et al., 2009). This image was adapted from Andrianifahanana et al., 2006. 
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I.2.1.1.1 Mucin glycosylation 

A bulk of the molecular weight of mucins (about 90%) is contributed by the attached sugars 

(Perez-Vilar and Hill, 1999). Two major types of mucin glycosylation are known. These include 

the mucin type - O and N-glycosylations, named after the type of linkage present between the 

attached sugars and the protein backbone. Glycosylation generally has a marked impact on the 

structure and physicochemical properties of proteins. In the case of mucins, it is important for 

their stability, protection, folding, solubility and rheological properties (Thornton et al., 2008). 

I.2.1.1.1.1 Mucin O- glycosylation 

 O-glycosylation is the predominant form of mucin glycosylation. Mucin O-glycosylation     

occurs in the Golgi complex and typically commences with the attachment of the acetylated 

sugar α-N-acetylgalactosamine (αGalNAc) to the peptide backbone of the immature mucin. This 

is catalyzed by a large family of enzymes termed polypeptide N-acetylgalactosaminyltransferases 

(ppGalNAc-Ts) capable of linking αGalNAc (from UDP-GalNAc) with the hydroxyl groups of 

serine or threonine in the tandem repeats of the immature mucin polypeptide backbone (Tran 

and Hagen 2013, Nakayama et al., 2013, Jensen et al., 2010). The resulting bond formed between 

GalNAc and serine or threonine in the peptide backbone is termed an O-glycosidic bond and 

can involve other sugars such as xylose, fucose, mannose, galactose, and glucose in place of 

GalNAc in other glycoproteins (Nakayama et al., 2013, Rose and Voynow, 2006). The core 

structure that is formed following the addition of GalNAc to serine or threonine is termed the 

Tn or tumor antigen (αGalNAc-Ser/Thr). Extension of this core by other glycosyl transeferase 

enzymes through the addition of a combination of sugars such as Gal and GlcNAc or GalNAc, 

results in the formation of at least 8 different types of mucin-type O-core structures (Figure I.4). 

Different types of mucins contain different types and amounts of these core structures which can 

be further enzymatically extended into more complex glycan structures as observed with human 

MUC5B and MUC2 (Thomsson et al., 2002, Larsson et al., 2009, Jensen et al., 2010, Moran et al., 

2011). A list of some O-glycan structures obtained by mass spectrometry from different areas of 

the intestines of two human subjects is given below in Table I.2. Very extended or complex 

mucin glycans are typically divided in to three units namely the core, backbone and peripheral 

units as shown in the model structure of a complex mucin in Figure I.5.  Also see Figure I.4 for a 

summary of the steps involved in the synthesis of various mucin type-O glycan core structures in 

mammals. More details about the process are given in Nakayama et al., 2013.  
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Figure I.4 – Biosynthesis of mucin type – O glycans. Mucin biosynthesis commences with the addition of N-

acetylgalactosamine to a serine or threonine residue in the apomucin protein by the enzyme N-acetylgalactosaminyltransferase 

(GalNAc-T) forming the Tn antigen (GalNAcα1-O-Ser/Thr). Enzymatic extension of the Tn antigen by other specific 

transferases results in the formation of a variety of mucin core structures which can be further extended into more complex 

glycan structures.  See a more detailed description of the process in Nakayama et al., 2013 from where this image was adapted. 
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Figure I.5 - Model structure of a complex mucin showing various units. This image was redesigned 

from Wiggins et al., (2001), with information from various other sources including Martens et al., (2008), Moran et al., 

(2011), Jensen et al., (2010) and Nakayam et al., (2013).  

 

 

                        I     C    T     S      R  
Sequence/composition of oligosaccharide alditols               a  b   a  b  a  b  a  b  a   b 
 

GlcNAc→3GalNAc-ol          + + + + + + + + + + 
GalNAc→3GalNAc-ol          + + + + + + + + + + 
Gal→3GlcNAc→3GalNAc-ol         + + + + + + + + + + 
Gal→3(GlcNAc→6)GalNAc-ol         + + + + + + + + + + 
GlcNAc→3Gal→3GalNAc-ol        + + + + + + + + + + 
Fuc→2Gal→3GalNAc-ol        − − − − − − + + − − 
Gal→3(Fuc→4)GlcNAc→3GalNAc-ol        + + + + + + + + + + 
Gal→3(Gal→4GlcNAc→6)GalNAc-ol       + + + + − − + + − + 
Gal→4GlcNAc→3Gal→3→GalNAc-ol        + + + + − − − − − − 
HexNAc→Gal→3GlcNAc→3GalNAc-ol       + + + + + + + + + + 
HexNAc→3Gal→3(GlcNAc→6)GalNAc-ol       + + + + + + + + + + 
Gal→4GlcNAc→3(GlcNAc→6)GalNAc-ol       − + + − − − + − + + 
(Fuc→2)Gal→3(Fuc→4)GlcNAc→3GalNAc-ol      − − + + + + − − − − 
(Fuc→)GlcNAc→3(Fuc→2)Gal→3GalNAc-ol       − − − + − − − − − − 
Gal→4GlcNAc→3(Fuc→2)Gal→3GalNAc-ol       + + − − − − − − − − 
(Fuc→2)Gal→3(Gal→4GlcNAc→6)GalNAc-ol       + + − − − − − − − − 
2 Gal, GlcNAc, Fuc, GalNAc-ol         + + + + + − − − + + 
HexNAc→3Gal→3(Fuc→4)GlcNAc→3GalNAc-ol      + + + + − − − − − − 
Gal, 2HexNAc, Fuc, GalNAc-ol         + + + + + + − − − − 
Gal, 2GlcNAc, Fuc, GalNAc-ol (core 2)        + − − − − − − − − − 
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                        I     C    T     S      R  
Sequence/composition of oligosaccharide alditols                       a  b   a  b  a  b  a  b  a   b 
 

Gal, 2GlcNAc, Fuc, GalNAc-ol (core 4)        + + + − − − − − − − 
2 Gal, 2 HexNAc, GalNAc-ol         + + + + + + + + + + 
HexNAc→3Gal→4GlcNAc→3(GlcNAc→6)GalNAc-ol      − − − − − − − − − + 
Gal→3[(Fuc→2)Gal→3(Fuc→4)GlcNAc→6]GalNAc-ol      + − − − − − − − − − 
(Fuc→2)Gal→3[(Fuc→2)Gal→4GlcNAc→6]GalNAc-ol      + − − − − − − − − − 
2 Gal, HexNAc, 2 Fuc, GalNAc-ol        + − + − − − − − − − 
HexNAc→3(Fuc→2)Gal→3(Fuc→4)GlcNAc→3GalNAc-ol     + + + + − − − − − − 
2 Gal, 2 HexNAc, Fuc, GalNAc-ol        + + + + − − − − − + 
Gal, 3 HexNAc, Fuc, GalNAc-ol         − − − − − − − − − + 
HexNAc→3Gal→3(Fuc→4)GlcNAc→3(GlcNAc→6)GalNAc-ol     + + − − − − − − − − 
2 Gal, 3 HexNAc, GalNAc-ol         − − − − − − + + + + 
2 Gal, HexNAc, 3 Fuc, GalNAc-ol        + − − − − − − − − − 
2 Gal,2 HexNAc, 2 Fuc, GalNAc-ol        + + + + + + − − − − 
(Fuc→2)Gal→3(Fuc→4)GlcNAc→3(Gal→4GlcNAc→6)GalNAc-ol     + + − − − − − − − − 
3 Gal, 2 HexNAc, Fuc, GalNAc-ol        + + − − + + − − − − 
HexNAc→3(Fuc→2)Gal→3(Fuc→4)GlcNAc→3(GlcNAc→6)GalNAc-ol     + + − − − − − − − − 
2 Gal, 3 HexNAc, 1 Fuc, GalNAc-ol        + + − − − − − − − − 
2 Gal, 2 HexNAc, 3 Fuc, GalNAc-ol        + + − − − − − − − − 
3 Gal, 2 HexNAc, 2 Fuc, GalNAc-ol        + + − − − − − − − − 
2 Gal, 3 HexNAc, 2 Fuc, GalNAc-ol        + + − − − − − − − − 
2 Gal, 4 HexNAc, 1 Fuc, GalNAc-ol        + + − − − − − − − − 
3 Gal, 2 HexNAc, 3 Fuc, GalNAc-ol        + + − − − − − − − − 
2 Gal, 3 HexNAc, 3 Fuc, GalNAc-ol        + + − − − − − − − − 
2 Gal, 4 HexNAc, 2 Fuc, GalNAc-ol        + + − − − − − − − − 
3 Gal, 3 HexNAc, 3 Fuc, GalNAc-ol        + + − − − − − − − − 
2 Gal, 4 HexNAc, 3 Fuc, GalNAc-ol        − + − − − − − − − − 
 
Oligosaccharides with one NeuAc residue 
 
NeuAc→6GalNAc-ol          + + + + + + + + + + 
Gal→3(NeuAc→6)GalNAc-ol         + + + + + + − − + + 
(NeuAc→3)Gal→3GalNAc-ol         − − − − − − + + − − 
GalNAc→3(NeuAc→6)GalNAc-ol        + + + + + + + + + + 
GlcNAc→3(NeuAc→6)GalNAc-ol        + + + + + + + + + + 
(Fuc→2)Gal→3(NeuAc→6)GalNAc-ol        + − + − − − − − − − 
Gal→3GlcNAc→3(NeuAc→6)GalNAc-ol       + + + + + + + + + + 
(NeuAc→3)Gal→3(GlcNAc→6)GalNAc-ol       − − − − − − − + − − 
(NeuAc→3)Gal→4GlcNAc→3GalNAc-ol       − − − − − − − + − − 
GlcNAc→3Gal→3(NeuAc→6)GalNAc-ol       + − + − + + + + + + 
Gal→3(Fuc→4)GlcNAc→3(NeuAc→6)GalNAc-ol      + + + + + + + + + + 
Gal→4(Fuc→3)GlcNAc→3(NeuAc→6)GalNAc-ol      + + + + + + + + + + 
(NeuAc→3)Gal→4(Fuc→3)GlcNAc→3GalNAc-ol      − − − − − − − + − − 
HexNAc→3Gal→4GlcNAc→3(NeuAc→6)GalNAc-ol      − + − + − − − − − − 
GalNAc→4(NeuAc→3)Gal→4GlcNAc→3GalNAc-ol      − − − − + + + + + + 
GalNAc→4(NeuAc→3)Gal→3GlcNAc→3GalNAc-ol      − − − − + + + + + + 
(Fuc→2)Gal→3(Fuc→4)GlcNAc→3(NeuAc→6)GalNAc-ol     + + + + + − − − − − 
HexNAc→3Gal→3(Fuc→4)GlcNAc→3(NeuAc→6)GalNAc-ol     + + + + + − − − − − 
HexNAc→3(Fuc→2)Gal→3GlcNAc→3(NeuAc→6)GalNAc-ol    + − + − − − − − − − 
(NeuAc→3)Gal→4GlcNAc→3Gal→GlcNAc→3GalNAc-ol     − − − − − − + + − − 
HexNAc→3(Fuc→2)Gal→3(Fuc→4)GlcNAc→3(NeuAc→6)GalNAc-ol     + + + + − − − − − − 
NeuAc→3Gal→4(Fuc→3)GlcNAc→3Gal→3[Gal→4(Fuc→3)GlcNAc→6]GalNAc-ol     − − − − − − + + + + 
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                        I     C    T     S      R  
Sequence/composition of oligosaccharide alditols                     a  b   a  b  a  b  a  b  a   b 

 
 
Oligosaccharides wih one sulphate residue 
 
(SO3−)3Gal→4GlcNAc→3GalNAc-ol        − − − + − − + + + + 
Gal→4(SO3−)6GlcNAc→3GalNAc-ol        + − − + − − + + + + 
(Fuc→2)Gal→4(SO3−)6GlcNAc→3GalNAc-ol       + − − + − − − − − + 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3GalNAc-ol       − − + + + + + + + + 
Gal→3[(SO3−)3Gal→4GlcNAc→6]GalNAc-ol       − − − − + − + + + + 
Gal→3[Gal→4(SO3−)6GlcNAc→6]GalNAc-ol       − − − − + − − − + + 
(SO3−)3Gal→4GlcNAc→3Gal→3GalNAc-ol       − − + + + − − − − − 
Gal→3[(SO3−)3Gal→4(Fuc→3)GlcNAc→6]GalNAc-ol      − − − + + + − + + + 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3Gal→3GalNAc-ol      − − − − + − + + + + 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3Gal→3[Gal→4(Fuc→3)GlcNAc→6]GalNAc-ol    − − − − − − − + − − 
 
Oligosaccharides with two acidic residues 
 
(SO3−)3Gal→4GlcNAc→3(NeuAc→6)GalNAc-ol      − − − − + + + + + + 
(NeuAc→3)Gal→3(NeuAc→6)GalNAc-ol       + + + + + + + + − − 
(SO3−)3Gal→3[(SO3−)3Gal→4(Fuc→3)GlcNAc→6]GalNAc-ol     − − − − − − − + − − 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3(NeuAc→6)GalNAc-ol     + + + + + + + + + + 
(NeuAc→3)Gal→3[(SO3−)3Gal→4GlcNAc→6]GalNAc-ol     − − − − − − + − + + 
(NeuAc→3)Gal→4GlcNAc→3(NeuAc→6)GalNAc-ol      + + − + + + + + + + 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3Gal→3(NeuAc→6)GalNAc-ol     − − − − + + − − − − 
(NeuAc→3)Gal→4(Fuc→3)GlcNAc→3(NeuAc→6)GalNAc-ol     − − + + + + + + + + 
(SO3−)3Gal→4GlcNAc→3Gal→4GlcNAc→3(NeuAc→6)GalNAc-ol     − − − + − − − + − − 
GalNAc→4(NeuAc→3)Gal→4GlcNAc→3(NeuAc→6)GalNAc-ol     − − − + + + + + + + 
GalNAc→4(NeuAc→3)Gal→3GlcNAc→3(NeuAc→6)GalNAc-ol     − − − + + + + + + + 
(SO3−)3Gal→4GlcNAc→3Gal→3[(SO3−)3Gal→4(Fuc→3)GlcNAc→6]GalNAc-ol     − − − − − − − + − − 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3Gal→4GlcNAc→3(NeuAc→6)GalNAc-ol     − − + + − − + + + − 
3 Gal, 2 HexNac, NeuAc, SO3−, GalNAc-ol       − − − − − − − − + − 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3Gal→3[(SO3−)3Gal→4(Fuc→3)GlcNAc→6]GalNAc-ol     − − − + − − + + + + 
(SO3−)3Gal→4(Fuc→3)GlcNAc→3Gal→4(Fuc→3)GlcNAc→3(NeuAc→6)GalNAc-ol    − − + + + + + + + + 
2 Gal, 2 HexNAc, Fuc, 2 NeuAc, GalNAc-ol       − − + − − − − − − − 
2Gal, 2 HexNAc, 2 Fuc, 2 NeuAc, GalNAc-ol       − − − − − − − − + − 

 

Table I.2 - Glycan structures detected in mucins from different areas of the intestines of two 

human subjects (a and b)  with blood group ALeb (A-Lewisb). I = Ileum, C= cecum, T = transverse, S = 

sigmoid colon, R= rectum. All data presented in this table was adapted from Robbe et al., 2004. 
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I.2.1.1.1.2 Mucin N-glycosylation 

N-glycosylation of mucins is also possible (Hattrup and Gendler, 2008, Moran et al., 2011), 

targeting asparagine in a unique tri-peptide consensus sequence; Asn-Xaa-Ser/Thr (Xaa = any 

amino acid apart from proline) when present in the nascent mucin polypeptide (Parry et al., 2006, 

Moran et al., 2011). It is much less predominant compared to O-glycosylation and has equally 

received less research attention. N-glycosylation of proteins in mammals unlike O-glycosylation 

occurs in the ER, commencing with the addition of a pre-assembled glycolipid precursor 

designated; Glc3Man9GlcNAc2-P-P-Dol to asparagine (in the Asn-Xaa-Ser/Thr tri-peptide 

consensus) in the immature mucin protein. The preassembled structure is prepared in a series of 

reactions involving several transferase enzymes encoded by a family of genes termed ALGs 

(asparagine-linked glycosylation) (Figure I.6) while the transfer of the structure to the protein 

backbone of the immature mucin is catalysed by a large enzyme complex termed OST 

(oligosaccharyltransferase)(Potapenko et al., 2010). The resulting glycoprotein structure is later on 

modified by a series of enzymes including glycoside hydrolases and glycosyltransferases some in 

the golgi appartaus to produce a variety of N-glycan structures. Depending on their content and 

complexity they are classified as either high mannose, complex or hybrid N-glycans. A summary 

of the process adapted from Potapenko et al., (2010) is given below in Figure I.6 with more 

details of the process in the same publication.    

I.2.1.1.2 MUC1 – an example of a predominantly membrane anchored mucin 

Mucin 1 (MUC1), variously called CD227, episialin, or epithelial membrane antigen (EMA) is a 

product of the human MUC1 gene and a prominent urogenital tract mucin of males and females. 

It is highly expressed in the uterus, cervix, vagina, prostate, ovaries, kidneys and has also been 

reported in many others areas of the body including  the breast, lungs, cornea, salivary glands, 

oesophagus, stomach, pancreas, small and large intestine (Figure I.3 and Dharmani et al., 2009).  

MUC1 is a high molecular weight glycoprotein consisting of a peptide backbone (with an 

estimated molecular weight of 125-220KDa), to which are attached several glycan side chains. 

The inclusion of attached glycans brings the overall molecular mass of the mature glycoprotein to 

about 250-500KDa (Lancaster et al., 1990, Brayman et al., 2004, Lagow et al., 1999). Although 

shed and secreted versions of MUC1 have been reported (Boshell et al., 1992, Engelmann et al., 

2005, Baruch et al., 1999, Hanisch et al., 2000) It is often found tethered to the apical membrane 

of epithelial cells that produce it, thanks to the presence of a trans-membrane domain in the 

structure of some variants e.g MUC1/REP and MUC1/Y (Baruch et al., 1999).   
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Figure I.6 - N-glycan biosynthesis in humans. Enzymes in the endoplasmic reticulum (ER) encoded by the ALG 

(asparagine-linked glycosylation) gene family catalyze the formation of Glc3Man9GlcNAc2-P-P-Dol which is then transferred by 

the enzyme OST (oligosaccharyltransferase) to asparagine (Asn) in a unique tripeptide consensus of the nascent mucin 

polypeptide. Subsequent modifications of the glycoprotein by glycoside hydrolase and glycosyltransferase enzymes some in the 

golgi apparatus [mainly mannosidase (MAN) and mannosyl N-acetylglucosaminyltransferases (MGAT)], lead to the formation of 

a variety of N-glycans classified as either complex, hybrid or high mannose N-glycans.  N-glycans like their O-glycans can also be 

sialylated or fucosylated. Images modified from Potapenko et al., (2010), and Nettleship, (2012) 
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The well characterized MUC1/REP also contains two other important domains namely the 

cytoplasmic and extracellular domains. Following translation, the protein is processed into two 

cleavage products, one containing the extracellular domain alone and the other, the 

transmembrane and cytoplasmic domains. This autoproteolysis is thought to occur in a 

conserved region of the protein termed the SEA domain (Levitin et al., 2005). When anchored to 

the epithelial membrane, both cleavage products are held together by non-covalent SDS sensitive 

bonds (Ligtenberg et al., 1992, Baruch et al., 1999).  

 

The short cytoplasmic domain is in contact with the interior or cytoplasm of the epithelial cell 

while the extracellular domain enables the extension of MUC1 towards the outside of the cell e.g 

into the lumen or glandular ducts as in the uterus (Figure I.7). This is often to an extent (about 

200 nM) known to be further than many extracellular surface proteins including E-cadherin 

(Wesseling et al., 1996). The extracellular domain also contains degenerate variable tandem repeat 

sequences rich in serine and threonine residues, with some serving as sites for the attachment of 

O-linked glycans (Roy and Baek, 2002, Hanisch et al., 2000).  

 

MUC1 O-glycosylation is typically Core 2 - based (Galβ3(Galβ3/4GlcNAcβ6)GalNAc-S/T) 

(Figure I.7). MUC1 expression and glycosylation is also thought to change in diseases such as 

breast and colon cancer (Schroeder et al., 2004, Backstrom, et al., 2009, Taylor-Papadimitriou et al, 

1999). With regards to glycosylation, there is decreased production of extended Core 2 - based 

glycans and a corresponding increase in shorter T antigen (Core 1) - based glycans (Figure I.7 

and Taylor-Papadimitriou et al, 1999).   This has been attributed to the lack of expression of the 

enzyme Core 2 p6-GlcNAc-transferase (Galβ1–3GalNAc/β-6-N-acetylglucosaminyltransferase) 

(Brockhausen et al., 1995, Muller et al., 1999) important for the addition of β1-6 linked GlcNAc 

to GalNAc in the T antigen chain of the growing glycoprotein.    There is also a corresponding 

increase in α3-sialyltransferase activity in the cancer cell lines leading to the increased sialylation 

of T antigen and Tn antigen, thus explaining the predominance of sialylated forms of these 

sugars in breast cancers (Brockhausen et al., 1995, Figure I.7). The nature of O-glycans in 

prostate cancer is still a subject of debate. While Arai et al., 2005 have reported increased levels of 

sialylated MUC1 in biopsies from prostate cancer patients at different stages of the disease, the 

same observation has not been made  for MUC1 from C42B prostate cancer cell lines, whose O-

glycan structures are not known to be significantly different from normal (Premaratne et al., 2011, 

Backstrom et al., 2009). 
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N-linked glycans are also present on MUC1, close to the trans-membrane domain attached to the 

epithelial cell surface (Figure I.7A). A study comparing secreted and membrane anchored MUC1 

N-glycans in human milk showed that secreted MUC1 contained more high mannose N-glycans 

as opposed to complex type N-glycans in their membrane anchored counterparts (Parry et al., 

2006).  

 

   

                      

         

 

Figure I.7 – Properties of human mucin-1 (MUC1). A: Schematic diagram showing structural features of 

membrane tethered MUC1 (McGuckin et al., 2011). B: Staining of MUC1 on luminal (le) and glandular epithelia (ge) 

of canine uterus (Ishiguro et al., 2007). C: Differences in MUC1 O-glycosylation in normal and cancer breast cells   

Short chained core-1 based glycans predominate in the cancer cells (Roy and Baek, 2002).  
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I.2.1.1.2.1 Importance of MUC1 

The observation that null mice unable to produce MUC1 were more prone to infection and 

inflammation of their lower reproductive tract tissues suggests that MUC1 like many other 

mucins are important in conferring resistance against infection (DeSouza et al., 1999, Carson et 

al., 1998). MUC1 is also thought to play a role in reproduction in mice by being repressed under 

the influence of reproductive hormones to ease embryo implantation (Carson et al., 1998, 

Brayman et al 2004). Phosphorylation of the cytoplasmic domain of MUC1 is also possible, an 

indication that the molecule may also be involved in signal transduction across cells (Zrihan-

Licht et al., 1994, Hanisch and Muller., 2000).    

I.2.1.1.3 MUC2 – an example of a predominantly secreted mucin   

Mucin 2 is a secreted gel-forming mucin produced by goblet cells in respiratory and 

gastrointestinal tracts (Andrianifahanana et al., 2006, McGuckin et al., 2011 and Figure I.3). The 

encoded protein is about 5100 amino acids long (Allen et al., 1998) and just like MUC1 contains 

several domains including glycosylated PTS containing VNTR domains (McGuckin et al., 2011). 

It is however structurally more complex than MUC1, e.g in terms of glycosylation and the 

formation of secondary structures (Larsson et al., 2009). The molecular weight of a MUC2 

polymer as result can get as high as 2.5 MDa (Larsson et al., 2009). 

Secreted MUC2 contains about 11 protein domains, 7 of which are Von Willebrand factor 

(vWF)-like domains (Figure I.8).   vWF is a large multimeric glycoprotein present in blood 

plasma and known to play an important role in blood clotting by binding to blood clotting 

proteins such as factor VIII and mediating the adhesion of blood platelets to wound sites (Sadler, 

1998, Ruggeri and Ware 1993). A deficiency of the protein in humans indeed leads to a bleeding 

disorder termed von willebrand disease (VWD). The functions of the various vWF -like domains 

in MUC2 are however unclear but terminal vWF like domains are likely involved in the 

formation of complex MUC2 structures through the formation of C-terminal disulphide-held 

dimers as is the case with the vWF glycoprotein (Ruggeri and Ware, 1993, Asker et al., 1998). 

These together with disulphide linked N-terminal trimers significantly contribute to the complex 

MUC2 gel network of the colon (Godl et al., 2002, Johansson et al., 2011). Disulphide linkages 

contributed by cysteine rich CK and CysD (Cys 1 and Cys 2) domains (Figure I.8) also play an 

important role in the formation of high order/complex polymeric MUC2 structures (Ambort et 

al., 2011, Bell et al., 2001, 2003). 
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Once secreted, in the colon, MUC2 forms two major gel layers an outer loosely adherent and an 

inner tightly packed layer (Figure I.1). The outer layer is home to resident or commensal 

microflora while the inner layer is generally thought to be sterile or void of microbes (Johansson 

et al., 2011). MUC2 thus provides important protection for underlying epithelia against resident 

and foreign bacteria. 

 

 

 

Figure I.8 - Structural features of human MUC2 apomucin. SP: Signal peptide B, C, D1, D2, D3, and 

D4, D’: Von Willebrand factor-like domains TR1 and TR 2: Tandem repeat domains, CK: cystine knot domain. 

Cys1, Cys2: cysteine rich domains (Rousseau et al., 2004, Ambort et al., 2011) 

A list of MUC2 glycans MUC2 O-glycans of the sigmoid colon detected by mass spectrometry is 

provided in Appendix Table D.1. The data reveal a prominence of Core-3 (GlcNAcβ1-

3GalNAc) and Core-5 of F antigen (GalNAcα1-3GalNAc) - based structures. MUC2 expression 

and O-glycosylation is altered in disease conditions such as ulcerative colitis and colorectal 

cancers (Aksoy et al., 2000, Larsson et al., 2011, Brockhausen, 2006). MUC2 indeed is known to 

be a major carrier of the colorectal cancer associated sialyl-Tn (Neu5Acα2-6GalNAc-O-Ser/Thr) 

and Tn (GalNAc-O-Ser/Thr) antigens; (Conze et al., 2010, Larsson et al., 2011, Brockhausen, 

2006). The Sialyl-Tn antigen is equally highly expressed in most gastric, ovarian, breast and 

pancreatic carcinomas (Conze et al., 2010).   

N-linked glycans on the other hand occur in low abundance in MUC2 compared to O- linked 

glycans. Although they have received lesser attention, they are thought to be important in mucin 

folding, dimerization, maturation and signaling (Asker et al., 1998, Bell et al., 2003). 
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I.2.1.1.3.1 Importance of MUC2 

A major role for MUC2 is the physical protection of underlying epithelia, be it from bacteria, 

viruses or other harmful substances ingested into the gut lumen.  The importance of MUC2 in 

this regard is also demonstrated in studies suggesting increased risks of colitis and colorectal 

cancers in muc2 deficient mice (Velcich et al., 2002, Van der Sluis et al., 2006). Secondly, MUC2 

may serve an important role as a source of nutrients and an attachment site for both resident and 

foreign bacteria (Johansson et al., 2011). As a result, it may also contribute in shaping the human 

gut microbiota composition (Koropatkin et al., 2012). 

I.2.1.2 Immunoglobulin A     

IgA is a prominent component of mucous secretions and represents the predominant class of 

secreted immunoglobulins at mucosal surfaces (Underdown and Schiff, 1986, Morton et al., 

1993). IgA can exist in both monomeric (serum IgA) and dimeric forms [secretory IgA (SIgA)] 

with dimeric or secretory IgA containing additional components including the J-chain and 

secretory component (Figure I.9, Kazeeva and Shevelev, 2007). SIgA is the predominant form in 

mucous secretions playing a significant role in the protection of mucosa surfaces from invasion 

by mucosal microbes and other harmful environmental agents (Hurlimann and Darling, 1971).   

There exists two major isotypes of the IgA molecule, namely IgA1 and IgA2 with varying 

distribution in various human tissues (Crago et al., 1984, Morton et al., 1993). The percentage of 

IgA1 in human serum can be as high as 90% while IgA2 levels may reach 50% in secretions 

(Delacroix et al., 1982, Yoo and Morrison, 2005). IgA2 further exists in three different allotypic 

forms namely IgA2m(1), IgA2m(2) and IgA2m(n) (Torano and Putnam, 1978, Kazeeva and 

Shevelev, 2007).  Both IgA1 and 2 isoforms however, show significant sequence identity to each 

other with the main difference being an additional mucin-like insertion sequence at the hinge 

region of IgA1 (Torano and Putnam, 1978) containing type-O glycosylations (Figure I.9, Yoo 

and Morrison, 2005).  
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Figure I.9 - Structural features of human secretory IgA. A: Dimeric structures of SIgA1 and SIgA2. The IgA 

molecule consists of two identical chains termed heavy and light chains. The heavy chain is composed of four major domains 

namely the VH, Cα1, Cα2, and Cα3, while the light chain consists of two domains namely the VL and CL domains. V stands for 

domains within the variable region (amino acids in this region are variable in different variants of the immunoglobulin) of the 

molecule where the antigen binding (ab) site is located while C stands for domains in the constant region (identical in antibodies 

of same isotype) of the molecule. H and α indicates domains are present within the heavy chain (α being the greek denotation for 

the heavy chain in IgA) while L are for domains within the light chain. Lamda (λ) and kappa (k) denotes the various types of light 

chains in mammalian immunoglobulins. Following digestion of immunoglobulins with the enzyme papain, two major fragments 

(F) are produced one containing the antigen binding site (Fab) composed of the entire light chain (Fab-k,λ) and the variable VH 

and constant Cα1 region of the heavy chain (Fab-α) and the other containing the remaining two constant regions (Cα2 and Cα3) 

of the heavy chain (Fc-α) (Wang and Fudenberg, 1972). The secretory component is composed of five domains termed I, II, III, 

IV, and V which are N-glycosylated in IgA1 and IgA2 while the extended hinge insertion region of IgA1 absent in IgA2 is O-

glycosylated. B: Four major O-linked glycan structures in human IgA1 (Modified from Royle et al., 2003 and Novak et al., 2008).  
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I.2.1.3 Porcine gastric and bovine submaxillary mucins    

Substantial research has been carried out on porcine gastric mucins (PGM) in recent years as a 

model for human gastric mucins. This is partly due to anatomical and physiological similarities 

between the human and pig stomachs and PGM sequence similarity to human mucins such as 

MUC2 and MUC5AC (Celli et al., 2005, Turner et al., 1999).  PGM is also a low cost substitute 

for human mucins capable of forming complex high molecular weight (~9x106 g/mol) polymeric 

structures similar to those of human MUC2 (Fiebrig et al.1995, Bansil and Tuner., 2006). A 

substantial amount of the PGM protein sequence contains VNTR domains with PTS repeats 

which are potential O-glycosylation sites (Turner et al., 1999, Bansil and Tuner., 2006). Mass 

spectrometry data suggests that PGM O-linked glycans vary in length and complexity and are 

predominantly Core 1 and Core 2 - based with a few Core 3 and 4 structures (Figure I.10, 

Karlsson et al., 1997, 2002).  

Bovine submaxillary mucins (BSM) on the other hand are much less complex and contain shorter 

O-linked glycan structures. Mass spectrometry data on BSM glycans shows the predominance of 

sialylated O-linked GalNAc (Figure I.10, Tsuji and osawa 1986). The protein contains a few non-

uniform repeat sequences and is phylogenetically related to the human and porcine MUC19 

(Chen et al., 2004).   
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Figure I.10 – Prominent O-linked glycans of porcine gastric and bovine sub-maxillary mucins. A: 

Porcine gastric mucins (PGM) B: Bovine submaxillary mucins (BSM). Core 1 is indicated by red rectangles; core 2 by green 

rectangles, core 3 by brown rectangles and core 4 by blue rectangles (also see Figure I.4 for various core structures). Various 

structures were obtained from Tsuji and osawa 1986 and Karlsson et al., 2002. See a list of other structures detected in mucins 

from different areas of the pig stomach in Karlsson et al., 1997.   

 

I.2.2 Epithelial cell surface glycocalyx  

Transmembrane mucins such as MUC1 (Section I.2.1.1.2) alongside other epithelial cell surface 

anchored glycoproteins, glycolipids and proteoglycans constitute what is referred to as a 

glycocalyx (Figure I.11, Ouwerkerk et al., 2013). These components are all glycosylated but are 

differentiated from each other depending on the nature of the glycans and what they are attached 

to (Varki and Sharon, 2009, Moran et al., 2011). Glycolipids or glycosphingolipids contain sugars 

that are attached to a lipid ceramide backbone through glucose or galactose while proteoglycans 

like glycoproteins contain sugars attached to a protein backbone (Varki and Sharon, 2009, Moran 

et al., 2011). Proteoglycans are distinguished from glycoproteins by the presence of repeating 

disaccharide units of acidic sugars termed glycosaminoglycans e.g. chondroitin sulfate/dermatan 

sulfate and heparan sulfate/heparin (Varki and Sharon, 2009, Moran et al 2011, Dick et al., 2012).  
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Figure I.11 – Major glycoconjugate classes within the epithelial cell surface glycocalyx and 

glycosaminoglycan diversity. A:  Representation of the glycocalyx above a colonic epithelial cell (modified 

from Ouwerkerk et al., 2013). B: Various glycosaminoglycan structures produced by mammalian cells. Except for 

hyaluronan, glycosaminoglycans are generally acidic or highly negatively charged due to sulphation (Esko et al, 2009, 

Varki and Sharon, 2009) 
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Glycocalyx components on epithelial cells can act as receptors for microbial adhesion, while the 

entire structure serves as a protective barrier against invading pathogens (Barnich et al., 2007, 

Rousset et al., 1998, Egberts et al., 1984, Ouwerkerk et al., 2013). The functions of the glycocalyx 

also include those performed by MUC1 (Section I.2.1.1.2.1) which is part of the glycocalyx. The 

glycocalyx thus represents an important second line of defense after the secreted mucus layer at 

mucosal surfaces (Varki and Sharon, 2009, Ouwerkerk et al., 2013, Moran et al., 2011).   

I.3 Mucosal surfaces and Host-microbial interactions (HMI) 

Mucosal surfaces play vital physiological roles in the human body including digestion, nutrient 

transport, homeostasis, reproduction and defense (Nataro et al., 2005). They are also key players 

in host-microbial interactions, serving not only as initial entry points of microbes into the human 

body but also as the major point of contact between the human host and colonizing microbes. 

Several aspects of mucosal surfaces including their exposure to the external environment, large 

surface area, the presence of adherent and sticky mucus and other protective secretions, nutrient 

availability, pH, temperature and other physiological factors (Johansson et al., 2011, Sansonetti, 

2004, Macpherson et al., 2001, Hooper, 2009) make them particularly favorable to resident and 

foreign microbes. A significant number of colonizing microbes have also evolved strategies to 

enable them adapt and flourish at mucosal surfaces in otherwise unfavorable circumstances.  As a 

consequence mucosal surfaces are host to a huge amount of diverse and complex microbial 

communities, with over 1,000 bacterial species (Qin et al., 2010) thriving at the level of the 

gastrointestinal tract alone. Indeed over 100 trillion microbes, 10 times the total number of 

human somatic and germ cells put together [with a gene pool that exceeds the human gene pool 

by factor of 150 (Qin et al., 2010)] inhabit the nutrient rich human intestinal tract (Savage, 1977, 

Ley et al., 2006). This number is likely to be higher when microbes inhabiting other mucosal 

surfaces in the body such as the urogenital and respiratory tracts are taken into consideration. 

(Larsen and Monif, 2001, Zhou et al., 2004, Konno et al., 2006). Of particular interest however is 

the fact that there can be very serious health consequences as a result of our interactions with 

such large numbers of colonizing microbes. While the outcome of our interactions with 

mutualistic mucosal microbes is largely beneficial, HMI involving parasitic or pathogenic mucosal 

microbes are largely detrimental to the host as discussed in the subsequent section.    
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I.3.1 Overview of the importance of Host-microbial interactions to the human host 

I.3.1.1 Mutualistic mucosal microbes 

I.3.1.1.1 Host nutrition  

The human gut microflora is thought to contribute about 10-15% of the daily calorie intake of its 

host (McNeil, 1984, Bergman, 1990). It is composed of several bacterial species capable of 

digesting otherwise indigestible dietary polysaccharides to short chain fatty acids that are easily 

absorbable by the host (Hooper et al., 2002). Short chain fatty acids such as acetate, butyrate and 

propionate are known to enhance colonic health (Scheppach, 1994). Evidence also suggests that 

gut bacteria are capable of stimulating or enhancing the host’s capacity to process some nutrients 

and xenobiotics (Claus et al., 2011). Probiotic bacteria (live microbes that when consumed confer 

health benefits to the host) including members of the genus Lactobacillus often found in 

fermented milk products such as yoghurt have long been used to enhance lactose digestibility and 

assimilation in sufferers of lactose intolerance (Lin et al., 1998). Finally, of recent, there have been 

reports of an association between obesity and gut microbiota composition (Ley et al., 2005, 

Turnbaugh et al., 2006, Zhang et al., 2009), further demonstrating the importance of the gut 

microbiota in human nutrition and health.  

I.3.1.1.2 Host immunity 

Several lines of evidence suggest that mucosal microflora also play key roles in the development 

and modulation of host immunity. Studies involving the colonization of germ free mice with gut 

microflora for example revealed that these microbes including the B. thetaiotaomicron contribute to 

the development of the host immune system and angiogenesis, a process leading to the 

formation of new blood vessels from old ones (Hooper et al., 2003). B. thetaiotaomicron is also 

capable of stimulating the secretion of SIgA in the murine intestine (Yanagibashi et al., 2009), 

thus enhancing immunity to pathogens.  The modulation of host immunity is important for the 

development of tolerance to frequently encountered foodstuffs, harmless environmental antigens 

and normal microflora (Braun-Fahrlander et al., 2002). The tight association between an altered 

microbiota, allergies and chronic inflammatory bowel disease is evidence of their involvement in 

immunomodulation (Noverr and Huffnagle, 2005, Macfarlane et al., 2009). Resident microflora 

may also enhance host immunity against harmful microflora through colonization resistance 

(Cebra et al., 1999). Mutualistic bacteria including members of the Bacteroidetes and Firmicutes 

divisions constitute about 90% of the total human intestinal microflora (Eckburg et al., 2005, 

Dethlefsen et al., 2007, Tremaroli and Backhed, 2012) and such abundance may contribute to 

http://jcp.bmj.com/content/63/12/1105.long#ref-8
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restrict the proliferation of other bacteria including harmful bacteria. A detailed review into the 

role of the gut microbiota in host immunity is provided in Kamada et al., 2013. 

At the level of the female urogenital tract, mucosal microbes such as L. acidophilus play a role in 

the maintenance of a relatively low vaginal pH through the production of lactic acid (pH < 4.5), a  

condition that is thought to be hostile to many pathogenic bacteria (Boris et al., 1998, Juarez 

Tomas et al., 2003, Ronnqvist et al., 2007). Some lactic acid bacteria also produce antimicrobial 

substances such bacteriocins and hydrogen peroxide (H2O2) which are equally important for the 

control of the vaginal ecosystem (Tomas et al., 2004) 

I.3.1.2 Pathogenic mucosal microbes 

The outcomes of host microbial interactions involving pathogenic mucosal microbes unlike 

commensals are often detrimental to the host. This is not only by virtue of the infections these 

organisms cause but also, in some cases their ability to compromise the host immune system to 

other invading microbes and toxic substances.  

Some common infections caused by mucosal microbes include amoebaic dysentery, caused by 

Entamoeba histolytica (a eukaryotic parasite), Trichomoniasis caused by Trichomonas vaginalis (also a 

eukaryotic parasite), diarrheal diseases caused by the Escherichia coli O157:H7 (a bacterial 

pathogen), Cholera infections caused by Vibrio cholera (a bacterial pathogen), and Typhoiditis 

caused by Salmonella typhi (a bacterial pathogen).  These pathogens often possess unique 

capabilities and virulence factors that enable them cause this variety of infections.  

It is also worth noting that although mutualistic relationships have been vastly looked upon as 

being beneficial, the quality of these relationships can be greatly affected by other factors 

including antibiotics, one’s diet or health status (Maslowski and Mackay 2011). Any of these 

could lead to microbial dysbiosis which in turn can lead to serious pathophysiologies (Maslowski 

and  Mackay 2011).  Commensal microflora under certain conditions may also cause serious 

opportunistic infections e.g abdominal infections associated with members of the Bacteroides 

fragilis group (Goldstein et al., 1996) and endocarditis caused by Streptococcus sanguis (Meddens et al., 

1982). 

The above discussion is only a highlight of some of the important roles played by mucosal 

microflora in human health. Yet, despite the growing body of evidences, a lot about the 

mechanisms by which these organisms influence our health whether positively or negatively still 

remains unclear.  
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I.4 Membrane proteins of bacterial and eukaryotic mucosal microbes 

Membrane proteins are broadly classified as either integral, peripheral or lipid anchored proteins 

(Singer, 1974, Reithmeier, 2001) depending on the nature of their association with the bacterial 

or eukaryotic cell membrane. 

I.4.1 Lipid anchored Proteins  

Lipid anchored proteins are widespread amongst gram positive and gram negative bacteria. A 

typical lipid anchor is the diacylglycerol group, often linked to a conserved N-terminal cysteine 

residue present within the protein. This group of lipid anchored proteins is termed lipoproteins. 

In most gram negative bacteria, the cysteine residue is part of what is referred to as the lipobox 

[LVI][ASTVI][GAS]C where it serves as the anchor point for the diacylglycerol group linking the 

entire protein to the lipid bilayer of the cell (Figure I.12A, Babu et al., 2006, Kovac-simon et al., 

2011). Lipid anchored membrane proteins may face inwards into periplasm or out into the 

external environment (Figure I.12B) 

Some proteins are attached to the lipid bilayer through a glycosyl-phosphatidylinositol molecule 

(GPI – anchored proteins). They represent a common group of lipid anchored proteins 

occurring with higher frequencies in eukaryotic species (Eisenhaber et al., 2001, Brown and 

Wanneck, 1992, McConville et al., 1993, Gerber et al., 1992).  

I.4.2 Integral membrane proteins 

Integral membrane proteins form structures that traverse the lipid bilayer and hence contain a 

transmembrane region (Figure I.12C). The transmembrane segment often contains a high 

number of hydrophobic amino acids important for the proteins interaction with the hydrophobic 

lipid bilayer of the cell (Elofsson and von Heijne, 2007). It can take the form of α- helices or β-

sheets/barrels (Ramasarma and Joshi, 2001).   

I.4.3 Peripheral membrane proteins  

Peripheral unlike integral membrane proteins are not directly linked to the membrane but rather 

interact with integral membrane proteins through polar or ionic interactions (Reithmeier, 2001). 

Just like lipoproteins, they could face into the periplasm or outward into the extracellular 

environment (Figure I.12C) 
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Figure I.12 - Membrane proteins of bacterial and lower eukaryotic microbes. A: Typical N-terminal 

features of bacterial lipoproteins showing the lipobox and the cysteine lipidation target. +1 and +2 indicate the position of amino 

acids relative to cleavage site of a signal peptidase enzyme (red arrow) B: Distribution of lipoproteins at the gram negative 

bacterial cell envelop. C: Summary of various classes of membrane proteins; a1 and a2: Single pass transmembrane proteins, a3: 

multi-pass transmembrane protein, b: Lipid-chain anchored protein c: GPI-anchored membrane protein d: Peripheral membrane 

protein (Images modified from Kovac-simon et al., 2011 and Chou and Elrod, 1999) 
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I.5 Surface exposed proteins of mucosal microbes 

For the purpose of clarity, surface proteins are defined here as proteins emanating from the 

microbe into the extracellular environment. In mucosal microbes, this group of proteins 

represents an important interface in host microbial interactions, functioning as adhesins, 

metabolic enzymes, receptors or virulence factors.  

As adhesins of mucosal microbes, surface proteins can mediate contact with mucosal surfaces by 

binding to mucus components such as mucins. An example is the 22-kDa surface-exposed 

Spr1345 protein of the respiratory tract pathogen Streptococcus pneumoniae, which has been shown 

to bind porcine gastric mucins and the surface of lung cancer cell lines (A549) in-vitro (Du et al., 

2011). This binding is thought to be mediated by a domain in the protein termed a mucin-

binding domain (MucBD) which interestingly has also been identified (through homology 

searches) in surface proteins from other mucosal microbes such as Lactobacillus lactis and 

Lactobacillus reuteri (Du et al., 2011). Spr1345 is thought to contribute towards microbial adherence 

and subsequent colonization of mucosal surfaces. Mucin binding surface proteins have also been 

reported in other members of the Lactobacillus genus that colonize the gut (Rojas et al., 2002, Roos 

and Jonsson, 2002).  

Surface proteins of gut mucosal microbes are also important tools for nutrient acquisition. They 

may function as metabolic enzymes, environmental sensing, signal transduction and transporter 

elements.  They may operate as individual stand-alone elements in these roles or as parts of 

complex co-regulated systems, prominent examples of which are the polysaccharide utilization 

systems of the gut commensal B. thetaiotaomicron and its relatives (Martens et al., 2009a, 

Sonnenburg 2010, Pope et al., 2012, Mackenzie et al., 2012).  

Surface proteins have often been exploited as targets in vaccine development for their role as 

virulence factors of many pathogenic microbes including mucosal microbes (Kovacs-Simon et al., 

2011, Tai et al., 2006, Jedrzejas et al., 2001). As virulence factors, they may function as toxins, 

immunodulators, adhesins, and metabolic enzymes of the pathogens producing them. Examples 

of surface proteins with a role in virulence include the SpeB cell surface cysteine protease (also a 

secreted exotoxin) of S. pyogenes (Hytonen et al., 2001), GP63 and CP65 surface proteases of T. 

vaginalis (Ma et al., 2011, Alvarez-sanchez 2000) and a variety of other surface proteins of S. 

pneumoniae (Figure I.13).  
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Surface proteins thus represent important elements in host-microbial interactions involving both 

pathogenic and mutualistic mucosal microbes (Lebeer et al., 2010) 

      

Figure I.13 Virulence factors of S. pneumoniae and their cellular localization. S. pneumoniae is a 

mucosal microbe and causative agent of pneumonia infections. As is the case with many other mucosal pathogens, 

several important virulence factors of S. pneumoniae are cell surface localized (Jedrzejas et al., 2001) 

 

1.6 Bacteroides thetaiotaomicron  

Extensive studies on the prominent human gut commensal; B. thetaiotaomicron have greatly helped 

with our understanding of the molecular mechanisms underlying host-microbial interactions at 

mucosal surfaces. B. thetaiotaomicron, is an anaerobic non-sporulating Gram-negative bacterium 

and a member of the Bacteroidetes division, which in addition to the Firmicutes constitute over 

>90% of the resident human gut micro flora (Eckburg et al., 2005,  Dethlefsen et al., 2007). It is 

known to colonize the colon and distal section of the small intestine and has been detected in 

human faecal samples (Hooper and Gordon 2001, Carson et al., 2005). It is rod-shaped in nature 

(Figure I.14) and capable of producing an extracellular polysaccharide capsule (Martens et al., 

2009b).Close relatives of the organism which are equally predominant members of the GIT 

microbiota include Bacteroides vulgatus, Bacteroides caccae and Bacteroides fragilis (See scientific 

classification of Bacteroides species in Table I.3).  

The entire 6.25MB genome has been sequenced and contains about 4779 predicted proteins in its 

proteome (Xu et al., 2003). In-silico and gene transcriptional data suggest that the organism has 
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dedicated a significant portion of its genome to carbohydrate acquisition and utilization, capsular 

polysaccharide biosynthesis and DNA mobilization (Martens et al., 2008, Xu et al., 2003) 

 

Kingdom: Bacteria 

Phylum: Bacteroidetes 

Class: Bacteroidetes 

Order: Bacteroidales 

Family: Bacteroidaceae 

Genus: Bacteroides 

Species:  Bacteroides thetaiotaomicron 

 

 

 

 

B. thetaiotaomicron is capable of metabolizing a variety of complex dietary polysaccharides some of 

which are otherwise indigestible by the host. Examples of these include starch, heparin, 

chondroitin sulphates and pectins (Koropatkin et al., 2012). Studies also suggest that under 

conditions of limited dietary glycan supply, the organism can switch to the utilization of host 

derived glycans such as mucins, an ability which is thought to provide it with a significant 

competitive and survival advantage in the gastrointestinal tract (Martens et al., 2008). Its ability to 

consume mucin glycans has been demonstrated in in-vitro growth experiments with porcine 

gastric mucins (PGMIII) (Benjdia et al., 2011, Martens et al., 2008). B. thetaiotaomicron can also 

influence nutrient acquisition and the production of defense components by the human host as 

highlighted in Section I.3.1.1.2 making it an important member of the gut microflora 

contributing to both host nutrition and immunity (Hooper et al., 2003, Wexler, 2007, Yanagibashi 

et al., 2009).  Its contribution to mucosal homeostasis was recently demonstrated by Wrzosek et 

al., (2013) who showed that it is capable of promoting globet cell differentiation and the 

production of mucus and sialylated mucins, effects which are attenuated by another prominent 

gut commensal Faecalibacterium prausnitzii (Miquel et al., 2013), leading to the maintenance of 

colonic epithelial homeostasis. 

B. thetaiotaomicron may cause opportunistic infections such as intra-abdominal sepsis and 

bacteremia in immune-compromised individuals (Goldstein, 1996, Redondo et al., 1995). It is 

capable of developing resistance to β-lactams antibiotics such as Clindamycin and Cefotexin 

(Teng et al., 2002, Edwards, 1997).  

 

0.5µm 

Figure I.14 - Scanning electron micrograph 

of Bacteroides thetaiotaomicron embedded 

in mucus. Adapted from Sonnenburg et al., 

(2005) 

Table I. 3 Scientific classification of B. thetaiotaomicron 
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http://en.wikipedia.org/wiki/Bacteroidaceae


 

 

- 31     - 

 

I.6.1 Surface proteins and polysaccharide utilisation loci (PULs) of B. thetaiotaomicron  

Like many other mucosal microbes, several B. thetaiotaomicron surface proteins are involved in 

mucosal colonization and survival processes such as cell adhesion, (Rogemond and Guinet, 

1986), signaling and nutrient acquisition (Xu, et al., 2003). A good number of proteins encoded 

by B. thetaiotaomicron are putative surface proteins and elements of various polysaccharide 

utilization loci (PULs) (Xu, et al., 2003, Martens et al., 2009a). PULs are gene clusters in the 

genome of B. thetaiotaomicron encoding cell-envelop associated multi-protein complexes dedicated 

to carbohydrate utilization. Currently over 88 different polysaccharide utilization loci have been 

identified in the genome of B. thetaiotaomicron although detailed functional data is only available 

for two of them. These include the starch and fructan utilization loci encoding proteins of the 

starch utilization and fructan utilization systems of B. thetaiotaomicron (Martens et al., 2009a, 

Sonnenburg 2010). 

I.6.1.1 The starch utilization system (Sus) of B. thetaiotaomicron   

Starch is a high-energy nutrient and an important component of the human diet. It is present in 

significant amounts in many staple foods including rice, wheat, corn, cassava and potatoes, 

consumed by human populations of both the developed and developing world.  It consists of 

two alpha (α)-D glucose polymers termed amylose and amylopectin (Figure I.15). Amylopectin is 

usually in higher amounts compared to amylose and consists of α1-4 linked glucopyranosyl units 

with branching α1-6 bonds linking the backbone to other glucose units (Buleon et al., 1998). 

Amylose on the other hand is a less complex linear polymer of alpha 1-4 linked glucopyranosyl 

units, with only occasional   α1-6 branch points (Tester et al., 2004, Buleon et al., 1998).   

 

 

         Figure I.15 - Structure of starch glycans. Adapted from Tester et al., (2004) 
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The digestion of dietary starch in the human gut is made possible thanks to salivary, pancreatic 

and intestinal enzymes.  Salivary and pancreatic starch degrading enzymes are mainly α-endo-

amylases (E.C. 3.2.1.1) whose action on starch  yields short linear and branched oligosaccharide 

structures that are later on degraded in the small intestine by brush border  exo-acting maltase-

glucoamylase (E.C. 3.2.1.20 and 3.2.1.3)  and sucrase-isomaltase (E.C.3.2.1.48 and 3.2.1.10)  

enzymes (Ao et al., 2007, Swallow, 2003).  

Starch degradation up till the small intestine often does not go to completion and some escape 

into the large intestine or colon. These are referred to as ‘‘resistant starch’’ (Englyst and 

Mcfarlane, 1986, Vonk et al., 2000, Carciofi, 2012) and alongside other undigested plant cell wall 

polysaccharides such as celluloses and pectins can be fermented by colonic mucosal microbes 

including B. thetaiotaomicron to produce short chain fatty acids such as butyrate, acetate and 

propionate (Cummings, 1981). Short chain fatty acids are easily absorbable by the human host 

and confer important health benefits to the host (Scheppach, 1994)  

The starch utilisation locus contains a total of eight genes encoding various components of the 

starch utilisation system in B. thetaiotaomicron (Martens et al., 2009a). A list of the PUL genes (susR, 

A, B, C, D, E, F and G) and their corresponding locus tags is provided in the key of Figure I.16. 

It has a GC content of about 45% and occupies a 15.821 kbp region in the genome of the 

organism. The genes are organized into two transcriptional units (the first containing the susA 

gene alone and the second from susB to G, all under the regulation of susR (Cho et al., 2001). All 

the sus structural genes are unidirectionally transcribed.  
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Key 
 

Gene name Gene locus Annotation of encoded protein 

susG BT_3698 Alpha-amylase (Glycoside Hydrolase Family 13)(SusG) 

susF BT_3699 Outer membrane protein(SusF) 

susE BT_3700 Outer membrane protein(SusE) 

susD BT_3701 SusD 

susC BT_3702 SusC 

susB BT_3703 Glycoside Hydrolase Family 97(SusB) 

susA BT_3704 Alpha-amylase (Glycoside Hydrolase Family 13) (SusA) 

susR BT_3705 Transcriptional regulator(SusR) 
 

  

Figure I.16 - Genes of the starch utilisation locus of B. thetaiotaomicron. Top: Genomic organisation 

of PUL genes (i.e. genes encoding various components of the Sus system). Bottom: List of Sus genes and their 

annotations as in Martens et al., 2008. See list of glycoside hydrolase families in section I.9 and the activities of 

various classes on the CAZy database at http://www.cazy.org/ (Cantarel et al., 2009) 

 

The SusR protein contains two transmembrane domains enabling it to span the inner membrane 

from the periplasmic to the cytoplasmic side (Figure I.18). In the presence of starch or maltose, 

SusR activates the expression of various Sus proteins to enable the acquisition and utilisation of 

the target substrate (Cho et al., 2001).  

SusD, E, F, and G all contain a type II signal peptide and are located to the outer membrane of 

the cell (Reeves et al., 1997, Cameron et al., 2012). SusC is also located to the outer membrane of 

the cell and is a member of the Ton-B dependent receptor family of proteins (Reeves et al., 1996, 

1997, Koropatkin 2012, Ferguson and Deisenhofer, 2002). SusD, E and F have been shown to 

bind starch oligosaccharides such as maltohepatose and cyclodextrins (Koropatkin 2008, 

Cameron et al., 2012). SusE and F are thought to achieve this with the aid of distinct 

carbohydrate binding modules in their structures as shown in Figure I.17. Together, the 

concerted action of the SusC, D, E, and F enables the organism to bind starch and starch 

oligosaccharides to its surface (Reeves et al., 1997).  

susG susE susD susC susB susA susR susF 
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Figure I.17 – The surface carbohydrate binding apparatus of the Sus system of B. 

thetaiotaomicron.  I: Schematic representation of the outer surface carbohydrate binding apparatus of the Sus 

system. Starch binding is a concerted action of outer membrane proteins SusE, F, G, D and C. SusE, F and G 

achieve this through defined carbohydrate binding domains in their structures. Unlike SusG, SusC, D, E and F are 

not currently known to possess any enzymatic activities. SusG is an endo-acting amylase enzyme with a CBM58 

domain and a catalytic site (Gcat). Sugar import into the cell is achieved through the TonB-dependent SusC 

transporter II:  Structure of the SusG protein showing constituent domains (domain A - blue, domain B - red, 

domain C - yellow) including the CBM58 domain bound to molecules of maltoheptaose (gray, mauve and green 

spheres). Images adapted from Cameron et al., (2012) and Koropatkin et al., (2010). 

 

 

SusG on the other hand not only contains a carbohydrate binding module in its structure 

(CBM58) but also displays endo- alpha amylase activity (Shipman et al., 1999 and Martens 2009). 

It is capable of hydrolysing glucose α1-4 linkages in the bound starch polysaccharides yielding 

shorter starch oligosaccharides [although predicted to be at least longer than maltotriose                 

(Martens et al., 2009)] that are later imported into the cell through the TonB-dependent SusC 

porin (Figure I.17 and I.18). TonB-dependent proteins are typically outer membrane spanning β-

barrels that couple energy from the proton motive force and an inner membrane TonB-ExbBD 

complex to the transport of solutes and macromolecules through the outer membrane of the cell 

(Ferguson and Deisenhofer, 2002). SusC likely employs a similar mechanism to import bound 

starch oligosaccharides into the periplasmic space (Koropatkin et al., 2012). 

 

susC 

I II 
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SusA and B proteins both contain a type I signal peptide in their structure and hence predicted to 

be periplasmic (Figure I.18). SusA like SusG also belongs to the GH13 family of glycoside 

hydrolases; although unlike SusG is an exo-acting neopullulanase (D'Elia and Salyers, 1996, 

Martens 2009a). In conjunction with SusB (a GH97 enzyme with α-glucosidase activity) both 

further degrade the SusG - processed oligosaccharides imported into the periplasmic space 

through SusC (D'Elia and Salyers, 1996, Koropatkin et al., 2012, Martens 2009a).   

 

 

 

Figure I.18 - Schematic representation of the Sus system of B. thetaiotaomicron.   Bound starch 

(Figure I.17) is initially processed by the outer membrane SusG endo-acting amylase and transported into the 

periplasmic space with the aid of the SusCD complex. Periplasmic exo-acting enzymes SusA and B further act on 

imported oligosaccharides yielding monosaccharides that are imported into the cytoplasmic space through an inner 

membrane transporter (adapted from Koropatkin et al., 2012).  A detailed insight into the mechanism of the Sus 

system is also provided in Martens et al., 2009. 
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I.6.1.2 The fructan utilization system (Fus) of B. thetaiotaomicron   

Fructans are polymers of fructose, derived from plant carbohydrates such as Inulin and Levan. 

Inulin and levan contain polymers of β2-1 and β2-6 fructose units respectively. These are known 

to be resistant to host digestive enzymes in the upper gastrointestinal tract and hence constitute 

an important source of dietary glycans for gut bacteria in the colon (Sonnenburg et al., 2010). 

A fructan utilization locus has been identified (Figure I.19, Sonnenburg et al., 2010) in B. 

thetaiotaomicron and other Bacteroides species containing a host of genes encoding enzymes, 

carbohydrate recognition and regulatory proteins that seem to coordinate the acquisition and 

utilization of fructans in a manner analogous to the mechanism of the Sus system (Figure I.18). 

 

 
 

 
 

Figure I.19 - The fructan utilization system (Fus) of B. thetaiotaomicron. A: Comparison of the Sus and 

Fus loci. Genes are colour coded to indicate broad functional similarities B - Schematic representation to show cellular 

localisation of Fus elements and their role in fructan utilisation. In the mechanism that follows, bound fructan on the surface of 

the cell is endolytically cleaved by the BT1760 endo-fructanase. This is later imported through the susC homologue (BT1763) 

into the periplasmc space containing GH32 enzymes that make further cuts in the molecules.  While some of the released 

fructose end products are imported into the cell cytoplasm, some are used to further activate the PUL through binding to the 

BT1754 inner membrane hybrid two-component system (HTCS) regulator protein (All images were taken from Sonnenburg et al., 

2010)  

A 

B 



 

 

- 37     - 

 

I.7 T. vaginalis 

T. vaginalis is an anaerobic eukaryotic protozoan and causative agent of human Trichomoniasis, a 

sexually transmitted disease (STD) of the urogenital tract that annually affects millions of 

individuals worldwide (Gerbase et al., 1998, Schwebke and Burgess., 2004). The active, motile 

feeding stage of the organism (trohpozoite) is pyriform or pear-shaped in nature but can also 

become amoeboid following cytoadherence (Petrin et al., 1998, Harp and Chowdhury, 2011). The 

organism is flagellated and contains a large nucleus and other internal organelles such as the 

axostyle, costa and pelta (Figure I.20). T. vaginalis acquires nutrients from vaginal secretions, 

phagocytosed bacteria, vaginal epithelial cells (VECs) and erythrocytes (Juliano et al., 1991, 

Rendon-Maldonado et al., 1998, Seema and Arti, 2008). It lacks mitochondria and peroxisomes 

and instead contains unusual double membrane bound energy-producing organelles known as 

hydrogenosomes (Schneider et al., 2011). Hydrogenosomes are involved in carbohydrate 

metabolism, producing energy (ATP), acetate, carbon dioxide and hydrogen as end products 

from pyruvate and malate substrates (Muller et al., 1993). They are found in diverse anaerobic 

eukaryotic microbes and are a typical feature of the parabasalid lineage to which the T.vaginalis 

belongs (Embley et al., 2003, Malik et al., 2011) (see scientific classification of T. vaginalis in Table 

I.4).   

The life cycle of the organism consists of two stages, mainly the infective and diagnostic stages 

(Figure I.20). During the diagnostic stage, T. vaginalis is detectable in vaginal, prostatic secretions 

and urine. Following longitudinal binary fission, more trophozoites are produced and 

concentrate in the vagina or orifice of the urethra before transmission by sexual intercourse 

(Harp and Chowdhury, 2011). In women, T. vaginalis infections can cause severe vaginal 

inflammation and irritation and has also been linked to cervical cancer (Petrin et al., 1998). In 

males, the infection is generally asymptomatic and can lead to urethritis, prostatitis and prostate 

cancer (Kuberski, 1981, Abdolrasouli et al., 2007, Sutcliffe et al., 2010). In both men and women, 

T. vaginalis infection can lead to infertility and predisposition to human immunodeficiency virus 

(HIV) infection (Sorvillo and Kerndt, 1998). 

 

Kingdom: Protista 

Phylum: Metamonada (Parabasala) 

Class: Parabasalia 

Order: Trichomonadida 

Family: Trichomonadidae 

Genus: Trichomonas 

Species:  Trichomonas vaginalis 

 

Table I.4 - Scientific classification of Trichomonas vaginalis 

http://en.wikipedia.org/wiki/Bacteria
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=181550&lvl=3&keep=1&srchmode=1&unlock
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Figure I.20 - Overview of T. vaginalis characteristics. A: Morphological features B: Electron micrography 

images. B1: T. vaginalis in broth culture. B2: T. vaginalis in contact with vaginal epithelial cells. B3: Example of an 

amoeboid form of T. vaginalis. C: Life cycle of T. vaginalis (Images modified from Petrin et al., 1998, Harp and 

Chowdhury, 2011 and the DPDx/CDC America website) 
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I.7.1 Surface proteins of Trichomonas vaginalis 

The entire 160 Mb genome of T. vaginalis strain G3 has been sequenced and contains ~ 60 000 

protein coding genes according to data from the GiardiaDB and TrichDB databases (GiardiaDB 

and TrichDB, Carlton et al., 2007, Harp and Chowdhury, 2011). About 65% of the genome is 

repetitive composed of virus, transposon, retrotransposon and unclassified repeat DNA 

sequences. The genome contains a large repertoire of genes consistent with carbohydrate and 

amino acid metabolism, defense against oxidative stress, transport and pathogenesis (Mendoza-

lopez et al., 2000, Carlton et al., 2007, Hirt et al., 2007, de Miguel et al., 2010). A total of 3000 

candidate surface-exposed proteins from ten different protein families (major cartegories of 

which were the BspA-like, GP63-like proteins and adhesins) have been identified  from the 

sequenced genome and some have already been biochemically characterized (Hirt et al., 2007, 

Harp and Chowdhury, 2011).  

As a pathogenic mucosal microbe, T. vaginalis surface proteins with adherence and metabolic 

functions represent important virulence factors.  An example is the 30 kDa CP30 surface 

cysteine proteinase produced by the organism which has been shown to be capable of degrading 

female urogenital tract proteins as well as adhering to HeLa cervical carcinoma cell lines 

(Mendoza-lopez et al., 2000). The recently characterized TvGP63 protease is also another 

example of a surface localized virulence factor of T. vaginalis (Ma et al., 2011). TvGP63 whose 

protease activity is inhibited by the cysteine proteinase inhibitor; 1, 10 phenathroline is thought 

to play a role in epithelial cell destruction during T. vaginalis infection (Ma et al., 2011). Surface 

proteins alongside the lipophosphoglycans in the glycocalyx of the T. vaginalis cell play a crucial 

role in mediating T. vaginalis cytoadherence (Bastida-Corcuera., 2005, Harp and Chowdhury, 

2011).  

I.7.2 Diagnosis and Treatment of Trichomoniasis 

T. vaginalis is detectable using unsophisticated microscopic techniques due to its size. Microscopic 

evaluation is however usually less sensitive compared to the wide range of tests that have recently 

been developed for T. vaginalis diagnosis (see comparison in Harp and Chowdhury, 2011). The 

rapid antigen test that detects T. vaginalis membrane proteins and a variety of nucleic acid based 

tests are examples of some novel diagnostic strategies that offer high sensitivity and specificity 

(Harp and Chowdhury, 2011). Current treatment for Trichomoniasis is done with the 5-

nitroimidazole compounds; Metronidazole and Tinidazole. The limited number of drug 

treatments for the disease coupled with evidence of resistance to some drugs (Schmid et al., 2001) 

has prompted research for alternative therapeutic strategies.  
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I.8 M60-like domain-containing proteins   

Published genome sequences of important mutualistic and parasitic mucosal microbes such as B. 

thetaiotaomicron (Xu et al., 2003), and T. vaginalis (Carlton et al., 2007) respectively, provide exciting 

opportunities to study the role of surface proteins in host-microbial interactions. Following 

comparative genomic studies, these organisms were found to share a number of gene families 

including candidate surface metabolic enzymes (Nakjang et al., 2012). One set of such genes 

characterized through bioinformatic analyses was identified as candidate zinc metalloproteases 

sharing a novel protein domain termed ‘’M60-like (PF13402) domains’’ (Nakjang et al., 2012). 

They were so named by virtue of their profile similarity to an existing protein family termed 

family M60 [MEROPS database, (Rawlings et al., 2012)], epitomized by the insect baculovirus 

(Lymantria dispar nucleopolyhedrovirus) enhancin protease also known to be capable of degrading 

insect intestinal mucins (Wang and Granados, 1997, Nakjang et al., 2012).  

M60-like domain-containing proteins show a broad taxonomic distribution as they are shared by 

a large number of bacterial and eukaryotic microbes [PFAM database, (Punta et al., 2012)]. 

Curiously, a significant proportion of M60-like positive organisms are important mucosal 

microbes including in addition to B. thetaiotaomicron and T. vaginalis, other human mucosal 

microbes such as Bacteroides fragilis, Bacteroides caccae, Bacillus anthracis, Clostridium perfringens, Vibrio 

cholera, Entamoeba histolytica, Cryptosporidium species. suggesting that these proteins might play an 

important role in the biology of mucosal microbes as well as in host microbial interactions.  

I.8.1 M60-like domain-containing proteins are putative gluzincin family proteases 

I.8.1.1 Overview of proteases and classification  

Proteases are enzymes capable of hydrolyzing peptide bonds in protein substrates. They are 

generally classified as serine, threonine, cysteine, aspartate, glutamate or metalloproteases as on 

the MEROPS online database (http://merops.sanger.ac.uk/) for proteolytic enzymes (Rawlings 

et al., 2012). The MEROPS database also includes mixed and unknown classes. Protease classes 

are divided into clans or superfamilies which can be further divided into families (MEROPS). 

Their classification takes into consideration amongst other factors, evolutionary relationships, 

protein structure and sequence homology, active site amino acids, and their cofactor 

requirements (Mansfeld et al., 2007, Gomis-Rüth, 2003). Proteases can also be endo- or exo-

acting depending on the position of the peptide bond in the protein that they target (Figure I.21). 

Endo-acting proteases cleave internal peptide bonds while exo-acting proteases cleave terminally 

located peptide bonds (Dos Santos, 2011).  
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Proteases perform vital physiological and pathological functions in microbial systems (Figure 

I.21), including serving as nutritional and virulence factors (Miyoshi and Shinoda, 2000, Ruiz-

Perez et al., 2011, Szabady et al., 2011, Mendoza-lopez et al., 2000, Franco et al., 2005, Dos Santos, 

2011) . 

     
 

Figure I.21 – General classification of proteases (A) and an overview of their role in microbial 

systems (B). Images were adapted from Dos Santos, (2011). 

I.8.1.1.2 Metalloproteases  

As the name implies these are protease requiring metallic cofactors for their activity. A popular 

co-factor for this group is zinc and metalloproteases requiring zinc for their activity are generally 

termed zinc metalloproteases. A significant number of the known zinc metalloproteases contain 

the HEXXH motif or consensus sequence (X= any amino acid) in their catalytic sites (Figure 

I.22) and belong to the zincin superfamily or clan (Miyoshi and Shinoda, 2000, Gomis-Ruth, 

2003, Levine, 2011, Coleman, 1998).   The two histidine residues in the consensus perform the 

function of coordinating the catalytic zinc ion (Zn2+) in the active site of the enzyme while the 

glutamic acid (E) residue serves as the catalytically active amino acid (Fukasawa et al., 2011, 

Ramos et al., 2001). A third Zn2+ binding ligand differentiates the zincin clan further into 

subclans e.g gluczincins (E), aspzincins (D) or metzincins (H/D) (Gomis-Rüth, 2003, Levine, 

2011). 

A B 
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Figure I.22 – Overview of zinc metalloproteases. A: Classification of zinc metalloproteases based on sequence 

features. Residues in red are various metal binding ligands considered during the classification of zinc metalloproteases into 

various clans and families (Miyoshi and Shinoda, 2000) B: Structure of the B. thermoproteolyticus thermolysin protease (PDB 

2A7G.pdb) showing components of its zincin motif (HELTH). The green shading indicates the position of the catalytic glutamic 

acid (Glu143), the yellow and magenta shadings are the histidine residues coordinating the zinc ion (Zn2+) at the active site, while 

the blue shading represents the third metal binding ligand. All Zn2+ ion coordinating ligands are also shown in Figure I.22C in 

stick representation with the red sphere representing the ion.  
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According to the PFAM database (Punta et al., 2012), M60-like domains have currently been 

identified in over 817 sequences from both prokaryotic and eukaryotic origins. In both groups of 

organisms, a seed alignment (alignment  that contains a small set of representative members of 

the family) shows a highly conserved HEXXH motif followed by a series of other conserved 

residues including glutamic acid (E) residue (downstream of the HEXXH motif) (Figure I.23). 

On account of these features, M60-like proteases are thus classified as putative zincin proteases 

under the MAE subclan of metalloproteases also termed gluzincins on the MEROPS database 

(Rawlings et al., 2012, Figure I.22).    

 

      

Figure I.23 - Seed alignment of M60-like domain-containing sequences showing a highly 

conserved zincin motif (HEXXH). The red inverted triangle points to the putative catalytic glutamic acid residue (E) 

while open inverted triangles point to various conserved metal binding residues. Aligned sequences (from both prokaryotic and 

eukaryotic origins) were all retrieved from the PFAM database (Punta et al., 2012) (Uniprot IDs indicated on the left). Sequence 

alignments were viewed using the ESPript 2.2 utility at http://espript.ibcp.fr/ESPript/ESPript/ (Gouet et al., 1999) with a global 

similarity score threshold of 0.7.  Red highlights are for amino acid residues showing 100% conservation while yellow highlights 

are for residues showing less than 100% conservation but above the global score threshold. 

 HEXXH  

http://espript.ibcp.fr/ESPript/ESPript/
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I.8.1.1.2.1 General proteolytic mechanism of zincins   

A prototypic member of the zincin clan is the B. thermoproteolyticus thermolysin protease. As shown 

in Figure I.22, the protein contains the HEXXH motif (HELTH) and a third glutamic acid (E) 

metal binding ligand. In addition to water, Zn2+ ion is coordinated by 4 ligands (His 142, His 146, 

Glu166 and water) in the active site of the native enzyme. In the presence of a substrate at the 

active site, the carboxyl group of the catalytic glutamic acid residue (Glu143) forms hydrogen 

bonds with the water molecule coordinated to the electrophilic Zn2+ ion (Figure I.24).   This 

causes a nucleophlic attack by the water molecule on the carbonyl atom close to the scissile 

peptide bond in the substrate (Matthews et al., 1988, Coleman, 1998, Gomis-Rüth, 2003). The 

result is a tetrahedral intermediate stabilized by other residues in the enzyme structure. The 

distortion of the peptide bond in the structure occurs when Glu143 transfers protons acquired 

during the formation of the intermediate to the nitrogen of the scissile bond as shown below.  

    

   

 

Figure I.24 - Sequence of events leading to the cleavage of a scissile peptide bond within a protein 

substrate by zincin proteases. The gray highlighted sequence represents a hypothetical protein substrate targeted for 

cleavage by a zincin protease (in this case shown for the B. thermoproteolyticus thermolysin protease). See Figure I.22 for the location 

of various residues in the HEXXH consensus and the third metal binding ligand (Modified from Matthews, 1988 and Fernandez 

et al., 2001). 
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I.8.2 Carbohydrate binding modules of M60-like domain-containing  proteins 

Carbohydrate active enzymes (CAZymes) are defined as enzymes capable of degrading, 

modifying, or creating glycosidic bonds. The online CAZy database (Cantarel et al., 2009) 

includes glycoside hydrolases (GH), glycosyltransferases (GT) polysaccharide lyases (PL) and 

carbohydrate esterases (CE) in this group. CAZymes often contain one or more non-catalytic 

domains in their structure termed carbohydrate binding modules or CBMs. As the name implies, 

they generally serve to bind specific carbohydrate components within a target substrate. By doing 

so, they may potentiate the activity of the parent enzyme through proximity or targeting effects 

(Boraston et al.,2004, Shoseyov et al., 2006, Herve et al., 2010), or in some cases cause the 

disruption of the target substrate (Din et al., 1991).  

 

 

Initially identified as cellulose binding domains (Gilkes 1998, Boraston et al 2004), the number of 

CBMs with varying ligand specificities has risen rapidly over the past years.  Indeed CBMs have 

now been classified into over 67 different families (with more yet to be classified) on the CAZy 

database (Cantarel et al., 2009), targeting a wide range of substrates from monosaccharides to 

complex glycans. The classification into families is based on sequence similarities and various 

CBM families are identified by a number written in front of the CBM abbreviation e.g CBM32 to 

denote a family 32 carbohydrate binding module as seen on the CAZy database (Cantarel et al., 

2009). It is however worth noting that there are other putative and biochemically characterized 

carbohydrate binding domains that are not named following this convention e.g the BACON 

and PA14 carbohydrate binding domains respectively that are only available from the PFAM 

database (Punta et al., 2012). BACON domains are a new family of protein domains and stand 

for Bacteriodetes-Associated Carbohydrate-binding Often N-terminal (Mello et al., 2010). Their 

carbohydrate binding properties are yet to be characterized. PA14 domains are named based on 

their similarity to a ~14kDa domain in the anthrax protective antigen (Rigden et al., 2004). Some 

PA14 domains detected in surface exposed epithelial cell adhesins (Epa proteins) of Candida 

albicans are capable of binding galacto-configured sugars (Maestre-Reyna et al., 2012, Zupancic et 

al., 2008). 

 

CBMs are also classified into different types based on structural and functional similarities 

(Boraston et al., 2004). A detailed insight into this classification scheme is provided in Boraston et 

al., 2004 and Guillen et al., 2010. In brief, CBMs are classified into Types A, B and C. Type A or 

‘surface-binding’ CBMs refers to CBMs with a flat or platform like binding site. It is the 
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orientation of aromatic side chains at the binding site of the CBM that provides the planar 

platform typical of this group (Figure I.25). CBM1, 2 and 3 are examples of CBM families 

belonging to this group. The aromatic amino acid side chains of Type B CBMs on the other hand 

are oriented in a manner that results in the formation of a sandwich or twisted binding platform 

(Figure I.25).. This in addition to the extended nature of Type B binding sites (>15Å) is consistent 

with their ability to accommodate long glycan chains (Boraston et al., 2004).    In contrast, Type C 

CBMs or ‘‘small sugar CBMs’’ which lack extended binding site grooves or clefts. They contain 

smaller binding pockets and as a result are adapted for binding smaller sugars such as mono-, di- 

and trisaccharides. Examples are members of CBM families 9, 8 and 32 (Boraston et al., 2004). 

The authors also discussed the classification of CBMs based on fold families, although it is 

deemed to be less useful in terms of predicting CBM function compared to type classifications 

(Boraston et al., 2004). 

Some enzymes are known to contain more than one CBM domains (multivalent) (Ficko-Blean 

and Boraston., 2009, Guillen et al., 2010, Ficko-blean et al., 2012) with different or similar 

substrate specificities and this may enhance their affinity for the target substrate through an 

avidity effect. Some CBMs also possess more than one binding site for similar reasons (Boraston 

et al., 2004).   

 

                             

                                               

 

 

 

Figure I.25 - Binding site topology of different CBM 

types. Ball and stick structures represent aromatic amino 

acids at various binding sites while stick structures 

represent polysaccharide substrates A: Type A CBM from 

Trichoderma reesei PDB:1CBH, B: Type B CBM from C. 

fimi, PDB:1GU3 C: Type C CBM from Thermotoga maritime, 

PDB: 1I82. Images from Guillen et al., (2010). 

 

A B 

C 



 

 

- 47     - 

 

Putative CBMs were detected in many M60-like domain-containing proteins (Nakjang et al., 

2012). Examples include CBM32, CBM5, CBM12, CBM52, BACON and PA14 domains. Of 

these, the highest frequency of occurrence was observed for the family 32 (CBM32) carbohydrate 

binding modules as shown in Figure I.26. 

 

 

Figure I.26- Frequency of various domains associated with M60-like domain-containing proteins. 

This graph was generated using data from Sirintra Nakjang’s thesis, 2012. CBM32 modules are a prominent feature of M60-like 

domain-containing proteins. More details of various domains can be obtained from the PFAM database (Punta et al., 2012) using the PFAM 

ID’s provided on the graph. 

 

I.8.3 Evidence for extracellular localization of M60-like domain-containing proteins 

A significant number (~70%) of M60-like/PF13402-containing proteins also possess additional 

features consistent with extracellular or cell surface localisation. Most either contain a putative 

signal peptide (SP) sequence or one or more transmembrane domains (TMDs) (PFAM, Nakjang 

et al., 2012). Genes encoding M60-like domain-containing proteins also exist as members of 

different polysaccharide utilisation loci (PULs) in the genome of B. thetaiotaomicron (Table I.5). As 

indicated in Section I.6, gene products from these clusters are often cell envelope associated, 

some of them extracellularly (Sections I.6.1.1 and I.6.1.2). Their association with PULs also 

suggests that M60-like domain-containing proteins may functionally interact with other PUL 

components including amongst others, prominent members such as glycoside hydrolases 

(Martens et al., 2008). Examples of putative glycoside hydrolase families encoded by M60-like 

PULs include families GH109, GH2, GH43, and GH35 (Table I.5). See subsequent section 

(Section I.9) for an overview of glycoside hydrolases.  
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PUL 5   

 
GENES       
 

 
Annotation 

  
BT_0262 

 
hypothetical protein 

 BT_0263 hypothetical protein 
 BT_0264 Glycoside Hydrolase Family 43 
 BT_0265 Glycoside Hydrolase Family 43 
 BT_0266 hypothetical protein 
 BT_0267 Hybrid two-component system regulator 
 BT_0268 susC-like 
 BT_0269 susD-like 
 BT_0270 hypothetical protein 
 BT_0271 hypothetical protein 
 BT_0272 susC-like 
 BT_0273 susD-like 
 BT_0274 hypothetical protein 
 BT_0275 hypothetical protein 
 BT_0276 hypothetical protein 
 BT_0277 hypothetical protein 
 BT_0278 hypothetical protein 
 BT_0279 hypothetical protein 
 BT_0280 transposase for insertion sequence element ISRM3 
 BT_0284 putative peptidoglycan binding protein (LPXTG motif) 
 BT_0285 putative tolQ-type transport protein 
 BT_0286 hypothetical protein 
 BT_0287 putative biopolymer transmembrane protein 
 BT_0288 hypothetical protein 
 BT_0290 Glycoside Hydrolase Family 35 
 BT_0291 Integrase 

 

 

 
PUL 45 
 

 
GENES 

 
Annotation  

  
BT_3010 

 
ECF-type sigma factor 

 BT_3011 anti-sigma factor 
 BT_3012 susC-like 
 BT_3013 susD-like 
 BT_3014 putative chitobiase 
 BT_3015 hypothetical protein 
 BT_3016 TonB-dependent receptor 
 BT_3017 acid phosphatase 
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PUL78 

 
GENES 

 
Annotation 
 

  
BT_4240 

 
Conserved hypothetical protein, with a phosphotransferase 
enzyme family domain 

 BT_4241 Glycoside hydrolase family 2 
 BT_4242 Putative transporter 
 BT_4243 Putative oxidoreductase (putative secreted protein) 
 BT_4244 Hypothetical protein 
 BT_4245 Hypothetical protein 
 BT_4246 Susd-like 
 BT_4247 Susc-like 
 BT_4248 Anti-sigma factor' 
 BT_4249 Anti-sigma factor 
 BT_4250 ECF-type sigma factor 

 

 

 

 
PUL 79 

 
GENES 

 
Annotation 
 

  
BT_4266 

 
Hypothetical protein 

 BT_4267 Susc-like 
 BT_4268 Susd-like 
 BT_4269 Hypothetical protein 
 BT_4270 Hypothetical protein 
 BT_4271 Hypothetical protein 
 BT_4272 Hypothetical protein 

   

 

Table I.5 - PULs containing M60-like domain-containing proteins in B. thetaiotaomicron. The 

M60-like protein of each PUL is highlighted in red (See full list of PULs in Martens et al., 2008). 

I.9 Glycoside hydrolases  

Glycoside hydrolases (EC 3.2.1.-) occur in essentially all domains of life and catalyse the 

hydrolysis of glycosidic bonds within polysaccharide or between polysaccharide and non-

polysaccharide structures.  There are several levels of their classification, for example they can be 

classified as endo or exo-acting, inverting or retaining enzymes or into various GH families.    
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I.9.1 Endo or exo-acting 

As is the case with proteases, the classification of GHs as endo or exo-acting enzymes is 

dependent on whether they cleave internal or terminally located glycosidic linkages in their target 

substrates. This is also discussed in Sections I.6.1.1 and I.6.1.2 in relation to GHs of the Sus 

system. 

 

I.9.2 Inverting and retaining enzymes  

GHs can be classified as inverting or retaining depending on changes to the stereochemistry at 

the anomeric carbon following hydrolysis (Rye and Withers, 2000, Vuong and Wilson, 2010). 

Both classes of glycoside hydrolases require amino acids with carboxylic acid groups at their 

active sites to achieve hydrolysis. In inverting enzymes, one of the carboxyl amino acids serves as 

catalytic acid residue and the other, a catalytic base residue while retaining glycosidases contain a 

nucleophile and a general acid/base residue (Figure I.27). 

Inverting enzymes act through a single step mechanism involving the donation of a proton to the 

anomeric carbon by the catalytic acid residue followed by a nucleophilic attack of the anomeric 

carbon by water earlier activated by the catalytic base. This leads to a change in the 

stereochemistry at the anomeric carbon. Retaining enzymes catalyse the hydrolysis of the 

glycosidic bond by a double displacement mechanism. In the reaction that follows, the glycosyl 

oxygen atom (O-glycosidic bond oxygen) is protonated initially by the general acid/base residue 

while a nucleophilic attack of the anomeric carbon by the nucleophile leads to the formation of a 

substrate glycosyl-enzyme intermediate (Figure I.27).  In the second step, the previously 

deprotonated general acid/base residue then acts as a base to activate a water molecule that 

nucleophilically attacks the anomeric carbon of the glycosyl-enzyme intermediate. This two-step 

procedure ensures the retention of the stereochemistry at the anomeric carbon (Vuong and 

Wilson, 2010)  
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Figure I.27 - Mechanism of inverting and retaining glycoside hydrolases. A: Inverting enzyme 

mechanism B: Retaining enzyme mechanism (modified from Rye and Withers, 2000)  

 

I.9.3 GH Clans and families 

GH enzymes can also be classified into families based on sequence similarities [CAZY database 

(Punta et al., 2012), Davies and Sinnot, 2008). Families are further grouped into clans based on 

similarities in the three dimensional structure, catalytic residues, mechanism of glycosidic bond 

cleavage and evolutionary ancestry (Naumoff, 2011). A list of various GH families and the 

mechanisms of hydrolysis is given below in Table I.6.  

 

Transition state 
Catalytic base 

Catalytic acid 

Catalytic acid/base 

Nucleophile 
Transition state 

Transition state 

Glycosyl-enzyme intermediate 

A 

B 
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Table I.6 - GH families and clans. Members of the same clan for the most part employ similar catalytic strategies [i.e. 

retaining or inverting mechanisms (ax.: axial and eq: equatorial)] and possess similar three dimensional structures (Naumoff 2011).  

 

Other GH families that have not been allocated to clans in the CAZy database include, GH129, 

GH109 and GH4 families which also happen to use an unusual mechanism involving NAD+ as 

cofactor [CAZy (Punta et al., 2012), Naumoff 2011, Liu et al., 2007]. In the PFAM database, GH4 

(PF02056) and GH109 belong to clan CL0063 (PFAM, Naumoff 2011). 
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I.10 Objectives of this study   

The overall aim of this study was to gain new insights into host microbial interactions at mucosal 

surfaces in disease and health by studying the novel family of M60-like domain-containing proteins 

and their functional partners in B. thetaiotaomicron and T. vaginalis. 

 

The specific objectives were as follows; 

 

Characterize M60-like domain-containing proteins from B. thetaiotaomicron and T. vaginalis using 

in-silico and biochemical approaches. 

 

Analyze the functional context of a PUL associated M60-like domain containing protein in B. 

thetaiotaomicron. 

 

Evaluate the contribution of a B. thetaiotaomicron M60-like PUL to the organisms’ fitness and 

survival on mucins in-vitro. 
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   CHAPTER II  

M a t e r i a l s  a n d  m e t h o d s  

II.1 Molecular biology and Biochemistry 

II.1.1 Bacterial strains  

Various Escherichia coli (E. coli) strains used during the course of this study are listed below in 

Table II.1. 

 

Strain Genotype Use Reference 

BL21(DE3) F- ompT hsdSB(rB- mB-) gal dcm (DE3) Protein Expression 
Studier and 
Moffatt, 1986 

    

One Shot™ TOP10 

F- mcrA Δ(mrr-hsdRMS-mcrBC) 
±80lacZΔM15 ΔlacX74 recA1 endA1 
araD139 Δ(ara, leu)7697 galU galK 
Δλ- rpsL nupG tonA hsdR 

DNA cloning 
(plasmid 
propagation) 

Invitrogen 

CC118 λ -pir 
Δ(ara-leu) araD ΔlacX74 galE galK 
phoA20 thi-1 rpsE rpoB argE (Am) 
recA1 λpir 

Gene deletion 
(plasmid 
propagation) 

Herrero et al., 
1990 

S17.1 λ-pir 
hsdR recA pro RP4-2 (Tc::Mu; 
Km::Tn7)( λ pir)  

Gene deletion  
Skorupski and 
Taylor, 1996 

 

Table II. 1 - Bacterial strains used in this study. 

 

II.1.2 Plasmids 

Cloning and DNA deletion plasmids used during the course of this study are listed below in 

Table II.2  

 

Plasmids ~Size (kbp) Phenotype/ Genotype Reference 

    
pET28a 5.4 Kanr, T7, lac, laclq Novagen 

pET43.1a 7.3 Ampr, T7, lac, laclq Novagen 

minipRSET-A 2.9 Ampr, N-His Invitrogen 

pExchange-tdk 4.2 Ampr 
Koropatkin et 

al., 2008 

 

Table II. 2 - Plasmids used in this study. Please see maps for various plasmids in appendix C. 
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II.1.3 Growth Media 

The preparation of various growth media used during the course of this study are described 

below in Table II.3. 

 

Medium Composition Amount per litre 

Luria-Bertani 

(LB) medium 

Bacto®tryptone  10 g 

Bacto®yeast extract  5 g 

NaCl  10 g 

After dissolving components in about 900 ml of water, the pH of the solution was 

adjusted to 7.4 with NaOH and the final volume taken to a litre prior to sterilisation 

(Section II.1.5) 

LB – agar  2 g of agar (AGAR NO.1, OXOID) was added to 100 ml of LB medium (2%) and 

autoclaved at 121 oC for 20 min. See below for preparation of selective media 

TYG medium  

 

Tryptone Peptone 10 g 

Bacto Yeast Extract 5 g 

Glucose 2 g 

Cysteine (free base) 0.5 g 

1 M KPO4 pH 7.2 100 ml 

Vitamin K solution, 1 mg/ml 1 ml 

TYG salts 40 ml 

0.8% CaCl2 1 ml 

FeSO4, 0.4 mg/ml 1 ml 

Resazurin, 0.25 mg/ml 4 ml 

The final volume of the mixture was taken up to 1L, mixed properly and 5ml 

transferred into glass test tubes. The test tubes containing media were then clogged 

with cotton and later autoclaved at 121 oC for 20 min. After autocalving media were 

allowed to cool to room temperature and 5 μl of His-Hem solution (Section 

II.1.3.1.1) added prior to use.  

Minimal 

medium 

NH4 SO4 1 g 

Na2CO3 1 g 

cysteine, free base 0.5 g 

1 M KPO4 pH 7.2 100 ml 

Vitamin K solution, 1 mg/ml 1 ml 

FeSO4, 0.4 mg/ml 10 ml 

 Resazurin, 0.25 mg/ml 4 ml 
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Medium Composition Amount per litre 

Minimal 

medium 

(continued) 

Vitamin B12, 0.01 mg/ml 0.5 ml 

Mineral Salts for defined medium 50 ml 

After preparation of the minimal medium, subsequent steps were as above for the 

TYG medium except for the fact that before inoculation with bacteria, the solution 

of a desired substrate (in about 100-200 μl) is added to the medium. For some 

substrates such as PGM that are not affected by autoclaving, the appropriate amount 

was weight and autoclaved together with medium 

Modified 

Diamond’s 

Medium 

(MDM) 

Trypticase peptone 20 g 

Yeast extract 10 g 

Maltose 5 g 

Ascorbic acid 1 g 

Iron II sulphate heptahydrate 0.1 g 

KCl 1 g 

KH2PO4 1 g 

K2HPO4 0.5 g 

KHCO3 1 g 

Media contents were mixed and 200 ml volumes transferred to into 5 blue-topped 

200 ml bottles and taken for autoclaving. After autoclaving 20 ml of horse serum 

(from -20 oC) was added per 200 ml of medium followed by 2 ml of penicillin –

streptomycin to obtain a complete MDM medium. The MDM medium was then 

shared into ~50 ml fractions in 50 ml conical tubes and tightly corked. They were 

also further sealed with parafilm. Tubes containing MDM were stored at 37oC for 

about a week. 

 

Brain heart 

infusion (BHI) 

3.75 g in of BHI and 2 g of agar were dissolved in 100 ml of distilled water and 

autoclaved. The sample after autoclaving was allowed to cool and when desired, 

other ingredients such as antibiotics were added before pouring into petri dishes 

 

Table II.3 - Preparation of growth media 
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II.1.3.1 Other media components 

II.1.3.1.1 His-Hem solution (0.2 M Histidine pH 8.0) 

4.2 g of Histidine - HCl monohydrate (Sigma cat.; H7875) was dissolved in 80 ml distilled water 

and pH adjusted to 8 with 10N NaOH. The final volume was brought up to 100 ml with distilled 

water. 12 mg of Hematin (Sigma cat.; H3281) was mixed with 10 ml of 0.2 M Histidine pH 8.0 

and dissolved by end-over-end rotation or vigorous shaking for several hours. The sample was 

later filter-sterilized using a 0.2 μm filter and stored at 4 oC. 

 

II.1.4 Selective media 

The preparation of stock antibiotic solutions was as described below in Table II.4. After 

autoclaving, the LB-agar mixture (Table II.3) was allowed to cool to about 50 oC and the 

necessary antibiotics added. The mixture was later poured into 90 mm sterile petri dishes (~25 ml 

per dish) and allowed on a working bench to solidify before storage at 4 oC. 

 

Antibiotic Stock concentration 
Final antibiotic 

concentration 
Storage 

Ampicillin 50 mg/ml in water 50 g/ml 4 °C for < 5 days 

Kanamycin 10 mg/ml  in water 10 g/ml 4 °C for < 5 days 

 

Table II.4 - Preparation of antibiotics 

 

  

II.1.5 Sterilisation  

Unless otherwise stated, media, glassware and solutions were sterilized by autoclaving using a 

portable steam sterilizer or autoclave (Prestige Medical) at 121 oC, 32 lb / inch -2 for 20 min. For 

solutions that could not be sterilized by this means, filter sterilization was carried out using a 

sterile syringe (Plastipak®,Becton Dickinson) and an appropriate pore-sized (0.22-1 μm) Millipore 

filter discs (Supor® Acrodisc®). 
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II.1.6 Storage of DNA and bacteria 

For long term storage, glycerol stocks (25 % glycerol) of bacterial strains were kept at -80 °C in 

cryovials. E. coli colonies on agar plates were only stored at 4 oC for a maximum of 4 days before 

re-use. Plasmids were stored at -20 °C in EB buffer (10 mM Tris/HCl buffer, pH 8.5). 

II.1.7 Plating bacteria 

To plate bacterial cells on LB-agar, a glass spreader was immersed in 100 % ethanol and passed 

through a burnsen flame to enable sterilization as the ethanol burned off the spreader. The 

spreader was allowed to cool for about a minute and used to evenly spread 100 μl of bacterial 

suspension over the surface of the agar. Plates were incubated in an inverted position at 37 °C 

for overnight growth in an incubator (LEEC Ltd).  

 

II.1.8 Growth of B. thetaiotaomicron  

TYG was used as the culture medium for B. thetaiotaomicron in this study.  5 ml - 10 ml of TYG 

and MM media were inoculated with about 50 μl - 100 μl of B. thetaiotaomicron from a glycerol 

stock or directly from culture medium. Anaerobic conditions were achieved using pyrogallol and 

sodium bicarbonate. In brief, tubes containing media were clogged with the cotton wool used 

during autoclaving and the cotton burned under a hood to partially extract oxygen from within 

the tubes.  Burned cottons were then pushed half way down each tube and soaked with 200 μl of 

35% pyrogallol followed by same volume of 10% NaHCO3. Tubes were immediately corked with 

plastic stoppers and taken to a 37 oC incubator for growth.  

 

II.1.9 Growth of T. vaginalis  

MDM medium (Table II.3) was used as culture medium for T. vaginalis in this study. Frozen T. 

vaginalis cells from liquid nitrogen were quickly defrosted in warm tap water (~40 oC) and 2 ml 

inoculated into tubes containing about 50 ml MDM in a sterile laminar flow hood.  Tube caps 

were then tightly applied and further sealed with parafilm before incubating at 37 oC for about 2 

days.   

 

II.1.10 Centrifugation 

Bacterial cells were often harvested from culture (100-1000 ml) in 500 ml centrifuge pots 

(Nalgene) using low speed centrifugation at 5000 × g for 10 min at 4 oC. The 500 ml centrifuge 

pots are adapted for use with the JA-10 rotor of a Beckman J2-21 centrifuge (Beckman Coulter, 

Inc.). Bacterial cells (usually the E.coli TOP 10 cells) from below 10 ml culture volumes were 
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harvested in sterile 25 ml Sterilin tubes by centrifugation at 5000 × g for 5 min using a fixed 

angle Hettich Zentrifugen bench centrifuge (Hettich Lab technology). For culture volumes of 1-2 

ml, appropriate Eppendorf tubes were used with a HERAEUS, PICO17 bench top centrifuge 

(Thermo Scientific). 

 

II.1.11 Chemically competent E. coli 

Chemically competent cells used for cloning and expression experiments were prepared by a  

modification of the protocol described by Cohen et al. (Cohen et al, 1972). A single colony of 

E.coli cells was used to inoculate 5 ml of LB for overnight growth at 37 oC while shaking at 180 

rpm. 1 ml of the overnight culture was used to inoculate 100 ml of LB in a non-baffled 1 L flask 

and cells allowed to grow to an optical density (OD600nm) of about 0.4. The flask containing 

cells was later placed on ice for 20 min after which cells were collected into 4 x 25 ml sterilin 

tubes and centrifuged at 280 x g for 5 min at room temperature. The supernatant was discarded 

in each case and cells resuspended in 3 ml of ice cold 0.1 M CaCl2. The previous step was 

repeated and the cells resuspended 1 ml sterile ice-cold 0.1 M MgCl2.  Cells were finally made 

competent by allowing on ice for 2 h. For long term use, competent cells were stored as 100 μl 

aliquots in 1.5 ml Eppendorf tubes with 25 % (v/v) glycerol at -80°C.  

 

II.1.12 Genomic DNA extraction  

II.1.12.1 B. thetaiotaomicron 

B. thetaiotaomicron genomic extraction was carried out using the Sigma GenElute™ Bacterial 

Genomic DNA Kit (Sigma cat.; NA2100) according to the manufacturer’s instructions. 

 

II.1.12.2 T. vaginalis 

II.1.12.2.1 Cell lyses and preparation for Phenol chloroform extraction  

T. vaginalis genomic DNA was purified by phenol chloroform extraction (Bewsey et al., 1991). T. 

vaginalis cells (75-100ml culture volume) were harvested at mid-log phase by centrifugation at 900 

g for 5 min at 4 oC and washed twice in 20 ml PBS at 4 oC. The cells were centrifuged again, re-

suspended in 1ml PBS and later placed on ice for about 5 min. 20 µl of DEPC 

(Diethylpyrocarbonate) was then added to the cell suspension in a fume hood and allowed to 

sediment on ice for 5 min. 40 ml of freshly prepared DEPC- Triton X-100-RBS [40µl of DEPC 

plus 100 ml of cold Triton X-100-RBS (10 mM NaCl, 10mM Tris-HCl, 5mM MgCl2)] was then 

added to mixture and centrifuged for 3 min at 900 g at 4 °C. The previous step was repeated and 

the final cell pellet resuspended in 5 ml proteinase K buffer (1.5% SDS, 1% Proteinase K). The 



 

 

- 60     - 

 

mixture was incubated at 55 oC for 2 h with shaking every 15 min to increase the rate at which 

the pellet dissolved. Proteinase K was later-on heat inactivated after by incubating the mixture at 

65 °C for 10 min.  

 

II.1.12.2.2 Phenol/chloroform extraction 

At this stage of the process only polypropylene tubes which are resistant to phenol/chloroform 

were used. Equal volumes of Sigma phenol: chloroform: isoamyl alcohol solution (Sigma cat.; 

P2069) and the nucleic acid solution containing inactivated proteinase K above were mixed and 

agitated briefly until an emulsion formed.  The solution was then centrifuged at 12,000 x g for 3-

5 min at room temperature. The aqueous phase of the centrifuged mixture was pipetted into a 

new tube while the organic phase and interface between the organic and aqueous phases were 

both discarded. The previous step was repeated on the aqueous phase until no protein was 

visible at the interface between the aqueous and organic phases.  An equal volume of chloroform 

was then mixed with the aqueous phase and centrifuge at 12,000 x g for 3-5 min at room 

temperature to remove residual phenol. The aqueous phase was then pipetted into a new tube for 

ethanol precipitation. 

 

II.1.12.2.3 Ethanol precipitation 

3 M Sodium Acetate (pH 5.2) was added to the aqueous phase from above at a rate of 1/10th the 

volume of the aqueous phase followed by two volumes of 100% ice cold ethanol. The tube 

contents were mixed by inverting several times and stored at -20 °C for at least 1 h. After this 

step the solution containing the DNA was centrifuged at 13 200 rpm for 20 min using a 

HERAEUS, PICO17 bench top centrifuge (Thermo Scientific)  and the pellet washed with ~ 

500 μl of 70% ice cold ethanol by further centrifugation at  13 200 rpm for 5 min  in a 1.5 ml 

Eppendorf tube. The pellet was then vacuum-dried after removal of the supernatant and 

reconstituted in about 200 μl of TE buffer (10mM Tris/1mM EDTA). The DNA was quantified 

using a Nanodrop spectrophotometer (Section II.1.13).  

 

II.1.13 Determination of DNA and protein concentration   

The concentration of DNA or protein in samples was routinely estimated by absorbance at 260 

nm and 280 nm (A260nm, A280nm) respectively using a NanoDrop 2000 UV-Vis 

spectrophotometer (Thermo Fisher Scientific Inc, USA) and the beer lamberts equation: 

      A=εCI  
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Where A = absorbance 280 or 260nm, ε = molar extinction coefficient, I = length of light path 

(cm), and C = molar concentration of sample. 

 

II.1.14 Primers 

All primers used in this study were synthesised by Sigma (Sigma Adrich, UK).  Primer parameters 

were estimated using the online Oligonucleotide Properties Calculator tool at 

http://www.basic.northwestern.edu/biotools/OligoCalc.html.   Primer lengths were usually 

greater than or equal to 18 bp and melting temperatures (Tm) greater than or equal to 50 oC.  For 

cloning experiments, restriction sites were added to the 5’- ends of various primers alongside a 

CCGG or GCGC spacer to enable cleavage by restriction enzymes and susbsequent ligation in 

similarly cut vectors. Primers were often synthesized dry and resuspended in highly distilled water 

to the desired concentration upon receipt. 

 

Tm=64.9 + 41*(yG +zC -16.4)/ (wA +xT +yG +zC) 

 

Where w, x, y, z are the number of the bases A, T, G, C in the sequence, respectively. 

 

II.1.15 Polymerase chain reaction (PCR)   

DNA amplification and site directed mutagenesis was routinely performed by PCR (Mullis & 

Faloona, 1987) using the Novagen Hot start PCR kit (Novagen). A typical PCR reaction set-up is 

given in Table II.5. Amplification reactions were performed using a PHC-3 thermocylcer 

(Biorad) using the standard program below (Table II.6) unless otherwise indicated. 

 

Table II.5 - Typical PCR reaction set-up  

Components and concentrations Volume 

Autoclaved distilled water 19 µl 

10 x KOD buffer minus Mg2+ (10 x ) 5 µl 

dNTP’s (2 mM) 5 µl 

Q-solution (DMSO) 5 µl 

MgSO4 (25 mM) 4 µl 

Template DNA (~70 ng/µl) 1 µl 

Novagen ® KOD DNA Polymerase (2.5 U/μl) 1 µl 

Forward  oligonucleotide (5 µM) 5 µl 

Reverse oligonucleotide primer (5 µM) 5 µl 

Total volume 50 µl 

http://www.basic.northwestern.edu/biotools/OligoCalc.html
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Table II.6 - Typical PCR reaction program 

 

II.1.16 Quantitative/Real time Polymerase chain reaction (qPCR) 

Please see Section II.1.46.5. 

 

II.1.17 Site-directed mutagenesis 

Single amino acid mutations were introduced into recombinant proteins using a modified version 

of the protocol described for the QuickChangeTM Site-Directed Mutagenesis Kit (Stratagene). 

The main modification was the use of high fidelity Novagen ® KOD DNA Polymerase in place 

of the PfuTurbo DNA polymerase enzyme recommended for the kit.  Mutations were targeted at 

DNA fragments already cloned into plasmids. Primers used in the PCR reaction were designed 

to contain the desired mutation.  A typical site-directed mutagenesis PCR set-up and program 

resembled that described for standard PCR reactions in Section II.1.15 except that extension 

times were often higher due to the need to amplify the full recombinant plasmid. Also only about 

18 cycles of Program 2 were performed.  After completion of the amplification reactions, the 

enzyme DpnI was added to the reaction products at a rate of 30 units per 50 μl of the PCR 

reaction (for 1 h at 37 oC) to enable digestion of the methylated and unmutated template 

dsDNA. This step leaves behind only unmethylated but mutated PCR amplicons.  5 μl of the 

digestion reaction was then used for transformation of chemically competent One Shot™ TOP10 

E.coli cells (Section II.1.10). 

Program name Event Temperature Duration Number of Cycles 

 

Program 1 

 

Denaturation 

 

95 °C 

 

1 min 

 

1 

Program 2 Denaturation 95 °C 1 min  

30 Annealing 50 oC  1 min 

Extension 68  oC atleast 

1min/1kbp 

fragment size 

     

Program 3 Polishing 68  oC 10 min 1 

Program 4 Storage 10  oC ≤ 24hr 1 
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II.1.18 Analyses of PCR results by agarose gel electrophoresis 

The results of PCR reactions were analysed by agarose gel electrophoresis (AGE) (Meyers et al, 

1976). AGE allows the detection and separation of amplified DNA fragments according to size. 

Electrophoresis equipments used were the HU10 Mini Plus Horizontal Gel Unit (SCIE-PLAS 

Ltd) and a BDH horizontal gel mould connected to a Bio-rad Mini-PROTEAN® Tetra Cell 

power supply (Bio-rad). To run an AGE experiment, 0.5 g of low grade (MELFORD Ltd) or 

SeaKem® Gold Agarose (Lonza) was dissolved in 50 ml of TBE buffer (biroad) or TAE 

(Amersham) in a 200 ml conical flask to obtain a 1 % agarose solution. The solution was stirred 

and heated in a microwave oven at 450 watts of power for at least 1.5 min.   This was later 

allowed to cool to about 60 oC followed by addition of 5 μl (0.5-1 mg/ml) of an ethidium 

bromide solution. The solution was mixed by gentle swirling and poured into a gel casting mould 

set-up according to the manufacturers’ instructions. As the gel solidified, 5 μl of DNA loading 

buffer [0.25% (w/v) bromophenol blue, 50% (v/v) Glycerol, 10 x TBE buffer (8.9 mM Tris 

base, 8.9 mM Boric acid, 2 mM EDTA pH 8.0 )] were added to 5 μl of the solution containing 

the PCR products to be analysed. After setting, the gel was submerged in 50 ml of TBE buffer 

followed by application of the PCR samples [~10 µl/sample alongside standards (7 µl of Bioline 

HyperLadder™ I markers)].   Electrophoresis was run at a constant voltage (70 V for Biorad 

machine and 100 V for the Amersham machine) for about 1 h. Results were visualised in the UV 

range using Bio-Rad Gel Doc 1000 system (Bio-Rad).  An example of data obtained following 

agarose gel electrophoresis of PCR amplified products is shown below in Figure II.1. 
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Figure II.1 - Example of data obtained following agarose gel electrophoresis of PCR products. 

PCR products and standards were analysed on a 1% agarose gel in TAE buffer. Bands in lanes 1-10 are 

amplified products from different DNA fragments from the genome of B. thetaiotaomicron. Lanes M: 

Bioline HyperLadder™ I standards (7 μl), Lanes 1-10: AGE results from 5 µl of different PCR reactions.  

 

II.1.19 Purification of PCR products 

PCR products were purified using the Qiagen QIAquick PCR Purification Kit (Qiagen) as 

described in manufacturer’s instructions. 

 

II.1.20 DNA digestion with restriction enzymes   

Digestion of amplified DNA and plasmids containing cleavage sites for restriction enzymes was 

carried out prior to ligation reactions (Section II.1.22).  Restriction enzymes and buffers used 

during the process were ordered from fermentas (MBI Fermentas, UK). Digestion reactions were 

set-up according to the manufacturers’ instructions. A typical set – up is shown below in Table 

II.7. 

Table II.7 - Set-up of a typical restriction enzyme digestion reaction. One unit of enzyme is 

defined as the amount of enzyme required to cleave 1 μg of DNA in 1 h at 37 °C. Digestion reactions 

were often incubated in a water bath at 37 °C for at least 1 h.  

Components   Volume 

Distilled water   1-2 µl 

DNA fragment  / plasmid (~0.1 – 0.5 μg)    50 µl  

Restriction enzyme buffer (10 x)   6 µl 

Restriction enzyme (10 U)    2-3 µl 

Total ~ 60 µl 

1500bp 

1000bp 
800bp 

600bp 

400bp 

200bp 

2500bp 

4000bp 

60000bp 

2000bp 

10000bp 

8000bp 

M        1       2        3        4        5       6      7      8        9      10      M 
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II.1.21 DNA extraction from agarose gels    

After DNA digestion with restriction enzymes, agarose gel electrophoresis (with high quality 

seakem agarose (Seakem)] was performed on samples followed by gel extraction to purify the 

digested DNA. This was achieved using the Qiagen QIAquick Gel Extraction Kit (Qiagen) 

according to the manufacturers’ instructions.      

 

II.1.22 Ligation reactions 

Following the purification of digested PCR products (insert) and plasmids from agarose gels, the 

concentration of DNA in each sample was determined and the data used in setting up ligation 

reactions.  Ligation reactions were performed using the Novagen rapid ligation kit (Novagen) 

according to the manufacturers’ instructions. Ligation reactions often contained a plasmid to 

insert concentration ratio of 1:3 (Table II.8). 

 

Components Volume   

Vector (10 ng/μl) 2 µl 

Insert DNA (10 ng/µl) 6 µl 

5x Ligase buffer 4 µl 

T4 DNA Ligase (4 U/µl) 1 µl 

H2O (Nuclease free water) 7 µl 

Total volume 20 µl 

 

Table II.8 - Example of a ligation reaction set-up. Ligation reactions were allowed to run at 37 oC 

for at least 1 h.    

 

II.1.23 Transformation and growth of competent E. coli 

Competent cells from -80oC were allowed to thaw on ice for about 5-10 min followed by 

addition of 2-5 μl of plasmid or the ligation mix above. The mixture was allowed on ice for a 

further 1 h an hour before heat-shocking by incubation in a Techne Dri-Block™ DB-2A at 42 °C 

for 2 min. After heat shocking cells were immediately returned on ice for ~ 3 min. Transformed 

cells were then plated on agar containing an appropriate selection antibiotic (Sections II.1.3 and 

II.1.7). In the case of One Shot™ TOP10 cells, 250 µl of sterile LB medium was added to the 

heat-shocked cells and allowed to grow at 37 oC for 1 hour in a rotating incubator (180 rpm) 

before plating. In each case, plated cells were allowed to grow overnight at 37 oC.     
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II.1.24 Plasmid DNA purification 

Following overnight growth, single colonies of transformed E.coli cells were separately 

subcultured into 5 ml or 100 ml of LB (with appropriate antibiotic) overnight at 37 oC while 

shaking (180 rpm).  These were then used for plasmid extraction. For small scale plasmid DNA 

purications (5 ml-10 ml culture volumes) the QIAprep ® Spin Miniprep Kit (Qiagen)was used, 

while large scale purifications (>10ml) were carried out using the  Plasmid Midi Kit (Qiagen). In 

both cases, the protocol was as described in the manufacturers’ instructions  

 

II.1.25 Automated DNA sequencing 

Automated DNA sequencing was performed using the MWG Value Read service (MWG 

Biotech AG, Ebersberg, Munich, Germany) to check for mutations in cloned DNA sequences.  5 

μl of plasmid DNAs were dried by vacuum lyophilization at room temperature in a 1.5 ml 

Eppendorf tube and labelled with pre-ordered sequencing labels before posting to MWG. 

Sequencing primers used were either custom - designed or standard sequencing primers available 

from the MWG website such as the T7 - forward (TAATACGACTCACTATAGGG) and 

reverse primers (CTAGTTATTGCTCAGCGGT) complementary to regions within most of the 

plasmids used in this study. Sequencing data received from MWG were analysed by alignment 

with the original KEGG database DNA sequence using a multiple sequence alignment tool such 

as Multalign ( http://multalin.toulouse.inra.fr/multalin/).  

 

II.1.26 Over-expression and purification of recombinant proteins in E. coli 

II.1.26.1 Induction of protein expression and cell lysis 

E.coli BL21 (DE3) host cells were used for recombinant protein expression.  The cells were 

transformed with sequenced recombinant plasmids and later plated on appropriate selective 

media for overnight growth (Section II.1.23). The next day, a loop-ful of colonies harbouring 

plamsids were scraped and inoculated into 100 ml volumes of LB containing antibiotic in 200 ml 

baffled/unbaffled conical flasks.  Cells were grown at 37 °C with aeration (180 rpm) until an 

OD600nm of ~0.6. Depending on the protein, at this stage, cells were either directly induced at 

37 oC with 1 mM IPTG or cooled under running tap water to about 16 oC before induction with 

same concentration of IPTG.  Cells induced at 37 oC were allowed to grow for just 4-5 hrs at the 

same temperature with aeration (180rpm) before protein purification while those at 16 oC were 

grown overnight before protein purification. For protein purification, cells were harvested by 

centrifugation at 5000 x g for 10 min, the supernatant discarded and the pellet resuspended in 5 
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ml of Talon buffer (20 mM Tris/HCl pH 8.0 plus 100 mM NaCl) per 100 ml of original culture 

volume.  Cells were then lysed by sonication for 1-2 min (0.5 second cycling) on ice using a B. 

Braun Labsonic U sonicator (B. Braun, Melsungen, Germany) set at low intensity (~45 watts). 

Lysed cells were transferred into 50 ml centrifuge tubes (Nalgene) and centrifuged at 15 000 rpm 

[using a JA25.5 rotor in a Beckman J2-21 centrifuge (Beckman Coulter, Inc.)] for 20-30 min at 4 

°C. The resulting supernatant or cell free extract (CFE or soluble fraction) was collected for 

protein purification while pellet fractions (insoluble fractions) were resuspended in 10 ml of 

Talon buffer and saved on ice for later analyses.  

 

 

II.1.26.2 Immobilised metal affinity chromatography (IMAC) 

The purification of recombinant N- or C- terminal 6 x His-tagged proteins from the CFE was 

achieved by immobilised metal affinity chromatography (IMAC). This was carried out using 

TALON Metal Affinity Resins (Clontech Laboratories Inc) containing bound Cobalt (Co2+) 

capable of binding to the histidine tag of the recombinant proteins. Briefly, HisTALON Gravity 

Columns (Clontech Laboratories Inc) were filled with a 2.5 ml bed volume of Talon resin and 

equilibrated with at least 10 ml of Talon buffer (20 mM Tris/HCl pH 8.0 plus 100 mM NaCl). 

The CFE solution was then applied onto the resin bed in the column and allowed to drain by 

gravity. The flow through (FT) was collected and saved for later analyses. The resin was washed 

with at least 20 ml of Talon buffer followed by a stringent wash with 5 ml of Talon buffer 

containing 10 mM imidazole. Elution of the bound protein from the resin was achieved by 

sequential application of 5 ml volumes of Talon buffer containing 100 mM imidazole.  All eluted 

fractions were collected and saved for subsequent analyses by SDS PAGE (Section II.1.27) or for 

further purification by Ion-exchange or gel filtration chromatography. 

 

II.1.26.3 Ion-exchange and gel filtration chromatography  

Proteins with very low purity after IMAC purification were further purified by ion-exchange 

chromatography (IEC). High purity is also desired for crystallisation and protein structure 

studies. Ion exchange chromatography was performed using the Bio-Rad BioLogic DuoFlow™ 

System connected to a UNO™ Q12 anion exchange column (Bio-Rad). The flow rate of applied 

samples was 1 ml/min and purified samples were collected using a Bio-Rad BioFrac™ fraction 

collector (Bio-rad). Protein samples were initially dialysed overnight into 10 mM Tris/HCl pH 

8.0 (Buffer A) and then loaded onto the column (equilibrated with ~200 ml of buffer A) through 

a 4 ml loop. The elution buffer (Buffer B) contained 10 mM Tris/HCl pH 8.0 and 500 mM 
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NaCl. Gel filtration was done using the same system but with a 16/60 Superdex™ 200 gel 

filtration column. The equilibration and elution buffer was 10 mM Tris/HCl pH 8.0 containing 

150 mM NaCl. 1.5 ml fractions of purified samples were collected and analysed by SDS PAGE. 

At the end, desired fractions were pooled together and concentrated into a buffer of choice.  

 

II.1.27 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein expression was analysed by SDS-PAGE as described by Laemmli (Laemmli, 1970).  

Samples were routinely analysed on 12.5 % polyacrylamide gels (Acrylogel 3; BDH Electran


) 

using the Bio-rad Mini-PROTEAN® Tetra Cell system (Bio-rad) according to the 

manufacturer’s instructions. Information on the preparation of solutions and buffers for SDS-

PAGE experiments is given below in Table II.9.  5 µl of SDS loading buffer was added to 5 µl of 

the pellet fraction and 10 µl of all other fractions (CFE, FT, 10 mM, and 100 mM fractions). 

Except otherwise stated, samples were often boiled at 98 oC for 2-3 min in a boiling water bath 

after which they were cooled to room temperature and applied to SDS-PAGE gels. Samples were 

applied alongside protein standards (Figure II.2) to enable the estimation of protein molecular 

weights after staining. SDS PAGE was run at 150 volts and gels after electrophoresis were 

stained with InstantBlueTM stain (Expedeon) for at least 15 min, after which they were washed in 

excess distilled water overnight followed by image acquisition using a Canon PowerShoot A75 

camera (Canon). 
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Component  

 
Volume/Amount 

 

 

Resolving gel (12.5 %) 

 

                    ~For 4 gels 

0.75 M Tris/HCl buffer, pH 8.8 with 0.2 % SDS  9.4 ml 

40 % Acrylamide (BDH Electran acrylamide, 3 % (w/v) bisacrylamide)  5.8 ml 

d.d. H2O  3.5 ml 

10 % (w/v) Ammonium persulphate  90 μl 

TEMED  30 μl 

 

Stacking gel  

0.25 M Tris/HCl buffer, pH 8.8 with 0.2 % SDS  3.75 ml 

40 % Acrylamide (BDH Electran acrylamide, 3 % (w/v) bisacrylamide)  0.75 ml 

d.d. H2O  3.0 ml 

10 % (w/v) Ammonium persulphate  60 μl 

TEMED  20 μl 

 

Sample/Loading buffer  

SDS  10 % (w/v) 

0.25 M Tris/HCl buffer, pH 8.8 with 0.2 % SDS  5 ml 

Glycerol  25 % (w/v) 

β-mercaptoethanol  2.5 ml 

Bromophenol blue dye  0.1 % 

 

Running buffer  

32 mM Tris/190 mM glycine, pH 8.3  350 ml 

SDS  0.1 % 

 

 Table II.9 - Preparation of SDS PAGE gels and buffers 
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Figure II.2 - Band profile of protein markers used in this study. M1: Sigma high molecular weight 

markers (Sigma, Cat. SDS6H2) on 12.5% SDS-PAGE gels. M2: Sigma low molecular weight markers (Sigma Cat. 

SDS7) 12% SDS-PAGE gels. M3: PageRuler Prestained Protein markers (Thermo Pierce Cat. SM0671) on 12% 

SDS-PAGE M4: MagicMark# XP Western Protein Standard (20-220 kDa) (Life technologies) on Western blot. 

 

II.1.28 SDS-agarose gel electrophoresis (SAGE) 

SAGE was used for the electrophoresis of very high molecular weight molecules (>200kDa)such 

as mucin glycoproteins (Szabady et al., 2011). SAGE gels were prepared by mixing 1% agarose 

and 0.1% SDS in a total volume of 20 ml TAE buffer (40 mM Tris acetate, pH 8.3, containing 1 

mM EDTA). The mixture was heated in a microwave oven (400 watts) for about 2 min and 

allowed to cool to about 60 oC before casting in an HU10 Mini Plus Horizontal Gel Unit (SCIE-

PLAS Ltd) agarose gel mould. Electrophoresis using SAGE gels was routinely performed at 100 

V in TAE buffer.   

 

II.1.29 Western blotting 

The transfer of electrophoresed proteins and glycoproteins onto Nitrocellulose (NC) or 

polyvinylidene difluoride (PVDF) membranes was achieved by Western blotting using the Biorad 

Trans-Blot Turbo Transfer System (Bio-rad). PVDF membranes cut to an appropriate size were 

initially soaked in methanol for 30 s and immediately rinsed in distilled water for 30 s. The 

membranes were then submerged in transfer buffer for another minute or two before use in 

blotting. NC membranes on the other hand were ready for use by simply soaking in transfer 

buffer for 2 min. A transfer sandwich containing two filter papers (thoroughly soaked in transfer 

buffer) at the bottom, followed by the membrane (PVDF or NC), the gel and another set of two 

M4 
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filter papers was prepared and introduced in the blotting equipment according to the 

manufacture’s instructions. Blotting was carried out at 25 V for 30 min.  

 

II.1.30 Buffer exchanging and concentrating proteins 

Vivaspin™ centrifugal filter concentrators (VivaScience) were routinely used to concentrate and 

buffer exchange proteins. Briefly, protein samples to be concentrated were transferred into 

concentrators with the appropriate molecular weight (5, 10 or 30 kDa) cut-off filter, followed by 

centrifugation at ~3500 × g for about an hour using a swing bucket type - MSE Mistral 3000i 

bench centrifuge (MSE, UK). This step could be repeated several times to exclude more of the 

unwanted buffer thus concentrating the protein solution.  When buffer exchanging, the 

concentrated proteins were diluted in a buffer of choice or water (for crystallography 

experiments) and the process repeated about three more times.   

 

II.1.31 Protein crystallization screen 

Crystallisation screens were performed using the sitting drop vapour diffusion method (Figure 

II.3) with commercially available screen solutions [JCSG+, PACT, and STRUCTURE – 

(Qiagen)]. The concentration of proteins used for crystal screens ranged from 10 to 20 mg/ml. 

Proteins were added to 96-well plates containing screening solutions using a mosquito™ (TTP 

Labtech) nanolitre pipetting robot at a rate of 1+1, 2+1 (1ul of protein plus 1μl of screen 

solution and 2 µl protein plus 1 μl of screen solution). In some cases, a known ligand for the 

protein to be crystallized was added to the protein (10 mM of ligand) before mixing with screen 

solutions. Crystal structures were viewed using a Leica MZ-6 crystallization microscope (Leica 

MICROSYSTEMS) 

 

Figure II.3 - Set-up of a sitting drop vapour diffusion system. 
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II.1.32 Isothermal titration calorimetry (ITC) 

Isothermal Titration Calorimetry (ITC) was used to assess the binding of recombinantly 

expressed putative carbohydrate binding modules to sugars. This was routinely performed using 

a MicroCal™ VP-Isothermal Titration Calorimeter (Microcal, USA). Recombinant proteins were 

extensively dialyzed overnight against a buffer of choice and then filtered alongside the dialyses 

buffer using a sterile 1.2 µm filter (acrodisc). Sugars to be tested were dissolved in the filtered 

dialysis buffer to desired concentration. Dissolving in the same buffer helps to minimize heats of 

dilution during titration into the recombinant protein. Filtered proteins and sugars were then 

degassed and applied to the micro-calorimeter according to the manufacturers’ instructions. 

Typically 27 injections (10 µl per injection) of the degassed ligand into the protein solution in the 

reaction cell were made with rapid stirring (307 rpm), at 300 s intervals. Following each injection, 

the heat evolved (in exothermic reactions) or absorbed (as in endothermic reactions) due to the 

interaction of the protein and the ligand is calculated from the electrical power required to 

maintain the temperature of the reaction cell against that of the reference cell. Data were fitted 

using the MicroCal Origin software (version 7.0) by non-linear regression and applying a simple 

one-site binding model yielding the association constant (Ka), stoichiometry of binding (n), the 

enthalpy of binding (ΔH) and the entropy of binding (ΔS). These were then used to calculate 

other thermodynamic parameters such as ΔG and TΔS using the standard thermodynamic 

equation shown below.  

-RTlnKa = ΔG = ΔH-TΔS 

 

Where R = gas constant (1.99 cal.K-1.mol-1), T = temperature in Kelvin (298.15 K), ΔG = change 

in Gibbs free enthalpy, ΔH = enthalpy change, ΔS = entropy of binding. 

 

II.1.33 Thin Layer Chromatography (TLC) 

Enzyme catalysed hydrolysis reactions were also analysed by TLC which enables the 

chromatographic separation of low molecular weight sugars. Samples analysed by TLC were 

initially boiled for at least 5 min at 98 oC, allowed to cool to room temperature and later 

centrifuged by pulsing. 3 µl of each sample was applied separately (1 cm apart) to appropriately 

cut Silicagel 60 TLC plates (Merck) at a distance of 1 cm from the edge of the plate. Spots where 

dried using a BaByliss® hair dryer (BaByliss®) and another 3 µl of same samples re-applied to 

dried spots.  After drying for the second time, TLC plates were placed in a glass chromatography 

tank (23 × 23 × 7.5) containing a <1cm high solvent mixture of 1-butanol/acetic acid/water 

(2:1:1, v/v). Freshly prepared solvent was often initially allowed for at least 2 h before use to 
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allow vapours to equilibrate in the tank. Plates were positioned perpendicularly to the bottom of 

the tank so that only the 1 cm region between the edge of the plate and the point where samples 

were applied on the plate was immersed in the solvent. The solvent migrated up the plates 

carrying spotted samples and the experiment was stopped after the solvent reached at least 1cm 

close to the top edge of the plate. Plates were carefully dried using a hair dryer and placed back in 

the solvent tank for another run. After the second run, plates were dried and this time fully 

immersed for a few seconds in either orcinol sulphuric acid reagent (sulphuric 

acid/ethanol/water 3:70:20 v/v, orcinol 1 ‰), or DPA (1.7% w/v Diphenylamine, 1.7% v/v 

Aniline, 85% v/v acetone, and 11% Phosphoric acid) solution (Anderson et al., 2000) if dealing 

with highly charged sugars. The plates were dried again and finally taken to a 120 °C oven for at 

least 10 min or >30 min  if using DPA. Revealed sugar spots on plates were photographed using 

Canon PowerShoot A75 camera (Canon). Sugar standards were included to help with the 

identification of unknown spots.       

 

II.1.34 High performance liquid chromatography (HPLC) 

Enzyme catalysed hydrolysis reactions were also analysed by a more sensitive approach involving 

HPLC. The HPLC column used was the Dionex CARBOPAC™ PA-100 column within an 

automated   Dionex DX500 and ICS3000 system (Dionex). Sugars were detected by pulsed 

amperometric detection (PAD) with settings E1= +0.05, E2= +0.6, E3= -0.6.  Samples analysed 

were initially boiled and centrifuged at 13 000 rpm for 5 min (using a HERAEUS, PICO17 

benchtop centrifuge) leaving behind supernatants that were applied to the HPLC machine. 

Standards were also included to help with the identification of unknown peaks.  HPLC data was 

analysed using the Chromeleon TM chromatography software (Version 6.8) (Dionex) and 

GraphPad Prism (Version 7.0) (Prism). 

 

II.1.35 Concentrating purified sugars by freeze drying 

Purified oligosaccharide and polysaccharide sugars were frozen to -80 °C and then lyophilised in 

a Christ Alpha 1-2 Freeze Drier (Martin Christ Gefriertrocknungsanlagen GmbH) at - 60 °C. 

 

II.1.36 Mucinase assays 

Enzymatic degradation of mucin substrates was evaluated using a combination of SDS-agarose 

gel electrophoresis (SAGE), Western blotting and lectin-based detection techniques. Mucin 

substrates used in this study included bovine submaxillary mucin Type I-S (BSM) and porcine 
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stomach or gastric mucin Type III [bound sialic acid 0.5-1.5 % (PGMIII)] and Type II [bound 

sialic acid, ~1% (PGMII)] (Sigma, UK). Except otherwise stated, BSM and PGM  stock solutions 

were prepared in Talon buffer (Section II.1.24.2) and 50 μl of each was incubated in a 37 oC oven 

overnight with various concentrations of the enzyme to be tested in a final volume of 200 µl, 

made up with Talon buffer.   50 mM EDTA was also added to similarly prepared samples to test 

the metal dependency of recombinant proteins with mucinase activity. The next day, samples 

were collected and pulsed and 5 μl of SDS sample buffer added to 10 μl of each sample. Samples 

were boiled at 98 oC for 3 min after which they were allowed to cool to room temperature and 

gently centrifuged by pulsing. 9 µl of each sample was then separated on SAGE gels (Section 

II.1.28) at 100 V for about an hour in TAE buffer. Samples were then blotted onto appropriately 

sized cut PVDF membranes (Amersham) as described in Section II.1.29. Blots were blocked in 

excess PBS containing 0.5% Tween 20 (PBS-Tween 20) for 1 h before probing with 1: 1000 

dilution of 1 µg/µl biotinylated wheat germ agglutinin (WGA, Sigma) for another hour. Washing 

was performed again with excess PBS-Tween 20 for 1 h, this time replacing the washing solution 

with new solution every 10 min (6 x 10 min changes). Washed blots were then treated with a 

1:2000 dilution of ExtrAvidin®−Peroxidase conjugate (Sigma cat.; E2886) in washing solution 

for 1 h. This was followed by another wash step with PBS-Tween 20 (6 x 10 min changes) before 

chemiluminescence detection with luminol/enhancer from the Biorad Immun-Star™ 

WesternC™ Chemiluminescence kit (Bio-rad cat.; Kit #170-5070). Luminol and enhancer 

solutions were mixed in equal proportions (1 ml each), spread on washed membranes and 

chemiluminescent signals recorded using a ChemiDoc XRS system (Bio-rad).  

 

II.1.37 Periodic Acid-Schiff staining 

Periodic Acid-Schiff (PAS) is general glycoprotein stain that allows for the detection of 

peripheral sugars in glycoproteins. Using this method, gels containing electrophoresed mucins 

could be stained instantly without the need for Western blotting. Staining was done using the 

Sigma glycoprotein detection kit (Sigma cat.; GLYCOPRO-1KT) according to the 

manufacturers’ instructions. A summary of the staining protocol is provided in Table II.10. 

Samples destined for analyses by PAS detection were often electrophoresed using 4-15% gradient 

gels (Ready Gel Tris-HCl Gel, 4-15% linear gradient, 10-well, 30 #l, 8.6 x 6.8 cm (W x L) 

purchased from Biorad.  
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Table II.10 – Summary of steps followed during the PAS staining procedure 

 
II.1.38 IgA protease assays 

These were performed to determine if expressed recombinant proteins had IgA protease activity. 

The protocol was a combination of SDS-PAGE, Western blotting and immunochemical 

detection techniques. Human myeloma IgA1 (cat.; 400109-500UG) and IgA2 isoforms (400110-

500UG) (calbiochem), were separately incubated with the desired concentration of the 

recombinant putative IgA protease enzyme (Table II.11) and the final volume of the mixture 

made up with Talon buffer (Table I.II).  Mixtures were incubated at 37 oC in a water bath for 

different time periods depending on the aim of the experiment.  Samples, post incubation were 

centrifuged by pulsing and 10 μl of each treated with 5 μl of SDS-PAGE sample buffer and 

boiled at 98 oC for 3 min.  After SDS-PAGE and Western blotting of samples (II.1.27 and II.1.29 

respectively, PVDF membranes containing blotted proteins were washed in excess PBS-Tween 

20 (Section II.1.36)  for 1 h at room temperature before application of a 1:2000 dilution of 

primary mouse Anti-Human IgA1 antibodies conjugated to biotin (SouthernBiotech cat.; 9140-

08). This was followed by another washing step this time for 30 min and replacing the washing 

solution with new solution every 10 min (3 x 10 min changes). Washed blots were then treated 

with a 1: 2000 dilution of ExtrAvidin®−Peroxidase conjugate (Sigma cat.; E2886) in washing 

solution for 1 h. A final washing step was performed as above before chemiluminescence 

detection with luminol/enhancer solutions from the Biorad Immun-Star™ WesternC™ 

Chemiluminescence kit (Bio-rad cat.; Kit #170-5070). Luminol and enhancer solutions were 

mixed in equal proportions (1 ml each), spread on washed membranes and chemiluminescent 

signals recorded using a ChemiDoc XRS system (Bio-rad). To determine the effect of 

deglycosylation on IgA1 protease activity, IgA1 was initially treated with various enzymes 

including a commercial sialidase/neuraminidase enzyme from Clostridium perfringens (C. welchii) 

(Sigma cat.; N2876), a β-galactosidase and α-N-acetylgalactosaminidase enzymes (expressed 

during the course of this study) in different combinations overnight before incubation with the 

putative IgA protease enzyme. IgA deglycosylation was monitored using a biotin - conjugated 

http://southernbiotech.com/ProductDetails.aspx?catno=9140-08&ttl=Mouse+Anti-Human+IgA2-BIOT
http://southernbiotech.com/ProductDetails.aspx?catno=9140-08&ttl=Mouse+Anti-Human+IgA2-BIOT
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Helix aspersa (garden snail) agglutinin (HAA) (Sigma cat.; L8764) that binds N-

acetylgalactosamine (GalNAc). This was performed on a separate blot containing replicate 

samples and using a 1: 1000 dilution of the lectin.   

 

Set-up A B C D E F G H 

IgA1 (0.5 mg/ml) 10μl 10μl 10μl 10μl 10μl 10μl 10μl 10μl 

Sialidase/neuraminidase (5 U/ml)   2.5μl 2.5μl 2.5μl 2.5μl 2.5μl 2.5μl 

GH2 (0.5 mg/ml)     2.5μl 2.5μl 2.5μl 2.5μl 

GH109 (0.5 mg/ml)        2.5μl 2.5μl 

Talon (pH 8.0) 2.5μl  2.5μl  2.5μl  2.5μl  

Putative IgA protease (0.5 mg/ml)   2.5μl  2.5μl  2.5μl  2.5μl 

Talon (pH 8.0) 7.5μl 7.5μl 5μl 5μl 2.5μl 2.5μl   

 

Table II.11 - Example of an experimental set-up to test protease activity against IgA1 and 

the effect of sequential IgA1 deglycosylation on protease activity. GH2 and GH109 display 

β-galactosidase and α-N-acetylgalactosaminidase activities respectively.  

 
II.1.39 N-terminal sequencing of proteins 

N-terminal Edman sequencing of digested IgA1 fragments was performed using ABI high-

throughput 'Procise' 494 HT sequencers (AltaBioscience, UK). 10 μg of the IgA1 sample that 

had been digested for over 48 hr at 37 oC was electrophoresed by SDS PAGE.  After 

electrophoresis, gels were stained with Coomassie blue stain for about 2 h and later on washed in 

50% methanol solution. Target bands containing digested IgA1 fragments were excised using a 

scalpel blade, placed into 1.5 ml eppendorf tubes and posted to AltaBioscience for protein 

sequencing. Samples were also blotted on PVDF membranes and sent for N-terminal Edman 

sequencing at Alphalyse (Alphalyse, Denmark). 

  
II.1.40 Universal Protease Activity Assay 

To determine if recombinant proteins had general protease activity or where specific to particular 

substrates, universal protease activity assays were performed following the protocol described for 

the Sigma Universal Protease Activity Assay (Sigma). According to the principle, the treatment of 

casein with a general protease leads to the release of tyrosine residues which react with Folin & 

Ciocalteu’s Phenol Reagent (Sigma cat.; F9252) to yield a colour change that can be quantified 

spectrophotometrically (A600nm).  This can be compared to a standard curve (Figure II.4) 
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prepared by measuring the absorbance of known µmole quantities of tyrosine. Some important 

modifications to the protocol included an increase in the incubation period of the test protein- 

casein mixture to 24 h rather than 3 h as recommended in the manufacturer’s protocol. This was 

to allow enough time for degradation of casein. Secondly absorbance readings were all measured 

at 600 nm instead of 660 nm due to technical limitations of the machine [Eppendorf 

Biophotometer (Eppendorf)].    

 

 

 
Figure II.4 - Standard curve used in Universal Protease Activity Assays. 

 

II.1.41 Sucrose density gradient centrifugation (SDGC) 

Inner and outer membrane lipid bilayers of B. thetaiotaomicron were separated from each other by 

sucrose density gradient centrifugation (SDGC) (Kotarski and Salyers, 1984). 100 ml of B. 

thetaiotaomicron cells grown to stationary phase i.e. A600nm > 0.9 in minimal medium containing 

1%PGMIII (1%MM - PGMIII) were harvested by centrifugation (12, 000 x g for 15 min) at 4oC. 

Cells were re-suspended in 20 ml of 10 mM HEPES buffer pH 7.4 at 4 oC and harvested as 

before. The washed cell pellet was drained and resuspended to 1.33 ml of 10 mM HEPES buffer 

pH 7.4 containing 10% sucrose. 0.25 mg of RNase A and Pancreatic DNase I were added to the 

cell suspension and the cells sonicated for 2 min (0.5 second cycling) on ice using a B. Braun 

Labsonic U sonicator (B. Braun, Germany) set at low intensity (~45 watts). The cell lysate was 

centrifuged at 17,000 x g for 5 min followed by a further centrifugation of the resulting 

supernatant in new centrifuge tube to remove excess cell debris. The resulting CFE was diluted 

up to 1.7 ml with 10 mM HEPES buffer and layered onto a two-step sucrose gradient containing 

440 μl of 70% sucrose at bottom of a 2.0 ml solution of 37 % sucrose (Figure II.5). High speed 

centrifugation using a Beckman SW60 rotor at 140,000 x g for 1 h was then performed on the 
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sample and membranes in the resulting solution above the 37% sucrose solution and at the 

10%/37% sucrose interface ("yellow material" in Figure II.5) where collected and diluted to 4 ml 

with HEPES buffer. This sample was further pelleted through a 108 μl volume of a 37% sucrose 

cushion by centrifugation in a Beckman SW60 rotor at 140,000 x g for 3 h. The pellet material 

from the 37% sucrose pad was diluted to 1 ml with HEPES buffer and this constituted the 

mixed membrane fraction (MM). The resulting supernatant was further centrifuged at 300,000 x 

g for 3 h using a Beckman 70 Ti rotor and the pellet or inner membrane fraction resuspended in 

1 ml HEPES buffer. Membranes trapped in the 37% and 70% sucrose gradient  of the original 

two-step gradient ("white material" in Figure II.5) were diluted to 4 ml with HEPES buffer and 

centrifuged (140, 00 x g for 3 h at 4oC) through 108 μl of a 57% sucrose cushion in using a 

Beckman SW60 rotor. The outer membrane enrichment which constituted the pellet of the 

centrifuged sample was collected and resuspended/diluted to a final volume of 1 ml with 

HEPES buffer. Please see below in Figure II.5 for a summary of the procedure. All samples were 

stored at -20 oC and used later for SDS-PAGE and Western blotting analyses.  

 

    
 

Figure II.5- Summary of the protocol for the purification of inner and outer membrane lipid 

bilayers of B. thetaiotaomicron. Details of the method are described above in the preceding text. Please 

see further details of the protocol in Kotarski and Salyers, (1984) from where the above figure was 

adapted. 
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II.1.42 Immunofluorescence assays (B. thetaiotaomicron) 

Cells were grown on defined substrate in this case 5 ml of minimal medium containing 1% 

PGMII to an A600nm of 0.4. PGMII instead of PGMIII was used due to unexplained high 

background signals observed during fluorescence imaging of cells when using the latter. 5 ml of a 

9% formalin solution prepared in PBS was added to the culture and cells were fixed by rocking 

overnight at 4 oC. Cells were then harvested by centrifuging at 5000 rpm for 5 min [using a fixed 

angle bench centrifuge (Hettich Lab technology)] and washed three times in 5 ml of PBS. After 

washing they were resuspended in 5 ml of blocking solution containing 2% normal goat serum 

(Invitrogen cat.; PCN5000) and 0.02% NaN3 in PBS overnight at 4 oC while rocking slowly. The 

next day, cells were centrifuged at 13,000 rpm for 1 min (using a HERAEUS, PICO17 benchtop 

centrifuge).To cells harvested from 1 ml of blocking solution, 1 ml of a 1:500 dilution of primary 

antibody solution was added in a 1.5 ml eppendorf. Cells were allowed for 2 h in primary 

antibody solution at room temperature while rocking. The primary antibody solution was 

removed by centrifugation at 13,000 rpm for 1 min (using a HERAEUS, PICO17 benchtop 

centrifuge) and cells resuspended in fresh PBS. Resuspended cells were washed by rocking 10 

min followed by centrifugation as before. The process was repeated three times every 10 min for 

30 min.   After washing a 500 μl of a 1:200 dilution of secondary goat anti-rabbit Alexa Fluor® 

594 antibodies (Invitrogen cat.; A-11037) was added to harvested cells and allowed for 1h at 

room temperature while rocking. After another washing step cells were finally resuspended in 

100 µl of PBS and a single drop of ProLong® Gold antifade reagent (Invitrogen) added before 

cells were taken for microscopy. All phase contrast and fluorescence images were captured using 

an Andor iXonEM+ 885 EMCCD camera coupled to a Nikon Ti-E microscope (Nikon) using a 

100x/NA 1.4 oil immersion objective. Images were acquired with NIS-ELEMENTS software 

(Nikon) and processed using ImageJ tool (http://rsbweb.nih.gov/ij/) 

 

II.1.43 Colorimetric assays 

Colorimetric assays involving chromogenic para-nitrophenyl (pNP) linked substrates were used 

to qualitatively and quantitatively measure the activity of glycoside hydrolases analysed in this 

study. 

 

II.1.43.1 pNP-substrate screens for β-galactosidase enzyme  

pNP-substrate screens were carried out following a modification of the protocol described for 

the OZ BIOSCIENCES ONPG β -Galactosidase Assay Kit (OZ BIOSCIENCES, France). In brief, 4 

mg/ml of each pNP substrate was prepared in Talon buffer (20 mM Tris/HCl pH 8.0 containing 
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100 mM NaCl). 10 μl of 0.5 mg/ml enzyme was added to the solution and incubated at 37 oC for 

5 min. The reaction was stopped by addition of 250 μl of 1M Na2CO3. Absorbance readings were 

recorded from 400 μl volumes of each reaction mixture. These were compared with similar 

reactions containing 0.5 mg/ml of BSA   in place of the enzyme as control. 

 

II.1.43.2 Measurement of enzyme kinetic parameters using pNP-substrates   

To measure the rate of pNP –substrate hydrolysis, different concentrations of the pNP substrate 

in a total volume of about 400 µl were incubated with 100 µl of the enzyme at a desired 

concentration.   Reactions were allowed to proceed at 37 oC in quartz cuvettes and pNP release 

was measured using a Pharmacia Ultrospec 4000 spectrophotometer at 420 nm (A420nm). 

Graphs of reaction velocity versus substrate concentration were generated and fitted to the 

Michaelis–Menten kinetics model using GraphPad Prism (version 6.0), allowing for the 

calculation of enzyme kinetic parameters. 

 

II.1.44 β-galactosidase activity assays 

β-galactosidase activity was measured using the Megazyme galactose detection kit (Megazyme). A 

summary of the principle of the method is shown in Figure II.6 

 

Principle  

 

 

Figure II.6 – Principle of β-galactosidase assays. GalM: galactose mutarotase, GalDH; β-Galactose 

dehydrogenase, (Source: Megazyme Galactose detection kit) 

 

The modified reaction set-up is shown in Table II.12. Reactions were allowed to proceed at 37 

oC in quartz cuvettes and galactose release was monitored by measuring the rate of NADH 

production (molar extinction coefficient; 6200 M-1 cm-1) over time using a Pharmacia Ultrospec 

4000 spectrophotometer at A340nm.  All experiments were performed in triplicates and kinetic 



 

 

- 81     - 

 

parameters were estimated in the same manner as described for colorimetric assays using 

GraphPad prism 6.0 (Prism). 

 

Table II.12 - Set-up for β-galactosidase activity assays. GalM: galactose mutarotase, GalDH; 

β-Galactose dehydrogenase, NAD+: nicotinamide adenine dinucleotide. 

 

 
II.1.45 Sugar kinase assays 

The ability of recombinant proteins to phosphorylate various sugars including amino sugars 

present in mucins was evaluated by performing sugar kinase assays as described in Reith et al., 

2011. The general principle and the reaction set-up are summarized in Figure II.7 and Table II.13 

respectively.  

 

Principle  

 

 

 

Figure II.7 – General principle of sugar kinase assays. The target sugars for phosphorylation in this case 

are MurNAc or GlcNAc for N-acetylmuramic Acid and N-acetylglucosamine respectively, and the kinase enzyme is 

MurK, a MurNAc/GlcNAc kinase from Clostridium acetobutylicum. A similar scheme was followed in this study to test 

the ability of a putative kinase enzyme BT4240 from Bacteroides thetaiotaomicron to phosphorylate various mucin/non-

mucin sugars. The above image was adapted from (Reith et al., 2011) 

Components Volume Volume /2 (used) 

Water  2 ml 1 ml 

Buffer (20 mM Tris pH 8.6) 200 μl 100 μl 

Glycan (10 mM) 200 μl 100 μl 

GalDH/GalM 20 μl 10 μl 

NAD+ 100 μl 50 μl 

Enzyme (0.5 mg/ml) 200 μl 100 μl 

Total 2.72 ml 1.36 ml (1360 μl) 

(phosphoenolpyruvate) 
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Table II.13 - Set-up for Amino sugar kinase assays. During the assay, samples were mixed chronologically 

up till LDH followed by addition of the desired substrate. 400 μl of the mixture containing the substrate was placed 

in a Pharmacia Ultrospec 4000 spectrophotometer for 1 min at 37 oC before addition of 100 µl of enzyme solution. 

Change in NADH was recorded by absorbance at 340 nm (A340nm). PEP:  phosphoenolpyruvate, NADH: 

Nicotinamide adenine dinucleotide, ATP: Adenosine Tri-Phosphate, PK: pyruvate kinase, LDH: lactate 

dehydrogenase.  

 

 

II.1.46 B.thetaiotaomicron counter-selectable gene deletion and competition experiments 

B. thetaiotaomicron deletion mutants were created by an adaptation of the standard counter-

selectable allelic exchange procedure (Modified by EC Martens of the University of Michigan 

Medical School, USA). It is based on the sensitivity of wild type B. thetaiotaomicron species to the 

deoxyuridine nucleotide analogue analog, 5-fluoro-2-deoxy-uridine (FUdR) (Yagil et al., 1971). 

Phosphorylation of FUdR by a thymidine kinase enzyme (Tdk or BT2275) produced by B. 

thetaiotaomicron forms 5-fluoro-2-deoxyuridine monophosphate (FdUMP) which is capable of 

poisoning the de- novo thymidine biosynthetic pathway through its irreversible binding to ThyA 

(BT2047), another enzyme in the pathway. The B. thetaiotaomicron strain used in this protocol 

contained a deletion of tdk gene (gene that encodes the Tdk enzyme) which still has a functional 

de novo pyrimidine pathway. For convenience, this strain will be referred to in this study as ‘wild 

type’ (WT) or B. thetaiotaomicron tdk. The counter-selectable suicide vector used was the 

pExchange-tdk vector that contains amongst other components a copy of the the tdk gene 

(Appendix C, Figure C.2). Chromosomal re-integration of the tdk gene during the experiment 

restores FUdR sensitivity allowing for counter-selection against pExchange-tdk cells.  

Components Original concentration Volume per 1ml reaction 

1. PEP 10 mM 100 μl 

2. NADH 2 mM 100 μl 

3. ATP 50 mM 100 μl 

4. MgCl2 100 mM 100 μl 

5. Tris –HCL (pH 8.0) 1000 mM 100 μl 

6. PK 100 U/ml 100 μl 

7. LDH 80 U/ml 100 μl 

8. Substrate Varies 100 μl 

9. Enzyme Varies 200 μl 

     Total - 1000 μl 
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II.1.46.1 Building the knockout construct 

The chromosomal region to be deleted referred to here as X (Figure II.8) was identified and two 

sets of primers (A and B for flank 1 and C and D for flank 2) designed to amplify about 1 kbp 

sized flanking regions of X.   Primers A and D contained engineered enzyme restriction sites to 

allow for subsequent cloning into the pExchange-tdk counter-selectable suicide vector. Primers B 

and C contained a complement of each other towards their 5’ ends to enable stitching of flanks 

during sewing PCR.  Equal sized PCR - amplified flanks were analyzed by agarose gel 

electrophoresis followed by gel purification.  1 μl of each purified flank (~90 ng/μl) eluted with 

~ 10 μl of EB were used in sewing PCR reactions. The standard sewing PCR was as in Section 

II.1.15 without genomic DNA and primers but flanks 1 and 2 (i.e. final volume was ~41 μl).  

After running ~35 PCR cycles, 5 μl of each primer A and D was added for another 35 PCR 

cycles under the same conditions. At this stage flanks 1 and 2 would have been sewn together 

(~2 kbp) and ready for cloning into the pExchange-tdk vector. 5 μl of sewing reaction was also 

analyzed by agarose gel electrophoresis for further confirmation.  The cloning protocol was as 

described from sections II.1.14 to II.1.24   except that the E.coli strain CC118 λ -pir was used in 

place of One Shot™ TOP10 for the propagation of pExchange plasmids. After cloning, the 

recombinant vector containing the sewn flanks was sequenced and transformed into E. coli S17-

1λ pir strains (Table II. 1) to yield a strain denoted here as the ‘donor’ 

 

 

Figure II.8 – Primer design for gene deletion experiments. Outer primers A and D contain restriction 

sites for cloning into the pExchange-tdk suicide vector while inner primers B and C are partially complementary to 

each other. The latter feature is important for sewing PCR reactions. X represents the chromosomal region or gene 

targeted for deletion. 

 

II.1.46.2 Conjugation into B. thetaiotaomicron and recombinant mutant isolation 

The donor strain from Section II.1.46.1 (S17-1 λ pir/pExchange-tdk + flank1-2) was grown 

overnight in LB medium containing   50 µg/ml ampicillin (while shaking, 180 rpm, 37 oC) at the 

same time with a B. thetaiotaomicron tdk strain (recipient) in TYG medium (static culture, at 37 oC). 

Three dilutions, 1:50, 1:100 and 1:200 of each strain in their respective media (5 ml new media) 
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were prepared, and each set allowed to grow for 5 h at 37 C.  Cells were collected and 

centrifuged at 5000 rpm for 5 min [using a fixed angle bench centrifuge (Hettich Lab 

technology)]. This step was repeated again with cells resuspended in 5 ml TYG. Equal-sized 

pellets from the donor and recipient were resuspended in a final volume of 1 ml TYG and spread 

evenly on the surface of BHI/His-Hem agar [BHI medium plus 1:1000 dilution of His-Hem 

(Section II.1.3)]. Plates containing the conjugation mix were then taken to 37 oC incubator and 

cells allowed to grow anaerobically for 16-24 h. After growth, the lawn of bacterial biomass from 

the conjugation plates were scraped into 5 ml of TYG and 100 μl of suspension (alongside a 1:10 

dilution of same mixture) plated on BHI/His-Hem agar containing gentamicin (200 µg/ml) and 

erythromycin (25 µg/ml) antibiotics. Cells were grown anaerobically at 37oC for 2 days. 

Anaerobic conditions were created using GasPak EZ anaerobe container system sachets (BD) 

placed in an air-tight anaerocult container containing plated cells. 5-10 individual colonies after 

growth were re-streaked on fresh BHI-blood agar containing the same antibiotics as before and 

grown anaerobically for another 2 days. The resulting colonies represented single-recombinant 

strains in which the pExchange-tdk knockout plasmid had recombined with the B. thetaiotaomicron 

genome via one of the two flanks (flank 1 or 2 above).   10 colonies of the single recombinants 

were then grown separately in 5 ml TYG overnight and equal amounts of each (1 ml) pooled into 

one volume. 100 µl of the pooled stock (alongside a 10 fold dilution of same stock) were then 

plated on BHI/His-Hem containing FUdR (200 µg/ml). The cells were grown anaerobically at 

37 C for 2-3 days and 10 FUdR resistant colonies re-streaked on BHI/His-Hem with FUdR 

(200 µg/ml) for another 2 days. 10 randomly picked colonies after growth were cultured in 5 ml 

TYG for genomic DNA extraction the next day using the GenElute™ Bacterial Genomic DNA 

Kit (Sigma) according to the manufacturer’s instructions. Genomic DNAs from various colonies 

were screened for the desired genotype by PCR (using primers A and D) and agarose gel 

electrophoresis. Positive deletions yielded ~2 kbp fragment following agarose gel electrophoresis. 

DNAs from positive clones were also sequenced to confirm deletions before use in subsequent 

experiments. 

 

II.1.46.3 B. thetaiotaomicron strain signature tagging with pNBU2-tetQb  

All B. thetaiotaomicron strains used for competition experiments were initially tagged with short 

oligonucleotide sequences (~24 bp) to enable the differentiation and quantification of strains 

after co-culture by quantitative real-time PCR (qPCR) (Section II.1.46.5). An overnight culture of 

the recipient strain (i.e. wild type or deletion mutant) was prepared alongside the S17-1 λ pir E. 

coli strain harboring pNBU2-bla-tetQb with the desired tag in TYG and  LB (150 µg/mL 
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ampicillin) respectively. Three dilutions, 1:50, 1:100 and 1:200 of each strain in their respective 

media (5 ml new media and no cysteine in the new TYG) were prepared, and each set allowed to 

grow for 5 h at 37 C. Cells were collected and centrifuged at 5000 rpm for 5 min [using a 

Hettich Zentrifugen fixed angle bench centrifuge (Hettich Lab technology)]. Equal-sized pellets 

from the recipient and donor were resuspended in a final volume of 1 ml TYG and spread evenly 

on the surface of BHI/His-Hem agar (BHI medium plus 1:1000 dilution of His-Hem). Cells 

were grown anaerobically at 37 oC for 16-24 h. The lawn of bacterial biomass from the 

conjugation plates were then scraped into 5 ml of TYG and 100 μl of suspension (alongside a 

1:10 dilution of same mixture) plated on BHI/His-Hem agar containing gentamicin (200 µg/ml) 

and tetracycline (25 µg/ml) antibiotics. Cells were grown anaerobically at 37 oC for 2 days and 10 

randomly picked colonies after growth were cultured in 5 ml TYG for genomic DNA extraction 

the next day using the GenElute™ Bacterial Genomic DNA Kit (Sigma) according to the 

manufacturer’s instructions. Genomic DNAs from various colonies were screened for tag 

insertions by PCR using primers listed in Appendix Table A.5.   A tag insertion can occur at one 

of two serine tRNA sites (NBU2-att1 and NBU2-att2) in the genome of B. thetaiotaomicron. PCR 

screens using NBU2-att primers (Appendix Table A.5) were also performed to confirm the 

insertion site of each tag.   Strains used for competition experiments had their tags inserted at 

similar sites (in this case at NBU2-att1) to avoid any off-target effects.  Were tag insertion 

occurred at the NBU2-att1 site, PCR amplification using NBU2-att1 primers yielded no products 

by AGE due to destruction of the primer site while wild type or untagged strains yielded 900 kbp 

DNA fragments.   

 

II.1.46.4 In-vitro competition of wild type and knockout strains on mucins 

Competition experiments were performed to evaluate the contribution of specific genetic factors 

to B. thetaiotaomicron fitness on porcine gastric mucin type III (PGMIII). Approximately equal 

amounts of the signature tagged wild type and deletion mutant initially grown in TYG were 

mixed and 100 µl used to inoculate minimal medium containing 1% glucose (MM-Glc). 100 µl of 

cells were subcultured every day for 5 days before switching to new medium containing 1% 

PGM (MM-PGMIII). Every day before subculturing, 2 ml of MM-PGMIII and 1 ml of MM-Glc 

cells were collected and frozen at -80 oC for later enumeration by qPCR. 

 

II.1.46.5 qPCR Enumeration of competing strains in-vitro 

Genomic DNA was extracted from the 2 ml samples of competing cells (Section II.1.43) every 

day and 10 ng of each days DNA sample assayed in duplicates using a Roche Light Cycler 480 
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real-time PCR system. The run parameters are shown in Table II.14.  A standard 10 μl qPCR mix 

5μl of SYBR green I master mix (Roche), 1 μl each of 5 μM forward and reverse primers 2 μl of 

DNA template and 1 μl of distilled water. To quantify the amount of each tagged strain present, 

standards prepared from purified genomic DNA of each signature tagged strain were also 

included. These ranged from 0 – 100ng of purified DNA and were used to create a standard 

curve to help calculate the percentage representation of each strain in various samples analysed.  

All data analyses were carried out using the LightCycler ® 480 version 1.5.0.39 software (Roche) 

 

 

 

Table II.14 – Typical qPCR run parameters used for competition experiments   
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II.2 Bioinformatic tools    

II.2 .1 LipoP 1.0 Server:  Lipoprotein signal peptide prediction in gram negative bacteria 

(http://www.cbs.dtu.dk/services/LipoP/) 

II.2.2 SignalP 4.1 Server: Signal peptide prection in gram positive/negative and eukaryotic 

sequences (http://www.cbs.dtu.dk/services/SignalP/) 

II.2.3 Phobius: Lipoprotein and transmembrane sequence prediction 

(http://phobius.sbc.su.se/) 

II.2.4 PyMol: Protein structure analyses http://www.pymol.org/ 

II.2.5 Multalin: Multiple sequence alignment tools (http://multalin.toulouse.inra.fr/multalin/) 

II.2.6 Xtream: Tandem repeat identification and architecture modeling 

(http://jimcooperlab.mcdb.ucsb.edu/xstream/) 

II.2.7 ProtParam tool Estimation of protein molecular weight and extinction coifficients 

(http://web.expasy.org/protparam/) 

II.2.8 NetOGlyc 4.0 Server: prediction of mucin type O-glycosylation sites in mammalian 

proteins (http://www.cbs.dtu.dk/services/NetOGlyc/) 

II.2.9 SWISS-MODEL  server: automated protein structure homology-modeling 

(http://swissmodel.expasy.org/) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/NetOGlyc/
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   CHAPTER III   

B i o c h e m i c a l  C h a r a c t e r i s a t i o n  o f  P u t a t i v e  B .  

t h e t a i o t a o m i c r o n  a n d  T .  v a g i n a l i s  M 6 0 - l i k e  P r o t e a s e s  

 

III.1 Introduction 

B. thetaiotaomicron and T. vaginalis represent important human mucosal microbes capable of 

colonising the human gut and urogential tracts respectively. While T. vaginalis is generally 

pathogenic in nature, the activities of B. thetaiotaomicron and a host range of other mutualistic 

human mucosal microbes can either positively or negatively influence our health, thus making 

both organisms important public health concerns (Chapter I). As discussed in Chapter I, both 

organisms are also known to share some gene families including those encoding proteins 

containing the novel family of domains termed ‘‘M60-like/PF13402’’ domains (Nakjang et al., 

2012). The taxonomic distribution, sequence features, domain content and supportive evidence 

from literature on some members of the M60-like/PF13402 family led us to hypothesize that 

they could indeed represent important surface zinc metalloprotease enzymes in these organisms 

processing extracellular glycoprotein targets. This is further supported by evidence suggesting 

that M60-like domain-containing proteins represent distant relatives of viral-enhancin proteases 

known to degrade insect mucins (Nakjang et al., 2012, Wang and Granados 1997). 

The metabolism of host derived glycoproteins such as mucins has been shown to be crucial for 

enhanced microbial fitness and colonization at mucosal surfaces (Martens et al., 2008), where a 

significant number of M60-like positive microbes thrive. Human mucins alongside other 

prominent mucosal surface glycoproteins such as secretory IgA (SIgA) and underlying epithelial 

cell glycocalyx components (Ouwerkerk et al., 2013), thus represent potential targets for 

candidate M60-like proteases. Indeed there is evidence that, in addition to belonging to 

polysaccharide utilisation loci (PULs) and encoding proteins that are potentially surface exposed 

(Sections I.8.3), some B. thetaiotaomicron M60-like genes including BT_4244 and BT_3015 (Section 

II.8.3) are also upregulated following exposure of the organism to porcine mucosal glycans 

(Martens et al., 2008). Upregulation of BT_0277, another M60-like-encoding gene has been 

observed during B. thetaiotaomicron growth on plant (larch) - derived arabinogalactans which are 

often linked to proteins [arabinogalactan proteins (AGP)] (Martens et al., 2011). T. vaginalis M60-

like domain-containing proteins on the other hand, including those encoded by the 
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TVAG_189150 and TVAG_339720 genes of strain G3, are also reportedly surface exposed (de 

Miguel et al., 2010).   

Furthermore, family 32 carbohydrate binding modules (CBM32) and PA14 domains detected in 

several M60-like proteins (Section I.8.2), have been reported in other mucosal microbes such as 

Clostridium perfringens and Candida albicans, respectively, to target galacto-configured sugars (Ficko-

Blean and Boraston, 2006, Ficko-blean et al., 2012, Maestre-Reyna et al., 2012, Zupancic et al., 

2008). Galacto-configured sugars are not only prominent components of several human 

glycoproteins but also constitute sections of the peripheral and core units of mucins (Section 

I.2.1.1.1.1, and Figure I.5), further presenting mucin/mucin-related glycoproteins as strong 

potential targets for candidate M60-like proteases. The association of CBMs [typically appended 

to carbohydrate acting enzymes (Boraston et al., 2004)] with proteases also represents a novel 

functional context worthy of study.  

As earlier indicated, B. thetaiotaomicron is a prokaryotic  gut mutatualist as opposed to T. vaginalis 

which is a eukaryotic protozoan parasite, implying that studies on M60-like proteins from both 

organisms will not only enhance our understanding of their role in these separate organisms but 

also across phyla and in the context of the different symbiotic relationships they are involved in.   

 

 

III.2 Objectives 

This chapter thus aims to analyse the findings of experiments that were designed to test the 

hypothesis that M60-like domain-containing proteins from B. thetaiotaomicron and T. vaginalis are 

glycoprotein targeted extracellular zinc metalloproteases. It includes data from experiments 

studying the proteolytic, carbohydrate binding activity and cellular localisation of B thetaiotaomicron 

and T. vaginalis M60-like domain-containing proteins.  
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III.3 Results 

III.3.1 Bioinformatics and selection of M60-like entries for biochemical characterisation 

A collection of all B. thetaiotaomicron and T. vaginalis M60-like protein entries from the PFAM 

database is given in Figure III.1. Given the numbers, only M60-like sequences that were 

representative of many of the group’s features were selected for further biochemical studies. The 

selection criteria thus included the presence of a zincin motif (HEXXH), a putative carbohydrate 

binding domain and evidence suggesting possible extracellular localisation [e.g. signal peptides 

(SP), transmembrane domains (TMD)]. Proteins with supporting information from literature 

were also given priority.  For the purpose of clarity throughout this study, proteins were 

differentiated from their encoding genes by removing the underscore symbol from the original 

gene name or locus tag e.g BT4244 to represent the protein encoded by the BT_4244 gene of B. 

thetaiotaomicron and TVAG339720 to represent the protein encoded by the TVAG_339720 gene 

of T. vaginalis 

As observed in Figure III.1, each B. thetaiotaomicron entry (4 in total) contains one or more 

putative carbohydrate binding domains including CBM32 and/or BACON domains, an M60-like 

domain and a type II signal peptide (except for BT0227 with an N-terminal transmembrane 

domain). All sequences except BT0277 also contain a gluzincin motif (Section I.8.1.1.2) within 

their M60-like domain and hence the entry was not included for biochemical characterisation in 

this study.  

On the other hand, there were over 25 putative M60-like protein encoding entries from T. 

vaginalis in the PFAM database (Figure III.1).  Eleven of these contain a gluzincin motif two of 

which had been detected in T. vaginalis cell membrane extracts (TVAG339720 and 

TVAG189150). A third protein; TVAG199300 was included based on its similarity in domain 

content and size to the above two.   

In summary, the proteins shortlisted for biochemical characterisation in this study (starred below 

in Figure III.1) included BT4244, BT3015, BT4272 (from B. thetaiotaomicron), and TVAG339720, 

TVAG199300 and TVAG189150 (from T. vaginalis).  
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Key      

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure III.1 - Domain architecture of B. thetaiotaomicron and T. vaginalis M60-like entries from 

the PFAM database. Starred sequences are those that were targeted for biochemical characterisation in the current 

study. Sequences commencing with BT are from B. thetaiotaomicron while those with TVAG are from T. vaginalis.  
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III.3.2 Gene cloning and expression  

Gene fragments encoding various domains from shortlisted B. thetaiotaomicron and T. vaginalis 

M60-like entries namely BT4244, BT3015, BT4272 (from B. thetaiotaomicron), TVAG339720, 

TVAG199300 and TVAG189150 (from T. vaginalis) (Figure III.1) were PCR amplified from the 

genomic DNAs of the respective organisms using oligonucleotide primers listed in Appendix 

Table A.1. Amplified DNA containing engineered restriction sites were then cloned into 

expression plasmids (Table III.1) for later expression in an E. coli BL21 (DE3) expression host.  

 

Gene 
Target 

domain 

Region 

cloned 

from 

DNA  

Cloning 

Vector 

Cloning sites 

in vector 

Code name for  

Recombinant  

Protein 

Theoretical 

Weight 

(kDa) 

BT_4272 M60-like 1120-2991 pET-28a(+)  BamHI-XhoI BT4272-M60L 74.6 

BT_4244 M60-like 820-2574 miniPRSET A BamHI-EcoRI BT4244-M60L 69.2 

BT_3015 M60-like 1105-2901 pET-28a(+)  BamHI-EcoRI BT3015-M60L 71.1 

BT_4244 Full length 70-2574 miniPRSET A BamHI-EcoRI BT4244-FL 97.0 

       

BT_4272 CBM32 694-1110 pET-28a(+)  BamHI-XhoI BT4272-CBM32 19.1 

BT_4244 BACON 70-420 miniPRSET A BamHI-EcoRI BT4244-BACON 14.8 

BT_4244 CBM32 394-819 pET-28a(+)  NcoI-XhoI BT4244-CBM32 17.1 

BT_4244 BACON-
CBM32 

70-819 miniPRSET A BamHI-EcoRI BT4244-BC 29.7 

BT_3015 CBM32 682-1260 miniPRSET A BamHI-EcoRI BT3015-CBM32 23.6 

       

TVAG_339720 M60-like 61 – 1842 pET-43.1a(+)  BamHI/XhoI TVAG339720-M60L 129.1 

TVAG_189150  M60-like 61 -1761 pET-43.1a(+) BamHI/SalI TVAG189150-M60L 126.4 

TVAG_199300  M60-like 67-1605 pET-43.1a(+)  SacI/SalI TVAG199300-M60L 120.1 

       

TVAG_339720  PA14 1711-2442 pET-28a(+)  BamHI/XhoI TVAG339720-PA14 32.1 

TVAG_339720  GBDL 2407-3327 pET-43.1a(+)  BamHI/XhoI TVAG339720-GBDL 95.3 

TVAG_199300 PA14-GBDL 1633-3327 pET-43.1a(+)  SacI/XhoI TVAG199300-CBD 124.9 

       

 

Table III.1 - Cloning strategy and details of various gene/gene fragments analysed in this study. 

Theoretical molecular weights and extinction coifficients (Appendix B) of proteins were estimated using the Expasy 

Protparam tool at http://web.expasy.org/protparam/ 
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The full length BT_4244 gene excluding the region encoding the type II signal peptide sequence 

was also cloned in a similar expression plasmid (miniPRSET A) as the M60-like domain encoding 

region of same gene for comparative studies. The cloning strategy was designed to allow the 

introduction of an N- or C-terminal poly-histidine tag (His6) in each recombinant protein 

following expression. A single point mutation was also introduced in the zincin motif of 

BT4244-FL yielding the mutant protein BT4244-FL–E575D containing an aspartic acid residue 

(D) in place of the putative active site glutamic acid (E) residue in the gluzincin motif of the 

protein. The glutamic acid residue is the catalytically active amino acid in the gluzincin motif 

typical of zinc metalloproteases (Section I.8.1.1.2) and hence this mutation is likely to inhibit the 

activity of the enzyme if indeed it belongs to gluzincin family of proteases. Primers used for this 

mutation are also included in Table A.1, Appendix A.  

 
 
An E. coli BL21 (DE3) expression host was routinely used for the expression of cloned genes. 

Protein expression in all cases was induced with 1 mM IPTG overnight at 16 oC, except for 

BT4244-FL whose expression was often induced at 37 oC for 4 h after reaching the mid log 

growth phase. This strategy helped to reduce excessive production of truncated products or 

background often observed following purification of the protein. Purification of recombinant N-

/C-terminal His-tagged proteins was carried out using immobilized metal affinity 

chromatography (IMAC) (Section II.1.24.2), Ion-exchange and gel filtration chromatography 

techniques (II.1.24.3). The concentrations of purified proteins were measured by absorbance 

(A280nm) using the estimated molecular weight and extinction coefficient of each purified 

recombinant protein (Appendix B). Please see Figure III.2 for all protein expression data 

 

Recombinant soluble proteins were successfully expressed for all B. thetaiotaomcrion M60-like 

entries as opposed to T. vaginalis were significant amounts of the expressed proteins formed 

inclusion bodies. The pET-43.1a (+) vector (Figure C.2, Appendix C) was used during the 

cloning of T. vaginalis proteins due to this problem but this only partially improved the solubility 

of the expressed proteins. This strategy introduces a NUS tag (with an additional molecular 

weight of ~ 60 kDa at the N-terminal of the protein (Figure C.2, Appendix C). While increasing 

the culture volume to 1 or 2 L significantly increased the amount of the solubly expressed 

TVAG199300-M60L, this didn’t make any difference in the case of TVAG189150-M60L and 

TVAG339720-M60L proteins and hence only TVAG199300-M60L could be reliably used for 

enzymatic assays. 
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------- BT4272-M60L ----------               ----- BT4244-M60L --------                   ------- BT3015-M60L -------- 

 M3    P   CFE   FT    A     B     C    M3             M1     P  CFE   FT     A      B      C        M2       P    CFE    FT      A       B      C                

                 
 
------ BT4244-CBM32-----                  ----- BT3015-CBM32 - -----            --- BT4244-BACON-CBM32--           
 
  M3    P   CFE   FT    A     B     C   M3             M3     P  CFE  FT  A     B      C  M3                 M2       P     CFE    FT    A       B      C     

                   

------- BT4244-FL ----------------                ----- BT4272-CBM32--------              ------- BT4244-BACON --- 
 
 M3    P    CFE   FT    A    B     C     M3        M3    P  CFE   FT  A    B     C    M3               M2   P    CFE   FT    A      B     C    M2              

                  
 
 

---- TVAG199300-PROT-----            ----- TVAG339720-PROT --------       ------- TVAG189150-PROT ------ 

M3   P    CFE   FT    A    B    C    M3                M1     P    CFE   FT    A      B     C                 M3     P    CFE  FT     A     B     C   M3 

                  

66kDa 

70kDa 

66kDa 

100kDa 

116kDa 
130kDa 

A 

17kDa 

29kDa 

25kDa 

100kDa 

  14.2kDa 

  15kDa 
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  ---- TVAG339720-PA14-----                ----- TVAG339720-GBDL ---             ----- TVAG199300-CBD-------- 
 
M3    P    CFE  FT  A       B      C   M3     M1     P     CFE    FT       A      B       C                 M3   P   CFE   FT   A     B     C     M3           

                 
  
 

 
 
Figure III.2 - Expression and purification of protein domains from selected B. thetaiotaomicron 

and T. vaginalis M60-like/PF13402 proteins. A: Purification of recombinant proteins by immobilized metal 

affinity chromatography (IMAC). Protein expression and purification was carried out as described in Section II.1.26. 

All B. thetaiotaomicron proteins alongside TVAG339720-PA14 were produced from 100 ml of E.coli BL21 (DE3) 

culture while the rest of T. vaginalis proteins were produced from at least a litre of culture.  5 µl of the insoluble pellet 

fraction (P) re-suspended in 10ml of Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM NaCl), 10 µl of cell 

free extract (CFE), 10 µl of flow through (FT), 10 µl of the fraction eluted with 10 mM imidazole (A), 10 µl of 

fractions sequentially eluted with 100 mM imidazole (B and C) were analysed by SDS PAGE (12.5%) in all cases.  

The results generally showed high expression of B. thetaiotaomicron M60-like proteins compared to T. vaginalis. Red 

arrows point to the positions of bands with the indicated molecular weights. Also see Section II.1.27 for the 

molecular weights of various markers in M1, M2 and M3. B: Example of an anion exchange chromatogram for the 

purification of BT4244-M60L. Following purification of proteins from about 6 L of culture by IMAC, fractions 

corresponding to B and C were pooled and concentrated by centrifugation into a 4 ml volume (~25 mg/ml protein). 

An initial anion exchange chromatography (AEC) run using 500 mM NaCl in 10 mM Tris-HCl, pH 8.0 was 

performed on the sample and impure fractions pooled again (Lane D on embedded SDS PAGE image). Sample D 

35kDa 

116kDa 
116kDa 

Fractions 

  M3  2    3     4    5     6   7    D 

B 
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was then used for a second AEC run yielding samples of lanes 2, 3, 4, 5, 6, 7 corresponding to fractions indicated on 

chromatogram.   

III.3.3 Mucinase assays 

Mucinase assays were performed to investigate the potential mucinase activity of expressed 

recombinant M60-like proteins. Substrates used included mucins from bovine submaxillary 

glands Type I-S (BSM) (Sigma, UK), and porcine stomach [Type III or PGMIII (bound sialic 

acid 0.5-1.5 %) and Type II or PGMII (bound sialic acid, ~1%)]. Following the treatment of 

various mucins with recombinantly expressed M60–like proteins, samples collected at different 

times post incubation were analysed by a combination of SDS - agarose gel electrophoresis 

(SAGE), Western blotting and Wheat germ agglutinin (WGA) or Periodic Acid-Schiff (PAS) 

detection techniques (Sections II.1.36 and II.1.37). WGA is a lectin from the wheat; Triticum 

vulgaris capable of binding N- acetylglucosamine (GlcNAc) present in mucins. PAS detection on 

the other hand allows for the staining of vicinal diol groups on peripheral sugar moieties in 

glycoproteins.  

   
The clearance of WGA and PAS reactive bands relative to controls without enzyme was 

interpreted as evidence of mucinase activity. This is assuming that mucin cleavage results in low 

molecular weight fragments that migrate further down each lane compared to the controls as 

observed in a similar study involving the TagA secreted mucin protease of Vibrio cholera (Szabady 

et al., 2011).  By analyses, there was evidence of mucinase activity from all M60-like domains 

recombinantly expressed from B. thetaiotaomicron including the recombinant full length BT4244 

protein (BT4244-FL) which degraded both BSM and PGMIII in a time dependent manner 

(Figure III.3).  PGMIII degradation in general however seemed to be less dramatic compared to 

BSM following treatment with the same proteins over the same periods of time.  

 

The mucinase activity of the recombinant BT4244-FL protein was also shown to be inhibited in 

the presence of a metal chelator such as Ethylenediaminetetraacetic acid (EDTA) and in the 

mutant version of the full length BT4244 protein (BT4244-FL-E575). The TVAG199300-M60L 

from T. vaginalis on the other hand, which was the only reliably expressed soluble M60-like 

protein of the three selected M60-like sequences from T. vaginalis failed to degrade BSM and 

PGMIII. 
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Figure III.3 – Mucinase activity of recombinantly expressed B. thetaiotaomicron and T. vaginalis 

M60-like/PF13402 proteins. A: Time course degradation of bovine submaxillary mucin by recombinant 

BT4244-FL. 0.05% of BSM was incubated with 1 μM of the ‘‘full length’’ recombinant BT4244-FL protein in a final 

volume of 500 μl in Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM NaCl) over different time periods. 

Samples were electrophoresed post incubation by SDS-agarose gel electrophoresis, transferred to PVDF membranes 

and probed with wheat germ agglutinin (WGA) (Section II.1.36). Clearance of WGA reactive bands/smears was 

seen as evidence of mucin degradation by BT4244-FL.  B: Mucinase activity of recombinant M60-like domains from 

B. thetaiotaomicron proteins. 0.05% of BSM was treated with 0.01 mg/ml (~0.1 μM of BT4244-FL) of various 

expressed recombinant proteins including the BT4244-FL-E575 mutant for 24 h before analyses as above. There 

was evidence of mucinase activity for all recombinant proteins tested except for the BT4244-FL-E575 mutant. C:  

Evidence for inhibition of BT4244 –FL mucinase activity by EDTA (a metal chelator). 0.05% of BSM samples had 

been treated with 1 μM of enzyme for over 48 h in this case. D:  Same as B except that substrate used in this case 

was 0.08% PGMIII. E: Same as D except that the protein evaluated for mucinase activity in this case was the 

recombinantly expressed M60-like domain of the T. vaginalis TVAG199300 protein (TVAG199300-M60L) F: Same 

as in B except that the protein evaluated for mucinase activity in this case was the recombinant TVAG199300-M60L 

B 
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protein. G: Evaluation of BT4244-FL mucinase activity by PAS staining. In this case, 0.05% of BSM samples were 

treated with 1 μM of enzyme for about 60 h before analyses on 4-20% gradient gels purchased from Biorad. 

 

III.3.4 IgA1 protease activity of BT4244 

Secretory IgA, like mucins are prominent mucosal surface glycoproteins also encountered by 

mucosal microbes. There exists two main isotypes of the IgA molecule, namely IgA1 and IgA2    

(Section I.2.1.2).  IgA1 is more similar to mucins compared to IgA2, as it contains a mucin like 

hinge insertion sequence (Figure III.4) which also happens to be the site of mucin-type O- 

glycosylations (Section I.2.1.2, Figure I.9). As glycoproteins, both IgA1 and 2 represent potential 

substrates for B. thetaiotaomicron and T. vaginalis m60-like proteins.  

 

  

Figure III.4 - Alignment of human IgA1 and IgA2 alpha (α) chain C regions to show the mucin-

like hinge insertion sequence of IgA1. The hinge region is indicated by dotted lines and contains mucin-like 

PTS repeats representing potential O-glycosylation sites (Section I.2.1.1). [Human IGA1 Uniprot ID = P01876 

(IGHA1_HUMAN), Human IGA2 Uniprot ID = P01877 (IGHA2_HUMAN]. Sequence alignments were viewed 

using the ESPript 2.2 utility at http://espript.ibcp.fr/ESPript/ESPript/ with a global similarity score threshold of 

Hinge insertion region 

http://espript.ibcp.fr/ESPript/ESPript/
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0.7.  Red highlights are for amino acid residues showing 100% conservation while yellow highlights are for residues 

showing less than 100% conservation but above the global score threshold (Gouet et al., 1999). 

 

Following incubation of both IgA isoforms (human myeloma IgA1 and IgA2) with the 

recombinant BT4244-FL protein, the degradation of IgA1 but not IgA2 was observed. Cleavage 

of IgA1 by the enzyme yielded two fairly distinct low molecular weight bands, both of which 

were very close to the 35 kDa protein marker as shown in the SDS PAGE image  of Figure 

III.5A. Interestingly, even after incubation with excess amounts of the enzyme (up to 2.8 µM of 

enzyme) for extensive periods of time (up to 48 h), complete degradation of IgA1 was not 

observed. This was later found to be the consequence of IgA1 sialylation as prior treatment of 

IgA1 with a neuraminidase enzyme from Clostridium perfringens (C. welchii) (Sigma cat. N2876) led 

to an increase in the amount of released degradation fragments (Figure III.5C). The 

neuraminidase enzyme is capable of cleaving terminal sialyl-α(2→3), α(2→6), and α(2→8)- 

linkages some of which are present in mucin and IgA glycans shown in Figure III.5B.  

III.3.5 Cleavage site of BT4244 on IgA1 

To determine the specific site of cleavage on IgA1 by the recombinant BT4244-FL enzyme, 

cleavage fragments following treatment with BT4244-FL were separated by on 12.5% SDS 

PAGE gels under reducing conditions and stained with Coomassie blue. The two bands 

indicated by the red and black arrows in Figure III.5A, were excised from the gel and subjected 

to N-terminal Edman sequencing. The sequencing data revealed that cleavage occurred at 

possibly two identical sites between the CH1  and CH2 domains of the IgA1 heavy chain 

between residues Pro-223 and Ser-224 or Pro-231 and Ser-232 in the glycosylated hinge region 

(Figures III.5 A and B). The raw N-terminal sequencing data from Alphalyse A/S (Denmark) is 

available in Appendix F. Based on these findings, the upper fragment indicated by the red arrow 

in Figure III.5 corresponds to the Fc-α fragment of IgA1 while the lower fragment indicated by 

the black arrow corresponds to Fab-α fragment of IgA1 (Section I.2.1.2). N-terminal sequencing 

data was only obtained for the Fc-α fragment (red arrow in Figure III.5A) and not the Fab-α 

fragment implying the N-terminal of the latter maybe modified. 

  

 

 

 

 

 

http://www.sigmaaldrich.com/catalog/product/sigma/n2876?lang=en&region=GB
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Figure III.5 - Cleavage of human myeloma IgA1 by recombinant BT4244-FL. A: BT4244-FL 

degrades IgA1 but not IgA2. 0.33 mg/ml of human myeloma IgA1 and IgA2 samples were treated with 0.8 μM of 

the recombinant BT4244-FL protein in Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM NaCl)  at 37 oC 

for 48 h. Samples were electrophoresed on 12.5% SDS PAGE gels before staining with Coomassie blue reagent. 
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Digested products corresponding to Fc-α and Fab-α fragments used for N-terminal Edman sequencing are indicated 

by red and black arrows respectively. The blue and green arrow point to the intact IgA1 heavy and light chains 

respectively (Figure I.9) before protease treatment. B: Hinge insertion sequence of IgA1 showing glycan structures 

and BT4244-FL cleavage sites (black arrows) determined by N-terminal Edman sequencing (Section II.1.39). C: 

Effect of IgA1 desialylation on BT4244-FL IgA protease activity.  0.25 mg/ml of IgA1 was initially treated for 

approximately 15 h with a 0.63 U/ml of a C. perfringens neuraminidase enzyme at 37 oC.  0.625 μM of recombinant 

BT4244-FL was later incubated with the sample at 37 oC for another  ~15 h. Samples were then electrophoresed on 

12.5% SDS PAGE gels followed by transfer to PVDF membranes. Chemiluminescence detection of degradation 

products was carried out using a 1:2000 dilution of primary mouse Anti-Human IgA1 heavy chain antibodies 

conjugated to biotin followed by a 1: 2000 dilution of ExtrAvidin®−Peroxidase (Section II.1.38). Band intensities 

were quantified using the Image LabTM tool (Biorad) after 5 seconds of exposure to chemiluminescent substrate. Red 

arrows point to the Fc-α product while the blue arrow points to the position of the intact human myeloma IgA1 

glycoprotein.  

III.3.6 Universal Protease Activity Assay with BT4244-FL 

To determine whether BT4244-FL exhibits general or non-specific proteolytic activity, universal 

protease assays were performed using the Sigma Universal Protease Activity Assay kit (Sigma) 

according to the manufacturers’ instructions. The general protease substrate used was casein and 

the principle is based on the fact that casein degradation by a non-specific protease leads to 

tyrosine release which can be quantified spectrophotometrically (A600nm) after reaction with Folin 

& Ciocalteu’s Phenol Reagent (Section II.1.40). The amount of tyrosine released following 

treatment of casein with the recombinant BT4244–FL was not only very low compared to 

general protease enzyme controls but also similar to the amount released by the inactive BT4244-

FL-E575 mutant and BSA controls (Figure III.6). The data thus suggest BT4244-FL does not 

exhibit general protease activity. 
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Figure III.6 - Universal protease activity assay to test the specificity of recombinant BT4244-FL. 

0.54% of casein substrate was incubated with ~0.2 μM of BT4244-FL and its mutant BT4244-FL-E575D (~0.02 

mg/ml for each) alongside positive controls [~0.02 mg/ml of proteinase K (PK, 0.05U/ml) and protease from 
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bovine pancreas (PFBP, 0.5mU/ml)] and negative controls (0.02 mg/ml BSA) at 37 oC for 24 h. Protease activity 

was estimated by measuring the amount of released tyrosine using a tyrosine standard curve (Section II.1.40). 0.2 μM 

of BT4244-FL is an amount double that which had earlier been shown to be capable of significantly degrading BSM 

over same 24 h (Figure III.3B). Tyrosine release by BT4244-FL was very low and comparable to the amount released 

by the inactive mutant (BT4244-FL-E575) and the negative control (BSA).  

III.3.7 Carbohydrate binding modules of B. thetaiotaomicron and T. vaginalis M60-like 

proteins  

Isothermal titration calorimetry (ITC, Section II.1.32) was used to study the carbohydrate 

binding properties of various recombinantly expressed putative carbohydrate binding modules 

identified in B. thetaiotaomicron and T. vaginalis M60-like proteins. As mucins and IgA had been 

hypothesized, and at least demonstrated to be targets for recombinant M60-like proteins from B. 

thetaiotaomicron, their glycans were given priority when screening for potential ligands recognized 

by various carbohydrate modules. Mucin sugars amongst other sugars tested ranged from 

monosaccharide through disaccharide to complex glycan structures within the core, backbone 

and peripheral units of mucin type - O glycans (Section I.2.1.1.1).   

III.3.8 BACON and CBM32 domains of B. thetaiotaomicron M60-like proteins 

ITC studies on recombinant CBM32 domains from B. thetaiotaomicron M60-like proteins revealed 

affinity for galacto-configured sugars with higher preference for the monosaccharide sugar; N-

acetylgalactosamine (GalNAc) over more complex glycans containing the same sugar (Figure 

III.8 and Table III.2 and III.3). Binding in all cases was however in the low affinity range (Ka 

<103 M-1) with significant saturation of the recombinant proteins only observed at ligand 

concentrations as high as 20 – 40 mM (Figure III.8, Table III.3). Recombinant BACON domains 

on the other hand failed to bind any of the mucin sugars tested (Table III.2). The binding affinity 

towards GalNAc and other sugars tested was not affected when the recombinant BT4244-BC 

protein containing both the BACON and CBM32 domains of BT4244 was used (Table III.2)  

                                        

  Galactose (Gal)   N-acetylgalactosamine (GalNAc)  

Figure III.7 – Structure of Galactose (Gal) and N-acetylgalactosamine (GalNAc). GalNAc binds 

weakly to recombinant BT4244-CBM32, BT3015-CBM32 and BT4272-CBM32 proteins (Figure III.8) 
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Figure III.8 - Analyses of carbohydrate binding by recombinant CBM32 domains of B. 

thetaiotaomicron M60-like proteins. Graphs at the top are representative ITC binding data of various 

CBM32 domains to mucin/non-mucin sugars. For these experiments, 100 μM of the purified recombinant 

protein was dialysed overnight into 20 mM Tris pH 8.0. Samples were filtered the next day alongside ligands that had 

been prepared in filtered dialyses buffer. The sugar in the syringe was titrated (27 injections) into the cell containing 

the protein sample and thermodynamic data analysed using Origin version 7.0 tool.  The top half of each panel 

shows the raw power data while the bottom half are integrated peak areas fitted to a single-site binding model and 

stoichiometry fixed at 1 (n≈1). A: 100 μM BT4244-CBM32 vs 40mM GalNAc, B: 100 μM BT4244-CBM32 vs 

50mM Gal, C: 100 μM BT4244-CBM32 vs 50mM Lac. D: BT4244-CBM32 vs 10mM Galβ1-3GalNAc (core-1) E: 

100 μM BT3015 vs 40mM GalNAc F: 100 μM BT3015 vs 50mM Gal, G: 100 μM BT4272 vs 40mM GalNAc, H: 

100 μM BT4272 vs 50mM Gal.  
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Ligand BT4244-BC 
BT4244-

CBM32 

BT4244-

BACON 

BT4272-

CBM32 

BT3015-

CBM32 

Fuc (10mM) -     

Gal (50mM) ± ± - ± ± 

GalNAc (20mM, 40mM) + + - + + 

GlcNAc (20mM) -     

NeuAc (10mM) -     

Man (20mM) -     

Xyl (40mM) -     

Gal-6S (2.5mM) -     

Fucα1-2Gal (2mM)  -     

GalNAcα1-Ser (2.5mM) ±     

Galβ1-3GalNAc (10mM) ±     

Galα1-4Glc (20mM, 50mM) + + - + ± 

Galβ1-4GlcNAc (10mM) ±     

Galβ1-3GlcNAc (10mM) ±     

Fucα1-2Galβ1-4GlcNAc (2.5mM)  -     

BSM (0.1%) -     

PGMIII (0.1%) -     

 

Table III.2 - Summary of qualitative ITC binding data for various CBMs from B. 

thetaiotaomicron M60-like proteins against simple and complex mucin sugars. The plus sign (+) 

implies binding was observed and curve fitting could be performed while the ± indicates saturation of the CBM by 

the ligand was observed but too weak to be reliably fitted at the concentration of the substrate indicated.  The minus 

(-) sign implies no binding was observed.  

Recombinant protein Ka × 103 (M-1) ΔG (kcal mol-1) ΔH (kcal mol-1) TΔS (kcal mol-1) n 

BT4244-CBM32  0.36   1.5 -3.47 -11.7 ±26.9 -8.23 1 

BT3015-CBM32  0.25   2.6 -3.26 -13.9 ±86.4 -10.64 1 

BT4272-CBM32  0.45   3.7 -3.60 -12.1 ±56.8 -8.50 1 

 

Table III.3 - Affinity and thermodynamic parameters of N-acetylgalactosamine binding to 

recombinant CBM32 domains form various B. thetaiotaomicron M60-like proteins. Thermodynamic 

parameters were calculated as described in Section II.1.32 using the standard thermodynamic equation -RTlnKa = 

ΔG = ΔH-TΔS, where R = gas constant (1.99 cal.K-1.mol-1), T = temperature in Kelvin (298.15 K), ΔG = change in 

free enthalpy, ΔS = entropy of binding. n = stoichiometry of binding.  
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III.3.9 GalNAc recognition by CBM32 domains of B. thetaiotaomicron M60-like proteins 

All GalNAc binding CBM32 proteins in Table III.3 show sequence similarity (at least 50%) to 

each other by alignment (Figure III.9), suggesting they might utilise a conserved GalNAc 

recognition mechanism. An attempt to crystallize one of them (the recombinant BT4244-

CBM32) for structural insights into the mechanism through X-ray crystallography, however 

failed. In any case, amino acid sequence alignments revealed that this group of proteins share 

important sequence and seemingly structural features with the well- characterised GalNAc–

binding CBM32 domains of CpGH89, exo-α-D-N-acetylglucosaminidase (CpGH89CBM32-5, 

PDB: 4AAX) and NanJ sialidase enzymes (NanJCBM32, PDB: 2v72) from the mucosal microbe; 

Clostridium perfringens (Boraston et al., 2007, Ficko-Blean et al., 2012). Strikingly, aromatic and non-

aromatic amino acid residues including the CpGH89CBM32-5 Histidine-1392 (H1392), 

Arginine-1423 (R1423), Asparagine–1428 (N1428), Phenylalanine-1483 (F1483), some of whose 

side chains directly interact through intermolecular hydrogen bonds with GalNAc, were strictly 

conserved in all the CBM32 domains analysed (Figure III.9A).  
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Figure III.9 - Comparing BT4244, BT3015 and BT4272 CBM32 sequences with the GalNAc 

binding CpGH89CBM32-5 (PDB: 4AAX) and NanJCBM32 (NanJCBM32: PDB 2v72) CBM32 

sequences of Clostridium perfringens. A: Structure based-sequence alignment. The secondary structure of 

CpGH89CBM32-5 (PDB: 4AAX, Ficko-blean et al., 2012) is indicated above the alignments. The position of four highly 

conserved residues (G1385, H1392, N1428 and F1483) mutated in the current study are indicated by black and red triangles.  

Three of these residues (H1392, N1428 and F1483) are located in the binding site of the molecule and two of them (H1392, 

N1428) indicated by the red triangles make direct intermolecular hydrogen bond interactions with GalNAc in the binding site. B: 

Surface representation of the structure of CpGH89CBM32-5 showing the positions of the four highly conserved residues 

discussed in A. Please see key below panel C for guide with colour coding. The equivalents of these conserved residues in 

BT4244-CBM32 are also provided in the key. C: Stick representation of the binding site of CpGH89CBM32-5 showing 

Key  
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code 
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H1392 Red H168 

N1428 Magenta  N202 
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G1385 Yellow G157 
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interactions of various binding site residues including H1392, N1428 with GalNAc. Sequence alignments were viewed using the 

ESPript 2.2 utility at http://espript.ibcp.fr/ESPript/ESPript/ (Gouet et al., 1999) with a global similarity score threshold of 0.7.  

Red highlights are for amino acid residues showing 100% conservation while yellow highlights are for residues showing less than 

100% conservation but above the global score threshold. 

 

To determine if these similarities were an indication that GalNAc recognition by B. 

thetaiotaomicron CBM32 domains is similar to what was observed for the C. perfringens 

CpGH89CBM32-5 and NanJCBM32 CBM32 domains, mutational studies involving the four 

conserved residues identified in BT4244-CBM32 (key in Figure III.9) were carried out. Each of 

the residues in the wild type BT4244-CBM32 protein was substituted with alanine by site-

directed mutagenesis giving four separate mutants namely G157A, H168A, N202A and F251A 

(see Quickchange™ mutagenesis primers in Appendix Table A.2 ). The results of ITC 

experiments involving the four mutants and GalNAc are shown below in Figure III.10.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.10 – Impact of selected mutations on  BT4244-CBM32  binding to GalNAc. 

The set-up of the experiment was as described in Figure III.8, i.e. titrating ~40mM GalNAc sugar (~27 injections) into 100 μM 

of the recombinant protein at 25 oC. Wild type and mutant proteins where all expressed under the same conditions and buffer 
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exchanged into Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM NaCl) . G157A  and F251A  mutants had similar 

binding affinities for GalNAc  compared to the wild type (WT) (Ka ~ 0.4 x 103 M-1) while N202A and H168A mutants 

completely failed to bind GalNAc.   

 

ITC binding data for the various mutants indicated that N202 and H168 residues likely interact 

with GalNAc in a manner similar to their equivalents in CpGH89CBM32-5, while  G157A  and 

F251A  like their equivalents in the same protein may not directly interact with GalNAc. 

Predicted three dimensional structures for the various CBM32 domains based on their alignment 

with the C. perfringens  CpGH89CBM32-5 CBM32 domain are shown in Figure III.11. All three 

structures display typical CBM Type C features (Boraston et al., 2004)  i.e. containing a β-

sandwich fold and a small sugar binding pocket (GalNAc binding pocket) in the loops at the 

edge of the sandwich.   

     

CpGH89CBM32-5  BthBT4244CBM32 

       

BthBT3015CBM32   BthBT4272CBM32 

Figure III.11 – SWISS model prediction of the three-dimesional structures of GalNAc binding 

CBM32 domains from various B. thetaiotaomicron M60-like proteins. The template used for the 

production three-dimensional structures was the C. perfringens  CpGH89CBM32-5 CBM32 domain in complex with the Tn 

antigen (GalNAc-Ser) (PDB 4A44A) (top left).  CBM32 sequences used were retrieved from the PFAM database and models 

where produced using the SWISS MODEL comparative modelling server (Arnold et al., 2006) . B. thetaiotaomicron CBM32 

structures are indicated by the abbreviation Bth followed by the protein and domain names.   

Model information 
 

BthBT4244CBM32 
Modelled residue range: 3-128 
Based on template: 4a44A (1.70 A) 
Sequence Identity (%): 22.308 
E value: 6.1E-27 

 

BthBT3015CBM32  
Modelled residue range: 1-129 
Based on template: 4a44A (1.70 A) 
Sequence Identity (%): 22.556 
E value: 2.9E-27 

 

BthBT4272CBM32 
Modelled residue range: 4-128 
Based on template: 4a44A (1.70 A) 
Sequence Identity (%): 19.084 
E value: 7.3E-27 
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III.3.10 Putative carbohydrate binding domains of T. vaginalis M60-like proteins   

GBDL and PA14 sequences of the three selected T. vaginalis G3 proteins in this study 

(TVAG189150, TVAG339720 and TVAG199300) are aligned below in Figure III.12 and contain 

several highly conserved residues. Despite the generally poor expression of T. vaginalis M60-like 

proteins in the BL21(DE3) E. coli host, sufficient amounts of the recombinant TVAG338720-

PA14 and TVAG199300-CBD proteins for ITC experiments could be obtained by scaling up the 

culture volume to ~2 L. Both recombinant proteins however failed to bind any of the mucin 

sugars they were tested against including Gal, GalNAc, NeuAc, GlcNAc, Fuc, Galβ1-3GlcNAc 

(LNB), and Galβ1-3GalNAc (T- antigen).  Instead the TVAG339720-PA14 was found to bind 

the glycosaminoglycan sugar - heparin (Section I.2.2., Figure I.11), with a preference for the more 

sulphated versions of the sugar (Figure III.13, Table III.4). 

 

 

PA14 sequences 

 

 

GBDL sequences 
 

 

Figure III.12 - Alignment of PA14 sequences from T. vaginalis M60-like proteins characterised in this 

study. Red highlights are amino acid residues showing 100% conservation while yellow highlights are for partially 

conserved residues. Sequence alignments were viewed using the ESPript 2.2 utility at 

http://espript.ibcp.fr/ESPript/ESPript/ (Gouet et al., 1999) with a global similarity score threshold of 0.7.  Red 

highlights are for amino acid residues showing 100% conservation while yellow highlights are for residues showing 

less than 100% conservation but above the global score threshold. 
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Heparin building blocks 
 
 
 
Figure III.13 - Representative ITC data of TVAG339720–PA14 binding to heparin and heparin 

derivatives. A, B, C and D: Heparin interaction with TVAG339720 – PA14 in different buffer conditions. 0.5% of 

heparin was prepared in 20 mM Tris buffer (pH 7.0) that had earlier been used to dialyse 100 μM of recombinant 

TVAG339720 – PA14 protein. Using MicroCal™ VP-Isothermal Titration Calorimeter, 27 equal injections of the 

ligand were made into the protein sample (A) or buffer without protein sample [B (control reaction)] at a cell 

temperature of 25 oC. The thermodynamic data obtained was analysed using the Origin version 7 tool.   The 

reactions were exothermic in nature and the steep saturation trend observed for the protein sample compared to the 

control without the protein was suggestive of a binding interaction. Similar reactions were performed using samples 

prepared in 50 mM Sodium phosphate buffer (pH 7.0) as shown in C (with protein sample) and D [without protein 
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sample (control)]. Reactions were same as in A and B but endothermic in this case. E, F, G, and H: Comparing 

ITC data obtained using 50 μM of TVAG339720-PA14 versus 0.5% of heparin derivatives in 50 mM Sodium 

phosphate buffer pH 7.0. E: Heparin, F: N-Acetyl-heparin (Heparin I-A) sodium salt G: De-N-sulfated heparin 

(Heparin I-H) sodium salt H: N-Acetyl-de-O-sulfated heparin (Heparin IV-A) sodium salt. The structure below ITC 

binding curves is a representation of the four disaccharide building blocks of the heparin polysaccharide. It provides 

information on various sulphation and acetylation events within the molecule and heparin complexity in general (Lee 

et al., 2013).  

 

Ligand Binding Ka × 104 (M-1) ΔG (kcal mol-1) ΔH (kcal mol-1) TΔS (kcal mol-1) n 

Heparin + 1.92 ±4.6e2 -5.82 -21.38 ± 572 -15.56 ~1.07 

N-Acetyl-heparin + 1.23 ±5.4e3 -5.56 -7.13 ± 5.22e3 -1.56 ~1.01 

De-N-sulfated heparin ± n/a n/a n/a n/a n/a 

N-Acetyl-de-O-

sulfated heparin 

x n/a n/a n/a n/a n/a 

 
 

Table III.4 - Affinity and thermodynamic parameters of TVAG339720-PA14 binding to 

heparin and heparin derivatives. Thermodynamic parameters were calculated as described in Section 

II.1.32 using the standard thermodynamic equation -RTlnKa = ΔG = ΔH-TΔS, where R = gas constant (1.99 cal.K-

1.mol-1), T = temperature in Kelvin (298.15 K), ΔG = change in free enthalpy, ΔS = entropy of binding. n = 

stoichiometry of binding. In the binding column, the + sign indicates binding was observed for the sugar tested. The 

± sign indicates the raw power data showed saturation of the protein following addition of sugar which was 

suggestive of binding but the affinity was too low for curve fitting and thermodynamic calculations to be carried out 

confidently. The x sign indicates no saturation trend and hence no binding was observed for the sugar tested. 
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III.3.11 Substrate induced expression and cellular localisation of BT4244   

BT4244 protein belongs to a PUL (PULBT_4240-50) and contains a type II signal peptide in its 

structure towards the N-terminus between amino acids 22 and 23 based on LipoP and SignalP 

analyses (Section II.2 and Figure III.14). Close relatives of BT4244 such as BT3015 and BT4272 

also contain N-terminal lipoprotein signal peptides (Figure III.1) suggesting that they may all be 

anchored to either of the two lipid bilayer membranes (Dalbey et al., 2012) of the gram negative 

B. thetaiotaomicron cell envelope. This was investigated for the native BT4244 protein in this study 

using polyclonal antibodies generated in a rabbit host against the soluble recombinant M60-like 

domain of the protein (BT4244-M60L, Section III.3.2).  

  

 

 

 

            

Figure III.14 - Modular representation (top) and LipoP analyses of the native protein encoded by 

the BT_4244 gene of B. thetaiotaomicron (bottom). The encoded protein displays features of a 

membrane anchored lipoprotein (i.e. high probability for an N-terminal type II signal peptide (spII) over a 

type I signal peptide (spI) sequence behind a cysteine residue in a lipobox (Section I.4. and Dalbey et al., 

2012). The LipoP version 1.0 tool (Section II.2) was used for this analyses. Also see link in Section II.2 for 

more information on the interpretation of other score values. 
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III.3.12 Native BT4244 expression  

Polyclonal rabbit antibodies generated against BT4244-M60L were very specific as they could 

reliably distinguish the protein from closely related members such as BT3015-M60L and 

BT4272-M60L following Western blotting and immunochemical detection (Figure III.15A).  

Using these antibodies, the native BT4244 protein was only detected in lysates from B. 

thetaiotaomicron cells that had earlier been cultured in minimal medium containing PGMII or III as 

opposed to glucose (Figure III.15B). These findings were in accordance with data from earlier 

gene transcription studies suggesting higher mRNA levels for the gene during the late phase of B. 

thetaiotaomicron growth on purified porcine mucosal glycans (Martens et al., 2008).  As an 

additional control B. thetaiotaomicron cells with in frame deletions to the BT_4244 gene 

(∆BT_4244) were also included in the experiment and native BT4244 was not detected in these 

strains (Figure III.15C). See Chapter V for more on the creation of ∆BT_4244 deletion mutants 

III.3.13 Native BT4244 cellular localisation   

A combination of sucrose density gradient centrifugation (SDGC) and immunofluorescence 

assay (IFA) techniques were used to investigate the cellular localisation of the native BT4244 

protein in B. thetaiotaomicon. The native protein was found to be enriched in cell membrane 

fractions of B. thetaitaiomcron and not in the soluble fraction suggesting it is likely to be membrane 

anchored, probably as a lipoprotein as predicted in Figure III.14. To determine what membrane 

the protein is anchored to, inner and outer membrane fractions from lysed B. thetaiotaomicon cells 

cultured in minimal medium containing 1% PGMIII were obtained by the method of SDGC and 

analysed by Western blotting and immunochemical detection using the rabbit polyclonal anti-

BT4244-M60L antibodies. The native ~80 kDa BT4244 protein was found to be more enriched 

in the outer- compared to the inner membrane fractions. This was further supported by data 

from proteinase K digestion (data not included) (Shipman et al., 1999) and immunofluorescence 

assays (Figure III.16) which both revealed that native BT4244 proteins are indeed surface-

exposed.  
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Figure III.15 - Expression and cellular localisation of native BT4244 protein  

A: Specificity of polyclonal rabbit anti-BT4244-M60L antibodies. 2 μg of each recombinant protein was subjected to 

SDS PAGE using 12.5% gels and stained with Coomassie blue reagent  (top section) or electro-blotted onto PVDF 

membranes (bottom section). Bound proteins were probed with a 1:10 000 dilution of primary polyclonal rabbit 

anti-BT4244-M60L serum and a 1:5000 dilution of secondary HRP conjugated donkey anti-rabbit antibodies. This 

was followed by chemiluminescence detection using luminol reagent (Biorad) (bottom section). Anti-BT4244-M60L 

serum was very specific for the ~60 kDa recombinant BT4244-M60L protein (red arrow). See full details of M4 

markers in Section II.1.27, Figure II.2. BSA stands for bovine serum albumin B: Induction of native BT4244 protein 

expression by PGMIII. B. thetaiotaomicron cells were grown separately in minimal medium containing 1% glucose or 

PGMIII to an OD600nm of ~ 0.9. Cells were harvested by centrifugation at 13 000 rpm for 1 min into Talon buffer 

(20 mM Tris/HCl pH 8.0 containing 100 mM NaCl). Fairly equal amounts of cells were lysed in sample buffer by 

boiling at 98 oC for 3 min and the samples subjected to SDS PAGE and Western blotting as in A.  The native ~80 

kDa BT4244 protein was only detected in samples from cells cultured in PGMIII (BT-PGMIII) as opposed to 

glucose (BT-Glc). C: Control experiment for the detection of native BT4244 protein using a B. thetaiotaomicron wild 

type (WT) and a knockout strain containing an in-frame deletion of the BT_4244 ORF (∆BT_4244). Cells were 

grown in 5 ml of minimal medium with 1% PGMIII to an OD of ~0.6. Cells were harvested as in panel B and 10 µl 

analysed by SDS PAGE and Western blotting using anti-BT4244-M60L serum. D: Detection of native BT4244 
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protein in B. thetaiotaomicron cellular fractions separated by SDGC (Section II.1.41). Cells were grown to OD600nm ~ 

0.9 in minimal medium containing 1% PGM II. Cells were harvested from 100 ml of culture and sonicated in 

sucrose before separation by SDGC. The ~80 kDa band corresponding to the native protein was more enriched in 

the outer membrane fractions (OM) compared to the inner membrane fraction (IM). CFE: Cell free extract, MM: 

mixed membrane fraction (Section I.1.41) 

 

 

            

            

 

 

Figure III.16 - Detection of native BT4244 by immunofluorescence microscopy. Non permeabilized 

cells earlier cultured in minimal medium containing 1% PGMII (to an OD600nm of 0.4) were probed for native 

BT4244 using a 1:500 dilution of polyclonal rabbit anti-BT4244-M60L serum and a 1: 200 dilution of secondary anti-

rabbit Alexa flour 594 antibodies (Section II.1.42). Flourescent images were captured using an Andor iXonEM+ 885 

EMCCD camera coupled to a Nikon Ti-E microscope (Nikon) using a 100x/NA 1.4 oil immersion objective. PC-

WT: phase contrast image for wild type cells, PC-∆BT4244: phase contrast image for mutant cells containing a 

deletion to the gene encoding the BT4244 protein, IF-WT immunofluorescent image of wild type cells, IF-

∆BT4244: immunofluorescent image for mutant cells containing a deletion to the gene encoding the BT4244 

protein. 
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III.4 Discussion 

III.4.1 M60-like domains of B. thetaiotaomicron M60-like/PF13402 proteins 

The recombinant M60-like domains of all three B. thetaiotaomicron proteins (BT4244, BT3015 and 

BT4272) were shown in this study to exhibit mucinase activity.  BSM and PGMs are very similar 

to human mucins and both groups are typically O-glycosylated (Section I.2.1.3). BSM 

glycosylation is relatively less complex (with short, less branched polysaccharide chains) 

compared to PGMs and most human mucins which possess more complex glycan structures 

(Karlsson et al., 1997). Glycosylation primarily confers resistance against proteolytic enzymes by 

limiting access to the core peptide in the glycoprotein structure and hence a likely explanation for 

the somewhat reduced rate of PGM degradation by recombinant M60-like proteins. 

Unfortunately due to very high inter-assay variability and the difficulty in accurately quantifying 

smeared WGA lectin reactive mucin bands after Western blotting, the impact of mucin 

glycosylation on mucinase activity could not be reliably evaluated using the SDS-agarose gel 

electrophoresis/WGA lectin detection approach. Nevertheless, the ability of BT4244-FL to 

cleave human myeloma IgA1 at the O-glycosylated, mucin-like hinge insertion region of the 

glycoprotein provided an important opportunity to test the effect of deglycosylation on the 

activity of the enzyme. Firstly, O-glycosylation at the hinge insertion sequence of IgA1 is much 

less complex compared to typical mucins and secondly, IgA1 unlike mucins runs as distinct 

bands on SDS PAGE gels making them easier to quantify. As observed in Figure III.5, IgA1 

cleavage by recombinant BT4244-FL was clearly potentiated by desialylation implying that 

glycosylation indeed hinders BT4244-FL proteolytic activity. N-glycan linked sialic acid residues 

are also present elsewhere in the IgA1 structure (Royle et al., 2003) and their removal may also 

mean reduced steric hindrance against the protease enzymes. This observation was clearly in 

contrast to the behaviour of leucocyte glycoprotein targeted serine proteases from Shigella flexneri 

whose activities are markedly reduced by desialyation of the glycoprotein substrate (Gutierrez-

Jimenez et al., 2008, Ruiz-perez et al., 2011), implying that attached glycans could also be 

exploited during substrate recognition.  

Substrate cleavage by the recombinant BT4244-FL protein was prevented by a metal chelator 

such as EDTA or by a single glutamic acid to aspartic acid substitution at position 575 (E575) of 

the recombinant BT4244-FL protein. E575 is part of what is referred to as the gluzincin motif 

(HEIGH) of the BT4244 protein, a characteristic feature of most zinc-dependent 

metalloproteases (Section 1.8.1.1.2) in which the motif glutamic acid acts as the active site amino 
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acid. These findings thus suggest that B. thetaiotaomicron M60-like domain-containing proteins are 

metal dependent metalloproteases.   

Although the BT4244-FL protein was capable of degrading both mucins and IgA1 substrates, gut 

mucins theoretically represent a more important source of energy based on their glycan content 

compared to IgA1. The latter is based on the assumption that the role of BT4244-FL which also 

happens to be a member of a PUL is that of nutrient acquisition and utilisation. It is also worth 

noting that substrate promiscuity is a very common phenomenon with this group of proteases, 

especially involving other O-glycosylated substrates that are very similar to the mucins 

themselves (Table III.5). This however does not rule out the possibility of a dual functional role 

for this group of proteins in B. thetaiotaomicron i.e. in mucin utilisation and immune evasion 

through IgA proteolysis.  

 

Mucin protease Source Variety of target substrates Reference 

Pic serin protease  Shigella flexneri 2a, 
Uropathogenic and 
Enteroaggregative 
Escherichia coli 
 

CD43, CD44, CD45, CD93, 
CD162 ,  ovomucin BSM, 
Intestinal mucins 

Gutie´rrez-Jime´ nez et al., 2008, Ruiz-
Perez et al., 2011 

Tsh_serine 
protease 
autotransporter 

Escherichia  coli  BSM, Chicken tracheal mucin, 
PGMIII, Coagulation factor V, 
Casein 

Kobayashiet al., 2007, Kostakioti and 
Stathopoulos, 2004. 

Hap Zn(2+)-
dependent 
metalloprotease 

Vibrio cholerae Mucin, fibronectin,  lactoferrin Silva et al., 2003, Finkelstein et al., 1983 

ToxR-activated 
gene A (TagA) 

Vibrio cholerae CD43, MUC7, BSM and 
PGMII/III, LS174T goblet cell 
surface mucin 

Szabady et al., 2011 

StcE zinc 
metalloprotease 

Enterohemorrhagic 
Escherichia coli 

C1-INH, gp340 and MUC7 Grys et al., 2005 

 CP39, Cysteine 
proteinase 

Trichomonas vaginalis Collagens I, III, IV, and V 
fibronectin, hemoglobin, and IgA 
and IgG 

Hernández-Gutiérrez et al., 2004,  

    

Cysteine 
proteinase 

Trichomonas vaginalis BSM and Porcine stomach mucin 
(PSM), IgG, IgM, IgA 

Lehker and Sweeney, 1999, 
Provenzano and Alderete ., 1995  

Elastase B  Pseudomonas aeruginosa Hog/porcine gastric mucin 
MUC5AC and MUC5B 

Aristoteli and Willcox, 2003,  Henke et 
al., 2011 

Sap2p (Secretory 
Aspartyl 
Proteinase) 

Candida albicans PGMIII Colina et al., 1996  

Cysteine 
proteases 

Entamoeba histolytica MUC2 Lidell et al., 2006 , Moncada et al., 2003  

Enhancin Trichoplusia ni 
granulosis virus (TnGV) 

Invertebrate intestinal mucin (IIM) Wang and Granados, 1997 

unidentified 
mucin protease 

Campylobacter pyloridis Gastric mucins, albumin Slomiany et al., 1987 

 

Table III.5 - Substrate promiscuity of microbial mucin proteases 
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IgA1 also seems to contain more than one cleavage site for the BT4244-FL enzyme. Although 

this was not surprising, given that this is a highly repetitive region in the molecule, it was clearly 

in contrast to many other well-known microbial IgA1 degrading enzymes which cleave at unique 

sites within the same hinge region including an IgA1 protease from Bacteroides melaninogenica which 

happens to cleave at same site like BT4244-FL (Figure III.17).    

 

 

 

 

 

 

 

 

 

 

 

Figure III.17 – Cleavage sites of some microbial proteases at the IgA1 hinge insertion sequence 

Red arrows point to sites of B. thetaiotaomicron BT4244-FL cleavage (Modified from Mortensen and Kilian, 1984, 

Gilbert et al., 1991, Qiu et al., 1996). CR: Clostridium ramosum, PM: Prevotella melaninogenica, GH: Gemella haemolysans SS: 

Streptococcus sanguinis SO: Streptococcus oralis SP: Streptococcus pneumonia, HA: Haemophilus aegyptius, HI-1: Haemophilus 

influenzae I, HI-2: Haemophilus influenzae 2, NG-1: Neisseria gonorrhoeae 1, NG-2: Neisseria gonorrhoeae 2, NM-1: 

Neisseria meningitides-1, NM-2: Neisseria meningitides-2 

Several mucin glycoproteins including human MUC2 which are highly expressed in the human 

colon where B. thetaiotaomicron thrives, contain high amounts of PTS repeat sequences similar to 

those of the IgA1 hinge region (Appendix D). In-silico analyses also revealed that just like the 

IgA1 hinge region, these regions are heavily O - glycosylated (Figure III.18) hence making MUC2 

and other colonic mucins potential targets for BT4244-FL. Unfortunately due to the paucity of 
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commercial human colonic mucins including the human MUC2 glycoprotein, in-vitro experiments 

to test BT4244-FL protease activity on these substrates could not be performed. 

III.4.2 Carbohydrate binding modules of B. thetaiotaomicron M60-like proteins 

The association of carbohydrate binding modules with proteases is a novel functional context for 

CBMs which are often rather appended to carbohydrate acting enzymes (Section I.8.2). The 

CBM32 domains of B. thetaiotaomicron M60-like proteases exhibited very low affinity binding to 

mucin sugar N-acetylgalactosamine (GalNAc) (Ka < 103 M-1). The low binding affinity was 

however not surprising as such behaviour is typical of this family of small sugar binding CBMs 

monosaccharide binding CBMs proteins [Type C CBMs (Boraston et al., 2004, Ficko-blean and 

Boraston, 2006, 2009, Ficko-blean et al., 2012)]. In any case, binding to GalNAc, a major sugar 

anchor for a majority of human mucin glycans further strengthened the argument that mucins 

are targets for B. thetaiotaomicron M60-like proteases.  GalNAc is capable of forming an α-1-O 

glycosidic bond with the apomucin peptide and this proximity to the core mucin peptide implies 

that CBM32 binding to this sugar may enhance contact between the catalytic M60-like domain of 

the protease and the target core peptide. The specificity for GalNAc could also mean that 

cleavage is restricted around O-glycosylation sites in the mucin structure where GalNAc is 

present.  The CBM32 domain may thus influence proteolytic activity through proximity and 

targeting effects (Boraston et al., 2004).   Although the BT4244-CBM32 recombinant protein was 

recalcitrant to crystallisation for X-ray crystallographic studies, clues to its GalNAc recognition 

mechanism could still be obtained by exploiting its similarity to the already characterised   C. 

perfringens CBM32 domains (PDB: 4AAX). The failure of the H168A and N202A alanine 

substituted mutants of BT4244-CBM32 to bind to GalNAc suggested that the targeted residues 

(H168 and N202), like their conserved counterparts in CpGH89CBM32-5 may form direct 

hydrogen bonds with the GalNAc at their binding site. Alanine lacks the imidazole ring of 

histidine containing the epsilon nitrogen residue that makes hydrogen bonds with the O4 

hydroxyl group of GalNAc. 
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Figure III.18 - Human mucins contain several uniform/non-uniform PTS rich tandem 

repeat sequences.  A: Comparing the distribution of tandem repeat sequences in human mucins, BSM and IgA. Repeat 

regions are indicated as coloured vertical bars. Largely identical repeats are represented by similarly coloured bars while non-

identical repeats are represented with different colours.  B1 and B2: O – glycosylation analyses using NetOGlyc 4.0 Server 

(Section II.2, Steentoft et al., 2013) to show that tandem repeat sequences correlates with O-glycosylation. Shown (to the right) 

are the results for MUC2 and IgA1 using the tool. Repeat region identification was performed using the Xtream repeat region 

identifier tool (Section II.2) 

N202 on the other hand is the equivalent of N1428 in C. perfringens that makes two direct 

hydrogen interactions with GalNAc, one with the O4 hydroxyl group of GalNAc and the other 

with the ring oxygen. Although equally conserved, the F251 and G157 mutations were not 

expected to prevent GalNAc binding if indeed both proteins utilise a similar GalNAc recognition 

mechanism. The equivalents of F251 and G157 in CpGH89CBM32-5 are F1483 and G1385 

respectively and neither of these form hydrogen bonds with the GalNAc ligand in 

CpGH89CBM32-5. G157 is located far off from the binding site of GalNAc while F1483 is 

solvent exposed and simply forms part of the shallow cleft in the loops at the edges of the β-

sandwich that accommodates the carbohydrate.  

BT4244-BACON domains on the other hand failed to bind any of the mucin sugars tested in this 

study (Section III.3.8). BACON domains (pfam:PF13004) are a new family of putative 

carbohydrate binding domains (Mello et al., 2010) and although they are predicted to be mucin 

binding, this property has not yet been proven for any member of the group. BACON domains 

are present in good number of predicted surface proteins from members of the Bacteroidetes 

group including carbohydrate acting enzymes and proteases (Mello et al., 2010).  Assuming these 

domains actually bind to mucins, then the overall binding affinity of the  parent enzyme which 

will be the combined affinity of the individual CBMs in this case the BACON and CBM32 

domains would be higher (avidity effect) (Bolam et al., 2001, Abbott et al., 2008), thus 

compensating for the low CBM32 affinity. 

The current study also provided biochemical evidence that native BT4244 proteins in B. 

thetaiotaomicron are surface-exposed. Its close relatives (BT3015 and BT4272) are also likely to be 

surface –exposed based on the marked sequence and functional similarities that exist between all 

three of them.   Their localisation to the surface of the cell is consistent with the fact that these 

proteins have to target substrates in this case mucins or IgA glycoproteins which are extracellular.  

http://pfam.sanger.ac.uk/family/PF13004
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In summary, human mucins and IgA represent very important elements of the mucosal immune 

system and resident or invading microbes must develop strategies to evade or take advantage of 

these systems. For a mutualistic mucosal microbe like B. thetaiotaomicron, mucin proteases could 

play an important role in the effective colonisation and survival at mucosal surfaces by 

promoting the utilisation of host derived glycans as well as easing the penetration of the colonic 

mucus.  They have indeed been reported in several mucosal pathogens including Vibrio cholerae 

(Szabady et al., 2011), Entamoeba histolytica (Lidell et al., 2006), Naegleria fowleri (Cervantes-Sandoval 

et al. 2008) and Trichomonas vaginalis (Lehker and Sweeney, 1999) where they are thought to 

perform these functions. Interestingly, unlike the above, B. thetaiotaomicron is a mutualist and 

being the first mucin proteases to be characterised from this organism, this study makes an 

important contribution towards our understanding of host-microbial interactions involving 

mutualists.   

III.4.3 M60-like proteins of T. vaginalis 

Most of the T. vaginalis recombinant proteins expressed in the BL21 (DE3) E.coli host strain in 

this study were insoluble. An attempt to express the M60-like domain of TVAG339720 in a yeast 

system (Pichia pastoris) equally proved futile hence preventing functional studies with the protein. 

The only solubly expressed recombinant M60-like domain protein (TVAG199300-M60L) also 

failed to degrade any of the mucin substrates (BSM and PGM) tested against the protein. The 

PA14 domain of TVAG339720 (TVAG339720-PA14) was also solubly expressed in significant 

amounts allowing for binding assays to be performed. PA14 domains are so named after the 

presence of this domain in the protective antigen (PA) region of the complex anthrax toxin 

(Rigden et al., 2004). It is has been identified in a variety of proteins including bacterial adhesins, 

toxins, proteases, amidases glycosyltransferases, glycosidases (Rigden et al., 2004). PA14  domains 

in adhesins produced by the opportunistic pathogen Candida glabrata have been shown to target 

galacto-configured residues including mucin glycans like the T antigen (Galβ1-3GalNAc) 

(Zupancic et al., 2008, Maestre-Reyna et al., 2012).  A pectin binding PA14 domain has also been 

reported in Clostridium thermocellum (Kahel-Raifer et al., 2010).The inability of TVAG199300-M60L 

to degrade mucins coupled with TVAG339720-PA14 binding to heparin instead of mucin 

glycans as earlier hypothesized was an indication that putative M60-like metalloproteases from T. 

vaginalis unlike their counterparts in B. thetaiotaomicron may be used for a purpose other than 

mucin degradation. TVAG339720-PA14 binding to heparin was also relatively higher (~10 

times) compared CBM32 binding to GalNAc. The preference for highly sulphated heparin 
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derivatives was an indication that sulphate groups may play a role in heparin recognition by the 

PA14 domain.    

Heparin is produced by connective tissue-type mast cells, often existing as a proteoglycan called 

serglycin (Kolset and Tveit, 2008, Rabenstein et al., 2002). Serglycin is known to play important 

roles in inflammation including the storage and retention of mast cell inflammatory mediators 

(Kolset and Tveit, 2008, Humphries et al., 1999). Mucosal mast cells which provide defence 

against mucosal pathogens (Urb and Sheppard, 2012) however synthesize the heparin related 

chondroitin sulphate glycosaminoglycan instead of heparin (Enerback et al., 1985, Kusche et al., 

1988, Kolset and Tveit, 2008) and it is currently not very clear the circumstances under which T. 

vaginalis comes in contact with heparin. An important hypothesis is that the actual target for the 

M60-like PA14 domains are heparan sulphate glycosaminoglycans which are not only very similar 

in many ways to heparin glycosaminoglycans but also form part of the epithelial cell glycocalyx at 

mucosal surfaces e.g in syndecans and glypicans which are well-known epithelial cell surface 

proteoglycans (Rodgers et al., 2008, Sarrazin et al., 2011, Carlsson and Kjellen 2012). Perlecans, 

Agrins and Collagen XVIII heparin proteoglycans of the extracellular matrix also represent 

potential targets for the putative T. vaginalis M60-like proteases (Sarrazin et al., 2011). Any of 

these could serve as important cell surface receptors for T. vaginalis during infection alongside 

other known receptors such as human cervical galectin 1 (Okumura et al., 2008).  

Native TVAG339720 and TVAG189150 proteins had been detected in T. vaginalis cell membrane 

extracts and the extracellular localisation of the TVAG339720 protein has been confirmed 

through immunofluorescence assays by our collaborators in the U.S.A (personal communication, 

Prof. Robert Hirt). Our collaborators have also shown that overexpressing the latter protein in T. 

vaginalis itself increases vaginal epithelial cell cytolysis in-vitro. In summary, although it is not quite 

clear yet what the M60-like domain-containing proteins of T. vaginalis target, data accumulated so 

far suggests that TVAG339720 and its close relatives may represent important virulence factors 

for the organism. 
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III.5 Future work 

Some suggestions for future work to further our understanding of the activities  and role of B. 

thetaiotaomicron and T. vaginalis M60-like proteins include; a) Pursue further studies if possible 

structural studies on the carbohydrate binding properties of identified M60-like CBMs and b) 

Screen other potential human mucin/non-mucin glycoprotein targets for the B. thetaiotaomicron 

and  T. vaginalis M60-like proteins including colonic mucins in the case of the  M60-like proteins 

from B. thetaiotaomicron  and proteoglycans in addition to urogenital tract mucins  in the case of  

T. vaginalis M60-like proteins. 
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   CHAPTER IV  

F u n c t i o n a l  M e c h a n i s m  o f  t h e  S u s - l i k e  S y s t e m  

( B T 4 2 4 0 - 5 0 )  C o n t a i n i n g  t h e  B T 4 2 4 4  M 6 0 - l i k e  

P r o t e a s e    

IV.1 Introduction 

Evidence from the functional characterisation of the fructan and starch utilisation systems (Sus) 

in B. thetaiotaomicron suggests that polysaccharide utilisation loci (PULs) or Sus-like systems 

represent an important adaptation for the efficient acquisition and utilisation of complex and 

diverse glycan substrates in the organism (Section I.5.1). Human mucins are complex and diverse 

glycoproteins and despite their importance in host – microbial interactions (Section I.3, 

Johansson et al., 2011, McGuckin et al., 2011, Skoog et al., 2012.) vital details of the molecular 

mechanisms by which individual mucinolytic bacteria such as B. thetaiotaomicron or the gut 

microbial community as a whole interact and carry out mucin utilisation are lacking. On account 

of their complexity and ability to upregulate the expression of several PUL-associated genes in B. 

thetaiotaomicron (Figure IV.1), mucins and other complex glycan substrates encountered by the 

organism in the human gut such as glycosaminoglycans, arabinans, arabinogalactans and pectins 

are also thought to be metabolised by Sus-like systems (Koropatkin et al., 2012, Table IV. 1).  

Interestingly, except for the fructan and starch utilisation systems, the functional mechanisms of 

many of the 88 predicted PULs in B. thetaiotaomicron (Martens et al., 2008) are poorly understood, 

unknown or better still only hypothesised based on gene annotation and transcriptional data. 

Specifically, this has not been described for any of the 38 host glycan inducible PULs in B. 

thetaiotaomicron, albeit it is thought to be a prolific user of host derived glycans including mucin  

O- glycans (Martens et al., 2008).  Part of the difficulty in the case of mucins is their structural 

complexity, but this is further complicated by a similarly complex and redundant PUL response 

observed when the organism is made to rely on host mucin glycans as its sole source of carbon in 

vitro (Martens et al., 2008, 2011). Mucin-type-O glycans alone for example contain about 12 

unique sugar linkages to which the organism upregulates approximately 15 different PULs for 

their metabolism while starch on the other hand contains just two unique linkages and a single 

PUL dedicated to its metabolism (Table IV.1). The transcriptional profile highlighting the 

complexity of B. thetaiotaomicron’s response following growth on purified porcine mucosal glycans 

is shown in Figure IV.1. 
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In the previous chapter, mucins were identified as targets for various gluzincin M60-like 

proteases in B. thetaiotaomicron.  All the proteases (BT4244, BT3015 and BT4272) also happen to 

be associated with Sus-like systems namely; BT4240-50, BT3010-17 and BT4266-72 respectively 

encoded by PULs within the genome of the organism (Section I.8.3). For the purpose of clarity, 

the corresponding PULs encoding the various M60-like systems will be represented here as 

PULBT_4240-50, PULBT_3010-17 and PULBT_4266-72 respectively. By analogy to the 

prototypic starch and fructan utilisation systems, the mucinase activities exhibited by various 

M60-like proteases could be regarded as part of a concerted action by members of the respective 

Sus-like systems to which they belong to metabolise their target mucin substrate. Supposing this 

is true, then knowledge of the activities of their functional partners or in general the Sus-like 

systems to which they belong will not only improve our understanding of the role of M60-like 

proteases but also PUL mediated mucin utilisation in B. thetaiotaomicron.   

 

Glycan Unique 
linkages 

Degrading species Number of 
PULs in the 

species 

Number of 
enzymes in 
the system 

Pectic galactan (β1,4-galactan) 1 B.thetaiotaomicron 1 2 

Levan (β2,6-fructan) 1 B. thetaiotaomicron 1 3 

Inulin (β2,1-fructan) 1 B. ovatus /B. caccae 1 4 

Starch 2 B. thetaiotaomicron 1 3 

Barley β-glucan 2 B. ovatus 1 3 

Galactomannan and 
glucomannan 

3 B. ovatus 1 4 

Homogalacturonan 4 B. thetaiotaomicron 1 7 

Arabinan 4 B. thetaiotaomicron 2 6 

Xyloglucan 4 B. ovatus 1 8 

Arabinogalactan 4 B. thetaiotaomicron 2 8 

Yeast α-mannan 4 B. thetaiotaomicron 3 12 

Heparin 5 B. thetaiotaomicron 1 5 

Hyaluronan, dermatan and 
chondroitin sulphates 

7 B. thetaiotaomicron 1 5 

Xylan 11 B. ovatus 2 21 

Mucin O-linked glycans 12 B. thetaiotaomicron 15 17 

Rhamnogalacturonan I 13 B. thetaiotaomicron 1 20 

Rhamnogalacturonan II 22 B. thetaiotaomicron 1 32 

 

Table IV. 1 – List of some complex glycans targeted by PULs in B. thetaiotaomicron and its close 

relatives B. ovatus and B. caccae. Adapted from Koropatkin et al., (2012) 
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Figure IV.1 - Induction of B. thetaiotaomicron host glycan sensitive PULs in different nutrient 

conditions. A: Heat map showing induction of all host glycan sensitive PULs. Red arrows to the left of the heat map point to 
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various PULs containing M60-like proteases. Transcriptional profiles are shown for B. thetaiotaotaomicron growth on fractionated 

porcine mucosal glycans (PMG) including early and late phase growth on the unfractionated substrate (PMG early/late). The 

composition of various fractions were as follows; neutral - mucin O-glycans,  100 mM - mucin O-glycans, N-glycans, GAGs, 300 

mM GAGs > O-glycans, 1M – GAGs. CS and HS stand for chondroitin and heparin sulphates respectively.   Adult stands for 

mice fed simple sugar diet while suckling stands for suckling mice. B: Fold induction of genes within the putative PUL containing 

genes from locus BT_4240 chronologically to BT4250 (PULBT_4240-50) relative to levels observed when B. thetaiotaomicron is 

grown in minimal medium containing glucose as sole carbon source. The seemingly low levels of BT_4240-43 induction are due 

to already high levels of expression in glucose. The transcriptional data were were reproduced from Martens e al., (2008). 

The transcriptional data in Figure IV.1 shows upregulation of the PULs encoding BT4244 and 

BT3015 M60-like proteases (PULBT_4240-50 and PULBT_3010-17 respectively) in one or more 

conditions of B. thetaiotaomicron growth on substrates tested including porcine mucosal glycans 

(PMG). Several components of PULBT_4240-50 were ~ 100 times up-regulated in-vitro in the 

late phase of growth on PMG while PULBT_3010-17 was ~10 times up regulated under similar 

conditions. The PUL containing the gene for the BT4272 M60-like protease (PULBT_4266-72) 

was not shown to be up regulated under any of the conditions tested.  PULBT_4240-50 was also 

upregulated in-vivo as opposed to PULBT_3010-17 which was only induced in-vitro.  An 

important difference between the two PULs is that unlike the latter PULBT_4240-50 is 

upregulated to the  mucin core 1 glycan or T antigen (Galβ1-3GalNAc) present in many mucin 

O-type glycans including human colonic mucin -2 (MUC2), IgA1, BSM and PMGs themselves 

(Section I.2.1.1.1.1). PULBT_4240-50 also contains the highest number of putative gene 

functional partners (11 in total) including genes encoding putative family 2 and 109 glycoside 

hydrolases, compared to PULBT_3010-17 and PULBT_4266-72 (Table I.5 and Figure IV.1). As 

glycoproteins, mucin degradation is likely to involve amongst others the collective action of 

glycoside hydrolases and mucin proteases and hence taken together the PULBT_4240-50 locus 

offers a unique opportunity to study the interactions of B. thetaiotaomicron with host mucins. 

 

IV.2 Objectives 

This chapter is an attempt to elucidate the functional mechanism the BT4240-50 Sus-like system 

(encoded by PULBT_4240-50) containing the BT4244 M60-like protease, with the aim of putting 

into context the mucinase activity earlier observed for the enzyme (BT4244-FL) in Chapter III, 

as well as furthering our understanding of mucin utilisation in B. thetaiotaomicron.    
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IV.3 Results 

IV.3.1 Comparing the PULBT_4240-50 and Sus gene loci (PULBT_3698-05) 

The prototypic Sus system involved in starch utilisation contains a total of eight protein coding 

genes occupying a 15.821kbp genomic region (GC content; 45%) in the genome of B. 

thetaiotaomicron. Except for the susR gene, all sus genes are unidirectionally transcribed. These 

include three outer membrane starch binding proteins (SusD, E, and F), two GH13 proteins 

(SusG and SusA) with alpha amylase activity, a GH97 SusA protein with alpha (α)-glucosidase 

activity, a TonB dependent SusC protein involved in the transport of starch oligosaccharides into 

the cell and a SusR regulator protein (Section I.6.1.1) 

The PULBT_4240-50 locus (Figure IV.2) on the other hand consists of ~ 11 protein coding 

genes occupying an 18.320kbp region of the B. thetaiotaomicron genome (GC ~ 42%). 

PULBT_4240-50 genes are divided between two operons, the first from BT_4240 to BT_4243 

and the second from BT_4244 to BT_4250 (Martens et al., 2008).  Members of the BT4240-50 

Sus-like system (encoded by PULBT_4240-50) include, a putative aminoglycoside 

phosphotransferase family protein (BT4240), two putative glycoside hydrolase family proteins 

(BT4241 and BT4243), a putative transporter (BT4242), a hypothetical protein (BT4244) earlier 

shown to possess mucin protease activity (Chapter III), a putative outer membrane protein 

(BT4245), SusC and D homologues (BT4247 and BT4246, respectively) and regulatory elements 

(BT4248, BT4249 and BT4250) (Martens et al., 2008, 2009a). 

      
   

 

Figure IV.2 – Organisation of the gene loci encoding components of the Sus (PULBT_3698-05) 

and BT4240-50 (PULBT_4240-50) systems.  Homologues of Sus components (mainly SusC and D) present 

in PULBT_4240-50 are coded by colour.  The gene encoding the M60-like protease (BT_4244) is shown in red. 

Note that only genes within the same PUL are drawn to scale relative to each other and entire PULs are not. See Sus 

gene IDs or locus tags in Section I.6.1.1. The Sus locus structure was modified from Koropatkin et al., (2012).    
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IV.3.1.1 The protein encoded by the BT_4241 gene (BT4241) 

IV.3.1.1.2 Features and recombinant protein expression 

 
BT4241 is a large multimodular protein (1103 a.a.) annotated as a beta (β)-galactosidase 

[EC:3.2.1.23] (PFAM) belonging to the GH2 family of glycoside hydrolases (Chapter 1). Other 

family 2 glycoside hydrolases include β-glucuronidases (EC 3.2.1.31); β-mannosidases (EC 

3.2.1.25); mannosylglycoprotein endo-β-mannosidases (EC 3.2.1.152); or exo-β-glucosaminidases 

(EC 3.2.1.165) (CAZy). β-galactosidases are enzymes capable of hydrolysing β-glycosidic bonds 

between galactose and other sugars.   Many prokaryotic β-galactosidases have been described 

(Zahner and Hakenbeck, 2000, Ashida et al., 2001, Jeong et al., 2009, Terra et al., 2010) most of 

which target the Galβ1-3/4GlcNAc linkage   present in human glycoconjugates such as human 

milk oligosaccharides (HMOs) and mucin glycoproteins.  

The predicted open reading frame for BT4241 on the KEGG database 

[http://www.genome.jp/kegg/ (Kanehisa et al., 2012)] encodes no signal peptide. However, 

upstream of the currently annotated ‘‘start’’ methionine in the putative encoded protein is a 

potential type I signal peptide (SPI) (Figure IV.3), suggesting there might have been an error in 

the prediction of the actual start codon for the BT4241 gene (personal communication, Dr 

David Bolam). BT4241 may thus be periplasmic given that SPI is a typical feature of periplasmic 

proteins (Cameron et al., 2010, Dalbey et al., 2012). Homologues of BT4241 (>70% sequence 

identity) are present in related gut Bacteroides species such as B. xylanisolvens, B. fragilis, and B. 

vulgatus.   

To functionally characterise the BT4241 protein, it was initially over-expressed in E. coli BL21 

(DE3) cells. In the process, the full length BT_4241 gene was amplified from B. thetaiotaomicron 

VPI-5482 genomic DNA by PCR (Section II.1.15) using the primers containing engineered 

BamHI and XhoI restriction sites (Appendix Table A.3). The amplified gene was then cloned into 

the same sites in the pET-28a (+) vector (Novagen) and expression carried out in E. coli BL21 

(DE3) host cells (Section II.1.26). Protein expression was induced with 1 mM IPTG at 16 °C 

overnight.  The N-terminal His6-tagged ~129 kDa recombinant protein (BT4241-FL) was 

purified by immobilised metal affinity chromatography (IMAC) as described in Section II.1.26 

(Figure IV.3). Protein concentration was routinely measured by absorbance at 280 nm (A280nm) 

using the estimated molar extinction coefficient (240685 M-1 cm-1) of the protein.  

 

http://www.genome.jp/dbget-bin/www_bget?ec:3.2.1.23
http://www.ncbi.nlm.nih.gov/pubmed?term=Kanehisa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22080510
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Figure IV.3 - The protein encoded by the BT_4241 gene of B. thetaiotaomicron.  A: Protein features. 

BT4241 is a large multimodular protein with several GH2 domains including a putative sugar binding and TIM 

barrel domain.  TIM barrel domains represent the catalytic domains of several GH family enzymes (Rigden  et al., 

2003). See colour coded key below figure for other details relating to various domains in the protein. E-value is the 

Source Domain Start End E-value 

Sequence Domain 

Pfam A Glyco_hydro_2_N (sugar binding domain) 45 219 3.1e-48 8.6e-48 

disorder n/a 109 113 n/a n/a 

disorder n/a 115 119 n/a n/a 

Pfam A Glyco_hydro_2 221 331 2.1e-15 4.9e-15 

Pfam A Glyco_hydro_2_C (TIM barrel domain) 348 633 2.3e-81 4.1e-81 

disorder n/a 363 364 n/a n/a 

disorder n/a 538 540 n/a n/a 

disorder n/a 739 752 n/a n/a 

Pfam A Bgal_small_N (betagalactosidase small chain) 756 877 2e-54 2.2e-10 

disorder n/a 806 809 n/a n/a 

disorder n/a 873 874 n/a n/a 

disorder n/a 878 887 n/a n/a 

Pfam A Bgal_small_N(betagalactosidase small chain) 892 1011 2e-54 5.7e-29 

disorder n/a 934 935 n/a n/a 

disorder n/a 954 956 n/a n/a 

disorder n/a 963 969 n/a n/a 

disorder n/a 1007 1008 n/a n/a 

disorder n/a 1010 1033 n/a n/a 

Pfam A Bgal_small_N(betagalactosidase small chain) 1024 1086 2e-54 0.00063 

disorder n/a 1063 1065 n/a n/a 

disorder n/a 1099 1101 n/a n/a 

45 

221 331 892 1011 

1024 219 756 887 633 348 1086 

 
   P    CFE    FT       A       B        C       M3 
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http://www.ncbi.nlm.nih.gov/pubmed?term=Rigden%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=12782298
http://pfam.sanger.ac.uk/family/Glyco_hydro_2_N
http://pfam.sanger.ac.uk/family/Glyco_hydro_2
http://pfam.sanger.ac.uk/family/Glyco_hydro_2_C
http://pfam.sanger.ac.uk/family/Bgal_small_N
http://pfam.sanger.ac.uk/family/Bgal_small_N
http://pfam.sanger.ac.uk/family/Bgal_small_N
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probability that each sequence or domain is detected by chance. B: SignalP analyses of the product containing the 

predicted BT4241 sequence and 21 amino acids upstream of the sequence (boxed area) suggests the presence of a 

putative type I signal peptide. Please follow link in Section II.2 for more information on the interpretation of score 

values.  C: SDS PAGE analyses of recombinant BT4241 (BT4241-FL) purified by immobilized metal affinity 

chromatography (IMAC). Protein expression and purification was carried out as described in Section II.1.26. 

BT4241-FL was purified from 100 ml of E. coli BL21 (DE3) culture volume. 5 μl of the insoluble pellet fraction (P) 

re-suspended in 10 ml of Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM NaCl), 10 μl of cell free extract 

(CFE), 10 μl of flow through (FT), 10 μl of the fraction eluted with 10 mM imidazole (A), 10 μl of fractions 

sequentially eluted with 100 mM imidazole (B and C) were all analysed by SDS PAGE, using a 12.5% polyacrylamide 

gel.   Please see Section II.1.27 for the molecular weights of various markers in lane M3. The theoretical molecular 

weight of the recombinant N-terminal His6-tagged protein is ~129kDa 

IV.3.1.1 .3 Screening for candidate sugar targets of BT4241  

IV.3.1.1.3.1 Colorimetric assays 

The β-galactosidase activity of BT4241 was initially tested using colorimetric assays (Section 

II.1.43) involving chromogenic synthetic para-nitrophenyl linked β-galactose substrates such as 

4/p-Nitrophenyl β-D-galactopyranoside (Galβ1-4pNP) and 2/o-Nitrophenyl β-D-

galactopyranoside (Galβ1-2oNP). 4-Nitrophenyl β-D-glucopyranoside , 4-Nitrophenyl β-D-

mannopyranoside, 4-Nitrophenyl- β-L-fucopyranoside, 4-Nitrophenyl β-D-mannopyranoside, 4-

Nitrophenyl α-D-galactopyranoside, 4-Nitrophenyl α-D-glucopyranoside  and 4-Nitrophenyl α-

L-fucopyranoside were also included in the screens. β-galactosidase activity was detected by 

measuring the release of p/o-nitrophenol at 420 nm (A420nm) following treatment of the 

substrates with the recombinant BT4241-FL protein.  A colour change was observed for the 

Galβ1-4pNP and Galβ1-2oNP substrates with absorbance readings at least 3 times higher 

(A420nm >3.0) than the control [BSA, (Section II.1.43)]. In contrast, the other pNP substrates 

showed only very little colour changes (A420nm <0.2) (data not shown). 

IV.3.1.1.3.2 Thin layer chromatography  

After β-galactosidase activity was confirmed by the above method, several synthetic galactose 

containing disaccharide sugars, most from mucin type O – glycans were tested against the 

enzyme. These included galactose containing sugars from the core, backbone and peripheral 

units of mucin O-glycans such as Galβ1-3GalNAc, Galβ1-3GlcNAc, Galβ1-4GlcNAc and 

Galα1-3Gal. Digestion products were analysed by thin layer chromatography (TLC) (Section 

II.1.33).  Results from the TLC analyses following a one hour incubation of the substrates (~8 

mM each) with the enzyme (0.8 µM) showed complete degradation of the Galβ1-3GalNAc and 

Galβ1-3GlcNAc substrates. Galactose release was also observed from non mucin substrates such 
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as α/β-lactose under the same conditions highlighting a broad substrate spectrum for the enzyme 

(Figure IV.4). 

 

 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

            
 
 

Figure IV.4 – Screening for potential targets of BT4241 in mucin O-glycans.  A: Structures of various 

synthetic sugar substrates screened. B: TLC analyses of BT4241-FL substrate specificity. 8 mM of each sugar 
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substrate was prepared and incubated with 0.8 μM of the recombinant BT4241-FL enzyme in 20 mM Tris/HCl pH 

8.0 containing 100 mM NaCl at 37oC for 1h. 25 μl of each reaction was boiled at 98 oC for 10 min and 6 µl of each 

reaction applied to silica gel TLC plates. 6 μl of 2 mg/ml standards were also applied alongside. Plates were stained 

with DPA reagent (Section II.1.33) after chromatography of the reaction products. Standards were; Gal for 

galactose, Glc for glucose, GlcNAc for N-acetylglucosamine, GalNAc for N-acetylgalactosamine C:  Model mucin 

structure showing the location of bonds (blue arrows) targeted by BT4241-FL based on the TLC data from B. See 

more details of the structure in Section  I.2.1.1.1.1. 

IV.3.1.1.4 Enzyme kinetics and pH dependence 

Equal amounts of the BT4241-FL enzyme, within an hour completely degraded both the Galβ1-

3GalNAc (T-antigen) and Galβ1-3GlcNAc (LNB) sugar substrates (Figure IV.4). To determine 

which substrate was the most preferred by the enzyme, rate experiments were performed using 

the protocol described in the Megazyme galactose detection kit (Megazyme) (Section II.1.44). 

The highest activity of the enzyme was observed against the T antigen substrate with Km, Kcat 

and Vmax values of 0.36 mM, 14 s-1 and 243 µMmin-1 respectively (Figure IV.5). The pH 

dependency of the enzyme activity was also analysed using colorimetric assays (Section II.1.43).  

BT4241-FL had maximal activity between pH 7.0 and 8.0 retaining about half of this activity at 

about pH 5.5 and 9.0.  
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Figure IV.5 – Kinetics and pH dependency of BT4241-FL β-galactosidase activity. A: Kinetics of 

BT4241-FL activity against T antigen and LNB. Rates were measured using a modification of the assay protocol 

described for Megazyme galactose detection kit (Section II.1.44). B: pH dependency of BT4241-FL β-galactosidase 

Vmax = 242.9 ± 10.37 µMmin-1 

Km = 0.36 ± 0.04 mM 

Kcat =14.25 s-1 

Kcat/Km =   39.58s-1 mM-1 

Vmax = 102.0 ± 9.63 µMmin-1 

Km = 0.50 ± 0.11 mM 

Kcat =5.99 s-1 

Kcat/Km =   11.98s-1 mM-1 
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activity at 37 oC. This was assessed through colorimetric assays (Section II.1.43) using Galβ1-2oNP (ONPG) as 

substrate in various buffers.  

 

IV.3.1.1.5 BT4241-FL β-galactosidase activity against natural glycan substrates 

BT4241 was capable of releasing galactose from natural glycan containing substrates such as 

porcine gastric mucins (PGMII and III) and bovine sialofetuin (BF). BF just like PGM contains 

both O and N-linked oligosaccharides but in relatively lower amounts (Karlsson et al., 2002). It 

was found to be entirely exo-acting as galactose release was only observed following 

defucosylation and desialylation of PGM and BF substrates respectively (Figure IV.6). 

Commercial PGMIII and II contain just about ~ 0.5-1.5% and 1% bound sialic acid respectively 

(Sigma) with several fucosylated glycans as opposed to bovine sialofetuin where a significant 

amount of its N-glycans are sialylated (Karlsson et al., 2002, Royle et al., 2002, Yamada et al., 

2007). 

        

       
 
 

 

   
 
 
 
Figure IV.6 – Release of galactose from natural glycoprotein substrates. A: TLC analyses of PGMII 

and III treated with BT4241-FL and fucosidase enzymes. Incubation reactions contained 4 mg/ml PGMII and III, 

0.9 µM α-fucosidase enzyme (GenBank: AAQ72464.1) from Dr Arthur rogowski and 0.32 μM of recombinant 
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BT4241-FL in 20 mM Tris-HCl pH 7.5. Reactions were carried out at 37 oC overnight. Were reactions contained 

both fucosidase and BT4241-FL  enzymes, the reaction was either initially incubated with the fucosidase enzyme for 

about 5 h at at 37 oC, then boiled at 98 oC for 3 min, before addition of BT4241-FL (2) or both enzymes were 

included at the same time and incubated overnight . Samples were collected the next day and boiled at 37 oC for 3 

min before applying to TLC plates alongside standards. 6 μl of each standard [Gal (galactose)– 2 mg/ml, NeuAc (N-

acetylneuraminic acid)– 2.5 mg/ml, GalNAc (N-acetylgalactosamine) -4 mg/ml, Fuc (Fucose) - 5 mg/ml) was 

applied to TLC plates. B: TLC analyses of bovine sialofetuin (BF) treated with BT4241-FL and neuraminidase 

enzymes. Incubation reactions contained 6.25 mg/ml BF, 0.31 U/ml of α2-3,6,8,9-Neuraminidase from Arthrobacter 

ureafaciens (Calbiochem) and 1.2 μM of BT4241-FL in 20 mM Tris-HCl pH 7.5. Reactions were carried out at 37 oC 

overnight. PGMIII samples contained 8 mg/ml PGMIII and same amounts of neuraminidase and BT4241-FL 

enzyme.  Samples after incubation were treated as in A before TLC analyses. The NeuAc standard concentration in 

this case was 5 mg/ml. C: Typical sialylated N and O-glycan structures found in bovine sialofetuin. Most of the β1-

3/4 linked galactose residues are protected by sialic acids (adapted from Karlsson et al 2002). See structures of 

fucosylated PGM glycans in Section I.2.1.3 (Chapter I) 

 

IV.3.1.2 The protein encoded by the BT_4243 gene (BT4243) 

IV.3.1.2.1 Features and recombinant protein expression 

BT4243 is a 467 amino acid long protein belonging to the GH109 family of glycoside hydrolases 

(CAZy). Members of this family are thought to exhibit α-N-acetylgalactosaminidase activity and 

by virtue are potential candidates for use in the production of universal red blood cells (Liu et al., 

2007, Olsson et al., 2004).   The encoded protein contains a type I signal peptide sequence 

towards its N-terminal [hence maybe periplasmic (Cameron et al., 2010, Dalbey et al., 2012)]) and 

a large domain termed GFO_IDH_MocA, defined as oxidoreductase family with a NAD+ 

binding Rossmann fold (Figure IV.8).   A similar N-terminal dinucleotide binding Rossman fold 

has been reported in the structure of the α-N-acetylgalactosaminidase enzyme (NagA) encoded 

by the nagA gene of Elizabethkingia meningoseptica  (PDB: 2IXA, Liu et al., 2007). NAD+ is 

thought to be important in the catalytic mechanism of this group of enzymes (CAZy, Liu et al., 

2007). As a putative periplasmic NAD+ binding protein, BT4243 ideally will be secreted in a 

completely folded state requiring a secretion system such as the TAT system (twin-arginine 

translocase secretion system) as opposed to the Sec secretion system of bacteria for its export 

into the periplasm (Posey et al., 2006, Palmer et al., 2012). The TAT secretion system is so named 

after the twin-arginine secretion signal present in the N-terminal of TAT secreted proteins. 

Intriguingly, BT4243 lacks this motif and rather contains two lysine residues aligning with the 

putative twin-arginine motif of its close homologues (Figure IV.7). Either these lysine residues 

http://pfam.sanger.ac.uk/family/GFO_IDH_MocA
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=TreeEntityQuery&t=1&n=238
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are equally recognisable TAT secretion signals or the protein uses a completely different, yet 

unknown secretion system for its export into the periplasm. 

Just like BT4241, homologues of BT4241 (>70% sequence identity) are present in other gut 

Bacteroides species such as B. fragilis and B. vulgatus. An alignment of BT4243 with the E. 

meningosepticum NagA protein and selected homologues from other organisms showing less than 

50% sequence identity revealed conservation of the  several residues including Tyr-307, Tyr-225, 

His-228 and Glu-149 thought to be important for interactions with  N-acetylgalactosamine 

(GalNAc) in the active site of NagA (Figure IV.7).    

To functionally characterise the BT4243 protein, it was initially over-expressed in an E. coli BL21 

(DE3) host. In the process, the full length BT_4243 gene excluding the region encoding the 

predicted type I signal peptide sequence was amplified from B. thetaiotaomicron  genomic DNA by 

PCR (Section II.1.15) using the following primers using the primers containing engineered 

BamHI and XhoI restriction sites (Appendix Table A.3). The amplified gene was then cloned into 

the same sites of the pET-28a(+)   vector (Novagen) and expression carried out in E. coli BL21 

(DE3) host cells (Section II.1.26). Protein expression was induced with 1 mM IPTG at 16 °C 

overnight.  The N-terminal His6-tagged ~54kDa recombinant protein (BT4243-FL) was purified 

by immobilised metal affinity chromatography (IMAC) as described in Section II.1.26 (Figure 

IV.8). Protein concentration was routinely measured by absorbance at 280 nm (A280nm) using 

the estimated molar extinction coefficient (81290 M-1 cm-1) of the protein. 
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Figure IV.7 - Alignment of E. meningoseptica NagA against BT4243 and its homologues from 

different organisms. Apart from BT4243 protein (denoted in the figure as bth: BT_4243), Only 

homologues with less than 50% identity to BT4243 were selected so as to demonstrate the strong conservation of 

structural and catalytic site residues within this group. Red inverted triangles point to conserved residues Tyr-307, 

Tyr-225, His-228 and Glu-149, thought to be important for interactions with GalNAc in the active site of the E. 

meningoseptica NagA enzyme (PDB: 2IXA, Liu et al., 2007). Also included (above the alignment) is the secondary 

structure of NagA showing regions forming alternating α-helices and β-sheets of the N-terminal β-α-β-α-β motif 

typical of NAD+ binding enzymes (Lesk et al., 1995). Sequences used in the alignment came from the following 

sources;  bth: BT_4243: Bacteroides thetaiotaomicron, shn: Shewana3_1428: Shewanella sp. ANA-3, sus: Acid_6590  : 

Candidatus Solibacter usitatus, gma: AciX8_0945: Granulicella mallensis, zga: zobellia_4126: Zobellia galactanivorans and 

amu: Amuc_0920: Akkermansia muciniphila. The putative twin-arginine secretion motif (RR) in various aligned 

sequences excluding BT4243 is shown in the boxed area towards the N-terminal of the proteins. Notice that this 

motif is replaced by a twin lysine motif in BT4243. Sequence alignments were viewed using the ESPript 2.2 utility at 

http://espript.ibcp.fr/ESPript/ESPript/ (Gouet et al., 1999) with a global similarity score threshold of 0.7.  Red 

highlights are for amino acid residues showing 100% conservation while yellow highlights are for residues showing 

less than 100% conservation but above the global score threshold. 

 

 

 

 

 

 

 

http://espript.ibcp.fr/ESPript/ESPript/


 

 

   

- 139     - 

 

 

 

  

           

    
Key 

 
      

 

 

 

LipoP report 

  
 

 

Figure IV.8 - The protein encoded by the BT_4243 gene of B. thetaiotaomicron.   A: Protein 

features. BT4243 is a 476 amino acid long protein containing a putative N-terminal type I signal peptide sequence 

and an NAD+ binding Rossmann fold also present in the NagA α-N-acetylgalactosaminidase of E. meningoseptica 

(Liu et al., 2007). See colour coded key below figure for other details relating to various domains in the protein. E-

value is the probability that each sequence or domain is detected by chance B: LipoP analyses show a high 

probability for a type I signal peptide (spI) over a type II signal peptide (spII) sequence. Please follow link in Section 

II.2 for more information on the interpretation of other score values. C: SDS PAGE analyses of recombinant 

BT4243 (BT4243-FL) purified by IMAC (section II). Protein expression and purification was carried out as 

described in Section II.1.26. BT4243-FL was purified from 100 ml of E. coli BL21 (DE3) culture volume. 5ul of the 

insoluble pellet fraction (P) re-suspended in 10ml of Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM 

NaCl), 10 μl of cell free extract (CFE), 10 μl of flow through (FT), 10 μl of the fraction eluted with 10 mM 

imidazole (A), 10 μl of fractions sequentially eluted with 100 mM imidazole (B and C) were analysed by SDS PAGE, 

Source Domain Start End E-value 

Sequence Domain 

sig_p n/a 1 22 n/a n/a 

Low 
complexity 

n/a 4 15 n/a n/a 

disorder n/a 32 34 n/a n/a 

Pfam A GFO_IDH_Mo
cA 
(oxidoreductase 
family, NAD-
binding 
Rossmann fold) 

57 185 5.7e-13 1e-12 

disorder n/a 285 288 n/a n/a 

disorder n/a 291 299 n/a n/a 

disorder n/a 302 303 n/a n/a 

disorder n/a 353 363 n/a n/a 

22 57 185 1 

        -----BT4243-FL----- 

M3     P     CFE    FT      A     B       C     M3 

B 

C 

70kDa 

55kDa 

A 

http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=TreeEntityQuery&t=1&n=238
http://pfam.sanger.ac.uk/family/GFO_IDH_MocA
http://pfam.sanger.ac.uk/family/GFO_IDH_MocA
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using a 12.5% polyacrylamide gel.   Also see Section II.1.27 for the molecular weights of various markers in lane M3. 

The theoretical molecular weight of the recombinant N-terminal His6-tagged protein is ~54 kDa 

IV.3.1.2.2 Enzymatic activity 

IV.3.1.2.2.1 Hydrolysis of GalNAc –PNP substrates 

BT4243-FL was evaluated for α-N-acetylgalactosaminidase activity by initially testing against the 

synthetic chromogenic substrate; 4-Nitrophenyl N-acetyl-α-D-galactosaminide or p-Nitrophenyl 

2-acetamido-2-deoxy-α-D-galactopyranoside (GalNAcα1-4pNP) in colorimetric assays (Section 

II.1.43). Hydrolysis of GalNAc α1-4pNP by recombinant BT4243-FL produced a yellow colour 

that was quantified at 420nm (A420nm). Just like NagA, BT4243 was also capable of hydrolysing 

the β - configuration of the sugar (GalNAc β1-4pNP) although the Km was ~3 times higher 

compared to the α- configuration (Figure IV.9).   
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Figure IV.9 - Kinetics of GalNAcα1-4pNP and GalNAcβ1-4pNP hydrolysis by recombinant 

BT4243-FL enzyme. A: Graph of BT4243-FL enzyme activity versus GalNAcα1-4pNP substrate concentration B: Graph 

of BT4243-FL enzyme activity versus GalNAcβ1-4pNP substrate concentration. Kinetic parameters were calculated using data 

obtained from colorimetric assays (Section II.1.43) involving various pNP substrates shown above respective graphs in panels A 

and B. Various substrate concentrations were prepared and mixed with the enzyme (0.37 μM for GalNAcα1-4pNP and 0.74 μM 

for GalNAc β1-4pNP) in 20 mM Tris/HCl pH 8.0 containing 100 mM NaCl at 37 oC. pNP release over time was quantified by 

absorbance at 420 nm (A420nm) and the data used to calculate enzymatic activity and other kinetic parameters.  

Vmax = 174.1 ± 9.908 µMmin-1 

Km = 0.03 ± 0.005 mM 

Kcat =7.8 s-1 

Kcat/Km =   260s-1 mM-1 

Vmax = 86.37 ± 5.634 µMmin-1 

Km = 0.08 ± 0.01 mM 

Kcat =1.95 s-1 

Kcat/Km =   24.32 s-1 mM-1 

A B 



 

 

   

- 141     - 

 

IV.3.1.2.2.2 Synthetic mucin sugar targets of BT4243-FL 

 

GH109 enzymes have potential applications in medicine as enzymes for the production of 

universal donor RBCs due to their ability to cleave the GalNAcα1-3Gal linkage present in blood 

group A antigens (Liu et al., 2007, Olsson et al., 2004). Mass spectrometric analyses of human 

colonic MUC2 has revealed structures present in the molecule with similar linkages (Larsson et 

al., 2009). These include the Forsmann disaccharide or F antigen (GalNAcα1-3GalNAc) and 

Tumor or Tn antigens (GalNAcα1-O-Lserine). The latter is also a component of several mucin 

O-glycoproteins including BSM and PGM (Section I.2.1.3).  As evidenced in Figure IV.10, 

BT4243-FL was found to be capable of degrading both substrates. Unfortunately, due to the 

paucity and cost of these substrates, detailed rate experiments could not be performed.   

    
 
 

           

 
   
Figure IV.10 – Degradation of F and Tn antigens by recombinant BT4243 (BT4243-FL).  A: TLC 

analyses of products released by BT4243-FL following incubation with F and Tn antigens (structures above panels A and B). 1 

mg/ml of each sugar substrate was prepared and incubated with various concentrations of the enzyme (as indicated on the TLC 

image) in 20 mM Tris/HCl pH 8.0 containing 100 mM NaCl at 37 oC for 1 h. 40 μl of each reaction was boiled at 98 oC for 5 min 

and 6 µl of each reaction applied to silica gel TLC plates alongside a GalNAc standard (4 mg/ml). B: Model mucin structure 

showing the location of bonds (black arrows) targeted by BT4243-FL based on the TLC data in A. See more details of the 

structure in Section I.2.1.1.1.1. 

GalNacα1-3GalNac (F antigen) GalNAcα1-O-L serine (Tn antigen) 
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IV.3.1.2.2.3 Activity of BT4243-FL against native BSM and interactions with other PUL 

functional partners 

Both TLC and HPLC were used to evaluate the activity of BT4243-FL against native mucin 

substrates and interactions with recombinant versions of its PUL functional partners BT4241-FL 

and BT4244-FL. The data revealed that BT4243-FL is capable of degrading BSM releasing two 

products; products 1 and 2, (as shown in the HPLC data of Figure IV.11) one of which was 

identified as N-acetylgalactosamine (GalNAc) (product 1). The enzyme was also found to be  

exo-acting as an increase in the release of GalNAc from BSM which contains ~50% sialyl Tn 

antigen (Neuα2-6GalNAcα1-O-LSer)(Tsuji and Osawa,1986) was observed following pre-

treatment of the mucin with a neuraminidase enzyme (Figure IV.11). Access to the Tn antigen of 

PGM on the other hand is often shielded by fucosyl-galactose  (Karlsson et al., 2002) implying 

substantial GalNAc release from PGM would require additional enzymes such as  α-fucosidases 

and β-galactosidases. Interestingly the latter activity is encoded by its previously characterised 

PUL partner BT4241, suggesting that both enzymes may work concertedly to degrade their target 

in the mucin structure (Figure IV.12). This also provided an opportunity to test the effect of their 

activities (deglycosylation) on the activity of the BT4244 – M60-like protease (Chapter III) using 

IgA1 as substrate. The data revealed that further deglycosylation of IgA1 after desialylation does 

not increase BT4244-FL activity (Figure IV.13), an indication that BT4244 may be located 

upstream of its putative functional partners BT4243 and BT4241 in the PULs metabolic pathway 

of mucin degradation.  
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Figure IV.11 – Degradation of BSM by recombinant BT4243-FL and effect of BSM desialylation 

on BT4243 activity. A: HPLC analyses of products released by BT4243-FL from BSM. Incubation reactions contained 4 
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mg/ml of BSM, 0.9 μM of BT4243-FL, and 0.1 U/ml of neuraminidase enzyme in 20 mM Tris-HCl pH 7.5 containing 100 mM 

NaCl. The final volume of each reaction was 500 μl and reactions were carried out at 37oC for ~15 h after which samples were 

boiled at 98 oC for 3 min and later frozen at -20 oC. Samples were later freeze-dried and concentrated into half the original 

volume of the reaction before analysing 100 μl of each by HPLC.   The concentration of standards included were 1 mM for 

GalNAc and 0.8 mM for NeuAc.   B. Example of a TLC profile with samples prepared in a similar manner as in A. The lane 

numbers/codes shown in B correspond to the those shown in the HPLC data in A.  The neuraminidase enzyme used in B 

however was the α2-3,6,8,9-Neuraminidase from Arthrobacter ureafaciens (Calbiochem) while that in A was the Sigma neuraminidase 

enzyme from Clostridium perfringens (C. welchii) (Sigma cat. N2876). In both cases, GalNAc release was increased following prior 

treatment of the BSM substrate with the neuraminidase enzymes. 

 

 
   
 
 
 
Figure IV.12 - Evidence for cooperation between BT4241-FL and BT4243-FL enzymes in the 

cleavage of Galactosyl-Tn antigen (GTn). A: Cleavage of the GalNAc-α-1-O-glycosididc bond by BT4243-

FL requires prior removal of the capping sugar, galactose by the recombinant BT4241 β-galactosidase. Reactions 

contained3 mg/ml of GTn, 0.8 µM of BT4241-FL and 1.9 µM BT4243-FL in  20 mM Tris-HCl pH 7.5 containing 

100 mM NaCl at 37 oC for 25 h. Samples post incubation were collected and boiled at 98 oC for 2 min  before 

application (6 μl each including standards) to TLC plates. The concentration of the Gal and GalNAc standards were 

2 mg/ml and 4 mg/ml respectively. B: Structure of Galactosyl-Tn antigen showing linkages targeted by BT4241-FL 

(blue) and BT4243-FL enzymes (black). The structure of the GTn sugar was obtained from Rougé et al., (2011).  
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Figure IV.13 – Effect of BT4241-FL and BT4243-FL mediated deglycosylation of IgA1 on the 

activity of BT4244-FL. The protocol for this experiment was same as detailed in Section II.1.38. Released Fc 

fragment was detected by Western blotting and immunochemical detection with Anti-human IgA1 myeloma 

antibodies (A - top right) and band intensities were quantified using the Image LabTM tool (Biorad) after 5 seconds 

of exposure to chemiluminescent substrate. Various lanes of the Western blot (I-VIII) are indicated in the different 

graphs on the left hand side. The deglycosylation of IgA1 at every stage of the reaction was monitored using a biotin 

- conjugated lectin from Helix aspersa (HAA) that binds specifically to GalNAc present in the hinge insertion region 

of IgA1 (B - top right).  Complete loss of reactivity with the lectin as seen in lanes VII and VIII was an indication 

that the hinge insertion region of the IgA1 molecule (also the target site of BT4244-FL) had at that stage been 

completely deglycosylated by the sialidase, BT4241-FL and BT4243-FL enzyme combination. Red arrows point to 

the Fc-α product released by the BT4244-FL M60-like protease.   

 

IV.3.1.3 The protein encoded by the BT_4240 gene (BT4240) 

IV.3.1.3.1 Features and recombinant protein expression 

BT4240 is 362 a.a. long protein containing a single motif annotated as APH standing for 

aminoglycoside phosphotransferase family (PF01636). Sequence Similarity DataBase (SSDB) and 

Basic Local Alignment Search Tool (BLAST)  searches revealed significant sequence similarities 

between BT4240 and protein entries from different organisms, most of which were annotated as 

phosphotransferases, desulfatases and hypothetical proteins. The protein also showed about 39% 

sequence identity to the Bifidobacterium longum Blo_BL1642 or NahK gene product (lnpB) which 

although is annotated as a desulfatase enzyme (Table IV.2), had been shown to rather exhibit 

sugar kinase activity (Nishimoto and Kitaoka 2007).  
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Table IV.2 - Sequence Similarity DataBase (SSDB) search results for the B. thetaiotaomicron 

BT4240 protein. All identified homologues of BT4240 are listed on the left hand side of the table. Details of their lengths and the levels 

of similarity (expressed as a fraction of 1) are provided to the right of each entry. The sugar kinase homologue of BT4240 from B. longum (lnpB) is 

besides the checked box towards the bottom of the list i.e. blo : BL1642 (second to the last entry) 

 

 

The full length BT_4240 gene was amplified from B. thetaiotaomicron genomic DNA by PCR 

(Section II.1.15) using the primers containing engineered BamHI and XhoI restriction sites 

(Appendix Table A.3). The amplified gene was then cloned into the same sites a pET-28a (+)   

vector (Novagen) and expression carried out in E. coli BL21 (DE3) host cells (Section II.1.26). 

Protein expression was induced with 1 mM IPTG at 16 °C overnight.  The N-terminal His6-
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tagged ~45kDa recombinant protein (BT4240-FL) was purified by IMAC as described in Section 

II.1.26 (Figure IV.14). Protein concentration was routinely measured by absorbance at 280 nm 

using the estimated molar extinction coefficient (36705 M-1 cm-1) of the protein.  

 
      

            
  

 

 

 
  Key 

 

 

 
  
 LipoP report 

   
  
  SignalP report  

              

Figure IV.14 - The protein encoded by the BT_4240 gene of B. thetaiotaomicron.  A: Protein 

features. BT4240 contains a single APH domain. See colour coded key below figure for other details of the APH 

domain in the protein. E-value is the probability that each sequence or domain is detected by chance. B:  LipoP and 

SignalP reports show no evidence of a signal peptide sequence. Please follow link in Section II.2 for more 

information on the interpretation of other score values. C: SDS PAGE analyses of recombinant BT4240 (BT4240-

FL) purified by IMAC. Protein expression and purification was carried out as described in Section II.1.26. BT4240-

FL was purified from 100ml of E. coli BL21 (DE3) culture volume. 5 µl of the insoluble pellet fraction (P) re-

suspended in 10ml of Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM NaCl), 10ul of cell free extract 

(CFE), 10 µl of flow through (FT), 10 µl of the fraction eluted with 10 mM imidazole (A), 10 μl of fractions 

sequentially eluted with 100 mM imidazole (B and C) were analysed by SDS PAGE, using a 12.5% polyacrylamide 

gel.   Also see Section II.1.27 for the molecular weights of various markers in lane M3. The theoretical molecular 

weight of the recombinant N-terminal His6-tagged protein is ~45 kDa 

 

Source  Domain Start End E-value 

     Seque-
nce 

domain 

Pfam A  APH  19  277 5.6e-25 7.9e-25 

low_complexity  n/a  168  180 n/a n/a 

  55kDa 
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19 277 
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IV.3.1.3.2 Phosphorylation substrates of BT4240 

The coupled enzyme ATPase assay procedure (described in Section II.1.45 and in Reith et al., 

2011) was used to screen for potential phosphorylation substrates of BT4240.  ATP was used as 

a phosphoryl donor and substrate phosphorylation was recorded as a continuous fall in the 

absorbance of the reaction mixture at 340nm (A340nm) due to conversion of NADH to NAD+ 

after addition of the recombinant BT4240-FL enzyme (Figure IV.15B). BT4240 was found to be 

capable of phosphorylating the mucin amino sugars N-acetylgalactosamine (GalNAc) and N-

acetylglucosamine (GlcNAc) (Figure IV.15B). 

 

 

 

 

 

 

 

 

 
Figure IV.15 – Screening for potential phosphorylation substrates of BT4240. A: Scheme of coupled 

enzyme ATPase assay used in the screening process (Reith et al., 2011).  B: Change in A340nm over time following 

addition of BT4240 – FL to reactions containing various substrates tested.  Each substrate (sugar/amino acid) was 

added to a final concentration of 4 mM in a standard reaction mixture containing 1 mM PEP, 0.2 mM NADH, 5 
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mM ATP, 10 mM MgCl2, 10 U/ml proteinase K, 8 U/ml LDH, 0.54  μM of BT4240-FL and 100 mM Tris-HCl pH 

8.0. Reactions were all carried out at 37 oC.  

 

IV.3.1.3.3 Thin layer chromatography and enzyme kinetics  

 

Phosphorylation of GalNAc by BT4240 was also confirmed by thin layer chromatography, 

allowing for the visualisation of the phosphorylated product (GalNAc-x-phosphate). The kinetics 

of the phosphorylation reaction was also studied using the coupled enzyme ATPase assay 

procedure discussed in Section IV.3.1.3.2 above. The Km of GlcNAc phosphorylation by 

BT4240-FL was ~30 times higher than for GalNAc  
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Figure IV.16 - Amino sugar kinase activity of recombinant BT4240. A: Time course phosphorylation of 

GalNAc by BT4240-FL analysed by TLC. 50 mM of GalNAc was treated with 0.2 mg/ml (~4.4 µM) of 

recombinant BT4240-FL plus 10 mM MgCl2 and 0.5 M ATP/NADP+ in 0.1 M Tris-HCl pH 8.0, at 37 oC for the 

various time periods indicated. Samples post-incubation were boiled at 98 oC for 2 min before application (6 

Vmax = 94.94 ± 1.35 µMmin-1 
Km = 0.9 ± 0.04 mM 
Kcat = 3/s 
Kcat/Km = 3.33 s-1 mM-1 

Vmax = 54.49 ± 3.9 µMmin-1 
Km = 27.55 ± 4.8 mM 
Kcat = 0.34/s 
Kcat/Km = 0.012 s-1 mM-1 
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μl/sample) to TLC plates alongside the GalNAc standard (4 mg/ml). A mannose phosphate standard was rather 

used for comparison due to scarcity of GalNAc phosphate. B: Kinetics of GalNAc and GlcNAc phosphorylation by 

BT4240-FL. Reactions were set-up as in Figure IV.15 and rates were measured at different substrate concentrations 

from the A340nm data 

IV.3.1.3.4 Position of BT4240 in the mucin degradation pathway 

The aim of this section was to determine the position of the BT4240 enzyme in the mucin 

degradation pathway of the BT4240-50 Sus-like system in relation to its putative functional 

partner BT4243 by investigating when GalNAc phosphorylation occurs. The set-up of the 

experiment, which is a modification of the set-up used to investigate the kinetic properties of 

BT4240 (Section IV.3.1.3.3) is shown in Figure IV.17, using the Tn antigen as substrate. 

Phosphorylation of GalNAc, recorded as a fall in A340nm mainly occurred following release of 

the sugar from the Tn antigen, implying BT4240 is likely upstream of BT4243 in the mucin 

degradation pathway.  
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Figure IV.17 – Phosphorylation of GalNAc by BT4240-FL mainly occurs after release of the sugar 

from the mucin glycoprotein. A: Scheme to test the interaction of BT4240-FL and BT4243-FL during the 
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utilisation of the Tn antigen. B: Change in A340nm over time following phosphorylation of Tn antigen by BT4240-

FL in the presence and absence of BT4243-FL. The observed steep fall in the A340nm over time in the presence of 

both enzymes as opposed to BT4240 alone was an indication that BT4240-FL preferentially phosphorylates the free 

GalNAc sugar released by BT4243-FL. The slight fall in A280nm is likely to be very negligible as up to 8 μM of the 

BT4240 enzyme was used in the reaction. The concentrations of the Tn antigen and BT4243 enzymes were 50 mM 

and 0.9 μM respectively.   

 

IV.3.1.4 The protein encoded by the BT_4245 gene (BT4245) 

IV.3.1.4.1 Features and recombinant protein expression 

Unlike BT4243, BT4245 contains a type II signal peptide and two other domains including a C-

terminal F5/8 type C or CBM32 domain [also found in BT_4244 (Chapter III)] and an N-

terminal domain of unknown function (DUF1735) (Figure IV.18 and IV.19). BT4245 is also 

unique in that it shows only about 30% sequence identity to its closest homologues, compared to 

BT4240, BT4243, and BT4241 which show at least 70% identity to their closest homologues.  

The CBM32 sequence of the protein shows some similarities to the C. perfringens CpGH89CBM32-

5 and B. thetaiotaomicron M60-like CBM32 sequences previously characterised in Chapter III.  This 

includes conservation of the GalNAc interacting residues; Histidine-1392 (H1392), Arginine-1423 

(R1423), Asparagine–1428 (N1428), Phenylalanine-1483 (F1483) of CpGH89CBM32-5. 

 

Figure IV.18 –Comparing the BT4245 CBM32 sequence with the GalNAc binding BT4244, 

BT3015 BT4272, CpGH89CBM32-5 (PDB: 4AAX) and NanJCBM32 (NanJCBM32: PDB 2v72) 

http://www.genome.jp/dbget-bin/www_bget?pfam:DUF1735
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CBM32 sequences (described in Section III.3.9). The CBM32 sequence of BT4245 possesses highly conserved 

residues (indicated with red inverted triangles) earlier shown to be important for GalNAc recognition in the BT4244 –FL M60-

like protease (Section III.3.9).   The secondary structure of CpGH89CBM32-5 (PDB: 4AAX, Ficko-blean et al., 2012) is shown 

above the alignments. Sequence alignments were viewed using the ESPript 2.2 utility at 

http://espript.ibcp.fr/ESPript/ESPript/ (Gouet et al., 1999) with a global similarity score threshold of 0.7.  Red 

highlights are for amino acid residues showing 100% conservation while yellow highlights are for residues showing 

less than 100% conservation but above the global score threshold. 

 

The full length BT_4245 gene excluding the region encoding the predicted type II signal peptide 

sequence  was amplified from B. thetaiotaomicron  genomic DNA by PCR (Section II.1.15) using 

the primers containing engineered NcoI and XhoI  restriction sites (Appendix Table A.3). The 

amplified gene was then cloned into the same sites of the pET-28a (+) vector (Novagen) and 

expression carried in E. coli BL21 (DE3) host cells. Protein expression was induced with 1 mM 

IPTG at 16 °C overnight.  The C-terminal His6-tagged ~46 kDa recombinant protein (BT4245-

FL) was purified by IMAC as described in Section II.1.26 (Figure IV.19). BT4245 expression 

from 100 ml of E. coli BL21 (DE3) host cells was very poor (Figure IV.19C) compared to 

BT4240 for example (Figure IV.14), with very high amounts of contaminating background 

proteins. Attempts to express the CBM32 domain alone failed.  The protein was thus routinely 

expressed in very large volumes ~5 L E. coli BL21 (DE3) cells for experimental work. Very high 

levels of purity could also be achieved following a combination of IMAC and anion exchange 

chromatography (AEC). Protein concentration was measured by absorbance at 280 nm 

(A280nm) using the estimated molar extinction coefficient (60070 M-1 cm-1) of the protein.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://espript.ibcp.fr/ESPript/ESPript/
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Figure IV.19 - The protein encoded by the BT_4245 gene of B. thetaiotaomicron. A: Protein 

features. The BT4245 protein contains three distinct features including an N-terminal type II signal peptide 

C        -----BT4245-FL----- 

M3       P      CFE    FT      I         II        III      M3 

Source Domain Start End E-value 

    
Sequ-
ence 

Domain 

sig_p n/a 1 20 n/a n/a 

Pfam A DUF1735 67 158 1.9e-11 3.2e-10 

Pfam A F5_F8_type_C 291 423 0.0016 0.003 

 

Key 

1 20 
67 

158

67 
291 423 

A 

B 

D 

E 

70 kDa 

55 kDa 

40 kDa 

http://pfam.sanger.ac.uk/family/DUF1735
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sequence, an F5_F8_type_C domain (CBM32) and a domain of unknown function (DUF). See colour coded key 

below figure for other details of various domains in the protein. E-value is the probability that each sequence or 

domain is detected by chance B: LipoP analyses showing high probability of a type II signal peptide sequence in 

BT4245. Please follow link in Section II.2 for more information on the interpretation of other score values.  C: 

Purification of recombinant BT4245 (BT4245-FL) by IMAC. Protein expression and purification was carried out as 

described in Section II.1.26. BT4245-FL was purified from 100 ml of E. coli BL21 (DE3) culture volume. 5 μl of the 

insoluble pellet fraction (P) re-suspended in 10 ml of Talon buffer (20 mM Tris/HCl pH 8.0 containing 100 mM 

NaCl), 10 μl of cell free extract (CFE), 10 μl of flow through (FT), 10 μl of the fraction eluted with 10 mM 

imidazole (A), 10 μl of fractions sequentially eluted with 100 mM imidazole (II and III) were analysed by SDS 

PAGE, using a 12.5% polyacrylamide gel.   D: Example of an anion exchange chromatogram for the purification of 

BT4245-FL. Following purification of proteins from ~ 10 L of culture by IMAC, fractions corresponding to II and 

III (Figure IV.19C) were pooled and concentrated by centrifugation into a 4ml volume (~ 100 μM total proteins) 

before analyses anion exchange chromatography (AEC). Elution of protein during AEC was carried out using 500 

mM NaCl in 10 mM Tris, pH 8.0.E: SDS PAGE analyses of the proteins purified by anion exchange 

chromatography (AEC).    10 µl each from 1ml fractions collected after AEC was boiled in 5 µl of SB buffer before 

application to 12% SDS PAGE gels.  Sample IV is the pooled II and III fractions from IMAC before AEC 

purification while samples 25-55 came from fractions after AEC purification.   Also see Section II.1.27 for the 

molecular weights of various markers in lanes M2 and M3 in panels C and E respectively. The theoretical molecular 

weight of the recombinant N-terminal His6-tagged protein is ~46 kDa 

 

IV.3.1.4.2 Carbohydrate binding properties of BT4245 

Isothermal titration calorimetry (ITC, section II) was used to study the carbohydrate binding 

properties of recombinant BT4245-FL. GalNAc containing sugars were initially screened as 

potential ligands for the protein owing to similarities  between the CBM32 sequence of BT4245 

and other GalNAc binding proteins (Figure IV.18). BT4245 is also induced during B. 

thetaiotaomicron growth on the T antigen (Martens et al., 2008) which was earlier identified as a 

target for its PUL member BT4241. It was found to be capable of saturating Gal and GalNAc 

monosacharides as well as their disaccharide sugars T (Galβ1-3GalNAc) and F (GalNAcα1-

3GalNAc) antigens in ITC experiments (Figure IV.20). BT4245 just like the CBM32 domains of 

the B. thetaiotaomicron M60-like proteins (Chapter III) also showed greater preference for the 

GalNAc monosaccharide (Table IV.3) although this was found to be ~5 times higher than 

observed for the latter group of proteins. BT4245 did not bind other mucin sugars such as 

GlcNAc, NeuAc, and Fuc or the commercial mucins PGMII / III and BSM. Although BT4245 

was not recalcitrant to crystallisation, the few crystals obtained failed to diffract to a useful 

resolution for structural studies.  

http://pfam.sanger.ac.uk/family/F5_F8_type_C
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Figure IV.20 - Representative ITC data for BT4545-CBM32 binding to selected mucin sugars. 

Each ligand [20 mM Galactose (Gal), 20 mM GalNAc (N-acetylgalactosamine), 26 mM Galβ1-3GalNAc (T antigen) 

and 9 mM GalNAcα1-3GalNAc (F antigen)] was titrated (27 injections) into 100 μM of the recombinant protein 

BT4244-CBM32 in Tris (20 mM Tris – HCl pH 8.0) or Talon buffer (20 mM Tris/HCl pH 8.0 plus 100 mM NaCl) 

at 25 oC using a MicroCal™ VP-Isothermal Titration Calorimeter  as described in Section II.1.32. ITC data obtained 

was analysed using Origin, version 7.0. The top half of each panel shows the raw power data while the bottom half 
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are integrated peak areas fitted to a single-site binding model and stoichiometry fixed at 1 (n≈1). Note: Only a single 

ITC run was performed with GalNAcα1-3GalNAc due to the paucity of the substrate.  

 

 

Table IV.3 - Affinity and thermodynamic parameters of BT4545-CBM32 binding various 

substrates analysed in Figure IV.20. Thermodynamic parameters were calculated as described in Section 

II.1.32 using the standard thermodynamic equation -RTlnKa = ΔG = ΔH-TΔS, where R = gas constant (1.99 cal.K-

1.mol-1), T = temperature in Kelvin (298.15 K), ΔG = change in free enthalpy, ΔS = entropy of binding. n = 

stoichiometry of binding. Thermodynamic paramters could not be estimated for the rection invovling galactose due 

to poor saturation of the protein by the sugar.   

 

 

 

 

 

 

 

 

 

 

 

 

Ligand Ka × 103 (M-1) ΔG (kcal mol-1) ΔH (kcal mol-1) TΔS (kcal mol-1) n 

GalNAc 1.40 ± 62 -4.27  -6.12 ± 1.91e3 -1.85 ~1.01 

Galβ1-3GalNAc 0.36 ±15 -3.47 -9.82 ± 8.8e3 -6.35 ~1.01 

GalNAcα1-3GalNAc 0.88 -4.0 -11.15 ± 6.01e3 -7.2 ~1.02 
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IV.4 Discussion 

 
IV.4.1. Functional units within the BT4240-50 Sus-like system 

The in-silico and biochemical data accumulated from the characterisation of the functional 

partners of BT4244 revealed vital information that was used to piece together a possible 

functional mechanism of the BT4240-50 Sus-like system, as well as hypothesize the role of the 

protease as a member of the system. Based on the data, BT4240-50 consists of three important 

machineries, the carbohydrate binding / transport, enzymatic, and sensory/regulatory 

machineries.  

IV.4.1.1 The carbohydrate binding / transport machinery 

Biochemical evidence from Chapters III and IV suggest that the carbohydrate binding and 

transport machinery of BT4240-50 is partly contributed by the GalNAc – binding family 32 

carbohydrate binding modules (CBM32) of the BT4244 and BT4245 proteins. Although the 

binding affinity of the BT4245  protein was 5 times higher than its BT4244  counterpart, the 

binding affinities of both proteins were in the low affinity range (Ka ~103 M-1) which is typical of 

this family of carbohydrate binding modules [Type C CBMs (Boraston et al., 2004, Ficko blean 

2006, 2009, 2012). BT4245 likely employs a similar GalNAc recognition mechanism like the 

CBM32 domains of the B. thetaiotaomicron M60-like proteases and the C. perfringens 

CpGH89CBM32-5 (PDB: 4AAX) and NanJCBM32 (NanJCBM32: PDB 2v72) proteins based on 

the conservation of GalNAc interacting residues (Chapter III.3.9). Theoretically, the 

carbohydrate binding / transport machinery also includes the BT4246, putative SusD protein. 

Although BT4246 was successfully expressed in this study, it failed to bind with any measurable 

affinity to any of the mucin sugars it was tested against. These included GalNAc, F antigen and 

even the T antigen which had been shown to induce BT4246 expression (Martens et al., 2008). 

Typically a SusD protein interacts with a SusC protein to bind and channel captured glycans into 

the cell (Cho and Salyers 2001). The putative SusC protein in this case is BT4247. The BT4242 

protein (296.a.a) also exhibits features of a typical multi-pass transmembrane transporter protein 

(Section I.4, Figure I.12C) as evidenced in the Phobius prediction below (Figure IV.21). In 

summary the proteins BT4242, BT4244, BT4245, BT4246 and BT4247 all constitute the sugar 

binding and transport machinery of the BT4240-50 Sus-like system (Figure IV.22). There is 

likelihood however, of other possibly unidentified or uncharacterised sugar binding domains that 
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exist within other PUL proteins e.g the putative sugar binding domain of the BT4241 β- 

galactosidase (Section IV.3.1.1).  

 

  

Figure IV.21 – Predicting the cellular localisation of BT4240-50 entries. A: Summarised /short 

prediction for all PUL entries. TM: Transmembrane domain, SP: signal peptide Y: signal peptide detected 0: no 

signal peptide detected. B: Graphical representation of BT4242 protein topology and interaction with the cell. 

Analyses were performed using the combined transmembrane topology and signal peptide predictor tool, Phobius 

(Kall et al., 2004). 

IV.4.1.2 The enzymatic machinery 

Recombinant forms of the following proteins, BT4240, BT4241, BT4243 and BT4244 were all 

shown during the course of this study to exhibit enzymatic activity. The BT4244 M60-like 

protein was identified in Chapter III as a mucin protease. Data from the current chapter suggest 

that BT4240 is an amino sugar (GalNAc and GlcNAc) kinase while BT4241 and BT4243 are T 

antigen/LNB targeted β-galactosidase and Tn/F antigen targeted glycoside hydrolases 

respectively. 

To our knowledge, BT4240 is the first GalNAc kinase to be biochemically characterised from the 

gut microbe B. thetaiotaomicron. Its functionally characterised homologue, the NahK N-

acetylhexosamine 1-kinase encoded by the BL1642/lnpB gene of Bifidobacterium longum 

JCM1217 is also capable of catalysing the phosphorylation of GalNAc and GlcNAc phosphates 

(Nishimoto and Kitaoka 2007). Comparing both enzymes, the B. thetaiotaomicron kinase 

phosphorylates GalNAc at a much higher rate (~30 times lower Km) than GlcNAc while NahK 

phosphorylates both substrates at similar rates. Although the specific site of phosphorylation of 

the GalNAc sugar by BT4240 was not confirmed in the current study, it is very likely that this 

SEQENCE ID          TM  SP   PREDICTION 

BT4240                     0     0      i 
BT4241                     0     Y     n8-18c23/24o 

BT4242                     6     0      i20-39o54-79i86- 

          106o118-139i160-180o186-204i 
BT4243                     0     Y     n4-17c22/23o 
BT4244                     0     Y     n6-17c22/23o 
BT4245                     0     Y     n4-15c20/21o 
BT4246                     0     Y     n10-19c24/25o 
BT4247                     0     Y     n17-28c32/33o 
BT4248                     0     0     i 
BT4249                     0     0     i 
BT4250                     0     0     i 

 

A B 
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event occurs at the reducing end carbon -1 (C-1) as observed with NahK given that GalNAc 

phosphorylation only occurred following release from the Tn antigen where this position is 

blocked.     This still however needs to be investigated. 

BT4241 happens to exhibit a rare specificity as only a few enzymes including a Bifidobacterium 

bifidum DSM 20082/longum Lacto-N-biose phosphorylase (LNBP encoded by BL1641 in B. 

longum) and a Clostridium perfringens  endo-β-galactosidase (Endo-β-GalGnGa) are known to target 

the Galβ1-3GalNAc linkage (Derensy-Dron et al., 1999, Kitaoka et al., 2005, Nishimoto and 

Kitaoka, 2007,  Ashida et al., 2001). Endo-β-GalGnGa unlike BT4241 is endo-acting and is capable 

of releasing GlcNAcα1-4Gal from the PGM sugar GlcNAcα1-4Galβ1-3GalNAcα1-Ser/Thr and 

the oligosaccharide GlcNAcα1-4Galβ1-4GlcNAcβ1-6(GlcNAcα1-4Galβ1-3) GalNAc while 

LNBP shares the same linkage specificities with the BT4241 enzyme.  

The BT4243 protein exhibited properties of an exo-acting α-N-acetylgalactosaminidase capable 

of releasing GalNAc from synthetic and natural mucin substrates (Section III.1.2). Its ability to 

target both the F and Tn antigens implies that BT4240-50 maybe involved in the metabolism of 

both sugars. While core-1(Galβ1-3GalNAc) has been shown to upregulate several components 

of the PUL (Martens et al., 2008), it is not yet known whether the F antigen (GalNAcα1-

3GalNAc) is equally capable of doing so and hence it is important to verify the physiological 

significance of the observed activity against the F antigen. α-N-acetylgalactosaminidases targeting 

the O-glycosidic bond of the Tn antigen  enzymes have also been reported in the enteric species 

Bifidobacterium bifidum/longum and Clostridium perfringens (Kiyohara et al., 2011, Ashida et al., 2008 ).  

Just like the E. meningosepticum NagA protein, BT4243 may represent a potential candidate for the 

production of universal red blood cells (Liu et al., 2007, Olsson et al., 2004).  

IV.4.1.3 Sensory/regulatory machinery 

PULBT_4240-50 like many other mucin O-glycan targeted PULS are regulated by ECF-σ/anti-σ 

systems (extra-cytoplasmic function sigma/anti sigma factor systems) (Martens et al., 2008, 

2009a). These systems generally operate by a mechanism termed trans-envelope signalling 

analogous to the ferric citrate uptake (Fec) system in E.coli (Mahren et al., 2002, Koebnik et al., 

2005). In this sensory /regulatory system, an incoming sugar or signal, in this case probably core-

1 or the Fn antigen is detected by an outer membrane TonB-dependent transporter protein (in 

this case the BT4247 putative SusC protein) which triggers the activation of a cytoplasmic ECF-σ 

transcription factor (in this case the BT4250 protein) through its interactions with a  
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periplasmic/cytoplasmic anti-σ factor protein (in this case contributed by the product of the 

intact BT_4248/49 gene) leading to induction of gene transcription. 

 

IV.4.2 Mechanism of the BT4240-50 Sus-like system based on the Sus prototype 

IgA1, BSM, PGM and other mucin derived sugars including the T, F antigens and GalNAc were 

all identified as targets for one or more BT4240-50 proteins. Based on the evidence from the 

biochemical characterisation of various BT4240-50 components in this Chapter and the previous 

(Chapter III),  is can be conclude that this Sus-like system is targeted at mucin O-glycoprotein 

structures containing the Forssmann disaccharide or F antigen (GalNAcα1-3GalNAc) and Core-

1 or T antigen (Galβ1-3GalNAc) common in intestinal mucins (Robbe et al., 2004, Larsson et al., 

2009). As with the Sus system, the binding or capture of the substrate in this case the T or F 

antigen containing glycoprotein to the surface of the B. thetaiotaomicron cell represents first step in 

the metabolism of the sugar. Based on the findings of this study and in comparison to the Sus 

system, BT4240-50 will achieve this initially through its surface localised GalNAc binding 

proteins BT4245 and BT4244. 

The BT4245 gene is SusE-positioned (downstream of the SusD homologue; BT4246) implying it 

may operate in a similar manner in BT4240-50 as the SusE of the Sus system. As to whether it 

performs a specialised binding role like the SusE of the Sus system (Cameron et al., 2012) will 

depend on whether the uncharacterised DUF domain towards the N-terminal of the protein 

exhibits enzymatic activity (Section III.1.4.1). Enzymatic activity has been reported for SusG and 

the products of susG/F - positioned genes (downstream of SusE) which like SusE proteins are 

also surface exposed and in the case of SusG contains a CBM that recognizes glycan components 

of the target substrate (Shipman et al., 1999, Koropatkin et al., 2010, Sonnenburg et al., 2010, 

Cameron et al., 2012) . So far in the BT4240-50 Sus-like system, the BT4244 M60-like protease is 

the only protein that fits the description of a SusG-like protein. Its probable function in 

comparison to SusG and the BT1760 endo-levanase enzyme of the fructan utilisation locus 

(Sonnenburg et al., 2010) is that it creates internal cuts in the captured glycoprotein, releasing 

short glycopeptide structures that can be easily imported by the SusCD complex into the cell.  

Based on the findings of this study, the imported glycopeptides contain the T and F antigens 

which will then be acted upon by the periplasmic exo-acting BT4241 and BT4243 enzymes 

(Figure IV.22).  To metabolise the T antigen of the imported glycopeptide, BT4241 will be 
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required initially to cleave the β1-3 linked galactose capping sugar from GalNAc exposing the 

GalNAcα1-O glycosidic bond of the glycopeptide to the BT4243 exo-acting α-N-

acetylgalactosaminidase (Section IV.3.1.2.2.3, Figure IV.22). In the case of the F antigen, BT4241 

will not be required as BT4243 is capable of cleaving both the GalNAcα1-3 and GalNAcα1-O 

linkages in the glycopeptide containing this sugar (Figure IV.22).  In comparison to the Sus 

system BT4241 and BT4243 enzymes thus represent SusA and B proteins respectively (Section 

I.6.1.1, D'Elia and Salyers, 1996).  

Finally, free or released GalNAc was shown to be a target for the BT4240 kinase. BT4240 is 

likely cytoplasmic (Figure IV.22) given that the ATP required for its activity in the cell will be 

cytoplasmic (Wülfing and Plückthun, 1994). GalNAc sugar must therefore be transported from 

the periplsam into the cytoplasm. A likely candidate to perform this function is the putative 

multipass transmembrane BT4242 protein which in effect should be an inner membrane protein 

to achieve this function.  Also, logically there will be no need for an additional outer membrane 

transporter protein in the presence of outermembrane SusCD binding/transport system. The 

fate of the phosphorylated GalNAc from here on is not quite clear as the pathway for GalNAc 

utilisation and amino sugar metabolism in general in B. thetaiotaomicron is poorly understood. 

There is however strong evidence at least in other organisms such as the proteobacterial species 

E.coli and Shewanella spp. that phosphorylated GalNAc can be further metabolised to glycolytic 

pathway intermediates such as the triose phosphates; dihydroxyacetone phosphate and 

glyceraldehyde-3-phosphate (Reizer et al., 1996, Leyn et al., 2012). GalNAc has also been reported 

in cell wall polymers such as techoic acids linked to the peptidoglycan network of gram positive 

bacteria (Freymond et al.,2006, Hermoso et al., 2007). Please see Table IV.4 and Figure IV.22 for 

a summary of the proposed model for the mechanism of the BT4240-50 Sus-like system. 
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Locus tag Pfam domains SP, 

TMD 

Metabolic role 

 

BT4240 PF01636 - APH – Phosphorylation. BT4240 is a kinase capable of 

phosphorylating amino sugars GalNAc and GlcNAc 

present in mucin glycoproteins 

BT4241 PF02837 - Glyco_hydro_2_N SPI Glycoprotein deglycosylation. BT4241 is a β- 

galactosidase that cleaves Galβ1-3GalNac (T-antigen) and 

Galβ1-3GlcNac (LN) present in mucin glycoproteins 

 PF00703 - Glyco_hydro_2 

 PF02929 - Bgal_small_N 

 PF02836 - Glyco_hydro_2_C 

BT4242 PF02588 - DUF161 TMD Transport – BT4242  is annotated as a transporter and 

maybe involved in the transport of mucin sugars into the 

cell cytoplasm 

 PF10035 - DUF2179 

BT4243 PF01408 - GFO_IDH_MocA SPI Glycoprotein deglycosylation. BT4243 is an    N-

acetylgalactosaminidase that cleaves GalNAcα1-3GalNac  

and GalNAcα1-O-Ser  present in mucin glycoproteins 

BT4244 PF13004 - BACON SPII Glycoprotein binding and proteolysis. BT4244 exhibits 

mucinase, IgA protease, Gal and GalNAc binding activity  PF00754 - F5.F8.type.C, CBM32 

 PF13402 - M60-like 

BT4245 PF08522 - DUF1735 SPII Glycoprotein binding. BT4245 binds GalNAc,  and F-

antigen all present in mucin glycoproteins  PF00754 - F5.F8.type.C, CBM32 

BT4246 PF14322 - SusD-like_3 SPII Glycoprotein binding and transport. BT4247 and 

BT4246 are homologues of SusC and D respectively and 

together likely perform a sugar binding and transport role 

like the SusCD complex of B. thetaiotaomicron (Figure I.18). 

BT4246 very weakly saturates Galβ1-3GalNac (T-antigen) 

in ITC experiments (Data not shown).   

 PF07980 - SusD 

 

BT4247 PF07660 - STN SPI 

 PF13715 - Cna_B_2 

 PF07715 - Plug 

 PF00593 - TonB_dep_Rec 

BT4248 PF04773 - 

 

Regulation. BT4248, BT4249  and BT4250 constitute the 

ECF-σ/anti- σ regulatory system for  PULBT_4240-50 

(Martens et al., 2008, 2009b) 

  

PF07660 

 

BT4249 PF05306 - 

 

BT4250 PF07638 - 

 

Table IV.4 – Summary of the annotation and function of various components of the BT4240-50 

Sus-like system. SP and TMD stand for signal peptide and transmembrane domains respectively. These were 

predicted using a combination of LipoP, Phobius and SignalP tools (Section II.2). Protein family (PFAM) 

annotations were obtained from the KEGG database resource at http://www.genome.jp/kegg/ or 

http://www.kegg.jp/ (Kanehisa et al., 2012)   

 

http://www.kegg.jp/
http://www.ncbi.nlm.nih.gov/pubmed?term=Kanehisa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22080510
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Figure IV.22 – Proposed model for the acquisition and metabolism of T and F antigen 

containing mucin glycoproteins by the BT4240-50 Sus-like system. Glycoprotein capture, partial digestion 
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and import into the periplasmic space is achieved through the concerted action of members of an outer membrane Sus-like 

apparatus consisting of a putative SusE GalNAc binding protein BT4245, a putative SusG GalNAc binding and mucin protease 

enzyme BT4244 (Chapter III) and the putative SusC and D proteins BT4246 and BT4247.  Sequential deglycosylation of the 

imported glycopeptides is achieved by periplasmic putative SusA and B glycoside hydrolases BT4241 and BT4243 respectively. 

Released GalNAc is imported into the cell cytoplasm from the periplasmic space by the putative multi-pass transmembrane 

protein BT4242. Cytoplasmic GalNAc is then phosphorylated and probably used as a substrate for amino sugar metabolism or 

glycolysis. The latter is likely true for imported galactose (Gal). B: KEGG pathway for the conversion of GalNAc to glycolysis 

intermediates in B. thetaiotaomicron (KEGG pathway ID: bth00052). The KEGG database resource is available at 

http://www.genome.jp/kegg/ or http://www.kegg.jp/ (Kanehisa et al., 2012)  The above pathway is very similar to 

what has been described for GalNAc utilisation in E.coli and Shewanella spp, ( Reizer et al., 1996, and Leyn et al., 2012), however so 

far, only putative  6-phosphofructokinase 1 enzymes (EC:2.7.1.11) alongside the BT4240 kinase enzyme (characterised in this 

study), have been identified in B. thetaitoamicron.  

In summary, the BT4240-50 Sus-like system presents a comprehensive machinery for the 

efficient acquisition and utilisation of F and T antigen containing host-derived glycoproteins. The 

functional significance of the mechanism is evident from the conservation of the PUL structure 

and the presence of several homologues of PULBT_4240-50 genes in closely related mucin 

degrading species (Figure IV.23). In one species, the PUL structure is ~90% conserved (Figure 

IV.23B).  This is the case in Bacteroides caccae (PULBACCAC_01835-51) which was also found to 

contain several other variably conserved copies of the PUL. PULBT_4240-50 may thus represent 

an important adaptation for host glycan foraging in Bacteroides species.  Bacteroides caccae also 

contains over sixteen copies of M60-like domain containing proteins, two of which are present 

within PULBACCAC_01835-51 (Figure IV.23B). These attributes together may confer additional 

metabolic advantages to the organism during growth on mucins.   

In conclusion, the findings of the current study have not only helped to explain the context of 

the mucinase activity that was observed for the BT4244-M60-like protease in Chapter III but 

also have provided some novel insights into the mechanism of host glycan foraging involving 

PULs in B. thetaiotaomicron and possibly its close relatives. Broadly speaking, it makes an important 

contribution to our general understanding of host microbial interactions in the human gut. 
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Figure IV.23 - Evidence for homologues of PULBT_4240-50 components in close and distant 

relatives of B. thetaiotaomicron. A: Results of comparative genomic analyses using the search tool for the 

retrieval of interacting genes/proteins (STRING). PULBT_4240-50 components are present and variably conserved 

in many Bacteroides species and members of other taxa.  Note that only organisms with genomic DNA data in the 

STRING database (STRING 9.05) (von Mering et al., 2005, Szklarczyk et al., 2011) could be used in these analyses. 

Genomic data for B. caccae for example is not currently available in this database. The different genes and their 

B 
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respective homologues, are colour coded throughout the figure and defined for B. thetaiotaomicron B: Structure of the 

most conserved PULBT_4240-50 – like gene cluster (PULBACCAC_01835-51) in B. caccae retrieved from 

sequenced DNA scaffolds from the PathoSystems Resource Integration Center (PATRICK) database (Gillespie et 

al., 2011). 

IV.5 Summary of future work 

Our understanding of BT4240-50 function and host microbial interactions in general is still 

limited and it may be of interest to; 

1- Establish the function of the DUF domain of the BT4245 protein and identify ligands for the   

putative SusD protein; BT4246. 

2- Determine the fate of the mucin peptide that is released after deglycosylation by BT4240-50 

enzymes and elucidate the pathway of GalNAc utilisation in B. thetaiotaomicron after 

phosphorylation by BT4240. 

3- Investigate the biological relevance of the BT4243-FL α-N-acetylgalactosaminidase activity 

against the F antigen. Despite being a plausible target for the BT4240-50 Sus-like system, it is 

currently it is not known whether this substrate is capable of up-regulating the PULBT_4240-

50. 
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   CHAPTER V 

I n - v i t r o  c o n t r i b u t i o n  o f  t h e  B T 4 2 4 0 - 5 0 S u s - l i k e  

s y s t e m  t o  B .  t h e t a i o t a o m i c r o n  f i t n e s s  a n d  

s u r v i v a l  o n  m u c i n s  

V.1 Introduction 

Mucin utilization is important for microbial virulence and the competitive colonisation of 

mucosal surfaces.  This has been shown for several mucosal microbes including recently for the 

pathogenic gastrointestinal microbes Campylobacter jejuni and E. coli whose ability to utilize mucin 

monosaccharides confers upon them a competitive advantage as well as enhances their virulence 

(Stahl et al., 2011, Bertin et al., 2013). In mutualistic mucosal microbes, mucin utilisation is mainly 

for the purposes of nutrition and competitive colonisation, although it was recently shown for B. 

thetaiotaomicron that this activity can also modulate virulence gene expression in pathogenic E. coli 

(Pacheco et al., 2012, McGuckin et al., 2011). Mucins thus represent an important fitness factor 

whose utilisation has significant implications on gut microbial ecology as well as human health 

(Koropatkin et al., 2012). This also implies that microbial genetic factors driving mucin 

adaptation hold great potential as future tools for the manipulation of the complex gut microbial 

community for various health reasons. 

In-vitro experimental data from the previous chapter suggested that the BT4240-50 Sus-like 

system (encoded by PULBT_4240-50) of B. thetaiotaomicron is capable of metabolising mucin 

glycoproteins containing the T and F antigens (Galβ1-3GalNAc and GalNAcα1-3GalNAc 

respectively). However, the requirement of BT4240-50 and its components in mucin utilisation 

has not been confirmed.  The importance of doing so in this case in particular lies in the fact that 

several other PULs in B. thetaiotaomicron (about 10 in total) are also upregulated to the T antigen 

(Martens et al., 2009). A similar degenerate response had been reported by Marcobal et al., (2011) 

during B. thetaiotaomicron growth on human milk oligosaccharides (HMO) and indeed attempts to 

prove the requirement of several HMO sensitive PULs proved futile. This included a deletion to 

the entire PUL locus containing the putative fucosidase enzyme BT4136 (PULBT_4232-36) 

which failed to cause any growth defect in the organism on HMOs, despite being one of the 

most upregulated PULs to the substrate in-vitro (Marcobal et al., 2011).    
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Of the ~ 10 PULs upregulated in response to the T antigen, 7 of them including PULBT_4240-

50 are about 10 times upregulated with some containing several uncharacterized glycoside 

hydrolases (Table V.1). Interestingly one of the PULs, PULBT_3957-65 which appears to be as 

up regulated as PULBT_4240-50 also encodes a putative protease enzyme [BT3960, annotated as 

Peptidase_C2 (PF00648)] in addition to several putative GH families (Martens et al., 2008). 

Although most of these activities have not been characterised biochemically, such observations 

immediately raise questions over the actual functional significance of PULBT_4240-50.   

          

 

 

 

 

 

     

 

 

 

 

 

 

 

 

Table V.1 - List of T antigen (Core 1) sensitive PULs in B. thetaiotaomicron showing at 

least 10 times upregulation to the substrate in-vitro. Please see list of PULBT_4240-50 components 

(not included here) in the previous Chapter. Highest upregulation values in response to the T antigen have been 

reported for PULBT_3957-61 and PULBT_4240-50 (Martens et al., 2008).    

PULBT_3957-65 

BT3957 Hybrid two-component system regulator 
BT3958 susC-like 
BT3959 susD-like 
BT3960 hypothetical protein (peptidase_C2 protease) 
BT3961 hypothetical protein 
BT3962 Glycoside Hydrolase Family 92 
BT3963 Glycoside Hydrolase Family 92 
BT3964 putative secretory protein 
BT3965 Glycoside Hydrolase Family 92 

 

PULBT_1032-51 

BT1032 Glycoside Hydrolase Family 92 
BT1033 hypothetical protein 
BT1034 putative signal transducer 
BT1035 hypothetical protein 
BT1036 hypothetical protein 
BT1037 hypothetical protein 
BT1038 hypothetical protein 
BT1039 susD-like 
BT1040 susC-like 
BT1041 tyrosine DNA recombinase 
BT1042 susC-like 
BT1043 susD-like 
BT1044 Glycoside Hydrolase Family 18 
BT1045 hypothetical protein 
BT1046 susC-like 
BT1047 susD-like 
BT1048 Glycoside Hydrolase Family 18 
BT1049 putative patatin-like protein 
BT1050 hypothetical protein 
BT1051 Glycoside Hydrolase Family 20 

 

BT1052 anti-sigma factor 

BT1053 ECF-type sigma factor 

PULBT_2259-62 

BT2559 susD-like 
BT2560 susC-like 
BT2561 anti-sigma factor 
BT2562 ECF-type sigma factor 

 

PULBT_4402-07 

BT4402 ECF-type sigma factor 
BT4403 anti-sigma factor 
BT4404 susC-like 
BT4405 susD-like 

BT4406 hypothetical protein 
BT4407 hypothetical protein 

 

PULBT_0317-19 

BT0317 susC-like 
BT0318 susD-like 

BT0319 susD-like 

 

PULBT_3983-94 

BT3983 susC-like 
BT3984 susD-like 

BT3985 hypothetical protein 

BT3986 putative patatin-like protein 

BT3987 Glycoside Hydrolase Family 18 

BT3988 putative peptidoglycan bound protein 

BT3989 hypothetical protein 

BT3990 Glycoside Hydrolase Family 92 

BT3991 Glycoside Hydrolase Family 92 

BT3992 anti-sigma factor 

BT3993 ECF-type sigma factor 

BT3994 Glycoside Hydrolase Family 92 
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Martens et al., (2008) showed that a combined deletion of five ECF-σ/anti-σ factor regulators 

controlling mucin O-targeted PULs including the regulator of PULBT_4240-50 negatively 

impacts on the organism’s fitness in vivo. However, it was not clear specifically which of the 

affected PULs or set of genes were driving this phenotype. More importantly, it was also 

discovered that PULBT_4240-50 and PULBT_4356-58 were not under the sole control of their 

respective ECF regulators as several genes within these PULs still showed upregulation after the 

ECF deletions.  

V.2 Objective 

The purpose of this chapter is to evaluate the contribution of BT4240-50 Sus-like system 

(encoded by PULBT_4240-50) and its components to B. thetaiotaomicron fitness and survival on 

mucins by analysing data from various in-vitro growth experiments involving the organism and 

various deletion mutants.   
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V.3 Results: 

V.3.1 Requirement of the BT4240-50 Sus-like system and BT4244 in mucin utilisation 

V.3.1.1 In-vitro non-competition growth experiments with ∆BT_4244 and ∆PULBT_4240-

50 deletion strains 

B. thetaiotaomicron has been shown to be capable of utilising porcine gastric mucins (PGMIII) in-

vitro as a sole source of carbon and nitrogen (Martens et al., 2009a, Marcobal et al., 2011). In this 

study, we initially tested the requirement of BT4240-50 and its M60-like protease component, 

(BT4244) in mucin utilisation in-vitro in a non-competitive environment. To perform this, B. 

thetaiotaomicron mutant strains containing in-frame deletions of either the gene encoding the 

BT4244 M60-like protease (∆BT_4244) or the entire PULBT_4240-50 locus encoding the 

BT4240-50 Sus-like system (∆PULBT_4240-50) were created. 

V.3.1.1.1 Generating ∆BT_4244 and ∆PULBT_4240-50 deletion strains  

∆BT_4244 and ∆PULBT_4240-50 deletion mutants were created using the method of allelic 

exchange as described in in Section II.1.46. The genomic region flanking PULBT_4240-50 is 

shown below in Figure V.1. Deletion primers used during the process are listed in Appendix 

Table A.4. Outer primers A and D contained engineered Bam HI and XbaI sites allowing for 

cloning of the sown flanks into similar sites of the pExchange-tdk suicide vector (Section II.1.46).   

 

    

Figure V.1 – Genomic context of PULBT_4240-50 and BT_4244. The PULBT_4240-50 gene locus is 

highlighted in gray and flanking regions are indicated by red dotted lines. The same deletion strategy for PULBT_4240-50 was 

used for the production of BT_4244 deletion mutants as described in Section II.1.46.    
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During the isolation of recombinant mutants (Section II.1.46), up to 10 B. thetaiotaomicron 

colonies were screened for the desired deletions. Clones positive for the desired deletion in each 

case produced a ~ 2000 bp DNA fragment by agarose gel electrophoresis (AGE) after PCR with 

outer primers A and D (Figure V.2).  Because PCR amplification conditions were often aimed at 

the 2000 bp fragment, the large fragments of the wild type or ‘failed mutants’ were not usually 

completely amplified.  PCR was also often performed on wild type DNA (WT) and included as 

control. 

 

 
 
 

Figure V.2 - Screening for ∆PULBT_4240-50 and ∆BT_4244 deletion mutants. Clones positive for 

each deletion are indicated with red numbers and yielded a ~ 2000 bp fragment by AGE [after PCR on 

extracted genomic DNA with primers A and D (Appendix Table A.4)] equivalent to the size of fused 

flanking regions earlier cloned into the pExchange-tdk suicide vector (See Section II.1.46)  

 

V.3.1.1.2 Growth of ∆PULBT_4240-50 and ∆BT_4244 deletion mutants on glucose and 

porcine gastric mucins in-vitro 

To investigate the effect of various deletions on the ability of B. thetaiotaomicron to utilise mucins, 

wild type and deletion strains were cultured separately in minimal media supplemented with 

either 1% glucose (MM-Glc) or porcine gastric mucins (PGMIII).  Growths were monitored by 

measuring the optical density of the cultures at 600nm every hour for a maximum of 24 hours. 

Unlike ∆BT_4244 the growth of ∆PULBT_4240-50 was partially retarded on PGMIII in 

comparison to the wild type (Figure V.3).  A similar experiment was carried out using bovine 

submaxillary mucins as substrate but both wild type and knockout strains failed to grow on the 

substrate (data not shown).      

                ∆PULBT_4240-50  
 

                    ∆BT_4244   

kbp M   WT   1    2    3     4    5     6    7     8     9    10       kbp M    1    2   3    4   5   M   6    7   8    9   M  10  WT   
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Figure V.3 - Comparing the growth of B. thetaiotaomicron wild type (WT), ∆PULBT_4240-50 

and ∆BT_4244 deletion mutants on glucose and porcine gastric mucins.     WT and deletion strains 

were all initially cultured in minimal medium containing 0.5% glucose (MM-Glc) to approximately equal 

optical densities (OD600nm ~1.5-2) before transfer to 1% MM-Glc or minimal medium containing 1% 

porcine gastric mucins (MM-PGMIII) for growth monitoring. Growth data for each strain was obtained 

from three individual replicate cultures. Error bars indicate the standard deviation of the OD600nm for 

each triplicate data set.  

V.3.1.2 In-vitro competition experiments with ∆BT_4244 and ∆PULBT_4240-50 deletion 

strains 

To investigate the impact of various deletions on the B. thetaiotaomicron fitness in-vitro, competition 

experiments were performed with various deletion strains against the wild type. Strains were 

initially labelled with a unique 24 bp signature/tag sequence to enable their differentiation and 

quantification from co-cultures. 
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V.3.1.2.1 Tagging of B. thetaiotaomicron WT and deletion strains 

The procedure for tagging strains is as described in Section II.1.46. Tagging sequences and 

primers used for their detection are listed in Appendix Table A.5. The naming of tags (Tag1 and 

11) was decided by Eric C. Martens of the University of Michigan Medical School (USA). WT 

strains were tagged with the tag1 sequence while both ∆BT_4244 and ∆PULBT_4240-50 

deletion strains were tagged with tag11. Positive clones yield 200 bp fragments by AGE after 

PCR with tag primers. Strains selected for competition experiments all had their tags integrated 

in the NBU2 att1site (tRNASer between BT_4680 and BT_4681), confirmed using NBU2-att1 

primers (Appendix Table A.5).   Theoretically these should yield no product on agarose gels after 

PCR with NBU2-att1 primers due to loss of the primer site after integration while WT and 

strains with tags integrated in the NBU2 att2 site site (between BT4738 and BT4739) should yield 

a 900 bp fragment (Figure V.4). 

  

WT (Tag 1) ∆BT_4244(Tag 11)  ∆PULBT_4240-50(Tag 11) 

kbp  M    WT     1      2      3      4       5             M    WT    1     2      3       4        5      1     2     3     4      5   WT    ∆    M 

       
WT (NBU2-att1) ∆BT_4244(NBU2-att1) ∆PULBT_4240-50(NBU2-att1) 

kbp  M   WT     1      2       3      4      5     M      1          2        3        4         5        1     2     3      4      5   WT   ∆    M 

       
 
Figure V.4 – Tagging of B. thetaiotaomicron WT and deletion strains and determination of tag 

integration sites. Top agarose gels are PCR results for various clones using corresponding tag detection primers 

listed in (Appendix Table A.5).    Positive clones with integrated tags yield a 200 bp product.  Bottom gels are PCR 

results for the same clones using NBU-2 att1 primers to confirm the site of integration of various tags detected in 

the top gels. Positive clones with tags integrated in the NBU-2 att2 site yield a 900 bp product while those with tags 

integrated in the NBU-2 att1 site yield no product using NBU-2 att1 primers (Appendix Table A.5).  PCR conditions 

are detailed in the materials and methods section. Clone numbers indicated in red were those selected for 

competition experiments. The details are as follows WT: clone 1, tag1, NBU2-att1, ∆BT_4244: clone 1, tag 11, 

NBU2-att1, ∆PULBT_4240-50: clone 5, tag11, NBU2-att1. Red circles indicate position of the 200 bp (0.2 kbp) 

marker while blue circles indicate the position of the 1 kbp marker.  
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V.3.1.2.2   Co-culture growth of tagged B. thetaiotaomicron wild type and deletion strains  
 

Selected wild type and deletion strains [WT: clone 1, tag1, NBU2-att1, ∆BT_4244: clone 1, tag 

11, NBU2-att1, ∆PULBT_4240-50: clone 5, tag11, NBU2-att1 (Figure V.4)] were initially cultured 

in TYG rich medium overnight and mixed in approximately equal proportions before inoculating 

into MM-Glc.  Cells were cultured over a period of 5 days, subculturing every day. 2 ml of 

culture were also collected every day and frozen at -80 oC for DNA extraction. After 5 days, cells 

were switched to MM-PGMIII and subcultured every day for about 10 days. 2 ml of culture were 

also saved every day as with the glucose samples. qPCR enumeration of competing strains was 

performed using genomic DNA extracted from the frozen 2 ml cultures as described in Section 

II.1.46. The results showed that wild type and deletion strains in both cases grew normally with 

similar percentage representations for the first five days in glucose. However, there was a 

consistent increase in the percentage representation of the wild type against the ∆PULBT_4240-

50 strain after switching to growth on MM-PGMIII (Figure V.5). This was not the case for the 

WT and ∆BT_4244 combination, were the percentage representation of each stayed fairly 

constant after switching to MM-PGMIII.  PULBT_4240-50 thus confers a competitive 

advantage to B. thetaiotaomicron during growth on PGMIII in-vitro.    
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Figure V.5 –Impact of PULBT_4240-50 and BT_4244 deletions on the ability B. thetaiotaomicron 

to compete with the wild type in-vitro. WT strains contained tag1 inserted into their NBU2-att1   sites 

while both ∆BT_4244 and ∆PULBT_4240-50 deletion mutants contained tag11 in the same sites.  Equal 

1%MM-Glc 1%MM-PGMIII 1%MM-Glc 1%MM-PGMIII 
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proportions of each strain were co-cultured initially in 1%MM-Glc over a period of 5 days, subculturing 

every day before switching to 1%MM-PGMIII. DNA was extracted from a fraction of each culture every 

day and the percentage representation of each strain from co-cultures enumerated by qPCR using 

respective tag primers (listed in Appendix Table A.5). qPCR conditions are given in Section II.1.46.5 

 

V.3.2 Requirement of BT4244 homologues BT3015 andBT4272 in mucin utilisation 

V.3.2.1 In-vitro non-competition experiments  

Recombinant M60-like domains of BT4272 and BT3015 just like the recombinant BT4244 

protein were all shown to exhibit mucinase activity in chapter I. The PUL containing BT_3015 

(PULBT_3010-17) is also about 10 times upregulated during B.thetaiotaomicron growth in the late 

phase of growth on PGM. The absence of a growth defect on mucins by the ∆BT_4244 mutant 

and its persistence in co-culture with the wild type (Figures V.3 and V.5) led us to question 

whether these other mucin proteases (BT3015 and BT4272) could have been providing ‘back-up’ 

for the deleted BT4244 enzyme.  We sought to investigate this by testing the growth of mutants 

containing deletions to the genes encoding these proteins on mucins. A mutant containing 

deletions to all M60-like protease genes (BT_3105, BT_4244 and BT_4272) was also tested.   

V.3.2.1.1 Generating ∆BT_3015, ∆BT_4272 and ∆BT_3015∆BT_4244∆BT_4272 mutants   

The genomic contexts of the BT_3015 and BT_4272 genes are shown in Figure V.6. ∆BT_3015, 

∆BT_4272 were created in the same manner as ∆BT_4244 and the ∆BT_4240-50 using the 

method of allelic exchange. To create the ∆BT_3015∆BT_4244∆BT_4272 deletion mutant, an 

initial deletion of the BT_3015 gene was performed on the ∆BT_4244 strain to yield a double 

deletion mutant ∆BT_3015∆BT_4244 on which a third deletion, this time to the ∆BT_4272 was 

made.   Deletion primers used during the process are listed in Appendix Table A.4.   
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Figure V.6 - Genomic context of BT_3015 and BT_4272. Genes targeted for deletion are shown in 

gray rectangles. The same deletion strategy for the PULBT_4240-50 locus deletion was used to produce ∆BT_3015, 

∆BT_4272 and ∆BT_3015∆BT_4244∆BT_4272 single and triple deletion mutants respectively.   

V.3.2.1.2 Growth ∆BT_3015, ∆BT_4272 and ∆BT_3015∆BT_4244∆BT_4272 mutants on 

glucose and porcine gastric mucins in-vitro 

The same procedure as described in Section V.3.1.1.2, this time involving the above mutants 

(∆BT_3015, ∆BT_4272 and ∆BT_3015∆BT_4244∆BT_4272) was followed. The growth data is 

as shown in Figure V.7. None of the deletion mutants showed any growth defect on PGMIII. 
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Figure V.7 - Comparing the growth of B. thetaiotaomicron wild type (WT), ∆BT_3015, ∆BT_4272 

and ∆BT_3015∆BT_4244∆BT_4272 deletion mutants on glucose and porcine gastric mucins.     

WT and deletion strains were all initially cultured in minimal medium containing 0.5% glucose (MM-Glc) to 

approximately equal optical densities (OD600nm ~1.5-2) before transfer to 0.5% MM-Glc or minimal medium 
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containing 1% porcine gastric mucins (MM-PGMIII) for growth monitoring. Growth data for each strain was 

obtained from three individual replicate cultures. Error bars indicate the standard deviation of the OD600nm for 

each triplicate data set.  

V.3.3 Role of BT4240-50 in N-acetylgalactosamine (GalNAc) utilisation 

GalNAc utilisation in B. thetaiotaomicron is currently poorly understood. Galβ1-3GalNAc (T 

antigen) and GalNAcα1-3GalNAc (F antigen) were identified as the main targets for BT4240-50 

(Chapter I), and hence were interesting targets to test the requirement of the PUL. This was our 

intention in the later part of this study, but due to the paucity of these substrates; such 

experiments could not be performed. We however wondered what effect the PUL deletion 

would have on the organisms’ ability to utilise their monosaccharide components (Gal and 

GalNAc). A rather unanticipated observation was made as the mutant completely lost its ability 

to utilise GalNAc but not Gal (Figure V.8), leading us to question the role of the PUL in 

GalNAc utilisation.  The importance of addressing this question also lies in the fact that this 

observation was contrary to the general notion that PULs are primarily targeted at complex 

sugars not monosaccharides. 
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Figure V.8 – Growth of   WT and ∆PULBT_4240-50   on T and F antigen monosaccharides (Gal 

and GalNAc).  WT and deletion strains were all initially cultured in nutrient rich medium (TYG) to 

approximately equal optical densities (OD600nm ~1.5-2) before transfer to minimal media containing 1% 

galactose (MM-Gal) or N-acetylgalactosamine (MM-GalNAc). Growth data for each strain was 

obtained from three individual replicate cultures. Error bars indicate the standard deviation of the 

OD600nm for each triplicate data set.  
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V.3.3.1 Growth of ∆BT_4240 and ∆BT_4242 deletion mutants on GalNAc and GlcNAc 

The inability of ∆PULBT_4240-50 to grow on GalNAc was an indication that there are 

important steps in GalNAc utilisation in B. thetatiotaomicron that are exclusive to BT4240-50. 

Drawing on from the discussion in Chapter IV, it could be due to its inability to import GalNAc 

through the putative SusCD complex (i.e. BT4246 and BT4247) which is lost in ∆PULBT_4240-

50, implying that the sugar is not available for the rest of the PUL or other possible systems that 

may be involved with its metabolism (e.g. pathway 2 of Figure V.9). However, this was deemed 

to be unlikely as the outer membrane SusCD complex is only partially upregulated to GalNAc 

(Martens et al., 2008), although it could also be argued as the reason for organism’s slow growth 

on GalNAc compared to other substrates like Gal and glucose.  A second reason could be due to 

loss of the putative inner membrane transporter BT4242 (Chapter IV), i.e. assuming that 

transport of GalNAc from the extracellular space into the periplasm can occur through other 

outer membrane GalNAc transporters (e.g. pathway 3). This option was worth investigating 

because BT4242 unlike the putative SusCD complex shows high basal levels of expression i.e. 

during growth on glucose (Martens et al., 2008). Finally it could be due to loss of the BT4240 

GalNAc kinase which also shows high basal levels of expression, implying that GalNAc may get 

imported into the cell through BT4242 or another unknown transport system (e.g. pathway 4).  

To investigate the latter two possibilities we tested the ability of strains containing deletions of 

gene BT_4242 and BT_4242 to grow on GalNAc.   Appendix Table A.4 contains a list of 

primers used during the creation of various mutants. Evidence from the growth data suggested 

that only the strain containing a deletion to the BT4240 kinase was unable to utilise GalNAc 

(Figure V.9), implying that GalNAc is likely imported through an unknown transport system (e.g. 

pathway 4). 
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Figure V.9 – Growth of ∆BT_4240 and ∆BT_4242 deletion mutants on Gal and GalNAc. A: 

Analysing the possible cause of B. thetaiotaomicron strain ∆PULBT_4240-50’s growth defect on GalNAc to identify 

potential key GalNAc utilisation genes and targets for deletion. The putative SusCD complex (BT4246 and BT4247) 

is only partially upregulated to GalNAc in-vitro implying that the inability of ∆PULBT_4240-50 to utilise GalNAc 
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could be simply as a result of the loss of the putative inner membrane transporter BT4242 that may  use GalNAc 

imported through an unknown outer membrane transporter (X)  (e.g. pathway 3) or due to loss of the cytoplasmic 

GalNAc kinase BT4240 which could phosphorylate GalNAc imported through BT4242  or an unknown outer and 

inner membrane X-Y transport system (pathway 4). B: Growth of   ∆BT_4240 and ∆BT_4242 on T and F – antigen 

monosaccharides (Gal and GalNAc).  WT and deletion strains were all initially cultured in nutrient rich medium 

(TYG) to approximately equal optical densities (OD600nm ~1.5-2) before transfer to minimal media containing 

1% galactose (MM-Gal) or N-acetylgalactosamine (MM-GalNAc). Growth data for each strain was obtained from 

three individual replicate cultures and error bars indicate the standard deviation of the OD600nm for each triplicate 

data set.  

V.3.3.2 Growth of ∆BT_4240 and ∆BT_4242 deletion mutants on chondroitin sulphate   

and porcine gastric mucins   

∆BT_4240’s inability to grow on GalNAc was not only suggestive that phosphorylation is central 

to GalNAc utilisation but also that this function is exclusive to the BT4240 GalNAc kinase. It is 

however also possible that other GalNAc kinases are produced by the cell as components of 

different PULs but are tightly controlled.  We sought to investigate this by evaluating the growth 

of ∆BT_4240 on a GalNAc containing substrate chondroitin sulphate (CS) that upregulates a 

completely different PUL in B. thetaiotaomicron (PULBT_3324-50). CS contains about 50% 

GalNAc and hence we anticipated that if the GalNAc released by the Sus-like system encoded by 

this PUL (BT3324-50) can only be phosphorylated by BT4240 from BT4240-50, then the 

deletion mutant will always grow at 50% the rate of the wild type at all times during the 

experiment as confirmed below (Figure V.10).  Finally, ∆BT_4240 and ∆BT_4242 growth on 

PGMIII was also assessed. ∆BT_4240 showed a slight growth defect on the substrate while 

∆BT_4242’s growth was clearly unaffected.    
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Figure V.10 - Effect of BT_4240 and BT_4242 deletions on B. thetaiotaotomcin growth on 

GalNAc containing substrates Chondroitin sulphate (CS) and porcine gastric mucins (PGMIII).   

WT and deletion strains were all initially cultured in nutrient rich medium (TYG) to approximately equal optical 

densities (OD600nm ~1.5-2) before transfer to minimal media containing 1% CS or PGMIII. Growth data for 

each strain was obtained from three individual replicate cultures and error bars indicate the standard deviation of the 

OD600nm for each triplicate data set. A typical structure of CS adapted from Ly et al., 2011, is shown above growth 

curves  
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V.4 Discussion 

The current study revealed an important involvement of the BT4240-50 Sus-like system in mucin 

utilisation in B. thetaiotaomicron. Although deletion of encoding PUL (PULBT_4240-50) did not 

result in a profound growth phenotype in vitro, evidence from the current study suggests that it 

is an important requirement for growth on mucins in a competitive environment.  A deletion of 

the BT4244 M60-like protease failed to produce any significant growth defect even in a 

competitive environment. BT4244 is functionally similar to the prototypic SusG (BT3698) and 

the BT1760 endo-levanase enzyme of the fructan utilisation PUL which have all been shown 

genetically to be important for growth on their respective substrates (Reeves et al., 1997, 

Sonnenburg et al., 2010). However it is worth mentioning that unlike BT_4244’s PUL (which is 

not the only mucin sensitive PUL in B. thetaiotaomicron) the PULs to which the BT_3698 and 

BT_1760 genes belong seem to be only responsive PULs to their respective substrates, implying 

there is a stricter requirement for them.  A typical SusG protein functions to create internal cuts 

in the complex substrate facilitating its uptake through the SusCD complex (Koropatkin et al., 

2012). Given the importance of this function it is very likely that there are other SusG-type 

proteins within other T antigen sensitive PULS excluding the BT4272 and BT3015 M60-like 

proteases which were shown to be dispensable for growth on mucins. One candidate is the 

BT3960 hypothetical protein annotated as peptidase_C2 protein of PULBT_3957-65 (Table V.1). 

This protease is not only present within apparently the most upregulated PUL to the T antigen 

(Martens et al., 2008) but also shows some remarkable similarities with the BT4242 M60-like 

protease (Figure V.11) and the SusG protein.   

 

 

 

 

 

 

 
Figure V.11 - Comparing the domain content and organisation of BT4244, BT3960 and the          

SusG protein (BT3968). All proteins contain a type II signal peptide sequence, one or more putative or 

confirmed carbohydrate binding module(s) and one or more putative or confirmed enzymatic domain(s). Note: The 
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domains are roughly to scale relative to each other within same protein but individual proteins are not drawn to scale 

relative to one another. The actual length of BT3698 is 692 amino acids , that of BT4244 is 857 amino acids, while 

that of BT3960  is 508 amino acids. 

The discovery that BT4240-50 through the BT4240 kinase plays a crucial role in GalNAc 

utilisation makes an important contribution towards our understanding of GalNAc utilisation in 

B. thetaiotaomicron which is currently poorly understood. Evidence form the data suggests that 

GalNAc phosphorylation is crucial to GalNAc utilisation in B. thetaiotaomicron. The data also 

suggest that free monosaccharide GalNAc may not be imported into the cell through  BT4240-

50 but through an alternative transporter for sugar.  This is not only due to the very low 

expression of PULBT_4240-50 components during growth on the GalNAc monosaccharide 

(Martens et al., 2008) but also due to the absence of a growth defect following the deletion of the 

gene encoding the putative BT4242 inner membrane transporter of the BT4240-50 Sus-like 

system. BT4240-50 as expected is likely specialised for complex GalNAc containing substrates 

rather than monosaccharides. It is however important to further confirm this in growth 

experiments with strains containing a deletion to the SusCD complex. In GalNAc utilising 

proteobacterial species such as E.coli and Shewanella spp., GalNAc import is thought to be 

mediated by specialised membrane transporters. These include PTS (phosphotransferase system) 

transporters in the case of E.coli and a combination of outer membrane TonB-dependent and 

inner membrane permease transporters in the case of Shewanella spp (Reizer et al., 1996, Leyn et 

al., 2012) 

GalNAc is an important component of dietary chondroitin sulphate as well as host derived 

mucin O-glycans and its use likely confers a significant competitive advantage to B. 

thetaiotaomicron during growth on these substrates. Both T and F antigens are known to be 

important cancer associated antigens including colonic cancer as their production increases 

during the disease (Brockhausen, 2006, Lescar et al., 2007). Theoretically this should alter the gut 

microbiota in these patients in favour of species most adapted to utilise these substrates. 

Interestingly, the percentage of Bacteroides and Prevotella species which happen to contain 

homologues of the BT4240 kinase (Appendix E) was found to be significantly higher than 

normal in these patients (Sobhani et al., 2011) and could be the reason behind their ability to 

persist in the GalNAc rich environment.   

Two homologues of the gene are also present in the eukaryotic protozoa T. vaginalis (Appendix 

E) and may have been shared through horizontal gene transfer (Alsmark et al., 2013). These 



 

 

   

- 184     - 

 

homologues may be performing a similar phosphorylation role in GalNAc utilisation (as 

observed for BT4240 B. thetaiotomicron) in this mucin degrading mucosal microbe (Wiggins et al., 

2001). 

 

Finally the absence of a growth defect in the ∆BT_4242 deletion mutant during growth on 

complex PGMIII in-vitro left even more important questions to be answered. Ideally if BT4240-

50 is targeted at complex GalNAc containing sugars, one would expect that the deletion of 

BT_4242 which possibly encodes the sole inner membrane transporter within the PUL should 

cause the accumulation of released Gal and GalNAc within the periplasmic space leading to 

defective growth. However this was not the case as observed in Figure V.9. One possibility is 

that the released periplasmic sugars are channelled into the cytoplasm by other Gal or GalNAc 

inner membrane transporters yet to be defined. It may also include transporters from other T or 

F antigen targeted PULs. All these however need to be investigated experimentally. 

V.5 Future work 

Some suggestions for future studies to further our understanding of the requirement of BT4240-

50 in mucin utilisation include 

1) Identify and characterise other F and T antigen targeted PULs in B. thetaiotaomicron. An 

interesting PUL to start with is PULBT_3957-65 which happens to be just as regulated as 

PULBT_4240-50 during growth on PGMIII 

2) Perform more deletion experiments on PULBT_4240-50 components including the 

SusCD complex (BT4246 and BT4247) to identify other crucial contributions made by 

the PUL in mucin utilisation.  

3) If possible perform growth experiments to confirm the PULs role in metabolising its 

biochemically proven targets, the T and F antigens (Chapter IV) 
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   CHAPTER VI  

F i n a l  d i s c u s s i o n    

Many of the mechanisms underlying host microbial interactions still remain unclear and the 

difficulty with understanding the interactions of just a few clinically important members from the 

trillions-strong microbial communities inhabiting the human system as was the case in this study 

reflects just how much work there is still to be done in this area.    

  

A large number of host-microbial interactions occurring at human mucosal surfaces involve 

mucosal surface components such as the extracellular secreted mucus and the epithelial cell 

glycocalyx which together constitute an important protective barrier against resident and foreign 

microbes (Ouwerkerk et al., 2013).  Mucosal microbes are known to encode biological molecules 

including binding or adhesion proteins and enzymes such as sulphatases, glycosidases and 

proteases that target and metabolize components of this protective barrier (McGuckin et al., 

2011, Chapter I). In the case of pathogenic mucosal microbes, these are regarded as colonization 

and virulence factors because of their role in aiding the organisms circumvent the barrier during 

infection (McGuckin et al., 2011). Proteases and glycosidases that degrade integral mucus 

components such as mucins for this purpose for example have been reported in several 

pathogenic mucosal microbes (Wiggins et al., 2001, McGuckin et al., 2011).   In non-invasive 

bacteria which constitute a significant proportion of the human gut microbiota microflora 

(Eckburg et al., 2005, Dethlefsen et al., 2007), the same elements are regarded as mere 

colonisation factors (McGuckin et al., 2011)..    

 

The novel family of M60-like domain-containing proteins were only recently discovered in 2012 

(Nakjang et al., 2012) and much of the focus in this study has been about investigating their role 

in the biology of mucosal microbes where they are more prominent. Our hypothesis that these 

proteins are surfaced-exposed glycoprotein targeted proteases in both pathogenic and non-

pathogenic mucosal microbes was backed by evidence from data in Chapter III in the case of the 

gut commensal B. thetaiotaomicron.  Their ability to degrade mucins and human myeloma IgA1 

which are prominent components of secreted colonic mucus suggests an important role in 

mucosal colonisation.  Investigating this for the pathogenic urogenital tract microbe T. vaginalis 

was however problematic, partly due to the difficulty in expressing soluble forms of these 

proteins in E. coli.  The only solubly expressed proteins from this group where the M60-like 
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domain of TVAG199300 and the PA14 domain of TVAG339720.  The recombinant M60-like 

domain however failed to degrade BSM and PGM glycoproteins contrary to several lines of 

evidence pointing to mucins as the most probable glycoprotein target for the proteins. Rather the 

PA14 domain of TVAG339720 in Chapter III was shown to bind heparin and its sulphated 

derivatives. This observation was only made after several failed ITC trials with mucin sugars. 

Although this was unanticipated, it will not be surprising that an invasive pathogen like T. 

vaginalis could rather be using these putative proteases against proteoglycan structures that 

constitute the glycocalyx of mucosal epithelial cells. Although there is need to further explore 

these findings, data from our collaborators in the USA are already suggesting that these proteins 

indeed play an important role in T. vaginalis pathogenesis.   

 

In line with the overall aim of this study to contribute to our understanding of HMIs at mucosal 

surfaces, we also investigated putative functional partners of the BT4244 – M60-like protease 

from B. thetaiotaomicron in Chapter IV. This was not only important to further our understanding 

of the role of M60-like proteases in B. thetaiotaomicron  which are all members of Sus-like systems 

in the organism, but also to improve our knowledge of the functioning of mucin targeted PULs, 

none of whose functional mechanism had been elucidated before this study.  

Glycosylation is generally known to protect proteins against proteolysis (Russell et al., 2009) and 

most mucin proteases produced by mucosal microbes are thought to target the less glycosylated 

regions of the glycoprotein (Wiggins et al., 2001, Moncada et al., 2003, Lidell et al., 2006, Hasnain 

et al., 2012). Hence we initially reasoned that the association of the BT4244 M60-like protease 

with the BT4240-50 Sus-like system in B. thetaiotaomicron is to exploit the deglycosylating activity 

of its associated glycoside hydrolases which eventually should ease access for the protease to the 

protein core. Rightly so, this is supported by evidence in Chapter III showing that desialylation 

of human myeloma IgA1 enhances the activity of the enzyme. However, in-silico cellular 

localisation data suggested that all BT4240-50 glycoside hydrolases are periplasmic while the 

BT4244 protein is surface localised implying that the protein rather initially comes in contact 

with the substrate before the glycoside hydrolases. Logically this did not appear very convincing, 

hence giving another important reason to biochemically characterise the entire PUL.     

 

Based on the data presented in Chapter III, the PUL to which BT4244 belongs operates in a 

manner similar to the prototypic Sus system of B. thetaiotaomicron. Comparing the activities of 

various enzymes within the PUL to the Sus system, there was compelling evidence that BT4244 
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acts as a SusG-like protein. As a SusG-like protein, BT4244’s role is likely to create internal cuts 

in complex extracellular mucin target to facilitate import through the SusCD complex (Section 

IV.4.2). Evidence that BT4240-50 glycoside hydrolases (BT4241 and BT4243) are downstream of 

BT4244 is also provided in Chapter IV, where it is shown that further deglycosylation of the 

protein by its functional partners BT4243 and BT4241 following desialylation of the IgA1 

glycoprotein substrate does not enhance BT4244’s IgA protease activity.  BT4244 is indeed well 

adapted to perform its SusG-like function containing a GalNAc binding CBM32 domain to 

enable it trap the mucin glycoprotein and the M60-like protease domain that targets the 

glycosylated region of the glycoprotein. This is very similar to the prototypic SusG protein 

containing a CBM35 domain in addition to catalytic G site - containing domain (Cameron et al., 

2012 and Koropatkin et al., 2009). Currently, efforts are still being made to identify target ligands 

for the BACON domains. There is also need to further characterise the BT4246 SusD protein of 

PULBT_4240-50. This is because it is not clear yet exactly what substrate is imported by the 

PUL into the periplasmic space of the cell envelop. Based on the data provided in Chapter IV, 

they are likely glycopeptide structures containing the F and T antigens. However, the 

recombinant BT4246 SusD positioned protein was only poorly saturated by the T antigen sugar 

in ITC binding experiments. It is worth noting that this protein, just like the GalNAc binding 

BT4244 and BT4245 proteins have all been shown to be highly upregulated during B. 

thetaiotaomicron growth on the T antigen (Martens et al., 2008).  Other considerations for future 

work on the PUL are listed in the discussion section of Chapter IV. 

 

Finally in Chapter IV we sought to evaluate the importance of the PUL to which the BT4244 

protease belongs through a series of gene deletion and in-vitro growth experiments with native 

mucins and their constituent sugars.  Data from experiments with a strain containing a deletion 

to the complete BT4240-50 gene locus (PULBT_4240-50) under non-competitive conditions in-

vitro on porcine gastric mucins revealed only a slight defect in the organism’s ability to utilise the 

complex substrate. However, there was a significant effect on the organisms’ ability to compete 

against the wild type in-vitro under the same conditions suggesting that the PUL is an important 

fitness factor. BT4244 deletion mutants on the other hand showed very limited growth defect in 

either condition. This was not very surprising given the massive expansion of mucin targeted 

genes in the organism (Martens et al., 2008, Koropatkin et al., 2010). The unanticipated loss of 

∆PULBT_4240-50’s ability to utilise the GalNAc monosaccharide came as a surprise and 

provided an opportunity to further explore GalNAc utilisation in B. thetaiotaomicron. GalNAc 



 

 

   

- 188     - 

 

utilisation in B. thetaiotaomicron and many other organisms in general is poorly understood and the 

proposed KEGG pathway for the metabolism of GalNAc (KEGG pathway ID: bth00052) still 

contains a lot of unanswered questions (Section V.4). Our data demonstrated that GalNAc 

phosphorylation is central to its utilisation in the organism and that the PUL contains a unique 

GalNAc kinase (BT4240) that performs this function, capable of phosphorylating GalNAc from 

several sources including from mucin and non mucin sources such as chondroitin sulphate.   
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   Appendices 

Appendix A – Cloning, mutation, deletion and tag detection primers  

 

Recombinant 

protein code 

Primers 

Type RE Sequence 

BT_4272-M60L 
Forward BamHI CGCG GGATCC GACGAACAACTGATAACAGTATTC 

Reverse XhoI CCGG CTCGAG CTATTTATTTGCTTTAATACGTTGCC 

BT_4272-CBM32 
Forward BamHI CGCG GGATCC GATATAAAGTTGAAAGTTACCGGTG 

Reverse XhoI CCGG CTCGAG TTATTCCGCAGCATGGAAAAATTCCAT    

BT_4244-M60L 
Forward BamHI CGCG GGATCC GAT AAA ACA CTG GAT AAA CAA CTT C 

Reverse EcoRI CCGG GAATTC TTA TAA CAG AAT ACG TTT TCC GTC 

BT_4244-CBM32 
Forward NcoI CGCG CCATGG ACATCAAGGTTACACCAACC 

Reverse XhoI CCGG CTCGAG CGTATTTGTTTTGTAAAATTCCATTTC 

BT_3015-M60L 
Forward BamHI CGCG GGATCC CCCGTGAACTTTGATTATTCG     

Reverse EcoRI CCGG GAATTC TTACATTGGAATGTCGATACGTTC     

BT_3015-CBM32 
Forward BamHI CGCG GGATCC ATCAAGATCAAAATAGTAAGCGG   

Reverse EcoRI CCGG GAATTC TTAACGGAACTCTGCGGGATACTT      

BT4244-FL 
Forward BamHI CGCG GGATCC AAG GAT ACC GAA AAA TCG ATT ATA 

Reverse EcoRI CCGG GAATTC TTA TAA CAG AAT ACG TTT TCC GTC 

BT4244-BACON 
Forward BamHI CGCG GGATCC AAG GAT ACC GAA AAA TCG ATT ATA 

Reverse EcoRI CCGG GAATTC TTAGCCTCCGGTTGGTGTAAC 

BT4244-BACON 

CBM32 

Forward BamHI CGCG GGATCC AAG GAT ACC GAA AAA TCG ATT ATA 

Reverse EcoRI CCGG GAATTC TTA CGT ATT TGT TTT GTA AAA TTC CAT TTC 

BT4244-FL-E575D 
Forward none GGGACCAGCTCATGATATTGGCCATGTTCATCAGGCAGC 

Reverse one GCTGCCTGATGAACATGGCCAATATCATGAGCTGGTCCC 

TVAG199300-M60L 
Forward SacI CGCG GAGCTC GT GAT ACT GTT CAA GCA CAA GAG 

Reverse SalI CCGG GTCGAC TTATGGAATTCTGAATGGTTTGGC 

TVAG199300CBD 
Forward SacI CGCG  GAGCTC    GTGAAAGATATAAGAGATCAAGAGAAG 

Reverse XhoI CCGG CTCGAG  TTACAAGTTATCTCCGTTATCATTTTC 

    

TVAG189150-M60L 
Forward BamHI CGCG GGATCC  ACAGATTCAGTAATGATAAGAGAC   

Reverse SalI CCGG GTCGAC  TTATAACTCTTTTCTATCGCCAGG 

    

TVAG339720-M60L 
Forward BamHI CGCG GGATCC GGC ATC AAT ACA GTT CAA GTA C 

Reverse XhoI CCGG CTCGAG TTATTTCTCTCCATTTACTTTATCTTTAAG 

TVAG339720-PA14 Forward BamHI CGCG GGA TCC ATGCATGCATTTGAGTTCGATG 
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Reverse XhoI CCGG CTCGAG TTATGGATCGTTCTCAAGCTTTG 

TVAG339720-GBDL 
Forward BamHI CGCG GGATCC GACCACATCTTCAAGCCAAAG 

Reverse XhoI CCGG CTCGAG TTATCTATAATAAGCGTTTCCATCATC 

 

Table A.1 - Cloning primers for various B. thetaiotaomicron and T. vaginalis M60-like encoding 

genes. RE stands for restriction enzyme used. Underlined sequences are corresponding restriction enzyme cleavage 

sites   

 

Recombinant 

protein code 

Primers 

Type  Sequence 

G157A 
Forward GAAAATACATATGATGCTAAATTTTCAACTGATGGAGC 

Reverse GCTCCATCAGTTGAAAATTTAGCATCATATGTATTTTC 

H168A 
Forward GCTGCCCCTTTCGCTACTCCGTGGGGACAATCCGCCAA 

Reverse TTGGCGGATTGTCCCCACGGAGTAGCGAAAGGGGCAGC 

N202A 
Forward CACGATCCGGTGCTGGAAACTTCGGAAAGGTCAAAG 

Reverse CTTTGACCTTTCCGAAGTTTCCAGCACCGGATCGTG 

F251A 
Forward GACCGGAATCAAAGCTGAAGTATTAAGCGGTCTGGGTG 

Reverse CACCCAGACCGCTTAATACTTCAGCTTTGATTCCGGTC 

 

Table A.2– List of BT4244-CBM32 mutation primers 

   

Recombinant 

protein code 

Primers 

Type RE Sequence 

BT4240-FL 
Forward BamHI CGCGGGATCC ATGAAAGATTTATCAAGTATTGTAGC 

Reverse XhoI CCGGCTCGAG TTATCCATTAACCAAGCACTCATTG 

BT4241-FL 
Forward BamHI CGCGGGATCC ATGGCCGAAAAGACATCCGACAA 

Reverse XhoI CCGGCTCGAG TTATCGATAATCATATTTGGCGGC 

BT4243-FL 
Forward BamHI CGCGGGATCC CAAAAGACAAAAGCAAAGTTCTCT 

Reverse XhoI CCGGCTCGAG TTATTCGGCAAAAGCATGTCTGTA 

BT4245-FL 
Forward NcoI CGCGCCATGGACAATTATGACGATACCTATCC 

Reverse XhoI CCGGCTCGAGTTCGGACAGTATGAACAGACT 

 

Table A.3 - Cloning primers for selected members of the BT4240-50 Sus-like system. RE stands for 

restriction enzyme used   . Underlined sequences are corresponding restriction enzyme cleavage sites   
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Table A.4 – Deletion primers for PULBT_4240-50 (PUL encoding the BT4240-50 Sus-like 

system) and its components from the genome of B. thetaiotaomicron. RE stands for restriction 

enzyme used. Underlined sequences are corresponding restriction enzyme cleavage sites   

 

 

 

Primer 
name 

Primer/code RE Primer sequence 

∆BT_4244F
lank 1 

Forward/A BamHI CGCGGGATCCCATGAGTTGCATATACATCACCAC 

Reverse/B None TCTTAAAAACTAATACAGCAAAAAAGAATAATTTAACTTAACACACATTAC 

∆BT_4244 
Flank 2 

Forward/C None GTAATGTGTGTTAAGTTAAATTATTCTTTTTTGCTGTATTAGTTTTTAAGA 

Reverse/D XbaI CGCGTCTAGACTCTTGAAGAGGGACAAACGTG 

    

∆PULBT_4
240-50  
Flank 1 

Forward/A BamHI CGCGGGATCCGGATCGATTTCAAGCATAACAAAT 

Reverse/B None ATGGGTATGAATACGTTTGAGCCTTGGAGAATGGAAAATGGATAATTAGT 

∆PULBT_4
240-50 
Flank 2 

Forward/C None ACTAATTATCCATTTTCCATTCTCCAAGGCTCAAACGTATTCATACCCAT 

Reverse/D XbaI CGCGTCTAGAGTATCTTCATTTACCACAGTATGGAT 

    

∆BT_3015 
Flank 1 

Forward/A BamHI CGCGGGATCCGGCTACTAATCAATGATGAATAACAAT 

Reverse/B None GTTATCTTGAATGTATCTGAGATACGATCTTTTTTTTTATTCAAGTACGACCATT
G 

∆BT_3015 
Flank 2 

Forward/C None CAATGGTCGTACTTGAATAAAAAAAAAGATCGTATCTCAGATACATTCAAGATA
AC 

Reverse/D XbaI CGCGTCTAGATGGCGCTGAACATCCGTTTGTAA 

    

∆BT_4272 
Flank 1 

Forward/A BamHI CGCGGGATCCATACATTCGCTTTATTCCGGAAGC 

Reverse/B None GATTGGGGATATTCAGTAAGTTTCCAGTATTTATAATTTTTGTTGTTTTTCCAT 

∆BT_4272 
Flank 2 

Forward/C None ATGGAAAAACAACAAAAATTATAAATACTGGAAACTTACTGAATATCCCCAATC 

Reverse/D XbaI CGCGTCTAGACAAACAATAGCGAGCTTATGGG 

    

∆BT_4240  
Flank 1 

Forward/A BamHI CGCGGGATCCCTCATACAAAGTGGATGGAACC 

Reverse/B None AATTATCCATTTTCCATTCTCCAGGGTCTTTTCTTTAAAATTTATA 

∆BT_4240  
Flank 1 

Forward/C None TATAAATTTTAAAGAAAAGACCCTGGAGAATGGAAAATGGATAATT 

Reverse/D XbaI CGCGTCTAGAACCAGTTCTTTATCATGGGAACC 

    

∆BT_4242  
Flank 1 

Forward/A BamHI CGCGGGATCCGATGAAATCTGGAAGCTAATCAAC 

Reverse/B None GTTTTTCAATCTTGTTTCTTTTTATAGGTGATTATAATAATCAGTA 

∆BT_4242 
Flank 2 

Forward/C None TACTGATTATTATAATCACCTATAAAAAGAAACAAGATTGAAAAAC 

Reverse/D XbaI CGCGTCTAGATTACCAGCTTGTAAAGGTTCGG 
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Table A.5 - Primers used to confirm the integration of tagging sequences and their sites of 

integration in the genome of WT, ∆BT_4240-50 and ∆BT_4244 deletion mutants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag  Primers 

Type Sequence 

Tag1   Forward (Tag1_F) ATGTCGCCAATTGTCACTTTCTCA     (also Tag1 signature sequence) 

Reverse(Universal reverse) CACAATATGAGCAACAAGGAATCC 

Tag11  Forward(Tag11_F) ATGCCGCGGATTTATTGGAAGAAG  (also tag11 signature sequence) 

Reverse(Universal reverse) CACAATATGAGCAACAAGGAATCC 

 
Site 

  

NBU2-att1   Forward (NBU2att1_F) CCTTTGCACCGCTTTCAACG 

Reverse (NBU2att1_R) TCAACTAAACATGAGATACTAGC 
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Appendix B – Extinction coefficients    

 

Code name for recombinant protein Extinction coefficient (M-1 cm-1) 

BT4272-M60L 119555 

BT4244-M60L 125390 

BT3015-M60L 102610 

BT4272-FL 162875 

BT4272-CBM32 17545 

BT_4244-BACON 16960 

BT4244-CBM32 20400 

BT_4244-BC 37485 

BT3015-CBM32 23505 

TVAG339720-M60L 159810 

TVAG189150-M60L 139870 

TVAG199300 -M60L 181685 

TVAG339720-PA14 40590 

TVAG339720-GBDL 54780 

TVAG199300-CBD 110020 

BT4240-FL 36705 

BT4241-FL 240685 

BT4243-FL 81290 

BT4245-FL 60070 

 

Table B.1 - Recombinant protein extinction coefficients 
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Appendix C – Vector maps 

 

        

 

 

 

 Figure C.1 – pET-28a (+) and miniPRSET A, B, C 
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 Figure C.2 - pET-43.1a (+) and pExchange-tdk 
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Appendix D – MUC 2 information 

Human MUC2 sequence 

>sp|Q02817|MUC2_HUMAN Mucin-2 OS=Homo sapiens GN=MUC2 PE=1 SV=2 

MGLPLARLAAVCLALSLAGGSELQTEGRTRYHGRNVCSTWGNFHYKTFDGDVFRFPGLCD 

YNFASDCRGSYKEFAVHLKRGPGQAEAPAGVESILLTIKDDTIYLTRHLAVLNGAVVSTP 

HYSPGLLIEKSDAYTKVYSRAGLTLMWNREDALMLELDTKFRNHTCGLCGDYNGLQSYSE 

FLSDGVLFSPLEFGNMQKINQPDVVCEDPEEEVAPASCSEHRAECERLLTAEAFADCQDL 

VPLEPYLRACQQDRCRCPGGDTCVCSTVAEFSRQCSHAGGRPGNWRTATLCPKTCPGNLV 

YLESGSPCMDTCSHLEVSSLCEEHRMDGCFCPEGTVYDDIGDSGCVPVSQCHCRLHGHLY 

TPGQEITNDCEQCVCNAGRWVCKDLPCPGTCALEGGSHITTFDGKTYTFHGDCYYVLAKG 

DHNDSYALLGELAPCGSTDKQTCLKTVVLLADKKKNAVVFKSDGSVLLNQLQVNLPHVTA 

SFSVFRPSSYHIMVSMAIGVRLQVQLAPVMQLFVTLDQASQGQVQGLCGNFNGLEGDDFK 

TASGLVEATGAGFANTWKAQSTCHDKLDWLDDPCSLNIESANYAEHWCSLLKKTETPFGR 

CHSAVDPAEYYKRCKYDTCNCQNNEDCLCAALSSYARACTAKGVMLWGWREHVCNKDVGS 

CPNSQVFLYNLTTCQQTCRSLSEADSHCLEGFAPVDGCGCPDHTFLDEKGRCVPLAKCSC 

YHRGLYLEAGDVVVRQEERCVCRDGRLHCRQIRLIGQSCTAPKIHMDCSNLTALATSKPR 

ALSCQTLAAGYYHTECVSGCVCPDGLMDDGRGGCVVEKECPCVHNNDLYSSGAKIKVDCN 

TCTCKRGRWVCTQAVCHGTCSIYGSGHYITFDGKYYDFDGHCSYVAVQDYCGQNSSLGSF 

SIITENVPCGTTGVTCSKAIKIFMGRTELKLEDKHRVVIQRDEGHHVAYTTREVGQYLVV 

ESSTGIIVIWDKRTTVFIKLAPSYKGTVCGLCGNFDHRSNNDFTTRDHMVVSSELDFGNS 

WKEAPTCPDVSTNPEPCSLNPHRRSWAEKQCSILKSSVFSICHSKVDPKPFYEACVHDSC 

SCDTGGDCECFCSAVASYAQECTKEGACVFWRTPDLCPIFCDYYNPPHECEWHYEPCGNR 

SFETCRTINGIHSNISVSYLEGCYPRCPKDRPIYEEDLKKCVTADKCGCYVEDTHYPPGA 

SVPTEETCKSCVCTNSSQVVCRPEEGKILNQTQDGAFCYWEICGPNGTVEKHFNICSITT 

RPSTLTTFTTITLPTTPTSFTTTTTTTTPTSSTVLSTTPKLCCLWSDWINEDHPSSGSDD 

GDREPFDGVCGAPEDIECRSVKDPHLSLEQHGQKVQCDVSVGFICKNEDQFGNGPFGLCY 

DYKIRVNCCWPMDKCITTPSPPTTTPSPPPTTTTTLPPTTTPSPPTTTTTTPPPTTTPSP 

PITTTTTPLPTTTPSPPISTTTTPPPTTTPSPPTTTPSPPTTTPSPPTTTTTTPPPTTTP 

SPPMTTPITPPASTTTLPPTTTPSPPTTTTTTPPPTTTPSPPTTTPITPPTSTTTLPPTT 

TPSPPPTTTTTPPPTTTPSPPTTTTPSPPTITTTTPPPTTTPSPPTTTTTTPPPTTTPSP 

PTTTPITPPTSTTTLPPTTTPSPPPTTTTTPPPTTTPSPPTTTTPSPPITTTTTPPPTTT 

PSSPITTTPSPPTTTMTTPSPTTTPSSPITTTTTPSSTTTPSPPPTTMTTPSPTTTPSPP 

TTTMTTLPPTTTSSPLTTTPLPPSITPPTFSPFSTTTPTTPCVPLCNWTGWLDSGKPNFH 

KPGGDTELIGDVCGPGWAANISCRATMYPDVPIGQLGQTVVCDVSVGLICKNEDQKPGGV 

IPMAFCLNYEINVQCCECVTQPTTMTTTTTENPTPPTTTPITTTTTVTPTPTPTGTQTPT 

TTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTP 

TPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPIT 

TTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGT 

QTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTV 

TPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTT 

TPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPT 

PTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITT 

TTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQ 

TPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVT 

PTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTT 

PITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTP 

TGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTT 

TTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQT 

PTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTP 

TPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTP 

ITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPT 

GTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTT 

TVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTP 

TTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPT 

PTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPI 

TTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTG 

TQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTT 

VTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPT 
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TTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTP 

TPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPIT 

TTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGT 

QTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTV 

TPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTT 

TPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPT 

PTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITT 

TTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQ 

TPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVT 

PTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTT 

PITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTP 

TGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTT 

TTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQT 

PTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTP 

TPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTPTTTPITTTTTVTPTPTPTGTQTGPPTH 

TSTAPIAELTTSNPPPESSTPQTSRSTSSPLTESTTLLSTLPPAIEMTSTAPPSTPTAPT 

TTSGGHTLSPPPSTTTSPPGTPTRGTTTGSSSAPTPSTVQTTTTSAWTPTPTPLSTPSII 

RTTGLRPYPSSVLICCVLNDTYYAPGEEVYNGTYGDTCYFVNCSLSCTLEFYNWSCPSTP 

SPTPTPSKSTPTPSKPSSTPSKPTPGTKPPECPDFDPPRQENETWWLCDCFMATCKYNNT 

VEIVKVECEPPPMPTCSNGLQPVRVEDPDGCCWHWECDCYCTGWGDPHYVTFDGLYYSYQ 

GNCTYVLVEEISPSVDNFGVYIDNYHCDPNDKVSCPRTLIVRHETQEVLIKTVHMMPMQV 

QVQVNRQAVALPYKKYGLEVYQSGINYVVDIPELGVLVSYNGLSFSVRLPYHRFGNNTKG 

QCGTCTNTTSDDCILPSGEIVSNCEAAADQWLVNDPSKPHCPHSSSTTKRPAVTVPGGGK 

TTPHKDCTPSPLCQLIKDSLFAQCHALVPPQHYYDACVFDSCFMPGSSLECASLQAYAAL 

CAQQNICLDWRNHTHGACLVECPSHREYQACGPAEEPTCKSSSSQQNNTVLVEGCFCPEG 

TMNYAPGFDVCVKTCGCVGPDNVPREFGEHFEFDCKNCVCLEGGSGIICQPKRCSQKPVT 

HCVEDGTYLATEVNPADTCCNITVCKCNTSLCKEKPSVCPLGFEVKSKMVPGRCCPFYWC 

ESKGVCVHGNAEYQPGSPVYSSKCQDCVCTDKVDNNTLLNVIACTHVPCNTSCSPGFELM 

EAPGECCKKCEQTHCIIKRPDNQHVILKPGDFKSDPKNNCTFFSCVKIHNQLISSVSNIT 

CPNFDASICIPGSITFMPNGCCKTCTPRNETRVPCSTVPVTTEVSYAGCTKTVLMNHCSG 

SCGTFVMYSAKAQALDHSCSCCKEEKTSQREVVLSCPNGGSLTHTYTHIESCQCQDTVCG 

LPTGTSRRARRSPRHLGSG 

 

 

 Neutral 

Gal-3GalNAcol 

GlcNAc-3GalNAcol 

GalNAc-3GalNAcol 

Fuc-Gal-3GalNAcol 

Gal-GlcNAc-3GalNAcol
4
 

Gal-GlcNAc-3GalNAcol
4
 

Gal-(Fuc)GlcNAc-3GalNAcol 

HexNAc-Gal-GlcNAc-3GalNAcol 

Fuc-Gal-(Fuc)GlcNAc-3GalNAcol 

Fuc-Gal-3(Gal-GlcNAc-6)GalNAcol 

  

Monosialylated 

NeuAc-6GalNAcol 
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Gal-3(NeuAc-6)GalNAcol 

GlcNAc-3(NeuAc-6)GalNAcol 

GalNAc-3(NeuAc-6)GalNAcol 

Fuc-Gal-3(NeuAc-6)GalNAcol 

Fuc-GlcNAc-3(NeuAc-6)GalNAcol 

NeuAc-Gal-3(GlcNAc-6)GalNAcol 

Gal-GlcNAc-3(NeuAc-6)GalNAcol 

NeuAc-Gal-(Fuc)GlcNAc-3GalNAcol 

Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

Fuc-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

[NeuAc]1HexNAc-Gal-GlcNAc-3GalNAcol
5
 

[NeuAc]1HexNAc-Gal-GlcNAc-3GalNAcol
5
 

Fuc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

HexNAc-(Fuc)Gal-(NeuAc)GlcNAc-GalNAcol 

GalNAc-(NeuAc)Gal-(Fuc)GlcNAc-GalNAcol
3
 

Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

HexNAc-(Fuc)Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

 

Monosulfated 

SO3
-
-Gal-GlcNAc-3GalNAcol 

SO3
-
-Gal-(Fuc)GlcNAc-3GalNAcol

4
 

SO3
-
-Gal-(Fuc)GlcNAc-3GalNAcol

4
 

Gal-3(SO3
-
-Gal-GlcNAc-6)GalNAcol 

[SO3
-
]1[Gal]2[GlcNAc]1GalNAcol 

Gal-3(SO3
-
-Gal-(Fuc)GlcNAc-6)GalNAcol

6
 

SO3
-
-Gal-(Fuc)GlcNAc-Gal-3GalNAcol

6
 

HexNAc-(SO3
-
)Gal-(Fuc)GlcNAc-3GalNAcol 

Fuc-Gal-3(SO3
-
-Gal-(Fuc)GlcNAc-6)GalNAcol  

Gal-GlcNAc-(SO3
-
)Gal-(Fuc)GlcNAc-3GalNAcol 

SO3
-
-Gal-(Fuc)GlcNAc-Gal-(Fuc)GlcNAc-3GalNAcol 

 

Multiple acidic residues   

SO3
-
-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

SO3
-
-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 
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SO3
-
-Gal-GlcNAc-Gal-3(NeuAc-6)GalNAcol

6
 

Gal-(SO3
-
)GlcNAc-Gal-3(NeuAc-6)GalNAcol

6
 

SO3
-
-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

NeuAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4
 

NeuAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4
 

SO3
-
-Gal-(Fuc)GlcNAc-Gal-3(SO3

-
-GlcNAc-6)GalNAcol 

NeuAc-Gal-3(Gal-(Fuc)(SO3
-
)GlcNAc-6)GalNAcol 

NeuAc-Gal-(Fuc)(SO3
-
)GlcNAc-3(GlcNAc-6)GalNAcol 

Fuc-GlcNAc-(SO3
-
)Gal-GlcNAc-3(NeuAc-6)GalNAcol 

NeuAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-GlcNAc-3GalNAcol

5
 

SO3
-
-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

4
 

SO3
-
-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

4
 

[NeuAc]1GalNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1GalNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1GalNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

SO3
-
-Gal-(Fuc)GlcNAc-3(SO3

-
-Gal-(Fuc)GlcNAc-6)GalNAcol 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-3(NeuAc-6)GalNAcol

5
 

[NeuAc]1NeuAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

SO3
-
-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol

4
 

SO3
-
-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol

4
 

SO3
-
-Gal-(Fuc)GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

[NeuAc]1Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

4,5
 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

4,5
 

NeuAc-Gal-GlcNAc-Gal-(SO3
-
)GlcNAc-3(NeuAc-6)GalNAcol 

Gal-(Fuc)GlcNAc-(SO3
-
)Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

SO3
-
-Gal-(Fuc)GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

GalNAc-(NeuAc)Gal-GlcNAc-(SO3
-
)Gal-(Fuc)GlcNAc-GalNAcol

3
 

NeuAc-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol
4
 

NeuAc-Gal-(Fuc)GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol 

NeuAc-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol
4
 

[NeuAc]1HexNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1HexNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5
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[NeuAc]1HexNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol

5
 

[NeuAc]1SO3
-
-Gal-(Fuc)GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

5
 

NeuAc-Gal-GlcNAc-Gal-(Fuc)(SO3
-
)GlcNAc-3(NeuAc-6)GalNAcol

4
 

NeuAc-Gal-GlcNAc-Gal-(Fuc)(SO3
-
)GlcNAc-3(NeuAc-6)GalNAcol

4
 

[NeuAc]1NeuAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1NeuAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1[Fuc]1Gal-(Fuc)GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
5
 

NeuAc-Gal-(Fuc)GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol 

[NeuAc]1HexNAc-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1HexNAc-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol
4,5

 

[NeuAc]1NeuAc-Gal-(Fuc)GlcNAc-Gal-GlcNAc-3(GlcNAc-6)GalNAcol
5
 

[NeuAc]1NeuAc-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(GlcNAc-6)GalNAcol
4,5

 

[NeuAc]1NeuAc-Gal-GlcNAc-Gal-(Fuc)GlcNAc-3(GlcNAc-6)GalNAcol
4,5

 

[NeuAc]1Gal-GlcNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
5
 

[NeuAc]1SO3
-
-Gal-(Fuc)GlcNAc-Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol

5
 

GalNAc-(NeuAc)Gal-GlcNAc-(SO3
-
)Gal-(Fuc)GlcNAc-3(NeuAc-6)-GalNAcol

3
 

[NeuAc]1NeuAc-Gal-(Fuc)GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
5
 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

4,5
 

[NeuAc]1SO3
-
-Gal-GlcNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

4,5
 

[NeuAc]1GalNAc-(NeuAc)Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
3,5

 

[NeuAc]1HexNAc-Gal-GlcNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
5
 

[SO3
-
]1[NeuAc]1[Fuc]1[Gal]3[GlcNAc]3(NeuAc-6)GalNAcol 

[NeuAc]1[Fuc]1GalNAc-(NeuAc)Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol
3,5

 

[NeuAc]2SO3
-
-Gal-GlcNAc-Gal-GlcNAc-Gal-GlcNAc-3(NeuAc-6)GalNAcol

5
 

[NeuAc]2HexNAc-Gal-GlcNAc-Gal-GlcNAc-Gal-GlcNAc(NeuAc-6)GalNAcol
5
 

[NeuAc]2[HexNAc]2[Gal]3[GlcNAc]3(NeuAc-6)GalNAcol 

 

Table D.1 - MUC2 glycans from mass spectrometry. Please see Larsson et al., 2009 for more 

details 
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Appendix E - Taxonomic distribution of BT4240 homologues 

 
cellular organisms .............................................................   227 hits  188 orgs [root] 
. Bacteroidales ................................................................   225 hits  187 orgs [Bacteria; Bacteroidetes/Chlorobi group; Bacteroidetes; 
Bacteroidia] 
. . Bacteroides ................................................................   165 hits  135 orgs [Bacteroidaceae] 
. . . Bacteroides thetaiotaomicron .............................................     3 hits    2 orgs  
. . . . Bacteroides thetaiotaomicron VPI-5482 ..................................     2 hits    1 orgs  
. . . . Bacteroides thetaiotaomicron dnLKV9 ....................................     1 hits    1 orgs  
. . . Bacteroides sp. 1_1_6 ....................................................     2 hits    1 orgs  
. . . Bacteroides sp. 1_1_14 ...................................................     2 hits    1 orgs  
. . . environmental samples ....................................................    28 hits   28 orgs  
. . . . Bacteroides thetaiotaomicron CAG:40 ....................................     1 hits    1 orgs  
. . . . Bacteroides faecis CAG:32 ..............................................     1 hits    1 orgs  
. . . . Bacteroides caccae CAG:21 ..............................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:754 ................................................     1 hits    1 orgs  
. . . . Bacteroides finegoldii CAG:203 .........................................     1 hits    1 orgs  
. . . . Bacteroides ovatus CAG:22 ..............................................     1 hits    1 orgs  
. . . . Bacteroides fragilis CAG:47 ............................................     1 hits    1 orgs  
. . . . Bacteroides fragilis CAG:558 ...........................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:189 ................................................     1 hits    1 orgs  
. . . . Bacteroides uniformis CAG:3 ............................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:633 ................................................     1 hits    1 orgs  
. . . . Bacteroides cellulosilyticus CAG:158 ...................................     1 hits    1 orgs  
. . . . Bacteroides stercoris CAG:120 ..........................................     1 hits    1 orgs  
. . . . Bacteroides eggerthii CAG:109 ..........................................     1 hits    1 orgs  
. . . . Bacteroides intestinalis CAG:315 .......................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:598 ................................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:661 ................................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:20 .................................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:98 .................................................     1 hits    1 orgs  
. . . . Bacteroides vulgatus CAG:6 .............................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:714 ................................................     1 hits    1 orgs  
. . . . Bacteroides plebeius CAG:211 ...........................................     1 hits    1 orgs  
. . . . Bacteroides coprophilus CAG:333 ........................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:875 ................................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:443 ................................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:1076 ...............................................     1 hits    1 orgs  
. . . . Bacteroides sp. CAG:530 ................................................     1 hits    1 orgs  
. . . . Bacteroides coprocola CAG:162 ..........................................     1 hits    1 orgs  
. . . Bacteroides faecis .......................................................     1 hits    1 orgs  
. . . Bacteroides caccae .......................................................     3 hits    3 orgs  
. . . . Bacteroides caccae ATCC 43185 ..........................................     1 hits    1 orgs  
. . . . Bacteroides caccae CL03T12C61 ..........................................     1 hits    1 orgs  
. . . Bacteroides finegoldii ...................................................     4 hits    3 orgs  
. . . . Bacteroides finegoldii CL09T03C10 ......................................     1 hits    1 orgs  
. . . . Bacteroides finegoldii DSM 17565 .......................................     1 hits    1 orgs  
. . . Bacteroides ovatus .......................................................     9 hits    7 orgs  
. . . . Bacteroides ovatus SD CMC 3f ...........................................     1 hits    1 orgs  
. . . . Bacteroides ovatus ATCC 8483 ...........................................     1 hits    1 orgs  
. . . . Bacteroides ovatus CL02T12C04 ..........................................     1 hits    1 orgs  
. . . . Bacteroides ovatus CL03T12C18 ..........................................     1 hits    1 orgs  
. . . . Bacteroides ovatus 3_8_47FAA ...........................................     1 hits    1 orgs  
. . . . Bacteroides ovatus SD CC 2a ............................................     1 hits    1 orgs  
. . . Bacteroides sp. 3_1_23 ...................................................     1 hits    1 orgs  
. . . Bacteroides sp. D2 .......................................................     1 hits    1 orgs  
. . . Bacteroides sp. 2_2_4 ....................................................     2 hits    1 orgs  
. . . Bacteroides sp. 1_1_30 ...................................................     2 hits    1 orgs  
. . . Bacteroides xylanisolvens ................................................     6 hits    4 orgs  
. . . . Bacteroides xylanisolvens CL03T12C04 ...................................     1 hits    1 orgs  
. . . . Bacteroides xylanisolvens SD CC 1b .....................................     1 hits    1 orgs  
. . . . Bacteroides xylanisolvens XB1A .........................................     2 hits    1 orgs  
. . . Bacteroides sp. D1 .......................................................     2 hits    1 orgs  
. . . Bacteroides sp. 2_1_22 ...................................................     1 hits    1 orgs  
. . . Bacteroides sp. D22 ......................................................     2 hits    1 orgs  
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. . . Bacteroides fragilis .....................................................    19 hits   14 orgs  

. . . . Bacteroides fragilis YCH46 .............................................     2 hits    1 orgs  

. . . . Bacteroides fragilis NCTC 9343 .........................................     2 hits    1 orgs  

. . . . Bacteroides fragilis 638R ..............................................     2 hits    1 orgs  

. . . . Bacteroides fragilis CL07T00C01 ........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis CL03T12C07 ........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis CL03T00C08 ........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis CL05T00C42 ........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis CL07T12C05 ........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis CL05T12C13 ........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis HMW 615 ...........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis 3_1_12 ............................................     1 hits    1 orgs  

. . . . Bacteroides fragilis HMW 616 ...........................................     1 hits    1 orgs  

. . . . Bacteroides fragilis HMW 610 ...........................................     1 hits    1 orgs  

. . . Bacteroides sp. 3_2_5 ....................................................     1 hits    1 orgs  

. . . Bacteroides sp. 2_1_16 ...................................................     1 hits    1 orgs  

. . . Bacteroides sp. 2_1_56FAA ................................................     1 hits    1 orgs  

. . . Bacteroides nordii .......................................................     2 hits    2 orgs  

. . . . Bacteroides nordii CL02T12C05 ..........................................     1 hits    1 orgs  

. . . Bacteroides sp. HPS0048 ..................................................     2 hits    1 orgs  

. . . Bacteroides salyersiae ...................................................     3 hits    3 orgs  

. . . . Bacteroides salyersiae CL02T12C01 ......................................     1 hits    1 orgs  

. . . . Bacteroides salyersiae WAL 10018 = DSM 18765 = JCM 12988 ...............     1 hits    1 orgs  

. . . Bacteroides sp. D20 ......................................................     2 hits    1 orgs  

. . . Bacteroides uniformis ....................................................     6 hits    5 orgs  

. . . . Bacteroides uniformis CL03T12C37 .......................................     1 hits    1 orgs  

. . . . Bacteroides uniformis CL03T00C23 .......................................     1 hits    1 orgs  

. . . . Bacteroides uniformis dnLKV2 ...........................................     1 hits    1 orgs  

. . . . Bacteroides uniformis ATCC 8492 ........................................     1 hits    1 orgs  

. . . Bacteroides sp. 4_1_36 ...................................................     2 hits    1 orgs  

. . . Bacteroides helcogenes ...................................................     3 hits    2 orgs  

. . . . Bacteroides helcogenes P 36-108 ........................................     2 hits    1 orgs  

. . . Bacteroides fluxus .......................................................     2 hits    2 orgs  

. . . . Bacteroides fluxus YIT 12057 ...........................................     1 hits    1 orgs  

. . . Bacteroides cellulosilyticus .............................................     4 hits    3 orgs  

. . . . Bacteroides cellulosilyticus CL02T12C19 ................................     1 hits    1 orgs  

. . . . Bacteroides cellulosilyticus DSM 14838 .................................     1 hits    1 orgs  

. . . Bacteroides stercoris ....................................................     3 hits    3 orgs  

. . . . Bacteroides stercoris ATCC 43183 .......................................     1 hits    1 orgs  

. . . . Bacteroides stercoris CC31F ............................................     1 hits    1 orgs  

. . . Bacteroides clarus .......................................................     2 hits    2 orgs  

. . . . Bacteroides clarus YIT 12056 ...........................................     1 hits    1 orgs  

. . . Bacteroides eggerthii ....................................................     4 hits    3 orgs  

. . . . Bacteroides eggerthii DSM 20697 ........................................     1 hits    1 orgs  

. . . . Bacteroides eggerthii 1_2_48FAA ........................................     1 hits    1 orgs  

. . . Bacteroides intestinalis .................................................     2 hits    2 orgs  

. . . . Bacteroides intestinalis DSM 17393 .....................................     1 hits    1 orgs  

. . . Bacteroides oleiciplenus .................................................     2 hits    2 orgs  

. . . . Bacteroides oleiciplenus YIT 12058 .....................................     1 hits    1 orgs  

. . . Bacteroides gallinarum ...................................................     1 hits    1 orgs  

. . . Bacteroides coprosuis ....................................................     2 hits    2 orgs  

. . . . Bacteroides coprosuis DSM 18011 ........................................     1 hits    1 orgs  

. . . Bacteroides vulgatus .....................................................     7 hits    5 orgs  

. . . . Bacteroides vulgatus ATCC 8482 .........................................     2 hits    1 orgs  

. . . . Bacteroides vulgatus PC510 .............................................     1 hits    1 orgs  

. . . . Bacteroides vulgatus CL09T03C04 ........................................     1 hits    1 orgs  

. . . . Bacteroides vulgatus dnLKV7 ............................................     1 hits    1 orgs  

. . . Bacteroides massiliensis .................................................     4 hits    3 orgs  

. . . . Bacteroides massiliensis B84634 = Timone 84634 = DSM 17679 = JCM 13223 .     1 hits    1 orgs  

. . . . Bacteroides massiliensis dnLKV3 ........................................     1 hits    1 orgs  

. . . Bacteroides sp. 3_1_40A ..................................................     2 hits    1 orgs  

. . . Bacteroides sp. 4_3_47FAA ................................................     1 hits    1 orgs  

. . . Bacteroides dorei ........................................................     7 hits    6 orgs  

. . . . Bacteroides dorei 5_1_36/D4 ............................................     1 hits    1 orgs  

. . . . Bacteroides dorei CL03T12C01 ...........................................     1 hits    1 orgs  

. . . . Bacteroides dorei DSM 17855 ............................................     1 hits    1 orgs  
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. . . . Bacteroides dorei CL02T00C15 ...........................................     1 hits    1 orgs  

. . . . Bacteroides dorei CL02T12C06 ...........................................     1 hits    1 orgs  

. . . Bacteroides sp. 3_1_33FAA ................................................     1 hits    1 orgs  

. . . Bacteroides sp. 9_1_42FAA ................................................     2 hits    1 orgs  

. . . Bacteroides barnesiae ....................................................     1 hits    1 orgs  

. . . Bacteroides plebeius .....................................................     2 hits    2 orgs  

. . . . Bacteroides plebeius DSM 17135 .........................................     1 hits    1 orgs  

. . . Bacteroides coprophilus ..................................................     2 hits    2 orgs  

. . . . Bacteroides coprophilus DSM 18228 = JCM 13818 ..........................     1 hits    1 orgs  

. . . Bacteroides sp. 2_1_33B ..................................................     1 hits    1 orgs  

. . . Bacteroides sp. 3_1_19 ...................................................     1 hits    1 orgs  

. . . Bacteroides sp. 20_3 .....................................................     1 hits    1 orgs  

. . Porphyromonadaceae .........................................................    34 hits   26 orgs  

. . . Porphyromonas ............................................................    11 hits    6 orgs  

. . . . Porphyromonas gulae ....................................................     1 hits    1 orgs  

. . . . Porphyromonas gingivalis ...............................................    10 hits    5 orgs  

. . . . . Porphyromonas gingivalis JCVI SC001 ..................................     1 hits    1 orgs  

. . . . . Porphyromonas gingivalis ATCC 33277 ..................................     2 hits    1 orgs  

. . . . . Porphyromonas gingivalis W50 .........................................     1 hits    1 orgs  

. . . . . Porphyromonas gingivalis TDC60 .......................................     2 hits    1 orgs  

. . . Barnesiella intestinihominis .............................................     2 hits    2 orgs [Barnesiella] 

. . . . Barnesiella intestinihominis YIT 11860 .................................     1 hits    1 orgs  

. . . Tannerella ...............................................................     7 hits    5 orgs  

. . . . Tannerella sp. 6_1_58FAA_CT1 ...........................................     2 hits    1 orgs  

. . . . environmental samples ..................................................     2 hits    2 orgs  

. . . . . Tannerella sp. CAG:51 ................................................     1 hits    1 orgs  

. . . . . Tannerella sp. CAG:118 ...............................................     1 hits    1 orgs  

. . . . Tannerella forsythia ...................................................     3 hits    2 orgs  

. . . . . Tannerella forsythia ATCC 43037 ......................................     2 hits    1 orgs  

. . . Parabacteroides ..........................................................    14 hits   13 orgs  

. . . . Parabacteroides distasonis .............................................     5 hits    4 orgs  

. . . . . Parabacteroides distasonis ATCC 8503 .................................     2 hits    1 orgs  

. . . . . Parabacteroides distasonis CL03T12C09 ................................     1 hits    1 orgs  

. . . . . Parabacteroides distasonis CL09T03C24 ................................     1 hits    1 orgs  

. . . . Parabacteroides sp. D13 ................................................     1 hits    1 orgs  

. . . . Parabacteroides sp. D25 ................................................     1 hits    1 orgs  

. . . . environmental samples ..................................................     2 hits    2 orgs  

. . . . . Parabacteroides sp. CAG:2 ............................................     1 hits    1 orgs  

. . . . . Parabacteroides johnsonii CAG:246 ....................................     1 hits    1 orgs  

. . . . Parabacteroides johnsonii ..............................................     3 hits    3 orgs  

. . . . . Parabacteroides johnsonii DSM 18315 ..................................     1 hits    1 orgs  

. . . . . Parabacteroides johnsonii CL02T12C29 .................................     1 hits    1 orgs  

. . . . Parabacteroides merdae .................................................     2 hits    2 orgs  

. . . . . Parabacteroides merdae CL03T12C32 ....................................     1 hits    1 orgs  

. . Prevotella .................................................................    24 hits   24 orgs [Prevotellaceae] 

. . . environmental samples ....................................................     6 hits    6 orgs  

. . . . Prevotella sp. CAG:755 .................................................     1 hits    1 orgs  

. . . . Prevotella sp. CAG:617 .................................................     1 hits    1 orgs  

. . . . Prevotella sp. CAG:474 .................................................     1 hits    1 orgs  

. . . . Prevotella sp. CAG:487 .................................................     1 hits    1 orgs  

. . . . Prevotella sp. CAG:891 .................................................     1 hits    1 orgs  

. . . . Prevotella sp. CAG:5226 ................................................     1 hits    1 orgs  

. . . Prevotella buccalis ......................................................     2 hits    2 orgs  

. . . . Prevotella buccalis ATCC 35310 .........................................     1 hits    1 orgs  

. . . Prevotella timonensis ....................................................     2 hits    2 orgs  

. . . . Prevotella timonensis CRIS 5C-B1 .......................................     1 hits    1 orgs  

. . . Prevotella oralis ........................................................     3 hits    3 orgs  

. . . . Prevotella oralis ATCC 33269 ...........................................     1 hits    1 orgs  

. . . . Prevotella oralis HGA0225 ..............................................     1 hits    1 orgs  

. . . Prevotella saccharolytica ................................................     2 hits    2 orgs  

. . . . Prevotella saccharolytica F0055 ........................................     1 hits    1 orgs  

. . . Prevotella sp. oral taxon 317 ............................................     2 hits    2 orgs  

. . . . Prevotella sp. oral taxon 317 str. F0108 ...............................     1 hits    1 orgs  

. . . Prevotella bergensis .....................................................     2 hits    2 orgs  

. . . . Prevotella bergensis DSM 17361 .........................................     1 hits    1 orgs  

. . . Prevotella loescheii .....................................................     1 hits    1 orgs  
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. . . Prevotella sp. oral taxon 472 ............................................     2 hits    2 orgs  

. . . . Prevotella sp. oral taxon 472 str. F0295 ...............................     1 hits    1 orgs  

. . . Prevotella multisaccharivorax ............................................     2 hits    2 orgs  

. . . . Prevotella multisaccharivorax DSM 17128 ................................     1 hits    1 orgs  

. . environmental samples ......................................................     2 hits    2 orgs [Rikenellaceae; Alistipes] 

. . . Alistipes sp. CAG:435 ....................................................     1 hits    1 orgs  

. . . Alistipes sp. CAG:514 ....................................................     1 hits    1 orgs  

. Trichomonas vaginalis G3 .....................................................     2 hits    1 orgs [Eukaryota; Parabasalia; Trichomonadida; 
Trichomonadidae; Trichomonas; Trichomonas vaginalis] 
 
 
 
 
 

Appendix F – N-terminal Edman sequencing data for the Fc-α fragment of human 

myeloma IgA1 after digestion with the BT4244-FL protease   
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Cycle 2:Standard 1
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.48    7.561
                1.65   14.911
                2.23    4.086
                3.03    6.054
D               3.78   3.78    3.011   10.000
N               4.33   4.33    1.881   10.000
S               4.92   4.92    1.210   10.000
Q               5.20   5.20    1.565   10.000
T               5.33   5.33    1.626   10.000
G               5.58   5.58    1.250   10.000
E               5.99   5.99    1.621   10.000
                6.44    0.093
H               7.42   7.42    1.051   10.000
A               7.65   7.65    1.283   10.000
                8.42    0.058

R               9.38   9.38    0.869   10.000
Y               9.75   9.75    1.259   10.000
               10.59    0.079
               11.25    0.106
P              11.73  11.73    1.099   10.000
M              12.49  12.49    1.146   10.000
V              12.80  12.80    1.161   10.000
               13.91    0.868
W              15.06  15.06    1.278   10.000
F              15.69  15.69    1.278   10.000
I              16.09  16.09    0.949   10.000
K              16.38  16.38    1.441   10.000
L              16.55  16.55    1.393   10.000
               17.63    0.187
               19.71    0.267
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Cycle 3:Residue 1
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.47    5.171
                1.65   14.794
                2.24    3.834
                3.08    5.992
D               3.82   3.78    4.200   13.948
                4.02    3.957
N               4.34   4.33    3.691   19.625
                4.65    3.131
S               4.95   4.92    3.121   25.788
T               5.39   5.33    2.288   14.077
G               5.60   5.58    3.183   25.460
E               6.01   5.99    1.284    7.918
                6.58    0.236
H               7.35   7.42    0.059    0.558
A               7.68   7.65    0.317    2.467

                8.89    0.095
                9.26    0.178
Y               9.74   9.75    0.136    1.079
               10.27    0.046
               10.58    0.062
               11.28    0.102
P              11.75  11.73    0.090    0.819
M              12.46  12.49    0.146    1.277
V              12.81  12.80    0.157    1.349
               13.90    3.110
               15.47    0.275
I              16.10  16.09    0.094    0.989
K              16.34  16.38    0.111    0.772
L              16.55  16.55    0.200    1.439
               17.60    0.110
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Cycle 4:Residue 2
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.46    4.752
                1.65   14.576
                2.24    3.809
                3.04    5.924
D               3.83   3.78    4.172   13.854
                4.00    3.920
N               4.36   4.33    3.600   19.144
                4.67    3.060
S               4.95   4.92    2.779   22.970
T               5.38   5.33    4.123   25.358
G               5.59   5.58    2.423   19.380
E               6.01   5.99    1.390    8.571
                6.50    0.597
                7.28    0.077
A               7.71   7.65    0.270    2.100

                8.95    0.057
R               9.30   9.38    0.103    1.180
Y               9.78   9.75    0.116    0.923
               10.18    0.052
               10.62    0.067
               11.27    0.186
P              11.78  11.73    2.056   18.717
V              12.83  12.80    0.197    1.695
               13.94    3.020
               15.56    0.122
I              16.17  16.09    0.147    1.554
L              16.60  16.55    0.171    1.228
               17.68    0.140
               18.83    0.046
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Cycle 5:Residue 3
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.47    4.927
                1.65   14.525
                2.26    3.519
                3.04    5.963
D               3.84   3.78    4.239   14.078
                4.00    3.955
N               4.37   4.33    3.680   19.564
                4.65    3.141
S               4.95   4.92    2.974   24.580
T               5.40   5.33    2.691   16.549
G               5.61   5.58    2.188   17.506
E               6.03   5.99    1.438    8.873
                6.47    0.553
                7.29    0.078
A               7.69   7.65    0.338    2.634

R               9.30   9.38    0.138    1.590
Y               9.78   9.75    0.118    0.939
               10.60    0.059
               11.10    0.175
P              11.75  11.73    2.810   25.575
V              12.81  12.80    0.224    1.934
               13.45    0.063
               13.90    2.989
               14.83    0.047
               14.95    0.058
               15.50    0.076
I              16.03  16.09    0.136    1.439
K              16.28  16.38    0.107    0.743
L              16.52  16.55    0.240    1.724
               17.62    0.147
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Cycle 6:Residue 4
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.48    4.667
                1.66   14.287
                2.27   10.576
                3.08    7.105
D               3.83   3.78    5.383   17.877
                4.00    4.942
N               4.36   4.33    4.574   24.321
                4.66    3.913
S               4.97   4.92    3.625   29.961
T               5.40   5.33    3.975   24.448
G               5.60   5.58    2.816   22.523
E               6.04   5.99    1.925   11.877
                6.50    0.879
H               7.40   7.42    0.073    0.696
A               7.68   7.65    0.366    2.850
                8.96    0.080
                9.25    0.084

Y               9.77   9.75    0.125    0.995
               10.70    0.077
               11.27    0.173
P              11.77  11.73    2.138   19.457
V              12.83  12.80    0.271    2.332
               13.43    0.056
               13.93    3.013
               14.60    0.048
               15.19    0.050
               15.50    0.247
F              15.65  15.69    0.291    2.277
I              16.10  16.09    0.146    1.542
K              16.37  16.38    0.157    1.089
L              16.57  16.55    0.326    2.344
               17.62    0.091
               18.95    0.056
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Cycle 7:Residue 5
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.46    4.995
                1.65   14.505
                2.25    3.637
                3.04    5.950
D               3.83   3.78    4.441   14.748
                3.98    4.034
N               4.38   4.33    3.678   19.558
                4.64    3.187
S               4.97   4.92    3.100   25.617
T               5.40   5.33    3.752   23.080
G               5.60   5.58    2.442   19.530
E               6.03   5.99    1.664   10.264
                6.50    0.666
H               7.44   7.42    0.164    1.562
A               7.70   7.65    0.517    4.031
                8.31    0.055

                8.58    0.056
                8.90    0.084
                9.22    0.065
Y               9.77   9.75    0.140    1.116
               10.32    0.043
               10.59    0.102
               11.28    0.197
P              11.77  11.73    1.975   17.977
V              12.84  12.80    0.333    2.872
               13.92    3.370
               15.51    0.244
F              15.68  15.69    0.295    2.310
I              16.16  16.09    0.135    1.424
L              16.59  16.55    0.397    2.852
               17.65    0.091
               19.26    0.046
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.47    4.817
                1.65   14.375
                2.24    4.036
                3.04    5.981
D               3.83   3.78    4.578   15.204
                4.03    4.140
N               4.40   4.33    3.817   20.297
                4.66    3.384
S               4.98   4.92    3.685   30.453
Q               5.26   5.20    2.902   18.540
T               5.41   5.33    3.626   22.300
G               5.63   5.58    2.735   21.880
E               6.05   5.99    2.094   12.914
                6.55    1.070
H               7.32   7.42    0.090    0.858
A               7.73   7.65    0.599    4.671
                8.75    0.049

                8.97    0.103
                9.24    0.142
Y               9.78   9.75    0.174    1.385
               10.25    0.052
               10.32    0.044
               10.62    0.155
               11.30    0.186
P              11.78  11.73    1.993   18.137
V              12.85  12.80    0.423    3.647
               13.45    0.055
               13.93    3.687
F              15.68  15.69    0.342    2.674
I              16.08  16.09    0.154    1.621
K              16.40  16.38    0.202    1.402
L              16.60  16.55    0.487    3.499
               17.57    0.092
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Cycle 9:Residue 7
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.47    4.596
                1.67   14.348
                2.27    3.740
                3.08    5.996
D               3.87   3.78    4.573   15.187
                4.03    4.107
N               4.40   4.33    3.765   20.017
                4.68    3.240
S               5.01   4.92    3.747   30.963
Q               5.28   5.20    2.725   17.409
T               5.43   5.33    3.185   19.590
G               5.64   5.58    2.495   19.955
E               6.06   5.99    1.835   11.320
                6.59    0.713
H               7.34   7.42    0.064    0.614
A               7.73   7.65    0.659    5.138

                8.96    0.089
                9.24    0.124
R               9.36   9.38    0.115    1.327
Y               9.81   9.75    0.176    1.399
               10.64    0.191
               11.32    0.164
P              11.78  11.73    1.789   16.285
V              12.85  12.80    0.478    4.119
               13.26    0.047
               13.92    4.095
W              15.02  15.06    0.034    0.269
F              15.65  15.69    0.374    2.930
I              16.07  16.09    0.174    1.832
K              16.35  16.38    0.203    1.412
L              16.56  16.55    0.521    3.738
               17.51    0.121
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Cycle 10:Residue 8
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.47    4.626
                1.65   14.143
                2.24    4.282
                3.06    5.974
D               3.83   3.78    4.600   15.275
                4.02    4.065
N               4.37   4.33    3.718   19.770
                4.68    3.149
S               4.98   4.92    3.690   30.494
T               5.41   5.33    3.000   18.451
G               5.64   5.58    2.424   19.392
E               6.05   5.99    1.831   11.296
                6.55    0.581
H               7.43   7.42    0.244    2.324
A               7.71   7.65    0.807    6.291
                8.98    0.085

                9.26    0.129
R               9.40   9.38    0.151    1.738
Y               9.80   9.75    0.200    1.586
               10.66    0.184
               11.28    0.163
P              11.80  11.73    1.734   15.787
V              12.87  12.80    0.478    4.120
               13.48    0.068
               13.96    3.767
               14.77    0.042
F              15.74  15.69    0.376    2.943
I              16.16  16.09    0.189    1.990
K              16.45  16.38    0.230    1.598
L              16.65  16.55    0.597    4.284
               17.73    0.107
               19.40    0.061
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Cycle 11:Residue 9
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.45    4.925
                1.64   14.188
                2.22    4.484
                3.07    5.826
D               3.86   3.78    1.189    3.948
N               4.40   4.33    0.355    1.887
                4.71    0.128
S               4.99   4.92    1.176    9.716
Q               5.28   5.20    0.441    2.817
T               5.43   5.33    1.005    6.183
G               5.64   5.58    0.809    6.473
E               6.08   5.99    0.807    4.980
                6.57    0.292
                7.34    0.226
H               7.47   7.42    0.247    2.347
A               7.74   7.65    0.902    7.033
                8.97    0.072
R               9.28   9.38    0.061    0.699

Y               9.83   9.75    0.188    1.496
               10.30    0.030
               10.64    0.232
               11.33    0.184
P              11.81  11.73    1.466   13.345
M              12.49  12.49    0.097    0.846
V              12.90  12.80    0.591    5.088
               13.40    0.081
               13.98    4.404
               15.54    0.250
F              15.73  15.69    0.417    3.267
I              16.17  16.09    0.193    2.031
               16.45    0.269
L              16.66  16.55    0.690    4.958
               17.66    0.062
               19.10    0.124
               19.31    0.235
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Cycle 12:Residue 10
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.46    4.608
                1.65   14.154
                2.25    3.887
                3.04    5.855
D               3.85   3.78    1.201    3.987
N               4.40   4.33    0.390    2.074
                4.68    0.152
S               4.99   4.92    0.971    8.025
Q               5.28   5.20    0.448    2.862
T               5.42   5.33    1.019    6.270
G               5.64   5.58    0.834    6.669
E               6.06   5.99    0.841    5.186
                6.58    0.468
                7.35    0.226
H               7.44   7.42    0.252    2.396
A               7.72   7.65    0.973    7.580
                8.96    0.093

                9.25    0.136
R               9.43   9.38    0.165    1.897
Y               9.79   9.75    0.220    1.750
               10.63    0.212
               11.30    0.179
P              11.80  11.73    1.107   10.073
M              12.50  12.49    0.083    0.721
V              12.85  12.80    0.587    5.053
               13.43    0.049
               13.95    4.409
F              15.70  15.69    0.424    3.319
I              16.13  16.09    0.208    2.193
L              16.61  16.55    0.771    5.536
               17.61    0.123
               18.50    0.051
               19.30    0.084
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Cycle 13:Residue 11
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PEAK PEAKR.TIME R.TIMEC.TIME C.TIMEHEIGHT HEIGHTPMOL HT PMOL HT
ID ID(mins) (mins)(mins) (mins)(mV) (mV)

                1.48    4.569
                1.66   14.127
                2.26   10.202
                3.08    5.899
D               3.85   3.78    1.262    4.192
N               4.41   4.33    0.364    1.936
                4.71    0.132
S               4.98   4.92    0.795    6.572
Q               5.28   5.20    0.466    2.980
T               5.42   5.33    1.089    6.699
G               5.64   5.58    0.899    7.189
E               6.06   5.99    0.896    5.525
                6.57    0.546
H               7.46   7.42    0.373    3.544
A               7.72   7.65    1.079    8.407
                8.42    0.057

                8.95    0.095
R               9.43   9.38    0.194    2.235
Y               9.82   9.75    0.238    1.888
               10.21    0.055
               10.62    0.181
               11.29    0.165
P              11.80  11.73    0.935    8.511
M              12.50  12.49    0.082    0.718
V              12.87  12.80    0.680    5.861
               13.43    0.067
               13.97    4.414
               14.80    0.040
F              15.73  15.69    0.444    3.473
I              16.13  16.09    0.206    2.168
L              16.62  16.55    0.882    6.334
               17.60    0.061


